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Preface

I never wanted to be a theoretical physicist. In 2010, when I finshed high-school, I
always wanted to do something with physics, but no way I wanted to do theoretical
physics. I found it interesting, but there should always be a practical side to it
in the form of building a machine that could fly o� to Mars or help cure diseases,
I thought. Now, almost 10 years later, this mindset is completely gone. I did
start with experimental physics at the University of Twente, but after two years I
realised that I wanted to know how it all really worked. I became more and more
theoretically inclined and moved to Amsterdam for a master in theoretical physics
and eventually joined the string theory group at the UvA as a PhD student.

The end result of that PhD period now lies before you. It is a composition of the
the work I did not only in the string theory group, but also in the group of Jasper
van Wezel, where I focussed more on condensed matter theory. This symbiosis is
not a complete coincidence, I guess, but rather the result of part of me still wanting
to also do theoretical work that is closely related to experiment. After four years,
I can also say that it is very illuminating to have been exposed to both high-
energy and condensed matter theory as they complement each other beautifully.
Nevertheless, I decided to split the dissertation in two parts, one concerning high-
energy theory and one on the classification of topological insulators, highlighting
the overlap in the summary and outlook section.

The first part is based on work my collaborators and I did on the holographic
principle that relates gravitational to non-gravitational physics and could provide
a route to understanding the holy grail of high-energy theory: quantum gravity.
The two chapters 2 and 3 in this part are largely unrelated, but both explore
the possibility of extending the usual AdS/CFT logic outside the realm of string
theory and spacetimes with infinite spatial volume. In principle they can be read
independently.

The second part of the dissertation is a complete and self-contained story on the
classification of topological insulators. In chapter 4, we set the stage for chapters 5
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0. Preface

and 6 by discussing the quantum Hall e�ect in detail and will serve as a prototype
for all the physics that is to come. We then apply in chapter 5 the symmetry
properties of the crystal to discuss a heuristic algorithm to classify topological
insulators given a certain crystal symmetry group in the presence or absence of
time-reversal symmetry. Chapter 6 is then a rather mathematical chapter that
verifies the claims made in the previous chapter for certain simple crystals.

After the bulk of the dissertation, we contemplate in the summary and outlook
on what would be next and what we have learned from the studies comprised in
this dissertation. We finish with a summary in both English and Dutch and an
acknowledgement.

Jorrit Krutho�
May 20, 2019
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1 Holography

In theoretical high-energy physics, there are two very successful theories. On the
one hand, we have quantum mechanics accounting for the physics at very small
distances, for example within an atom or even within the core of an atom. It can
be used to predict the energy levels of an electron orbiting the atom’s nucleus or by
incorporating the e�ects of special relativity we can make very precise predictions
of the scattering amplitude of two colliding particles. On the other hand, Einstein’s
theory of general relativity is very successful in explaining physics at very large
distances. It super-seeds the laws of Newton and can account not only for various
subtle e�ects, such as the precession of Mercury’s orbit, but also very violent
objects in our Universe, such as black holes. At the time of Einstein, many of these
e�ects were predictions awaiting experimental verification and it was only recently
that some of these, such as the existence of gravitation waves was confirmed [7].

These two pillars of theoretical physics are around for more than 100 years and are
still an integral part of current research. One of the biggest questions scientists
are interested in right now is whether there exist a merger of the two; a combined
theory that can both account for the very small and the very large. Since the time
of Einstein, people have been wondering about such a theory of quantum gravity,
but as of today, no such theory that makes predictions in our own Universe has
been found. There is, however, a very promising candidate theory: string theory.

String theory is an attempt to describe quantum gravitational physics, not by
using point particles and their excitations, but by the wiggles of a string. Every
wiggle or rather every vibration of the string corresponds not only to a di�erent
degree of freedom that we are more familiar with, like the photon or gluon, but
also a quantum mechanical excitation responsible for gravity: the graviton! That
is great news; we have found our theory of quantum gravity! We should start using

5



1. Holography

it to reproduce known results and make predictions about quantum gravitational
e�ects. It is precisely here where many challenges lie and one of the prime reasons
why physicists are still trying to unravel the mysteries of string theory.

In trying to do such computations, one almost immediately runs in to the well-
known fact that string theory is not consistent in four spacetime dimensions, but
needs a ten dimensional spacetime or sometimes even eleven dimensional! Ac-
cordingly, if we believe that string theory is really a theory of our Universe, there
should be a way to get rid of most of these dimensions so that we are left with
the four we observe. This process is known as compactification and makes some
dimensions very small in much the same way as a thin wire is one-dimensional
when viewed from far away but remains three dimensional up close. Nowadays,
compactifications in string theory are very common and can give rise to a whole
range of di�erent theories (of quantum gravity) in four dimensions. This is known
in string theory as the landscape and it is believed that one of these theories, or
vacua as they are usually called, describes our Universe.

At the time of writing, much research is devoted to studying what type of theories
live in the landscape and which ones do not. A little over a decade ago, a set of
conjectures, mostly motivated by string theory, was proposed to indicate which
theories that appear to be consistent theories of quantum gravity at first sight,
are actually inconsistent [8]. This rules out a large portion of possible theories of
quantum gravity, possibly also ones that could potentially be used to describe our
Universe. It is therefore not entirely clear what the precise status is of these con-
jectures and whether they should hold or not. Nevertheless, they have triggered a
very exciting discussion in the string theory community and has revived a renewed
interest in finding string theory vacua that look like our Universe.

In string theory, this is only one of many challenges that we are currently facing.
Some of them are more fundamental than others, but every step forward and every
resolution that we find, brings us closer to a fuller understanding of quantum
gravity, even outside the realm of string theory itself. One particularly interesting
idea that was first put forward as a result of studying black holes, but was later
found to arise in string theory as well, is the holography principle. Arguably, the
holographic principle is one of the most revolutionary ideas ever formulated and
completely changed our way of thinking about quantum gravity.

The holographic principle is a concept in theoretical physics, first put forward by
Gerard ’t Hooft in 1993 [9], which states that quantum gravity theories should
somehow be described by a hologram, an object in one lower dimension. This idea
was born out of a curious formula, found by Bekenstein in [10], expressing the

6



1.1. The AdS/CFT correspondence

entropy S of a black hole in terms of the area A of its event horizon:

S = A

4G
, (1.1)

with G the Newton constant. As was shown by Hawking [11], this entropy can be
interpreted as a thermodynamic entropy and as a result, the microscopic degrees
of freedom describing black holes appear to live in one dimension less. ’t Hooft
took this idea a bit further by saying that the degrees of freedom on any surface
surrounding the black hole are enough to describe what is going on on the inside.

In ordinary quantum field theories, the entropy is always exponentially growing
with volume as its fundamental constituents cover all of spacetime. Quantum
gravity theories on the other hand seems to follow a rather di�erent path and
have degrees of freedom that behave holographically and repackage themselves on
a surface in one lower dimension. In fact, one way to study this idea a bit more
is by taking the hologram all the way to spatial infinity and describe the physics
inside by an ordinary quantum field theory, i.e. without gravity, at infinity.

At first this might seem like a crazy idea, but in spacetimes where such a limit is
well-defined, by which we mean that gravity becomes very weak in that limit, the
degrees of freedom of the hologram can indeed be described by a quantum field
theory. This is the content of the AdS/CFT correspondence.

1.1 The AdS/CFT correspondence

The AdS/CFT correspondence is an explicit example of holography found in string
theory by Juan Maldacena in 1997 [12]. It relates quantum gravitational physics in
asymptotically anti-de Sitter (AdS) spacetimes to a conformal field theory (CFT).
This conformal field theory is a quantum field theory with an additional sym-
metry, conformal symmetry that makes it independent of scale and acts in the
AdS/CFT correspondence as the hologram. The beauty of this proposal is that
on the field theory side, i.e. the hologram, we potentially have a lot of control.
It is an ordinary field theory that we know how to deal with in principle and can
therefore facilitate the tractability of many computations we would like to do in
a quantum gravitational theory. However, the converse is also true, we can learn
about questions in conformal field theory by doing computations in the gravity
theory. Of course, for that to be useful, there better be no quantumness in the
bulk. This will, in fact, be an important point later on.

Since the advent of Maldacena’s conjecture, many interesting studies have been
conducted to understand it more thoroughly. A huge amount of non-trivial checks

7



1. Holography

has been made and various interesting results have been established. In particular,
other examples of holography have been found, mostly within the context of string
theory and in asymptotically anti de-Sitter spacetimes. As a result of all these
studies one might start wondering whether there are common features between
conformal field theories that can act as a hologram and describe gravitational
physics.

One common feature is of course that they are all conformal field theories. This
follows from a careful analysis of the symmetries present in the problem. The
isometries of AdS, symmetries that leave the anti-de Sitter spacetime unchanged,
form a group, SO(d, 2), containing not only the Lorentz group in d dimensions,
but also a dilatation and an inversion symmetry. To see, this, let us write the
metric of Lorentzian AdS in d + 1 dimensions as

ds2 = ¸2
AdS

dz2 + ÷µ‹dxµdx‹

z2 , (1.2)

with z > 0 and ÷µ‹ the Minkowski metric with mostly plus signature and µ =
0, . . . , d ≠ 1. Here, ¸AdS, is the AdS radius characterising the curvature of the
spacetime in the sense that the Ricci curvature is given by ≠(d + 1)d/¸2

AdS. The
metric (1.2) covers a part of the full AdS spacetime, the so-called Poincaré patch of
AdSd+1. From this parametrisation it is straightforward to see that the dilatation
symmetry sending z æ ⁄z and xµ æ ⁄xµ leaves the metric in (1.2) invariant.
With a bit more work, one can also show that

z æ z

z2 + ÷µ‹xµx‹
, xµ æ xµ

z2 + ÷µ‹xµx‹
, (1.3)

is an isometry as well. On the field theory side, i.e. the hologram, these isometries
become symmetries as the physics in the bulk remains unaltered when acting with
these isometries. Of course, this is a slight simplification, since in AdS/CFT it
is important that the hologram does not experience any gravitational forces. For
AdS or asymptotically AdS spacetimes, it turns out that this is the case at the
(conformal) boundary of AdS, which for the metric (1.2) is located at z = 0.

Conformal symmetry is only one of the features holographic field theories have
in common, at least for quantum gravity in AdS. Below and in chapter 2, we
will encounter other features as well. They form a set of necessary and su�cient
conditions to describe gravitational physics in the AdS bulk. An important aspect
of these conditions is that they do not (necessarily) require string theory and
could therefore be a first step towards understanding the AdS/CFT correspondence
outside the realm of string theory. This might seem like a rather radical step, since
besides string theory, we do not really know any consistent theory of quantum
gravity and so knowing these constraints might be hopeless. However, they do

8



1.1. The AdS/CFT correspondence

teach us a lot about quantum gravity and holography in a more general settings.
In fact, we will indeed see that holographic (conformal) field theories are rather
special and not at all weakly coupled such as, for example, QED at low energies.
On the contrary, these field theories are strongly interacting and only a limited
number of explicit examples are known. With the constraints that we present in
chapter 2 and below as well (for AdS3), we will understand a bit better how we
can find more of those examples.

Nevertheless, even with these constraints and even if find an explicit example of a
holographic conformal field theory, which is already an extremely di�cult endeav-
our, we are still only going to be able to describe quantum gravity in asymptotically
AdS spacetimes and not in more general spacetimes. At first sight, this might not
sound like an issue, if it were not for the fact that, ironically, around the same
time as AdS/CFT was born, there was an observation claiming that our Universe
is more de Sitter-like instead of anti-de Sitter-like [13, 14]. These spacetimes only
di�er in their sign of the Ricci curvature and so, naively, should not di�er too
much physically. However, due to the expanding nature of de Sitter (dS) and the
cosmological horizon that is not quite true; they di�er a lot and in fact, de Sitter
is much harder to study. Despite this, many believe that holography should still
have its incarnations in dS or cosmological spacetimes in general [15, 16]. Find-
ings such incarnations is challenging, but worthwhile as it can teach us something
about holography in our own Universe.

In this dissertation we will make a first step in that direction by considering the
question whether we can apply the holographic principle to spacetimes with finite
spatial volumes, as is the case for de Sitter spacetime. In a controlled setting, this
endeavour was first undertaken by McGough et al in [17] in three bulk dimensions.
In this rather violent proposal one starts with AdS/CFT and deforms the CFT in
a particular way as to explicitly cuto� the UV. In the bulk this then translates
to cutting o� the asymptotic region of AdS, making the spatial volume manifestly
finite. In chapter 3 we will not only generalise this proposal to d > 2, but also give
a concise dictionary between the field theory and gravitational theory, generalising
the usual AdS/CFT dictionary.

To understand not only the constraints on holographic conformal field theories,
but also holography at finite spatial volume, we consider baby versions of them
below to illustrate the studies conducted in chapters 2 and 3. We will embark
on the constraints on two dimensional conformal field theories coming from 3d
gravity, which sets the stage for the constraints that we will present in chapter 2.
After that, we will consider a simple quantum mechanics problem that allows us
to understand already what types of deformations we would need to consider in
order to cuto� the UV in field theories in chapter 3.

9



1. Holography

1.2 Constraints on 2d holographic CFTs

Let us start with gravity or more specifically with Einstein gravity in three bulk
dimensions. This theory of gravity is special as it has no propagating degrees of
freedom and is therefore simpler to study. On the conformal field theory side, this
simplification manifests itself by the large amount of symmetry. Instead of the
global conformal transformations, encountered above, the CFT is invariant under
local conformal transformations. This results in an infinite amount of symmetry
generators that together form the Virasoro algebra. They come from the fact that
asymptotically, i.e. at the conformal boundary of AdS at z = 0 in (1.2), the metric
has an infinite number of symmetries that leave it invariant up to a rescaling.
The non-trivial part of this observation is that it is not just the algebra of those
symmetries, but a central extension of it. The central extended symmetry algebra
is called the Virasoro algebra. In this case, the central extension is a quantum
mechanical e�ect, coming from the fact that classically the field theory is conformal
but not once quantum e�ects are taken into account. In other words, the central
extension is related to the conformal anomaly of 2d CFTs. The central extension
is characterised by a number c, called the central charge. Roughly speaking, the
central charge counts the number of degrees of freedom. For instance, a single free
boson in two dimensions has central charge one and N free bosons central charge
N . For now, this knowledge of the central charge is enough to proceed. What is
important is the following. Henneaux and Brown [18] showed that for an AdS3
bulk, the central charge of the Virasoro algebra at asymptotic infinity is given in
terms of gravitational parameters:

c = 3¸AdS
2G

. (1.4)

This is a curious formula, since c and G are inversely related. When G is large,
the central charge c is small and hence the number of degrees of freedom of the
CFT at asymptotic infinity is small, but when G is small, c is big. In fact, it
is the latter case that concerns us. The reason is that in the bulk there is also
classical gravity, which the CFT should know about. Classical gravity is achieved
by taking the coupling constant of gravity small, hence G small and therefore
the CFT should have a parameter, in this case c, that we can take large so that
quantum gravitational e�ects are supressed1. This means that holographic CFTs
have a large number of degrees of freedom. Usually, we will consider the extreme
limit c æ Œ, which e�ectively turns o� gravity in the bulk. Besides conformal
symmetry, this forms another constraint that holographic CFTs need to satisfy in

1
Strictly speaking, we have a family of CFTs labelled by a parameter c and each such CFT,

according to the strong version of AdS/CFT, describes quantum gravity in AdS3. It is only when

c is large that the CFT describes just semi-classical bulk physics
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1.2. Constraints on 2d holographic CFTs

order to describe semi-classical bulk gravitational physics in asymptotically AdS
spacetimes.

Let us see what else is going on in the bulk. For example, let us consider the
bulk thermal phase structure of Einstein gravity in the presence of a cosmological
constant � = ≠1/¸2

AdS. To understand the thermal phase structure, we go, as
usual, to Euclidean signature with a compact temporal coordinate · with period
— = 1/T , with T the temperature. Moreover, we will consider the spatial direction
at asymptotic infinity to be a circle with period 2fi. In three (Euclidean) bulk
dimensions, there are two important solutions of Einstein’s equations. First of all
we have thermal AdS3,

ds2 =
3

1 + r2

¸2
AdS

4
d·2 + dr2

1 + r2

¸2
AdS

+ r2d„2. (1.5)

The coordinates in this metric have the following range r Ø 0, 0 Æ · < — and
0 Æ „ < 2fi. Notice that this geometry does not have a horizon. The conformal
boundary of this metric is now at r æ Œ. The other solution is a black hole,
called the Bañados-Teitelboim-Zanelli (BTZ) black hole [19, 20]. This black hole
has a metric that looks like

ds2 =
!
r2 ≠ r2

+
"

¸2
AdS

d·2 + ¸2
AdSdr2

r2 ≠ r2
+

+ r2d„2, (1.6)

with r+ related to the black hole mass M . The coordinates take values in r Ø r+,
0 < „ Æ 2fi and 0 Æ · < —. There is also a rotating version of this black hole that
has two horizons, an inner and outer one, but for our discussion we will not need
this solution. Regularity of the metric at r = r+ requires the temperature to be
related to r+ as well,

— = 2fi¸2
AdS

r+
. (1.7)

With these two solutions at hand, we want to study the phase structure in the
canonical ensemble, which means that we fix the temperature and whichever so-
lutions has the lowest free energy will then dominate the canonical ensemble at
that temperature. The free energies of the BTZ black hole and thermal AdS3 are
computed by computing the on-shell action of the Einstein-Hilbert action, supple-
mented by the usual Gibbons-York-Hawking boundary term [21,22] ≥

s
d2x

Ô
“K,

as well as the well-known boundary term [23] ≥
s

d2x
Ô

“ for AdS3 gravity. The
total action is then

I = ≠ 1
16fiG

⁄
d3x

Ô
g

3
R + 2

¸2
AdS

4
+ 1

8fiG

⁄
d2x

Ô
“

3
K ≠ 1

¸AdS

4
. (1.8)
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1. Holography

Plugging in the solutions (1.5) and (1.6), we find that the on-shell action of these
solutions is

Ithermal AdS = ≠ —

8G
, IBTZ = ≠

—r2
+

8G
, (1.9)

which results in the free energies,

Fthermal AdS = ≠ 1
8G

, FBTZ = ≠ fi2

2G—2 . (1.10)

Here we used (1.7) and set ¸AdS to unity, or equivalently, made a dimensionless
temperature by absorbing ¸AdS into —. In this way, we can talk about dimensionless
ratios, which is convenient later on and will also be adapted in later chapters. From
these expressions it is also straightforward to get the entropy of the BTZ black
hole,

S = (1 ≠ —ˆ—) log ZBTZ =
fir2

+
2G

= A

4G
, (1.11)

indeed obeying the universal area law for the entropy of black holes, equation
(1.1).

We see that for — > 2fi: ≠FthermalAdS > ≠FBTZ, hence at small temperatures
thermal AdS3 dominates the canonical ensemble. For — < 2fi, the situations is
exactly reversed and the black hole dominates 2. At — = 2fi there is a phase
transitions, which is known as the Hawking-Page phase transition [25].

The di�erence between thermal AdS3 and the BTZ black hole can be understood
as which circle, the thermal or spatial one, becomes contractible in the bulk. For
the black hole, the thermal circle is contractible, whereas for thermal AdS3 the
spatial circle is contractible and shrinks to zero size at r = 0. Thus on either side
of the phase transition, the two cycles of the torus are swapped. On the 2d CFT
side, something analogous has to happen if it is supposed to describe gravitational
physics. In fact, what has to happen is that the CFT partition function needs to
be dominated by the vacuum contribution for — < 2fi, but for — > 2fi has to have
a free energy that is like that of the black hole. More precisely, converting the
expressions for the free energies in (1.10) to CFT variables, we see that need the
partition function to roughly behave as

Z ¥

Y
]

[
exp

1
c—
12

2
if — > 2fi

exp
1

fi2c
3—

2
if — < 2fi

(1.12)

Surprisingly, to get this type of behaviour, the 2d CFT need not to be that special.
This particular behaviour of the partition function, namely follows already from

2
There could also be other saddles point of the partition functions at imaginary angular

potential, but for real angular potentials (which we have set to zero here) the two dominant

saddles are thermal AdS3 or the BTZ black hole [24].
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1.2. Constraints on 2d holographic CFTs

a very rather standard symmetry of conformal field theories in two dimensions:
modular invariance. Modular invariance is the statement that the partition func-
tion is invariant under — æ 4fi2/— and stems from the fact that it does not (in
Euclidean signature) matter what we call Euclidean time 3. Since we also com-
pactified the spatial circle, the 2d CFT lives on a torus and we can understand
modular invariance straightforwardly as swapping of the two cycles of the torus,
resulting precisely in — æ 4fi2/—. Consequently, a modular invariant partition
function satisfies

Z(—) = Z

3
4fi2

—

4
. (1.13)

Notice that this is already good news, since again at — = 2fi the partition func-
tion is self-dual, similar to the equality of the free energies in the bulk at that
temperature. Form this point of view, it is not di�cult to get something that
looks like (1.12). At very low temperatures or more precisely at asymptotically
low temperaturs, so — æ Œ, the thermal partition function is dominated by the
vacuum contribution,

Z(—) ¥ exp (≠—Evac) + . . . , (1.14)

where the dots indicate contributions from excited states. In 2d CFTs, the vacuum
energy is fixed by the conformal anomaly c that we saw earlier as well. In fact,
it is Evac = ≠ c

12 . At asymptotically low temperatures, the partition function is
thus given by (1.12). With the use of modular invariance we then also find that
at asymptotically large temperatures, the partition function is approximately

Z(—) ¥ exp
3

fi2c

3—

4
, (1.15)

again in agreement with (1.12). This expression for the asymptotic formula of the
partition function was first found by Cardy in [26] and is commonly referred to as
the Cardy formula. Thus, by using modular invariance, we see that we almost get
something that looks like gravity, i.e. is almost the same as (1.12). The problem is
that from the CFT point of view, they are only asymptotic formulas and to match
with gravity we would like them to be valid in an extended regime. Moreover,
for holographic theories with a semi-classical bulk, we also need a large number of
degrees of freedom, hence we want to take c to infinity as well and not finite as we
have done here.

To see how we can get such an extended regime, it is easier to work in terms of
density of states as it will allow us to study corrections a bit more systematically
4. To go from the thermal partition function to the density of states, one performs

3
For 2d CFTs that do not admit a Lagrangian description, the statement is still true, but

more non-trivial as canonical quantisation is usually unavailable then.

4
This analysis was is also present in the appendix of [1] and will be presented here for the

case with no angular momentum.
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1. Holography

a (inverse) Laplace transform:

fl(E) = 1
2fii

⁄ –+iŒ

–≠iŒ
d— e—EZ(—) (1.16)

where fl(E) is the density of states at energy E and – > 0. The density of
states is a microcanonical density of states and since, a priori, the canonical and
microcanonical ensemble are di�erent, trying to derive anything meaningful in this
way is rather suspect. However, as discussed carefully for two dimensions in [24],
the limit c æ Œ in which we are ultimately interested, is a good thermodynamic
limit which allows us to conclude fl(ÈEÍ) ¥ eS(ÈEÍ) for ÈEÍ = ≠ˆ— log Z(—). Large c
suppresses the fluctuations in ÈEÍ and unambiguously defines an energy E © ÈEÍ.
Said di�erently, the existence of a stable saddle point in (1.16) due to large c is
the statement that the microcanonical and canonical ensembles are equivalent.

To get an approximate expression for the density of states, we need a stable saddle
point, which means that the integral is dominated by a large value of — where the
integrand is highly peaked. For the case at hand, this is easily found by modular
transforming Z(—) and using the fact that it behaves as (1.15) at large energies.
The saddle point value of the integral is then located at

—ı =
Ú

fi2c

3E
(1.17)

and the density of states behaves as

log fl(E) = 2fi

Ú
c

3E. (1.18)

To ensure a good saddle point approximation, the corrections need to be small. At
asymptotically large energies, the excited states contributions in Z(—) are indeed
supressed exponentially and our approximation is justified. Equation (1.18) is the
usual Cardy formula and is valid for E æ Œ, but c fixed. For gravity we need
(1.18) to hold for c æ Œ and E ≥ c. To get this, there has to be some constraint
on the spectrum.

Let us consider the limit c æ Œ with E = mc. We will have the same saddle
as before, but we need to check again that the excited states contributions are
suppressed. In particular, we need

ÂZ(—) = exp (—Evac) Z(—) (1.19)

to not give a big contribution on the saddle. If we take m æ Œ, then again all
terms except the vacuum contribution are infinitely exponentially suppressed and
our saddle is justified. But now we want to see how small we can make m. We
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1.3. Irrelevant deformations of field theories

will use the fact that Z(—) is dominated by the light states (E < ‘ with ‘ > 0) as
long as — > 2fi. This means that Z̃(—) is also dominated by the light states. We
can therefore write

ÂZ(4fi2/—ı) ¥
ÿ

ẼÆ‘

fl(Ẽ) exp
A

≠2fi(Ẽ + c/12)
c

12E

B
. (1.20)

We need all terms on the right-hand-side to contribute exponential suppressions,
except for the vacuum, which will contribute +1. From gravity, we see that black
holes start dominating when 5

E = c

12 (1.21)

and so we need to push the validity of the saddle down to there. To achieve this,
we need to bound the degeneracy as

fl(E Æ ‘) . exp (2fi(E + c/12)) . (1.22)

This is the same bound on the light states as in [24]. Thus in order to have a
holographic CFT in two dimensions, the spectrum should obey (1.22).

Let us summarise what we have seen so far. We have studied three dimensional
gravity in AdS3 and argued that for the CFT to be holographic and describe
semi-classical bulk physics, there are two constraints. First of all, it should have
a parameter, in this case c, that we can take large so that in the bulk quantum
gravity e�ects are suppressed. Second, the density of states of low-lying states, i.e.
states for which the energy satisfies E < ‘ with ‘ > 0, is bounded from above as
in (1.22).

In chapter 2 we will repeat the analysis done here for AdSd+1 for d > 2 and with a
particular (conformal) boundary where all spatial directions are compactified. The
analysis is slightly more involved since the vacuum energy is then not fully fixed by
conformal symmetry, but contains a rather high degree of arbitrariness. Besides
that, the derivation of the constraints for d > 2 is similar to the one presented in
this section. For this reason, we will not present more introductory material for
chapter 2, but rather go on to put chapter 3 into a broader context and explain
why it can help understand holography for finite volumes.

1.3 Irrelevant deformations of field theories

In order to do holography at finite volume, we need to do something to the CFT
so that it only describes part of the full spacetime. For example one can image

5
It is true that there are black holes with E Ø 0 as well, but those are unstable and hence

will never dominate the canonical ensemble [24]
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1. Holography

trying to cuto� the spacetime in the radial direction parametrised by r, in for
instance the metrics written in (1.5) and (1.6). In AdS/CFT, the radial direction
signifies the energy scale in the field theory. In particular, cutting o� spacetime
in the radial direction is the same as putting a UV cuto� on the energies in the
CFT. This is a non-trivial statement that will not be explained here. For details
see [27]. Introducing a UV cuto� breaks conformal invariance, so the CFT turns
into an e�ective field theory only valid for energies below the cuto�.

How can we implement such a cuto� in a controllable way starting from a CFT?
One way to do that is by deforming the CFT with an irrelevant operator, which
leaves the IR unchanged but has a dramatic e�ect on the UV. Thus to understand
holography at finite volume we are prompted to study irrelevant deformations of
CFTs.

Deformations of field theories in general are usually studied in the sense of an
RG flow. One starts with some initial conformal field theory and studies what
happens when relevant or marginal operators are added. This will trigger an RG
flow and may result in an interesting, i.e. strongly coupled theory in the IR. For
example, the marginal interactions in QCD or close to a Fermi surface cause the
formation of bound states in the IR resulting in confinement or superconductivity,
respectively. However, the theory could also be gapped in the IR and become
topological. This can, for example happen if we start with an action,

S =
⁄

d3x�̄(“µˆµ + iAµ)�, (1.23)

of free fermions coupled to a background gauge field Aµ and add a mass term,

Sint =
⁄

d3x m�̄�. (1.24)

We can now integrate out the fermion � and look at the field theory at energies
below the mass m. This theory is topological and has no propagating degrees of
freedom and forms the basis for an e�ective field theory description of the integer
quantum Hall e�ect. We will come back to this particular system in chapter 4.

However, we do not want to deform by relevant or marginal operators , but by
irrelevant operators. In the old days of quantum field theory, these operators were
considered very dangerous as they would render the theory non-renormalisable.
Nowadays, such theories with irrelevant couplings are considered as e�ective field
theories, valid only up to a certain energy scale. In the RG flow sense adding
irrelevant operators can be thought of as flowing upwards, from the IR to the UV,
instead of the other way around. A priori, this seems like an odd thing to do,
since it is unclear what irrelevant operators need to be added in order to flow to
the UV. Or in other words, it is extremely hard to know the UV completion of
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1.3. Irrelevant deformations of field theories

some e�ective field theory if it exists at all. It is like sailing against the wind, one
wrong move and you end up somewhere completely di�erent.

The purpose of this section is to study flows of QFTs by deforming with irrelevant
operators. Instead of the reversed-RG flow perspective, we will take the perspective
of these flows as flows in the space of QFTs and so di�erent points along the flow
correspond to di�erent theories. One of the simplest ways to study such irrelevant
flows is by going back to plain vanilla quantum mechanics.

1.3.1 Irrelevant deformations in quantum mechanics

Following the Wilsonian logic down to a quantum mechanics theory in zero spa-
tial dimensions, we are confronted with a curious situation. Normally, in higher-
dimensions, most interactions that we can write down are irrelevant not only
because scalar and spinor fields have high enough mass dimension, but in partic-
ular due to the existence of derivatives. Of course, not everything can be added,
because there are also constraints coming from causality and unitarity, see for ex-
ample [28] in the context of Einstein gravity. As a result, the IR of quantum field
theories is rather robust, i.e it is generically gapped. The UV on the other hand is
not universal at all. In zero spatial dimensions this is completely reversed. There,
the scalar and spinor fields have mass dimension ≠1/2 and 0, respectively. Thus
anything you build with these fields alone is going to be marginal or relevant. The
UV instead of the IR is universal, giving rise to a spectacular wealth of interesting
physics at low energies.

However, there are still temporal derivatives to make irrelevant operators with.
As we mentioned, in higher-dimensions such higher-derivative interactions have
the potential to destroy causality and locality, but in quantum mechanics such
interactions are less problematic, since there is no space. In quantum mechanics,
they have in fact been been considered before, for example, as the relativistic
corrections to Schrödinger’s equation. To first order in v2/c2, such corrections
take the form

H(1) = ≠ p4

8m3c2 = ≠ 1
2mc2

3
p2

2m

42
, (1.25)

which is a deformation of the original Hamiltonian p2/(2m) by its square. These
types of deformations are prototypical for what will be discussed in chapter 3
and in the remainder of this subsection we would like to highlight some of its
properties to gain some intuition. Specifically, we want to consider deformations
as flow equations, for example:

ˆS

ˆ⁄
=

⁄
d· H2(⁄) (1.26)
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1. Holography

or any other power of H(⁄). Here S the Euclidean action of the deformed theory
and ⁄ > 0. This flow equation should be understood as a flow equation in the space
of theories, labelled by ⁄. From this flow equation of the Euclidean action, it is
trivial to get the flow of the deformed spectrum, since S =

s
d·H. The spectrum

then flows in the same way and the deformed Hamiltonian takes the form:

H(⁄) = H

1 ≠ ⁄H
, (1.27)

where we have taken the initial condition H(⁄ = 0) = H. This Hamiltonian is
a bit strange. Since ⁄ is a continuous parameter, there are points along the flow
for which H(⁄) blows up. This means that we cannot flow past these points. In
particular, when ⁄ = 1/Emax with Emax the maximum eigenvalue of the original
Hamiltonian, the flow stops. In most cases Emax is infinite and so there won’t be
any flow at all. There are three ways to deal with this. The first is to truncate
the spectrum of H, so that Emax < Œ and there is a non-trivial flow. In quantum
mechanics, truncating the spectrum is not as violent as in higher-dimensions, be-
cause of the lack of locality and can therefore be implemented straightforwardly.
Second, one can complexify ⁄ and excise the region of the poles of H(⁄). In this
way of defining the deformation, one might be forced to allow for a slight breaking
of hermiticity. Third, the theory with ⁄ > 0 does not make sense and one can only
consider this deformation for ⁄ < 0. In that case, there could still be negative
energies that are problematic, but since H is bounded from below, the flow will
be non-trivial.

Out of these three options, the first one is the most reasonable and most con-
trollable. However, this immediately brings about interesting questions such as:
what happens to the high energy states? or is there a way to UV complete the
theory? The answers to these questions is not straightforward as there may be
many UV completions if they exist at all. In fact, the second proposal, making
⁄ complex, also touches on those same issues. In that case, the slight breaking
of hermiticity can be though of as coupling to a bath in some way, which again
provides a particular UV completion.

Using the quantum mechanics problems as a warm-up, we see that the irrelevant
deformations are not without problems. In fact, these problems are prototypical
for what happens in field theories. In particular, in chapter 3, where we deform
holographic conformal field theories, we see that the deformed spectrum indeed
experiences the same problems as the H2 deformation in quantum mechanics, but
again only for certain signs of the coupling. The precise form of the deforma-
tion is discussed at length in chapter 3, but follows rather straightforwardly from
demanding finite volume in the bulk. Using this deformation, we match various
quantities between the bulk and the field theory, but also find some intriguing
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consequences that touch upon the very roots of the AdS/CFT correspondence.
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2 Universality of Sparse
d > 2 Conformal Field

Theory at Large N

This chapter is based on the following publication:

A. Belin, J. de Boer, J. Krutho�, Ben Michel, E. Shaghoulian and M. Shyani,
“Universality of sparse d > 2 conformal field theory at large N“,
JHEP 03 (2017), 067, arXiv:1610.06186 [hep-th].

2.1 Introduction

The strongest form of the AdS/CFT correspondence states that every conformal
field theory (CFTd) is dual to a theory of quantum gravity living in a higher-
dimensional anti-de Sitter space (AdSd+1). For a generic CFT, the dual theory
of quantum gravity at low energies will look nothing like semi-classical Einstein
gravity. One of the most interesting questions in the context of holography is then
to understand which CFTs – when interpreted as theories of quantum gravity in
AdS – have a semi-classical Einstein gravity limit.

The most straightforward constraint emerging from the AdS/CFT dictionary for
a semi-classical bulk is that the CFT should have a large number of degrees of
freedom, usually parameterized by N . Large N in the field theory implies a semi-
classical bulk since its inverse scales as a positive power of the Planck length in
AdS units: N≠1 ≥ (¸P /¸AdS)# for # > 0. This is the bulk expansion parameter
controlling AdS-scale quantum gravitational e�ects.1

1
To have a theory that looks like Einstein gravity at low energies, we also need an expansion

parameter that can suppress higher-spin fields. The ’t Hooft coupling in gauge theory usually

plays the role of this expansion parameter. Interestingly, like in the D1-D5 duality, certain

features of Einstein gravity can be reproduced without explicitly invoking this assumption. We
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2. Universality of Sparse d > 2 Conformal Field Theory at Large N

Besides large N , a semi-classical theory of gravity in anti-de Sitter space has many
universal features that must be encoded in any putative dual CFT. To explore the
emergence of gravity from field-theoretic degrees of freedom, it is natural to try to
reproduce these universal features by implementing some additional assumptions
on a generic large-N CFT. There has been tremendous progress in this direction
for the case of three-dimensional gravity [24,29–41], throughout which large central
charge and a sparse low-energy spectrum play a prominent role. These powerful
methods for the most part rely on the fact that all stress tensor interactions in
the CFT are captured by the Virasoro block of the identity, which is assumed to
dominate. The success of this particular approach is related to the topological
nature of gravity in three dimensions, which precludes obvious generalizations to
higher dimensions. Nevertheless, it is a compelling problem to reproduce features
of higher-dimensional AdS gravity purely from the CFT. A small sample of work
in this direction includes [28,42–52].

In this chapter, we will focus on a technical tool that has received little exposure
in higher dimensions: modular invariance. For 2d CFTs, modular invariance can
be used to precisely determine how sparse the spectrum should be to reproduce
the thermal phase structure of 3d gravity [24] (see [53] for a similar consideration
in supersymmetric theories). For theories obeying this sparseness constraint, the
Cardy formula [26] – which is usually only valid asymptotically as �/c æ Œ – has
an extended regime of validity down to energies � ≥ c. This precisely matches
the bulk phase structure since the black holes begin dominating the ensemble at
� ≥ c.

The relevance of modular invariance in higher-dimensional holographic CFTs has
been much less explored. In [54, 55], it was shown that modular invariance of
the torus partition function implies the existence of an asymptotic formula that
correctly reproduces the Bekenstein-Hawking entropy of the dual black brane.
This formula is the higher-dimensional generalization of the Cardy formula and
only holds in the limit of large energy for generic CFTs. Holographic CFTs, on the
other hand, must have an extended range of validity of this formula as implied by
the bulk phase structure. The goal of this chapter is to further exploit modular
invariance and place constraints on CFTs such that they have this extended range
of validity. We also want to match the precise phase structure of gravity, which
is much richer than in two dimensions and exhibits both quantum and thermal
phase transitions. One of the key challenges that we will face is that the functional
form of the vacuum energy in higher dimensions is not uniquely fixed by conformal
invariance, although we will discover several nontrivial constraints due to modular

will not explicitly implement any constraints on our field theories with the purpose of decoupling

higher-spin fields.
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invariance.

We can summarize our results as follows. A general CFT on Td will have an
extended Cardy formula and a universal phase structure if and only if the partition
function is dominated by the vacuum contribution when quantizing along any cycle
but the shortest one. Proving this will require using the modular constraints on
the vacuum energy alluded to above. From here, we will consider large-N theories
and exhibit distinct sets of necessary and su�cient sparseness conditions on the
spectrum to achieve this vacuum domination.

In analyzing calculable theories that satisfy these necessary and su�cient condi-
tions, and which therefore have a universal free energy, we are led to the construc-
tion of symmetric orbifold theories in higher dimensions. Symmetric orbifolds
have been analyzed in great depth in two dimensions [56–62], and play an ex-
plicit role in the D1-D5 duality [63–65]. Still, they have not explicitly appeared
in holographic dualities in higher dimensions nor, to the best of our knowledge,
have they been constructed. For their construction, we use a similar procedure as
in two dimensions to build a modular invariant partition function. This includes
both untwisted and twisted sectors. For large-N symmetric product orbifolds, the
density of states of the untwisted sector is shown to be slightly sub-Hagedorn,
whereas for the twisted sector it is precisely Hagedorn. Saturation of the neces-
sary and su�cient conditions for universality is then guaranteed by assuming that
the subextensive parts of the vacuum energy vanish. This assumption constrains
the choice of seed theory we can pick. This is somewhat of a loss of generality
compared to two dimensions but can be expected by the increasing richness of
CFTs in higher dimensions. Provided we pick the seed accordingly, the symmetric
orbifolds reproduce the phase structure of higher-dimensional AdS gravity: they
have an extended regime of validity of the Cardy formula and a Hagedorn transi-
tion at precisely the same temperature as the Hawking-Page transition in the bulk.

The chapter is organized as follows. We start in section 2.2 with a general dis-
cussion of CFTs on d-dimensional tori and modular invariance. In section 2.3 we
summarize the phase structure of toroidally compactified gravity in anti-de Sitter
spacetime. These two sections set the stage for the meat of the chapter. Section
2.4 is dedicated to a detailed discussion of the necessary and su�cient conditions
that are required to have a universal free energy. The implementation of these
conditions is then explored in section 2.5. We discuss the construction of orbifold
theories on d-dimensional tori and show that symmetric product orbifolds have a
universal free energy. We conclude with a discussion and outlook in section 2.6.
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2. Universality of Sparse d > 2 Conformal Field Theory at Large N

2.2 Generalities of CFTd

We now introduce some of the basic technology of modular invariance that we will
use to derive our general CFT results. For more details see [54,55]. In this chapter
we will study conformal field theories defined on a Euclidean d-torus Td. We fix
the metric on this torus to be

ds2 = dx2
0 + dx2

1 + · · · + dx2
d≠1 (2.1)

with identifications

(x0, x1, .., xd≠1) ≥ (x0, x1, .., xd≠1) +
d≠1ÿ

i=0
niUi . (2.2)

where Ui are vectors defining the torus Td and the ni are integers. These vectors
can be conveniently organized in a matrix as

U = (U0 · · · Ud≠1)T =

Q

cccccca

L0 ◊01 · · · ◊0,(d≠2) ◊0,(d≠1)
0 L1 · · · ◊1,(d≠2) ◊1,(d≠1)
...

...
. . .

...
...

0 0 · · · Ld≠2 ◊(d≠2),(d≠1)
0 0 · · · 0 Ld≠1

R

ddddddb
(2.3)

and define a d-dimensional lattice of identifications. This matrix contains the
lengths of the cycles along its diagonal and the ◊ij capture all possible twists of
the torus Td. Modular invariance of the torus partition function for conformal
field theories is a powerful constraint on the theory. The invariance can be stated
as the action of large conformal transformations on the lattice spanned by the
set {Ui}. These large conformal transformations form the group SL(d, Z) and
act on the matrix U in (2.3) by left multiplication. SL(d, Z) is generated by two
elements [66]

S =

Q

cccccca

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1

(≠1)d+1 0 0 . . . 0 0

R

ddddddb
, T =

Q

cccccca

1 1 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1

R

ddddddb
. (2.4)

They can be shown to generate any pairwise swap and a twist along any direction.
For even d, we quotient by the center of the group {≠1, 1} to obtain PSL(d, Z),
but for simplicity we will universally refer to the group as SL(d, Z). Using scale
invariance to unit-normalize one of the cycle lengths shows that we have (d≠1)(d+
2)/2 real moduli captured by the matrix U .
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2.2. Generalities of CFTd

In spacetime dimension greater than two, modular transformations generically
change the spatial background of the theory (i.e. change the Hilbert space), mak-
ing it di�cult to relate the low-lying states to the high-lying states on a fixed
background. However, as discussed in [54] there exist two choices of torus which
allow for a high-temperature/low-temperature duality to be considered. The first
is the background S1

— ◊ S1
L ◊ Td≠2

LŒ
, where LŒ ∫ —, L, —2/L. In this case by ap-

pealing to extensivity in the large directions we have the approximate invariance

log Z(—) ¥ (L/—)d≠2 log Z(L2/—) . (2.5)

This can be transformed into an exact high-temperature/low-temperature duality
by passing to a density defined by dividing log Z(—) by the volume of the large
torus as it decompactifies, but we will not pursue that here.

To produce an exact invariance on a compact manifold, we can also consider a
special torus given by S1

— ◊ S1
L ◊ S1

L2/— ◊ · · · ◊ S1
Ld≠1/—d≠2 , for which

Z(—) = Z(Ld/—d≠1) . (2.6)

This invariance is obtained by an SL(d, Z) transformation and a scale transfor-
mation. It will play an important role in our CFT analysis.

To deal with the case of a general torus where there is no high-temperature/low-
temperature duality, we will find it useful to define some notation. For a d-
dimensional torus of side lengths L0, L1, . . . , Ld≠1, where — = L0, we will denote
the partition function quantized in an arbitrary channel as:

Z[Md] = Z(Li)Mi =
ÿ

e≠LiEMi . (2.7)

Z[Md] denotes the Euclidean path-integral representation of our partition func-
tion, which treats space and time democratically. The next form of the partition
function picks direction i as time and gives a Hilbert space interpretation of the
path integral. Since the spatial manifold will change depending on which direc-
tion is chosen as time, we use the notation Mi to explicitly denote the spatial
manifold. It is defined as Md = Mi ◊ S1

Li
. Brackets will always imply a Eu-

clidean path-integral representation while parentheses will imply a Hilbert-space
representation.

2.2.1 Review of higher-dimensional Cardy formulas

Now we will provide a derivation of the higher-dimensional Cardy formula on an
arbitrary spatial manifold S1

— ◊ X. We will only need the result for a spatial
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2. Universality of Sparse d > 2 Conformal Field Theory at Large N

torus, but we will keep the discussion general. The fact that modular transfor-
mations generically change the Hilbert space of the torus partition function will
not provide an obstruction, although we will see in the resulting formulas that our
high-temperature partition function and asymptotic density of states refer to the
vacuum energy on a di�erent spatial background in general.

We assume our theory to be local, modular invariant, and to have a spectrum
of real energies on the torus that is bounded below by an energy that is dis-
cretely gapped from the rest of the spectrum. At asymptotically high temperature
—/V 1/(d≠1)

X æ 0, we can use extensivity of the free energy to replace our spatial
manifold X with a torus Td≠1 of cycle lengths L1 Æ L2 Æ · · · Æ Ld≠1 and no
twists, with VX = L1 · · · Ld≠1 © VM0 . We therefore have

Z[S1
— ◊ X] = Z(—)X ¥ Z(—)M0 =

ÿ
e≠—EM0 ¥ ec̃VM0 /—d≠1

(2.8)

at asymptotically small — for some thermal coe�cient c̃ > 0. This thermal coe�-
cient is not a priori related to any anomalies except in two dimensions. Considering
a quantization along Ld≠1 gives us

Z(Ld≠1)Md≠1 =
ÿ

e≠Ld≠1EMd≠1 = e≠Ld≠1Evac,Md≠1
ÿ

e≠Ld≠1(E≠Evac)Md≠1 .
(2.9)

For d = 2 in a scale-invariant theory, — becoming asymptotically small is equivalent
to Ld≠1 becoming asymptotically large, since only the ratio Ld≠1/— is meaningful.
However, for d > 2 we have the additional directions Li which may prevent us from
interpreting the quantization in the Ld≠1 channel as a low-temperature partition
function which projects to the vacuum. To deal with this, consider the limit
Ld≠1 æ Œ where we indeed project e�ciently to the vacuum:

lim
Ld≠1æŒ

log Z(Ld≠1)Md≠1

Ld≠1
= ≠Evac,Md≠1 . (2.10)

Using Z(—)M0 = Z(Ld≠1)Md≠1 gives us Evac,Md≠1 = ≠c̃VMd≠1/—d. We are there-
fore able to extract the scaling of the vacuum energy as Evac,Md≠1 Ã ≠VMd≠1/—d

as — æ 0. The proportionality coe�cient, which we define as Ávac, is Ávac = c̃.
Furthermore, notice that Evac,Md≠1 is clearly independent of Ld≠1, so this result
is general even though we took the limit Ld≠1 æ Œ to obtain it. In the general
case of arbitrary Ld≠1 we can therefore write for — æ 0

Z(Ld≠1)Md≠1 = ec̃VM0 /—d≠1 ÿ
e≠Ld≠1(E≠Evac)Md≠1 . (2.11)

Again equating with Z(—)M0 , we see that the excited states must contribute at
subleading order, since the vacuum contribution is su�cient to obtain Z(Ld≠1)Md≠1 =
Z(—)M0 at leading order in small —. The concern over the directions Li and poor
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2.2. Generalities of CFTd

projection to the vacuum alluded to earlier is therefore not a problem at leading
order. We are finally left with

S(—) = (1 ≠ —ˆ—) log Z(—)X ¥ dVXÁvac/—d≠1 (2.12)

for the high-temperature entropy of a modular-invariant CFT on an arbitrary
spatial background X.

Now we consider the implications for the density of states:

fl(Es) = 1
2fii

⁄ –+iŒ

–≠iŒ
d— Z(—)Xe—Es (2.13)

= 1
2fii

⁄ –+iŒ

–≠iŒ
d—

1
e≠ÁvacVX /—d≠1 ÿ

e≠—E
2

eÁvacVX /—d≠1+—Es , (2.14)

for some – > 0. Performing a saddle-point on the part of the integrand outside of
the parentheses and evaluating the integrand on this saddle —s Ã E≠1/d

s gives us
the higher-dimensional Cardy formula:

log fl(Es) = d

(d ≠ 1) d≠1
d

(ÁvacVX) 1
d E

d≠1
d

s . (2.15)

The saddle point implies —s æ 0 as Es æ Œ. To ensure that this saddle point is
valid, we need to check that the part of the integrand in the parentheses, which
we call Z̃X(—), does not give a big contribution on the saddle:

Z̃X(—s) = e≠ÁvacVX /—d≠1
s

ÿ
e≠—sE . (2.16)

From high-temperature (—s æ 0) extensivity (2.8), we know that we can write this
as

Z̃X(—s) ¥ e≠ÁvacVX /—d≠1
s ec̃VX /—d≠1

s = 1 , (2.17)

where we used c̃ = Ávac (and one notices c̃ is independent of spatial background
by replacing the high-temperature partition function on the given manifold with
the high-temperature partition function on a torus of spatial lengths L1, . . . Ld≠1
with VM0 = VX). Our saddle-point approximation is therefore justified, and we
have the higher-dimensional Cardy formula as advertised.

In particular, considering the spatial background to be X = Sd≠1 gives the asymp-
totic density of local operators by the state-operator correspondence. In the rest
of this chapter we will only be interested in the CFT on Td.
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2. Universality of Sparse d > 2 Conformal Field Theory at Large N

2.2.2 Review of vacuum energies in CFT

Normalization of vacuum energy

In a generic field theory, one is always free to shift the Hamiltonian by an arbitrary
constant. This therefore shifts what we call the vacuum energy. Indeed, the
well-known Casimir e�ect demonstrates that derivatives with respect to spatial
directions dEvac/dLi are the physical observables, leaving an ambiguity in the
normalization of Evac. Additional structure, such as supersymmetry or modular
invariance, disallows such an ambiguity. Even in a purely scale-invariant theory
one can fix the normalization of the vacuum energy. Scale invariance requires that
energies, and in particular the ground state energy, scale as inverse lengths under a
rescaling of the spatial manifold: Evac(⁄L1, ⁄L2, . . .) = ⁄≠1Evac(L1, L2, . . .). This
fixes the shift ambiguity in Evac.

Subextensive corrections to the vacuum energy

The higher-dimensional Cardy formulas involves the vacuum energy density on
S1 ◊ Rd≠2, which by its relation to the extensive free energy density in a di�erent
channel is negative and has a fixed functional form. If we compactify more direc-
tions and make them comparable to the size of the original S1, then we will in
general get corrections to the asymptotic formula. For two-dimensional CFT there
is only one spatial cycle so no such corrections can enter. To capture the essence
of what happens, let us consider a three-dimensional CFT on S1

— ◊ S1
L1

◊ S1
L2

with
L1 < L2. The low-temperature partition function will project to the vacuum state
on S1

L1
◊ S1

L2
, which can be parameterized as

Evac,L1◊L2 = ≠ÁvacL2
L2

1
(1 + f(L1/L2)) . (2.18)

Let us define y = L1/L2. The function f(y) is capturing all of the corrections
beyond the asymptotic formula, so we have f(0) = 0 and f(y æ Œ) = ≠1 + y3.
In general, f(y) is a nontrivial function of y. Later in the text we will derive some
positivity and monotonicity constraints on f(y) by using modular invariance, but
for now let us exhibit its functional form for the free boson theory, shown in figure
2.1.

In higher dimensions, there are more independent ratios that can be varied, and in
general the corrections beyond the asymptotic formula are given by some nontrivial
function of d≠2 dimensionless ratios yi = L1/Li which for simplicity we will often
write as f(y) with y = (y2, y3, . . . , yd≠1).

We will also find it useful to consider the parameterization of the vacuum energy
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2.3. Phase structure of toroidally compactified AdS gravity
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Figure 2.1: The functional form of f(L1/L2) in the vacuum energy (defined in
(2.18)) of a free boson in 2 + 1 dimensions on a two-torus T2 with sides L1 and
L2. As can be seen in the plot, f(L1/L2) is positive and monotonically increasing.

in arbitrary dimension as

Evac = ≠ÁvacVd≠1
Ld

min

!
1 + f̃(Â)

"
. (2.19)

which always has the smallest cycle in the denominator. The key di�erence be-
tween f̃(Â) and f(Â) is that it is possible for f̃(Â) to be identically zero for all
values of its arguments, whereas this is not the case for f(Â) as discussed in three
dimensions above. We will find, for example, that gravity implies a vacuum energy
structure with f̃(Â) = 0 up to 1/N corrections. We will often just write f̃(Â) = 0,
by which we mean the equality up to 1/N corrections.

2.3 Phase structure of toroidally compactified AdS
gravity

In this section we will recap what is known about the phase structure of gravity
in AdS with a toroidally compactified boundary. This phase structure is easy to
deduce for pure gravity without spontaneous breaking of translation invariance,
which is the case we will restrict ourselves to. The most remarkable feature of
this phase structure is the absence of any nontrivial finite-size corrections to the
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2. Universality of Sparse d > 2 Conformal Field Theory at Large N

vacuum energy and free energy, up to sharp phase transitions as circles become
comparably sized. In other words, the function f̃(Â) defined in the previous section
vanishes for all values of its arguments. As usual there will be nonzero contribu-
tions suppressed by 1/N . Note that weakly coupled theories, including e.g. N = 4
super Yang-Mills, do not realize this sort of structure [67]. We will not consider
the possibility that the singular solutions used in [67] are relevant for the phase
structure. An argument against them is as follows. Assume that such a singular
solution provides the vacuum energy of the theory under multiple compactifica-
tions. By the higher-dimensional Cardy formula, there must therefore exist a black
brane with higher entropy than AdS-Schwarzschild. Any such black brane should
be modular S-related to the singular solution. But that means the “black brane”
will be horizonless and singular, and if e.g. –Õ e�ects resolve the singularity and
pop out a horizon, then the entropy should be proportional to some power of –Õ.
But the ground state energy is a boundary term and is not proportional to –Õ.
This is inconsistent, by the Cardy formula which relates the two.

We consider our theory at inverse temperature — on a spatial torus of side lengths
Li. The Euclidean solutions with the correct periodicity conditions are the toroidally
compactified Poincaré patch, black brane, and d ≠ 1 AdS solitons

ds2
pp = r2dx2

0 + dr2

r2 + r2d„id„i , (2.20)

ds2
bb = r2 !

1 ≠ (rh/r)d
"

dx2
0 + dr2

r2 (1 ≠ (rh/r)d) + r2d„id„i , (2.21)

ds2
sol,k = r2dx2

0 + dr2

r2 (1 ≠ (r0,k/r)d) + r2 !
1 ≠ (r0,k/r)d

"
d„2

k + r2d„jd„j , (2.22)

all of which have the identification x0 ≥ x0 + —. There are d ≠ 1 AdS solitons
since there are d ≠ 1 circles that are allowed to pinch o� in the interior. This
means that we are picking supersymmetry-breaking boundary conditions around
all cycles, which is motivated by maintaining S-invariance of our thermal partition
function.

The parameter rh (r0,k) is fixed by demanding the x0 („k) circle caps o� smoothly:

rh = 4fi

d—
, r0,k = 4fi

dLk
. (2.23)

Considering the ensemble at finite temperature and zero angular velocity, we need
to compare the free energy of these solutions:

Fbb = ≠rd
hVd≠1
16fiG

, Fsol,k = ≠
rd

0,kVd≠1

16fiG
, Fpp = 0 . (2.24)

The Poincaré patch solution never dominates so we will not consider it in what
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2.4. Necessary and su�cient conditions for universality

follows. We will also assume that the AdS soliton of minimal energy gives the
vacuum energy of the theory under a toroidal compactification [68].

2.3.1 Thermal phase structure

We will first consider the thermal phase structure, which can be illustrated by
fixing a spatial torus and varying the inverse temperature —. The AdS soliton
with the cycle of smallest length Lmin pinching o� has minimal free energy and
dominates all the other ones. We will denote this as the k = min soliton. Thus,
the two relevant solutions are this k = min soliton and the black brane. These two
exhibit a thermal phase transition at — = Lmin with the black brane dominating
the ensemble at high temperature — < Lmin. The energy at the phase transition
is

E
--
rh= 4fi

dLmin
= ≠ˆ— logZ = ≠(d ≠ 1)Evac , (2.25)

where Esol,k=min = Fsol,k=min = Evac is the vacuum energy of the theory.

2.3.2 Quantum phase structure

A very important new feature in the phase structure of higher-dimensional toroidally
compactified AdS spacetime is the existence of quantum phase transitions. These
are phase transitions that can occur at zero temperature and are therefore driven
by quantum fluctuations and not thermal fluctuations. They occur as we vary the
spatial cycle sizes and reach a point where two spatial cycle sizes coincide and
are minimal with respect to the rest. Let us call these cycle lengths L1 and L2
and pass from L1 < L2 to L1 > L2. In this case the vacuum energy exhibits a
sharp transition from the k = 1 soliton to the k = 2 soliton. This is precisely the
behavior that fixes f̃(Â) = 0, as alluded to earlier. To exhibit a phase transition
in the free energy instead of the vacuum energy, we need to restrict ourselves to
the low-temperature phase — > Lmin where the black brane does not dominate.

2.4 Necessary and su�cient conditions for uni-
versality

In this section we would like to highlight a few di�culties in generalizing a dis-
cussion from two dimensions to higher dimensions. Let us first consider a two-
dimensional CFT with cycle lengths — and L. For such a theory, vacuum domina-
tion of the torus partition function in channel L, for arbitrary cycle size L > —, is
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2. Universality of Sparse d > 2 Conformal Field Theory at Large N

necessary and su�cient for universality of the partition function for all —. To see
this, we write vacuum domination in the L channel as

Z(—)L = Z(L)— =
ÿ

E—

exp (≠LE—) ¥ exp (≠LEvac,—) = exp
3

ficL

6—

4
. (2.26)

Due to the fact that the vacuum energy for two-dimensional CFT is uniquely fixed
by conformal invariance, we get a universal answer for the partition function. In
the — channel, this form is that of an extensive free energy, and gives the Cardy
formula in the canonical ensemble S(—) = ficL/(3—).

In higher dimensions, vacuum domination of the torus partition function in one
channel seems neither necessary nor su�cient for extensive Cardy growth in a
di�erent channel. This is because the vacuum energy on a generic torus is not
uniquely fixed by conformal invariance. But it turns out we can use SL(d, Z)
invariance to show that a slightly modified version of the statement is valid. In
particular, we will show that vacuum domination in all channels except that of the
smallest cycle is necessary and su�cient for universality of the partition function
for all —. Before we begin, we will prove some useful properties of the function f(Â)
which characterizes the subextensive corrections to the vacuum energy and will
play a starring role in our general CFT and symmetric orbifold analyses. Sections
2.4.1 and 2.4.2 will contain results about generic modular-invariant CFTs. Sections
2.4.3 and 2.4.4 will then specify to large-N theories.

2.4.1 Modular constraints on vacuum energy

We now utilize the connection between the vacuum energy and the excited states
implied by modular invariance, as first pointed out in appendix A of [54]. We will
find that, somewhat surprisingly, modular invariance constrains all subextensive
corrections to the vacuum energy to have a fixed sign and monotonic behavior.

Consider a spatial torus with side lengths L1 Æ · · · Æ Ld≠1 and take the quanti-
zation along — at low temperature, which e�ciently projects to the vacuum:

lim
—æŒ

log Z(—)M0

—
= ≠Evac,M0 = ÁvacVM0

Ld
1

(1 + f(Â)) . (2.27)

We also consider the d ≠ 2 quantizations L2, . . . , Ld≠1, which give

lim
—æŒ

log Z(Li)Mi

—
= ÁvacVM0

Ld
1

(1+f(Â\yi, 0))+ lim
—æŒ

1
—

log
A

ÿ

E

e≠Li(E≠Evac)Mi

B
,

(2.28)
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where Â \yi is the vector Â without the yi-th element. The reason for the di�erent
arguments of f is that in the Li quantization, instead of the ratio L1/Li we have
L1/— = 0 as — æ Œ. The second term on the right-hand-side does not vanish
since the logarithm of the shifted partition function becomes linear in — at large
— due to extensivity.

We want to analyze the monotonicity properties of f(Â) with respect to its d ≠ 2
arguments. To analyze any given ratio yi, we can equate the quantization along —
with the quantization along Li. This gives

ÁvacVM0

Ld
1

(f(Â) ≠ f(Â \ yi, 0)) = lim
—æŒ

1
—

log
A

ÿ

E

exp (≠Li(E ≠ Evac)Mi)
B

.

(2.29)
By unitarity, the right-hand-side is manifestly non-negative, so we conclude

f(Â) ≠ f(Â \ yi, 0) Ø 0 . (2.30)

Furthermore, the right-hand-side of (2.29) is a monotonically decreasing function
of Li. This means we can di�erentiate the left-hand-side with respect to Li and
obtain

f(Â) ≠ f(Â \ yi, 0) + LiˆLif(Â) Æ 0 =∆ ˆLif(Â) Æ 0 =∆ ˆyif(Â) Ø 0 , (2.31)

where the first implication follows from the previous positivity property. The
second implication follows from the fact that increasing Li is the same as keeping
all ratios yj fixed except for the ratio yi = L1/Li, which is decreased. In particular,
this means that the function increases under any possible variation. Furthermore,
since f(0) = 0 this means that f(Â) Ø 0. These facts will be used heavily in what
follows.

Modular invariance can also be used to constrain the behavior of the vacuum
energy under spatial twists. By re-interpreting the spatial twist as an angular
potential in a di�erent channel, we can see that the vacuum energy cannot increase
due to a spatial twist. The proof goes as follows. Consider the following partition
function in the low-temperature limit with twist ◊kj between two spatial directions
k and j:

lim
—æŒ

log Z(—; ◊kj)M0

—
= ≠Evac(L1, ..., Ld≠1; ◊kj) . (2.32)

Since the spatial directions are twisted, we may quantize along direction k, in
which case the twist becomes an angular potential:

lim
—æŒ

log Z(Lk; ◊kj)Mk

—
= lim

—æŒ

1
—

log
A

ÿ

E

exp (≠LkEMk + iPj◊kj)
B

. (2.33)
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The introduction of ◊kj only adds phases to the partition function in this channel,
which decreases its real part. The vacuum energy is always manifestly real, so when
equating the two quantizations it will be the case that the partition function with
angular potential will evaluate to a real number. This means that the vacuum
energy, which is negative, will be strictly greater or equal to its value without
twists. This will be used in section 2.5.

2.4.2 Necessary and su�cient conditions

With the properties of the vacuum energy in hand, we are now ready to show that
vacuum domination in all but the smallest channel is necessary and su�cient to
have a universal free energy.

First we show su�ciency. We consider an ordering — < L1 Æ · · · Æ Ld≠1. Vacuum
domination in the channels Li means

Z(Li)Mi = exp (≠LiEvac,Mi) . (2.34)

As we saw in the previous section, the vacuum energy is not uniquely fixed for
higher-dimensional CFTs. However, equating the d≠2 quantizations lets us extract
the vacuum energy:

Z(L1)M1 = Z(L2)M2 = · · · = Z(Ld≠1)Md≠1 (2.35)
=∆ ≠L1Evac,M1 = ≠L2Evac,M2 = · · · = ≠Ld≠1Evac,Md≠1 . (2.36)

Since Evac,Mi is independent of Li, we conclude that Evac,Mi is linear in the cycle
lengths Lj ”=i. The — dependence is then fixed by dimensional analysis, and the
coe�cient is fixed by matching onto the asymptotic case of small —:

Evac,Mi = ≠ÁvacVMi/—d. (2.37)

Thus, we see that vacuum domination in all but the smallest channel determines
the functional form of the vacuum energy. We can now use Z(—)M0 = Z(Li)Mi

to get
Z(—)M0 = exp

!
ÁvacLiVMi/—d

"
= exp

!
ÁvacVM0/—d≠1"

. (2.38)

This is just the Cardy formula. In a regular CFT it holds only asymptotically in
small —, but here we have shown that vacuum domination in the spatial channels
Li is su�cient to make it valid for all temperatures — < Li. For — > L1 we
again have a universal expression for Z(—)M0 , which by assumption is given by
the contribution of the vacuum only.

Showing that vacuum domination in all but the smallest cycle is necessary for
universality requires the properties of f(Â) proven in the previous subsection.
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Consider the quantization along an arbitrary channel of cycle size Li

Z(Li)Mi =
ÿ

e≠LiEMi = e≠LiEvac,Mi

ÿ
e≠Li(E≠E0)Mi . (2.39)

In two spacetime dimensions, it is the vacuum contribution in this channel that
gives Cardy behavior in the — channel and therefore universality. The excited
states contribute as positive numbers, and would ruin the Cardy behavior. There-
fore it is necessary that they not contribute, i.e. necessary that we are vacuum
dominated in this channel. In higher dimensions, one may worry that the excited
state contributions cancel against the non-universal pieces of the vacuum energy,
precluding the necessity of vacuum domination. However, by the positivity of f(Â)
this can never happen. Thus, to get the correct Cardy behavior in the — channel
it is necessary that the excited states do not contribute. This is true for arbitrary
channel i. We conclude that it is necessary to be vacuum dominated in all but the
smallest cycle.

It is interesting that for a universal free energy it is necessary and su�cient to
have vacuum domination in all but the smallest channel. One could have suspected
that explicit assumptions about the subextensive corrections to the vacuum energy
would have to enter, but they do not.

We can state an equivalent set of necessary and su�cient conditions. To obtain a
universal free energy for all — on an arbitrary rectangular torus, it is necessary and
su�cient to have vacuum domination in the largest spatial cycle, with the vacuum
energy taking the universal form with no subleading corrections. In fact, by using
the non-negativity and monotonicity of the subextensive corrections, we can state
the necessary and su�cient condition as vacuum domination in the largest spatial
cycle, with the vacuum energy on a square torus of side length L equal to Ávac/L.

In the rest of this section we will restrict attention to large-N theories.

2.4.3 Sparseness constraints without assuming f̃(Â) = 0

It is di�cult to make progress in the case where we make no explicit assumptions
about the functional form of the vacuum energy. To achieve vacuum domination in
all but the smallest channel of a large-N theory, we can bound the entire spectrum
on an arbitrary spatial torus of side lengths L1 Æ L2 Æ · · · Æ Ld≠1 as

fl(�M0) . exp (L1�M0) , �M0 © (E ≠ Evac)M0 . (2.40)

This is a necessary and su�cient condition, although it is possible that it is implied
by a more minimal set of necessary and su�cient conditions. To see how this
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2. Universality of Sparse d > 2 Conformal Field Theory at Large N

condition arises, one writes the partition function as

Z(—)M0 = exp (≠—Evac)
ÿ

exp (≠—�M0) fl(�M0) (2.41)

and bounds the density of states as (2.40) for the entire spectrum. At large N ,
with a vacuum contribution that scales exponentially in N , this suppresses all
excited state contributions as soon as — > L1. This means all cycles except the
smallest will be vacuum-dominated, as required. We give another method of proof
for vacuum domination in appendix A.1 which restricts the sparseness bound to
only the light states, but requires an additional assumption on the field theory.

We can also show that it is necessary and su�cient to solve the problem on a spatial
square torus, i.e. that the free energy is universal for all — on a spatial square torus
of side length L. The necessary direction is obvious. To show su�ciency, consider
the quantization along L:

Z(L)Md≠1 = exp
!
≠LEvac,Md≠1

" ÿ

�
exp

!
≠L�Md≠1

"
(2.42)

= Z(—)M0 ¥ exp
!
ÁvacLd≠1/—d≠1"

. (2.43)

where the final expression is by assumption of universality. The only way to satisfy
this equality is for the contribution of the excited states and the subextensive
corrections to the vacuum energy in the L channel to vanish. In particular we are
vacuum dominated in the L channel. Taking arbitrary Ld≠1 > L keeps us vacuum
dominated since it is at even lower temperature:

Z(Ld≠1)Md≠1 ¥ exp
!
ÁvacLd≠1Ld≠2/—d≠1"

. (2.44)

In the — channel this gives us the ordinary Cardy formula with no subextensive
corrections, and in another L channel we have

Z(L)Md≠2 = exp
!
≠LEvac,Md≠2

" ÿ

�
exp

!
≠L�Md≠2

"
(2.45)

= Z(Ld≠1)Md≠1 ¥ exp
!
ÁvacLd≠1Ld≠2/—d≠1"

. (2.46)

Again, this means that we are vacuum dominated in the L channel. Now we can
consider arbitrary Ld≠2 satisfying L < Ld≠2 < Ld≠1, for which we will remain
vacuum dominated:

Z(Ld≠2)Md≠2 ¥ exp
!
ÁvacLd≠1Ld≠2Ld≠3/—d≠1"

. (2.47)

By equating this expression with the partition function in the Ld≠1 channel, we see
that we are still vacuum dominated in that channel. By continuing this procedure
we are able to generalize to an arbitrary torus — < L1 < · · · < Ld≠1, and we obtain

log Z(—) =
;

ÁvacVM0/—d≠1, — < L1
ÁvacVM1/Ld≠1

1 , — > L1
. (2.48)
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Altogether, we have that the free energy is universal at all temperatures on an
arbitrary spatial torus. So solving the problem on a spatial square torus is both
necessary and su�cient to solving the general problem, thanks to properties of the
positivity of f(Â).

2.4.4 Sparseness constraints assuming f̃(Â) = 0

In this section we will show that assuming f̃(Â) = 0 (up to 1/N corrections) allows
us to exhibit a constraint on the light spectrum that naturally generalizes the two-
dimensional case. This is not too surprising, as f̃(Â) = 0 is automatically true in
two dimensions, although some more work will be required in higher dimensions.

We start by considering the special torus with ordering — < L < L2/— < · · · <
Ld≠1/—d≠2. As discussed in chapter 1, this special torus has an exact low-
temperature/high-temperature duality Z(—)M0 = Z(Ld/—d≠1)M0 . This will allow
us to uplift the arguments of [24] to our case. In the upcoming manipulations,
we will not keep explicitly the specification of the spatial manifold M0, since this
duality allows us to keep our spatial manifold fixed once and for all.

By following the steps in [24], one can show that the partition function is dominated
by the light states up to a theory-independent error. We will denote light states
as those with energy E < ‘ for some arbitrary ‘. We have

log Zlight(Ld/—d≠1) Æ log Z(—) Æ log Zlight(Ld/—d≠1) ≠ log
1

1 ≠ e‘(—≠Ld/—d≠1)
2

.

(2.49)
This error grows arbitrarily large as — æ L or ‘ æ 0. For — > L we can derive a
similar upper and lower bound.

For a family of CFTs labeled by N , we assume that the vacuum energy also scales
with N . This will be true in all examples we consider. When taking N large, we
can scale ‘ æ 0, in which case the partition function is squeezed by its bounds and
given just by the light states up to O(1) corrections. In the context of assuming
f̃(Â) = 0, we then obtain universality

log Z(—) =
I

log Zlight(Ld/—d≠1) = ≠ Ld

—d≠1 Evac — < L

log Zlight(—) = ≠—Evac — > L
, (2.50)

if and only if the density of light states is bounded as

fl(�) . exp
3

Ld

—d≠1 �
4

, � Æ ≠Evac , (2.51)

where � = E ≠ Evac. Notice that if we did not assume a universal form for
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2. Universality of Sparse d > 2 Conformal Field Theory at Large N

the vacuum energy with f̃(Â) = 0, the free energy would still be very theory-
dependent.

To generalize the argument above to an arbitrary d-torus, the idea will be to push
the special torus very close to the square torus. From here, we can use the fact
that whenever a partition function is dominated by the vacuum contribution at
some inverse temperature —, then it will also be dominated by that contribution
for larger —. Channel by channel, we will see that we will be able to generalize
to an arbitrary torus. Assuming a universal form of the vacuum energy will be
crucial for this argument.

It will be convenient to consider starting with a quantization along the Ld≠1/—d≠2

channel, because it is the largest cycle when — < L. We will now restore the
explicit spatial manifold dependence since we will be considering quantizations
along di�erent channels. We have

Z(Ld≠1/—d≠2)Md≠1 = Z(Ld/—d≠1)M0 = Z(—)M0 . (2.52)

By using (2.50) we can write this as

Z(Ld≠1/—d≠2)Md≠1 = exp
3

≠ Ld

—d≠1 Evac,M0

4
= exp

3
≠Ld≠1

—d≠2 Evac,Md≠1

4
.

(2.53)
This means that we are vacuum-dominated in the Ld≠1/—d≠2 channel.

Let us now take a larger cycle Ld≠1 > Ld≠1/—d≠2, for which we will remain
vacuum-dominated:

Z(Ld≠1)Md≠1 = exp
!
≠Ld≠1Evac,Md≠1

"
. (2.54)

Quantizing now along the the second largest cycle Ld≠2/—d≠3 < Ld≠1 gives us

Z(Ld≠2/—d≠3) = exp
!
≠Ld≠2/—d≠3Evac,Md≠2

" ÿ

�
exp

!
≠Ld≠2�Md≠2/—d≠3"

.

(2.55)
But by our assumption f̃(Â) = 0, we have

Ld≠1Evac,Md≠1 = Ld≠2Evac,Md≠2/—d≠3 , (2.56)

which means that Z(Ld≠2/—d≠3) is given by its vacuum contribution only. One
can now consider Ld≠2 > Ld≠2/—d≠3, for which we will remain vacuum-dominated
in the Ld≠2 channel. By comparing to the Ld≠1 channel, we can verify that we
remain vacuum-dominated there as well. We can now move to the Ld≠3/—d≠4

channel and continue this procedure up to and including the L channel. In a final
step, we can compare to the — channel and see that it indeed has universal Cardy
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behavior:
log Z(—) = ÁvacVM0

—d
. (2.57)

There is no need now to consider smaller — since we have already considered general
variations of the other d≠1 cycles. Since the partition function is a function of d≠1
independent dimensionless ratios, we have already captured all possible variations.

The generality of the torus that results from this procedure is restricted by the
special torus with which we began. But notice that the special torus can be arbi-
trarily close to a d-dimensional square torus, which means this procedure results
in a universal free energy on an arbitrary torus. From this argument it is clear
that the only assumption made on the spectrum is the bound in (2.51). In fact,
it is enough to impose this constraint for the square torus, since our procedure
begins from that case (or arbitrarily close to it) and generalizes to an arbitrary
torus. The sparseness constraint is therefore

fl(�) . exp (L�L◊L◊···◊L) (2.58)

and is imposed only on the states with energies E = � + Evac < 0.

2.5 Symmetric Product Orbifolds in d > 2

In this section we construct orbifold conformal field theories in higher dimensions
using a procedure analogous to the one in two dimensions. We will see that these
theories contain both twisted and untwisted sector states and will give an estimate
for the density of states within these sectors. Finally, we will show that under the
assumption that f̃(Â) = 0, the free energy has a universal behavior at large N
which agrees with Einstein gravity.

2.5.1 A review of permutation orbifolds in two dimensions

In two dimensions, symmetric product orbifolds (or the more general permutation
orbifolds) provide a vast landscape of two-dimensional CFTs with large central
charge that have a potentially sparse spectrum and are thus of interest in the
context of holography [69–72]. The goal of this section will be to extend these
constructions to higher dimensions. We start by a review of permutation orbifolds
in two dimensions which will set most of the notation that we will then carry
over to higher dimensions. Permutation orbifolds are defined by the choice of two
parameters: a “seed” CFT C and a permutation group GN µ SN . A permutation
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orbifold CN is then defined to be

CN © C¢N

GN
. (2.59)

The procedure by which we take this quotient is called an orbifold. It projects
out all states of the product theory that are not invariant under the action of the
group. The Hilbert space thus gets restricted to

H¢N ≠æ H¢N

GN
, (2.60)

where H is the Hilbert space of C. This projection onto invariant states is crucial as
it gets rid of most of the low-lying states and hence provides some hope of obtaining
a sparse spectrum. When computing the torus partition function, this projection
onto invariant states is implemented by a sum over all possible insertions of group
elements in the Euclidean time direction. This is summarized by the following
formula

Zuntw = 1
|GN |

ÿ

gœGN

g (2.61)

where the box represents the torus with the vertical direction being Euclidean
time.

However, (2.62) is obviously not modular invariant as it singles out the time di-
rection. Modular invariance is restored in the following way

Ztot = 1
|GN |

ÿ

g,hœGN |gh=hg

g

h

. (2.62)

The requirement that the two group elements must commute comes from demand-
ing that the fields have well-defined boundary conditions [73]. The insertion of
elements h in the spatial direction are interpreted as twisted sectors, where the
boundary conditions of the fields are twisted by group elements. There is one
twisted sector per conjugacy class of the group, which in the case of GN = SN

gives one twisted sector per Young diagram. In [69–71], the space of permuta-
tion orbifolds was explored and a criterion was given for these theories to have a
well-defined large N limit (and thus a potential holographic dual). It was found
that many properties of the spectrum depends solely on the group GN and not
on the choice of the seed theory. Groups that give a good large-N limit are called
oligomorphic permutation groups [74–76]. Although a complete proof is still miss-
ing, it is believed permutation orbifolds by oligomorphic groups all have at least a
Hagedorn density of light states, but the growth may be even faster [69, 71]. For
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the symmetric group, it was shown in [24,62] that the growth is exactly Hagedorn
with the precise coe�cient saturating the bound on the density of light states
produced in [24].

Symmetric product orbifolds thus reproduce the phase structure of 3d gravity.
Note that they are still far from local theories of gravity such as supergravity on
AdS3 ◊ S3, as their low-lying spectrum is Hagedorn and so they look more like
classical string theories. The D1-D5 CFT has a moduli space that is proposed
to contain a point, known as the orbifold point, where the theory becomes a
free symmetric product orbifold theory. According to this proposal, the orbifold
point is connected to the point where the supergravity description is valid by an
exactly marginal deformation. It is only the strongly coupled theory that is dual
to supergravity, and from this point of view it is surprising that the free theory
realizes the phase structure of gravity.

2.5.2 Symmetric product orbifolds in higher dimensions

In two dimensions, we saw that symmetric product orbifolds are examples of the-
ories with a sparse enough spectrum to satisfy the bound from [24] and thus have
a universal phase structure at large N . We would now like to construct weakly
coupled examples of theories satisfying our new criteria in higher dimensions. In
dimensions greater than two, it is in general much harder to construct large-N
CFTs. One may of course take tensor products but these will never have a sparse
enough spectrum. In fact, the spectrum below some fixed energy level will not
even converge as N æ Œ. Imposing some form of Gauss’ law to project out many
of the low-lying states is usually done by introducing some coupling to a gauge
field, which makes preserving conformal invariance highly non-trivial. A natural
way to achieve this same projection is through the construction of orbifold con-
formal field theories familiar from two dimensions. To the best of our knowledge,
there is no construction of orbifold conformal field theories in higher dimensions,
which as explained in the previous subsection is perhaps the most natural way of
obtaining theories that are conformal, have a large number of degrees of freedom,
but also a sparse low-lying spectrum.

We will now describe the construction of symmetric product orbifolds in d dimen-
sions.2 We will construct the partition function, i.e. the Hilbert space and the
spectrum of the Hamiltonian on Td≠1. We comment on other properties of the
theory such as correlation functions in the discussion section.

2
Here we will assume that the group is SN but the generalization to other permutation groups

follows trivially from our construction.
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The starting point is again to consider a seed CFTd C and to define the orbifold
theory CN as

CN © C¢N

SN
(2.63)

The orbifolding procedure goes as follows. We start by projecting onto invariant
states by inserting all elements of the group in the time direction. This gives

Zuntw = 1
N !

ÿ

gœSN

g . (2.64)

The box of the 2d case has now been lifted to a d-dimensional hypercube which
again describes the torus. We will represent it by a 3d cube and leave the other
dimensions implicit. Again, the mere projection is obviously not modular invari-
ant. By applying elements of SL(d, Z) (for instance the S element given in (2.4)),
we quickly see that group elements must also be inserted in the space directions.
Having well-defined boundary conditions for the fields constrains the d group el-
ements to be commuting. The partition function of the orbifold theory is then
defined as

Zorb = 1
N !

ÿ

g0,...,gd≠1œSN

gigj=gjgi’i,j

g0

g1
gd≠1

. (2.65)

Twisted sector states will correspond to any states with non-trivial insertions in
any of the space directions. The di�erent twisted sectors are no longer labeled just
by conjugacy classes, but by sets of d ≠ 1 commuting elements, up to overall con-
jugation. This orbifolding procedure describes a well-defined SL(d, Z)-invariant
partition function.

2.5.3 Spectrum of the theory

The untwisted sector states

We now turn our attention to the spectrum of these orbifold theories. Other
properties will depend strongly on the choice of seed. We start by considering
the untwisted sector states. These are given by states of the product theory,
up to symmetrization. From the point of view of the partition function, their
contribution consists of all elements in the sum (2.65) where g1 = ... = gd≠1 = 1.
Consider the contribution of a K-tuple to the density of states. A K-tuple is a
state where K of the N CFTs are excited, while the other N ≠K are in the vacuum.
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The contributions of all possible K-tuples of distinct states are encapsulated by
the following expression:

fl(�) =
⁄

dK

⁄
d�1....d�K

1
K!fl0(�1)....fl0(�K)”(� ≠

Kÿ

j=1
�j) , (2.66)

where � = E ≠ NEvac, �i = Ei ≠ Evac and fl0 is the density of states of the seed
theory.3 It can be shown that the contribution of K-tuples with subsets of iden-
tical states do not give a larger contribution than the one considered here, so it is
su�cient to focus on this case. The combinatorial prefactor 1/K! was introduced
to remove the equivalent permutations of the K states. One way to understand its
inclusion is to consider how the orbifold projection is done. A given K-tuple in the
product theory is made SN invariant by summing over all of its possible permuta-
tions. For example, the 3-tuples {a, b, c}, {a, c, b}, {b, a, c}, {b, c, a}, {c, a, b}, {c, b, a}
of the pre-orbifolded theory lead to the same orbifolded 3-tuple and thus should
only be counted once. The triple integral giving fl(�), when left to its own devices
without combinatorial prefactor, would count all six configurations.

Along with the states being distinct, let us first assume that each of the individual
degeneracies can be approximated by the Cardy formula of the seed theory. The
Cardy formula in higher dimensions was given in (2.15) and reads

log fl(E) = d

(d ≠ 1) d≠1
d

(ÁvacVd≠1) 1
d E

d≠1
d . (2.67)

Now let us proceed as in [69] to find the density of states. Performing the integrals
over energies Ei by a saddle-point approximation where the large parameter is the
total energy E, we find saddle-point values Ei = E/K for all i. To assure that
the state in each copy is distinct, we need the degeneracy to pick from to be much
larger than K. Thus the validity of this assumption and the validity of the Cardy
formula in each seed theory require, respectively,

exp
C

d

(d ≠ 1) d≠1
d

(ÁvacVd≠1) 1
d (�/K + Evac)

d≠1
d

D
∫ K, �/K ∫ |Evac| . (2.68)

We will check whether these conditions are satisfied at the end. Note that the sec-
ond constraint implies that we can drop Evac in the Cardy formula when expressed
in terms of �. We thus have

fl(�) ≥
⁄

dK exp
Ë
daK

1
d �

d≠1
d ≠ K log K + K

È
(2.69)

3
Here we use the notation that � is a shifted energy that satisfies � Ø 0, but we wish to

emphasize that it is not in any way related to the scaling dimension of a local operator.
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with
a © 1

(d ≠ 1) d≠1
d

(ÁvacVd≠1) 1
d . (2.70)

We can now do a second saddle-point approximation to evaluate the integral over
K. The large parameter is again given by the total shifted energy �. The saddle
point equation is

a�
d≠1

d K
1≠d

d
s ≠ log Ks = 0 , (2.71)

which gives

Ks ≥ a
d

d≠1 �
1

log
Ë
a

d
d≠1 �

È2 d
d≠1

(2.72)

at large �. Plugging this back in the density of states we find

fl(E) ≥ exp

S

WU(d ≠ 1) a
d

d≠1 �
1

log
Ë
a

d
d≠1 �

È2 1
d≠1

T

XV , (2.73)

where we have used large � to drop subleading pieces which either have a larger
power of the logarithm in the denominator or are terms proportional to log log �.
We find a growth of states that is slightly sub-Hagedorn and the growth increases
with the dimension of the field theory. Inserting Ks in our necessary assumptions
shows that they can be satisfied for large enough �. In particular, the second
condition becomes

a
d

d≠1 � ∫ exp
Ë
a |Evac|

d≠1
d

È
(2.74)

which is then su�cient to satisfy the first condition. Here Evac is the vacuum
energy of the seed theory and does not scale with N . Notice also that Ks grows
with � and must not violate the bound Ks Æ N . This implies a bound on our
energies from the saddle:

a
d

d≠1 � . N [log(N)]
d

d≠1 . (2.75)

So altogether our density of states formula is reliable in the range

exp
Ë
a |Evac|

d≠1
d

È
π a

d
d≠1 � . N [log(N)]

d
d≠1 . (2.76)

In particular we can consider energies that scale with N . However, as we will
shortly see, the density of states quickly becomes dominated by the twisted sectors.
Note that this growth of states is also a lower bound for any permutation orbifold
as orbifolding by a subgroup of SN always projects out fewer states.
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The twisted sector states

We will now give a lower bound on the density of states coming from the twisted
sectors. If the intuition from two dimensions carries over, it will be the twisted
sectors that give the dominant contribution to the density of states. Indeed, this
is the result we will find. We start by a more general discussion of twisted sector
states and their contribution to the partition function.

A twisted sector is given by d ≠ 1 commuting elements g1, ..., gd≠1 of SN , up
to overall conjugation. There is also a projection onto SN -invariant states by
summing over elements in the time direction but at this point we only focus on
the identity contribution in that direction. We define T to be the original d-torus
used to compute the partition function. We leave the dependence on the vectors
U0, ..., Ud≠1 implicit. Let us consider the action of the subgroup Gg1,...,gd≠1 of SN

(defined to be the group generated by g1, ..., gd≠1) on the N copies of the CFT. The
action of this group will be to glue certain copies of the CFT together. Concretely,
let �k denote a field on T of the k-th CFT, then in the twisted sector defined by
Gg1,...gd≠1 this field has boundary conditions

�k(x0, x1, ..., xj + Lj , ..., xd≠1) = �gj(k)(x0, x1, ..., xj , ..., xd≠1) . (2.77)

Tracking the orbit of the k-th copy under Gg1,...gd≠1 allows us to define a single field
Â� with modified boundary conditions. In particular it will have larger periods. A
field Â�i can be defined for each orbit of the group Gg1,...gd≠1 and we will denote
the set of these orbits by

{Oi} , i = 1, ...imax , (2.78)

where imax depends on the precise choice of g1, ..., gd≠1. As the di�erent orbits
do not talk to each other, the path integral will split into a product of imax inde-
pendent path integrals, one over each field Â�i. The new boundary conditions of
the fields in a given Oi under the action of Gg1,...,gd≠1 enable us to rewrite that
particular contribution to the path integral as a torus partition function, but now
with T replaced by a new torus ÂTi. The original identifications coming from (2.3)
were

(x0, x1, .., xd≠1) ≥ (x0, x1, .., xd≠1) +
d≠1ÿ

i=0
niUi . (2.79)

for any integers ni. Once the elements g1, ..., gd≠1 are inserted the identifications
are changed and they are encoded in a new torus. As these boundary conditions
follow from the orbits, the identifications from the new torus are given by the
elements in Gg1,...,gd≠1 that leave the orbit invariant, i.e.

gm1
1 ...g

md≠1
d≠1 Oi = Oi . (2.80)
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This means that the identifications become

(x0, x1, .., xd≠1) ≥ (x0, x1, .., xd≠1) +
d≠1ÿ

i=0
miUi . (2.81)

with the mi such that (2.80) is satisfied. Alternatively, one can define new vectors
in the following way

ÂU1 = mmin
1 U1 + m1,2U2 + ... + m1,d≠1Ud≠1 ,

...
ÂUd≠2 = mmin

d≠2Ud≠2 + md≠2,d≠1Ud≠1 , (2.82)
ÂUd≠1 = mmin

d≠1Ud≠1 ,

where mmin
d≠1 is the smallest integer md≠1 such that g

md≠1
d≠1 Oi = Oi, (md≠2,d≠1, mmin

d≠2)
are the pair with smallest non-zero md≠2 such that g

md≠2,d≠1
d≠1 g

mmin
d≠2

d≠2 Oi = Oi and
the (mmin

1 , ..., m1,d≠1) are the set of integers with minimal non-zero m1 such that
(2.80) is satisfied. These vectors define a new torus ÂTi with volume

Vol(ÂTi) =

Q

a
Ÿ

j

mmin
j

R

b Vol(T) © |Oi|Vol(T) . (2.83)

Since the gi commute, |Oi| is just the number of elements in the orbit Oi.

A twisted sector will thus give a set of new tori ÂTi whose di�erent volumes depend
on the orbits of the action of Gg1,...,gd≠1 . For each orbit of that action, we will get
a separate torus and schematically, this will give a contribution to the partition
function of the form

Ztot ≥
Ÿ

i

Z(ÂTi) , (2.84)

where the product over i is a product over the orbits. This is a generalization of
Bantay’s formula [58] to higher dimensions. For every orbit Oi we have

Vol(ÂTi) = |Oi|Vol(T) , (2.85)

where |Oi| is the length of the orbit. We will now calculate the contribution to
the partition function from a single non-trivial orbit of length L = Md≠1 giving
a torus with equal rescaling M in all spatial directions. For simplicity, we also
consider a case with mi,j = 0 ’i ”= j. The torus ÂTi corresponding to this orbit is
then

( ÂU0, ..., ÂUd≠1) = (U0, MU1, ..., MUd≠1) . (2.86)
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2.5. Symmetric Product Orbifolds in d > 2

We can always find elements g1, ..., gd≠1 that produce the desired torus with equal
scaling of the spatial cycles. To produce the new torus given in (2.86), we use for
example the following elements:

g1 = (1 ... M) (M + 1 ... 2M) ... (Md≠1 ≠ M + 1 ... Md≠1)(Md≠1 + 1) ... (N)
g2 = (1 M + 1 ... M(M ≠ 1) + 1) ...

(Md≠1 ≠ M(M ≠ 1) Md≠1 ≠ M(M ≠ 2) ... Md≠1)(Md≠1 + 1) ... (N)
... (2.87)

gd≠1 = (1 Md≠2 + 1 ... Md≠2(M ≠ 1) + 1)...(Md≠2 2Md≠2 ... Md≠1)
(Md≠1 + 1) ... (N)

for L = Md≠1. For example in d = 3 and for L = 9, we get

g1 = (1 2 3)(4 5 6)(7 8 9)(10)...(N) ,

g2 = (1 4 7)(2 5 8)(3 6 9)(10)...(N) . (2.88)

One can quickly check that all these elements commute and that they define an
orbit of length L as well as N ≠ L singlets. One can also check that mmin

1 = ... =
mmin

d≠1 = M . We will call Zsq this particular contribution to the partition function,
and it reads

Zsq = Z(U0, U1, ..., Ud≠1)N≠LZ(U0, MU1, ..., MUd≠1)
= Z(U0, U1, ..., Ud≠1)N≠LZ(U0/L

1
d≠1 , U1, ..., Ud≠1) , (2.89)

where we uniformly rescaled the torus and used L = Md≠1. From this, we can
infer the behaviour of the density of states:

Zsq =
ÿ

E

flsq(E)e≠—E = e≠—Evac(N≠L) (1 + . . . )
ÿ

E

fl0(E)e≠—E/L
1

d≠1
. (2.90)

We can ignore the excited states encapsulated in “. . . ” as they will only increase
flsq(E), which will increase our final answer. In this section, we are only after a
lower bound for the density of states so we can ignore such terms. Shifting E to
L

1
d≠1 (E ≠ Evac(N ≠ L)) gives us

flsq(E) = fl0(L
1

d≠1 (E ≠ Evac(N ≠ L))) . (2.91)

This will be the key formula to derive the final result.

In the full partition function we sum over all L Æ N and for large L, we are in a
regime where we may use the Cardy formula of the seed theory given in (2.15).
To find the twisted sector that gives the maximal contribution at energy E, we
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2. Universality of Sparse d > 2 Conformal Field Theory at Large N

evaluate the sum over L using a saddle point approximation. The resulting saddle
point equation for L is solved by

Ls = (EvacN ≠ E)
dEvac

, (2.92)

which will be a good approximation provided Ls ∫ 1. We now plug this back in
(2.91) and use the Cardy formula (2.15) to obtain

fl(E) ≥ exp
C

a
(d ≠ 1) d≠1

d

|Evac|1/d
(E ≠ NEvac)

D
. (2.93)

Note that this is a Hagedorn growth as in two dimensions but the coe�cient of
the Hagedorn growth depends on the vacuum energy of the seed theory. This is
somewhat a loss of universality compared to two dimensions and it will be very
important in what follows to understand precisely the properties of the vacuum
energy of the orbifold theory. This will be the task of the next subsection. The
regime in which this expression is reliable is for 1 π Ls Æ N which in terms of
energies is

1 π E ≠ NEvac
|Evac| Æ dN . (2.94)

Finally, it is important to emphasize that this is merely a lower bound on the
density of states4. We have only given the contribution from one type of twisted
sectors and other sectors might dominate. We have also not taken into account
the projection onto SN invariant states by inserting commuting elements of the
group in the time direction. In two dimensions, one can show that the estimate
coming from this particular twisted sector (called long strings in 2d) actually gives
the dominant contribution. We will discuss this further when analyzing the free
energy but we first turn our attention to the vacuum energy.

2.5.4 Vacuum energy of the orbifold theory

We want to understand precisely the properties of the vacuum energy of the orb-
ifold theory. In two dimensions, it is clear that the central charge gets multiplied by
N when going from the seed theory to the product (or orbifold) theory. Since the
vacuum energy is fixed by the central charge, it also gets multiplied by N . Naively,
one would expect a similar behavior in higher dimensions. The all-vacuum contri-
bution in the untwisted sector indeed has energy NEvac, but it may be possible

4
In fact, the method used in this section only gives an estimate for the lower bound. We have

only inserted one element - the identity - in the time direction and have not taken into account

the projection to SN invariant states. Following the method we will use in section 2.5.5 one can

show that this estimate is actually precise.
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2.5. Symmetric Product Orbifolds in d > 2

that other twisted sectors give even more negative contributions. We will now
address this possibility and show that it is impossible, so that the vacuum energy
of the orbifold theory is in fact given as

Eorbi
vac = NEvac . (2.95)

To prove this, first recall that it is not necessary to consider twisted sectors in-
ducing twists between any of the dimensions because they always increase the
vacuum energy, as explained in section 2.4.1. The only thing we need to check is
that rescalings of the torus do not give a contribution that is more negative than
(2.95). A twisted sector in principle gives a product of partition functions if there
is more than one orbit, but it will su�ce to consider the case of a single orbit.
This is because if there are di�erent orbits, the vacuum energy is simply the sum
of the vacuum energy for each orbit. In the case of a single orbit, the partition
function looks like

Z =
ÿ

E

e≠—E . (2.96)

For a generic torus there can be angular potentials, but we have suppressed them
since they will not influence the vacuum energy. Note that these values E are not
directly the energy on the new spatial torus as there may have been a rescaling
of the time direction. The vacuum energy of the orbifold theory Eorbi

vac is simply
the smallest such value of E. Now consider a twisted sector giving an arbitrary
rescaling Ui æ MiUi such that

d≠1Ÿ

i=0
Mi = N . (2.97)

This is needed as the scaling of the full torus must be equal to N if there is only
one orbit. On such a torus, the vacuum contribution will be of the form

Eorbi
vac (Mi) = ≠M0

ÁvacVd≠1
r

i>0 Mi

Md
1 Ld

1
(1 + f(y1))

= ≠ N

Md
1

ÁvacVd≠1
Ld

1
(1 + f(y1)) , (2.98)

where we used (2.97) and

y1 =
3

M1L1
M2L2

, . . . ,
M1L1

Md≠1Ld≠1

4
. (2.99)

From (2.98) and using the monotonicity property of f(Â) under the increase of
any of its arguments, it is clear that this expression is maximized for all Mi = 1
except for M1. At first glance, it is not clear if increasing M1 increases or decreases
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2. Universality of Sparse d > 2 Conformal Field Theory at Large N

the energy as it appears both in the denominator and in f(Â) which change in
opposite directions. However, one can alternatively write the vacuum energy as

Evac(Mi) = ≠ N

Md
2

ÁvacVd≠1
Ld

2
(1 + f(y2)) , (2.100)

with

y2 =
3

M2L2
M1L1

, . . . ,
M2L2

Md≠1Ld≠1

4
. (2.101)

In this form, it is clear that M1 > 1 would only give a less negative value to the
free energy. We have thus showed that to get the minimal contribution, we need

M0 = N, Mi = 1 ’ i , (2.102)

which then gives precisely the vacuum energy (2.95).

Although this might appear as good news for the orbifold theory to be a “nice”
theory, it is very bad news for any chance of universality at large N . We have
shown in the previous section that having f̃(Â) = 0 is a necessary condition for
a universal free energy and an extended regime of the Cardy formula. Here, we
see that the orbifold theory has f̃(Â) = 0 only if the seed theory does. The
choice of seed becomes crucial to reproduce the phase structure of gravity. In fact,
this result is not so surprising. In two dimensions, we could consider ourselves
lucky that the SN orbifold theory, which is a free theory, reproduces the phase
structure of Einstein gravity. It is only the strong coupling deformation of the
orbifold theory that is dual to Einstein gravity so there is no a priori reason why
one should have expected the orbifold theory to reproduce the phase structure of
gravity. In higher dimensions, it appears that for a general seed, some form of
coupling between the N CFTs must be introduced to force f̃(Â) to vanish. One
might consider deforming the orbifold theory by some operator to achieve this
e�ect. In particular, the existence of any exactly marginal deformations might
allow reducing the Hagedorn density of light states to something compatible with
Einstein gravity, as is proposed to occur in the D1-D5 duality. This could be
directly connected to the vanishing of f̃(Â).

In the following subsection, we will show that choosing a seed theory with f̃(Â) = 0
both gives a theory that saturates the sparseness bound and reproduces the phase
structure of gravity.
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2.5. Symmetric Product Orbifolds in d > 2

2.5.5 Universality for f̃(Â) = 0 and free energy at large N

If f̃(Â) = 0, we have Evac = ≠ÁvacVd≠1/Ld
1 where L1 is the length of the smallest

cycle. Inserting this expression in (2.93), we obtain

fl(E) ≥ exp (L1(E ≠ NEvac)) (2.103)

for the growth coming from the specific twisted sector we previously considered.
Note that the coe�cient of the Hagedorn growth precisely saturates the bound on
the light states given in (2.58) if we put the theory on the square torus. At the
upper end of the range of validity of (2.93) where E = ≠(d≠1)NEvac, we precisely
recover the Cardy growth at the same energy. This indicates that the spectrum
transitions sharply from Hagedorn to Cardy exactly where expected. However, we
have only given a lower bound for the density of states as we only computed the
contribution coming from a particular twisted sector. We will now show that for
f̃(Â) = 0 it is also an upper bound. We will do so by computing the free energy
and see that it precisely reproduces the universal behavior discussed in section
2.4. This implies that the density of low-lying states is bounded above by (2.103),
which becomes both a lower and upper bound. This means that no other twisted
sector can give a bigger contribution and the density of states is well-approximated
by (2.103).

To compute the free energy at large N , we will follow a similar procedure as that in
two dimensions [62]. The starting point is a combinatorics formula first introduced
by Bantay [59]. Let G be a finitely generated group and Z a function on the finite
index subgroups of G that takes values in a commutative ring and is constant on
conjugacy classes of subgroups. We have the following identity

Œÿ

N=0

pN

N !
ÿ

„:GæSN

Ÿ

›œO(„)
Z(G›) = exp

A
ÿ

H<G

p[G:H] Z(H)
[G : H]

B
, (2.104)

where „ is an homomorphism from G to SN and H are subgroups of G with
finite index given by [G : H]. In our case, Z will be the partition function and
G = fi1(Td) = Zd. This group is abelian and the sum over homomorphisms „
is equivalent to the sum over commuting elements introduced earlier. The image
of „ acts on N letters (momentarily this will be the N copies of the CFT) by
the usual SN action and its orbit is denoted by O(„). The subgroup G› consists
of those elements of g such that „(g) leaves › invariant. In fact, the left hand
side is simply the generating function for the partition functions of the symmetric
product orbifolds. It corresponds to

Z =
ÿ

N

pN ZN , (2.105)
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2. Universality of Sparse d > 2 Conformal Field Theory at Large N

where ZN is the partition function of C¢N /SN and thus the action of „ can be
thought of as permuting the copies in C¢N . Just like in two dimensions, it is
often more convenient to work with this generating function and to later find the
coe�cient of the term pN to extract ZN .

Bantay’s formula equates the generating function to an exponential of a sum over
new partition functions. This sum over partition functions really corresponds to
a sum over new tori, and for a given index, the volume of the new tori will be the
original volume times the index. Just as for SL(2, Z), there is a very natural way
to include all tori of a given index by using Hecke operators. Consider a torus
to be described by the matrix U given in (2.3), which is upper triangular. Now
consider the following set of matrices

�L =

Y
______]

______[

S

WWWWWWU

a0 a01 · · · a0,(d≠2) a0,(d≠1)
0 a1 · · · a1,(d≠2) a1,(d≠1)
...

...
. . .

...
...

0 0 · · · ad≠2 a(d≠2),(d≠1)
0 0 · · · 0 ad≠1

T

XXXXXXV

-----
Ÿ

i

ai = L, 0 Æ aj,i < ai ’ i, j

Z
______̂

______\

(2.106)
with L fixed. These matrices are elements of GL(d, Z) and act on the lattice vectors
Ui defining the torus according to ÂU = HU with H an element of �L. These new
tori will have a volume L times larger than the original torus U . Consequently,
the new lattice defined by the new torus is a sublattice H of Zd and the index
[G : H] of H in G = Zd is L. The purpose of these matrices is to parameterize
the finite index subgroups of G so that we can write

ÿ

H<G

p[G:H] Z(H)
[G : H] =

ÿ

L>0

pL

L

ÿ

Aœ�L

Z(AU) . (2.107)

Fortunately, the right hand side can be rewritten in terms of Hecke operators for
SL(d, Z),

TLZ(U) ©
ÿ

Aœ�L

Z(AU) , (2.108)

which encapsulate the sum over di�erent tori mentioned earlier. Note that the
Hecke transform of Z is also an SL(d, Z) modular invariant. Bantay’s formula
then becomes

Z(U) = exp
A

ÿ

L>0

pL

L
TLZ(U)

B
. (2.109)

Because TLZ(U) is a function invariant under SL(d, Z) [77], and it has a corre-
sponding extensive free energy, its asymptotic growth is also given by the higher-
dimensional Cardy formula. To see this directly, notice that TLZ(U) is a sum over
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2.5. Symmetric Product Orbifolds in d > 2

partition functions of di�erent tori. Each of these obeys the higher-dimensional
Cardy formula, although the explicit dependence on the volume of the torus in
our higher-dimensional Cardy formula may seem confusing. Note however that at
asymptotically large energies we have E Ã V ≠1/(d≠1)

d≠1 , so the volume of the torus
cancels out and the formula can be written in terms of a dimensionless energy.
Thus, there is no confusion as to “which volume” enters into the Cardy formula
for TLZ(U). In fact, the situation is even better. The gap between the first excited
state and the vacuum grows with L indicating that at large L, the Cardy formula
will become a good estimate for the Hecke transformed partition function.

We are now ready to estimate the free energy. Let us take a rectangular d-torus
with sides —, L1, ..., Ld≠1, i.e

U =

Q

cccccca

— 0 · · · 0 0
0 L1 · · · 0 0
...

...
. . .

...
...

0 0 · · · Ld≠2 0
0 0 · · · 0 Ld≠1

R

ddddddb
, (2.110)

and let us assume L1 is the smallest spatial cycle. Writing p̃ = pe—Evac ,

Z = exp
A

ÿ

L>0

p̃L

L
+

ÿ

L>0

p̃L

L

ÿ

E>0
ÂflTL(E)e≠—E

B

=
A

Œÿ

K=0
p̃K

B
exp

A
ÿ

L>0

p̃L

L

ÿ

E>0
ÂflTL(E)e≠—E

B
, (2.111)

where we have defined fl̃TL(E) such that

eL—EvacTLZ(U) = 1 +
ÿ

E>0
ÂflTL(E)e≠—E (2.112)

Using the Cardy formula, the sum over energies in (2.111) becomes

ÿ

E>0
e

1
daL

1
d (E+EvacL)

d≠1
d

2

e≠—E ≥ exp
3

L|Evac|
3

Ld
1

—d≠1 ≠ —

44
, (2.113)

where we assumed L1 to be the smallest cycle and used (2.70) as well as

Evac = ≠ÁvacVd≠1
Ld

1
. (2.114)

The saddle point value for E is

Es = |Evac|L
3

1 + (d ≠ 1)Ld
1

—d

4
, (2.115)
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which will be large for large L. This justifies the use of the Cardy formula. The
terms with low E will of course not be in the Cardy regime but these will only
give a subleading contribution. Overall, the error on the each term in the sum
over L will be of order e≠uL/—d≠1 for some positive order one number u that is
theory dependent. Plugging (2.113) into (2.111) we get

Z =
A

Œÿ

K=0
p̃K

B
exp

A
ÿ

L>0

1
L

3
p̃ exp

3
|Evac|

3
Ld

1
—d≠1 ≠ —

444L
B

=
A

Œÿ

K=0
p̃K

B
exp

1
≠ log

1
1 ≠ p̃e|Evac|—(Ld

1/—d
≠1)

22

=
A

Œÿ

K=0
p̃K

B
1

1 ≠ p̃e|Evac|—(Ld
1/—d≠1) . (2.116)

We can now extract the free energy. Note that because the vacuum energy is
negative and proportional to N , the partition function diverges as N æ Œ so we
need to consider the shifted partition function and shifted free energy

ÂZ © eEvac—Z ,

ÂF © ≠ log ÂZ
—

. . (2.117)

The shifted partition function will then simply be the term p̃N in (2.116), which
is given by

ÂZN =
exp

1
(N + 1)|Evac|—

1
Ld

1
—d ≠ 1

22
≠ 1

exp
1

|Evac|—
1

Ld
1

—d ≠ 1
22

≠ 1
. (2.118)

The free energy as N æ Œ for — < L1 is thus

ÂFN (U) = ≠N |Evac|
3

Ld
1

—d
≠ 1

4
. (2.119)

For — > L1, we get

ÂFN (U) = 1
—

log
3

1 ≠ exp
3

|Evac|—
3

Ld
1

—d
≠ 1

444
+ Fcor(—) , (2.120)

where the Fcor(—) corresponds to another O(1) contribution coming from sublead-
ing corrections to the saddle point as well as the low energy contributions. The
free energy thus has a phase transition at — = L1 and goes from being O(1) to
O(N). This precisely matches the phase structure of the bulk gravitational theory.

Modular invariance is not manifest in the shifted free energy above. In order to
recover it, we consider the quantity

F (U) = lim
NæŒ

1
N

FN (U) , (2.121)
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where FN (U) is the unshifted free energy and F (U) = F (—, L1, ..., Ld≠1). Using
the results obtained above,

F (U) =

Y
]

[
≠ ÁvacVd≠1

—d — < L1

≠ ÁvacVd≠1
Ld

1
— > L1

, (2.122)

where L1 is the smallest cycle. The free energy is a modular covariant quantity
which transforms under the S transform of SL(d, Z) as

F (—, L1, ..., Ld≠1) = L1
—

F (L1, ..., Ld≠1, —). (2.123)

Upon checking this transformation rule for (2.122), we see that in both regimes
the free energy transforms as expected.

2.6 Discussion

In this chapter we have studied conformal field theories in dimensions d > 2 com-
pactified on tori. The main goal was to explore the implications of the assumed in-
variance under the SL(d, Z) modular group and see what additional constraints on
the spectrum would reproduce the phase diagram of gravity in anti-de Sitter space.
We have uncovered both similarities and di�erences with the two-dimensional case.
We have presumably only scratched the surface of this interesting subject and
many issues and open questions remain, some of which we list below.

2.6.1 Modular invariance

The modular group SL(d, Z) consists of the large di�eomorphisms (i.e. not con-
tinuously connected to the identity element) which map a d-dimensional torus
to itself. In two dimensions, there are well-known systems, such as the chiral
fermion, whose partition function is not modular invariant. However, such the-
ories have gravitational anomalies and can therefore a priori not be consistently
defined on arbitrary manifolds. Moreover, when such theories appear in nature, as
in the edge modes in the quantum Hall e�ect, the relevant anomalies are canceled
due to an anomaly inflow mechanism which crucially relies on the existence of a
higher-dimensional system to which the theory is coupled (for a higher-dimensional
version of this statement see e.g. [78]). We are not aware of a local and unitary con-
formal field theory which is free of local gravitational anomalies and not modular
invariant. But modular invariance is weaker than the absence of local gravitational
anomalies. There are many modular invariant CFTs with cL ≠ cR ”= 0 which have
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gravitational anomalies, while modular invariance only implies that cL ≠ cR must
be an integer multiple of 24. It would be interesting to explore the generalizations
of these statements to higher dimensions.

Another approach to using modular invariance to learn about conformal field the-
ories on tori is to consider bounds coming from the fixed points of SL(d, Z). This
would be a generalization of the “modular bootstrap” [79–86] to higher dimen-
sions. This is valid for general conformal field theories, and taking a large-N limit
may give insight into holographic theories.

2.6.2 State-operator correspondence

The usual arguments for the state-operator correspondence in conformal field the-
ory rely on radial quantization and apply to the theory on the spatial sphere Sd≠1

times time. The local operators obtained in this way can be inserted on other man-
ifolds as well but the one-to-one correspondence with states in the Hilbert space
no longer applies. The main problem in applying radial quantization to the torus
is that, as opposed to spheres, one can not smoothly shrink a torus of dimension
larger than one to a point. Stated more precisely, the metric ds2 = dr2 + r2d�2 is
not smooth at r = 0 unless � is the round unit sphere.

One cannot even apply the standard radial quantization argument to the conformal
field theory on S1 ◊ Rd≠2 times time. At r = 0, the metric ds2 = dr2 + r2d„2 +
r2dxidxi looks like a singular Rd≠2-dimensional plane, suggesting that some sort of
surface operators might be relevant. That such operators are generically needed
can for example be seen using the orbifold theories we studied in this chapter.
Orbifold theories can be thought of as theories with a discrete gauge symmetry,
and in case the theory lives on S1 ◊ Rd≠2 we should include twisted sectors which
involve twisted boundary conditions when going around the S1. These twisted
boundary conditions can be detected by a Wilson line operator for the discrete
gauge field around the S1. To create a non-trivial expectation value for the Wilson
line operator, we need an operator which creates non-contractible loops, and for
this we need an operator localized along a (d ≠ 2)-dimensional surface. One can
think of such operators as a higher-dimensional generalization of the ’t Hooft line
operators. A local operator in d > 2 is unable to generate a non-trivial vev for the
discrete Wilson line operator and can therefore not create twisted sector states.
Surface operators of dimension d≠2 which create twisted boundary conditions also
feature prominently in the replica trick computations of entanglement entropy in
dimensions d > 2; they are the generalized twist fields associated to the boundary
of the entangling area.
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If (d ≠ 2)-dimensional surface operators are the right operators for the theory
on S1 ◊ Rd≠2, it is plausible they are also relevant for CFT’s on tori. One can
for example consider the surface operators dual to periodic field configurations on
Rd≠2, but it is not clear the resulting surface operator will have the right periodic-
ity as well. Alternatively, one can study the Euclidean theory on an annulus times
Td≠2, with the annulus having inner radius R1 and outer radius R2. The Euclidean
path integral in principle provides a map from states on the torus S1

R1
◊ Td≠2 to

S1
R2

◊ Td≠2, and by taking the limit R1 æ 0 one can imagine obtaining singular
boundary conditions for a surface operator localized along a (d ≠ 2)-torus.

Clearly, more work is required to understand whether the above construction pro-
vides a useful version of the state-operator correspondence for field theories on tori,
and if it does, what a useful basis for the space of surface operators could possibly
be. There seems to be a significant overcounting, as one can construct a surface
operator for any choice of state on the torus and for any choice of one-cycle on
the torus. Currently, we do not even have a compelling compact Euclidean path
integral representation of the ground state of the theory on the torus. See [6] for
a more detailed discussion on these issues.

It might also be interesting to explore the state-operator correspondence from
an AdS/CFT point of view. One would then need to glue Euclidean caps to
the Lorentzian solutions discussed in section 2.3. Since the Lorentzian solutions
require a choice of one-cycle which is smoothly being contracted in the interior,
a similar choice will be needed for the Euclidean caps, leading apparently once
more to the same overcounting as we observed above. It would still be interesting
to construct the explicit form of the geometry where a Euclidean cap without the
insertion of surface operators is smoothly glued to the Lorentzian AdS solutions.
If such solutions could be found, its boundary geometry would provide a Euclidean
path integral description of the ground state of the corresponding CFT, at least
in the large N and strong coupling approximation.

2.6.3 Defining the orbifold theory

In section 2.5, we defined a prescription to compute the partition function of
the orbifold theory. This prescription describes both the Hilbert space and the
spectrum of the Hamiltonian on the torus. In two dimensions, the orbifolding
prescription also fully describes the procedure to compute arbitrary correlation
functions of (un)twisted sector local operators, at least in principle. In higher
dimensions, because of the lack of a precise state-operator correspondence, it is
not clear wether we have really fully specified a theory. For that, we need to
determine the full set of correlation functions and hence know the set of operators
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2. Universality of Sparse d > 2 Conformal Field Theory at Large N

in the theory. It is clear that all untwisted sector correlation functions make
sense in the orbifold theory so all local correlation functions are well-defined and
calculable. Furthermore, the theory possesses a stress tensor as the stress tensor
is always in the untwisted sector. Nevertheless, the questions touching the twisted
sector states and/or line operators is much more obscure and it would be very
interesting to understand the extent to which the orbifolding prescription fully
determines these.

One way orbifold theories in higher dimensions can potentially appear (and there-
fore inherit a natural definition) are as discrete gauge theories that arise in the
infrared limit of a gauge theory with spontaneously broken continuous gauge sym-
metry (e.g. SU(N) æ SN ). This would also explain how to couple the theory to
other manifolds, an issue we turn to in the next section.

2.6.4 Orbifold theories on other manifolds

The orbifold theories we studied are most easily defined on tori. However, if we
have fully defined a theory we should be able to put it on any manifold. View-
ing them as theories with a discrete gauge group also provides a prescription for
the sum over twisted sectors when computing the path integral for other mani-
folds. The sum over twisted sectors is the same as the sum over the space of flat
connections modulo an overall conjugation, and for a manifold M this space is
Hom(fi1(M), G)/G. But even for flat space, where no sum over twisted sectors
needs to be taken, there are still signs of the discrete gauge symmetry. In par-
ticular, one can consider surface operators which create twisted sector states even
on the plane, and their correlation functions contain interesting new information.
Such operators naturally arise in the context of Renyi entropy calculation in higher
dimensions [87,88].

2.6.5 Outlook

We have only begun to explore the properties of modular-invariant field theories
on tori and their role in AdS/CFT. The interesting relations between the form
of the ground state energy, universal free energy at high-temperature, sparseness
conditions on the spectrum and vacuum dominance in the partition function beg
for a deeper understanding. Is there a more precise relation between the low-
and high-energy spectrum that can be rigorously established? Can subleading
corrections be systematically analyzed? How much of the rich structure in d = 2
and the mathematics of SL(2, Z) can be carried over to d > 2? Does all this shed
any new light on which theories can have weakly coupled gravitational duals?
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3 Holography at Finite
Cutoff with a T 2

Deformation

This chapter is based on the following publication:

T. Hartman, J. Krutho�, E. Shaghoulian and A. Tajdini,
“Holography at finite cuto� with a T 2 deformation“,
JHEP 03 (2019), 004, arXiv:1807.11401 [hep-th].

3.1 Introduction

Quantum gravity in finite volume is a di�cult problem that is perhaps vital to
fundamental cosmology. A natural question is how to apply holographic duality
in this context. The avenue we will explore is to impose a hard radial cuto� in
AdS and approach this problem as a deformation of AdS/CFT.

The precise relation between a radial cuto� in the bulk geometry and a cuto� in
the boundary field theory is a longstanding puzzle in AdS/CFT, discussed since
the advent of the duality itself. The UV/IR relation [27] of the duality provides
a clue but is far from a precise relationship. In addition to being an important
entry in the AdS/CFT dictionary, finding such a relationship may prove fruitful in
decoding local physics in the bulk and in constructing a framework for holography
in more general spacetimes.

Most of the work on this topic has focused on understanding the long distance
physics of the original CFT, in the spirit of the renormalization group [89–94].
Recently, a di�erent perspective was emphasized in [17], in the context of pure
3d gravity. Here the goal is not to understand the original CFT, but to explicitly
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3. Holography at Finite Cuto� with a T 2 Deformation

deform the CFT so that it reproduces the bulk physics with Dirichlet boundary
conditions at finite cuto�. This is a deformed theory in the bulk, dual to a deformed
theory on the boundary. The proposal in [17] is that 3d gravity at finite radial
cuto� is dual to a 2d CFT deformed by the irrelevant operator T T̄ , a deformation
previously studied in the field theory context by Zamolodchikov and Smirnov [95,
96]. The analytic tractability of CFT deformations by this operator, which follows
primarily from the Zamolodchikov factorization equation, allows nontrivial checks
of the proposal. This deformation and its holographic interpretation were explored
further in [97–106].

In this chapter, we propose an e�ective field theory (EFT) dual to a general bulk
theory at finite cuto�, generalizing the T T̄ deformation to higher dimensions and
allowing for matter couplings. In the field theory, the tool that will replace the
factorization property of T T̄ is large-N factorization.

We will first provide a recipe to derive the necessary CFT deformation for arbitrary
bulk theories in AdSd+1. Using this recipe, we will find the deformation in several
examples. For example, for pure Einstein gravity in d = 3, 4, the deformation of
the CFT is

ˆS

ˆ⁄
=

⁄
ddx

Ô
“

3
(Tij + bdGij)(T ij + bdGij) ≠ 1

d ≠ 1(T i
i + bdGi

i)2
4

, (3.1)

where ⁄ is a dimensionful coupling, bd Ã ⁄2/d≠1 with a coe�cient given below, and
Gij is the Einstein tensor for the boundary metric. (The expression for arbitrary
d is below.)

This flow equation, in which the stress tensor Tij also depends on ⁄, determines
the classical action of the boundary EFT. The background terms in (3.1) induce a
redefinition of the operator Tij along the flow, and are necessary to match correla-
tion functions, even on flat backgrounds. We also derive the explicit flow equation
for CFTs with scalar operators or at finite U(1) charge density. The scalar case
leads to an e�ective field theory deformed by O2 ≠ (ˆJ)2, which provides a simple
toy model for (3.1). The U(1) case allows us to compare to charged black holes in
Einstein-Maxwell theory.

With the CFT deformations in hand we compute various quantities in the deformed
CFT and compare to bulk AdS quantities at finite cuto�, finding perfect agreement
for ⁄ > 0. In particular, we will match the two-point correlation functions in
vacuum, as well as the energy spectrum and thermodynamics.

A finite Dirichlet cuto� in the bulk is a dramatic, and perhaps violent, deformation
of the gravitational theory. Intuitively, this is because gravity with reflecting
boundary conditions induces negative image masses on the other side of the wall,
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3.1. Introduction

which screen the gravitational force. This raises the possibility that the theory
violates causality, as discussed in [17,107,108], or that the dual EFT cannot be UV-
completed as an ordinary quantum field theory for positive ⁄ (see e.g. [109]). We
will sidestep these issues by restricting the discussion to physics below the cuto�,
where both sides of the duality appear to make sense, at least perturbatively. Some
speculations on the the UV are mentioned in the discussion section.

It is also possible to consider the deformation with ⁄ < 0. In this case, the
asymptotic density of states is super-Hagedorn in the UV, giving a scaling log fl Ã
E

2(d≠1)
d . Intriguingly, this scaling agrees with the density of states of p-branes

(with p = d ≠ 1) in the semiclassical approximation [110–113]. The matching with
Hagedorn scaling in d = 2 is an important aspect of relating (a single-trace version
of) this deformation to little string theory [114–118].

The derivation starts with the Hamilton-Jacobi equation in the bulk, and uses the
techniques of holographic renormalization developed in [89,90,119,120]. However,
instead of trying to relate (3.1) to an RG equation, we view it as the definition of
a boundary EFT that can be studied on its own terms. This is the perspective
taken in [17], in contrast to the earlier work cited above. This approach leaves
open the mysterious question emphasized in [91, 121] of what coarse-graining or
cuto� procedure in the QFT actually produces the flow (3.1). If this procedure
were known, then (3.1) would need to emerge from it automatically, whereas in
our approach the bulk Hamiltonian must be input by hand.

Although the operator (3.1) has been derived from a bulk calculation, it is an
EFT operator, giving a purely field-theoretic definition of the deformation, as in
the 2d case. Like in 2d, the deformation is defined order by order in conformal
perturbation theory in ⁄, but unlike in 2d, it is only unambiguously defined in
perturbation theory in 1/N . For d = 2 a nonperturbative definition for the theory
on Minkowski spacetime is provided by the S-matrix [98], or at c = 24 with certain
sign of the coupling by critical string theory [122].

As this work was being completed, [123] appeared, which also derives the source-
free versions of equation (3.1) and the corresponding equation (3.53) with U(1)
charge.

3.1.1 The dictionary at finite cuto�

In the rest of this introduction, we will present our proposed dictionary for the
EFT dual to a sharp radial cuto� in AdS. Begin by choosing coordinates

ds2 = gµ‹dxµdx‹ = N(r)2dr2 + r2“ijdxidxj , (3.2)
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3. Holography at Finite Cuto� with a T 2 Deformation

with N(r) æ 1/r near the boundary and where we have set the AdS radius
¸AdS = 1. The usual AdS/CFT dictionary states

ZCF T [“ij , J ] = lim
rcæŒ

Zgrav[g0
ij = r2

c“ij , „0 = r�≠d
c J ] . (3.3)

On the left is the CFT generating function, in the metric “ij , with source J for a
scalar operator O of dimension �. (Later we will generalize to spinning sources.)
On the right is the gravitational path integral with the Dirichlet boundary condi-
tions

gij(rc, x) = g0
ij(x), „(rc, x) = „0(x) . (3.4)

In (3.3), we have inserted the explicit factors of the radial cuto� rc to ensure that
CFT correlators, computed by

1
1

Ô
“

”
”J

2 1
1

Ô
“

”
”“ij

2
· · · log Z, are normalized to be

independent of rc.

There is considerable arbitrariness in how the dictionary (3.3) should be extended
to finite rc. We choose the simplest prescription, which is to assume that the same
dictionary defines an e�ective boundary theory at finite rc:

ZEF T [rc; “ij , J ] = Zgrav[g0
ij = r2

c“ij , „0 = r�≠d
c J ] . (3.5)

It is not clear that the right-hand side always makes sense, even classically, since
Dirichlet boundary conditions for gravity are problematic (e.g. [124]). Nor is it
guaranteed that the QFT on the left really exists. We will simply take the as-
sumption (3.5) as our starting point, and explore whether it leads to a reasonable
prescription. We will see in several examples that it does make sense, at least
perturbatively about a background, and that the QFT can be constructed as a
deformation of the original CFT.

The deformation involves operators inserted at coincident points. In general, this
would be problematic and require a careful definition of the composite operator.
However, at large N , we can simply define this operator by normal ordering, in
the sense of discarding self-contractions. This is the procedure that will reproduce
semiclassical physics in the bulk and is what we adopt here. Equivalently, O(x)2

is defined to be the leading non-identity operator in the O(x)O(y) OPE that is
not suppressed in the 1/N expansion.

The rescaling of the sources in (3.5) is natural in the CFT limit, but may not be
the most natural choice far from the boundary. Since we will keep track of the
full nonlinear source dependence, this is just a change of variables that does not
a�ect the physics. The choice of counterterms at finite cuto� is ambiguous; in
particular, to connect to the usual CFT answers as the coupling goes to zero, any
counterterms – not necessarily even local or Lorentz-invariant – can be added as
long as they vanish in the zero coupling limit. As we will see in sections 3.2-3.3,
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3.2. Scalar example

the choice of counterterms a�ects the flow that is derived in the dual field theory.
Di�erent choices will lead to di�erent flows in the dual EFT, which by design will
have been constructed to match bulk physics at finite cuto�. We will always make
the simplest choice of only including the usual holographic counterterms.

The boundary theory on the left of (3.5) is labeled an e�ective field theory because
it has irrelevant operators, and therefore will not make sense at high enough energy.
It is defined in conformal perturbation theory as a CFT plus irrelevant operators.
We do not provide a nonperturbative definition of the theory, although we will see
that certain quantities – like the energy spectrum at finite volume and correlation
functions – can be formally calculated at finite rc.

In the next two sections, the goal is to systematically derive the EFT as a defor-
mation of the original CFT.

Throughout the chapter, we work classically in the bulk, and to leading order in
1/N in the boundary. Our notation is as follows:

Bulk coordinates: (r, x)
Bulk spacetime metric: gµ‹

Induced metric at r = rc : g0
ij(x) = gij(rc, x)

CFT metric: “ij = r≠2
c g0

ij

Bulk scalar field: „

Boundary value: „0(x) = „(rc, x)
CFT source: J = rd≠�

c „0

Bulk on-shell action: W [g0, „0]

Bulk Brown-York tensor: ÂTij

Boundary stress tensor: Tij = rd≠2
c

ÂTij

Various sign conventions are in appendix A.2.

3.2 Scalar example

We first consider the case where gravity is decoupled, and the bulk theory consists
of just a scalar field „. This section serves to illustrate the methods, including
di�erences from the standard holographic RG, but otherwise stands alone from
the rest of the chapter and can be skipped. The final answer is equivalent to
results found in e.g. [91,92,100,125], but our approach is to add nonlinear source
dependence to the classical action of the EFT. This gives a local prescription in the
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3. Holography at Finite Cuto� with a T 2 Deformation

boundary theory, in contrast to the scalar discussion in [100], which was phrased
in terms of the non-local e�ective action.

3.2.1 Flow equation of the dual EFT

Classically, the bulk path integral is computed by the on-shell action, W [rc; „0(x)].
The flow of this functional is governed by the Hamilton-Jacobi equation,

ˆ

ˆrc
W [rc; „0] = ≠H[„0,

”W

”„0
] , (3.6)

where H[„, fi] is the scalar Hamiltonian for evolution in the r direction. To derive
the EFT at finite cuto�, we write Zgrav = e≠W , apply the flow equation to the
dictionary (3.5), then translate back to the field theory:

d

drc
ZEF T [rc; J = rd≠�

c „0] = H[„0, ≠ ”

”„0
]e≠W [rc;„0] (3.7)

= H[„0, ≠ ”

”„0
]ZEF T [rc; J = rd≠�

c „0]

This is now written as a total derivative, because „0 is fixed but J is not. (Second
variations ”2W

”„2
0

drop out in the classical limit, reproducing (3.6).) Next, bring the
Hamiltonian inside the EFT path integral to obtain

d

drc
ZEF T [rc; J = rd≠�

c „0] (3.8)

=
⁄

DÏH[„0, ≠rd≠�
c

Ô
“O] exp

3
≠SEF T (rc, J ; Ï) +

⁄
ddx

Ô
“O„0rd≠�

c

4
.

Ï denotes the fields in the boundary theory. Equating this with d
drc

ZEF T =
s

DÏ d
drc

e≠SEF T +
s

Ô
“OJ gives the flow equation for the EFT:

d

drc
SEF T = ≠H[r�≠d

c J, ≠rd≠�
c

Ô
“O] + d ≠ �

rc

⁄
ddx

Ô
“JO . (3.9)

It is convenient to absorb the source term into the action (and not write the Ï
dependence explicitly),

ŜEF T (rc, J) = SEF T (rc, J) ≠
⁄

ddx
Ô

“JO . (3.10)

Then the flow equation takes the form d
drc

Ŝ(rc, J(rc)) = ≠H. This derivative is
taken at fixed value of the bulk boundary condition „0, so with J Õ(rc) = d≠�

rc
J(rc).
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3.2. Scalar example

For EFT calculations, it is more natural to define the flow in terms of the partial
derivative at fixed J ,

ˆ

ˆrc
ŜEF T (rc, J) = ≠H[r�≠d

c J, ≠rd≠�
c

Ô
“O] + d ≠ �

rc

⁄
ddx

Ô
“JO . (3.11)

This is the final result for the scalar. At each step along the flow, the operator O
must be redefined according to

O = ≠ 1
Ô

“

”

”J
ŜEF T . (3.12)

Therefore (3.11), with the latter relation plugged in, should be viewed as a func-
tional PDE for Ŝ, similar to the Hamilton-Jacobi equation. The di�erence is that
(3.11) defines the flow of a local action on the boundary, whereas the Hamilton-
Jacobi equation (3.6) defines the flow of the non-local, on-shell action in the bulk.

3.2.2 Free massive scalar

To make this formalism explicit, consider a free, massive scalar field in the bulk,

Sbulk = 1
2

⁄
dd+1x

Ô
g

!
(ˆ„)2 + m2„2"

+ d ≠ �
2

⁄

ˆM
ddx


g0„2

0 , (3.13)

with m2 = �(�≠d), in vacuum AdS, ds2 = dr2

r2 + r2dx2. The boundary countert-
erm is added to cancel the leading divergence in the action. The radial Hamiltonian
is

H[„0, fi] = 1
2

⁄
ddxN(rc)

A
fi2


g0

≠ 2(d ≠ �)fi„0 ≠


g0(ˆ„0)2

B
. (3.14)

The counterterm has been included by integrating by parts to write it as a bulk
term in the action. The EFT dual to this theory at finite cuto� is defined by the
flow equation (3.11), which together with our dictionary gives

ˆ

ˆrc
ŜEF T (rc, J) = 1

2

⁄
ddx

!
≠rd≠2�≠1

c O2 + r2�≠d≠3
c (ˆJ)2"

. (3.15)

This defines the corresponding deformation of the CFT, where rc is now viewed
as a dimensionful coupling constant of the EFT.1

1
Note that the linear term in (3.9) canceled, due to the counterterm. In principle we should

include additional counterterms to cancel all of the divergences, which would produce additional

terms in the deformation; however this is unnecessary to compute the two-point function. We

will include the full set of counterterms in the gravitational case.
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3. Holography at Finite Cuto� with a T 2 Deformation

3.2.3 Scalar correlators

Now we will demonstrate how to obtain bulk correlation functions at finite cuto�,
using the boundary theory defined by (3.15). The background terms play a crucial
role. Of course this check is guaranteed to succeed, because by design, the bulk
and boundary correlators obey the same flow equation.

In the bulk, the on-shell action is quadratic, so for any value of rc it takes the form

W [rc, „0(k)] = 1
2

⁄
ddk

(2fi)d
„0(k)„0(≠k)F (rc; k) . (3.16)

F is calculated by solving the wave equation with Dirichlet boundary conditions
and plugging into the action. This is a standard exercise that leads to

F (rc; k) = rd
c (d ≠ �) + rd+1

c
ˆr(r≠d/2K‹(k/r))

r≠d/2
c K‹(k/r)

-----
r=rc

(3.17)

where ‹ =


d2/4 + m2. According to our dictionary (3.5), this gives the boundary
two-point function G(rc; k) = ≠r2(�≠d)

c F (rc; k). The function G is defined through
the correlator in momentum space:

ÈO(k)O(kÕ)Í = (2fi)d”(k + kÕ)G(rc; k). (3.18)

Now we will reproduce this from a boundary calculation. The flow equation (3.11)
implies for the two-point function

ˆ

ˆrc

3
1

Ô
“

”

”J

4 3
1

Ô
“

”

”J

4
log ZEF T

---
J=0

= ≠ ”

”J

”

”J

=
ˆ

ˆrc
ŜEF T

> -----
J=0

(3.19)

= ≠
⁄

ddx
”

”J

”

”J

+ 1
2 r2�≠d≠3

c (ˆJ)2 ≠ 1
2 rd≠2�≠1

c O2, ---
J=0

Therefore
d

drc
G = ≠k2r2�≠d≠3

c + rd≠2�≠1
c G2 . (3.20)

In the last term, we have invoked the large-N normal-ordering procedure discussed
below (3.5) to write

”

”J(x1)
”

”J(x2) ÈO(x)2Í
---
J=0

= 2”ÈO(x)Í
”J(x1)

”ÈO(x)Í
”J(x2)

-----
J=0

= 2G(x ≠ x1)G(x ≠ x2) ,

(3.21)
where G(x ≠ x1) = ÈO(x)O(x1)Í. The solution of (3.20), if we impose the CFT
form at rc æ Œ, is G(rc; k) = ≠r2(�≠d)

c F (rc; k), with F (rc; k) given by (3.17).
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3.3. Deriving the deformation with gravity

Notice that the correlator does not flow for � = (d + 1)/2, which has a natural
explanation in the bulk. This value of the scaling dimension corresponds to a
conformally coupled scalar. Weyl invariance then allows us to rescale rc (or more
accurately ¸AdS , but this has the same e�ect since we have set ¸AdS = 1). Notice
that Weyl invariance is crucial; the argument does not work for massless fields
in the bulk (unless d = 1), and it is easily checked that the correlator for such
fields has a nontrivial flow. We will see this feature again in section 3.7.1 when
we compute the flow of the two-point function of a Maxwell gauge field, where we
will find that the correlator does not flow when d = 3.

3.3 Deriving the deformation with gravity

Now we turn to the general case of gravity coupled to matter. The deformation
can be derived in two di�erent ways. The first is to find an equation for the trace
of the renormalized Brown-York stress tensor, just as was done in two dimensions
by [100]. The second derivation is more directly analogous to the scalar example
in section 3.2, and follows from the observation that the partition function of the
EFT on a radial slice has to be a solution to the radial Wheeler-DeWitt equation
in order to describe gravitational physics.

The two derivations are essentially equivalent, but o�er di�erent perspectives. We
will describe both.

3.3.1 Trace equation

Consider a Euclidean radial slicing of the form

ds2 = dr2

r2 + gij(r, x)dxidxj , (3.22)

where g0
ij(x) © gij(rc, x) is the metric on the cuto� surface. The renormalized

Brown-York stress tensor is [126]

ÂTij = 1
8fiG

!
Kij ≠ Kg0

ij + (d ≠ 1)g0
ij

"
≠ ad

ÂCij , (3.23)

where ad is a constant. See the appendix for conventions. We have separated the
counterterms into two pieces: The counterterm

s
ˆM


g0 gives the g0

ij contribu-
tion above, and the curvature-dependent counterterms define the quantity ÂCij [g0

ij ].
Tildes are reserved for bulk quantities which will appear in our final deformation;
they need to be appropriately rescaled to translate into EFT variables. This stress
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tensor satisfies

ÂT i
i + ad

ÂCi
i = ≠4fiG

5
( ÂTij + ad

ÂCij)2 ≠ 1
d ≠ 1( ÂT i

i + ad
ÂCi

i )2
6

≠
ÂR

16fiG
+ Âtr

r , (3.24)

where t̃ij is the matter stress tensor. This equation can be derived by plugging in
the expression for ÂTij in the right-hand side and using the Hamiltonian constraint
(for the radial slicing) in the bulk:

K2 ≠ KijKij ≠ d(d ≠ 1) ≠ ÂR + 16fiGÂtr
r = 0 . (3.25)

From this equation for the stress tensor, we can infer the deformation in the field
theory, in the sense of a flow equation. We will temporarily drop the matter term
Âtij to derive the flow for pure Einstein gravity. We write the deformation of the
classical action in terms of a local operator X as

ˆSEF T

ˆ⁄
=

⁄
ddx

Ô
“X , (3.26)

with ⁄ a dimensionful parameter that governs the size of the deformation.

In a theory with only one dimensionful scale ⁄, invariance under a change of units
implies for the e�ective action

⁄
ˆW

ˆ⁄
= 1

�⁄

⁄
ddx

Ô
“ÈT i

i Í , (3.27)

with �⁄ the mass dimension of ⁄. Combining (3.27) and (3.26) with the bulk trace
relation (3.24) suggests the deformation

X = (Tij + adrd≠2
c

ÂCij)2 ≠ 1
d ≠ 1(T i

i + adrd≠2
c

ÂCi
i )2 ≠ rd

c

d⁄

A
Âtr
r ≠

ÂR
16fiG

≠ ad
ÂCi

i

B
.

(3.28)
This is a field theory equation, so Tij is the field theory stress tensor, and indices
are raised with “ij . It was obtained from (3.24) by replacing bulk with boundary
quantities, g0

ij = r2
c“ij , and ÂTij = r2≠d

c Tij . Other tilded quantities must also be
rescaled, which we will do when considering explicit examples.

With this choice of deformation operator, we have �⁄ = ≠d and the relation
between the boundary coupling ⁄ and bulk radial cuto� rc is

⁄ = 4fiG

d rd
c

. (3.29)

For a four or five dimensional bulk

ÂCij = ÂGij = Gij , ad = 1
8fiG(d ≠ 2) , (3.30)
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3.3. Deriving the deformation with gravity

with ÂGij the Einstein tensor for g0
ij and Gij the Einstein tensor for “ij . In general

dimensions for a flat metric “ij we have ÂCij = 0.

There are some subtleties in this argument. The first is the issue of anomalies.
The expression (3.28) includes terms built entirely from background fields. The
O(r0

c ) background-only terms in rcˆrcW , which occur only in even d, give pre-
cisely the conformal anomaly (since they correspond to log rc terms in W ). The
interpretation is that we are implicitly measuring the UV cuto� in units of ⁄, so
the UV cuto� changes along the flow, and this contributes to (3.26) via the Weyl
anomaly. In other words, SEF T must be regulated, and the e�ect of the regulator
has been included in (3.28). This will be clear in the even-dimensional examples
below.

Also, in (3.28), we have assumed that there are no additional contributions, beyond
the trace anomaly, from renormalization. This is not obvious, and will only be
justified a posteriori by comparison to the bulk. Finally, the composite operators in
(3.28) must be regulated somehow. In the 2d case, it turned out that the regulator
was unnecessary, due to the factorization property [95]; in higher dimensions, we
use the large-N normal ordering procedure discussed in section 3.1.1.

Let us now give the explicit form of the deformation X in two, three, and four
boundary dimensions without bulk matter. In two and four dimensions we will
make the contribution of the trace anomaly manifest.

Deformation in d = 2

In two boundary dimensions, the deformation was already derived in the references
cited above, but we will give it for completeness. The trace anomaly is

A © ÈT i
i ÍCF T = ≠ c

24fi
R = ≠ r2

c

16fiG
ÂR , (3.31)

where we used c = 3/2G and R = r2
c

ÂR. In d = 2 we have ÂCij = 0 since all
curvature counterterms are absent. Combining this with (3.31) we deduce that
the deformation is

X = TijT ij ≠ (T i
i )2 ≠ 1

2⁄
A . (3.32)

The first two terms are often denoted in terms of T T̄ © 1/8
!
TijT ij ≠ (T i

i )2"
. As

discussed above, the total deformation X includes both the explicit deformation
of the EFT Lagrangian by the operator ”L = T T̄ ”⁄, and the contribution from
the Weyl anomaly as we rescale the UV cuto�.
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3. Holography at Finite Cuto� with a T 2 Deformation

Deformation in d = 3

For a three dimensional boundary, there is no trace anomaly, so the deformation
is

X = (Tij + a3rcGij)2 ≠ 1
2(T i

i + a3rcGi
i)2 . (3.33)

In this equation, a3rc has to be expressed in terms of boundary data:

a3rc = 1
61/3

3
1

8fiG

42/3
⁄≠1/3 = –3⁄≠1/3 . (3.34)

Here –3 is a function of N on the boundary, but is independent of ⁄. The defor-
mation of the boundary theory is thus

X =
1

Tij + –3
⁄1/3 Gij

22
≠ 1

2

1
T i

i + –3
⁄1/3 Gi

i

22
(3.35)

Note that despite the inverse powers of ⁄, the CFT limit ⁄ æ 0 is regular, since
the first order deformation is ”L = ⁄X.

Deformation in d = 4

In a four dimensional boundary theory, the trace anomaly for a theory dual to
Einstein gravity is

A = ≠CT

8fi

3
GijGij ≠ 1

3(Gi
i)2

4
, (3.36)

with CT = 1
8G [127]. Therefore the deformation (3.28) may be written

X = TijT ij ≠ 1
3(T i

i )2 + 2a4r2
c

3
GijTij ≠ 1

3Gi
iT

j
j

4
≠ 1

4⁄
A (3.37)

with a4r2
c = –4⁄≠1/2. As before, –4 is fixed in terms of 1/G.

Comments on the flow equation

Note that in going infinitesimally from rc æ rc + ”rc, the deformed Tij , at the
value rc, must be used on the right-hand side of the flow equation. This means
that, like the Hamilton-Jacobi equation, it must be viewed as a functional equation
for S, with Tij = ≠ 2

Ô
“

”S
”“ij . The di�erence, however, is that this defines the flow

of a local functional – the EFT action – whereas the Hamilton-Jacobi equation
governs the flow of the bulk on-shell action.

There is one last subtlety to address in the meaning of the flow equation (3.27).
This is written as a partial derivative ˆ

ˆ⁄ because the EFT metric, and other
sources if present, are held fixed. Ultimately, however, the dictionary (3.5) equates
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3.3. Deriving the deformation with gravity

the bulk theory to a boundary theory where the boundary metric “ij = r≠2
c g0

ij

may itself be a function of rc. The only time this will occur in our examples
is when we consider bulk black hole geometries to compute the deformed energy
spectrum. In this case, “00 is rc-dependent but the metric is di�eomorphic to the
original, undeformed metric. Thus we can compare quantities computed in the
deformed and undeformed metrics simply by a coordinate rescaling at the end of
the calculation. But if the intrinsic geometry of the boundary changes along the
flow, then the bulk is dual to SEF T [⁄, “ij(⁄)], which includes an additional term
1
2 T ijˆrc“ij in the total flow equation for d

d⁄ SEF T .

Sources for irrelevant operators can induce a large backreaction, destroying the
AdS boundary. This is not a problem here because of the finite radial cuto� —
the backreaction is assumed to be small where the flow starts, at some large but
finite rc, and any problems with the AdS asymptotics occur only for r > rc. This
is similar to the situation in the boundary EFT, where the CFT deformed by
an irrelevant operator is sensible below the cuto� set by the mass scale of the
deformation.

3.3.2 Wheeler-DeWitt method

Another perspective on this derivation is provided by the Wheeler-DeWitt equa-
tion. This is closer to the scalar derivation in section 3.2, where we translated the
bulk Hamilton-Jacobi equation into a deformation of the dual EFT. We will also
include matter sources in this discussion.

Without gravity, the Hamilton-Jacobi equation governs the flow of the on-shell ac-
tion ˆ

ˆrc
W [rc; „0], with boundary sources held fixed. But once gravity is included,

this equation is trivial, because the on-shell action is no longer an explicit function
of the cuto� rc — explicit dependence on rc is a pure di�eomorphism, so does not
a�ect the value of the action. Instead, the action depends on the cuto� only via
the induced metric, W = W [g0

ij , „0]. To keep track of this, we define the flow
with boundary values of non-metric fields „0(x) held fixed, but make the induced
metric a function of the cuto�, g0

ij = g0
ij(rc, x).

Assume the bulk metric takes the form (3.2). The renormalized on-shell action
(i.e. including holographic counterterms) obeys

d

drc
W [g0

ij(rc, x), „0] = 1
2

⁄
ddx


g0 ÂT ijˆrcg0

ij (3.38)

where ÂT ij is the renormalized Brown-York stress tensor, since it is obtained by
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3. Holography at Finite Cuto� with a T 2 Deformation

varying the renormalized on-shell action. Writing g0
ij = r2

c“ij , this becomes

rc
d

drc
W [g0

ij(rc, x), „0] =
⁄

ddx


g0 ÂT i
i + r3

c

2

⁄
ddx


g0 ÂT ijˆrc“ij . (3.39)

At this point, this separation of the trace is somewhat arbitrary, but useful, as
we will see. This is turned into a flow equation by substituting the Hamiltonian
constraint into the first term. In general, this constraint can be written

ÂT i
i = � , (3.40)

where � is built from both ÂTij and the matter fields. Although (3.39) has no
dynamics as written, once we replace ÂT i

i æ �, it becomes the classical Wheeler-
DeWitt equation, which encodes the dynamical equations of the classical bulk
theory, and is the gravitational analogue of the Hamilton-Jacobi equation.

Now we repeat the argument used in the scalar case to derive the flow equation
in the dual EFT. First, write � in terms of the canonical data:

� = �[g0
ij , pij , „0, fi] , (3.41)

where pij ©


g0 ÂTij and fi is the momentum conjugate to „. Translating (3.38)
into the language of the boundary field theory, we have

rc
d

drc
ZEF T [rc; “ij = r≠2

c g0
ij , J = rd≠�

c „0] (3.42)

= ≠
3⁄

ddx


g0 �[g0
ij , ≠ 2”

”g0ij
, „0, ≠ ”

”„0
] + rc

⁄
ddx ˆrc“ij

”

”“ij

4
ZEF T .

(3.43)

Pulling this inside the EFT path integral, as we did for the scalar around (3.8),
gives (up to the anomaly)

rc
d

drc
ŜEF T = rd

c

⁄
ddx

Ô
“ �[r2

c“ij , r2
c
Ô

“Tij , r�≠d
c J, ≠rd≠�

c O] (3.44)

+ rc

2

⁄
ddx

Ô
“ T ijˆrc“ij .

We have included the full source dependence in ŜEF T , defined e.g. as in (3.10) for
a scalar source with corresponding generalizations for other fields. As discussed
above, counterterms are also included, so the flow includes the contribution of the
trace anomaly.
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3.3. Deriving the deformation with gravity

3.3.3 The final prescription

To recap, the general answer is as follows. The deformation of the boundary
e�ective field theory is given by the flow equation

rc
ˆ

ˆrc
SEF T = rd

c

⁄
ddx

Ô
“ � . (3.45)

� is the right-hand side of the constraint equation (3.40), with the rescalings
appropriate to translate from bulk to boundary variables,

g0
ij æ r2

c“ij , ÂTij æ r2≠d
c Tij , „0 æ r�≠d

c J, fi æ Ô
“rd≠�

c O . (3.46)

The partial derivative in (3.45) is taken with “ij , J held fixed – but to match the
bulk, the sources and background metric must also be modified along the flow
according to (3.44). The rescalings of J, O for spin-L fields have additional factors
of rL

c . For bulk p-forms, which we will consider for p = 1 in the next subsection,
we have

„0
µ1···µp

æ r�≠d+p
c Jµ1···µp , fiµ1···µp æ Ô

“rd≠�≠p
c Oµ1···µp . (3.47)

3.3.4 Matter contributions and the U(1) case

Matter is automatically included in the prescription (3.45), simply by including
the matter Hamiltonian t̃r

r on the right-hand side of the constraint equation (3.40).
This reproduces, for example, the scalar results in section 3.2, upon sending G æ 0
with the matter action held fixed.

Another interesting case is a U(1) gauge field Aµ in the bulk, dual to a conserved
U(1) current in the boundary field theory. The Dirichlet boundary condition in
AdS/CFT fixes the non-normalizable mode of Aµ, which means fixing the chemical
potential µ of the boundary field theory.

For a Maxwell field in the bulk the Euclidean Lagrangian is given by

Lm = 1
4e2 Fµ‹F µ‹ . (3.48)

Its stress tensor follows from the usual prescription and the rr component reads

t̃r
r = 1

4e2 FijF ij ≠ 1
2e2 F riFri (3.49)

To apply our dictionary, we can write this in terms of the canonical momentum
fii of the gauge field in the bulk,

t̃r
r = 1

4e2 FijF ij ≠ e2

2
fiifii

1
g0

22 . (3.50)
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3. Holography at Finite Cuto� with a T 2 Deformation

The canonical momentum fii and bulk non-normalizable mode A(0)i are related to
the boundary operator and source as

fii æ Ô
“r2

cJi, A(0)i æ Ai. (3.51)

In combination with (3.46), we find

t̃r
r = ≠e2

2 r2≠2d
c JiJ

i + 1
4e2 r≠4

c FijF ij , (3.52)

where all contractions are done with “ij . The flow of the e�ective action is thus

rc
ˆ

ˆrc
SEF T = rd

c

⁄
ddx

Ô
“

3
�grav ≠ e2

2 r2≠2d
c JiJ

i + 1
4e2 r≠4

c FijF ij

4
. (3.53)

For a complete identification of bulk data with boundary data, we have to convert
constants such as e2 to boundary data. This quantity has dimension 3 ≠ d and
is related to the coe�cient CJ of the two-point function of conserved currents.
Specifically, in the field theory on Rd this two-point function is

ÈJi(x)Jj(y)Í = CJ

(2fi)d

!
ˆ2”ij ≠ ˆiˆj

" 1
|x ≠ y|2(d≠2) , (3.54)

and the relation between CJ and e2 is given by

e2 = 1
CJ–J

, –J = (d ≠ 1)�(d/2)
2d≠2fid/2�(d)

. (3.55)

This allows us to translate any coe�cient in (3.53) to functions of ⁄ and dimen-
sionless numbers that are, as we will see, powers of N . For example, rewriting the
rc dependence in terms of ⁄, we find:

ˆSEF T

ˆ⁄
∏

⁄
ddx

Ô
“

1 ‡1
⁄2/d

JiJ
i ≠ ‡2

⁄2(d≠2)/d
FijF ij

2
(3.56)

with

‡1 = 1
8fi–JCJ

3
4fi

d

42/d

G(2≠d)/d, ‡2 = –JCJ

16fi

3
4fi

d

42(d≠2)/d

G(d≠4)/d . (3.57)

The Newton constant G is proportional to some power of N , so ‡1 and ‡2 are
fully expressed in terms of boundary data. Said another way, the coe�cients can
be expressed in terms of the central charges CJ and CT of the two-point functions
of a conserved U(1) current Ji and a conserved spin-two current Tij .
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3.4. Random metrics via Hubbard-Stratonovich

3.4 Random metrics via Hubbard-Stratonovich

The deformation can also be understood as coupling to a random background
metric. This was explored in d = 2 in [17, 109]. Here we will show that in
general d, the radial flow equation for the induced metric — that is, the bulk
Einstein equation for “ij — is precisely the flow induced by coupling to a random
background metric. In this section we assume “ij is flat.

Let us introduce a symmetric two-tensor hij as our Hubbard-Stratonovich field
and rewrite the deformation as

exp
3

≠”⁄

⁄
ddx

Ô
“

3
TijT ij ≠ 1

d ≠ 1(T i
i )2

44
≥

⁄
Dh exp

3
≠ 1

16”⁄

⁄
ddx

Ô
“(h2 ≠ hijhij) + 1

2

⁄
ddx

Ô
“hijT ij

4
, (3.58)

where h = hi
i. From this rewriting we see that the deformation corresponds to

coupling to a metric perturbation hij , and averaging over hij . The saddle point
equations are

h”ij ≠ hij ≠ 4”⁄Tij = 0 . (3.59)

Taking the trace of this equation tells us that (d ≠ 1)h = 4”⁄T i
i , so

hij = ≠4”⁄

3
Tij ≠ T k

k

d ≠ 1“ij

4
. (3.60)

Assuming a large, classical background stress tensor, this can be interpreted as a
change ”“ij in the e�ective metric seen by the field theory.

Now let’s compare to the bulk. The radial evolution equation for the induced
metric on a fixed-r slice is Hamilton’s equation,

ˆrcgij = 16fiGN

3
fiij ≠ fik

k

d ≠ 1gij

4
, (3.61)

where the lapse and canonical momentum are

N = 1
rc

, fiij = 1
8fiG

(Kij ≠ Kgij) . (3.62)

Setting gij = r2
c“ij , this becomes

r3
c

ˆ“ij

ˆrc
= 16fiG

A
ÂTij ≠

ÂT k
k

d ≠ 1“ij

B
. (3.63)

Upon rescaling ÂTij = r2≠d
c Tij and using (3.29), this agrees with the flow of the

e�ective metric (3.60).
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3. Holography at Finite Cuto� with a T 2 Deformation

At first order in the deformation, the e�ective metric is

ds2 = ds2
0 ≠ 4⁄ÈTijÍdxidxj . (3.64)

Viewed as a bulk equation for the induced metric, this is the usual dictionary for
the boundary stress tensor in terms of subleading terms in the bulk metric.

Let us compute the propagation speed when Tij is diagonal with components
Ttt = ‘, Tii = ‘

d≠1 . With this choice, we can focus on a two dimensional plane,
say the (t, x) plane, to perform this calculation. In Lorentzian signature, the null
geodesics in this plane are

≠ dt2 ≠ 4⁄ ÈTttÍ dt2 + dx2 ≠ 4⁄ ÈTxxÍ dx2 = 0 . (3.65)

In the small ⁄ limit the propagation speed v is thus

v = 1 + 2⁄‘
d

d ≠ 1 + O(⁄2) . (3.66)

For the theory on Rd≠1, ‘ Ø 0 and this speed is superluminal for ⁄ > 0. However
for the theory on e.g. Td≠1 with thermal periodicity conditions along the spatial
cycles, the vacuum necessarily has ‘ < 0 [1], in which case we can have v > 1 for
⁄ < 0 as well.

3.5 Spectrum

In this section we will consider the deformed energy spectrum of a large-N CFT
under the T 2 deformation. Thanks to factorization, we will have a single di�eren-
tial equation that governs all energy levels. We will solve this equation and match
the answer to a bulk computation of the energy at finite cuto� of black holes in
anti-de Sitter space. We will consider the general case of finite sources for curvature
and U(1) charge, which will require considering charged AdS-Reissner-Nordström
black holes with curved horizons.

3.5.1 Field theory analysis

We study field theories on a manifold R ◊ Md≠1 with metric

ds2 = d·2 + habdxadxb . (3.67)

The flow defined by ˆS/ˆ⁄ =
s

ddx
Ô

“X implies the same flow for the Hamiltonian
and therefore for the energy levels, ˆE/ˆ⁄ =

s
dd≠1x

Ô
“X. Considering states
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3.5. Spectrum

that preserve the symmetries of hab and in which large-N factorization holds, and
after passing to densities by dropping the spatial volume integrals, we have

ˆ‘

ˆ⁄
=

=
Tij + –d

⁄
d≠2

d

Gij

>2
≠ 1

d ≠ 1

=
T i

i + –d

⁄
d≠2

d

Gi
i

>2
. (3.68)

Equation (3.68) is valid for any d if Md≠1 is flat, and for d = 3, 4 when Md≠1 is
arbitrary. This is the main object to study in the field theory as it will determine
the deformed spectrum of our states of interest as a function of the deformation
parameter ⁄. We will now solve this di�erential equation for various backgrounds.

Before discussing the deformation in full generality, let us focus on the simplest
case in which the CFT is living on a square torus Td≠1. For this background the
Einstein tensor Gij vanishes and moreover there are no trace anomalies. Let us
assume that the states do not carry any momentum so that the stress tensor is
diagonal in these states. The diagonal components of the stress tensor are given
in terms of the energy density as

ÈT·· Í = ‘, ÈTaaÍ = 1r
b ”=a Lj

d(‘
r

b Lb)
dLa

. (3.69)

For a square torus the stress tensor is diagonal with equal spatial components, and
the di�erential equation becomes

ˆ‘

ˆ⁄
= d ≠ 2

d ≠ 1‘2 ≠ 2‘

(d ≠ 1)Ld≠2 ˆL(Ld≠1‘). (3.70)

Solutions to this di�erential equation in terms of the energy E = ‘Ld≠1 are given
by

E = (d ≠ 1)Ld≠1

2d⁄

A
1 ≠

Ú
1 ≠ 4d⁄

d ≠ 1
M

Ld

B
, (3.71)

where the undetermined constant was fixed by requiring that as ⁄ æ 0 we obtain
the energy in the undeformed theory E0 = M/L.

At E0
max ··= (d≠1)Ld≠1/(4d⁄) the energy levels exhibit a “square-root singularity”

and become complex. For the theory with ⁄ > 0, which we will argue is dual to
the finite cuto� theory in AdS, this a�ects an infinite number of positive energy
states. This suggests a maximum energy and hence a sharp UV cuto�. In the bulk
description, it a�ects all states with energies for which a black hole of the given
energy would not fit inside the cuto�, i.e. its horizon radius is bigger than rc. For
the theory with ⁄ < 0, this can only a�ect negative energy states in the spectrum,
which will necessarily exist if e.g. we pick thermal periodicity conditions along the
spatial cycles [1]. While the theory with ⁄ > 0 has complex energy states for any ⁄
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3. Holography at Finite Cuto� with a T 2 Deformation

and L, the theory with ⁄ < 0 can only have complex energy states for su�ciently
large ≠⁄/Ld.

We now consider the general case, where we will solve the di�erential equation
for the energy levels with finite U(1) charge density on Sd≠1 (k = 1) or Hd≠1

(k = ≠1). The metric is given by

ds2 = d·2 + R2d�2
d≠1, (3.72)

with R2d�2
d≠1 the metric on an Sd≠1 or Hd≠1 with radius R and volume Rd≠1Vd≠1.

(The flat slicing case treated above is captured by taking the flat metric on �d≠1,
which in the below equations will mean setting k = 0, Vd≠1 = 1 and R = L.)
For simplicity, let us restrict to states that preserve the spatial symmetries. This
means that the stress tensor is given by

T·· = ‘, Taa = haa
1

(d ≠ 1)Rd
ˆR

!
Rd≠1‘

"
. (3.73)

In the presence of finite U(1) charge density the deformation was shown in section
3.3.4 to be given by

X =
3

Tij + –d

⁄
d≠2

d

Gij

42
≠ 1

d ≠ 1

3
T i

i + –d

⁄
d≠2

d

Gi
i

42
+ ‡1

⁄2/d
J iJi ≠ ‡2

⁄
2(d≠2)

d

FijF ij ,

(3.74)
where ‡i are dimensionless constants given in (3.57). For simplicity, let us study
the deforming operator when Ai is independent of field theory coordinates. Fol-
lowing the same logic as above, the flow of the energy levels in the deformed theory
are given by

ˆ‘

ˆ⁄
=

=
Tij + –d

⁄
d≠2

d

Gij

>2
≠ 1

d ≠ 1

=
T i

i + –d

⁄
d≠2

d

Gi
i

>2
+ ‡1

⁄2/d

+
J iJi

,
. (3.75)

Again, by using large-N factorization, we can write all terms as products of one-
point functions. We will consider the current one-point functions to vanish when
i ”= 0, so these states only have a non-zero charge density, which enters into the
final term in the flow equation as

ÈJ iJiÍ = ÈJ iÍÈJiÍ = ≠
3

Q

Vd≠1Rd≠1

42
, (3.76)

with Q the dimensionless charge. The di�erential equation for the energy levels is
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then given by

ˆ‘

ˆ⁄
= d ≠ 2

d ≠ 1

3
‘ ≠ (d ≠ 1)k–d

2R2⁄1≠2/d

42
≠ 2

(d ≠ 1)Rd≠2
ˆ

!
Rd≠1‘

"

ˆR

3
‘ ≠ (d ≠ 1)(d ≠ 2)k–d

2R2⁄1≠2/d

4

≠
(d ≠ 3)2 !

d2 ≠ 3d + 2
"

–2
d

4R4⁄2(1≠2/d) ≠ ‡1Q2

⁄2/dR2d≠2V 2
d≠1

.

(3.77)

The equation can be simplified by defining an energy variable x = Rd≠1‘ ≠ (d ≠
1)(d ≠ 2)Rd≠3k–d/(2⁄1≠2/d). It is solved by energy density ‘ = E/(Rd≠1Vd≠1),
with

E = (d ≠ 1)Rd≠1Vd≠1
2d⁄

3
(d ≠ 2)dk⁄2/d–d

R2 + 1≠
Û

1 ≠ 4dM⁄

(d ≠ 1)Vd≠1Rd
+ 2(d ≠ 2)dk⁄2/d–d

R2 + 4‡1d2Q2⁄2≠2/d

(d ≠ 2)(d ≠ 1)R2d≠2V 2
d≠1

B
.

(3.78)

For d = 2, 3 we see that this reduces to the CFT energy M/R as ⁄ æ 0. (For d = 2
we only consider the chargeless case Q = 0.) For d = 4 the CFT limit picks up a
Casimir term and becomes M/R + 12|k|V3–2

4/R. For d > 4 the limit is singular,
reflecting the fact that there are more counterterms we have neglected to include
in deriving our deformation. Our bulk calculations will be done with the same set
of counterterms, which will result in us matching the d > 4 cases between bulk
and boundary as well.

3.5.2 Bulk analysis

Having obtained the energy levels in the deformed theory, we now turn to a com-
parison with the bulk. In the bulk, we want to do a quasi-local energy calculation
at a finite radial cuto� for the AdS-Reissner-Nordström black hole metric with
boundary geometry Sd≠1 (k = 1), Rd≠1 (k = 0), or Hd≠1 (k = ≠1). The topology
can be arbitrary and will only enter into the volume Vd≠1. The action for the
theory is

S = ≠
⁄

dd+1x
Ô

g

3
R

2Ÿ2 ≠ 1
4e2 F 2 + d(d ≠ 1)

2Ÿ2

4
(3.79)
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where Ÿ2 = 8fiG and the gauge coupling is e. This has as solution the charged
black hole:

ds2 =
3

k

R2 ≠ r0
rd≠2 + r2 + q2

r2d≠4

4
d·2 + dr2

k
R2 ≠ r0

rd≠2 + r2 + q2

r2d≠4

+ r2R2d�2
d≠1,

(3.80)

A = ieq

cŸ

A
≠ 1

rd≠2 + 1
rd≠2

+

B
d·, c =

Ú
d ≠ 2
d ≠ 1 , (3.81)

where r+ is the horizon location and �d≠1 has volume Vd≠1 and is a unit sphere,
plane, or hyperboloid depending on k. The conserved mass and dimensionless
U(1) charge of the CFT are

M = (d ≠ 1)Rd≠1Vd≠1
16fiG

r0 , Q =


(d ≠ 1)(d ≠ 2)Rd≠1Vd≠1
eŸ

q . (3.82)

Using E =
s Ô

det h̃ ÂTµ‹uµu‹ =
s Ô

det h̃ ÂT·· g·· for h̃abdxadxb = r2R2d�2
d≠1 the

non-radial spatial metric, we find the energy at finite radial cuto� rc to be

E = (d ≠ 1)Vd≠1Rd≠1rd≠1
c

8fiG

A
k

2R2r2
c

+ 1 ≠

Û

1 ≠ r0
rd

c

+ k

R2r2
c

+ q2

r2d≠2
c

B
. (3.83)

This expression is correct for d > 2 if k = 0 and for d = 3, 4 if k ”= 0. The general
dimensional answer for k ”= 0 can also be obtained but would (further) clutter the
equation.

To translate to field theory we need to apply our dictionary to the quantity
Ebulk =

s Ô
det h̃ ÂT·· g·· æ

s
(rd≠1

c

Ô
det h)(r2≠d

c T·· )(r≠2
c “·· ) = r≠1

c Ebdry. Using
the expressions for –i and ‡i in the previous section and identifying

⁄ = 4fiG

drd
c

, (3.84)

we find perfect agreement between Ebdry calculated in this way and Ebdry calcu-
lated in the field theory analysis of the previous subsection.

Note that we calculated the bulk energy by integrating T̃µ‹uµu‹ . Often, the
quasilocal energy is defined by integrating T̃µ‹uµt‹ , which di�ers by a function of
rc. Both choices are acceptable, as long as we compare to the correct quantity
in the boundary theory. The energy computed from T̃µ‹uµu‹ is the conserved
charge associated to translations by a unit vector, and is therefore equal to the
field theory energy in the metric ≠dt2 + · · · . The energy defined by integrating
T̃µ‹uµt‹ is equal to the energy of the boundary theory in the metric induced at
the cuto� surface, ≠“ttdt2 + · · · . Since we are comparing to the EFT energy in
Minkowski spacetime with the usual (unit normalized) time coordinate, the correct
comparison is to T̃µ‹uµu‹ .

80



3.6. Thermodynamics

3.6 Thermodynamics

So far, we have only considered the flow of the spectrum of the deformed theory,
but there are other quantities that also exhibit a non-trivial flow under the de-
formation. Two important quantities that reveal some of the intricate features of
the T 2 deformation are the entropy and speed of sound. We will consider both
quantities for the case of the e�ective theory on a flat background.

3.6.1 Entropy density

The interpretation of our deformation in terms of a finite cuto� in an AdS bulk
requires a particular sign for the deformation, in our conventions ⁄ > 0. The case
⁄ < 0 is also interesting to consider. (If matter or sources are present there will
be fractional powers of ⁄, so the theory needs to be defined more carefully, but
here we will only consider the sourceless case without matter.) In this case the
deformed energy levels for E > 0 always remain real, so we can analyze what
happens in the deep UV of our system. In the local CFT we begin with, the high
energy density of states scales as

S ≥ E
d≠1

d . (3.85)

The deformation shifts the energies, and changes the entropy accordingly. Denote
by E0(⁄, E) the initial energy of a state that has energy E after the flow, which
is easily calculated by inverting (3.71). Inputting into (3.85) gives the entropy of
the flowed theory,

S(⁄, E) ≥ E0(⁄, E)
d≠1

d ≥
!
E + E2Lb

" d≠1
d (3.86)

with L the system size and b = ≠ d
d≠1

⁄
Ld > 0 a dimensionless parameter. For

ELb π 1 the entropy reduces to the extensive scaling indicative of a local QFT,
while for ELb ∫ 1 the entropy becomes

S ≥ E
2(d≠1)

d . (3.87)

Notice that this scaling is Hagedorn for d = 2, as discussed in [114–116], and
super-Hagedorn for d > 2. Interestingly, this super-Hagedorn scaling matches the
density of states of (d ≠ 1)-branes in the semiclassical approximation [110–113].
The black holes in such a theory would have negative specific heat, like those in
flat space. In fact, for d = 4 the entropy scaling matches that of five-dimensional
Schwarzschild black holes in flat space. It would be fascinating if the quantum
theory defined by the irrelevant T 2 deformation considered here gave a new route
to quantization of a theory of membranes.
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3. Holography at Finite Cuto� with a T 2 Deformation

The ⁄ > 0 theory

Equation (3.86) does not apply to generic theories with ⁄ > 0. This is because
the CFT formula (3.85) is generically an asymptotic formula, while the ⁄ > 0
deformation makes energies above an Emax complex, as in (3.71). However, for
holographic theories, or alternatively for modular invariant theories with a par-
ticular pattern of center symmetry breaking [128], this formula has an extended
range of validity [55], holding down to energies ≠(d ≠ 1)Evac. (For d = 2 this
extended range is equivalent to a sparse light spectrum [24]; for the connec-
tion to a sparse light spectrum in d > 2 see [1, 128].) This means that the
ensuing formulas can be applied to the ⁄ > 0 theory for states in the window
≠(d ≠ 1)Evac < E < Emax = (d ≠ 1)Ld≠1/(4d⁄).

An intriguing aspect of the deformation considered is that it preserves center sym-
metry for theories where it is present. It was argued in [128] that the presence and
pattern of spontaneous breaking of this symmetry is a robust way of reproducing
aspects of semiclassical bulk physics when the boundary theory is placed on non-
trivial topology. For example, the fact that the symmetry is unbroken means we
can write correlation functions on quotient spacetimes (at leading order in N) in
terms of a sum over images of the correlation function in the original spacetime;
this important property is manifest from the bulk description, and in our dual
EFT is kept intact by the preservation of center symmetry along the T 2 flow.

3.6.2 Speed of sound

The speed of sound in these theories also shows interesting behavior. Fixing to
flat space and using the pressure p = 1

(d≠1)Ld≠2
dE
dL and the energy levels (3.71), we

find

cs =

Û
ˆp

ˆfl
=

3
1

d ≠ 1

41/2 3
1 + (d ≠ 2)M ⁄̃

1 ≠ 2M ⁄̃

41/2

, (3.88)

where ⁄̃ = 2d⁄
(d≠1)Ld . In the ⁄̃ æ 0 limit this reduces to the usual result, cs =

1/
Ô

d ≠ 1. Moreover, the function is monotonic and diverges precisely at Mmax
set by the square-root singularity in the energies. Hence for any positive ⁄ there
exist finite-temperature states set by M for which the speed of sound becomes
arbitrarily large. This behaviour is identical to the two dimensional case [17]. The
speed of sound in a theory with ⁄̃ < 0 needs to be interpreted with care, since the
above formula is a thermodynamic formula. As seen in the previous subsection,
the ⁄̃ < 0 theory has a super-Hagedorn density of states, so the canonical ensemble
is ill-defined at any temperature.

In the bulk, the computation of the speed of sound in AdS with a Dirichlet wall
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at r = rc was done in [129]. They find

c2
s = 1

d ≠ 1

Q

a1 + d

2
1

rd
c /rd/(d≠2)

0 ≠ 1
2

R

b . (3.89)

Using (3.82) and (3.84) to trade r0 and rc for M and ⁄, we see that this matches
exactly with the field theory speed of sound found in (3.88).

3.7 Two-point functions

So far, we have computed the spectrum and certain thermodynamic quantities of
the deformed theory and found that they match with the dual bulk computation.
To understand the role of the background terms, and demonstrate how the dictio-
nary works more generally, we will also compute and compare 2-point correlation
functions. In section 3.2.3 this was already done for scalar correlators. Here we
will compute the flow of two-point functions of conserved U(1) currents and stress
tensors. The results will agree with the bulk calculation at finite cuto�. We will
limit the discussion to vacuum two-point functions on flat space.

3.7.1 U(1) current correlators

Conserved U(1) currents arise from gauge fields in the bulk. We have seen in
section 3.3.4 that such gauge fields give rise to two terms in the deformation, which
are the analogues of ˆJ and O seen in (3.11) for the scalar case. In particular, the
flow of the e�ective action is

ˆW [A]
ˆ⁄

=
⁄

ddx

3
X0 + ‡1

⁄2/d
J iJi ≠ ‡2

⁄
2(d≠2)

d

FijF ij

4
, (3.90)

where Fij = ˆiAj ≠ ˆjAi and ‡i the dimensionless constants found in (3.57). The
operator X0 is the deformation for gravity only. We now wish to compute the flow
of the current two-point function by taking functional derivatives with respect to
A,

ˆ⁄ ÈJ l(x)Jm(y)Í = ”

”Al(x)
”

”Am(y)

K ⁄
ddyÕ

1
≠ ‡1

⁄2/d
J iJi + ‡2

⁄2(d≠2)/d
FijF ij

2 L
.

(3.91)
Using

ÈJ l(x)Jm(y)Í = ” ÈJm(y)Í
”Al(x) (3.92)
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and taking the large N limit, the flow equation for the current correlator can be
written as

ˆ⁄ ÈJ l(x)Jm(y)Í = 2
⁄

ddyÕ

1
≠ ‡1

⁄2/d
ÈJ l(x)Ji(yÕ)Í ÈJ i(yÕ)Jm(y)Í

+ ‡2
⁄2(d≠2)/d

K
”Fij(yÕ)
”Al(x)

”F ij(yÕ)
”Am(y)

LB
. (3.93)

This flow equation simplifes in momentum space, where Lorentz invariance forces
the two point function of J i to be of the form [130]

ÈJ l(k)Jm(≠k)Í = C(⁄, k)film, film = ”lm ≠ klkm

k2 , (3.94)

with C a function of ⁄ and k that completely fixes the two-point function. We
have also stripped the delta function enforcing momentum conservation, just as in
the scalar case. Plugging this in (3.93), we find

ˆ⁄C(⁄, k) = ≠ 2‡1
⁄2/d

C(⁄, k)2 + 4k2‡2
⁄2(d≠2)/d

. (3.95)

Notice that this flow was also found in [91]. This di�erential equation is supple-
mented with the CFT initial condition as ⁄ æ 0, which, in position space, is just
(3.54). The solution is then

C(⁄, k) = ≠
Ú

2‡2
‡1

k⁄
3≠d

d
Kd/2≠2(2

Ô
2‡1‡2k⁄1/dd)

Kd/2≠1(2
Ô

2‡1‡2k⁄1/dd)
, (3.96)

with K the modified Bessel function of the second kind. When we insert the
expressions for ‡i to write this in terms of rc, we find an exact match with the
bulk computations done in [131]. Let us study the d = 3 case in a bit more detail.
Using the values of ‡i given in (3.57), we find that the correlator is given by

ÈJ l(k)Jm(≠k)Í = ≠CJ

4fi
kfilm , (3.97)

which is precisely the (Fourier transform of) the initial CFT value (3.54). Thus
for d = 3 the correlator does not flow. As explained at the end of section 3.2.3,
this is due to the fact that the bulk theory is conformal in this case.

In even dimensions (3.96) contains logarithms and to implement the initial con-
dition as ⁄ æ 0 it is convenient to analytically continue in d and do the Fourier
trachapterto position space, just as is done in [131]. The ⁄ æ 0 limit is singular
for d > 4, but this simply reflects the fact that there are additional counterterms
that we have neglected to include. Including them via our procedure will result in
a finite answer.
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3.7.2 Stress-tensor correlators

Let us now consider correlators of the stress tensor at finite ⁄ which we will show
are dual to the propagator of gravitational perturbations at some constant r = rc

surface in the bulk. We will start with the field theory computation and compare
that with the bulk calculation afterwards.

Stress tensor correlators are computed by taking functional derivatives of the ef-
fective action W = ≠ log Z,

ÈTi1j1(x1) · · · Tinjn(xn)Í = 2
Ô

“

”

”“i1j1(x1) · · · 2
Ô

“

”

”“injn(xn) (≠W [“, ⁄]) . (3.98)

Again, we will focus on the two-point function of Tij on Rd in the vacuum. More-
over, as we need the deformation for a general curved background to compute the
correlators, we will only consider two, three and four boundary dimensions. As
explained in section 3.3 our derivation works generally, but becomes more tedious
in d > 4. Our deformation is

ˆW

ˆ⁄
=

⁄
ddx

Ô
“

C3
Tij + –d

⁄
d≠2

d

Gij

42
≠ 1

d ≠ 1

3
T i

i + –d

⁄
d≠2

d

Gi
i

42D
, (3.99)

where –d = (d1≠2/d(d ≠ 2)(fiG)2/d21+4/d)≠1. To compute the flow of the stress-
tensor two-point function, we proceed analogously as for the gauge field. We go
to momentum space, where stress tensor two-point functions in the vacuum can
be written in terms of following two tensor structures (again omitting the overall
delta function which enforces momentum conservation)

ÈTij(k)Tlm(≠k)Í⁄ = A(k, ⁄)�ijlm + B(k, ⁄)fiijfilm, (3.100)

fiij = ”ij ≠ kikj

k2 , �ijlm = 1
2(fiilfijm + fiimfijl) ≠ 1

d ≠ 1fiijfilm.(3.101)

Note that in d = 2 the first structure �ijlm vanishes identically. Taking derivatives
with respect to the metric and decomposing the expression in terms of �ijlm and
fiijfilm we find

ˆ⁄A(k, ⁄) = ≠2
1

A(k, ⁄) ≠ –dk2⁄≠(d≠2)/d
22

, ˆ⁄B(k, ⁄) = 0 , (3.102)

where in deriving the above equations we kept leading terms in 1/N and used
ÈTijÍ = 0. The identity

”Gij

”glm
= 1

4
!
k2”lmfiij ≠ k2”jmfiil + ”imklkj ≠ ”ijklkm

"
+ l ¡ m , (3.103)

= d ≠ 2
2(d ≠ 1)k2fiijfilm ≠ 1

2k2�ijlm (3.104)

85



3. Holography at Finite Cuto� with a T 2 Deformation

which leads to
”Gpq

”gij

”Gpq

”glm
≠ 1

d ≠ 1
”Gp

p

”gij

”Gq
q

”glm
= k4

4 �ijlm , (3.105)

is useful in deriving the above. The Ricci scalar term present in the trace relation
for d = 2 is topological once integrated and does not contribute to the correlation
functions.

The constancy of B under the flow of the deformation has the following conse-
quence. Upon taking the trace of (3.100) we find that

ÈT i
i (k)T m

m (≠k)Í⁄ = B(k, ⁄)(d ≠ 1)2. (3.106)

In d = 2, this is proportional to central charge, therefore in a T T̄ deformation of
holographic CFTs, (3.102) immediately implies that the central charge does not
flow. This is consistent with both the field theory result [102] and the bulk gravity
computation [100]. Also, in any odd dimensional CFT, there is no anomaly and
hence B(k, ⁄) = 0. In even dimensions, there is a trace anomaly, but by expanding
the trace anomalies around the Minkowski spacetime we find B(k, ⁄) = 0 in d Ø 4.

The solution for A(k, ⁄) is given by

A(k, ⁄) = ≠ k̃⁄1/d≠1

2d

K1≠d/2(k̃⁄1/d)
Kd/2(k̃⁄1/d)

+ –dk2⁄≠(d≠2)/d , (3.107)

where K is the modified Bessel function of the second kind and k̃ = d
Ò

2(d≠2)–d

d k =
!

d
4fiG

"1/d
k. Note that due to the second term above, this solution has a smooth

limit as ⁄ æ 0 and matches exactly onto the CFT answer for d Æ 4. In d = 3 the
form of the two point function is simple and given by

A(k, ⁄)|d=3 =
Ô

6–3/2
3 k3

1 + k
Ô

6–3⁄1/3 . (3.108)

As in the case of gauge fields, even dimensions have logarithms in the small ⁄
limit. For d > 4 one needs to add more counterterms to find a smooth limit as
⁄ æ 0. Our result is in agreement with the known bulk result for the two-point
function of the stress tensor [132]. However, note that in [132] the Einstein tensor
counterterm is absent and computing the on-shell action gives only the first term in
(3.107). In that approach, the correct correlator is found by dropping local terms
arising from the Bessel functions, whereas in our approach local terms cancel with
counterterms and the correlator has the correct power law behaviour when ⁄ æ 0.
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3.8 Discussion

We have studied e�ective field theories defined by the flow (3.1). The calculability
of quantities like the deformed energy spectrum and correlation functions came
from our assumption of large-N factorization. The operator defining the flow was
extracted by considering bulk AdS physics; in this context we provided evidence
that the dimensionful parameter ⁄ is related to a sharp radial cuto� in the bulk.

An important challenge facing development of this approach is 1/N corrections.
These are essential to gain a better handle on quantum gravity in finite patches
of spacetime. Our deforming operator was selected by a bulk classical analysis,
which can be modified by quantum e�ects.

Another interesting direction to pursue is the case of d = 1. The techniques
we use are general and can be applied to e.g. Jackiw-Teitelboim gravity in two
dimensions. In the limit where the cuto� is taken to be close to the boundary, the
deformed theory should correspond to the Schwarzian theory [133–135].

As mentioned in the introduction, the gravity theory with a Dirichlet cuto� is
rather strange, and the dual EFT is correspondingly strange. One possibility is
that the theory makes sense only as an ‘intermediate step’ in a bigger calculation.
For example, the full AdS/CFT duality can, in principle, be cut at some arbitrary
surface r = rc, then recovered by integrating over all fields at the cuto�, including
the metric. (See for example in [91].) In this calculation, the bulk partition
function with finite cuto� appears in the first step, but the dual EFT is then
coupled to gravity and to another theory in the UV. This is similar to the role of
the wavefunction in the dS/CFT correspondence as formulated in [136] — there,
the wavefunction of the universe is calculated with a Dirichlet boundary condition
at fixed time, but physical observables are obtained only after integrating over
boundary conditions. In the AdS case, this suggests that although our EFT may
not make sense in the UV as a quantum field theory, it should be possible to UV-
complete the theory when coupled to gravity. (This suggests the existence of an
anti-swampland: a class of e�ective field theories that cannot be UV-completed
unless coupled to gravity!)
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4 Topological Insulators

Ever since Lev Landau introduced his theory of second order phase transitions in
1937 [137], a tremendous progress on the study of phases of matter has been made.
In this paradigm, a phase is described by a local order parameter and its vacuum
expectation value (vev). For example, the Landau theory can be used to describe
the ferro- to paramagnetic phase transition, which can arise when the temperature
of, say, a magnet is increased above a certain critical temperature. The order
parameter is then used to measure an order in the system, which in this case is
the ordering of spins measured by the magnetic moment M . The ferromagnetic
phase is ordered and so M acquires a non-zero vev, while in the paramagnetic
phase the spins are not ordered and the vev of M vanishes. Moreover, due to the
fact that the spins in the paramagnetic phase are not ordered, the system (in that
phase) possesses a spin-flip symmetry that is not present in the ferromagnetic
phase. Thus, in the ferro- to paramagnetic phase transition, this symmetry is
(spontaneously) broken.

The beauty of this description of the ferro- to paramagnetic phase transition is
that it applies more generally to any symmetry-based phase transition. Using order
parameters and symmetry breaking these transitions can be discussed in a unified
way, but as always, there are exceptions. One of those exceptions are topological
phases and their transitions. Their description follows a rather di�erent trajectory
than the one proposed by Landau. Instead of focussing on the symmetries and
their breaking, one focusses on an entirely di�erent aspect: topology.

Topology is a branch is mathematics that studies (smooth) deformations of objects
and can be used to distinguish objects that cannot be smoothly deformed in one
another. For instance, with topology one can distinguish a donut from an apple.
Of course, this is true from just looking at them; the apple has no holes, whereas
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the donut has one. However, for more abstract objects that appear in mathematics
all the time, one cannot just look at the objects and determine how many holes
it has. This requires a more abstract notion of distinguishability and is precisely
where topology (among other reasons) was developed for.

In physics, topology appears in numerous places, such as string theory, quantum
field theory and condensed matter physics. Although these branches of physics
are very di�erent from each other and the topology might appear in di�erent
ways, they all have in common that certain observables such as conductivities are
very robust and do not change when perturbing the system slightly. Moreover,
only certain values for such observables are allowed, whereas others are forbidden.
One therefore says that those values are topologically protected and result in a
quantisation of the value of the observable. In the apple and donut example,
something similar happens for the observable that measures the number of holes:
a donut has one hole, not a half or a quarter. In fact, the analogy goes further.
When the donut or apple is squeezed slightly, the number of holes does not change,
only when one squeezes hard or tears the donut or apple apart, the number of holes
can change.

From a physics point of view, these properties of observables sound very coun-
terintuitive and they are, because most of the observables we know are not like
that at all. They change slightly when external parameters, such as temperature,
magnetic field or an applied voltage are varied a little bit. It is thus remarkable
that there are, in fact, physical systems that do behave rather robustly and have
observables that cannot be changed so easily. These systems possess a hidden form
of topology analogous to the number of holes in the donut and apple example. In
this dissertation we will embark on a journey to learn more about these fascinat-
ing systems and study a special class of them called topological insulators. These
systems distinguish themselves by having a topology present in reciprocal space
that is ultimately responsible for the quantisation of certain observables.

To understand what types of observables we will be talking about and what a
topological insulator is, let us study an example in more detail. This will allow
us to appreciate these new phases of matter and understand their revolutionary
properties. The simplest example to study is in fact also one of the first examples
of a topological insulator: the integer quantum Hall phase [138–140].

4.1 The quantum Hall state

The quantum Hall phase can occur in a two dimensional electron gas subject to
a perpendicularly applied, strong magnetic field. As the temperature of such a
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system is lowered, the Hall conductance ‡xy displays a rather striking property
as a function of the magnetic field: it follows a staircase-like function with well-
defined plateaus at integer multiples of e2/h. From a physics point of view, this
quantisation of the Hall conductivity is rather surprising, since it implies some
sort of mechanism that prevents other values of ‡xy. Normally, one would say
that this might be due to (crystal) symmetries, but since the quantum Hall e�ect
persists in the presence of disorder, this cannot be the case. Moreover, the external
magnetic field breaks time-reversal symmetry, so there is also no protection of the
plateau values is coming from that. What else could protect the quantisation of
‡xy? Indeed, the topology we discussed!

In a seminal work by Thouless, Kohmoto, Nightingale and den Nijs [141], it was
shown that there is a connection between topology or more specifically between
topology of the band structure in momentum space and ‡xy. To understand their
result and see what topology we are dealing with, let us study a simplified Hamil-
tonian that displays these topologically non-trivial features already. It will have,
in momentum space, two bands separated by a band gap, so that it corresponds
to an insulator. The most general Hamiltonian with these properties is,

H = ai(k)‡i, (4.1)

where i = x, y, z, ‡i the Pauli matrices and ai(k) generic functions of the momenta
kx and ky that take values on the first Brillouin zone, so ≠fi Æ kx,y < fi. The
functions ai are thus periodic with period 2fi. The bands of this model are given
by the two eigenvalues of H,

E± = ±E, E =


ai(k)ai(k). (4.2)

The band gap conditions is thus the statement that E > 0 throughout the first
Brillouin zone. The corresponding eigenfunctions are

–± =
3

az ± E
ax ≠ iay

4
. (4.3)

This is the spectrum of the Hamiltonian (4.1) and is all there is to know about
it, so where is the topology hiding? One natural way to look for is how the states
–± change as we change the momentum. For small changes of the momentum,
the changes in the states will be small as well and hence violating the robustness
condition we seek for. But what about large excursion through the Brillouin zone,
for instance if we go around the first Brillouin zone? To study that question, we
parametrise the eigenvectors –± by a sphere of radius E. In particular, writing
ax = E sin(◊) cos(„), ay = E sin(◊) sin(„), az = E cos(◊), we see that

–± = E

3
cos(◊) ± 1
sin(◊)e≠i„

4
(4.4)
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The angles ◊ and „ parametrise the sphere S2 and are functions of kx and ky.
The key observation is now that there is no restriction on the range of ◊ and „.
In fact, their range can be smaller than we are used to for a sphere and hence
they cover only part of the sphere, but they can also be larger. Consequently,
the sphere can be covered multiple times or fractions of that. Partial coverings
of the sphere can be changed to integer coverings by changing the functions ai

slightly without closing the gap. For integer coverings of the sphere this cannot
be done without closing the gap. In fact, this covering number or more generally,
winding number is the topology we were looking for. The topology comes from
how many times the Brillouin zone is wrapped around the sphere S2. To compute
the winding number, we can actually compute the value of a good old friend, the
integrated Berry curvature! For the Hamiltonians in question, (4.1), the Berry
curvature takes the form [142],

Fkxky = ≠ i

2‘ijkâiˆkx âjˆky âk, (4.5)

which is then integrated over the Brillouin zone to get the winding number ‹:

‹ = i

2fi

⁄

BZ
d2k Fkxky . (4.6)

The hat in (4.5) signifies that these are normal vectors in the direction of a =
(ax, ay, az). After integration we obtain the winding number ‹ associated to one
state, namely the state in the valance band. The conduction band is usually
disregarded as there is always a gap and does not contribute to the physics at low
energies. In more general cases when more bands are present, we need to sum over
all occupied states to get the total winding.

The non-trivial result of TKNN is that there is a relation between this topology, i.e.
the winding, and the Hall conductivity ‡xy. They showed, using the Kubo-formula
that

‡xy = e2

h
‹tot = e2

h

ÿ

–œocc.

i

2fi

⁄

BZ
d2k F (–)

kxky
, (4.7)

where – is a label indicating the occupied energy eigenstates over which we sum.
To get some feeling for the winding number ‹, consider,

ax = sin(kx), ay = sin(ky), az = m + cos(kx) + cos(ky). (4.8)

The corresponding Hamiltonian is indeed gapped for any mass |m| ”= 0, 2. Com-
puting ‹, we find that it is a function of m in a special way [143]:

‹ =

Y
]

[

1, 0 < m < 2
≠1, ≠2 < m < 0
0, otherwise

. (4.9)
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Thus, depending on the mass, the winding number is either zero, 1 or ≠1. Using
the TKNN result, we can therefore conclude that there is only a non-trivial Hall
conductance for |m| < 2.

This form for the winding number also displays another crucial behaviour of topo-
logical insulators. When we vary the mass m, there is a jump in ‹ whenever the gap
closes somewhere in the Brillouin zone. In other words, gap closing and reopening
(so crossing the critical values m = 0 and m = ±2) changes ‹ discontinuously and
thus induces a topological phase transition. This is a general feature, not only of
topological insulators, but also of topological phases in general. In fact, this can
be used to define what a topological phase is: it is a phase of matter robust under
deformation of the Hamiltonian that do not close the gap. This makes a topologi-
cal phase much di�erent from ordinary (symmetry-based) phases and transitions,
since in that case symmetries are broken upon going from one to another phase.
For topological phases that is not the case, they retain their symmetry on either
side of the transition.

Another intriguing general property of topological insulators is the existence of
boundary modes. For the class of Hamiltonians H we consider here, this can be
easily demonstrated by going to position space and solving the Dirac equation in
the presence of a boundary. To do so, we first have to take the continuum limit of
the explicit Hamiltonian we have considered before:

H = sin(kx)‡x + sin(ky)‡y + (m + cos(kx) + cos(ky))‡z. (4.10)

To take the continuum limit, we simply take the size of the first Brillouin zone to
infinity, so that it looks like a two-dimensional plane and we only need to take the
leading order in the momenta pieces. The result is,

H = kx‡x + ky‡y + m‡z, (4.11)

where we absorbed a factor of 2 in m. Going to position space then results in a
Dirac operator,

D = ≠i‡xˆx + ≠i‡yˆy + m‡z. (4.12)

This operator acts on a two-component fermion �. Let us introduce a boundary
by making m depend on y so that m(y) is positive for y æ Œ, but negative at
large negative values of y This appears to be a rather blurry boundary, but one
can also imagine making the region where m(y) changes sign very small, making
the boundary sharper. Interestingly, this Dirac operator has a zero mode. Let us
set the momentum of the fermion in the x direction to zero, so that we end up
with the di�erential equation,

ˆy�(y) = ≠‡xm(y)�(y). (4.13)
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The normalisable solution is given by

�(y) = exp
3

≠
⁄ y

y0

m(yÕ)dyÕ

4 3
1
1

4
, (4.14)

This zero mode only depends on the sign change of m, since for large values of y,
� is exponentially suppressed, and sharply peaks near y = y0. Crucially, it also
does not depend on the details of the mass profile. This zero mode was first found
by Jackiw and Rebbi in [144]. Due to the zero-mode’s ignorance about the details
of the mass profile, they are robust agains small changes in m(y); only changing
the asymptotics of m(y) will alter the localised nature of the zero-mode. Said
di�erently, the zero-mode is topologically protected edge mode located at y = y0
and is yet another hallmark of topological insulators.

Staring a bit longer at these results, we also see another intriguing property. The
boundary mode is a localised excitation as long as the mass changes sign as a
function of y. But from (4.9), where we did not have any boundary present, a
change in sign of m changes the winding and hence the topological phase as well.
Of course, we have taken a continuum limit here, so these results for the winding
cannot be copied directly, but this will not a�ect the physics. We thus see that
on the phase boundaries between topologically trivial and non-trivial insulators
there are edge states and that their presence is determined by topology of the
system without boundary. Even more important, since the vacuum is always con-
sidered topologically trivial, a topologically non-trivial insulator on a finite slab of
material has boundary modes. This is a manifestation of the bulk-boundary corre-
spondence. Due to this intimate relationship, the topology of the band structure
can be probed experimentally by studying the edges using angle-resolved photoe-
mission spectroscopy.

Thus far, our discussion has revealed two very important features of topological
insulators, even though we focused on a particular class of Hamiltonians. First, we
have seen that topological insulators have a band structure that can be topologi-
cally non-trivial, i.e can have non-zero value for ‹. Second, this topology manifests
itself as boundary modes whenever the material has boundaries.

Note also that we have not taken into account any interactions. In fact, this will
be assumed throughout this part of the dissertation. This simplifies the analysis a
lot, but still leaves a wealth of interesting topological phases at our disposal as we
will discover in chapters 5 and 6. Including interactions is a challenging endeavour,
which we will discuss briefly in the summary and outlook.

Before moving on to discuss what we want to do with these topological insulators
and what role they play in this dissertation, let us present the same system from
a high-energy theory perspective. This was also mentioned briefly in chapter 1.
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4.1. The quantum Hall state

A high-energy perspective

To understand the quantum Hall state from a more high-energy perspective, one
can think of it in the following way. Start with a massive Dirac fermion � in
2+1 dimensions coupled to a background U(1) gauge field Aµ, which signifies the
electron in 2 + 1 dimensions coupled to an external magnetic and electric field.
The Euclidean action for this system is

S =
⁄

d3x � (i“µDµ + m) � (4.15)

with “µ the gamma matrices satisfying the Cli�ord algebra {“µ, “‹} = ≠2”µ‹ , m
the mass of the fermion and

Dµ = ˆµ ≠ iAµ. (4.16)

Since the Dirac fermion is massive we can integrate it out and consider the low
energy e�ective theory for energies E below the mass m. At these energies, we
cannot excite any of the modes of the fermion so that it is acting as an insulator
or in more high-energy terminology, there are no propagating degrees of freedom
at energies below m. Since the theory is quadratic in � the path integral over �
can be done exactly and gives the partition function,

Z[A, m] = det (i“µDµ + m) = exp (Tr log (i“µDµ + m)) . (4.17)

Expanding the term in the exponent in the last equality to lowest order in E/m,
we get

Se� = ≠i
k

4fi

⁄
d3x ‘µ‹flAµˆ‹Afl + Sdiv. (4.18)

It is not too di�cult to derive this result, see [145,146] for more details. We note
two things about this e�ective action Se� . The first part is known as (Abelian)
Chern-Simons theory. This theory does not have propagating degrees of freedom in
accord with what we said before and is what one would expect from an insulating
system. The second piece, Sdiv, also arises after expanding the log in (4.17) to
second in Aµ, but is not finite. It is linearly divergent and will be dealt with
momentarily.

Besides just Se� , there are more terms, which are small as E/m becomes small
and so for energies E well below the gap, the physics is completely captured by the
Chern-Simons action. To make contact with the quantum Hall e�ect, let us see
what the conductivity is. Conductivities appear as the coe�cients relating external
electric fields to currents. In particular for the Ji component of the current, we
have

Ji = ‡ijEj (4.19)
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so
‡ij = ”Ji

”Ej
. (4.20)

Moreover, the current Ji is the functional derivative of Se� with respect to Ai and
upon writing Ej = ˆ· Aj , we can get the Hall conductivity from Se� as

‡ij = ”2Se�
”Ai”ˆ· Aj

. (4.21)

Performing the functional derivatives, yields:

‡xy = ≠i
k

2fi
, (4.22)

which is a result in Euclidean signature. To go back to Lorentzian signature, we
simply strip o� the ≠i. To relate to the quantum Hall physics, it is thus clear that
we need to know whether k is quantised or not, since that will make ‡xy quantised
as well. Luckily, as is explained beautifully in [147], k is indeed required to be
quantised as a result of gauge invariance of the action (4.18). In fact, by restoring
units, one finds that ~k/e2 = ‹ needs to be an integer, so that

‡xy = k

2fi
= e2

h
‹, (4.23)

as it should. Notice also that this is exactly the same as we found before. The value
of k can also be computed once the fermion � has been integrated out. Naively,
this will give the wrong result, but a more careful analysis, which also regularizes
the divergent piece Sdiv, gives either ‹ = 0 or 1, depending on the sign of the mass
m. It is no coincidence that this feature is exactly the same as we encountered
before as well. Other values of ‹ can also be obtained by considering multiple
fermion flavours in (4.15). The important point is that the e�ective action will
still take the form of a Abelian Chern-Simons theory and so one can also take that
action as a starting point, with any integer ‹ and use it for an e�ective description
of a quantum Hall state with ‡xy ≥ ‹.

This perspective also reveals another interesting feature of the quantum Hall state.
Namely, as alluded to before, when the systems is put on a manifold M with
boundary, there is a non-zero conductance that is purely localised on the boundary.
In the Chern-Simons perspective, this is nothing but the statement that the Chern-
Simons action on manifolds with boundaries is not gauge invariant under Aµ æ
Aµ + ˆµ–, since then

S æ S ≠ i
k

4fi

⁄

ˆM

d2x‘µ‹Aµˆ‹–. (4.24)

Moreover, in the case of non-empty boundary, the variational problem of the action
also has to be supplemented with boundary conditions. Without going in too
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much detail here, these boundary conditions have the e�ect of inducing degrees of
freedom on the boundary that are also not gauge invariant, but cancel the non-
gauge invariance of the bulk action so that the full system (bulk plus boundary) is
gauge invariant again. A process known as anomaly inflow. The boundary degrees
of freedom are rather simple and form a theory of ‹ free chiral scalar fields in 1+1
dimensions. These modes are gapless and are responsible for the Hall conductivity
in the quantum Hall state. Each chiral scalar is responsible for e2/h worth of
conductivity and so the quantisation of the Hall conductivity is coming from the
number of degrees of freedom that live on the boundary.

4.2 Anybody out there?

We have now briefly seen some of the properties of quantum Hall states and
argued that many of them are also present in other topological phases. One of
the objectives of this part in the dissertation is to understand the landscape of
topological phases or more specifically of topological insulators. This question is
similar to the universality classes studied in the context of the Landau paradigm.
This resulted in a list of possible (symmetry-based) phase transitions and we would
like to understand here whether we can make such a list for topological insulators
as well. Due to the topological nature of these phases there are discrete labels
assigned to each phase and so one might be able to indeed enumerate them and
in fact find all of them.

But what is the point in classifying topological insulators? What do we learn
from enumerating all topological phases? First of all, since this is a theoretical
physics dissertation, there is a wealth of interesting physics going on that has
been measured in some way or another, but in some cases still lacks theoretical
understanding. By enumerating all topological phases, one can understand them
more systematically and see what the common features are in much the same way
as we saw for topological insulators in the above. Second, knowing how many
topological phases there are, might also reveal phases that on the basis of a simple
analysis appear to exist but have not been measured experimentally yet. It can
therefore predict new phase, new topological invariants and thus new physics in
both the bulk as well as along the boundary.

How then, do we classify the quantum Hall phases that we saw in the previous
section? Each quantum Hall phase is specified by an integer, which we denoted
by ‹. Since any two quantum Hall phases with di�erent integers are separated by
gap-closing, the quantum Hall phases are classified by an integer. In particular, the
value of the topological invariant classifies the quantum Hall phases. In the next
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two chapters, 5 and 6, we embark on a quest to find more topological invariants
that distinguish one topological insulator from another. The novelty of this work
as compared to others is the rather simple set of rules that we derive to find all
topological invariants in a given material with a particular set of symmetries.

The symmetries that we will be mostly be concerned with are symmetries of the
lattice and time-reversal symmetry. Symmetries of the lattice are operations on the
lattice points that map it to other lattice points or itself. For example, this could
be a (discrete) translation symmetry along the lattice directions or a reflection
in some line or plane. These symmetries have the e�ect of constraining not only
the wavefunction in real space, but also in reciprocal space. In reciprocal space,
it means that the full band can be constructed from knowledge of the band in
a smaller part of the Brillouin zone, called the fundamental domain. Moreover,
for instance when a reflection symmetry is present, the bands can be even or
odd under the reflection and hence assigns additional labels to the bands. These
additional labels are the eigenvalues of the symmetry operation and is one of the
key concepts we will use in the classification in chapter 5. A few details about
crystal symmetries has been gathered in appendix A.3.

The other symmetry we will be interested in is time-reversal symmetry (TRS).
This symmetry, denoted by T , flips the arrow of time and therefore also flips the
sign of the momentum in reciprocal space. At momenta in the (first) Brillouin
zone that are invariant under time-reversal, time-reversal will commute with the
(Bloch) Hamiltonian and can thus cause the spectrum to become degenerate there.
Generically, this is indeed what happens and is referred to as Kramers’ degeneracy.
In the classification this has the e�ect of changing not only the eigenvalues we
talked about in the above, but also the topological invariants. The topological
invariants will not be valued in the integers anymore as we saw for the quantum
Hall phases, but will now only take the values 0 and 1. Understanding how this
invariant can be understood intuitively in the presence of other crystal symmetries
will be a major part of both chapters 5.

On the free level, there are two types of time-reversal symmetry, depending on
square of T . As we discuss in appendix A.3, the square can either be +1 for
spinless particles or ≠1 when the spin of the electron is take into account. These
form two big symmetry classes that are denoted by class AI and AII. There is also
a class for systems that are not invariant under time-reversal, which is denoted as
class A. Together they form Dyson’s three-fold way, [148]. In this dissertation we
will be mostly concerned with classes A and AII, but occasionally mention class AI
as well. Besides class A, AI and AII, there are in fact seven more classes found by
Altland and Zirnbauer [149] that are concerned with systems possessing a chiral
symmetry or particle-hole symmetry.
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After having found a set of topological insulators in chapter 5 in each class, it
is crucial to check our results, not only to determine whether the invariants we
found are actual topological invariants, but also to be able to claim a completeness
of our set of topological insulators. One way this could be done is by setting
up an experiment and trying to see whether the new topological phases actually
exist. Unfortunately, this is extremely di�cult, since it is hard to find an explicit
representative Hamiltonian within each phase that is realised in Nature as well.
Moreover, showing completeness experimentally is virtually impossible. Instead,
let us return to our theoretical laboratory. Here we are much more fortunate,
since in mathematics the classification of topological insulators can be put on a
very rigorous footing. Within the framework known as K-theory, we can indeed
verify whether the claims made in 5 are correct. In chapter 6 we will embark on
this verification by explicitly computing the mathematical objects responsible for
the classification of topological insulators. For the simple cases that we checked,
we can indeed show that our simple set of rules give the correct classification of
topological insulators.

This concludes the introduction to the second part of this dissertation. We have
discussed the basics of topological insulators through a simple topological insu-
lator, the integer quantum Hall phase. This provides enough background to un-
derstand the following chapter, but for some technical tools that we use and an
introduction in K-theory, see appendices A.3 through A.5.
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5 Combinatorial
Classification of

Crystalline Topological
Insulators

This chapter is based on the following publications:

J. Krutho�, J. de Boer, J. van Wezel, C. L. Kane and R-J. Slager,
“Topological Classification of Crystalline Insulators through Band Structure Com-
binatorics“,
Phys. Rev. X 7 (2017) 4, 041069, arXiv:1612.02007 [cond-mat.mes-hall].

J. Krutho�, J. de Boer and J. van Wezel,
“Topology in time-reversal symmetric crystals“,
Submitted to Scipost, arXiv:1711.04769 [cond-mat.str-el].

5.1 Introduction

The tenfold periodic table has been a cornerstone in the description of the connec-
tion between topology and symmetry [150, 151]. It specifies the number of topo-
logically distinct ground states that are possible in free fermion systems in any
number of dimensions, if their behaviour under time-reversal symmetry, particle-
hole symmetry, and chiral symmetry is given [152]. The combinations of discrete
symmetries on which the ten classes in the table are based, do not include any spa-
tial symmetries. Materials in nature however, are made up out of atoms which are
often positioned in a periodic crystal structure containing crystal symmetries. In-
deed, the very existence of periodic band structures for electrons is a consequence
of the breaking of translation symmetry by an atomic lattice. It is well-known
that within time-reversal symmetric topological insulators, the discrete transla-
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tional symmetries surviving within the atomic lattice lead to the definition of
weak invariants in three dimensions, which need to be used in addition to the
tenfold periodic table to get a full classification of the topological state [153,154].
This procedure can be generalized to include any space group symmetry in two and
three spatial dimensions [155] and is expected to become experimentally accessible
and relevant in the presence of lattice defects [156–161]. More generally, the inter-
play of the rich structure of space group symmetries and topology entails an active
field of research, providing for new phases and according quasiparticles [162–172].

In addition to their role in characterizing topological insulators, lattice symme-
tries are also vital in describing the phases that emerge on the boundary be-
tween topologically distinct phases. A notable example is found in gapless Weyl
semimetals [173], one of which has been recently identified experimentally in
TaAs [174–176]. The topological origin of these Weyl phases ensures the presence of
specific surface states, called Fermi-Arcs, which connect the band crossings in the
bulk. The presence of either three-fold rotations or nonsymmorphic space group
symmetries in these materials guarantees that the bulk band crossings cannot be
gapped, and it therefore also protects the corresponding Fermi-arcs [177–179].

In this chapter, we use space group symmetries to provide a simple, but univer-
sal, algorithm for identifying and labelling distinct crystalline topological phases.
We address crystals with or without time-reversal, but broken particle-hole, chiral
symmetries or any other anti-commuting or anti-unitary symmetry, in all phys-
ically relevant spatial dimensions. The method specifies all possible phases of
spinless particles in class A, in one or two dimensions, and in three dimensions up
to a subtle open K-theoretical question addressed later on. For class AII, we will
find interesting new Z2 invariants but do not prove completeness. In chapter 6,
we will do various non-trivial checks in K-theory that confirm our results.

The algorithm essentially uses elementary representation theory to characterise
topologically distinct band structures. In two dimensions this results in the com-
plete list of allowed topological phases shown in Table 5.1. The equivalent table
in three dimensions can be constructed using the same procedure. Our argu-
ments agree with the mathematical computations in terms of twisted equivariant
K-theory, as proposed by Freed and Moore [181]. This connection elucidates not
only on putting involved mathematical notions in a straightforward physical set-
ting but most importantly provides a formal mathematical underpinning of our
classification.

The algorithm will be worked out in detail below, but can be presented here on a
heuristic level. The occupied bands in a crystal are described by Bloch functions
on the Brillouin zone (BZ). These functions transform under the crystal symmetry
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A AII
G Representation Chern number Representation Torsion invariants
p1 Z Z Z Z2
p2 Z5 Z Z Z4

2
pm Z3 0 Z Z2

2
pg Z 0 Z Z2
cm Z2 0 Z Z2

p2mm Z9 0 Z Z4
2

p2mg Z4 0 Z Z2
2

p2gg Z3 0 Z Z2
2

c2mm Z6 0 Z Z3
2

p4 Z8 Z Z3 Z3
2

p4mm Z9 0 Z3 Z3
2

p4gm Z6 0 Z2 Z2
2

p3 Z7 Z Z4 Z3
2

p3m1 Z5 0 Z4 Z3
2

p31m Z5 0 Z3 Z3
2

p6 Z9 Z Z4 Z3
2

p6mm Z8 0 Z4 Z3
2

Table 5.1: The complete classification of topological phases of spinless particles
in class A and spin≠ 1

2 particles in class AII, both within two-dimensional crystals.
The wallpaper groups G in the first row are denoted in the Hermann-Mauguin nota-
tion [180]. The second and fourth column denotes the number of integers that need
to be specified in order to completely characterise the representation of the valance
bands of a topological phase in the corresponding wallpaper group, whereas the
third and fifth column signifies whether or not a Chern number/torsion invariant
is present. The total classification is the (direct) sum of the representation and
Chern number/torsion invariants within each class.

in a particular way which changes as one goes from a generic point in the BZ to
a high symmetry point as outlined in more detail in appendix A.3. As there are
di�erent ways of reaching such high symmetry points, the transformation rules of
Bloch functions need to satisfy gluing conditions which ensure their mutual com-
patibly [182]. The possible valence band structures in a crystal are thus limited
to ones that are consistent with the gluing conditions implied by its crystal sym-
metry. The way a valence band transforms under crystal symmetries can only be
altered by exchanging it with a conduction band, which necessarily involves a clos-
ing of the band gap. Since topological phases of matter are defined to be robust
to changes that keep the gap open, an alteration in the transformation properties
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of the valence band can be interpreted as a topological phase transition. This is
analogous to the way changes in more familiar topological invariants, such as the
Chern number or TKNN invariant [141, 183], are necessarily accompanied by a
closing of the gap, which we also saw in section 4.1. We therefore find that the
transformation properties of the valance band characterise its topological phase,
and need to be included in the topological classification. We describe the trans-
formation properties of the valence band by a set of integers, which, together with
the Chern number and Z2 invariants, completely specifies the topological phase
of any crystal within class A or AII (modulo topologically trivial bands). Taking
robustness of a topological phase under smooth deformations of the Hamiltonian
and counting modulo topologically trivial bands (which we discuss below in more
detail) as the starting point of our method, we can rigorously show for class A that
the invariants identified are indeed topological, and that we find the complete set
of distinct invariants. This should be contrasted with the alternative approach
of generalising known topological invariants, such as for example in [184], where
completeness and topological invariance cannot be guaranteed. For class AII, such
a proof is more di�cult, since the K-theory computations have not been done in
the literature, except for some simple space groups in two dimensions, see [5] for
a more thorough exposition.

This chapter is organized as follows. We first present the example of a specific two-
dimensional crystal structure to illustrate the classification scheme on a conceptual
level, and to introduce some notation. In section 5.4 we then discuss the general
case in two dimensions. We show in Section 5.5 that three dimensional topological
insulators in class A and AII can be classified using the same scheme after taking
into account some additional subtleties. Generalizations to other classes will also
be considered in this section.

5.2 Some examples

To give a conceptual description of the proposed classification scheme, we first
focus on two particular examples of a two-dimensional crystal whose crystal struc-
tures fall within the symmorphic wallpaper groups p4mm and p4. For p4mm, we
assume no time-reversal symmetry, hence we will be in class A, but for p4 we will
consider the system to be in class AII.
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5.2.1 p4mm in class A as an example

Consider a square array of atoms with lattice spacing a, which is set to unity
(a = 1) in the remainder of this chapter. The lattice is spanned by the lattice
vectors t1 = (1, 0) and t2 = (0, 1). Besides the lattice translations, the crystal is
symmetric under all operations that leave a square invariant. These symmetries
form the point group G = D4, which is generated by a reflection t about the x-
axis and an in-plane 90¶-rotation r. A general element g of the space group p4mm
consists of the combination elements R of the point group D4 and a translation
along a vector X = n1t1 + n2t2. In momentum space, we have two reciprocal
lattice vectors g1 = 2fi(1, 0) and g2 = 2fi(0, 1). We parametrise the Brillouin
torus as a square with ≠fi Æ kx,y Æ fi. Using this parametrisation, the point
group elements act as

r · (kx, ky) = (≠ky, kx), t · (kx, ky) = (kx, ≠ky). (5.1)

The fundamental domain � thus consists of the region with momentum values
0 Æ kx Æ fi, 0 Æ ky Æ kx, as shown in Figure 5.1.

Within the fundamental domain, there are fixed points of (part) of the symmetry
operators in D4. As we explain in detail in appendix A.3, the electronic states with
momenta corresponding to such a fixed point sit in unitary irreducible represen-
tations of the corresponding stabilizer group. In the condensed matter literature,
these special momenta are also called high-symmetry points and for the case at
hand are shown in figure 5.1. The corresponding stabilizer groups are given in
table 5.2.

As an example, consider the origin � = (0, 0). The momentum of Bloch states
at this point in the first Brillouin zone is held fixed under both r, and t, and
any combination of reflections and rotations. The same is true for M = (fi, fi),
because under r and t this point is mapped onto itself modulo a reciprocal lattice
vector. The presence of reflections in the group D4, also allows entire lines in the
first Brillouin zone to be left invariant under some of the point group operations.
One readily verifies that l1 = (kx, 0) is left invariant by t, while l2 = (fi, ky) and
l3 = (kx, kx) are invariant under the action of r2t and rt, respectively. At the
intersection of l1 and l2 we find the point X = (fi, 0), which must be left invariant
under both the symmetries that leave l1 una�ected, and the symmetries that keep
l2 fixed.

The stabilizer groups at high symmetry points may necessitate bands at those
points to become degenerate. This can be seen directly from the way a space
group element acts on the Bloch function �k,i(r) with band index i, position r,
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Figure 5.1: The fundamental domain (shaded red) � of the first Brillouin zone.
It contains only points that are not related to each other by transformations in the
point group D4, as described by equation (5.1). high symmetry lines are indicated
in red, and high symmetry points in black.

and wave vector k:

{R|x} · �k,i(r) =
ÿ

j

�k
ij({R|x})�R·k,j(r ≠ x). (5.2)

The point group element R transforms a Bloch function with momentum k to a
Bloch function with momentum R · k. Bloch functions with di�erent band indices
j, but equal momentum k, may be mixed by the matrix �k

ij({R|x}). The Bloch
functions can always be arranged so that this matrix is a unitary irreducible repre-
sentation of the space group element {R|v}. For generic points in the fundamental
domain away from high symmetry locations, is usually just a phase factor (i.e. a
one-dimensional representation). The elements of the space group for which x is
a pure lattice translation, combine Bloch functions �R·k,j(r ≠ x) that di�er from
the functions �R·k,j(r) by pure phase factors. Space groups consisting only of
these types of elements, such as p4mm, are called symmorphic, and in dealing
with these space groups we only need to consider ordinary representations of the
point groups when determining the �k

ij({R|v}). For nonsymmorphic space groups,
which contain screw axes or glide planes, and have elements with v a fraction of a
lattice translation, projective representations of the point groups need to be taken
into account. See appendix A.3 for an example.

Since the Hamiltonian is symmetric with respect to the space group of the lattice,
eigenstates of space group elements must also be eigenstates of energy. Equa-
tion (5.2) shows the eigenstates of {R|v} to be linear combinations of �R·k,j(r),
so these states must all have equal energy. For states at high symmetry points,
such that R · k = k, all bands at k connected by �k

ij({R|v}) are then necessarily
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k stabilizer group Gk
� (0, 0) D4
M (fi, fi) D4
X (fi, 0) Z2 ◊ Z2 = {e, r2, t, r2t}
l1 (kx, 0) Z2 = {e, t}
l2 (fi, kx) Z2 = {e, r2t}
l3 (kx, kx) Z2 = {e, rt}
int(�) (kx, ky) {et}

Table 5.2: The stabilizer groups contained within the space group p4mm. These
stabilizer groups consist of all symmetry operations which keep the momentum of
a particular high symmetry point or line fixed. The fundamental domain � in this
case contains momentum points with 0 < kx < fi and 0 < ky < kx, and its interior
is denoted int(�).

degenerate. This conclusion can also be expressed on the level of the Hamiltonian
itself. If the full Hamiltonian is written as a sum of Bloch Hamiltonians H(k), the
action of the crystal symmetries can be described by:

�k(R)H(k)�k(R)≠1 = H(R · k) ∆ [�k(R), H(k)] = 0 if R · k = k. (5.3)

Here �k(R) is a unitary (matrix) representation of the point group element R, or
equivalently, an operator enacting its symmetry transformation. The Bloch Hamil-
tonian commutes with the elements of the stabilizer groups at the associated high
symmetry points and lines. At these locations, the eigenfunctions of the Bloch
Hamiltonian are thus also eigenfunctions of the elements of the stabilizer group.
Conversely, the collection of states in the valence band with momentum k, forms a
representation of the stabilizer group Gk. This representation consists of unitary
irreducible representations of Gk, which represent either individual bands (one-
dimensional irreducible representations) or sets of necessarily degenerate bands
(higher-dimensional irreducible representations). Determining the irreducible rep-
resentations of Gk can thus be interpreted as a recipe for constructing the entire
set of valence bands at high symmetry locations. As we will see in the follow-
ing, however, it is necessary to impose additional constraints when considering the
structure of the valence bands throughout the first Brillouin zone.

These constraints come from the fact that representations along high symmetry
lines need to connect properly, i.e continuously, to representations at their end-
points, the high symmetry points. That is, if a Bloch state has a certain eigenvalue
for a symmetry transformation on a high symmetry line, that eigenvalue cannot
suddenly change at the endpoint of the line. Let us be a bit more concrete for
p4mm. In this case, the bands at � and M form a representation of D4, and at
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{1} {t}
li,+ 1 1
li,≠ 1 ≠1

Table 5.3: The character table of Z2. The irreducible representations along the
line li are denoted by li,±. The columns are labelled by the conjugacy classes of
Z2, containing all symmetry operations that share the same character for each
representation. Here ± signifies whether states are respectively even or odd under
the symmetry transformation.

{1} {r2} {r, r3} {t, r2t} {rt, r3t}
�0 1 1 1 1 1
�1 1 1 1 ≠1 ≠1
�2 1 1 ≠1 1 ≠1
�3 1 1 ≠1 ≠1 1
�4 2 ≠2 0 0 0

Table 5.4: The character table of D4 at �. The irreducible representations are
denoted by �i. The columns are labelled by the conjugacy classes of D4. The sta-
bilizer group at M is also D4 and has the same character table, but the irreducible
representations are denoted by Mi.

X of Z2 ◊ Z2. Along the lines li connecting these three points, the bands need
to form a representation of Z2. Symmetry transformations making up a Z2 group
structure always have eigenvalues ±1, so that the eigenstates along li can be either
even (+) or odd (≠) under the transformation:

Ri |uk, ±Í = li,±(Ri) |uk, ±Í (5.4)

Here Ri is an element of the stabilizer group Z2 along li, and |uk, jÍ represents a
state at momentum k with reflection eigenvalue ±1. The eigenvalues li,±(Ri) =
±1 in general are representations of the stabilizer group Z2 along li. Since the
representations are one-dimensional (i.e. they apply to a non-degenerate band),
they can be replaced by their characters, which equal the eigenvalues ±1. In the
general case of higher dimensional representations, or having a degenerate set of
Bloch functions, the representations become matrices.

If we now follow a particular band along a high symmetry line li towards its
endpoint, the eigenvalues of the symmetry transformation are preserved along the
line. On the high symmetry point at the end of the line, the state is symmetric
under more symmetries, and gains some additional quantum numbers describing
those, but it retains the eigenvalue that it carried along the line. We are thus
restricted in the choice of representation on the high symmetry points by the
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{1} {r2} {t} {r2t}
X0 1 1 1 1
X1 1 1 ≠1 ≠1
X2 1 ≠1 1 ≠1
X3 1 ≠1 ≠1 1

Table 5.5: The character table of Z2 ◊ Z2 at X. Irreducible representations in
this case are denoted by Xi and the columns are labelled by the conjugacy classes
of Z2 ◊ Z2.

representations along the high symmetry lines. In other words, when we follow any
band towards an endpoint of li, its representation induces either a representation
of D4 or of Z2 ◊ Z2, depending on the endpoint. In terms of character tables, this
means that the characters in the character table corresponding to the common
elements at li and the high symmetry points need to agree. For example, suppose
a band transforms as l1,≠, i.e. it is odd under t along l1. As the entire line l1 is
held fixed by t, the action of t at the endpoint X must be the same as its action
along l1. Consulting the character table 5.5, we see that at X, the band must thus
transform as either X1 or X3.

At �, the other endpoint of l1, the band should similarly remain odd under t.
According to the character table 5.4, we then see that at �, the band must trans-
form as either �1 or �3. In fact, the two-dimensional representation �4 is also a
possibility, as long as there is an additional even band along l1. In that case, the
even and odd bands becoming degenerate at � would be consistent with t being
represented in �4 by a two-dimensional matrix with eigenvalues 1 and ≠1 (the
character for �4 in table 5.4 is the sum of eigenvalues). At � the two band then
form a doublet of D4.

Repeating this analysis for even bands along l1, the entries in tables 5.5 and 5.4
for the conjugacy classes {t} and {t, r2t} respectively, need to be 1. Hence, even
bands along l1 end in X0 or X2 at X and go to �0, �2 or �4 at �. Applying similar
constraints to all high symmetry locations ensures a consistent representation of
the entire set of valence bands throughout the fundamental domain.

Completing the list of which representations along lines li enhance to which repre-
sentations at the endpoints �, X, and M results in Table 5.6. It shows for example
that starting from a given representation at �, only certain representations at the
other high symmetry locations are allowed. Below we will use this information
to define a set of integers that specifies the representation of the complete set of
valance bands. These integers then characterize the topological phase in space
group p4mm, modulo Chern numbers (in class A).
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group enhancement rep. enhancement
l1 D4 Ω Z2 �0, �2, �4 Ω l1,+

D4 Ω Z2 �1, �3, �4 Ω l1,≠

Z2 ◊ Z2 Ω Z2 X0, X2 Ω l1,+
Z2 ◊ Z2 Ω Z2 X1, X3 Ω l1,≠

l2 D4 Ω Z2 M0, M2, M4 Ω l2,+
D4 Ω Z2 M1, M3, M4 Ω l2,≠

Z2 ◊ Z2 Ω Z2 X0, X3 Ω l2,+
Z2 ◊ Z2 Ω Z2 X1, X2 Ω l2,≠

l3 D4 Ω Z2 �0, �3, �4 Ω l3,+
D4 Ω Z2 �1, �2, �4 Ω l3,≠

D4 Ω Z2 M0, M3, M4 Ω l3,+
D4 Ω Z2 M1, M2, M4 Ω l3,≠

Table 5.6: The list of consistency relations between representation along high
symmetry lines li and possible representations at their endpoints �, X, and M .

Counting the topological phases protected by p4mm

The topological phases we would like to characterize, are defined to be phases of
matter which are stable under any deformations that do not close the gap between
valence and conductions bands, and that do not change the crystal symmetry.
Deformations that do close the gap, necessarily cause either the representation
of the set of valance bands or the Chern numbers to change. This means that
a topological phase can be uniquely specified by the representation of its set of
valance bands and its Chern numbers. For the specific case of the space group
p4mm, there are no Chern-numbers [163] due to the reflection symmetry in D4,
and so its topological phases within class A are completely specified once the
representation of the set of valance bands is known. In table 5.6 we already
identified constraints on the allowed representations, which we will now employ to
classify the possible topological phases of p4mm.

The representation of the set of valance bands, denoted by V, is built out of a
number of irreducible representations at each high symmetry point. To specify V,
we therefore simply count the number of bands in each irreducible representation at
the high symmetry points, subject to the constraints in Table 5.6. Formally, these
numbers are allowed to be negative as well as positive, because in the underlying
K-theory the counting of bands is always relative. For real materials one can
restrict attention to just positive integers. As can be seen from the character
tables 5.4, 5.5 there are five irreducible representations at both � and M , and four
at X. This results in 14 integers, nk

i , signifying how many bands there are at k
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transforming under the representation labeled i at that point. For example, the
integer nX

2 indicates the number of bands at X transforming as X2.

We can then consult Table 5.6 to see that only certain representations at �, X
and M are possible depending on whether the bands are odd or even along the
connecting lines li. This relates the integers nk

i at di�erent high symmetry points
to each other. For instance, the number of even bands along l1, nl1

0 must be equal
to the combined number of bands in �0, �2 and �4 at �,

nl1
0 = n�

0 + n�
2 + n�

4 . (5.5)

Moreover, going to the other endpoint, X, the number of even bands must equal
the sum of those in X0 and X2. The combination of the two relations between the
number of even representations along the high symmetry lines and the combined
numbers of representations at its endpoints then implies a direct relation between
the high symmetry points:

n�
0 + n�

2 + n�
4 = nX

0 + nX
2 . (5.6)

Repeating these steps for the odd bands along l1, we find a similar relation,

n�
1 + n�

3 + n�
4 = nX

1 + nX
3 . (5.7)

The integer n�
4 specifying the number of bands in the two-dimensional represen-

tation �4 appears in both sets of relations, because a doublet at � must split
into both an even and odd band along l1. The analysis for the remaining high
symmetry lines l2 and l3 is similar and yields the relations:

n�
0 + n�

3 + n�
4 = nM

0 + nM
3 + nM

4 (5.8)
n�

1 + n�
2 + n�

4 = nM
1 + nM

2 + nM
4 (5.9)

nM
0 + nM

2 + nM
4 = nX

0 + nX
3 (5.10)

nM
1 + nM

3 + nM
4 = nX

1 + nX
2 . (5.11)

The six relations between integers nk
i show that they cannot be chosen indepen-

dently, and they thus reduce the number of integers required to specify the com-
plete representation of the set of valance bands. In fact, only five of the six relations
are independent from each other. That is, the rank of the system of equations re-
lating di�erent integers nk

i has rank m = 5. This implies that 14 ≠ m = 9 integers
need to be specified to characterize the set of valance bands. These nine integers
completely fix how many valence bands there are and under which representations
they transform on all high symmetry points in the fundamental domain. We thus
conclude that the topological phases of spinless particles in class A protected by
p4mm space group symmetry can be classified by a set of nine integers, i.e. by
elements of Z9. We will refer to these topological invariants as representation
invariants.
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5.2.2 p4 with T 2 = ≠1

In class AII the representation theory is similar and is discussed at length in
appendix A.3. Here we will see this machinery at work for the space group p4 and
not p4mm, since the non-abelian nature of the point group makes the analysis
technically more involved and might obscure the physics involved.

The space group p4 is the same as p4mm, but without the reflection generator
t. As a result, � and M are invariant under the full four-fold rotation r, whereas
at X there is only a two-fold rotational symmetry, r2. As discussed in appendix
A.3, to find the representations D with time-reversal symmetry included in class
AII, we first find the representations with TRS absent, but of the double cover of
the point group. The double cover is constructed by adding an additional element
that e to the original point group that squares to the identity. It implements the
fact that upon rotating a spin≠ 1

2 over 2fi, its wavefunction will be multiplied by
≠1, rather than 1. Insisting on having a system in class AII, meaning that all
states are fermionic, implies that the representation of e must be proportional to
≠Œ. We will call these representations fermionic. For p4, the double group at �
and M is Z8, but at X it is Z4. The fermionic representaions at � and M are then
those that have eigenvalues efiik/4 for k = 1, 3, 5, 7, whereas at X the eigenvalues
are ±i.

Consider next the addition of time reversal symmetry (in this case with T 2 = ≠1).
Each electronic state at momentum k must now have a partner state with the
same energy, but opposite spin, at ≠k. These two partner states necessarily come
together into a single two-fold degenerate state at high symmetry points. This is
the celebrated Kramers degeneracy, and it is shown schematically in figure 5.2.
Since one state in a Kramers pair is always related to a partner state by TRS,
the transformations of a Kramers pair under symmetry operations now produce
pairs of related eigenvalues. With only four-fold rotational symmetry, all relavent
(i.e. fermionic) representations are complex, hence, as can be seen from (A.41),
I = 0 for all them. Thus there is a single possible pair of eigenvalues at X, but
two di�erent allowed pairs at � and M . Listing the number of occupied Kramers
pairs in each representation thus gives five integers, which are connected by two
relations, since the number of bands at each high-symmetry point must be equal.
In this case then, there are three independent representation invariants.

The representation labels are topological invariants, but by themselves they do not
yet completely specify the band structure. Just like crystals with broken TRS may
possess Chern numbers in addition to band labels, the representation invariants
in crystals with unbroken TRS need to be supplemented with torsion invariants.
These include the well-known Fu-Kane-Mele [185,186], or Z2, invariants in two and
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Figure 5.2: a The typical band structure of a Kramers’ pair close to a high-
symmetry point. Two bands related by the time-reversal operation necessarily
come together into a degenerate Kramers pair at the time-reversal invariant mo-
mentum in the centre. Also shown schematically, is a band inversion which brings
together states at points away from the high-symmetry momentum. This results
in the formation of vortices in the Berry connection, indicated here by yellow and
orange arrows. b A more schematic representation of two bands containing states
|ÂÍ and T |ÂÍ, which form Kramers pairs at two time-reversal invariant momenta,
chosen here to be � and M . c Vortices in the Berry connection, depicted by + and
≠, can be moved throughout the Brillouin zone without annihilating. The color
indicates the band to which the vortices belong. d An even number of vortices
can be created by a band inversion within a set of states related by TRS. e Vor-
tices can hop between partner bands using a band inversion to create two vortex
anti-vortex pairs.

three dimensions (FKM2,3), as well as a generalisation of line invariants [187]. That
crystal symmetries can be central in determining whether of not invariants other
than the representation labels may arise in any given material is already known
from the case with broken time-reversal symmetry. There, the famous Thouless-
Kohmoto-Nightingale-den Nijs (TKNN) invariant, or total Chern number, is zero
when reflection symmetries are present [163].

5.3 Torsion invariants in class AII

All torsion invariants are related to the presence of Berry curvature in some of
the occupied electronic bands. To define a systematic procedure for identifying
which torsion invariants are allowed to be non-zero in any time-reversal symmetric
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crystal, we interpret Chern numbers for individual bands as counting the number
of vortices in its Berry connection. The generic procedure for creating such vortices
is a continuous change in the Hamiltonian which closes the gap between two bands,
takes them through each other, and again gaps any points of intersection. After
this band inversion a vortex of one handedness resides in one of the bands, and one
of the opposite handedness (an anti-vortex) in the other. Once formed, vortices
can be moved throughout the Brillouin zone without closing any gaps, or breaking
any symmetry, using non-topological changes in the Hamiltonian.

If the Hamiltonian is always time-reversal symmetric, then any change to an elec-
tronic state at momentum k is accompanied by an opposing change in the partner
state at ≠k. Vortices in TRS materials thus necessarily come in vortex anti-vortex
pairs, as shown schematically in figure 5.2. The pairs can be moved through the
Brillouin zone, and even brought together at time-reversal invariant momenta,
but they cannot annihilate there, due to the orthogonality of the electronic states
within a Kramers pair.

Since vortices are created in pairs, the total vorticity, or total Chern number,
within any pair of TRS-related bands is always zero. It is known however that
vortices do not annihilate at high-symmetry points, because the (Berry) connec-
tion of the individual bands to the Kramers degenerate pair at the high-symmetry
points does not mix the bulk time-reversed states [188]. This makes it possible to
consider the Chern number of just one band within each pair, as proven rigorously
in [188]. We have to keep in mind however, that a band inversion within the pair
of TRS-related bands does not constitute a topological phase transition, as it does
not close the gap at the Fermi level. As shown in figure 5.2, two vortices or anti-
vortices can be created in each band this way, without changing the topological
classification of the system. What cannot be done without going through a topo-
logical phase transition, is turning an even Chern number into an odd one. There
is thus a Z2 invariant which can be expressed in terms of the Chern number C of
a single band as

FKM2 = N mod 2
= C mod 2, (5.12)

with N = N+ ≠ N≠ the total vorticity, given by the di�erence in the numbers of
vortices and anti-vortices. This is the Fu-Kane-Mele invariant for two-dimensional
materials in class AII [189]. If multiple Kramers pairs are occupied, the corre-
sponding FKM2 invariants are summed.

A major advantage of the vortex picture of FKM invariants, is that the e�ects of
crystal symmetry on its allowed values become much more transparent. In the
lattice with only four-fold rotational symmetry for example, a vortex at some
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Figure 5.3: a Topologically non-trivial vortex configurations with p4 symmetry
in class AII. b A band inversion involving a second, trivial, Kramers pair connects
the configurations with a single vortex at � to one with an FKM2-trivial band with
vortices at both � and M , and one FKM2-non-trivial band with only a vortex at
M . Notice, however, that the final situation cannot be deformed into a band with
a single vortex at M and no vortices in the second band. That would require
a change in the value of the new torsion invariant described in section 5.3.2. c
Vortex configuration with p4 symmetry in class AII in which the FKM2 invariant
is trivial, but the new invariant of section 5.3.2 is not.

generic momentum k must always be accompanied by three other vortices at
symmetry-related momenta. Such states have a topologically trivial FKM in-
variant (FKM2 = 0) because N is even. Topologically non-trivial states can be
constructed by having a single vortex either at � or M , whereas a vortex at X again
implies two vortices in the full Brillouin zone, and thus a trivial FKM invariant.
All these configurations are shown schematically in figure 5.3.

In fact, a configuration with a single vortex at � can be turned into a configuration
with a single vortex at M plus a band with trivial FKM invariant, if we allow for
a second, trivial, Kramers pair to be present in the set of valence bands [170]. The
two configurations are then connected by a band inversion, as shown in figure 5.3.
As in the case without symmetries, the FKM invariant can thus take two possible
values, signifying an even or odd number of vortices, without regard to where in
the Brillouin zone the vortices occur.

To make the vortex picture of the FMK2 invariant more precise, one can resort to
studying transition function, as was done for the case without crystal symmetries
in [190, 191]. For a detailed analysis with crystal symmetry, see the appendices
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of [4], but also section 6.5.

5.3.1 Line invariants

The identification of FKM invariants with vorticity, and the methodology of see-
ing how they are a�ected by lattice symmetries, works for all possible crystal
structures in two and three dimensions, and is suited for class AI as well as AII.
Additional features, however, may be identified if there are lines in the Brillouin
zone that are mapped onto themselves by both TRS and a crystal symmetry, such
as reflection, inversion, or two-fold rotation. On such lines, a one-dimensional
topological invariant ‹1, known as the line invariant or Lau-Brink-Ortix (LBO)
invariant, can be defined [187].

The one-dimensional line invariants are in fact closely related to the vortices ap-
pearing in two dimensions. For example, in a crystal characterised only by a
single reflection symmetry in the x axis, the lines at kx = 0 and kx = fi are each
mapped onto themselves by the reflection symmetry, and also by time-reversal. A
line invariant can be defined on each of these lines, but they are related by the
expression

FKM2 = ‹0
1 + ‹fi

1 mod 2. (5.13)
The vortices in the Berry connection again provide an intuitive way to understand
this. If FKM2 = 1, there is one vortex at some momentum k, and an anti-vortex in
the time-reversed state with the same energy at ≠k. Both of these must lie on the
kx axis because of the reflection symmetry. Keeping in mind that reciprocal space
is periodic owing to the translational symmetry of the atomic lattice, there are
then two distinct ways the Berry connection between the vortices could behave.
Examples of both are sketched in figure 5.4, which depicts a projection of the
matrix-valued Berry connection onto the highest energy state. The connection
either makes an odd number of complete windings along the line kx = 0 and
an even number along kx = fi, or the other way around. The field of Berry
connections can be altered by gauge transformations and non-topological changes
in the Hamiltonian. Since these do not a�ect the parities ‹0

1 and ‹fi
1 of the number

of windings along the two lines, however, the line invariants cannot be changed
without going through a topological transition.

In the crystal with only a reflection symmetry, there are thus two ways for the
FKM invariant to be non-trivial, depending on which of the two line invariants
is non-trivial. Likewise, there are two ways for the FKM invariant to be trivial,
having the line invariants either both zero, or both one. The latter case arises for
example from a connection that winds the same way along all lines of constant
kx but does not contain a vortex. The two independent torsion invariants in the
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Figure 5.4: a Sketch of the Berry connection projected onto the highest energy
state within a Kramers pair. A vortex and anti-vortex pair can arise in two
topologically distinct ways within a Berry connection vector field that is continuous
on the Brillouin zone torus. b Sketch of vortex lines extending across the bulk
of a three-dimensional Brillouin zone with trivial FKM3 invariant. c Sketch of
a vortex line extending into the bulk of a three-dimensional Brillouin zone, and
closing onto itself. This situation is described by a non-trivial FKM3 invariant.

crystal with only a reflection symmetry thus add a factor Z2
2 to its topological

classification.

The heuristic arguments presented here in terms of vortices, are given a formal
foundation in the appendix of [4], where it is shown that the link between line
invariants and the FKM2 invariant, arising from vortices in the Berry connection,
holds in general. To fully classify topological insulators both of the torsion in-
variants, as well as the relations between them, need to be consistently taken into
account.
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5.3.2 A new invariant

The combination of line and FKM invariants constitutes all known torsion invari-
ants in time-reversal symmetric crystals. This, however, cannot be the full picture.
Consider, for example, the crystal with only two-fold rotational symmetry. There
are many lines in the Brillouin zone that can be mapped onto themselves by both
TRS and the two-fold rotation. Most of these lines can be smoothly deformed into
one another, and it su�ces to define line invariants on the kx = 0, fi and ky = 0, fi
lines. These are again related to each other by the FKM2 invariant, giving a total
of three independent torsion invariants.

A possible configuration with all invariants equal to zero would be to have no
vortices present in the band structure at all. Another possible configuration with
the same values for all invariants would be to have vortices present at all high-
symmetry points. Because of the rotational symmetry, however, vortices cannot
be spread out away from the high-symmetry points by any deformation of the
Hamiltonian. That is, all Berry curvature is always concentrated in delta-peaks
at the high-symmetry points. To see this, simply consider the generic form of a
Hamiltonian for two valence bands near a time-reversal symmetric point,

H(k) = (ai
xki)‡x + (ai

yki)‡y + (ai
zki + m)‡z, (5.14)

where i = x, y and we introduced a small mass m that we take to zero. The Berry
curvature of one of the valence bands is

Fkxky = ≠ im

2
ax

xay
y ≠ ax

yay
x

((ai
xki)2 + (ai

yki)2 + (ai
zki + m))3/2 , (5.15)

which in the m æ 0 limit is proportional to ”(2)(k), unless ax
xay

y ≠ ax
yay

x = 0, in
which case the curvature is zero. In the non-trivial curvature case, one can try to
smear 1 this vorticity, but due to the fact that F is odd outside k = 0, smearing
will never remove the delta function. Due to the local analysis at k = 0, this does
not exclude vortices outside of k = 0. Indeed, since in the presence of TRS only
there is just the relation between the band at k and its partner band at ≠k), there
could be non-trivial vortex-anti-vortex pairs in the full band structure in such a
way that the curvature of a single band is non-trivial. Only an odd number of such
pairs would then result in a topologically non-trivial phase as discussed around
equation (5.12).

In the presence of even rotation symmetries, this changes, since ”(2)(k) is the only
possible form of F that is odd around k = 0, rotationally invariant and does not

1
Here we mean changing the distribution of curvature in a small neighbourhood U without

changing the integral of F over U .
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vanish once integrated over R2, i.e the full BZ. More so, the number of vortex-
anti-vortex pairs that could be present outside k = 0 is always even and hence
give rise to trivial topology. For odd rotations, this is not true, since there can be
three vortex-anti-vortex pairs around k = 0.

If one insists on smearing, then time-reversal or crystal symmetry would have
to be broken. For example, in the former case, smearing is easily achieved by
keeping m finite in the Hamiltonian (5.14). As we do not allow deformations that
break the symmetry, the delta function curvature singularity is frozen at k = 0. A
slight subtlety is then for three-fold rotations, where the curvature can be smeared
without breaking any symmetry and without altering the topological invariant. We
will discuss this in a bit more detail below.

Consequently, the situation with four vortices in p2 can only be deformed into the
situation without vortices if either the gap is closed or the symmetry broken, since
those vortices are frozen at high-symmetry (and time-reversal invariant) points.
These two phases must thus be considered topologically distinct, and there must
exist an additional Z2 or torsion invariant distinguishing them.

In fact, it is easily seen that every combination of values of the two line invariants
and one FKM invariant can be realised with precisely two distinct configurations
of vortices on the high-symmetry points. Again, these can never be smoothly
deformed into each other, and should be distinguished by the new torsion invariant.
Additional evidence for the existence of the new invariant can be found in two
places. First of all, it is known that in certain cases a band structure with an odd
total number of vortices in all valence bands at the � point has distinct physical
properties from a band structure with an odd number of vortices at M , even if all
line and FKM invariants are the same [155,192]. This di�erence is manifested when
a topological defect is introduced into the crystal, which will be either charged or
not, depending on the configuration of vortices [192]. The topological defect in
such cases may thus be seen as indicator for the new invariant.

Furthermore, in the specific case of a crystal with only two-fold rotational sym-
metry, the K-theory in the presence of time reversal symmetry may be explicitly
computed, as discussed in the next chapter. This shows that in this specific case,
the Brillouin zone hosts two invariants at its edges, and two invariants in its bulk.
These correspond directly to the two line invariants, the one FKM invariant, and
the one new invariant found by counting vortices. Notice that although K-theory
calculations in the presence of TRS are very challenging in all but this simplest
case, counting vortices in topologically distinct situations as suggested in the cur-
rent approach is always straightforward.

In each of the situations with equal line and FKM invariants but di�erent vortex
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configurations, the topologically distinct phases can be distinguished by finding
out whether or not a vortex is present at �. The new invariant can thus be
determined by calculating the Berry curvature of a single Kramers pair partner
in a small region encircling the � point. This procedure is guaranteed to be well-
defined, because the rotational symmetry forbids the spreading of Berry curvature
away from high-symmetry points.

An especially interesting situation to consider in the light of this new invariant, is
that of a crystal with three-fold symmetry. In that case, there is a TRS point at �
with rotational symmetry, a TRS point at M without any point group symmetry,
and a point at K that is invariant under rotations, but not under TRS. Looking
at the allowed representations at �, there is one real representation that allows for
three vortices (or equivalently, a single charge-three vortex) to be formed there.
These vortices can be moved to M or K by transformations of the Hamiltonian
that do not close the gap or break the lattice symmetry. However, there is also a
complex representation at �, which allows for a single (charge-one) vortex to be
formed there. This single vortex cannot be moved away from �, because of the
rotational symmetry. It can also not be transformed into a situation with three
vortices without going through a topological phase transition. A similar charge-
one vortex may also exist at K, accompanied by an anti-vortex at ≠K, and again
such a vortex cannot be moved away from the high-symmetry point. The parity of
the numbers of charge-three vortices anywhere in the Brillouin zone, and charge-
one vortices at � and at K, are therefore three independent torsion invariants.
Notice that in this case, the representations of the bands at � in fact determine
which Z2 invariants are allowed. This is reminiscent of the way that rotational
symmetries of the lattice may be used to determined the Chern number of class
A materials modulo the order of the rotation [193].

Concluding, the recipe for finding all torsion invariants is thus a matter of find-
ing all non-trivial vortex configurations with two simple rules: First, vortices are
stuck at high-symmetry points and lines, meaning that vortices are frozen at high-
symmetry points, but can move along high-symmetry lines. Second, relations such
as (5.13) have to be enforced. For p4 this thus means that the total number of Z2
invariants is 3 and the total classification for p4 symmetric topological insulators
in class AII is Z3 ü Z3

2. Similarly, for p2 and p3 we get Z ü Z4
2 and Z4 ü Z3

2,
respectively.

Combining the list of allowed torsion invariants with that of representation in-
variants, table 5.1 presents the full classification of spin-full electrons in two-
dimensional crystals with time-reversal symmetry. The total classification is the
direct sum of the representation and torsion invariants. This does not exclude the
possible existence of relations amongst them. In fact, we already encountered such
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5.4. General wallpaper group

relations between representation invariants and Chern numbers in class A, as well
as for example for materials with p3 symmetry in class AII. As far as the counting
of topological invariants is concerned, however, the total classification is given by
the sum of invariants. The same algorithm can be used to straightforwardly com-
pute the analogous table for three-dimensional crystals and layer groups, keeping
in mind there may be additional torsion invariants in higher dimensions.

5.4 General wallpaper group

The method exemplified by our analysis of the two examples in class A and AII
can be applied in the same way to all wallpaper groups. The first step is always
to determine the fundamental domain �. After that, the point group operations
are used to identify high symmetry points and lines as well as their corresponding
stabilizer groups. The correspondence between representations of the stabilizer
groups along high symmetry lines, and those at the high symmetry endpoints,
then yield the allowed combinations of their irreducible representations, akin to
the example of Table 5.6. For class AII, this procedure is slightly more involved
as one has to use the fermionic representations of the double cover of the point
group G instead of the bosonic representations of G. Furthermore, one has to use
the theory of time-reversal symmetric representations as outlined in appendix A.3
to construct the relevant irreducible representations.

To specify a representation of the full set of valance bands, an integer nk
i should

be assigned to each irreducible representation i at high symmetry point k, which
specifies the number of valence bands for those values of i and k. The previously
listed relations between irreducible representations along high symmetry lines and
their endpoints, can then be converted into a set of m independent relations be-
tween the integers nk

i . A representation of the complete set of valance bands is
specified by n ≠ m integers, where n is the total number of integers nk

i one started
with. Finally, we need to consider Chern numbers and torsion invariants. The
Chern numbers can only be present in wallpaper groups that do not contain re-
flections, because the Berry curvature is odd under reflection. For groups that do
allow a Chern number, this one additional integer should be added to the set of
nk

i in order to have a complete specification of the set of valence bands. It should
be noted that the Chern numbers modulo the order of the point group can also be
obtained from the symmetry eigenvalues of the point group on the high-symmetry
points [163]. Here, our goal is to go beyond this subset and enumerate all topo-
logically distinct phases. This covers class A. In class AII, we instead need to
determine all possible torsion invariants. How this is done was discussed in detail
in the previous section.
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5. Combinatorial Classification of Crystalline Topological Insulators

Four of the 17 wallpaper groups, pg, p2gg, p2mg and p4gm, i.e. the nonsym-
morphic ones, need special attention. In these cases, the representations of the
stabilizer group become projective representations. This is a consequence of the
fact that we cannot separate their point group actions R from the translations
v, and as a result an additional phase factor needs to be accounted for in the
analysis [165, 177, 179, 194]. As long as this subtlety is properly taken into con-
sideration however, the procedure outlined above can still be applied in precisely
the same way. This again enables us to identify the set of integers and torsion in-
variants needed to completely specify the topological phase given the space group
symmetry.

Table 5.1 collects our results, and classifies all topological phases in class A and
AII for any of the 17 wallpaper groups. In class A, it exactly agrees with the
mathematical computation in terms of K-theory as proposed by Freed and Moore
in [181]. This mathematical theory has been formally proven to classify all topo-
logical phases of gapped free fermions. The connection between our method and
K-theory therefore constitutes a mathematical proof that we classified all crys-
talline topological phases of spinless electrons within class A. This for example
guarantees that the crystalline topological phases protected by p4mm symmetry
identified in the previous section exhaust all possibilities for such phases. The
agreement between K-theory calculations and the full list of wallpaper groups in
table 5.1 based on our combinatorial arguments, can be made explicit using the
results of [195–197]. In class AII, we are much less fortunate, since there are al-
most no K-theory computations available. In chapter 6, we will embark on such
computations ourselves for a few simple space groups and show that they match
with the heuristic arguments presented for class AII in the preceding sections.

A comment on topologically trivial bands

Before moving on to higher dimensions, let us comment briefly on an important
issue in the classification, namely that our counting is done modulo topologically
trivial bands. As mentioned in passing in the above, we consider two bands to
be distinct under smooth deformations up to the addition of trivial bands. More
explicitly, this implies that two band structures are topologically equivalent when
they can be made to be equal upon adding topologically trivial sets of bands. In the
present context, and in accord with K-theory, trivial band structures are defined
to be particle-hole symmetric pairs of bands. To be precise then, we really consider
the combined topological invariant of all bands below a gap in the spectrum at
any energy (not necessarily at the Fermi level), and consider the trivial set of
bands to be a pair with equal topological indices in which one is occupied and one
unoccupied. This definition reflects the fact that negative integers may appear
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in the K-theory, and in our classification, corresponding to bands of holes, rather
than electrons. This necessity of including the concept of negative integers in the
definition of equivalence is a direct consequence of the fact that the elements in K-
theory are di�erence classes, which necessitates the existence of a trivial element.

5.5 Three dimensions

Class A

Our method can also be straightforwardly applied to crystal structures in three
dimensions. For a general space group G and its associated first Brillouin zone with
high symmetry points Mi, the first step is to determine the representations of the
stabilizer groups GMi for all Mi. A set of integers nM

i

j can then be introduced
to indicate the number of valence bands in representation j at high symmetry
point Mi. These integers are not independent, because they are constrained by
the compatibility relations imposed by high symmetry lines connecting various
Mi, as shown pictorially in Figure 5.5. Giving a list of values for a complete set
of independent integers nM

i

j amounts to a characterisation of the set of valence
bands, so that finding the number of independent integers in a given space group
is equivalent to classifying its possible topological phases. In three dimensions, it
is possible to have high symmetry planes, but these do not add any compatibility
relations beyond those already imposed by the high symmetry lines.

As in the two-dimensional case, the combinatorial argument does not indicate
the possible values of Chern-numbers, which need to be included in a full clas-
sification of topologically distinct phases. Fortunately, they can be obtained in
a straightforward manner. Chern numbers are always given by two-dimensional
integrals. For example, the TKNN invariant is an integral over the full Brillouin
zone in two dimensions. For crystals in three dimensions, the Chern number will
likewise be given by an integral over a two-dimensional plane within the first Bril-
louin zone. In the absence of band crossings, the Chern number can be evaluated
as a sum of contributions from the integration of individual valance bands. The
Chern numbers evaluated on two parallel two-dimensional planes must be equal
by continuity.

If a three-dimensional crystal contains high symmetry planes, these may be used as
convenient locations for defining a set of Chern numbers. Firstly, such a plane can
host a nonzero Chern number if and only if there is no reflection symmetry within
the plane, mimicking two dimensional case. Moreover, a high symmetry plane in
three dimensions is always left invariant by a reflection acting perpendicular to
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5. Combinatorial Classification of Crystalline Topological Insulators

Figure 5.5: Sketch of the relations between high symmetry points imposed by high
symmetry lines. A set of valance bands is shown between two generic high symme-
try points X and Y , which are left invariant under the symmetry transformations
contained in the stabilizer groups GX and GY . The irreducible representations
of GX and GY may be labelled as Xi and Xj . Each of the bands needs to fall
within one of these representations at the corresponding high symmetry points.
The representations on X and Y , however, need to be compatible with the repre-
sentations �j of the high symmetry line connecting X and Y . The remaining set
of independent integers indicating how many bands are in which representations at
the high symmetry points, finally determines the number of possible topologically
distinct configurations of the set valence bands, matching the abstract K-theory
classification.

the plane, under which the bands can be even or odd. Separate Chern numbers
c± can then be assigned to the full set of even or odd bands, and are obtained
by summing the contributions from individual even or odd bands. For a full
characterisation of the topological phase, both numbers c+ and c≠ need thus to be
specified for all high symmetry planes in the first Brillouin zone. However, these
Chern numbers are not independent in the same sprit as the constraints found
above. Namely, a general plane in the Brillouin zone, on a small distance away
from the high symmetry plane, may have its (single) Chern number c equal to
zero. In that case, c+ must equal ≠c≠ on the high symmetry plane, to ensure
continuity. Therefore only a nontrivial mirror Chern number cm = (c+ ≠ c≠)/2
can be defined in this scenario [198].

The other possibility is that the general plane has a non-zero Chern number c, so
that c+ +c≠ must equal c by continuity. This situation results in relations between
the Chern numbers on distinct but parallel high symmetry planes. For example,
suppose there are mirror planes at kz = 0 and kz = fi that have Chern numbers
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5.5. Three dimensions

Figure 5.6: Fundamental domain of the octahedral group Oh (shaded red). The
red high symmetry lines connect the high symmetry points �, M , X and R.

c0
±

and cfi
±

, respectively. If a general plane between kz = 0 and kz = fi has its total
Chern number equal to c, then this implies

c = c0
+ + c0

≠

c = cfi
+ + cfi

≠
. (5.16)

Combining these two equations then yields the relation

c0
+ + c0

≠
= cfi

+ + cfi
≠

. (5.17)

Out of the four Chern numbers characterising the two high symmetry planes, only
three are independent. Notice that these are exactly the same type of relations as
the constraints between high symmetry points that we introduced in Section 5.4.
The combination of all independent Chern numbers and the set of independent
integers obtained from the representations of the valance bands, constitute our
classification of topological phases in class A.

As a concrete working example of the classification scheme in three dimensions,
consider the symmorphic space group Pm3̄m (no. 221), for which we compute the
K-theory (modulo torsion) in appendix A.3. This space group has an octahedral
point group, Oh, which contains the symmetries of a cube and has 48 elements.
Oh is generated by the following elements

r · k = (≠kz, ky, kx),
t · k = (ky, kx, ≠kz),
I · k = ≠k. (5.18)
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5. Combinatorial Classification of Crystalline Topological Insulators

The fundamental domain is shown in Figure 5.6. It contains six high symmetry
lines coming from the two, three and fourfold rotation axes. The endpoints of
these lines are the high symmetry points �, R, X and M , which have stabilizer
groups Oh, Oh, D4 ◊ Z2 and D4 ◊ Z2, respectively. The high symmetry points all
have 10 di�erent irreducible representations, so that 40 integers can be introduced
to specify the set of valence bands. The high symmetry lines yield 25 relations
between these integers, which in this particular case were in fact already found by
Wigner [182]. Taking into account the dependencies between the relations, 22 in-
tegers remain to be specified in order to fully characterise the set of valence bands.
The relations coming from mirror planes do not add any additional constraints on
these 22 integers, since they are already implicitly satisfied by taking into account
the constraints coming from the high symmetry lines.

The octahedral point group has no Chern numbers, because within each high
symmetry plane there is a perpendicular reflection plane. Hence, we find that a
topological phase in class A protected by Oh symmetry is classified by Z22, i.e
by 22 integers. Once again this result can be corroborated by calculations from
a more formal, mathematical perspective. As shown in appendix A.3, the result
from such a K-theory calculation is exactly the same, modulo torsion, as that
obtained in our combinatorial approach.

This also brings us to a slight subtlety mentioned already in the beginning of this
chapter, namely that in two dimensions our approach and the K-theory agree
perfectly, but in three dimensions, there could still be torsion invariants that we
are missing. These torsion invariants would, for example arise from two dimen-
sional slices in the Brillouin zone having the topology of RP2, since the second
cohomology group of this space is Z2.

Class AII

In three dimensions, the analysis of symmetry eigenvalues and the corresponding
representation invariants is completely analogous to that in two dimensions. The
torsion invariants on the other hand, feature an additional entry special to three
dimensions, the FKM3 invariant. To understand this invariant in terms of the
vortices in the Berry connection, consider the planes kz = 0 and kz = fi, which
are mapped onto themselves by the time-reversal operation. On these planes, two-
dimensional FKM2 invariants may be defined. Much like line invariants are related
to FKM2, the invariants of the two planes are related to FKM3 by the expression

FKM3 = FKM0
2 + FKMfi

2 mod 2. (5.19)

An intuitive understanding can again be found using vortices in the Berry con-
nection. A single vortex and anti-vortex on for example the plane kz = 0 can
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be extended into the third direction as a vortex line, or flux tube. If the vortex
line extends all the way to the plane kz = fi, both planes have non-trivial FKM2
invariants. On the other hand, if the line closes onto itself and forms a vortex loop,
the FKM2 invariant at kz = fi will be trivial, and there will be a non-trivial FKM3
invariant in the bulk of the Brillouin zone. This situation is shown schematically
in figure 5.4. Notice that a single FKM3 invariant may connect multiple paral-
lel planes on which FKM2 invariants can be defined. Incorporating the e�ect of
crystal symmetry on whether or not FKM3 invariants are allowed is a matter of un-
derstanding the e�ects it has on vortex lines. When inversion symmetry is present,
it is known that FKM3 can be computed using the inversion eigenvalues [199], and
is therefore in our classification absorbed in the representation invariants. A more
detailed derivation of these heuristic arguments is given in the appendices of [4].

An interesting example of a three-dimensional crystal, is one with space group
P2/m (nr. 10). Such a crystal has inversion symmetry, and a two-fold rotation
symmetry around the kz-axis. The representation invariants can be straightfor-
wardly identified. Concerning the torsion invariants, we see that they cannot be
non-trivial on kz = 0, fi planes, because the inversion symmetry forbids single vor-
tices even at high-symmetry points. Since the values of both the line invariants
and new invariants are related to the presence of vortices at high-symmetry points,
these too must be trivial. Moreover, due to (5.19), FKM3 is also zero. We thus
find no torsion invariants in this crystal. Notice that this implies the Z2 invari-
ant in for example [199], is in our description absorbed into the representation
invariants.

5.6 Conclusions

In this chapter, we presented a straightforward combinatorial procedure that can
be used to give a classification of distinct topological phases of spinless particles
within class A and spin≠ 1

2 particles in class AII, by taking into account the space
group symmetries of a material. The classification is shown to be complete in one
and two spatial dimensions for class A. In three dimension, the completeness of
the classification relies on a subtle point regarding the possible presence of torsion
in K-theory. In class AII, we have no proof that our classification is complete in
two and three dimensions. Nevertheless, we will show that the classification does
not contradict with the K-theory computations. In particular, we show that in
certain simple cases, there is an exact agreement between our heuristic arguments
and the K-theory computations.
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6 K-theory Classification
of Crystalline

Topological Insulators

This chapter is based on the following publication:

L. Stehouwer, J. de Boer, J. Krutho� and H. Posthuma,
“Classification of crystalline topological insulators through K-theory“,
Submitted to Advances in Theoretical and Mathematical Physics,
arXiv:1811.02592 [cond-mat.mes-hall].

6.1 Introduction

In the previous chapter, we proposed an algorithm to count the number of topo-
logical phases given a crystal and symmetry class (A or AII). In this chapter we
want to verify these statements by connecting our analysis to a well-defined math-
ematical question. This connection was first noticed by Hořava and Kitaev. They
found that there is an intricate relation between the classification of gapped free
fermions and the classification of vector bundles, [150,200], using the mathematical
framework of K-theory. It was not until the work of Freed and Moore [181] that
a complete proposal was formulated to classify topological phases of free fermions
by including not only time-reversal or particle-hole symmetry, but also the crystal
symmetries that these fermions experience.

The proposal of Freed and Moore involves the computation of a certain objects
in K-theory. K-theory is a branch of mathematics that can be used to classify
vector bundles and captures all topological invariants present for a given symmetry
class and crystal. These invariants describe both global and local information of
valence bands. Although we can treat these invariants in a unifying way, from a
physics point of view, global and local invariants describe di�erent aspects of the
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valence bands. The local invariants describe the bands locally, meaning that they
are topological invariants associated with the representation theory of the space
group. In chapter 5, we discussed how these invariants can be determined and
why they are part of the classification of topological insulators. Global invariants
like the Chern number, discussed in section 4.1, and the FKM invariants from the
previous chapter are described by an integral over the Brillouin zone. Even in the
vortex picture, where the Berry curvature is localised at points, the topological
invariant is still non-local since an integral over a small neighbourhood around
that point is required to compute it. We introduced this picture in chapter 5
to accommodate for non-trivial crystal symmetries in a systematic and simple
way. The purpose of this chapter is to check whether the counting we proposed in
chapter 5 indeed matches with the K-theory computations. For class A in two and
three dimensions, we know that this is the case, but for class AII, no comparison
could be made due to the sparseness literature on explicit computations of the
relevant K-theories.

Outline, summary of results and comparison

This chapter is organised as follows. In section 6.2 we will introduce some basic
terminology in algebraic topology and K-theory by discussing an example of a
crystal with only time-reversal symmetry. The next section, section 6.3 contains
the meat of the chapter. We discuss in more detail what K-theory we want to
compute to classify topological insulators with time-reversal and crystal symmetry.
To compute these K-theories we describe the construction of an Atiyah-Hirzebruch
spectral sequence and compute two examples in detail. Section 6.4 is devoted to
various other examples we computed, for example, we compute, for the first time,
the full classification of a two dimensional crystal with time-reversal in class AII
and a four fold rotation symmetry. Furthermore, we also determine the twisted
representation rings, which are needed in the spectral sequence, in an algorithmic
way. In section 6.5 we mention various subtleties and future directions. Finally,
in appendices A.4 and A.5 we have gathered various mathematical details on K-
theory, the spectral sequence construction, twists and twisted group algebras.

Computing twisted equivariant K-theory groups using an Atiyah-Hirzebruch spec-
tral sequence is not new. In previous works, [201,202], an Atiyah-Hirzebruch spec-
tral sequence was also proposed and used to compute the classification for certain
symmetry groups and classes. In this work, we fill in certain gaps left open in these
works and put the computation of the K-theory groups with an Atiyah-Hirzebruch
spectral sequence on a firm mathematical footing. We have gathered most of these
details in the appendix A.5.

The K-theory groups we have computed match with known results in the literature,

134



6.2. Time-reversal only

but also agree with a set of heuristic arguments presented in chapter 5 in the
cases where we have explicit results. In particular, for the Altland and Zirnbauer
classes AI and AII with an order two symmetry in two dimensions, our results
match with those in [169, 170, 203]. These works extended the analysis by Kitaev
in [150] to include additional order two symmetries such as a reflection or two
fold rotation symmetry. The basis of this analysis is Cli�ord algebras, which
allow for a straightforward implementation of order two symmetries, but for more
complicated symmetries, such a procedure is more di�cult. In those cases one has
to resort to more sophisticated computational methodes of which we outline one
in this chapter.

6.2 Time-reversal only

In this section we shall focus on topological insulators with only unbroken time-
reversal symmetry on a two-dimensional lattice without any additional rotation
or reflection symmetries. Such topological phases belong to either symmetry class
AI or AII [151]. In the former case the time-reversal operator T squares to the
identity, whereas in the latter case it squares to minus the identity. To classify such
topological insulators, we need to know how many topologically distinct insulators
there are with this symmetry. As was explained in the introduction, with distinct
we mean that upon going from one to the other phase, either the gap closes or the
symmetry is broken. For a more formal definition, see [181].

The classification is most easily understood by translating the problem to mo-
mentum space, where discrete translations cause the momenta to only take values
in a two-dimensional Brillouin torus T2. We visualize this torus as the square
[≠fi, fi] ◊ [≠fi, fi] with opposite sides identified. Due to time-reversal symmetry, a
non-trivial group acts on this two-torus which sends k to ≠k, which is intuitively
clear as reversing time should reverse the sign of momenta. Time-reversal sym-
metry can also easily be shown to be an anti-unitary symmetry. Another example
of a possible anti-unitary symmetry (which we will not consider in this chapter)
is particle-hole symmetry, which acts trivially on the torus. Since we will ignore
interactions the momenta k are conserved quantities that can be used to label the
states in our Hilbert space. The states with label k are exactly the momentum k
Bloch waves. The collection of all these Hilbert spaces form a vector bundle. This
vector bundle is the collection of all valence and conduction bands and since we
are dealing with insulators here, there is a gap between them. In a (topological)
insulator, only the valence bands are physically relevant. For the classification, we
hence focus on this finite-dimensional sub-bundle.

135



6. K-theory Classification of Crystalline Topological Insulators

The classification of topological insulators has now been translated into a mathe-
matical question about the classification of vector bundles over the torus. In the
absence of time-reversal symmetry, such a classification can be performed using
standard (complex) K-theory. With time-reversal symmetry, things get a little
more exotic, since time-reversal is an antiunitary operator which in particular
anticommutes with the imaginary unit i. Nevertheless, Atiyah [204] generalized
K-theory to incorporate this symmetry and dubbed it Real K-theory. Specifically,
for class AI and AII, we need to compute KR≠q(T2). Here the T2 is the two-
dimensional Brillouin zone and the index q labels the various Altland-Zirnbauer
classes [149]. In this situation we need q = 0, 4 as they indicate class AI and AII re-
spectively. It is actually not too hard to compute these K-theory groups [150,181].
The result is

KR0(T2) = Z, KR≠4(T2) = Z ü Z2. (6.1)

The conventional computation of these groups uses various basic properties of KR-
theory, which cannot be generalized to include point group symmetries. Moreover,
this computation is rather unsatisfactory as it gives no insight into what these
invariants mean and where they come from. Part of the motivation of this work
and of [3,4] is to understand what the physical origin is of these invariants and what
computational tool makes this physical origin manifest. In particular, we would
like to see how the gluing of representations reveals itself in the computation.
Looking ahead, we can interpret the result (6.1) as follows. The invariants Z
are local in nature and just give the rank of the bundle, i.e. they represent the
number of valence bands present. The more interesting invariant Z2 is a global
two-dimensional strong topological invariant called the Fu-Kane-Mele invariant
and is related to topologically protected edge states [186,189].

In order to better understand the physical origin, we decompose the Brillouin
zone into various parts that are easy for K-theory to handle. Within K-theory
we have the freedom to consider a so-called stable equivalent space instead of
the torus. Fortunately, there exists a nice space that is stably equivalent to the
torus. This space is a certain wedge sum of one and two-dimensional spheres1.
Moreover, K-theory is additive under taking such wedge sums and hence we only
have to compute the K-theories of spheres, see the end of Section 6.3.1 for a more
precise statement. Physically, this means that we are looking at properties of the
band structure insensitive to (part of) the discrete translation symmetry. The
two-dimensional sphere just represents the (compactified) momentum space of a
topological insulator without translation symmetry and the K-theory then gives
the topological invariants associated with this Brillouin zone. For instance, the
Chern number in the IQHE is just the complex K-theory of the 2-sphere and is

1
The wedge sum of two spaces is the union of the two spaces but where one point of the first

space is identified with one point of the second.
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known not to rely on translational symmetry. After computing the K-theories
of all such pieces, one simply assembles all these pieces together by taking direct
sums.

In two dimensions, going from the torus to the sphere can be accomplished by
identifying the boundary of the square [≠fi, fi] ◊ [≠fi, fi] with a single point. Let
us focus on this sphere for the moment. After this operation, the time-reversal
action of Z2 on the Brillouin zone torus reduces to an action on the sphere that is
still given by the formula k ‘æ ≠k if we view the sphere as R2 fi Œ. Now suppose
we have a Hilbert bundle H over the sphere with time-reversing operator T , i.e. a
bundle map T : Hk æ H≠k, where Hk denote the fibers of the bundle H. There are
two special points at k = 0 and k = Œ under the action of time-reversal at which
the Bloch states with momentum k are mapped to themselves. This gives vector
space automorphisms on the corresponding fibers Hk. In class AI (so T 2 = 1),
the operator T acts as an e�ective complex conjugation on the Bloch states of
momenta k = 0 and k = Œ. In more mathematical jargon, there are canonical
real structures on the vector spaces H0 and HŒ. In class AII, when T squares to
≠1, we instead have canonical quaternionic structures at k = 0 and k = Œ. In
particular, we deduce that the space of Bloch waves at these special points is even
dimensional, which is a manifestation of Kramer’s theorem. However, at a generic
point on the sphere, the momenta are not preserved by T , so that the state spaces
at these points do not admit any extra structure.

We have now discussed how time-reversal acts on the Brillouin zone once the torus
is reduced to a sphere. To include more complicated symmetries later on, it is
convenient to view the sphere as being build up out of points, intervals and disks.
We have chosen these particular building blocks because they are topologically
trivial, i.e. contractible. Such a collection of building blocks is called a CW-
complex. The building blocks themselves are called d-cells where d is the dimension
of the block. When additional symmetries are present, such a CW-complex has
to respect the symmetry. By this is meant that for each cell the symmetry must
either fix it completely or map it to a di�erent cell in the decomposition. In the
case of time-reversal symmetry for instance, such a CW-complex is given in Figure
6.1. In this figure, we also gave the cells an orientation that is preserved by the
symmetry, which is visualized by the direction of the arrows on the 1-cells. Note
that the north and south pole are fixed by the Z2 action and hence constitute the
0-cells. The 1-cells are a line from p0 to pŒ and its symmetry-related partner. The
same is true for the 2-cells, which are the two hemispheres. This yields a practical
setting to do the classification using K-theory, because we can simply classify the
bundles over these d-cells and then glue them together consistently. Let us see
how this works in more detail.
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To start, we consider the complex and Real K-theory of spheres. It is a known fact
that the K-theory of a point in degree ≠p is equal to the (reduced) K-theory of a
p-dimensional sphere. The results are given in Table 6.1. Bundles on the 0-cells,
i.e the north and south pole in Figure 6.1, are classified by KR0(pt). In class
AI, we have KR0(pt) = Z for each of the two fixed points. The Z now assigned
to the north and south pole are simply given by the dimension of the fiber at
those points. In class AII we get for each fixed point KR≠4(pt) = Z, which is
given by the quaternionic dimension of the fiber. On the two intervals there is
no real or quaternionic structure. Hence we should assign the (reduced) complex
K-theory of the interval, where the boundary points of the interval are identified
with each other. This K-theory is equal to the (reduced) complex K-theory of
the circle, which is zero. The precise reason for this assignment is addressed in
detail in the appendix. Finally to the two hemispheres, we assign the (reduced)
complex K-theory of a sphere, which is Z. As before, the sphere appears here
because we are identifying the boundary of the disc to a point. If our Hilbert
space of states is to be preserved by the time-reversal symmetry, the bundle over
the two 2-cells should come in pairs that are mapped into each other by the action
of time-reversal symmetry. It is thus enough to know the bundle on one such
2-cell and hence under T , the two copies of Z are identified. We thus have Z2 in
zero dimensions (0-cells), a 0 in one dimension (1-cells) and Z in two dimensions
(2-cells).

To get to a complete classification of topological insulators, we have to make sure
that our assignment of bundles to cells is consistent. This can be done by imposing
constraints in successive dimensions. For dimension zero, this means that when
the fibers above the 0-cells are all extended to the 1-cells, the result should be
consistent. In our case this means that the state spaces at the points k = 0 and
k = Œ should have the same dimension, thereby reducing the Z2 we found before
to Z.

This approach is intuitively clear and can easily be generalized to include point
group symmetries. However, as advocated in the beginning, the approach of as-
signing representations to points is only part of the full classification. To get the
other part, the global part, we should check consistency of assignments of bundles
(not just representations) to higher-dimensional cells. This becomes a lot more
di�cult and it is hard to understand for generic crystal symmetries. In the case
without time-reversal symmetry, these invariants are most of the time first Chern
numbers, but there are exceptions [201]. The invariants that can take any integer
value can be understood by using the equivariant Chern character [205] or Segal’s
formula [206], which also has an extension to the twisted case [207]. However, for
crystals invariant under time-reversal symmetry, the invariants are often torsion
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invariants and take only particular integer values. There is no systematic way of
understanding them in the sense that there is no explicit formula for this piece. In-
stead, when assigning bundles to higher-dimensional cells, we have to check which
bundles can be realized as a certain cohomological boundary and quotient out by
these. The result will indeed give the Z2-invariant of equation (6.1), but it re-
quires some abstract mathematical theory to see this. Physically, however, there
is a heuristic way of understanding these invariants as vortex-anti-vortex pairs in
the connection on the bundle, which was presented in the beginning of this section.

Below we will formalize the heuristic arguments given above and put them on a
firm mathematical footing. The example we have seen in this section will be com-
puted again using machinery that allows for a generalization to more complicated
crystal symmetries. To illustrate this, we compute the full classification for topo-
logical insulators in class AII on a two dimensional lattice with a twofold rotation
symmetry.

6.3 The spectral sequence and applications

Now we come to the core of the chapter. In the above we gave a heuristic classi-
fication of topological insulators with time-reversal symmetry. We will now make
this classification precise and generalize to cases with non-trivial crystal symme-
try. The strategy of this section will be to introduce all necessary tools. We will
then reconsider the example without any crystal symmetry but with time-reversal
symmetry. Whenever appropriate, we will mention the physical motivation and
interpretation for these tools along the way.

Let us consider topological insulators in d dimensions in class A, AI or AII, possibly
with a point group symmetry. We denote the full classical symmetry group of the
Brillouin zone by G. If present, G therefore contains time-reversal symmetries
and point group symmetries but no translational symmetries. These are taken
into account by the topology of our Brillouin zone torus. Let us denote by G the
space group and G its (magnetic) point group that does not contain time-reversal
symmetry, then the space group G is a group extension

1 æ Zd æ G æ G æ 1, (6.2)

where Zd represents the discrete lattice translations in d spatial dimensions. When
this extension is split, the space group is called symmorphic and non-symmorphic
otherwise. We will focus on the former from now on and comment on the non-
symmorphic case in the discussion. We will assume that there are no other sym-
metries, such as gauge symmetries with which the time-reversal operator could
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mix.

In order to classify topological phases in the sense of Freed and Moore [181],
we have to compute a joint generalization of Real and equivariant K-theory. In
particular, we want to take two additional things into account. First of all, we
want to keep track of which elements in G act antiunitarily or not. For this we
will use a map „ which sends an element of G to +1 if it is unitary and to ≠1
if it is antiunitary. Moreover, we want to know how elements of G acting on the
Brillouin zone lift to elements acting on the fiber. This is most easily accounted
for by a twist · , a suitable group two-cocycle. This twist encodes the action of
the symmetries on the quantum Hilbert space. For example, it prescribes whether
T 2 = ±1. But it also provides the signs coming from taking the spin of particle
into account. For example, an n-fold rotation operator R for spin≠ 1

2 particles
satisfies Rn = ≠1. This minus sign is also encoded in · .

Let us for a moment describe the situation in more precise abstract mathematical
terms. Assume we have the following data:

(i) a finite group G acting on a space X (in our case X = Td, the Brillouin
zone);

(ii) a homomorphism „ : G æ Z2;

(iii) a group 2-cocycle · œ Z2(G, U(1)„) with values in the circle group U(1) with
G-action g · ei◊ = ei„(g)◊.

Such a cocycle · is a special case of the more general twists defined by Freed
and Moore [181], called „-twisted central extensions. Using such data, Freed and
Moore [181] defined a version of twisted equivariant K-theory denoted by

„K·
G(X), (6.3)

which was further studied in [208]. It was also argued that this K-theory group
classifies free fermion topological insulators protected by the quantum symmetry
defined by G, „ and · .

To connect with more common language used in the physics literature, we describe
the G, „ and · that occur in the classification of crystalline topological insulators.
Firstly, a class A topological insulator with point group G0 simply has G = G0
and „ and · are both trivial. For class AI, G will instead be the magnetic point
group, i.e. it will contain both point symmetries and time-reversal symmetry.
We will only consider magnetic point groups of the form G = G0 ◊ ZT

2 , with
ZT

2 the action of time-reversal symmetry on the Brillouin zone, even though the
mathematical machinery developed here can handle more general point groups as
well. For instance, one could also consider cases in which the time-reversal operator
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is a combination of the usual time-reversal operator with a lattice translation or
point group symmetry in G0. For G = G0 ◊ ZT

2 in class AI, „ : G æ Z2 will
simply be projection onto the second factor and · will be trivial. Finally, for
class AII, we again take G = G0 ◊ ZT

2 to be the magnetic point group and „ the
same projection, but now we pick · in such a way that the twisted group action
represents the desired action on the quantum Hilbert space. In particular, we pick
· so that time-reversal squares to ≠1, reflections square to ≠1 and rotation by 2fi
equals ≠1. To assure a consistent choice, a precise construction of · for a given
point group G0 is given at the end of appendix A.5.

It is shown in [208, Thm 3.11] that the groups „K·
G(X) satisfy certain equivariant

versions of the homotopy, excision, additivity and exactness axioms of Eilenberg
and Steenrod. The fact that our twisting class is defined by a group cocycle implies
that these axioms are exactly the axioms for an equivariant cohomology theory
on the category of G-spaces as defined in Bredon [209, §I.2]. This is what makes
the following computations mathematically sound; as explained in [209, §IV.4]
the axioms guarantee the existence of the Atiyah–Hirzebruch spectral sequence.
Moreover, the orbifold point of view advocated in [208] allows us to change the
group G and the space X as long as the quotient space remains the same and
we keep the same stabilizer. This is useful in some computations, see the end
of Section 6.3.3. For more details on how the K-theory we use is defined, see
appendix A.5.

We are therefore left with the task to compute the K-theory „K·
G(Td) of the

Brillouin zone dressed with „ and · . The technique to compute these groups
goes along the lines that we have discussed in the previous section. We first
decompose the Brillouin zone into cells and view them as a CW-complex. Non-
trivial symmetries have to leave these complexes invariant. Such complexes are
equivariant G-CW complexes, which is nothing more than an upgraded version of
the unit cell in momentum space. After having found this G-CW complex, we use
an Atiyah-Hirzebruch spectral sequence to compute „K·

G(Si), which are assembled
to give „K·

G(Td). Let us now formalize this computational method.

6.3.1 A general method: the Atiyah-Hirzebruch spectral
sequence

The spectral sequence for the computation of the twisted equivariant K-theory
of a space X is constructed by using a decomposition as a G-CW complex X0 ™
· · · ™ Xd = X, where the superscript on the cells indicates the dimension of the
subspace. For the applications considered in this chapter, X is either a torus Td

or a sphere Sd (we will remark on how to reduce the computation of the K-theory
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of the torus to the K-theory of a sphere at the end of this section). A spectral
sequence is a successive approximation method converging to the desired answer
in a number of steps. For us these steps will always be finite and in fact, most
of the time only two steps are necessary. These steps are usually referred to as
pages. The first page of the spectral sequence, just as in the last example, is given
by equivariant assignments f of the K-theory of spheres to the cells of X. For
the 0-cells X0, this means that we assign to each k œ X0 a twisted representation
of the stabilizer group Hk of that point. These representations, which are twisted
using · and the map „, are conveniently packaged in the twisted representation
ring „R· (Hk). These objects are actually not rings, but since they are equal to
the usual representation ring of Hk in case „ and · are trivial, we will keep on
referring to them as twisted representation rings. Details about twists and twisted
representations can be found in appendix A.5. So f maps k to an element of the
twisted representation ring „R· (Hk) of the corresponding stabilizer group Hk. By
equivariance is meant that f preserves the symmetry in the following sense: f is
required to map gk to the resulting conjugate representation in „R· (gHkg≠1) =
„R· (Hgk). More generally, we equivariantly assign higher representation rings
„R·≠q(H‡) (i.e. the higher degree twisted equivariant K-theory of a point, see
appendix A.5.1 for details) to p-cells ‡. These classify twisted H‡-equivariant
bundles over q-spheres, instead of over just a point. The grid of such assignments of
representation rings for each p and q form the first page of the spectral sequence and
is denoted by Ep,≠q

1 . Those assignments can be shown to be equivalent to Bredon
p-cochains with values in the coe�cient functor „R·≠q

G . In appendix A.5.2 we
define these coe�cient functors and present a derivation of this result. Intuitively,
the functor „R·≠q

G keeps track of both the (higher) representations at fixed loci
and how they restrict to each other. For Bredon p-cochains, this functor will pick
out the stabilizer group of the p-cells and assign degree ≠q twisted representation
rings to the p-cells. It should be noted here that the action of group elements on
the higher representation rings can be tedious to determine explicitly in certain
examples, so that the equivariance of f can result in nontrivial results. One
example of this is given in Section 6.3.2.

To go to the next page of the spectral sequence, we have to take the cohomology
of the first page with respect with the first di�erential, which in our case is known
as the Bredon di�erential. In fact, the first di�erential maps Ep,≠q

1 to Ep+1,≠q
1 and

is given by the di�erential of Bredon cohomology, which is

(df)(‡) =
ÿ

µœCp(X)
[µ : ‡]f(µ)|G‡ , (6.4)

with Cp(X) denoting the set of p-cells of X and f a Bredon p-cochain. Here
f(µ)|G‡ means that we take the higher twisted representation of Gµ that f assigns
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to µ and restrict it to a representation of G‡. The notation [µ : ‡] stands for an
integer factor that tells us in which way µ intersects the boundary of the p + 1-
cell ‡. In general the behavior and computation of this number can be quite
complicated, but if our CW-complex is su�ciently nice, this number is usually
just a sign depending on a fixed orientation. For example, if we have a line (1-cell)
¸ oriented from the endpoint p0 to the other endpoint p1, i.e. ˆ¸ = p1 ≠ p0, then
we simply have

[¸ : p1] = 1, [¸ : p0] = ≠1 (6.5)

and of course [¸ : pt] = 0 if pt is not an endpoint of ¸. If instead ‡ = A is a 2-cell
that lies in a disk surrounded by a couple of intervals ¸1, . . . , ¸k, then [A : ¸i] = ±1
depending on whether the orientations of the line ¸i coincide with the orientation
of A. In more general situations, where there is nontrivial gluing present, it can
be computed as the degree of a certain map between spheres. This map is exactly
the same as for the cellular boundary map in ordinary cellular homology, which
can be found for example in Hatcher’s book [210].

The second page is the cohomology of the first page with respect to the di�erential
d : Ep,≠q

1 æ Ep+1,≠q
1 given in (6.4). Mathematically speaking the second page

entry (p, ≠q) therefore equals the degree p Bredon equivariant cohomology of X
with coe�cient functor „R·≠q

G . For the third and higher order pages, we need
to know the higher di�erentials, which are much more abstractly defined and no
explicit form is known. Therefore, until more is known about this it is not possible
to fully classify topological phases for general point groups using this method. It is
however often the case in practice that we can arrive at a definite answer without
knowing explicit expressions for the higher di�erentials. At least it is known that
the rth di�erential is of bidegree (r, 1≠r), so dr : Ep,≠q

r æ Ep+r,≠q+1≠r
r . Therefore,

for d-dimensional spaces, the rth di�erential dr is zero for all r > d. For more
details on the construction of the spectral sequence and explicit definitions, see
appendix A.5.2.

But how do we construct the twisted equivariant K-theory of X from the data
of the spectral sequence? After taking the cohomology with respect to the dth
di�erential, we arrive at the final page, Ep,≠q

Œ
. We can construct the K-theory by

extensions out of Ep,≠p
Œ

, so by equating p and q. In two dimensions, this means
that there exist exact sequences

0 æ E2,≠2
Œ

æ F æ E1,≠1
Œ

æ 0, (6.6)
0 æ F æ „K·

G(X) æ E0,0
Œ

æ 0, (6.7)

see the final paragraph of appendix A.5.2 for the details. Unfortunately, these
sequences do not split in general. Therefore the K-theory is not always fully de-
termined by the spectral sequence (unless of course we would explicitly determine
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the maps in these sequences, which is a tedious exercise). We will call this the
problem of non-unique extensions, which unfortunately is intrinsic to our approach.
An example of this phenomenon will be addressed in Section 6.3.3.

Now that the spectral sequence is contained in our toolbox, we will explain how
to reduce the computation of equivariant K-theory of the Brillouin torus Td to
the computation of the K-theory of spheres. For this we use an equivariant stable
homotopy equivalence that generalizes [181, Thm 11.8]. This equivalence adresses
the decomposition of the Brillouin torus in terms of spheres. Indeed, if the action
of G on Td = S1◊· · ·◊S1 can be realized as the restriction of an action of HdoSd,
where H acts on S1 and Sd permutes the copies of S1, then Td is equivariantly
stably homotopy equivalent to a wedge of spheres. More explicitly, this means in
two dimensions that there is an isomorphism

„K·
G(T2) ≥= „K·

G(S2) ü
„ ÂK·

G(S1 ‚ S1). (6.8)

Here the tilde indicates the reduced K-theory and S1 ‚ S1 is a space that looks
like the figure 8, which is nothing but the boundary of the Brillouin zone torus
T2 seen as a square [≠fi, fi] ◊ [≠fi, fi] with opposite sides identified. Note that
the symmetry G could potentially interchange the two S1’s of the figure eight, for
example in case there is a fourfold rotation symmetry. If there is no group element
permuting the two copies of the circle, the K-theory decomposes further as

„K·
G(T2) ≥= „K·

G(S2) ü
„ ÂK·

G(S1) ü
„ ÂK·

G(S1), (6.9)

where we used that
„ ÂK·

G(S1 ‚ S1) =
„ ÂK·

G(S1) ü
„ ÂK·

G(S1). (6.10)

A similar isomorphism as in (6.9) exists in three dimensions under the given as-
sumptions. The relation between reduced and unreduced K-theory „K·

G(X) is

„K·
G(X) = „K·

G(pt) ü
„ ÂK·

G(X). (6.11)

When using the equivariant splittings (6.8) and (6.9), we can thus compute the
unreduced K-theory and then strip of the „K·

G(pt)-part to obtain the reduced
K-theory. Note that the assumption that the action of G comes from some action
of Hd o Sd does not always hold, so that we cannot always use (6.8). If for
example three-fold rotations are present, we seem to be bound to applying the
Atiyah-Hirzebruch spectral sequence to the Brillouin zone torus directly.

Since the K-theory of a one-dimensional space X is easy to compute, the isomor-
phism (6.9) e�ectively reduces computations of the K-theory of a two-dimensional
torus to a two-dimensional sphere. Indeed, for one-dimensional spaces all higher
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p0

pŒ

¸
T ¸

TA A

Figure 6.1: A Z2-CW structure of the Z2-space S2 that is the one-point compact-
ification of the two-dimensional representation of Z2 given by k ‘æ ≠k. We have
denoted this action by T .

di�erentials vanish and E2,≠2
Œ

= 0, so that the exact sequences (6.6) and (6.7) re-
duce to a single exact sequence. Because the twisted representation ring „R· (G)
is torsion free (for q = 0), so is H0(X,„ R·

G). Hence the resulting sequence splits,
giving us

„K·
G(X) ≥= H0(X,„ R·

G) ü H1(X,„ R·≠1
G ). (6.12)

Despite the absence of torsion in the first term, the second term can give rise to
torsion of which we will see examples below. The torsion in H1 was anticipated
before in [211] for systems in class AII with a reflection symmetry in one dimension.

6.3.2 Time-reversal only: revisited

Let us now illustrate how the Atiyah-Hirzebruch spectral sequence formalizes the
intuitive approach of the last section. So again we will take X = S2 with the
Z2-action k ‘æ ≠k with the Z2-CW-structure as given in Figure 6.1. We will
consider the classes AI (T 2 = 1) and AII (T 2 = ≠1) simultaneously and note
the distinctions along the way. Mathematically, we distinguish between the two
classes by picking the twist · = ·0 to be trivial in class AI and · = ·1 nontrivial in
class AII. The higher twisted representation rings of Z2 and the trivial subgroup
1 ™ Z2 are given in Table 6.1. Note that the stabilizers of the 0-cells are both Z2,
while for the other cells the stabilizer is trivial.

We will start by computing all Bredon cohomology groups that are necessary
for obtaining the K-theory group from the spectral sequence. These cohomology
groups are the ones that correspond to second page entries of the spectral sequence
which could possibly influence the three desired entries E0,0

Œ
, E1,≠1

Œ
and E2,≠2

Œ
of the

final page occurring in the exact sequences of equation (6.6) and (6.7). Because the
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„R·0≠q(Z2) „R·1≠q(Z2) „R·0≠q(1) „R·1≠q(1)
= = = =

KR≠q(pt) KR≠q≠4(pt) K≠q(pt) K≠q(pt)
q = 0 Z Z Z Z
q = 1 Z2 0 0 0
q = 2 Z2 0 Z Z
q = 3 0 0 0 0
q = 4 Z Z Z Z
q = 5 0 Z2 0 0
q = 6 0 Z2 Z Z
q = 7 0 0 0 0
q = 8 Z Z Z Z

...

Table 6.1: The twisted representation rings in the case of G‡ = Z2 and G‡ = 1.
They are 8-periodic in the degree.

second di�erential (which is of bidegree (2, 1)) is the only possibly nonzero higher
di�erential, we have E3 = EŒ. Therefore we have to compute Hp

G(S2, „R·≠q
G ) for

(p, q) equal to (0, 0), (0, 1), (1, 1), (2, 1) and (2, 2).

First we have to find all necessary Bredon equivariant cochains, as they constitute
the first page Ep,≠q

1 . We start with p = q = 0. So we consider the equivariant
0-cochains with values in „R·

G, which here are the equivariant maps from the set
{p0, pŒ} to „R· (Z2) = Z for both twists. Because the 0-cells are completely fixed
by the group, all 0-cochains are equivariant. Therefore the equivariant 0-cochains
are spanned by two basis elements fi0 and fiŒ over Z:

C0
Z2(S2, „R·

G) = Èfi0, fiŒÍZ = Z2. (6.13)

Here fi0 maps p0 to 1 œ „R· (Z2) and pŒ to 0 œ „R· (Z2). For fiŒ the roles of
p0 and pŒ are interchanged. In more basic terms: fi0 assigns a state space of
dimension one to p0 and a zero space to pŒ, while fiŒ assigns a zero space to p0
and a one-dimensional space to pŒ.

Going up to p = 1, q = 0, there is only one equivariant 1-cochain, so that

C1
Z2(S2, „R·

G) = È⁄ÍZ = Z. (6.14)

Indeed, from Table 6.1 it is clear the this cochain is an equivariant map from
{¸, T ¸} to Z. By equivariance, it is uniquely specified by specifying its value on ¸,
which we take to be 1 for ⁄. In case the reader is interested in the actual value of
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⁄(T ¸), simply note that the action of T on the representation ring is just complex
conjugation. In case T acts on the representation ring of a nontrivial group this
will result in the complex conjugation of nontrivial representations, which are in
general not isomorphic to the original representation. However, a complex vector
space is noncanonically isomorphic to its complex conjugation since it has the
same dimension. Hence the automorphism that T induces on „R· (1) is simply the
identity, thus ⁄(T ¸) = ⁄(¸) = 1. Along the way we will see that this automorphism
is not always trivial and acts with minus the identity on the higher representation
ring of degree ≠2. This is the heart of the matter, since it is the aspect that creates
torsion in this example.

For q = 1, the situation simplifies, since the degree ≠1 representation ring of
the trivial group equals zero. Hence there are no equivariant 1-cochains or 2-
cochains with values in „R·≠1

G . The degree ≠1 representation ring of Z2 depends
on whether the twist · is taken trivial (class AI) or nontrivial (class AII). For
· trivial it equals Z2 and for · nontrivial it equals 0. In class AII, we therefore
also have no equivariant 0-cochains with values in „R·≠1

G . In class AI instead, the
equivariant 0-cochains are spanned by fi0 and fiŒ, just as for q = 0. However, this
time they are a basis over Z2:

C0
Z2(S2, „R·≠1

G ) = Èfi0, fiŒÍZ2
= Z2

2. (6.15)

Here fi0 maps p0 to the nontrivial element of Z2 and pŒ to the trivial element,
while for fiŒ it is the other way around.

Finally, for q = 2 there are some subtleties. The degree ≠2 representation ring of
the trivial group is equal to Z. Analogously to q = 0, we get that the 1-cochains
are spanned over Z by a single element ⁄ with ⁄(¸) = 1. Similarly, the 2-cochains
are spanned by a single element – with –(A) = 1. However, unlike for q = 0, we
have that

–(TA) = T–(A) = ≠–(A) = ≠1. (6.16)

This is because the action of T on the degree ≠2 representation ring is ≠1, as
can be shown by an explicit analysis using Cli�ord algebras, using the explicit
definitions in appendix A.2. We can conclude that the relevant part of the first
page of the spectral sequence for class AI and class AII respectively is given in the
following table:

p = 0 p = 1 p = 2
q = 0 C0

G(S2, „R·0
G ) = Z2 C1

G(S2, „R·0
G ) = Z

q = 1 C0
G(S2, „R·0≠1

G ) = Z2
2 C1

G(S2, „R·0≠1
G ) = 0 C2

G(S2, „R·0≠1
G ) = 0

q = 2 C1
G(S2, „R·0≠2

G ) = Z C2
G(S2, „R·0≠2

G ) = Z
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p = 0 p = 1 p = 2
q = 0 C0

G(S2, „R·1
G ) = Z2 C1

G(S2, „R·1
G ) = Z

q = 1 C0
G(S2, „R·1≠1

G ) = 0 C1
G(S2, „R·1≠1

G ) = 0 C2
G(S2, „R·1≠1

G ) = 0
q = 2 C1

G(S2, „R·1≠2
G ) = Z C2

G(S2, „R·1≠2
G ) = Z

With the information we have gathered now, we can construct the second page,
consisting of Bredon cohomologies. Let us start o� by computing H0

G(S2, „R·
G).

For this we need to compute the kernel of the Bredon di�erential

d : Z2 = C0
G(S2, „R·

G) æ C1
G(S2, „R·

G) = Z. (6.17)

On the 0-cochain fiŒ it acts as

dfiŒ(¸) = fiŒ(ˆ¸)|1 = fiŒ(pŒ≠p0)|1 = fiŒ(pŒ)|1≠fiŒ(p0)|1 = fiŒ(pŒ)|1, (6.18)

where the symbol |1 denotes the restriction of the representation to the trivial
group. In class AI, this restriction maps complex vector spaces with a real struc-
ture T to their underlying complex vector space. Since all complex vector spaces
admit a real structure, this implies that the restriction map „R· (Z2) æ „R· (1)
is the identity. In class AII, where T 2 = ≠1, the restriction is multiplication by
two, because only complex vector spaces of even dimension admit a quaternionic
structure. Hence we get

dfiŒ =
I

⁄ if · = ·0,

2⁄ if · = ·1.
(6.19)

Using the orientation we analogously get that dfi0 = ≠dfiŒ. In both class AI and
AII, we see that the degree zero cohomology equals

ker d = H0
G(S2, „R·

G) ≥= Z. (6.20)

In general, this cohomology group contains all local topological invariants. More
precisely, the zeroth degree cohomology group is actually a mathematical formal-
ization of the heuristic method of consistently assigning representations to point
sketched in Section 6.2 and used extensively in [3] and [4].

The next row of the second page is easily deduced from the first page. In class
AII, all cochains vanish and therefore so do the cohomology groups. In class AI
nontrivial 0-cochains exist, but not in higher degrees. Therefore the di�erential is
necessarily zero and the second page equals the first page.

The final relevant cohomology group is H2
G(S2, „R·≠2

G ). In this case, T induced a
non-trivial automorphism on „R·≠2(1) given by ≠1, so that

d⁄(A) = ⁄(ˆA) = ⁄(¸) ≠ T⁄(¸) = 2⁄(¸) = 2, (6.21)
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hence d⁄ = 2– for both · = ·0 and ·1, so that im d = 2Z. The kernel of d acting
on 2-cochains is Z, since we are in top degree. Thus H2

G(S2, „R·≠2
G ) = Z2.

Summarizing the results by filling in the second page of the spectral sequence, we
get the following tables for T 2 = 1 and T 2 = ≠1 respectively:

p = 0 p = 1 p = 2
q = 0 H0

G(S2, „R·0
G ) = Z

q = 1 H0
G(S2, „R·0≠1

G ) = Z2
2 H1

G(S2, „R·0≠1
G ) = 0 H2

G(S2, „R·0≠1
G ) = 0

q = 2 H2
G(S2, „R·0≠2

G ) = Z2

p = 0 p = 1 p = 2
q = 0 H0

G(S2, „R·1
G ) = Z

q = 1 H0
G(S2, „R·1≠1

G ) = 0 H1
G(S2, „R·1≠1

G ) = 0 H2
G(S2, „R·1≠1

G ) = 0
q = 2 H2

G(S2, „R·1≠2
G ) = Z2

When T 2 = ≠1, we immediately see that all higher di�erentials vanish. The
spectral sequence thus collapses at E2 and the exact sequences (6.6) and (6.7)
reduce to the single exact sequence

0 æ Z2 æ KR≠4(S2) æ Z æ 0. (6.22)

Since Z is a free group, the sequence splits. This gives us KR≠4(S2) = Z ü Z2.
Moreover, using the spectral sequence it can easily be shown that ÁKR

≠4
(S1) = 0

(for an example of a computation of the K-theory of a one-dimensional space using
the spectral sequence, see the next section). By the equivariant splitting (6.9), the
K-theory of the torus is thus

KR≠4(T2) = Z ü Z2, (6.23)

which confirms the result using a di�erent approach, see equation (6.1). It is worth
noting that the torsion invariant Z2 managed to appear because of the nontrivial
action of T induced by complex conjugation and not by the torsion in the KR-
theory of a point as it does when computing KR≠4(S2) using the methods of for
example Freed and Moore [181].

For T 2 = 1 another lesson is to be learned from this example. Namely, note that as
long as we do not know any expression for the second di�erential d2 : Z2

2 æ Z2, we
cannot uniquely determine the K-theory group by the spectral sequence method.
However, we know from other methods that KR0(S2) = Z so that this di�erential
must be surjective. If in future research an explicit expression for the second
di�erential is found, it would be interesting to compute it in this example.
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6.3.3 Time-reversal and a twofold rotation symmetry

For a more exciting example, we now also include a rotation R by fi. So we take
the symmetry group G = Z2 ◊ Z2 = {1, R} ◊ {1, T}. We twist the group so that
the twisted group algebra satisfies the desirable physical situation on the quantum
level, namely R2 = T 2 = ≠1 and TR = RT . This thus represents spinful fermions
on a two-dimensional square lattice with twofold rotation symmetry and hence the
wallpaper group is p2. On the Brillouin torus T2 = [≠fi, fi]2/ ≥ these symmetries
act as Tk = ≠k and Rk = ≠k.

Before the topological computations, we first have to compute the twisted Bredon
coe�cients, i.e. the representation rings and the relevant maps between them.
Note that the only stabilizers that occur are G and H := {1, TR}, so we only have
to compute twisted representations for these groups. Because of this exceptional
role played by TR it is useful to set S := TR and forget about T for the moment.
Note that in the twisted group algebra, Si = ≠iS, S2 = 1 and SR = RS. The
twisted group algebras are abstractly isomorphic to matrix algebras:

„C· H = R[i, S]
(i2 = ≠S2 = 1, iS = ≠Si)

≥= |Cl1,1| ≥= M2(R) (6.24)

„C· G = R[i, S, R]
(i2 = R2 = ≠S2 = 1, iS = ≠Si, RS = SR, iR = Ri)

≥= M2(C), (6.25)

where the last isomorphism follows because the twisted group algebra is „C· H ¢R
C. Therefore the twisted group algebra of H is Morita equivalent to the algebra
R, while the twisted group algebra of G is Morita equivalent to the algebra C.
The representation rings are therefore

„R·≠q(H) ≥= KR≠q(pt) (6.26)
„R·≠q(G) ≥= K≠q(pt), (6.27)

see appendix A.5.1 for details on higher degree representation rings. The restric-
tion map in degree zero

Z ≥= „R· (G) æ „R· (H) ≥= Z (6.28)

is just given by mapping a complex vector space to its underlying real space and
hence it is given by multiplication by two. For q = 1, the restriction map can only
be zero, since K≠1(pt) = 0. For q = 2 restriction is a map

Z ≥= „R·≠2(G) æ „R·≠2(H) ≥= Z2, (6.29)

so it can either be zero or reduction mod 2. It is possible to explicitly check which
it is by using explicit Cli�ord modules, but it turns out that we do not need to
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know which one it is in order to compute the K-theory. The only remaining map
between representation rings is the action of R on the representation ring. This
action is given by conjugating modules over „C· H with R. Since R is in the center
of „C· G, the automorphism on „R· (H) resulting from this is trivial. On the two
relevant higher degree representation rings

„R·≠1(H) = „R·≠2(H) = Z2 (6.30)

the action of R is trivial as well because Z2 has no nontrivial automorphisms.

In order to compute the full twisted equivariant K-theory of the Brillioun zone
torus, we first use the equivariant splitting method, giving the isomorphism 6.9.
Secondly we apply the spectral sequence on the components. Note that the circles
occuring in the isomorphism, i.e. kx = 0 and ky = 0 in the Brillouin zone, have
identical group actions. Hence they give isomorphic K-theory groups and we only
have to compute one. Next we have to decide on G-CW decompositions of our
new spaces S2 and S1. Since the action of R is the same as the action of T , we can
reuse the G-CW structure of the last example for S2 as given in Figure 6.1. For
the circle we use the one-dimensional sub-G-CW complex of the G-CW structure
on S2.

Let us start by computing the twisted equivariant K-theory of the circle. We
compute the K-theory by using 6.12 for one-dimensional spaces. The zeroth-
cohomology H0

G(S1, „R·
G) is analogous to the example in the previous subsection.

We can define Z-bases of equivariant 0-cochains fi0, fiŒ and 1-cochains ⁄. In
contrast with the last example, we now have complex vector spaces on the fixed
points and real vector spaces on the k-cells for k > 0. Recall that the restriction
map sends a complex vector space to its underlying real space and therefore this
map is given by multiplication by two. The Bredon di�erential is thus given by

dfiŒ(¸) = fiŒ(ˆ¸)|H = 2 =∆ dfiŒ = 2⁄. (6.31)

Similarly dfi0 = ≠2⁄. Hence H0
G(S1, „R·

G) ≥= Z. Notice that for the first cohomol-
ogy group H1

G(S1, „R·≠1
G ) the twisted representation ring of G vanishes in te corre-

sponding degree, so that the di�erential equals zero. Hence this cohomology group
is equal to the group of equivariant 1-cochains È⁄ÍZ2 , which equals the twisted rep-
resentation ring of H in degree ≠1. We conclude that H1

G(S1, „R·≠1
G ) ≥= Z2. Via

equation (6.12), we arrive at
„K·

G(S1) = Z ü Z2. (6.32)

Since „K·
G(pt) = „R· (G) = Z, we see that

„ ÂK·
G(S1) = Z2 for both circles in

the splitting of the torus. These are precisely the invariants proposed by Lau et
al. in [211] and when non-trivial represent a Möbius twist in the Hilbert space of

151



6. K-theory Classification of Crystalline Topological Insulators

states along the invariant circles at kx = 0 and ky = 0. Our K-theory computation
thus provides a mathematical proof of the existence of this invariant.

Now we turn to the computation of the twisted equivariant K-theory of the 2-
sphere. We use the same bases of equivariant cochains {fi0, fiŒ}, {⁄} and {–} as
in the last example. For the zeroth cohomology, H0

G(S2, „R·
G), the computation is

equivalent to the one in the previous subsection, hence H0
G(S2, „R·

G) = Z. Going
to q = 1, we see that there are no 0-cochains, since „R·≠1(G) = 0. The di�erential
on 1-cochains gives

d⁄(A) = ⁄(ˆA)|H = ⁄(¸) ≠ ⁄(R¸)|H (6.33)
= ⁄(l)|H ≠ R⁄(¸)|H (6.34)
= 0, (6.35)

since R necessarily acts trivially on „R·≠1(H) = Z2. Hence the cohomology
groups are equal to the cochain groups:

H0
G(S2, „R·≠1

G ) = 0, H1
G(S2, „R·≠1

G ) = Z2, H2
G(S2, „R·≠1

G ) = Z2. (6.36)

Since for q = 2 the 1-cochains and 2-cochains are exactly the same, the above com-
putation also applies to the computation of the cohomology in degree 2. Therefore
it follows that H2

G(S2, „R·≠2
G ) equals Z2 as well. The relevant part of the second

page is thus conveniently summarized in the following table.

p = 0 p = 1 p = 2
q = 0 H0

G(S2, „R·
G) = Z

q = 1 H0
G(S2, „R·≠1

G ) = 0 H1
G(S2, „R·≠1

G ) = Z2 H2
G(S2, „R·≠1

G ) = Z2
q = 2 H2

G(S2, „R·≠2
G ) = Z2

The second di�erential d2 : H0
G(S2, „R·

G) æ H2
G(S2, „R·≠1

G ) is either zero or
reduction modulo 2. Independent of this distinction, the kernel of d2 is abstractly
isomorphic to Z. Hence the relevant part of the final page of the spectral sequence
agrees with the diagonal p = q in the table above. The exact sequences (6.6) and
(6.7) that follow from the spectral sequence now reduce to

0 æ Z2 æ F æ Z2 æ 0, (6.37)
0 æ F æ „K·

G(S2) æ Z æ 0. (6.38)

Note that the second sequence splits. Unfortunately, the first exact sequence
implies only that F = Z2

2 or F = Z4. Hence the Atiyah-Hirzebruch spectral
sequence gives that „K·

G(S2) is either Z ü Z2
2 or Z ü Z4, depending on whether

the first exact sequence splits or not. We can conclude from equation 6.9 that
„K·

G(T2) ≥= Z ü Z4
2 or „K·

G(T2) ≥= Z ü Z2
2 ü Z4. (6.39)

152



6.3. The spectral sequence and applications

To determine which of these two is the correct one, we employ the equivariant
Mayer-Vietoris exact sequence. We can focus on the sphere since two possibilities
for the K-theory originated there. Take open G-neighbourhoods of the north and
south pole as U1 = S2 \ {pŒ} and U2 = S2 \ {p0}. Now consider the following
part of the equivariant Mayer-Vietoris exact sequence with respect to U1 and U2:

· · · æ „K·≠1
G (U1 fl U2) æ „K·

G(S2) æ „K·
G(U1) ü „K·

G(U2) æ . . . (6.40)

Note that both U1 and U2 are G-contractible to a point. Hence

„K·
G(U1) ü „K·

G(U2) ≥= „K·
G(pt) ü „K·

G(pt) ≥= Z2.

Moreover, U1 fl U2 is G-homotopy equivalent to the equator S1. To compute the
twisted equivariant K-theory of this S1, note that the action of the subgroup H Õ

generated by R is free. This implies that we can quotient this subgroup without
having to worry about orbifold-type singularities. Since there is a homeomorphism
S1/H Õ ≥= S1, we arrive at a circle with a trivial H-action. Because twisted K-theory
of orbifolds is invariant under equivalence [208], we see that

„K·≠1
G (U1 fl U2) ≥= „K·≠1

G (S1) ≥= „K·≠1
H (S1). (6.41)

The new twist is simply the restriction of the old twist to H and since (TR)2 = 1,
the twist results in nonequivariant KO-theory. Using suspensions and reduced
KO-theory, we then arrive at

„K·≠1
G (U1 fl U2) ≥= KO≠1(S1) ≥= KO≠1(pt) ü ÁKO

≠1
(S1) (6.42)

≥= KO≠1(pt) ü KO≠2(pt) ≥= Z2
2. (6.43)

Hence the equivariant Mayer-Vietoris sequence takes on the form

· · · ≠æ Z2
2

f1≠æ „K·
G(S2) f2≠æ Z2 ≠æ . . . (6.44)

A simple diagram chasing argument now shows that „K·
G(S2) does not contain

any 4-torsion. Indeed, suppose that a œ „K·
G(S2) satisfies 4a = 0. We will

show that this implies 2a = 0. First note that 4f2(a) = f2(4a) = 0. However,
the image of f2 is torsion-free so we necessarily have that f2(a) = 0. We can
conclude that a is in the kernel of f2. By exactness, this implies that there is some
b œ Z2

2 such that f1(b) = a. Now it follows by the group structure of Z2
2 that

2a = 2f1(b) = f1(2b) = f1(0) = 0 as desired.

The twisted equivariant K-theory for p2 symmetry in class AII is thus,

„K·
G(T2) ≥= Z ü Z4

2, (6.45)
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which exactly agrees with the heuristic arguments proposed in [4]. In particular,
there it is argued that each Z2 invariant comes from a vortex anti-vortex pair in
the Berry connection stuck at the high-symmetry points. In this case, there are
four of such point and hence four Z2 invariants. The part of this K-theory coming
from the sphere was also computed in [170]. Our method now provides a rigorous
mathematical proof of this computation.

Notice that the spectral sequence also gives insight on the origin of the invariants.
First of all, the Z factor is simply the rank of the bundle. Next we have two
Z2’s that are Möbius-type line invariants along the two cycles of the torus and
are simply the invariants already found in [211]. On the Brillouin zone sphere
remaining after the equivariant splitting, we have again one such Z2-line invariant.
Finally, we have the fourth Z2-invariant, which is a Fu-Kane-Mele-type surface
invariant on the Brillouin sphere. We discuss a possible connection between these
invariants and the vortex picture in the Section 6.5. Also note that from the
equivariant Mayer-Vietoris exact sequence we could only determine the type of
torsion and not the full K-theory group. It is the combination with the Atiyah-
Hirzebruch spectral sequence that resulted in the final answer.

6.4 Generalizations

We will now discuss various generalizations of the simple examples we studied in
the previous section. Furthermore, we will give an algorithmic method to compute
the twisted representations rings.

6.4.1 Other crystal symmetries

In the above we performed computations involving either no spatial symmetries
or a twofold rotation. The computation of the last section can be generalized
straightforwardly to a fourfold rotation. The only thing that requires extra at-
tention is that even though the splitting (6.8) holds true, the K-theory does not
split further according to equation (6.9). This is because the fourfold rotation
interchanges the two circles of the figure eight. So one really has to compute the
K-theory of the figure eight. The final result for a fourfold rotation in class AII is

„K·
Z4◊ZT

2
(T2) = Z3

2 ü Z3. (6.46)

Just as for a twofold rotation, there are two torsion invariants coming from the
spherical Brillouin zone: one is a line invariant and one a surface invariant. How-
ever, there is only one Z2-invariant corresponding to the boundary figure eight,
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since the two line invariants of the last section are identified by the fourfold ro-
tation. It is amusing to see that this computation exactly agrees with the more
heuristic arguments presented in [4]. There are three high-symmetry points (not
related by any symmetry operation) at which vortex anti-vortex pairs can be
stuck, giving rise to three Z2 invariants. The free part of the K-theory is simply
the consistent assignment of representations as discussed in previous subsections.

It is interesting to do the same computation for wallpaper groups with reflections.
For instance, let us consider a two-dimensional crystal with a single reflection
symmetry. On the Brillouin torus this symmetry acts as t · k = (kx, ≠ky) for
k œ T2. Just as for the twofold rotation symmetry, we have that on the fibers
t2 = ≠1. Going through the spectral sequence analysis, we find that the spectral
sequence method gives a unique answer by itself. The K-theory is given by

„K·
Z2◊ZT

2
(T2) = Z2

2 ü Z, (6.47)

in class AII. This result also agrees with [4]. The Z2 invariants come from the
circles fixed under the reflection symmetry. Note that one of these circles is part
of the figure eight boundary, whereas the other comes from the circle of reflection
on the sphere after the equivariant splitting (6.8). The part of the K-theory
coming from the sphere (in particular exactly one of the two Z2 invariants) was
also obtained in [169,170,203].

For more complicated symmetries, the method becomes rather involved. For ex-
ample, symmetries with elements of odd order can in two spatial dimensions only
occur on a hexagonal lattice, so one has to take the non-trivial identifications of
the Brillouin zone into account. The Brillouin zone will still be a torus, but the
equivariant splitting we used in the previous section becomes more di�cult. Also
we cannot make use of the real structure TR in the same way we did above; in case
of an odd order rotation the stabilizer of a generic point will be trivial instead.
Moreover, TR will anticommute with reflections in class AII, see the example at
the end of this section. The basic di�culty as the symmetry group gets larger is
computing the twisted group algebras and their representation rings; determining
them using abstract algebra as we did in equations (6.24) and (6.25) quickly be-
comes tedious. One way forward is to give an alternative way of describing and
constructing the twisted representation rings. Essentially, the only requirement
for the construction of these twisted representation rings is knowing how many
representations exist and which are real, complex and quaternionic. More pre-
cisely, if the number of real, complex and quaternionic irreducible („, ·)-twisted
representations of G is denoted by nk with k = R, C, H, we have

„R· (G) = K0(pt)nC ü KR0(pt)nR ü KR≠4(pt)nH . (6.48)

Once this data has been computed, the higher order rings follow from the Bott
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clock, see appendix A.5.1. Remember that although we refer to „R· (G) as rings,
they are actually not rings. The task we are thus left with is to determine the
integers nk. In other words, we need an adequate representation theory for twisted
groups. From a physics point of view, such a theory was outlined in [194] and we
will now showcase this to make contact with the approaches to such problems
by the crystallography community. It would also be interesting to see this point
of view compared with the Wigner test, which is the appropriate generalization
of the Frobenius-Schur indicator as given in [194]. Although we will not give a
rigorous proof of the connection between the representation theory of space groups
and twisted representation rings, we will give evidence for such a connection below
and in appendix A.5.1.

In the rest of this section, we will mention the procedure of [194] and illustrate
it using a simple example. For this we will need to briefly change gears. We
formulate twisted groups in terms of double covers and twisted representations as
double-valued representations. To see how this formulation is related to the twists
· in the main text, the reader may wish to consult the final paragraph of appendix
A.5. Although this procedure works for both class AI and AII, let us focus on the
latter. For simplicity we assume that G = G0 ◊ZT

2 , where ZT
2 represents the time-

reversal action on the Brillouin zone and G0 consists of the other symmetries.
We have written G in this way, because G0 will be lifted to a linear action on the
Hilbert space, whereas time-reversal lifts to an anti-linear action. Let us focus first
on G0. In class AII, we are dealing with fermions (class AI assumes the system is
bosonic) and we have to consider a certain double cover of G0, which we denote by
‚G0. The representations of the double cover take the usual signs into account that
come for example from rotations over 2fi acting with a minus sign on the Hilbert
space. In this sense they form the structure analogous to the twist · in the rest
of this chapter. It is usually intuitively clear which double cover is desirable, but
for a general point group G0 of a d-dimensional lattice it can be described by the
following abstract mathematical construction. The double cover should be the
pullback of the negative Pin group Pin≠(d) covering the orthogonal group:

1 Z2 ‚G0 G0 1

1 Z2 Pin≠(d) O(d) 1.

The reason that it is not the spin group is that this group would only account
for rotations, not for reflections. In other words, Spin(d) is only a double cover of
SO(d). The reason that we pick the negative Pin group Pin≠(d) instead of the
other central extension Pin+(d) of O(d), is that in Pin+(d) reflections square to the
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identity instead of to the desired ≠12. It is useful to note that if G0 = Dn is the
symmetry group of an n-gon, then ‚G0 is known as the dicyclic group of order 4n.
Twisted representations of the group G0 can now be described as certain ordinary
representations of the double cover group ‚G0. Let us call representations fermionic
when the newly introduced subgroup Z2 ™ ‚G0 acts nontrivially. Representations
where the Z2 acts trivially are called bosonic. This exactly means that 2fi rotations
(or double reflections) act by ≠1 on fermionic representations and trivially on
bosonic representations. In general, the double cover will admit both fermionic and
bosonic representations, but for systems in class AII the Hilbert space is organized
in terms of fermionic representations only. Given these fermionic representations,
we are now ready to add in time-reversal symmetry. This enlarges the group with
another generator T that squares to minus one. Set-theoretically, we can write the
full group acting on the Hilbert space as 3

‚G = ‚G0 Û A ‚G0, (6.49)

where A is an antiunitary symmetry operator, i.e. „(Ag) = ≠1 for any g œ ‚G0.
Notice that starting with any group ‚G and any nontrivial homomorphism „ : ‚G æ
Z2, we could have created such a decomposition by taking ‚G0 = ker „ and picking
some A /œ ker „. Usually one takes A = T , but other forms of A are also possible.
For example, in the example in the previous subsection, for H := {1, TR} we
would have A = TR and ‚G0 = {1, ≠1}, with ≠1 the non-trivial element in the
double cover of the trivial group. Notice also that the choice of A in (6.49) is a bit
arbitrairy as AÕ = Ag for g œ ‚G0 instead of A will give rise to unitarily equivalent
representations.

To construct time-reversal symmetric representations, we simply follow the logic
as outlined in section A.3. Before discussing some examples, let us mention that
an important subtlety is when the unbroken symmetry group of the fixed point
does not contain any antiunitary symmetries. In that case the representations
remain complex, i.e. case c), just as we saw in Table 6.1 in the case of a trivial
stabilizer group.

For a rotation symmetry Zn, the double cover is Z2n which has n complex fermionic
representations for n even. For n odd, there are n ≠ 1 complex fermionic represen-
tations and one quaternionic representation. Due to time-reversal symmetry the

2
When other symmetries such as gauge or flavour symmetries are present or when there are

interactions, the double cover could also be Pin≠(d). Although it would be interesting to map

out all possible choices, it is beyond to scope of the present work.

3
Note that in the previous section, we used G to denote the group acting on the Brillouin

zone. The group ‚G is the lift of that group to a group acting on the Hilbert space in which time-

reversal, 2fi rotation and double reflections square to minus one. Hence fermionic representations

of ‚G are equivalent to twisted representations of G.
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complex fermionic representations will pair up and hence the twisted representa-
tion ring of degree ≠q of G = Zn ◊ ZT

2 is

„R·≠q(G) =
;

K≠q(pt)n/2 if n = even
K≠q(pt)(n≠1)/2 ü KR≠q≠4(pt) if n = odd . (6.50)

This is exactly the same result as one would get by constructing the representation
ring of the twisted group algebra, which is a more formal way of computing the
twisted equivariant K-theory of a point. More details on that construction can
be found in the appendix. A more non-trivial example is G0 = Z2 ◊ Z2. This
group is generated by t1 and t2, which represent reflections in the kx and ky axis
respectively. The double cover of this group is Q8, the quaternion group. The
action of G0 on the Brillouin zone torus T2 has four fixed points (0, 0), (0, fi),
(fi, 0) and (fi, fi) and four fixed circles (0, ky), (fi, ky), (kx, 0) and (kx, fi). The
fixed points have stabilizer group G0. We will analyze the representations of the
cover of this group first. The group Q8 has five representations of which only
one is fermionic, since for all other representations ≠1 œ Q8 acts trivially. This
fermionic representation is just its regular action on the quaternions H, which
is a two-dimensional representation over the complex numbers. We denote the
generators of Q8 by t̂1 and t̂2. The representation is concretely given by

fl(t̂1) = i‡1, fl(t̂2) = i‡2 (6.51)

where ‡i are the Pauli matrices. Note that since we are at fixed points whose
stabilizer group is the full point group, we have A = T . To determine what time-
reversal does with these representations, we have to find out whether fl and fl̄ are
unitarily equivalent. Clearly this is the case, since N = i‡2 is an explicit unitary
matrix that intertwines fl with fl̄. To see this, note that it anticommutes with all
purely imaginary matrices in this representation. Given this N , we have

NN̄ = ≠‡2
2 = ≠1 = +T 2. (6.52)

Thus we are in case a) and we have „R·≠q(G) = KR≠q(pt).

For the fixed circles the twisted representation theory of the stabilizer is unex-
pectedly interesting. Consider for example the circle ky = 0. This circle is fixed
by H = {1, t2}, which lifts to the double cover ‚H = {1, t̂2, t̂2

2, t̂3
2}. The full set of

elements in the double cover (including time-reversal) that leave ky = 0 fixed is
{1, t̂2, t̂2

2, t̂3
2}ÛTR{1, t̂2, t̂2

2, t̂3
2}, hence we pick A = TR, where R = t̂1t̂2 is the lift of

the twofold rotation in the double group. Note that A2 = 1, but since A contains
the rotation R it anticommutes with the reflections. Even though the fermionic
representations fl± of ‚H have complex eigenvalues ±i for the reflection, these two
irreps nevertheless belong to case a). To see this, first note that since these rep-
resentations are one-dimensional over the complex numbers, N drops out. Hence
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two such representations are unitarily equivalent if and only if they are equal. Now
note that there is an extra minus sign that cancels the minus sign coming from
complex conjugation. Indeed we have fl̄± = flû and hence

fl̄±(A≠1t̂2A) = flû(≠t̂2) = fl±(t̂2). (6.53)

For the other fixed circles the exact same argument holds. At the fixed circles we
therefore have two real representations and hence the representation ring is

„R·≠q(H ◊ ZT
2 ) = KR≠q(pt) ü KR≠q(pt). (6.54)

From this computation, one immediately sees that a lot of torsion will appear in
the spectral sequence. We will not compute the full K-theory for this crystal group
here, but we expect the exact sequences that result from the spectral sequence to
split.

The approach given in this section has a natural extension to non-symmorphic
symmetries, but the computations become more tedious. We will discuss these
symmetries further in the discussion section.

6.4.2 Class AI

Topological insulators in class AI satisfy T 2 = 1. The bundle therefore has a real
structure given by T . In the absence of a point-group symmetry, the K-theory
classifying topological insulators is Real K-theory KR, which we computed in
(6.1). When the topological insulator has a non-trivial crystal symmetry, the
twist · is trivial. Therefore we have to compute equivariant Real K-theory, which
for a group G is denoted by KRG. We can again use the spectral sequence method
to compute the relevant K-theory groups. For a single reflection symmetry in class
AI we find that

KRZ2(T2) = Z3, (6.55)

which is again in agreement with [169,170,203]. The invariants are purely coming
from the representations at the fixed points together with a non-trivial glueing
condition.

It turns out that for other symmetries, the K-theory for class AI is much harder
to compute. In the examples we considered, the computations are plagued by
the higher di�erentials of the spectral sequence. This problem appears especially
in class AI because in two dimensions, the second di�erential can only make a
nontrivial contribution in case the (twisted) stabilizer Hk of some zero-cell k ad-
mits a real representation. In contrast to class A (where all representations are
complex) and in class AII (where real representations do appear sometimes), real
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6. K-theory Classification of Crystalline Topological Insulators

representations are the norm in class AI. This is because time-reversal is a real
structure. In particular whenever Hk contains T , the trivial representation of Hk

is always real. Therefore the second di�erential can often make contributions to
the K-theory, but we have not been able to show what these contributions are for
a general crystal symmetry. What we do know however is that for the analogous
computation of the one done in 6.3.3 (i.e. time-reversal and a twofold rotation
symmetry) the K-theory is one of the two groups

KRZ2(T2) = Z5 or KRZ2(T2) = Z5 ü Z2. (6.56)

We were not able to show which of these two is the actual answer, but the analysis
in [212] suggests that there cannot be any torsion in this case. In this work a four-
fold rotation symmetry is considered and it is shown that a Z2 invariant appears
because the two complex representations form a two dimensional representation
at the fixed points (0, 0) and (fi, fi) once time-reversal symmetry is taken into
account. An e�ective time-reversal operator TR can be defined that squares to
minus one and hence at these points the vector bundle has the same quaternionic
structure that is found in class AII. This observation was crucial to show that
there is a single Z2 for p4 in class AI. For a twofold rotation symmetry a simi-
lar construction does not work, which is why we believe KRZ2(T2) = Z5. From
the point of view of the spectral sequence, this would be the case if the second
di�erential d2 (of which no convenient explicit expression is known) is surjective.
In [201], it is indeed argued that in this case d2 is surjective, just like we found in
case when no point symmetries were present.

We have also computed the KR-theory associated to p4 rotation symmetry in class
AI, but we ran into the same problems as for p2. However, from the above dis-
cussion, we know that there should be a single Z2 invariant. If a closed expression
for the second di�erential is derived, it would therefore be interesting to show
rigorously that d2 is surjective for p2, but not surjective for p4.

In case of more non-trivial crystal symmetries, the representation theory and hence
its twisted rings can be computed using the technique outlined above. The di�er-
ence is that now we are interested in the bosonic representations of Ĝ. In other
words, we do not have to consider the double cover group, but instead we can
work with the point group itself, thus (6.49) changes to G = G0 Û AG0. If A
happens to commute with all g œ G0, this means we just have to determine the
real representation theory of G0. So, for example let us consider a point group D4.
This group has five representations and all are realizable over the real numbers.
These representations are thus in case a). The twisted representation ring is then

„R·≠q(D4 ◊ ZT
2 ) = KR≠q(pt)5 (6.57)

Again for a generic point on the torus, there is an unbroken symmetry group
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H = {1, TR2}, hence a smart choice would be to pick A = TR2. Notice that
again (TR2)2 = 1 and TR2 commutes with all elements of G. For the subgroup
H we have H0 = {1}, whose representation obviously belongs to case a), hence
„R·≠q(H) = KR≠q(pt). The geometric action of D4 on the torus has three
other non-trivial stabilizer groups, two isomorphic to Z2 and one isomorphic to
Z2 ◊ Z2. The representation rings for these two groups also only consist of copies
of KR≠q(pt), since all representations are real. In fact, we have

„R·≠q(Z2 ◊ ZT
2 ) = KR≠q(pt), (6.58)

„R·≠q(Z2 ◊ Z2 ◊ ZT
2 ) = KR≠q(pt). (6.59)

6.4.3 Class A

In class A the spectral sequence is well-known [213, 214] and the computations
are a lot more tractable. There are no antiunitary operators and the K-theory is
just Atiyah & Segal’s complex equivariant K-theory [215], but possibly twisted.
The twist now comes purely from non-symmorphic symmetries. Let us focus on
symmorphic symmetries so that there is no twist. In this case, the relevant exact
sequences in the spectral sequence constructed here will always split and so unlike
in class AI and AII, we get a unique answer. One might wonder whether the higher
di�erentials could give non-trivial contributions. Firstly, since R≠q

G = 0 for odd q,
every other row on the second page of the spectral sequence is trivial so that the
second di�erential always vanishes. Moreover, in two dimensions the third and
higher di�erentials always vanish. Thus we can easily determine the equivariant
K-theory exactly.

Indeed, since in the complex case R≠2
G = RG, one quickly sees that the exact

sequences (6.6) and (6.7) imply that

KG(X) ≥= H0
G(X, RG) ü H2

G(X, RG). (6.60)

This isomorphism also holds in three dimensions, since in that case the third
di�erential gives no additional contribution. We will illustrate this fact by a short
argument. If X is three-dimensional, the arguments above give us the isomorphism

KG(X) ≥= ker
!
d3 : H0

G(X, RG) æ H3
G(X, RG)

"
ü H2

G(X, RG). (6.61)

Now note that in class A, the Bredon cochains map into ordinary representation
rings of subgroups H ™ G. Since these representation rings are always torsion-free,
so are all groups of Bredon cochains. Since H0

G(X, RG) is a kernel of a Z-linear
map between Bredon cochains, it must therefore also be torsion-free and hence so
is ker d3. But by the equivariant Chern character isomorphism [205]

KG(X) ¢ C ≥= H0
G(X, RG ¢ C) ü H2

G(X, RG ¢ C), (6.62)
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6. K-theory Classification of Crystalline Topological Insulators

we already know that the formula (6.60) holds modulo torsion. Therefore, there
must be an isomorphism ker d3 ≥= H0

G(X, RG). Note that even though this argu-
ment does not imply that d3 vanishes, it still implies that it can be ignored in
abstract computation.

Let us reflect on the results we have just established in class A. First of all, in light
of [3], we see that there is indeed a clear distinction between the representations
at fixed points and how they are glued to the representations at lines on the one
hand, which are captured by H0

G(X, RG), and higher-dimensional invariants, such
as Chern numbers on the other hand, which are in H2

G(X, RG). In two dimen-
sions, one can check by explicit computation that H2

G is torsion-free, but in three
dimensions it is known that it contains torsion in certain examples [201]. Never-
theless, the torsion-free part is still captured by the proposed algorithm in [3]. The
torsion is hard to understand systematically, but intuitively one expects it to arise
from either non-symmorphic space groups or non-trivial identifications due to the
crystal structure. Since the Bredon cohomology of a complex is something purely
combinatorial, equation 6.60 provides an algorithmic approach to computing the
K-theory for class A in full generality. It would be interesting to develop such an
algorithm and compare it to the results of [201]. In fact, comparing with existing
literature on the equivariant K-theory associated with the space group F222, we
see that [201] obtains an Z2 invariant in class A, whereas in [216] this K-theory is
found to be torsion-less. We leave a detailed analysis of this discrepancy to future
work.

We also briefly mention a useful alternative method to determine the K-theory
groups in class A in some cases. Namely, in the cases in which the equivariant split-
ting method applies, the classification is determined by the equivariant K-theory
of representation spheres. The nontwisted complex K-theory of representation
spheres is easily determined in terms of purely representation-theoric data as was
described by Karoubi, see the survey paper [217]. It would be interesting to re-
search whether pure representation-theoretic data could describe the K-theory of
representation spheres in case time-reversal is included.

6.5 Discussion

We have outlined a way to compute the K-theory that classifies topological insu-
lators with or without time-reversal symmetry and with non-trivial crystal sym-
metry. Using an Atiyah-Hirzebruch spectral sequence, we computed these groups
in a couple of examples and saw that often more work is needed to compute the
exact answer. Nevertheless, it is noteworthy that the classification with K-theory
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matches with the rather heuristic arguments presented in [3, 4], at least for the
examples that we computed. Moreover, with the techniques of crystallography,
we were able to give an algorithmic way of computing the twisted representation
rings in any degree.

In our K-theory computations, we have also stumbled upon some di�culties that
in general seem hard to overcome. Firstly, there is the fact that as of yet no
explicit expression for the higher di�erentials of the spectral sequence is known,
even in the simplest cases. For nonequivariant complex K-theory, it is known that
the second di�erential vanishes and the third di�erential is the extended third
Steenrod square Sq3, which is the composition

Hp(X, Z) æ Hp(X, Z2) Sq2
æ Hp+2(X, Z2) —æ Hp+3(X, Z), (6.63)

where Sq2 is the second Steenrod square and — is the Bockstein homomorphism
associated to the exact sequence

0 æ Z ◊2æ Z æ Z2 æ 0. (6.64)

This result has been generalized to twisted complex K-theory in [218], but even
in nontwisted equivariant K-theory the situation is much more involved as is il-
lustrated in [214]. Real K-theory on the other hand even introduces a second dif-
ferential and is less studied in the literature. For KO-theory (the K-theory that
classifies real vector bundles instead of complex ones, i.e. KR-theory with trivial
involution) it has long been known that the second di�erential is the (appropri-
ately extended) second Steenrod square [219]. Keeping the applications in mind,
it would be interesting to work out explicit expressions of the higher di�erentials
for small groups and CW-complexes from their abstract definition. Intuitively, a
non-trivial rth di�erential represents obstructions of extending the vector bundle
on a d dimensional subspace to an d + r dimensional subspace. This intuitive
understanding was used in [201] to argue that a non-trivial rth di�erentials is an
obstruction of smoothly extending (i.e. without gap closing) a topological insula-
tor on a d-cell to an (d+r)-cell. Surprisingly, this allowed the authors to construct
explicit expressions for the higher di�erentials in specific examples. It would be
would be interesting to rigorously show that this construction works in general.

The second and more fundamental di�culty in using the spectral sequence method
is the problem of non-unique extensions. Indeed, since the exact sequences (6.6)
and (6.7) are not always split, we cannot determine the K-theory uniquely unless
we explicitly know the maps involved. In Section 6.3.3 we had to face this prob-
lem, since torsion groups appeared both in degree 1 and degree 2 simply because
KR≠1(pt) = KR≠2(pt) = Z2. With just the Atiyah-Hirzebruch spectral sequence
in our toolbox, this problem could only be solved by explicitly determining all
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6. K-theory Classification of Crystalline Topological Insulators

maps involved in our exact sequences, which is tedious even in simple examples.
In order to fully determine the (especially 2-)torsion invariants for general point
groups, we will need a supplement to the spectral sequence. The supplement we
used in Section 6.3.3 was the equivariant Mayer-Vietoris exact sequence. There
are several other possibilities for such a supplement. One would be an Adams-type
spectral sequence. Such spectral sequences are made precisely to measure the tor-
sion part of groups of stable homotopy classes of maps between spaces. Another
supplement, which was recently discussed in [220], relates a K-theory with a non-
unique extension problem to one which does have a unique extension through a
notion of T-duality.

Setting aside these di�culties, it would also be interesting to apply our method to
topological superconductors and insulators with a chiral symmetry. These cases
cover the remaining 7 Altland-Zirnbauer classes [149] and might also give many
new invariants that can be studied experimentally. A simple example would be
to study a topological superconductor with only particle hole symmetry C which
can square to +1 or ≠1. Such systems are in class D and C, respectively. In
two dimension the classification without any symmetry is just Z and it would be
interesting to see how crystal symmetry changes this. However, even though chiral
symmetries are incorporated in the framework of Freed & Moore’s K-theory, it
does not seem to be well-suited for this purpose. For example, for class AIII a
short argument shows that the Freed-Moore K-theory group of S1 vanishes in case
no other symmetries are present. This contradicts the ten-fold way, which says
that in one dimension class AII topological insulators on a spherical Brillouin zone
are classified by Z. As argued in [208, §3.5], this discrepancy results from the fact
that the types of K-theory that include chiral symmetries are no longer realizable
by finite-dimensional bundles as Freed and Moore assume. However, this seems to
contradict the physical principle that our topological insulators only admit a finite
number of bands. Assuming that the K-theory defined in [208] is the physically
relevant type of K-theory, we know from this work that it satisfies the desired
axioms for cohomology. In that case, the higher representation rings admit an
obvious generalization to particle-hole reversing symmetries and a version of the
spectral sequence similar to the one developed here therefore probably holds.

Another very interesting class of symmetries, which we have not touched upon
yet, are non-symmorphic symmetries. In two dimensions most symmetries are
symmorphic, but in three dimensions there is a large class of crystals that exhibit
some form of non-symmorphicity. The implementation of such symmetries in
our recipe is mathematically challenging, because non-symmorphic crystals give
twists that can vary throughout the Brillouin zone. The known representation
theory of non-symmorphic space groups seems to reveal that these non-trivial
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twists can result in a change in the type of representation at fixed loci and hence
in di�erent K-theory at di�erent points. We leave a full understanding of these
twisted representation rings and a rigorous construction of the spectral sequence
for non-symmporphic space groups to future work.

In the introduction we explained an intuitive picture of the Z2 invariants in class
AII that was put forward in [4]. In particular, when crystal symmetries are present
it was argued in [4] that in two dimensions the vortex anti-vortex pair is stuck on
fixed points whenever there is a rotation symmetry and stuck on fixed circles
whenever there is a reflection symmetry. In string theory there is a analogous
interpretation. Witten showed in [221] that there is a direct relation between
the charges of D-branes on orbifolds and equivariant K-theory. Depending on
what string theory is considered and whether there are involutions present, various
versions of K-theory classify the corresponding D-brane charges. Moreover, at the
orbifold singularity, say C2/Zn, only charge-n D-branes can be peeled o�, other
charges are stuck on the singularity, branes with these charges are called fractional
branes. In K-theory this means that only certain vector bundles see the singularity.
This is similar to the fact that only 2 vortex anti-vortex pairs can be moved away
from a fixed point with n-fold rotation symmetry for topological insulators in class
AII. Thus a single vortex anti-vortex pair is frozen on the fixed point.

Although this frozen vortex picture gives the correct number of Z2 invariants
for the example we computed, this interpretation is not immediately clear from
our K-theory computations. One way to clarify this, is by using a localisation
technique by Segal and Atiyah-Segal [215, 222]4. Originally, this is a result that
applies to (untwisted) equivariant complex K-theory, KG(X), and uses the fact
that KG(X) is an R(G)-module, with R(G) the representation ring of G. General-
isations to other K-theories have also been mentioned in the literature, [223,224].
For instance, in the latter reference, this technique has been applied to the three-
dimensional diamond structure in class A, which has a non-trivial twist. For our
purposes we would have to be generalise the localisation technique to cases in
which a time-reversing operator is present as well, which we hope to pursue in
future work.

4
We thank Gregory Moore for this suggestion.
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A Appendices

A.1 Alternate proof without assuming f̃(Â) = 0

In this appendix we will try to generalize the proof in section 2.4.3 to the case
where we make no assumptions on the form of the vacuum energy. To illustrate the
point, we will work in three spacetime dimensions and make the spatial manifold
explicit. We will again be using a proof like that of [24], but this time we will take
N æ Œ from the start.

Consider a rectangular three-torus with side lengths —, L1, and L2 with — < L1 <
L2. We have the relations

Z(—)L1◊L2 ≠ Z(L1)—◊L2 = Z(—)L1◊L2 ≠ Z(L2)—◊L1 = 0 =∆ (A.1)
A

ÿ

L

e≠—EL1◊L2 ≠
ÿ

L

e≠L1E—◊L2

B
+

A
ÿ

H

e≠—EL1◊L2 ≠
ÿ

H

e≠L1E—◊L2

B
= 0 ,

(A.2)
A

ÿ

L

e≠—EL1◊L2 ≠
ÿ

L

e≠L2E—◊L1

B
+

A
ÿ

H

e≠—EL1◊L2 ≠
ÿ

H

e≠L2E—◊L1

B
= 0 .

(A.3)

Notice that light states L and heavy states H are playing triple duty, since the
spatial background changes in the di�erent quantizations. In any given quantiza-
tion, the states L refer to negative energy states that scale with a positive power
of N while H refers to positive energy states that scale with a positive power of
N . We eliminate the consideration of states with O(1) energies by bounding their
density of states so that their contribution is O(1) and therefore subleading.
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We now assume that for — < L1 and — < L2, we have
ÿ

L

e≠L1E—◊L2 ∫
ÿ

L

e≠—EL1◊L2 ,
ÿ

H

e≠L1E—◊L2 π
ÿ

H

e≠—EL1◊L2 , (A.4)

ÿ

L

e≠L2E—◊L1 ∫
ÿ

L

e≠—EL1◊L2 ,
ÿ

H

e≠L2E—◊L1 π
ÿ

H

e≠—EL1◊L2 . (A.5)

These inequalities can be proven to be true in two spacetime dimensions and for
the special torus in a general number of dimensions. In fact, it is what makes a
proof like that of [24] work.

Using these inequalities, we can approximate the above equalities as
ÿ

L

e≠L1E—◊L2 ¥
ÿ

H

e≠—EL1◊L2 ,
ÿ

L

e≠L2E—◊L1 ¥
ÿ

H

e≠—EL1◊L2 . (A.6)

Then we can use ZH(L1)—◊L2 π ZH(—)L1◊L2 ¥ ZL(L1)—◊L2 and ZH(L2)—◊L1 π
ZH(—)L1◊L2 ¥ ZL(L2)—◊L1 to approximate the partition function in the L1 and
L2 channels as

Z(L1)—◊L2 = ZL(L1)—◊L2 + ZH(L1)—◊L2 ¥ ZL(L1)—◊L2 , (A.7)
Z(L2)—◊L1 = ZL(L2)—◊L1 + ZH(L2)—◊L1 ¥ ZL(L2)—◊L1 . (A.8)

We see that under the assumptions (A.4) and (A.5), the partition function is
vacuum dominated in the L1 and L2 channels if and only if

fl(EL1◊L2 < 0) . eL1(E≠Evac)L1◊L2 . (A.9)

As explained in section 2.4 this is necessary and su�cient for a universal free
energy at all temperatures on an arbitrary spatial torus.

In general dimension, the su�cient conditions for a universal free energy are the
d ≠ 1 inequalities that generalize (A.5) and a sparse light spectrum:

fl(�) . exp (Lmin�) , (A.10)

where Lmin is the minimum cycle size of the spatial torus.

A.2 Conventions

In this appendix we outline the conventions, in Euclidean signature, that were
used in chapter 3. The path integral is over e≠S . The bulk action is

S = ≠ 1
16fiG

⁄

M

Ô
g(R ≠ 2�) ≠ 1

8fiG

⁄

ˆM


g0K + Sct + Smatter . (A.11)
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The gravitational counterterm is

Sct = 1
8fiG

⁄

ˆM


g0(d ≠ 1 + Lcurv), (A.12)

where in d = 3, 4 the curvature counterterm is Lcurv = 1
2(d≠2) R[g0] [126], and

higher dimensional curvature counterterms can be found in [225]. The extrinsic
curvature is Kµ‹ = Ò(µn‹) with n the outward-pointing normal. The Brown-York
stress tensor is defined by

”S = 1
2

⁄

ˆM


g0 ÂT µ‹”g0

µ‹ , (A.13)

and the convention for the stress tensor in the boundary theory is similar.

Our sign conventions for the Euclidean generating functional in the EFT are sum-
marized by

Z[J, hij , Ai] =
=

e
s

ddx
Ô

“(JO+AiJi
≠

1
2 hijT ij)

>
. (A.14)

This choice, together with our sign choices in the bulk action, produces posi-
tive boundary two-point functions in position space, for example ÈO(x)O(y)Í =1

1
Ô

“
”

”J

22
log Z = |x ≠ y|≠2�. This is subtle due to divergences in the Fourier

transform from momentum to position space; for � > d/2, the calculation is done
in momentum space, and the Fourier transform to position space is done by an-
alytic continuation in �, or by putting a hard cuto� |k| < � and adding local
counterterms to eliminate divergences.

A.3 Time-reversal and crystal symmetries

This appendix is devoted to some background material in crystal symmetries and
time-reversal symmetry. We will first discuss the former and later on see how
the inclusion of the latter adds some spice to that. This section mostly reviews
group theoretic aspects and we refer to [194, 226] for a more thorough analysis.
Our focus will be on an algorithm that determines all representations of lattice
symmetries. To determine the band structure and characterise it completely, we
have to know these representations, because they dictate how the energy eigen-
states states transform under the symmetry. Throughout the discussion and also
in the coming two chapters, we will ignore all interactions and focus therefore on
the realisation of the symmetries on the one-particle level.

Crystal symmetry

Parts of this subsection were taken from the appendices of [3, 4]
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A crystal is a periodic alignment of atoms in one, two or three dimensions, spanned
by lattice vectors ti. Under the action of certain symmetries the crystal is un-
changed, for example lattice translation or a four-fold rotation symmetry. To-
gether, these symmetries form the space group G and consist of a translational part
� = Zd and a point group G. The translational symmetry captures the periodic
structure, whereas the point group consists of rotations, reflections and possibly
inversion in three dimensions that leave the crystal unchanged. The two parts of
the space group can be intertwined in two ways; they can either be symmorphic
or non-symmorphic. Symmorphic crystals are the simplest type of crystals, since

G = G ◊ Zd (A.15)

and so there is no mixing between the translational piece and point group piece.
In two dimensions 13 out of the 17 crystal structures are like that, but in three
dimensions these symmetries form a minority; 73 out of 230. In that case, the
majority are space groups that are non-symmorphic and contain elements that are
not pure rotations or reflections. The space group is then a semi-direct product of
� and G:

G = G n Zd. (A.16)

An example of a symmetry that mixes between G and � would be a glide symmetry
tg. If (x, y) is a lattice point, then a glide reflection could act for instance as

tg · (x, y) = (x, ≠y) + (1/2, 0) (A.17)

which has the distinghuised property that t2
g = (1, 0), i.e. a pure translation. Such

elements only exist for non-symmorphic space groups.

Space group elements can be represented using the Seitz notation. Given an
element g of a space group we write

g = {R|v} (A.18)

where R is an element of the point group and is thus a rotation or reflection. The
vector v represents a translation. In the symmorphic case, v needs to be a integer
multiple of the lattice vectors ti, but for the non-symmorphic symmetries fractions
are allowed, as we saw in A.17. If x is a lattice vector in the crystal, then g acts
on x according to

g · x = {R|v}x = Rx + v. (A.19)

Generically, given two elements g1 = {R1|v1} and g2 = {R2|v2} the multiplication
is defined as

g1 · g2 = {R1R2 | R1v2 + v1}. (A.20)
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Although the space group consists of symmetries of the crystal, once the lattice
points are atoms with orbitals, these symmetries also act on the quantum mechan-
ical states. Due to translational symmetries in the space group, these states will
form bands and it is enough to restrict to the Brillouin zone in momentum space.
Given a Bloch function at momentum k and position x, [194]

�k(x) = exp(ik · x)uk(x) (A.21)

with uk(x + ti) = uk(x), the action of a space group element on �k is given by

{R|v}�k(x) = �k(R≠1(x ≠ v)) = �Rk(x ≠ v). (A.22)

The action of the point group (i.e. elements R) on the momentum vectors k is thus
conjugate to its action on the lattice vectors x. Taking g to be a pure translation,
we get the familiar result;

{e|ti}�k(r) = �k(r ≠ ti) = exp(≠ik · ti)�k(r). (A.23)

In fact, this shows that only a particular momentum vectors are to be considered.
Momentum space is defined by a set of reciprocal lattice vectors gi such that
gi · tj = 2fi”ij . Periodicity of the exponential in A.23 then shows that Bloch
functions at k are the same as those on k + gi. Consequently, we only need to
consider the unit cell spanned by the vectors gi, which is the (first) Brillouin zone.

Quantum mechanically, translational symmetry means that the Hamiltonian H
commutes with Tti , the operator generating translations along ti. These oper-
ators are thus simultaneously diagonalizable. In fact, the eigenvalues of Tti are
immaterial phases given in A.23. However, the important thing is to realise that
due to translational symmetry k becomes a good quantum number. Thus we
have a continuum of states labelled by k, which form the electronic bands. The
point group symmetries relates various pieces of di�erent bands and organize them
accordingly as we will embark on below. In general, these symmetries act as

�k(R)H(R · k)�≠1
k (R) = H(k) (A.24)

where �k is a representation of the stabilizer Gk µ G of momentum k. This
representation is formed by the bands at k. There are two things to note here.
First of all, because of this action, it is enough to know the bandstructure only on
part of the Brillouin zone to fully determine it, since various momenta are related
by symmetry. The momenta that are not related to each other by any symmetry
form the fundamental domain � and will mostly focus on this region in the BZ.
The second thing to note is that the representations have a continuous label k and
when varying k over the BZ, representations could change abruptly. Let us now
argue that this will actually be smooth. Let – : [0, 1] æ BZ ƒ Td be a path from
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–(0) = k0 to –(1) = k1 such that the stabilizer groups Gki at ki for i = 0, 1 are
di�erent from the one at –(t) for t œ (0, 1), which we denote by ÂG and take to
be independent of t for simplicity. It is clear that ÂG is a subgroup of Gki . With
smoothness we then mean that the representation �–(t) for t œ (0, 1) induces a
representation �k0 at k0 in the t æ 0 limit and similarly for t æ 1. Since ÂG is a
subgroup of Gki , this can always be done and so the representations are smooth
throughout the Brillouin zone.

For symmorphic space groups, determining the representations at each k is rather
straightforward. They are just representations of finite groups that have been
studied since the beginning of group theory. For non-symmorphic symmetries, this
situation is a bit di�erent. To see this, suppose Gk contains some non-symmorphic
elements gi = {Ri|wi} with wi fractional lattice translations such that Rik = k
for all Ri present in the elements gi of Gk. From the multiplication rule (A.20),
it is then clear that a representation �k of Gk has to satisfy,

�k(Ri)�k(Rj) = exp (≠igi · wj) �k(RiRj) (A.25)

with gi defined throught R≠1
i k = k + gi. Representations that satisfy these con-

straints are called projective representations and so the bands will sit in these
representations rather than the ordinary ones. The projectiveness of these rep-
resentations is measured by the function c(Ri, Rj) = gi · wj and is commonly
referred to as a group 2-cocycle.

The recipe for determining the representation the electronic bands transform under
is now clear. We first determine all fixed points under the action of G on the
Brillouin zone and then determine the various representations that each stabilizer
group has including possible group 2-cocycles. Since these stabilizer groups are
always discrete, this is straightforward, but still a rather cumbersome computation
for non-symmorphic space groups. Let us therefore consider a simple example to
see all this machinery in action.

Nonsymmorphic space group: p2gg

As a concrete example, consider the wallpaper group p2gg. This is a two-dimensional
space group of a crystal with two orthogonal lattice directions and hence the Bril-
louin zone has the topology of a T2. We parametrise this torus by the square
≠fi Æ kx,y Æ fi and identify opposite edges. The associated point group is gen-
erated by two elements; one reflection tx in the kx-direction and an inversion ‡.
Modulo lattice translations, this wallpaper group has the following elements,

G/Z2 ƒ G =
)

{e|00}, {‡|00}, {tx| 1
2

1
2 }, {ty| 1

2
1
2 }

*
, (A.26)
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Cn
i Stabilizer group

� = (0, 0) Z2 ◊ Z2 = {1, ‡, tx, ty}
X = (fi, 0) Z2 ◊ Z2 = {1, ‡, tx, ty}
M = (fi, fi) Z2 ◊ Z2 = {1, ‡, tx, ty}
Y = (0, fi) Z2 ◊ Z2 = {1, ‡, tx, ty}
l1 = (–, 0) Z2 = {1, ty}
l2 = (–, fi) Z2 = {1, ty}
l3 = (0, –) Z2 = {1, tx}
l4 = (fi, –) Z2 = {1, tx}

Table A.1: The high symmetry locations for p2gg. The same structure is also
valid p2mm and p2gm. The corresponding fundamental domain � is given by the
first quadrant of the first Brillouin zone, i.e. 0 Æ kx,y Æ fi.

where we denoted the identity element by e. Using the elements ‡, tx, and ty =
tx‡, we find that there are four fixed points, �, X, M , and Y , which all have
stabilizer group G. There are also four lines that are held fixed by reflections in
the two axes. These lines connect the four high symmetry points and form the
boundary of the fundamental domain �. These results are summarised in table
A.1.

The non-symmorphic elements do not enhance the representations at �, because
gi = 0 for all elements Ri. There could however, be projective representations at
X, Y , and M . First, consider the high symmetry point X, and consider the phase
factor,

„(Ri, Rj) = exp (≠igi · wj) , (A.27)

In this case, all „’s are unity except for „(tx, tx) = „(tx, ty) = „(‡, tx) = „(‡, ty) =
≠1. This can easily be seen by noting that ge = 0, g‡ = ≠g1, gtx = ≠g1,
and gty = 0, with g1 = (2fi, 0). This information is enough to determine the
representations at X, using the standard theory of projective representations. This
is most easily done by lifting the group elements in G0 to elements in a bigger group
ÂG, which is a semi-direct product of G0 and a cyclic group Zh with h the order of
the phase ‹. In the case at hand h = 2, so that we represent the elements G0 in ÂG
as (g, –) with – = 0, 1. Note that only the group elements with – = 0 correspond
the the physical symmetries. The group 2-cocycle of corresponding to ÂG is now
hc/(2fi), i.e. the multiplication rule is

(g1, –)(g2, —) = (g1g2, – + — + h

2fi
c(g1, g2)) (A.28)

with the second entry evaluated modulo h. One advantage of this procedure is that
we can constraint certain lifted elements. In particular, representations of (e, –)
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commute with everything and hence should be proportional to the identity matrix
by Schur’s lemma. The constant of proportionality is a phase exp(2fii–/h). In our
case we know that h = 2, so a representation �k(e, 1) equals minus the identity.
From the cocycle structure, one can also deduce various relations between the
lifted group elements. For example, we have

(tx, 0)4 = (e, 0), (‡, 0)2 = (e, 0), (tx, 0)(‡, 0) = (‡, 0)(tx, 0)3, (A.29)

which are the defining relations of D4. Together with the constraint �k(e, 1) = ≠1,
we deduce that bands at X transform in the two dimensional representation of
D4 and are thus doubly degenerate there. Repeating the analysis for Y and M ,
one easily verifies that the two dimensional representation of D4 is found also at
Y , whereas at M there are four possible irreducible representations of the group
Z2 ◊Z4. Thus we see that the non-symmorphicity can introduce new degeneracies
that where not there in the symmorphic counterpart. These degeneracies where
in fact used in [179] as a mechanism to get non-trivial two-dimensional Dirac
semi-metals.

Non-symmorphicity is not the only was of introducing additional degeneracies in
the band structure. A much more mundane symmetry that does the same job is
simply invariance under the reflection of the arrow of time. This may seem like an
uncommon symmetry, but actually, many materials have such a symmetry since
it acts by flipping the spins of the electrons. For example, paramagnetic materials
are time-reversal invariant. To understand this and the relation with other crystal
symmetries, let us study time-reversal symmetry in more detail.

Time-reversal symmetry

Let us ignore interaction e�ects and focus on one-particle states. As the symmetry
says, time-reversal symmetry (TRS) T reverses time:

T : t æ ≠t (A.30)

In the Lorentz group in d dimensions, this takes the form of a matrix having 1’s
on the diagonal except for the tt component where it is ≠1. On the levels of the
Poincaré algebra, this has the e�ect that conjugation of iH with T is

T (iH)T ≠1 = ≠iH. (A.31)

This can mean two things. First of all THT ≠1 = ≠H and T iT ≠1 = i, which
would make the spectrum unbounded and so is ruled out. The other possibility
T iT ≠1 = ≠i and THT ≠1 = H leads to a bounded spectrum and hence is physically
relevant action of T , but makes it an anti-unitary operator that acts anti-linearly.
This might be di�erent from the usual symmetries that we consider, but according
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to Wigner [227], this is a perfectly fine symmetry of the quantum mechanical
theory. The anti-unitary nature of T also has its implications in momentum space.
On the translational part of the lattice symmetry, this action is simple. The
representations are simple phases of the form eik·x and conjugation with T reverses
the sign of the momentum, since it does not act on x and hence makes T act as an
inversion symmetry in momentum space. For the representations of the remaining
symmetries, more work is required.

One prime example of this non-trivial action is revealed by studying the action of
T on the other generators of the Lorentz group. In particular, by considering the
rotation generators, one can show that [228] the square of T is constrained:

T 2 = (≠1)2s (A.32)

with s the spin of the particle. For fermionic systems this means the the time-
reversal operator squares to minus one! A priori this appears to be not so im-
portant, but it causes the spectrum to be double degenerate at those momenta
that are invariant under time-reversal. This degeneracy is called Kramers’ degen-
eracy [229] and to show its existence, we simply consider an normalised energy
eigenstate |ÂÍ and its time-reversal partner T |ÂÍ. The claim of Kramer is that
these two states are in fact orthogonal. Indeed, let us assume they are not orthog-
onal, then T |ÂÍ = – |ÂÍ for some – œ C and

≠ |ÂÍ = T– |ÂÍ = T–T ≠1T |ÂÍ = –úT |ÂÍ = |–|2 |ÂÍ , (A.33)

which is impossible and hence the two states |ÂÍ and T |ÂÍ must be orthogonal.

Time-reversal symmetry can also be incorporated in the space group G, [194]. The
full symmetry group is then called a magnetic space group and there are three
di�erent types to distinguish depending on whether T itself is a symmetry or
some composite symmetry operator. Let us denote by A the anti-unitary operator
by which we want to enlarge our space group. When A = T , the time-reversal
operator, M = G Û AG1 is called a type-II Shubnikov space group. Notice that for
this magnetic space group, TRS commutes with all elements of G and the crystal
is non-magnetic. If a system is magnetic, it could still be invariant under an anti-
unitary operator, but not under T alone. TRS should then be accompanied by
either a rotation or a reflection, allowing the system to be invariant under a type-
III or type-IV Shubnikov space group. In the subsequent, we will not consider
these space groups but instead focus on the type-II Shubnikov space groups. For
more details on the other types we refer to [194,230].

1
Here, the symbol Û means that we take the elements of G together with all elements obtained

by multiplying every element of G by A from the left.
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Representation theory

To see what time-reversal symmetry does to the representation theory of the (Shub-
nikov type-II) space group, we first focus on the action of the time-reversal operator
T on the bands, and let it act on fl(g) |ÂnÍ (where n is the band index), ignoring
any momentum dependence for now. The operator fl(g) is any unitary operator
corresponding to an element g of G that acts on the states according to some
representation fl of the space group G. Now,

T fl(g) |ÂnÍ = flú(g)T |ÂlÍ (A.34)

with T a representation of T . Representations of the magnetic space group need
to satisfy this relation. It is straightforward to show that these representations
have the following properties: 1) the time-reversed representation D̂(g) of a rep-
resentation D(g) for some element g is equivalent to the complex conjugated rep-
resentation of g, i.e.

D̂(g) = D(g)ú (A.35)

Second, and this is what we already saw before, is that time-reversal symmetry
can also enhance the state space and double the degeneracy at momenta invariant
under time-reversal symmetry.

Consider a general magnetic group M = G ÛAG, and suppose that g is an element
of G, the space group. Then in the basis {|ÂÍ , A |ÂÍ}, the representation of g takes
the form

D(g) =
3

fl(g) 0
0 flú(A≠1gA)

4
(A.36)

However, for the other half of the elements of M , elements of the form b = Ag œ
AG, the representation looks like

D(b) =
3

0 fl(bA)
flú(A≠1b) 0

4
(A.37)

These representations are irreducible in the sense as given in [194]. It is important
to note that the translational part of the space group again, factors out and is pro-
portional to a block diagonal matrix with each block proportional to the identity
matrix. Therefore, we can simply focus on the point group G of G.

Intuitively, TRS is understood as a symmetry that can cause bands to stick to-
gether to form Kramers pairs. This can happen in three ways: a) Either time-
reversal symmetry does nothing to the representation and there are no Kramers
pairs, b) two unitarily equivalent representations of dimension k form a new (ir-
reducible) representation of dimension 2k, or c) complex conjugate irreducible
representations of dimension l form a representation of dimension 2l. In cases b)
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and c) there are thus Kramers pairs present. The three cases can be described as
follows:

a) In this case fl(g) is unitarily equivalent to flú(A≠1gA), which means that
Nflú(A≠1gA)N≠1 = fl(g) for some fixed unitary matrix N and g œ G. More-
over, N satisfies NNú = +fl(A2), and then D(g) = fl(g) and D(Ag) =
±fl(AgA≠1)N 2.

b) In this case fl(g) is unitarily equivalent to flú(A≠1gA), so again we have
fl(g) = Nflú(A≠1gA)N≠1 for some fixed unitary matrix N and g œ G. How-
ever, N satisfies NNú = ≠fl(A2), and then

D(g) =
3

fl(g) 0
0 fl(g)

4
, D(Ag) =

3
0 ≠fl(AgA≠1)N

fl(AgA≠1)N 0

4
.

(A.38)

c) In this case fl(g) is not unitarily equivalent to fl̄(A≠1gA). The representations
are then given by

D(g) =
3

fl(g) 0
0 flú(A≠1gA)

4
, D(Ag) =

3
0 fl(AgA)

flú(g) 0

4
. (A.39)

To determine whether we are dealing with type (a), (b) or (c) upon inclusion of
TRS we use a test deviced by Herring in 1937 [231] based on the Frobenius-Schur
indicator. Given a (projective) irreducible representation �k of the stabilizer group
at k, we can write this test as

I(�k) = 1
#Si

ÿ

Si

e≠i(k+S≠1
i k)·wi�k(g2

i )

= 1
#Si

ÿ

Si

e≠ig··i�k(g2
i ). (A.40)

where the sum is over those Si = {gi|·i} such that gi ·k = ≠k modulo a reciprocal
lattice vector g. The fractional translation associated to Si is denoted by ·i. Thus
when k © ≠k+g (i.e. at fixed points which are also TRS invariant points), we sum
over all elements of Gk. The value of I(�k) determines whether the irreducible
representation Dk arrising from �k by adding time-reversal symmetry, is of type
(a), (b) or (c). The assignment follows from:

I(�k) =

Y
]

[

T 2 case (a)
≠T 2 case (b)
0 case (c)

. (A.41)

2
In this case, the matrix representations of g and Ag for g œ G given in (A.36) and (A.37) can

both be made block diagonal and in fact the representation D is reducible. Consequently, fl and

D have the same dimensionality. The ± appearing for D(Ag) represents to unitary equivalent

representations. See [194] for more details.
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TRS degeneracies

Now that we know where degeneracies occur, we need to determine which irre-
ducible representations stick together. For cases where (A.41) yields I = ±1, this
is trivial, but for I = 0 it is not. Let us assume that we are at a fixed point
which has Gk as its stabilizer group and that I = 0 for some, possibly projective,
irreducible representations of Gk. Also we assume the magnetic stabilizer group
is given by Mk = Gk Û AGk, with A = TA0. It is important to note that A0 is
not part of Gk and so multiplication is done within the full point group. The TRS
reversed representation is given by

�̂(S) = �(A≠1
0 SA0)ú, (A.42)

where S = {g|·} with · a fractional translation and A0 = {g0|0}. This can be
rewritten using

A≠1
0 SA0 = {g≠1

0 |0}{g|·}{g0|0}
= {e|g≠1

0 · ≠ ·}{g≠1
0 gg0|·}, (A.43)

where e is the identity element. Thus (A.42) becomes

�̂(S) = exp(ik · (g≠1
0 · ≠ ·))fl({g≠1

0 gg0|·})ú. (A.44)

Now there are two possible situations. We could have A0 = {e|0} (Mk is a type-II
Shubnikov space group), in which case

�̂(S) = �({g|·})ú. (A.45)

This situation occurs when k is also a TRS invariant point. The other option is
g0 ”= e with g0 · k = ≠k and so

�̂(S) = exp(≠ik · ·)fl(g≠1
0 gg0)ú (A.46)

where the product g≠1
0 gg0 should be calculated in the full point group, which

might be realised projectively. For example, for T 2 = ≠1 and when Gk consists of a
single glide plane (e.g. p2mg or p2gg) and A0 is a reflection in the kx axis, then the
multiplication should be done in the central extension, i.e. in the quaternion group.
In this group the reflections anti-commute. On top of that, when T 2 = ≠1, we need
to consider the double cover (which we discuss more in the next two chapters) of
the quaternion group, which then results in a pairing of two representations where
only the eigenvalues of the two-fold rotation are complex conjugate to each other.

Summary

The preceding discussion contained a lot of mathematics and new terminology.
All the machinery that we introduced is important in determining the represen-
tation content of a given (magnetic) space group. From a more physical point
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of view, we have learned two important lessens. First of all, at a given momen-
tum k the spectrum is arranges itself into unitary irreducible representations of
the stabilizer group of k. This highly restricts the possible band structures. Sec-
ond, time-reversal symmetry and non-symmorpyic symmetry operators introduce
additional degeneracies, i.e. cause the states to transform in higher-dimensional
unitary irreps. In chapter 5, these two observations are crucial in determining
all topological phases living on a particular crystal with or without time-reversal
symmetry.

A.4 A brief introduction to K-theory

In this appendix we will discuss the mathematics behind the classification of topo-
logical insulators. This requires making certain physical concepts more abstract.
We start by discussing the general set-up and review the role of the translational
symmetry in this regard. In particular we observe the emergence of a vector bun-
dle structure. This provides the basis for the next section in which we discuss the
classification of these bundles using K-theory. Inclusion of the full space group
symmetry is then discussed in section A.4.2. There, we will argue for a simple com-
binatorial way of computing the corresponding equivariant K-theory. At the end
of this appendix, we will consider the space group Pm3̄m as an explicit example.
Throughout this section, we will focus on symmorphic symmetries.

Historically, the mathematical classifications of gapped free fermion theories3 pro-
tected by symmetry groups, all stem from the work by Hořava in 2005 [232], who
noticed a connection between Fermi surfaces and K-theory, which was further
elaborated on by Kitaev in 2009 [150]. In particular, Kitaev discussed gapped
free fermions in various Altland-Zirnbauer (AZ) classes with discrete translational
symmetry. Nonetheless, this study failed to rigorously include the full crystal sym-
metry in its analysis. From the K-theory side, Freed and Moore attempted to fill
this hiatus in 2013 [181]. They pointed out what type of mathematical objects
could classify topological phases in any AZ class, in the presence of arbitrary space
group symmetry.

A.4.1 Set-up

We are interested in the topological properties of class A massive fermions on a
d-dimensional lattice. These systems have a particular space group symmetry G.

3
This is the high-energy terminology for an insulator for which interactions are ignored.

Putting such gapped free fermions on a lattice results in a non-interacting band insulator.
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The dynamics of massive free fermions or insulator are governed by a gapped
Hamiltonian H. Let E be the eigenvalues of H and |ÂÍ its eigenstates. We say
that a Hamiltonian is gapped if there exists a range |E| < � for some � > 0
such that H does not have an eigenstate ‰ with eigenvalue – within this range
in the infinite volume limit. As these gapped free fermions live on a lattice in d
dimensions, H respects the lattice symmetry, i.e. �(g)H = H�(g) with �(g) a
representation of the space group. Let us first consider the discrete translations in
G. A lattice � is a subset of Euclidean space. It is isomorphic to Zd and is spanned
by orthogonal basis vectors ti, i = 1, . . . , d. The discrete translation symmetry

Tn : x ‘æ x + niti (A.47)

with n = (n1, . . . , nd) in Zd and x a lattice vector, constrain the fermions to form
a representation of this symmetry. The representations are simple phases labelled
by a d-dimensional momentum vector k. More precisely, the representations are
defined by

�k({e|v}) = exp(≠ix · k), (A.48)

where we used Seitz notation to represent the discrete translation. This is basically
a discrete Fourier transformation. The nature of these representations allows for a
simple description of fermions in momentum space, because ki ≥ ki + gi with {gi}
a basis of momentum space such that gi · gj = 2fi”ij . In momentum space, the
fermions thus live on a d-dimensional torus; the Brillouin zone M. The Brillouin
zone is in fact the space of characters of the form given in (A.48) and we will use k
as a parameterization. For each k vector we have a Hamiltonian H(k) and Hilbert
space H(k). The Hamiltonian H(k) is related to the second quantized gapped
Hamiltonian H as

H =
ÿ

k,i,j

Hij(k)c†

i,kcj,k. (A.49)

As we saw already in section A.3, besides discrete translational symmetry, lattices
may also have reflection, rotation and (in 3d) inversion symmetries. The form of
the space group as given in (A.15) and (A.16) means that G sits in the short exact
sequence

1 æ Zd æ G æ G æ 1, (A.50)

where G contains all symmetries beside translations, i.e it is the point group,
G ƒ G/Zd. Interestingly, from a mathematics point of view, symmorphicity is now
the statement that this exact sequence is split or not. Furthermore, we showed
A.3 how these symmetries act on M and that the Hilbert spaces for each momenta
decompose in unitary irreducible representations of the stabilizer group.

The data H(k), H(k) and M can be conveniently packaged in terms of a Hilbert
bundle:
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The fibres of this bundle are the Hilbert spaces H, which due to the gapped nature
of the system, splits into a direct sum E = EcüEv, with Ec the conduction band and
Ev the valance band. For an insulator the valance band is completely filled and the
fermions, i.e electrons, in those states can have non-trivial behavior. Notice that
Ev is a finite rank vector bundle. For topological phases, the non-trivial behavior
originates from the topology of Ev. For example as we saw in section 4.1, the
quantization of the Hall conductivity ‡xy may seen to be due to the topology of
Ev using the TKNN invariant [141, 183]. A topologically trivial insulator is then
one for which Ev is topologically trivial. In contrast, for non-trivial topological
insulators, the vector bundle Ev is non-trivial. The di�erent topological types of
vector bundles can be enumerated under a suitable notion of equivalence. This
enumeration is a classification of vector bundles and thus of topological phases.

The classification of finite rank vector bundles as a mathematical pursuit was
initiated in the late 50s and early 60s by Grothendieck and Atiyah with the de-
velopment of K-theory. Since then, this theory has been generalized in several
directions. The basic idea of this work can be readily understood by considering a
space X which consists of a single point, i.e. X = {x}. Vector bundles over x are
vector spaces of a particular rank n. Suppose Vn and VnÕ are two vector spaces
of rank n and nÕ, respectively. In order to classify these vector spaces, we need
a notion that compares them. In K-theory, the notion of bundle isomorphisms is
used. Specifically, in the present example Vn is isomorphic to VnÕ if and only if
n = nÕ. Di�erent vector bundles over X are thus classified by their rank, which is
a non-negative integer. Vector bundles can be added using the so-called internal
Whitney sum, giving the set of isomorphism classes, Vect(X) the structure of an
Abelian monoid. Using the bundle isomorphism, the monoid is isomorphic to N.
The resulting set does not form a group (it does not contain inverses), complicat-
ing further analysis. Fortunately, however, Vect(X) may be converted to a group
using the Grothendieck completion. This construction takes two copies of Vect(X)
and subjects it to the following equivalence relation

(m, n) ≥ (mÕ, nÕ) (A.51)
… there exists p such that m + nÕ + p = n + mÕ + p.

Let us denote the equivalence classes by [(m, n)]. The essential new feature is
now that we can take inverses; [(n, m)] is the inverse of [(m, n)]. Consequently,
elements in the Grothendieck completion are denoted by formal di�erences, m≠n.
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For the case at hand, N is converted to Z by the Grothendieck completion. The
K-theory of X is then said to be Z and is denoted as K0(X) = Z. Although we
discussed only the zero-dimensional case, for general compact base manifolds X,
a similar statement has been verified [233] and is encapsulated in the following
proposition.
Proposition A.4.1. Every element in K0(X) can be written as [E]≠ [�n], where
E is a vector bundle over X and �n is a trivial vector bundle of rank n over X.
Moreover, [E]≠ [�n] = [F ]≠ [�m] if and only if there exists an integer q such that
E ü �m+q ƒ F ü �n+q. In particular, for n = m, [E] = [F ] in K0(X) if an only
if E ü �q ƒ F ü �q for some q.

From a physics point of view, the proposition is easily interpreted. In section A.4.1
we discussed how free fermion systems naturally acquire the structure of a Hilbert
bundle. The Hilbert bundle H can have a topology measured for example by the
TKNN invariant. Adding a trivial vector bundle �m to H should not change, for
example, the conduction properties of the electrons. We thus want to regard H and
HÕ = H ü �m as being topologically equivalent. Indeed, in K-theory we see that
the trivial piece can be subtracted, i.e. [H] = [HÕ]≠ [�m]. From a physical point of
view, it is not immediately clear what a trivial vector bundle will be. As we will see
in chapter 5, a trivial vector bundle is not one that has only trivial representations
and trivial Chern numbers. In fact, it is a vector bundle E that consists of particle-
hole symmetric bands. The hole bands then describe the negative integers in the
K-theory classification and by particle-hole symmetry we then mean there are as
many holes as electrons, so that E ƒ [0] in K0(X). Although in the absence of
additional space group symmetries this definition of a trivial vector bundles might
seem a bit too much, in the presence of such symmetries we are required to use
this definition.

A.4.2 Equivariant K-theory

The final ingredient in our discussion is the point group symmetry of the lattice.
In momentum space, the action of G on M is defined as

g · k = D(g)k (A.52)

for k in M and g in G, the point group. D(g) is a fixed d-dimensional representa-
tion acting by matrix multiplication on k. This is simple the vector representation
of G. The action of g on M lifts to an action on the Hilbert spaces H(k), which
we denote by

g ú |ÂkÍ = �k(g) |ÂkÍ . (A.53)
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Figure A.1: Representations of G– along – induce representations of Gki at ki.
The shaded paths indicate possible other fixed point sets in M.

Furthermore, H(k) and �k commute in a particular way with each other as we
saw in equation (A.24), which, for clarity, we repeat here,

�k(R)H(R · k)�≠1
k (R) = H(k). (A.54)

For generic momenta, the states will form a trivial representation, because equation
(A.54) is not a commutation relation. Nevertheless, for a subset S of M which is
held pointwise fixed by a subgroup GS , we have [H(g · k), flk(g)] = 0. The states
with k in S can then form non-trivial representations. This extra data provides
the Hilbert bundle with an equivariant structure in the sense discussed by Segal
in [234]. This means that with the projection p : E æ M defined as p(|ÂkÍ) = k,
we have

p(g ú |ÂkÍ) = p(flk(g) |Âg·kÍ) = g · k = g · p(|ÂkÍ), (A.55)

which shows that p respects the action of G. Furthermore, the action of g provides
a homomorphism between the fibres, i.e. vector spaces, at k and g · k. With these
properties and the action of G on M and E , as well as relation (A.54), we can
choose the representation of the filled states, i.e. Ev, which is relevant for classifying
topological phases in class A. Let us make this concrete. Consider a point k0 in
M and its stabilizer group Gk0 , which leaves k0 pointwise fixed. The fibre Ek0 at
k0 is a vector space of eigenstates of H(k0). These states form a representation
of Gk0 and hence so is Ek0 . Let �k0 be a representation of Gk0 . Now consider
variations of k0. We do this by choosing a path –(t) in M such that –(0) = k0
and –(1) = k1 for some k1 in M, as shown in Figure A.1. Along – a subgroup G–

of Gk is preserved. Without loss of generality we can choose this situation instead
of the reverse case with Gk being a subgroup of G– and we can assume G– to be
independent of t. At –, the states form a representation of G–, which we denote
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by Âfl–. Taking the limit t æ 0, Âfl– induces the representation flk0 , meaning that
flk0 |G– = fl–. This constraints the representations that can be induced at k0 given
a representation along –. Similar arguments hold when taking the limit t æ 1.
Finding the constraints between all fixed points in this way, results in a finite set
of gluing conditions between fibres at di�erent k. These conditions signify the fact
that we cannot just pick any number of representation at the fixed points and be
guaranteed that we obtain a representation of Ev.

The constraints can be understood more clearly when considering the representa-
tion rings of the various fixed points in M. Consider the example discussed above,
with k0 and k1 connected by a a path –. The stabilizer groups are Gk0 , Gk1 and
G– respectively. Denote by R(Gk0), R(Gk1), and R(G–) the representation rings
over Z of the stabilizer groups. These rings are constructed by assigning to each
irrep of the stabilizer group a copy of Z. We denote the dimensions of the repre-
sentation rings by d0, d1 and d–, respectively. The constraints are then maps „0,1
in

Zd0 „0≠≠æ Zd–
„1Ω≠≠ Zd1 , (A.56)

which can be represented by the following matrices,

Ak
ij =

I
1 fli

k|G– = flj
–

0 fli
k|G– ”= flj

–

(A.57)

with k = k0,1.

The task of finding the constraints between all fixed points can be simplified using
the fact that g : Ek æ Eg·k is a homomorphism. We can use this homomorphism
to focus on just the fundamental domain � of the action of G. This domain only
includes points k that are not related to each other by an element of G, and hence
knowing the constraints in that region is enough to know all constraints in all of
M.

Imposing these relations on the elements in the representation rings at each fixed
point in �, gives us a set of independent integers that specify the representation of
E and in particular of Ev. In the above, we did not specify the type of representa-
tion, and thus the same arguments also hold for projective representations. These
representations occur when the group extension in (A.50) is not split, i.e. for
nonsymmorphic crystals. The integers discussed above thus fix the representation
of Ev for both split and non-split extensions in (A.50). However, they do not fix
the characteristic classes of Ev. For the complex vector bundles discussed above,
the Chern character is the most important one and results in an integer once in-
tegrated over an even dimensional submanifold of the base manifold M. Below in
section A.4.2 we discuss how these are constrained by space group symmetry.
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In summary, to fix the topology and representation of the G-equivariant bundle
E æ M, one specifies the Chern numbers and the set of independent integers in
each representation ring associated to each fixed point.

The point of view we have taken in the above discussion is in fact an easy way of
understanding the classification of G-equivariant vector bundles. The integers and
Chern numbers discussed there are the only integers that need to be specified to
fix an equivalence class in K-theory. In fact, the K-theory of M given an action
of G computes Abelian invariants of G-equivariant bundles over M. These are the
representation of the bundle and the Chern numbers. The K-theory is K0

G(M). In
terms of cyrstal symmetries, this is true for both symmorphic and nonsymmorphic
crystals. In conclusion, topological phases in class A protected by space group G
are classified by

TopPhd
G

= K0
G(Td). (A.58)

A similar conclusion was found in [181]. For class AIII we can use the same type of
K-theory, but now K0 is replaced with a di�erent K-theory group, namely K≠1.
Since we will not discuss class AIII at all in this dissertation we will not give a
definition of K≠1 here, but rather refer to [181] for details.

A big flaw of K-theory is that the K-theory groups are notoriously hard to com-
pute. Only in simple cases could these objects be computed for general space
group. Therefore, in chapter 5 we will develop a simple and intuitive way of think-
ing about these K-theory groups and how they can be computed using simple
physical arguments. In chapter 6, we will then do the K-theory computations to
indeed check that these arguments are correct.

Relations between K-theory and de Rham cohomology

Before going into actual examples, we briefly discuss some interesting results re-
lating K-theory to de Rham cohomology. These results help us to check the argu-
ments we made above and in the main text. Details can be found in [233,235,236].

To make the connection with de Rham cohomology we use the Chern character.
The Chern character assigns an even dimensional form to a vector bundle E as

Ch(E) =
Œÿ

n=0

1
n!Tr

3
iFE

2fi

4n

(A.59)

where FE is the Berry curvature two-form of the bundle E . The n-th Chern
character is given by

Chn(E) = 1
n!Tr

3
iFE

2fi

4n

. (A.60)
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From the K-theory perspective, the Chern character provides a (ring) homomor-
phism

Ch : K0(M) æ Heven
dR (M; Q) =

Œn

n=0
H2n

dR(M; Q),

Ch : [E ≠ �m] ‘æ Ch([E]) (A.61)

where H2j
dR(M; Q) is the 2j-th de Rahm cohomology of M over the rational Q.

Forgetting about torsion in K0(M), this becomes an isomorphism K0(M) ¢ Q ƒ
Heven

dR (M). For the K-theory, K≠1(M), a similar statement holds. In fact,

Ch : K≠1(M) æ Hodd
dR (M; Q) (A.62)

is a group homomorphism and

Hodd
dR (M; Q) =

Œn

n=0
H2n+1

dR (M; Q). (A.63)

These odd-dimensional cohomology classes are generated by odd-dimensional forms
of the form Tr((f≠1df)2n+1)) with f : M æ E a smooth function on M. In con-
trast to the Chern characters, they can be understood as winding numbers once
integrated. A similar isomorphism as for K0(M) also exists in this case:

Kú(M) ¢ Q ƒ Hú

dR(M; Q). (A.64)

The purpose of this isomorphism is to translate information hidden in the K-
theory of M to a more familiar form in terms of the cohomology of M. The
Chern characters in (A.60) give an accurate account for this information, which
is most easily seen by integrating them. In doing so, the characters Chn become
topological invaraints, called Chern numbers cn. These Chern numbers can only
take integer values and account for various topological properties of gapped free
fermion systems. An example of a physical observable related to Chern numbers
is the TKNN invariant. This invariant is directly proportional to the first Chern
number and is related to the Hall conductivity by

‡xy = e2

h

⁄

T2
Ch1(E) = e2

h
c1. (A.65)

Here the integration is over the full Brillouin zone M = T2. The winding numbers
obtained from integrating odd forms in Hodd

dR also capture information about the
topological phase, but then for those in class AIII. We note that they are related
to electric and magnetoelectric polarizability [237], but will not discuss them here.

In the present context of electrons within a crystal lattice, we will mostly be
interested in M = T2 or T3, and hence we will only be concerned with the zeroth
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and first Chern number. In the equivariant picture sketched above, we already
saw how the zeroth Chern number, which is responsible for the representations, is
constrained by space group symmetry. We will now see how these contrains a�ect
the first Chern number.

Chern numbers and crystal symmetry

Chern numbers can only be defined on even dimensional fixed submanifolds of T3.
In the case at hand, these are the bounding planes P in �. These are planes in the
fundamental domain, but to integrate the Chern character, we need a submanifold
N in T3. Denote by Cg the centralizer of the symmetry g that leaves P invariant.
This submanifold N is then obtained by acting with Cg on P . In other words, Cg

still has a non-trivial action on the submanifold. When the Chern characters are
integrated, the action of Cg needs to be taken into account. The action of Cg can
be such that it inverts the orientation of N . Thus when unfolding P , N will consist
of patches U≠ and U+ with di�erent orientations, indicated by the subscript. More
precisely, the submanifold N is a |Cg|-fold cover of P and whenever orientation
reversing elements are in Cg, |Cg| is even. Suppose gú is the orientation reversing
element. The submanifold N will then contain an equal number of patches U+
and U≠ = gúU+. The integral of the Chern character over N will therefore vanish.
Thus, whenever there are orientation reversing elements in Cg, the Chern numbers
on planes fixed by g will be zero.

To be a bit more explicit, consider N to be two dimensional, i.e. N ƒ T2.
This two-torus is held fixed by GN ƒ Z2 = ÈgÍ and has centralizer Cg. In the
fundamental domain we denote it as the subset P , thus N is a |Cg|-fold cover of
P . For topological phases in real materials, this is the only case of interest. Let
FE = Fxy dkx · dky be the Berry curvature of a vector bundle E . Suppose h is an
element of Cg, then h acts on FE as

Fxy(D(h)k) = det(D(h))Fxy(k) (A.66)

with D a fixed representation, as in equation (A.52). The Chern number is given
by

c1 =
⁄

N

Fxy(kx, ky) d2k (A.67)

=
ÿ

hœCg

det(D(h))
⁄

P
Fxy(kx, ky) d2k.

The sum will tell us whether c1 vanishes or not. The centralizer can either be Zn

or Dn with n = 2, 3, 4, or 6, or it can be trivial. When it is one of the cyclic
groups, then c1 does not vanish, but when Cg contains reflections, half of the terms
in the sum in (A.67) have negative determinant, ensuring that c1 = 0.
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[g] Mg Cg

[1] T3 G
[tr2tr2] {(0, 0, kz), (fi, fi, kz), (0, fi, kz), Z2 ◊ D4

(fi, 0, kz)}
[r3tr] {(0, ky, ≠ky), (fi, ky, ≠ky)} Z3

2
[Itrt] {(0, 0, 0), (0, fi, fi), (fi, 0, 0), Z2 ◊ Z4

(fi, fi, fi)}
[Itr2t] {(0, ky, kz), (fi, ky, kz)} Z2 ◊ D4
[tI] {(kx, ≠kx, kz)} Z3

2
[Itr3] {(0, 0, 0), (fi, fi, fi)} Z6
[rtr3t] {(kx, ≠kx, kx)} Z6
[r2t] {(0, 0, kz), (fi, fi, kz)} Z2 ◊ Z4
[I] { 8 pnts} G

Table A.2: Fixed point sets Mg for each conjugacy class
[g] of G and their centralizers Cg. The set {8 pnts} equals
{(0, 0, 0), (fi, 0, 0), (0, fi, 0), (0, 0, fi), (fi, fi, 0), (fi, 0, fi), (0, fi, fi), (fi, fi, fi)}.

The maps relating K-theory to ordinary cohomology are useful when considering
the following result by Segal [236],

K≠n
G (M) ¢ C =

n

[g]
K≠n(Mg)Cg ¢ C. (A.68)

with M compact and G finite. The sum is over representatives of conjugacy classes
of G. The centralizer of g is denoted by Cg and Mg is the fixed point set of g.
This formula relates G-equivariant K-theory (tensored with C) to the ordinary
K-theory of the fixed points Mg. To deal with the Cg acting on K≠n(Mg)
we compose this formula with the Chern character Ch as discussed above. The
summand on the right hand side then amounts to counting invariant forms on Mg.

Example: Octahedral group

Let us now see how the formula by Segal works. In this formula, we need to
compute the fixed point manifolds associated with representatives of the conjugacy
classes of G. This information is collected in table A.2. From this table, the K-
theory group (modulo torsion) can be found straightforwardly. The only thing that
we need to take into account, is the action of Cg on Mg. Let us start with the
Chern numbers. For [1], [Itr2t] and [tI] no Chern numbers are possible, because
the centralizer contains a reflection. The K-theory is then,

K0(T3)G ¢ C ü K0(T2  T2)Z2◊D4 ¢ C ü K0(T2)Z3
2 ¢ C ƒ C4
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Similarly, for the one-dimensional fixed point sets we get eight copies of C, because
for [tr2tr2] two circles are related by the action of Ctr2tr2 = Z2 ◊ D4. Finally, the
zero-dimensional fixed point sets give C10 following the same reasoning as before.
Adding these results all up, we obtain

K0
G(T3) ¢ C ƒ C22. (A.69)

Time-reversal symmetry

So far, we discussed topological insulators in class A and how they are classified
using K-theory. For systems in class AII, the classification is still done using K-
theory, but dressed with additional information. On the representation side, this
dressing causes states to become degenerate and moreover the fermionic nature
of the electrons has to be taken into account (for class AII). This means that we
have to consider the double cover of G and decompose Ev in terms of irreducible
(fermionic) representations of that group. This could also be done for class A, but
for AII this is required.

These modifications to K-theory are not too exciting; the real challenge of time-
reversal symmetric topological insulators in class AII lies, however, in the Chern-
like invariants. These invariants, as we saw in chapters 5 and 6, are Z2-valued
instead of Z-valued. From the pure K-theory perspective, the computation of the
corresponding K-theory groups is even harder than in class A. In fact, there is
very little literature on this subject tailored towards our set-up. In chapter 6, we
embarked on this endeavour and computed the K-theories for certain simple space
groups. A bit more detail on the relevant K-theory groups can be found in the
next appendix.

A.5 Freed & Moore K-theory and twists

In order to illustrate our approach to computing these K-theory groups, let us
first rigorously define the notions used in chapter 6. While doing this, we also
connect the technical mathematical language of Freed & Moore [181] to our more
concrete setting. To motivate this, first consider a 2+1-dimensional square crystal
and a finite classical symmetry group G consisting of a time-reversing symmetry
T and a spatial symmetry R of rotation by fi. To account for the fact that R
acts unitarily and T acts antiunitarily, we define a homomorphism „ : G æ Z2
by „(R) = 1 and „(T ) = ≠1. Although the classical group is G = Z2 ◊ Z2, we
know that for fermions, we have T 2 = R2 = ≠1 on the quantum level. Hence we
are not interested in modules over the group algebra of G, but in modules over a
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twisted group algebra. To implement this fact mathematically, we twist the group
G by a group 2-cocycle · œ Z2(G, U(1)), where U(1) is the circle group seen as a
G-module by Tei◊ = e≠i◊ and Rei◊ = ei◊. This cocycle is given by

·(T, T ) = ≠1, ·(R, R) = ≠1, ·(T, R) = ·(R, T ) = 1. (A.70)

We extend this definition to a cocycle on all of G by the cocycle relation and
demanding that ·(g, 1) = ·(1, g) = 1 for all g œ G. On the quantum level of
twisted representations, we want to impose equations such as T · T = ·(T, T )
instead of the equations holding in G.

To implement this in a more general setting, suppose that we are given a finite
classical symmetry group G consisting of point group symmetries and (possibly)
time-reversal symmetry. Let „ : G æ Z2 be a homomorphism determining whether
a group element acts unitarily or antiunitarily. Consider a group 2-cocycle · œ
Z2(G, U(1)„), where U(1)„ is the G-module g · ei◊ := e„(g)i◊. By the one-to-one
correspondence between group extensions and group cohomology, the data of · is
equivalent to what is called a „-twisted extension in Freed & Moore [181]. This is
a group extension

1 æ U(1) æ G· fiæ G æ 1 (A.71)

such that ei◊g = ge„(fi(g))i◊ for all g œ G· . In fact, two such „-twisted extensions
are isomorphic if and only if the corresponding group 2-cocycles are cohomologous.
Therefore only the cohomology class [· ] œ H2(G, U(1)„) of the cocycle is relevant
for the theory.

Now we can define how to twist representations of G by „ and · . Indeed, a
(„, ·)-projective action of G is a map fl : G æ GLR(V ) into the real linear auto-
morphisms of a complex vector space V such that fl(g) is complex linear if „(g) = 1,
complex antilinear if „(g) = ≠1 and

fl(g)fl(h) = ·(g, h)fl(gh). (A.72)

Note in particular that if · is nontrivial, fl is not a homomorphism of groups.
Via the correspondence between group cocycles · and extensions, such projec-
tive actions are exactly the same as („, ·)-twisted representations in the sense of
Freed and Moore [181]. These are defined as genuine homomorphisms fl· : G· æ
GLR(V ) into the real linear automorphisms of a complex vector space V such that
fl· (g) is complex linear if „· (g) = 1, complex antilinear if „· (g) = ≠1 and fl· (z) is
just multiplication by z if z is in the circle subgroup U(1) ™ G· . Therefore we will
use („, ·)-projective actions and („, ·)-twisted representations interchangeably.

The twist · can also be used to twist the group algebra as follows. We define the
twisted group algebra „C· G to be the 2·#G-dimensional algebra over R generated
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by the symbols xg for every g œ G and a formal imaginary unit i with defining
relations

xgxh = ·(g, h)xgh, i2 = ≠1, xgi = „(g)ixg. (A.73)

If no confusion can arise we usually just write g for the symbol xg. Modules over
the twisted group algebra are clearly equivalent to projective actions with cocycle
· and hence equivalent to („, ·)-twisted representations.

For example, suppose we consider time-reversal symmetry T and n-fold rotation
R in a system of spinful fermions. Then the symmetry group is G = Zn ◊ Z2 and
„ is projection on the second factor. It can be shown using basic techniques in
group cohomology that

H2(G, U(1)„) =
I

Z2
2 if n is even,

Z2 if n is odd.
(A.74)

For n even, the two Z2’s correspond exactly to the choices of signs in Rn = ±1
and T 2 = ±1. For example, if n = 2, a representative · of the cohomology class
that assumes for both signs the negative is given in equation (A.70). For n odd
however, the sign of R does not influence the isomorphism class of the twist. This
is not very surprising from a representation-theoretic perspective. Indeed, if we
redefine S := ≠R in the group algebra „C· G then we get the group algebra with
the twist chosen such that Sn = ≠1 and T has the same square as before. Note
that this would not work for even n; we could have defined S := iR, but then S
would not commute with T . However, if there would have been no time-reversal
symmetry, this argument would have worked and the sign of Rn does not matter
for the cohomology class. This simply resonates the fact that H2(Zn, U(1)) = 0
in case of trivial „. Conclusively, assuming that Rn = ≠1 in class A would not
influence the classification of topological insulators and assuming that Rn = 1 in
class AII would not influence the classification in case n is odd.

The group cocycle · can be used as a twisting for the Freed-Moore K-theory
groups. The G-equivariant K-theory of the Brillouin zone torus twisted by · then
classifies topological phases protected by the twisted symmetry group (G, „, ·).
In the abstract language of Freed and Moore, to twist a G-space X means that
we consider the following „-twisted extension of the action groupoid (or orbifold)
X//G. The line bundle is picked trivial and the cocycle on X//G is picked equal to
the cocycle · at every x œ X, see also [208, section 2]. Twisted equivariant bundles
are then the bundle-theoretic analogue of („, ·)-twisted representations of G in
the same sense that Atiyah & Segal’s complex equivariant vector bundles are the
bundle-theoretic analogue of ordinary group representations of G. More concretely,
we define a („, ·)-twisted equivariant vector bundle over a G-space X to be a
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complex vector bundle E over X together with a family {fl(g) : E æ E : g œ G}
of maps such that

(i) fl(g) covers the action of g on the base space;

(ii) fl(g) is complex linear if „(g) = 1 and conjugate linear if „(g) = ≠1;

(iii) fl(g)fl(h) = ·(g, h)fl(gh).

The K-theory classifying such bundles is simply the Grothendieck completion of
the monoid of isomorphism classes of such bundles. Written out in full, the result-
ing abelian group

„K·
G(X)

is called the („, ·)-twisted G-equivariant K-theory of X. Twisted equivariant K-
theory of this form can be expanded to a contravariant functor from a category
of su�ciently nice G-spaces to the category of abelian groups. By mimicking the
technique of Segal [215], it can be shown that this theory extends to a Z-graded
additive generalized equivariant cohomology theory in the sense of Bredon [209].
One can also show that the twisted equivariant K-theory above is equivalent to
the K-theory of Freed & Moore (with our specific form of the twist ·) under
the correspondences described above c.f. [208]. The fact that Freed & Moore’s K-
theory satisfies the axioms desired for a cohomology theory of this kind also follows
from [208]. Hence we can use the equivariant form of the usual cohomology axioms
(suspension axiom, homotopy invariance, etc.) freely. The associated reduced
cohomology theory is called reduced twisted equivariant K-theory. For a pointed
G-space (X, x), where x œ X is a point that is completely fixed under the action,
the reduced K-theory is defined as the kernel of the map given by restricting to
the fiber over the base point:

„K̃·+p
G (X) := ker

!
„K·+p

G (X) æ„ K·+p
G (x)

"
. (A.75)

If Y ™ X is a subspace closed under the G-action, then the relative twisted
equivariant K-theory of the pair (X, Y ) is defined as

„K·+p
G (X, Y ) := „K̃·+p

G (X/Y ) (A.76)

It should also be noted that that the K-theory twisted by a cocycle · Õ cohomolo-
gous to · is isomorphic to the K-theory twisted by · .

Finally we remark on how to formally construct the necessary · for classifying class
AII crystalline topological insulator. We do this by considering the double cover
group sketched in Section 6.4.1. Before we can do this, we first have to sketch the
relation between double cover groups and twists · . In order to show this, suppose
we have a group of the form G = G0 ◊ZT

2 with „ projection onto the second factor
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and G0 Òæ O(d) a point group. As described using group extensions in Section
6.4.1, we start with the class in H2(O(d), Z2) corresponding to the Pin≠-double
cover of O(d). Restricting the class to the subgroup G0 ™ O(d) then gives a class
[·1] œ H2(G0, Z2), which exactly corresponds to the double cover group ‚G0. To get
the right square of time-reversal, we then take the class [·2] œ H2(ZT

2 , Z2) = Z2
to be trivial in class AI and nontrivial in class AII. Next, in order to construct the
desired total double cover group which covers G instead of G0, we now combine
[·1] and [·2]. To do this we pull the classes back along the two projection maps
p1 : G æ G0 and p2 : G æ ZT

2 and then take their product:

[· Õ] = pú

1([·1]) · pú

2([·2]) œ H2(G, Z2). (A.77)

Note that this product is not the cup product, but simply the product on the level
of the coe�cients Z2. Finally, we get our desired twist [· ] œ H2(G, U(1)„) by ex-
tending the coe�cients to U(1). More precisely, we consider the map H2(G, Z2) æ
H2(G, U(1)„) induced by the G-module injection Z2 Òæ U(1)„.

More generally, we could have taken group cocycles · œ Z2(G, C(X, U(1)„)) that
vary over the Brillouin zone X to account for nonsymmorphic crystal structures.
These more general twists can be used as a „-twisted extension of the action
groupoid X//G in the Freed-Moore framework by picking the line bundle to be
trivial and the cocycle to be equal to · , now varying over space. This construction
results in a well-defined K-theory group that classifies nonsymmorphic crystalline
topological insulators. However, we can no longer define the relative K-theory of
(X, Y ) to be the reduced K-theory of the quotient if · varies along Xp≠1. For a
definition of relative K-theory that holds in a more general setting, see [208].

A.5.1 Higher twisted representation rings and the K-theory
of a point

Assume we are given a finite group G, a homomorphism „ : G æ Z2 and a group
2-cocycle with values in the G-module g · ei◊ = ei„(g)◊. The basic building blocks
of K-theory from which spectral sequences can be built are the higher degree K-
theory groups of a point „K·≠q

G (pt). It follows from the last section that for q = 0,
the group „K·

G(pt) is the Grothendieck completion of the monoid of isomorphism
classes of modules over the group algebra „C· G twisted by · . This is what is
called the twisted representation ring of degree q = 0 in the main text. Remark
that due to the twist · , these abelian groups do not have a ring structure, but we
will nevertheless refer to them as twisted representation rings in analogy with the
nontwisted case.

In higher degrees, the twisted equivariant K-theory of a point has a similar con-
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crete description in terms of representation theory and Cli�ord algebras. This
is expressed by using a generalized version of the Atiyah-Bott-Shapiro isomor-
phism [238]. Heuristically, this theorem asserts that going down a degree in K-
theory (i.e. taking a suspension) corresponds to adding a Cli�ord algebra element
on the algebraic level, at least for the K-theory of a point. More explicitly, let
Clp,q for the real Cli�ord algebra of signature (p, q). Then Clp,q is an algebra over
the real numbers with has a natural Z2-grading such that the standard generators
“1, . . . , “p+q œ Clp,q are odd. If we then take group elements to be even, we can
give the tensor product „C· G ¢R Cl0,q the structure of a Z2-graded algebra as
well. The („, ·)-twisted equivariant K-theory of a point can then be described by
the isomorphism

„K·≠q
G (pt) ≥= „R·≠q(G) := {Z2-graded modules over „C· G ¢R Cl0,q}

{modules that extend to a „C· G ¢R Cl1,q-module}
,

(A.78)

and we call „R·≠q(G) the („, ·)-twisted (higher) representation ring of G in degree
≠q. This fact follows from the discussion in [208, §3.5]. This way of computing the
complex and real equivariant K-theory of a point has been known for a long time,
see the final section of [239]. Also see Donovan-Karoubi [240, §6.15] for a precise
version of such a statement for a certain type of twisted equivariant K-theory
of more general spaces. We again stress that the twisted higher representation
rings as defined above are not rings themselves, because the tensor product of two
(„, ·)-twisted representations is a („, 2·)-twisted representation. However, they
are modules over the („, 1)-twisted representation ring. We could in theory make
them into genuine rings by summing over all possible twists · , but this would not
be a very natural thing to do from the perspective of physics. Namely, using the
language of Section 6.4.1, the product of two fermionic representations will be a
bosonic one.

To illustrate the definition of the twisted representation ring, we provide a few
examples. First of all, if „ and · are trivial, it can be shown that the higher repre-
sentation rings are equal to the representation ring of the group in even degree and
vanish in odd degree, i.e. it gives the complex equivariant K-theory of a point as
expected. For certain simple groups like the time-reversal group G = Z2 = {1, T}
(with „(T ) = ≠1), the twisted representation rings are also readily computed using
basic Cli�ord algebra theory. They are simply the real (respectively quaternionic)
K-theory of a point for a trivial (respectively nontrivial) twist · . This results in
the relevant representation rings for both class AI with trivial twist ·0 and class
AII with twist ·1, as was summarized in Table 6.1. If we just take the real group
algebra instead of the twisted group algebra, we get the equivariant KR-theory
of a point as can be shown by comparing with the results in [239]. It is also
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worth noting that the higher twisted representation ring defined by (A.78) indeed
equals the Grothendieck group of the monoid consisting of isomorphism classes of
(„, ·)-twisted representations of G in case q = 0.

The higher representation rings of the twisted group algebra in general can be
computed by decomposing the algebra into a direct sum of matrix rings over R, C
and H. Since the twisted group algebra is semisimple, this can always be done.
If the number of real, complex and quaternionic matrix rings occurring in this
decomposition are nR, nC and nC respectively, then

„R·≠q(G) = K≠q(pt)nC ü KR≠q(pt)nR ü KR≠q≠4(pt)nH . (A.79)

This follows because the representation rings preserve direct sums and are inde-
pendent of Morita equivalence. Therefore, to determine the representation rings,
we only need to make an analogous twisted representation theory to the theory of
real representations of finite groups. Such a theory already exists in the physics
literature and is described in section 6.4.1.

A.5.2 Construction of the spectral sequence

In this appendix some details on the existence of the spectral sequence will be
outlined. For an introduction to the theory used in this section and throughout
the chapter 6, such as spectral sequences in general and the Atiyah-Hirzebruch
spectral sequence for (nonequivariant) cohomology theories such as ordinary K-
theory, we refer the reader to [241]. The construction of the spectral sequence for
the type of K-theory we are concerned with can be done using standard methods
already described for general equivariant cohomology theories by Bredon [209].

As before, let G be a finite group, „ : G æ Z2 a homomorphism and · œ
Z2(G, U(1)„) a group cocycle. We now start with a finite G-CW complex X0 ™
· · · ™ Xd = X and construct the Atiyah-Hirzebruch spectral sequence with re-
spect to this G-CW-structure. In order to make sure that the reduced K-theory
of X is defined, we have to assume that there is at least one point 0 œ X0 that
is fixed by the whole group G. Note that this is always the case in practice; if X
is the Brillouin zone torus then the point k = 0 is fixed by all symmetries. As
stated in [209], the first page Ep,≠q

1 of the spectral sequence is given by the relative
K-theory groups

Ep,≠q
1 = „K·+p≠q

G (Xp, Xp≠1). (A.80)

Let us now show that this is the group of Bredon equivariant cochains with a
particular coe�cient functor. Indeed first note that since · is constant in space,
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the relative K-theory equals reduced K-theory of the quotient:

„K·+p≠q
G (Xp, Xp≠1) = „ ÂK·+p≠q

G (Xp/Xp≠1) (A.81)

≥= „ ÂK·+p≠q
G

Q

a
fl

‡

fl

gH‡

Sp
gH‡

R

b . (A.82)

Here the first wedge product is over all equivariant p-cells ‡ of X, which look
like Sp

‡ ◊ G/H‡, where H‡ ™ G is the stabilizer of the cell ‡. The second wedge
product is over all ordinary cells Sp

gH‡
contained in the equivariant cell ‡, i.e. over

all cosets gH‡ of the stabilizer group. The appearance of the wedge sums is a
consequence of the quotient Xp/Xp≠1. For example, if X = S2 is the sphere of
figure 6.1 and p = 2, then Xp/Xp≠1 is the space that results from pinching ¸ and
T ¸ to a point, i.e. S2 ‚ S2.

Now by additivity and the suspension axiom,

„K·+p≠q
G (Xp, Xp≠1) = „ ÂK·+p≠q

G

Q

a
fl

‡

fl

gH‡

Sp
gH‡

R

b (A.83)

≥=
n

‡ p-cell

„ ÂK·+p≠q
G

Q

a
fl

gH‡

Sp
gH‡

R

b (A.84)

=
n

‡ p-cell

„ ÂK·+p≠q
G (�p(G/H‡ Û pt)) (A.85)

≥=
n

‡ p-cell

„ ÂK·≠q
G (G/H‡ Û pt) (A.86)

≥=
n

‡ p-cell

„K·≠q
G (G/H‡). (A.87)

Here �pY denotes the pth reduced suspension of the pointed G-space Y and Ûpt is
the disjoint union with an extra added basepoint. Similarly to nontwisted equiv-
ariant K-theory we can then make use of the isomorphism

„K·≠q
G (G/H) ≥= „K·≠q

H (pt) (A.88)

induced by restricting bundles over G/H to the fiber lying over the trivial coset
H. Note that on the right hand side, we have to restrict the twisting data „, · to
H, but this is omitted in the notation.

The first page of the spectral sequence can now be rewritten as a group of Bredon
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equivariant cochains
n

‡ p-cell

„K·≠q
G (G/H‡) ≥=

n

‡ p-cell

„K·≠q
H‡

(pt) (A.89)

≥=
n

‡ p-cell

„R·≠q(H‡) (A.90)

≥= Cp
G(X, „R·≠q

G ), (A.91)

where the coe�cients „R·≠q
G form a functor from the orbit category of G to the

category of abelian groups. Topologically, this functor is just the restriction of
the twisted equivariant K-theory functor to the orbit category, but an algebraic
desciption is more enlightening. It sends the orbit space G/G‡ to the twisted
representation ring „R·≠q(G‡) defined in the previous section:

„R·≠q
G (G/G‡) = „R·≠q(G‡). (A.92)

Thus although our cochains appear to have coe�cients in a functor, once evaluated
for specific cells in the CW complex of X, the coe�cients are just the degree
≠q twisted representation ring of the stabilizer group of that cell. However, its
action on morphisms is more complicated to describe algebraically. Quotient maps
G/H æ G/K are sent to restrictions of representations „R·≠q(K) æ „R·≠q(H)
as expected, but conjugation maps G/H æ G/gHg≠1 can yield nontrivial results
similar to the action of T as described around equation (6.16). As stated in the
main text, it can be shown that the first di�erential is precisely the cellular Bredon
di�erential d

(df)(‡) =
ÿ

µœCp(X)
[µ : ‡]f(µ)|G‡ , (A.93)

see for example Bredon’s work [209].

Summarizing, there exists a spectral sequence Ep,≠q
r associated to a finite pointed

G-CW-complex X converging to twisted equivariant K-theory:

Ep,≠q
r =∆ „K·+p≠q

G (X) (A.94)

such that the second page Ep,q
2 is Bredon cohomology of degree p with coe�cient

functor „R·≠q
G . To derive explicit computational tools from this fact, recall from

the basic theory of spectral sequences that this means that there is a filtration F p

of „K·
G(X)

0 = F d+1 ™ F d ™ · · · ™ F 1 ™ F 0 = „K·
G(X) (A.95)

such that the final page Ep,≠p
Œ

forms the associated graded space, i.e.

Ep,≠p
Œ

≥=
F p

F p+1 . (A.96)
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If d = 2, this results in the short exact sequences (6.6) and (6.7), where F = F 1.

For computations for nonsymmorphic crystals, we would need to generalize these
methods to include twisting data for K-theory that varies over X. Since · is no
longer constant in this setting, most arguments given in this section fail. First
of all, the relative K-theory of (Xp, Xp≠1) no longer seems to be equal to the
K-theory of the quotient Xp/Xp≠1 if · varies along Xp≠1, so we have to preserve
the information of the values of · over Xp≠1. Moreover, it is not clear how to
compute the twisted equivariant K-theory of a sphere for nonconstant twist, since
there is no obvious generalization of the isomorphism (A.78) here. Ignoring these
mathematical di�culties for the moment and assuming we have some kind of
spectral sequence, we should at least arrive at a point where the coe�cient functors
„R·≠q

G are no longer constant. In particular, a Bredon cochain of say degree 1 could
map di�erent points of a single 1-cell into di�erent twisted representation rings.
The second page is no longer ordinary Bredon cohomology and therefore it is not
clear how to generalize this section to that setting.
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Summary & Outlook

The research presented in this dissertation is twofold. On the one hand, we dis-
cussed, in part I, the AdS/CFT correspondence and deviations from it and on the
other hand, in part II, we focussed on the classification of topological insulators.
In the beginning of each part, we mentioned several motivations for studying these
topics and in this final piece of the dissertation, we want to reflect back on these
motivations and discuss to what extend we have answered some of the questions
that we raised. We will do so for each part separately and discuss various future
directions afterwards. We already did this in each chapter to some extent, but
here we will mention some additional future directions and a possible symbiosis of
parts one and two.

Summary

High-energy theory

In the first part of the dissertation we considered departures from the usual and
well-known examples of AdS/CFT. We considered (asymptotically) AdS space-
times with a specific boundary topology and asked what constraints a CFT needs
to satisfy in order to describe the gravitational physics in the bulk. In particular,
we focussed on Einstein gravity and its bulk phase structure. The first and sim-
plest constraint is that for semi-classical bulk, i.e. Einstein gravity, we need a large
number of degrees of freedom. A second constraint follows from the existence of
black hole solutions in the bulk. These objects have an entropy that obeys a Cardy
type formula and in order to properly describe the bulk physics, the field theory
has to have a density of states that grows in a particular way. In two dimensions,
this implies a particular constraint on the spectrum. In higher dimensions, we
showed that similar arguments can be given, but are subtly di�erent. For the field
theories we considered (which live on d-dimensional tori), the vacuum energy is
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rather non-universal, which prevents a direct application of the arguments in two
dimensions. However, by demanding a certain form of the vacuum energy and
using modular invariance in higher dimensions, we could derive a constraint on
the spectrum, analogous to the one that already existed in d = 2.

We have thus succeeded in finding a few constraints that CFTs need to obey in
order to be holographic as advertised in chapter 1. However, these only form a
few constraints of a much larger set that is expected to exist. Such constraints
would take more refined information in the bulk into account, such as a large gap
to higher-spin particles. In our analysis, the most interesting constraint is the
one on the form of the vacuum energy. Since the vacuum energy on tori is rather
arbitrary, this constraint means there should be a mechanism in holographic CFTs
enforcing it. Most likely this is a strong coupling e�ect, but it is unclear how that
works in detail and it would be extremely interesting to study this further.

In chapter 1, we also mentioned that our constraints could help finding new ex-
amples of holographic CFTs. This is an extremely di�cult taks, but for the few
features we wanted to reproduce in the bulk, we managed to give an infinite set
of such CFTs. We achieved this by generalising the known constructions of sym-
metric product orbifolds to higher dimensions. In two dimensions this was rather
successful, but in d > 2 the seed theory from which the symmetric product orbifold
theory is constructed already needs to have the special form of the vacuum energy.
It is therefore unclear whether we are in some sense already putting the answer
in. A more refined study of these theories would be needed to confirm this.

In chapter 3, we considered a deformation of the usual AdS/CFT dictionary. We
put a hard cuto� wall inside AdS and put Dirichlet boundary conditions there.
This is one, out of many, generalisations of the AdS/CFT dictionary at finite cuto�
and is the one studied in this chapter. As a result, given a radial slicing of the
bulk metric, equality of the gravitational partition function and the field theory
generating functional is now not demanded at asymptotic infinity, but at some
finite r = rc. By studying the dependence on rc, we were able to write down
an explicit deformation of the field theory dual to these boundary conditions.
This deformation takes the form of a flow equation and generalises the known T T̄
deformation in two dimensions to higher dimensions, but makes crucial use of large
N to achieve a similar factorisation property.

We study the flow equation and derive a formula for the deformed spectrum that
we then match with a gravitational computation, i.e the energy of black holes
in AdS with a finite radial extent. Moreover, we show that the deformation can
also be seen as coupling to a fluctuating, but random, metric using a Hubbard-
Stratonovich transformation. Remarkably, this point of view gives one of the
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Hamilton equations in the bulk. The important lesson here is that the T 2 defor-
mation of chapter 3 could potentially be viewed as coupling the CFT to gravity.
This makes sense, since gravity is not decoupled at finite r. In two dimensions
this was shown to be the case [103], but it would be interesting to establish sim-
ilar results in higher dimensions. Of course, this would require going beyond the
leading order in N results we found.

The energy levels of the deformed theory also give rise to a di�erent density of
states. For positive coupling constant of the deforming operator, the UV is cut
out, so there is no asymptotic region anymore, but for negative values there is and
we find a super-Hagedorn density of states at asymptotically large energies. It is
intriguing to note that this matches precisely with that of the semi-classical quan-
tisation of (d ≠ 1)-branes! This was to be expected, but the non-trivial result here
is that this could indicate that for negative values of the coupling, the deformation
moves the radial slice out of the AdS throat. For example, one could potentially
see the D3-branes popping up when moving out of the AdS5 throat. It would be
extremely interesting to make this more precise in the future.

Classification of topological insulators

The second part of this dissertation was devoted to an entirely di�erent subject
in theoretical physics: the classification of topological insulators. In chapter 4 we
mentioned that for a full understanding of topological insulators a classification
is crucial. In this dissertation we achieved this classification (modulo some sub-
tlety mentioned below) on arbitrary crystals and with or without time-reversal
symmetry. We have given an intuitive and simple algorithm to count how many
topological insulators there are in class A and AII given any crystal symmetry.
We can summarise this algorithm as follows.

We focussed on the crystal symmetries and argued that the number of bands
carrying a particular eigenvalue under the symmetry operators are topological
invariants. However, not all of these invariants are independent, since there are
relation between eigenvalues (or rather, representations) arising from continuity of
the band structure. Modulo global invariants such as Chern numbers and FKM
invariants, this is the full classification. To incorporate the global invariants in the
classification, some more work is needed. For the Chern numbers this is rather
straightforward as they only exist on two dimensional slices of the Brillouin zone
and are zero whenever a reflection acts within that slice. The di�cult part is
the incorporation of the FKM invariant in class AII. The key insight, presented
in chapter 5, is to view the FKM invariant as the presence or absence of vortex-
anti vortex pairs protected by time-reversal symmetry. This allowed us to study
the e�ects of crystal symmetries on the FKM invariant in a clear and systematic
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way. In fact, we argued that crystal symmetry forces vortices to be frozen at
high-symmetry points and lines, giving rise to a whole zoo of Z2 invariants. Some
of these invariants were known already but we also proposed an entirely new
invariant.

Besides giving an algorithm to count topological insulators, we also mentioned in
chapter 4 that it is worthless without a proper check. Luckily, the classification
of topological insulators can be translated to a rigorous question in mathematics,
providing us with the necessary check.

For class A we could check our results in two dimensions against known complex
K-theory computations and found perfect agreement. In three dimensions, there
was a slight disagreement due to exotic topologies like RP2. For class AII, the
situation is more complicated. A direct check with all our results was not possible,
since not much literature on the corresponding K-theory groups exists. In order
to check our results, we thus had to compute the K-theory groups ourselves. In 6,
we used the Atiyah-Hirzebruch spectral sequence to compute twisted equivariant
K-theory groups for certain simple cases. Already in those simple cases, the
computations were rather non-trivial, but in the end we showed that indeed they
given the same classification as the heuristic arguments given in chapter 5.

Outlook

Let us now mention some future directions that can help to give a better under-
standing of quantum gravity and the wild world of topological phases. We already
discussed some of them briefly in the above, but here we would like to be a bit
more specific and find possible bridges between parts one and two.

Symbiosis

Although this dissertation contains two seemingly di�erent topics in theoretical
physics, there is actually some overlap. Not directly, but rather between string
theory and topological phases. In string theory, D-brane charges are classified by
K-theory in exactly the same way as is the case for topological insulators. There
should therefore also be a construction within string theory that could also host the
topological phases we discussed in this dissertation. Indeed, for example in [242],
a construction of two parallel D-branes was proposed that can, host fermions with
a mass given by their separation. In light of our studies, it would be worthwhile to
see how crystal symmetries can be included in that setup. Time-reversal symmetry
can already be implemented in a straightforward way by using O-planes, but for
crystal symmetry, a particular translational symmetry breaking deformation has
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to be turned on. This, however, is rather di�cult to implement and a better way
to see the e�ects of additional (discrete) symmetries, is by putting the system
on an orbifold so that on the common dimensions there is a discrete group G
acting. The K-theory will then become G-equivariant K-theory and the fermions
feel this additional symmetry G. Doing this for G a space group is challenging,
but as we have seen, interesting invariants appear already when forgetting about
translational symmetry, so it is probably enough to restrict to G being a point
group.

It is not only interesting to see these topological phases appearing in string theory
and how they can be constructed, but also because this construction might help
to find strongly coupled versions of the topological phases we have found in our
analysis. As is known in cases without crystal symmetry [243], interactions can
cause some values of the invariants to be unprotected, resulting in a reduction
from Z to Z8. It would be interesting to see how the various Z2 invariants we
found, survive interactions.

One interesting way to study strongly coupled versions of topological insulators is
by using the stringy constructions and taking a suitable large N limit. This might
allow us to study them using holography. It would be interesting, for example, to
see what the topological phases mean in the bulk and how the topological features
on the boundary manifest themselves in gravity. For the quantum Hall states,
some work in this direction was already done in, for example, [244].

Boundary physics

In our classification of topological insulators, we found many new topological
phases, but never really embarked on a crucial question, namely what happens
at the edges? In [3] we discussed this question in the case of an interface between
two topological phases and found that there could be massless boundary modes
at the interface, purely on the basis of representation theory. This analysis was
rather abstract and it would be interesting to have a more hands-on description
of the boundary modes. This might also shed some light on how time-reversal
symmetry impacts the presence of boundary modes and how our newly proposed
invariant has its imprints on the boundary.

From a high-energy point of view, the study of edge physics can be understood
using an anomaly inflow mechanism. This says that even though the boundary
theory cannot live on its own on a closed manifold, it can live on the boundary of
some manifold. The anomalies of the boundary theory are in this way cancelled
by the anomalies of the bulk theory. It would be interesting to understand this
mechanism in a more general sense, including interactions and additional (discrete)
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symmetries for example. By studying these systems as systems of intersecting D-
branes one could maybe try to understand the boundary theory at strong coupling
with the aid of holography.

Studying the edge physics would be the precursor to something much more im-
portant, which we touched upon before as well, namely trying to understand all
incarnations of topology in band insulators. From a theoretical point of view,
this dissertation has made a big step in that direction, but experimentally there
are still many challenges ahead and one of them is measuring the new invariant
that we found. A simple set of materials one could start with to measure it, is
by using layered materials. These materials are e�ectively two dimensional and
could therefore be a host material for our new invariant, when, for instance, there
is two-fold rotation acting within the layers.

Non-critical string theory and T T̄

In chapter 3, we mostly focussed on the case in which ⁄ > 0 and found a connection
with holography. However, the ⁄ < 0 theory is also a very interesting theory to
consider. It has the advantage that the deformed spectrum is much better behaved
and does not complexify for most states. As a result, one might wonder whether
this theory admits a non-perturbative definition. Remarkable, this can indeed be
done in two (equivalent) ways. One uses a coupling of the CFT to a flat space
version of Jackiw-Teitelboim gravity [103], whereas the other uses a coupling to
a two dimensional string theory, which is work in progress with Herman Verlinde
and Nele Callebaut.

The connection with string theory can be most easily understood as follows. Con-
sider the deformed energy levels

En(⁄, L) = L

4⁄

A
1 ≠

Ú
1 ≠ 8Mn

⁄

L2 + 64fi2P 2
n

⁄2

L4

B
, (A.97)

of a two dimensional CFT on a cylinder with circumference L and states with
(dimensionless) energy Mn and momentum Pn. This is a generalisation of 3.78 at
d = 2 and no charge to non-zero momentum. Upon rewriting A.97 as

3
En ≠ L

4⁄

42
= L2

(4⁄)2 ≠ 2Mn

4⁄
+ 4fi2P 2

n

L2 , (A.98)

we see that this is nothing but the Virasoro condition on the string spectrum for
a string with –Õ = ≠4⁄ > 0 on a cylinder! More precisely, it turns out that it is a
non-critical string theory4 with a constant B-field and in the winding one sector.

4
When the seed CFT has c = 24 it is in fact critical string theory.
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The B-field results in the shift on the right hand side of (A.98). The oscillator
piece is now captured by the undeformed theory. The beauty of this proposal lies
in the natural appearance of the non-perturbative definition of the Hilbert space in
terms of a BRST cohomology, which was not present in the proposal by Dubovsky
et al. [103]. Moreover, in this prescription, treatment of the negative Mn states is
similar to the treatment of the tachyon in bosonic string theory.

The relation with string theory also brings about some cute properties of the T T̄
theory. For example, in the old days of string theory, there can only be on-shell
observables in target space, making it hard to define local operators in the T T̄
theory. However, since 1995 [245], we know that string theory also hosts non-
perturbative objects that could potentially help defining such local operators in
the target space. Furthermore, the appearance of a non-local phase factor in the
S-matrix of the T T̄ deformed theory on Minkowski space [98] is a consequence
of the non-commutativity of the target space coordinates. A detailed analysis of
all these claims is an interesting future direction that helps understand not only
the T T̄ theory for ⁄ < 0, but might also shed some light on the holographic
interpretation.

Irrelevant deformations in quantum mechanics

Besides a more thorough understanding of the two dimensional case, another fruit-
ful research direction is to generalize the techniques in chapter 3 to general dilaton
gravities in two dimensions. By deforming the putative dual quantum mechanics
in a particular way, one can then understand how one can flow inside the two di-
mensional bulk. In particular, an interesting set up to consider is dilaton gravities
that have a de Sitter region deep in the bulk and an anti-de Sitter region asymp-
totically [246]. By flowing from asymptotic infinity to the dS2 region, one might
have a controllable way to understand holography for dS2, which was one of the
goals we set out in the beginning of this dissertation. See [247] for similar ideas.
General dilaton gravities also arise from a spherical reduction of, say, four dimen-
sional Einstein-Maxwell theory to two dimensions and therefore, understanding
how to flow in two dimensions, might also help to understand flowing outwards,
so from AdS2 to AdSd+1. A more careful analysis of this is work in progress with
Edgar Shaghoulian.

Holoception

Finally, we mention a rather radical, but extremely interesting idea. From the
proposal of Dubovsky et al. [103] and the Hubbard-Stratonovich transformation
in section 3.4, it is clear that a non-perturbative description of the T T̄ theory is one
in which we couple the CFT to gravity. This means that we again have a theory of
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gravity to which we can apply the holographic principle. More precisely, consider
AdS2 slices of AdS3, so that at finite cuto� in AdS3, the T T̄ theory lives on AdS2.
This theory on AdS2 again contains gravity and once we understand how to apply
the techniques in chapter 3 to that case, we can relate that T T̄ theory on AdS2 (at
finite cuto�) to the physics of a quantum mechanics theory. In some sense, this is
doing holography within holography and gives rise to a description of AdS3 bulk
physics using a quantum mechanical theory deformed by the generalisation of the
T 2 deformation of chapter 3 to d = 1. In order to make this more precise, one
would have to show that the T T̄ theory on AdS2 is the same as coupling the T T̄
theory to Jackiw-Teitelboim gravity and not its flat space version, since for flat
space we do not really know how to do holography. Moreover, the factorisation
property of Zamolodchikov still needs to hold, which should indeed be the case,
since AdS2 is still a symmetric space. One can take this idea even further and say
that the cascade extends to higher dimensions as well and so will always reduce
AdSd+1 physics at finite cuto� to a special quantum mechanics theory. Similar
ideas were actually pursued before already, for instance in [248,249].
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Samenvatting

Onderzoek in de theoretische natuurkunde kun je je voorstellen als een groot ma-
gisch kasteel. Er is een stevig fundament, gevormd door allerlei wetten en principes
in de natuurkunde, zoals die van Newton of de stromingsleer. Door de jaren heen
zijn die wetten niet een alleen maar een steviger fundament geworden, ze zijn ook
gemoderniseerd. Bijvoorbeeld, door de komst van de kwantummechanica en de
algemene relativiteitstheorie van Einstein.

Op het fundament zijn ook verschillende kamers gebouwd. Deze kamers stellen
verder onderzoek in een bepaalde richting voor, zoals de studie naar zwarte gaten
of de geleidingseigenschappen van exotische materialen. Soms bevinden zich er ook
deuren in deze kamers, die leiden naar andere onderzoeksvelden en zo een aaneen-
gesloten web van kennis vormen. In de theoretische natuurkunde zijn deze deuren
zeer waardevol en zorgen vaak voor interessante en nieuwe inzichten. De snaar-
theorie (één van de hipste theorieën van dit moment) werd bijvoorbeeld gevonden
door onderzoeken naar een andere theorie, namelijk de theorie die nu in Genève
bij het CERN getest wordt. Het openen van die deuren kan dus een volledig nieuw
onderzoeksgebied tot gevolg hebben en kan een volledig nieuwe zijvleugel aan het
gebouw der theoretische fysica betekenen.

Kwantumzwaartekracht

Een erg belangrijke en praktisch volledig onontgonnen zijvleugel is eentje die je zo-
wel vanuit de zwaartekracht kamer als de kwantummechanica kamer binnen kunt
gaan. Deze zijvleugel is een symbiose van twee zeer succesvolle theorieën, name-
lijk die van het allerkleintste (kwantummechanica) en het allergrootste (zwaarte-
kracht). We noemen dit onderzoeksgebied dan ook wel de kwantumzwaartekracht.
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In de kwantumzwaartekracht is men bezig met het begrijpen van de kwantum-
mechanische structuur van zwaartekracht. Dit betekent dat men de fundamentele
bouwstenen probeert te vinden van de ruimtetijd waarin we nu leven. Een mooi
voorbeeld van een belangrijk vraagstuk in de kwantumzwaartekracht is die over
de structuur van zwarte gaten. Zwarte gaten zijn exotische objecten in ons uni-
versum, die zo zwaar zijn dat zelfs licht niet aan ze kan ontsnappen (vandaar ook
de naam). Recentelijk is er een prachtige foto van zo’n zwart gat gemaakt, waar
we veel van kunnen leren en dat is nodig, want we weten eigenlijk niet zo veel over
zwarte gaten. Wat we wel weten is bijvoorbeeld dat zwarte gaten een bepaalde
temperatuur hebben en uit een groot aantal fundamentele bouwstenen opgebouwd
moet zijn, maar wat die bouwstenen precies zijn en wat er aan de binnenkant van
zo’n zwart gat gebeurt, is nog een groot raadsel.

Het vraagstuk over zwarte gaten is slechts een van vele vraagstukken in de kwan-
tumzwaartekracht waar wetenschappers zich nu al meer dan een halve eeuw het
hoofd over breken. Dit is niet omdat we niet slim genoeg zijn, maar omdat het
gewoon heel erg moeilijk is. Er zijn nog geen concrete experimenten gedaan,
waardoor de theoretisch fysicus geen helpende hand heeft, zoals bijna altijd wel
het geval was in het verleden. Onderzoek in de kwantumzwaartekracht is daarom
voornamelijk van theoretische aard en gaat uit van een aantal basis principes om
een voorspelling te kunnen doen over wat zo’n theorie van kwantumzwaartekracht
precies zou kunnen zijn.

Één mogelijke theorie van kwantumzwaartekracht die sinds de jaren 70 is voor-
gesteld is de snaartheorie. De snaartheorie is een theorie die succesvol de theorie
van het allerkleinste (de kwantummechanica) en de theorie van het allergrootste
(zwaartekracht, de algemene relativiteitstheorie van Einstein) samenvoegt. Dit
is een ingewikkelde theorie, waar op dit moment veel onderzoek naar wordt ver-
richt en waar veel lessen over kwantumzwaartekracht uit getrokken worden. Een
van de belangrijkste lessen die we geleerd hebben in de afgelopen 20 jaar is dat
kwantumzwaartekracht zich het beste laat beschrijven door een hologram.

Dit klinkt natuurlijk best wel vreemd en dat is het ook. Je kunt je afvragen waarom
zou kwantumzwaartekracht zich op die manier laten beschrijven. Een hologram
is een tweedimensionale voorstelling van iets in drie dimensies en dus mis je dan
niet informatie om de volledig driedimensionale ruimte te reconstrueren? Dit zijn
allemaal valide vragen, en een volledig antwoord is er nog niet. Het is inmiddels
echter al wel duidelijk dat het hologram geen informatie mist, maar het op een
ingewikkelde en speciale manier verpakt en daarvoor speciale eigenschappen moet
hebben.

Een paar van die speciale eigenschappen zijn onderzocht in dit proefschrift. In
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het bijzonder is er een heel basale vereiste van het hologram onderzocht, namelijk
de eis dat de wetten van Newton of de algemene relativiteitstheorie van Einstein
gereconstrueerd kunnen worden. Hieruit is gebleken dat de hologrammen nog
specialer en ingewikkelder moeten zijn dan we al dachten. Dit is eigenlijk het
gevolg van het verpakken van iets driedimensionaals in iets tweedimensionaals,
maar reflecteert ook hoe ingewikkeld en rijk kwantumzwaartekracht is.

Met dit onderzoek zijn we een klein stapje dichterbij een beter begrip van kwan-
tumzwaartekracht gekomen, maar er is nog veel onderzoek nodig om het hologram
in zijn volledigheid te begrijpen. Een ding is zeker, er staat ons nog veel prachtige
en verbazingwekkende natuurkunde te wachten in onze ontdekkingsreis door de
kamer van de kwantumzwaartekracht.

Topologische fasen

Ondertussen zijn wetenschappers ook begonnen aan een ontdekkingsreis door een
heel ander deel van het kasteel. In dit deel van het kasteel bevinden zich de
kamers die te maken hebben met materialen en hun eigenschappen, zoals hoe ze
een elektrisch stroompje kunnen geleiden. Een zeer rijke kamer in dit deel van het
kasteel is de kamer over topologische fasen.

Topologische fase (een fase is een bepaalde toestand waarin een materiaal zich kan
bevinden, zoals water in de vorm van ijs of waterdamp) zijn fasen van exotische
materialen die buitengewone geleidingseigenschappen hebben. In gewone materia-
len gaat het elektrisch stroompje door de binnenkant van het materiaal, maar dit
is niet zo voor topologische fasen. In deze materialen gaat het stroompje alléén via
de buitenkant. Het zijn dus niet zulke goede geleiders, zoals bijvoorbeeld koper of
goud, maar wat ze geleiden doen ze op een subtiele en elegante manier.

Dit is niet het enige bijzondere aan topologische fasen. Topologische fase geleiden
een stroompje namelijk alleen op een stapsgewijze manier. Hiermee bedoelen we
dat de mate van geleiding alleen maar aangeven kan worden met een geheel getal,
zoals 3 of 27 (maar negatieve gehele getallen, want dan gaat het stroompje de
andere kant op). Eigenlijk is het een beetje alsof je de geleiding een cijfer geeft
om aan te geven hoe goed die geleiding is en daarvoor alleen maar gehele getallen,
die niet perse tussen 0 en 10 liggen, mag gebruiken. Deze stapsgewijze geleiding
wordt ook wel een gekwantiseerde geleiding genoemd.

Een gekwantiseerde geleiding is natuurlijk iets heel bijzonders, omdat normaal
gesproken de geleiding elke mogelijke waarde aannemen. Er moet dus een speciaal
mechanisme aanwezig zijn in het materiaal wat hiervoor kan zorgen en andere
waarden dan gehele getallen verbiedt. Het blijkt dat dat mechanisme te maken
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heeft met een verborgen eigenschap van een topologische fase.

Om dit te begrijpen moeten we eerst uitleggen wat topologie nu precies betekent.
Kort gezegd betekent topologie de robuste vorm van een object. Bijvoorbeeld, een
mandarijn is bolvormig en heeft geen gaten. We zeggen dan dat de mandarijn de
topologie van een bol heeft. Met robust bedoelen we dan dat als je de mandarijn
zachtjes indrukt, de bolvormigheid niet verandert. Druk je te hard, dan vervorm
je de mandarijn zodanig dat ie scheurt of er gaten in komen. Je hebt dan de
topologie van de mandarijn veranderd. Zit er na het drukken bijvoorbeeld een
enkel gat in, dan lijkt de mandarijn meer op een donut dan iets bolvormigs. Een
donut heeft dan ook een andere topologie. In het algemeen kun je door het tellen
van het aantal gaten er achter komen met welke topologie je te maken hebt. Geen
gaten is de topologie van een bol, één gat die van een donut en bijvoorbeeld drie
gaten die van een krakeling. Dit is natuurlijk een versimpeling van hoe we er als
natuurkundigen tegen aan kijken, maar bevat wel de essentie van wat topologie is.

Topologie betekent dus een soort van stapsgewijsheid; alleen gehele getallen be-
palen de topologie. Dit lijkt heel veel op de stapsgewijze geleiding in topologische
fasen waar we het eerder over hadden. Het blijkt dat deze twee stapsgewijsheden
aan elkaar gerelateerd zijn en in het bijzonder dat er een verborgen topologie is
die de stapsgewijsheid van de geleiding kan verklaren. Bovendien verklaart het
ook waarom de geleiding zo robust is, want daarvoor moet je de topologie veran-
deren en dat gaat niet zo eenvoudig. Dit verband tussen topologie en geleiding
werd begin jaren 80 gevonden door de vier wetenschappers Thouless, Kohmoto,
Nightingale en den Nijs en heeft aangezet tot een heel nieuwe onderzoeksgebied in
de theoretische natuurkunde.

Inmiddels is de studie naar topologische fasen uitgegroeid tot een groot onder-
zoeksgebied, waarin veel interessante en verassende resultaten gevonden zijn. Het
mooie aan dit onderzoeksgebied is ook dat, in tegenstelling tot de kwantumzwaar-
tekracht, veel experimenten gedaan zijn. De helpende hand van het experiment
was hier dus zeker aanwezig en heeft tot zeer interessant theoretisch onderzoek
geleidt.

Een mooi voorbeeld van zo’n theoretisch onderzoek is het tellen van het aantal
topologische fasen dat in de natuur aanwezig kan zijn. Dit noemen we ook wel het
classificeren van topologische fasen en in feite betekent het dat we alle topologische
fasen met dezelfde waarde voor de geleiding bij elkaar groeperen, dus alle topo-
logische fasen met geleidingswaarde 1 gaan in een (denkbeeldig) bakje, alle fasen
met geleidingswaarde 2 in een ander bakje, enzovoort. Dit geeft inzicht in welke
soorten topologie er zijn en hoe die door andere eigenschappen van het materiaal
tevoorschijn kunnen komen.
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Het onderzoek in dit proefschrift gaat over het tellen van topologische fasen. Wij
hebben laten zien dat deze telling op een heel eenvoudige en intüıtieve manier
gedaan kan worden. Aan de hand van een aantal bekende eigenschappen van een
materiaal hebben wij laten zien dat je met een paar simpele stappen het aantal
mogelijke topologische fasen in dat materiaal kunt bepalen. Voorheen werd dit op
een vrij omslachtige en heuristische manier gedaan, maar wij hebben aangetoond
dat dit veel simpeler kan. Als gevolg van onze telling hebben we ook een volledig
nieuw soort topologie voorspelt, die mogelijk via experimenten gezien zou kunnen
worden.
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