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Abstract

Quantum target detection aims to utilise quantum technologies to achieve performances in target
detection not possible through purely classical means. Quantum illumination is an example of
this, based on signal—idler entanglement, promising a potential 6 dB advantage in error exponent
over its optimal classical counterpart. So far, receiver designs achieving this optimal reception
remain elusive with many proposals based on Gaussian processes appearing unable to utilise
quantum information contained within Gaussian state sources. This paper considers the
employment of a noiseless linear amplifier at the detection stage of a quantum illumination-based
quantum target detection protocol. Such a non-Gaussian amplifier offers a means of
probabilistically amplifying an incoming signal without the addition of noise. Considering
symmetric hypothesis testing, the quantum Chernoff bound is derived and limits on detection
error probability is analysed for both the two-mode squeezed vacuum state and the coherent state
classical benchmark. Our findings show that in such a scheme the potential quantum advantage is
amplified even in regimes where quantum illumination alone offers no advantage, thereby
extending its potential use. The same cannot be said for coherent states, whose performances are
generally bounded by that without amplification.

1. Introduction

Quantum mechanics, and the non-classical phenomena arising from it, have revolutionised many modern
technologies including computation [1-3], communication [4—6] and sensing [7—13]. Quantum target
detection forms a particular subset of quantum sensing protocols in which ones aim is to determine
whether or not a target is present in some region of interest. Quantifying one’s capability of doing so, and
also confirming the benefits of using a quantum strategy, is carried out on the analysis of bounds on the
probability of an error, in particular, comparing the upper bound to the lower bound of the corresponding,
optimal classical method. Typically this classical benchmark will take the form of a coherent state, a
quantum state with minimum uncertainty, with homodyne detection at the receiver.

Quantum illumination (QI) [14—16] is one of the first proposed protocols for quantum target detection.
The protocol begins by generating an entangled source comprising two modes where one is designated the
role of ‘signal’, and sent to probe the target region, while the other takes the role of the ‘idler’ and is
retained for later joint-measurement at the receiver. Remarkably, QI offers a quantum advantage in target
detection despite the fact that decoherence of entanglement is encoded into the protocol itself. This
quantum advantage is maximal under constraints of low signal-brightness, low target reflectivity and high
background noise. Within such a regime the effective signal-to-noise ratio (SNR) of such an
entangled-source transmitter offers a factor of 4 advantage over that of the corresponding classical
benchmark of coherent states with homodyne detection, equivalent to a 6 dB improvement in error
exponent.

Attainment of this well-known 6 dB quantum advantage through QI relies on the use of an optimal
joint-measurement, however, the details of such a measurement remains unknown. Various receiver designs
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have been proposed for QI: the phase-conjugating (PC) and optical parametric amplification (OPA) [17]
achieve, at most, a 3 dB performance enhancement over coherent states while a receiver based on
sum-frequency generation with feed forward (FF-SFG) [18] is capable of saturating the quantum Chernoff
bound (QCB) for QI, though this receiver remains technologically out of reach.

The first QI experiment by Lopaeva et al [19] used an SPDC source and photon counting to successfully
demonstrate a QI-like advantage in effective SNR. More generally, receivers are based on homodyne-type
measurements carried out on the modes to determine the state’s quadrature values, forming better
measurements than photon counting. Zhang et al [20], and later [21], implemented the Gaussian QI
protocol using an OPA receiver. Their experiment demonstrated a sub-optimal 20% improvement
(equivalent to 0.8 dB in comparison to the 3 dB available with OPA receivers) in effective SNR relative to
the optimal classical scheme. There have been several initial microwave QI experiments [22—24]. All three
employ a Josephson parametric converter for entanglement generation of microwave modes with
low-brightness and compared the performance to a classically-correlated radar. The classical outcomes of
heterodyne detections on each of the modes were compared in post-processing. In all experiments, a QI-like
advantage was displayed over their chosen classical comparison cases. Additionally, the Barzanjeh et al [24]
experiment compared to a coherent state source subject to the same heterodyne and post-processing
receiver utilised for their entangled source.

Owing to the uncertainty principle, such homodyne-type measurements necessarily introduce noise to
the system. Further, a state’s homodyne statistics are described by the marginals of its Wigner function
which are classical probability distributions. As such, any homodyne-type measurement on a Gaussian state,
whose Wigner function is positive, results in a description of quadratures which is realistic, i.e., not purely
quantum-mechanical, and thus unable to demonstrate any violation of Bell inequalities. Nonetheless,
Gaussianity offers straightforward means of experimental implementation, with tools associated with
Gaussian state generation, transformation and detection readily available in optics labs. As such, one could
consider as an alternative either using non-Gaussian measurements on Gaussian states or Gaussian
measurements on non-Gaussian states.

One of the proposed solutions to fight loss in communication links is to use amplifiers. While standard,
Gaussian amplifiers can effectively recover losses in a classical signal, they necessarily add noise to the
system rendering the resultant effective SNR bounded by the original such that no overall gains in
performance can be achieved [25]. Noiseless linear amplifiers (NLAs) offer a non-Gaussian means of
non-deterministically amplifying a quantum state without the addition of noise, at the expense that when
the procedure fails the signal is projected onto the vacuum state and completely lost [26—29] (interested
readers are referred to reference [30] for a review). Experimentally, different NLA modules have been
realized successfully [31-33]. Previously, NLAs have been shown to demonstrate an increased robustness
against loss and noise in continuous-variable quantum key distribution [34—37] and quantum repeater
[38—40] protocols allowing for an increase in maximum transmission distance. They have also been shown
to improve the performance of quantum distillation protocols [41, 42] and quantum enhancement of
SNR [43].

In this paper we consider the use of an NLA at the detection stage of the QI protocol (see figure 1),
effectively creating a non-Gaussian receiver, which naturally post-selects signals, for QI with a Gaussian
probe. Then, by mapping the protocol of QI with a two-mode squeezed vacuum (TMSV) state with an NLA
to one without an NLA but transformed Gaussian state input and quantum channel parameters, we
compute the QCB. Considering the same procedure for the classical benchmark of coherent states, we show
that under appropriate parameter constraints, an enhanced quantum advantage may be achieved. In
particular, the NLA acting on the received TMSV quantum channel output always yields an enhancement in
detection capabilities, even establishing new quantum advantages which previously did not exist. On the
other hand, the resultant performance of a post-quantum channel NLA on a coherent state is, based on our
analysis, always upper-bounded by the performance of a coherent state without the NLA.

2. Noiseless linear amplification for QI

2.1. The QI protocol

Consider the production of M independent signal—idler mode pairs, {al,a”}; 1 < k < M, with mean
number of photons per mode N for each of the signal and idler modes, respectively. The signal (S) mode is
sent out to some target region while the idler (I) mode is retained at the source for later joint measurement.
Their joint state, pg, is modelled as a two-mode, zero-mean Gaussian state [44] with covariance matrix

(CM) given by
SI = ’
ol vl Z := diag(1,—1),
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Figure 1. Protocol for QI with the use of NLA at the detector. M independent signal—idler source mode pairs are generated with
annihilation operators Zz(sk) and &, respectively, with 1 < k < M. The signal mode is sent to probe the target region in which
target of reflectivity  is equally-likely to be present or absent while the idler mode is sent straight to the receiver. At the receiver,
the returning signal, mixed with the ambient background ag, first encounters an NLA which probabilistically noiselessly
amplifies it before recombination with the idler in the decision-making process.

where v:=2Ng + 1 and ¢, = 2y/Ns(Ns + 1) quantifies the quadrature correlations between the two modes.
The off-diagonal terms can in fact take any value such that 0 < ¢ < 24/Ns(Ns + 1). In the case where the
signal—idler mode pairs are maximally entangled we have ¢ = ¢, :=2y/Ns(Ns + 1) (the TMSV state [44])
while the case ¢ = ¢;:=2Nj renders the state just-separable [47, 48].

Under hypothesis Hy, the target is absent so that the returning mode ag = ag, where a3 is in a thermal
state with mean number of photons per mode Ng. Under hypothesis H;, the target is present such that
ag = \/kas + /1 — kap. Here, & is the target reflectivity, incorporating all propagation losses associated
with the channel, and a3 is in a thermal state with mean number of photons per mode Ng/(1 — k), so that
the mean noise photon number is equal under both hypotheses (i.e., there is no passive signature and a
non-vacuum transmitter must be used in order to detect the target). The conditional joint state, pf ; for
i = 0, 1, of the returning (R) mode and the retained idler (I) is given by, under hypotheses Hy and Hi,

respectively,
wl 0
Vi = ( 0 1/1) ’ @
(M Ve Z
Vi = (ﬁcqz vl )’ )

where we set w:=2Np + 1 and v:=2kNs + w.

2.2. NLA action and effective parameters for QI
Consider the entanglement-based QI protocol where the source is a TMSV state comprising signal and idler
modes given by

Nsi= V1= )‘22 A'lm)g|m)p, (4)
n=0

with \2 = % < 1, where N is the average number of photons per mode. Its initial CM is equivalent to
that in equation (1).
Consider the action of a generic Gaussian channel with transmissivity 7, and excess noise € on a single

mode A of an arbitrary input TMSV state with CM +y, . The output CM is given by

, T(V+B+¢€)l (V2 —-1)Z
YaB = ) (5)
(V2 —-1)Z Vi
where V = (1 + )\2)/(1 — \?) is the variance of the thermal state Try [A) (\] and B = (1 — 7)/7 is the input
equivalent noise due to losses.

Now consider the implementation of a NLA to mode A prior to measurement. It can be shown that (see
reference [34], particularly appendix A) the CM v} 5(A, 7, ¢, ) of the amplified state, post NLA action, is
equivalent to the CM v} 5(\$, 7%, €f, g = 1) of an equivalent system with TMSV parameter A, under action
of a Gaussian channel with transmissivity 7¢ and excess noise €f, without the use of an NLA. These effective
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parameters are given by

B (Z—-1D(e—2)T—2
)\g = )\\/ (g2 — 1)67’ > 5

g _ g
(@ -DT(JE@-De—2er—e+1) +1

e =e— %(g2 —1)(e — 2)er. (6)

For the above system of effective parameters to represent an actual physical system, the following
constraints must be satisfied: 0 < A < 1,0 < 7 < 1 and €® > 0. The first is always satisfied when

~1
(gZ—-—1(e—2)7—2
0<A8<1:>0<)\<<\/ @ - Der —2 ) ) (7)

The second and third conditions are satisfied provided the excess noise € < 2 and the gain is smaller than a
maximum value given by

e(T(e—4) +2) 4+ 44/T2DE2 5 /e(7(e —2) +2) + 47 — 4

fmax = T(€ —2)?

(8)

Equivalences can be made between equations (5) and (3): for QI we consider a TMSV state with Ng
mean photons per mode such that the variance V = 2Ns + 1 and v/V2 — 1 = 2y/Ng(Ns + 1) while
Gaussian channel transmissivity 7 = &, the target reflectivity. Of course, for real-world target detection this
parameter would also incorporate other losses and gains given by the radar equation. In QI, a portion  of
the signal is mixed with the thermal background, which comprises N5/(1 — k) mean photons per mode.
Taking into account this rescaling, when the target is present the returning signal mode takes the form

2N 2N
m(2N5+1)+(1—/{)< 5 +I>ETV+BT<1 b +1>

2N
—T<V+B+B>ET(V—|—B+€), (9)
T
where excess noise has a simple relation with Ny given by € = % = % Thus by considering an

equivalent system of effective parameters in place of the two conditional CMs for QI given in equations (2)
and (3), one can consider the additional action of an NLA on the returning signal modes at the receiver,
before joint measurement with the retained idler.

Note that the constraint on excess noise to maintain the effective system’s physicality means that
€= ZNB < 2,1.e., Np < k. Since 0 < £ < 1, we have the global constraint Ny < 1 on the mean number of
thermal photons associated with the background. Typically, for QI, the parameter constraints involve very
high background, N >> 1, which is naturally satisfied in the microwave domain at room temperature, and
k < 1. However these are not strictly necessary for a quantum advantage exists; provided Ny < 1
quadrature correlations ¢, are maximised and it is from here where the quantum advantage arises. The new
constraint on Nj introduced here means that, comfortably, at room temperature (T = 300 K) applications
the protocol described here is valid for frequencies 24 THz, beginning at the higher end of the microwave.
Lower frequencies can meet this requirement as long as the temperature of application is small enough, e.g.,
for operations at ~1 GHz we require T < 0.07 K.

Further, for a given environment (Ng) and target parameters (), equation (7) implies that the
maximum value of signal energy, Ns, which may be employed is given by

1—Np(g®>—1)
k(g2 —1)

which is maximised when g = 1, i.e., no amplification occurs and the protocol is equivalent to that of
standard QI.

The action of the NLA is a non-deterministic one. That is, it provides a tool for heralded noiseless
quantum amplification, i.e., ideally, the transformation o) — |gar), where ¢ > 1 is the NLA gain, with some
probability of success, P(g) [27—29]. In other words, under NLA action the number of probings used for the
detection process transforms as M — MP(g) with the remaining M(1 — P(g)) channel uses discarded. Thus,

Ng™(g) = (10)
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with NLA action we are considering post-selected QI and the problem of hypothesis testing becomes one of
two stages and four potential outcomes:

Hy: target is absent, and the NLA is unsuccessful;
Hy,: target is absent, and the NLA is successful;
Hjy: target is present, and the NLA is unsuccessful;
Hj,: target is present, and the NLA is successful.

Post-selection essentially discards all events corresponding to hypotheses Hyy and Hjo and the problem
is reduced to standard QI involving the discrimination of only two hypotheses Hy; and Hy;, subject to
M — MP(g).

Note that on average, taking into account all successful and unsuccessful NLA outcomes, the
distinguishability of the quantum states does not increase. However, a scheme where successful
amplifications are heralded (see reference [28]) such that measurements are only performed on successfully
amplified outputs can yield performance enhancements in various protocols [45].

2.3. Classical benchmarking with coherent states

In the absence of an idler, and for the purposes of defining a classical benchmark for our approach, we
consider the coherent state as the optimal corresponding classical approach. Coherent states are
minimum-uncertainty quantum states which may be employed in analogous protocols but whose statistics
originate from purely classical phenomena. As such, they can serve as theoretically optimal classical states to
benchmark potential quantum protocols against, thus allowing one to define a quantum advantage.

The signal is prepared in the coherent state |/2Ns) which is then sent out to some target region. Under
Hy, the received returning mode is in a thermal state with mean photon number Ny and CM equal to wl,
i.e., ag = ap. Under Hj, the signal is mixed with the background such that ag = \/kas + /1 — rap with
k € (0, 1), corresponding to a displaced thermal state with mean vector (1/2xNs, 0) and CM wl.

Consider the thermal state py, (Ayn) with Fock basis representation

ﬁth()\th) = (1 - )‘tzh)z Atzlf n> <n‘ > (11)
n=0

displaced by complex [ yielding the state p = D(B) ﬁth()\th)f)(—ﬂ ). Such a state can be written as an
ensemble of coherent states,

p= /P(a) la) (o] dav, (12)

af? N * * . .
where P(«) = eLT—Z‘ fe‘”‘2<—u|p\u>e“ a-ua” dy. is the P-function [34].
After successful amplification, realised by the operator C = g" where 71 is the Fock basis number
operator, the coherent state |a) transforms as

~ \()’\2

Cla) = e T @ Dlga) (13)

such that the initial state after NLA action becomes
OO = lal*(g?~1)
pl=CpC= /P(a)e lga) (gl dar. (14)

After change of variables it can be found that the resulting state after NLA action obeys the following
relation of proportionality:

7 o< D(EB)pin(ghn) D(—3B), (15)

where g = g(1 — A3)/(1 — g?A\3). That is, as in the case for a TMSV source, the result of a displaced
thermal state acted on by an NLA is equivalent to a displaced thermal state with modified effective
parameters without amplification, subject to the constraint that g\, < 1 to ensure physicality.

For QI applications, the initial coherent state |\/m ) is sent through a quantum channel with
reflectivity/transmittance x such that the displacement can be taken as 3 = \/2kNs. Meanwhile, the
variance of the thermal state is given by

1+ A,
1— N0

Ng

B

(16)
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Thus, action of the NLA on the displaced thermal state with these parameters yields the following
transformations: for the mean,

1— M2
V26Ns = g7 2;\}12}1 25N
)
—\/2 Ng = 17
1+ Np(1—¢2 s (17)
Then,
Np Np
N = — g =\, 18
b T TEN, S 14N, (18)
such that the effective variance becomes
14+ M2 1+ Np(l+g¢°
Ty 1ENsl¥E) (19)

1-A2  1+N(1-g?)

2.4. Performance bounds for QI with NLA

2.4.1. TMSV state with NLA

Using the tools of appendix A the QCB of the maximally-entangled TMSV source for QI may be computed.
We compute the QCB for a single successful use of the QI protocol where the probability of success is given
by that of the NLA which in the ideal case is equal to PN-* = 1/g¢?, where g is the NLA gain. Let us denote
the QCB on the output of a successful NLA following QI as {4 4. Then, for equally likely hypotheses,
and after k uses, the QCB becomes

% (Sarnia) - (20)
But, we must include the probabilistic nature of successful outcomes. Given a total of M uses of the entire
QI protocol, that is M copies of the TMSV source, discrimination is carried out on the k successful
outcomes where k follows a binomial distribution. Then, the total average error probability P81C+BNL A for
equally likely hypotheses, becomes

M

1 M 1

3 (earnsua) () (P2)"0 - P = S0 P 1+ )
k=0

1

. M
=3 (1 + ?(—1 + £Q1+NLA)> = PSICENLA’ (21)

where in the last line we have set the ideal case of PN-* = 1/¢. Note that in the case of no successful NLA
outcomes, i.e., k = 0, one simply chooses at random, bounding the maximum error to be 1/2, such that
regardless of how the NLA behaves a decision is always made as to whether or not the target is present.
Further, all measurements, and thus the entirety of decision-making, are only based on the k successful NLA
output states.

The computation is carried out using mathematical computational software and, while the full form too

long to be exhibited here, its behaviour is plotted in figures 2 and 3 and discussed in section 2.5.

2.4.2. Coherent state with NLA

As with the TMSV source, the tools of appendix A may be used to compute the QCB of a coherent state
with amplification by considering an equivalent protocol, without amplification, using modified effective
parameters for mean and variance given by equations (17) and (19), respectively. For equally-likely
hypotheses, the single-use (M = 1) QCB for a coherent state with NLA amplification takes the exact form

2
pacsy=1 _ 1 exp (_ngiNs(\/NB +1—¢V/Np) )

CS+NLA 2 (1 +NB _gzNB)3

1
= E£CS+NLAy (22)

assuming successful amplification for that single use.

Taking into account the probabilistic nature of our NLA procedure, the overall average error probability
for the coherent state source follows the same behaviour as seen for the TMSV state for QI with an NLA.
Explicitly, after M uses with k successes, the average error probability becomes

M
1 1
P aa = 3 (1 + ?(—l + Ecs+NLA)) : (23)
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Figure 2. Error probability exponents for QI using a maximally-entangled TMSV source with NLA (red) at the receiver,
compared to a coherent state source with the same NLA (blue) as a function of NLA gain, g. In both panels, parameters are set
such that Ng = 0.1, & = 0.2 such that the maximum source energy applicable across the range, N (gmax) ~ 0.96. Thus, values
are plotted for (i) Ns = 0.9 and (ii) N5 = 0.1. The total number of probes M = 100.

Meanwhile, the QCB of such a coherent state transmitter, without amplification, may be readily computed
and takes the exact form [15]

1
PE® = 3 exp (~MnNs (VNG +1 - VE3)') (24)

Note that the QCB forms an upper bound to the minimum error probability, i.e., PR°B < P™ (e),
which is exponentially tight in the limit M — oc. To be certain of our comparisons and the determination
of any quantum enhancement via NLA use, we can perform comparisons to the lower bound on the error
probability for coherent states (see appendix A, equation (A3)). Explicitly, for coherent states without an
NLA, this takes the exact form

: 1 /N
PE" >~ (11— \/1 — exp (—ZMFLNs(\/NB +1- NB)Z) . (25)

2

With the addition of an NLA at the detection stage, it is possible to establish a gain in performance in a
quantum-inspired coherent illumination protocol, but only with respect to associated upper bounds in
detection error probability. When comparing to the lower bound, the limitations imposed by our choice of
analysis, namely the parameter constraints outlined in equation (6), render the regimes in which this is
possible physically out of bounds. Thus, a quantum-inspired illumination protocol based on a coherent
state source using an NLA at the receiver cannot absolutely provide a means for improved target detection.
However, this does not preclude the possibility that an alternative analysis exists, which does not impose the
same constraints as that studied, making such a protocol useful.

2.5. Benchmarking QI with NLA

2.5.1. Comparison of NLA protocols

Since the coherent state forms the ideal, minimum-uncertainty state and serves as the theoretically optimal
classical benchmark, equation (23) allows for the benchmarking of the TMSV with the use of an NLA for
target detection.
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Figure 3. Error probability exponents for QI using a maximally-entangled TMSV source with NLA (red) at the receiver,
compared to a coherent state source with the same NLA (blue) as a function of NLA gain, g. In both panels, parameters are set
such that Ny = 0.1, k = 0.2, while for each value of g, the signal energy is set very close (99%) to its local maximum, i.e.,

Ns = N{*(g). Total number of probes is set to for (i) M = 10 and (ii) M = 100.

Taking into account constraints on effective parameters given by equation (6), figures 2 and 3 plot the
performance of the TMSV state with NLA relative to that of a coherent state with NLA. Note that the full,
exact forms of the QCB have been employed in the computation, that is, without any assumptions as to the
relative magnitude of parameter values. Further, the plots have been generated assuming a maximum
theoretical probability of success, given by PN-A = 1 /g% to model the absolute limits of NLA performance.

In figure 2, the error probability exponent is plotted as function of the NLA gain, g, up to and including
Zmax> fOr fixed environmental parameters Ny = 0.1 and x = 0.2 with the total number of probings
M = 100. Based on these parameters it can be found that the maximum energy valid across all values of g,
maintaining physicality, is given by N{" (gmax) > 0.96 thus results are plotted for two values of Ns: 0.9 and
0.1. It can clearly be seen that an increase in the gain, g, has a much larger and more valuable effect on the
TMSV state, compared to the same amplification of the returning coherent state. Note that where ¢ = 1 the
performance coincides with that of the standard QI protocol without any amplification. As expected,
smaller values of source energy Ns are favoured by the QI with a TMSV source compared to the coherent
state since it is for small Ng where cross-correlations, ¢, = 24/Ns(Ns + 1), are maximised.

Figure 3 plots the same function as figure 2 with much of the same parameters, however in this scenario
rather than considering the global maximum of Ng, applicable across all values of g, up to and including
Zmax> We consider a source whose energy is given by (99% of) the local maximum. That is, for each value of
g€ [0, gmax] , Ns is set such that Ng = N¢"**(g). Of course, N{"* is a decreasing function of g so the
behaviour observed for g — 1, where N is typically very large, the coherent state outperforms the TMSV.
However small increases in ¢ show a large quantum advantage can be achieved, even at the maximal Ng
value. This quantum advantage may be amplified in cases where the source energy must be kept low, as in
stealth surveillance or biomedical sensing where samples may be sensitive to high energies, due to the
freedom available in decreasing N below the value used in this comparison. Making use of such freedom
will, of course, amplify entanglement benefits.
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Figure 4. Error probability exponents for QI using a maximally-entangled TMSV source with NLA (red, solid) at the receiver,
compared to a coherent state source with the same NLA (blue, solid) as a function of the number of probes, M. Also included are
associated upper bounds without the use of the NLA (dashed) showing how the NLA enhances this upper bound. The lower
bound for coherent states (blue, dotted) shows the point beyond which a quantum enhancement (through the NLA,
entanglement, or both) may be confirmed. In both panels, parameters are set such that Ny = 0.1, & = 0.2 such that the
maximum source energy applicable across the range, N (gmax) =~ 0.96, with ¢ = g, ..~ 2.1. Thus, values are plotted for (i)
Ns = 0.01 and (ii) Ny = 0.1.

2.5.2. Comparison with non-NLA protocols

While section 2.5.1 shows that the use of NLAs yields improvement in performance for TMSV protocols
over coherent state protocols, there is, of course, a question as to whether or not their use is beneficial when
one can simply forgo the NLA and keep all M channel uses in the detection. After all, successful
amplification comes at the expense of a proportion, QCBs for target detection, both for QI with a TMSV
source and coherent states (see reference [16] for full details), may be recovered by simply setting g = 1.

Figure 4 plots the error probability exponents for QI using a maximally entangled TMSV source with an
NLA at the receiver alongside that of a coherent state source using the same NLA. For comparison and to
show that the NLA is of actual value, we plot the QCBs for the same protocols without the use of the NLA.
In these protocols all M probings are used at the receiver in decision-making. Results show that there exists
a clear advantage in employing NLAs at the receiver compared to without.

With respect to the determination of a true quantum advantage, we also compare to the coherent state
lower bound on the minimum error probability (which is not exponentially tight in the number of uses).
For small signal energies, the employment of an NLA at the receiver for QI-based quantum target detection
allows for the realisation of a new quantum advantage that was previously unavailable. Within these low
brightness regimes, it can be seen from the plot and numerical calculations that a factor of ~5 (equivalent
to ~7 dB) advantage in error exponent (based on QI’s upper bound in error probability) can be established
over the coherent state’s lower bound by utilising the NLA. For comparison, in this regime the effective
SNR for QI without the NLA exhibits a ~3 dB loss with respect to the coherent state lower bound.

2.5.3. Effect of sub-optimal NLA success probability

Hitherto the assumption has been made that the NLA in use at the detection stage of QI is ideal. Such an
ideal NLA saturates the bound of theoretical success probability, PXLA < 1/g2. Our reasoning for this choice
is that, so far, the NLA itself has not been experimentally demonstrated such that it is impossible to

confidently make any realistic predictions as to its performance. By assuming it is ideal we can, for certain,
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Figure 5. Error probability exponents for QI using a maximally-entangled TMSV source with a sub-optimal NLA (red, solid) at
the receiver, compared to a coherent state source with the same NLA (blue, solid). We consider a non-ideal NLA whose
probability of success is half the maximum, PY-A = 1/(ag?), and results are plotted as function of the parameter a. Also included
are associated upper bounds without the use of the NLA (dashed) showing how the NLA enhances this upper bound. The lower
bound for coherent states (blue, dotted) shows the point beyond which a quantum enhancement (through the NLA,
entanglement, or both) may be confirmed. As before, we have set Ny = 0.1, & = 0.2 and are considering low-energy applications

with Ny = 0.01. All probabilities are evaluated at M = 10*.

provide theoretical, tangible limits pertaining to a protocol relying on its use. Of course, any physical NLA
will undoubtedly fall short of this maximum success probability and the performance of QI with an NLA
will degrade alongside it.

Figure 5 plots the error exponents for the various protocols considered at a fixed number of uses,
M = 10*. For the NLA protocols, with both TMSV and coherent state sources, the error exponent is plotted
as a function of decreasing success probability. This is given in terms of the parameter a, defined via a
reparameterisation of the success probability PN-*(g,a) = 1/(ag?), such that when a = 1 we recover the
ideal NLA performance given so far. The regime considered is the same as that studied previously in the
low-energy limit: Ng = 1/100, Ng = 1/10 and k = 1/5. It can be seen that within this regime the
advantages afforded by an NLA are robust with respect to its potential inefficiencies. The new quantum
advantage that may be established here persists up to a ~ 5. In other words, one can tolerate a reduction in
efficiency up to ~80% and still retain an advantage.

3. Conclusion

This paper has implemented the action of an NLA at the detection stage of the QI protocol for the purposes
of quantum target detection. By mapping the resultant protocol to an equivalent one without the use of an
NLA but modified effective parameters, the QCB for symmetric quantum hypothesis testing has been
computed. This has been done for both the maximally-entangled TMSV state and the theoretically optimal
classical benchmark, the coherent state, with comparisons made between the two assuming a theoretically
maximal probability of success for the NLA.

Results show that the employment of non-Gaussian receivers for Gaussian sources in quantum target
detection can be beneficial. In particular, an improvement in effective SNR, resulting in a diminished error
probability in target detection, occurs when the NLA is used with a TMSV source. Such results cannot be
definitely achieved when the Gaussian source is the semi-classical coherent state; in this case, the
performance is almost always bounded by the coherent state performance when no NLA is used which, in
for applications in the optical domain, may be achieved through homodyne detection. There exist certain
regimes where there is gain compared to the upper bound but, due to physical constraints imposed by our
analysis, these do not hold with respect to the coherent state lower bound and thus cannot currently be
confirmed.

The mapping used to compute the bounds results in a system of effective parameters for which a
quantum advantage is not typically possible in a non-NLA protocol. At least, within such a regime the
maximal advantage in error exponent certainly falls short of the potential value of 6 dB. In fact, within the
regime considered here, comparing the upper bound to the lower bound of coherent state illumination
which serves as our classical benchmark, it is possible to establish a ~7 dB enhancement in the effective
SNR. Meanwhile, the equivalent non-NLA protocol here exhibits a ~3 dB loss. Thus, the use of an NLA is
able to not only amplify QI performances in regimes where the potential gain is limited, but also establish
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new regimes of possible quantum advantage thereby extending the scope of applicability of QI-based
quantum target detection.
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Appendix A. The quantum Chernoff bound (QCB)

The binary decision between target absence and presence is reduced to the discrimination of the two
quantum states py ; with i = 0,1 [49-51].

For Gaussian states, closed formulae exist for the computation of bounds on the minimum error
probability in quantum state discrimination, such as the QCB [52]

1 M
H < e 1 5
Pmm X PQCB 2 (Og’slgl Cs)
Coi=Tr [(Po) (Pr)" ] » (A1)

where the minimisation of the s-overlap C; occurs over all 0 < s < 1, and we are considering the
discrimination of M mode conditional density operators. For the problem under study, the minimum is
achieved for s = 1/2 that corresponds to the simpler quantum Bhattacharyya bound [44]

1 M
PQBB = E Tr l:\ / ﬁ%,” / ﬁllz’lil . (AZ)

Note that the QCB, and QBB, form exponentially tight upper bounds on the minimum error probability
which converges in the limit M — co. One can also consider the lower bound to the minimum error
probability [46] which is, in general, not exponentially tight and takes the form

1 2M
Poin > [ 1=4/1=Tr [,/pg)ﬂ/p}z)l] . (A3)

Consider two arbitrary N-mode Gaussian states, po(Xo, Vo) and p1(x;, V1), with mean x; and CM V;

with quadratures X = (1, P15 - - -» s f)N)T and associated symplectic form

N
0 1

Q_I@l(_l 0). (A4)

We can write the s-overlap as [53]

det IT d's"'d
o= 2N - -, A
¢ det 33, xp ( 2 ) (45)
where d = xy — x3. Here Il and X are defined as
Hs = GS(V(L)B)Glfs(ViB% (A6)
=S [A (V)] ST+ 81 [Ars (V)] ST, (A7)
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introducing the two real functions
25
(x+1)—(x—1)
e+ 1) (k= 1)
(1) = (x— 1)

G; (x) =

As(x) (A8)

calculated over the Williamson forms VI := @}, /15, where V&= S; VST for symplectic S; and v/¥ > 1
are the symplectic spectra [54, 55].
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