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Abstract

From a special injection scheme, the TESLA 17 km damping ring can be reduced
in size to about 6 km. Some stability issues of this Fermilab design are discussed. This
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1 FERMILAB DESIGN

A 1 ms pulse of the TESLA design contains 2820 bunches with 337 ns separation,’ and
is compressed to 20 ns separation on entering the dog-bone damping ring, which has a
circumference of 17 km. The Fermilab design injects the 2820 TESLA bunches into 60 trains
containing 47 bunches each. The bunch separation is 7, = 6 ns and the train separation is
340 ns for the first 59 trains and 340 — 6 = 334 ns for the last train. Thus the train gap is
334 — 6 x 46 = 64 ns except for the last one which is 6 ns shorter. Some properties of the

Fermilab damping ring are listed in Table 1.

2 IMPEDANCE OF VACUUM CHAMBER

2.1 Space Charge

The Fermilab damping ring is designed for the beam energy E = 5.066 GeV with a ring
circumference C' = 27 R = 6113.97 m. The designed normalized rms beam emittances are
ezny = 4.66 x 107% 7m and e,ny = 2.00 x 1078 7m, with betatron tunes v, = 59.28 and
v, = 45.10. The mean betatron functions are therefore 8, = 16.41 m and ,By = 21.57 m.

The rms vertical beam radius is
o, = ,/@fyﬂ:aﬁo pm (2.1)

where E = ymc? is the electron energy, m its rest mass, and c the velocity of light. The
horizontal rms dispersion function is 7y,s = 0.213 m and the rms energy spread op =
0.001513. Since dispersion function of the lattice and energy offset of a particle in the beam

are statistically independent, the rms horizontal beam radius is therefore

o= [ s -

Notice that the horizontal emittance contributes only 87.9 um to the beam size whereas
the dispersion contributes 322.5 pm. Thus the average horizontal beam size is dominated
by dispersion. The TESLA dog-bone ring, on the other hand, is quite different. The arcs

"This 337-ns bunch separation is modified to 340 ns for use with the Fermilab designed damping ring.



Table I: Some properties of the Fermilab damping ring.

Lattice
Circumference C' (m)
Energy F (GeV)
Betatron Tune v, /v,
Chromaticity &,/€,

6113.967

5.066
159.283/45.102
—74.629/—-59.628

Momentum compaction a, 0.001426
Rms dispersion D5 (m) 0.2132
Maximum dispersion (m) 0.6129
Maximum betatron fcn (8;)max/ (Gy)max (m) 41.56/42.10
Revolution frequency fo (kHz) 49.034
Revolution period Tp (us) 20.394
RF System

RF frequency fir (MHz) 499.999998
RF harmonic A 10197
RF voltage (for 12 cells) Vis (MV) 31.2
Synchrotron tune 0.037
Synchronous angle (degrees) 14.2
Beam

Extracted rms normalized emittance e,y /€;n (107%7 m) 4.66/0.020
Rms energy spread 0.0015
Number of trains n,, 60
Number of bunches per train n,/n,, 47
Number per bunch N, 2 x 1010
Bunch spacing 7gep (1) 6.0
Train separation for 59 trains/last train (ns) 340/334
RMS beam radius o, /0, (pm) 334/6.60
RMS bunch length o, (mm) 5.67
Radiation Damping

Energy loss per turn Uy (MeV) 7.656

Damping times 7,/7,/75 (ms)

27.0/27.0/13.5




are of length 1.9 km, only about 11% of the whole ring. As a result, the rms dispersion
should be about 0.03 m, an order of magnitude smaller than that of the Fermilab design. In
addition the rms horizontal beam radius coming from the emittance is 174.9 um because the
betatron function is twice as big as the Fermilab design. The horizontal beam size is therefore
dominated by emittance. This difference has an important bearing on the incoherent space-

charge tune shift to be discussed below.

2.1.1 Incoherent Self-Field Tune Shift

The incoherent space-charge tune shift at the center of the beam is, for the vertical,
N, T eR

— = —0.0380 2.3
2ny30y(0y + 0y)vy B (2:3)

Ay, =

and Ay, = —0.00057 for the horizontal. In above, 7. = 2.8179 x 107'® m is the classical
electron radius and N, = 2 x 100 is the number of particles per bunch. The bunching factor,

V2o,
C

has been used. Notice that Eq. (2.3) gives the maximum vertical space-charge tune shift for
particles at the center of the bunch. The vertical space-charge tune shift averaged over all

B= =233 x107%, (2.4)

particles in the bunch will be much less.

Simulation performed on the TESLA dog-bone damping ring reveals that a maximum
space-charge tune shift of —0.1 is tolerable. [1] The maximum vertical space-charge tune
shift of the TESLA dog-bone damping ring is Ay, = —0.31. (The TESLA Report gives
Ay, = —0.23 because it has been incorrectly assumed that the average betatron functions
are the same horizontally and vertically.) There are two reasons why this tune shift is an
order of magnitude larger than that of the Fermilab design. First, since the vertical betatron
tune of the TESLA ring is v, = 44.18, almost the same as the Fermilab design, the space-
charge tune shift is essentially proportional to the square of circumference of the ring and
the TESLA dog-bone is 2.78 times larger. Second, the horizontal beam size of the Fermilab
ring has been enlarged by a factor of 3 because of the dispersion, but this enlargement is
almost negligible in the TESLA ring. In the analysis of Decking and Brinkmann, [1] the
maximum vertical space-charge tune shift can be reduced to Ay, = —0.035 by initiating
horizontal and vertical coupling at the long straight sections so that average vertical and
horizontal emittances are equal to about one half the designed e,5. No such consideration

will be necessary for the Fermilab damping ring.



2.1.2 Space-Charge Impedances

Taking the vertical radius of the beam pipe as b = 2 ¢, space-charge impedances experienced

by the beam are

A Z
J:-j°<%+mnb )=ﬁMMH@,
n

292 V20,
ZoR 1 1
Zt=—j — — ) = —41.66 MQ )
1 ] ,72 (O_y(o_y + O_x) b2) .7 /m 5 (2 5)

where v, = 0.57722 is Euler’s constant.! We see that the longitudinal space-charge impe-
dance is small and will be within the microwave stability limit. The vertical space-charge
impedance, on the other hand, is large and is larger in magnitude than the transverse wall-
resistive impedance at the (1 — @) line. However, it may help in increasing the threshold of
transverse mode-mixing instability of the beam to be discussed below. [2] The space-charge

impedances of the TESLA design are comparable.

2.2 Button BPM

We are using the BPM computation made in the NLC ZDR. The button BPM of the NLC
damping ring is shown in the left plot of Fig. 1. For a set of four, the magnitude of the
longitudinal impedance calculated using MAFIA is shown in the right plot. The first reso-
nance is 14 € at 9.1 GHz with @ ~ 300, while the second resonance is 16 € at 12 GHz with
Q ~ 50. The revolution frequency of the Fermilab damping ring is fy = 49.0 kHz. Thus
these two resonances give Re Zg /n = 0.0754 mQ and 0.0653 m$) at the respective resonant

frequencies.

The impedance of a resonance at angular frequency w, can be written as

Ry

Zh(w) = —— .
with
w Wy
A= w—r - (2.7)
The reactive part is oA
heoy . —Bs

tEuler’s constant is defined as ye = limpm—oo (1 + 2 4+ 3 + 3 +-- + L —Inm).



which exhibits a maximum at

1— Q%A
@A (2.9)
(1+ Q2A2)2
or
QA =F1. (2.10)
The peak value of the reactive part is therefore
R
(@m Z) g = +27, (2.11)
and the peak frequency is at
w 1 1 \
— =4/ 1+ —=F . 2.12
o T T ag (2.12)
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Figure 1: Left: Cross section of a NLC button BPM. Right: Magnitude of longitudinal impedance
computed using MAFTA.



Thus for a high () resonance,

1 R,
Tm Z) 2n, W
=\ 1R | (2.13)
A w <K Wy
Q@ ny
where n, = w, /wy and
il W~ w
Re Z} n, g
— =19 nR, (2.14)
g S

At low frequencies, the reactive impedance for a set of 4 buttons is Zm Zg /n = 0.00156 m}
(0.00025 m< from the first resonance and 0.00131 m< from the second). On the other hand
Im ZQ /n = 0.0377 m§ and 0.0327 mf? near the first two resonances.

If a set of BPM is installed at the end of each quadrupole, we need to count the
total number of quadrupoles in the lattice of the Fermilab damping ring. In SEXTO,
there are 11 ARC’s each containing 4 quadrupoles, 2 SUPPRESSOR’s each containing 8
quadrupoles, 20 STRCELL’s each containing 4 quadrupoles, or a total of 99 quadrupoles
(one in SUPPRESSOR is considered shared). In SEXT1, there are 11 ARC’s each contain-
ing 4 quadrupoles, 2 SUPPRESSOR’s each containing 8 quadrupoles, 15 STRCELL’s each
containing 2 quadrupoles, 2 STRWIG’s each containing 4 quadrupoles, and 1 WIG contain-
ing 2 quadrupoles or a total of 99 quadrupoles (one is considered shared). The ring is made
up of 4 SEXTO0’s and 2 SEXT1’s. Thus there are 594 quadrupoles in total and there will be
594 sets of BPM’s. In total, ReZ(l)l/n = 44.8 m(} and 38.8 m2 near the two resonances at
9.1 and 12.0 GHz. Im Z(I)'/n will be half of those near the resonances and 0.93 mQ at low

frequencies.

As for energy loss, MAFIA gives k = 0.0203 V/pC for each BPM set. But the NLC
damping ring electron bunch length is o, = 3.3 mm while the Fermilab damping ring electron
bunch length is oy = 5.67 mm. Assuming o, 1/2 dependency the loss factor for all the BPM,s
in the Fermilab ring will be 9.20 V/pC.



2.3 WALL IMPEDANCE

The beam pipe is made of aluminum with resistivity p, = 2.65 x 1078 2-m. The skin depth

at revolution frequency is therefore

2 205
50 = ]2 = 222 370 . (2.15)
Wolk Zy

Assuming a round beam pipe of radius b = 2 ¢m, the longitudinal and transverse impedances

are

R
Zh = (1+ )85 vn = (1+)3.49012 0,
s0

1 2 Z(g . —1/2
Z; = R (1+7)17.0ln — vpy) MQ/m . (2.16)
The loss factor is the energy loss of the bunch if the total charge inside the bunch is one
Coulomb. It can be written as

1 o]
kj=— | Zlwhw)dw, (2.17)
2T J_oo
~ where A{w) is the power spectrum of the bunch and is equal to, for a Gaussian linear
distribution,
hw)=e "7, (2.18)

where o, is the rms bunch length. For the resistive wall, we get

TG o A (2.19)

1/2_3/2
27rw0/ o2 n=0

k=

or 14.9 V/pC.

2.4 RF System

The rf system of the Fermilab damping ring will be essentially the same as that of the TESLA
damping ring, consisting of 12 superconducting Niobium 500-MHz cavities having total shunt
impedance R/Q = 45 Q2 per cell and unloaded quality factor @y ~ 10'° at 2°K. Robinson’s
stability provides damping effect to the bunches at the fundamental resonance. The higher-

order parasitic modes will be damped using dissipative material applied to the inner surface



of both beam pipes just outside the cryostat at room temperatﬁre. Experience at CESR
and KEKB tells us that the quality factor of these modes can be reduced to a few hundred
over the bandwidth 1-3 GHz. These modes will contribute Z(l)| /n =2 mQ for the TESLA
dog-bone damping ring together with a loss factor kj = 8.8 V/pC. The TESLA dog-bone
damping ring has a circumference of 17 km and bunch length o, = 6 cm. For the Fermilab
damping ring, they are scaled to Z(|,[ /n = 5.7mQ and ky = 9.1 V/pC. The contribution to
low frequency inductive Z'(')| /n should be much less because of the large quality factors.

2.5 Summary

The TESLA Design Report assigns 17 m{2 to non-inductive part of Z(|)| /m for kickers and
11 mQ to inductive part of Z(l)' /n for bellows and another 5 m{) to inductive part of Zg /n
for “other components.” We scale® them according to the size of the ring and obtain 48 m
for kickers, 11 mf2 for bellows, and 5 mf2 for others. In Table II we make a summary.

Table IT: Longitudinal impedance per harmonic and loss factor

for the Fermilab damping ring from various contributions.

Zy/n k|
(m2) (V/pC)
Non-inductive RF cavities 9.7 9.1
Resistive wall (n = 0) 3.5 14.9
BPMs 44.8 9.2
Kickers ~ 48 ~ 40
Total ~ 102
Inductive Bellows ~ 11 ~ 1.3
BPMs 44.8
Others ~ 5 ~ 0.6
Total ~ 60.8
Total loss factor ~ 75.1

$The number of bellows increases as the ring size and we assume the same for “other components”.



3 SINGLE BUNCH INSTABILITIES

3.1 Microwave Instability

For a short bunch, the longitudinal instability is caused by the mixing of azimuthal modes
1 and 2. The stability limit is given by

7

0| = ra, B (a—Ef , | (3.20)

Bka B

eff

where a;, is the momentum compaction factor, Iy is the peak current, and

/OO Zg(w)h(w)dw

oo n

off ) /_oo h{w)dw

e}

7
n

(3.21)

is the impedance weighted over the power spectrum h(w) of the bunch mode under consid-

eration.

For a damping ring, this instability must be avoided. If not, the bunch length will grow
when the bunch becomes unstable. When saturated, the instability stops and the bunch
length will be shortened by radiation damping to a value that the instability starts again.
This oscillation of bunch length, called saw-tooth instability, has been observed at the SLAC
SLC damping ring and the Argonne APS. Since radiation loss changes with bunch length, so
is the synchronous phase for rf compensation. As the bunch blew up, the higher-order losses
decreased and the beam phase shifted by about %O at the 714-MHz rf cavity of the SLC
damping ring. This translated into a 2° jump at the S-band in the linac. This magnitude
of phase error caused a problem with the rf bunch-length compressor in the ring-to-linac
beam line. When this instability took place, the bunch would be incorrectly launched into
the linac and might eventually be lost on the downstream collimators, causing the linac to

trip the machine protection circuits.

For the Fermilab damping ring, this stability limit is Zg / n’ = 163 mQ2. The rms bunch -
length is 0, = 0,/c = 18.9 ps and total bunch length is assumeefé to be 11, ~ 40, = 75.7 ps.
The power spectra of azimuthal modes 1 and 2 peak at f; ~ 2/(27;) = 13.2 GHz and
fa ~ 3/(271) = 19.8 GHz having half width ~ 6.6 GHz. They are much above the beam
pipe cutoff frequency f. ~ 5.7 GHz (assuming beam pipe radius b = 2 cm), where the
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coupling impedance starts rolling off. Apparently, we do not have that amount of impedance

to drive this instability.

For the TESLA damping ring, the stability criterion of Eq. (3.20) gives a comparable
stability limit. Since the momentum compaction and the fractional energy spread are slightly
smaller, (a, = 1.20 x 107 versus 1.43 x 1074, o, /E = 1.30 x 1073 versus 1.51 x 107%), the
TESLA stability limit becomes Z(},I /n]eg = 100 mS.

As for the NLC damping ring, based on ZDR data: «, = 0.000465, 0,/FE = 0.00090,
o, =39 mm, £ =198 GeV, N = 1.57 x 10'° per bunch, the stability limit is Zg/n]eﬂr =
61 mS2.

3.2 Transverse Mode-Coupling Instability

Transverse mode-coupling instability, sometimes known as strong head-tail is one of the
cleanest instabilities to observe in all electron storage rings. The rigid dipole mode or
azimuthal m = 0 mode shifts downwards with beam intensity, a general behavior for short
bunches. On the other hand, the azimuthal m = —1 mode is not much affected. When the
beam intensity is high enough, mode m = 0 meets mode m = —1 and an instability occurs.
The threshold is roughly given by the shifting of mode m = 0 by the synchrotron frequency
and can be represented roughly by

L
(;I;,CVZIZQZ)ITS R Vs : (3.22)
or 9
ZE| .~ ZE"Z’;% (3.23)
where o
/ 7 (w)h(w)duw
Zi| g == (3.24)

oo/_z h(w)dw

is the transverse impedance weighted over the longitudinal power spectrum A(w) of the
bunch mode under consideration. With total bunch length 7, = 40y/c, we obtain the
stability limit of ZHGH = 2.58 MQ/m. Since the mixing is between modes m = 0 and
m = —1, the frequency of the driving force should be of lower frequency than that driving the
longitudinal mode-mixing instability, and is from 6.6 to 13.2 GHz. Unfortunately, estimation
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of broadband transverse impedance has not been made for the ring. If we employ the

Panofsky-Wenzel-like relation

2c Z(IJ|
“Fw
we obtain the longitudinal-equivalent limit of Zg /nleg = 530 mf). From the estimate made
in Table II, it does not appear to have this sort of impedance to drive the instability. We may

say that the beam in the Fermilab damping ring will be safe against transverse mode-mixing

Zi (3.25)

instability.

For the Fermilab damping ring, it is very possible that the transverse impedance is
dominated by space charge. In addition, the incoherent space-charge tune shift is large and
is of the same order of magnitude as the synchrotron tune. Under these circumstances,
the threshold criterion of Eq. (3.22) may not be valid. This is because nonspace-charge
transverse impedance shifts the m = 0 mode downward without much effect on the other
modes. Instability occurs when the m = 0 mode meets the m = —1 mode. On the other
hand, the transverse space-charge impedance shifts all modes downward except the m = 0
mode. Thus if the transverse space charge impedance is large enough, it will be much harder
for the m = 0 and m = —1 modes to meet. In other words, the threshold of transverse mode-
coupling instability will be pushed to a much higher current in the presence of strong space
charge. An illustration from a square-well air-bag model [3] is shown in Fig. 2. The strong
transverse space-charge impedance comes from the large circumference of the damping ring
and the small transverse emittances of the beam. In short, we may say the beam in the

Fermilab damping ring will be very safe against transverse mode-mixing instability.

For the TESLA dog-bone damping ring, the synchrotron tune v, scales with RY/? while
the betatron tune is v, = 44.2, very close to the 45.1 of the Fermilab ring. Equation. (3.23)
suggests that the stability limit for the TESLA dog-bone damping ring scales with R~1/2
or 1.80 Mw/m. With the Panofsky-Wenzel-like relation, this translates to Z(l)I /n = 133 mQ,
which is large compared with the estimate of Ich)l /n] = 29 mQ of inductive and 25 mf)
non-inductive impedance for the vacuum chamber of the TESLA dog-bone ring. Again, the
large incoherent space-charge tune shift, even after the reduction because of the initiation
of horizontal-vertical coupling, should help in pushing the threshold current to a higher
value. The transverse mode-coupling instability limit for the NLC damping ring is Zi |z ~
0.50 MQ/m.
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Figure 2: Illustration of space-charge effect on TMCI. Left: non-space-charge impedance drives
the m = 0 mode downwards to meet with the m = —1 mode, while leaving all the other modes
nearly unaffected at least at low intensity. Right: Space-charge force does not affect the m = 0
mode, but drives all other modes downwards. Thus the threshold at which the m = 0 and m = —1
modes meet will be pushed towards a high beam intensity. The current parameter Y is the response

of the tail particle in half a synchrotron period.

4 MULTI-BUNCH INSTABILITIES

4.1 Longitudinal Coupled-Bunch Instabilities

Each rf cavity has shunt impedance R/Q = 45 2. Assume the same for all the higher-
order modes, which will be damped by dissipative material to Q ~ 100. Thus for all the 12
cavities, the largest possible shunt impedance for the higher-order modes will be R, = 54 k(2.
Assuming that this shunt impedance falls on a synchrotron sideband at about w; /(2m) =
1/(21,) ~ ¢/(4v/60.,)3 = 5.4 GHz, the frequency at which the bunch spectrum rolls off, the
fastest longitudinal coupled-bunch growth rate given by

1 eapnplpyRswy
=R 4.2
T 4nEv, (4.26)

is only 49.1 s;l, where I, is the average bunch current, n, = 2820 is the total number of
bunches, and we have make use of the fact that the synchronous tune obtained from the
bunch length and energy spread is

a0

ve = —2E = 0.0370 . (4.27)

O+Wo
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Thus the shortest growth time is 36.6 ms. The above discussion assumes a ring filled with
equally spaced bunches of point bunches of equal intensity. The finite length of the bunch
will introduce a damping factor roughly equal to exp —(w202). The concentration of the
bunches at 60 locations will further lower the growth rate. In short, the shortest growth time
will be longer than the radiation damping time of 27 ms. Thus, no longitudinal coupled-
bunch instability will materialize, and a broadband multibunch feedback system may not be

necessary.

For the TESLA dog-bone ring, the shortest growth time is very much longer. The
average bunch current I, scales with R~! while the synchrotron tunes v, scales with RY/2,
so that the shortest growth time scales with R%?2 or 4.6 times longer. In addition, the
momentum compaction o, = 1.2 x 107 is smaller than the Fermilab design and the rms
bunch length o, = 6 mm is slightly longer. All these factors bring the shortest growth time
for point bunches to 134 ms, about 4.7 damping times.

5 Transverse Coupled-Bunch Instabilities

The transverse resistive wall impedance will drive transverse coupled-bunch instabilities, and
the fastest growing mode is driven by the vertical (1 — @) betatron line. The growth rate is

I enplpc

- Re ZLF ' .
T drvy B 1 ’ (5 28)

where F” ~ 0.8 is a form factor depending on the longitudinal linear distribution. Although
the betatron tune is v, = 45.1, let us assume a residual tune of 0.5. The transverse wall impe-
dance at the (1 — Q) line is Re Zi- = 24.0 MQ/m and the growth rate is 1109.30 s~ (growth
time 0.90 ms or 44 turns). We want to compare this growth rate with the TESLA dog-bone
damping ring. The longitudinal resistive-wall impedance Z(l)| scales with R'/? because the
skin depth at revolution harmonic scales with RY/2. Thus the transverse resistive-wall im-
pedance Zi scales with R3/2 because it is proportional to Zg /n. The average bunch current
will be smaller and scales with R™'. Thus I, Re Zi- and therefore the growth rate scales with
RY/2, since the vertical betatron tune of the TESLA ring is 44.18, very close to that of the
Fermilab design. Thus the transverse coupled-bunch instability growth rate of the TESLA
dog-bone ring will be 77! = 1910 s~

Due to the short bunch length, a shift towards positive chromaticity does not help at all.
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This is because it requires a chromaticity &, ~ o,/(2fo7,) = 192 to shift the mode spectrum
of the bunch by Aw = «/7,. The growth rate, however, can further be decreased by coating
the beam pipe with a thin layer of copper. Tune spread supplied by octupoles can provide
some amount of Landau damping. The remaining instability can be alleviated easily with a
low-bandwidth feedback mode damper. The damper power required should be rather weak,
because we only need to damp in 44 turns and the rigidity of the beam at 5.066 GeV is
quite low, when compared with the former Fermilab Main Ring which stored the beam up
to 150 GeV.

6 ELECTRON CLOUDS AND TRAPPED IONS

6.1 Electron-Cloud Effect

Electrons will be generated in the vacuum éhamber of the damping ring due to residual
gas ionization and secondary emission of residual gas ions or molecules hitting the wall of
the vacuum chamber. In the positron ring, electron cloud will interact with the positron
beam leading to a growth in transverse emittances. This interaction is short-range and the
driving force can be represented by a short-range transverse wake W; left one bunch spacing
ahead. [4] This wake computed for PEP-II gives W7 < 1 x 10° m~? in cgs units. Translating
into MKS units, this becomes W; < 890 x 102 V/Coul/m. The amplitude of transverse

oscillation has a growth rate of
1 -~ 8]1,RW1

~ i
T vy B

(6.29)

or 301 s™" or a growth time of 3.33 ms. However, the amount of electron clouds can be greatly
reduced by wrapping the beam pipe with solenoid. For example, simulation of the HER of
KEKB shows that the transverse wake coming from electron cloud is W1 < 300 m~2, [5] which
brings the growth rate to 1.11 s™! or a growth time of 901 ms, which is much longer than
the radiation damping time of 27 ms. In fact, the whole beam will be stored and damped in
the damping ring for about 0.2 s only. For the TESLA dog-bone ring, this growth rate will
be relatively the same because I R does not depend on the size of the ring and the vertical
betatron tune is comparable to that of the Fermilab design.
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6.2 Trapped Ions

Ions are generated in the vacuum chamber from the residual gas and the electron beam traps
positively-charged ions. In the potential well of the electron beam, the trapped ions perform

transverse oscillations with the ion-bounce angular frequencies

N,
Wigy = 3 tTpC s (630)
Tay(

o, + 0y) ATeep

where 7, = 1.5347 x 107'® m is the classical proton radius, A is the molecular weight of
the ion, and 7 is the bunch separation. This expression is obtained by averaging over the
whole train the individual kicks transferred to the ion from the point electron bunches. The .
ions will be cleared at the bunch gaps of length 7y, if Wiz 7Teep > 2, otherwise they will be
trapped. For COT with A = 28, the ion-bounce angular frequencies are w;; = 31.0 MHz and
wiy = 220 MHz. We obtain wiy ,7sep = 0.186 and 1.32. Thus CO* will be trapped. For light
ions such as Hy with A = 2, wiy 7eep = 0.696 and 4.96. Thus HY will be trapped horizontally
but not vertically. On the other hand, bunch spacing is 7sp = 20 ns in the TESLA dog-bone
ring, very much longer. As a result, wjz ,Tep = 0.635 and 2.51 for CO* and 2.37 and 9.40
for Hf. Thus only CO™ will be trapped horizontally.

While the ions oscillate inside the electron beam, the electrons also oscillate inside the

ion ‘beam’. In the absence of external transverse focusing, small-amplitude electron-in-ion

4N\ .C?
Wegy = , (6.31)

bounce angular frequency is

Y020z + 0y)
where ); is ion linear density. Compared with the ion-bounce frequency in Eq. (6.30), there
is the extra « in the denominator because the electrons travel around the ring, and there is
an extra factor of 2 in the numerator because the ions are at rest when generated by the
electron, implying that the transverse radii of the ion ‘beam’ are a factor v/2 smaller. The

growth time in the linear theory can be expressed as

2w
Toy = —g——— LY , (6.32)
wem7ywix,y7-t7”
where 74, is the length of the bunch train. Plugging in numbers gives 7, , = 360 and 0.76 ms.
Thus there is no worry in the horizontal direction, but some feedback device is necessary
for the vertical. The results, together those for the TESLA dog-bone ring are listed in

Table III. However, it is unclear why the growth times for the TESLA dog-bone are so
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Table I11: Possible fast-ion instabilities for trapped ions in the Fermi-
lab damping ring and TESLA dog-bone ring at the vacuum pressure
for 10710 Torr.

Fermi Dog-bone

Bunch spacing 7eep (1) 6 20

For H}

Test for trapping wiyTeep 0.70 2.37
Wiy Teep 4.96 9.40

For CO™*

Test for trapping wizTeep 0.19 0.64
Wiy Tsep 1.32 2.51

Linear Theory for CO™

Fast-ion growth time 7, (ms) 360 0.133

7, (ms) 0.76 0.002

much shorter than those for the Fermilab damping ring, although the trapping test shows
that CO*" will not be trapped in-the former at least vertically. It is also unclear why the
horizontal growth times are so much larger than the vertical ones, although the trapping
test shows that trapping will be less severe in the horizontal. In fact, the expression of the
growth time in Eq. (6.32) assumes a uniform electron beam of the length of the whole train

without gaps so that ions are trapped inside.

In order to study the more realistic problem, some simulations have been performed. To
save time on computation, only the first 1000 turns were simulated (total storage requires
“about 10000 turns). The vacuum pressure was increased to 1078 to enhance the growth. All
the bunches were considered as points and with a transverse offset randomly up to 1/100 of
the rms radius. The vertical oscillation amplitudes for bunch 20 (left) and bunch 47 (right)
in a train as picked up by a BPM is shown in Fig. 3 for the first 1000 turns. Since the
vertical rms beam radius is o, = 6.6 x 107% m, the initial beam displacement was randomly
between +6.6 x 1078 m. We see in the same figure that the growths in amplitude are very
rapid reaching £8 x 10™* m already in 1000 turns for bunch 20 and +2.5 x 10~* m for
bunch 47 and appear to continue. A feedback with a gain of 0.2 was then applied and the
simulation repeated. We see that with feedback the amplitudes have been controlled to
within £150 x 1078 m for bunch 20 and +25 x 10~% m for bunch 47. However, the oscillation
amplitude for bunch 20 is still very much larger than the rms bunch radius. It is unclear why



17

250 T T — r T

800 T B T

600 | Bunch 20 Vertical Bunch 47 Vertical
10 Torr 10" Torr
Gain = 0.2 150 Gain=0.2

400

200

50

-200

-400

Amp. of Beam Center (um)
Amp. of Beam Center (um)

-150

-600

- ) ] ! ! L _250 A L ! I [ A
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 80O 900 1000

Turn Number Turn Number

-800

Figure 3: (color) Vertical amplitudes of the 20th bunch (left) and the 47th bunch (right) in the
train for the first 1000 turns at vacuum pressure 10~8 Torr without and with feedback of gain 0.2.

The growths have been very fast, but it was controlled by the feedback.

the growth of the last bunch of the train has been much less rapid than the 20th. The theory
of fast beam-ion instability and some simulations [6] suggest that the instability growth rate
increases with the square of the bunch position. On the other hand, we find in this train of
47 bunches that the bunches in the center of the train have much larger growths than the
head and the tail bunches.

We repeat the simulations with vacuum pressure at 1x ~!? Torr. The results for bunches
20 and 47 are shown in the left and right plots of Fig. 4 Now the growth has been very much
less in the first 1000 turns and went up to +15 x 107 m for bunch 20 and +2.3 x 107 m
for bunch 47. Feedback of gain 0.20 stabilizes the growth to within £1.5 x 107® m for bunch
20 and +0.4 x 107°% m for bunch 47, which are within the one sigma vertical half size of the

beam.

In the horizontal direction, only the contribution from emittance has been used, which
gives the horizontal radius of 87.8 ym. Thus the initial horizontal offset of the centers of the
bunches have been offset randomly up to +0.88 um. The amplitudes of oscillation of the
bunches are followed for the first 1000 turns. The results for bunch 20 are shown for vacuum
pressure 1 x 1078 Torr in the left plot of Fig. 5 and for vacuum pressure 1 x 1071 Torr in the
right plot. Here we see the amplitude grows to only 50 x 107% m in the first 1000 turns at
the vacuum pressure of 1 x 1078 Torr. With feedback of gain 0.2, the amplitude is damped

to almost zero in 100 turns. At the vacuum pressure of 1 x 107!° Torr, there is no growth
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Figure 4: (color) Vertical amplitudes of the 20th bunch (left) and the 47th bunch (right) in the
train for the first 1000 turns at vacuum pressure 1071% Torr without and with feedback of gain 0.2.

The growths have been much slower than when the pressure was 1078 Torr. Feedback with a gain
of 0.2 controls the oscillation of the bunch centers to within the rms size of the bunches.
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Figure 5: (color) Horizontal amplitudes of the 20th bunch in the train for the first 1000 turns at
vacuum pressure 10~ Torr (left) vacuum pressure 10~1° Torr (right). We see the amplitude grows

when the pressure is 1078 Torr and is damped to almost zero with feedback of gain 0.2. At vacuum

pressure of 10710 Torr, the bunch oscillation is stabilized without feedback.
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Figure 6: (color) Normalized offset emittance of bunches 7, 14, 21, 28, 35, 42, and 46. averaged
over the 60 trains without/with feedback (left/right) at vacuum pressure of 0.1 nTorr. It is evident
that the growth without feedback increases with bunch position. With feedback of gain 0.20, the

offset emittance is controlled to within 20% of the vertical emittance of the beam.

at all, the beam just oscillates with the same amplitude of 0.88 um.

So far we have been looking at only two bunches in a particle train. In order to have

better statistics, we make averages over all the 60 trains. For this we define the offset

emittance

2
Coffset = ybeagcenter : ( 6.33 )
Yy

and normalized it with respect to the vertical emittance of the beam. The averages of this
normalized offset emittance over the 60 trains are shown in Fig. 6. The left plot is for
bunches 7, 14, 21, 28, 35, 42, and 46 -at vacuum pressure of 0.1 nTorr, and the right plot
shows the same but with feedback of gain 0.20 turned on. We do find that the growth
without feedback increases with bunch position, but it does not scale with the square of
‘bunch position as postulated in Ref. [5]. With feedback turned on, the offset emittance is
damped to within 20% of the beam vertical emittance. Or the vertical offset is within 10%
of the vertical beam size. Notice that in these simulations, radiation damping has not been
included. The radiation damping time is approximately 1400 turns. Thus when radiation
damping is considered, the offset emittance will be much less. The amplitudes of oscillation
of the bunches are simulated to be recorded at a beam-position motion but at different time.
Now let us look at the motion of all the 2820 bunches altogether at a snapshot. To convert
to bunch amplitudes at a snap-shot, the BPM values for the jth bunch in the kth train
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Figure 7: (color) Snapshot mode spectra are shown for the 50th, 250th, 500th, 750th and 1000th
turns at vacuum pressure 10719 Torr without and with (left and right) feedback of gain 0.2. The
resonant modes correspond to £ = v, + Q;y and (vy — Qi) + Nsp. Without feedback the reso-
nant amplitudes increase in time and the ion-bounce frequency decreases indicating that that the
beam size increases. With feedback, both the resonant amplitudes and ion-bounce frequency reach

saturation.

must be multiplied by the betatron phase exp{#27[57(k — 1) + (5 — 1)]v,/Nep}, where in the
simulation we have assumed for simplicity 60 trains each containing 47 bunches followed by
10 empty bunch spacing and Ny, = 60 x 57 = 3420 is the total number of bunch spacings

around the ring.

Fourier transform is made for each turn by multiplying the snapshot amplitude by ¥
exp[—i2mfm/Ngp) and sum over the bunch spacing m from 0 to Ng, — 1. The results in the
vertical at the 50th, 250th, 500th, 750th and 100th turns are shown in Fig. 7 without and
with (left and right) feedback of gain 0.20. According to the analysis of Chao [7], the resonant
modes occur at £ = vy, — @)y, where w;, = (Q;,w is the angular ion bounce frequency. Because
the imaginary part of the amplitude is not monitored at the BPM, the Fourier transform
results in another mirror resonance at £ = (v, — Q;y) + Ngp. These two resonances do appear
for each snapshot in Fig. 7, and their mode number add up to & 3510, which is exactly
Ny + 2v, as expected (v, = 45.1). We identify the left resonant at v, + Q;, and the right
at (vy — Qi) + Nsp. Since they correspond to 815 and 2895 at the 50th turn, we obtain

91f we multiply by exp[+i2mém/Ngp) instead, the two resonant modes in the mode spectrum will be at
¢ = Qs — vy and Ngp — (v + Qiy). Note that the two resonances in the Fourier transform correspond to the

same mode.
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Qs = 775, which agrees very well with @y, = 716 using Eq. (6.30). Without feedback, as
time goes on, the resonances shift to lower frequencies while their amplitudes become larger.
This just reflects the evolution of the resonant beam-ion coupled oscillation with the beam
size becoming larger and larger. With feedback turned on, we see that the @, does not
increase any more after 250 turns and so are the resonant amplitudes. This reflects that an
equilibrium has been reached in the presence of feedback, so that both the beam size and

the oscillation amplitude do not increase anymore.

7 CONCLUSION

1. The reduced size of the Fermilab damping ring increases the rms dispersion.of the
ring by one order of magnitude compared to the TESLA dog-bone ring, so that the
horizontal beam size becomes dispersion dominated. The reduction in ring size and
the increase in horizontal beam size leads to a low tolerable coherent space-charge
impedance. There is no need to resort to the method of vertical and horizontal coupling
required in the TESLA damping ring

2. Longitudinal and transverse saw-tooth instabilities will be safe because the ring is be-
low single bunch microwave instability limit and the transverse mode-coupling insta-
bility limit. Although the TESLA damping is also safe against these two instabilities,

however, the threshold limits are lower.

3. Longitudinal coupled-bunch instability growth times driven by parasitic rf cavities
higher order modes will be of the order of or longer than the radiation damping time.
Those for the TESLA damping ring are longer. No damper will be necessary for both
rings.

Transverse coupled-bunch instability growth times driven by the resistive-wall impe-
dance will be longerl than 0.9 ms and a transverse narrowband mode damper will be
necessary. Those for the TESLA damping ring are about twice longer and a transverse

narrowband mode damper is also required.

4. Electron-cloud effect may be important. Like the KEKB HER ring, the effects can be
avoided by wrapping the vacuum chamber with solenoids.

5. Fast beam-ion instability will occur. Simulation of the first 1000 turns show that the
growth in amplitude can be alleviated with a feedback damping of gain 0.20.
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