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Abstract The present paper deals with the dynamics of spa-
tially flat Friedmann–Lemaître–Robertson–Walker (FLR
W ) cosmological model with a time varying cosmological
constant � where � evolves with the cosmic time t through
the Hubble parameter H , that is, �(H). We use the expres-
sion of �(H) in the form of Taylor series with respect to H
keeping only the even powers of H because of the general
covariance of the effective action of quantum field theory in
a curved background. Dynamical systems for three different
cases based on the possibilities of gravitational constant G
and the vacuum energy density ρ� have been analysed. In
Case I, both G and ρ� are taken to be constant. We analyse
stability of the system by using the notion of spectral radius,
behavior of perturbation along each of the axes with respect
to cosmic time and Poincaré sphere. In Case II, we have
dynamical system analysis for G = constant and ρ� �= con-
stant where we study stability by using the concept of spectral
radius and perturbation function. In Case III, we take G �=
constant and ρ� �= constant where we introduce a new set of
variables to set up the corresponding dynamical system. We
find out the fixed points of the system and analyse the stabil-
ity from different directions: by analysing behaviour of the
perturbation along each of the axes, Center Manifold Theory
and stability at infinity using Poincaré sphere respectively.
Phase plots and perturbation plots have been presented. We
deeply study the cosmological scenario with respect to the
fixed points obtained and analyse the late time behavior of
the Universe. The effective equation of state parameter ωe f f ,
total energy density �t t are also evaluated at the fixed points
for each of the three cases and these values are in agree-
ment with the observational values in Aghanim et al. (Astron
Astrophys 641(A6): 2020, 2018). We have also presented
the EoS parameter for dark energy sector ωde(zr ), the Hub-
ble parameter H(zr ) and the deceleration parameter q(zr ) as
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functions of redshift zr for all the three cases and their plots
over redshift are also provided. We analyse the quintessence-
like, phantom-like or the purely cosmological-constant type
dark energy, etc behavior when the EoS approaches the fixed
point value near −1. The present values of ωde(zr ), H(zr ),
q(zr ) and zrt have been tabulated in Table 4 and they fall
within the range of cosmological observations. The transition
redshift value (zrt ) for each of the three cases have also been
evaluated. In each of the cases the developed model agrees
with the fact that the Universe is in the epoch of acceler-
ated expansion for suitable values of free parameters chosen.
The developed cosmological models associated with each of
the three cases have a deep connection with the accelerated
expansion phenomena of the evolving Universe.

1 Introduction

In the past two decades many researchers have put tremen-
dous efforts to develop and improve the plethora of theoreti-
cal models that explain the accelerated expansion of our Uni-
verse. Astrophysical measurements that reveal such a phe-
nomenon put into the quest to give convincing theoretical
explanations from various possible directions [1–11]. The
dark energy model is one such proposed model that attributes
the expansion phenomenon to an energy component with
negative pressure so called dark energy which dominates the
universe at late time. The simplest type of dark energy is
the cosmological constant [12]. In this context of accelerated
expansion the theory of general relativity (GR) modified by a
cosmological constant term �, which is known as the famous
� CDM model is one of the most popular one [13]. But,
despite its fine agreement with the observation data, there
are two major issues that have driven our young minds to
focus sharply on some modifications to the assumed � CDM
model, namely, “the cosmological constant problem” which
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deals with the discrepancy between theoretical and expected
values of the cosmological constant [14–16]; and “the cos-
mic coincidence problem” [17]. To mend up these issues,
running � cosmological models have been developed.

In the year 2002, Shapiro and Solá made the first devel-
opment regarding the scaling evolution of the cosmological
constant [18]. Various possible cosmological and astrophys-
ical implications have been presented on variable cosmolog-
ical constant as Planck scale effect and on running G as well
as at low energies from the side of physics [19,20]. Among
the running cosmological constant models that have been
proposed, it is worthy enough to mention the time depen-
dent cosmological constant motivated by quantum field the-
ory [21–23], �(t) cosmology induced by a slowly varying
Elko field [24], a running vacuum in the context of super-
gravity [25], etc. The first paper where an action functional
is associated to running vacuum was presented in [26]. The
models of the type �(H) have important implications both
on the theoretical arena as well as phenomenologically to
smooth out some of the existing tensions of the �CDM
model. The most important implication on the theoretical
side is that they can help to solve the cosmological constant
problem [27,28]. Some of the related papers which can be
of interest on these matters which are worthy of mentioning
are [29–32]. A detailed theoretical and phenomenological
explanation about these models can be found in [33,34] also.
In Newtonian gravity, without any requirement of further
constraints to be satisfied we can explicitly write the time
variation of G. But in GR there are other constraints to be
satisfied. For instance if we assume that the ordinary energy–
momentum conservation law holds then there should not be
any variation in the gravitational coupling with respect to
the space time or otherwise the ordinary energy–momentum
conservation law will be violated [35,36]. A direct applica-
tion of these ideas on running vacuum energy to study the
variation of the fundamental constants of nature is given in
[37,38]. In the light of Dirac’s idea [39–41] which propose
that some of the fundamental constants cannot remain con-
stant forever, it is essential to do some modifications in GR
field equations [42–44] if we are to consider this running cos-
mological constant term. In this regard, studying the cosmic
scenario with varying G needs modified field equations as
well as modified conservation laws. We can mention Brans-
Dicke theory where there are modifications of GR with a
varying G without violating the ordinary energy–momentum
conservation law [45–47]. There are many other models that
employ varying G theories that give a better understanding of
the Universe regarding its late time behavior and nature [47–
60]. As there are no rigorous proves that indicate whether the
cosmological constant is running or not [60], one can study
the cosmological implications of different possible theoreti-
cal assumptions of � term. Motivated by the quantum field
theory [19,20,61] and some theoretical motivations about the

varying � form [21,22], Aleksander Stachowski and Marek
Szydtowski have also studied the dynamics of cosmological
models with various forms of �(t) [62].

In this paper, we consider a running vacuum model which
evolves in power series of H . Our aim is to set up dynamical
systems out of the cosmological field equations by introduc-
ing new set of variables and study the stability of the systems
in the light of cosmological implications of the system. Based
on the possibilities of the gravitational constant G and the
vacuum energy density ρ�, we develop different dynamical
system for three cases and analyse the stability through dif-
ferent approaches by finding respective fixed points. The cos-
mological scenario associated with each fixed point has been
discussed in detail. We arrange the paper in the following
ways. In Sect. 2, we give preliminaries that provides a brief
introduction on dynamical systems approach to cosmology
with some definitions and theorems which will be required
to understand the subsequent analysis in the paper. In Sect. 3,
we have three cases. In case I of Sect. 3 we show the setting
up of cosmological equations and dynamical system analysis
where both G and ρ� are taken to be constants which is the
case of standard � CDM cosmology. Under Case I we have
three subsections based on analysis using spectral radius,
perturbation function and stability at infinity using Poincaré
sphere. We present, in Case II, the model dynamics where
G = constant and ρ� �= constant. Under case II, we have
two subsections based on analysis through spectral radius
and using perturbation along each of the axes with respect to
increase in cosmic time. In Case III we have dynamical sys-
tem analysis where G �= constant and ρ� �= constant. Under
Case III we present three subsections on the basis of analysing
stability by the use of perturbation function, Center Manifold
Theory and Poincaré sphere. In Sect. 4 we give conclusion
of our study. Stability analysis for each of the cases at the
respective fixed points is presented and their corresponding
cosmological implications along with the evaluation of var-
ious cosmological parameters at the respective fixed points
are also obtained.

2 Preliminaries

Dynamical system is a mathematical system that describes
the time dependence of the position of a point in the space that
surrounds it, termed as ambient space. Here, we are approach-
ing towards the system through an autonomous system of
ordinary differential equations, (ASODE). ASODE is a sys-
tem of ordinary differential equations which does not depend
explicitly on time. Surendra and Chingtham [63] have also
used this approach to study cosmological models in the pres-
ence of a scalar field using different forms of potential. From
[63] we can also notice that in three dimensional dynamical
system we can analyse stability by analysing the nature of
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perturbation along each of the axes. A dynamical system is
generally written in the form of the following [64]:

ẋ = f (x), (1)

where x = (x1, x2, . . . xn) is an element of state space X ⊆
R
n and the function f : X → X .
The overhead dot denotes the derivative with respect to

cosmic time, t . The function f (x) is such that f (x) =
( f1(x), f2(x), . . . fn(x)) which can be viewed as a vector
field in R

n .

Definition 2.1 [65] Fixed Point: The point x = xo of the
state space X ⊂ R

n is said to be a fixed point of the
autonomous equation ẋ = f (x) if and only if f (xo) = 0.

Definition 2.2 [65]Stable FixedPoint: A fixed point xo of a
dynamical system represented by ẋ = f (x) is called a stable
fixed point if for every ε > 0 there exist δ such that if ψ(t)
is any solution of the system satisfying ‖ ψ(to) − xo ‖< δ,
then the solution ψ(t) exists for all t ≥ to and it satisfies
‖ ψ(t) − xo ‖< ε for all t ≥ to.

Definition 2.3 [66] Local Stability: Let g : I → I be a
map and xo be a fixed point of g, where I is an interval of
real numbers. Then

(i) the fixed point xo is said to be locally stable if, for any
ε > 0, there exists δ > 0 such that, for all x ∈ I with
| x − xo |< δ, we have | gn(x) − xo |< ε, for all n ∈ N.
Otherwise, the fixed point xo will be called unstable;

(ii) the fixed point xo is said to be attracting if there exists
ζ > 0 such that | x − xo |< ζ implies limn→∞gn(x) =
xo;

(iii) the fixed point xo is said to be locally asymptotically
stable if it is both stable and attracting. If in the previous
item ζ = ∞, then xo is said to be globally asymptotically
stable.

Definition 2.4 Hyperbolic point: A fixed point x = xo ∈
X ⊂ R

n of the system ẋ = f (x) is said to be a hyperbolic
fixed point if none of the eigenvalues of the Jacobian matrix
at xo ,J (xo) have zero real part, otherwise the point is called
non-hyperbolic.

Definition 2.5 Jacobian matrix of dynamical system at a
fixed point: The Jacobian matrix of the dynamical system
given in (1) at a fixed point xo is given by

Jxo =

⎡
⎢⎢⎢⎢⎢⎣

δ f1
δx1

δ f1
δx2

. . .
δ f1
δxn

. . .

. . .

. . .
δ fn
δx1

δ fn
δx2

. . .
δ fn
δxn

⎤
⎥⎥⎥⎥⎥⎦

where δ fi
δxi

, i = 1, 2, . . . , n denotes the first partial derivative

of fi with respect to the i th component xi of the element
x = (x1, x2, . . . xn) ∈ X ⊆ R

n .

The concept of Linear stability theory is one of the sim-
plest ways used to understand the dynamics of a system near
a fixed point. In Linear stability theory, the function f is
assumed to be sufficiently regular so that we can linearise
the system around its fixed point. The eigenvalues of the
Jacobian matrix at a fixed point play an important role in
studying the stability of the fixed point.

For hyperbolic fixed points if all the eigenvalues of Jxo
have positive real parts, then xo acts as a repeller and it is
unstable as all the trajectories closed enough to it are repelled
from it. xo is stable when all the eigenvalues of Jxo have
negative real parts. Here xo is called asattractor and it attracts
all nearby trajectories towards it. If at least two eigenvalues
have real parts with opposite sign then, xo behaves as a saddle
fixed point which attracts trajectories in some directions and
repels along other directions.

If at least one of the eigenvalues of the Jacobian matrix at a
fixed point xo have zero real part then we can not do stability
analysis by using eigenvalues of the Jacobian matrix. Such
a fixed point is referred to as non-hyperbolic fixed point.
To analyse stability of such fixed points we need a better
approach other than the linear stability analysis like Center
manifold theory, perturbation function, Lyapunov stability.
Center manifold theory is the most popular method which
reduces the dimensionality of the system and determines the
stability of the critical points of the parent system according
as the stability of the reduced system. Wiggins [64] and Carr
[67] have discussed the Center manifold theory in detail.

The eigenvalues of the Jacobian matrix J with order n×n
given in Definition 2.5 will have n eigenvalues. The eigen-
vectors of J associated to the eigenvalues with negative real
part spans a vector space called stable space, J s and the
eigenvectors associated with positive real part spans a vec-
tor space called the unstable space, Ju . Similarly J c repre-
sents the vector space spanned by the eigenvectors associated
with zero real part. Here, the superscript s, u, c denote the
dimensions of the respective vector spaces. Also the spaces
J s, Ju and J c are the subspaces of R

n . The space R
n can

be written as the direct sum of these three subspaces, that
is, R

n = J s ⊕ Ju ⊕ J c. These results have been detailed in
Carr’s book [67], Elaydi’s book [68] and Zhang’s book [69].
If at least one eigenvalue of J at a fixed point xo has positive
real part then xo will be unstable whether it is hyperbolic
or not. But if xo is non-hyperbolic and no eigenvalues has
positive real part, then we can use Center manifold theory to
determine stability of the fixed point.

Let us consider a two dimensional dynamical system.
Using a suitable coordinate transformation we can rewrite
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any system of the form (1) as follows:

ẋ = Ax + f (x,y),
ẏ = By + g(x,y),

}
(2)

where A is a c × c matrix having eigenvalues with zero real
parts, B is an s × s matrix having eigenvalues with negative
real parts and (x,y) ∈ J c × J s . The functions f and g satisfy
the following:

f (0, 0) = 0 (3)

g(0, 0) = 0 (4)

∇ f (0, 0) = 0 (5)

∇g(0, 0) = 0. (6)

Definition 2.6 [67] Center Manifold: A geometrical space
Mc(0) is a center manifold for (2) if it can be locally repre-
sented as

Mc(0) = {(x,y) ∈ J c × J s |y = h(x), |x| < δ, h(0)

= 0,∇h(0) = 0}, (7)

for a sufficiently regular function h(x) on J s and δ however
small it may be. The proofs of the existence of the center
manifold for the system (2) is also provided in [67] and he
has given the dynamics of the system (2) restricted to the
center manifold as follows:

v̇ = Av + f (v, h(v)), (8)

for sufficiently small v ∈ R
c.

Theorem 2.1 [70] Consider a flow defined by a dynamical
system on R

2

ẋ = P1(x, y),
ẏ = P2(x, y),

}
(9)

where P1 and P2 are polynomial functions of x and y. Let
P1m and P2m denote themth degree term in P1 and P2 respec-
tively. Then, the critical points at infinity for the mth degree
polynomial system (9) occur at the points (X,Y, 0) on the
equator of the Poincaré sphere where

X2 + Y 2 = 1andX P2m(X,Y ) − Y P1m(X,Y ) = 0,

or equivalently at the polar angle θ j and θ j + π satisfying

Gm+1(θ) ≡ cosθQm(cosθ, sinθ) − sinθ Pm(cosθ, sinθ)

= 0

This equation has at most m+ 1 pairs of roots θ j and θ j +π

unless Gm+1(θ) is identically zero. If Gm+1(θ) is not iden-
tically zero, then the flow on the equator of the Poincaré
sphere is counter-clockwise at points corresponding to polar
angles θ where Gm+1(θ) > 0 and it is clockwise at points
corresponding to polar angles θ where Gm+1(θ) < 0.

Theorem 2.2 [70] The flow defined by (9) in a neighbor-
hood of any critical point of (9) on the equator of S2, except
the points (0,±1, 0), is topologically equivalent to the flow
defined by the following system

± ẏ = yzm P1

(
1

z
,
y

z

)
− zm P2

(
1

z
,
y

z

)
,

± ż = zm+1P1

(
1

z
,
y

z

)
,

the signs being determined by the flow on the equator of S2

as determined in Theorem 2.1.

Theorem 2.3 [70] Let us consider a flow in R
3 defined by

ẋ = P1(x, y, z),
ẏ = P2(x, y, z),
ẏ = P3(x, y, z),

⎫⎬
⎭ (10)

where P1, P2 and P3 are polynomial functions of x, y, z of
maximum degree m.

The critical points at infinity for themth degree polynomial
system (10) occur at the points (X,Y, Z , 0) on the equator
of the Poincaré sphere S3 where X2 + Y 2 + Z2 = 1 and

X P2m(X,Y, Z) − Y P1m(X,Y, Z) = 0,

X P3m(X,Y, Z) − Z P1m(X,Y, Z) = 0,

Y P3m(X,Y, Z) − Z P2m(X,Y, Z) = 0,

where P1m, P2m and P3m denote the mth degree terms in P1,
P2 and P3 respectively.

Theorem 2.4 [70] The flow defined by the system (10) in a
neighborhood of (±1, 0, 0, 0) ∈ S3 is topologically equiva-
lent to the flow defined by the system:

± ẏ = ywm P1

(
1

w
,
y

w
,
z

w

)
− wm P2

(
1

w
,
y

w
,
z

w

)
,

± ż = zwm P1

(
1

w
,
y

w
,
z

w

)
− wm P3

(
1

w
,
y

w
,
z

w

)
,

± ẇ = wm+1P1

(
1

w
,
y

w
,
z

w

)
.

3 Dynamical system analysis for different possibilities
of G and ρ�

In this section we present the dynamical system analysis
when G =constant and ρ�=constant. This is a standard
model and we present it as case I of our analysis.

Case I: Dynamical system analysis whenG = constant
and ρ� = constant

The Einstein field equations in the presence of cosmolog-
ical constant � are given by

Rμν − 1
2gμνR = 8πG(Tμν + gμνρ�),

Rμν − 1
2gμνR = 8πGTμν,

}
(11)
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where Tμν is the ordinary energy–momentum tensor, Tμν ≡
Tμν + gμνρ� is the modified energy–momentum tensor and
ρ� = �

8πG is the vacuum energy density in the presence of
�.

We assume that the universe is filled with a perfect fluid
with velocity four-vector field Vμ. With this consideration
we have Tμν = −pmgμν + (ρm + pm)UμUν , where ρm
is the density of matter-radiation and pm = (γ − 1)ρm is
the corresponding pressure. In the similar way, the modified
energy–momentum tensor can be expressed as

T = −ptt gμν + (ρt t + ptt )UμUν, (12)

where ptt = pm + p�, ρt t = ρm + ρ� and p� = ωdeρ�

is the associated pressure in the presence of �. With this
substitution in the above expression we have

T = (ρ� − pm)gμν + (ρm + pm)UμUν (13)

By assuming a spatially flat Friedmann–Lemaître–
Robertson–Walker(FLRW) metric along with the above
modified energy–momentum tensor [71–74], we have the
following gravitational field equations:

8πGρt t ≡ 8πGρm + � = 3H2, (14)

8πGptt ≡ 8πGpm − � = −2Ḣ − 3H2, (15)

where the overhead dot denotes the derivative with respect
to the cosmic time t .

With the help of FLRW metric and the Bianchi identi-
ties by respecting the Cosmological Principle embodied in
the FLRW metric we have the following generalized local
conservation law:

ρ̇m + ρ̇� + 3H(ρm + pm + ρ� + p�) = 0. (16)

If we put pm = (γ − 1)ρm and p� = ωdeρ�, where we
assume that ωde → −1 in the above equation we have the
following balanced conservation equation:

ρ̇m + 3γ Hρm = −ρ̇�. (17)

Since ρ� is taken to be constant the right hand side of the
above equation vanishes to give the following equation:

ρ̇m + 3γ Hρm = 0. (18)

Motivated by the work of Aleksander Stachowski et al.
[62], let us consider that the cosmological constant � evolves
with time through the hubble parameter H with �(H) given
in the form of Taylor series with respect to H .

�(H) =
∞∑
n=0

1

2n!
d2n

dH2n �(H)|0H2n

⇒ �(H) = �o + α2H
2 + α4H

4 + · · · (19)

where �0 = �(H)|0 and α2n
′s, n = 1, 2, . . . are the coef-

ficients in the Taylor series expansion of �(H) given by

α2n = 1
2n!

d2n�(H)

dH2n |0, n = 1, 2, . . .

The constant �o in (19) denotes the dominant term when
H is near the current value Ho. The reason why only even
powers of H appear in the running cosmological constant is
due to the general covariance of the effective action of quan-
tum field theories and there are no covariant structures which
are odd in metric derivatives [75]. This was also explained in
[18] and in more detail in [76]. The contribution of only the
even powers of Hubbble parameter to the time varying �(t)
has also been presented in detail in [21]. In the year 2020, the
particle production and the corresponding entropy increase in
running vacuum model was studied and explanations about
the cosmic history from the very early Universe upto the cur-
rent Universe and further into the final de Sitter era was also
given in [77]. The implication from these even powers of H
for the early Universe and for the current Universe is clearly
explained in [77]. At early stage of the Universe the presence
of H4 in the vacuum energy density triggers inflation while
H4 term becomes irrelevant in the late epochs of the cur-
rent Universe [77]. The inflationary models triggered by the
power H4 were first proposed phenomenologically in [78]
and later Hn situation is also studied in [77,79]. In the sub-
sequent studies, they were first supported from string theory
[75,80]. Recent analysis has been made on the gravitational
and chiral anomalies in the running vacuum Universe and
the study of the matter–antimatter asymmetry is also given
in [80]. Also, the study of the stringy-running-vacuum-model
inflation from primordial gravitational waves and stiff axion
matter to dynamical dark energy is done in [75]. In addition,
a detailed analysis of the vacuum energy density of quan-
tum field theory in FLRW spacetime is also presented in
[28]. Also they have proven from first principles that a series
of even powers of H emerges, hence predicting a generic
mechanism of inflation fully based on quantum field theory
in curved space time [28]. Thus it is no longer an ad hoc
assumption but, it is a result of a calculation in quantum field
theory in curved backgrounds.

Now, using (19) in (15), we obtain the following relations:

− 2Ḣ − 3H2 = 8πG(γ − 1)ρm − �0 − α2H
2 − α4H

4 − · · · ,

that is, 2Ḣ = �0 + (α2 − 3)H2 + α4H
4 + · · ·

−8πG(γ − 1)ρm , (20)

To set up the dynamical system we consider a new variable
x = ( H

8πG )2 and substitute y = ρm for our convenience in
the subsequent analysis. With this substitution we can express
(20) in terms of x and y as follows:

2Ḣ = 8πGẋ√
x

= 8πG[C0 + β1x + β2x
2

+ · · · − (γ − 1)y], (21)
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where

Co = �o

8πG
;βi

=
{

(α2 − 3)8πG, i = 1,

α2 j (8πG)(2i−1), i ≥ 1,
i = 1, 2, . . . and j ≥ 2.

Since we want to do qualitative analysis on the current
Universe and its behaviour in the late time, we consider only
a few powers of H beyond the termCo so as to ensure a better
�CDM limit. All the other terms involving higher powers of
H beyond H2 term are neglected as their contribution is
completely negligible at present [37,77,78].

Using (21) and the newly introduced variables in the above
field equations, we obtain the following set of ordinary differ-
ential equations which will represent the required dynamical
system:

x ′ = dx

d�
= dx

dt

dt

d�
,

where � = ln a denotes the logarithmic time with respect
to the scale factor a. The overhead dash denotes the deriva-
tive with respect to � while the overhead dot denotes the
derivative with respect to cosmic time t .

x ′ = 1

8πG
(C0 + β1x − (γ − 1)y). (22)

y′ = dy

d�
= dy

dt
.
dt

d�
,

that is,

y′ = −3γ y. (23)

To analyse stability, firstly we need to find the fixed points
of the system. For this we equate x ′ = 0, y′ = 0, that is,

x ′ = 1

8πG
(C0 + β1x − (γ − 1)y) = 0.

This implies

x = (γ − 1)y − Co

β1
,

where β1 = (α2 − 3)8πG and y′ = −3γ y = 0.
This implies either y = 0 or γ = 0. We can also have

y → 0 in evaluating the fixed point. We need to observe
both the possibilities and their implications to the evolving
cosmological scenario. When y = 0 in the expression of x
above we get x = −Co

(α2−3)8πG . So the first fixed point we have

obtained is F1 = ( −Co
(α2−3)8πG , 0). Again when γ = 0 then

from (18) we see that ρm = constant. Let us suppose that
ρm = ξ , that is, y = ξ . Then the second fixed point we have
obtained for the case of γ = 0 is F2 = (

−Co−ξ
(α2−3)8πG , y = ξ).

When we consider y → 0 we will obtain a special case
of non-hyperbolic fixed points called a normally hyperbolic
fixed point which is actually a set of non-isolated fixed points.
For normally hyperbolic fixed points stability is decided by

the sign of real part of the remaining eigenvalue even if one
of the eigenvalues of the Jacobian matrix vanishes. So when
we choose y → 0 then we can write the fixed point as
F3 = ( −Co

(α2−3)8πG , y → 0). Now let us evaluate the Jaco-
bian matrices JF1 , JF2 and JF3 at the respective fixed points
to study the stability of the system.

Let f (x, y) = 1
8πG (C0 + β1x − (γ − 1)y), g(x, y) =

−3γ y.
The Jacobian matrix at the respective fixed points are given

by

JF1 = JF3 =
(

fx fy
gx gy

)
=

(
β1

8πG
−(γ−1)

8πG
0 −3γ

)
,

JF2 =
(

β1
8πG

1
8πG

0 0

)
,

where β1 = (α2 − 3)8πG.
The above matrices are upper triangular matrices. We all

know that the eigenvalues of the Jacobian matrices are given
by the diagonal entries. So, the eigenvalues of JF1 = JF3 are
EV J1

1 = EV J3
1 = β1

8πG = (α2 − 3), EV J1
2 = EV J3

2 = −3γ

and those of JF2 are EV J2
1 = EV J1

1 = β1
8πG = (α2 − 3),

EV J2
2 = 0. The fixed points F1 and F3 are hyperbolic for

γ �= 0 as none of the eigenvalues vanishes. When γ �= 0,
EV J1

1 , EV J3
1 < 0 for α2 < 3 and EV J3

1 ,EV J1
2 < 0 for all

γ ∈ (0, 2]. As all the eigenvalues of JF1 and JF3 possess
negative values for γ �= 0, α2 < 3, F1 and F3 are stable
fixed points. If y → 0 is considered, though EV J3

2 = 0
F3 is still stable as the remaining eigenvalue (α2 − 3) is
negative for α2 < 3. The fixed points F1 and F3 are stable
and behaves as an attractor for α2 < 3. Figures 1 and 2
shows the phase plot of F1 for γ = 4

3 and γ = 2 respec-
tively with α2 = 2 < 3 where all the nearby trajectories
are attracted towards it. When α2 > 3, the eigenvalues of
JF1 possess opposite signs which shows that F1 behaves as
a saddle fixed point. Figure 3 shows the phase plot of the
system for α2 = 4 > 3 where trajectories in some directions
are attracted towards F1 while trajectories along some other
directions are repelled away from it. For the fixed point F2

we see that JF2 is non-hyperbolic as one of the eigenvalues,
namely, EV J2

2 = 0. For non-hyperbolic fixed point F2 we
can not analyse stability using the above linear stability the-
ory. Since it is a two dimensional dynamical system we can
use the notion of perturbation function and spectral radius
of the Jacobian matrix for the non-hyperbolic fixed point F2

to analyse the stability. In the subsequent paragraph we will
show the stability analysis using these methods.

A. Stability analysis for F2 using the concept of Spec-
tral radius:

Let’s rewrite the Jacobian matrix at the fixed point F2 as
follows:

123



Eur. Phys. J. C           (2022) 82:863 Page 7 of 27   863 

Fig. 1 The phase plot for F1 at α2 = 2 < 3, γ = 4
3 , stable attractor

Fig. 2 The phase plot for stable F1 at γ = 2, α2 < 3

JF2 =
(

(α2 − 3) 1
8πG

0 0

)
.

Trace of JF2 , tr(JF2) = sum of eigenvalues = EV J2
1 + EV J2

2
=(α2 − 3).

Determinant of JF2 , det (JF2) = product of eigenvalues =
EV J2

1 × EV J2
2 = 0 .

The spectral radius of a matrix is the maximum of the
absolute values of all the eigenvalues of the matrix. The sta-
bility of a fixed point (x, y) of a dynamical system can be

Fig. 3 The phase plot for F1 at α2 = 4 > 3 representing saddle point

determined by the value of spectral radius of its Jacobian
matrix evaluated at the fixed point. The notion of spectral
radius in discussing stability of a fixed point has been given
in detail in [68].

The spectral radius of the above Jacobian matrix is given
by

σJF2
= max{|λ| : λ is the eigenvalue},
= max{|α2 − 3|, 0},
=

{
α2 − 3, α2 > 3,

−(α2 − 3), α2 < 3.
(24)

By theorem [[68], page 221], F2 will be locally asymptot-
ically stable if σJF2

< 1. And we can not determine stability
when σJF2

= 1 and hence Center manifold theory is very
useful in analysing stability. With reference to [[68], page
200], spectral radius will be less than unity if and only if

|tr(JF2)| − 1 < det (JF2) < 1.

From the above arguments, F2 is locally asymptotically
stable for 3 < α2 < 4 or 2 < α2 < 3. It can be noted that we
have assume α2 �= 3 here so that we can study our system
with fixed points in finite phase plane.

B. Stability analysis for F2 using the concept of Per-
turbation function:

To analyse stability in a simpler way we find perturbation
function along each axis as a function of logarithmic time
�. It is noted that while studying perturbation along x-axis
we assume y = 0 as we are analysing only along x-axis.
We can make the interval where α2 lies finer by analysing
the stability from this side of perturbation function. Now to
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find the perturbation function we perturb the system by a
small amount, that is, x = −co−ξ

(α2−3)8πG + ηx and y = ξ + ηy ,
where ηx and ηy represent small perturbations along x and
y axes respectively. With these perturbed system, (22) and
(23) takes the following form:

η′
x = 1

8πG

(
Co + β1

( −Co − ξ

(α2 − 3)8πG

)
+ ηx

)
.

Solving the above differential equation we obtain ηx as a
function of logarithmic time, � as follows:

ηx = e(α2−3)� + ξ

(α2 − 3)8πG
. (25)

Similarly,

ηy = C − ξe3γ�

e3γ�
. (26)

When α2 < 3, as � tends to infinity the perturbation along
x-axis, ηx evolves to a constant value which is ξ

(α2−3)8πG . In
the above expression of ηy if we consider � → ∞, we get
∞
∞ form. So we can apply L Hospital’s rule of finding limit
in the expression of ηy to obtain its limiting value as −ξ for
any value of γ . We can also directly put γ = 0 in (23) to get
η′
y = 0 and obtain ηy =constant. But by doing so we won’t

be able to show the nature of ηy in terms of � and further
with (26) we can achieve the constant value towards which
ηy evolves in a finer way. As perturbation along both the
axes evolve to a constant value when α2 < 3, we conclude
that F2 is stable for α2 < 3 and it is locally asymptotically
stable for 2 < α < 3. If � = {α2 : ηx → 0 or a constant
∧ ηy → 0 or a constant}, then F2 is stable for any α2 ∈ �

where � = (−∞, 3). The perturbation plots shown in Fig. 4
shows the variation of perturbation function along y axis
with respect to � for F2. From Fig. 4 we see that when
γ = 0, ηy becomes a constant function, but if γ �= 0 then
as � → ∞, ηy takes ∞

∞ form. So by applying L Hospital’s
rule as � → ∞, ηy tends to −ξ which is a constant value.
Figure 5 shows that the perturbation along x-axis tends to a
constant value, namely, ξ

(α2−3)8πG when α2 < 3. In the plot
shown in Fig. 5 we take ξ = 1, 8πG = 1 and α2 = 2.5 < 3
to show that ηy tends to ξ

(α2−3)8πG = −2 here.

In terms of the variables x and y we obtain the value of
effective equation of state ωe f f and total energy density �t t

as follows:

ωe f f = ptt
ρt t

,

= −1 − α2 − 3

3
− Co

24πGx
+ (γ − 1)y

24πGx
, (27)

where ρt t = 24πGx and ptt = (−24πGx − β1x − Co +
(γ − 1)y;

�t t = �o

3(8πG)2x
+ α2

3
+ y

24πGx
, (28)

Fig. 4 Variation of ηy with respect to � for F2

Fig. 5 The variation of ηx with respect to � for F2

where vacuum energy density, �� = �o
3(8πG)2x

+ α2
3 and

matter density, �m = y
24πGx .

With the redshift function a(t) = 1
1+zr

we express the EoS
for dark energy sector ωde, the Hubble parameter H and the
deceleration parameter q in terms of redshift zr as follows:

ωde = y

3ρ2
�

(−α2ρ� − γ + 1) − α2

3

− Co

24πGx
+ y

24πGxρ�

((γ − 1)(y + ρ�) − Co),

(29)

, where ωde is the EoS for dark energy sector.
This implies,

ωde(zr ) = E1m

ρ�

(
2

9 ln (1+zr )
E1

− γ

)
eγ (1+ ρ�

ξ
)

+ 2

9 ln( 1+zr
E1

)
− 1, (30)

H(zr ) =
(

9

2

(
3 − α2

3
+ (1 + zr )3γ

9
− 40.309

)

×
(

ln
(1 + zr )

b1

) 1
2

, (31)
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Table 1 Table for Case I (G=constant, ρ�=constant)

Fixed points x y Type of fixed
point

Eigenvalues ωde �t t Behavior

F1
−Co
β1

, where β1 =
(α2 − 3)8πG

0 Hyperbolic α2 − 3, -3γ −1 0.99 � 1 Stable for α2 < 3 and
γ �= 0, late time
attractor; saddle point
for α2 > 3, unstable

F2
(−Co−ξ)

β1
where

β1 =
(α2 − 3)8πG

ξ Non-hyperbolic (α2 − 3), 0 −1.11 at γ = 4
3 ,

−0.66 at γ = 0
1 Stable for α2 < 3,

locally asymptotically
stable for 2 < α2 < 3

F3
−Co
β1

where β1 =
(α2 − 3)8πG

y → 0 Normally
hyperbolic for
γ = 0

(α2 − 3) ,0 −1 1 Stable for γ ∈ [0, 2],
behaves as late time
attractor for α2 < 3

q(zr ) = −1

18

(
3γ (1 + zr )3γ

−38.97 + (1+zr )3γ

9

)

− 1

2 ln (1+zr )
B1

− 1, (32)

where E1m , E1, b1, B1 are arbitrary constants.
Also we have the transition redshift, zrt as follows:

zrt = {zr : qzr = 0}. (33)

At F1 the value of EoS parameter ωde is calculated as
−1 which assures the presence of negative pressure in the
existing cosmological scenario with the numerical value of
�t t as �t t ≈ 1. Thus the presence of this late time attractor
contributes to our model with an accelerated expansion phase
of the Universe with ωde = −1 and �t t = 0.99 ≈ 1 which is
in agreement with the observational data in [81]. Also when
we evaluate the above cosmological parameters at the fixed
point F2, we obtained ωde = −1 − (γ−1)

3 where we have
taken ξ = ρ2

�. So, ωde = −2
3 = −0.66 > −1 when γ = 0

and ωde = −1.11 < −1 when γ = 4
3 . The relative energy

density at F2 is found to be �t t = 1. These results have
been tabulated in Table 1. To analyse the phantom-like or
quintessence like behavior, lets us discuss ωde by expressing
it in terms of redshift zr .

The expression given by (30) is very useful to study the
behaviour of the EoS at late time when the cosmic time t tends
to infinity. We can analyse the phantom-like or quintessence-
like behaviour when the redshift parameter zr approaches the
fixed point value near −1. Figure 6 shows the plot for ωde

with respect to zr . In this plot we see that the Universe is in
the phantom-like phase at the present epoch (assuming the
present value of scale factor to be unity) with the present value
of EoS obtained as ωde � −1.029 < −1. As z → −1 at late
time it is observed that the curve approaches the phantom
region. As we know that the deceleration parameter deter-
mines the accelerating or decelerating behaviour while the
Hubble parameter decides the rate of expansion of the Uni-

Fig. 6 The plot for ωde versus redshift zr for case I at E1m =
0.000097ρ�, γ = 4

3 , E1 = 200, ξ = 1300ρ�

verse, it is also important to analyse the behavior of these
parameters in redshift. From the plots shown in Figs. 7 and
8 respectively, we see that the Hubble parameter increases
with the increase in time while the deceleration parame-
ter decreases monotonically with deceleration–acceleration
transition taking place at zrt � 0.71. This value of zrt repre-
sents the the value of the transition point from early deceler-
ated regime q(zr ) > 0(corresponding to (zr > zrt ), into cur-
rent accelerated one q(zr < 0) (corresponding to (zr < zrt ))
and it remains close to the �CDM [61]. Also the present val-
ues of the above parameters are tabulated in Table 4 and these
results are in agreement with those reported in [61,82–85].

C. Stability at infinity and Poincaré sphere:
The detail explanation of Poincaré sphere and behavior at

infinity is given in [70]. By using stereographic projection
we can study the behavior of trajectories far from origin by
considering the so-called Poincaré sphere where we project
from the center of the unit sphere S2 = {(X,Y, Z) ∈ R

3 :
X2 +Y 2 + Z2 = 1} onto the (x, y)-plane tangent to S2 at the
north pole [70] by using the transformation of coordinates
given by
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Fig. 7 The graphical behaviour of H(zr ) in redshift with b1 = 1013,
α2 = 2 < 3, γ = 4

3

Fig. 8 The graphical behaviour of q(zr ) in redshift with B1 = 2.82,
γ = 4

3

x = X

Z
, y = Y

Z
. (34)

The equations defining (X,Y, Z) in terms of (x, y, z) are
given by

X = x√
1 + x2 + y2

,Y = y√
1 + x2 + y2

,

Z = 1√
1 + x2 + y2

.

The critical points at infinity are mapped on the equator of
the Poincaré sphere. We consider the following flow in R

2:

x ′ = 1

8πG
(Co + β1x − (γ − 1)y), (35)

y′ = −3γ y. (36)

Let f (x, y) = 1
8πG (Co + β1x − (γ − 1)y), g(x, y) =

−3γ y. The degree of this polynomial system is one and let
f1 and g1 denotes the homogeneous polynomials in f and
g of first degree, that is, f1 = 1

8πG (β1x − (γ − 1)y), g1 =
−3γ y. In terms of the polar coordinates r , θ with x = r cos θ ,

y = r sin θ , we can express the above equations as

r ′ = Cocosθ

8πG
+ r

((
3γ + β1

8πG

)
cos2θ

−3γ + (γ − 1)sin2θ

16πG

)
, (37)

θ ′ = −Cosinθ

8πG

1

r
−

(
3γ + β1

8πG

)
sin2θ

2

+ (γ − 1)sin2θ

8πG
. (38)

Order of r in (37) as r → ∞ is ī = 1 and that of (38) is
j̄ = 0. Let us denote k̄ = ī − j̄ = 1 − 0 = 1. And using
(37), we have

lim
r→∞ r ′ = lim

r→∞
dr

d�
= ∞ �= 0.

Then using Theorem 2.1 we findG2(θ) which is also equal
to the highest power term in r of the �′ expression [86].

G2(θ) = −3γ sin2θ

2
− β1sin2θ

16πG
+ (γ − 1)sin2θ

8πG
. (39)

Solving θ for which G2(θ) = 0 we get θ = nπ , where
n = 0,±1,±2, . . . So we can conclude that G2(θ) is not
identically equal to zero but it becomes zero in those direc-
tions where θ takes the value nπ . Since G2(θ) has at most
2 pairs of roots θ and θ + π , the equator of the Poincaré
sphere has finite number of fixed points located at θ such
that G2(θ) = 0, that is, at θ = 0, π, π, 2π or equivalently
θ = 0, π . At γ = 0, 4

3 and 2, G2(θ) takes the following
form:

G2(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(α2−3)sin2θ
2 − sin2θ

8πG , γ = 0;
−(1+α2)sin2θ

2 + sin2θ
24πG , γ = 4

3 ;
−(3+α2)sin2θ

2 + sin2θ
8πG , γ = 2.

(40)

The flow on the equator of the Poincaré sphere is coun-
terclockwise at points corresponding to polar angles {θ :
θ < tan−1[(3 − α2)8πG]} where G2(θ) > 0, for example
θ = (2nπ + π

4 ), n = 0,±1,±2, . . . with α2 < 3 − 1
8πG .

The flow is clockwise at points corresponding to polar angles
{θ : θ > tan−1((3 −α2)8πG)} where G2(θ) < 0, for exam-
ple θ = (2n+ 1)π

2 . For γ = 4
3 the flow on the equator of the

Poincaré sphere is counterclockwise at points correspond-
ing to polar angles {θ : θ > tan−1[(1 + α2)24πG])} where
G2(θ) > 0 and the flow is clockwise at points correspond-
ing to polar angles {θ : θ < tan−1[(1 + α2)24πG]} where
G2(θ) < 0. For γ = 2 the flow is counterclockwise at points
corresponding to polar angles {θ : θ > tan−1((3+α2)8πG)}
where G2(θ) > 0 and the flow is clockwise at those points
corresponding to polar angles {θ : θ < tan−1((3+α2)8πG)}
where G2(θ) < 0.
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By Theorem 2.1, the critical points at infinity for the
system occur at the points (X,Y, 0) on the equator of the
Poincaré sphere where X2 + Y 2 = 1 and

Xg1(X,Y ) − Y f1(X,Y ) = 0,

where f1(x, y) = (α2 −3)x− (γ−1)y
8πG and g1(x, y) = −3γ y.

Using (34), the above equation becomes

− 3γ XY − (α2 − 3)XY + (γ − 1)Y 2

8πG
= 0. (41)

Solving for X and Y from the above equations, we find
that fixed point occurs at (±1, 0, 0). Also we see from the
expression in (41) that for γ = 0 the flow on the equator of S2

is clockwise for XY > 0 and counterclockwise for XY < 0.
For γ = 4

3 , the flow on the equator of S2 is clockwise for

XY > 0 and −(1 + α2)XY > Y 2

24πG ; and the flow is coun-
terclockwise for XY < 0. For γ = 2, the flow on the equator
of S2 is clockwise for XY > 0 and −(3 + α2)XY > Y 2

8πG
; and the flow is counterclockwise for XY < 0. Using The-
orem 2.2, the behavior in the neighbourhood of the critical
point (1, 0, 0) is topologically equivalent to the behavior of
the following system,

y′ = yz f

(
1

z
,
y

z

)
− zg

(
1

z
,
y

z

)
, (42)

z′ = z2 f

(
1

z
,
y

z

)
, (43)

where the overhead dash denotes the derivative with respect
to logarithmic time �.

Putting the expressions of f, g in (42) and (43) we get

y′ = yz
Co

8πG
+ ((α2 − 3) + 3γ )y − (γ − 1)y2

8πG
, (44)

z′ = Coz2

8πG
+ (α2 − 3)z − (γ − 1)yz

8πG
. (45)

The Jacobian matrix of the above system is

Jin f (0, 0) =
(

(α2 − 3) + 3γ 0
0 α2 − 3

)

This is a diagonal matrix. So the eigenvalues are given
by the main diagonal entries, that is, m1 = (α2 − 3) + 3γ

and m2 = α2 − 3. Both m1 and m2 are negative for α2 < 3
and γ < |(α2−3

3 )|. So the critical point (1, 0, 0) behaves as
a stable attractor which represents the late time accelerated
expansion phase of the Universe for α2 < 3, γ < |(α2−3

3 )|.
As we can see when α2 < 3 and γ = 4

3 , the critical point
(1, 0, 0) behaves as a saddle point with m1 > 0 and m2 < 0
which is unstable representing the matter dominated phase
of the evolving Universe. For α2 > 3, both m1 and m2 are
positive for any γ and the critical point (1, 0, 0) behaves as
an unstable repeller representing the inflationary epoch of the
evolving Universe. Figures 9 and 10 shows the phase plot of
stable attractor as well as the unstable repeller respectively

Fig. 9 The phase plot of stable attractor (0, 0) for analysing stability
at infinity for case I when γ = 0, α2 < 3 taking Co = 8πG = 1

for γ = 0. Figures 11 and 12 show the phase plot for unstable
saddle point and repeller for respectively for γ = 4

3 . Since
the degree of f (x, y) and g(x, y) is odd, the behavior at the
antipodal point (−1, 0, 0) is exactly the same as the behavior
at (1, 0, 0).

What is interesting in this model is that in infinite space-
time when we study fixed points at infinity the presence of the
critical point (1, 0, 0) indicates the possibility of inflationary
phase and it is represented also in the phase plots shown in
Figs. 10 and 11 where all the nearby trajectories are repelled
away from it.

Case II: Dynamical system analysis for Ġ �= 0 and ρ�=
constant

Let us consider the following Einstein field equations:

Gμν − gμν� = 8πG,

where Gμν = Rμν − 1
2gμνR denotes the Einstein tensor.

With general Bianchi identity ∇μGμν = 0, the above field
equation gives the following relation:

∇μ(Tμν) = ∇μ[G(Tμν + gμνρ�)] = 0.

This implies that the local conservation law takes the fol-
lowing form which we named it mixed local conservation
law:

d

dt
[G(ρm + ρ�)] + 3GH(ρm + pm) = 0. (46)

If we assume that Ġ �= 0 and ρ� =constant, then the above
relation leads to the following equation which indicates a
non-conservation of matter as G does not remain constant
here:

123



  863 Page 12 of 27 Eur. Phys. J. C           (2022) 82:863 

Fig. 10 The phase plot of unstable repeller (0, 0) for analysing stability
at infinity for case I when γ = 0, α2 > 3 taking Co = 8πG = 1

Fig. 11 The phase plot of unstable saddle point (0, 0) for analysing
stability at infinity for case I when γ = 4

3 , α2 < 3 taking Co = 8πG =
1

Ġ(ρm + ρ�) + G[ρ̇m + 3H(ρm + pm)] = 0. (47)

Since we are inclined to qualitative study of the dynamics
of the Universe, we set up a dynamical system for case-II by
introducing a new variable: x = 8πG

3H2 and putting y = ρm .
With these new variables the field equations can be rewrit-

ten as

Fig. 12 The phase plot of unstable repeller (0, 0) for analysing stability
at infinity for case I when γ = 4

3 , α2 > 3 taking Co = 8πG = 1

8πGρt t ≡ 8πGρm + � = 3H2

⇒ 8πG(ρm + ρ�) = 3H2

⇒ 8πG

3H2 (ρm + ρ�) = 1

⇒ x(y + ρ�) = 1

⇒ 1

x
= y + ρ�. (48)

Again using the Taylor series form of �(H) in the field
equation 8πGρm + � = 3H2, we get

8πGρm + � = 3H2

⇒ 8πGρm + �o + α2H
2 = 3H2

⇒ 8πGρm

3H2 + �o

3H2 + (α2 − 3)

3
= 0

⇒ �o

3H2 = (3 − α2)

3
− xy. (49)

Now the dynamical system is represented by the following
system of ordinary differential equations:

x ′ = dx

dt

dt

d�

= 8π Ġ

3H3 − 2Ḣ(8πG)

3H4 . (50)

Using the expression of Ġ,Ḣ and �o
3H2 we have found above,

we get

x ′ = −x�o

H2 − x(α2 − 3) + 3x2(γ − 1)y,

= 3γ x2y. (51)
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and

y′ = dy

d�

d�

dt
,

= −3γ y. (52)

In order to find the fixed points we equate x ′ = 0 and
y′ = 0. If x ′ = 0, then either y = 0 or γ = 0 as x �= 0
otherwise if x = 0, then (48) will be violated. Again if γ = 0
is considered then we get y = b where b is a real constant
and x = a where a, b ∈ R satisfies a(b + ρ�) = 1. So the
first fixed point we have obtained here is P = (a, b) where
a(b + ρ�) = 1; a, b ∈ R. Now consider y = 0 when γ �= 0
then x = 1

ρ�
, that is, Q = ( 1

ρ�
, 0) is the second fixed point.

In studying the stability of the fixed points, Jacobian matrix
of the system plays a leading role. The Jacobian matrix J2 of
the system is as follows:

J2 =
(

6γ xy 3γ x2

0 −3γ

)
.

At the fixed points P , Q, J2 takes the following form
respectively:

JP =
(

6γ ab 3γ ( 1
b+ρ�

)2

0 0

)
.

Since P is obtained when γ = 0, JP becomes a null
matrix and hence the eigenvalues of JP are m1 = 0, m2 = 0.
The eigenvalues of JQ are m3 = 0, m4 = −3γ . We see
that at least one of the eigenvalues vanish at both the fixed
points and hence both P and Q are non-hyperbolic. So we
need to use the concept of perturbation function as it is easy
to analyse the behaviour of the system from the nature of
perturbation function expressed in terms of �. As � tends to
∞, if the perturbation along each of the axes grows then the
fixed point is unstable whereas if the perturbation along each
of the axes decays to zero or evolves to a constant value,
then the fixed point is stable. We shall not employ Center
manifold theory for two dimensional problems as it is simpler
to use the method of perturbation function, but for higher
dimensional problems as using Center manifold theory is
one of the prominent tools to study stability of a system, we
have also shown in the later part, namely, Case III of this
section how the dynamics of the center manifold determines
the dynamics of the entire system.

A. Stability analysis using the concept of Spectral
radius of the Jacobian matrix at the respective fixed
points:

The spectral radius of JP and JQ are given by

σP = 0 < 1, σQ = max{| − 3γ |, 0} =
{

3γ , γ > 0,

0 , γ = 0.
.

Since σP < 1, all the eigenvalues of JP lie inside a unit
disc. So P is stable. When γ > 0, σQ < 1 if γ < 1

3 and
σQ = 1 if γ = 1

3 . So, Q is stable for 0 ≤ γ < 1
3 and we can’t

say whether Q is stable or not if γ = 1
3 . In addition when

γ = 1
3 one eigenvalue of JQ ,namely,−3γ , has absolute value

equal to one, the other eigenvalue, that is, zero has absolute
value less than one. In this case a bifurcation may occur
where a small change in the parameter values of the system
leads to a sudden qualitative change in terms of topological
behavior of the system. We need to further our study from
the concept of perturbations along each of the axes and study
the behaviour of perturbations when � → ∞.

B. Stability analysis using the concept of Perturbation
function:

Let x = xP + ηx and y = yP + ηy , where xP , yP are the
values of x, y at P and ηx , ηy are small perturbations along
x-axis and y-axis respectively. Putting the perturbed value
of x and y in the dynamical system equations (51) and (52)
leads to the following relations:

ηx = c1,

ηy = c1e
−3γ� − b,

where c1 is an arbitrary constant. Similarly, at fixed point Q
we get

ηx = c2,

ηy = c2e
−3γ�,

where c2 is an arbitrary constant.
As � increases and tends to ∞, ηy for P evolves to a

constant value for all γ ∈ [0, 2] and ηy for Q also converges
to zero for all γ ∈ [0, 2]. Since the perturbation along each
axis does not grow with the increase in �, P is stable for all
γ ∈ [0, 2], in particular for γ = 0. When γ �= 0 ηy → −b
as � → ∞ but if we directly put γ = 0 in the expression
of ηy above, ηy becomes a constant function, ηy = c1 − b.
Figure 13 shows the variation of perturbation along y-axis
, ηy with respect to � as γ → 0+ for the fixed point P .
From Fig. 13 we see that as γ → 0 from the right the curves
gradually tends to ηy = c1 − b. Figure 14 shows that ηy

decreases exponentially as � increases and ultimately decays
to zero as � tends to ∞ for Q for any positive value of γ .
So it is obvious that ηy → 0 as � → ∞ for γ < 1

3 as
determined from the concept of spectral radius. So Q is also
no doubt stable for all 0 < γ < 1

3 . The relative energy density

�t t = �m+��, where �m = xy, �� = �o
3H2 + α2

3 = 1−xy.
We have calculated the value of effective equation of state
parameter ωe f f as follows:

ωe f f = ptt
ρt t

= −1 − γ xy. (53)

As a function of redshift parameter zr , we can express ωde,
Hubble parameter H(zr ) and deceleration parameter q(zr )
respectively as follows:

ωde = −1 − γ xy

(
y

ρ�

+ 1

)
− γ y

ρ�

. (54)
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Table 2 Table for Case II (Ġ �= 0, ρ�=constant)

Fixed points x y Type of fixed point Eigenvalues ωde �t t Behavior

P a where a(b + ρ�) = 1 b Non-hyperbolic 0 , 0 −1 at γ = 0 1 Stable for γ = 0

Q 1
ρ�

0 Non-hyperbolic 0, −3γ −1 1 Stable for 0 ≤ γ < 1
3

Fig. 13 Variation of ηy with respect to � for fixed point P as γ → 0+

Fig. 14 The variation of ηy with respect to � for Q at γ = 1
4 < 1

3

This implies,

ωde(zr ) =
{−1, γ = 0;

−1 − 2E22γ (1+zr )3γ

8ρ�
, γ �= 0,

(55)

H(zr ) =

⎛
⎜⎜⎝

8πγ

3E21

(
1 + ρ�

E22γ (1 + zr )3γ

)
e

(1+zr )ln E24−3γ

E23E22e
(ln(1+zr )

√
3γ (3−α2)

2
)2

⎞
⎟⎟⎠

1
2

, (56)

q(zr ) = −1 − 3γ

2(γ (1 + zr )3γ + 1)
+ (1 + zr )(ln E26−3γ−1)

2E25e(ln(1+zr )

√
3γ (3−α2)

2
)2

(ln E26 − 3γ − 3γ (α2 − 3) ln(1 + zr )), (57)

where E ′
i s are arbitrary constants.

The expression for transition redshift is obtained as

zrt = {zr : q(zr ) = 0} (58)

At the fixed point P , we get ωde = −1 − 2γ b
ρ�

. When
γ = 0 ωde at P becomes −1 and at Q ωde = −1 with
�t t = 1 for both P and Q which is in agreement with the
observational data in [81]. Since ωde is found to be negative
unity, the presence of the stable fixed point P indicates the
presence of negative pressure in the developed cosmological
model which contributes to our model with an accelerated
expansion phase of the Universe. We tabulate the results in
Table 2.

The plot forωde versus zr is shown in Fig. 15. It is observed
that the present epoch is dominated by phantom dark energy
as ωde < −1 at present. Then as zr approaches the fixed
point value −1, ωde tends to a fixed point value ωde � −1
for any value of γ . As ωde � −1, this indicates the com-
plete dominance of the Universe in late time with purely
cosmological-constant type dark energy which drives the
Universe to expand with acceleration and continue expanding
as cosmic time tends to infinity. This phenomena is again sup-
ported from Figs. 16 and 17 where we observe that the Hub-
ble parameter increases with the increase in time while the
deceleration parameter decreases with time and ultimately
takes negative value. Since q(zr ) = 0 indicates the position
of the transition point from early decelerated expansion to
current accelerated expansion in the Universe, using (58) we
obtain the value of transition redshift zrt � 0.72 and this
is supported from Fig. 17 also. The present values of these
parameters are tabulated in Table 4 and these results are in
agreement with the cosmological observations.

Case III: Dynamical system analysis for Ġ �= 0 and
ρ̇� �= 0

In this case both G and ρ� are no longer constants,
that is, Ġ �= 0 and ρ̇� �= 0. There are many possibilities

123



Eur. Phys. J. C           (2022) 82:863 Page 15 of 27   863 

Fig. 15 The plot for EoS, ωde versus redshift, zr for the cosmological
model in case II for the considered value of E2 = ρ� and γ = 1

4 < 1
3

Fig. 16 The graphical behaviour of H(zr ) over zr with α2 = 2, γ =
1
4 < 1

3 , E21 = 0.14, E22 = ρ�, E23 = 239
ρ�

, E24 = 9 and α2 =
3.000005

Fig. 17 The graphical behaviour of q(zr ) over zr with γ = 1
4 < 1

3 ,
E25 = 0.69, E26 = 2.42E24 and α2 = 3.000005

here. We consider the simplest one by assuming the stan-
dard local covariant conservation of matter-radiation, that is,
ρ̇m + 3H(ρm + pm) = 0 [37], the relation in (46) leads to
the following:

Ġ(ρm + ρ�) + Gρ̇� = 0. (59)

We introduce the following new variables x, y, z to set
up the corresponding dynamical system such that x = 8πG

3H2 ,
y = ρm , z = ρ�. We take derivative of the newly introduced
variables with respect to logarithmic time, � and obtain the
following relations:

x ′ = ẋ
dt

d�
,

= 1

H

d

dt

(
8πG

3H2

)
,

= 8π Ġ

3H3 − 2(8πGḢ)

3H4 .

Using (59) in the above equation and the necessary substitu-
tions we get

x ′ = x2y′ + 3(3γ − 1)x2y − (α2 − 3)x, (60)

y′ = ρ̇m
dt

d�
,

= 1

H
ρ̇m,

= 1

H
( ˙−ρ� − 3γ Hρm),

= −z′ − 3γ y, (61)

z′ = ρ̇�

dt

d�
,

=
(

6 − 16πγ +
(

8π

3
− 2

)
α2

)
y +

(
6 +

(
8π

3
− 2

)
α2 − 16π

3

)
z − 3y

x2 . (62)

Putting the above expression of z′ in (61), we get the expres-
sion of y′ as follows:

y′ =
(

− 6 + 16πγ − 3γ −
(

8π

3
− 2

)
α2

)
y

−
(

6 +
(

8π

3
− 2

)
α2

)
− 16π

3

)
z + 3y

x2 . (63)

Finally putting the value of y′ above in (60), we get the
expression of x ′ as follows:

x ′ = −(α2 − 3)x + 3y +
(

− 9 + 16πγ + 6γ

+
(

2 − 8π

3

)
α2

)
x2y

−
(

6 +
(

8π

3
− 2

)
α2 − 16π

3

)
x2z. (64)

We equate x ′ = 0, y′ = 0, z′ = 0 using (64), (63) and
(62) to obtain the fixed points. As y → 0, z → 0, then since
x, y, z holds the relation 1

y+z = x , x must tend to infinity. If
we view from the sequential approach of real analysis, any
real sequence of the form 1

n converges to zero as n → ∞ but
never equals to zero. For every ε > 0 there exist a positive
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integer m such that | 1
n −0| < ε for all n ≥ m, that is, in every

neighbourhood of zero there contains infinite members of the
sequence 1

n . Similarly when n → 0, 1
n → ∞. So as y → 0,

z → 0 x must tends to infinity. To ensure that the fixed
points obtained are physically feasible with the developed
system, α2 must be equal to 3 and with this consideration
we can analyse our fixed points in the finite phase plane.
Let us consider x ′ = 0, y′ = 0, z′ = 0 at α2 = 3, then
as y → 0.0009, z → 0, x must also tends to a number,
l = 1

(0.0009+0)
= 1111. Let this fixed point be denoted by

S = (x → l, y → 0.0009, z → 0).
Stability of the above fixed points is determined by the

eigenvalues of the Jacobian matrix J3 of the above dynamical
system which is obtained as follows:

J3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

(
− 9 + 16πγ + 6γ +

(
2 − 8π

3

)
α2

)
xy 3 +

(
− 9 + 16πγ + 6γ −

(
6 +

(
8π
3 − 2

)
α2

−α2 + 3 − 2

(
6 +

(
8π
3 − 2

)
α2 − 16π

3

)
xz +

(
2 − 8π

3

)
α2

)
x2 − 16π

3

)
x2

−6 y
x

(
− 6 + (16π − 3)γ −

(
8π
3 − 2

)
α2

)
−

(
6 +

(
8π
3 − 2

)
α2 − 16π

3

)

+ 3
x2

6 y
x

(
6 − 16πγ +

(
8π
3 − 2

)
α2

)
− 3

x2

(
6 +

(
8π
3 − 2

)
α2 − 16π

3

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above matrix is a 3 × 3 matrix. The eigenvalues of J3

at the fixed point determines the stability of the fixed point.
At S when γ = 0, J3 takes the following form:

J3(S)

=
⎛
⎜⎝

−(α2 − 3) 3 + (−9 − 6.37α2)l2 −(−10.74 + 6.37α2)l2

0 (−6 − 6.37α2) + 3
l2

−(−10.74 + 6.37α2)

0 (6 + 6.37α2) − 3
l2

(−10.74 + 6.37α2)

⎞
⎟⎠

The above matrix is a 3 × 3 matrix with eigenvalues 0,
−16.74, −(α2 − 3) = 0. Since some of the eigenvalues
becomes zero, S is a non-hyperbolic fixed point. We analyse
stability through perturbation function and Center manifold
theory as it is a three dimensional problem with the fixed
point as non-hyperbolic one and using these methods are
more suitable.

A. Stability analysis for S using the concept of Pertur-
bation function :

We perturb the system by a small amount putting x =
xF + ηx , y = yF + ηy, z = zF + ηz where xF , yF , zF rep-
resent the values of x, y, z at the fixed point to be analysed
for stability and ηx , ηy, ηz denote the perturbations along
x, y, z axes respectively. With these perturbed values in the
dynamical system equations (64), (63) and (62) and neces-
sary substitutions, we obtain the following perturbations as

a function of logarithmic time �:

ηx =
{
C1e−(α2−3)� − 1, for any γ ;
C1 − 1, for any γ and α2 = 3.

(65)

ηy =
⎧⎨
⎩
C2e−(6+6.4α2)�, γ = 0;
C2e(57−6.4α2)�, γ = 4

3 ;
C2e(88.5−6.4α2)�, γ = 2.

(66)

ηz =
{
C3e(−10.7+6.4α2)�, for any γ ;
C3e8.5�, for anyγ and α2 = 3.

(67)

where Ci , i ∈ κ are arbitrary constants and κ is the index set.
Let � = {α2 : ηx → 0 or c, ηy → 0 or c, ηz → 0 or

c as � → ∞, where c ∈ R is any real constant }. If we
consider only the expression of ηx obtained as a function of

� regardless of restricting the value of α2, then we can see
that when � → ∞, ηx → C1 − l for α2 = 3, ηx → −l for
α2 > 3, ηy → C2 for any positive value of α2. Similarly it
is seen that ηz exponentially increases for α2 > 1.67. So we
fail to obtain such value of α2 where all of these ηx , ηy, ηz
decay or evolve to a constant value as � tends to infinity. So
� is an empty set. Only when all of these ηx , ηy and ηz decay
to zero or tends to a constant value when � → ∞, we can
conclude that the fixed point is stable otherwise unstable if
at least one of them go on increasing as � → ∞. For S to be
stable � should not be an empty set. Figures 18, 19 and 20
show the perturbation plots for S at γ = 0. From Fig. 18, as
α2 → 3−, the slope of the curve gradually decreases and as
α2 becomes exactly equal to 3, the slope of the curve equals
zero and then as α2 becomes just greater than 3, ηx becomes
an exponentially decreasing function of �. So when α2 > 3
as � → ∞, ηx exponentially decreases and evolves to a
constant value, namely, −l. Figure 19 shows that ηy → 0 as
� → ∞ for γ = 0 and any value of α2. But from Fig. 20
it is clear that when α2 ≥ 3, ηz exponentially increases as �

increases and continue to grow as � → ∞. So S is unstable
for any value of α2. Hence, S is unstable for α2 = 3 also.
In this case III, we have already presumed α2 to be equal to
3 in order to ensure that the fixed point S obtained above is
in the finite phase plane and remain physically feasible with
respect to the dynamical system we have set up. So using
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Fig. 18 Variation of ηx with respect to � for S

Fig. 19 Variation of ηy with respect to � for S at γ = 0

the above arguments we conclude that S is unstable from the
side of perturbation function. We will also show the use of
Center manifold theory in determining the stability of the
fixed point S. Using Center manifold theory is one of the
most rigorous mathematical technique to determine stability
for non-hyperbolic fixed points as the nature of orbits on a
center manifold reflects the nature of the system in the neigh-
bourhood of the fixed point. To use Center manifold theory
we need to transform the dynamical system equations into
the standard form to study Center manifold theory. We know
that S(x → l, y → 0.0009, z → 0) is a non-hyperbolic
fixed point. Now using a suitable coordinate transformation
we need to transformed the system in the required standard
form to apply Center manifold theory for it will not change
the nature of the fixed point. We present how to analyse stabil-
ity using the Center manifold theory in the following section.

B. Stability analysis for S using Center manifold the-
ory:

Firstly, we need to transform the dynamical system equa-
tions into the form required to use Center manifold theory.
For this we need to shift the fixed point to origin (0, 0, 0) by
doing suitable coordinate transformation as follows:

Fig. 20 The variation of ηz with respect to � for S at γ = 0

Fig. 21 Variation of ηy and ηz at γ = 4
3 and α2 = 3

Fig. 22 Variation of ηx with respect to � for S when γ = 4
3

X = x − l,Y = y − 0.0009, Z = z;
In terms of this new coordinates our dynamical system equa-
tions (64), (63)and (62) with α2 = 3 can be written as fol-
lows:

123



  863 Page 18 of 27 Eur. Phys. J. C           (2022) 82:863 

Fig. 23 The variation of ηz with respect to � at S at γ = 2

⎛
⎝

X ′
Y ′
Z ′

⎞
⎠ =

⎛
⎝

−0.05l (3 − 28.11l2) −8.37l2

0 −25.11 −8.3
25.11 8.3

⎞
⎠

⎛
⎝

X
Y
Z

⎞
⎠

+
⎛
⎝

f (X,Y, Z).

g1(X,Y, Z).

g2(X,Y, Z).

⎞
⎠ ,

where

f (X,Y, Z) = −0.025X2 − 28.11X2Y − 8.37X2Z

−(56.22l)XY − (16.74l)X Z ,

g1(X,Y, Z) = 3(Y + 0.0009)

(X + l)2 ,

g2(X,Y, Z) = −3(Y + 0.0009)

(X + l)2 .

The Jacobian matrix of the above system at origin is

J(X=0,Y=0,Z=0) =
⎛
⎝

−0.05l 3 − 28.11l2 −8.3l2

− 0.0054
4l2

−25.11 −8.3
0.0054

4l2
25.11 8.3

⎞
⎠

The above Jacobian matrix has zero determinant which
means at least one of the eigenvalues has become zero. To
find the eigenvalues say mi we solve the characteristic equa-
tion det (JX=0,Y=0,Z=0−mI ) = 0 and obtainm1 = 0,m2 =
−0.05l,m3 = −16.81. The minimal polynomial that anni-
hilates JX=0,Y=0,Z=0 is given by m(m + 0.05l)(m + 16.81).
As the linear factors occur exactly once in the minimal poly-
nomial, J(X=0,Y=0,Z=0) is diagonalisable. To diagonalise
J(X=0,Y=0,Z=0) to obtain the required form to use Center
manifold theory, we need to find the stable subspace Es gen-
erated by the eigenbasis associated with the negative eigen-
values, the center subspace Ec generated by the eigenbasis
associated with the zero eigenvalue of above Jacobian matrix.
The eigenspace associated with zero eigenvalue can be found

out by solving for x1, x2, x3 in the following matrix equation:

(J − (0)I3×3)

⎛
⎝
x1

x2

x3

⎞
⎠ = O3×3,

where I3×3 and O3×3 represents the identity matrix and null
matrix respectively. Solving the above equations we get the
eigenbasis as

Ec =
⎧⎨
⎩

⎛
⎝

−728l
−1
1

⎞
⎠

⎫⎬
⎭

Similarly we find the eigenbasis associated with the eigen-
values −0.05l and −16.81 so that we can write stable sub-
space (Es) as follows:

Es =
⎧⎨
⎩

⎛
⎝

−592l2

−0.3
1

⎞
⎠ ,

⎛
⎝

196l
−1
1

⎞
⎠

⎫⎬
⎭

Both Ec and Es are the subspaces of R × R × R. Let us
define a matrix P whose column vectors are formed by the
above eigenbases as follows:

P =
⎛
⎝

−728l −592l2 196l
−1 −0.3 −1
1 1 1

⎞
⎠

P is a non-singular matrix with det (P) = −646.8l. So
P is invertible matrix with P−1 as P−1 = 1

det (P)
Ad j (P),

where Ad j (P) denotes the adjoint of P . Therefore

P−1 =
⎛
⎝

−0.7
646.8l −(0.9l + 0.3) 0.53

0 1.4 1.4
0.7

646.8l 0.9l 0.9l

⎞
⎠ .

We again define a new co-ordinate transformation as:

P

⎛
⎝

U
V
W

⎞
⎠ =

⎛
⎝

X
Y
Z

⎞
⎠ ,

that is,

P−1

⎛
⎝

X
Y
Z

⎞
⎠ =

⎛
⎝

U
V
W

⎞
⎠ .

In terms of the new coordinates U , V , W ; X , Y and Z can
be expressed as follows:

X = −728lU −592l2V +196lW , Y = −U −0.3V −W ,
Z = U + V + W.

The definition of center manifold allows us to take h1 and
h2 in Taylor’s series form as V = h1(U ) = a1U 2 + a2U 3

and W = h2(U ) = b1U 2 +b2U 3 so that h1(0) = h1(0) = 0
and Dh1(0) = Dh2(0) = 0, where D = d

dU .
We then obtain the required standard form to apply Center

manifold theory as follows:
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⎛
⎝

U ′
V ′
W ′

⎞
⎠ =

⎛
⎝

0 0 0
0 −0.05l 0
0 0 −16.81

⎞
⎠

⎛
⎝

U
V
W

⎞
⎠

+ P−1

⎛
⎝

f (U, V,W )

g1(U, V,W )

g2(U, V,W )

⎞
⎠,

where

f (U, V,W ) = (−13249l − 40928l + 12186l2)U2

+
(

− 21548l3a1 + 7134l2b1 + 14897850l2

−12278a1 − 40928lb1 − 33282l3a1

+11019l2b1 − 4435966l2 + 12186l2a1

+12186b1 + 9910l3a1 − 3281l2a1

)
U3,

g1(U, V,W ) = −3
−U − 0.3V − W

(−728lU − 592l2V + 196lW )2 ,

g2(U, V,W ) = 3
U + 0.3V + W

(−728lU − 592l2V + 196lW )2 .

Now computing the above equations we obtain the following
relations:

U ′ = −0.7

646.8l

{
(−13249l − 40928l + 12186l2)U 2

+
(

− 21548l3a1 + 7134l2b1 + 14897850l2

−12278a1 − 40928lb1 − 33282l3a1 + 11019l2b1

−4435966l2 + 12186l2a1 + 12186b1

+9910l3a1 − 3281l2a1

)
U 3

}
, (68)

V ′ = −0.05la1U
2 − 0.05la2U

3, (69)

W ′ = −16.81(b1U
2 + b2U

3)

+ 0.7

646.8l

{
(−13249l − 40928l + 12186l2)U 2

+
(

− 21548l3a1 + 7134l2b1 + 14897850l2

−12278a1 − 40928lb1 − 33282l3a1

+11019l2b1 − 4435966l2 + 12186l2a1

+12186b1 + 9910l3a1 − 3281l2a1

)
U 3

}
.

(70)

The dynamics of the center manifold is given by:

U ′ = AU + f (U, h1(U ), h2(U )),

where A = 0, V = h1(U ),W = h2(U ).
The tangency condition requires that

V ′ − dh1

dU
U ′ = 0, (71)

W ′ − dh2

dU
U ′ = 0. (72)

By equating the coefficients ofU 2 andU 3 in the tangency
conditions (71) and (72), we can find the constants a1, a2 and
b1, b2 where we unconsider all the powers of U higher than
U 3. Equating the coefficients of U 2 and U 3 in the tangency
condition of V , we get a1 = a2 = 0 and from the tangency
conditions of W comparing the coefficient of U 2, we get

− 16.81b1 +
(

0.7

646.8

)
(−54177 + 12186l) = 0

⇒ b1 = 1

−16.81
(58.6 − 13.2l)

⇒ b1 = −3.5 + 0.8l.

Since l is a very large number, b1 ∼ 0.8l and comparing
the coefficient of U 3 we get

− 26.4b1l = −16.81b2 + 0.7

646.8l
(18153l2

−40928l + 12186)b1

⇒ 16.81b2 = 36.8l2 − 35.4l + 10.6

⇒ b2 = 2l2 − 2l + 0.6.

Putting the values of a1, a2, b1, b2 in the dynamics of center
manifold we get

U ′ = j1U
2 + j2U

3 + O(U 4), (73)

where j1 = (−54177l + 12186l2) and j2 = (14522l2 −
32742l + 9748)(2l2 − 2l + 0.6).

Since the first term ofU ′ is in even power ofU , we deduce
instability. If suppose j1 = 0 then we will consider the next
term which is in the odd power of U . Here if j2 is negative
then, it is stable otherwise if it is positive then we again
achieve instability. But in our case j1 never equals zero. So
from the side of Center manifold theory we conclude that the
fixed point S is unstable.

Now when we take γ = 4
3 then, (64), (63) and (62)

becomes

x ′ = −(α2 − 3)x + 3y + (6 − 6.4α2)x
2y

−(−10.7 + 6.4α2)x
2z,

y′ = (57 − 6.4α2)y − (−10.7 + 6.4α2)z + 3y(y + z)2,

z′ = (−61 + 6.4α2)y + (−10.7 + 6.4α2)z − 3y(y + z)2.

Now when γ = 4
3 we have the Jacobian matrix at S as

follows:

J3(S) =
⎛
⎝

−(α2 − 3) 3 − 13.2l2 0
0 (57 − 6.4α2) −(−10.7 + 6.4α2)

0 (−61 + 6.4α2) (−10.7 + 6.37α2)

⎞
⎠

Since we obtain S when α2 = 3, we get the eigenvalues as
m1 = (3−α2) = 0,m2 = 12.8(1.8−√

3 + 0.15α2) = −0.7
and m3 = 12.8(1.8 + √

3 + 0.15α2) = 46.8 > 0. So for
γ = 4

3 at α2 = 3, S becomes non hyperbolic fixed point.
We need to analyse stability through perturbation function
and Center manifold theory. However stability analysis using
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Center manifold theory is similar to the above shown. So
we will only analyse through perturbation function. From
(65),(66) and (67), we see that for α2 = 3 ηx tends to a
constant, namely, (C1 − l) as � → ∞ but ηy exponentially
increases as � → ∞. ηz is also an exponentially increas-
ing function of � and hence it fails to decay or evolve to a
constant value as � → ∞. Figure 21 shows the exponential
increasing nature of ηy and ηz at γ = 4

3 , α2 = 3. Figure 22
shows the perturbation plot for ηx as � tends to infinity. So
S is unstable at α2 = 3 and γ = 4

3 . As the perturbation along
each of the axes fail to decay or evolve to a constant value
we conclude that S is also unstable for γ = 4

3 . For γ = 2
also we can see from (67) that the perturbation along z axis,
namely, ηz is an exponentially increasing function of θ . So
S is unstable for any value of α2 for γ = 2 and this is shown
in Fig. 23 also.

C. Stability at infinity and Poincaré sphere:
Any polynomial system in rectangular coordinates can be

extended to the Poincaré sphere [86]. So the idea of projective
geometry done in the case of R

2 can be extended to higher
dimensions for flows in R

3 also. Here, the upper hemisphere
of S3 can be projected onto R3 using the transformation of
coordinates given by x = X

W , y = Y
W , z = Z

W and X =
x√

1+|x |2 , Y = y√
1+|x |2 , Z = z√

1+|x |2 and W = 1√
1+|x |2 for

X = (X,Y, Z ,W ) ∈ S3 with |X| = 1 and for x = (x, y, z) ∈
R

3. Now we consider the dynamical system equations (64),
(63) and (62) in the following way:

x ′ = P1(x, y, z),
y′ = P2(x, y, z),
z′ = P3(x, y, z),

⎫⎬
⎭ (74)

where

P1(x, y, z) = −(α2 − 3)x + 3y +
(

− 9 + 16πγ + 6γ

+
(

2 − 8π

3

)
α2

)
x2y

−
(

6 +
(

8π

3
− 2

)
α2 − 16π

3

)
x2z,

P2(x, y, z) =
(

− 6 + 16πγ − 3γ −
(

8π

3
− 2

)
α2)y −

(
6 +

(
8π

3
− 2

)
α2

)
− 16π

3

)
z + 3y(y + z)2,

P3(x, y, z) =
(

6 − 16πγ +
(

8π

3
− 2

)
α2

)
y +

(
6 +

(
8π

3
− 2

)
α2 − 16π

3

)
z − 3y(y + z)2.

We have used the relation 1
x = (y+ z) in (63) and (62) above

for our convenience with polynomial functions of x , y, z with
maximum degree 3 on the right side of (74). Let us denote

the maximum degree terms in P1, P2 and P3 by P̄1, P̄2 and
P̄3 respectively. Then we have,

P̄1(x, y, z) =
(

− 9 + 16πγ + 6γ +
(

2 − 8π
3

)
α2

)
x2y

−
(

6 +
(

8π
3 − 2

)
α2 − 16π

3

)
x2z,

P̄2(x, y, z) = 3y(y + z)2,

P̄3(x, y, z) = −3y(y + z)2.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(75)

In terms of X , Y , Z we express the above polynomials as
follows:

P̄1(X, Y, Z) =
(

− 9 + 16πγ + 6γ +
(

2 − 8π
3

)
α2

)
X2YW−3

−
(

6 +
(

8π
3 − 2

)
α2 − 16π

3

)
X2ZW−3,

P̄2(X, Y, Z) = 3Y (Y + Z)2W−3,

P̄3(X, Y, Z) = −3Y (Y + Z)2W−3.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(76)

Theorem 2.3 determines the location of the critical points
at infinity for the above polynomial system by considering
the following equations:

X P̄2(X,Y, Z) − Y P̄1(X,Y, Z) = 0

⇒ 3(Y + Z)2 − (−9 + 56.24γ − 6.4α2)XY

+(6.4α2 − 10.74)X Z = 0. (77)

X P̄3(X,Y, Z) − Z P̄1(X,Y, Z) = 0

⇒ −3Y (Y + Z)2 − (−9 + 56.24γ − 6.4α2)XY Z

+(6.4α2 − 10.74)X Z2 = 0. (78)

Y P̄3(X,Y, Z) − Z P̄2(X,Y, Z) = 0

⇒ 3Y (Y + Z)2(−Y − Z) = 0

⇒ either Y = 0 or Y = −Z . (79)

If Y = 0 then from (78) we get either X = 0 or Z = 0.
If Y = 0 and X = 0 is considered then from (77) we see
that Z = 0. But since X2 + Y 2 + Z2 = 1 must hold, the
condition X = 0 is neglected. If Z = 0 when Y = 0 in
X2 + Y 2 + Z2 = 1, we get X = ±1. So (±1, 0, 0, 0) is a
fixed point. Also from (79) if we consider Y = −Z , then
from (78) we get either X = 0 or Z = 0. If X = 0 then
X2 + Y 2 + Z2 = 1 does not hold. So when Y = −Z and
Z = 0 then (±1, 0, 0, 0) is a fixed point. Using Theorem 4
we obtain that the flow defined by (74) in a neighbourhood
of (±1, 0, 0, 0) ∈ S3 is topologically equivalent to the flow
defined by the following system:
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±y′ = (α2 − 3)yw2 + 3y2w2 − (−6 + (16π − 3)γ − 6.4α2)yw2

+
(

6 + 6.4α2 − 16π
3

)
zw2 + (−9 + 56.24γ − 6.4α2)y2

−(−10.74 + 6.4α2)zy − 3y(y + z)2,

±z′ = (α2 − 3)zw2 + 3yzw2 + (−9 + 56.24γ − 6.4α2)yz
−(−10.74 + 6.4α2)z2 − (6 − 16πγ + 6.4α2)yw2

−(−10.74 + 6.4α2)zw2 + 3y(y + z)2,

±w′ = (α2 − 3)w3 + 3yw3 + (−9 + 56.24γ − 6.4α2)yw − (−10.74 + 6.4α2)zw.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(80)

The Jacobian matrix of the above system at the fixed point
(0, 0, 0) is a null matrix which has all the eigenvalues as zero.
So it is a non-hyperbolic fixed point. We will analyse the
stability by finding perturbation functions along each of the
axes as a function of logarithmic time � by perturbing the
system (80) by a small amount. If the system comes back to
the fixed point following the perturbation then the system is
stable otherwise if the perturbation grows to make the system
moves away from the fixed point then the system is unstable.
Nandan Roy and Narayan Banerjee [87] has also used the
concept of perturbation function to analyse stability for non-
hyperbolic fixed points for three dimensional systems where
linear stability fails. Now firstly consider the expression of
(80) corresponding to +y, +z and +w respectively. Then
we perturb our system (80) by taking y = ηy , z = ηz and
w = ηw.

dηy

d�
= (−9 + 56.24γ − 6.4α2)η

2
y − 3η3

y,

⇒ d� = dηy

(−9 + 56.24γ − 6.4α2)η2
y − 3η3

y
,

⇒ d� = Adηy

ηy
+ Bdηy

η2
y

+
Cdηy

(−9 + 56.24γ − 6.4α2) − 3ηy
,

where

A = 3

(−9 + 56.24γ − 6.4α2)2 ,

B = 1

(−9 + 56.24γ − 6.4α2)
,

C = 9

(−9 + 56.24γ − 6.4α2)2 .

Integrating both sides of the above differential equation,
we get

� = f (ηy) = C

3
ln

(
ηy

(k − 3ηy)

)
− B

ηy
, (81)

where k = (−9 + 56.24γ − 6.4α2). The domain of defi-
nition D� of the above function at γ = 0 is

D�0 =
(

− ∞,
k

3

)
; k = −9 − 6.4α2, α2 ∈ R

+.

The domain of definition D� of the above function at
γ = 4

3 and γ = 2 respectively are as follows:

D� 4
3

=
{

(0, k
3 ), α2 < 10.29, k = 65.9 − 6.4α2 > 0;

(−∞, k
3 ), α2 > 10.29, k = 65.9 − 6.4α2 < 0

D�2 =
{

(0, k
3 ), α2 < 16.15, k = 103.4 − 6.4α2 > 0;

(−∞, k
3 ), α2 > 16.15, k = 103.4 − 6.4α2 < 0

With the above domain and the choice of +y on the left
side of (80), we cannot analyse our system for � → ∞
as � becomes bounded above and unbounded below as ηy

tends to 0, that is, when � → −∞, ηy → 0. Since we
want to analyse the late time behaviour of the Universe as
logarithmic time � → ∞ we only consider the expressions
of (80) corresponding to −y, −z and −w on the left sides of
(80) as follows:

−y′ = (α2 − 3)yw2 + 3y2w2 − (−6 + (16π − 3)γ

−6.4α2)yw
2 +

(
6 + 6.4α2 − 16π

3

)
zw2

+(−9 + 56.24γ − 6.4α2)y
2

−(−10.74 + 6.4α2)zy − 3y(y + z)2,

−z′ = (α2 − 3)zw2 + 3yzw2 + (−9 + 56.24γ − 6.4α2)yz

−(−10.74 + 6.4α2)z
2 − (6 − 16πγ + 6.4α2)yw

2

−(−10.74 + 6.4α2)zw
2 + 3y(y + z)2,

−w′ = (α2 − 3)w3 + 3yw3 + (−9 + 56.24γ − 6.4α2)yw

−(−10.74 + 6.4α2)zw.

With this consideration we get the expression of � as a func-
tion of ηy as follows:

� = f ((ηy) = C

3
ln

k − 3ηy

ηy
+ B

ηy
.

When � → ∞, f (ηy) → ∞ which implies ηy → 0. So
as � → ∞ the perturbation along y-axis decays to zero. For
analysing the perturbation along z and w axes we consider
the expression for +z and +w from (80) and find out the
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Fig. 24 The variation of � with respect to ηy for analysing stability at
infinity for case III

Fig. 25 The variation of ηz with respect to � for analysing stability at
infinity for case III

expressions of ηz and ηw as follows:

ηz = 1

(−10.74 + 6.4α2)� + c1
;α2 �= 1.6,

ηw = ± 1√
2(3 − α2)� + 2c2

,

where c1 and c2 are arbitrary constants of integration. As �

tends to infinity both ηz and ηw tends to zero. Figures 24, 25
and 26 show the projection of perturbations along y, z and
w axes respectively for system (80). Since all of ηy , ηz and
ηw decay to zero as � tends to infinity, we conclude that the
fixed point (±1, 0, 0, 0) is a stable critical point.

pagination
The expressions of total energy density �t t and effective

equation of state ωe f f in terms of the variables x, y, z are as
follows:

�t t = xy + z

y + z
, (82)

ωe f f = ptt
ρt t

, (83)

Fig. 26 The variation of ηw with respect to � for analysing stability
at infinity for case III

Fig. 27 The plot for ωde with respect to z taking α2 = 3.05 > 3 and
γ = 4

3 for E3 = 1
2.8 < 1

e , e = 2.7 for cosmological model associated
with case III

Fig. 28 The graphical nature of H(zr ) over zr for the cosmological
model associated with case III. The free parameters E5 = 1.45, γ = 4

3 ,
α2 = 4 > 3 and c1 = 0.0085, E4 = 0.0005 and E6 = 3.04

= (γ − 1)y − z

y + z
. (84)

The EoS parameter for dark energy sector ωde, the Hub-
ble parameter H(zr ) and the deceleration parameter, q(zr )
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Fig. 29 The graphical nature of q(zr ) over zr for the cosmological
model associated with case III. The free parameters E5 = 1.45, γ = 4

3 ,
α2 = 4 > 3 and c1 = 0.0085, E4 = 0.0005 and E6 = 3.04

expressed as functions of redshift zr are as follows:

ωde = γ y

(
x

(
1 + y

z

)
− 1

z

)
− 1, (85)

This implies,

ωde =
⎧⎨
⎩

−1.006, α2 = 3;
ln E3(1 + zr )−γ (α2−3)

(
α2−3

6γ+6−α2
+ 1

)
, α2 �= 3.

(86)

H(zr ) =
( E

1
γ

5 e

((
1− 1

γ

)
−ln 8πC1−ln E4−ln E6 ln(1+zr )+ln(1+zr )

√
3γ (α2−3)

2 )

3(1 + zr )(α2−3)

) 1
2

, (87)

q(zr ) = (1 + zr )−α2+3

6
((3γ ln(1 + zr ) − 1)(α2 − 3) − 3 ln E5), (88)

where E ′
i s are arbitrary constants.

The transition redshift can be obtained by using the fol-
lowing relations:

zrt = {zr : q(zr ) = 0} (89)

The graphical natures of cosmological parameters ωde,
H(zr ) and q(zr ) are shown in Figs. 27, 28 and 29 respec-
tively. From the plot, we find that the curve for ωde evolves
from the phantom phase and remains in the phantom region at
present where ωde < −1 and then it approaches the purely
cosmological constant type dark energy dominated epoch
where ωde = −1 and finally in the late time the Universe
is dominated by quintessence where ωde > −1. At present
time when zr = 0 assuming the present value of scale factor
to be unity, we find the present value of the EoS param-
eter as ωde � −1.061 < −1 which clearly depicts the
phantom-like behaviour at present. When α2 = 3, the value
of ωde = −1 at present time as well as at late time, this indi-
cates that the Universe is associated with purely cosmologi-
cal constant type dark energy and hence the model behaves

as a cosmological constant model. Also the curve for H(zr )
monotonically increases as time increases while the curve
for q(zr ) decreases as time increases with the transition red-
shift zrt found to be zrt � 0.70. This means as zr passes this
point zrt the Universe begins to undergo accelerated expan-
sion with deceleration parameter value being negative. The
present value of deceleration parameter q(zro) is obtained
as -0.35 and the present values of these parameters, namely,
ωde(zro), H(zro), q(zro) are tabulated in Table 4 and they all
are in agreement with the cosmological observations. Hence
the present model associated with case III supports the fact
that the Universe is currently in accelerated expansion epoch
and will continue to expand in the late time.

4 Conclusion

In this work we have presented three accelerating cosmo-
logical models through dynamical systems approach in the
presence of a time varying cosmological constant term under
three different cases based on the possibilities of G and

ρ�. We use dynamical systems approach and find the fixed
points to analyse stability as well as late time behavior of the
evolving Universe. The cosmological parameters, namely,
ωde(zr ), H(zr ), q(zr ), zrt are expressed in terms of redshift
zr and their graphical behaviour with the change in redshift
have been analysed. The cosmological models associated
with case I, case II and case III show phantom behaviour at
the present time with ωde < −1. It is found that both analyti-
cal and geometrical findings agree with the fact that the Uni-
verse is in the accelerated expansion phase with deceleration–
acceleration transition taking place at values of zr � 0.72
which are also tabulated in Table 4 for all of the three cases
and they are quite consistent with the spatially flat �CDM
model, the standard model of cosmology where the cosmo-
logical constant � is the dark energy. Along with the dynam-
ical system analysis in the finite phase plane what is more
interesting in this work is the stability analysis of the systems
for critical points at infinity by using the concept of Poincaré
sphere where we use stereographic projection to study the
behavior of trajectories far from origin.
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Table 3 Table for Case III (Ġ �= 0, ρ̇� �= 0)

Fixed points Type of fixed point Eigenvalues ωde �t t Behavior

S(x → l,y → 0, z → 0) Non-hyperbolic for γ = 0; −(α2 − 3) = 0, 0,−16.74 −1 1 Unstable

Non-hyperbolic for γ = 4
3 , α2 = 3 (3 − α2) = 0, 12.8(1.8 −√

3 + 0.15α2) = −0.7

12.8(1.8+√
3 + 0.15α2) =

46.8
1 Unstable

Non-hyperbolic for γ = 2, α2 = 3 −(α2 − 3) = 0,
0.096(405.1 −√

157143 + 4131.84α2),
=20.37 0.096(405.1 +√

157143 + 4131.84α2)

=57.4

−1 1 Unstable

1

For using Center manifold theory: Non-hyperbolic −0.05l, 0, −1 1

S=(X → 0, Y → 0, for γ = 0, Unstable

Z → 0) α2 = 3 −16.81

where

X = x − l,

Y = y − 0.0009,

Z = z − 0

Table 4 Table for present values of cosmological parameters

EoS parameter Case I Case II Case III Observations

ωde(zr0) −1.029 −1.060 −1.061 −1.03 ± 0.03 [78]

H(zr0) 73.4 75 70.22 73 ± 1.4 [83]

q(zr0) −0.520 −0.651 −0.350 −1.08 ± 0.29 [84]

q(zrt ) 0.71 0.72 0.70 0.732 ± 0.0174 [61,85]

In case I where bothG and ρ� are taken to be constants, we
observe that the time varying cosmological constant model
can be represented by a two dimensional dynamical system.
It has three fixed points F1, F2, F3 in the finite phase plane
out of which F1 behaves as a late time attractor as shown
in Fig. 1 when α2 < 3 with ωde = −1 and �t t = 1. The
presence of this stable attractor in the cosmological model
associated with case I assures the presence of negative pres-
sure representing the accelerated expansion phase of the
Universe.Also more interestingly, when we analyse stabil-
ity for the critical points at infinity using poincarè sphere,
the critical point (1, 0, 0) behaves as an unstable repeller
when α2 > 3 for any value of γ . This repelling behaviour is
also shown in the phase plots of Figs. 10 and 12. The pres-
ence of this repeller adds up to this model with the inflation-
ary phase of the evolving Universe. The EoS parameter for
dark energy sector remains in the phantom region at present
with ωde(zro) � −1.029 < −1 as seen from Fig. 6 while
H(zr ) increases monotonically with the increase in time with
H(zro) � 73.5 (shown in Fig. 7). As seen from Fig. 8, the
deceleration parameter q(zr ) decreases monotonically and

vanishes at zrt � 0.71 and remains negative after this tran-
sition point. It is at this point where the transition from early
decelerated expansion to current accelerated expansion in
the Universe takes place and this shows that the model asso-
ciated with this case remains close to �CDM . The present
values of these parameters are tabulated in Table 4 and they all
are in agreement with the cosmological observations. Thus,
the behaviours of these cosmological parameters depict the
accelerated expansion epoch of the model Universe behaving
as phantom-like at present time.

In case II when G no longer remains constant, we obtain
two non-hyperbolic fixed points P and Q both of which
are stable attractors for 0 ≤ γ < 1

3 with the numerical
values of ωde and �t t obtained as −1 and 1 respectively.
From the expression of ωde as a function of redshift zr
along with the graphical interpretation shown in Fig. 15,
it is observed that as the redshift parameter zr approaches
−1, ωde tends to a fixed point value ∼ −1. So this par-
ticular cosmological model associated with case II shows
the dominance of a purely cosmological-constant type dark
energy [80] in the late time. Presently, this model shows a
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phantom-like phase with present value of EoS found to be
ωde(zro) � −1.06 < −1. The Hubble parameter also shows
a monotonically increasing nature with the increase in cos-
mic time with the present value of Hubble parameter noted to
be H(zro) � 75. In this model the transition from decelera-
tion regime to acceleration regime takes place at zrt � 0.72.
After this transition point the value of q(zr ) remains nega-
tive which depicts that the model Universe will continue to
expand with acceleration in the late time also.

However in case III, when both G and ρ� are taken to
be non-constants, we find that we can extend the system
to a three dimensional dynamical system problem. Here we
obtain a fixed point S in the finite phase plane which is phys-
ically feasible with the developed dynamical system with the
value of α2 presumed to be equal to 3. From the side of pertur-
bation function approach as well as Center manifold theory,
we get S to be unstable fixed point for any value of γ . But the
main thing that distinguishes this approach is the presence
of the stable fixed point (±1, 0, 0, 0) at infinity lying on the
northpole of the Poincaré sphere S3 with the use of projec-
tive geometry being carried over to higher dimension in R

3.
This fixed point behaves as a stable attractor in infinite space-
time. The model associated with this case evolves from the
phantom-phase and gradually approaches the quintessence
region in late time (shown in Fig. 27). At present it behaves
as phantom-like with ωde � −1.061 < −1. This model also
supports the fact that the Universe is in acceleration era as we
can see from Figs. 28 and 29 where H(zr ) tends to infinity
as zr tends to −1 while q(zr ) transits from positive to nega-
tive at zr � 0.70. This point represents the transition redshift
zrt where the transition from early decelerated expansion to
present accelerated expansion of the Universe takes place.
Throughout the entire work we find that the developed cos-
mological models associated with case I, case II and case
III strongly support the accelerated expansion phenomena
thereby depicting that the Universe is in the phase of expan-
sion with acceleration and will continue to expand in late
time also.
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