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Abstract: We review the in-medium modifications of effective masses (Lorentz scalar

potentials or phenomenon of mass shift) of the heavy–heavy and heavy–light mesons in

symmetric nuclear matter and their nuclear bound states. We use a combined approach with

the quark–meson coupling (QMC) model and an effective Lagrangian. As demonstrated by

the cases of pionic and kaonic atoms, studies of the meson–nucleus bound state can provide

us with important information on chiral symmetry in a dense nuclear medium. In this

review, we examine the mesons, K, K∗, D, D∗, B, B∗, η, η′, ϕ, ηc, J/ψ, ηb, Υ, and Bc, where our

emphasis is on the heavy mesons. In addition, we also present some new results for the

Bc-nucleus bound states.

Keywords: hadrons; nuclear matter; strong interactions; chiral symmetry restoration

in medium

1. Introduction

Quantum chromodynamics (QCD) is the theory of strong interactions at the fundamental

level, namely, at the level of quarks and gluons, which compose the observed hadrons in

the standard model (SM) [1–7]. However, a quantitative understanding of the strong force

and strongly interacting matter from the underlying first principles of QCD is still limited,

in particular when the hadrons are under the circumstance with many nucleons, such as

when emersed in nuclei and dense nuclear medium. The study of the interactions of heavy–

heavy and heavy–light mesons with atomic nuclei is an important tool for understanding the

properties of strongly interacting matter in vacuum and in extreme conditions of temperature

and density based on QCD Refs. [8–15]. In this review, we treat the zero temperature case. An

understanding of hadronic interactions with the nuclear medium is imperative for studying

the production of heavy mesons in high energy heavy ion collisions [16,17], because the

medium modifications of hadron properties may have a significant impact on the experimental

results. Decay processes and decay rates involving mesons in a nuclear medium should also

be modified. For example, decays of the type Bc → Dsℓ
+ℓ− involving a flavor-changing

neutral-current process are highly suppressed in the Standard Model (SM) [18–24]; thus, it is

very important for investigating the physics beyond the SM. Moreover, the suppression or

enhancement in the production of mesons, such as J/ψ, Υ, and Bc, makes them interesting

probes of quark–gluon plasma (QGP) [25–34].

To calculate the in-medium (effective) masses of the mesons containing light quarks, in-

cluding K, K∗, D, D∗, B, B∗, η, and η′, we use the quark–meson coupling (QMC) model [35].

Because of the Okubo–Zweig–Iizuka (OZI) [36–40] rule, the heavy quarkonium–nucleus

interaction via the exchange of mesons made of only light quarks is suppressed, so that the
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quarkonium–nucleus interaction is primarily by a QCD van der Waals type interaction [41].

For the mesons that do not contain light quarks, namely, ϕ, ηc, J/ψ, ηb, Υ, and Bc, we employ

a combined approach in the self energy, in which the mechanism for the meson interact with

the nuclear medium through the excitation of the intermediate-state mesons that do contain

light quarks. Where the in-medium masses of the intermediate-state mesons are calculated

by the QMC model, the meson self-energies are estimated with effective Lagrangians.

Partial restoration of chiral symmetry, and chiral symmetry itself in nuclear medium,

are another interesting phenomena that can be studied in an empirical sense, because the

(effective) mass reduction of the medium-modified hadron may be associated with a

signature of partial restoration of chiral symmetry [42–45]. This negative mass shift can

be regarded as an attractive Lorentz scalar potential, which, if sufficiently attractive, can

bind mesons to atomic nuclei. Deeply bound pionic atoms were first discussed in 1985 [46]

and later observed in the 208Pb(d, 3He) reaction [47]. In addition, studies of kaonic atoms

were performed [48–52]. The studies of the pionic and kaonic atoms can provide us with

very important information on chiral symmetry in a dense nuclear medium. Furthermore,

other possible meson–nucleus bound states were proposed [53–55]. Charmonium–nucleus

systems were proposed in 1989 [56] and followed by many predictions [8,10,11,41–43,57–72].

Lattice QCD has also predicted such states [73–75], as well as ϕ-nucleon bound states [76].

In the bottom sector of quarkonia, strong nuclear bound states with various nuclei [77–80]

were predicted for Υ and ηb. In this article, we review the downward shift of meson masses

in nuclear matter and the meson–nucleus bound states, focusing on the heavy–heavy and

heavy–light mesons. We also comment on some new results for the Bc-nucleus bound states.

This review is organized as follows. In Section 2, we present the details of the quark–

meson coupling (QMC) model needed to better understand most of our results. In Section 3,

we present the results for the mass shift of mesons with heavy–light quark content using the

quark–meson coupling (QMC) model. Since heavier flavor quarks Q = s, c, b do not directly

interact directly with the mean fields in a nuclear medium, we use a combined approach

using both the QMC model with and effective Lagrangians to compute the effective masses

for the mesons with a (heavy quark)-(heavy antiquark) content.

We describe this in Section 4. In Section 5, we use the calculated amounts of the down-

ward shift of masses for the mesons considered in this work to present our results for the

meson–nucleus potentials for various nuclei in a wide range of nuclear masses. In Section 6,

we present our results for meson–nucleus bound state energies and widths for some mesons

by solving the Klein–Gordon equation, using the meson–nucleus potentials obtained in the

previous section. Finally, in Section 7, we present a summary and conclusions.

2. The Quark–Meson Coupling (QMC) Model

The quark–meson coupling (QMC) model, the standard version we use, is a quark-

based model for nuclear matter and nuclei that describes the internal structure of the

nucleons using the non-overlapping MIT bag model, and the binding of nucleons (nuclear

matter) by the self-consistent couplings of the confined light quarks u and d to the Lorentz

scalar-σ, Lorentz-vector-isoscalar-ω and Lorentz-vector-isovector-ρ meson mean fields

generated by the confined light quarks in the nucleons [35].

In a nuclear medium, the hadrons with light quarks are expected to be predominantly

modified by their properties, as evidenced by the European Muon Collaboration effect [81,82]

and the modifications of bound proton electromagnetic form factors [83–85]. Thus, one can ex-

pect that the nuclear medium can modify the internal structure of nucleons and hadrons and can

affect the interaction with nucleons. Thus, studying such effects due to the hadron internal

structure based on the quarks and gluons can make the QMC model a useful phenomenological

tool for describing the change in the internal structure of hadrons in a nuclear medium.
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The QMC model has been successfully applied for the studies of various properties

of infinite nuclear matter and finite (hyper)nuclei [11,86–89]. Here, we briefly present the

necessary details for understanding our results better. For more detailed discussions and

some successful features of the model, see Refs. [11,86,87,89], and references therein.

We consider nuclear matter (NM) in its rest frame, where all the scalar and vector mean

field potentials, which are responsible for the nuclear many-body interactions, are constants

in the Hartree approximation. We assume SU(2) symmetry for the quarks (mq = mu = md

and q = u or d). Note that the heavier quarks Q = s, c, b (hereafter, we will simply

denote heavy quarks as Q, including the s quarks) are not affected directly by the mean

field potentials in the standard QMC model. Thus, when dealing with mesons composed

of valence (heavy quark)-(heavy antiquark) pairs, we will have to proceed in a different

manner for hidden flavor heavier mesons with Q = s, c, b and two-heavy-flavored mesons

such as Bc and Bs mesons. In this study, we will treat the Bc and B∗
c mesons only; however,

for the other two-heavy-flavored mesons Bs, B∗
s , Ds and D∗

s mesons, see Ref. [90].

The Dirac equations for the quarks and antiquarks in nuclear matter (neglecting the

Coulomb force), in a bag of a hadron, h, (q = u or d, and Q = s, c or b), are given by

(x = (t, r)bag radius) [55,91–94],

[

iγ · ∂x − (mq − V
q
σ )∓ γ0

(

V
q
ω +

1

2
V

q
ρ

)]

(

ψu(x)

ψū(x)

)

= 0, (1)

[

iγ · ∂x − (mq − V
q
σ )∓ γ0

(

V
q
ω − 1

2
V

q
ρ

)]

(

ψd(x)

ψd̄(x)

)

= 0, (2)

[

iγ · ∂x − mQ

]

ψQ(x) = 0,
[

iγ · ∂x − mQ

]

ψQ(x) = 0, (3)

where the mean field potentials are defined by V
q
σ ≡ g

q
σσ, V

q
ω ≡ g

q
ωω, and V

q
ρ ≡ g

q
ρb, with

g
q
σ, g

q
ω , and g

q
ρ being the corresponding quark–meson coupling constants. We assume SU(2)

symmetry, mq = mq̄ ≡ mu,ū = md,d̄ ≡ mq,q̄. The Lorentz-scalar “effective quark masses”

are defined by, m∗
q = m∗

u,ū = m∗
d,d̄

= m∗
q,q̄ ≡ mq − V

q
σ , and thus m∗

q is dominated by −V
q
σ as

baryon density increases, and can be negative, but one should not demand the positivity of

usual particle mass, since this is nothing but the reflection of the strong attractive scalar

potential. Note that mQ = m∗
Q, since the σ field does not couple to the heavier (“heavy”)

quarks Q = s, c, b in the QMC model. Furthermore, when we consider symmetric nuclear

matter (SNM) with Hartre approximation, the ρ-meson mean field becomes zero, V
q
ρ = 0,

in Equations (1) and (2), and we can ignore hereafter. However, when we consider the

meson–nucleus bound states, the isospin dependent ρ-meson mean field, as well as the

Coulomb potential in nuclei, will be included if necessary. In this study, only the Coulomb

potentials for the Bc-nucleus bound states will be considered.

The static solution for the ground-state quarks (antiquarks) in asymmetric nuclear mat-

ter (ANM) with flavor f (= u, d, s, c, b) is written as ψ f (x) = N f e−iϵ f t/R∗
h ψ f (r), with the

N f being the normalization factor, and ψ f (r) the corresponding spin and spatial part of the

wave function.

The eigenenergies for the quarks and antiquarks in a hadron h, in units of the in-

medium bag radius of hadron h, 1/R∗
h, are given by

(

ϵu

ϵu

)

= Ω∗
q ± R∗

h

(

V
q
ω +

1

2
V

q
ρ

)

, (4)

(

ϵd

ϵd

)

= Ω∗
q ± R∗

h

(

V
q
ω − 1

2
V

q
ρ

)

, (5)

ϵQ = ϵQ = ΩQ, Q = s, c, b. (6)
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The in-medium mass and bag radius of hadron h in the nuclear medium, m∗
h and R∗

h

respectively, are determined from

m∗
h = ∑

j=q, q ,Q, Q

njΩ
∗
j − zh

R∗
h

+
4

3
πR∗3

η Bp,
dm∗

h

dRh

∣

∣

∣

∣

Rh=R∗
h

= 0, (7)

in particular, for the mesons h = K, K∗, D, D∗, B, B∗, while for the η and η′ mesons, to take

into account flavor mixing, these are given by

m∗
η =

2[a2
PΩ∗

q + b2
PΩs]− zη

R∗
η

+
4

3
πR∗3

η Bp,
dm∗

h

dRj

∣

∣

∣

∣

∣

Rh=R∗
h

= 0, (h = η, η′), (8)

aP ≡
√

1/3 cos θP −
√

2/3 sin θP, bP ≡
√

2/3 cos θP +
√

1/3 sin θP (9)

(for η′, η → η′, and aP ↔ bP),

where m∗
q = mq − V

q
σ , m∗

Q = mQ (as already mentioned), Ω∗
q = Ω∗

q =

[

x2
q +

(

R∗
hm∗

q

)2
]1/2

,

Ω∗
Q = Ω∗

Q
=
[

x2
Q +

(

R∗
hmQ

)2
]1/2

, with xq,Q being the lowest mode bag eigenfrequencies;

Bp is the bag constant; nq,Q (nq,Q) are the lowest mode valence quark (antiquark) numbers

for the quark flavors q and Q in the corresponding mesons; and zh parameterize the sum

of the center-of-mass and gluon fluctuation effects and are assumed to be independent

of density [95]. The MIT big parameters zN (zh) and Bp are fixed by fitting the nucleon

(hadron) mass in free space.

We choose the values (mq, ms, mc, mb = (5, 250, 1270, 4200) MeV) for the current quark

masses, and RN = 0.8 fm for the free space nucleon bag radius. See Ref. [96] for other

values used (mq, ms = (5, 93, 1270, 4180) MeV result). The quark–meson coupling constants,

g
q
σ, g

q
ω and g

q
ρ, for the light quarks were determined by the fit to the saturation energy

(−15.7 MeV) at the saturation density (ρ0 = 0.15 fm−3) of symmetric nuclear matter for g
q
σ

and g
q
ω , and by the bulk symmetry energy (35 MeV) for g

q
ρ [35,86]. The obtained values for

the quark–meson coupling constants are (g
q
σ, g

q
ω, g

q
ρ) = (5.69, 2.72, 9.33).

Finally, for the mixing angle θP appearing in Equation (9), we use the value

θP = −11.3◦, neglecting any possible mass dependence and imaginary parts [96,97]. Fur-

thermore, we also assume that the value of the mixing angle does not change in the

nuclear medium.

3. Results with the QMC Model

In Figures 1 and 2 we present respectively the QMC model predictions for the effective

masses of B, B∗, D, D∗, K and K∗ mesons [90], and the effective masses and the mass shift

∆mh(ρB) ≡ m∗
h(ρB)− mh for η and η′ mesons with m∗

h the in-medium meson mass and mh

the vacuum mass [98], in symmetric nuclear matter versus nuclear matter density ρ0/ρB.

Clearly, the masses of these mesons decrease in the nuclear medium, and this fact may be

regarded as a signature of partial restoration of chiral symmetry in the medium, although

the QMC model does not explicitly have a chiral symmetry mechanism. Below, we will

discuss and use the results shown in Figures 1 and 2.
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Figure 1. B and B∗ (left panel), D and D∗ (middle panel) and K and K∗ (right panel) meson

Lorentz−scalar effective masses in symmetric nuclear matter versus baryon density (ρB/ρ0), calcu-

lated with the QMC model.
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Figure 2. η and η′ effective masses (left panel) and mass shift (right panel) in symmetric nuclear

matter versus baryon density (ρB/ρ0), calculated with the QMC model.

4. Combining QMC Model and Effective Lagrangian Approach

Since the Okubo–Zweig–Iizuka rule suppresses the interactions mediated by the

exchange of mesons made of light quarks for the case of heavy–heavy mesons, it is therefore

necessary to explore other potential sources of attraction, which could potentially lead

to the binding of heavy–heavy mesons to atomic nuclei. Furthermore, since the heavy

quarks Q = s, c, b do not directly interact with the mean fields in a nuclear medium (see

Equation (3)), to compute the effective masses (Lorentz scalar potentials) for the mesons

composed of a (heavy quark)-(heavy antiquark) pair, we take a different approach.

This approach consists of the combined treatment with the QMC model and an

effective Lagrangian. We have already introduced the QMC model above, so we now

describe the effective Lagrangian approach we rely on.

In the effective Lagrangian approach, mesons are treated as structureless point-

like particles, whose interactions are dictated by a local gauge symmetry principle.

In order to be more explicit, we separate our study according to the different mesons.

Part of the descriptions and treatments reviewed here have already been published in

journals [72,77,80,98–101], as well as presented at various conferences [79,102–106].

4.1. The ϕ Vector Meson

The ϕ meson properties in nuclear matter, such as mass and decay width, are strongly

correlated to its coupling to the KK, which is the dominant decay channel in vacuum.

Therefore, the density dependence of the ϕ meson self-energy in nuclear matter arises

mainly due to interactions of the kaons and antikaons with the nuclear medium, and the

kaon and antikaon in-medium properties are calculated in the QMC model [91] (see also

Figure 1 for the effective mass of K (=K̄) meson). Here we use the effective Lagrangian

approach of Ref. [107] to compute the ϕ meson self-energy.
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The lowest-order interaction Lagrangian providing the coupling of the ϕ meson to the

KK pair reads [107]

LϕKK = igϕϕµ
[

K(∂µK)− (∂µK)K
]

, (10)

where gϕ is ϕKK coupling constant and we use the convention:

K =

(

K+

K0

)

, K =
(

K− K
0
)

. (11)

The scalar self-energy for the ϕ meson, Πϕ(p), is determined from Equation (10). The Feyn-

man diagram contributing to Πϕ(p) at O(g2
ϕ) is depicted in Figure 3. For a ϕ meson at rest,

the scalar self-energy is given by

iΠϕ(m
2
ϕ) = −8

3
g2

ϕ

∫

d3q

(2π)3
q 2DK(q)DK(q − p), (12)

where DK(q) =
(

q2 − m2
K + iϵ

)−1
is the kaon propagator; pµ = (p0 = mϕ, 0) is the ϕ meson

four-momentum vector (ϕ at rest), with mϕ the ϕ meson mass; mK(= mK) is the kaon mass.

When mϕ < 2mK the self-energy Πϕ(p) is real. However, when mϕ > 2mK, which is the

case here, Πϕ(p) acquires an imaginary part.

K

φ φ

K

Figure 3. KK-loop contribution to the ϕ meson self-energy.

The mass of the ϕ meson is determined from the real part of Πϕ(p) (see Equation (17)),

while its decay width Γϕ to a KK pair from the imaginary part of Πϕ(p) through the optical

theorem (see Equation (15)). The real and imaginary parts of Πϕ(p) can be computed

as [99]

Re Πϕ = −2

3
g2

ϕP
∫

d3q

(2π)3
q 2 1

EK(E2
K − m2

ϕ/4)
, (13)

Im Πϕ = −
g2

ϕ

3π

1

mϕ





mϕ

2

(

1 − 4m2
K

m2
ϕ

)1/2




3

, (14)

where P denotes the Principal Value of the integral and EK = (q 2 + m2
K)

1/2. The integral

in Equation (13) is divergent, but it will be regulated using a phenomenological form factor,

with cutoff parameter ΛK, as in Ref. [42].

The decay width Γϕ for the process ϕ → KK can be obtained from the imaginary part

of the ϕ meson self-energy Im Πϕ through the optical theorem

Γϕ = − 1

mϕ
Im Πϕ, (15)

where Im Πϕ is given by Equation (14). Thus, one obtains
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Γϕ =
g2

ϕ

3π

1

m2
ϕ





mϕ

2

(

1 − 4m2
K

m2
ϕ

)1/2




3

. (16)

The coupling constant gϕ is determined by the experimental value for the ϕ → KK decay

width in vacuum, corresponding to a branching ratio of 83.1% of the total decay width

(4.266 MeV) [108]. For the ϕ meson mass mϕ we use its experimental value in vacuum

m
expt
ϕ = 1019.461 MeV [108]. For the kaon mass mK, there is a small ambiguity since

mK+ ̸= mK0 in the real world due to the isospin (or charge) symmetry breaking and elec-

tromagnetic interactions. The experimental values for the K+ and K0 meson masses in

vacuum are m
expt
K+ = 493.677 MeV and m

expt

K0 = 497.611 MeV, respectively [108]. For defini-

tiveness, we use the average of m
expt
K+ and m

expt

K0 as the value of mK in vacuum. (However,

the effect of this tiny mass ambiguity on the properties of kaon (antikaon) in medium, to be

presented in the next section, is negligible compared with those obtained by using the

value mK+ = 493.7 MeV [91]). This gives gϕ = 4.539 [99]. The mass of the ϕ meson will be

obtained from the solution of

m2
ϕ =

(

m0
ϕ

)2
+ Re Πϕ(m

2
ϕ) =

(

m0
ϕ

)2
− |Re Πϕ(m

2
ϕ)|, (17)

where Re Πϕ is given by Equation (13) and m0
ϕ is the bare ϕ meson mass. In vacuum,

Equation (17), together with the value obtained for the coupling constant, actually fixes the

bare ϕ meson mass m0
ϕ.

Critical to our results of the in-medium ϕ meson mass m∗
ϕ and decay width Γ∗

ϕ at

finite baryon density ρB, is the in-medium kaon mass m∗
K. The nuclear (baryon) density

dependence of the ϕ meson mass and decay width are driven by the interactions of the kaon

with the nuclear medium, which enter through m∗
K in the kaon propagators in Equation (12).

The in-medium kaon mass m∗
K was calculated previously in the QMC model, and the results

are shown in the right panel of Figure 1. We note that the kaon effective mass at normal

nuclear density ρ0 = 0.15 fm−3 decreases by about 13% [99]. We remind that, to calculate

the kaon-antikaon loop contributions to the ϕ-meson self-energy in symmetric nuclear

matter, the isoscalar-vector ω mean field potentials arise both for the kaon and antikaon.

However, they have opposite signs and cancel each other, or can be eliminated by the

variable shift in the loop integral calculation.

To calculate the width and mass of the in-medium ϕ meson, Γ∗
ϕ and m∗

ϕ, respectively, we

solve the corresponding Equations (16) and (17) in symmetric nuclear matter by replacing

mK by m∗
K and mϕ by m∗

ϕ in the self-energy of the ϕ meson. In Figure 4, we present our

results [99] for the ϕ meson mass (left panel) and decay width (right panel) in nuclear

matter up to ρB = 3ρ0. As can be seen in Figure 4, the effect of the in-medium change in

kaon mass gives a negative change in ϕ meson mass. However, even for the largest value

of density considered in this study, the downward mass shift is only a few percent for all

values of the cutoff parameter ΛK. In Table 1, we present the values for mϕ∗ and Γ∗
ϕ at

normal nuclear density ρ0. More quantitatively, from Table 1 we see that the negative kaon

mass shift of 13% induces only ≈ 2% downward mass shift of the ϕ meson [99]. On the

other hand, from Figure 4 we see that Γ∗
ϕ is very sensitive to the change in the kaon mass.

It increases rapidly with increasing nuclear density, up to a factor of ∼20 enhancement

for the largest nuclear density considered, ρB = 3ρ0 [99]. As can be seen from Table 1,

the broadening of the ϕ meson decay width becomes an order of magnitude larger than its

vacuum value at normal nuclear density.
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Figure 4. In−medium mass (left panel) and decay width (right panel) of the ϕ meson in symmetric

nuclear matter versus baryon density ρB/ρ0.

Table 1. ϕ meson mass and width at normal nuclear density, ρ0. The ϕ meson mass decreases by

a few percent (1.8% in average), while the decay width increases by an order of magnitude, with

respect to the corresponding vacuum values. All quantities are given in MeV.

ΛK = 1000 ΛK = 2000 ΛK = 3000

m∗
ϕ 1009.3 1000.9 994.9

Γ∗
ϕ 37.7 34.8 32.8

4.2. ηc and J/ψ Mesons

The study of interactions of charmonium states, such as ηc and J/ψ, with atomic

nuclei offers the opportunity to gain new insights into the properties of the strong force

and strongly interacting matter [72]. Because charmonia and nucleons do not share light

quarks, the Okubo–Zweig–Iizuka (OZI) rule [36–40] suppresses the interactions mediated

by the exchange of mesons composed of light quarks and/or antiquarks. The situation

here is similar to the ϕ meson case and also generally for quarkonia and two-heavy-flavor

mesons). Thus, it is important and necessary to explore other possible mechanisms, which

can provide attractive (repulsive) interactions that could lead to the binding (unbinding)

of charmonia to atomic nuclei [72]. For a review on the subject, see Refs. [8–11]. Here,

we employ an effective Lagrangian approach and consider charmed meson loops in the

charmonium self-energy [42,43,58,72,109]; that light quark-antiquark pair is created from

the vacuum.

Note that, recent lattice study using the HAL QCD method with nearly realistic

pion mass of mπ = 146 MeV, which was also able to reproduce well the physical hadron

masses [110,111], found that the N-cc̄ (N-Jψ and N-ηc) interactions to be attractive in all

distances. They predicted mass reduction of the J/ψ-meson at normal nuclear density

of 0.17 fm−3 of about 19(3) MeV. This is consistent with our prediction made without the

“gauge term”, which is to be shown later.

For the computation of the ηc Lorentz scalar potential in nuclear matter, we use an

effective Lagrangian approach at the hadronic level, which is an SU(4)-flavor extension of

light-flavor chiral-symmetric Lagrangians of pseudoscalar and vector mesons [107,112].

When we treat the mesons that contain at least one bottom quark (antiquark), we will use

an SU(5)-flavor Lagrangian [31]. However, one can expect that the SU(5) flavor symmetry

breaking is larger than that of SU(4) due to the current quark mass values of the charm and

bottom quarks. Thus, for the SU(4) flavor sector, we use a flavor SU(4) effective Lagrangian,

and determine the relevant coupling constants based on the flavor SU(4) symmetry.
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We compute the ηc self-energy in vacuum and symmetric nuclear matter, following

our previous works [42,43,58,99,100,102–104,109], and consider only the DD∗ loop. See

Ref. [72] for details. The interaction Lagrangian density for the ηcDD∗ vertex is given by

LηcDD∗ = igηcDD∗(∂µηc)
[

D
∗µ

D − DD∗µ
]

− igηcDD∗ηc

[

D
∗µ
(∂µD)− (∂µD)D∗µ

]

, (18)

where D(∗) represents the D(∗)-meson field isospin doublet, and gηcDD∗ is the coupling

constant. The ηc self-energy in the rest frame of ηc meson, p
µ
ηc = (mηc , 0) is given by [72]

Σηc(m
2
ηc
) =

8g2
ηcDD∗

π2

∫ ∞

0
dq q2 I(q2), (19)

where

I(q2) =
m2

ηc
(−1 + q2

0)/m2
D∗)

(q0 + ωD∗)(q0 − ωD∗)(q0 − mηc − ωD)

∣

∣

∣

∣

∣

q0=mηc−ωD∗

+
m2

ηc
(−1 + q2

0)/m2
D∗)

(q0 − ωD∗)(q0 − mηc + ωD)(q0 − mηc − ωD)

∣

∣

∣

∣

∣

q0=−ωD∗

, (20)

and ωD(∗) = (q2 + m2
D(∗))

1/2, with q = |q|. The integral in Equation (19) is divergent,

and we regularize it with a phenomenological vertex form factor

uD(∗)(q
2) =

(

Λ2
D(∗) + m2

ηc

Λ2
D(∗) + 4ω2

D(∗)(q
2)

)2

, (21)

with cutoff parameter ΛD(∗) , as in previous works. See Ref. [72] and references therein.

Thus, to regularize Equation (19), we will introduce the form factor uD(k
2)uD∗(k2) into the

integrand. As before, the cutoff parameter Λ
(∗)
D is an unknown input to our calculation (we

use ΛD∗ = ΛD). However, it may be fixed phenomenologically, for example, using a quark

model. In Ref. [42], the value of ΛD has been estimated to be Λ ≈ 2500 MeV, and serves as

a reasonable guidance to quantify the sensitivity of our results to its value. Therefore, we

vary it over the interval 1500–3000 MeV [72].

Because the flavor SU(4) symmetry is strongly broken (though less than that of

SU(5),we use the experimental values for the meson masses [108] and known (extracted)

empirical values for the coupling constants, as explained in the following. For the D

meson mass, we take the averaged masses of the neutral and charged states, and sim-

ilarly for the D∗. Thus mD = 1867.2 MeV and mD∗ = 2008.6 MeV. For the coupling

constants, gηcDD∗ = 0.60 gψDD was obtained in Ref. [113], as the residue at the poles of

suitable form factors using a dispersion formulation of the relativistic constituent quark

model, where gψDD = 7.64 was estimated in Ref. [114] using the vector meson domi-

nance (VMD) model and isospin symmetry. In this study we use the coupling constant,

gηcDD∗ = (0.60/
√

2) gψDD ≃ 0.424 gψDD [72], where the factor (1/
√

2) is introduced to

give a larger SU(4) symmetry breaking effect than Ref. [113].

In this subsection, we will show the mass shift of ηc with the use of both the SU(4)

symmetry coupling constant as well as that with the broken SU(4) coupling constant.

Furthermore, later we will compare the in-medium masses of ηc and J/ψ with those of

the ηb, Υ, Bc and B∗
c , using the coupling constant value gηcDD∗ = gψDD = 7.64 → 7.7,

without any symmetry breaking factor, i.e., gηcDD∗ = (0.60/
√

2) gψDD ≃ 0.424 gψDD

→ gηcDD = gψDD = 7.7, where the tiny difference may be ignored. For the J/ψ mass shift
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in this subsection, after the ηc mass shift, we will use only the SU(4) symmetric coupling

constant, gψDD = 7.64.

We are interested in the difference between the in-medium, m∗
ηc

, and vacuum, mηc ,

masses of the ηc,

∆mηc = m∗
ηc
− mηc , (22)

with the masses obtained self-consistently from

m2
ηc

= (m0
ηc
)2 + Σηc(m

2
ηc
) = (m0

ηc
)2 − |Σηc(m

2
ηc
)|, (23)

where m0
ηc

is the bare ηc mass and the ηc self-energy in the rest frame of ηc meson, Σηc(m
2
ηc
)

is given by Equation (19). The ΛD-dependent ηc-meson bare mass, m0
ηc

, is fixed by fitting

the physical ηc-meson mass, mηc = 2983.9 MeV [72].

The in-medium ηc mass is obtained in a similar way, with the self-energy calculated

with the medium-modified D and D∗ meson masses. The nuclear density dependence

of the ηc-meson mass is influenced and determined by the intermediate-state D and D∗

meson interactions with the nuclear medium through their medium-modified masses. The

in-medium masses m∗
D and m∗

D∗ are calculated within the quark–meson coupling (QMC)

model [42,43], in which effective scalar and vector meson mean fields couple to the light u

and d quarks in the charmed mesons [42,43].

In the middle panel of Figure 1 we present the resulting medium-modified masses

for the D and D∗ mesons, calculated within the QMC model [42], as a function of ρB/ρ0,

where ρB is the baryon density of nuclear matter and ρ0 = 0.15 fm−3 the saturation density

of symmetric nuclear matter. The net reductions in the masses of the D and D∗ mesons

are nearly the same as a function of density, with each decreasing by about 60 MeV at ρ0.

The behavior of the D meson mass in medium (finite density and/or temperature) has

been studied in a variety of approaches, where some of these [115–117] find a decreasing

D meson mass at finite baryon density, while others [118–122], interestingly, find the

opposite behavior. However, it is important to note that none of the studies in nuclear

matter are constrained by the saturation properties of nuclear matter, despite the fact that

they are constrained in the present work. Furthermore, some of these works employ a

non-relativistic approach, where relativistic effects might be important.

In Figure 5, we present the ηc-meson mass shift, ∆mηc , as a function of the nuclear

matter density, ρB (ρB/ρ0), for four values of the cutoff parameter ΛD [72]. As can be seen

from the figure, the effect of the in-medium D and D∗ mass changes is to shift the ηc mass

downwards. This is because the reduction in the D and D∗ masses enhances the DD∗-loop

contribution in nuclear matter relative to that in vacuum. This effect increases the larger

the cutoff mass ΛD becomes.

The results described above with the two values of the gηcDD∗ coupling constants, both

support a small downward mass shift for the ηc in nuclear matter, and open the possibility

to study the binding of ηc meson to nuclei [72].

We now turn to the discussion of the J/ψ vector meson [105,106], following the same

procedure as in the ϕ meson. In Refs. [11,42,43], the J/ψ self-energy intermediate states

involved the D, D, D∗, and D∗ mesons. However, it was found that the J/ψ self-energy has

larger contributions from the loops involving the D∗ and D∗ mesons, which is unexpected;

see Ref. [11,42,43] for details on the issues and possible explanations. As explained in

Ref. [11], this is related to the divergent behavior of the vector meson propagator. We

present results for the J/ψ mass shift in nuclear matter and nuclei considering only the

lightest intermediate state mesons in the J/ψ self-energy, namely the DD loop [105,106].
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Figure 5. ηc mass shift (i) with the SU(4) symmetric coupling [90], gηc DD = 7.64 (left panel), and

(ii) with the broken SU(4) symmetry coupling [72] (0.6/
√

2)× (gηc DD∗ = 7.64) (right panel), versus

nuclear matter density for various values of the cutoff parameter.

We use the following phenomenological effective Lagrangian densities at the hadronic

level, which are similar to those used above for the ϕ-meson,

Lint = LψDD + LψψDD, (24)

LψDD = igψDD ψµ
[

D̄
(

∂µD
)

−
(

∂µD̄
)

D
]

, (25)

LψψDD = g2
ψDDψµψµDD. (26)

where gψDD is the J/ψ DD coupling constant and we use the convention

D =

(

D0

D+

)

, D̄ = (D0 D−). (27)

For notational simplicity, we have written ψ to denote the field representing the J/ψ vector

meson. We note that the Lagrangians are an SU(4) extension of light-flavor chiral-symmetric

Lagrangians of pseudoscalar and vector mesons. In the light flavor sector, they have been

motivated by a local gauge symmetry, treating vector mesons either as massive gauge

bosons or as dynamically generated gauge bosons. Local gauge symmetry implies the

contact interaction in Equation (26) involving two pseudoscalar and two vector mesons.

In view of the fact that SU(4) flavor symmetry is strongly broken in nature, and in

order to stay as close as possible to phenomenology, we use the experimental values for

the charmed meson masses and use the empirically known meson coupling constants.

For these reasons, we do not use gauged Lagrangians for the study of J/ψ nuclear bound

states—a similar attitude was followed in Ref. [112] in a study of hadronic scattering of

charmed mesons. However, in order to compare results with Ref. [57] and assess the impact

of a contact term of the form Equation (26), we also present results for the J/ψ mass shift

including such a term.

We are interested in the difference of the in-medium, m∗
ψ, and vacuum, mψ,

∆mψ = m∗
ψ − mψ, (28)

with the masses obtained from

m2
ψ = (m0

ψ)
2 + ΣDD(m

2
ψ) = (m0

ψ)
2 − |ΣDD(m

2
ψ)| . (29)

Here m0
ψ is the bare mass and ΣDD(k

2) is the total J/ψ self-energy obtained from the DD-

loop contribution only. The in-medium mass, m∗
ψ, is obtained likewise, with the self-energy
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calculated with medium-modified D meson mass calculated by the QMC model (see again

the middle panel of Figure 1).

The scalar self-energy for the J/ψ meson in the rest frame of J/ψ, ΣDD(m
2
ψ), is obtained

from Equation (25). The Feynman diagram contributing to J/ψ self-energy O(g2
ψ) is

identical to the one in Figure 3 with the replacements ϕ → J/ψ, K → D and K → D.

For a J/ψ meson at rest, the self-energy is given by

ΣDD(m
2
ψ) = −

g2
ψ DD

3π2

∫ ∞

0
dq q 2 FDD(q

2)KDD(q
2), (30)

where q = |q|, and FDD(q
2) = uD(q

2)uD(q
2) is the product of vertex form-factors with

uD(q
2) and uD given as in Equation (21) with cutoff parameters ΛD and ΛD, respectively

(we use ΛD = ΛD); and KDD(q
2) for the DD loop contribution is given by

KDD(q
2) =

q 2

ωD

(

q 2

ω2
D − m2

ψ/4
− ξ

)

, (31)

where ωD = (q 2 + m2
D)

1/2, ξ = 0 for the non-gauged Lagrangian of Equation (25) and

ξ = 1 with Equation (26), for the gauged Lagrangian of Ref. [57].

As before, the cutoff parameter ΛD is an unknown input to our calculation. However,

it may be fixed phenomenologically. In Ref. [42] the value of ΛD has been estimated to

be ΛD ≈ 2500 MeV, and serves as a reasonable guidance to quantify the sensitivity of

our results to its value. Since this is a somewhat rough estimate, and it is made solely

to obtain an order of magnitude estimate, we allow the value of ΛD vary in the range

2000 MeV ≤ ΛD ≤ 6000 MeV; see Ref. [11,42,43].

The bare J/ψ mass m0
ψ and the coupling constants remain to be fixed. The bare mass

is fixed by fitting the physical mass mJ/ψ = 3096.9 MeV using Equation (29). is strongly

broken, we use experimental values for the meson masses and known empirical values for

the coupling constants. For the D meson mass, we take the averaged masses of the neutral

and charged D mesons. Thus mD = 1867.2 MeV [108]. For the coupling constants, we use

gψDD = 7.64, which is obtained by the use of isospin symmetry [114]. Note that, for J/ψ,

we use only the SU(4) coupling constant extracted, different from that of the ηc case (no

extra SU(4) breaking effect on the coupling constant).

The nuclear density dependence of the J/ψ-meson mass is influenced and determined

by the intermediate-state D and D meson interactions with the nuclear medium through

their medium-modified masses. The in-medium masses m∗
D and m∗

D
∗ = m∗

D∗ are calculated

within the quark–meson coupling (QMC) model [42,43], in which effective scalar and

vector meson mean fields couple to the light u and d quarks in the charmed mesons [42,43].

However, in the self-energy of the DD loop, the vector potentials cancel out, and there is

no need to consider the effects.

Again, see the middle panel of Figure 1; we present the medium-modified masses for

the D and D mesons (m∗
D
∗ = m∗

D), calculated within the QMC model [42] as a function

of ρB/ρ0. In Figure 6, we show the contribution of the DD-loop to the J/ψ mass shift for

ξ = 0. As the cutoff mass value increases in the form factor, the DD-loop contribution

obviously becomes larger.

First, from the result shown in the left panel of Figure 6 without the gauge term (ξ = 0),

one can see that the J/ψ obtains the attractive potential for all the values of the cutoff ΛD,

2000–6000 MeV [105,106]. In contrast, one can see from the right panel in Figure 6, that

the effect of the gauge term tends to oppose the effect (repulsion) of the contribution of

the DD-loop as noticed in Ref. [42,105,106]. When the value of ΛD is smaller, the mass

shift actually becomes positive. The results shown in Figure 6 reveal a negative mass shift
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(attractive potential) for the J/ψ meson in symmetric nuclear matter for all values of the

cutoff mass parameter ΛD when ξ = 0 and, as in the ηc meson case, open the possibility to

study the binding of J/ψ mesons to nuclei [105,106].
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Figure 6. Contribution from the DD −loop to the J/ψ mass shift in symmetric nuclear matter without

the gauge term (ξ = 0) for five different values of the cutoff ΛD (left panel), and the comparison with

including the gauge term (ξ = 1) for two values of ΛD (right panel).

4.3. Υ and ηb Mesons

First, we discuss the Υ (vector) meson. The Υ mass shift in nuclear matter originates

from the modifications of the BB, BB∗, and B∗B∗ meson loops contributions to the Υ self-

energy, relative to those in free space; the lowest order Feynman diagrams associated with

these contributions are similar to Figure 3. The Υ self-energy is calculated using an effective

SU(5)-flavor symmetric Lagrangian at the hadronic level [31,77], where mesons are con-

sidered to be point like, for the interaction vertices ΥBB, ΥB∗B∗, and ΥBB∗ neglecting any

possible imaginary part. In Ref. [77] we made an extensive analysis of these contributions

to the Υ self-energy and found that, for example, the B∗B∗ loop gives an unexpectedly large

contribution, similar to the case of J/ψ. For this reason, and to be consistent with the ηb

case studied below, we consider only the BB loop contribution to the Υ self-energy [77],

leaving for the future a full study of all three contributions. This treatment is also consistent

with the J/ψ self-energy calculation with the lowest DD loop contribution, and we can

compare the amounts of mass shift for the Υ and J/ψ based on a similar footing. The

interaction Lagrangian for the ΥBB vertex is given by [77]

LΥBB = igΥBBΥµ
[

B∂µB −
(

∂µB
)

B
]

, (32)

where gΥBB is the coupling constant for the vertex ΥBB vertex, and the following convention

is adopted for the isospin doublets of the B mesons

B =

(

B+

B0

)

, B =
(

B− B0
)

.

The coupling constant gΥBB is calculated from the experimental data for Γ(Υ → e+e−) using

the vector meson dominance (VMD) model. This gives gΥBB = 13.2; see Refs. [31,77] and

references therein for details. We note that a similar approach was taken in Refs. [42,114] to

determine the coupling constant gJ/ψDD = 7.64 for the vertex J/ψDD.

Including only the BB loop, Equation (32), the Υ self-energy ΣΥ for an Υ at rest is given

by [77]

ΣΥ(m
2
Υ) = − g2

ΥBB

3π2

∫ ∞

0
dq q2 I(q2) (33)
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where

I(q2) =
1

ωB

(

q2

ωB − m2
Υ

/4

)

, (34)

with q = |q| and ωB =
(

q2 + m2
B

)1/2
. As is always the case in an effective Lagrangian

approach, when mesons are treated as point-like particles, the self-energy loop integrals

like Equation (33) are divergent and therefore need to be regularized. To this end, we

introduce into the integrand of Equation (33) a phenomenological vertex form factor uB(q
2)

with cutoff parameter ΛB [42,43,58,99,100,102–104,109], for to each ΥBB vertex, as we did

in previous cases; see Equation (21). We recall that form factors are necessary to take into

account the finite size of the mesons participating in the vertices, while the cutoff ΛB, which

is an unknown input to our calculation, may be associated with energies needed to probe

the internal structure of the mesons. Thus, in order to reasonably include these effects,

and to quantify the sensitivity of our results to its value, we vary ΛB over the interval

2000–6000 MeV (roughly up to around the mass of the B meson); see Ref. [77] for a more

extensive discussion.

The Υ mass shift in nuclear matter, ∆mΥ, is calculated from the difference between its

mass in the medium, m∗
Υ, and its value in vacuum, mΥ, in the rest frame of the Υ, namely,

∆mΥ = m∗
Υ − mΥ, (35)

where these masses are computed self-consistently from

m2
Υ = (m0

Υ)
2 + ΣΥ(m

2
Υ) = (m0

Υ)
2 − |ΣΥ(m

2
Υ)|, (36)

with m0
Υ

the bare Υ mass and the Υ self-energy ΣΥ(m
2
Υ) is given in Equation (33). The

ΛB-dependent Υ bare mass, m0
Υ

, is fixed with the physical Υ mass, namely mΥ = 9640 MeV.

The in-medium Υ mass m∗
Υ is obtained by solving Equation (36) with the self-energy

calculated with medium-modified B mass. This medium-modified mass was calculated

using the quark–meson coupling (QMC) model as a function of the nuclear matter density

ρB, and the results are shown in Figure 1 (left panel). From Figure 1, it can be seen that the

QMC model gives a similar downward mass shift for the B and B∗ in symmetric nuclear

matter. For example, at the saturation density ρ0 = 0.15 fm−3, the mass shift for the B

and B∗ mesons are respectively, (m∗
B − mB) = −61 MeV and (m∗

B∗ − mB∗) = −61 MeV,

where the difference in their mass shift values appears in the decimal place. The val-

ues for the masses in vacuum for the B and B∗ mesons used are mB = 5279 MeV and

mB∗ = 5325 MeV, respectively.

The nuclear density dependence of the Υ mass is driven by the intermediate BB state

interactions with the nuclear medium, where the effective scalar and vector meson mean

fields couple to the light u and d quarks in the bottom mesons, B and B∗. In Figure 7 we

show the results for the Υ mass shift as a function of the nuclear density, ρB/ρ0, for five

values of the cutoff parameter ΛB. As can be seen in Figures 1 (left panel) and 7, a decrease

in the in-medium B meson mass induces a negative mass shift for Υ. As expected, the mass

shift amount of the Υ is dependent on the value of the cutoff mass ΛB used, being larger for

larger ΛB; see Ref. [77] for further details. For example, for the values of the cutoff shown

in Figure 7, the Υ mass shift amount varies from −16 to −22 MeV, at ρB = ρ0.
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Figure 7. Υ mass shift in symmetric nuclear matter as a function of the nuclear matter density (ρB/ρ0).

For the calculation of the ηb mass shift in nuclear matter, we proceed similarly to

the Υ case and take into account only the BB∗ loop (pseudoscalar-pseudoscalar-vector)

contribution to the ηb self-energy. In Ref. [77], we have also studied the mass shift, including

the ηbB∗B∗ interaction in the ηb self-energy, and found that its contribution to the mass

shift amount turned out to be negligible. Thus, in order to be consistent with the Υ case

above, in both cases we consider only the minimal contribution, and here we only give

results for the BB∗ loop in the ηb self-energy. This is also a consistent treatment with

the ηc mass shift calculation, and later we can compare based on a similar footing of the

self-energy calculation.

For the calculation of the ηb mass shift in symmetric nuclear matter, we proceed

similarly to the Υ and ηc cases, and take into account only the BB∗ loop contribution to

the ηb self-energy. As already mentioned, in Ref. [77], we have also studied including the

ηbB∗B∗ interaction in the ηb self-energy and found that its contribution to the mass shift

amount is negligible.

The effective Lagrangian for the ηbBB∗ interaction is [77]

LηbBB∗ = igηbBB∗
[

(∂µηb)
(

B
∗
µB − BB∗

µ

)

− ηb

(

B
∗
µ(∂

µB)− (∂µB)B∗
µ

)]

, (37)

where gηbBB∗ is the coupling constant for the ηbBB∗ vertex. We will use its value in the

SU(5) scheme [77], namely gηbBB∗ = gΥBB = gΥB∗B∗ = 5g

4
√

10
. Using Equation (37), the ηb

self-energy for an ηb at rest is given by [72]

Σηb
=

8g2
ηbBB∗

π2

∫ ∞

0
dq q2 I(q2), (38)

where

I(q2) =
m2

ηb
(−1 + q2

0/m2
B∗)

(q2
0 − ω2

B∗)(q0 − mηb
− ωB)

∣

∣

∣

∣

∣

q0=mηb
−ωB

+
m2

ηb
(−1 + q2

0/m2
B∗)

(q0 − ωB∗)
(

(q0 − mηb
)2 − ω2

B

)

∣

∣

∣

∣

∣

q0=−ωB∗

, (39)

with q = |q| and ωB∗ =
√

q2 + m2
B∗ . The mass of the ηb meson, in vacuum and in

nuclear matter, is computed similarly to the Υ case [77]. First, we introduce form factors,
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as in Equation (21), into each ηbBB∗ vertex, with ΛB = ΛB∗ , to regularize the divergent

integral in the self-energy Equation (38). Second, we fix the value of the ηb bare mass

using the physical (vacuum) mass of the ηb, namely mηb
= 9399 MeV, using Equation (36)

appropriately written for the ηb case. Then, for the calculation of the ηb mass shift in

nuclear matter, the self-energy Σηb
is computed using the medium-modified B and B∗

masses calculated with the QMC model and shown in Figure 1 (left panel). The results

for the ηb mass shift behavior in nuclear matter are shown in Figure 8 as a function of

the nuclear matter density ρB/ρ0, for the same range of values for the cutoff mass ΛB as

for the Υ [77]. As can be seen from Figure 8, the mass of the ηb is shifted downwards

in nuclear matter for all values of the cutoff ΛB, similarly to the Υ. For example, at the

normal density of symmetric nuclear matter ρ0, the mass shift value varies from −75 MeV

to −82 MeV when the cutoff varies from ΛB = 2000 MeV to ΛB = 6000 MeV. Similarly to

the Υ mass shift, the dependence of the ηb mass shift amount on the values of the cutoff is

small, for example, just −7 MeV when the cutoff is increased by a factor of 3 at ρB = ρ0 [77].
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Figure 8. ηb mass shift in nuclear matter as a function of the nuclear density ρB/ρ0.

4.4. Bc and B∗
c Mesons

The Bc (B∗
c ) in-medium downwards mass shift comes from the enhanced B∗D + BD∗

(BD) loop contribution to the self-energy, relative to those in free space. See Figure 3 but

replacing the KK loop properly by B∗D and BD∗ loops (BD loop). See Refs. [90] for details.

By expanding the SU(5) flavor symmetric effective meson Lagrangian [31] in terms of the

components of pseudoscalar (P) and vector (V) 5 × 5 matrices, we obtain the following

Lagrangians for the interactions BcB∗D, BcBD∗ and B∗
c BD [90]:

LBcB∗D = igBcB∗D[(∂µB−
c )D − B−

c (∂µD)]B∗µ + h.c.,

LBcBD∗ = igBcBD∗ [(∂µB+
c )B − B+

c (∂µB)]D∗µ
+ h.c.,

LB∗
c BD = −igB∗

c BDB
∗+µ
c [B(∂µD)− (∂µB)D] + h.c., (40)

where the conventions for the B, D and B∗ mesons have been already given.

The SU(5) symmetric universal coupling g yields the relations, gBcB∗D = gBcBD∗ =

gB∗
c BD. The value of g is fixed by gΥBB = 5g

4
√

10
≈ 13.2 by the Υ decay data Γ(Υ → e+e−)

with the vector meson dominance (VMD) model [31,77], and thus we obtain,

gBcB∗D =
2√
5

gΥBB, gBcB∗D = gBcBD∗ = gB∗
c BD =

g

2
√

2
≈ 11.9. (41)
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The in-medium mass shift of the Bc meson, ∆mBc , is computed by the difference of the

in-medium m∗
Bc

and the free space mBc masses

∆mBc = m∗
Bc
− mBc , (42)

where, the free space mass mBc (input) is used to determine the bare mass m0
Bc

by

m2
Bc

=
(

m0
Bc

)2
+ ΣBc(m

2
Bc
) =

(

m0
Bc

)2
− |ΣBc(m

2
Bc
)|. (43)

Note that the total self-energy ΣBc is calculated by the sum of the B∗D and BD∗ meson loop

contributions in free space, ignoring the possible Bc meson as well as all the other meson

widths (or imaginary part) in the self-energy. The in-medium Bc mass m∗2
Bc

is similarly

calculated, with the same bare mass value m0
Bc

determined in free space, and the in-medium

masses of the (B, B∗, D, D∗) mesons (m∗
B, m∗

B∗ , m∗
D, m∗

D∗ ), namely,

m2
Bc

=
[

m0
Bc
(B∗D + BD∗)

]2
− |ΣBc(B∗D) + ΣBc(BD∗)|(m2

Bc
), (44)

m∗2
Bc

=
[

m0
Bc
(B∗D + BD∗)

]2
−
∣

∣Σ∗
Bc
(B∗D) + Σ∗

Bc
(BD∗)

∣

∣(m∗2
Bc
). (45)

We note that, when the self-energy graphs contain different contributions, as

ΣBc(total) = Σ(B∗D) + Σ(BD∗), m0 depends on both Σ(B∗D) and Σ(BD∗) to repro-

duce the physical mass mBc . Thus, one must be careful when discussing the Bc in-

medium mass and mass shift of each loop contribution Σ(B∗D) and Σ(BD∗), since

m0(B∗D + BD∗) ̸= m0(B∗D) ̸= m0(BD∗), and m0(B∗D + BD∗) ̸= m0(B∗D) + m0(BD∗).
The dominant loop contribution can be known by the decomposition of the self-energy

Σ
(∗)
Bc

(B∗D + BD∗) = Σ
(∗)
Bc

(B∗D) + Σ
(∗)
Bc

(BD∗). It turned out that the dominant contribution

is from the BD∗ loop [90]. This is due to the dominant contribution from the lighter vector

meson D∗ due to the vector meson propagator Lorentz structure.

As an example, in the case considering solely the B∗D loop without the BD∗ loop, the

“in-medium” Bc self-energy in the rest frame of Bc is given by

ΣB∗D
Bc

(m∗
Bc
) =

−4g2
BcB∗D

π2

∫

dqq2 IB∗D
Bc

(q2)FBcB∗D(q
2), (46)

with q = |q|, and IB∗D
Bc

(q2) is expressed, after the Cauchy integral with respect to q0 complex

plane shifting q0 variable for the vector potentials as,

IB∗D
Bc

(q2) =
m∗2

Bc

(

−1 + q2
0/m∗2

B∗
)

(q0 − ω∗
B∗)(k0 − m∗

Bc
+ ω∗

D)(q0 − m∗
Bc
− ω∗

D)

∣

∣

∣

∣

∣

q0=−ω∗
B∗

+
m∗2

Bc

(

−1 + q2
0/m∗2

B∗
)

(q0 + ω∗
B∗)(q0 − ω∗

B∗)(q0 − m∗
Bc
− ω∗

D)

∣

∣

∣

∣

∣

q0=m∗
Bc
−ω∗

D

, (47)

where, FBcB∗D in Equation (46) is the product of vertex form factors in medium to regularize

the divergence in the loop integral, FBcB∗D(q
2) = uBcB∗(q2)uBcD(q

2). They are given by

using the corresponding meson in-medium masses, uBcB∗ =

(

Λ2
B∗+m∗2

Bc

Λ2
B∗+4ω∗2

B∗ (q
2)

)2

and uBcD =

(

Λ2
D+m∗2

Bc

Λ2
D+4ω∗2

D (q2)

)2

with ΛB∗ and ΛD being the cutoff masses associated with the B∗ and D

mesons, respectively. We use the common value Λ = ΛB∗ = ΛD. A similar calculation is

performed to obtain the BD∗ loop contribution, namely, in Equations (46) and (47), as well

as in the form factors, by replacing (B∗, D) → (B, D∗).
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The choice of cutoff value has no negligible impact on the results. We use the common

cutoff Λ ≡ ΛB,B∗ ,D,D∗ ,K,K∗ by varying the Λ value. The Λ value may be associated with

the energies to probe the internal structure of the mesons. In the previous study [77],

it was observed that when the values of the cutoff become close to the masses of the

mesons in calculating the self-energies, a certain larger cutoff mass value range did not

make sense to serve as the form factors. This is because the Compton wavelengths of the

corresponding cutoff mass values reach values near and/or smaller than those of the meson

sizes. Therefore, we need to constrain the cutoff Λ value in such a way that the form factors

reflect properly the finite size of the mesons. Based on the heavy quark and heavy meson

symmetry, we use the same range of values for Λ as it was practiced for the quarkonia [77].

Thus, we use the values, Λ = 2000, 3000, 4000, 5000, and 6000 MeV.

The Bc mass shift amount ∆mBc(BD∗ + B∗D) at ρ0, which includes the total (BD∗ +
B∗D) loop contributions, ranges from −90.4 to −101.1 MeV (m∗

Bc
(BD∗ + B∗D) = 6184.1 to

6173.4 MeV). Later, we will compare the Bc mass shift and those of the ηb and ηc.

Next, we study the in-medium mass shift of the B∗
c meson calculated in the rest

frame of B∗
c . For the B∗

c self-energy, we include only the BD loop contribution, as already

commented based on the Υ and J/ψ self-energies [77],

ΣBD
B∗

c
(m∗

B∗
c
) =

−4g2
B∗

c BD

3π2

∫

dqq4 IBD
B∗

c
(q2)FB∗

c BD(q
2), (48)

where IBD
B∗

c
(q2) is expressed by,

IBD
B∗

c
(q2) =

1

(q0 − ω∗
B)(q0 − m∗

B∗
c
+ ω∗

D)(q0 − m∗
B∗

c
− ω∗

D)

∣

∣

∣

∣

∣

q0=−ω∗
B

+
1

(q0 + ω∗
B)(q0 − ω∗

B)(q0 − m∗
B∗

c
− ω∗

D)

∣

∣

∣

∣

∣

q0=m∗
B∗c

−ω∗
D

, (49)

with q = |q|. In Equation (48), FB∗
c BD(q

2) is given by the product of the form factors,

FB∗
c BD(q

2) = uB∗
c B(q

2)uB∗
c D(q

2), with uB∗
c B and uB∗

c B being uB∗
c B =

(

Λ2
B+m∗2

B∗c
Λ2

B+4ω∗2
B (q2)

)2

and

uB∗
c B =

(

Λ2
D+m∗2

B∗c
Λ2

D+4ω∗2
D (q2)

)2

. Again we use Λ = ΛB = ΛD ranging 2000 to 6000 MeV.

4.5. Comparison with Heavy Quarkonia

We now compare in Figure 9 the results of Bc and B∗
c [90], with those of the heavy

quarkonia [11,42,72,77]. Since the Bc meson is a pseudoscalar meson, we compare with the

bottomonium ηb and charmonium ηc (upper panel), while for the B∗
c meson, we compare

with those of the Υ and J/ψ (lower panel).

For the comparison, we would like to emphasize that we use the empirically extracted

SU(4) sector coupling constants for the charm sector (ηc and J/ψ), which would be more

reasonable than using the empirically extracted SU(5) sector coupling constant from the

Γ(Υ → e+e−), since the SU(5) flavor symmetry breaking is expected to be much larger than

that of the SU(4) based on the quark masses.

The value for the coupling constant of the vertex J/ψDD used in the calculation of

J/ψ mass shift, was obtained from the experimental data for Γ(J/ψ → e+e−) by the VMD

hypothesis (note that the slight difference, 7.64 → 7.7 below, but the difference is negligible)

gJ/ψDD =
g√
6
≈ 7.7, (50)
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where g is the universal SU(4) coupling constant.

For the coupling constant gηcDD∗ used in the calculation of the ηc mass shift, we also

adopt the SU(4) symmetry for the charm sector, which gives the relation

gηcDD∗ = gJ/ψDD =
g√
6
≈ 7.7. (51)

A comprehensive list of the values used for the coupling constants is presented in

Table 2.

Table 2. Coupling constant values in SU(4) and SU(5) symmetries.

SU(5)

g 18.9
gJ/ψDD 7.7
gηcDD∗ 7.7

SU(5)

g 33.4
gΥBB 13.2
gηbBB∗ 13.2
gBcB∗D 11.9
gB∗

s BD 11.9

Although we make this comparison, we repeat that this is not made based on a

rigorous SU(5) symmetry of the same footing. Namely, the coupling constant g is calculated

for the charm sector (J/ψ, ηc) based on the SU(4) symmetry, and for the bottom sector (Υ,

ηb) and (Bc, B∗
c ) based on the SU(5) symmetry. This comparison would make sense based

on the fact that SU(5) symmetry is much more broken by the quark masses than that of

SU(4).

Note that, although for the mass shift amount ∆mηc [72], the cutoff mass values

Λ = ΛD = ΛD∗ = 3000 and 5000 MeV are missing, it is irrelevant to see the mass shift

range for the cutoff range between the 2000 MeV and 6000 MeV.
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Figure 9. Comparison of the mass shift of Bc with ηb and ηc (upper panel) as well as of B∗
c with Υ

and J/ψ (lower panel).

In the study of the ηc mass shift, only the DD∗ loop contribution was included, and

it corresponds to the mass shift value ∆mηc(DD∗) at ρ0 ranges −49.2 to −86.5, for the
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cutoff mass values ΛD = ΛD∗ of 2000, 4000, and 6000 MeV. The estimated values for the ηb

mass shift ∆mηb
(BB∗) at ρ0 including only the BB∗ loop, ranges from −74.2 to −82.0 MeV,

where the same range of the cutoff mass value is applied for the present study. The total

B∗D + BD∗ loop contributions for the Bc mass shift give a more negative mass shift than

those of the ηb and ηc. This fact indicates that the Bc mass shift value does not show the

middle range mass shift value between those of the ηc and ηb, which may be different from

one’s naive expectation.

Next, we compare the mass shift behaviors of Υ, B∗
c and J/ψ in Figure 9 (lower panel).

The Υ and J/ψ mass shift values are calculated by taking, respectively, only the (minimal)

BB and DD loop contributions corresponding to the present B∗
c meson treatment with only

the BD loop. The mass shift value ∆mΥ(BB) at ρ0 ranges from −15.9 to −22.1 MeV, while

∆mJ/ψ(DD) at ρ0 ranges from −5.3 to −20.7, when the common range of the Λ (2000 to

6000 MeV) is used. The corresponding B∗
c mass shift value ∆mB∗

c
(BD) at ρ0 ranges from

−14.5 to −19.7 MeV. The B∗
c meson in-medium mass shift value is less dependent on the

cutoff mass value than that of the J/ψ. Although the mass shift behavior depends on the

cutoff mass value, the global trend shown in the lower panel of Figure 9 indicates that

∆mB∗
c

is more or less in the middle of the corresponding ∆mΥ and ∆mJ/ψ.

5. Meson–Nucleus Potential

The baryon density dependence of the mass shift behaviors of the η, η′, ϕ, ηc, J/ψ, ηb,

Υ, Bc, and B∗
c mesons in nuclear matter, shown in Figures 2, 4 (left panel), 5–8, 10 and 11

indicate that the nuclear medium provides attraction to these mesons, and opens the

possibility for their binding to nuclei.
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Figure 10. Total (B∗D + BD∗) loop contribution for the in−medium Bc mass shift versus baryon

density (ρB/ρ0) for five different values of the cutoff mass Λ.

Therefore, we now consider the nuclear bound states for several of these mesons,

which we generally denote the meson as h, when the mesons have been produced nearly at

rest inside nucleus A, and study the following nuclei in a wide range of masses, namely
4He, 12C, 16O, 40Ca, 48Ca, 90Zr, 197Au, and 208Pb.

In a local density approximation, the meson h potential within a nucleus A is given by

VhA(r) = UhA(r)−
i

2
WhA(r), (52)

where r is the distance from the center of the nucleus; UhA(r) = ∆mh(ρB(r)), with ∆mh(ρB)

the value of mass shift computed previously for meson h as a function of nuclear density

ρB; and ρA
B (r) is the baryon density distribution in the nucleus A. The imaginary part

of the potential WhA(r), which is related to the absorption of the meson h in the nuclear
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medium, is included only for the ϕ, η, and η′ mesons in the present study. For the ϕ meson

it is given by WϕA(r) = Γϕ(ρA
B (r)) where Γϕ(ρB) is the ϕ decay width in a nucleus A,

Equation (16). For the η and η′ mesons WhA(r) = −γ∆mh(ρB(r)) + γvac
h . Here Γvac

h the

meson decay width in vacuum (Γvac
η = 1.31 keV and Γvac

η′ = 0.188 MeV [97]), and γ is a

phenomenological parameter used to simulate the strength of the absorption of the meson

in the nuclear medium. The values of the γ parameter used below cover the estimated

widths of the η and η′ mesons in the nuclear medium [98]. The nuclear density distributions

ρA
B (r) for the nuclei listed above are calculated using the QMC model [123], except for

4He, which we take from Ref. [124]. Before proceeding, a comment on the use of the local

density approximation might be useful, in particular for 4He nuclei. At the position r

inside nucleus A, the nuclear density is ρA(r), and the potentials (effective masses) are

taken from the uniform (constant) nuclear density calculation in nuclear matter. For small

nuclei, such as 4He, this might appear problematic at first sight since for such a nucleus the

r-dependence of the nuclear density is expected to be relatively rapid (strong). Because the

r-dependence of the nuclear density can be faster than for larger nuclei, depending on the

interval value ∆r, to use the local density approximation, it might not be good enough to

assume the uniform nuclear density between the interval ∆r. However, our calculation uses

∆r = 0.04 fm with the interpolation, and we expect the local density approximation even

for the 4He nucleus to be sufficiently good. For the 4He nucleus, the nuclear density change

within the interval 0.04 fm is very small and thus can be regarded as a constant density.
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Figure 11. BD loop (total) contribution for the in−medium B∗
c mass shift versus baryon density

(ρB/ρ0) for five different values of the cutoff mass Λ.

In the following figures, we present the meson–nucleus potentials for some selected

nuclei computed using Equation (52).

In Figures 12 and 13, we present the ϕ-meson potentials calculated for some nuclei,

for three values of the cutoff parameter ΛK, 2000, 4000, and 6000 MeV. One can see that

the depth of the real part of the potential, Uϕ(r), is sensitive to the cutoff parameter, from

−20 MeV to −35 MeV for 4He and from −20 MeV to −30 MeV for 208Pb [100]. In addition,

one can see that the imaginary part does not vary much with ΛK. Furthermore, note that the

imaginary part of the potential is repulsive. This observation may well have consequences

for the feasibility of experimental observation of the expected bound states [100].

In Figures 14 and 15, we present, respectively, the ηc-meson potentials for selected

nuclei listed above and various values of the cutoff parameter ΛD [72], with the SU(4)

breaking parameter of 0.6/
√

2 for the coupling constant as explained in Section 4.2. From

the figures, one can see that the ηc and J/ψ potentials in the nuclei are attractive in all cases,

but their depth depends on the value of the cutoff parameter, which becomes deeper the

larger ΛD becomes. This dependence is, indeed, an uncertainty in the results obtained in
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our approach when using an effective Lagrangian approach. Note that this is the same

conclusion we reached from the mass shift computed in the previous Section 4.2 [72].
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Figure 12. Real [Uϕ(r)](r)] part of the ϕ −meson−−nucleus potentials in some nuclei selected, for

three values of the cutoff parameter ΛK .
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Figure 13. Imaginary [Wϕ(r)] part of the ϕ-meson–nucleus potentials in some nuclei, for three values

of the cutoff parameter ΛK .
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Figure 14. ηc-nucleus potentials for various nuclei and values of the cutoff parameter ΛD [72]. Note

that the potentials are calculated with the SU(4) breaking parameter, 0.6/
√

2 for the coupling constant,

as explained in Section 4.2.
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Figure 15. J/ψ-nucleus potentials for various nuclei and values of the cutoff parameter ΛD.

In Figures 16 and 17 we present the bottomonium-nucleus potentials for some of

the nuclei listed above and the same values of the cutoff parameter ΛB that were used

in the computation of the mass shift in the previous Section 4.3 [80]. We can see from

Figures 16 and 17 that the VhA potentials, for h = Υ and ηb, respectively, are attractive
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for all nuclei and all values of the cutoff mass parameter used [80]. However, for each

nucleus, the depth of the potential depends on the value of the cutoff parameter, being more

attractive the larger ΛB becomes. This dependence is expected and is, indeed, an uncertainty

in the results obtained in our approach [80].
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Figure 16. Υ-nucleus potentials for various nuclei with several values of the cutoff parameter ΛB.

Next, the calculated potentials for the η and η′ mesons in nuclei are shown in

Figures 18 and 19 [98]. These figures show that all potentials for the η and η′ in nuclei

are attractive. This is so because the corresponding value of the mass shift (in nuclear

matter) is negative for both mesons (see Section 2). The differences in the potentials, for a

given meson, reflect the differences in the baryon density distributions for the nuclei stud-

ied [98]. Furthermore, note that for a given nucleus, the potentials for the η and η′ are very

similar; the reason for this is that the values of the mass shift are very similar, as shown in

Figure 2 [98].
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Figure 17. ηb-nucleus potentials for various nuclei with several values of the cutoff parameter ΛB.
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Figure 18. η −nucleus potentials for several nuclei.
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Figure 19. η′-nucleus potentials for several nuclei.

Finally, the nuclear strong interaction potentials for the B±
c -A systems are presented

in Figure 20, together with the attractive and repulsive Coulomb potentials, where the

Coulomb potentials are not added, but they will be included in calculating the bound state

energies in next section.
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Figure 20. Attractive and repulsive Coulomb potentials, together with the strong nuclear potentials

for the B±
c −A systems.
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6. Numerical Results for the Meson–Nucleus Bound State Energies

We now compute the meson h-nucleus A bound state energies, for h = η, η′, ϕ, ηc,

J/ψ, ηb, Υ and B±
c , in a wide range of nuclear masses A = 4He, 12C, 16O, 40Ca, 48Ca, 90Zr,

197Au, and 208Pb by solving the Klein–Gordon equation (KGE)

(

−∇2 + (m + V(r))2
)

ψ(r) = E2ψ(r) (53)

where V(r) = V(r) is the scalar nuclear potential associated with mass shift, given by

Equation (52), r = |r| is the distance from the nucleus, and m is the reduced mass of the

meson h-nucleus A system mhmA/(mh + mA), in vacuum. The bound state energies E

and widths Γ are given by are given by E = E − m and Γ = −2Im E , respectively, where

E is the energy eigenvalue in Equation (53). Note that, when the Coulomb or vector

potential is relevant, the right hand side of Equation (53) must be modified properly as

E2 → (E − VV,Coul)
2 with VV,Coul being the vector and Coulomb potentials, respectively.

See Ref. [101] for details.

Before proceeding to solve Equation (53), we note that we have also solved to approx-

imations of Equation (53), namely the Schrödinger equation and also the KGE dropping

the V2(r) term in Equation (53) for some meson–nucleus systems. In all cases, we obtain

essentially the same results, which do not change the conclusions about the existence of the

bound states.

We solve the Klein–Gordon equation using the momentum space methods [125].

Here, Equation (53) is first converted to momentum space representation via a Fourier

transform, followed by a partial wave-decomposition of the Fourier-transformed potential,

or we obtain directly the partial wave decomposition in momentum space by a double

Spherical Bessel transform. For η, η′, ϕ, ηc, and J/ψ, the method used is the partial wave-

decomposition of the Fourier-transformed potential. For the B±
c we employ the direct

double Spherical Bessel transform, and for Υ and ηb we use both methods. Then, for a

given value of angular momentum ℓ, the eigenvalues of the resulting equation are found

by the inverse iteration eigenvalue algorithm. The detailed comparison and discussions

were made in Ref. [101], and it turned out that the main conclusions remain valid in both

methods. The calculated bound state energies are similar, with, at most, a difference of a

few MeV, which we would think is within the desired experimental accuracy for the strong

interaction bound state energy measurement.

In Table 3 we show our results for the ϕ-nucleus bound state energies and half widths,

obtained with and without the imaginary part of the potential, for three values of the cutoff

parameter [100].

We first analyze the case in which the imaginary part of the ϕ-nucleus potential, Wϕ(r),

is set to zero. These results are shown in parentheses in Table 3. From the values shown

in parenthesis, we see that the ϕ-meson is expected to form bound states with all seven

nuclei selected, for all values of the cutoff parameter ΛK studied. However, the bound state

energy is obviously dependent on ΛK, increasing in magnitude with ΛK [100].

Next, we discuss the results obtained when the imaginary part of the potential is

retained. Adding the absorptive part of the potential, the situation changes considerably.

From the results presented in Table 3, we note that for the largest value of the cutoff

parameter, which yields the deepest attractive potentials, the ϕ-meson is expected to form

bound states in all the nuclei selected, including the lightest 4He nucleus. However, in this

case, whether or not the bound states can be observed experimentally is sensitive to the

value of the cutoff parameter ΛK [100]. Given that the widths are large, the signal for the

formation of the ϕ-nucleus bound states may be difficult to identify experimentally.
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Table 3. ϕ-nucleus single-particle energies, E, and half widths, Γ/2, obtained with and without the

imaginary part of the potential, for three values of the cutoff parameter ΛK . When only the real part

is included, where the corresponding single-particle energy E is given in parenthesis and Γ = 0 for

all nuclei. “n” indicates that no bound state is found. All quantities are given in MeV.

ΛK = 2000 ΛK = 3000 ΛK = 4000

E Γ/2 E Γ/2 E Γ/2

4
ϕHe 1s n (−0.8) n n (−1.4) n −1.0 (−3.2) 8.3

12
ϕ C 1s −2.1 (−4.2) 10.6 −6.4 (−7.7) 11.1 −9.8 (−10.7) 11.2

16
ϕ O 1s −4.0 (−5.9) 12.3 −8.9 (−10.0) 12.5 −12.6 (−13.4) 12.4

1p n (n) n n (n) n n (−1.5) n

40
ϕ Ca 1s −9.7 (−11.1) 16.5 −15.9 (−16.7) 16.2 −20.5 (−21.2) 15.8

1p −1.0 (−3.5) 12.9 −6.3 (−7.8) 13.3 −10.4 (−11.4) 13.3
1d n (n) n n (n) n n (−1.4) n

48
ϕ Ca 1s −10.5 (−11.6) 16.5 −16.5 (−17.2) 16.0 −21.1 (−21.6) 15.6

1p −2.5 (−4.6) 13.6 −7.9 (−9.2) 13.7 −12.0 (−12.9) 13.6
1d n (n) n n (−0.8) n −2.1 (−3.6) 11.1

90
ϕ Zr 1s −12.9 (−13.6) 17.1 −19.0 (−19.5) 16.4 −23.6 (−24.0) 15.8

1p −7.1 (−8.4) 15.5 −12.8 (−13.6) 15.2 −17.2 (−17.8) 14.8
1d −0.2 (−2.5) 13.4 −5.6 (−6.9) 13.5 −9.7 (−10.6) 13.4
2s n (−1.4) n −3.4 (−5.1) 12.6 −7.4 (−8.5) 12.7
2p n (n) n n (n) n n (−1.1) n

208
ϕ Pb 1s −15.0 (−15.5) 17.4 −21.1 (−21.4) 16.6 −25.8 (−26.0) 16.0

1p −11.4 (−12.1) 16.7 −17.4 (−17.8) 16.0 −21.9 (−22.2) 15.5
1d −6.9 (−8.1) 15.7 −12.7 (−13.4) 15.2 −17.1 (−17.6) 14.8
2s −5.2 (−6.6) 15.1 −10.9 (−11.7) 14.8 −15.2 (−15.8) 14.5
2p n (−1.9) n −4.8 (−6.1) 13.5 −8.9 (−9.8) 13.4
2d n (n) n n (−0.7) n −2.2 (−3.7) 11.9

We also observe that the width of the bound state is insensitive to the values of ΛK for

all nuclei. Furthermore, since the so-called dispersive effect of the absorptive potentials is

repulsive, the bound states disappear completely in some cases, even though they were

found when the absorptive part was set to zero [100]. This feature is obvious for the 4He

nucleus, making it especially relevant to the future experiments, planned at J-PARC and

JLab using light and medium-heavy nuclei [126–129].

The bound state energies E of the ηc-nucleus system were calculated for four values of

the cutoff parameter ΛD and are listed in Table 4 [72]. Note that the ηc bound state energies

are calculated with the SU(4) broken coupling constant by (0.6/
√

2)getacDD, thus the values

shown below are expected to be smaller in magnitude than those calculated with the

SU(4) symmetric coupling constant, getacDD (See Section 4.2). These results show that the

ηc-meson is expected to form bound states with all the nuclei studied, and this prediction is

independent of the value of the cutoff parameter ΛD [72]. However, the particular values

for the bound state energies are clearly dependent on ΛD, namely, each of them increases

in absolute value as ΛD increases. This was expected from the behavior of the ηc potentials,

since these are deeper for larger values of the cutoff parameter. Note also that the ηc bounds

more strongly to heavier nuclei [72].

We remind that we have ignored the natural width of ∼ 31 MeV [130] in the free space

of the ηc, and this could be an issue related to the observability of the predicted bound

states. Furthermore, we have no reason to believe the width will be suppressed in the

medium. Thus, even though it could be difficult to resolve the individual states, it should
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be possible to see that there are bound states, which is the main point here. It remains to be

seen how much the inclusion of a repulsive imaginary part will affect the predicted bound

states. We believe this can be determined in future work.

Table 4. ηc-nucleus bound state energies for different values of the cutoff parameter ΛD. All

dimensional quantities are in MeV.

Bound State Energies

nℓ ΛD = 1500 ΛD = 2000 ΛD = 2500 ΛD = 3000

4
ηc

He 1s −1.49 −3.11 −5.49 −8.55

12
ηc

C 1s −5.91 −8.27 −11.28 −14.79

1p −0.28 −1.63 −3.69 −6.33

16
ηc

O 1s −7.35 −9.92 −13.15 −16.87

1p −1.94 −3.87 −6.48 −9.63

40
ηc

Ca 1s −11.26 −14.42 −18.31 −22.73

1p −7.19 −10.02 −13.59 −17.70
1d −2.82 −5.22 −8.36 −12.09
2s −2.36 −4.51 −7.44 −10.98

48
ηc

Ca 1s −11.37 −14.46 −18.26 −22.58

1p −7.83 −10.68 −14.23 −18.32
1d −3.88 −6.40 −9.63 −13.41
2s −3.15 −5.47 −8.54 −12.17

90
ηc

Zr 1s −12.26 −15.35 −19.14 −23.43

1p −9.88 −12.86 −16.53 −20.70
1d −7.05 −9.87 −13.38 −17.40
2s −6.14 −8.87 −12.29 −16.24
1f −3.90 −6.50 −9.81 −13.65

197
ηc

Au 1s −12.57 −15.59 −19.26 −23.41

1p −11.17 −14.14 −17.77 −21.87
1d −9.42 −12.31 −15.87 −19.90
2s −8.69 −11.53 −15.04 −19.02
1f −7.39 −10.19 −13.70 −17.61

208
ηc

Pb 1s −12.99 −16.09 −19.82 −24.12

1p −11.60 −14.64 −18.37 −22.59
1d −9.86 −12.83 −16.49 −20.63
2s −9.16 −12.09 −15.70 −19.80
1f −7.85 −10.74 −14.30 −18.37

The results for the J/ψ-nucleus bound states are presented in Table 5. These results

show that the J/ψ is expected to form J/ψ-nuclear bound states for nearly all the nuclei

considered, except some cases for 4He, for all values of the cutoff parameter ΛD [105,106].

Therefore, it will be possible to search for the bound states, for example, in a 208Pb nucleus

at JLab, the 12 GeV upgraded facility. In addition, one can expect quite rich spectra

for medium and heavy mass nuclei. Of course, the main issue is to produce the J/ψ

meson with nearly stopped kinematics, or nearly zero momentum relative to the nucleus.

Since the present results imply that many nuclei should form J/ψ-nuclear bound states,

it may be possible to find such kinematics by careful selection of the beam and target

nucleus [105,106].
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Table 5. J/ψ−nucleus bound state energies taking into account the change in the self-energy in

medium, calculated with the Schrödinger equation. All dimensioned quantities are given in MeV.

Bound State Energies

ΛD = 2000 ΛD = 3000 ΛD = 4000 ΛD = 5000 ΛD = 6000

4
J/ψHe 1s n n −0.70 −2.70 −5.51

12
J/ψC 1s −0.52 −1.98 −4.47 −7.67 −11.26

1p n n n −1.38 −3.84

16
J/ψO 1s −1.03 −2.87 −5.72 −9.24 −13.09

1p n n −0.94 −3.48 −6.60

40
J/ψCa 1s −2.78 −5.44 −9.14 −13.50 −18.12

1p −0.38 −2.32 −5.43 −9.32 −13.56
1d n n −1.52 −4.74 −8.49
2s n n −1.27 −4.09 −7.60

48
J/ψCa 1s −2.96 −5.62 −9.28 −13.55 −18.08

1p −0.73 −2.83 −6.03 −9.95 −14.18
1d n n −2.46 −5.87 −9.73
2s n −0.07 −1.90 −5.00 −8.65

90
J/ψZr 1s −3.64 −6.40 −10.12 −14.41 −18.92

1p −1.93 −4.42 −7.92 −12.03 −16.40
1d −0.03 −2.13 −5.31 −9.18 −13.37
2s −0.02 −1.56 −4.51 −8.26 −12.37
2p n n −1.52 −4.71 −8.45

208
J/ψPb 1s −4.25 −7.08 −10.82 −15.11 −19.60

1p −3.16 −5.86 −9.52 −13.74 −18.18
1d −1.84 −4.38 −7.90 −12.01 −16.37
2s −1.41 −3.81 −7.25 −11.30 −15.61
2p −0.07 −1.95 −5.10 −8.97 −13.14

The bound state energies E of the Υ-nucleus and ηb-nucleus systems are listed in

Tables 6–9, respectively, for all nuclei listed at the beginning of this section and the same

range of values for the cutoff mass parameter as used in the mass shift calculation (see

Section 4.3) [80]. We note that for the Υ-nucleus systems, we have only listed a few bound

states for each nucleus since that number increases with the mass of the nucleus, and for

the heaviest of these, 208Pb, the number of bound states is quite large. For the 208Pb nucleus,

we have found ∼70 states [80].

Table 6. Υ-nucleus bound state energies obtained by the Woods–Saxon Fourier transform for several

nuclei A. All dimensioned quantities are in MeV.

Bound State Energies

nℓ ΛB = 2000 ΛB = 3000 ΛB = 4000 ΛB = 5000 ΛB = 6000

4
ΥHe 1s −5.6 −6.4 −7.5 −9.0 −10.8

12
Υ C 1s −10.6 −11.6 −12.8 −14.4 −16.3

1p −6.1 −6.8 −7.9 −9.3 −10.9
1d −1.5 −2.1 −2.9 −4.0 −5.4
2s −1.6 −2.1 −2.8 −3.8 −5.1

16
Υ

O 1s −11.9 −12.9 −14.2 −15.8 −17.8
1p −8.3 −9.2 −10.4 −11.9 −13.7
1d −4.4 −5.1 −6.2 −7.5 −9.2
2s −3.7 −4.4 −5.4 −6.7 −8.3
1f n −0.9 −1.8 −2.9 −4.3
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Table 6. Cont.

Bound State Energies

nℓ ΛB = 2000 ΛB = 3000 ΛB = 4000 ΛB = 5000 ΛB = 6000

40
Υ

Ca 1s −15.5 −16.6 −18.2 −20.0 −22.3
1p −13.3 −14.4 −15.9 −17.7 −19.8
1d −10.8 −11.9 −13.3 −15.0 −17.1
2s −10.3 −11.3 −12.7 −14.4 −16.4
1f −8.1 −9.1 −10.4 −12.1 −14.0

48
Υ

Ca 1s −15.3 −16.4 −17.9 −19.7 −21.8
1p −13.5 −14.6 −16.0 −17.8 −19.9
1d −11.4 −12.4 −13.8 −15.6 −17.6
2s −10.8 −11.8 −13.2 −14.9 −16.9
1f −9.1 −10.1 −11.4 −13.1 −15.0

90
Υ

Zr 1s −15.5 −16.6 −18.1 −19.9 −22.0
1p −14.5 −15.5 −17.0 −18.8 −20.9
1d −13.2 −14.2 −15.7 −17.4 −19.5
2s −12.7 −13.8 −15.2 −16.9 −19.0
1f −11.7 −12.7 −14.1 −15.9 −17.9

197
Υ

Au 1s −15.3 −16.3 −17.7 −19.4 −21.5
1p −14.7 −15.8 −17.2 −18.9 −20.9
1d −14.0 −15.0 −16.4 −18.1 −20.1
2s −13.7 −14.7 −16.0 −17.8 −19.8
1f −13.2 −14.2 −15.6 −17.3 −19.3

208
Υ

Pb 1s −15.7 −16.8 −18.2 −20.0 −22.1
1p −15.2 −16.2 −17.7 −19.4 −21.5
1d −14.5 −15.5 −16.9 −18.7 −20.8
2s −14.1 −15.2 −16.6 −18.3 −20.4
1f −13.6 −14.7 −16.1 −17.8 −19.9

Table 7. Υ-nucleus bound state energies obtained by the Direct Bessel transform for several nuclei A.

All dimensioned quantities are in MeV.

Bound State Energies (MeV)

Direct Bessel Transform

nℓ ΛB = 2000 ΛB = 4000 ΛB = 6000

4
ΥHe 1s −5.93 −6.25 −6.56

12
Υ C 1s −13.22 −15.26 −18.41

1p −8.30 −9.57 −11.51

16
Υ

O 1s −14.30 −16.57 −20.06
1p −10.81 −12.37 −14.73

40
Υ

Ca 1s −18.17 −21.63 −23.16
1p −15.22 −18.11 −19.58

48
Υ

Ca 1s −16.74 −19.33 −23.20
1p −15.36 −17.76 −21.53

90
Υ

Zr 1s −15.87 −18.24 −21.89
1p −12.52 −14.78 −18.32

208
Υ

Pb 1s −15.95 −18.41 −22.23
1p −13.23 −15.49 −19.91
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In Table 8 we show the ηb-nucleus bound state energies for the same nuclei and range

of values of the cutoff mass parameter as in Table 6 [80]. Furthermore, as in the case of the

Υ-nucleus bound state energies, we have listed only a few bound states for each nucleus.

For the 208Pb nucleus, we have ∼ 200 states, and clearly, it is not practical to show them

all [80].

Table 8. ηb-nucleus bound state energies obtained by the Woods–Saxon Fourier transform for several

nuclei A. All dimensioned quantities are in MeV.

Bound State Energies

nℓ ΛB = 2000 ΛB = 3000 ΛB = 4000 ΛB = 5000 ΛB = 6000

4
ηb

He 1s −63.1 −64.7 −66.7 −69.0 −71.5

1p −40.6 −42.0 −43.7 −45.8 −48.0
1d −17.2 −18.3 −19.7 −21.4 −23.2
2s −15.6 −16.6 −17.9 −19.4 −21.1

12
ηb

C 1s −65.8 −67.2 −69.0 −71.1 −73.4

1p −57.0 −58.4 −60.1 −62.1 −64.3
1d −47.5 −48.8 −50.4 −52.3 −54.4
2s −46.3 −47.5 −49.1 −51.0 −53.0
1f −37.5 −38.7 −40.2 −42.0 −43.9

16
ηb

O 1s −67.8 −69.2 −71.0 −73.1 −75.4

1p −61.8 −63.2 −64.9 −67.0 −69.2
1d −54.9 −56.2 −57.9 −59.9 −62.0
2s −53.2 −54.6 −56.3 −58.2 −60.3
1f −47.3 −48.6 −50.2 −52.1 −54.2

40
ηb

Ca 1s −79.0 −80.6 −82.6 −85.0 −87.5

1p −75.4 −77.0 −79.0 −81.4 −83.9
1d −71.4 −73.0 −74.9 −77.2 −79.7
2s −70.5 −72.0 −74.0 −76.3 −78.8
1f −67.0 −68.5 −70.4 −72.7 −75.1

48
ηb

Ca 1s −76.7 −78.2 −80.2 −82.5 −85.0

1p −74.0 −75.5 −77.4 −79.7 −82.1
1d −70.8 −72.3 −74.2 −76.4 −78.8
2s −69.9 −71.4 −73.3 −75.5 −77.9
1f −67.2 −68.6 −70.6 −72.8 −75.1

90
ηb

Zr 1s −75.5 −77.0 −78.9 −81.1 −83.5

1p −74.1 −75.6 −77.5 −79.7 −82.1
1d −72.3 −73.8 −75.7 −77.9 −80.2
2s −71.6 −73.0 −74.9 −77.1 −79.5
1f −70.2 −71.7 −73.6 −75.8 −78.1

197
ηb

Au 1s −72.8 −74.2 −76.1 −78.2 −80.5

1p −72.3 −73.7 −75.6 −77.7 −80.0
1d −71.3 −72.8 −74.6 −76.7 −79.0
2s −70.7 −72.1 −74.0 −76.1 −78.4
1f −70.2 −71.7 −73.5 −75.6 −77.9

208
ηb

Pb 1s −74.7 −76.2 −78.1 −80.3 −82.6

1p −74.2 −75.7 −77.5 −79.7 −82.1
1d −73.2 −74.7 −76.6 −78.8 −81.1
2s −72.7 −74.1 −76.0 −78.2 −80.5
1f −72.1 −73.6 −75.5 −77.6 −80.0
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Table 9. 4
ηb

A bound state energies obtained by the Direct Bessel transform for several nuclei A. All

dimensioned quantities are in MeV.

Bound State Energies (MeV)

Direct Bessel Transform

nℓ ΛB = 2000 ΛB = 4000 ΛB = 6000

4
ηb

He 1s −68.71 −71.59 −75.44

1p −39.97 −41.50 −43.54
1d −37.73 −39.56 −42.03
2s −29.14 −30.09 −31.38

12
ηb

C 1s −63.70 −66.93 −70.27

1p −53.17 −55.13 −59.38
1d −46.47 −48.50 −51.17
2s −34.53 −36.30 −39.43

16
ηb

O 1s −68.37 −71.25 −75.14

1p −57.02 −59.58 −63.02
1d −47.05 −49.37 −52.50
2s −23.18 −25.50 −28.69

40
ηb

Ca 1s −79.11 −82.59 −87.27

1p −70.60 −73.86 −78.26
1d −53.31 −55.99 −59.61
2s −48.35 −51.31 −55.32

48
ηb

Ca 1s −63.94 −66.88 −70.83

1p −58.60 −61.10 −64.43
1d −34.04 −36.40 −39.60
2s −26.35 −28.30 −30.95

90
ηb

Zr 1s −71.32 −74.52 −78.85

1p −63.78 −67.03 −71.42
1d −57.78 −60.82 −64.93
2s −51.53 −54.07 −57.46

208
ηb

Pb 1s −61.44 −64.25 −68.02

1p −59.82 −62.95 −67.18
1d −51.36 −54.05 −57.65
2s −48.71 −51.25 −54.66

These results given in Tables 6–9 show that the Υ and ηb mesons are expected to form

bound states with all the nuclei studied, independent of the value of the cutoff parameter

ΛB. However, the particular values for the bound state energies are dependent on the

cutoff parameter values, increasing in absolute value as the cutoff parameter increases.

This dependence was expected from the behavior of the bottomonium-nucleus potentials,

since these are more attractive for larger values of the cutoff parameter. Note also that

bottomonium (ηb or Υ) binds more strongly to heavier nuclei; therefore, a richer spectrum

is expected for these nuclei [80].

However, from Tables 6–9, we see that the bound state energies for the ηb are larger

than those of the Υ for the same nuclei and range of cutoff values explored. These dif-

ferences are probably due to two reasons: (a) the couplings gηbBB∗ and gΥBB are very

different. Indeed, the results obtained in Ref. [72] on the ηc nuclear bound state ener-

gies are closer to those of the J/ψ when the SU(4) flavor symmetry is broken, such that

gηcDD∗ = (0.6/
√

2) gJ/ψDD ≃ 0.424 gJ/ψDD [72,113]. Thus, a reduced coupling gηbBB∗ can

bring the ηb nuclear bound state energies closer to those the Υ, since the ηb self-energy is

proportional to g2
ηbBB∗ . (b) the form factors are not equal for the vertices ΥBB and ηbBB∗,
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and we have to readjust the cutoff values, which means ΛB ̸= ΛB∗ , and the comparisons

for the mass shift values and bound state energies have to be made for different values of

the cutoff parameters.

The bound-state energies associated with each energy level can be confirmed by

analyzing the number of nodes in the corresponding coordinate−space wave function as

described in Ref. [101]. We present the wave functions of some meson–nucleus systems

and cutoff values in Appendix A, which will help to better understand the meson–nucleus

bound systems.

In Tables 10 and 11, we show, respectively, the results for the bound state energies (E)

and full widths (Γ) of the η- and η′-mesic nuclei of mass number A, obtained by solving

the Klein–Gordon equation, for various values of the strength of the imaginary part of

the potential γ = 0.0, 0.25, 0.5, 1.0 (See below Equation (52) about the γ). The results for

γ = 0, for both the η and η′ mesons, correspond to the case where the imaginary part of

the potential has been ignored. The bound state energies and full widths are obtained from

the complex energy eigenvalue E as E = E + m − iΓ/2. We also note that for each nucleus,

we have computed all bound states but have only listed up to four. In fact, the number

of bound states increases with the mass of the nucleus in such a way that for the heavier

nuclei, we have a richer structure of bound states. Furthermore, we note that the relativistic

corrections shallower the bound state energies for the η and η′ by approximately 2 MeV

and 1 MeV, respectively.

Table 10. Bound state energies (E) and full widths (Γ) of η meson in nucleus of mass number A

obtained by solving the Klein–Gordon equation for various values of the parameter γ.

γ = 0 γ = 0.25 γ = 0.5 γ = 1.0

nℓ E Γ E Γ E Γ E Γ

4
ηHe 1s −10.99 0 −10.79 8.21 −10.20 16.65 −8.13 34.94

12
η C 1s −25.25 0 −25.16 10.86 −24.91 21.82 −24.02 44.29

1p −0.87 0 −0.43 4.97 N N N N

16
η O 1s −30.78 0 −30.72 12.00 −30.53 24.07 −29.86 48.67

1p −6.47 0 −6.26 7.84 −5.67 15.99 −3.77 33.80

40
η Ca 1s −46.93 0 −46.89 15.12 −46.79 30.28 −46.43 60.87

1p −26.93 0 −26.85 12.67 −26.61 25.44 −25.77 51.59
1d −6.67 0 −6.47 9.48 −5.91 19.27 −4.15 40.31
2s −5.43 0 −5.09 7.51 −4.18 15.59 N N

48
η Ca 1s −47.78 0 −47.75 14.98 −47.66 30.00 −47.38 60.25

1p −29.97 0 −29.90 12.99 −29.71 26.06 −29.04 52.71
1d −11.08 0 −10.93 10.45 −10.51 21.10 −9.15 43.52
2s −8.7 0 −8.11 8.83 −7.42 18.06 N N

90
η Zr 1s −52.56 0 −52.54 15.34 −52.50 30.71 −52.34 61.56

1p −39.85 0 −39.81 14.17 −39.71 28.40 −39.36 57.11
1d −25.32 0 −25.25 12.74 −25.06 25.57 −24.40 51.75
2s −21.04 0 −20.94 11.95 −20.65 24.04 −19.70 49.03

197
η Au 1s −55.12 0 −55.11 15.20 −55.09 30.41 −55.01 60.89

1p −47.13 0 −47.11 14.58 −47.06 29.19 −46.90 58.53
1d −37.60 0 −37.58 13.83 −37.49 27.69 −37.20 55.67
2s −34.01 0 −33.97 13.45 −33.86 26.96 −33.47 54.31

208
η Pb 1s −56.85 0 −56.84 15.61 −56.82 31.24 −56.75 62.55

1p −48.92 0 −48.90 14.99 −48.86 30.01 −48.70 60.17
1d −39.81 0 −39.45 14.24 −39.37 28.51 −39.09 57.29
2s −35.95 0 −35.91 13.87 −35.80 27.80 −35.43 55.96
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Table 11. Bound state energies (E) and full widths (Γ) of η′ meson in nucleus of mass number A

obtained by solving the Klein–Gordon equation for various values of the parameter γ.

γ = 0 γ = 0.25 γ = 0.5 γ = 1.0

nℓ E Γ E Γ E Γ E Γ

4
η′He 1s −22.11 0 −21.96 11.37 −21.55 22.89 −20.06 46.83

12
η′ C 1s −33.88 0 −33.82 12.30 −33.64 24.66 −33.00 49.73

1p −12.72 0 −12.57 9.06 −12.15 18.29 −10.67 37.68

16
η′ O 1s −38.64 0 −38.59 13.06 −38.46 26.17 −38.00 52.65

1p −19.75 0 −19.65 10.76 −19.34 21.64 −18.28 44.07
2s −1.39 0 −0.84 4.48 N N N N
1d −0.33 0 −0.69 7.20 N N N N

40
η′ Ca 1s −52.38 0 −52.35 15.59 −52.28 31.22 −52.00 62.61

1p −38.41 0 −38.35 14.18 −38.19 28.41 −37.63 57.22
1d −23.12 0 −23.02 12.46 −22.74 25.03 −21.75 50.81
2s −20.38 0 −20.25 11.72 −19.87 23.60 −18.58 48.25

48
η′ Ca 1s −52.40 0 −52.38 15.29 −52.32 30.60 −52.11 61.35

1p −40.30 0 −40.26 14.18 −40.13 28.40 −39.68 57.12
1d −26.68 0 −26.59 12.82 −26.37 25.72 −25.58 52.02
2s −23.45 0 −23.34 12.19 −23.04 24.51 −22.01 49.85

90
η′ Zr 1s −55.20 0 −55.19 15.31 −55.16 30.63 −55.04 61.35

1p −47.05 0 −47.02 14.70 −46.96 29.43 −46.72 59.04
1d −37.42 0 −37.38 13.96 −37.27 27.96 −36.86 56.22
2s −34.19 0 −34.14 13.61 −33.99 27.29 −33.47 54.98

197
η′ Au 1s −56.03 0 −56.03 14.94 −56.01 29.89 −55.96 59.83

1p −51.12 0 −51.10 14.64 −51.07 29.30 −50.96 58.67
1d −45.15 0 −45.14 14.27 −45.08 28.56 −44.89 57.26
2s −42.80 0 −42.78 14.10 −42.71 28.22 −42.47 56.63

208
η′ Pb 1s −57.65 0 −57.64 15.34 −57.63 30.68 −57.57 61.40

1p −52.77 0 −52.76 15.03 −52.73 30.07 −52.62 60.23
1d −46.87 0 −46.85 14.66 −46.80 29.33 −46.61 58.80
2s −44.56 0 −44.54 14.49 −44.47 29.00 −44.24 58.19

From Tables 10 and 11, (column with γ = 0) we conclude that the η and η′ are expected

to form bound states with all the nuclei considered.

However, the situation changes appreciably once we take into account the absorption

effects of these mesons by nuclei, which we simulate with nonzero phenomenological

parameter γ. We study the values γ = 0.25, 0.5, 1.0, where a larger value means a stronger

absorption of the meson by the nuclear medium. When γ ̸= 0, some of the bound states

that are present when γ = 0 disappear. The columns with γ = 0.25, γ = 0.5, and γ = 1.0 in

Tables 10 and 11 show the results for the bound state energies E and full widths Γ of the η-

and η′-mesic nuclei of mass number A, obtained by solving the Klein–Gordon equation,

for some values of the strength of the imaginary part of the potential γ = 0.25, 0.5, 1.0.

Considering only the ground states, adding and absorbing part of the potential changes

the situation appreciably, where the effects are larger the larger γ is. Clearly, the imaginary

part of the potential is repulsive, being more repulsive for γ = 1. Whether or not the

bound states can be observed experimentally is sensitive to the value of the parameter γ,

since Γ increases with increasing γ. Furthermore, because the so-called dispersive effect of

the absorptive potential is repulsive, the binding energies for all nuclei decrease with γ.

However, they decrease very slightly. Even for the largest value of γ, there is at least one
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bound state. We have found similar results for the ϕ meson in our past work [100]. Note

that the width of the ground state increases with γ for all nuclei, as expected, since a larger

γ means that the strength of the imaginary part of the potential is larger.

Finally, in Tables 12 and 13, we present the B±
c -nucleus bound state energies for several

nuclei restricted to the 1s and 1p states, where we certainly expect shallower bound states.

(More detailed results will be presented elsewhere in the near future). For details on the

momentum space and the Coulomb potential treatment focusing on the 12
Bc

C case, see

Ref. [101]. From Tables 12 and 13, we conclude that the B±
c are expected to form bound

states with all the nuclei studied.

Table 12. Bound state energies of B−
c in nucleus of mass number A, obtained by the Direct Bessel

transform method. All dimensioned quantities are in MeV.

Bound State Energies (MeV)

Direct Bessel Transform

nℓ ΛB = 2000 ΛB = 4000 ΛB = 6000

12
B−

c
C 1s −79.12 −80.63 −87.03

1p −56.15 −57.53 −63.38

16
B−

c
O 1s −75.00 −76.16 −80.94

1p −54.86 −56.13 −61.55

40
B−

c
Ca 1s −104.27 −105.69 −111.87

1p −81.71 −83.51 −91.34

48
B−

c
Ca 1s −96.63 −98.37 −105.81

1p −72.02 −73.56 −80.24

90
B−

c
Zr 1s −96.34 −98.32 −106.82

1p −83.82 −85.44 −92.35

208
B−

c
Pb 1s −95.88 −97.39 −103.79

1p −70.46 −71.76 −77.34

Table 13. Bound state energies of B+
c in nucleus of mass number A, obtained by the Direct Bessel

transform method. All dimensioned quantities are in MeV.

Bound State Energies (MeV)

Direct Bessel Transform

nℓ ΛB = 2000 ΛB = 4000 ΛB = 6000

12
B+

c
C 1s −71.01 −72.53 −78.94

1p −49.11 −50.49 −56.32

16
B+

c
O 1s −64.64 −65.80 −70.59

1p −45.94 −47.22 −52.64

40
B+

c
Ca 1s −84.89 −86.31 −92.49

1p −62.80 −64.57 −72.23

48
B+

c
Ca 1s −77.09 −78.83 −86.26

1p −53.64 −55.13 −61.60

90
B+

c
Zr 1s −65.51 −67.49 −75.99

1p −55.11 −56.75 −63.75

208
B+

c
Pb 1s −48.61 −50.13 −56.53

1p −29.27 −30.58 −36.22
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7. Summary and Conclusions

We have computed the mass shift amount ∆mh ≡ m∗
h − mh, with mh being the meson

mass in vacuum and m∗
h that in nuclear medium, for the mesons h = η, η′, ϕ, ηc, J/ψ, ηb, Υ,

and B±
c in symmetric nuclear matter and nuclei. For this, we have used two approaches

for some meson in this study, namely the quark–meson coupling model and a hybrid

approach that combines the quark–meson coupling model with an effective Lagrangian.

We found in all cases that the mass shift amount (Lorentz scalar potential) is negative,

which means that the nuclear medium provides attraction to these mesons (these mesons

do not acquire any repulsive vector potentials) and opens the possibility of their binding

to nuclei. Even though the precise values for the negative mass shifts reported in this

work are based on the quark–meson coupling model and effective Lagrangian approach,

negative mass shifts have also been observed in other approaches and experimental results.

Thus, we believe this is a robust prediction of our approach. Using the baryon density

distributions of several nuclei calculated in the quark–meson coupling model, we have,

except for 4He nucleus (taken from Ref. [124]), and the mass shift amount computed

previously, calculated the meson–nucleus potentials in a local density approximation for

these mesons in nuclei in a wide range of nuclear masses, namely A = 4He, 12C, 16O, 40Ca,
48Ca, 90Zr, 197Au, and 208Pb. In all the nucleus cases selected for each meson, the resulting

nuclear potentials have turned out to be attractive, reflecting the characteristics of the mass

shift in the nuclear medium.

Finally, we have solved the Schrödinger or Klein–Gordon equation with the calculated

nuclear potentials to obtain the meson–nucleus bound state energies and widths when

the nuclear potential is complex. Although the details differ for each meson, we have

found that all the mesons studied are expected to form bound states with nuclei. For the

nuclear potential that is complex, the signal for the formation of the meson–nucleus bound

state might be difficult to identify experimentally, depending on the imaginary part of the

obtained bound state energy.
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Appendix A. Wave Functions

The results for the B±
c -nucleus system wave functions, for different cutoff values, are

presented in Figures A1–A6. The wave functions for the Υ- and ηb-nucleus systems, for

different methods of partial wave decomposition and cutoff values, are also presented in

Figures A7–A20.

The wave functions obtained when using the Bessel transform of the original poten-

tial and the decomposition of the Fourier transform of the fitted Woods–Saxon potential

produce different shapes of wave function distributions at various energy levels. These
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treatments slightly depend on the bound-state energies and on the method used to obtain

the partial-wave decomposition of the momentum space potential. For possible future

improvements of the treatments, and so that one can compare with different treatments,

we present all the wave functions obtained for the two different methods. These will be

very useful in the future. However, we believe that the difference originated from the

numerical procedure and treatments, the difference will not change our main conclusions,

especially in connection with the accuracy required and achieved associated with the strong

interaction experimental measurement.

0 5 10 15

r[fm]

0

0.1

0.2

0.3

0.4

0.5

Ψ
l(r

) 1s state
1p state

B
-

c
 -

12
C (Λ= 2000 MeV)

0 5 10 15

r[fm]

0

0.1

0.2

0.3

0.4

0.5

Ψ
l(r

) 1s state
1p state

B
-

c
 -

12
C (Λ= 4000 MeV)

0 5 10 15

r[fm]

0

0.1

0.2

0.3

0.4

0.5

Ψ
l(r

) 1s state
1p state

B
-

c
 -

12
C (Λ= 6000 MeV)

0 5 10 15

r[fm]

0

0.1

0.2

0.3

0.4

0.5

Ψ
l(r

) 1s state
1p state

B
+

c
 -

12
C (Λ= 2000 MeV)

0 5 10 15

r[fm]

0

0.1

0.2

0.3

0.4

0.5

Ψ
l(r

) 1s state
1p state

B
+

c
 -

12
C (Λ= 4000 MeV)

0 5 10 15

r[fm]

0

0.1

0.2

0.3

0.4

0.5

Ψ
l(r

) 1s state
1p state

B
+

c
 -

12
C (Λ= 6000 MeV)

Figure A1. Coordinate−space wave functions for the 1s and 1p states of the B±
c -12C systems with the

Coulomb potentials for different values of Λ.
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Figure A2. Coordinate−space wave functions for the 1s and 1p states of the B±
c -16O systems with the

Coulomb potentials for different values of Λ.

0 5 10 15

r[fm]

0

0.1

0.2

0.3

0.4

0.5

Ψ
l(r

) 1s state
1p state

B
-

c
 -

40
Ca (Λ= 2000 MeV)

0 5 10 15

r[fm]

0

0.1

0.2

0.3

0.4

0.5

Ψ
l(r

) 1s state
1p state

B
-

c
 -

40
Ca (Λ= 4000 MeV)

0 5 10 15

r[fm]

0

0.1

0.2

0.3

0.4

0.5

Ψ
l(r

) 1s state
1p state

B
-

c
 -

40
Ca (Λ= 6000 MeV)

0 5 10 15

r[fm]

0

0.1

0.2

0.3

0.4

0.5

Ψ
l(r

) 1s state
1p state

B
+

c
 -

40
Ca (Λ= 2000 MeV)

0 5 10 15

r[fm]

0

0.1

0.2

0.3

0.4

0.5

Ψ
l(r

) 1s state
1p state

B
+

c
 -

40
Ca (Λ= 4000 MeV)

0 5 10 15

r[fm]

0

0.1

0.2

0.3

0.4

0.5

Ψ
l(r

) 1s state
1p state

B
+

c
 -

40
Ca (Λ= 6000 MeV)

Figure A3. Coordinate−space wave functions for the 1s and 1p states of the B±
c -40Ca systems with

the Coulomb potentials for different values of Λ.
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Figure A4. Coordinate−space wave functions for the 1s and 1p states of the B±
c -48Ca systems with

the Coulomb potentials for different values of Λ.
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Figure A5. Coordinate−space wave functions for the 1s and 1p states of the B±
c -90Zr systems with

the Coulomb potentials for different values of Λ.
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Figure A6. Coordinate−space wave functions for the 1s and 1p states of the B±
c -208Pb systems with

the Coulomb potentials for different values of Λ.
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Figure A7. Coordinate−space 1s state wave functions of the Υ-4He system for different values

of cutoff Λ, obtained by the direct Bessel transform and by the Fourier transform of the fitted

Woods–Saxon form potential (FWS).
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Figure A8. Coordinate−space 1s and 1p state wave functions of the Υ-12C system for different

values of cutoff Λ, obtained by the direct Bessel transform and by the Fourier transform of the fitted

Woods–Saxon form potential (FWS).
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Figure A9. Coordinate−space 1s and 1p state wave functions of the Υ-16O system for different

values of cutoff Λ, obtained by the direct Bessel transform and by the Fourier transform of the fitted

Woods–Saxon form potential (FWS).

0 5 10

r[fm]

0

0.1

0.2

0.3

0.4

0.5

Ψ
l(r

)

1s state
1p state

Υ−
40

Ca (Λ= 2000 MeV)

0 5 10

r[fm]

0

0.1

0.2

0.3

0.4

0.5

0.6

Ψ
l(r

)

1s state
1p state

Υ−
40

Ca (Λ= 4000 MeV)

0 5 10

r[fm]

0

0.1

0.2

0.3

0.4

0.5

0.6

Ψ
l(r

)

1s state
1p state

Υ−
40

Ca (Λ= 6000 MeV)

0 5 10

r[fm]

0

0.1

0.2

0.3

0.4

0.5

0.6

Ψ
l(r

)

1s state
1p state

Υ−
40

Ca (Λ= 2000 MeV) FWS

Figure A10. Cont.



Symmetry 2025, 17, 787 46 of 56

0 5 10

r[fm]

0

0.1

0.2

0.3

0.4

0.5

0.6

Ψ
l(r

)

1s state
1p state

Υ−
40

Ca (Λ= 4000 MeV) FWS

0 5 10

r[fm]

0

0.1

0.2

0.3

0.4

0.5

0.6

Ψ
l(r

)

1s state
1p state

Υ−
40

Ca (Λ= 6000 MeV) FWS

Figure A10. Coordinate−space 1s and 1p state wave functions of the Υ-40Ca system for different

values of cutoff Λ, obtained by the direct Bessel transform and by the Fourier transform of the fitted

Woods–Saxon form potential (FWS).
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Figure A11. Coordinate−space 1s and 1p state wave functions of the Υ-48Ca system for different

values of cutoff Λ, obtained by the direct Bessel transform and by the Fourier transform of the fitted

Woods–Saxon form potential (FWS).
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Figure A12. Coordinate−space 1s and 1p state wave functions of the Υ-90Zr system for different

values of cutoff Λ, obtained by the direct Bessel transform and by the Fourier transform of the fitted

Woods–Saxon form potential (FWS).
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Figure A13. Coordinate−space 1s and 1p state wave functions of the Υ-208Pb system for different

values of cutoff Λ, obtained by the direct Bessel transform and by the Fourier transform of the fitted

Woods–Saxon form potential (FWS).
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Figure A14. Coordinate−space wave functions for the 1s to 2s states of the ηb-4He system for different

values of cutoff Λ, obtained by the direct Bessel transform and by the Fourier transform of the fitted

Woods–Saxon form potential (FWS).
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Figure A15. Coordinate−space wave functions for the 1s to 2p states of the ηb-12C system for different

values of cutoff Λ, obtained by the direct Bessel transform and by the Fourier transform of the fitted

Woods–Saxon form potential (FWS).
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Figure A16. Coordinate−space wave functions for the 1s to 2s states of the ηb-16O system for different

values of cutoff Λ, obtained by the direct Bessel transform and by the Fourier transform of the fitted

Woods–Saxon form potential (FWS).
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Figure A17. Coordinate−space wave functions for the 1s to 2s states of the ηb-40Ca system for

different values of cutoff Λ, obtained by the direct Bessel transform and by the Fourier transform of

the fitted Woods–Saxon form potential (FWS).
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Figure A18. Coordinate−space wave functions for the 1s to 2s states of the ηb-48Ca system for

different values of cutoff Λ, obtained by the direct Bessel transform and by the Fourier transform of

the fitted Woods–Saxon form potential (FWS).
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Figure A19. Coordinate−space wave functions for the 1s to 2s states of the ηb-90Zr system for different

values of cutoff Λ, obtained by the direct Bessel transform and by the Fourier transform of the fitted

Woods–Saxon form potential (FWS).
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Figure A20. Cont.
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Figure A20. Coordinate−space wave functions for the 1s to 2s states of the ηb-208Pb system for

different values of cutoff Λ, obtained by the direct Bessel transform and by the Fourier transform of

the fitted Woods–Saxon form potential (FWS).
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