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ABSTRACT: Texture zeros in fermion mass matrices have been widely considered in tack-
ling the Standard Model flavour puzzle. In this work, we perform a systematic analysis

5 2 T" modular symmetry.

of texture zeros in lepton mass matrices in the framework of '
Assuming that the lepton fields transform as irreducible representations of 7", we obtain all
possible texture-zero patterns for both charged-lepton and neutrino mass matrices which
can be achieved from T’ modular symmetry. We provide representative models for the
phenomenologically-viable textures which can accommodate the experimental data. The
predictions for lepton mixing angles, CP-violating phases, light neutrino masses and ef-
fective neutrino mass relevant for neutrinoless double beta decay, are discussed. We find
that the minimal viable lepton model depends on only 7 real free parameters including the
modulus 7 (the corresponding charged-lepton mass matrix contains 4 vanishing entries, and
the neutrino mass matrix has 1 texture zero). Finally, we study in detail three benchmark
models, one for each neutrino mass generation mechanism considered (Dirac, Majorana via
Weinberg operator and Majorana via minimal type-I seesaw mechanism).
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1 Introduction

Understanding the fermion flavour pattern is still one of the most challenging and out-

standing problems in particle physics. In the last decades, the quark mass and mixing pa-

rameters have been precisely measured, while neutrino oscillation experiments have firmly



established the existence of neutrino masses and lepton mixing. Among all aspects related
to the flavour problem, perhaps the most intriguing one is the huge hierarchy among the
quark and lepton masses. Namely, the lightest neutrino mass is (at most) of O(1eV),
while the heaviest (top) quark mass is over eleven orders of magnitude heavier. Moreover,
the quark and lepton mixing patterns turn out to be drastically different: the Cabibbo-
Kobayashi-Maskawa (CKM) mixing matrix in quark sector is close to the identity with
small mixing angles, while the leptonic Pontecorvo-Maki-Nakagawa-Sakata (PMNS) ma-
trix features two large (atmospheric and solar) mixing angles, and the small (reactor) one.
In the Standard Model (SM), the fermion mass matrices are determined by the Yukawa
couplings, which are arbitrary complex numbers, unconstrained by the SM gauge sym-
metry. The fact that the number of free parameters is much larger than the number of
physical observables makes the SM unpredictive in the flavour sector.

With the purpose of finding a solution for the flavour puzzle, several approaches have
been developed. One of the ways of reducing the number of free parameters in fermion
mass matrices, is to assume some of their entries to be vanishing [1-3], i.e. to assume what
are commonly known as texture-zero ansdtze. A typical example is the Fritzsch-type quark
mass matrices which can relate the Cabibbo angle 0¢ to the ratio between the down and
strange quark masses [4, 5]. The phenomenology of texture zeros in both quark and lepton
sectors have been widely studied in literature — see refs. [6, 7] for reviews. Systematical
and complete analyses of all possible texture zeros have been carried out for both quark [8]
and lepton mass matrices [9]. It is found that the predictivity of pure texture zero models
is quite weak and the predictive mass matrices need relations among the non-zero matrix
elements. The most straightforward way to impose vanishing Yukawa couplings is by
enforcing them with Abelian flavour symmetries [10-12]. In such case, the non-zero entries
of the fermion mass matrices are uncorrelated since the three generations of matter fields
are not linked by the Abelian symmetry group.

Recently, modular symmetries have been proposed to address the flavour puzzle [13].
In this approach, the Yukawa couplings are level-N modular forms, which are holomorphic
functions of a single complex scalar field — the modulus 7 — and transform nontrivially
under the action of the modular group. The matter fields are usually assumed to be in
irreducible representations of the modular group. Models with modular flavour symmetries
can be quite predictive, in the sense that fermion masses and mixing parameters depend
on few inputs. The phenomenology of modular invariance has been widely studied, and a
plethora of modular-invariant models for lepton masses and mixing have been constructed
by using the inhomogeneous finite modular group I'y for I's =2 S5 [14-17], I's = A4 [13-15,
18-41], 'y = 54 [28,42-50], I's = A5 [47, 51, 52] and I'7 =2 PSL(2, Z7) [53], the homogeneous
finite modular group I'y for T'y = 1" [54-56], ') = S} [57-59], I'y = AL [60, 61] and 'y [62],
and the finite metaplectic group Tn [61, 63]. The most general finite modular groups
beyond I'y and I'y are discussed in [64] from the view of vector-valued modular form.

Texture-zero patterns for fermion mass matrices can naturally arise from modular
symmetries. In comparison to the models based on Abelian flavour symmetries, the texture-
zero models relying on modular invariance are more predictive since the nonzero entries
of the mass matrices are related by the modular symmetry. In ref. [55], texture zeros in



quark mass matrices from 7" modular group symmetry have been investigated . In the
same token, the specific case of texture zeros of quark mass matrices with nearest neighbor
interaction has been discussed in [65]. Regarding the lepton sector, two-zero textures of
the Majorana neutrino mass matrix with diagonal charged-lepton mass matrix have been
studied in the framework of the A4 modular group [29]. However, all matter fields were
assigned to Ay singlets. As a consequence, the modular forms appearing in the lepton
mass matrices can be absorbed into the Yukawa coupling constants. Since the triplet
representation of A4 is not used, the effect of A4 modular symmetry is equivalent to an
Abelian flavour symmetry and, thus, the correlations among nonzero entries of lepton mass
matrices are lost. Thus, a more general and systematic study of lepton texture-zero in the
context of modular symmetries is needed.

In this work, we will extend the analysis of [55] to the lepton sector, following a
systematic approach in seeking the modular-symmetry realisations of lepton texture zeros
and studying their phenomenology. We shall use the modular group I'; = T" as cornerstone.
In contrast with ref. [29], we will not impose any specific basis for charged leptons, and all
possible ways of assigning the lepton fields to irreducible representations of the 77 modular
group will be explored. Since the particle nature of neutrinos is still unclear, we will
consider both Dirac and Majorana neutrino masses. For the latter, we analyse two kinds
of mass generation mechanisms: the effective Weinberg operator and the type-1 seesaw
mechanism. To the combination of a given pattern for the charged-lepton and neutrino
mass matrix realised with a specific representation and modular weight assignment we call
a texture-zero lepton model (TZLM).

This paper is organised as follows: in section 2, we briefly review some key aspects
about modular symmetry and modular forms of level 3. In section 3, we systematically
analyse the texture-zero patterns of the charged-lepton mass matrix stemming from 7"
modular symmetry by considering all possible representation assignments of matter fields.
This procedure is repeated for the neutrino mass matrices in section 4. The combination of
charged-lepton and neutrino patterns is carried out in section 5, and the phenomenologically
viable pairs are identified in section 5.1 by means of a complete numerical analysis in
view of latest neutrino experimental data. Among all viable cases, we focus on three
benchmark TZLMs which will be studied in section 6. Finally, we draw ourconclusions in
section 7. Group-theoretical aspects of the modular group T are covered in appendix A. In
particular, we provide the level 3 modular forms of weight 2, 3, 4, 5 and 6 in appendix B.
The details of the representative models for the viable textures of lepton mass matrices
and the corresponding predictions for lepton observables are summarized in appendix C.

2 Modular symmetry and modular forms of level 3

The modular group I' = SL(2, Z) is the special linear group of two-dimensional matrices
with integer entries defined as:

b
I'=SL(2,7) = J a,bc,de Z,ad—bc=1, . (2.1)



The group I' has infinite elements and it can be generated by two generators S and T,

0 1 11
S:(_1 0), T:(O 1), (2.2)

namely

which satisfy the relations

St = (ST)} =1y, S*T=T8?, (2.3)
where 15 denotes the 2 x 2 unit matrix and S? = —15. Notice that eq. (2.3) implies
(T'S)? = 15. The modular group I' acts on the complex modulus 7 with fractional linear
transformations:

b a b
T—>’YT:£, with Im7 > 0, ’y:( )GF, (2.4)
cT +d c d
being the action of S and T on 7
1
St ———, T:7T—71+1. (2.5)
T
We see that the modulus 7 transforms in the same way under the action of y and S?y = —.

Hence, the group of fractional linear transformations is isomorphic to the projective matrix
group PSL(2,7Z) = SL(2,7) /{12, —12}. Moreover, the modular transformation of a set of
chiral supermultiplets ®; under the action of v is given by

®; L (er +d)*2pii(7) @5, (2.6)

where kg € Z is the modular weight of the superfield multiplet ®;, and p is the unitary
representation of I' with finite image. For a modular flavour symmetry [13], it is assumed
that the representation matrix p(7) is a unit matrix when ~ belongs to the principal
congruence subgroup of level N'!

R e

which is an infinite normal subgroup of SL(2,Z). We see I'(1) = SL(2,Z) and TV € T(N).
The fundamental theorem of homomorphisms implies that p is effectively a representation
of the quotient group I'y, = SL(2,Z)/I'(N) = SL(2, Zy) which is called homogeneous finite
modular group. Iy can be obtained by further imposing the condition TN = 1 besides
those in eq. (2.3):

v =1(S,T|S*=(ST)* =TV =1, S*’T =TS?). (2.8)

n fact, one can start from any irreducible representation p of SL(2,Z) with finite image [64], and here
p(T'(N)) =1 is a particular choice.



Additional relations are necessary in order to render the group I'y finite for N > 6 [66].
The Iy group can also be expressed in terms of three generators S, T and R as follow

N=1{(S,T,R|S*=R,(ST)* =TV =R*=1, RT =TR). (2.9)

If p cannot distinguish between v and —y with p(S?) = 1, p would be the representation
of the inhomogeneous finite modular group I'y = SL(2,Z)/ £ I'(N) = FQV/Z§2, where Z3
is the order-two cyclic group generated by S2. For N < 5, the defining relations of Iy are

Ty =(S,T|S?=(ST)*=T" =1). (2.10)

Note that Ty = T'y since S? € I'(2), while I}y is the double cover of T'y for N > 3 due
to S? ¢ I'(IN). It is notable that the groups I'y for N = 2,3,4,5 are isomorphic to the
permutation groups S3, A4, Sy and As respectively.

Implementation of modular flavour symmetries requires modular forms Y (7) of weight
k and level N. Y(7) is a holomorphic function of 7 with a well-defined transformation
property under I'(N):

a b

Y (47) = (er + d)*Y (1), ’y:(c .

) e T(N), (2.11)

where k is a generic non-negative integer.? The modular forms of weight k and level N span
a linear space M (I'(NV)) of finite dimension, they are invariant under I'(/V) but transform
under the quotient group I'y. It is always possible to choose a basis in the linear space
My (I(N)) such that the modular forms can be arranged into some modular multiplets
v = (Y1(7),Ya(7),...)" which transform as irreducible representation r of the finite
modular group Iy or I'y [13, 54]:

Y (1) = (er + d)*pe (7)Y (r) for V4 € SL(2,2), (2.12)

where 7 is the representative element of the coset YI'(N) in Iy, and pr(7) is the represen-
tation matrix of the element  in the irreducible representation r.
The superpotential W(®,7) can be expanded in power series of the supermultiplets
@,
W(‘I)[,T):ZY]I._]”(T)@]l...(I)[n, (213)
n

where the sum is taken over all possible combinations of the fields {I;,...,I,}. The su-
permultiplet @7, is assumed to transform in the representation pj, of Iy, being —Fk;j, its
modular weight. Modular invariance requires W(®y,7) to be invariant under the finite
modular group Iy and, thus, the total weight of each of its terms must vanish. As a
consequence, Y7, 1, (7) should be a modular multiplet of weight ky transforming in the
representation py of Iy, i.e.

Yi,.1,(7) = Yi..,(77) = (e + )™ py (1)Y,..1,,(7) | (2.14)

2The rational weight modular forms have been studied in [61, 63].




with ky and py satisfying
k‘Y:k[lJr...+k2]n, Py @ pr, ®@...Qpr1, 21, (2.15)
where 1 denotes the trivial singlet representation of I'y.

2.1 Weight-1 modular forms of level N = 3

The linear space My (I'(3)) spanned by level-3 and weight-k modular forms has dimension
k + 1, and can be explicitly constructed by using the Dedekind eta function 7(7):

MEE)= Y e EDT e ln3(37)]m[n3(7/3)r7

om0 nmtn(T) et ne R0 n(T) n(T)

(2.16)

where ¢, are general complex coefficients and
nm) = [[1-q", ¢="". (2.17)

n=1
Hence, M (T'(3)) can be generated by polynomials of degree k in the two functions u;(7)
and wua(7):
3 3
1°(37) n°(7/3)

u(7) = ,  us(T) = , 2.18
D= 0T S (215)

which are the two linearly independent weight-1 modular forms at level 3. The functions
w1 (1) and ua(7) transform under the modular generators S and T as

uy (1) s 273y (1), ua () s 3v/3e /Oy 4y |
wi (1) V2 3732 (—ir)uy(1), us (1) V25 332 (—ir)uy (7). (2.19)

) up to the automorphy factor c¢r + d [54]. In

and can be arranged in a T’ doublet Yz(1
the group representation basis given by eq. (A.3), we find that the modular form doublet

Yz(l)(T) is defined as

y O = () 2.20
2 (7) (YQ(T) (2.20)
with 1

Yi(r) = \/§U1(T), Yo(r) = —uyi (1) — §u2(7') ) (2.21)

One can check that Y2(1)(7') transforms under the modular generator S and 7" as expected,
namely

1 1 1 1
V(1) = —mpa(9Y; (), VD) =@y, (222)
where the representation matrices p2(S) and p2(7T) are given in appendix A. The ¢-
expansion of the weight-1 modular forms Y] o(7) reads

Yi(r) = \/§q1/3(1+q+2q2+2q4+q5+2q6+q8+2q9+2q10+2q12+m)’
Ya(1) = —1/3 —2¢ — 2¢° — 2¢* — 4" — 2¢° — 2¢'? — 4¢3 + ... . (2.23)

Notice that Y1(7) and Ya(7) are algebraically independent. The level-3 modular form of
weight £ > 2 can be expressed as polynomials of degree k in Y;(7) and Y3(7), as shown
explicitly in appendix B.



3 Texture zeros in the charged-lepton mass matrix

As antecipated in the Introduction, in this work we will carry out a systematic analysis
of texture zeros in the lepton mass matrices stemming from a I'y = 7’ modular sym-
metry. The matter fields are assumed to transform as irreducible representations of 7’
which has three one-dimensional irreducible representations denoted by 1, 1’, 1”, three
two-dimensional irreducible representations denoted by 2, 2/, 2” and a three-dimensional
irreducible representation denoted by 3. Thus, the lepton fields can be assigned to any of
these representations.

The transformation assignments of the three generations of left-haned (LH) leptons
and the right-handed (RH) charged leptons can be classified into the following cases, i.e.,

Ly
L . ) )
L=|L,|~3, or Lp= Ll ~2, Ly~1/, or Ly~1/, with a=1,2,3, (3.1)
Ls 2
eC
eC
E‘=|pc|~3, or Ep= . ~2k ren1l) or ES~1le) with a=1,2,3. (3.2)
7
TC
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where i,7,k,1,j123,l123 = 0,1,2 with 1 = 1°, 1" = 11, 1" = 12 (2 = 20, 2" = 21,
2" = 22) for the singlet (doublet) representations. ES stands for e, u°, 7¢ when a = 1,2, 3,
respectively. The above assignment for the three lepton generations is not unique in the
sense that permutations among them can the be considered. This amounts to multiplying
the charged-lepton mass matrix on the left and/or right by permutation matrices. However,
this does not change lepton mixing and, at the end, we can identify nine classes of charged-
lepton mass matrices according to how the lepton fields transform under 7".

In table 1, we summarize all possible texture-zero patterns for the charged-lepton
mass matrix that can be obtained with 7’ modular group. In the following, we discuss
how those structures can be achieved by properly assigning the representations and weights
of the lepton fields under the 7" modular group. We should emphasize that the matrix
entries marked with x in the mass matrices considered in this work are not arbitrary as in
usual texture-zero frameworks based on Abelian symmetries. As already mentioned in the
Introduction, this is due to the fact that extra relations among the non-zero entries appear
as a result of the 77 modular symmetry. Therefore, compatibility of a given texture with
arbitrary non-vanishing entries does not guarantee its viability in the present framework.

We will now discuss the 9 distinct assignments of lepton fields, and require the charged-
lepton mass matrix to have rank three in order to accommodate the three nonzero masses
of the electron, muon and tau.



0 x x
Cgl) X X X
X X X
0 x x X X X X x 0
Cél)' x 0 x ,C§2) X X X ,Cég) x x 0
X X X 00 x X X X
x x 0 x 0 x 0 x x
Cél) X X X ,C?()z). x 0 x ,C§3). x 0 X
00 x 0 x x x x 0
X x 0 0x0 0 x x
Cfll): x x 0 ,Cf). x 00 ,Cis) x 0 x
00 x X X X 00 x
0 x0
Cél): x 0 0
0 0 x

Table 1. Texture-zero classification for the (rank-3) charged-lepton mass matrices which can be
realised from 7" modular symmetry, up to row and column permutations.

o L= (L17L27L3)TN3) ECE(eCnucaTc)TN:}

In this case, the most general effective Yukawa terms for the charged leptons in the
superpotential are given by

Wi = gfa (B LY ] Hy, (3:3)

where gfa are coupling constants, and Y}(,f ) stands for the modular form of weight
k and representation r, with a possibly labelling linearly independent multiplets of
the same type. Notice that all possible contractions into the 7" singlet should be
considered. As shown in table 13, the allowed representation r of modular forms in
eq. (3.3) depends on the modular weights k, + kge. From eq. (3.3), we can read out
the expressions of the elements of charged lepton mass matrix,

a— kr+kge
(Mp)ap = va > {|985.a(30as = 1) + 0§, o (1 = Sap) (~1) DB | yexter, = (3.4)
a,b,c,d

E kr+kge E kr+kge E kr+kge
+9Tu02 Yl 0t O s YT 4 g ado e Y T}

where vy = (HY) is the vacuum expectation value (VEV) of the Higgs field Hy and
Y(klf+kEc)
Ta,)

a|3 = (a mod 3). From now on, denotes the j** component of the modular

form Y *2T5) i the vector notation of eq. (2.20) and egs. (B.1)-(B.5). The charged-

a

lepton mass matrix Mg is defined in the right-left basis with ES(Mpg)asLs. We find



that only texture Cél) can be reproduced, requiring total weight kr, + kg = 0. None

of the other cases can be obtained for a generic value of the modulus 7 when the three
lepton doublets and singlets are in triplet representations of 7”. It turns out that
the modular realisation of Cél) is not viable since, in this case, modular symmetry
imposes (Mg)12 = (Mg)21 = (MEg)ss3, leading to a fully degenerate charged-lepton

mass spectrum.

L= (L17L27L3)T ~ 3) ECD = (BCMU’C)T ~ 2k7 E:)C, =7~ 1l

In this case, the superpotential terms relevant for charged-lepton mass generation

are:
(kr+kge ) (kr+kge)
Wi=Y 9 [EELYr K ] Hy+ g3y, [E3Ly3b "

r,a,b

Hy. (3.5
1

where gfa, ggb are coupling constants. Modular invariance requires the represen-
tation r to be 2,2',2"”, for which the corresponding modular forms of weight k& =
ki, + k‘E]g are given in table 13. The elements in the first two rows of Mg read

(kge +kr) +kr,
(ME)aﬂ_Udza,b,c{ng;k: (1 61/3 (x) [51 Y22 Ekal ( 0,2 \[604 1)+6a[3 22 ka2 (6a,1+\/§5a,2)]
(kge +kr) (kge +kr)
+g2E(1—k)\37b(1_61,((1—[3)\3) |:5(!BY2(1Ek)\ib1 (5a2 féa 1)+51 ,B—a 2(1Ek)\5b2( o, 1+\[5a 2)} (3'6)
(k c +kr) (kge +kr)
+g2( k)13 ¢ (1 5(1[1’) |:61 B—a 2( Ek)\scl ( 2 féa 1)+51 Y2(Ek)\;c2 ( a,1+\/§5a,2):|}~

with @« = 1,2 and § = 1, 2, 3, while the elements in the third row are given by

(kp+kgc)
(Mg)3s = D 9500a¥ap5_ (1513 0 5= 1,23 (3.7)
b

(1

In this case, only the Cy ) texture-zero pattern can be realised by the modular sym-
metry with kEE + kr = 1, and there are no zero elements in Mg for the remaining
weights.

L= (L1, Ly, L3)T ~3, ES~1l

With the LH leptons transforming as a triplet of 7", and the RH charged leptons
transforming as singlets of 7", the Yukawa terms for charged leptons are

= 5 ok tkpe)
Wi =YY gt ,|ESLYs, ) H,, (3.8)

a=1 a
where go’?&a are coupling constants. The matrix elements of Mp are in this case:

E (kr+kge)
(MB)ag =D 08,0V 303 (1,1 +1)[3 (3.9)
a

Demanding that Mg is of rank 3, no texture zeros can be obtained in this case.



o Lp=(L1,L)T ~ 21 Ly~1, E¢=(e,puf,7)" ~ 3
This case can be related to the second case described above by exchanging the as-
signments of LH and RH lepton fields. Hence, one can obtain the corresponding
MF, transposing the mass matrix given in egs. (3.6) and (3.7)). Consequently, only

texture Cél) can be realised for kr,,, + kge = 1 in this case.

o Lp=(L1,L)T ~2 Ly~1/, E4=(epu)T ~2F E§~1!

In the case that both the left- and RH charged leptons transform as direct sums of
one- and two-dimensional representations of 7", the superpotential Wg is given as

(kL +k c) (kL +k C)
Wi = Z glEr,a EpLpYra i ED} Hd—i-gfr,b |:E%L3Yrb ’ ED} Hy
r,a,b,c,d 1 )
(kL +kge) (gt kme)
vobi [BsLoYe ™| How oy |B5LaY, T Heo 0
1 1

The corresponding charged-lepton mass matrix can be divided into four blocks which
correspond to 2x2, 2x 1, 1x2 and 1x 1 sub-matrices. Using the Kronecker products
and the CG coefficients of T” given in appendix A, we find the explicit forms of the
four submatrices:

(Me)as = va 3 {gfg,amw(—1>“2’Q+BY§Z§%?X?L5)3+<1—6aﬁ><—1><a-5>363,a+ﬁ
a.bod
X {“]{31,1)52,(%1@)|3Y1(:E]CJ +kLD)+9{31/,c51,(i+k)\3y1(/kc%+kLD)
+g{51”,d50,(i+k)|3Y1(/175%+kLD)] }7 (3.11)
(Mp)as = va ) | 952,002 0p)13(—1)° Vous2 o g 01 e pa(—1)° IYJ/'Z?_Z'““
a,b,c
+92E2”,c60,(k+j)|3(_1)Q+IY2(’]75§+§L3)‘| , (3.12)
(Mg)ss = va Y | 955,002, i4+0)3(—1)" lYéff),g’_;kLD)+93:E2/,b51,(i+z)\3(*1)B+1Y2(/]Z,E§—+§LD)
a,b,c
+9§Ez~,c5o,(i+w3(1)“13’2(/]?5%1%)] ; (3.13)
(Mg)ss = va y gﬁ,aao,(j+l)|3Y1(5E§+kL3)+gfl',b52,(j+l)|3Y1(’]zE§+kL3)
a,b,c
+gfl//70517(]»+l)3Y1(ff§+kL3)] L B=1,2. (3.14)

The possible forms of the sub-matrices for different representation and weight assign-
ments are summarised in table 2. When combined, these submatrix configurations
may lead to the following 9 texture-zero patterns for Mg:

eV, eV, e, e, e, el e?, e, e (3.15)

~10 -



Note that the texture Cél) can be achieved only if kr,, + k:E]c_j =0and k+1i =
2 (mod 3), with Mg satisfying (Mg)i12 = —(MEg)21 and (Mg)ss # 0, thus featuring
two degenerate charged-lepton masses.

Lp=(L1,Lo)" ~ 21, Ly~1, FES~1l witha=123

The modular invariant superpotential is now given by

3
E (kLptkee) 5 (kpy+pg)
We =2, 2 faira [EgLDYm ’ Ha+ Goorp [EeLsYyy Hy.
a:1 r7a”b 1 1
(3.16)
The corresponding expressions of the elements in the Mg can be obtained as
(kpe +kLp,) (hge +hp.)
(MB)ag = va Y |95h2.a02it1, (—1) Yo, 55 5 + 9800 401 (i) (— 1) Y0 55 7
a,b,c
(kge +kr )
gm0+ 3(—1) T Y5 0 ] ) (3.17)
(ke +kLg) (kpe tkL.)
(Mp)az = va ) [9hm1,a00.GrisYea = +9amrp02,GriosYos =
a,b,c
(kpe +kLg)
91 01 GatysYame s 0| (3.18)

where a = 1,2,3 and 8 = 1,2. In this case, we can obtain five possible texture-zero
patterns in Mg, namely

eV, e, e, eV, el (3.19)

Lo ~ 1ja7 B¢ = (€C,/LC,TC)T ~ 3

The corresponding charged-lepton mass matrix is the transpose of that in eq. (3.9),
and no texture zeros can be achieved.

Lo ~ Vo, B = (e, u)T ~ 28 E§=1°~1!

As in the previous case, the resulting Mg can be obtained by transposing the that
of egs. (3.17) and (3.18) by switching the transformation properties of LH and RH
charged leptons. In this case, the allowed texture zeros are

a’,e?, o, e, el (3.20)

Lg~158, ES~ 1l

All lepton multiplets are assigned to singlets of 7" and the Yukawa superpotential
for the charged-lepton masses reads

3 5 . (kLB+kEg¢)
We= 3, > 9asra (EaLB ra >1Hd- (3.21)

a,f=1 1r,a
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The elements of Mg are now given by:

E (kpe+krg) B (kpe+kry)
(ME)ag = va Y |9as1,a%,(s+)131a " Gusr 592,Gis+a)3 Va0 .
a,b,c
(kpe+kLy)
a1 O Gotia)3 Y1 |- (3.22)

In this case, the representation and modular weight of each lepton field can be ad-
justed so that several texture-zero patterns in Mg can be obtained. Since we have
S =1, T = w® in the singlet representations 1%, the flavour symmetry is essentially
the Z3 subgroup generated by T rather than 7" for this assignment. As a consequence,
a larger number of free parameters would have to be introduced, leading to less pre-
dictive power. Moreover, the contributions of all modular forms can be absorbed into
the coupling constants, as can be seen from eq. (3.22). Thus, the advantage of the
modular symmetry is lost in this case. In the present work, we are mainly concerned
on achieving texture-zero patterns with small number of free parameters by taking
the most of 77 modular symmetry. Therefore, from now on we will not consider the
case in which all lepton fields are in singlets of T".

4 Texture zeros in the neutrino mass matrix

To carry out a full analysis of lepton models with texture-zero patterns realised by modular
T’ flavour symmetry, we now turn our attention to the neutrino sector. Given that the par-
ticle nature of neutrinos is still unclear, we will consider both scenarios in which neutrinos
are Dirac or Majorana particles. In the latter case, we explore two possibilities depending
on wether neutrino masses are generated via: ¢) an effective dimension-five Weinberg oper-
ator (without specifying the underlying full theory) or ii) a minimal type-I seesaw model.

4.1 Dirac neutrinos

If neutrinos are Dirac particles, three RH (singlet) neutrino fields N¢ are necessary, leading
to neutrino mass terms similar to the charged-lepton ones. As in section 3, we can obtain
the possible texture-zero patterns for the neutrino mass matrix by considering all different
representation assignment of the lepton fields L and N¢. Given that neutrino oscillation
data requires that at least two neutrinos are massive, the rank of the neutrino mass matrix
can be either three or two, in contrast with rank three of the charged-lepton mass matrix.
Hence, the set of texture-zero patterns for the Dirac neutrino mass matrix Mp is larger
than for Mg, as can be seen in table 3. Besides those textures given in table 1 for Mg, we
find the following additional ones which correspond to Mp of rank two:

plV pf pM o) p® plM p® p¥ pW pl plo plb) p@ p) (yq)

Similarly to the charged-lepton sector, both Dég) and Dg) lead to degeneracy between the
two nonvanishing neutrino masses and, consequently, will not be considered from now on.
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(¥°,9)

Expressions of Sub-matrix

Weight and representation assignments

0 0 0
0 0 0

@ kye +ky <0,
@ kye + ky = 2,4,6,...

fglyz‘g 0

V205 leéf;)

91Y3 ,11>

kye +ky=1,1i=0

9Ya) V29Ys)

kpe +hy=1,i=1

1
quz(z)
(11Y2(11)

( V2g:1Y5Y 173 0 )

0 *\/i!hY;(.]l)
V2q:Y,Y 0

kpe +hy=1,i=2

G, V20 —V2q1Y), + 9253 Kue +hy =3, i=0
y 3 NG yv.® NG y® Y(s) e Y =9 1=
g1 2/,.1 +V292Y5 91 Yo o g2¥q |
—V20Y5Y 9253 = V2qiYy), 91y, Bpe +ky =3, i=1
(2,3) \/igly;/’z g2V ngY S lez(,j/)l 4 ’
g2Y2(?2) - \f{hY(nYl an 2 —\[QEY;? kye +ky =3, i =2
®) V34 SO ) we thy =3, 1=
92Y5 Y 292Y2 5 t+ (11Y2,/ 1 2(]1Y2u 2
2// P \fng(s 2Y(52 ﬁgi&yz(z) —\[glyzu)l +93Y2(_52) fpe +ky =5, i =0
Y;)l +v2 g,;Y{” VI YD, + 92V VEaYSD) + gaYsY) v
92V, = V20sY3Y) 93Ys3 — V2 Y5 —V20Y () + Y, Ko+ s — 5. i — 1
Y“> +\fg1Y2<,,>2 fg2Y< )+ ga¥sY)  V2gavSY) +g1Y;,’,>1 o

93Y2< 2) = \[glyz(,),)l
9Y5Y +V20:Y),

(5)
2,,2 fng,‘l

7fg3Y< ) 4+ 92Y2(?;>

\fgdyé,z) + gly;,?l ‘/iglyz(”)z + 92Y2</5,>1

kye +ky =5,1=2

(s o)

@ kye +ky <0,
@ ke +ky =1,3,5,...

0
( gl) Kye +ky =0, k+i=2(mod 3)
-g1 0
2) 2)
—glﬂY3 s 91V .
’ ’ kye +ky =2, k+4i=0(mod 3
( 91Y5s  1V2Ye v (mod %)
@) @)
—q1V2Yy 9133 .
’ kye + ky =4, k+1i=0(mod 3)
) @) 4 ke )
g1Y; g \/§Y
_\/§( y( +ggY3<6{) ) Y( _‘_Jzy(b)
( o 37,2 (6)311 2 3[(2) 31{6; ) kye 4+ ky =6, k+1i=0(mod 3)
91Y5rs + 92301 5 f(g1Y3 11+ 92Y5r70)
oVl g%l kye + ky =2, k+i=1(mod 3)
o YB()QQ) o \/iyg(?g,) ¥ ¥ 5
(2! 21«) ( *91\/§Y3(,41) g‘zYl(:l) + glya(;)> kpe +ky =4, k+1i=1(mod 3)
' q(zY“) +91 Y)é? tth“) ) v '
—V2(1Y, Y. Y.
( V2o “Hi i) (o, “Hz aurg) ) e +ky = 6, k+i = 1(mod 3)
(9:Y575 + 92Yarr, z) V2(g1Ys 31, x+92Y311 3)
VY gV Fewe +ky =2, k+i =2 (mod 3)
lea(i) a \/EYS()ZQ) P! Ww )
Ty @ T B
e o kye +ky = 4, k+i =2 (mod 3)
-0V + 91y q1vV2Yss

(((lly(l 1 T 92Y 11 1) -

( B)
\[(111Y3(1>3 Jf ‘12Y3(11 3)

(91Y3<G) + !!zYe.(JG} 1)+ QsY(G))

kye + ky =6, k+i=2(mod 3)

Y ® (@Y, + Y8,
@ kye +ky <0,
0,0)7 @ kye +ky =0,2,4,6,...,
@ ko + ko =1, i+5=0,1(mod 3),
@ kye +ky =3, i+j=1(mod 3).
(gY,, —g¥ ST e + iy =3, i+j=0(mod 3)
(2¢,19) (g Yzf(ff)zx - Yz?é; )" kye + kyp =5, i+ j=0(mod 3)
(9Yy 3 —9Ye )" Eype +ky =5, i+j=1(mod 3)
(9Y33,—9Yai)" ke + kyp =1, i+j=2(mod 3)
(9Y35, —gVa )" Kepe + ky =3, i+ j = 2 (mod 3)
(9Y33,—gYa)" kge + ky =5, i+j=2(mod 3)

Table 2. Possible submatrix forms for the charged-lepton mass matrix up to weight-6 modular
forms, for the case where the RH charged lepton field ¢ transform as 2¢ and the LH lepton doublet
¥ as 3, 2% or 17 under 7" modular symmetry. Their modular weights are denoted by kyc and ky,
respectively. The parameters g; are coupling constants. If the representation assignments of ¥ and

¢ are exchanged, the corresponding submatrix is the transpose of the original one.
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At this point, it is worth stressing that Majorana mass terms for the RH neutrinos
can be forbidden by properly choosing the modular weights of the N¢ fields, so that the
Diracness of light neutrinos stems automatically from modular symmetry. For instance,
let us consider a case with the LH leptons and the RH neutrinos transforming as

L= (L1,Ly, L3)T ~3, N§= (NGNS ~2F ) NS~ (4.2)
Then, the superpotential for Dirac neutrino masses can be written as

WP =3 g [NHLYIY | Hy + g, NSLY S H, (43)

r,a,b

Modular invariance requires the weights of the involved modular forms to satisfy
ki =kr +kne , ko =kr + kng , (4.4)
which, for any given values of k1 and ks, implies
kp = ki — kne kng = kne + ko — ki1 . (4.5)

Notice that the value of kn¢ is free and, thus, we can always choose a negative value for
kne, so that kyg is negative as well. If modular weights of all RH neutrino fields are
negative, modular-invariant Majorana mass terms of the type

knct+kne
WM ~ NfN;Y( Ni Nj), i,j=D,3, (4.6)
cannot be written since there are no modular forms of negative modular weights at level
N. The above arguments hold for any other representation assignment of the lepton fields.
In short, the modular symmetry can enforce light neutrinos to be Dirac particles if the
modular weights of the RH neutrinos are properly (not uniquely) assigned.

4.2 Majorana neutrinos

For Majorana neutrinos, we consider two distinct mass generation mechanisms: the effective
Weinberg operator and the type-I seesaw mechanism. In the same token of the discussions
for charged leptons and Dirac neutrinos, in table 4 we present all possible texture-zero for
the effective Majorana neutrino mass matrix M, which can be obtained from 7" modular
symmetry. Note that Wil), 4(4) and Wél) lead to two degenerate neutrino masses, which
is excluded by neutrino oscillation data. In the following, we first discuss the textures

originated from the effective Weinberg operator, and then turn to the type-I seesaw case.

4.2.1 Neutrino masses via Weinberg operator

The most general modular-invariant Weinberg operator of neutrino masses can be written

as
1

A

where A denotes the new physics scale where lepton number is violated by two units,

W, ~ <L L;Y* s ) o, (4.7)

and the Higgs field H, is assumed to be invariant singlet of 7" with a vanishing modular
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0 x x
Dgl) X X X
X X X
0 x x X X X X X
Dél) x 0 x ,Dém X X X ,Dég) x x 0
X X X 0 0 x X X X
x x 0 x 0 x 0 x x X X X
Dél) X X X ,D§2) X 0 % ,D:({O’) x 0 x ,D§4) X X X
00 x 0 x X x x 0
x x 0
D;({r)) x x 0
X x 0
x x 0 0 x0 0 x x 0 x
Dz(Ll) x x 0|, DEE) x00|, DP:| xo0 x ,Dz(fl) X
00 x X X X 0 x X X X
x x 0 x x 0
Df) X X X ,Df) X X 0
000 0 x0
x x 0 00 x 0 x X 0 x0
DWilxxo|, DP:loox]|, DP:|xox|, DY | x 00
000 x x 0 000 X x 0
000 00 x
PP loox|, DP:|oo x
X X X 0 x X
000 00 x 0 x0
Dél) 00 x|, DéQ) 00 x|, Dég) X
x x 0 0x 0 0 x
0 x0
Dél) x 00
000

Table 3. Texture-zero patterns for the Dirac neutrino mass matrix Mp which can be realised from
T’ modular symmetry, up to row and column permutations.
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X X X x 0 x
Wfl) X X X ,Wf) X X
x x 0 X X X
0 x x x x 0
Wél) x 0 x ,WéQ) x x 0
X X X 0 0 x
00 x x x 0
W loox|, wP:|xxo
X X X 000
00 x 0 x0 x 00 x 00
Wil) 00x1, Wf) x x 01, Wf): 0 x0|, W4(4): 00 x
x x 0 000 000 0 x0
0 x0
Wél) x 00
000

Table 4. Texture-zero patterns for the Majorana neutrino mass matrix M, which can be realised
by 7' modular symmetry, up to row and column permutations. Notice that only Wl(l), W2(2),
Wél) , 352) ) Wil) and Wf) can be obtained if neutrino masses are described by the Weinberg
operator. On the other hand, all the above textures except Wf) can be achieved if neutrino masses
are generated via the minimal type I seesaw mechanism.

weight. In this case, the neutrino mass matrix M, only depends on the 7" representation
assignments and modular weights of the LH lepton fields. In the following, we will discuss
all possible choices according to eq. (3.1) and infer about the properties of the resulting

M, in each case.
o« L=(Ly,Lo,L3)" ~3

In the case that the three LH lepton fields are assigned to a triplet of 7", the effective
dimension-five terms in the superpotential can be written as

v
W, =) ng’“ [LLY:*)) H,H, (4.8)
r,a
where kp, is the modular weight of L. The explicit form of the M, elements is

1)2

v 2k v 2k
(My)ag = 5+ > (95,0 (3005 = VYo 0y + 9K b2 o) Vi
a,b,c,d

v Qk 1% 2k
+ 00 1 (arp Yo " + G adoaraYara” | (49)

where o, 5 = 1,2,3. The above expression reveals that M, has no zero elements if
kr > 0. In the case of k;, = 0, only the pattern Wi4) of table 4 can be realised, but
it leads to two degenerate masses.
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° LDE(Ll,LQ)TN2i, LgNlj

If the three lepton doublets transform as the direct sum of doublet and singlet of 17,
the most general form of W, is

1 (2kLp) (kp, +kL,)
Wy = A Z {gfr,a [LDLDYM v } + Yorp |:LDL3Yrb ot
a,b,c 1 1
2k
+ ggr,c |:L3L3}/I‘(C LS):| }HuHu . (410)
1
from which we can read out the expressions for the M, matrix elements
va | . (2kr )
(MV)aﬁ = ZX gl3,a(\@)6aﬁ(_1)62’a+ﬁY3a’3L,D(2i,a,B)|3 s (4.11)
a
’UZ o krp+kr; « kr ,+kL.
(MV)Dég = X gQEZ,a52,(i+j)|3(_1) +1Y2(af3]2a L3)+92E2/_’b617(1'+j)‘3(—1) +1Y2(/bI:3D_a L3)
a,b,c
o kL +kL.
195y o i s(—1) LY AER TR | (4.12)
vy 2k 2k
(M)as = Y~ 2 |gfi o, ¥aa ™ + 981 821
a,b,c
2%
+g‘3€[//7c51,(2j)‘3Y]_(//CL3) ) (413)

with a, 8 = 1,2. Going through all possible values of i, j and of the modular weights
kr, and kr,, we find that the following five texture-zero patterns can be obtained,

1 2 1 2 1
wi Wi Wi Wi wiY, (4.14)
as shown in table 4.
.Lar\/]_j&

If all LH leptons transform as one-dimensional representations of 7", we have

> gg[ﬁr a (kLq +kLB)
Wy = Z Z A7 LaLgYra H.H, , (4.15)
CM,B:I a 1
and the general expression for the neutrino mass matrix is
(14 8ap)v2 5 (hpoa+kr,) (k. +kL,)
(MV)QB - TZ gaﬁlﬁaéov(ja+jﬁ)|3yla ’ +ga51’,b62»(ja+jﬁ)\3Y1’b ’
a,b,c
v (kLo +kLg)
+90517,c01,Gatip) 3V |- (4.16)

Analogously to the charged-lepton sector (see the discussion at the end of section 3),
we shall not consider this case here since it is less constrained by modular symmetry
and, in general, more free parameters would be required. Nevertheless, some texture
zeros can be realised [29].
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4.2.2 Neutrino masses via type-I seesaw mechanism

If neutrino masses are generated through the type-I seesaw mechanism, at least two RH

neutrino fields are required to accommodate present neutrino oscillation data, namely,

three nonzero lepton mixing angles and two mass-squared differences. In this section, we

will consider the minimal seesaw model with two RH neutrinos [67, 68] for which the Dirac

(RH Majorana) neutrino mass matrix Mp (My) is a 2 x 3 (2 x 2 symmetric) matrix. The

RH neutrinos can transform as either doublet or singlet of 77, i.e.,

with a =1, 2.
e NC¢ ~ 2k

N¢= (N, NHT ~ 28 or NE~ 1l (4.17)

In this case, the mass term of the RH neutrinos can be written as

WY =3 gl [NeNey G (4.18)
r,a

where gﬁ\fa are coupling constants and kpye is the modular weight of N¢. From table 2,
we can read out the matrix element of My:

2kne
(Mu)ap = Y 98a(V2) 2 (—1)P2ess Y2000 e (4.19)

where o, 3 =1, 2.

e« NS~ 1la

The RH neutrino fields transform as 7" singlets, and their mass terms read

N 2 N o nre (’ng"rk‘Ng)
Wl/ = Z Zgaﬂr,aA NaNﬂ}/l‘a . (420)
O‘7B:1 r,a 1

The explicit form of the elements of My is
(1+0a5)A (kne+kne) (kne+kne)
(My)ap = 5" 931,09, (1 +15)3Y1a + 951 592, (1 +15)13Y 1 g

(knc+kne)

+go%1“,c51,(la+lg)\3Y1//c g ] . (4.21)

Considering that the RH neutrinos can not be massless, we find that My can be of one of

the following types,

: (4.22)
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up to row and column permutations. All the above textures can be achieved with the
singlet assignments NS ~ 1o while the doublet assignment N¢ ~ 2* can only give rise
to ‘)"((()1). Notice that we have included the pattern ‘ﬁ((]l) which does not exhibit any zero
elements. This is due to the fact that we focus on the texture zero of the effective neutrino
mass matrix M, which is given by the seesaw formula M, = —MEM ]glM p. Thus, even
if there is no zero elements in My, M, can still have texture zeros, as long as the Dirac
neutrino mass matrix Mp takes suitable form.

The Dirac neutrino mass term arises from the Yukawa couplings of LH leptons and RH
neutrinos. For some representation and weight assignments of these fields, texture zeros
in the Dirac neutrino mass matrix Mp can be obtained. With two RH neutrinos, we find
that Mp can take the following six zero patterns,

@gl): X X X ’

x %X 0
3351): 0 x x ’ 952):<><><><)’ @g&;):(XXO)’

x 0 x 00 x x x 0

0

@gl) X X ’

00 x

0 x0
@(1) , 4.23
4 ><00> ( )

up to row and column permutations. We have omitted the cases in which one row or two
columns of Mp are vanishing, since they would lead to two massless neutrinos which are
not compatible with experimental data. If all elements of Mp are non-vanishing, M, will
not have texture zeros too and, consequently, we do not consider this case in the follow-
ing. We analyse the Mp patterns stemming from all possible lepton field representation
assignments.

o L= (L1,Lo,L3)T ~3, N¢~2F
If the L and N°€ fields transform as the triplet and doublet of T, respectively, the
superpotential for the Dirac neutrino Yukawa couplings is
kr+kne
WP = Ea: e [NCL}fr(aL N )]l H,, (4.24)

where gfa are coupling constants. From table 2, we can read out the elements of
Mp from those given for Mg in eq. (3.6) by performing the replacements g — g%,
kE]g — kye and vg — v,. We find that only texture ’Dgl) can be achieved when
ki, + kye = 1.
o Lp=(L1,L)T ~2, L3~1J, N¢~2F
In this case,
k knc
I

r,a,b

H,+ g5, [NCL?,K(;“LS*’“NC) H,. (4.25)

1 1
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Once more, using the results for Mg given in eq. (3.10), we can obtain the Mp
elements from eqs. (3.11) and (3.12) with the replacement g% — ¢”, kge — ke and
vg — Uy. Doing so, Mp can take the following three types of texture zeros,

oV, 2@ o (4.26)

Lg~ 135, N¢~ 2k

In case all the LH leptons transform as singlets of 7", we have

3
(kL z+kne)
WVD - Z ZgﬁDI',a |:NCL5}/1‘0, LB N Hu 9 (427)
B=1r,a 1
and the elements of Mp read
(kLy+kne) (kL ,+kne)
(Mp)ag = Vu Z 9£a527(k+j)\3(_1)a+1Y2a73ﬁ—a +95,b51,(k+j)|3(—1)O‘+1Y2,b,§_a

a,b,c

(krz+kne)
+ g5 B0, k)13 (— 1) Va5 ],a:1,2,521,2,3. (4.28)

We find that there is only one allowed texture-zero pattern for Mp, which is @gg')

(up to row and column permutations).

L= (Li,Ly, L3)T ~3, NS~ 1le
With the LH doublet (RH neutrino) fields transforming as triplet (singlets) of T":

2
kr+knc
W) =33 gara [NéLYs.(a” N“)LHu, (4.29)

a=1 r,a

and the general form of Mp can be extracted from eq. (3.9) with the replacements
gE — gD7 kge — kne and vg — vy. One row of Mp may vanish in this case, and at
least two light neutrino would be massless.

Lp = (L1, L2)T ~ 2, Ly~1I, NS~ 1la

Assigning two lepton doublets to a doublet of 77 and the remaining fields to singlets,
leads to the superpotential
(kLgt+kne)

2
(kL +knc)
WVD = Z Z gaDlr,a [NéLDY;‘a oG ] H, + gng,b {N2L3Yvrb Huy,
1

a=1r,a,b 1

(4.30)
which is analogous to Wg given in eq. (3.16). The corresponding expressions of
Mp can be obtained from Mg in egs. (3.17) and (3.18) by performing the same
replacements as in the previous case. Consequently, the texture-zero patterns

oV, oy, of), o, (4.31)

can be reproduced.
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Mp My M,
20, o1 o0 D)
o0 e e
o0 0
o 0 e
o0 O WD
oD ) e
o T ™
o0 e 3
S T U T U U L
o0 ) 3
o0 0 WD
N a0, @ Wi
o0 0 W
o0 oD WD

Table 5. Textures for the effective neutrino mass matrix M, in the type-I seesaw mechanism
with two RH neutrino fields. @ﬁl) - 5‘3511) are the texture-zero patterns for the Dirac neutrino mass
matrix Mp and ‘ﬂgl) - ‘31(21) are those for the RH Majorana neutrino mass matrix My — see (4.22)
and (4.23). The explicit forms of the resulting M,, textures Wfl) — Wél) are given in table 4.

o Ly~ 1/, NE~1le

If all lepton multiplets transform as one-dimensional representations of 7”, then

2 3

(kL s+kne)

W2 =3 3 S b |NeLa¥ed ) (182
a=1p3=1r,a 1

The corresponding Mp can be obtained from eq. (3.22). As explained at the end of
section 3, we will not discuss this representation assignments.

So far, we have discussed separately the texture-zero patterns of the Dirac neutrino
mass matrix Mp and the RH Majorana neutrino mass matrix My for the case of two-RH
neutrino fields. The possible My and Mp textures were summarised in (4.22) and (4.23),
respectively. The effective light neutrino mass matrix M), is given by the well-known seesaw
formula M, = —MgM ]\_,IM p and, combining all possible ® and 9t structures for Mp and
My, ten possible texture-zero patterns arise for M,. These are summarised in table 5,
from which one sees that some M, textures can be realised from different (Mp, My ) pairs.
For the sake of completeness, we will consider all possible (Mp, My ) combinations in the
following.

Before proceeding to the phenomenological analysis of lepton models based on the
texture-zero patterns discussed in the previous sections, it is worth summarising our find-
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Cél): 3 'Df) 4g/D)7 4%D)’ 4(VD) 4g16D), 4%D) 4(VD)
C§2): 3%0 Dél) 5§VD) 5( )7 5( D)

C§3): 3:())1) D?) 5%1)) 5(1/13)7 (g)

Cil): il) Dé3). 51(;/13)7 5éVD) (V )

. i b s s s

C£3): 4%1) Dé5): 5§VD)7 55111))7 5( D)

. o o, o, o), s 0, ), o
Dl 2P) V) : 65>, 6, 61

'Dg): 2§VD) D((s2): G%D)7 6&1117) 6( D) 6(VD) 6( )’ G%D)
D . 24" DY : 6§§D)

- o) sl oo i) o) glo) o

D:(f): 3&1/1))7 3£(;/D)’ 35’1D), 3%17)7 3%D)’ 35’;D) Wﬁl): 1§VL)7 1&%)7 1gVL)

D§3) : 35;]3) sz) . L(lVL)’ 1éVL) léVL)

D§4): 3§VD) Wg(l): Z(VL) 25%) 2(VL)
TR R ), 2l o)

Dfll)i 4%[)), 4%1:»)’ 4%D) Wél) gVL)7 3gVL) 3( L)

'Df): 4g/D)7 4E(JVD)’ 4§1;D) W§2)- 3(111L)7 3%&7 ( L)

Df): 4$VD)7 4%D)7 4%13) Wf): 45%)7 4;1%)7 4&%)’ 4:511@)7 4&%)7 4éVL)
D£4) 4A(LVD)7 4§’§D) 4(”D) Wf) 4(77/L)7 4&%)7 48@)

Df) 4§VD)7 4éVD)’ 4§VD)

Table 6. Correspondence between our texture-zero patterns C, D and W and those of ref. [9].
Since the assignment of the three generations of lepton fields under 77 modular symmetry can
be freely exchanged, the lepton mass matrices are determined up to independent row and column
permutations. Consequently, one texture zero of ours could correspond to several textures of ref. [9].

ings up to this point. As shown in sections 3 and 4, texture zeros of fermion mass matrices
can be naturally implemented in the context of modular flavour symmetries, being the non-
vanishing elements of those matrices correlated as shown, for instance, in table 2. Thus,
the resulting lepton models are expected to be much more predictive than, e.g., models
based in Abelian symmetries. In tables 1, 3 and 4, we have listed all possible texture-zero
patterns for the charged-lepton, Dirac neutrino and Majorana neutrino mass matrices, re-
spectively, which are obtainable from the 77 modular symmetry. Notice that one could get
alternative texture-zero patterns from finite modular groups other than 7”. It is remarkable
that some texture zeros of lepton mass matrices listed in ref. [9] can be reproduced from
the T" modular symmetry, as shown in table 6. However, some others cannot be realised
in the framework of 7" modular group, as it is the case of texture “5%”” of ref. [9]. Notice
that one texture of ours may correspond to several ones of [9] since our lepton mass ma-
trices are defined up to row and column permutation due to the freedom of representation
assignment of matter fields. Moreover, the patterns with one or two zero elements in Mg
and one zero element in Mp were not studied in [9]. Thus, CF), Cél), C§2), Cég) and Dgl)
discussed in this work have no correspondence in [9)].
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5 Testing the full set of TZLMs

After having analysed separately the realisation of texture zeros in the charged-lepton and
neutrino mass matrices with 7" modular forms up to weight 6, we now combine them with
the purpose of studying their phenomenology. In practice, we will test all possible texture-
zero pairs (Mg, M), where M, can be either Dirac or Majorana neutrino mass matrix,
taking into account the results of the previous sections. Since the LH charged-lepton and
neutrino fields belong to SU(2);, doublets, they should transform in the same way under
modular symmetry, i.e., they should share the same modular weight and representation
assignments. Each of these pairs correspond to a different texture-zero lepton model or
TZLM. In this paper we are interested in those TZLMs which are, in some sense, predictive.
The set of observables against which the test will be performed contains essentially nine
experimentally-measured lepton-mass and mixing parameters, namely

2 2
Mme, m,u» mr, Alea Am31, 912; 9137 9237 5CP7 (51)

where me, m,,, m, are three charged-lepton masses, Am3;, Am}; are two neutrino mass-
squared differences, 612, 013, 023 are three lepton mixing angles and dcp is the Dirac
CP-violation phase. Note that the present statistical significance of the dcp measurement
is rather weak, and the preferred value of dcp from global data analyses should be taken
with a grain of salt [69].

Given the above set of observables, we shall focus on TZLMs with nine or less real
free input parameters. Notice that, in general, all coupling constants appearing in previ-
ous sections can be complex. Still, some of them can be made real by rephasing fields.
Thus, for a given TZLM, the number of input parameters is counted after removing all
unphysical complex phases. Interestingly, one can further constrain the number of inputs,
and thus increase the TZLM predictive power, by imposing the generalized CP symmetry
(gCP). In the context of modular symmetries, it has been found that the gCP acts on the
complex modulus as 7 cr, —7%, up to modular transformations [70-74]. In the basis where
both modular generators S and T are represented by symmetric matrices in all irreducible
representations, gCP reduces to the canonical CP transformation [74]. Hence, all coupling
constants are forced to be real if the CG coeflicients are real in the symmetric basis. As
shown in appendix A, we are indeed working in the symmetric basis of the 7" group with
real CG coeflicients. Consequently, imposing gCP in our TZLMs amounts to considering
all coupling real and, as a result, the number of free parameters is reduced. Given this
interesting possibility, we will consider both cases with and without gCP. In all cases we
require the total number of real input parameters to be less than or equal to nine. Notice
that imposing gCP can reduce the number of free parameters in lepton models and, thus,
the TZLMs containing nine or less real free input parameters without gCP can be also
achieved with gCP. Moreover, some TZLMs without gCP which are excluded by the con-
straint on the number of free parameters, could depend on nine or less real free parameters
after gCP is imposed. Hence gCP can lead to more TZLMs.
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For the three different neutrino-mass generation mechanisms considered in this work
we have:

Dirac neutrinos. From tables 1 and 3, we see the T’ modular symmetry can realise
11 (25) distinct texture-zero patterns for Mg (Mp). As pointed out in sections 3 and 4,
texture Cél) for Mg and Dé?’) and Dgl) for Mp, lead to degenerate mass eigenvalues, which
is not compatible with experimental data. Thus, they will be neglected hereafter. It is
straightforward to conclude that there are 10 x 23 = 230 pairs (Mg, Mp). Considering that
the LH neutrinos and charged leptons should transform in the same way under modular
symmetry, and sticking to our classification of a predictive TZLM, we find that 136 out
of those 230 classes of (Mg, Mp) can be realised from 7" modular symmetry. If gCP is
imposed, the number increases to 174. The allowed patterns of (Mg, Mp) in T’ modular
symmetry are summarised in tables 8 and 9 (more details on the contents of these tables

will be given in the next section).

Majorana neutrinos. For Majorana neutrinos, we have obtained 11 M, texture-zero
patterns, as summarised in table 4. Textures WAEI), f) and Wél) predict two degenerate
neutrino masses, thus they will be excluded in the following analysis. If light neutrino
masses are described by the Weinberg operator, combining the possible constructions in the
neutrino and charged-lepton sectors, we find that 29 pairs (Mg, M) can be achieved with
T’ modular symmetry without gCP, and two additional ones are allowed if gCP symmetry is
imposed. These findings are summarized in table 10. For neutrino masses generated via the
minimal type-I seesaw mechanism (see section 4.2.2), the possible Mp and My textures, as
well as the resulting patterns for M, are presented in table 5. Notice that some M, given
by seesaw formula can be realised from more than one (Mp, My). We find 35 (36) possible
pairs if gCP is not (is) included in the 77 modular models, which are listed in table 11.

5.1 Numerical analysis and TZLM predictions

In order to quantitatively estimate how well the different TZLMs describe the data, we
perform a y? analysis to find out the best fit values of the input parameters for each model,
as well as the predictions for lepton mass and mixing parameters. As common practice,
we consider both normal ordering (NO) and inverted ordering (IO) for the neutrino mass
spectrum, depending on whether m; < mg < ms3 or mg < my < ma, respectively. The x?
function is defined as usual:

= Z <B($1,x2,...

n
=1 i

2 Tm) = “) , (52)

where P; are the predictions of a given TZLM for the physical observables 61, 013, 023,
Scp, Me/my, myu/m, and Am3,/Am%,. These are nontrivial functions of the free input
parameters in each TZLM. u; and o; denote the best-fit values and standard deviations of
the corresponding quantities extracted from global analysis of the data — see table 7.
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Ob bl Normal Ordering Inverted Ordering
Servabples
bfp+ 1o 30 range bfp+1lo 30 range
sin2 6 0.30470:912 0.269 — 0.343 0.30410613 0.269 — 0.343
sin?f13 | 0.0224670:09962 | 0.02060 — 0.02435 | 0.02241F5:500% | 0.02055 — 0.02457
sin? a3 0.45019:519 0.408 — 0.603 0.57010-035 0.410 —0.613
dcp/° 230759 144 — 350 278132 194 — 345
A 2
ﬁ 7421021 6.82 — 8.04 7421021 6.82 — 8.04
A 2
107% 2.51510.028 243052593 | —2490709% | 24102574
—2e
bfvtlo
me/my, 0.004737 40.000040
m,/m, 0.05857 +0.00047
m,/GeV 1.30234

Table 7. Allowed ranges for the neutrino oscillation parameters obtained from global analysis of the
data, and values of the charged-lepton mass ratios. Here, we use the NuFIT v5.1 results with Super-
Kamiokanda atmospheric data [69]. Note that Am3, = Am3; > 0 for NO and Am2, = Am2, < 0
for TIO. The charged-lepton masses are taken from [76] with tan 8 = 10 and SUSY-breaking scale
MSUSY =10 TeV.

We adopt the standard parametrization of the lepton mixing matrix [75],

€12€13 512€13 s13e”"°cr
iS5 i . s 221 ;931
U= | —si2c23 — c12513523€"°CF  c12C23 — $12513523€"°CF 13823 diag(l,e" 2 ,e"2 ),
i i
512823 — €12513C23€"°CF  —cC12823 — 512513€23€"°CF  c13C03

(5.3)
where ¢;; = cos0;j, s;; = sinb;;, dcp is the Dirac CP violation phase, and ag1 31, are
Majorana CP phases. If the lightest neutrino is massless, there is a single Majorana phase
¢ and the diagonal phase matrix in the above equation can be replaced by diag(1, ei0/2, 1).
Information on the Majorana phases could be potentially extracted from neutrinoless dou-
ble beta decay (0v3/3) experiments. If only light neutrino masses provide contributions to
Ovf3f3, the decay amplitude depends on the effective Majorana neutrino mass mgg,

mgg = |m cos? 015 cos? B3 + mo sin? 015 cos? 013621 + my sin? 91361(6“31_25CP)| , (5.4)
which, in case the lightest neutrino is massless, reduces to
|ma sin? 015 cos® 013€"® + myg sin? 03¢ 120cP [, m1=0(NO),
mgg = ) , . ) . (5.5)
|m1 cos” 015 cos® B13 + mg sin® 615 cos 01362¢\ , m3=0(10).

In this work we will use the NuFIT v5.1 results [69] for the allowed ranges of the
neutrino oscillation parameters (see also refs. [77] and [78]). The charge-lepton masses will
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enter in the y? function in the form of their ratios, being the best fit values (bfv) and
1o errors taken from ref. [76]. The overall scale of the charged lepton mass matrix does
not affect the mass ratios and mixing parameters, and it is fixed by the central value of
m,; = 1.30234 GeV given in table 7. Similarly, the overall scale of the light neutrino mass
matrix is fixed by the solar neutrino mass squared difference Am2, = 7.42 x 107%eV2. It
is known that the effects of renormalization group evolution (RGE) on neutrino masses
and mixing parameters are suppressed for NO neutrino mass spectrum and small tan (3,
while the RGE effects could be large in the case of 10 spectrum if the different terms do
not cancel each other [79-81]. Hence, we expect RGE corrections to be generally small for
our TZLMs with NO spectrum. The details of neutrino-parameter running depend on the
specific models under consideration for I0. In the appendix C, we have presented a large
number of representative models for each phenomenological viable TZLM. The detailed
RGE analysis for these models with IO spectrum is left for future.

For x? minimisation and consequent determination of the inputs which best fit the
data, we use the CERN package TMinuit [82]. The input value of the modulus 7 will
be a random complex number in the fundamental domain F : [Rer| < 1, Imr > 0 and
|7| > 1. The absolute values and phases of all coupling constants are free to vary in the
ranges [0,10% and [0, 27), respectively. As a general criterion, we will consider that a
given TZLM is compatible with experimental data if the predicted values of the neutrino
mass and mixing parameters at the minimum of the y? are within the 30 ranges given
in table 7. For the charged-lepton masses, the model’s best-fit values should not deviate
from the experimental central values by more than 30. Generally, a pair of texture zeros
in (Mg, Mp(,)) can be realised in several lepton models differing in the representation and
modular weight assignments of the fields. In the numerical analysis, for an allowed texture
of (Mg, Mp,)), we will perform x? analysis for all corresponding lepton models. A texture
of (Mg, Mp,)) is said to be viable if at least one of these lepton models can explain the
experimental data. After setting the general grounds of out numerical analysis, we now
discuss its results for all allowed TZLMs identified in section 5.

5.1.1 Dirac neutrinos

For Dirac neutrinos, the allowed combinations of (Mg, Mp) realised by T’ modular sym-
metry with and without gCP are presented in table 8 (table 9) for NO (I0). For all texture
pairs the symbol inside (outside) the parenthesis corresponds to the case when gCP is

“_»

(is not) imposed. Also, means that a particular configuration cannot be achieved by
modular symmetry, while “¢” (“X” ) identifies those cases which are realised by the mod-
ular symmetry and (but) are (are not) phenomenologically viable. It is remarkable that
gCP allows to obtain more additional TZLMs which are excluded by our requirement on
the number of free parameters if gCP is not imposed. From table 8 we can see that for
NO and if gCP is not included, 27 out of 136 allowed texture pairs provide a good fit to
the experimental data . In table 14 of appendix C, we show a representative model for
each viable (Mg, Mp) pair by listing the representation and modular-weight assignments
of lepton fields. The corresponding values of sin? 0ij, m; and dcp at the best-fit point are

given in table 15. From table 14, we can see that the minimal models have 8 free real input
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» Mg L) eV e ) eV | c® | @ cV c® c®
D) W) |- [ XxW)|v) | -w) |- XX [vv)|xx) | v©v)
DY) | XW) | XW) | XW) vV |[vIV)|-()| XX | XX |X©V)]| XX
DY | XW) | -W) (VW) [ XW) | -v) |-(0) | XX) | XW) | XX | X(X)
DY | XW) | -W) [ XW) [ XW) | -v) |- | X®) |[vv)| XX | XV
) | -w) |- |- |- | -0 -0 -® v - | -
Y | -0 -0 -0 -0 -0 -0 -0 ] -0 -0 ] -6
DY XX | -(W) [ XW) | XX) | -(v) |- | XX | XW) | XX | -()
DY | XW) [ XW) | XW) |[vIV)|[VvIV)|-()|XW)|XW) | XWV)| vV
DY [ xW) | XX) | XW) |[vW)|vw)|-()| x| x(x) | XX |x(©X
D) (W) | XX) | XW) | vIV)|vIV)|-()|XWV)| XX | XX | XX
DY XX | (%) | XW) [ X(X) | -(v) |-() | XX) | X(X) | XX) | -()
DY x| -0 [ xW) | XxW) | -(v) -] -0C) | XX | -() | x©x
DY) |- - |- - -0 -0 [ Xxw) | %) | -(x)
DY X)) | -W) | XW) | XW) | -(v) |-() | XX |[v V)| XX | XX
D} OO -0 -0 0w x® | -0 | -0
D) v ) [ XX) [ XW) |[vIV)|[vIV)|-()| XX | X(X) | XX | XX
DY X W) [ X(X) | X(W) | X(X) | XX) |-() | X(W)| XX | XX | XX
DY | XW) [ X(X) | XW) [ XX) |[vV)|-() | XX | XX | XX | -()
DY X)) [ XxW) [ XW) [ XX) -] -(C) | XX) | -() | XX
DY XW) | -W) [vW) | XW) | -(V) |- | XX | X(X) | X (X) | X(x)
DY O -0 -] -0 -0 -0 -w» [ x® ] -0 | -6
DY) X W) | XX) | XxW) | xX) | xX) |-()|xX) | Xx(X) | XX |X(X
DY | -w) | -0 (XX | -w) | -0 -0 Xx® [ x® ] -0 | -0

Table 8. Allowed combinations of (Mg, Mp) realised by T modular symmetry with and without
gCP for NO neutrino mass spectrum. For all texture pairs the symbol inside (outside) the paren-
thesis corresponds to the case when gCP is (is not) imposed. Also, “-”
configuration cannot be achieved by modular symmetry, while “¢” (“X” ) identifies those cases

means that a particular

which are realised by the modular symmetry and (but) are (are not) phenomenologically viable.

parameters. In the IO case, there are 34 viable pairs of (Mg, Mp), as shown in table 9,
and we provide the field assignments of representative models and the corresponding fitting
results of lepton parameters in tables 16 and 17, respectively. All representative models
are found to contain either 8 or 9 free real parameters.

When gCP is imposed, there are allowed (Mg, Mp) pairs. By performing the x? analy-
sis of the corresponding TZLMs, we obtain 97 (88) phenomenologically-viable ones for NO
(I0), as presented in table 8 (table 9). The details of the representative models and corre-
sponding predictions for each compatible case are displayed in tables 14 and 15 (tables 16
and 17) for NO (IO0). We find that the number of input parameters for representative
models are at least 8, as in the case of no gCP.
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» Mg CP Cé” C§2> C§3) Cél) C§2) C§3) Czil) Cf) Cf’)
D) W) |- v v ) |- XX [vv) | xx) | vv)
DY) X)) [ XW) | XX | X(X) [ XX) |-()| XX | X(X)|X(©¥)]| X (X
DY) (x| - v x| -w) -0l xx)[xwv) | xx) | xWw)
DY | XW) | -W) [ XW) [ XW) | -v) |- | X®) |[vv)| XX | XV
D}’ W) | -0 |- -] -0 [-0|-0]x®|-%|-x
Y | -0 -0 -0 -0 -0 -0 -0 ] -0 -0 ] -6
DY X X) | () | XX) | XX) | (%) |- | XX | XX | XX | -()
D) vw|xw v |vv v |-O|xwv v xx|vv
DY (W) | XX) | vW) | vV -] XX | X(X) | XX | XX
D) | XW) | XX) | XW) | vIV)|[VIV)|-()| XX | XX | XX | XX
DY x| - [ x| x@) [ -%) |- x@) [ xx) [xX) | -()
DY XX | -0 | XxX) [ XX) | -%) |- -0 | ¥x®) | -() | XX
D" ) |- -0 -] -0 [-0]-0 | x@ ] -] -®
DY W) | -W) v XW) | -v) |- | XX) | vX) | XX | XX
D} OO -0 -0 -0 x@ | -0 | -0
D) vw|xx)| v |lvv v -0 x| xx) | xx | xx)
DY | Xx(X) [ X(X) | X(WV) | X(X) | XX) |-()| XX | X(X) | XX | XX
DY X W) [ X(X) | XW) [ X(X) | XX) |-() | XX | XX | XX | -()
DY X)) [ XxW) | XX) [ XX) -] -(C) | XX | -() | x(x
DY X X) | (X)) [ vX) | XX) | (%) |-() | XX | X(X) | X(X) | X(X)
' o -o]l-»y] o] -0 l-ol-0lxe] -0 ] -0
DY XX | X(X) | XX) | XX) | XX) |-()| XX | X(X)| XX | X(X)
DY |- | -0 XX | -0 | -0 -0 x® | x® ] -0 | -0

Table 9. The same as in table 8 but for IO neutrino mass spectrum.

At this point, it is worth comparing the parameter counting of TZLMs realised by T’
modular symmetry with that of texture-zero scenarios where nonvanishing entries in the
mass matrices are not correlated. We have seen that, in the case of Dirac neutrinos, and
demanding the number of inputs not to exceed 9, viable TZLMs require either 8 or 9 real
parameters. We emphasize that this number is much smaller than what is typically found
with uncorrelated nonvanishing matrix elements. This is apparent in tables 14 and 16
where we compare the number of free parameters “#P” for each TZLM realisable with T’
modular symmetry (third column) with the same number for the same matrix textures but
with uncorrelated nonzero entries in the mass matrices (“#P¢” in the second column). For
all cases #P < #Py, showing that modular symmetry increases drastically the predictive
power of TZLMs. As an example, in the case (Mg, Mp) ~ (Cég),Dél)), we find that
#Po = 20, while the same pair is realised in a specific 7" modular model with only 8 free
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parameters — see line 17 of table 14. As will become clear in the following, this is a general
feature which is present also for Majorana neutrinos.

5.1.2 Majorana neutrinos

We now repeat the analysis presented in the previous section but for TZLMs with Majorana
neutrinos. Both cases of M, generated via a Weinberg operator and via the minimal type-
I seesaw mechanism will be considered. Each model is now classified according to the
textures of its corresponding (Mg, M,) pair.

Weinberg operator. For neutrino masses generated by a Weinberg operator, and with-
out imposing gCP, there are 29 texture pairs (Mg, M,) which can be realised with T”
modular symmetry, as shown in table 10 for both NO and IO neutrino masses. By per-
forming their x? analysis, we find that, out of those 29 models, only 5 are compatible
with experimental data for NO neutrino masses spectrum (upper rows of the table). As
done for Dirac neutrinos, we present in table 18 the representation and weight assignments
of a representative model for each phenomenologically viable case, while the best fitting
results of physical observables and the model predictions are provided in table 19. For 10
neutrino mass spectrum, we obtain 7 phenomenologically viable (Mg, M,) pairs, for which
the representative models are listed in table 20, and the numerical results in table 21. Note
that the minimal viable NO (I0) model Cil) - Wfl) (C§2) — Wg(,l)) — see table 18 (table 20)
— is realisable with only 7 (8) input parameters to explain all 9 measured observables.

In case the TZLMs are constructed imposing gCP, 11 out of the 31 allowed (Mg, M,)
pairs are consistent with the measured data for NO as shown in table 10. The representative
models for these cases are given in table 18 and the corresponding fitting results in table 19.
The number of input parameters for the representative models vary from 7 to 9. For 10
with gCP, we have 10 (Mg, M,) pairs compatible with data (see tables 10, 20 and 21 for
the representative models and fitting results).

Seesaw mechanism. When Majorana neutrino masses are generated through the (min-
imal) type-I seesaw mechanism, we find that 35 (Mg, M,) pairs are realised by 7" modular
symmetry if gCP is not considered — see table 11. For NO (IO) neutrino mass spectrum,
only 6 (11) of these 35 cases are phenomenologically viable. As illustrated in table 5, some
patterns of M, can be realised in more than one way with different (Mp, M) combinations.
For the sake of completeness, we present representative models for distinct (Mp, M) pairs
leading to the same textures of (Mg, M,) in tables 22 and 24 for NO and IO, respectively.
The best-fit values of lepton mass and mixing parameters are instead given in tables 23
and 25. All viable NO models contain 9 free real parameters, while for IO this number can
be 8 or 9. With gCP, there are 36 allowed pairs of (Mg, M,), being 13 and 15 of them
phenomenologically viable for NO and IO, respectively (see table 11). The representative
models and fitting results analogous to the previous cases are shown in tables 22-25. Due
to the fact that the coupling constants are required to be real by gCP, we can find viable
models with 8 parameters for NO neutrino masses, while this number does not changed for
IO when compared with the non-gCP case.
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NO
M| o | o | @ | e® | e | @ | e | e | e® | W
MV
W xw) [ xX) [ xW) [vv)|vv)| ()| -X%) [vv)|-x | XX
W X W) [ XX) [ XW) v v -0 | () [ XX) | () | XX
W X W) [ XX [ XW) | o) | XX) | -0 [ XX) | () | XX | -()
Wi X ) (X X)) [ x (%) | X (%) | Xx(X) | -() [ XX | XX | XX ]|XX
10
Me | o | o) | c@ | 0® | o0 | @ | o® | o | @ | O
Mz/ 1 2 2 2 3 3 3 4 4 4
W X W) [ XX) [ XW) [ v vV -6 -X) |[vv)|-(X) | X(X)
WP xW) [ xX) [ XxXW) [ v | vIv) | -()] -() | XX | -() | XX
Wi xX) [ XX [ vX) | () [ vE) - XX ) [ x| -
WP X)) [ X X) | X(X) | X(X) | X(X)|-()| X(X) | X(X)|X(X)]|X(X)

Table 10. Same analysis as in tables 8 and 9 but now for a Majorana neutrino mass matrix M,
generated via the Weinberg operator — see table 4 for the general structure of the W textures.
The results for NO (I0) are shown in the upper (lower) part of the table.

We present a grand summary of our results in table 12 where, for the three considered
neutrino mass generation mechanisms, we show the number of texture pairs with no more
than 9 real input parameters which can be realised via 7" modular symmetry (third column)
with and without gCP (second column). The number of phenomenologically viable cases
(i.e. those which are able to fit the data at the 3o level) is shown in the fourth column
for both NO and IO. We see that more patterns of texture zero and viable cases can be
obtained if gCP is imposed.

6 Benchmark models

The analysis presented in the previous section provided a complete view of how modular
symmetries drastically increase the predictive power of TZLMs. It is obviously impossible
to go through all the listed cases in detail and to present a complete graphical treatment
of each model predictions. Nevertheless, we believe it is worth providing a small set of
benchmark cases where the quality of the results can be appreciated. With this purpose,
in the following we select one TZLM realisable with 7" modular symmetry for each neutrino
mass generation mechanism.

6.1 Model for Dirac neutrino masses

For the Dirac neutrino benchmark case, we consider the lepton fields transforming under
the TV modular symmetry 7" as

LDN27 L3N1/7 60N17 MCN]-//) TCN]-/a NBE{Nf7N2C}N27 N3CN1/7
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NO
.y Mg C%l) Cél) 052) C§3) c§1> C§2) C§3) Cil) Cf) 0(3)
Wl x W) [ xX) [ XxXW) [vv) | vv) -0 | xX) | xv)|xx) | XX
w0 -0 e -0 -0 -0 ] -0 | -0 ] -6
w0 -0 -0 -0 -0 -0 -0 ] -0 -0 ] -6
W x (X)) | X (X) | X (X) | X(X) | -(X) |-(-) | X(X)| X(X)|X(X)| X (X
WX () [ Xx(X) [ X (W) [ X(W) [ XWV)|-() | x(X) | X(X) | XX | XX
W v @) [ XX) [ v ) v V) -() | X(X) | X(X)|X(X) | XX
w0 O -0 e -0 -0 -0 ] -0 | -0 ] -6
w0 -0 -0 -0 -0 -0 -0 ] -0 -0 ] -6
10
o Mg Cil) Cél) 652) C§3) C(l) 6(2) C?(f) Cﬁl) Cff) Cf)
Wil v ) [ Xx(X) [ XW) (v |[vv) -0 | XX) |[vv)| XX |xWV)
w? -0 -0 -0 -0 -0 -0 -0 -0 -0 -6
wi' o -0 -0 -0 -0 -0 -0 ] -0 -0 ] -6
W X (X)) [ X(X) | X (X) | X(X) | (%) |-() | XX | X(X) | X(X)|X(X
WL x(w) [ XX) [ X (W) [ V() |[vV)|-() | XX) | X(X) | X(X) | XX
W v W) [ xX) [ vv) [ vv) [vv)|-() | x(X) | X(X) | XX | XX
we -0 -0 -0 -0 -0 -0 -0 ] -0 -0 ] -6
wd o -0 -0 - -0 -0 -0 ] -0 -0 ] -6

Table 11. Same as in table 10 for M, generated via (minimal) type-I seesaw mechanism from
Mp and My textures given in (4.22) and (4.21), respectively. The (Mp, My) — M, dictionary is
provided in table 5.

with modular-weight assignments:

kpp,=2-x, kp,=3-2z, ke=14+2, kype=1+z, ke=1+4+2, (6.1)

kNB:a:, kN§:1+=T7

where z is an arbitrary integer. The corresponding modular-invariant superpotentials
relevant for charged-lepton and neutrino masses are given by

Wi = yie® LoV || Ha+ st |Lo¥s”| | Hat o n° LYy Ha oy 7°LeV Ha

W, = yi [(LoN)sYs" ] Hy+y3LsN§ YV H, (6.3)

where the yz’d couplings are, in principle, complex. Notice, however, that their phases can
be eliminated by rephasing the lepton supermultiplets. As a result, we find that there are
8 real free parameters in this model: 6 real coupling constants (y{_, and y‘fg), and the
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Neutrino nature gCP | Number of textures | Viable
23 (NO)
no 136
) 27 (1I0)
Dirac
97 (NO)
yes 174
57 (1I0)
5 (NO
no 29 (NO)
Majorana 7 (10)
(Weinberg operator) 11 (NO)
yes 31
10 (10)
6 (NO)
no 35
Majorana 10 (10)
(Seesaw mechanism) 13 (NO)
yes 36
14 (I0)

Table 12. Grand summary of the TZLM compatibility analysis. We show the number of texture
pairs with no more than 9 real input parameters which can be realised via 7’ modular symmetry
(third column) with and without gCP (second column). The number of phenomenologically viable
cases (i.e. those which are able to fit the data at the 3o level) is given in the fourth column for both
NO and IO.

complex modulus 7. The charged-lepton and neutrino mass matrices read

3 3 2 ydy(z)
yfyz(”,)z _yfyz(”,)l 0 _yily?’(ﬁ) 1\/%3 0
3 3 4 (2)
ME = —ySYZ(Q) ySYZ(J) ngl( ) Uq , MD = yii% ny.S(?l) 0 Vy » (64)
(4)
0 0 in]_l 0 0 ygyl(fl)

which correspond to the texture-zero pattern Cél) — DS) for (Mg, Mp) is — see tables 1
and 3 (this TZLM is also presented in table 14). We perform a global fit to the lep-
ton experimental data and, for normally-ordered neutrino masses, the values of the input
parameters at the best-fit point are

(1) =—0.3054641.05008i, 45/y$=10.6173, s /yS =21.5185, y5/y$=0.011167,
yd /1y =3.02666, YSvg=1.68246 GeV, yfv,=558.654 meV, (6.5)

to which correspond

sin? f1o = 0.3043, sin? f13 = 0.02244, sin? B3 = 0.4509, Scp = 208.4°,
Am%l
me/m,, = 0.004737,  m,/m; = 0.05857, 2L =0.02956, (6.6)
Amz
mq = 39.43 meV mo = 40.36 meV mg = 63.75 meV

~32 -



with 2. = 0.75. Notice that, in this case, all best-fit values lie in the 1o experimental
ranges. Using the numerical package MultiNest [83, 84], we scan the parameter space
of the model, and require all observables to be in the 30 regions allowed by data. We
find that the three mixing angles can nearly take any values within their experimental
30 regions, while the Dirac CP phase d¢p is sharply predicted to be in the narrow range
dop € [201°,215°].

For inverted neutrino masses, the best-fit values of the input parameters are

(1) =0.21972+1.08073i, y5/y =9.51186, s yS =27.9507, yS/ys =0.018387,
yd Jy =5.23555, ySvg=1.65508 GeV,  yv, =533.206 meV . (6.7)

and the corresponding values of lepton mass and mixing parameters:

sin 015 = 0.3048 , sin? 013 = 0.02234, sin? fy3 = 0.5727, dcp = 315.0°,
Am%l
me/m,, = 0.004737,  m,/m; = 0.05857, A, = 0.02980, (6.8)
my = 60.72 meV , mo = 61.32 meV ms3 = 35.65 meV |

with x2,, = 2.87. Similarly to the NO case, the best fit values of all mass and mixing
observables are within the 1o experimental ranges, while dcp is predicted to be in the
20 interval. A scanning of the parameter space shows that the allowed range of dop is
[307°,345°] and that the 30 regions of all remaining parameters can be achieved.

6.2 Model for Majorana neutrino masses: Weinberg operator
As a benchmark TZLM for the case of Majorana neutrino masses generated via the Wein-
berg operator, we take the T representation and modular-weight assignments:

Lp~2, Ly~1 e ~1, pue~1, ¢~ 1",

kr, =1, kr, =0, kee =2, kye =0, kre =0. (6.9)

for which the superpotentials Wg , are
Wi = yie® [LpYy"|, Ha+ysu® |LoYs” |, Ha+ysm°LaHa,

yl/ 9 yy 1
W, = 8 [(LoLp)esYs? | HuHu+ “2Ls [LoYy"|  H.H,., (6.10)

where all coupling constant yf 5 3 and yf 5 can be made real by using the freedom of lepton
field redefinition. In total, there are only 7 real free parameters in this model including the
real and imaginary parts of 7. The charged-lepton and (Majorana) neutrino mass matrices

are
(2)
1 1 yiY.
—yi 2(,2) yfyz(;) 0 —ylfys(,?g) 1\/?2:’1 _ygyz(,lz)
2
3 3 v 2
ME = _ySYé’Q) y§Y2(71) 0 Ud MV - Xu ylfY.cj(’l) VY(Q) I/Y(l) N (611)
/2 Y1¥zs Ya¥aq
0 0 5

1 1
—95Y2(,2) @/12’Y2(71) 0

— 33 —



1.000F T ] T T 1490F T T 7
0.995F . r ] 1.485f - E
[ 1.485} ™ ] [
E & [ 1 k& X ‘
o L - B = v -
[ 1 1.480F : g [ ]
0.985[ ] F E 1475} ]
pggol v v v e 1] ] H T E N R B 1470l v 1 P
-0.20 -0.19 -0.18 —0.17 ~0.200 -0.190 -0.180 -0.170 0.599 0.600 0.601 0.602 0.603
Re(r) Re(r) sin®6,
1.965 —————T—T—T T L e I 0.050 —————— S
0475E 1 ooasf 3
1960 ) ] [ - 3
L - ] [ 3 o 1= a E
= r i 1 ¥ o970 1% 00461 :
§of _— 18 ¢ ' 1 £ ooudf ]
[ ] [ { £ 00aaf B
1.955F i [ ] F ]
t 1 0.965| N E ; ]
F B r 0.042f ‘ ‘ ]
tosobo v vl 006001 ] 4 )| T S S SN N S S S |
0.599 0.600 0.601 0.602 0.603 0.599 0.600 0.601 0.602 0.603 1.475 1.480 1.485 1.490
sin®fy3 sin®fy; dcp/m
XZ [ .
70 80 90 100

Figure 1. Results of the parameter-space scanning for the benchmark model of neutrino masses
generated by the Weinberg operator. The T’ representation and modular-weight assignments are
given in (6.10). We present the scatter plots in distinct bidimensional planes of the neutrino mixing
angles, CP phases and the real/imaginary part of (7). The colour grading reflects the values of the
x? for each point, according to the scale shown at the bottom of the figure.

which fit in the texture-zero pattern CZ(LI) —Wp. The best-fit values of the input parameters

are, for this case,

(1) = —0.18355 + 0.98944 i, y5/y¢ = 0.026019, ys /Y5 = 6.47820
o (6.12)
vy JyY = 0.41163 yiva = 201.034 MeV, == = 348,515 meV .
for which the corresponding values of the lepton observables are
sin612=0.3037, sin613=0.02254, sin63=0.6010, Sop=266.8°,
2
21 =352.3°, a3 =174.6°, me/m,=0.004737,  m,/m,=0.05857, 2231 =0.02957,
31
m1=44.19 meV, ma=45.02 meV, m3=66.80 meV, mpp=44.86 meV, (6.13)

with x2,, = 64.21. Almost all observables lie in the 1o experimental intervals, except
sin? @3 which is close to the 30 upper limit. The lightest neutrino mass is predicted
to be 44.19 meV and ), m; is about 156 meV. Cosmological data shows that the most
stringent bound on the sum of neutrino masses is >, m; < 120 meV at 95% C.L. from
the Planck Collaboration results [85]. Thus, the present benchmark would be excluded by
this data since the prediction ), m; ~ 156 meV exceeds that bound. However, as is well
known, cosmological bounds on ), m; significantly depend on the data sets that need to
be combined in order to break the degeneracies of the many cosmological parameters [85].
In fact, combining the baryon acoustic oscillation (BAO) data with the cosmic microwave
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background (CMB) lensing reconstruction power spectrum, one has ., m; < 600 meV and,
taking this result, the model would be still viable.

The latest bound on the effective Majorana neutrino mass mgg has been set by the
KamLAND-Zen experiment, namely mgg < 36 — 156 meV [86], for which the largest un-
certainty arises from the computation of nuclear matrix elements. The model prediction
mgg = 44.86 meV respects this bound. With future large-scale Ov33-decay experiments
aiming at improving the bound on mgg, the present benchmark would be further scruti-
nised. For instance, the SNO+ Phase II is expected to reach a sensitivity of 19—46 meV [87],
which is nearly the same as the one foreseen by the LEGEND experiment (15-50 meV) by
operating 1000 kg of detectors for 10 years [88]. nEXO, the successor of EX0O-200, will be
able to probe mgg down to 5.7 — 17.7 meV after 10 years of data taking [89].

In figure 1, we show the correlations among the input free parameters, neutrino masses
and mixing parameters predicted in this model. We can see that the complex modulus 7
scatter in a very narrow region. The predictions for the atmospheric mixing angle 653 and
the three CP violation phases are very sharp. In particular, the allowed range of dcp is
very close to 37 /2. In conclusion, this model is very predictive, since it is able to describe
the 12 masses and mixing parameters for the NO case with only 7 input real parameters.
The IO neutrino mass spectrum cannot be accommodated in this case.

6.3 Model for Majorana neutrino masses: seesaw mechanism

In the last benchmark TZLM with neutrino masses are generated via the seesaw mecha-
nism with imposed gCP. The transformation properties and modular weights of the lepton

fields are,
Lp~2, Ly~1 e~ 1", us~1, T¢~1, N°={N{,N5}~2,
kr, =1, kr,=-2, ke =2, kue =2, k=4, kne=3, (6.14)

from which the modular-invariant superpotentials
Wi = yie® [LpYy” | Ha+ysu [LoYy, | Ha+y5m® [LoYys | Ha+ ysucLsHa,
(& 4 (& (& (& (&
W, =yl [(LoN)sYs" | Hy+yl A[(N°N)aYy7 | +uh'A [(N*N®)sY5py] - (6.15)

can be defined, being all coupling constants real due to gCP. The charged-lepton and

neutrino mass matrices take the following form,

(4)
—y§Yay  yiYay 0 RYORLE
3) 3) D V2
Mg = | y5Y,u 2 T YaYauy Wi | Vd, Mp = yy'vy (4) )
5 e 5 ’3 Y(4)
s 2(//)2 — Y3 2(“,)1 0 V2 0

] YS(M)T2 y{VY?f??2 Y3(I} 3\/2.@1 Y.?,(I)S
My = A . (6.16)
Y?,(I} 3t Y1 Y?,(I)?)
V2

(6) (6)
NY3111 +yr Y5
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According to classification given in eqgs. (4.22) and (4.23), the above matrices correspond
to D3 — ‘)"((1), while M,, follows the W32 pattern, as shown in table 5. Moreover, the texture
of MEg is of type Cé?’). There is a total of 8 effective real parameters in the model. For

neutrino masses with NO, the best-fit values of the input parameters are

(1)=0.4154741.103357, S /y$=6.13351x 107, ySs/ys=3.39303x10%, y5/y§=16.5963,

D 2
y JyN = —0.29007, ySvg=35.6572 MeV, (y; ;/“\) =303.537 meV, (6.17)
1
being the corresponding lepton observables
sin®015=0.3046, sin®0;3=0.02242, sinf93=0.4524, Scp=209.4°,
Am%l
$=112.3°, m./m,=0.004737,  m,/m,=0.05857, A =0.02957, (6.18)
31
m1=0 meV, mo=8.614 meV, m3=>58.68 meV, mgz=1.466 meV,

with x2,, = 0.70 (remember that for the minimal seesaw considered in this work the
lightest neutrino is massless and there is a single Majorana phase ¢). The above best-fit
values are in very good agreement with the data. Correlations between the values of sin? 63
and of the CP-violation phases dcp and ¢ are shown in the upper panels of figure 2 for NO.

If the neutrino mass spectrum is inverted, the best agreement between model predic-
tions and experimental data is achieved with the following values of the input parameters

(r) =0.000786+1.2677794, 15 /y =9.451055, yS Jye =0.0532938,  y< /y¢ =0.209372,
D 2
y JyN =0.884872, Yova=2.333797 Gev, Y ;X) —594.172 meV. (6.19)
Y

At this best-fit point we have:

sin615=0.2999, sin®613=0.02239, sin?693=0.6064, Scp=315.6°, (6.20)
A 2
$=184.2°, me/m,,=0.004737, my/m,=0.05857, ngl =0.03068,
31
m1=48.418 meV, mo=49.179 meV, m3=0 meV, mgg=18.791 meV,

with x2;, = 9.30, being all observables in the experimentally allowed 30 intervals. In the
lower panels of figure 2, we show the regions for the real and imaginary parts of 7 and the
correlation among A3 and two CP-violation phases dop and ¢.

7 Conclusions

The nature of the fermion flavour pattern in the SM is a great puzzle. With the purpose
of reducing the number of free parameters in fermion mass matrices, texture-zero patterns
have been widely studied in the literature. In the present work, we have performed a
systematic analysis of how texture zeros in lepton mass matrices can be realised in the
framework of a 7" modular symmetry. We show that, by properly assigning represen-
tations and modular weights to the matter fields, texture-zero patterns can be naturally
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Figure 2. Values of the complex modulus 7 compatible with experimental data, and correlations
between sin? f53 and the CP-violating phases dcp and ¢. The upper (lower) panels correspond to
the case in which the neutrino mass specturm is NO (10).

reproduced, each assignment leading to a specific TZLM. In particular, we have considered
all cases in which lepton fields are assumed to transform as singlets (1, 1, 1”), doublets (2,
2/, 2") or triplet 3 of T”. Both cases of Dirac and Majorana neutrino masses (generated by
either the Weinberg operator or via the type-I seesaw mechanism) were investigated. The
most general form of the lepton mass matrices for all possible representation assignments
were found, namely there are 10 (23) [8] texture-zero patterns for the charged-lepton (Dirac
neutrino) [effective Majorana neutrino] mass matrix.

Combining the texture-zero patterns for the charged-lepton and neutrino mass matri-
ces, we have obtained 136 allowed (Mg, Mp) pairs which can be realised from 7”7 modular
symmetry for Dirac neutrinos. In case of Majorana neutrinos, we have found 29 and 35
pairs of texture zeros in (Mg, M,) when neutrinos masses are generated by the Weinberg
operator and the type-I seesaw mechanism, respectively. If gCP is introduced, more com-
binations of texture-zero patterns can be achieved, as shown in table 12. In order to test
whether the obtained texture pairs (Mg, Mp)/(Mg, M,) can accommodate experimental
data, we have performed a x? analysis for the corresponding TZLMs. It turns out that
only part of those models are compatible with the data, as can be seen in tables 8, 9, 10
and 11. For each viable texture pair, we have provided representative models, for which
the representation and modular-weight assignments are shown in tables 14, 16, 18, 20, 22
and 24. The corresponding predictions for the lepton observables are summarised in ta-
bles 15, 17, 19, 21, 23 and 25, respectively. We found that the minimal model requires 7 real
parameters to explain all 9 measured observables. To illustrate our findings, we studied in
more detail three benchmark TZLMs for Dirac and Majorana neutrinos in section 6.
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In conclusion, we have shown that several texture-zero patterns for lepton mass ma-
trices previously considered in the literature can be realised in the context of modular
flavour symmetries. A considerable fraction of those textures are able to accommodate
the experimental data, being some of them predictive in the sense that the corresponding
TZLMs contain less free parameters than observables. In comparison with typical analyses
of texture zeros in the context of Abelian flavour symmetries, the present approach is much
more predicitive due to 77 modular symmetry which implies correlations among the non-
vanishing elements of the mass matrices. Since said correlations depend on the choice of
the modular group, it would be surely interesting to explore other possibilities besides T".
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A  The TV modular group

The T group is the double covering of the tetrahedral group A4. All the elements of T’
can be generated by three generators S, T and R which obey the following relations® [54]:

S?=R, (ST)=T*=R?>=1, RT =TR. (A1)

The generator R commutes with all elements of the group, and the center of T” is the Z
subgroup generated by R. The 24 elements of T” group belong to 7 conjugacy classes:

1C1: 1,

1Cy: R,

6Cy: S, T7'ST, TST ', SR, T"'STR, TST 'R,

4C¢: TR, TSR, STR, T 'ST 'R,

4C5: T~ ST™'R, T"'SR, TSTR,

4C%: T, TS, ST, T~'ST!,

4C5: ST™Y, T7'S, TST, T™'R. (A.2)

The T’ group has a triplet representation 3 and three singlets representations 1, 1’ and 1”
in common with A4. In addition, it has three two-dimensional spinor representations 2,

3 Alternatively the T’ group can be expressed by only S and T obeying S* = T3 = (ST)® = 1,
S*T =TS
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2’ and 2”. In our working basis, the generators S, and T are represented by the following
symmetric and unitary matrices:

1: §=1, T=1,
1: S=1, T=w,
17: §=1, T =w?,
(1 V2 0
2. 5= (L V) po (20
V3 \v2 -1 01
7 1 2 w2 0
2I: S:_i 7T: 9 A3
V3 \v2 -1 0w> (A:3)
25— (L V2) g (10
V3 \v2 -1 0 w?
-1 2 2 10 0
1
3: Szg 2 —1 2 5 T = 0 w O ;
2 2 -1 0 0 w?

with w = e¢?27/3. Notice that the two-dimensional representation matrices are related to
those of refs. [54, 55] by a similarity transformation, while the remaining ones are the same.

The Kronecker products between different irreducible representations of 7" are given by

1°@rb = 1P ® 19 = potb (mod 3), for r=1,2,
1°93=3®1"=3,
20 g 9b — g g 1atb+l (mod 3)7
2°93=32°=252 62",
33=3503,,¢2101 01", (A.4)

where a,b =0, 1,2 and we have denoted 1 = 1°, 1’ = 1!, 1” = 12 for singlet representations
and 2 = 20, 2/ = 21 2" = 22 for the doublet representations. The notations 3¢ and 34
stand for the symmetric and antisymmetric triplet combinations respectively. In the follow-
ing, we report the Clebsch-Gordon (CG) coefficients of the 7" group in the chosen basis. We
shall use «; (3;) to denote the elements of the first (second) representation of the product.

1°® 10 — qotb (mod 3) af, (A5)
2
apy
193=3~|ab |, (A7)
afs
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123 =3~ aby |
afs

afs
1"%3 =3~ afs

afy

202 =2 ®2"=1 ¢ 3 with

202 =2"22"=1"® 3 with

222" =222 =13 with

203 =202 32" with { 2/ ~

2293 =202 ®2" with { 2/ ~

2// ~

1 ~ 182 — asfh

a3
3~ %(OﬂﬁQ + azfh)
—a1 5

1" ~ aifs — asf

—a1 1
3~ 232
%(@152 + a2f1)

1~ a1 — B

%(mﬁz + aaf)
3~ —a1 51
232

2 ( a1 B1 + V2afs )

—aaf1 + V20133
( a1f2 + V22033 )
—aaf2 + V2a1
( a1 + V223 )
—aaf3 + v2a1 32

9~ ( o183 + V2a281 )

—a2fs + V20152
11+ V2a8s
—aaB1 + V2a1 3

—asfs + V20151

N ( a1 + V20033 )

40 —

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)



0 a1f2 + V202033
—a2fa + V201 51
+ V2
253202 2 with | 2~ [ VBT V2R (A.15)
—an 33+ V201 52
ot o181 + V2a203
—anf1 4 V201 83
20101 — azfls — azf
35 ~ | 20383 — a1 P2 — azf
20002 — 183 — azfh
a3 — agfa
34~ | a1fs — B
33=3s®3,40101 ®1" with (A.16)
azf — a1f3

1~ o1+ Bz + azfa
1 ~ azfs + ai1f2 + azf

1" ~ aofla + 183 + asfi

Note that, in our basis, the representation matrices of S and T' are unitary and symmetric
in all irreducible representations, and all the CG coefficients of the contractions are real.

B Higher-weight modular forms of level N = 3

Higher-weight modular forms can be constructed from tensor product of lower-weight ones.
In the following, we will use the weight-1 modular forms Yz(l) given in eq. (2.20) and the
Clebsch-Gordan coefficients of 7" presented in appendix A to construct weight 2, 3, 4, 5
and 6 modular forms of 77 modular group.

The weight-2 modular forms can be generated from the tensor products of two Yz(l),
T
v - (40), - (2. Ve, )" )

where Y7 and Y5 are two components of weight 1 modular forms Y2(1) = (Y1,Y2)”. Then, we
can use the weight-1 and weight-2 modular forms to construct the weight-3 modular forms,

Y2(3) _ <Y2(1)Y$(2)>

v = (i)

, = (3vivg, —vav? - Y23)T,

(B.2)
3 3 N T
= (-vP+ Vg, svv?)

2//

At weight k = 4, we find five independent modular forms which can be arranged into two
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Modular weight £ | Modular form Yr(k)
k=1 vV
k=2 vi?
k=3 vi v
k=4 v v v
k=5 Y, v vy
=0 | 0

Table 13. Summary of modular forms of level 3 up to weight 6, the subscript r denotes the
transformation property under 7" modular symmetry. Here Y:,,(?) and Y?,(;’} stand for two linearly
independent weight-6 modular forms transforming in the representation 3 of T”.

singlets 1 and 1’ and a triplet of T”,
T
WO = (WD), = (Va3 s vanyd, —arerd)”
Y= (), = vt - v 3)

YO = (), = avpy, - Vv

Similarly, the independent weight-5 modular forms can be constructed from the tensor
products of weight-1 and weight-4 modular forms as follows,

v = (1Y), = [+ v (v, v)T
vy = () = [y -2vanyd| (n, w7, (B.4)

T
vy = (V") = (5vPE - vaYs, - vaYP 4 svys)

2/

Finally, the linearly independent weight-6 modular forms of level 3 can be decomposed into
one singlet 1 and two triplets 3 under 7,

Yot = (7)), = [2veriva+ 3| (Y2, venYe, —Y12>T,
il = () = [ - avanyg] (2, ¥R vanw)
v = ( 2‘”1/2(,?))1 = V2Y$ — V2YP 4+ 10YPYS . (B.5)

We summarize the level 3 modular forms up to weight 6 in table 13.

C Representative models of lepton texture zeros

In this section, we provide representative models for the phenomenologically viable patterns
of texture zeros in the charged-lepton and neutrino mass matrices. Each of these models
is chosen from a set of viable models which give the same texture of lepton mass matrices,
and it contains minimum number of free real input parameters. Moreover, we also present
the corresponding predictions for lepton masses and mixing parameters in each case.
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C.1 Dirac neutrinos

The representative models of viable textures for the case of Dirac neutrinos are presented
in table 8, for which the representation and modular-weight assignments can be found in
table 14 for NO neutrino masses. The corresponding predictions for lepton observables are
collected in table 15. For IO, the viable textures are given in table 9 and the representative
models and the best fitting results can be found in table 16 and table 17 respectively.
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Dirac without gCP (NO)

Predictions for mixing parameters and neutrino masses at best fitting point

Combinations— — — l Zin
sin® 612|sin® 013 |sin® 6a23|0¢ p /7M1 /meV|my /meV ms/meV
¢ DM | 0.304 [0.02246| 0.452 | 1.361 | 44.054 | 44.888 66.720 0.187
¢ —p | 0.326 [0.02262] 0.440 | 1.082 | 7.927 | 11.706 50.722 5.844
¢ -l | 0.286 |0.02247 0.442 [1.813| 0 8.614 50.100 9.709
¢ —pM | 0.304 [0.02242] 0.455 | 1.609 | 29.860 | 31.078 58.309 2.812
e —pW | 0.303 [0.02246] 0.473 | 1.262 | 34.122 | 35.192 60.575 1.479
¢ —pM | 0.304 |0.02245| 0.451 | 1.042| 35.717 | 36.741 61.528 2.879
eV =D | 0.303 [0.02246] 0.473 | 1.262 | 34.122 | 35.192 60.575 1.479
¢ =DM | 0.304 [0.02244| 0.451 | 1.158 | 39.428 | 40.358 63.754 0.749
¢V - | 0.304 [0.02246] 0.450 | 1.314 | 27.801 | 29.105 57.294 0.032
¢V =¥ | 0.304 [0.02246| 0.451 | 1.216 | 38.705 | 39.652 63.312 0.199
¢V - | 0.304 [0.02245] 0.449 | 1.279 | 13.327 | 15.869 51.815 0.007
e —pW | 0.304 [0.02242] 0.454 | 1.605 | 29.613 | 30.840 58.183 2.735
¢V —pM 1 0.316 [0.02220( 0.431 [1.000| 0 8.614 49.778 6.892
e - 1 0.286 [0.02247| 0.442 [1.813| 0 8.614 50.100 9.709
¢ - | 0.304 [0.02246( 0.450 [1.269| 0 8.614 50.105 0.004
¢ —p | 0.316 [0.02220( 0.431 [1.000| 0 8.614 49.776 6.919
el —pM 1 0.316 [0.02220( 0.431 [1.000| 0 8.614 49.776 6.919
eV =DM 1 0.304 [0.02246( 0.450 [1.269| 0 8.614 50.105 0.005
eV ol | 0.316 {0.02220] 0.431 | 1 0 8.614 49.775 6.939
eV - | 0.316 0.02220 0.431 | 1 0 8.614 49.775 6.939
eV —p® 1 0.296 [0.02171| 0.450 [ 1.277| 0 8.614 49.292 3.314
eV - 1 0.275 [0.02309] 0.550 | 1.047| 0 8.614 49.948 37.499
c¥—pM 1 0.275 [0.02335 0.522 [1.015| 0 8.614 51.238 28.241
Dirac with gCP (NO)
Combinations Predictions for mixing parameters and neutrino masses at best fitting point o
sin? 0;2|sin? 013 |sin? Oa3 élcp/w m1 /meV|mg/meV ms/meV
¢ DM | 0.304 [0.02246| 0.452 | 1.363 | 44.104 | 44.938 66.753 0.197
e —pM | 0.306 [0.02249| 0.479 | 1.200 | 34.763 | 35.814 60.974 2.737
¢V Dl | 0.304 [0.02246| 0.450 | 1.266 | 32.315 | 33.443 59.617 0.008
eV —p | 0.304 [0.02246| 0.450 | 1.281 | 59.609 | 60.228 77.867 0.000
¢V D | 0.304 [0.02245| 0.449 |1.288 | 13.295 | 15.841 51.815 0.005
e —pM 1 0.297 [0.02181| 0.450 [ 1.007| 0 8.614 49.391 6.330
e —pl) | 0.304 [0.02246| 0.450 [1.099| 0 8.614 50.095 1.649
¢V —pM | 0.326 [0.02262| 0.440 | 1.082| 7.927 | 11.706 50.723 5.844
¢V —p® | 0.304 [0.02246| 0.450 | 1.134 | 11.481 | 14.353 51.399 1.070

continues on next page
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Table 15 — continued from previous page

Predictions for mixing parameters and neutrino masses at best fitting point

Combinations XZin
sin? 012|sin? 013 |sin? Oa3 |0k p /7M1 /meV |ma /meV ms3/meV

eV —p® 1 0.304 [0.02246( 0.450 [ 1.317| 0 8.614 50.100 0.041
¢V —pP | 0.302 |0.02245| 0.453 [1.248| 0 8.614 50.116 0.112
e —p 1 0.316 [0.02220( 0.431 [1.000| 0 8.614 49.778 6.892
e —p 1 0.304 [0.02246( 0.450 [ 1.038| 0 8.614 50.100 2.982
eV —p® 1 0.304 [0.02246( 0.450 [ 1.123| 0 8.614 50.094 1.241
eV —p | 0.304 [0.02246| 0.451 [1.075| 0 8.614 50.100 2.131
eV D 1 0.304 [0.02246( 0.450 [1.287 | 0 8.614 50.102 0.002
e —pWM 1 0.304 [0.02246( 0.450 [ 1.071| 0 8.614 50.100 2.222
eV =D 1 0.304 [0.02246( 0.450 [ 1.000| 0 8.614 50.100 3.998
eV =Dl | 0.304 [0.02245| 0.452 | 1.296 | 21.870 | 23.505 54.657 0.016
eV - | 0.304 [0.02244] 0.451 | 1.168 | 38.825 | 39.769 63.383 0.635
eV - | 0.304 [0.02246| 0.450 | 1 0 8.614 50.100 4.000
eV =D | 0.304 [0.02246] 0.450 | 1 0 8.614 50.100 4

¢V —pl | 0.314 |0.02219] 0.412 [ 1.000| 0 8.614 49.058 12.931
¢V —p | 0.305 |0.02254] 0.448 [1.220| 0 8.614 50.237 0.244
eV =D 1 0.304 [0.02246( 0.450 [ 1.000| 0 8.614 50.100 3.996
eV =D 1 0.303 [0.02246( 0.448 [1.329| 0 8.614 50.063 0.133
e - | 0.304 [0.02246| 0.450 | 1.261 | 14.776 | 17.103 52.232 0.015
¢ —pfY | 0.304 [0.02246| 0.450 | 1.265| 8.163 | 11.868 50.759 0.009
¢ —pP | 0.273 [0.02248| 0.464 [1.000| 0 8.614 50.100 11.456
¢~ | 0.304 [0.02246| 0.450 | 1.298 | 34.446 | 35.507 60.787 0.012
e —p{ | 0.304 [0.02246 0.450 | 1 | 28.082 | 29.374 57.434 4.000
c? - | 0.304 [0.02246| 0.450 | 1 0 8.614 50.100 4.000
¢ - | 0.307 [0.02263| 0.450 [1.007| 0 8.614 50.318 4.025
¢ - | 0.304 [0.02246( 0.450 [1.099| 0 8.614 50.095 1.649
c? —p{M | 0.304 [0.02246| 0.450 | 1.213 | 36.515 | 37.518 61.995 0.216
¢ —p® | 0.296 [0.02171| 0.450 | 1 | 52.849 | 53.547 72.269 7.307
¢ —pP | 0.304 [0.02246| 0.450 | 1.017 | 14.705 | 17.043 52.214 3.535
¢ —p | 0.273 |0.02248] 0.464 [ 1.000| 0 8.614 50.100 11.456
¢ - 1 0.302 [0.02245( 0.453 [1.246| 0 8.614 50.104 0.113
¢ —pV | 0.304 [0.02246( 0.451 [1.120| 0 8.614 50.091 1.299
¢ —p? 1 0.304 [0.02246( 0.450 [1.038| 0 8.614 50.100 2.982
¢ —p® | 0.296 (0.02171] 0.450 | 1 0 8.614 49.293 7.307
¢ —pY 1 0.304 [0.02246( 0.451 [1.075| 0 8.614 50.100 2.131
c? —pl | 0.273 [0.02248| 0.464 [1.000| 0 8.614 50.100 11.456
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Table 15 — continued from previous page

Combinations Predictions for mixing parameters and neutrino masses at best fitting point o
sin? 0;5|sin? 013 |sin? Oa3 5ZCP/71' my /meV|mg/meV ms3/meV
¢ —pWM 1 0.304 [0.02246( 0.450 [ 1.071| 0 8.614 50.100 2.223
¢ —pM | 0.304 [0.02242| 0.455 | 1.610 | 29.830 | 31.049 58.293 2.821
¢ - | 0.305 |0.02249| 0.465 | 1.211 | 34.585 | 35.641 60.912 0.847
¢ - | 0.304 [0.02245| 0.450 | 1.178 | 23.347 | 24.885 55.263 0.519
¢ -l | 0.304 |0.02246| 0.450 | 1.265 | 4.720 | 9.823 50.322 0.009
¢ —piM | 0.304 0.02246| 0.450 | 1.150 | 17.798 | 19.773 53.170 0.850
e - 1 0.302 [0.02229( 0.450 [ 1.007| 0 8.614 49.908 3.985
e - | 0.304 [0.02246( 0.450 [1.002| 0 8.614 50.100 3.945
e - | 0.304 [0.02244] 0.451 | 1.158 | 39.422 | 40.352 63.750 0.748
¢ —p® | 0.304 [0.02246| 0.450 | 1.134 | 11.477 | 14.350 51.398 1.072
el DM 1 0.304 [0.02247| 0.450 [1.282] 0 8.614 50.105 0.001
¢ —pP | 0.304 |0.02246| 0.451 [1.237| 0 8.614 50.099 0.091
¢ —pM | 0.313 0.02227] 0.436 | 1 0 8.614 49.864 5.564
¢l —p | 0.304 |0.02246| 0.450 [ 1.002| 0 8.614 50.100 3.950
e~ 1 0.304 [0.02246( 0.450 [1.285| 0 8.614 50.102 0.001
eV =D | 0.304 [0.02246] 0.450 | 1.259 | 25.052 | 26.492 56.014 0.018
eV =D | 0.303 [0.02245| 0.474 | 1.187 | 34.079 | 35.151 60.549 2.000
eV =D | 0.304 [0.02246] 0.450 | 1.251 | 10.322 | 13.444 51.158 0.038
¢V =D | 0.304 [0.02246| 0.450 | 1.265 | 4.720 | 9.822 50.322 0.009
¢V =D | 0.304 [0.02246] 0.450 | 1 0 8.614 50.100 4.000
eV =DM 1 0.307 [0.02264] 0.450 [ 1.007| 0 8.614 50.342 4.049
¢V =D | 0.316 0.02220 0.431 | 1 0 8.614 49.775 6.939
eV —pfM | 0.304 [0.02244| 0.451 | 1.158 | 39.428 | 40.358 63.754 0.749
eV =D | 0.296 [0.02171] 0.450 | 1 | 27.978 | 29.274 56.679 7.307
eV =D | 0.304 [0.02246] 0.450 | 1.134 | 11.478 | 14.350 51.398 1.072
eV =DM 1 0.304 [0.02245( 0.450 [ 1.297| 0 8.614 50.107 0.010
¢V =D 1 0.304 [0.02246( 0.450 [1.252| 0 8.614 50.100 0.035
eV —pM | 0.316 0.02220 0.431 | 1 0 8.614 49.775 6.939
¢V —p® | 0.296 0.02171] 0.450 | 1 0 8.614 49.293 7.307
eV =D 1 0.304 [0.02247| 0.450 [ 1.277| 0 8.614 50.116 0.002
¢V =DM | 0.304 [0.02246| 0.450 | 1.314 | 27.801 | 29.105 57.294 0.032
¢V -l | 0.304 [0.02246| 0.450 | 1.263 | 17.398 | 19.414 53.026 0.012
eV - | 0.304 [0.02246| 0.451 | 1.216 | 38.707 | 39.654 63.313 0.199
eV - | 0.304 [0.02245] 0.449 | 1.280 | 13.325 | 15.867 51.815 0.006
eV —pl | 0.304 [0.02246| 0.451 [1.072| 0 8.614 50.101 2.202

continues on next page
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Table 15 — continued from previous page

. .. _ |Predictions for mixing parameters and neutrino masses at best fitting point|
Combinations Xinin
sin? 0;5|sin? 013 |sin? Oa3 5ZCP/71' my /meV|mg/meV ms3/meV

eV - 1 0.275 [0.02309| 0.550 [ 1.047| 0 8.614 49.948 37.499
¢ —pfY | 0.304 [0.02246| 0.450 | 1 | 2.597 | 8.997 50.167 4

¢ - 1 0.304 [0.02246( 0.450 [1.014| 0 8.614 50.100 3.607
c¥ —pM | 0.304 [0.02242] 0.454 | 1.606 | 29.557 | 30.786 58.155 2.753
¢ -l | 0.304 [0.02246| 0.456 | 1.282| 77.612 | 78.088 92.378 0.097
c¥ —plM | 0.304 [0.02246| 0.450 | 1.147 | 17.975 | 19.932 53.229 0.890
c® DM 1 0.284 [0.02313( 0.502 [1.941| 0 8.614 50.796 23.316
e —p® 1 0.304 [0.02246( 0.450 [ 1.000| 0 8.614 50.100 4.000
¢ D 1 0.304 [0.02246( 0.450 [ 1.001| 0 8.614 50.100 3.974
¢ - 1 0.304 [0.02247| 0.450 [ 1.301| 0 8.614 50.095 0.016
el —pP 1 0.304 [0.02246( 0.450 [ 1.000| 0 8.614 50.100 3.998
¢ - 1 0.304 [0.02245( 0.450 [1.040| 0 8.614 50.092 2.926
¢ - | 0.304 [0.02246] 0.450 | 1.001 | 1.077 | 8.681 50.111 3.979
c¥ —p® | 0.304 |0.02246| 0.450 [ 1.001| 0 8.614 50.100 3.984
¢ - 1 0.304 [0.02246( 0.450 [ 1.000| 0 8.614 50.100 3.986
e - 1 0.304 [0.02246( 0.450 [ 1.000| 0 8.614 50.100 3.989
¢V =D | 0.304 [0.02246| 0.450 [ 1.001 | 1.143 | 8.689 50.113 3.978
eV - 1 0.304 [0.02246( 0.450 [ 1.000| 0 8.614 50.100 4.000

Table 15. Best-fit values of the lepton mixing and neutrino mass parameters for the representative
models of table 14. In all representative models, the predictions of the lepton mass ratios are
me/my, = 0.00474, m, /m, =0.0586 and Am3,/Am3; =0.030.
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Dirac without gCP (10)

Predictions for mixing parameters and neutrino masses at best fitting point

Combinations XZin
sin®012|sin? 05 [sin? a5 5lCP/7r my /meV|msy/meV ms3/meV
¢ DM 10306 [0.02241| 0.569 | 1.561 | 52.681 | 53.381 18.971 0.033
e —pW | 0.298 |0.02244| 0.560 | 1.720 | 57.720 | 58.359 30.236 2.537
¢ —pf? | 0.287 [0.02243| 0.577 | 1.185 | 49.151 | 49.900 0 6.894
¢ —pM 10306 [0.02241] 0.570 | 1.514 | 52.591 | 53.292 18.720 0.051
el - 1) 0.305 (0.02234] 0.573 | 1.750 | 60.717 | 61.325 35.648 2.868
el — 511) 0.305 |0.02234| 0.573 | 1.750 | 60.718 | 61.326 35.650 2.869
eV —pW | 0.307 |0.02242| 0.569 | 1.576 | 52.700 | 53.399 19.036 0.138
eV - | 0.304 |0.02241| 0.570 | 1.543 | 72.865 | 73.372 53.791 0.001
¢ —pW [ 0.307 0.02242| 0.571 | 1.489 | 52.635 | 53.335 18.851 0.166
¢V DM | 0.304 |0.02241| 0.570 | 1.542 | 49.150 | 49.899 0 0.001
¢ D | 0.304 |0.02242| 0.570 | 1.540 | 49.144 | 49.893 0 0.001
e D | 0.290 |0.02240( 0.560 | 1.774 | 48.715 | 49.471 0 5.557
¢V - 1 0.304 |0.02241| 0.570 | 1.544 | 49.157 | 49.906 0 0.001
¢ —DY | 0.306 |0.02242| 0.572 | 1.406 | 49.137 | 49.887 0 0.727
¢ =D | 0.304 |0.02241| 0.570 | 1.542 | 49.153 | 49.902 0 0.001
¢ - | 0.290 |0.02240( 0.560 | 1.774 | 48.715 | 49.471 0 5.557
e - (” 0.304 [0.02241| 0.570 | 1.546 | 49.153 | 49.902 0 0.001
e - §5) 0.287 |0.02243| 0.577 | 1.185 | 49.151 | 49.900 0 6.894
¢ —pl | 0.329 (0.02246| 0.569 | 1.557 | 49.100 | 49.850 0 3.770
c{¥ - | 0.303 |0.02254] 0.549 | 1.833 | 49.117 | 49.867 0 6.581
e —pM | 0.303 |0.02254] 0.549 | 1.833 | 49.117 | 49.867 0 6.581
eV —pl | 0.307 |0.02242| 0.570 | 1.551 | 49.147 | 49.896 0 0.042
et — §5) 0.303 |0.02254| 0.549 | 1.834 | 49.117 | 49.867 0 6.590
eV =DM | 0.303 |0.02254| 0.549 | 1.834 | 49.117 | 49.867 0 6.590
¢V =DM | 0.304 |0.02241| 0.571 | 1.470 | 49.152 | 49.901 0 0.201
¢V - | 0.300 |0.02253| 0.585 | 1.125 | 49.190 | 49.939 0 7.410
¢ —p{M | 0.321 |0.02247| 0.571 | 1.253 | 49.068 | 49.818 0 4.873
Dirac with gCP (10)
. Predictions for mixing parameters and neutrino masses at best fitting point
Combinations in
sin? 0,5 |sin? 013 [sin? 023 |dc p /7| M1 /meV |my /meV ms/meV
¢V —pM 10306 [0.02241| 0.569 | 1.562 | 52.677 | 53.377 18.961 0.038
¢ DY 10304 [0.02239] 0.571 | 1.627 | 49.145 | 49.894 0 0.458
¢ —pP | 0.304 |0.02241| 0.570 | 1.548 | 49.151 | 49.900 0.001 0.001
¢ Dl 10302 [0.02242| 0.572 | 1.380 | 49.323 | 50.070 3.473 1.023
e —pM [ 0.290 |0.02240( 0.560 | 1.781 | 48.717 | 49.473 0.041 5.752

continues on next page
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Table 17 — continued from previous page

Predictions for mixing parameters and neutrino masses at best fitting point

Combinations XZin
sin? 05| sin? 03 |sin? O3 5ZCP/7T my /meV|my/meV m3/meV
¢ D | 0.304 |0.02241| 0.570 | 1.548 | 49.151 | 49.900 0 0.001
¢V D | 0.304 |0.02239| 0.571 | 1.367 | 49.085 | 49.835 0 1.153
¢ —pM 10302 [0.02242| 0.580 | 1.612 | 49.161 | 49.910 0.369 0.699
e D 1 0.290 |0.02240( 0.560 | 1.781 | 48.717 | 49.473 0 5.752
¢ - 1 0.304 |0.02241| 0.572 | 1.557 | 49.150 | 49.899 0 0.023
W _pB | 0.305 (0.02239| 0.569 | 1.405 | 49.150 | 49.899 0 0.714
¢V D 1 0.304 |0.02241| 0.571 | 1.093 | 49.151 | 49.900 0 7.346
¢V —pM 10304 [0.02241| 0.571 | 1.800 | 49.151 | 49.900 0 4.364
eV =DM [ 0.294 |0.02242| 0.562 | 1.698 | 63.955 | 64.532 40.906 2.447
¢V =Dl 10305 0.02241| 0.571 | 1.216 | 49.154 | 49.903 0 3.878
eV =DM | 0.309 |0.02253 0.581 | 1.136 | 49.153 | 49.902 0 6.669
¢V =D 10305 [0.02241| 0.571 | 1.216 | 49.154 | 49.903 0 3.878
e —pW [ 0.298 |0.02244| 0.560 | 1.720 | 57.726 | 58.365 30.248 2.542
¢ =D | 0.304 [0.02241| 0.570 | 1.548 | 49.152 | 49.901 0.277 0.001
¢ -l | 0.303 [0.02241| 0.571 | 1.477 | 49.260 | 50.007 1.018 0.224
¢ —p{M | 0.290 |0.02240( 0.560 | 1.781 | 48.717 | 49.473 0.000 5.752
¢ —D{Y | 0.304 |0.02241| 0.570 | 1.548 | 49.151 | 49.900 0 0.001
¢ - | 0.304 |0.02239] 0.571 | 1.367 | 49.085 | 49.835 0 1.153
¢ —p | 0.302 [0.02241| 0.569 | 1.337 | 56.941 | 57.589 28.750 1.576
¢ —pP 10290 [0.02240| 0.560 | 1.781 | 48.717 | 49.473 0 5.752
¢ —pWM | 0.304 |0.02241| 0.572 | 1.557 | 49.150 | 49.899 0 0.023
¢ —p® | 0.305 |0.02239( 0.569 | 1.405 | 49.150 | 49.899 0 0.714
c?—pt | 0.304 (0.02241| 0.571 | 1.093 | 49.151 | 49.900 0 7.346
¢ —pM 1 0.306 [0.02241] 0.570 | 1.514 | 52.591 | 53.292 18.720 0.051
¢ -l 10303 0.02241| 0.573 | 1.252 | 49.151 | 49.900 0 3.134
e =D | 0.306 |0.02239( 0.569 | 1.638 | 49.148 | 49.897 0 0.605
¢ DM | 0.329 |0.02246( 0.569 | 1.557 | 49.101 | 49.851 0 3.771
e - | 0.304 |0.02242| 0.563 | 1.708 | 49.049 | 49.800 0 1.911
¢ —pM | 0.305 [0.02234] 0.573 | 1.750 | 60.717 | 61.325 35.648 2.868
e - | 0.304 |0.02241| 0.570 | 1.543 | 49.149 | 49.898 0 0.001
c{¥ —D | 0.303 |0.02254| 0.549 | 1.834 | 49.117 | 49.867 0 6.586
¢V =D [ 0.304 |0.02241| 0.570 | 1.542 | 49.151 | 49.900 0 0.001
eV —DP | 0.303 |0.02242( 0.571 | 1.459 | 62.173 | 62.767 38.077 0.280
¢V =D | 0.304 |0.02241| 0.570 | 1.540 | 57.265 | 57.909 29.383 0.001
eV —p | 0.307 [0.02242| 0.570 | 1.551 | 49.147 | 49.896 0 0.042

continues on next page
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Table 17 — continued from previous page

Combinations Predictions for mixing parameters and neutrino masses at best fitting point o
sin? 05| sin? 03 |sin? O3 5ZCP/7T my /meV|my/meV m3/meV
eV =D | 0.303 |0.02254] 0.549 | 1.834 | 49.117 | 49.867 0 6.590
¢V =DV | 0.305 |0.02234| 0.573 | 1.750 | 60.718 | 61.326 35.650 2.869
¢V =D | 0.304 |0.02241| 0.570 | 1.543 | 49.150 | 49.899 0 0.001
eV =DM [ 0.303 |0.02254| 0.549 | 1.834 | 49.117 | 49.867 0 6.590
¢V —pM 10307 [0.02242] 0.569 | 1.576 | 52.700 | 53.399 19.036 0.138
eV =D | 0.304 |0.02241| 0.570 | 1.534 | 72.054 | 72.567 52.688 0.004
¢V -l | 0.304 [0.02241] 0.570 | 1.545 | 50.211 | 50.945 10.273 0.001
¢V - | 0.304 |0.02242| 0.573 | 1.349 | 49.149 | 49.898 0 1.405
¢ —pM | 0.290 |0.02243| 0.558 | 1.747 | 64.015 | 64.592 40.996 4.468
c¥ —pM 1 0.307 [0.02242] 0.571 | 1.489 | 52.635 | 53.335 18.851 0.167
e —DpP | 0.336 |0.02247| 0.569 | 1.542 | 49.087 | 49.837 0 6.085
c¥ -l 10304 0.02241| 0.570 | 1.532 | 94.045 | 94.439 80.178 0.006
¢ DM | 0.336 |0.02247| 0.569 | 1.543 | 49.086 | 49.836 0 6.085
c? =D | 0.304 0.02241| 0.570 | 1.543 | 49.150 | 49.899 0 0.001
¢ =D | 0.304 |0.02250( 0.571 | 1.622 | 49.294 | 50.041 0 0.490
¢ =D | 0.304 |0.02241| 0.570 | 1.546 | 49.151 | 49.900 0 0.001
¢ —p{M | 0.304 |0.02241| 0.570 | 1.534 | 49.151 | 49.900 0 0.005

Table 17. The same as in table 15 but for IO neutrino mass spectrum and for the representative
models of table 16.

C.2 Majorana neutrinos (Weinberg operator)

In case neutrinos are Majorana particles and their masses are generated via Weinberg

operator, the viable pairs of texture zeros of the lepton mass matrices are summarized

in table 10. Here, we present the corresponding representative models for NO and 10

neutrino masses spectrum in tables 18 and 20, respectively. The numerical results of these

representative models are given in tables 19 and 21.
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Weinberg operator without gCP (NO)

Combinations | #Pqy | #P PL PEe kr ke
e 18 9 291" | 1"@1e1 | 1,2 | 0,2,4
(253) _ 52) 16 9 | 291 [ 1"1e1” | 1,2 | 0,2,2
Cél) _ Wfl) 16 9 291" | "ol ®1 1,2 | —2,2,4
Cél) _ 52) 14 9 201 | 161”1 1,2 2,2,2
cV_wh |15 | 7 | 2e1 | 1”7e1®1 | 1,0 | 0,0,2

Weinberg operator with gCP (NO)

Combinations | #Py | #P L PEe kr, kge
e w9 201" | 21" 1,2 | 3,2
e w1 g 2@ 1 2 @1 1,2 | 3,2
e w16 2"®1 | 10101l | -1,2| 2,4,4
P —wlh g 2/ @ 1" 21 L2 | 3,2

P —w® | 16
D —wl |1
P —wi |18
¢ -wi® | 16
eV —wih |16
e —wd | 14
eV -wi | 15

201 | Velel | 1,2 | 2,24
2a1 [17al®1” | -1,2 | 2,2,4
291" | 701"®1 | 1,2 | 2,2,4
2901 | 1”791®1” | 1,2 | 0,2,2
291" | 1791 ®1 | 1,2 | 2,22
201 | 1”7@101 | 1,2 | 2,2,2
231" 2/ 1 1,0 | 3,0

|0 |0 |0 |0 |O|©O|00|©O© ||

Table 18. Representative models of the viable patterns of texture zero in (Mg, M,) that can
accommodate the experimental data at 3o level for NO neutrino mass spectrum. Here neutrinos
are Majorana particles and neutrino masses are assumed to be described by the Weinberg operator.
Models with and without gCP are considered. The same convention as table 14 is adopted.
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Weinberg operator without gCP

Predictions for mixing parameters and neutrino masses at best fitting point

Combinations X %lin

sin? 015 | sin? 613 | sin®6ag | dop/7 | ao1/7 | azi/7 | mi/meV | ma/meV | msz/meV mgg/meV

P —wh | 0303 |0.02269 | 0475 | 1.495 | 1.996 | 0.018 | 26.818 | 28.168 | 56.808 | 25.325 | 3.730
¥ —w® | 0304 | 002244 | 0451 | 1.158 | 0492 | 1.683 | 39.422 | 40.352 | 63.750 | 28.608 | 0.748
e —w® | 0305 | 002246 | 0.452 | 0.839 | 1.595 | 1.628 | 20.198 | 21.958 | 54.062 | 18.033 | 10.017
eV —w® | 0304 | 002244 | 0451 | 1.158 | 0.584 | 1775 | 39.428 | 40.358 | 63.754 | 25599 | 0.749
e —w® | 0304 | 002254 | 0.601 | 1.482 | 1.957 | 0.970 | 44.194 | 45.025 | 66.800 | 44.865 | 64.205

Weinberg operator with gCP

Predictions for mixing parameters and neutrino masses at best fitting point

Combinations sin? 012 | sin?013 | sin? o3 | dop/m | aor/7 | agi/7 | mi/meV | mo/meV | my/meV | mgg/meV Xinin
¢ —w® | 0304 | 002246 | 0.450 | 1.351 | 0.308 | 1.199 | 18.820 | 20.698 | 53510 | 17.466 | 0.133
e WP | 0304 | 002244 | 0451 | 1.158 | 1.594 | 0.785 | 39.425 | 40.355 | 63.752 | 32.076 | 0.749
e w0304 | 002246 | 0.450 | 1.045 | 0.240 | 1.330 0 8614 | 50.100 1436 | 2.807
¢ —w® | 0304 | 002246 | 0.450 | 1.351 | 0.308 | 1.199 | 18.820 | 20.698 | 53.510 | 17.466 | 0.133
c® —w® | 0304 | 002245 | 0449 | 1.128 | 0.308 | 0.125 | 3.919 | 9.464 | 50.243 5614 | 1.171
o —wy

(
Cég) B W1(1

)
)
)
)
)
V] 0304 |0.02246 | 0450 | 1.045 | 1.665 | 0.756 0 8614 | 50.100 | 1436 | 2.807
)
)
)
)
)

0.304 | 0.02246 | 0.451 1.412 | 1.588 | 0.708 | 29.686 30.910 58.235 25.667 0.451
C;g) — WQ(Z 0.304 | 0.02244 | 0.451 1.158 | 0.594 | 1.785 | 39.422 40.352 63.750 25.259 0.748
Cél) - Wl(l 0.304 | 0.02246 | 0.450 1.374 | 1.594 | 0.697 | 20.178 21.940 54.009 18.013 0.231
C:(;l) — 1/\12(2 0.304 | 0.02244 | 0.451 1.158 | 0.594 | 1.785 | 39.428 40.358 63.754 25.259 0.749
Cil) - Wl(l 0.304 | 0.02254 | 0.601 1.482 | 1.957 | 0.970 | 44.214 45.045 66.813 44.883 64.198

Table 19. Best-fit values of the lepton mixing and neutrino mass parameters for the representative
models presented in table 18. For all representative models, the predictions of the lepton mass ratios
are me/m, = 0.00474, m, /m, = 0.0586 and Am3,/Am3, = 0.030.

Weinberg operator without gCP (I0)
Combinations | #Pg | #P oL PEe kr, kpe

w18 | 9 [ 2817 | 1701781 | 21 1,3,3
ey W(Q) 16 | 9 | 201 | 1”01”61 | 1,2 | 0,22
c() W(l 16 | 9 | 201" | V®1"®1 | 2,1 | —1,-1,3
c;) <2> 14 | 9 | 201 | 1e1”"al | 1,2 | 222
eV — W‘” 15 | 9 |27a1 | 1”®1e1” | 3,0 | 0,0,2
c! @ W(l) 4 | 8 |2a1 2a1" | 1,2 3,2
c“ ‘1) 12 | 9 | 2791 | 101”70l | -1,2| 224
Weinberg operator with gCP (I0)

Combinations | #Pq | #P PL pPEe kr, kge
c{” wh [ 20 | 8 | 2e01” 2" 31" 2,3 2,1
e W(Q) 18 | 8 | 2071 231 1,2 3,2
e w2 6 | 9] 2e1| ve1e1” | 2,1 3,3,3
6(2) W‘” 18 | 8 | 201 2" @1 21 2,1
6(2) W(2 16 | 9 | 201 | 1@1@1” | 1,0 | 0,4,4
023) “> 18 | 8 |[2a1 231" 1,0 3,4
el — W2(2) 16 | 8 | 201 | 1"@1"®1 | 1,2 | 0,22
cV-wh | 16 | 8 |2a1 |[Ye1"a1”| 1,0 | 0,04
c(” ‘2) 4 | 8 | 2®1 | V®lal” | 1,2 | 2,22
¢V W(l) 15 | 8 |27l | V®1”®1 | 3,0 | 0,02

Table 20. The same as in table 18 but for IO neutrino masses.
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Weinberg operator without gCP
L Predictions for mixing parameters and neutrino masses at best fitting point .
Combinations in
sin? @15 | sin®6013 | sin®6fa3 | Scp/m | ag1/7 | azi/7 | mi/meV | ma/meV | mz/meV mgg/meV
c® —wh | 0304 | 0.02241 | 0570 | 1546 | 0.663 | 1.585 | 49.529 | 50.272 | 6.106 29.481 | 0.001
e —w® | 0305 | 0.02234 | 0573 | 1750 | 1.604 | 0.724 | 60.717 | 61.325 | 35.648 | 49.818 | 2.868
eV —w | 0304 | 0.02241 | 0570 | 1546 | 1.695 | 0.666 | 49.529 | 50272 | 6.106 44101 | 0.001
e —w® | 0305 | 0.02234 | 0573 | 1750 | 0.869 | 0.724 | 60.718 | 61.326 | 35.650 | 24.881 | 2.869
e —wM | 0.299 | 0.02245 | 0508 | 1.662 | 0.021 | 1.004 | 84.281 | 84.720 | 68.435 | 83.200 |9.084
e —wi | 0287 | 0.02245 | 0566 | 1.155 | 1.887 | 0.881 | 49.154 | 49.903 0 47.639 | 7.521
e —wi | 0303 | 0.02241 | 0574 | 1573 | 1465 | 0.416 | 49.152 | 49.901 0 35101 | 0.116
Weinberg operator with gCP (I0)
o Predictions for mixing parameters and neutrino masses at best fitting point
Combinations |— 3 — — in
sin®f1g | sin®f3 | sin®bas | dop/m | @o1/7 | az1/7 | mi/meV | ma/meV | mg/meV | mgg/meV
eV —wm | 0304 | 0.02241 | 0568 | 1532 | 0.007 | 0.957 | 49.439 | 50.184 | 5327 | 48.662 | 0.011
eV —w® | 0305 |0.02234 | 0573 | 1750 | 1577 | 0.724 | 60.715 | 61.323 | 35.644 | 48.618 | 2.867
eV —w® | 0304 | 0.02241 | 0572 | 1556 | 0.011 | 0.958 | 49.150 | 49.899 0 48.265 | 0.020
e —wM | 0303 | 0.02242 | 0576 | 1590 | 0.023 | 0.960 | 49.154 | 49.903 | 0.386 | 48253 |0.308
D —wi? | 0302 | 002241 | 0579 | 1599 | 0.014 | 0.964 | 56.358 | 57.013 | 27.606 | 55.733 | 0.515
e —w® | 0304 | 002241 | 0569 | 1545 | 0.016 | 0.958 | 57.111 | 57.757 | 29.083 | 56.600 | 0.001
P —w | 0305 |0.02234 | 0573 | 1.750 | 1578 | 0.724 | 60.717 | 61.325 | 35.648 | 48.625 | 2.868
) w0304 | 002241 | 0569 | 1546 | 0.016 | 0.958 | 56.986 | 57.633 | 28.836 | 56.473 | 0.003
eV —wi? | 0305 | 002234 | 0573 | 1.750 | 0.578 | 0.724 | 60.718 | 61.326 | 35.650 | 40.133 | 2.869
¢ —w® | 0299 | 0.02241 | 0.508 | 1.655 | 0.021 | 1.004 | 85.542 | 85.975 | 69.985 | 84.594 | 9.085

Table 21. The same as in table 19 but for IO neutrino masses.

C.3 Majorana neutrinos (seesaw mechanism)

If neutrino masses are described by the type-I seesaw mechanism with two right-handed

neutrinos, the texture-zero patterns of (Mg, M, ) that can explain the experimental data on

lepton masses and mixing parameters are presented in table 11. Here, we give the examples

of lepton models that can realise those texture zeros. For NO neutrino mass spectrum, the

representative models and corresponding predictions are provided in table 22 and 23. The

same is presented for IO in tables 24 and 25.
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Seesaw mechanism without gCP (NO)
Combinations #Po | #P oL PEe PNe kr, kge ke
£ _ o @m 912) L L9 2ol |1TVersl 2 2,-1 1,1,3 2
2 —m{ 9 [27a1 | 1810 2 —3,-2| 46,8 3
e _ o ©(1> mﬁ) o L9 2: @ 1: 1@ 1;@ 1’: 2 ~1,0 4,4,4 3
2 —m{ 9 (2701 | 101”01 2 —3,-2| 4,6,6 3
e —wd | of m“ 6 | 9| 201 | Velel” |[1”7e1 | 0,-1 1,5,5 3,3
P —wP 53( ) m“ 4| 9| 2e1 | 10101 |[Ve1”| 3,2 —2,22 | 0,0
e —wl 33( m“) 1819|201 | 10101 | 11 | 43 | —1,-1,1 | -1.1
eV —w @“ m“) 6 |9 | 201" [ 1091701 | 1®1 | 45 | -1,-1,-1] -1,1
Seesaw mechanism with gCP (NO)
Combinations #Po | #P oL PEe PNe kr kpe kne
o @Ei méﬂ 6 L8 | 200 2/ 91 2 | -1,-2 5,6 3
2 —ml 9 [ 2701 | 10101 2 —3,-4| 6,88 3
c® _ @Ei mg) ERET TR 2 2,1 ~1,3,3 2
2 —ml 9 2701 101" 01" 2 -3,-2| 6,68 3
® @ @Eli mi; R 3@ 1/ 1"@1651 2 1,-2 2,2,4 3
2 —m 8 | 2"@m1 201 2 —3,—4 7.8 3
o _ @(13 mi; ip | 8] Zel [1ere1 [ 2 2,1 | -1,-1,3 [ 2
2 —m s | 271 |[1"a1 01 2 —3,-4| 46,8 3
e ) QEIB - mgi p [0 [ 200 201 1"o1 | 1,2 3,4 2,2
IR 9 | 231 231" 1®1” | 4,3 2,1 1,1
¢ —wi | of @ m“ 6 | 9 |27a1 2’91 |1e1”]| o1 41 3,3
o _ 53%3) mil‘: 6 L9 2’; o1 / 2 &1 ] }/@ 1/ 1,4 5,2 0,2
27 —mf 9 [ 2@1 | w101’ [1"7a1 | 0,-1 1,5,5 3,3
¢ —wlm 33(” m“) 20 | 9 | 27e1 2ol |[1"®1 | 1,2 3,4 2,2
e —wi 33( ) sn<2) 6 |9 | 2ao1 2ol |1e1” ]| 1,2 3,4 2,2
e _ @E i fnili g L9 | 2e1 2" 31 17a1 | 1,2 3,2 2,2
o —mf 9 | 231" 2 @1 161”7 | 2,3 2,1 1,3
c® @Ei mii ENELT 2031 101" | -1,2 3,2 2,2
L I QTS 9 [27e1 | 2'e1” |[1a1”| 0,1 4,3 3,3
c? —wi @5 ) sn< T 14| 9| 21 | 10101” |[Ve1"]| 3,2 222 | 0,0
c® —wih | o m(” 18 | 9 | 201 | 101701 | 101 4,3 -1,-1,1 | -1,1
535) m“) 9 | 201" | 170101 | 1701 | 2.3 1,1,3 1,3
e —wi [ 2B m@) “ [ 9 |21 201" 1o1” | 1,-4 3,4 2,2
z)( sn<3 9 [2"@m1” 2/ 31 131 1,0 3,4 0,2
c® —wh 9( m“ 18 9 |21 | 1el1e0l |17al | 1,2 0,2,4 2,2
e —wih D( ) m<2 4|9 | 2e1 ] 18101 [Ve17| 1,2 0,2,4 2,2
C(1> w® 33( m“) 6|9 |21 ] 10101 |[Ve1’ | 45 | -1,-1,-1] -1,1
o0 @ ©§3> fsngl) o L9 28V |Telel | 1e1 | 23 1,1,3 1,3
3 8ol g 9 [ 271 |11l | 11 1,0 0,2,4 2,2
eV -wh [0 P 16 | 9 | 2791 | 101701 [17e1 | 1,2 2,2,4 2,2
eV -wlh [2P—m®P | 12 [ 9 | 2701 | 170101 [Va1”| 1,2 2,2,4 2,2
cCU-wh [0 15 | 9 | 201 [ 10101 [1701 | 1,2 —2,0,4 | 2,2

Table 22. Representative models for the viable patterns of texture zero in (Mg, M, ) that can
accommodate the experimental data at 3o level for NO neutrino mass spectrum. Here, neutrinos are
Majorana particles and their masses are assumed to be generated by the type-I seesaw mechanism.
The models are given without and with gCP. The same convention as table 14 is adopted.
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Seesaw mechanism without gCP (NO)

Combinations Predictions for Tnixing parameters and neutrino masses at best fitting point o
sin? 61 | sin? 613 | sin 6oy | dcp/7 | ¢/7 | mi/meV | ma/meV | mz/meV mgg/meV
o — oV | 0304 | 0.02245 | 0450 | 1.288 | 0.125 0 8614 | 50.096 | 2101 | 0.004
o oV | 0318 | 002215 | 0428 | 1.136 | 1.881 8.614 | 49.724 3.692 | 4.918
@ o8 ol | 0304 | 002239 | 0453 | 1.280 | 0.634 8.614 | 50.078 1761 | 0.039

3 5ol V| 0318 | 002215 | 0428 | 1.136 | 1.881 8.614 | 49.724 3.693 | 4.934
cW_w® [ 29—,V | 0304 | 002245 | 0449 | 1.245 | 1.350 8614 | 50114 | 3.648 | 0.064
c? -w? | 28 —mV | 0303 | 002248 | 0455 | 1.465 | 0.438 8.614 | 50.054 2.332 | 0.961
e —wh | oM a1 0304 | 0.02246 | 0.450 | 1.304 | 0.134 8.614 | 50.096 1.961 | 0.018
eV —wh [ 0 _mV | 0304 | 002246 | 0453 | 1.367 | 0.006 0 8.614 | 50.081 1.964 | 0.235
Seesaw mechanism with gCP (NO)

o’ -wy?

(==} Nen )l el el Rl el

o Predictions for mixing parameters and neutrino masses at best fitting point 5
Combinations — — 5 Ximin
sin® 619 | sin® 613 | sin®bo3 | dep/m | /7 | mi/meV | ma/meV | mg/meV | mgg/meV

2% — o) | 0300 |0.02252 | 0458 | 1.003 | 1.998 8.6139 | 50.160 | 3.659 | 4.214

1 2
o’ -ng? o - | 0304 |0.02246 | 0451 | 1.108 | 1.493 8.6144 | 5
ol . . . . . . 50095 | 3425 | 1491
oD@ 2% — o) | 0304 | 0.02246 | 0450 | 1.273 | 1.566 8.6139 | 50.099 3.637 | 0.001
2 folalomV | 0304 | 002246 | 0.451 | 1.070 | 1.953 8.6144 | 50.093 3709 | 2.234
oD o) — oV | 0305 | 0.02242 | 0452 | 1.163 | 0.624 8.6139 | 50.064 | 1466 | 0.704
2 5ol oW V| 0313 | 002227 | 0436 | 1.014 | 1.987 8.6139 | 49.844 3748 | 5.181
oD@ o0 ol | 0298 | 002262 | 0456 | 1.097 | 0.887 8.6139 | 50.157 1443 | 2.088
8 Polo®_a | 0316 | 002222 | 0430 | 1.014 | 1.988 8.6139 | 49.791 3.766 | 6.575
o o | DY oY | 0303 | 002246 | 0452 | 1318 | 1.028 8614 | 50.109 | 3.259 | 0.051
e -l

oW _m | 0304 |0.02246 | 0450 | 1.302 | 0.131
e —wi | 2@ —a | 0335 | 0.02273 | 0438 | 1.045 | 1.019
o — ¥ | 0316 |0.02220 | 0431 | 1.015 | 1.987
20 — ol | 0304 | 002245 | 0449 | 1.245 | 1.350
e W oM a1 0305 | 0.02246 | 0449 | 1.190 | 0.621
eV w2 —m® | 0305 | 0.02246 | 0.449 | 1.190 | 0.621
o —q | 0303 | 002246 | 0452 | 1.318 | 1.028
o ol | 0299 | 002249 | 0448 | 1.796 | 1.030
2P —m® | 0273 | 002248 | 0464 | 1.000 | 1.000
P oV | 0335 | 002273 | 0438 | 1.045 | 1.019
¢ —w? | 28 —mV | 0303 | 002248 | 0455 | 1.465 | 0.438
e —wh | oM —a | 0304 |0.02246 | 0450 | 1.304 | 0.134
o8 M | 0300 | 002266 | 0463 | 1.414 | 0.103
P —w® | 2P —m® | 0201 |0.02275 | 0502 | 1.676 | 1.680
o0 —m® | 0313 | 002226 | 0436 | 1.015 | 1.986
P —wh [ 20 —a® | 0305 | 0.02246 | 0.449 | 1.189 | 0.621
P w0 @ | 0305 | 0.02246 | 0.449 | 1.189 | 0.621
eV —wh | M _qD 1 0304 | 0.02246 | 0.453 | 1.367 | 0.006
0.302 | 0.02250 | 0.458 | 1.648 | 1.772
o8 —n® | 0304 | 002243 | 0455 | 1.738 | 0.716 8.614 | 50.062 3544 | 5.390
sV —w [ o — oM | 0305 | 0.02246 | 0.449 | 1.189 | 0.621 8614 | 50.095 | 1440 | 0.411
sV —wi [ o ;P | 0305 | 0.02246 | 0.449 | 1.189 | 0.621 0 8.614 | 50.095 1440 | 0411
eV —wh [ M a1 0303 | 0.02245 | 0.453 | 1.386 | 1.043 0 8.614 | 50.120 3544 | 0.336

8.614 50.096 1.986 0.015
8.614 50.345 1.784 10.717
8.614 49.773 3.769 6.495
8.614 50.114 3.648 0.064
8.614 50.095 1.440 0.408
8.614 50.095 1.440 0.408
8.614 50.109 3.259 0.051
8.614 50.261 2.341 6.966
8.614 50.100 1.170 11.456
8.614 50.346 1.784 10.723
8.614 50.054 2.332 0.961
8.614 50.096 1.961 0.018
8.614 49.972 1.501 1.208
8.614 49.805 1.324 13.186
8.614 49.861 3.746 5.146
8.614 50.095 1.440 0.411
8.614 50.095 1.440 0.411
8.614 50.081 1.964 0.235
8.614 50.076 1.462 3.638

(=) Bl el Nl el RoR =2 Rk Rl Rl el el Nl Nl ol Holl Rol E=2 E=1 R Rl el el ie i Rl Je i el o B el ol

Table 23. Best-fit values of the lepton mixing and neutrino mass parameters for the representative
models presented in table 22. For all cases, the predictions of the lepton mass ratios are me/m, =
0.00474, m,,/m, = 0.0586 and Am3,/Am3, = 0.030.
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Seesaw mechanism without gCP (10)

Combinations #Po | #P pL PEe PNe kL kge ke
)y @%‘2 —fng; 6 L8 2”@ 1 |1 e/e 17 @1” 2 1,2 2,2,4 1
2 —mf 8 | 2791 | ele1 2 -1,0 4,4,6 1
@ e | 98- 8 | 201 |1V@1"®1” | 2 1,2 2,2,4 1
G 2 —mD Y s T 2er | 1erer 2 ~1,0 4,4,6 1
ROEe 2 —mH TRERRE 2 1,-2 2,2,4 3
2 Pl —m(V 9 | 2701 | 10101 2 | -3,-6| 6,68 3
W e | P8 - 9 | 2701 | 1”011 2 | -1,-2| 246 3
G Ws 2 _;mD 2 2’31 | 10101 2 | 3,2 26,6 3
cW_wh oM _mV | 20 | 8 | 2”1’ 2'®1 1”91 | 5,6 -3,-2 | 0,0
c-wd 2PV | 16 | 9 | 201 | 1”"®1a1 |[1'a1”| 56 —2,0,0 | 0,0
c-w? o,V | 14 | 9 | 291 | 1"®101 [V®1”| 56 | —2,-2,0 | 0,0
c-wh PV | 18 | 9 | 2@1” |[1e1”e1” [1"®1 | 3.4 0,0,2 0,0
cH-wh @ _mV | 14 | 9 | 2701 | 1@101” [1"91 | 0,1 1,3,5 3,3
ch-wh M-V 16 | 9 | 201” | el1e1” [1”a1 | 0,1 3,3,5 3,3
ch-wl | 2P - | 12 | 9 | 201 | 1”ele1 |Vel”| 45 |-1,-1,-1|-1,1
cV-wh [PV | 15 | 8 | 2”01 | 1”@1e1’ |1"®1| 56 | —6,—2,0 | 0,0
Seesaw mechanism with gCP (10)
Combinations #Po | #P PL PEC pPNe kr, kge kne
W o | O - 9 | 201" 201" 1”®1 | 1,2 1,2 2,2
ar-m oM —mM P s Teer 2’01 1”@1 | 56 -3,-2 | 0,0
c-wl 2P - a | 16 | 9 | 201 2’61 1@1” | 4,5 0,—1 -1,1
2 9 | 201" 291" | 1”@1 | 0,-1 4,5 1,3
W e | P8 —n® 9 | 201 2’®1” | 1e1” | 1,0 3,2 2,2
G 20—, Y e e | 201 101 | 1,-2 3,4 0,2
2 —mM 9 | 2"@1 | 1@181” |1Ua1”| 56 —2,0,0 | 0,0
e w1 oM | 20 | 9 | 2701 2"@1 | 1"@1 | 1,2 3,4 2,2
ct-w |2 - | 16 | 9 | 21" 201" 1e1” | 1,2 3,4 2,2
) _ 2" —mV 5 L9 | Zer” 2’01 1"¢1 | 1,2 1,2 2,2
? b oM —mlY 9 | 21" 2’01 a1 | 0,1 4,3 1,3
o) SO {0 9 [ 2"a1 | 2'®1” 11 | 0,1 4,3 1,3
2 —m® 9 | 201" 2@ 11" | 1,0 3,0 2,2
e -y 33;3) —m%) H 9 | 2"a1 291" 161 1:2 3:2 0:2
o) —mV 9 | 2701 | 1"@101 |1Vel”| 56 | —2,-2,0 | 0,0
e -wh oV | 18 | 9 | 27e1” 201 17¢1 | 1,2 3,2 2,2
c-wi oM -—m® | 14 | 9 | 2@1” 201’ 191" | 1,2 3,-2 2,2
RO 2" —mV s L9 | 28 251" 1"®1 | 3,4 ~1,0 2,2
? Yol oM omM 9 | 281 2’31 181" | 2,1 2,3 1,3
e -wi 2P -V | 14 | 9 | 201 | 1”e1e1” [1"@1 | 3.4 —2,0,2 | 0,0
o) —miV 9 | 201" | 1@1"®1 | 1"®1 | 0,1 3,5,5 1,3
e 2 L L9 [ Zel” [1"elel” [1'e1” | 10 2,4,4 2,2

continues on next page
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Table 24 — continued from previous page

Combinations #Po | #P PL PEC PNe kr kge ke
o) —m® 9 | 281" | 2"l 181 | 1,0 3,4 0,2

2 —mM 9 | 2"a1 251 181”| 5,0 1,0 0,0

e -wh o -V | 18 | 9 | 201" | 101"@1” | 1701 | 1,2 2,2,4 2,2
c-wi |2 -—n® | 14 | 9 | 201" | 101”81 |1Tel”| 1,2 2,4,4 2,2
ch-wh 2PV | 16 | 9 | 201” | 101a1” [1”a1 | 0,1 3,3,5 3,3
cfV-wi | 2P -V | 12 | 9 | 201 | 1"ele1 |Vel”| 45 |-1,-1,-1|-1,1
W e | D8 - 9 | 201 |181”®1” | 1”"®1 | 0,—1 1,3,5 1,3
Com =W 2% —n® Py ey [1arer | 101 1,0 0,2,4 0,2
ch-wh oMV | 16 | 9 | 201" | Uslel” | 1701 | 1,2 2,2,4 2,2
cV-wi |2 - | 12 | 9 | 201" | 1”@l 61 |1Tel”| 1,2 0,2,2 2,2
c @ii—miz s L9 ?/@1, 1591”@1: 1,’/’@1, 2,1 -1,1,3 1,3
oM —m¢ 8 | 2a1 | 1”e@1e1 |1"1'| 56 | —2,-2,0 | 0,0

cP-wh | oWV | 1a | 9 | 2"a1 201 1791 | 3,4 -3,0 2,2

Table 24. The same as in table 22 but for IO neutrino
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