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1 Introduction

Understanding the fermion flavour pattern is still one of the most challenging and out-
standing problems in particle physics. In the last decades, the quark mass and mixing pa-
rameters have been precisely measured, while neutrino oscillation experiments have firmly
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established the existence of neutrino masses and lepton mixing. Among all aspects related
to the flavour problem, perhaps the most intriguing one is the huge hierarchy among the
quark and lepton masses. Namely, the lightest neutrino mass is (at most) of O(1 eV),
while the heaviest (top) quark mass is over eleven orders of magnitude heavier. Moreover,
the quark and lepton mixing patterns turn out to be drastically different: the Cabibbo-
Kobayashi-Maskawa (CKM) mixing matrix in quark sector is close to the identity with
small mixing angles, while the leptonic Pontecorvo-Maki-Nakagawa-Sakata (PMNS) ma-
trix features two large (atmospheric and solar) mixing angles, and the small (reactor) one.
In the Standard Model (SM), the fermion mass matrices are determined by the Yukawa
couplings, which are arbitrary complex numbers, unconstrained by the SM gauge sym-
metry. The fact that the number of free parameters is much larger than the number of
physical observables makes the SM unpredictive in the flavour sector.

With the purpose of finding a solution for the flavour puzzle, several approaches have
been developed. One of the ways of reducing the number of free parameters in fermion
mass matrices, is to assume some of their entries to be vanishing [1–3], i.e. to assume what
are commonly known as texture-zero ansätze. A typical example is the Fritzsch-type quark
mass matrices which can relate the Cabibbo angle θC to the ratio between the down and
strange quark masses [4, 5]. The phenomenology of texture zeros in both quark and lepton
sectors have been widely studied in literature — see refs. [6, 7] for reviews. Systematical
and complete analyses of all possible texture zeros have been carried out for both quark [8]
and lepton mass matrices [9]. It is found that the predictivity of pure texture zero models
is quite weak and the predictive mass matrices need relations among the non-zero matrix
elements. The most straightforward way to impose vanishing Yukawa couplings is by
enforcing them with Abelian flavour symmetries [10–12]. In such case, the non-zero entries
of the fermion mass matrices are uncorrelated since the three generations of matter fields
are not linked by the Abelian symmetry group.

Recently, modular symmetries have been proposed to address the flavour puzzle [13].
In this approach, the Yukawa couplings are level-N modular forms, which are holomorphic
functions of a single complex scalar field — the modulus τ — and transform nontrivially
under the action of the modular group. The matter fields are usually assumed to be in
irreducible representations of the modular group. Models with modular flavour symmetries
can be quite predictive, in the sense that fermion masses and mixing parameters depend
on few inputs. The phenomenology of modular invariance has been widely studied, and a
plethora of modular-invariant models for lepton masses and mixing have been constructed
by using the inhomogeneous finite modular group ΓN for Γ2 ∼= S3 [14–17], Γ3 ∼= A4 [13–15,
18–41], Γ4 ∼= S4 [28, 42–50], Γ5 ∼= A5 [47, 51, 52] and Γ7 ∼= PSL(2, Z7) [53], the homogeneous
finite modular group Γ′N for Γ′3 ∼= T ′ [54–56], Γ′4 ∼= S′4 [57–59], Γ′5 ∼= A′5 [60, 61] and Γ′6 [62],
and the finite metaplectic group Γ̃N [61, 63]. The most general finite modular groups
beyond ΓN and Γ′N are discussed in [64] from the view of vector-valued modular form.

Texture-zero patterns for fermion mass matrices can naturally arise from modular
symmetries. In comparison to the models based on Abelian flavour symmetries, the texture-
zero models relying on modular invariance are more predictive since the nonzero entries
of the mass matrices are related by the modular symmetry. In ref. [55], texture zeros in
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quark mass matrices from T ′ modular group symmetry have been investigated . In the
same token, the specific case of texture zeros of quark mass matrices with nearest neighbor
interaction has been discussed in [65]. Regarding the lepton sector, two-zero textures of
the Majorana neutrino mass matrix with diagonal charged-lepton mass matrix have been
studied in the framework of the A4 modular group [29]. However, all matter fields were
assigned to A4 singlets. As a consequence, the modular forms appearing in the lepton
mass matrices can be absorbed into the Yukawa coupling constants. Since the triplet
representation of A4 is not used, the effect of A4 modular symmetry is equivalent to an
Abelian flavour symmetry and, thus, the correlations among nonzero entries of lepton mass
matrices are lost. Thus, a more general and systematic study of lepton texture-zero in the
context of modular symmetries is needed.

In this work, we will extend the analysis of [55] to the lepton sector, following a
systematic approach in seeking the modular-symmetry realisations of lepton texture zeros
and studying their phenomenology. We shall use the modular group Γ′3 ∼= T ′ as cornerstone.
In contrast with ref. [29], we will not impose any specific basis for charged leptons, and all
possible ways of assigning the lepton fields to irreducible representations of the T ′ modular
group will be explored. Since the particle nature of neutrinos is still unclear, we will
consider both Dirac and Majorana neutrino masses. For the latter, we analyse two kinds
of mass generation mechanisms: the effective Weinberg operator and the type-I seesaw
mechanism. To the combination of a given pattern for the charged-lepton and neutrino
mass matrix realised with a specific representation and modular weight assignment we call
a texture-zero lepton model (TZLM).

This paper is organised as follows: in section 2, we briefly review some key aspects
about modular symmetry and modular forms of level 3. In section 3, we systematically
analyse the texture-zero patterns of the charged-lepton mass matrix stemming from T ′

modular symmetry by considering all possible representation assignments of matter fields.
This procedure is repeated for the neutrino mass matrices in section 4. The combination of
charged-lepton and neutrino patterns is carried out in section 5, and the phenomenologically
viable pairs are identified in section 5.1 by means of a complete numerical analysis in
view of latest neutrino experimental data. Among all viable cases, we focus on three
benchmark TZLMs which will be studied in section 6. Finally, we draw ourconclusions in
section 7. Group-theoretical aspects of the modular group T ′ are covered in appendix A. In
particular, we provide the level 3 modular forms of weight 2, 3, 4, 5 and 6 in appendix B.
The details of the representative models for the viable textures of lepton mass matrices
and the corresponding predictions for lepton observables are summarized in appendix C.

2 Modular symmetry and modular forms of level 3

The modular group Γ = SL(2,Z) is the special linear group of two-dimensional matrices
with integer entries defined as:

Γ = SL(2,Z) =


a b

c d

 ∣∣∣∣a, b, c, d ∈ Z, ad− bc = 1

 . (2.1)
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The group Γ has infinite elements and it can be generated by two generators S and T ,
namely

S =

 0 1
−1 0

 , T =

1 1
0 1

 , (2.2)

which satisfy the relations

S4 = (ST )3 = 12, S2T = TS2 , (2.3)

where 12 denotes the 2 × 2 unit matrix and S2 = −12. Notice that eq. (2.3) implies
(TS)3 = 12. The modular group Γ acts on the complex modulus τ with fractional linear
transformations:

τ → γτ = aτ + b

cτ + d
, with Imτ > 0, γ =

a b

c d

 ∈ Γ , (2.4)

being the action of S and T on τ

S : τ → −1
τ
, T : τ → τ + 1 . (2.5)

We see that the modulus τ transforms in the same way under the action of γ and S2γ = −γ.
Hence, the group of fractional linear transformations is isomorphic to the projective matrix
group PSL(2,Z) ∼= SL(2,Z)/{12,−12}. Moreover, the modular transformation of a set of
chiral supermultiplets Φi under the action of γ is given by

Φi
γ7−→ (cτ + d)−kΦρij(γ)Φj , (2.6)

where kΦ ∈ Z is the modular weight of the superfield multiplet Φi, and ρ is the unitary
representation of Γ with finite image. For a modular flavour symmetry [13], it is assumed
that the representation matrix ρ(γ) is a unit matrix when γ belongs to the principal
congruence subgroup of level N1

Γ(N) =


 a b

c d

 ∈ SL(2,Z),

 a b

c d

 =

 1 0
0 1

 (mod N)

 , (2.7)

which is an infinite normal subgroup of SL(2,Z). We see Γ(1) = SL(2,Z) and TN ∈ Γ(N).
The fundamental theorem of homomorphisms implies that ρ is effectively a representation
of the quotient group Γ′N ≡ SL(2,Z)/Γ(N) ∼= SL(2, ZN ) which is called homogeneous finite
modular group. Γ′N can be obtained by further imposing the condition TN = 1 besides
those in eq. (2.3):

Γ′N = 〈S, T
∣∣S4 = (ST )3 = TN = 1, S2T = TS2〉 . (2.8)

1In fact, one can start from any irreducible representation ρ of SL(2,Z) with finite image [64], and here
ρ(Γ(N)) = 1 is a particular choice.
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Additional relations are necessary in order to render the group Γ′N finite for N ≥ 6 [66].
The Γ′N group can also be expressed in terms of three generators S, T and R as follow

Γ′N = 〈S, T,R
∣∣S2 = R, (ST )3 = TN = R2 = 1, RT = TR〉 . (2.9)

If ρ cannot distinguish between γ and −γ with ρ(S2) = 1, ρ would be the representation
of the inhomogeneous finite modular group ΓN ≡ SL(2,Z)/±Γ(N) ∼= Γ′N/ZS

2
2 , where ZS2

2
is the order-two cyclic group generated by S2. For N ≤ 5, the defining relations of ΓN are

ΓN = 〈S, T
∣∣S2 = (ST )3 = TN = 1〉 . (2.10)

Note that Γ′2 = Γ2 since S2 ∈ Γ(2), while Γ′N is the double cover of ΓN for N ≥ 3 due
to S2 /∈ Γ(N). It is notable that the groups ΓN for N = 2, 3, 4, 5 are isomorphic to the
permutation groups S3, A4, S4 and A5 respectively.

Implementation of modular flavour symmetries requires modular forms Y (τ) of weight
k and level N . Y (τ) is a holomorphic function of τ with a well-defined transformation
property under Γ(N):

Y (γτ) = (cτ + d)kY (τ), γ =

 a b

c d

 ∈ Γ(N) , (2.11)

where k is a generic non-negative integer.2 The modular forms of weight k and level N span
a linear spaceMk(Γ(N)) of finite dimension, they are invariant under Γ(N) but transform
under the quotient group Γ′N . It is always possible to choose a basis in the linear space
Mk(Γ(N)) such that the modular forms can be arranged into some modular multiplets
Y

(k)
r = (Y1(τ), Y2(τ), . . .)T which transform as irreducible representation r of the finite

modular group Γ′N or ΓN [13, 54]:

Y
(k)

r (γτ) = (cτ + d)kρr(γ)Y (k)
r (τ) for ∀ γ ∈ SL(2,Z) , (2.12)

where γ is the representative element of the coset γΓ(N) in Γ′N , and ρr(γ) is the represen-
tation matrix of the element γ in the irreducible representation r.

The superpotential W(ΦI , τ) can be expanded in power series of the supermultiplets
ΦI ,

W(ΦI , τ) =
∑
n

YI1...In(τ)ΦI1 . . .ΦIn , (2.13)

where the sum is taken over all possible combinations of the fields {I1, . . . , In}. The su-
permultiplet ΦIi is assumed to transform in the representation ρIi of Γ′N , being −kIi its
modular weight. Modular invariance requires W(ΦI , τ) to be invariant under the finite
modular group Γ′N and, thus, the total weight of each of its terms must vanish. As a
consequence, YI1...In(τ) should be a modular multiplet of weight kY transforming in the
representation ρY of Γ′N , i.e.

YI1...In(τ)→ YI1...In(γτ) = (cτ + d)kY ρY (γ)YI1...In(τ) , (2.14)
2The rational weight modular forms have been studied in [61, 63].

– 5 –



J
H
E
P
0
3
(
2
0
2
3
)
1
4
1

with kY and ρY satisfying

kY = kI1 + . . .+ kIn , ρY ⊗ ρI1 ⊗ . . .⊗ ρIn 3 1 , (2.15)

where 1 denotes the trivial singlet representation of Γ′N .

2.1 Weight-1 modular forms of level N = 3

The linear spaceMk(Γ(3)) spanned by level-3 and weight-k modular forms has dimension
k + 1, and can be explicitly constructed by using the Dedekind eta function η(τ):

Mk(Γ(3)) =
∑

m+n=k;m,n≥0
cmn

η3m(3τ)η3n(τ/3)
ηm+n(τ) =

∑
m+n=k;m,n≥0

cmn

[
η3(3τ)
η(τ)

]m[
η3(τ/3)
η(τ)

]n
,

(2.16)
where cmn are general complex coefficients and

η(τ) = q1/24
∞∏
n=1

(1− qn), q = e2πiτ . (2.17)

Hence,Mk(Γ(3)) can be generated by polynomials of degree k in the two functions u1(τ)
and u2(τ):

u1(τ) = η3(3τ)
η(τ) , u2(τ) = η3(τ/3)

η(τ) , (2.18)

which are the two linearly independent weight-1 modular forms at level 3. The functions
u1(τ) and u2(τ) transform under the modular generators S and T as

u1(τ) T7−→ e2πi/3u1(τ), u2(τ) T7−→ 3
√

3e−iπ/6u1 + u2 ,

u1(τ) S7−→ 3−3/2(−iτ)u2(τ), u2(τ) S7−→ 33/2(−iτ)u1(τ) . (2.19)

and can be arranged in a T ′ doublet Y (1)
2 up to the automorphy factor cτ + d [54]. In

the group representation basis given by eq. (A.3), we find that the modular form doublet
Y

(1)
2 (τ) is defined as

Y
(1)

2 (τ) =

Y1(τ)
Y2(τ)

 , (2.20)

with
Y1(τ) =

√
2u1(τ), Y2(τ) = −u1(τ)− 1

3u2(τ) . (2.21)

One can check that Y (1)
2 (τ) transforms under the modular generator S and T as expected,

namely
Y

(1)
2 (−1/τ) = −τρ2(S)Y (1)

2 (τ), Y
(1)

2 (τ + 1) = ρ2(T )Y (1)
2 (τ) , (2.22)

where the representation matrices ρ2(S) and ρ2(T ) are given in appendix A. The q-
expansion of the weight-1 modular forms Y1,2(τ) reads

Y1(τ) =
√

2 q1/3
(
1 + q + 2q2 + 2q4 + q5 + 2q6 + q8 + 2q9 + 2q10 + 2q12 + . . .

)
,

Y2(τ) = −1/3− 2q − 2q3 − 2q4 − 4q7 − 2q9 − 2q12 − 4q13 + . . . . (2.23)

Notice that Y1(τ) and Y2(τ) are algebraically independent. The level-3 modular form of
weight k ≥ 2 can be expressed as polynomials of degree k in Y1(τ) and Y2(τ), as shown
explicitly in appendix B.
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3 Texture zeros in the charged-lepton mass matrix

As antecipated in the Introduction, in this work we will carry out a systematic analysis
of texture zeros in the lepton mass matrices stemming from a Γ4 ∼= T ′ modular sym-
metry. The matter fields are assumed to transform as irreducible representations of T ′
which has three one-dimensional irreducible representations denoted by 1, 1′, 1′′, three
two-dimensional irreducible representations denoted by 2, 2′, 2′′ and a three-dimensional
irreducible representation denoted by 3. Thus, the lepton fields can be assigned to any of
these representations.

The transformation assignments of the three generations of left-haned (LH) leptons
and the right-handed (RH) charged leptons can be classified into the following cases, i.e.,

L≡


L1

L2

L3

∼3 , or LD ≡

L1

L2

∼2i, L3∼1j , or La∼1ja , with a= 1,2,3 , (3.1)

Ec≡


ec

µc

τ c

∼3 , or EcD ≡

ec
µc

∼2k, τ c∼1l , or Eca∼1lα , with α= 1,2,3 . (3.2)

where i, j, k, l, j1,2,3, l1,2,3 = 0, 1, 2 with 1 ≡ 10, 1′ ≡ 11, 1′′ ≡ 12 (2 ≡ 20, 2′ ≡ 21,
2′′ ≡ 22) for the singlet (doublet) representations. Eca stands for ec, µc, τ c when a = 1, 2, 3,
respectively. The above assignment for the three lepton generations is not unique in the
sense that permutations among them can the be considered. This amounts to multiplying
the charged-lepton mass matrix on the left and/or right by permutation matrices. However,
this does not change lepton mixing and, at the end, we can identify nine classes of charged-
lepton mass matrices according to how the lepton fields transform under T ′.

In table 1, we summarize all possible texture-zero patterns for the charged-lepton
mass matrix that can be obtained with T ′ modular group. In the following, we discuss
how those structures can be achieved by properly assigning the representations and weights
of the lepton fields under the T ′ modular group. We should emphasize that the matrix
entries marked with × in the mass matrices considered in this work are not arbitrary as in
usual texture-zero frameworks based on Abelian symmetries. As already mentioned in the
Introduction, this is due to the fact that extra relations among the non-zero entries appear
as a result of the T ′ modular symmetry. Therefore, compatibility of a given texture with
arbitrary non-vanishing entries does not guarantee its viability in the present framework.

We will now discuss the 9 distinct assignments of lepton fields, and require the charged-
lepton mass matrix to have rank three in order to accommodate the three nonzero masses
of the electron, muon and tau.
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C(1)
1 :


0 × ×
× × ×
× × ×



C(1)
2 :


0 × ×
× 0 ×
× × ×

 , C(2)
2 :


× × ×
× × ×
0 0 ×

 , C(3)
2 :


× × 0
× × 0
× × ×



C(1)
3 :


× × 0
× × ×
0 0 ×

 , C(2)
3 :


× 0 ×
× 0 ×
0 × ×

 , C(3)
3 :


0 × ×
× 0 ×
× × 0



C(1)
4 :


× × 0
× × 0
0 0 ×

 , C(2)
4 :


0 × 0
× 0 0
× × ×

 , C(3)
4 :


0 × ×
× 0 ×
0 0 ×



C(1)
6 :


0 × 0
× 0 0
0 0 ×


Table 1. Texture-zero classification for the (rank-3) charged-lepton mass matrices which can be
realised from T ′ modular symmetry, up to row and column permutations.

• L ≡ (L1, L2, L3)T ∼ 3, Ec ≡ (ec, µc, τ c)T ∼ 3

In this case, the most general effective Yukawa terms for the charged leptons in the
superpotential are given by

WE =
∑
r,a

gEr,a

[
EcLY

(kL+kEc )
ra

]
1
Hd , (3.3)

where gEr,a are coupling constants, and Y
(k)

ra stands for the modular form of weight
k and representation r, with a possibly labelling linearly independent multiplets of
the same type. Notice that all possible contractions into the T ′ singlet should be
considered. As shown in table 13, the allowed representation r of modular forms in
eq. (3.3) depends on the modular weights kL + kEc . From eq. (3.3), we can read out
the expressions of the elements of charged lepton mass matrix,

(ME)αβ = vd
∑
a,b,c,d

{[
gE3S ,a(3δαβ − 1) + gE3A,a(1− δαβ)(−1)(α−β)|3

]
Y

(kL+kEc )
3a,3−(α+β)|3 (3.4)

+gE1,bδ2,(α+β)|3Y
(kL+kEc )

1b + gE1′,cδ1,(α+β)|3Y
(kL+kEc )

1′c + gE1′′,dδ0,(α+β)|3Y
(kL+kEc )

1′′d

}
,

where vd = 〈H0
d〉 is the vacuum expectation value (VEV) of the Higgs field Hd and

a|3 ≡ (a mod 3). From now on, Y (kL+kEc )
ra,j denotes the jth component of the modular

form Y
(kL+kEc )

ra in the vector notation of eq. (2.20) and eqs. (B.1)–(B.5). The charged-
lepton mass matrix ME is defined in the right-left basis with Ecα(ME)αβLβ . We find
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that only texture C(1)
6 can be reproduced, requiring total weight kL + kEc = 0. None

of the other cases can be obtained for a generic value of the modulus τ when the three
lepton doublets and singlets are in triplet representations of T ′. It turns out that
the modular realisation of C(1)

6 is not viable since, in this case, modular symmetry
imposes (ME)12 = (ME)21 = (ME)33, leading to a fully degenerate charged-lepton
mass spectrum.

• L ≡ (L1, L2, L3)T ∼ 3, Ec
D ≡ (ec, µc)T ∼ 2k, Ec

3 ≡ τ c ∼ 1l

In this case, the superpotential terms relevant for charged-lepton mass generation
are:

WE =
∑
r,a,b

gEr,a

[
EcDLY

(kL+kEc
D

)
ra

]
1
Hd + gE3,b

[
Ec3LY

(kL+kEc3 )
3b

]
1
Hd . (3.5)

where gEr,a, gE3,b are coupling constants. Modular invariance requires the represen-
tation r to be 2,2′,2′′, for which the corresponding modular forms of weight k =
kL + kEcD are given in table 13. The elements in the first two rows of ME read

(ME)αβ=vd
∑
a,b,c

{
gE22−k,a(1−δ1,β−α)

[
δ1,(α−β)|3Y

(kEc
D

+kL)
22−ka,1 (δα,2−

√
2δα,1)+δαβY

(kEc
D

+kL)
22−ka,2 (δα,1+

√
2δα,2)

]

+gE2(1−k)|3,b

(
1−δ1,(α−β)|3

)[
δαβY

(kEc
D

+kL)

2(1−k)|3b,1 (δα,2−
√

2δα,1)+δ1,β−αY
(kEc

D
+kL)

2(1−k)|3b,2 (δα,1+
√

2δα,2)
]

(3.6)

+gE2(−k)|3,c
(1−δαβ)

[
δ1,β−αY

(kEc
D

+kL)

2(−k)|3c,1 (δα,2−
√

2δα,1)+δ1,(α−β)|3Y
(kEc

D
+kL)

2(−k)|3c,2 (δα,1+
√

2δα,2)
]}
.

with α = 1, 2 and β = 1, 2, 3, while the elements in the third row are given by

(ME)3β =
∑
b

gE3,bvdY
(kL+kEc3 )

3b,3−(l+β+1)|3 , β = 1, 2, 3. (3.7)

In this case, only the C(1)
2 texture-zero pattern can be realised by the modular sym-

metry with kEcD + kL = 1, and there are no zero elements in ME for the remaining
weights.

• L ≡ (L1, L2, L3)T ∼ 3, Ec
α ∼ 1lα

With the LH leptons transforming as a triplet of T ′, and the RH charged leptons
transforming as singlets of T ′, the Yukawa terms for charged leptons are

WE =
3∑

α=1

∑
a

gEα3,a

[
EcαLY

(kL+kEcα )
3a

]
1
Hd , (3.8)

where gEα3,a are coupling constants. The matrix elements of ME are in this case:

(ME)αβ =
∑
a

gEα3,avdY
(kL+kEcα )

3a,3−(lα+β+1)|3 . (3.9)

Demanding that ME is of rank 3, no texture zeros can be obtained in this case.

– 9 –



J
H
E
P
0
3
(
2
0
2
3
)
1
4
1

• LD ≡ (L1, L2)T ∼ 2i, L3 ∼ 1j , Ec ≡ (ec, µc, τ c)T ∼ 3
This case can be related to the second case described above by exchanging the as-
signments of LH and RH lepton fields. Hence, one can obtain the corresponding
ME transposing the mass matrix given in eqs. (3.6) and (3.7)). Consequently, only
texture C(1)

2 can be realised for kLD + kEc = 1 in this case.

• LD ≡ (L1, L2)T ∼ 2i, L3 ∼ 1j , Ec
D ≡ (ec, µc)T ∼ 2k, Ec

3 ∼ 1l

In the case that both the left- and RH charged leptons transform as direct sums of
one- and two-dimensional representations of T ′, the superpotential WE is given as

WE =
∑

r,a,b,c,d
gE1r,a

[
EcDLDY

(kLD+kEc
D

)
ra

]
1
Hd + gE2r,b

[
EcDL3Y

(kL3+kEc
D

)
rb

]
1
Hd

+gE3r,c

[
Ec3LDY

(kLD+kEc3 )
rc

]
1
Hd + gE4r,d

[
Ec3L3Y

(kL3+kEc3 )
rd

]
1
Hd . (3.10)

The corresponding charged-lepton mass matrix can be divided into four blocks which
correspond to 2×2, 2×1, 1×2 and 1×1 sub-matrices. Using the Kronecker products
and the CG coefficients of T ′ given in appendix A, we find the explicit forms of the
four submatrices:

(ME)αβ = vd
∑
a,b,c,d

{
gE13,a(

√
2)δαβ (−1)δ2,α+βY

(kEc
D

+kLD )
3a,3−(k+i−α−β)|3+(1−δαβ)(−1)(α−β)|3δ3,α+β

×
[
gE11,bδ2,(i+k)|3Y

(kEc
D

+kLD )
1b +gE11′,cδ1,(i+k)|3Y

(kEc
D

+kLD )
1′c

+gE11′′,dδ0,(i+k)|3Y
(kEc

D
+kLD )

1′′d

]}
, (3.11)

(ME)α3 = vd
∑
a,b,c

[
gE22,aδ2,(k+j)|3(−1)α+1Y

(kEc
D

+kL3 )
2a,3−α +gE22′,bδ1,(k+j)|3(−1)α+1Y

(kEc
D

+kL3 )
2′b,3−α

+gE22′′,cδ0,(k+j)|3(−1)α+1Y
(kEc

D
+kL3 )

2′′c,3−α

]
, (3.12)

(ME)3β = vd
∑
a,b,c

[
gE32,aδ2,(i+l)|3(−1)β+1Y

(kEc3 +kLD )
2a,3−β +gE32′,bδ1,(i+l)|3(−1)β+1Y

(kEc3 +kLD )
2′b,3−β

+gE32′′,cδ0,(i+l)|3(−1)β+1Y
(kEc3 +kLD )

2′′c,3−β

]
, (3.13)

(ME)33 = vd
∑
a,b,c

[
gE41,aδ0,(j+l)|3Y

(kEc3 +kL3 )
1a +gE41′,bδ2,(j+l)|3Y

(kEc3 +kL3 )
1′b

+gE41′′,cδ1,(j+l)|3Y
(kEc3 +kL3 )

1′′c

]
, α,β=1,2. (3.14)

The possible forms of the sub-matrices for different representation and weight assign-
ments are summarised in table 2. When combined, these submatrix configurations
may lead to the following 9 texture-zero patterns for ME :

C(1)
1 , C(1)

2 , C(2)
2 , C(3)

2 , C(3)
3 , C(1)

4 , C(2)
4 , C(3)

4 , C(1)
6 . (3.15)
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Note that the texture C(1)
6 can be achieved only if kLD + kEcD = 0 and k + i =

2 (mod 3), with ME satisfying (ME)12 = −(ME)21 and (ME)33 6= 0, thus featuring
two degenerate charged-lepton masses.

• LD ≡ (L1, L2)T ∼ 2i, L3 ∼ 1j , Ec
α ∼ 1lα with α = 1, 2, 3

The modular invariant superpotential is now given by

WE =
3∑

α=1

∑
r,a,b

gEα1r,a

[
EcαLDY

(kLD+kEcα )
ra

]
1
Hd + gEα2r,b

[
EcαL3Y

(kL3+kEcα )
rb

]
1
Hd .

(3.16)
The corresponding expressions of the elements in the ME can be obtained as

(ME)αβ = vd
∑
a,b,c

[
gEα12,aδ2,i+lα(−1)β+1Y

(kEcα+kLD )
2a,3−β +gEα12′,bδ1,(i+lα)|3(−1)β+1Y

(kEcα+kLD )
2′b,3−β

+gEα12′′,cδ0,(i+lα)|3(−1)β+1Y
(kEcα+kLD )

2′′c,3−β

]
, (3.17)

(ME)α3 = vd
∑
a,b,c

[
gEα21,aδ0,(j+lα)|3Y

(kEcα+kL3 )
1a +gEα21′,bδ2,(j+lα)|3Y

(kEcα+kL3 )
1′b

+gEα21′′,cδ1,(j+lα)|3Y
(kEcα+kL3 )

1′′c

]
, (3.18)

where α = 1, 2, 3 and β = 1, 2. In this case, we can obtain five possible texture-zero
patterns in ME , namely

C(1)
1 , C(2)

2 , C(3)
2 , C(1)

3 , C(1)
4 . (3.19)

• Lα ∼ 1jα , Ec ≡ (ec, µc, τ c)T ∼ 3

The corresponding charged-lepton mass matrix is the transpose of that in eq. (3.9),
and no texture zeros can be achieved.

• Lα ∼ 1jα , Ec
D ≡ (ec, µc)T ∼ 2k, Ec

3 ≡ τ c ∼ 1l

As in the previous case, the resulting ME can be obtained by transposing the that
of eqs. (3.17) and (3.18) by switching the transformation properties of LH and RH
charged leptons. In this case, the allowed texture zeros are

C(1)
1 , C(2)

2 , C(3)
2 , C(2)

3 , C(1)
4 . (3.20)

• Lβ ∼ 1jβ , Ec
α ∼ 1lα

All lepton multiplets are assigned to singlets of T ′ and the Yukawa superpotential
for the charged-lepton masses reads

WE =
3∑

α,β=1

∑
r,a

gEαβr,a

(
EcαLβY

(kLβ+kEcα )
ra

)
1
Hd . (3.21)
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The elements of ME are now given by:

(ME)αβ = vd
∑
a,b,c

[
gEαβ1,aδ0,(jβ+lα)|3Y

(kEcα+kLβ )
1a + gEαβ1′,bδ2,(jβ+lα)|3Y

(kEcα+kLβ )
1′b

+gEαβ1′′,cδ1,(jβ+lα)|3Y
(kEcα+kLβ )

1′′c

]
. (3.22)

In this case, the representation and modular weight of each lepton field can be ad-
justed so that several texture-zero patterns in ME can be obtained. Since we have
S = 1, T = ωa in the singlet representations 1a, the flavour symmetry is essentially
the Z3 subgroup generated by T rather than T ′ for this assignment. As a consequence,
a larger number of free parameters would have to be introduced, leading to less pre-
dictive power. Moreover, the contributions of all modular forms can be absorbed into
the coupling constants, as can be seen from eq. (3.22). Thus, the advantage of the
modular symmetry is lost in this case. In the present work, we are mainly concerned
on achieving texture-zero patterns with small number of free parameters by taking
the most of T ′ modular symmetry. Therefore, from now on we will not consider the
case in which all lepton fields are in singlets of T ′.

4 Texture zeros in the neutrino mass matrix

To carry out a full analysis of lepton models with texture-zero patterns realised by modular
T ′ flavour symmetry, we now turn our attention to the neutrino sector. Given that the par-
ticle nature of neutrinos is still unclear, we will consider both scenarios in which neutrinos
are Dirac or Majorana particles. In the latter case, we explore two possibilities depending
on wether neutrino masses are generated via: i) an effective dimension-five Weinberg oper-
ator (without specifying the underlying full theory) or ii) a minimal type-I seesaw model.

4.1 Dirac neutrinos

If neutrinos are Dirac particles, three RH (singlet) neutrino fields N c are necessary, leading
to neutrino mass terms similar to the charged-lepton ones. As in section 3, we can obtain
the possible texture-zero patterns for the neutrino mass matrix by considering all different
representation assignment of the lepton fields L and N c. Given that neutrino oscillation
data requires that at least two neutrinos are massive, the rank of the neutrino mass matrix
can be either three or two, in contrast with rank three of the charged-lepton mass matrix.
Hence, the set of texture-zero patterns for the Dirac neutrino mass matrix MD is larger
than for ME , as can be seen in table 3. Besides those textures given in table 1 for ME , we
find the following additional ones which correspond to MD of rank two:

D(4)
3 ,D(5)

3 ,D(4)
4 ,D(5)

4 ,D(6)
4 ,D(1)

5 ,D(2)
5 ,D(3)

5 ,D(4)
5 ,D(5)

5 ,D(6)
5 ,D(1)

6 ,D(2)
6 ,D(1)

7 . (4.1)

Similarly to the charged-lepton sector, both D(3)
6 and D(1)

7 lead to degeneracy between the
two nonvanishing neutrino masses and, consequently, will not be considered from now on.

– 12 –



J
H
E
P
0
3
(
2
0
2
3
)
1
4
1

(ψc, ψ) Expressions of Sub-matrix Weight and representation assignments

(2i,3)

(
0 0 0
0 0 0

)
1© kψc + kψ ≤ 0 ,

2© kψc + kψ = 2, 4, 6, . . .(
0 −

√
2g1Y

(1)
2,1 g1Y

(1)
2,2√

2g1Y
(1)

2,2 0 g1Y
(1)

2,1

)
kψc + kψ = 1, i = 0(

−
√

2g1Y
(1)

2,1 g1Y
(1)

2,2 0
0 g1Y

(1)
2,1
√

2g1Y
(1)

2,2

)
kψc + kψ = 1, i = 1(

g1Y
(1)

2,2 0 −
√

2g1Y
(1)

2,1

g1Y
(1)

2,1
√

2g1Y
(1)

2,2 0

)
kψc + kψ = 1, i = 2(

g1Y
(3)

2′′,2 −
√

2g2Y
(3)

2,1 −
√

2g1Y
(3)

2′′,1 + g2Y
(3)

2,2

g1Y
(3)

2′′,1 +
√

2g2Y
(3)

2,2
√

2g1Y
(3)

2′′,2 g2Y
(3)

2,1

)
kψc + kψ = 3, i = 0(

−
√

2g2Y
(3)

2,1 g2Y
(3)

2,2 −
√

2g1Y
(3)

2′′,1 g1Y
(3)

2′′,2√
2g1Y

(3)
2′′,2 g2Y

(3)
2,1

√
2g2Y

(3)
2,2 + g1Y

(3)
2′′,1

)
kψc + kψ = 3, i = 1(

g2Y
(3)

2,2 −
√

2g1Y
(3)

2′′,1 g1Y
(3)

2′′,2 −
√

2g2Y
(3)

2,1

g2Y
(3)

2,1
√

2g2Y
(3)

2,2 + g1Y
(3)

2′′,1

√
2g1Y

(3)
2′′,2

)
kψc + kψ = 3, i = 2(

g1Y
(5)

2′′,2 −
√

2g2Y
(5)

2′,1 g2Y
(5)

2′,2 −
√

2g3Y
(5)

2,1 −
√

2g1Y
(5)

2′′,1 + g3Y
(5)

2,2

g1Y
(5)

2′′,1 +
√

2g3Y
(5)

2,2
√

2g1Y
(5)

2′′,2 + g2Y
(5)

2′,1

√
2g2Y

(5)
2′,2 + g3Y

(5)
2,1

)
kψc + kψ = 5, i = 0(

g2Y
(5)

2′,2 −
√

2g3Y
(5)

2,1 g3Y
(5)

2,2 −
√

2g1Y
(5)

2′′,1 −
√

2g2Y
(5)

2′,1 + g1Y
(5)

2′′,2

g2Y
(5)

2′,1 +
√

2g1Y
(5)

2′′,2

√
2g2Y

(5)
2′,2 + g3Y

(5)
2,1

√
2g3Y

(5)
2,2 + g1Y

(5)
2′′,1

)
kψc + kψ = 5, i = 1(

g3Y
(5)

2,2 −
√

2g1Y
(5)

2′′,1 g1Y
(5)

2′′,2 −
√

2g2Y
(5)

2′,1 −
√

2g3Y
(5)

2,1 + g2Y
(5)

2′,2

g3Y
(5)

2,1 +
√

2g2Y
(5)

2′,2

√
2g3Y

(5)
2,2 + g1Y

(5)
2′′,1

√
2g1Y

(5)
2′′,2 + g2Y

(5)
2′,1

)
kψc + kψ = 5, i = 2

(2i,2k)

(
0 0
0 0

)
1© kψc + kψ < 0 ,

2© kψc + kψ = 1, 3, 5, . . .(
0 g1

−g1 0

)
kψc + kψ = 0, k + i = 2 (mod 3)(

−g1
√

2Y (2)
3,2 g1Y

(2)
3,3

g1Y
(2)

3,3 g1
√

2Y (2)
3,1

)
kψc + kψ = 2, k + i = 0 (mod 3)(

−g1
√

2Y (4)
3,2 g1Y

(4)
3,3

g1Y
(4)

3,3 g1
√

2Y (4)
3,1

)
kψc + kψ = 4, k + i = 0 (mod 3)(

−
√

2(g1Y
(6)

3I,2 + g2Y
(6)

3II,2) g1Y
(6)

3I,3 + g2Y
(6)

3II,3

g1Y
(6)

3I,3 + g2Y
(6)

3II,3
√

2(g1Y
(6)

3I,1 + g2Y
(6)

3II,1)

)
kψc + kψ = 6, k + i = 0 (mod 3)(

−g1
√

2Y (2)
3,1 g1Y

(2)
3,2

g1Y
(2)

3,2 g1
√

2Y (2)
3,3

)
kψc + kψ = 2, k + i = 1 (mod 3)(

−g1
√

2Y (4)
3,1 g2Y

(4)
1′ + g1Y

(4)
3,2

−g2Y
(4)

1′ + g1Y
(4)

3,2 g1
√

2Y (4)
3,3

)
kψc + kψ = 4, k + i = 1 (mod 3)(

−
√

2(g1Y
(6)

3I,1 + g2Y
(6)

3II,1) (g1Y
(6)

3I,2 + g2Y
(6)

3II,2)
(g1Y

(6)
3I,2 + g2Y

(6)
3II,2)

√
2(g1Y

(6)
3I,3 + g2Y

(6)
3II,3)

)
kψc + kψ = 6, k + i = 1 (mod 3)(

−g1
√

2Y (2)
3,3 g1Y

(2)
3,1

g1Y
(2)

3,1 g1
√

2Y (2)
3,2

)
kψc + kψ = 2, k + i = 2 (mod 3)(

−g1
√

2Y (4)
3,3 g2Y

(4)
1 + g1Y

(4)
3,1

−g2Y
(4)

1 + g1Y
(4)

3,1 g1
√

2Y (4)
3,2

)
kψc + kψ = 4, k + i = 2 (mod 3)(

−
√

2(g1Y
(6)

3I,3 + g2Y
(6)

3II,3) (g1Y
(6)

3I,1 + g2Y
(6)

3II,1) + g3Y
(6)

1

(g1Y
(6)

3I,1 + g2Y
(6)

3II,1)− g3Y
(6)

1
√

2(g1Y
(6)

3I,2 + g2Y
(6)

3II,2)

)
kψc + kψ = 6, k + i = 2 (mod 3)

(2i,1j)

(0, 0)T

1© kψc + kψ < 0,
2© kψc + kψ = 0, 2, 4, 6, . . . ,

3© kψc + kψ = 1, i+ j = 0, 1 (mod 3) ,
4© kψc + kψ = 3, i+ j = 1 (mod 3) .

(gY (3)
2′′,2,−gY

(3)
2′′,1)T kψc + kψ = 3, i+ j = 0 (mod 3)

(gY (5)
2′′,2,−gY

(5)
2′′,1)T kψc + kψ = 5, i+ j = 0 (mod 3)

(gY (5)
2′,2,−gY

(5)
2′,1)T kψc + kψ = 5, i+ j = 1 (mod 3)

(gY (1)
2,2 ,−gY

(1)
2,1 )T kψc + kψ = 1, i+ j = 2 (mod 3)

(gY (3)
2,2 ,−gY

(3)
2,1 )T kψc + kψ = 3, i+ j = 2 (mod 3)

(gY (5)
2,2 ,−gY

(5)
2,1 )T kψc + kψ = 5, i+ j = 2 (mod 3)

Table 2. Possible submatrix forms for the charged-lepton mass matrix up to weight-6 modular
forms, for the case where the RH charged lepton field ψc transform as 2i and the LH lepton doublet
ψ as 3, 2k or 1j under T ′ modular symmetry. Their modular weights are denoted by kψc and kψ,
respectively. The parameters gi are coupling constants. If the representation assignments of ψ and
ψc are exchanged, the corresponding submatrix is the transpose of the original one.
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At this point, it is worth stressing that Majorana mass terms for the RH neutrinos
can be forbidden by properly choosing the modular weights of the N c fields, so that the
Diracness of light neutrinos stems automatically from modular symmetry. For instance,
let us consider a case with the LH leptons and the RH neutrinos transforming as

L = (L1, L2, L3)T ∼ 3 , N c
D ≡ (N c

1 , N
c
2)T ∼ 2k , N c

3 ∼ 1l . (4.2)

Then, the superpotential for Dirac neutrino masses can be written as

WD
ν =

∑
r,a,b

gνr,a

[
N c
DLY

(k1)
ra

]
1
Hu + gνr,bN

c
3LY

(k2)
3b Hu . (4.3)

Modular invariance requires the weights of the involved modular forms to satisfy

k1 = kL + kNc
D
, k2 = kL + kNc

3
, (4.4)

which, for any given values of k1 and k2, implies

kL = k1 − kNc
D
, kNc

3
= kNc

D
+ k2 − k1 . (4.5)

Notice that the value of kNc
D

is free and, thus, we can always choose a negative value for
kNc

D
, so that kNc

3
is negative as well. If modular weights of all RH neutrino fields are

negative, modular-invariant Majorana mass terms of the type

WM
N ∼ N c

iN
c
j Y

(kNc
i

+kNc
j

)
, i, j = D, 3 , (4.6)

cannot be written since there are no modular forms of negative modular weights at level
N . The above arguments hold for any other representation assignment of the lepton fields.
In short, the modular symmetry can enforce light neutrinos to be Dirac particles if the
modular weights of the RH neutrinos are properly (not uniquely) assigned.

4.2 Majorana neutrinos

For Majorana neutrinos, we consider two distinct mass generation mechanisms: the effective
Weinberg operator and the type-I seesaw mechanism. In the same token of the discussions
for charged leptons and Dirac neutrinos, in table 4 we present all possible texture-zero for
the effective Majorana neutrino mass matrix Mν which can be obtained from T ′ modular
symmetry. Note that W(1)

4 , W(4)
4 and W(1)

5 lead to two degenerate neutrino masses, which
is excluded by neutrino oscillation data. In the following, we first discuss the textures
originated from the effective Weinberg operator, and then turn to the type-I seesaw case.

4.2.1 Neutrino masses via Weinberg operator

The most general modular-invariant Weinberg operator of neutrino masses can be written
as

Wν ∼
1
ΛLiLjY

(kLi+kLj )
HuHu , (4.7)

where Λ denotes the new physics scale where lepton number is violated by two units,
and the Higgs field Hu is assumed to be invariant singlet of T ′ with a vanishing modular
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D(1)
1 :


0 × ×
× × ×
× × ×



D(1)
2 :


0 × ×
× 0 ×
× × ×

 , D(2)
2 :


× × ×
× × ×
0 0 ×

 , D(3)
2 :


× × 0
× × 0
× × ×



D(1)
3 :


× × 0
× × ×
0 0 ×

 , D(2)
3 :


× 0 ×
× 0 ×
0 × ×

 , D(3)
3 :


0 × ×
× 0 ×
× × 0

 , D(4)
3 :


× × ×
× × ×
0 0 0



D(5)
3 :


× × 0
× × 0
× × 0



D(1)
4 :


× × 0
× × 0
0 0 ×

 , D(2)
4 :


0 × 0
× 0 0
× × ×

 , D(3)
4 :


0 × ×
× 0 ×
0 0 ×

 , D(4)
4 :


0 0 ×
0 0 ×
× × ×



D(5)
4 :


× × 0
× × ×
0 0 0

 , D(6)
4 :


× × 0
× × 0
0 × 0



D(1)
5 :


× × 0
× × 0
0 0 0

 , D(2)
5 :


0 0 ×
0 0 ×
× × 0

 , D(3)
5 :


0 × ×
× 0 ×
0 0 0

 , D(4)
5 :


0 × 0
× 0 0
× × 0



D(5)
5 :


0 0 0
0 0 ×
× × ×

 , D(6)
5 :


0 0 ×
0 0 ×
0 × ×



D(1)
6 :


0 0 0
0 0 ×
× × 0

 , D(2)
6 :


0 0 ×
0 0 ×
0 × 0

 , D(3)
6 :


0 × 0
× 0 0
0 0 ×



D(1)
7 :


0 × 0
× 0 0
0 0 0


Table 3. Texture-zero patterns for the Dirac neutrino mass matrix MD which can be realised from
T ′ modular symmetry, up to row and column permutations.
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W(1)
1 :


× × ×
× × ×
× × 0

 , W(2)
1 :


× 0 ×
0 × ×
× × ×



W(1)
2 :


0 × ×
× 0 ×
× × ×

 , W(2)
2 :


× × 0
× × 0
0 0 ×



W(1)
3 :


0 0 ×
0 0 ×
× × ×

 , W(2)
3 :


× × 0
× × 0
0 0 0



W(1)
4 :


0 0 ×
0 0 ×
× × 0

 , W(2)
4 :


0 × 0
× × 0
0 0 0

 , W(3)
4 :


× 0 0
0 × 0
0 0 0

 , W(4)
4 :


× 0 0
0 0 ×
0 × 0



W(1)
5 :


0 × 0
× 0 0
0 0 0


Table 4. Texture-zero patterns for the Majorana neutrino mass matrix Mν which can be realised
by T ′ modular symmetry, up to row and column permutations. Notice that only W(1)

1 , W(2)
2 ,

W(1)
3 , W(2)

3 , W(1)
4 and W(4)

4 can be obtained if neutrino masses are described by the Weinberg
operator. On the other hand, all the above textures except W(4)

4 can be achieved if neutrino masses
are generated via the minimal type I seesaw mechanism.

weight. In this case, the neutrino mass matrix Mν only depends on the T ′ representation
assignments and modular weights of the LH lepton fields. In the following, we will discuss
all possible choices according to eq. (3.1) and infer about the properties of the resulting
Mν in each case.

• L ≡ (L1, L2, L3)T ∼ 3
In the case that the three LH lepton fields are assigned to a triplet of T ′, the effective
dimension-five terms in the superpotential can be written as

Wν =
∑
r,a

gνr,a
Λ
[
LLY

(2kL)
ra

]
1HuHu , (4.8)

where kL is the modular weight of L. The explicit form of the Mν elements is

(Mν)αβ = v2
u

Λ
∑
a,b,c,d

[
gν3,a(3δαβ − 1)Y (2kL)

3a,3−(α+β)|3 + gν1,bδ2,(α+β)|3Y
(2kL)

1b

+ gν1′,cδ1,(α+β)|3Y
(2kL)

1′c + gν1′′,dδ0,(α+β)|3Y
(2kL)

1′′d

]
, (4.9)

where α, β = 1, 2, 3. The above expression reveals that Mν has no zero elements if
kL > 0. In the case of kL = 0, only the pattern W(4)

4 of table 4 can be realised, but
it leads to two degenerate masses.
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• LD ≡ (L1, L2)T ∼ 2i, L3 ∼ 1j

If the three lepton doublets transform as the direct sum of doublet and singlet of T ′,
the most general form of Wν is

Wν = 1
Λ
∑
a,b,c

{
gν1r,a

[
LDLDY

(2kLD )
ra

]
1

+ gν2r,b

[
LDL3Y

(kLD+kL3 )
rb

]
1

+ gν3r,c

[
L3L3Y

(2kL3 )
rc

]
1

}
HuHu . (4.10)

from which we can read out the expressions for the Mν matrix elements

(Mν)αβ =
∑
a

v2
u

Λ

[
gν13,a(

√
2)δαβ (−1)δ2,α+βY

(2kLD )
3a,3−(2i−α−β)|3

]
, (4.11)

(Mν)α3 =
∑
a,b,c

v2
u

Λ

[
gE22,aδ2,(i+j)|3(−1)α+1Y

(kLD+kL3 )
2a,3−α +gE22′,bδ1,(i+j)|3(−1)α+1Y

(kLD+kL3 )
2′b,3−α

+gE22′′,cδ0,(i+j)|3(−1)α+1Y
(kLD+kL3 )

2′′c,3−α

]
, (4.12)

(Mν)33 =
∑
a,b,c

v2
u

Λ

[
gE31,aδ0,(2j)|3Y

(2kL3 )
1a +gE31′,δ2,(2j)|3Y

(2kL3 )
1′b

+gE31′′,cδ1,(2j)|3Y
(2kL3 )

1′′c

]
, (4.13)

with α, β = 1, 2. Going through all possible values of i, j and of the modular weights
kLD and kL3 , we find that the following five texture-zero patterns can be obtained,

W(1)
1 ,W(2)

2 ,W(1)
3 ,W(2)

3 ,W(1)
4 , (4.14)

as shown in table 4.

• Lα ∼ 1jα

If all LH leptons transform as one-dimensional representations of T ′, we have

Wν =
3∑

α,β=1

∑
a

gναβr,a
Λ

[
LαLβY

(kLα+kLβ )
ra

]
1
HuHu , (4.15)

and the general expression for the neutrino mass matrix is

(Mν)αβ = (1+δαβ)v2
u

2Λ
∑
a,b,c

[
gναβ1,aδ0,(jα+jβ)|3Y

(kLα+kLβ )
1a +gναβ1′,bδ2,(jα+jβ)|3Y

(kLα+kLβ )
1′b

+gναβ1′′,cδ1,(jα+jβ)|3Y
(kLα+kLβ )

1′′c

]
. (4.16)

Analogously to the charged-lepton sector (see the discussion at the end of section 3),
we shall not consider this case here since it is less constrained by modular symmetry
and, in general, more free parameters would be required. Nevertheless, some texture
zeros can be realised [29].
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4.2.2 Neutrino masses via type-I seesaw mechanism

If neutrino masses are generated through the type-I seesaw mechanism, at least two RH
neutrino fields are required to accommodate present neutrino oscillation data, namely,
three nonzero lepton mixing angles and two mass-squared differences. In this section, we
will consider the minimal seesaw model with two RH neutrinos [67, 68] for which the Dirac
(RH Majorana) neutrino mass matrix MD (MN ) is a 2× 3 (2× 2 symmetric) matrix. The
RH neutrinos can transform as either doublet or singlet of T ′, i.e.,

N c ≡ (N c
1 , N

c
2)T ∼ 2k , or N c

α ∼ 1lα , (4.17)

with α = 1, 2.

• N c ∼ 2k

In this case, the mass term of the RH neutrinos can be written as

WN
ν =

∑
r,a

gNr,aΛ
[
N cN cY

(2kNc )
ra

]
1
, (4.18)

where gNr,a are coupling constants and kNc is the modular weight of N c. From table 2,
we can read out the matrix element of MN :

(MN )αβ =
∑
a

gN3,a(
√

2)δαβ (−1)δ2,α+βY
(2kNc )

3a,3−(2k−α−β)|3 , (4.19)

where α, β = 1, 2.

• N c
α ∼ 1lα

The RH neutrino fields transform as T ′ singlets, and their mass terms read

WN
ν =

2∑
α,β=1

∑
r,a

gNαβr,aΛ
[
N c
αN

c
βY

(kNcα+kNc
β

)
ra

]
1
. (4.20)

The explicit form of the elements of MN is

(MN )αβ = (1+δαβ)Λ
2

∑
a,b,c

[
gMαβ1,aδ0,(lα+lβ)|3Y

(kNcα+kNc
β

)
1a +gMαβ1′,bδ2,(lα+lβ)|3Y

(kNcα+kNc
β

)

1′b

+gMαβ1′′,cδ1,(lα+lβ)|3Y
(kNcα+kNc

β
)

1′′c

]
. (4.21)

Considering that the RH neutrinos can not be massless, we find that MN can be of one of
the following types,

N
(1)
0 :

× ×
× ×

 ,

N
(1)
1 :

 0 ×
× ×

 , N
(2)
1 :

× ×
× 0

 , N
(3)
1 :

× 0
0 ×

 ,
N

(1)
2 :

 0 ×
× 0

 , (4.22)
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up to row and column permutations. All the above textures can be achieved with the
singlet assignments N c

α ∼ 1lα , while the doublet assignment N c ∼ 2k can only give rise
to N

(1)
0 . Notice that we have included the pattern N

(1)
0 which does not exhibit any zero

elements. This is due to the fact that we focus on the texture zero of the effective neutrino
mass matrix Mν which is given by the seesaw formula Mν = −MT

DM
−1
N MD. Thus, even

if there is no zero elements in MN , Mν can still have texture zeros, as long as the Dirac
neutrino mass matrix MD takes suitable form.

The Dirac neutrino mass term arises from the Yukawa couplings of LH leptons and RH
neutrinos. For some representation and weight assignments of these fields, texture zeros
in the Dirac neutrino mass matrix MD can be obtained. With two RH neutrinos, we find
that MD can take the following six zero patterns,

D
(1)
1 :

× × ×
× × 0

 ,

D
(1)
2 :

 0 × ×
× 0 ×

 , D
(2)
2 :

× × ×
0 0 ×

 , D
(3)
2 :

× × 0
× × 0

 ,

D
(1)
3 :

× × 0
0 0 ×

 ,

D
(1)
4 :

 0 × 0
× 0 0

 , (4.23)

up to row and column permutations. We have omitted the cases in which one row or two
columns of MD are vanishing, since they would lead to two massless neutrinos which are
not compatible with experimental data. If all elements of MD are non-vanishing, Mν will
not have texture zeros too and, consequently, we do not consider this case in the follow-
ing. We analyse the MD patterns stemming from all possible lepton field representation
assignments.

• L ≡ (L1, L2, L3)T ∼ 3, N c ∼ 2k

If the L and N c fields transform as the triplet and doublet of T ′, respectively, the
superpotential for the Dirac neutrino Yukawa couplings is

WD
ν =

∑
r,a

gDr,a

[
N cLY

(kL+kNc )
ra

]
1
Hu , (4.24)

where gDr,a are coupling constants. From table 2, we can read out the elements of
MD from those given for ME in eq. (3.6) by performing the replacements gE → gD,
kEcD → kNc and vd → vu. We find that only texture D

(1)
2 can be achieved when

kL + kNc = 1.

• LD ≡ (L1, L2)T ∼ 2i, L3 ∼ 1j , N c ∼ 2k

In this case,

WD
ν =

∑
r,a,b

gD1r,a

[
N cLDY

(kLD+kNc )
ra

]
1
Hu + gD2r,b

[
N cL3Y

(kL3+kNc )
rb

]
1
Hu . (4.25)
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Once more, using the results for ME given in eq. (3.10), we can obtain the MD

elements from eqs. (3.11) and (3.12) with the replacement gE → gD, kEcD → kNc and
vd → vu. Doing so, MD can take the following three types of texture zeros,

D
(1)
2 , D

(3)
2 , D

(1)
4 . (4.26)

• Lβ ∼ 1jβ , N c ∼ 2k

In case all the LH leptons transform as singlets of T ′, we have

WD
ν =

3∑
β=1

∑
r,a

gDβr,a

[
N cLβY

(kLβ+kNc )
ra

]
1
Hu , (4.27)

and the elements of MD read

(MD)αβ = vu
∑
a,b,c

[
gD2,aδ2,(k+j)|3(−1)α+1Y

(kLβ+kNc )
2a,3−α +gD2′,bδ1,(k+j)|3(−1)α+1Y

(kLβ+kNc )
2′b,3−α

+gD2′′,cδ0,(k+j)|3(−1)α+1Y
(kLβ+kNc )

2′′c,3−α

]
, α= 1,2 ,β= 1,2,3 . (4.28)

We find that there is only one allowed texture-zero pattern for MD, which is D
(3)
2

(up to row and column permutations).

• L ≡ (L1, L2, L3)T ∼ 3, N c
α ∼ 1lα

With the LH doublet (RH neutrino) fields transforming as triplet (singlets) of T ′:

WD
ν =

2∑
α=1

∑
r,a

gDαr,a

[
N c
αLY

(kL+kNcα )
3a

]
1
Hu , (4.29)

and the general form of MD can be extracted from eq. (3.9) with the replacements
gE → gD, kEcα → kNc

α
and vd → vu. One row of MD may vanish in this case, and at

least two light neutrino would be massless.

• LD ≡ (L1, L2)T ∼ 2i, L3 ∼ 1j , N c
α ∼ 1lα

Assigning two lepton doublets to a doublet of T ′ and the remaining fields to singlets,
leads to the superpotential

WD
ν =

2∑
α=1

∑
r,a,b

gDα1r,a

[
N c
αLDY

(kLD+kNcα )
ra

]
1
Hu + gDα2r,b

[
N c
αL3Y

(kL3+kNcα )
rb

]
1
Hu ,

(4.30)
which is analogous to WE given in eq. (3.16). The corresponding expressions of
MD can be obtained from ME in eqs. (3.17) and (3.18) by performing the same
replacements as in the previous case. Consequently, the texture-zero patterns

D
(1)
1 , D

(2)
2 , D

(3)
2 , D

(1)
3 , (4.31)

can be reproduced.
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MD MN Mν

D
(1)
1 , D(1)

2 , D(1)
3 N

(1)
1

W(1)
1D

(1)
1 N

(1)
2

D
(1)
2 N

(2)
1

D
(1)
2 N

(3)
1 W(2)

1

D
(1)
2 N

(1)
2 W(1)

2

D
(1)
3 N

(3)
1 W(2)

2

D
(2)
2 N

(2)
1 , N(1)

2 W(1)
3

D
(1)
3 N

(2)
1

D
(3)
2 N

(1)
0 , N(1)

1 , N(2)
1 , N(3)

1 , N(1)
2 W(2)

3
D

(1)
4 N

(1)
0

D
(1)
3 N

(1)
2 W(1)

4

D
(1)
4 N

(1)
1 , N(2)

1 W(2)
4

D
(1)
4 N

(3)
1 W(3)

4

D
(1)
4 N

(1)
2 W(1)

5

Table 5. Textures for the effective neutrino mass matrix Mν in the type-I seesaw mechanism
with two RH neutrino fields. D(1)

1 −D
(1)
4 are the texture-zero patterns for the Dirac neutrino mass

matrix MD and N
(1)
0 −N

(1)
2 are those for the RH Majorana neutrino mass matrix MN — see (4.22)

and (4.23). The explicit forms of the resulting Mν textures W(1)
1 −W(1)

5 are given in table 4.

• Lβ ∼ 1jβ , N c
α ∼ 1lα

If all lepton multiplets transform as one-dimensional representations of T ′, then

WD
ν =

2∑
α=1

3∑
β=1

∑
r,a

gDαβr,a

[
N c
αLβY

(kLβ+kNcα )
ra

]
1
Hu . (4.32)

The corresponding MD can be obtained from eq. (3.22). As explained at the end of
section 3, we will not discuss this representation assignments.

So far, we have discussed separately the texture-zero patterns of the Dirac neutrino
mass matrix MD and the RH Majorana neutrino mass matrix MN for the case of two-RH
neutrino fields. The possible MN and MD textures were summarised in (4.22) and (4.23),
respectively. The effective light neutrino mass matrixMν is given by the well-known seesaw
formula Mν = −MT

DM
−1
N MD and, combining all possible D and N structures for MD and

MN , ten possible texture-zero patterns arise for Mν . These are summarised in table 5,
from which one sees that some Mν textures can be realised from different (MD,MN ) pairs.
For the sake of completeness, we will consider all possible (MD,MN ) combinations in the
following.

Before proceeding to the phenomenological analysis of lepton models based on the
texture-zero patterns discussed in the previous sections, it is worth summarising our find-
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C(1)
3 : 3(l)

1 D(6)
4 : 4(νD)

6 , 4(νD)
10 , 4(νD)

14 4(νD)
20 , 4(νD)

25 , 4(νD)
27

C(2)
3 : 3(l)

2 D(1)
5 : 5(νD)

3 , 5(νD)
7 , 5(νD)

9
C(3)

3 : 3(l)
3 D(2)

5 : 5(νD)
12 , 5(νD)

20 , 5(νD)
25

C(1)
4 : 4(l)

4 D(3)
5 : 5(νD)

4 , 5(νD)
5 , 5(νD)

8
C(2)

4 : 4(l)
1 D(4)

5 : 5(νD)
13 , 5(νD)

17 , 5(νD)
24

C(3)
4 : 4(l)

2 D(5)
5 : 5(νD)

1 , 5(νD)
2 , 5(νD)

6
C(1)

6 : 6(l)
1 D(6)

5 : 5(νD)
10 , 5(νD)

11 , 5(νD)
19 5(νD)

21 , 5(νD)
26 , 5(νD)

27
D(1)

2 : 2(νD)
2 D(1)

6 : 6(νD)
3 , 6(νD)

5 , 6(νD)
7

D(2)
2 : 2(νD)

1 D(2)
6 : 6(νD)

10 , 6(νD)
11 , 6(νD)

12 , 6(νD)
14 , 6(νD)

15 , 6(νD)
16

D(3)
2 : 2(νD)

3 D(3)
6 : 6(νD)

13
D(1)

3 : 3(νD)
3 , 3(νD)

5 , 3(νD)
10 D(1)

7 : 7(νD)
1 , 7(νD)

2 , 7(νD)
3

D(2)
3 : 3(νD)

8 , 3(νD)
9 , 3(νD)

11 , 3(νD)
13 , 3(νD)

16 , 3(νD)
17 W(1)

1 : 1(νL)
1 , 1(νL)

2 , 1(νL)
3

D(3)
3 : 3(νD)

12 W(2)
1 : 1(νL)

4 , 1(νL)
5 , 1(νL)

6
D(4)

3 : 3(νD)
1 W(1)

2 : 2(νL)
1 , 2(νL)

2 , 2(νL)
3

D(5)
3 : 3(νD)

7 , 3(νD)
15 , 3(νD)

18 W(2)
2 : 2(νL)

13 , 2(νL)
14 , 2(νL)

15
D(1)

4 : 4(νD)
12 , 4(νD)

18 , 4(νD)
21 W(1)

3 : 3(νL)
2 , 3(νL)

5 , 3(νL)
10

D(2)
4 : 4(νD)

5 , 4(νD)
9 , 4(νD)

17 W(2)
3 : 3(νL)

11 , 3(νL)
16 , 3(νL)

19
D(3)

4 : 4(νD)
7 , 4(νD)

16 , 4(νD)
26 W(2)

4 : 4(νL)
1 , 4(νL)

2 , 4(νL)
3 , 4(νL)

4 , 4(νL)
5 , 4(νL)

6
D(4)

4 : 4(νD)
4 , 4(νD)

13 , 4(νD)
24 W(3)

4 : 4(νL)
7 , 4(νL)

8 , 4(νL)
9

D(5)
4 : 4(νD)

1 , 4(νD)
2 , 4(νD)

3

Table 6. Correspondence between our texture-zero patterns C, D and W and those of ref. [9].
Since the assignment of the three generations of lepton fields under T ′ modular symmetry can
be freely exchanged, the lepton mass matrices are determined up to independent row and column
permutations. Consequently, one texture zero of ours could correspond to several textures of ref. [9].

ings up to this point. As shown in sections 3 and 4, texture zeros of fermion mass matrices
can be naturally implemented in the context of modular flavour symmetries, being the non-
vanishing elements of those matrices correlated as shown, for instance, in table 2. Thus,
the resulting lepton models are expected to be much more predictive than, e.g., models
based in Abelian symmetries. In tables 1, 3 and 4, we have listed all possible texture-zero
patterns for the charged-lepton, Dirac neutrino and Majorana neutrino mass matrices, re-
spectively, which are obtainable from the T ′ modular symmetry. Notice that one could get
alternative texture-zero patterns from finite modular groups other than T ′. It is remarkable
that some texture zeros of lepton mass matrices listed in ref. [9] can be reproduced from
the T ′ modular symmetry, as shown in table 6. However, some others cannot be realised
in the framework of T ′ modular group, as it is the case of texture “5(l)

1 ” of ref. [9]. Notice
that one texture of ours may correspond to several ones of [9] since our lepton mass ma-
trices are defined up to row and column permutation due to the freedom of representation
assignment of matter fields. Moreover, the patterns with one or two zero elements in ME

and one zero element in MD were not studied in [9]. Thus, C(1)
1 , C(1)

2 , C(2)
2 , C(3)

2 and D(1)
1

discussed in this work have no correspondence in [9].
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5 Testing the full set of TZLMs

After having analysed separately the realisation of texture zeros in the charged-lepton and
neutrino mass matrices with T ′ modular forms up to weight 6, we now combine them with
the purpose of studying their phenomenology. In practice, we will test all possible texture-
zero pairs (ME ,Mν), where Mν can be either Dirac or Majorana neutrino mass matrix,
taking into account the results of the previous sections. Since the LH charged-lepton and
neutrino fields belong to SU(2)L doublets, they should transform in the same way under
modular symmetry, i.e., they should share the same modular weight and representation
assignments. Each of these pairs correspond to a different texture-zero lepton model or
TZLM. In this paper we are interested in those TZLMs which are, in some sense, predictive.
The set of observables against which the test will be performed contains essentially nine
experimentally-measured lepton-mass and mixing parameters, namely

me, mµ, mτ , ∆m2
21, ∆m2

31, θ12, θ13, θ23, δCP , (5.1)

where me, mµ, mτ are three charged-lepton masses, ∆m2
21, ∆m2

31 are two neutrino mass-
squared differences, θ12, θ13, θ23 are three lepton mixing angles and δCP is the Dirac
CP-violation phase. Note that the present statistical significance of the δCP measurement
is rather weak, and the preferred value of δCP from global data analyses should be taken
with a grain of salt [69].

Given the above set of observables, we shall focus on TZLMs with nine or less real
free input parameters. Notice that, in general, all coupling constants appearing in previ-
ous sections can be complex. Still, some of them can be made real by rephasing fields.
Thus, for a given TZLM, the number of input parameters is counted after removing all
unphysical complex phases. Interestingly, one can further constrain the number of inputs,
and thus increase the TZLM predictive power, by imposing the generalized CP symmetry
(gCP). In the context of modular symmetries, it has been found that the gCP acts on the
complex modulus as τ CP−−→ −τ∗, up to modular transformations [70–74]. In the basis where
both modular generators S and T are represented by symmetric matrices in all irreducible
representations, gCP reduces to the canonical CP transformation [74]. Hence, all coupling
constants are forced to be real if the CG coefficients are real in the symmetric basis. As
shown in appendix A, we are indeed working in the symmetric basis of the T ′ group with
real CG coefficients. Consequently, imposing gCP in our TZLMs amounts to considering
all coupling real and, as a result, the number of free parameters is reduced. Given this
interesting possibility, we will consider both cases with and without gCP. In all cases we
require the total number of real input parameters to be less than or equal to nine. Notice
that imposing gCP can reduce the number of free parameters in lepton models and, thus,
the TZLMs containing nine or less real free input parameters without gCP can be also
achieved with gCP. Moreover, some TZLMs without gCP which are excluded by the con-
straint on the number of free parameters, could depend on nine or less real free parameters
after gCP is imposed. Hence gCP can lead to more TZLMs.
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For the three different neutrino-mass generation mechanisms considered in this work
we have:

Dirac neutrinos. From tables 1 and 3, we see the T ′ modular symmetry can realise
11 (25) distinct texture-zero patterns for ME (MD). As pointed out in sections 3 and 4,
texture C(1)

6 for ME and D(3)
6 and D(1)

7 for MD, lead to degenerate mass eigenvalues, which
is not compatible with experimental data. Thus, they will be neglected hereafter. It is
straightforward to conclude that there are 10×23 = 230 pairs (ME ,MD). Considering that
the LH neutrinos and charged leptons should transform in the same way under modular
symmetry, and sticking to our classification of a predictive TZLM, we find that 136 out
of those 230 classes of (ME ,MD) can be realised from T ′ modular symmetry. If gCP is
imposed, the number increases to 174. The allowed patterns of (ME ,MD) in T ′ modular
symmetry are summarised in tables 8 and 9 (more details on the contents of these tables
will be given in the next section).

Majorana neutrinos. For Majorana neutrinos, we have obtained 11 Mν texture-zero
patterns, as summarised in table 4. Textures W(1)

4 , W(4)
4 and W(1)

5 predict two degenerate
neutrino masses, thus they will be excluded in the following analysis. If light neutrino
masses are described by the Weinberg operator, combining the possible constructions in the
neutrino and charged-lepton sectors, we find that 29 pairs (ME ,Mν) can be achieved with
T ′ modular symmetry without gCP, and two additional ones are allowed if gCP symmetry is
imposed. These findings are summarized in table 10. For neutrino masses generated via the
minimal type-I seesaw mechanism (see section 4.2.2), the possibleMD andMN textures, as
well as the resulting patterns for Mν , are presented in table 5. Notice that some Mν given
by seesaw formula can be realised from more than one (MD,MN ). We find 35 (36) possible
pairs if gCP is not (is) included in the T ′ modular models, which are listed in table 11.

5.1 Numerical analysis and TZLM predictions

In order to quantitatively estimate how well the different TZLMs describe the data, we
perform a χ2 analysis to find out the best fit values of the input parameters for each model,
as well as the predictions for lepton mass and mixing parameters. As common practice,
we consider both normal ordering (NO) and inverted ordering (IO) for the neutrino mass
spectrum, depending on whether m1 < m2 < m3 or m3 < m1 < m2, respectively. The χ2

function is defined as usual:

χ2 =
n∑
i=1

(
Pi(x1, x2, . . . , xm)− µi

σi

)2
, (5.2)

where Pi are the predictions of a given TZLM for the physical observables θ12, θ13, θ23,
δCP , me/mµ, mµ/mτ and ∆m2

21/∆m2
31. These are nontrivial functions of the free input

parameters in each TZLM. µi and σi denote the best-fit values and standard deviations of
the corresponding quantities extracted from global analysis of the data — see table 7.
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Observables
Normal Ordering Inverted Ordering

bfp±1σ 3σ range bfp±1σ 3σ range
sin2 θ12 0.304+0.012

−0.012 0.269→ 0.343 0.304+0.013
−0.012 0.269→ 0.343

sin2 θ13 0.02246+0.00062
−0.00062 0.02060→ 0.02435 0.02241+0.00074

−0.00062 0.02055→ 0.02457
sin2 θ23 0.450+0.019

−0.016 0.408→ 0.603 0.570+0.016
−0.022 0.410→ 0.613

δCP/
◦ 230+36

−25 144→ 350 278+22
−30 194→ 345

∆m2
21

10−5eV2 7.42+0.21
−0.20 6.82→ 8.04 7.42+0.21

−0.20 6.82→ 8.04
∆m2

3l
10−3eV2 2.515+0.028

−0.028 2.430→ 2.593 −2.490+0.026
−0.028 2.410→ 2.574

bfv±1σ
me/mµ 0.004737±0.000040
mµ/mτ 0.05857±0.00047
mτ/GeV 1.30234

Table 7. Allowed ranges for the neutrino oscillation parameters obtained from global analysis of the
data, and values of the charged-lepton mass ratios. Here, we use the NuFIT v5.1 results with Super-
Kamiokanda atmospheric data [69]. Note that ∆m2

3l ≡ ∆m2
31 > 0 for NO and ∆m2

3l ≡ ∆m2
32 < 0

for IO. The charged-lepton masses are taken from [76] with tan β = 10 and SUSY-breaking scale
MSUSY = 10 TeV.

We adopt the standard parametrization of the lepton mixing matrix [75],

U =


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23

 diag(1, ei
α21

2 , ei
α31

2 ) ,

(5.3)
where cij ≡ cos θij , sij ≡ sin θij , δCP is the Dirac CP violation phase, and α21,31, are
Majorana CP phases. If the lightest neutrino is massless, there is a single Majorana phase
φ and the diagonal phase matrix in the above equation can be replaced by diag(1, eiφ/2, 1).
Information on the Majorana phases could be potentially extracted from neutrinoless dou-
ble beta decay (0νββ) experiments. If only light neutrino masses provide contributions to
0νββ, the decay amplitude depends on the effective Majorana neutrino mass mββ ,

mββ = |m1 cos2 θ12 cos2 θ13 +m2 sin2 θ12 cos2 θ13e
iα21 +m3 sin2 θ13e

i(α31−2δCP )| , (5.4)

which, in case the lightest neutrino is massless, reduces to

mββ =
{
|m2 sin2 θ12 cos2 θ13e

iφ +m3 sin2 θ13e
−i2δCP |, m1 = 0 (NO) ,

|m1 cos2 θ12 cos2 θ13 +m2 sin2 θ12 cos2 θ13e
iφ| , m3 = 0 (IO) .

(5.5)

In this work we will use the NuFIT v5.1 results [69] for the allowed ranges of the
neutrino oscillation parameters (see also refs. [77] and [78]). The charge-lepton masses will
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enter in the χ2 function in the form of their ratios, being the best fit values (bfv) and
1σ errors taken from ref. [76]. The overall scale of the charged lepton mass matrix does
not affect the mass ratios and mixing parameters, and it is fixed by the central value of
mτ = 1.30234GeV given in table 7. Similarly, the overall scale of the light neutrino mass
matrix is fixed by the solar neutrino mass squared difference ∆m2

21 = 7.42 × 10−5eV2. It
is known that the effects of renormalization group evolution (RGE) on neutrino masses
and mixing parameters are suppressed for NO neutrino mass spectrum and small tan β,
while the RGE effects could be large in the case of IO spectrum if the different terms do
not cancel each other [79–81]. Hence, we expect RGE corrections to be generally small for
our TZLMs with NO spectrum. The details of neutrino-parameter running depend on the
specific models under consideration for IO. In the appendix C, we have presented a large
number of representative models for each phenomenological viable TZLM. The detailed
RGE analysis for these models with IO spectrum is left for future.

For χ2 minimisation and consequent determination of the inputs which best fit the
data, we use the CERN package TMinuit [82]. The input value of the modulus τ will
be a random complex number in the fundamental domain F : |Reτ | ≤ 1

2 , Imτ > 0 and
|τ | ≥ 1. The absolute values and phases of all coupling constants are free to vary in the
ranges [0, 106] and [0, 2π), respectively. As a general criterion, we will consider that a
given TZLM is compatible with experimental data if the predicted values of the neutrino
mass and mixing parameters at the minimum of the χ2 are within the 3σ ranges given
in table 7. For the charged-lepton masses, the model’s best-fit values should not deviate
from the experimental central values by more than 3σ. Generally, a pair of texture zeros
in (ME ,MD(ν)) can be realised in several lepton models differing in the representation and
modular weight assignments of the fields. In the numerical analysis, for an allowed texture
of (ME ,MD(ν)), we will perform χ2 analysis for all corresponding lepton models. A texture
of (ME ,MD(ν)) is said to be viable if at least one of these lepton models can explain the
experimental data. After setting the general grounds of out numerical analysis, we now
discuss its results for all allowed TZLMs identified in section 5.

5.1.1 Dirac neutrinos

For Dirac neutrinos, the allowed combinations of (ME ,MD) realised by T ′ modular sym-
metry with and without gCP are presented in table 8 (table 9) for NO (IO). For all texture
pairs the symbol inside (outside) the parenthesis corresponds to the case when gCP is
(is not) imposed. Also, “-” means that a particular configuration cannot be achieved by
modular symmetry, while “4” (“8” ) identifies those cases which are realised by the mod-
ular symmetry and (but) are (are not) phenomenologically viable. It is remarkable that
gCP allows to obtain more additional TZLMs which are excluded by our requirement on
the number of free parameters if gCP is not imposed. From table 8 we can see that for
NO and if gCP is not included, 27 out of 136 allowed texture pairs provide a good fit to
the experimental data . In table 14 of appendix C, we show a representative model for
each viable (ME ,MD) pair by listing the representation and modular-weight assignments
of lepton fields. The corresponding values of sin2 θij , mi and δCP at the best-fit point are
given in table 15. From table 14, we can see that the minimal models have 8 free real input
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MD

ME C(1)
1 C(1)

2 C(2)
2 C(3)

2 C(1)
3 C(2)

3 C(3)
3 C(1)

4 C(2)
4 C(3)

4

D(1)
1 4 (4) - (4) 8 (4) 4 (4) - (4) - (-) 8 (8) 4 (4) 8 (8) 4 (4)
D(1)

2 8 (4) 8 (4) 8 (4) 4 (4) 4 (4) - (-) 8 (8) 8 (8) 8 (4) 8 (8)
D(2)

2 8 (4) - (4) 4 (4) 8 (4) - (4) - (-) 8 (8) 8 (4) 8 (8) 8 (8)
D(3)

2 8 (4) - (4) 8 (4) 8 (4) - (4) - (-) 8 (8) 4 (4) 8 (8) 8 (4)
D(1)

3 - (4) - (8) - (4) - (4) - (-) - (-) - (8) 4 (4) - (8) - (4)
D(2)

3 - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-)
D(3)

3 8 (8) - (4) 8 (4) 8 (8) - (4) - (-) 8 (8) 8 (4) 8 (8) - (-)
D(4)

3 8 (4) 8 (4) 8 (4) 4 (4) 4 (4) - (-) 8 (4) 8 (4) 8 (4) 4 (4)
D(5)

3 8 (4) 8 (8) 8 (4) 4 (4) 4 (4) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
D(1)

4 4 (4) 8 (8) 8 (4) 4 (4) 4 (4) - (-) 8 (4) 8 (8) 8 (8) 8 (8)
D(2)

4 8 (8) - (8) 8 (4) 8 (8) - (4) - (-) 8 (8) 8 (8) 8 (8) - (-)
D(3)

4 8 (4) - (8) 8 (4) 8 (4) - (4) - (-) - (-) 8 (8) - (-) 8 (8)
D(4)

4 - (4) - (4) - (4) - (4) - (4) - (-) - (8) 8 (4) - (8) - (8)
D(5)

4 8 (4) - (4) 8 (4) 8 (4) - (4) - (-) 8 (8) 4 (4) 8 (8) 8 (8)
D(6)

4 - (-) - (-) - (4) - (-) - (-) - (-) - (4) 8 (8) - (-) - (-)
D(1)

5 4 (4) 8 (8) 8 (4) 4 (4) 4 (4) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
D(2)

5 8 (4) 8 (8) 8 (4) 8 (8) 8 (8) - (-) 8 (4) 8 (8) 8 (8) 8 (8)
D(3)

5 8 (4) 8 (8) 8 (4) 8 (8) 4 (4) - (-) 8 (8) 8 (8) 8 (8) - (-)
D(4)

5 8 (4) - (8) 8 (4) 8 (4) 8 (8) - (-) - (-) 8 (8) - (-) 8 (8)
D(5)

5 8 (4) - (4) 4 (4) 8 (4) - (4) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
D(6)

5 - (-) - (-) - (4) - (-) - (-) - (-) - (4) 8 (8) - (-) - (-)
D(1)

6 8 (4) 8 (8) 8 (4) 8 (8) 8 (8) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
D(2)

6 - (4) - (-) 8 (8) - (4) - (-) - (-) 8 (8) 8 (8) - (-) - (-)

Table 8. Allowed combinations of (ME ,MD) realised by T ′ modular symmetry with and without
gCP for NO neutrino mass spectrum. For all texture pairs the symbol inside (outside) the paren-
thesis corresponds to the case when gCP is (is not) imposed. Also, “-” means that a particular
configuration cannot be achieved by modular symmetry, while “4” (“8” ) identifies those cases
which are realised by the modular symmetry and (but) are (are not) phenomenologically viable.

parameters. In the IO case, there are 34 viable pairs of (ME ,MD), as shown in table 9,
and we provide the field assignments of representative models and the corresponding fitting
results of lepton parameters in tables 16 and 17, respectively. All representative models
are found to contain either 8 or 9 free real parameters.

When gCP is imposed, there are allowed (ME ,MD) pairs. By performing the χ2 analy-
sis of the corresponding TZLMs, we obtain 97 (88) phenomenologically-viable ones for NO
(IO), as presented in table 8 (table 9). The details of the representative models and corre-
sponding predictions for each compatible case are displayed in tables 14 and 15 (tables 16
and 17) for NO (IO). We find that the number of input parameters for representative
models are at least 8, as in the case of no gCP.
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MD

ME C(1)
1 C(1)

2 C(2)
2 C(3)

2 C(1)
3 C(2)

3 C(3)
3 C(1)

4 C(2)
4 C(3)

4

D(1)
1 4 (4) - (4) 4 (4) 4 (4) - (4) - (-) 8 (8) 4 (4) 8 (8) 4 (4)
D(1)

2 8 (4) 8 (4) 8 (8) 8 (8) 8 (8) - (-) 8 (8) 8 (8) 8 (4) 8 (8)
D(2)

2 8 (4) - (8) 4 (4) 8 (4) - (4) - (-) 8 (8) 8 (4) 8 (8) 8 (4)
D(3)

2 8 (4) - (4) 8 (4) 8 (4) - (4) - (-) 8 (8) 4 (4) 8 (8) 8 (4)
D(1)

3 - (4) - (8) - (4) - (8) - (-) - (-) - (8) 8 (8) - (8) - (8)
D(2)

3 - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-)
D(3)

3 8 (8) - (8) 8 (8) 8 (8) - (8) - (-) 8 (8) 8 (8) 8 (8) - (-)
D(4)

3 4 (4) 8 (4) 4 (4) 4 (4) 4 (4) - (-) 8 (4) 4 (4) 8 (8) 4 (4)
D(5)

3 4 (4) 8 (8) 4 (4) 4 (4) 4 (4) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
D(1)

4 8 (4) 8 (8) 8 (4) 4 (4) 4 (4) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
D(2)

4 8 (8) - (8) 8 (8) 8 (8) - (8) - (-) 8 (8) 8 (8) 8 (8) - (-)
D(3)

4 8 (8) - (8) 8 (8) 8 (8) - (8) - (-) - (-) 8 (8) - (-) 8 (8)
D(4)

4 - (8) - (8) - (8) - (8) - (8) - (-) - (8) 8 (8) - (8) - (8)
D(5)

4 4 (4) - (4) 4 (4) 8 (4) - (4) - (-) 8 (8) 4 (8) 8 (8) 8 (8)
D(6)

4 - (-) - (-) - (4) - (-) - (-) - (-) - (8) 8 (8) - (-) - (-)
D(1)

5 4 (4) 8 (8) 4 (4) 4 (4) 4 (4) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
D(2)

5 8 (8) 8 (8) 8 (4) 8 (8) 8 (8) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
D(3)

5 8 (4) 8 (8) 8 (4) 8 (8) 8 (8) - (-) 8 (8) 8 (8) 8 (8) - (-)
D(4)

5 8 (4) - (8) 8 (4) 8 (8) 8 (8) - (-) - (-) 8 (8) - (-) 8 (8)
D(5)

5 8 (8) - (8) 4 (8) 8 (8) - (8) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
D(6)

5 - (-) - (-) - (4) - (-) - (-) - (-) - (8) 8 (8) - (-) - (-)
D(1)

6 8 (8) 8 (8) 8 (8) 8 (8) 8 (8) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
D(2)

6 - (8) - (-) 8 (8) - (8) - (-) - (-) 8 (8) 8 (8) - (-) - (-)

Table 9. The same as in table 8 but for IO neutrino mass spectrum.

At this point, it is worth comparing the parameter counting of TZLMs realised by T ′
modular symmetry with that of texture-zero scenarios where nonvanishing entries in the
mass matrices are not correlated. We have seen that, in the case of Dirac neutrinos, and
demanding the number of inputs not to exceed 9, viable TZLMs require either 8 or 9 real
parameters. We emphasize that this number is much smaller than what is typically found
with uncorrelated nonvanishing matrix elements. This is apparent in tables 14 and 16
where we compare the number of free parameters “#P” for each TZLM realisable with T ′
modular symmetry (third column) with the same number for the same matrix textures but
with uncorrelated nonzero entries in the mass matrices (“#P0” in the second column). For
all cases #P� #P0, showing that modular symmetry increases drastically the predictive
power of TZLMs. As an example, in the case (ME ,MD) ∼ (C(3)

2 , D
(1)
5 ), we find that

#P0 = 20, while the same pair is realised in a specific T ′ modular model with only 8 free
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parameters — see line 17 of table 14. As will become clear in the following, this is a general
feature which is present also for Majorana neutrinos.

5.1.2 Majorana neutrinos

We now repeat the analysis presented in the previous section but for TZLMs with Majorana
neutrinos. Both cases of Mν generated via a Weinberg operator and via the minimal type-
I seesaw mechanism will be considered. Each model is now classified according to the
textures of its corresponding (ME ,Mν) pair.

Weinberg operator. For neutrino masses generated by a Weinberg operator, and with-
out imposing gCP, there are 29 texture pairs (ME ,Mν) which can be realised with T ′

modular symmetry, as shown in table 10 for both NO and IO neutrino masses. By per-
forming their χ2 analysis, we find that, out of those 29 models, only 5 are compatible
with experimental data for NO neutrino masses spectrum (upper rows of the table). As
done for Dirac neutrinos, we present in table 18 the representation and weight assignments
of a representative model for each phenomenologically viable case, while the best fitting
results of physical observables and the model predictions are provided in table 19. For IO
neutrino mass spectrum, we obtain 7 phenomenologically viable (ME ,Mν) pairs, for which
the representative models are listed in table 20, and the numerical results in table 21. Note
that the minimal viable NO (IO) model C(1)

4 −W
(1)
1 (C(2)

2 −W
(1)
3 ) — see table 18 (table 20)

— is realisable with only 7 (8) input parameters to explain all 9 measured observables.
In case the TZLMs are constructed imposing gCP, 11 out of the 31 allowed (ME ,Mν)

pairs are consistent with the measured data for NO as shown in table 10. The representative
models for these cases are given in table 18 and the corresponding fitting results in table 19.
The number of input parameters for the representative models vary from 7 to 9. For IO
with gCP, we have 10 (ME ,Mν) pairs compatible with data (see tables 10, 20 and 21 for
the representative models and fitting results).

Seesaw mechanism. When Majorana neutrino masses are generated through the (min-
imal) type-I seesaw mechanism, we find that 35 (ME ,Mν) pairs are realised by T ′ modular
symmetry if gCP is not considered — see table 11. For NO (IO) neutrino mass spectrum,
only 6 (11) of these 35 cases are phenomenologically viable. As illustrated in table 5, some
patterns ofMν can be realised in more than one way with different (MD,MN ) combinations.
For the sake of completeness, we present representative models for distinct (MD,MN ) pairs
leading to the same textures of (ME ,Mν) in tables 22 and 24 for NO and IO, respectively.
The best-fit values of lepton mass and mixing parameters are instead given in tables 23
and 25. All viable NO models contain 9 free real parameters, while for IO this number can
be 8 or 9. With gCP, there are 36 allowed pairs of (ME ,Mν), being 13 and 15 of them
phenomenologically viable for NO and IO, respectively (see table 11). The representative
models and fitting results analogous to the previous cases are shown in tables 22–25. Due
to the fact that the coupling constants are required to be real by gCP, we can find viable
models with 8 parameters for NO neutrino masses, while this number does not changed for
IO when compared with the non-gCP case.
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NO

Mν

ME C(1)
1 C(1)

2 C(2)
2 C(3)

2 C(1)
3 C(2)

3 C(3)
3 C(1)

4 C(2)
4 C(3)

4

W(1)
1 8 (4) 8 (8) 8 (4) 4 (4) 4 (4) -(-) -(8) 4 (4) -(8) 8 (8)
W(2)

2 8 (4) 8 (8) 8 (4) 4 (4) 4 (4) -(-) -(-) 8 (8) -(-) 8 (8)
W(1)

3 8 (4) 8 (8) 8 (4) -(-) 8 (8) -(-) 8 (8) -(-) 8 (8) -(-)
W(2)

3 8 (8) 8 (8) 8 (8) 8 (8) 8 (8) -(-) 8 (8) 8 (8) 8 (8) 8 (8)
IO

Mν

ME C(1)
1 C(1)

2 C(2)
2 C(3)

2 C(1)
3 C(2)

3 C(3)
3 C(1)

4 C(2)
4 C(3)

4

W(1)
1 8 (4) 8 (8) 8 (4) 4 (4) 4 (4) - (-) - (8) 4 (4) - (8) 8 (8)
W(2)

2 8 (4) 8 (8) 8 (4) 4 (4) 4 (4) - (-) - (-) 8 (8) - (-) 8 (8)
W(1)

3 8 (8) 8 (8) 4 (8) - (-) 4 (8) - (-) 8 (8) - (-) 8 (8) - (-)
W(2)

3 8 (4) 8 (8) 8 (8) 8 (8) 8 (8) - (-) 8 (8) 8 (8) 8 (8) 8 (8)

Table 10. Same analysis as in tables 8 and 9 but now for a Majorana neutrino mass matrix Mν

generated via the Weinberg operator — see table 4 for the general structure of the W textures.
The results for NO (IO) are shown in the upper (lower) part of the table.

We present a grand summary of our results in table 12 where, for the three considered
neutrino mass generation mechanisms, we show the number of texture pairs with no more
than 9 real input parameters which can be realised via T ′ modular symmetry (third column)
with and without gCP (second column). The number of phenomenologically viable cases
(i.e. those which are able to fit the data at the 3σ level) is shown in the fourth column
for both NO and IO. We see that more patterns of texture zero and viable cases can be
obtained if gCP is imposed.

6 Benchmark models

The analysis presented in the previous section provided a complete view of how modular
symmetries drastically increase the predictive power of TZLMs. It is obviously impossible
to go through all the listed cases in detail and to present a complete graphical treatment
of each model predictions. Nevertheless, we believe it is worth providing a small set of
benchmark cases where the quality of the results can be appreciated. With this purpose,
in the following we select one TZLM realisable with T ′ modular symmetry for each neutrino
mass generation mechanism.

6.1 Model for Dirac neutrino masses

For the Dirac neutrino benchmark case, we consider the lepton fields transforming under
the T ′ modular symmetry T ′ as

LD ∼ 2 , L3 ∼ 1′ , ec ∼ 1 , µc ∼ 1′′ , τ c ∼ 1′ , N c
D ≡ {N c

1 , N
c
2} ∼ 2 , N c

3 ∼ 1′ ,
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NO

Mν

ME C(1)
1 C(1)

2 C(2)
2 C(3)

2 C(1)
3 C(2)

3 C(3)
3 C(1)

4 C(2)
4 C(3)

4

W(1)
1 8 (4) 8 (8) 8 (4) 4 (4) 4 (4) - (-) 8 (8) 8 (4) 8 (8) 8 (8)
W(2)

1 - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-)
W(1)

2 - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-)
W(2)

2 8 (8) 8 (8) 8 (8) 8 (8) - (8) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
W(1)

3 8 (4) 8 (8) 8 (4) 8 (4) 8 (4) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
W(2)

3 4 (4) 8 (8) 4 (4) 4 (4) 4 (4) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
W(2)

4 - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-)
W(3)

4 - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-)
IO

Mν

ME C(1)
1 C(1)

2 C(2)
2 C(3)

2 C(1)
3 C(2)

3 C(3)
3 C(1)

4 C(2)
4 C(3)

4

W(1)
1 4 (4) 8 (8) 8 (4) 4 (4) 4 (4) - (-) 8 (8) 4 (4) 8 (8) 8 (4)
W(2)

1 - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-)
W(1)

2 - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-)
W(2)

2 8 (8) 8 (8) 8 (8) 8 (8) - (8) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
W(1)

3 8 (4) 8 (8) 8 (4) 4 (4) 4 (4) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
W(2)

3 4 (4) 8 (8) 4 (4) 4 (4) 4 (4) - (-) 8 (8) 8 (8) 8 (8) 8 (8)
W(2)

4 - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-)
W(3)

4 - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-) - (-)

Table 11. Same as in table 10 for Mν generated via (minimal) type-I seesaw mechanism from
MD and MN textures given in (4.22) and (4.21), respectively. The (MD,MN )→Mν dictionary is
provided in table 5.

with modular-weight assignments:

kLD = 2− x , kL3 = 3− x , kec = 1 + x , kµc = 1 + x , kτc = 1 + x , (6.1)
kNc

D
= x , kNc

3
= 1 + x , (6.2)

where x is an arbitrary integer. The corresponding modular-invariant superpotentials
relevant for charged-lepton and neutrino masses are given by

WE = ye1 e
c
[
LDY

(3)
2′′
]

1
Hd + ye2 µ

c
[
LDY

(3)
2

]
1′
Hd + ye3 µ

cL3Y
(4)

1 Hd + ye4 τ
cL3Y

(4)
1′ Hd ,

Wν = yd1

[
(LDN c)3Y

(1)
3

]
1
Hu + yd2L3N

c
3 Y

(4)
1′ Hu , (6.3)

where the ye,dk couplings are, in principle, complex. Notice, however, that their phases can
be eliminated by rephasing the lepton supermultiplets. As a result, we find that there are
8 real free parameters in this model: 6 real coupling constants (ye1−4 and yd1,2), and the
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Neutrino nature gCP Number of textures Viable

Dirac
no 136

23 (NO)
27 (IO)

yes 174
97 (NO)
57 (IO)

no 29
5 (NO)

Majorana 7 (IO)
(Weinberg operator)

yes 31
11 (NO)
10 (IO)

no 35
6 (NO)

Majorana 10 (IO)
(Seesaw mechanism)

yes 36
13 (NO)
14 (IO)

Table 12. Grand summary of the TZLM compatibility analysis. We show the number of texture
pairs with no more than 9 real input parameters which can be realised via T ′ modular symmetry
(third column) with and without gCP (second column). The number of phenomenologically viable
cases (i.e. those which are able to fit the data at the 3σ level) is given in the fourth column for both
NO and IO.

complex modulus τ . The charged-lepton and neutrino mass matrices read

ME =


ye1Y

(3)
2′′,2 −ye1Y

(3)
2′′,1 0

−ye2Y
(3)

2,2 ye2Y
(3)

2,1 ye3Y
(4)

1

0 0 ye4Y
(4)

1′

 vd , MD =


−yd1Y

(2)
3,2

yd1Y
(2)

3,3√
2 0

yd1Y
(2)

3,3√
2 yd1Y

(2)
3,1 0

0 0 yd2Y
(4)

1′

 vu , (6.4)

which correspond to the texture-zero pattern C(1)
3 − D(1)

4 for (ME ,MD) is — see tables 1
and 3 (this TZLM is also presented in table 14). We perform a global fit to the lep-
ton experimental data and, for normally-ordered neutrino masses, the values of the input
parameters at the best-fit point are

〈τ〉=−0.30546+1.05008i, ye2/y
e
1 =10.6173, ye3/y

e
1 =21.5185, ye4/y

e
1 =0.011167,

yd2/y
d
1 =3.02666, ye1vd=1.68246 GeV, yd1vu=558.654 meV, (6.5)

to which correspond

sin2 θ12 = 0.3043 , sin2 θ13 = 0.02244 , sin2 θ23 = 0.4509 , δCP = 208.4◦ ,

me/mµ = 0.004737 , mµ/mτ = 0.05857 , ∆m2
21

∆m2
31

= 0.02956 , (6.6)

m1 = 39.43 meV , m2 = 40.36 meV , m3 = 63.75 meV ,
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with χ2
min = 0.75. Notice that, in this case, all best-fit values lie in the 1σ experimental

ranges. Using the numerical package MultiNest [83, 84], we scan the parameter space
of the model, and require all observables to be in the 3σ regions allowed by data. We
find that the three mixing angles can nearly take any values within their experimental
3σ regions, while the Dirac CP phase δCP is sharply predicted to be in the narrow range
δCP ∈ [201◦, 215◦].

For inverted neutrino masses, the best-fit values of the input parameters are

〈τ〉= 0.21972+1.08073i , ye2/y
e
1 = 9.51186 , ye3/y

e
1 = 27.9507 , ye4/y

e
1 = 0.018387 ,

yd2/y
d
1 = 5.23555 , ye1vd = 1.65508 GeV , yd1vu = 533.206 meV . (6.7)

and the corresponding values of lepton mass and mixing parameters:

sin2 θ12 = 0.3048 , sin2 θ13 = 0.02234 , sin2 θ23 = 0.5727 , δCP = 315.0◦ ,

me/mµ = 0.004737 , mµ/mτ = 0.05857 , ∆m2
21

∆m2
31

= 0.02980 , (6.8)

m1 = 60.72 meV , m2 = 61.32 meV , m3 = 35.65 meV ,

with χ2
min = 2.87. Similarly to the NO case, the best fit values of all mass and mixing

observables are within the 1σ experimental ranges, while δCP is predicted to be in the
2σ interval. A scanning of the parameter space shows that the allowed range of δCP is
[307◦, 345◦] and that the 3σ regions of all remaining parameters can be achieved.

6.2 Model for Majorana neutrino masses: Weinberg operator

As a benchmark TZLM for the case of Majorana neutrino masses generated via the Wein-
berg operator, we take the T ′ representation and modular-weight assignments:

LD ∼ 2′ , L3 ∼ 1′ ec ∼ 1′ , µc ∼ 1′ , τ c ∼ 1′′ ,
kLD = 1 , kL3 = 0 , kec = 2 , kµc = 0 , kτc = 0 . (6.9)

for which the superpotentials WE,ν are

WE = ye1e
c
[
LDY

(1)
2

]
1′′
Hd + ye2µ

c
[
LDY

(3)
2

]
1′′
Hd + ye3τ

cL3Hd ,

Wν = yν1
Λ
[
(LDLD)3SY

(2)
3

]
1
HuHu + yν2

Λ L3
[
LDY

(1)
2

]
1′′
HuHu , (6.10)

where all coupling constant ye1,2,3 and yν1,2 can be made real by using the freedom of lepton
field redefinition. In total, there are only 7 real free parameters in this model including the
real and imaginary parts of τ . The charged-lepton and (Majorana) neutrino mass matrices
are

ME =


−ye1Y

(1)
2,2 ye1Y

(1)
2,1 0

−ye2Y
(3)

2,2 ye2Y
(3)

2,1 0

0 0 ye3

 vd , Mν = v2
u

Λ


−yν1Y

(2)
3,3

yν1Y
(2)

3,1√
2
−yν2Y

(1)
2,2

yν1Y
(2)

3,1√
2

yν1Y
(2)

3,2 yν2Y
(1)

2,1

−yν2Y
(1)

2,2 yν2Y
(1)

2,1 0


, (6.11)
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Figure 1. Results of the parameter-space scanning for the benchmark model of neutrino masses
generated by the Weinberg operator. The T ′ representation and modular-weight assignments are
given in (6.10). We present the scatter plots in distinct bidimensional planes of the neutrino mixing
angles, CP phases and the real/imaginary part of 〈τ〉. The colour grading reflects the values of the
χ2 for each point, according to the scale shown at the bottom of the figure.

which fit in the texture-zero pattern C(1)
4 −W

(1)
1 . The best-fit values of the input parameters

are, for this case,

〈τ〉 = −0.18355 + 0.98944 i , ye2/y
e
1 = 0.026019 , ye3/y

e
1 = 6.47820 ,

yν2/y
ν
1 = 0.41163 , ye1vd = 201.034 MeV , yνv2

u

Λ = 348.515 meV .
(6.12)

for which the corresponding values of the lepton observables are

sin2θ12=0.3037, sin2θ13=0.02254, sin2θ23=0.6010, δCP =266.8◦,

α21=352.3◦, α31=174.6◦, me/mµ=0.004737, mµ/mτ=0.05857, ∆m2
21

∆m2
31

=0.02957,

m1=44.19 meV, m2=45.02 meV, m3=66.80 meV, mββ=44.86 meV, (6.13)

with χ2
min = 64.21. Almost all observables lie in the 1σ experimental intervals, except

sin2 θ23 which is close to the 3σ upper limit. The lightest neutrino mass is predicted
to be 44.19 meV and ∑imi is about 156 meV. Cosmological data shows that the most
stringent bound on the sum of neutrino masses is ∑imi < 120 meV at 95% C.L. from
the Planck Collaboration results [85]. Thus, the present benchmark would be excluded by
this data since the prediction ∑imi ' 156 meV exceeds that bound. However, as is well
known, cosmological bounds on ∑imi significantly depend on the data sets that need to
be combined in order to break the degeneracies of the many cosmological parameters [85].
In fact, combining the baryon acoustic oscillation (BAO) data with the cosmic microwave
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background (CMB) lensing reconstruction power spectrum, one has ∑imi < 600 meV and,
taking this result, the model would be still viable.

The latest bound on the effective Majorana neutrino mass mββ has been set by the
KamLAND-Zen experiment, namely mββ < 36 − 156 meV [86], for which the largest un-
certainty arises from the computation of nuclear matrix elements. The model prediction
mββ = 44.86 meV respects this bound. With future large-scale 0νββ-decay experiments
aiming at improving the bound on mββ , the present benchmark would be further scruti-
nised. For instance, the SNO+ Phase II is expected to reach a sensitivity of 19−46 meV [87],
which is nearly the same as the one foreseen by the LEGEND experiment (15-50 meV) by
operating 1000 kg of detectors for 10 years [88]. nEXO, the successor of EXO-200, will be
able to probe mββ down to 5.7− 17.7 meV after 10 years of data taking [89].

In figure 1, we show the correlations among the input free parameters, neutrino masses
and mixing parameters predicted in this model. We can see that the complex modulus τ
scatter in a very narrow region. The predictions for the atmospheric mixing angle θ23 and
the three CP violation phases are very sharp. In particular, the allowed range of δCP is
very close to 3π/2. In conclusion, this model is very predictive, since it is able to describe
the 12 masses and mixing parameters for the NO case with only 7 input real parameters.
The IO neutrino mass spectrum cannot be accommodated in this case.

6.3 Model for Majorana neutrino masses: seesaw mechanism

In the last benchmark TZLM with neutrino masses are generated via the seesaw mecha-
nism with imposed gCP. The transformation properties and modular weights of the lepton
fields are,

LD ∼ 2 , L3 ∼ 1 ec ∼ 1′′ , µc ∼ 1 , τ c ∼ 1 , N c ≡ {N c
1 , N

c
2} ∼ 2 ,

kLD = 1 , kL3 = −2 , kec = 2 , kµc = 2 , kτc = 4 , kNc = 3 , (6.14)

from which the modular-invariant superpotentials

WE = ye1e
c
[
LDY

(3)
2

]
1′
Hd + ye2µ

c
[
LDY

(3)
2′′
]

1
Hd + ye3τ

c
[
LDY

(5)
2′′
]

1
Hd + ye4µ

cL3Hd ,

Wν = yD1

[
(LDN c)3Y

(4)
3

]
1
Hu + yN1 Λ

[
(N cN c)3Y

(6)
3I

]
1

+ yN2 Λ
[
(N cN c)3Y

(6)
3II

]
1
. (6.15)

can be defined, being all coupling constants real due to gCP. The charged-lepton and
neutrino mass matrices take the following form,

ME =


−ye1Y

(3)
2,2 ye1Y

(3)
2,1 0

ye2Y
(3)

2′′,2 − ye2Y
(3)

2′′,1 ye4

ye3Y
(5)

2′′,2 − ye3Y
(5)

2′′,1 0

 vd , MD = yD1 vu


−Y (4)

3,2
Y

(4)
3,3√
2

0

Y
(4)

3,3√
2

Y
(4)

3,1 0

 ,

MN = Λ


−yN2 Y

(6)
3II,2 − yN1 Y

(6)
3I,2

yN2 Y
(6)

3II,3 + yN1 Y
(6)

3I,3√
2

yN2 Y
(6)

3II,3 + yN1 Y
(6)

3I,3√
2

yN2 Y
(6)

3II,1 + yN1 Y
(6)

3I,1

 . (6.16)
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According to classification given in eqs. (4.22) and (4.23), the above matrices correspond
to D3

2−N1
0, while Mν follows the W(2)

3 pattern, as shown in table 5. Moreover, the texture
of ME is of type C(3)

2 . There is a total of 8 effective real parameters in the model. For
neutrino masses with NO, the best-fit values of the input parameters are

〈τ〉=0.41547+1.10335i, ye2/y
e
1 =6.13351×102 , ye3/y

e
1 =3.39303×102 , ye4/y

e
1 =16.5963,

yN2 /y
N
1 =−0.29007, ye1vd=35.6572 MeV, (yD1 vu)2

yN1 Λ
=303.537 meV, (6.17)

being the corresponding lepton observables

sin2θ12=0.3046, sin2θ13=0.02242, sin2θ23=0.4524, δCP =209.4◦,

φ=112.3◦, me/mµ=0.004737, mµ/mτ=0.05857, ∆m2
21

∆m2
31

=0.02957, (6.18)

m1=0 meV, m2=8.614 meV, m3=58.68 meV, mββ=1.466 meV,

with χ2
min = 0.70 (remember that for the minimal seesaw considered in this work the

lightest neutrino is massless and there is a single Majorana phase φ). The above best-fit
values are in very good agreement with the data. Correlations between the values of sin2 θ23
and of the CP-violation phases δCP and φ are shown in the upper panels of figure 2 for NO.

If the neutrino mass spectrum is inverted, the best agreement between model predic-
tions and experimental data is achieved with the following values of the input parameters

〈τ〉=0.000786+1.267779i, ye2/y
e
1 =9.451055, ye3/y

e
1 =0.0532938, ye4/y

e
1 =0.209372,

yN2 /y
N
1 =0.884872, ye1vd=2.333797 GeV, (yD1 vu)2

yN1 Λ
=594.172 meV. (6.19)

At this best-fit point we have:

sin2θ12=0.2999, sin2θ13=0.02239, sin2θ23=0.6064, δCP =315.6◦, (6.20)

φ=184.2◦, me/mµ=0.004737, mµ/mτ=0.05857, ∆m2
21

∆m2
31

=0.03068,

m1=48.418 meV, m2=49.179 meV, m3=0 meV, mββ=18.791 meV,

with χ2
min = 9.30, being all observables in the experimentally allowed 3σ intervals. In the

lower panels of figure 2, we show the regions for the real and imaginary parts of τ and the
correlation among θ23 and two CP-violation phases δCP and φ.

7 Conclusions

The nature of the fermion flavour pattern in the SM is a great puzzle. With the purpose
of reducing the number of free parameters in fermion mass matrices, texture-zero patterns
have been widely studied in the literature. In the present work, we have performed a
systematic analysis of how texture zeros in lepton mass matrices can be realised in the
framework of a T ′ modular symmetry. We show that, by properly assigning represen-
tations and modular weights to the matter fields, texture-zero patterns can be naturally
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Figure 2. Values of the complex modulus τ compatible with experimental data, and correlations
between sin2 θ23 and the CP-violating phases δCP and φ. The upper (lower) panels correspond to
the case in which the neutrino mass specturm is NO (IO).

reproduced, each assignment leading to a specific TZLM. In particular, we have considered
all cases in which lepton fields are assumed to transform as singlets (1, 1′, 1′′), doublets (2,
2′, 2′′) or triplet 3 of T ′. Both cases of Dirac and Majorana neutrino masses (generated by
either the Weinberg operator or via the type-I seesaw mechanism) were investigated. The
most general form of the lepton mass matrices for all possible representation assignments
were found, namely there are 10 (23) [8] texture-zero patterns for the charged-lepton (Dirac
neutrino) [effective Majorana neutrino] mass matrix.

Combining the texture-zero patterns for the charged-lepton and neutrino mass matri-
ces, we have obtained 136 allowed (ME ,MD) pairs which can be realised from T ′ modular
symmetry for Dirac neutrinos. In case of Majorana neutrinos, we have found 29 and 35
pairs of texture zeros in (ME ,Mν) when neutrinos masses are generated by the Weinberg
operator and the type-I seesaw mechanism, respectively. If gCP is introduced, more com-
binations of texture-zero patterns can be achieved, as shown in table 12. In order to test
whether the obtained texture pairs (ME ,MD)/(ME ,Mν) can accommodate experimental
data, we have performed a χ2 analysis for the corresponding TZLMs. It turns out that
only part of those models are compatible with the data, as can be seen in tables 8, 9, 10
and 11. For each viable texture pair, we have provided representative models, for which
the representation and modular-weight assignments are shown in tables 14, 16, 18, 20, 22
and 24. The corresponding predictions for the lepton observables are summarised in ta-
bles 15, 17, 19, 21, 23 and 25, respectively. We found that the minimal model requires 7 real
parameters to explain all 9 measured observables. To illustrate our findings, we studied in
more detail three benchmark TZLMs for Dirac and Majorana neutrinos in section 6.
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In conclusion, we have shown that several texture-zero patterns for lepton mass ma-
trices previously considered in the literature can be realised in the context of modular
flavour symmetries. A considerable fraction of those textures are able to accommodate
the experimental data, being some of them predictive in the sense that the corresponding
TZLMs contain less free parameters than observables. In comparison with typical analyses
of texture zeros in the context of Abelian flavour symmetries, the present approach is much
more predicitive due to T ′ modular symmetry which implies correlations among the non-
vanishing elements of the mass matrices. Since said correlations depend on the choice of
the modular group, it would be surely interesting to explore other possibilities besides T ′.
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A The T ′ modular group

The T ′ group is the double covering of the tetrahedral group A4. All the elements of T ′
can be generated by three generators S, T and R which obey the following relations3 [54]:

S2 = R, (ST )3 = T 3 = R2 = 1, RT = TR . (A.1)

The generator R commutes with all elements of the group, and the center of T ′ is the Z2
subgroup generated by R. The 24 elements of T ′ group belong to 7 conjugacy classes:

1C1 : 1 ,
1C2 : R ,

6C4 : S, T−1ST, TST−1, SR, T−1STR, TST−1R ,

4C6 : TR, TSR, STR, T−1ST−1R ,

4C3 : T−1, ST−1R, T−1SR, TSTR ,

4C ′3 : T, TS, ST, T−1ST−1 ,

4C ′6 : ST−1, T−1S, TST, T−1R . (A.2)

The T ′ group has a triplet representation 3 and three singlets representations 1, 1′ and 1′′

in common with A4. In addition, it has three two-dimensional spinor representations 2,
3Alternatively the T ′ group can be expressed by only S and T obeying S4 = T 3 = (ST )3 = 1,

S2T = TS2.
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2′ and 2′′. In our working basis, the generators S, and T are represented by the following
symmetric and unitary matrices:

1 : S = 1, T = 1 ,
1′ : S = 1, T = ω ,

1′′ : S = 1, T = ω2 ,

2 : S = − i√
3

 1
√

2
√

2 −1

 , T =

ω 0
0 1

 ,

2′ : S = − i√
3

 1
√

2
√

2 −1

 , T =

ω2 0
0 ω

 ,

2′′ : S = − i√
3

 1
√

2
√

2 −1

 , T =

 1 0
0 ω2

 ,

3 : S = 1
3


−1 2 2
2 −1 2
2 2 −1

 , T =


1 0 0
0 ω 0
0 0 ω2

 ,

(A.3)

with ω = ei2π/3. Notice that the two-dimensional representation matrices are related to
those of refs. [54, 55] by a similarity transformation, while the remaining ones are the same.
The Kronecker products between different irreducible representations of T ′ are given by

1a ⊗ rb = rb ⊗ 1a = ra+b (mod 3), for r = 1,2 ,
1a ⊗ 3 = 3⊗ 1a = 3 ,

2a ⊗ 2b = 3⊕ 1a+b+1 (mod 3) ,

2a ⊗ 3 = 3⊗ 2a = 2⊕ 2′ ⊕ 2′′ ,
3⊗ 3 = 3S ⊕ 3A ⊕ 1⊕ 1′ ⊕ 1′′ , (A.4)

where a, b = 0, 1, 2 and we have denoted 1 ≡ 10, 1′ ≡ 11, 1′′ ≡ 12 for singlet representations
and 2 ≡ 20, 2′ ≡ 21, 2′′ ≡ 22 for the doublet representations. The notations 3S and 3A
stand for the symmetric and antisymmetric triplet combinations respectively. In the follow-
ing, we report the Clebsch-Gordon (CG) coefficients of the T ′ group in the chosen basis. We
shall use αi (βi) to denote the elements of the first (second) representation of the product.

1a ⊗ 1b = 1a+b (mod 3) ∼ αβ , (A.5)

1a ⊗ 2b = 2a+b (mod 3) ∼

αβ1

αβ2

 , (A.6)

1⊗ 3 = 3 ∼


αβ1

αβ2

αβ3

 , (A.7)
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1′ ⊗ 3 = 3 ∼


αβ3

αβ1

αβ2

 , (A.8)

1′′ ⊗ 3 = 3 ∼


αβ2

αβ3

αβ1

 . (A.9)

2⊗ 2 = 2′ ⊗ 2′′ = 1′ ⊕ 3 with



1′ ∼ α1β2 − α2β1

3 ∼


α2β2

1√
2(α1β2 + α2β1)
−α1β1


(A.10)

2⊗ 2′ = 2′′ ⊗ 2′′ = 1′′ ⊕ 3 with



1′′ ∼ α1β2 − α2β1

3 ∼


−α1β1

α2β2
1√
2(α1β2 + α2β1)


(A.11)

2⊗ 2′′ = 2′ ⊗ 2′ = 1⊕ 3 with



1 ∼ α1β2 − α2β1

3 ∼


1√
2(α1β2 + α2β1)
−α1β1

α2β2


(A.12)

2⊗ 3 = 2⊕ 2′ ⊕ 2′′ with



2 ∼

 α1β1 +
√

2α2β2

−α2β1 +
√

2α1β3


2′ ∼

 α1β2 +
√

2α2β3

−α2β2 +
√

2α1β1


2′′ ∼

 α1β3 +
√

2α2β1

−α2β3 +
√

2α1β2


(A.13)

2′ ⊗ 3 = 2⊕ 2′ ⊕ 2′′ with



2 ∼

 α1β3 +
√

2α2β1

−α2β3 +
√

2α1β2


2′ ∼

 α1β1 +
√

2α2β2

−α2β1 +
√

2α1β3


2′′ ∼

 α1β2 +
√

2α2β3

−α2β2 +
√

2α1β1


(A.14)
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2′′ ⊗ 3 = 2⊕ 2′ ⊕ 2′′ with



2 ∼

 α1β2 +
√

2α2β3

−α2β2 +
√

2α1β1


2′ ∼

 α1β3 +
√

2α2β1

−α2β3 +
√

2α1β2


2′′ ∼

 α1β1 +
√

2α2β2

−α2β1 +
√

2α1β3


(A.15)

3⊗ 3 = 3S ⊕ 3A ⊕ 1⊕ 1′ ⊕ 1′′ with



3S ∼


2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1



3A ∼


α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3


1 ∼ α1β1 + α2β3 + α3β2

1′ ∼ α3β3 + α1β2 + α2β1

1′′ ∼ α2β2 + α1β3 + α3β1

(A.16)

Note that, in our basis, the representation matrices of S and T are unitary and symmetric
in all irreducible representations, and all the CG coefficients of the contractions are real.

B Higher-weight modular forms of level N = 3

Higher-weight modular forms can be constructed from tensor product of lower-weight ones.
In the following, we will use the weight-1 modular forms Y (1)

2 given in eq. (2.20) and the
Clebsch-Gordan coefficients of T ′ presented in appendix A to construct weight 2, 3, 4, 5
and 6 modular forms of T ′ modular group.

The weight-2 modular forms can be generated from the tensor products of two Y (1)
2 ,

Y
(2)

3 =
(
Y

(1)
2 Y

(1)
2

)
3

=
(
Y 2

2 ,
√

2Y1Y2, −Y 2
1

)T
, (B.1)

where Y1 and Y2 are two components of weight 1 modular forms Y (1)
2 = (Y1, Y2)T . Then, we

can use the weight-1 and weight-2 modular forms to construct the weight-3 modular forms,

Y
(3)

2 =
(
Y

(1)
2 Y

(2)
3

)
2

=
(
3Y1Y

2
2 , −

√
2Y 3

1 − Y 3
2

)T
,

Y
(3)

2′′ =
(
Y

(1)
2 Y

(2)
3

)
2′′

=
(
−Y 3

1 +
√

2Y 3
2 , 3Y2Y

2
1

)T
.

(B.2)

At weight k = 4, we find five independent modular forms which can be arranged into two
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Modular weight k Modular form Y
(k)

r

k = 1 Y
(1)

2

k = 2 Y
(2)

3

k = 3 Y
(3)

2 , Y
(3)

2′′

k = 4 Y
(4)

1 , Y
(4)

1′ , Y
(4)

3

k = 5 Y
(5)

2 , Y
(5)

2′ , Y
(5)

2′′

k = 6 Y
(6)

1 , Y
(6)

3I , Y
(6)

3II

Table 13. Summary of modular forms of level 3 up to weight 6, the subscript r denotes the
transformation property under T ′ modular symmetry. Here Y (6)

3I and Y
(6)

3II stand for two linearly
independent weight-6 modular forms transforming in the representation 3 of T ′.

singlets 1 and 1′ and a triplet of T ′,

Y
(4)

3 =
(
Y

(1)
2 Y

(3)
2

)
3

=
(
−
√

2Y 3
1 Y2 − Y 4

2 , − Y 4
1 +
√

2Y1Y
3

2 , − 3Y 2
1 Y

2
2

)T
,

Y
(4)

1′ =
(
Y

(1)
2 Y

(3)
2

)
1′

= −
√

2Y 4
1 − 4Y1Y

3
2 ,

Y
(4)

1 =
(
Y

(1)
2 Y

(3)
2′′
)

1
= 4Y 3

1 Y2 −
√

2Y 4
2 .

(B.3)

Similarly, the independent weight-5 modular forms can be constructed from the tensor
products of weight-1 and weight-4 modular forms as follows,

Y
(5)

2 =
(
Y

(1)
2 Y

(4)
3

)
2

=
[
−2
√

2Y 3
1 Y2 + Y 4

2

]
(Y1, Y2)T ,

Y
(5)

2′ =
(
Y

(1)
2 Y

(4)
3

)
2′

=
[
−Y 4

1 − 2
√

2Y1Y
3

2

]
(Y1, Y2)T ,

Y
(5)

2′′ =
(
Y

(1)
2 Y

(4)
3

)
2′′

=
(
5Y 3

1 Y
2

2 −
√

2Y 5
2 , −

√
2Y 5

1 + 5Y 2
1 Y

3
2

)T
.

(B.4)

Finally, the linearly independent weight-6 modular forms of level 3 can be decomposed into
one singlet 1 and two triplets 3 under T ′,

Y
(6)

3,I =
(
Y

(1)
2 Y

(5)
2

)
3

=
[
−2
√

2Y 3
1 Y2 + Y 4

2

] (
Y 2

2 ,
√

2Y1Y2, −Y 2
1

)T
,

Y
(6)

3,II =
(
Y

(1)
2 Y

(5)
2′
)

3
=
[
−Y 4

1 − 2
√

2Y1Y
3

2

] (
−Y 2

1 , Y 2
2 ,

√
2Y1Y2

)T
,

Y
(6)

1 =
(
Y

(1)
2 Y

(5)
2′′
)

1
=
√

2Y 6
2 −
√

2Y 6
1 + 10Y 3

1 Y
3

2 . (B.5)

We summarize the level 3 modular forms up to weight 6 in table 13.

C Representative models of lepton texture zeros

In this section, we provide representative models for the phenomenologically viable patterns
of texture zeros in the charged-lepton and neutrino mass matrices. Each of these models
is chosen from a set of viable models which give the same texture of lepton mass matrices,
and it contains minimum number of free real input parameters. Moreover, we also present
the corresponding predictions for lepton masses and mixing parameters in each case.
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C.1 Dirac neutrinos

The representative models of viable textures for the case of Dirac neutrinos are presented
in table 8, for which the representation and modular-weight assignments can be found in
table 14 for NO neutrino masses. The corresponding predictions for lepton observables are
collected in table 15. For IO, the viable textures are given in table 9 and the representative
models and the best fitting results can be found in table 16 and table 17 respectively.
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Dirac without gCP (NO)

Combinations
Predictions for mixing parameters and neutrino masses at best fitting point

χ2
minsin2 θ12 sin2 θ13 sin2 θ23 δ

l
CP /π m1/meVm2/meV m3/meV

C(1)
1 −D

(1)
1 0.304 0.02246 0.452 1.361 44.054 44.888 66.720 0.187

C(1)
1 −D

(1)
4 0.326 0.02262 0.440 1.082 7.927 11.706 50.722 5.844

C(2)
2 −D

(2)
2 0.286 0.02247 0.442 1.813 0 8.614 50.100 9.709

C(3)
2 −D

(1)
1 0.304 0.02242 0.455 1.609 29.860 31.078 58.309 2.812

C(3)
2 −D

(1)
2 0.303 0.02246 0.473 1.262 34.122 35.192 60.575 1.479

C(3)
2 −D

(1)
4 0.304 0.02245 0.451 1.042 35.717 36.741 61.528 2.879

C(1)
3 −D

(1)
2 0.303 0.02246 0.473 1.262 34.122 35.192 60.575 1.479

C(1)
3 −D

(1)
4 0.304 0.02244 0.451 1.158 39.428 40.358 63.754 0.749

C(1)
4 −D

(1)
1 0.304 0.02246 0.450 1.314 27.801 29.105 57.294 0.032

C(1)
4 −D

(3)
2 0.304 0.02246 0.451 1.216 38.705 39.652 63.312 0.199

C(1)
4 −D

(1)
3 0.304 0.02245 0.449 1.279 13.327 15.869 51.815 0.007

C(3)
4 −D

(1)
1 0.304 0.02242 0.454 1.605 29.613 30.840 58.183 2.735

C(1)
1 −D

(1)
5 0.316 0.02220 0.431 1.000 0 8.614 49.778 6.892

C(2)
2 −D

(5)
5 0.286 0.02247 0.442 1.813 0 8.614 50.100 9.709

C(3)
2 −D

(4)
3 0.304 0.02246 0.450 1.269 0 8.614 50.105 0.004

C(3)
2 −D

(5)
3 0.316 0.02220 0.431 1.000 0 8.614 49.776 6.919

C(3)
2 −D

(1)
5 0.316 0.02220 0.431 1.000 0 8.614 49.776 6.919

C(1)
3 −D

(4)
3 0.304 0.02246 0.450 1.269 0 8.614 50.105 0.005

C(1)
3 −D

(5)
3 0.316 0.02220 0.431 1 0 8.614 49.775 6.939

C(1)
3 −D

(1)
5 0.316 0.02220 0.431 1 0 8.614 49.775 6.939

C(1)
3 −D

(3)
5 0.296 0.02171 0.450 1.277 0 8.614 49.292 3.314

C(1)
4 −D

(5)
4 0.275 0.02309 0.550 1.047 0 8.614 49.948 37.499

C(3)
4 −D

(4)
3 0.275 0.02335 0.522 1.015 0 8.614 51.238 28.241

Dirac with gCP (NO)

Combinations
Predictions for mixing parameters and neutrino masses at best fitting point

χ2
minsin2 θ12 sin2 θ13 sin2 θ23 δ

l
CP /π m1/meVm2/meV m3/meV

C(1)
1 −D

(1)
1 0.304 0.02246 0.452 1.363 44.104 44.938 66.753 0.197

C(1)
1 −D

(1)
2 0.306 0.02249 0.479 1.200 34.763 35.814 60.974 2.737

C(1)
1 −D

(2)
2 0.304 0.02246 0.450 1.266 32.315 33.443 59.617 0.008

C(1)
1 −D

(3)
2 0.304 0.02246 0.450 1.281 59.609 60.228 77.867 0.000

C(1)
1 −D

(1)
3 0.304 0.02245 0.449 1.288 13.295 15.841 51.815 0.005

C(1)
1 −D

(4)
3 0.297 0.02181 0.450 1.007 0 8.614 49.391 6.330

C(1)
1 −D

(5)
3 0.304 0.02246 0.450 1.099 0 8.614 50.095 1.649

C(1)
1 −D

(1)
4 0.326 0.02262 0.440 1.082 7.927 11.706 50.723 5.844

C(1)
1 −D

(3)
4 0.304 0.02246 0.450 1.134 11.481 14.353 51.399 1.070

continues on next page
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Table 15 — continued from previous page

Combinations
Predictions for mixing parameters and neutrino masses at best fitting point

χ2
minsin2 θ12 sin2 θ13 sin2 θ23 δ

l
CP /π m1/meVm2/meV m3/meV

C(1)
1 −D

(4)
4 0.304 0.02246 0.450 1.317 0 8.614 50.100 0.041

C(1)
1 −D

(5)
4 0.302 0.02245 0.453 1.248 0 8.614 50.116 0.112

C(1)
1 −D

(1)
5 0.316 0.02220 0.431 1.000 0 8.614 49.778 6.892

C(1)
1 −D

(2)
5 0.304 0.02246 0.450 1.038 0 8.614 50.100 2.982

C(1)
1 −D

(3)
5 0.304 0.02246 0.450 1.123 0 8.614 50.094 1.241

C(1)
1 −D

(4)
5 0.304 0.02246 0.451 1.075 0 8.614 50.100 2.131

C(1)
1 −D

(5)
5 0.304 0.02246 0.450 1.287 0 8.614 50.102 0.002

C(1)
1 −D

(1)
6 0.304 0.02246 0.450 1.071 0 8.614 50.100 2.222

C(1)
2 −D

(1)
1 0.304 0.02246 0.450 1.000 0 8.614 50.100 3.998

C(1)
2 −D

(1)
2 0.304 0.02245 0.452 1.296 21.870 23.505 54.657 0.016

C(1)
2 −D

(2)
2 0.304 0.02244 0.451 1.168 38.825 39.769 63.383 0.635

C(1)
2 −D

(3)
2 0.304 0.02246 0.450 1 0 8.614 50.100 4.000

C(1)
2 −D

(3)
3 0.304 0.02246 0.450 1 0 8.614 50.100 4

C(1)
2 −D

(4)
3 0.314 0.02219 0.412 1.000 0 8.614 49.058 12.931

C(1)
2 −D

(4)
4 0.305 0.02254 0.448 1.220 0 8.614 50.237 0.244

C(1)
2 −D

(5)
4 0.304 0.02246 0.450 1.000 0 8.614 50.100 3.996

C(1)
2 −D

(5)
5 0.303 0.02246 0.448 1.329 0 8.614 50.063 0.133

C(2)
2 −D

(1)
1 0.304 0.02246 0.450 1.261 14.776 17.103 52.232 0.015

C(2)
2 −D

(1)
2 0.304 0.02246 0.450 1.265 8.163 11.868 50.759 0.009

C(2)
2 −D

(2)
2 0.273 0.02248 0.464 1.000 0 8.614 50.100 11.456

C(2)
2 −D

(3)
2 0.304 0.02246 0.450 1.298 34.446 35.507 60.787 0.012

C(2)
2 −D

(1)
3 0.304 0.02246 0.450 1 28.082 29.374 57.434 4.000

C(2)
2 −D

(3)
3 0.304 0.02246 0.450 1 0 8.614 50.100 4.000

C(2)
2 −D

(4)
3 0.307 0.02263 0.450 1.007 0 8.614 50.318 4.025

C(2)
2 −D

(5)
3 0.304 0.02246 0.450 1.099 0 8.614 50.095 1.649

C(2)
2 −D

(1)
4 0.304 0.02246 0.450 1.213 36.515 37.518 61.995 0.216

C(2)
2 −D

(2)
4 0.296 0.02171 0.450 1 52.849 53.547 72.269 7.307

C(2)
2 −D

(3)
4 0.304 0.02246 0.450 1.017 14.705 17.043 52.214 3.535

C(2)
2 −D

(4)
4 0.273 0.02248 0.464 1.000 0 8.614 50.100 11.456

C(2)
2 −D

(5)
4 0.302 0.02245 0.453 1.246 0 8.614 50.104 0.113

C(2)
2 −D

(1)
5 0.304 0.02246 0.451 1.120 0 8.614 50.091 1.299

C(2)
2 −D

(2)
5 0.304 0.02246 0.450 1.038 0 8.614 50.100 2.982

C(2)
2 −D

(3)
5 0.296 0.02171 0.450 1 0 8.614 49.293 7.307

C(2)
2 −D

(4)
5 0.304 0.02246 0.451 1.075 0 8.614 50.100 2.131

C(2)
2 −D

(5)
5 0.273 0.02248 0.464 1.000 0 8.614 50.100 11.456

continues on next page
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Combinations
Predictions for mixing parameters and neutrino masses at best fitting point

χ2
minsin2 θ12 sin2 θ13 sin2 θ23 δ

l
CP /π m1/meVm2/meV m3/meV

C(2)
2 −D

(1)
6 0.304 0.02246 0.450 1.071 0 8.614 50.100 2.223

C(3)
2 −D

(1)
1 0.304 0.02242 0.455 1.610 29.830 31.049 58.293 2.821

C(3)
2 −D

(1)
2 0.305 0.02249 0.465 1.211 34.585 35.641 60.912 0.847

C(3)
2 −D

(2)
2 0.304 0.02245 0.450 1.178 23.347 24.885 55.263 0.519

C(3)
2 −D

(3)
2 0.304 0.02246 0.450 1.265 4.720 9.823 50.322 0.009

C(3)
2 −D

(1)
3 0.304 0.02246 0.450 1.150 17.798 19.773 53.170 0.850

C(3)
2 −D

(4)
3 0.302 0.02229 0.450 1.007 0 8.614 49.908 3.985

C(3)
2 −D

(5)
3 0.304 0.02246 0.450 1.002 0 8.614 50.100 3.945

C(3)
2 −D

(1)
4 0.304 0.02244 0.451 1.158 39.422 40.352 63.750 0.748

C(3)
2 −D

(3)
4 0.304 0.02246 0.450 1.134 11.477 14.350 51.398 1.072

C(3)
2 −D

(4)
4 0.304 0.02247 0.450 1.282 0 8.614 50.105 0.001

C(3)
2 −D

(5)
4 0.304 0.02246 0.451 1.237 0 8.614 50.099 0.091

C(3)
2 −D

(1)
5 0.313 0.02227 0.436 1 0 8.614 49.864 5.564

C(3)
2 −D

(4)
5 0.304 0.02246 0.450 1.002 0 8.614 50.100 3.950

C(3)
2 −D

(5)
5 0.304 0.02246 0.450 1.285 0 8.614 50.102 0.001

C(1)
3 −D

(1)
1 0.304 0.02246 0.450 1.259 25.052 26.492 56.014 0.018

C(1)
3 −D

(1)
2 0.303 0.02245 0.474 1.187 34.079 35.151 60.549 2.000

C(1)
3 −D

(2)
2 0.304 0.02246 0.450 1.251 10.322 13.444 51.158 0.038

C(1)
3 −D

(3)
2 0.304 0.02246 0.450 1.265 4.720 9.822 50.322 0.009

C(1)
3 −D

(3)
3 0.304 0.02246 0.450 1 0 8.614 50.100 4.000

C(1)
3 −D

(4)
3 0.307 0.02264 0.450 1.007 0 8.614 50.342 4.049

C(1)
3 −D

(5)
3 0.316 0.02220 0.431 1 0 8.614 49.775 6.939

C(1)
3 −D

(1)
4 0.304 0.02244 0.451 1.158 39.428 40.358 63.754 0.749

C(1)
3 −D

(2)
4 0.296 0.02171 0.450 1 27.978 29.274 56.679 7.307

C(1)
3 −D

(3)
4 0.304 0.02246 0.450 1.134 11.478 14.350 51.398 1.072

C(1)
3 −D

(4)
4 0.304 0.02245 0.450 1.297 0 8.614 50.107 0.010

C(1)
3 −D

(5)
4 0.304 0.02246 0.450 1.252 0 8.614 50.100 0.035

C(1)
3 −D

(1)
5 0.316 0.02220 0.431 1 0 8.614 49.775 6.939

C(1)
3 −D

(3)
5 0.296 0.02171 0.450 1 0 8.614 49.293 7.307

C(1)
3 −D

(5)
5 0.304 0.02247 0.450 1.277 0 8.614 50.116 0.002

C(1)
4 −D

(1)
1 0.304 0.02246 0.450 1.314 27.801 29.105 57.294 0.032

C(1)
4 −D

(2)
2 0.304 0.02246 0.450 1.263 17.398 19.414 53.026 0.012

C(1)
4 −D

(3)
2 0.304 0.02246 0.451 1.216 38.707 39.654 63.313 0.199

C(1)
4 −D

(1)
3 0.304 0.02245 0.449 1.280 13.325 15.867 51.815 0.006

C(1)
4 −D

(4)
3 0.304 0.02246 0.451 1.072 0 8.614 50.101 2.202

continues on next page
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Table 15 — continued from previous page

Combinations
Predictions for mixing parameters and neutrino masses at best fitting point

χ2
minsin2 θ12 sin2 θ13 sin2 θ23 δ

l
CP /π m1/meVm2/meV m3/meV

C(1)
4 −D

(5)
4 0.275 0.02309 0.550 1.047 0 8.614 49.948 37.499

C(2)
4 −D

(1)
2 0.304 0.02246 0.450 1 2.597 8.997 50.167 4

C(2)
4 −D

(4)
3 0.304 0.02246 0.450 1.014 0 8.614 50.100 3.607

C(3)
4 −D

(1)
1 0.304 0.02242 0.454 1.606 29.557 30.786 58.155 2.753

C(3)
4 −D

(3)
2 0.304 0.02246 0.456 1.282 77.612 78.088 92.378 0.097

C(3)
4 −D

(1)
3 0.304 0.02246 0.450 1.147 17.975 19.932 53.229 0.890

C(3)
4 −D

(4)
3 0.284 0.02313 0.502 1.941 0 8.614 50.796 23.316

C(1)
1 −D

(2)
6 0.304 0.02246 0.450 1.000 0 8.614 50.100 4.000

C(2)
2 −D

(6)
4 0.304 0.02246 0.450 1.001 0 8.614 50.100 3.974

C(2)
2 −D

(6)
5 0.304 0.02247 0.450 1.301 0 8.614 50.095 0.016

C(3)
2 −D

(2)
6 0.304 0.02246 0.450 1.000 0 8.614 50.100 3.998

C(3)
3 −D

(4)
3 0.304 0.02245 0.450 1.040 0 8.614 50.092 2.926

C(3)
3 −D

(1)
4 0.304 0.02246 0.450 1.001 1.077 8.681 50.111 3.979

C(3)
3 −D

(6)
4 0.304 0.02246 0.450 1.001 0 8.614 50.100 3.984

C(3)
3 −D

(2)
5 0.304 0.02246 0.450 1.000 0 8.614 50.100 3.986

C(3)
3 −D

(6)
5 0.304 0.02246 0.450 1.000 0 8.614 50.100 3.989

C(1)
4 −D

(3)
3 0.304 0.02246 0.450 1.001 1.143 8.689 50.113 3.978

C(1)
4 −D

(4)
4 0.304 0.02246 0.450 1.000 0 8.614 50.100 4.000

Table 15. Best-fit values of the lepton mixing and neutrino mass parameters for the representative
models of table 14. In all representative models, the predictions of the lepton mass ratios are
me/mµ = 0.00474, mµ/mτ = 0.0586 and ∆m2

21/∆m2
31 = 0.030.
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Dirac without gCP (IO)

Combinations
Predictions for mixing parameters and neutrino masses at best fitting point

χ2
minsin2 θ12 sin2 θ13 sin2 θ23 δ

l
CP /π m1/meV m2/meV m3/meV

C(1)
1 −D

(1)
1 0.306 0.02241 0.569 1.561 52.681 53.381 18.971 0.033

C(2)
2 −D

(1)
1 0.298 0.02244 0.560 1.720 57.720 58.359 30.236 2.537

C(2)
2 −D

(2)
2 0.287 0.02243 0.577 1.185 49.151 49.900 0 6.894

C(3)
2 −D

(1)
1 0.306 0.02241 0.570 1.514 52.591 53.292 18.720 0.051

C(3)
2 −D

(1)
4 0.305 0.02234 0.573 1.750 60.717 61.325 35.648 2.868

C(1)
3 −D

(1)
4 0.305 0.02234 0.573 1.750 60.718 61.326 35.650 2.869

C(1)
4 −D

(1)
1 0.307 0.02242 0.569 1.576 52.700 53.399 19.036 0.138

C(1)
4 −D

(3)
2 0.304 0.02241 0.570 1.543 72.865 73.372 53.791 0.001

C(3)
4 −D

(1)
1 0.307 0.02242 0.571 1.489 52.635 53.335 18.851 0.166

C(1)
1 −D

(4)
3 0.304 0.02241 0.570 1.542 49.150 49.899 0 0.001

C(1)
1 −D

(5)
3 0.304 0.02242 0.570 1.540 49.144 49.893 0 0.001

C(1)
1 −D

(5)
4 0.290 0.02240 0.560 1.774 48.715 49.471 0 5.557

C(1)
1 −D

(1)
5 0.304 0.02241 0.570 1.544 49.157 49.906 0 0.001

C(2)
2 −D

(4)
3 0.306 0.02242 0.572 1.406 49.137 49.887 0 0.727

C(2)
2 −D

(5)
3 0.304 0.02241 0.570 1.542 49.153 49.902 0 0.001

C(2)
2 −D

(5)
4 0.290 0.02240 0.560 1.774 48.715 49.471 0 5.557

C(2)
2 −D

(1)
5 0.304 0.02241 0.570 1.546 49.153 49.902 0 0.001

C(2)
2 −D

(5)
5 0.287 0.02243 0.577 1.185 49.151 49.900 0 6.894

C(3)
2 −D

(4)
3 0.329 0.02246 0.569 1.557 49.100 49.850 0 3.770

C(3)
2 −D

(5)
3 0.303 0.02254 0.549 1.833 49.117 49.867 0 6.581

C(3)
2 −D

(1)
5 0.303 0.02254 0.549 1.833 49.117 49.867 0 6.581

C(1)
3 −D

(4)
3 0.307 0.02242 0.570 1.551 49.147 49.896 0 0.042

C(1)
3 −D

(5)
3 0.303 0.02254 0.549 1.834 49.117 49.867 0 6.590

C(1)
3 −D

(1)
5 0.303 0.02254 0.549 1.834 49.117 49.867 0 6.590

C(1)
4 −D

(4)
3 0.304 0.02241 0.571 1.470 49.152 49.901 0 0.201

C(1)
4 −D

(5)
4 0.300 0.02253 0.585 1.125 49.190 49.939 0 7.410

C(3)
4 −D

(4)
3 0.321 0.02247 0.571 1.253 49.068 49.818 0 4.873

Dirac with gCP (IO)

Combinations
Predictions for mixing parameters and neutrino masses at best fitting point

χ2
minsin2 θ12 sin2 θ13 sin2 θ23 δCP /π m1/meV m2/meV m3/meV

C(1)
1 −D

(1)
1 0.306 0.02241 0.569 1.562 52.677 53.377 18.961 0.038

C(1)
1 −D

(1)
2 0.304 0.02239 0.571 1.627 49.145 49.894 0 0.458

C(1)
1 −D

(2)
2 0.304 0.02241 0.570 1.548 49.151 49.900 0.001 0.001

C(1)
1 −D

(3)
2 0.302 0.02242 0.572 1.380 49.323 50.070 3.473 1.023

C(1)
1 −D

(1)
3 0.290 0.02240 0.560 1.781 48.717 49.473 0.041 5.752

continues on next page
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Table 17 — continued from previous page

Combinations
Predictions for mixing parameters and neutrino masses at best fitting point

χ2
minsin2 θ12 sin2 θ13 sin2 θ23 δ

l
CP /π m1/meV m2/meV m3/meV

C(1)
1 −D

(4)
3 0.304 0.02241 0.570 1.548 49.151 49.900 0 0.001

C(1)
1 −D

(5)
3 0.304 0.02239 0.571 1.367 49.085 49.835 0 1.153

C(1)
1 −D

(1)
4 0.302 0.02242 0.580 1.612 49.161 49.910 0.369 0.699

C(1)
1 −D

(5)
4 0.290 0.02240 0.560 1.781 48.717 49.473 0 5.752

C(1)
1 −D

(1)
5 0.304 0.02241 0.572 1.557 49.150 49.899 0 0.023

C(1)
1 −D

(3)
5 0.305 0.02239 0.569 1.405 49.150 49.899 0 0.714

C(1)
1 −D

(4)
5 0.304 0.02241 0.571 1.093 49.151 49.900 0 7.346

C(1)
2 −D

(1)
1 0.304 0.02241 0.571 1.800 49.151 49.900 0 4.364

C(1)
2 −D

(1)
2 0.294 0.02242 0.562 1.698 63.955 64.532 40.906 2.447

C(1)
2 −D

(3)
2 0.305 0.02241 0.571 1.216 49.154 49.903 0 3.878

C(1)
2 −D

(4)
3 0.309 0.02253 0.581 1.136 49.153 49.902 0 6.669

C(1)
2 −D

(5)
4 0.305 0.02241 0.571 1.216 49.154 49.903 0 3.878

C(2)
2 −D

(1)
1 0.298 0.02244 0.560 1.720 57.726 58.365 30.248 2.542

C(2)
2 −D

(2)
2 0.304 0.02241 0.570 1.548 49.152 49.901 0.277 0.001

C(2)
2 −D

(3)
2 0.303 0.02241 0.571 1.477 49.260 50.007 1.018 0.224

C(2)
2 −D

(1)
3 0.290 0.02240 0.560 1.781 48.717 49.473 0.000 5.752

C(2)
2 −D

(4)
3 0.304 0.02241 0.570 1.548 49.151 49.900 0 0.001

C(2)
2 −D

(5)
3 0.304 0.02239 0.571 1.367 49.085 49.835 0 1.153

C(2)
2 −D

(1)
4 0.302 0.02241 0.569 1.337 56.941 57.589 28.750 1.576

C(2)
2 −D

(5)
4 0.290 0.02240 0.560 1.781 48.717 49.473 0 5.752

C(2)
2 −D

(1)
5 0.304 0.02241 0.572 1.557 49.150 49.899 0 0.023

C(2)
2 −D

(3)
5 0.305 0.02239 0.569 1.405 49.150 49.899 0 0.714

C(2)
2 −D

(4)
5 0.304 0.02241 0.571 1.093 49.151 49.900 0 7.346

C(3)
2 −D

(1)
1 0.306 0.02241 0.570 1.514 52.591 53.292 18.720 0.051

C(3)
2 −D

(2)
2 0.303 0.02241 0.573 1.252 49.151 49.900 0 3.134

C(3)
2 −D

(3)
2 0.306 0.02239 0.569 1.638 49.148 49.897 0 0.605

C(3)
2 −D

(4)
3 0.329 0.02246 0.569 1.557 49.101 49.851 0 3.771

C(3)
2 −D

(5)
3 0.304 0.02242 0.563 1.708 49.049 49.800 0 1.911

C(3)
2 −D

(1)
4 0.305 0.02234 0.573 1.750 60.717 61.325 35.648 2.868

C(3)
2 −D

(5)
4 0.304 0.02241 0.570 1.543 49.149 49.898 0 0.001

C(3)
2 −D

(1)
5 0.303 0.02254 0.549 1.834 49.117 49.867 0 6.586

C(1)
3 −D

(1)
1 0.304 0.02241 0.570 1.542 49.151 49.900 0 0.001

C(1)
3 −D

(2)
2 0.303 0.02242 0.571 1.459 62.173 62.767 38.077 0.280

C(1)
3 −D

(3)
2 0.304 0.02241 0.570 1.540 57.265 57.909 29.383 0.001

C(1)
3 −D

(4)
3 0.307 0.02242 0.570 1.551 49.147 49.896 0 0.042

continues on next page
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Table 17 — continued from previous page

Combinations
Predictions for mixing parameters and neutrino masses at best fitting point

χ2
minsin2 θ12 sin2 θ13 sin2 θ23 δ

l
CP /π m1/meV m2/meV m3/meV

C(1)
3 −D

(5)
3 0.303 0.02254 0.549 1.834 49.117 49.867 0 6.590

C(1)
3 −D

(1)
4 0.305 0.02234 0.573 1.750 60.718 61.326 35.650 2.869

C(1)
3 −D

(5)
4 0.304 0.02241 0.570 1.543 49.150 49.899 0 0.001

C(1)
3 −D

(1)
5 0.303 0.02254 0.549 1.834 49.117 49.867 0 6.590

C(1)
4 −D

(1)
1 0.307 0.02242 0.569 1.576 52.700 53.399 19.036 0.138

C(1)
4 −D

(2)
2 0.304 0.02241 0.570 1.534 72.054 72.567 52.688 0.004

C(1)
4 −D

(3)
2 0.304 0.02241 0.570 1.545 50.211 50.945 10.273 0.001

C(1)
4 −D

(4)
3 0.304 0.02242 0.573 1.349 49.149 49.898 0 1.405

C(2)
4 −D

(1)
2 0.290 0.02243 0.558 1.747 64.015 64.592 40.996 4.468

C(3)
4 −D

(1)
1 0.307 0.02242 0.571 1.489 52.635 53.335 18.851 0.167

C(3)
4 −D

(2)
2 0.336 0.02247 0.569 1.542 49.087 49.837 0 6.085

C(3)
4 −D

(3)
2 0.304 0.02241 0.570 1.532 94.045 94.439 80.178 0.006

C(3)
4 −D

(4)
3 0.336 0.02247 0.569 1.543 49.086 49.836 0 6.085

C(2)
2 −D

(6)
4 0.304 0.02241 0.570 1.543 49.150 49.899 0 0.001

C(2)
2 −D

(2)
5 0.304 0.02250 0.571 1.622 49.294 50.041 0 0.490

C(2)
2 −D

(6)
5 0.304 0.02241 0.570 1.546 49.151 49.900 0 0.001

C(3)
3 −D

(4)
3 0.304 0.02241 0.570 1.534 49.151 49.900 0 0.005

Table 17. The same as in table 15 but for IO neutrino mass spectrum and for the representative
models of table 16.

C.2 Majorana neutrinos (Weinberg operator)

In case neutrinos are Majorana particles and their masses are generated via Weinberg
operator, the viable pairs of texture zeros of the lepton mass matrices are summarized
in table 10. Here, we present the corresponding representative models for NO and IO
neutrino masses spectrum in tables 18 and 20, respectively. The numerical results of these
representative models are given in tables 19 and 21.
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Weinberg operator without gCP (NO)
Combinations #P0 #P ρL ρEc kL kEc

C(3)
2 −W(1)

1 18 9 2⊕ 1′′ 1′′ ⊕ 1⊕ 1 1, 2 0, 2, 4
C(3)

2 −W(2)
2 16 9 2⊕ 1′ 1′′ ⊕ 1⊕ 1′′ 1, 2 0, 2, 2

C(1)
3 −W(1)

1 16 9 2′ ⊕ 1′′ 1′ ⊕ 1′ ⊕ 1 1, 2 −2, 2, 4
C(1)

3 −W(2)
2 14 9 2⊕ 1′ 1⊕ 1′′ ⊕ 1′ 1, 2 2, 2, 2

C(1)
4 −W(1)

1 15 7 2′ ⊕ 1′ 1′′ ⊕ 1′ ⊕ 1′ 1, 0 0, 0, 2
Weinberg operator with gCP (NO)

Combinations #P0 #P ρL ρEc kL kEc

C(1)
1 −W(1)

1 20 8 2′ ⊕ 1′′ 2′ ⊕ 1′′ 1, 2 3, 2
C(1)

1 −W(2)
2 18 8 2⊕ 1′ 2′ ⊕ 1 1, 2 3, 2

C(1)
1 −W(1)

3 16 9 2′′ ⊕ 1 1⊕ 1⊕ 1′ −1, 2 2, 4, 4
C(2)

2 −W(1)
1 18 8 2′ ⊕ 1′′ 2′ ⊕ 1 1, 2 3, 2

C(2)
2 −W(2)

2 16 9 2′ ⊕ 1 1′′ ⊕ 1⊕ 1 1, 2 2, 2, 4
C(2)

2 −W(1)
3 14 9 2′ ⊕ 1′ 1′′ ⊕ 1′ ⊕ 1′′ −1, 2 2, 2, 4

C(3)
2 −W(1)

1 18 8 2′ ⊕ 1′′ 1′ ⊕ 1′′ ⊕ 1 1, 2 2, 2, 4
C(3)

2 −W(2)
2 16 8 2⊕ 1′ 1′′ ⊕ 1⊕ 1′′ 1, 2 0, 2, 2

C(1)
3 −W(1)

1 16 8 2′ ⊕ 1′′ 1′′ ⊕ 1′ ⊕ 1 1, 2 2, 2, 2
C(1)

3 −W(2)
2 14 8 2⊕ 1′ 1′′ ⊕ 1⊕ 1′ 1, 2 2, 2, 2

C(1)
4 −W(1)

1 15 7 2⊕ 1′′ 2′′ ⊕ 1′ 1, 0 3, 0

Table 18. Representative models of the viable patterns of texture zero in (ME ,Mν) that can
accommodate the experimental data at 3σ level for NO neutrino mass spectrum. Here neutrinos
are Majorana particles and neutrino masses are assumed to be described by the Weinberg operator.
Models with and without gCP are considered. The same convention as table 14 is adopted.
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Weinberg operator without gCP

Combinations Predictions for mixing parameters and neutrino masses at best fitting point
χ2

minsin2 θ12 sin2 θ13 sin2 θ23 δCP /π α21/π α31/π m1/meV m2/meV m3/meV mββ/meV
C(3)

2 −W(1)
1 0.303 0.02269 0.475 1.495 1.996 0.018 26.818 28.168 56.808 25.325 3.730

C(3)
2 −W(2)

2 0.304 0.02244 0.451 1.158 0.492 1.683 39.422 40.352 63.750 28.608 0.748
C(1)

3 −W(1)
1 0.305 0.02246 0.452 0.839 1.595 1.628 20.198 21.958 54.062 18.033 10.017

C(1)
3 −W(2)

2 0.304 0.02244 0.451 1.158 0.584 1.775 39.428 40.358 63.754 25.599 0.749
C(1)

4 −W(1)
1 0.304 0.02254 0.601 1.482 1.957 0.970 44.194 45.025 66.800 44.865 64.205

Weinberg operator with gCP

Combinations Predictions for mixing parameters and neutrino masses at best fitting point
χ2

minsin2 θ12 sin2 θ13 sin2 θ23 δCP /π α21/π α31/π m1/meV m2/meV m3/meV mββ/meV
C(1)

1 −W(1)
1 0.304 0.02246 0.450 1.351 0.308 1.199 18.820 20.698 53.510 17.466 0.133

C(1)
1 −W(2)

2 0.304 0.02244 0.451 1.158 1.594 0.785 39.425 40.355 63.752 32.076 0.749
C(1)

1 −W(1)
3 0.304 0.02246 0.450 1.045 0.240 1.330 0 8.614 50.100 1.436 2.807

C(2)
2 −W(1)

1 0.304 0.02246 0.450 1.351 0.308 1.199 18.820 20.698 53.510 17.466 0.133
C(2)

2 −W(2)
2 0.304 0.02245 0.449 1.128 0.308 0.125 3.919 9.464 50.243 5.614 1.171

C(2)
2 −W(1)

3 0.304 0.02246 0.450 1.045 1.665 0.756 0 8.614 50.100 1.436 2.807
C(3)

2 −W(1)
1 0.304 0.02246 0.451 1.412 1.588 0.708 29.686 30.910 58.235 25.667 0.451

C(3)
2 −W(2)

2 0.304 0.02244 0.451 1.158 0.594 1.785 39.422 40.352 63.750 25.259 0.748
C(1)

3 −W(1)
1 0.304 0.02246 0.450 1.374 1.594 0.697 20.178 21.940 54.009 18.013 0.231

C(1)
3 −W(2)

2 0.304 0.02244 0.451 1.158 0.594 1.785 39.428 40.358 63.754 25.259 0.749
C(1)

4 −W(1)
1 0.304 0.02254 0.601 1.482 1.957 0.970 44.214 45.045 66.813 44.883 64.198

Table 19. Best-fit values of the lepton mixing and neutrino mass parameters for the representative
models presented in table 18. For all representative models, the predictions of the lepton mass ratios
are me/mµ = 0.00474, mµ/mτ = 0.0586 and ∆m2

21/∆m2
31 = 0.030.

Weinberg operator without gCP (IO)
Combinations #P0 #P ρL ρEc kL kEc

C(3)
2 −W(1)

1 18 9 2⊕ 1′′ 1′′ ⊕ 1′′ ⊕ 1 2, 1 1, 3, 3
C(3)

2 −W(2)
2 16 9 2⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1 1, 2 0, 2, 2

C(1)
3 −W(1)

1 16 9 2⊕ 1′′ 1′ ⊕ 1′′ ⊕ 1 2, 1 −1,−1, 3
C(1)

3 −W(2)
2 14 9 2⊕ 1′ 1⊕ 1′′ ⊕ 1′ 1, 2 2, 2, 2

C(1)
4 −W(1)

1 15 9 2′′ ⊕ 1′ 1′′ ⊕ 1⊕ 1′′ 3, 0 0, 0, 2
C(2)

2 −W(1)
3 14 8 2′ ⊕ 1′ 2′′ ⊕ 1′′ −1, 2 3, 2

C(1)
3 −W(1)

3 12 9 2′′ ⊕ 1 1⊕ 1′′ ⊕ 1′ −1, 2 2, 2, 4
Weinberg operator with gCP (IO)

Combinations #P0 #P ρL ρEc kL kEc

C(1)
1 −W(1)

1 20 8 2⊕ 1′′ 2′′ ⊕ 1′′ 2, 3 2, 1
C(1)

1 −W(2)
2 18 8 2⊕ 1′ 2′ ⊕ 1 1, 2 3, 2

C(1)
1 −W(2)

3 16 9 2′ ⊕ 1 1′ ⊕ 1⊕ 1′′ 2, 1 3, 3, 3
C(2)

2 −W(1)
1 18 8 2⊕ 1 2′′ ⊕ 1 2, 1 2,−1

C(2)
2 −W(2)

2 16 9 2⊕ 1 1⊕ 1⊕ 1′′ 1, 0 0, 4, 4
C(3)

2 −W(1)
1 18 8 2′ ⊕ 1′ 2⊕ 1′′ 1, 0 3, 4

C(3)
2 −W(2)

2 16 8 2⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1 1, 2 0, 2, 2
C(1)

3 −W(1)
1 16 8 2′ ⊕ 1′ 1′ ⊕ 1′′ ⊕ 1′′ 1, 0 0, 0, 4

C(1)
3 −W(2)

2 14 8 2′ ⊕ 1 1′ ⊕ 1⊕ 1′′ 1, 2 2, 2, 2
C(1)

4 −W(1)
1 15 8 2′′ ⊕ 1′ 1′ ⊕ 1′′ ⊕ 1 3, 0 0, 0, 2

Table 20. The same as in table 18 but for IO neutrino masses.
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Weinberg operator without gCP

Combinations
Predictions for mixing parameters and neutrino masses at best fitting point

χ2
minsin2 θ12 sin2 θ13 sin2 θ23 δCP /π α21/π α31/π m1/meV m2/meV m3/meV mββ/meV

C(3)
2 −W(1)

1 0.304 0.02241 0.570 1.546 0.663 1.585 49.529 50.272 6.106 29.481 0.001
C(3)

2 −W(2)
2 0.305 0.02234 0.573 1.750 1.604 0.724 60.717 61.325 35.648 49.818 2.868

C(1)
3 −W(1)

1 0.304 0.02241 0.570 1.546 1.695 0.666 49.529 50.272 6.106 44.101 0.001
C(1)

3 −W(2)
2 0.305 0.02234 0.573 1.750 0.869 0.724 60.718 61.326 35.650 24.881 2.869

C(1)
4 −W(1)

1 0.299 0.02245 0.508 1.662 0.021 1.004 84.281 84.720 68.435 83.290 9.084
C(2)

2 −W(1)
3 0.287 0.02245 0.566 1.155 1.887 0.881 49.154 49.903 0 47.639 7.521

C(1)
3 −W(1)

3 0.303 0.02241 0.574 1.573 1.465 0.416 49.152 49.901 0 35.101 0.116
Weinberg operator with gCP (IO)

Combinations
Predictions for mixing parameters and neutrino masses at best fitting point

χ2
minsin2 θ12 sin2 θ13 sin2 θ23 δCP /π α21/π α31/π m1/meV m2/meV m3/meV mββ/meV

C(1)
1 −W(1)

1 0.304 0.02241 0.568 1.532 0.007 0.957 49.439 50.184 5.327 48.662 0.011
C(1)

1 −W(2)
2 0.305 0.02234 0.573 1.750 1.577 0.724 60.715 61.323 35.644 48.618 2.867

C(1)
1 −W(2)

3 0.304 0.02241 0.572 1.556 0.011 0.958 49.150 49.899 0 48.265 0.020
C(2)

2 −W(1)
1 0.303 0.02242 0.576 1.590 0.023 0.960 49.154 49.903 0.386 48.253 0.308

C(2)
2 −W(2)

2 0.302 0.02241 0.579 1.599 0.014 0.964 56.358 57.013 27.606 55.733 0.515
C(3)

2 −W(1)
1 0.304 0.02241 0.569 1.545 0.016 0.958 57.111 57.757 29.083 56.600 0.001

C(3)
2 −W(2)

2 0.305 0.02234 0.573 1.750 1.578 0.724 60.717 61.325 35.648 48.625 2.868
C(1)

3 −W(1)
1 0.304 0.02241 0.569 1.546 0.016 0.958 56.986 57.633 28.836 56.473 0.003

C(1)
3 −W(2)

2 0.305 0.02234 0.573 1.750 0.578 0.724 60.718 61.326 35.650 40.133 2.869
C(1)

4 −W(1)
1 0.299 0.02241 0.508 1.655 0.021 1.004 85.542 85.975 69.985 84.594 9.085

Table 21. The same as in table 19 but for IO neutrino masses.

C.3 Majorana neutrinos (seesaw mechanism)

If neutrino masses are described by the type-I seesaw mechanism with two right-handed
neutrinos, the texture-zero patterns of (ME ,Mν) that can explain the experimental data on
lepton masses and mixing parameters are presented in table 11. Here, we give the examples
of lepton models that can realise those texture zeros. For NO neutrino mass spectrum, the
representative models and corresponding predictions are provided in table 22 and 23. The
same is presented for IO in tables 24 and 25.
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Seesaw mechanism without gCP (NO)
Combinations #P0 #P ρL ρEc ρNc kL kEc kNc

C(3)
2 −W(2)

3
D

(3)
2 −N

(1)
0 14 9 2′ ⊕ 1′ 1′′ ⊕ 1′ ⊕ 1′ 2 2,−1 1, 1, 3 2

D
(1)
4 −N

(1)
0 9 2′′ ⊕ 1′ 1⊕ 1′ ⊕ 1′ 2 −3,−2 4, 6, 8 3

C(1)
3 −W(2)

3
D

(3)
2 −N

(1)
0 12 9 2′′ ⊕ 1′ 1⊕ 1′ ⊕ 1′′ 2 −1, 0 4, 4, 4 3

D
(1)
4 −N

(1)
0 9 2′′ ⊕ 1′ 1⊕ 1′′ ⊕ 1′ 2 −3,−2 4, 6, 6 3

C(1)
1 −W(2)

3 D
(3)
2 −N

(1)
2 16 9 2′ ⊕ 1 1′ ⊕ 1⊕ 1′′ 1′′ ⊕ 1′ 0,−1 1, 5, 5 3, 3

C(2)
2 −W(2)

3 D
(3)
2 −N

(1)
2 14 9 2′ ⊕ 1 1⊕ 1⊕ 1′′ 1′ ⊕ 1′′ 3, 2 −2, 2, 2 0, 0

C(3)
2 −W(1)

1 D
(1)
1 −N

(1)
2 18 9 2⊕ 1′′ 1⊕ 1′′ ⊕ 1 1⊕ 1 4, 3 −1,−1, 1 −1, 1

C(1)
3 −W(1)

1 D
(1)
1 −N

(1)
2 16 9 2⊕ 1′′ 1⊕ 1′′ ⊕ 1′ 1⊕ 1 4, 5 −1,−1,−1 −1, 1

Seesaw mechanism with gCP (NO)
Combinations #P0 #P ρL ρEc ρNc kL kEc kNc

C(1)
1 −W(2)

3
D

(3)
2 −N

(1)
0 16 8 2⊕ 1′ 2′′ ⊕ 1 2 −1,−2 5, 6 3

D
(1)
4 −N

(1)
0 9 2′′ ⊕ 1′ 1⊕ 1′ ⊕ 1′′ 2 −3,−4 6, 8, 8 3

C(2)
2 −W(2)

3
D

(3)
2 −N

(1)
0 14 9 2′ ⊕ 1′ 1′′ ⊕ 1′′ ⊕ 1′ 2 2, 1 −1, 3, 3 2

D
(1)
4 −N

(1)
0 9 2′′ ⊕ 1′ 1′ ⊕ 1′′ ⊕ 1′′ 2 −3,−2 6, 6, 8 3

C(3)
2 −W(2)

3
D

(3)
2 −N

(1)
0 14 8 2⊕ 1 1′′ ⊕ 1⊕ 1 2 1,−2 2, 2, 4 3

D
(1)
4 −N

(1)
0 8 2′′ ⊕ 1′ 2⊕ 1′′ 2 −3,−4 7, 8 3

C(1)
3 −W(2)

3
D

(3)
2 −N

(1)
0 12 8 2′ ⊕ 1′ 1′′ ⊕ 1′ ⊕ 1′′ 2 2, 1 −1,−1, 3 2

D
(1)
4 −N

(1)
0 8 2′′ ⊕ 1′ 1′′ ⊕ 1′ ⊕ 1′′ 2 −3,−4 4, 6, 8 3

C(1)
1 −W(1)

1
D

(1)
1 −N

(1)
1 20 9 2⊕ 1′ 2⊕ 1′ 1′′ ⊕ 1 1, 2 3, 4 2, 2

D
(1)
1 −N

(1)
2 9 2′ ⊕ 1 2⊕ 1′′ 1′ ⊕ 1′′ 4, 3 2,−1 −1, 1

C(1)
1 −W(1)

3 D
(2)
2 −N

(1)
2 16 9 2′′ ⊕ 1′ 2′′ ⊕ 1 1′ ⊕ 1′′ 0, 1 4, 1 3, 3

C(1)
1 −W(2)

3
D

(3)
2 −N

(3)
1 16 9 2′′ ⊕ 1′ 2′ ⊕ 1 1⊕ 1 1,−4 5, 2 0, 2

D
(3)
2 −N

(1)
2 9 2′ ⊕ 1 1′ ⊕ 1⊕ 1′′ 1′′ ⊕ 1′ 0,−1 1, 5, 5 3, 3

C(1)
1 −W(1)

1 D
(1)
3 −N

(1)
1 20 9 2′′ ⊕ 1 2′′ ⊕ 1′ 1′′ ⊕ 1′ 1, 2 3, 4 2, 2

C(1)
1 −W(1)

3 D
(1)
3 −N

(2)
1 16 9 2′′ ⊕ 1 2′′ ⊕ 1′ 1′ ⊕ 1′′ 1, 2 3, 4 2, 2

C(2)
2 −W(1)

1
D

(1)
1 −N

(1)
1 18 9 2′ ⊕ 1 2′′ ⊕ 1 1′′ ⊕ 1′ 1, 2 3, 2 2, 2

D
(1)
1 −N

(1)
2 9 2⊕ 1′′ 2′ ⊕ 1′ 1⊕ 1′′ 2, 3 2, 1 1, 3

C(2)
2 −W(1)

3
D

(2)
2 −N

(2)
1 14 9 2⊕ 1 2⊕ 1 1⊕ 1′′ −1, 2 3, 2 2, 2

D
(2)
2 −N

(1)
2 9 2′′ ⊕ 1′ 2′′ ⊕ 1′′ 1′ ⊕ 1′′ 0, 1 4, 3 3, 3

C(2)
2 −W(2)

3 D
(3)
2 −N

(1)
2 14 9 2′ ⊕ 1 1⊕ 1⊕ 1′′ 1′ ⊕ 1′′ 3, 2 −2, 2, 2 0, 0

C(3)
2 −W(1)

1 D
(1)
1 −N

(1)
2 18 9 2⊕ 1 1⊕ 1′′ ⊕ 1 1⊕ 1 4, 3 −1,−1, 1 −1, 1

C(3)
2 −W(2)

3

D
(3)
2 −N

(1)
1

14
9 2⊕ 1′′ 1′′ ⊕ 1⊕ 1 1′′ ⊕ 1 2, 3 1, 1, 3 1, 3

D
(3)
2 −N

(2)
1 9 2′ ⊕ 1′ 2⊕ 1′′ 1′ ⊕ 1′′ 1,−4 3, 4 2, 2

D
(3)
2 −N

(3)
1 9 2′′ ⊕ 1′′ 2′′ ⊕ 1 1⊕ 1 1, 0 3, 4 0, 2

C(3)
2 −W(1)

1 D
(1)
3 −N

(1)
1 18 9 2′′ ⊕ 1 1⊕ 1⊕ 1′ 1′′ ⊕ 1′ 1, 2 0, 2, 4 2, 2

C(3)
2 −W(1)

3 D
(1)
3 −N

(2)
1 14 9 2′′ ⊕ 1 1⊕ 1⊕ 1′ 1′ ⊕ 1′′ 1, 2 0, 2, 4 2, 2

C(1)
3 −W(1)

1 D
(1)
1 −N

(1)
2 16 9 2′ ⊕ 1′′ 1⊕ 1′ ⊕ 1′′ 1′ ⊕ 1′′ 4, 5 −1,−1,−1 −1, 1

C(1)
3 −W(2)

3
D

(3)
2 −N

(1)
1 12 9 2⊕ 1′ 1′ ⊕ 1′′ ⊕ 1 1⊕ 1 2, 3 1, 1, 3 1, 3

D
(3)
2 −N

(3)
1 9 2′′ ⊕ 1′ 1′′ ⊕ 1′ ⊕ 1′ 1⊕ 1′ 1, 0 0, 2, 4 2, 2

C(1)
3 −W(1)

1 D
(1)
3 −N

(1)
1 16 9 2′′ ⊕ 1 1⊕ 1′′ ⊕ 1′ 1′′ ⊕ 1′ 1, 2 2, 2, 4 2, 2

C(1)
3 −W(1)

3 D
(1)
3 −N

(2)
1 12 9 2′′ ⊕ 1 1′′ ⊕ 1⊕ 1′ 1′ ⊕ 1′′ 1, 2 2, 2, 4 2, 2

C(1)
4 −W(1)

1 D
(1)
1 −N

(1)
1 15 9 2′ ⊕ 1 1⊕ 1′ ⊕ 1′′ 1′′ ⊕ 1′ 1, 2 −2, 0, 4 2, 2

Table 22. Representative models for the viable patterns of texture zero in (ME ,Mν) that can
accommodate the experimental data at 3σ level for NO neutrino mass spectrum. Here, neutrinos are
Majorana particles and their masses are assumed to be generated by the type-I seesaw mechanism.
The models are given without and with gCP. The same convention as table 14 is adopted.
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Seesaw mechanism without gCP (NO)

Combinations
Predictions for mixing parameters and neutrino masses at best fitting point

χ2
minsin2 θ12 sin2 θ13 sin2 θ23 δCP /π φ/π m1/meV m2/meV m3/meV mββ/meV

C(3)
2 −W(2)

3
D

(3)
2 −N

(1)
0 0.304 0.02245 0.450 1.288 0.125 0 8.614 50.096 2.101 0.004

D
(1)
4 −N

(1)
0 0.318 0.02215 0.428 1.136 1.881 0 8.614 49.724 3.692 4.918

C(1)
3 −W(2)

3
D

(3)
2 −N

(1)
0 0.304 0.02239 0.453 1.280 0.634 0 8.614 50.078 1.761 0.039

D
(1)
4 −N

(1)
0 0.318 0.02215 0.428 1.136 1.881 0 8.614 49.724 3.693 4.934

C(1)
1 −W(2)

3 D
(3)
2 −N

(1)
2 0.304 0.02245 0.449 1.245 1.350 0 8.614 50.114 3.648 0.064

C(2)
2 −W(2)

3 D
(3)
2 −N

(1)
2 0.303 0.02248 0.455 1.465 0.438 0 8.614 50.054 2.332 0.961

C(3)
2 −W(1)

1 D
(1)
1 −N

(1)
2 0.304 0.02246 0.450 1.304 0.134 0 8.614 50.096 1.961 0.018

C(1)
3 −W(1)

1 D
(1)
1 −N

(1)
2 0.304 0.02246 0.453 1.367 0.006 0 8.614 50.081 1.964 0.235

Seesaw mechanism with gCP (NO)

Combinations
Predictions for mixing parameters and neutrino masses at best fitting point

χ2
minsin2 θ12 sin2 θ13 sin2 θ23 δCP /π φ/π m1/meV m2/meV m3/meV mββ/meV

C(1)
1 −W(2)

3
D

(3)
2 −N

(1)
0 0.300 0.02252 0.458 1.003 1.998 0 8.6139 50.169 3.659 4.214

D
(1)
4 −N

(1)
0 0.304 0.02246 0.451 1.108 1.493 0 8.6144 50.095 3.425 1.491

C(2)
2 −W(2)

3
D

(3)
2 −N

(1)
0 0.304 0.02246 0.450 1.273 1.566 0 8.6139 50.099 3.637 0.001

D
(1)
4 −N

(1)
0 0.304 0.02246 0.451 1.070 1.953 0 8.6144 50.093 3.709 2.234

C(3)
2 −W(2)

3
D

(3)
2 −N

(1)
0 0.305 0.02242 0.452 1.163 0.624 0 8.6139 50.064 1.466 0.704

D
(1)
4 −N

(1)
0 0.313 0.02227 0.436 1.014 1.987 0 8.6139 49.844 3.748 5.181

C(1)
3 −W(2)

3
D

(3)
2 −N

(1)
0 0.298 0.02262 0.456 1.097 0.887 0 8.6139 50.157 1.443 2.088

D
(1)
4 −N

(1)
0 0.316 0.02222 0.430 1.014 1.988 0 8.6139 49.791 3.766 6.575

C(1)
1 −W(1)

1
D

(1)
1 −N

(1)
1 0.303 0.02246 0.452 1.318 1.028 0 8.614 50.109 3.259 0.051

D
(1)
1 −N

(1)
2 0.304 0.02246 0.450 1.302 0.131 0 8.614 50.096 1.986 0.015

C(1)
1 −W(1)

3 D
(2)
2 −N

(1)
2 0.335 0.02273 0.438 1.045 1.019 0 8.614 50.345 1.784 10.717

C(1)
1 −W(2)

3
D

(3)
2 −N

(3)
1 0.316 0.02220 0.431 1.015 1.987 0 8.614 49.773 3.769 6.495

D
(3)
2 −N

(1)
2 0.304 0.02245 0.449 1.245 1.350 0 8.614 50.114 3.648 0.064

C(1)
1 −W(1)

1 D
(1)
3 −N

(1)
1 0.305 0.02246 0.449 1.190 0.621 0 8.614 50.095 1.440 0.408

C(1)
1 −W(1)

3 D
(1)
3 −N

(2)
1 0.305 0.02246 0.449 1.190 0.621 0 8.614 50.095 1.440 0.408

C(2)
2 −W(1)

1
D

(1)
1 −N

(1)
1 0.303 0.02246 0.452 1.318 1.028 0 8.614 50.109 3.259 0.051

D
(1)
1 −N

(1)
2 0.299 0.02249 0.448 1.796 1.030 0 8.614 50.261 2.341 6.966

C(2)
2 −W(1)

3
D

(2)
2 −N

(2)
1 0.273 0.02248 0.464 1.000 1.000 0 8.614 50.100 1.170 11.456

D
(2)
2 −N

(1)
2 0.335 0.02273 0.438 1.045 1.019 0 8.614 50.346 1.784 10.723

C(2)
2 −W(2)

3 D
(3)
2 −N

(1)
2 0.303 0.02248 0.455 1.465 0.438 0 8.614 50.054 2.332 0.961

C(3)
2 −W(1)

1 D
(1)
1 −N

(1)
2 0.304 0.02246 0.450 1.304 0.134 0 8.614 50.096 1.961 0.018

C(3)
2 −W(2)

3

D
(3)
2 −N

(1)
1 0.300 0.02266 0.463 1.414 0.103 0 8.614 49.972 1.501 1.208

D
(3)
2 −N

(2)
1 0.291 0.02275 0.502 1.676 1.680 0 8.614 49.805 1.324 13.186

D
(3)
2 −N

(3)
1 0.313 0.02226 0.436 1.015 1.986 0 8.614 49.861 3.746 5.146

C(3)
2 −W(1)

1 D
(1)
3 −N

(1)
1 0.305 0.02246 0.449 1.189 0.621 0 8.614 50.095 1.440 0.411

C(3)
2 −W(1)

3 D
(1)
3 −N

(2)
1 0.305 0.02246 0.449 1.189 0.621 0 8.614 50.095 1.440 0.411

C(1)
3 −W(1)

1 D
(1)
1 −N

(1)
2 0.304 0.02246 0.453 1.367 0.006 0 8.614 50.081 1.964 0.235

C(1)
3 −W(2)

3
D

(3)
2 −N

(1)
1 0.302 0.02250 0.458 1.648 1.772 0 8.614 50.076 1.462 3.638

D
(3)
2 −N

(3)
1 0.304 0.02243 0.455 1.738 0.716 0 8.614 50.062 3.544 5.390

C(1)
3 −W(1)

1 D
(1)
3 −N

(1)
1 0.305 0.02246 0.449 1.189 0.621 0 8.614 50.095 1.440 0.411

C(1)
3 −W(1)

3 D
(1)
3 −N

(2)
1 0.305 0.02246 0.449 1.189 0.621 0 8.614 50.095 1.440 0.411

C(1)
4 −W(1)

1 D
(1)
1 −N

(1)
1 0.303 0.02245 0.453 1.386 1.043 0 8.614 50.120 3.544 0.336

Table 23. Best-fit values of the lepton mixing and neutrino mass parameters for the representative
models presented in table 22. For all cases, the predictions of the lepton mass ratios are me/mµ =
0.00474, mµ/mτ = 0.0586 and ∆m2

21/∆m2
31 = 0.030.
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Seesaw mechanism without gCP (IO)
Combinations #P0 #P ρL ρEc ρNc kL kEc kNc

C(1)
1 −W

(2)
3

D
(3)
2 −N

(1)
0 16

8 2⊕1′ 1⊕1′′⊕1′′ 2 1,2 2,2,4 1
D

(1)
4 −N

(1)
0 8 2′′⊕1 1′⊕1⊕1 2 −1,0 4,4,6 1

C(2)
2 −W

(2)
3

D
(3)
2 −N

(1)
0 14

8 2⊕1′ 1′⊕1′′⊕1′′ 2 1,2 2,2,4 1
D

(1)
4 −N

(1)
0 8 2′′⊕1 1⊕1′′⊕1 2 −1,0 4,4,6 1

C(3)
2 −W

(2)
3

D
(3)
2 −N

(1)
0 14

9 2⊕1′ 1′′⊕1⊕1′ 2 1,−2 2,2,4 3
D

(1)
4 −N

(1)
0 9 2′′⊕1 1⊕1′⊕1 2 −3,−6 6,6,8 3

C(1)
3 −W

(2)
3

D
(3)
2 −N

(1)
0 12

9 2′′⊕1′ 1′′⊕1′⊕1′ 2 −1,−2 2,4,6 3
D

(1)
4 −N

(1)
0 9 2′′⊕1 1⊕1⊕1′ 2 −3,−2 2,6,6 3

C(1)
1 −W

(1)
1 D

(1)
1 −N

(1)
2 20 8 2′′⊕1′ 2′⊕1 1′′⊕1′ 5,6 −3,−2 0,0

C(1)
1 −W

(2)
3 D

(3)
2 −N

(1)
2 16 9 2′⊕1 1′′⊕1⊕1′ 1′⊕1′′ 5,6 −2,0,0 0,0

C(2)
2 −W

(2)
3 D

(3)
2 −N

(1)
2 14 9 2′⊕1 1′′⊕1⊕1 1′⊕1′′ 5,6 −2,−2,0 0,0

C(3)
2 −W

(1)
1 D

(1)
1 −N

(1)
2 18 9 2′⊕1′′ 1′⊕1′′⊕1′′ 1′′⊕1′ 3,4 0,0,2 0,0

C(3)
2 −W

(1)
3 D

(2)
2 −N

(1)
2 14 9 2′′⊕1′ 1⊕1⊕1′′ 1′′⊕1′ 0,1 1,3,5 3,3

C(1)
3 −W

(1)
1 D

(1)
1 −N

(1)
2 16 9 2′⊕1′′ 1′⊕1⊕1′′ 1′′⊕1′ 0,1 3,3,5 3,3

C(1)
3 −W

(1)
3 D

(2)
2 −N

(1)
2 12 9 2⊕1′ 1′′⊕1′⊕1 1′⊕1′′ 4,5 −1,−1,−1 −1,1

C(1)
4 −W

(1)
1 D

(1)
1 −N

(1)
2 15 8 2′′⊕1′ 1′′⊕1⊕1′ 1′′⊕1′ 5,6 −6,−2,0 0,0

Seesaw mechanism with gCP (IO)
Combinations #P0 #P ρL ρEc ρNc kL kEc kNc

C(1)
1 −W

(1)
1

D
(1)
1 −N

(1)
1 20

9 2⊕1′′ 2⊕1′′ 1′′⊕1 1,2 1,2 2,2
D

(1)
1 −N

(1)
2 8 2′′⊕1′ 2′⊕1 1′′⊕1′ 5,6 −3,−2 0,0

C(1)
1 −W

(1)
3 D

(2)
2 −N

(1)
2 16 9 2⊕1′ 2′⊕1 1′⊕1′′ 4,5 0,−1 −1,1

C(1)
1 −W

(2)
3

D
(3)
2 −N

(1)
1

16

9 2⊕1′′ 2′⊕1′′ 1′′⊕1 0,−1 4,5 1,3
D

(3)
2 −N

(2)
1 9 2⊕1′ 2′′⊕1′′ 1⊕1′′ 1,0 3,2 2,2

D
(3)
2 −N

(3)
1 9 2′′⊕1′′ 2⊕1′ 1⊕1 1,−2 3,4 0,2

D
(3)
2 −N

(1)
2 9 2′′⊕1 1⊕1⊕1′′ 1′⊕1′′ 5,6 −2,0,0 0,0

C(1)
1 −W

(1)
1 D

(1)
3 −N

(1)
1 20 9 2′′⊕1 2′′⊕1′ 1′′⊕1′ 1,2 3,4 2,2

C(1)
1 −W

(1)
3 D

(1)
3 −N

(2)
1 16 9 2′⊕1′′ 2⊕1′′ 1⊕1′′ 1,2 3,4 2,2

C(2)
2 −W

(1)
1

D
(1)
1 −N

(1)
1 18

9 2′⊕1′′ 2′⊕1 1′′⊕1′ 1,2 1,2 2,2
D

(1)
1 −N

(1)
2 9 2′⊕1′′ 2′⊕1 1′⊕1′ 0,1 4,3 1,3

C(2)
2 −W

(2)
3

D
(3)
2 −N

(1)
1

14

9 2′′⊕1′ 2′′⊕1′′ 1⊕1 0,1 4,3 1,3
D

(3)
2 −N

(2)
1 9 2⊕1′′ 2′⊕1′ 1⊕1′′ 1,0 3,0 2,2

D
(3)
2 −N

(3)
1 9 2′′⊕1′ 2⊕1′′ 1⊕1 1,2 3,2 0,2

D
(3)
2 −N

(1)
2 9 2′′⊕1 1′′⊕1⊕1 1′⊕1′′ 5,6 −2,−2,0 0,0

C(2)
2 −W

(1)
1 D

(1)
3 −N

(1)
1 18 9 2′⊕1′′ 2⊕1 1′′⊕1 1,2 3,2 2,2

C(2)
2 −W

(1)
3 D

(1)
3 −N

(2)
1 14 9 2′⊕1′′ 2⊕1′ 1⊕1′′ 1,2 3,−2 2,2

C(3)
2 −W

(1)
1

D
(1)
1 −N

(1)
1 18

9 2⊕1′ 2⊕1′′ 1′′⊕1 3,4 −1,0 2,2
D

(1)
1 −N

(1)
2 9 2⊕1 2′⊕1 1⊕1′′ 2,1 2,3 1,3

C(3)
2 −W

(1)
3 D

(2)
2 −N

(1)
2 14 9 2⊕1′ 1′′⊕1⊕1′′ 1′′⊕1′ 3,4 −2,0,2 0,0

C(3)
2 −W

(2)
3

D
(3)
2 −N

(1)
1

14

9 2⊕1′′ 1⊕1′′⊕1′ 1′′⊕1 0,−1 3,5,5 1,3
D

(3)
2 −N

(2)
1 9 2′⊕1′′ 1′′⊕1′⊕1′′ 1′⊕1′′ 1,0 2,4,4 2,2

continues on next page
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Table 24 — continued from previous page
Combinations #P0 #P ρL ρEc ρNc kL kEc kNc

D
(3)
2 −N

(3)
1 9 2′′⊕1′′ 2′′⊕1′ 1⊕1′ 1,0 3,4 0,2

D
(3)
2 −N

(1)
2 9 2′′⊕1 2⊕1 1′⊕1′′ 5,0 1,0 0,0

C(3)
2 −W

(1)
1 D

(1)
3 −N

(1)
1 18 9 2⊕1′′ 1⊕1′′⊕1′′ 1′′⊕1′ 1,2 2,2,4 2,2

C(3)
2 −W

(1)
3 D

(1)
3 −N

(2)
1 14 9 2⊕1′′ 1⊕1′′⊕1 1′⊕1′′ 1,2 2,4,4 2,2

C(1)
3 −W

(1)
1 D

(1)
1 −N

(1)
2 16 9 2′⊕1′′ 1⊕1′⊕1′′ 1′′⊕1′ 0,1 3,3,5 3,3

C(1)
3 −W

(1)
3 D

(2)
2 −N

(1)
2 12 9 2⊕1′ 1′′⊕1′⊕1 1′⊕1′′ 4,5 −1,−1,−1 −1,1

C(1)
3 −W

(2)
3

D
(3)
2 −N

(1)
1 12

9 2⊕1 1⊕1′′⊕1′′ 1′′⊕1 0,−1 1,3,5 1,3
D

(3)
2 −N

(3)
1 9 2′′⊕1′ 1′′⊕1′⊕1′ 1⊕1′ 1,0 0,2,4 0,2

C(1)
3 −W

(1)
1 D

(1)
3 −N

(1)
1 16 9 2⊕1′′ 1′⊕1⊕1′′ 1′′⊕1′ 1,2 2,2,4 2,2

C(1)
3 −W

(1)
3 D

(1)
3 −N

(2)
1 12 9 2⊕1′′ 1′′⊕1′⊕1 1′⊕1′′ 1,2 0,2,2 2,2

C(1)
4 −W

(1)
1

D
(1)
1 −N

(1)
1 15

9 2⊕1 1⊕1′′⊕1′ 1′′⊕1 2,1 −1,1,3 1,3
D

(1)
1 −N

(1)
2 8 2′′⊕1′ 1′′⊕1⊕1′ 1′′⊕1′ 5,6 −2,−2,0 0,0

C(3)
4 −W

(1)
1 D

(1)
1 −N

(1)
1 14 9 2′′⊕1′ 2⊕1′ 1′′⊕1′ 3,4 −3,0 2,2

Table 24. The same as in table 22 but for IO neutrino mass spectrum.
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