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Abstract: We review the in-medium modifications of effective masses (Lorentz scalar
potentials or phenomenon of mass shift) of the heavy-heavy and heavy-light mesons in
symmetric nuclear matter and their nuclear bound states. We use a combined approach with
the quark-meson coupling (QMC) model and an effective Lagrangian. As demonstrated by
the cases of pionic and kaonic atoms, studies of the meson—nucleus bound state can provide
us with important information on chiral symmetry in a dense nuclear medium. In this
review, we examine the mesons, K, K*, D, D*, B, B*,n,1’, ¢, 1c, /¥, 115, Y, and B, where our
emphasis is on the heavy mesons. In addition, we also present some new results for the
B.-nucleus bound states.

Keywords: hadrons; nuclear matter; strong interactions; chiral symmetry restoration
in medium

1. Introduction

Quantum chromodynamics (QCD) is the theory of strong interactions at the fundamental
level, namely, at the level of quarks and gluons, which compose the observed hadrons in
the standard model (SM) [1-7]. However, a quantitative understanding of the strong force
and strongly interacting matter from the underlying first principles of QCD is still limited,
in particular when the hadrons are under the circumstance with many nucleons, such as
when emersed in nuclei and dense nuclear medium. The study of the interactions of heavy—
heavy and heavy-light mesons with atomic nuclei is an important tool for understanding the
properties of strongly interacting matter in vacuum and in extreme conditions of temperature
and density based on QCD Refs. [8-15]. In this review, we treat the zero temperature case. An
understanding of hadronic interactions with the nuclear medium is imperative for studying
the production of heavy mesons in high energy heavy ion collisions [16,17], because the
medium modifications of hadron properties may have a significant impact on the experimental
results. Decay processes and decay rates involving mesons in a nuclear medium should also
be modified. For example, decays of the type B. — Ds/T ¢~ involving a flavor-changing
neutral-current process are highly suppressed in the Standard Model (SM) [18-24]; thus, it is
very important for investigating the physics beyond the SM. Moreover, the suppression or
enhancement in the production of mesons, such as |/, Y, and B., makes them interesting
probes of quark—gluon plasma (QGP) [25-34].

To calculate the in-medium (effective) masses of the mesons containing light quarks, in-
cluding K, K*, D, D*, B, B*, 7, and 1, we use the quark-meson coupling (QMC) model [35].
Because of the Okubo-Zweig-lizuka (OZI) [36—40] rule, the heavy quarkonium-nucleus
interaction via the exchange of mesons made of only light quarks is suppressed, so that the
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quarkonium-nucleus interaction is primarily by a QCD van der Waals type interaction [41].
For the mesons that do not contain light quarks, namely, ¢, 1c, ] /9, 17, Y, and B, we employ
a combined approach in the self energy, in which the mechanism for the meson interact with
the nuclear medium through the excitation of the intermediate-state mesons that do contain
light quarks. Where the in-medium masses of the intermediate-state mesons are calculated
by the QMC model, the meson self-energies are estimated with effective Lagrangians.

Partial restoration of chiral symmetry, and chiral symmetry itself in nuclear medium,
are another interesting phenomena that can be studied in an empirical sense, because the
(effective) mass reduction of the medium-modified hadron may be associated with a
signature of partial restoration of chiral symmetry [42—45]. This negative mass shift can
be regarded as an attractive Lorentz scalar potential, which, if sufficiently attractive, can
bind mesons to atomic nuclei. Deeply bound pionic atoms were first discussed in 1985 [46]
and later observed in the 2%8Pb(d, 3He) reaction [47]. In addition, studies of kaonic atoms
were performed [48-52]. The studies of the pionic and kaonic atoms can provide us with
very important information on chiral symmetry in a dense nuclear medium. Furthermore,
other possible meson—nucleus bound states were proposed [53-55]. Charmonium-nucleus
systems were proposed in 1989 [56] and followed by many predictions [8,10,11,41-43,57-72].
Lattice QCD has also predicted such states [73-75], as well as ¢-nucleon bound states [76].
In the bottom sector of quarkonia, strong nuclear bound states with various nuclei [77-80]
were predicted for Y and 7. In this article, we review the downward shift of meson masses
in nuclear matter and the meson—nucleus bound states, focusing on the heavy-heavy and
heavy-light mesons. We also comment on some new results for the B.-nucleus bound states.

This review is organized as follows. In Section 2, we present the details of the quark-
meson coupling (QMC) model needed to better understand most of our results. In Section 3,
we present the results for the mass shift of mesons with heavy-light quark content using the
quark-meson coupling (QMC) model. Since heavier flavor quarks Q = s, ¢, b do not directly
interact directly with the mean fields in a nuclear medium, we use a combined approach
using both the QMC model with and effective Lagrangians to compute the effective masses
for the mesons with a (heavy quark)-(heavy antiquark) content.

We describe this in Section 4. In Section 5, we use the calculated amounts of the down-
ward shift of masses for the mesons considered in this work to present our results for the
meson-nucleus potentials for various nuclei in a wide range of nuclear masses. In Section 6,
we present our results for meson—nucleus bound state energies and widths for some mesons
by solving the Klein-Gordon equation, using the meson-nucleus potentials obtained in the
previous section. Finally, in Section 7, we present a summary and conclusions.

2. The Quark-Meson Coupling (QMC) Model

The quark-meson coupling (QMC) model, the standard version we use, is a quark-
based model for nuclear matter and nuclei that describes the internal structure of the
nucleons using the non-overlapping MIT bag model, and the binding of nucleons (nuclear
matter) by the self-consistent couplings of the confined light quarks u and d to the Lorentz
scalar-o, Lorentz-vector-isoscalar-w and Lorentz-vector-isovector-po meson mean fields
generated by the confined light quarks in the nucleons [35].

In a nuclear medium, the hadrons with light quarks are expected to be predominantly
modified by their properties, as evidenced by the European Muon Collaboration effect [81,82]
and the modifications of bound proton electromagnetic form factors [83-85]. Thus, one can ex-
pect that the nuclear medium can modify the internal structure of nucleons and hadrons and can
affect the interaction with nucleons. Thus, studying such effects due to the hadron internal
structure based on the quarks and gluons can make the QMC model a useful phenomenological
tool for describing the change in the internal structure of hadrons in a nuclear medium.
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The QMC model has been successfully applied for the studies of various properties
of infinite nuclear matter and finite (hyper)nuclei [11,86-89]. Here, we briefly present the
necessary details for understanding our results better. For more detailed discussions and
some successful features of the model, see Refs. [11,86,87,89], and references therein.

We consider nuclear matter (NM) in its rest frame, where all the scalar and vector mean
field potentials, which are responsible for the nuclear many-body interactions, are constants
in the Hartree approximation. We assume SU(2) symmetry for the quarks (m, = my, = my
and g = u or d). Note that the heavier quarks Q = s, ¢, b (hereafter, we will simply
denote heavy quarks as Q, including the s quarks) are not affected directly by the mean
field potentials in the standard QMC model. Thus, when dealing with mesons composed
of valence (heavy quark)-(heavy antiquark) pairs, we will have to proceed in a different
manner for hidden flavor heavier mesons with Q = s, ¢, b and two-heavy-flavored mesons
such as B; and Bs mesons. In this study, we will treat the B, and B} mesons only; however,
for the other two-heavy-flavored mesons B;, By, Ds and D; mesons, see Ref. [90].

The Dirac equations for the quarks and antiquarks in nuclear matter (neglecting the
Coulomb force), in a bag of a hadron, &, (§ = u or d, and Q = s,c or b), are given by
(x = (t,r)bag radius) [55,91-94],

{iy.ax_(mq_vg):m(’(vjnu;vgﬂ(ﬁii) ) (1)
i 2= g~ v 59 (VA - 57 )| ( zﬁg ) — o, @
liy - 9x — mg|pg(x) =0, iy 9x —mqlyps(x) = 0, (3)

where the mean field potentials are defined by V) = glo, V) = gl,w,and V] = gz b, with
gl g1, and gz being the corresponding quark-meson coupling constants. We assume SU(2)
symmetry, my = mg = My, = My ; = mgq. The Lorentz-scalar “effective quark masses”
are defined by, mg = m;, ; = m;’d- =myg =mg— V), and thus my is dominated by ~Vlas
baryon density increases, and can be negative, but one should not demand the positivity of
usual particle mass, since this is nothing but the reflection of the strong attractive scalar
potential. Note that mg = my,, since the ¢ field does not couple to the heavier (“heavy”)
quarks Q = s, ¢, b in the QMC model. Furthermore, when we consider symmetric nuclear
matter (SNM) with Hartre approximation, the p-meson mean field becomes zero, qu =0,
in Equations (1) and (2), and we can ignore hereafter. However, when we consider the
meson-nucleus bound states, the isospin dependent p-meson mean field, as well as the
Coulomb potential in nuclei, will be included if necessary. In this study, only the Coulomb
potentials for the B.-nucleus bound states will be considered.

The static solution for the ground-state quarks (antiquarks) in asymmetric nuclear mat-
ter (ANM) with flavor f(= u, d, s, ¢, b) is written as i¢(x) = Nfe_ieft/RZ ¥¢(r), with the
Ny being the normalization factor, and 1¢(r) the corresponding spin and spatial part of the
wave function.

The eigenenergies for the quarks and antiquarks in a hadron h, in units of the in-
medium bag radius of hadron h, 1/R;, are given by

€u\ X g 1.4
<€u> = Qq + R, (Vw + ZVP>' 4)

€4 ¥ | px 1
(e) = Q) £R;} (VZ — zv;’), (5)
d

€Q=¢€g = Qg, Q=s,¢b. (6)
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The in-medium mass and bag radius of hadron / in the nuclear medium, mj and Rj
respectively, are determined from

=0, )

_ ] 3
mi= L g TR B G
=372 Q h

in particular, for the mesons h = K, K*, D, D*, B, B*, while for the 57 and 7’ mesons, to take
into account flavor mixing, these are given by

2 O)* 2 *
m;; _ Z[ﬂPQq +Rb;;305] Zy + %ﬂR:f’BP, 6‘1;1’;7 - =0, (h =7, 77/), (8)
ap = +/1/3cosfp —/2/3sin6p, bp = v/2/3cos0p +/1/3sinbp )
(for 4/, 5w — 7', and ap <> bp),
»1/2
where m; = mg — v m’é = mg (as already mentioned), Q,’; = Qg = {x% + (R;*Zm;‘) ] ,

Op = Q*a = [sz + (R;‘lmQ)z] 1/2, with x, g being the lowest mode bag eigenfrequencies;
By is the bag constant; 1, o (nq@) are the lowest mode valence quark (antiquark) numbers
for the quark flavors g and Q in the corresponding mesons; and z; parameterize the sum
of the center-of-mass and gluon fluctuation effects and are assumed to be independent
of density [95]. The MIT big parameters zy (z,) and B, are fixed by fitting the nucleon
(hadron) mass in free space.

We choose the values (g, ms, mc, m, = (5,250,1270,4200) MeV) for the current quark
masses, and Ry = 0.8 fm for the free space nucleon bag radius. See Ref. [96] for other
values used (m,, ms = (5,93,1270,4180) MeV result). The quark-meson coupling constants,
gh, ¢l and gJ, for the light quarks were determined by the fit to the saturation energy
(—15.7 MeV) at the saturation density (o9 = 0.15 fm~3) of symmetric nuclear matter for gg
and gJ,, and by the bulk symmetry energy (35 MeV) for gz [35,86]. The obtained values for
the quark—meson coupling constants are ( gg, gZ,, gZ) =(5.69, 2.72,9.33).

Finally, for the mixing angle 0p appearing in Equation (9), we use the value
6p = —11.3°, neglecting any possible mass dependence and imaginary parts [96,97]. Fur-
thermore, we also assume that the value of the mixing angle does not change in the
nuclear medium.

3. Results with the QMC Model

In Figures 1 and 2 we present respectively the QMC model predictions for the effective
masses of B, B¥, D, D*, K and K* mesons [90], and the effective masses and the mass shift
Amy(pp) = mj,(pp) — my, for 7 and i’ mesons with m;; the in-medium meson mass and m,
the vacuum mass [98], in symmetric nuclear matter versus nuclear matter density po/pp.
Clearly, the masses of these mesons decrease in the nuclear medium, and this fact may be
regarded as a signature of partial restoration of chiral symmetry in the medium, although
the QMC model does not explicitly have a chiral symmetry mechanism. Below, we will
discuss and use the results shown in Figures 1 and 2.
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Figure 1. B and B* (left panel), D and D* (middle panel) and K and K* (right panel) meson
Lorentz—scalar effective masses in symmetric nuclear matter versus baryon density (op/pp), calcu-
lated with the OMC model.
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Figure 2. 77 and 7’ effective masses (left panel) and mass shift (right panel) in symmetric nuclear
matter versus baryon density (op/pp), calculated with the QMC model.

4. Combining QMC Model and Effective Lagrangian Approach

Since the Okubo-Zweig-lizuka rule suppresses the interactions mediated by the
exchange of mesons made of light quarks for the case of heavy-heavy mesons, it is therefore
necessary to explore other potential sources of attraction, which could potentially lead
to the binding of heavy—heavy mesons to atomic nuclei. Furthermore, since the heavy
quarks Q = s, ¢, b do not directly interact with the mean fields in a nuclear medium (see
Equation (3)), to compute the effective masses (Lorentz scalar potentials) for the mesons
composed of a (heavy quark)-(heavy antiquark) pair, we take a different approach.

This approach consists of the combined treatment with the QMC model and an
effective Lagrangian. We have already introduced the QMC model above, so we now
describe the effective Lagrangian approach we rely on.

In the effective Lagrangian approach, mesons are treated as structureless point-
like particles, whose interactions are dictated by a local gauge symmetry principle.
In order to be more explicit, we separate our study according to the different mesons.
Part of the descriptions and treatments reviewed here have already been published in
journals [72,77,80,98-101], as well as presented at various conferences [79,102-106].

4.1. The ¢ Vector Meson

The ¢ meson properties in nuclear matter, such as mass and decay width, are strongly
correlated to its coupling to the KK, which is the dominant decay channel in vacuum.
Therefore, the density dependence of the ¢ meson self-energy in nuclear matter arises
mainly due to interactions of the kaons and antikaons with the nuclear medium, and the
kaon and antikaon in-medium properties are calculated in the QMC model [91] (see also
Figure 1 for the effective mass of K (=K) meson). Here we use the effective Lagrangian
approach of Ref. [107] to compute the ¢ meson self-energy.
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The lowest-order interaction Lagrangian providing the coupling of the ¢ meson to the
KK pair reads [107]

L yxx = igp¢" [K(0,K) — (9,K)K], (10)
where g, is ¢KK coupling constant and we use the convention:
Kt - -0
K:(KO )K:(K K) 11)

The scalar self-energy for the ¢ meson, I'ly(p), is determined from Equation (10). The Feyn-
man diagram contributing to ITy(p) at O( gé) is depicted in Figure 3. For a ¢ meson at rest,
the scalar self-energy is given by

8 d?
ily() = —385 [ Greys 8°Dl0)Dxlg = p), (12)

where D (q) = (4% — m% + ie) ! is the kaon propagator; p# = (p° = mg,0) is the ¢ meson

four-momentum vector (¢ at rest), with m, the ¢ meson mass; mg (= my) is the kaon mass.
When my < 2my the self-energy Iy (p) is real. However, when my > 2my, which is the
case here, Iy (p) acquires an imaginary part.

K

K

Figure 3. KK-loop contribution to the ¢ meson self-energy.

The mass of the ¢ meson is determined from the real part of ITy (p) (see Equation (17)),
while its decay width I' to a KK pair from the imaginary part of IT(p) through the optical
theorem (see Equation (15)). The real and imaginary parts of I1y(p) can be computed

as [99]

2, ‘d3q 5 1
Relly = —= 73/ , 13
T R8T J2n (B w4 13)
5 o\ 1/2]3
_ 8 1 |mg(  dmg
Imly =~ o~ [ > (1 2 , (14)

where P denotes the Principal Value of the integral and Ex = (q? + m%)!/2. The integral
in Equation (13) is divergent, but it will be regulated using a phenomenological form factor,
with cutoff parameter Ak, as in Ref. [42].

The decay width I for the process ¢ — KK can be obtained from the imaginary part
of the ¢ meson self-energy Im Il through the optical theorem

1
Tp=——ImII 1
¢ m¢m s (15)

where Im I, is given by Equation (14). Thus, one obtains
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» )\ 1/2
g¢ 1 ﬂ1¢ 417’1K
Tp=2t | 22(1 7K . 16
¢ 37 m3 2( m? (16)

The coupling constant g¢ is determined by the experimental value for the ¢ — KK decay
width in vacuum, corresponding to a branching ratio of 83.1% of the total decay width
(4.266 MeV) [108]. For the ¢ meson mass my we use its experimental value in vacuum
m;XP ' = 1019.461 MeV [108]. For the kaon mass i, there is a small ambiguity since
my+ # Mo in the real world due to the isospin (or charge) symmetry breaking and elec-
tromagnetic interactions. The experimental values for the K™ and K’ meson masses in
vacuum are m’?f " = 493.677 MeV and m%p ‘= 497.611 MeV, respectively [108]. For defini-
tiveness, we use the average of m?ft and m%pt
the effect of this tiny mass ambiguity on the properties of kaon (antikaon) in medium, to be

as the value of myg in vacuum. (However,

presented in the next section, is negligible compared with those obtained by using the
value my+ = 493.7 MeV [91]). This gives gy = 4.539 [99]. The mass of the ¢ meson will be
obtained from the solution of

2 2
mé = (m%) +ReH¢(m§)) = (mg,) - |RGH¢("1$)|' (17)

where Relly is given by Equation (13) and mqo, is the bare ¢ meson mass. In vacuum,
Equation (17), together with the value obtained for the coupling constant, actually fixes the
bare ¢ meson mass m(q),.

Critical to our results of the in-medium ¢ meson mass my and decay width I' at
finite baryon density pg, is the in-medium kaon mass my. The nuclear (baryon) density
dependence of the ¢ meson mass and decay width are driven by the interactions of the kaon
with the nuclear medium, which enter through my in the kaon propagators in Equation (12).
The in-medium kaon mass my was calculated previously in the QMC model, and the results
are shown in the right panel of Figure 1. We note that the kaon effective mass at normal
nuclear density pg = 0.15 fm 3 decreases by about 13% [99]. We remind that, to calculate
the kaon-antikaon loop contributions to the ¢-meson self-energy in symmetric nuclear
matter, the isoscalar-vector w mean field potentials arise both for the kaon and antikaon.
However, they have opposite signs and cancel each other, or can be eliminated by the
variable shift in the loop integral calculation.

To calculate the width and mass of the in-medium ¢ meson, I'; and 1, respectively, we
solve the corresponding Equations (16) and (17) in symmetric nuclear matter by replacing
my by my and mg by mg in the self-energy of the ¢ meson. In Figure 4, we present our
results [99] for the ¢ meson mass (left panel) and decay width (right panel) in nuclear
matter up to pp = 3p¢. As can be seen in Figure 4, the effect of the in-medium change in
kaon mass gives a negative change in ¢ meson mass. However, even for the largest value
of density considered in this study, the downward mass shift is only a few percent for all
values of the cutoff parameter Ag. In Table 1, we present the values for mg- and I'y at
normal nuclear density pg. More quantitatively, from Table 1 we see that the negative kaon
mass shift of 13% induces only ~ 2% downward mass shift of the ¢ meson [99]. On the
other hand, from Figure 4 we see that I'; is very sensitive to the change in the kaon mass.
It increases rapidly with increasing nuclear density, up to a factor of ~20 enhancement
for the largest nuclear density considered, pp = 3p [99]. As can be seen from Table 1,
the broadening of the ¢ meson decay width becomes an order of magnitude larger than its
vacuum value at normal nuclear density.
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Figure 4. In—medium mass (left panel) and decay width (right panel) of the ¢ meson in symmetric
nuclear matter versus baryon density pg/pp.

Table 1. ¢ meson mass and width at normal nuclear density, pp. The ¢ meson mass decreases by
a few percent (1.8% in average), while the decay width increases by an order of magnitude, with
respect to the corresponding vacuum values. All quantities are given in MeV.

Ag = 1000 Ag = 2000 A = 3000
mjl‘) 1009.3 1000.9 994.9
Fj;) 37.7 34.8 32.8

4.2. ycand | /¢ Mesons

The study of interactions of charmonium states, such as 7. and |/, with atomic
nuclei offers the opportunity to gain new insights into the properties of the strong force
and strongly interacting matter [72]. Because charmonia and nucleons do not share light
quarks, the Okubo-Zweig-lizuka (OZI) rule [36—40] suppresses the interactions mediated
by the exchange of mesons composed of light quarks and/or antiquarks. The situation
here is similar to the ¢ meson case and also generally for quarkonia and two-heavy-flavor
mesons). Thus, it is important and necessary to explore other possible mechanisms, which
can provide attractive (repulsive) interactions that could lead to the binding (unbinding)
of charmonia to atomic nuclei [72]. For a review on the subject, see Refs. [8-11]. Here,
we employ an effective Lagrangian approach and consider charmed meson loops in the
charmonium self-energy [42,43,58,72,109]; that light quark-antiquark pair is created from
the vacuum.

Note that, recent lattice study using the HAL QCD method with nearly realistic
pion mass of m,; = 146 MeV, which was also able to reproduce well the physical hadron
masses [110,111], found that the N-c¢ (N-Ji and N-7.) interactions to be attractive in all
distances. They predicted mass reduction of the J/¢-meson at normal nuclear density
of 0.17 fm~3 of about 19(3) MeV. This is consistent with our prediction made without the
“gauge term”, which is to be shown later.

For the computation of the 7, Lorentz scalar potential in nuclear matter, we use an
effective Lagrangian approach at the hadronic level, which is an SU(4)-flavor extension of
light-flavor chiral-symmetric Lagrangians of pseudoscalar and vector mesons [107,112].
When we treat the mesons that contain at least one bottom quark (antiquark), we will use
an SU(5)-flavor Lagrangian [31]. However, one can expect that the SU(5) flavor symmetry
breaking is larger than that of SU(4) due to the current quark mass values of the charm and
bottom quarks. Thus, for the SU(4) flavor sector, we use a flavor SU(4) effective Lagrangian,
and determine the relevant coupling constants based on the flavor SU(4) symmetry.
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We compute the 77, self-energy in vacuum and symmetric nuclear matter, following
our previous works [42,43,58,99,100,102-104,109], and consider only the DD* loop. See
Ref. [72] for details. The interaction Lagrangian density for the #.DD* vertex is given by

Ly.pp+ = igy.op+ (Bune) [D7'D = DD*| ~igy ppene[D™(3,D) — (3, D)D**],  (18)

where D(*) represents the D(*)-meson field isospin doublet, and ¢y.DD* is the coupling
constant. The 7, self-energy in the rest frame of 7. meson, pZC = (my,,0) is given by [72]

2 SgécDD* ST NV
2 () = =252 [Cag (), (19)
where

my (=14 q5)/mp.)
o + wp+)(q0 — wp+)(q0 — My, — wp)

I(q%) = (

Go=Myc —Wp*
(90 — wp+) (g0 — my, + wp)(q0 — My, — wp)

, (20)

Jo=—wWp*

and wp) = (9% + mlzj(*))l/z, with ¢ = |q|. The integral in Equation (19) is divergent,
and we regularize it with a phenomenological vertex form factor

A2+ m .

2 D(*) e

upe(q7) = , (21)
P (Aé(*) + 4“%(*) (q2)>

with cutoff parameter A, as in previous works. See Ref. [72] and references therein.
Thus, to regularize Equation (19), we will introduce the form factor up (k?)up« (k?) into the
integrand. As before, the cutoff parameter Ag) is an unknown input to our calculation (we
use Ap+- = Ap). However, it may be fixed phenomenologically, for example, using a quark
model. In Ref. [42], the value of Ap has been estimated to be A =~ 2500 MeV, and serves as
a reasonable guidance to quantify the sensitivity of our results to its value. Therefore, we
vary it over the interval 1500-3000 MeV [72].

Because the flavor SU(4) symmetry is strongly broken (though less than that of
SU(5),we use the experimental values for the meson masses [108] and known (extracted)
empirical values for the coupling constants, as explained in the following. For the D
meson mass, we take the averaged masses of the neutral and charged states, and sim-
ilarly for the D*. Thus mp = 1867.2 MeV and mp: = 2008.6 MeV. For the coupling
constants, ¢,.pp+ = 0.60 gypp was obtained in Ref. [113], as the residue at the poles of
suitable form factors using a dispersion formulation of the relativistic constituent quark
model, where gypp = 7.64 was estimated in Ref. [114] using the vector meson domi-
nance (VMD) model and isospin symmetry. In this study we use the coupling constant,
gy.op+ = (0.60/ V2) gypp = 0424 ¢ypp [72], where the factor (1/+/2) is introduced to
give a larger SU(4) symmetry breaking effect than Ref. [113].

In this subsection, we will show the mass shift of 7, with the use of both the SU(4)
symmetry coupling constant as well as that with the broken SU(4) coupling constant.
Furthermore, later we will compare the in-medium masses of 7, and |/ with those of
the 75, Y, Bc and BZ, using the coupling constant value ¢,.pp+ = gypp = 7.64 — 7.7,
without any symmetry breaking factor, ie., ¢y, pp+ = (0.60/ V?2) gypp =~ 0.424¢ypp
— &y.0D = §ypp = 7.7, where the tiny difference may be ignored. For the ]/ mass shift
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in this subsection, after the 7. mass shift, we will use only the SU(4) symmetric coupling
constant, gypp = 7.64.

We are interested in the difference between the in-medium, m,’;c, and vacuum, my,,
masses of the 7,

Amy, = my — my,, (22)

with the masses obtained self-consistently from

my, = (niy ) + Ty () = (i, )? — [Ty, ()], (23)

0
17

is given by Equation (19). The Ap-dependent #.-meson bare mass, mgc, is fixed by fitting

where 1 is the bare 77, mass and the 7. self-energy in the rest frame of 7. meson, &, (m%c)
the physical 77.-meson mass, m;, = 2983.9 MeV [72].

The in-medium 7, mass is obtained in a similar way, with the self-energy calculated
with the medium-modified D and D* meson masses. The nuclear density dependence
of the 77.-meson mass is influenced and determined by the intermediate-state D and D*
meson interactions with the nuclear medium through their medium-modified masses. The
in-medium masses m7, and mj,. are calculated within the quark-meson coupling (QMC)
model [42,43], in which effective scalar and vector meson mean fields couple to the light u
and d quarks in the charmed mesons [42,43].

In the middle panel of Figure 1 we present the resulting medium-modified masses
for the D and D* mesons, calculated within the QMC model [42], as a function of pg/py,
where pp is the baryon density of nuclear matter and pg = 0.15 fm~3 the saturation density
of symmetric nuclear matter. The net reductions in the masses of the D and D* mesons
are nearly the same as a function of density, with each decreasing by about 60 MeV at py.
The behavior of the D meson mass in medium (finite density and/or temperature) has
been studied in a variety of approaches, where some of these [115-117] find a decreasing
D meson mass at finite baryon density, while others [118-122], interestingly, find the
opposite behavior. However, it is important to note that none of the studies in nuclear
matter are constrained by the saturation properties of nuclear matter, despite the fact that
they are constrained in the present work. Furthermore, some of these works employ a
non-relativistic approach, where relativistic effects might be important.

In Figure 5, we present the 7.-meson mass shift, Am,_, as a function of the nuclear
matter density, pp (05/po), for four values of the cutoff parameter Ap [72]. As can be seen
from the figure, the effect of the in-medium D and D* mass changes is to shift the 77, mass
downwards. This is because the reduction in the D and D* masses enhances the DD*-loop
contribution in nuclear matter relative to that in vacuum. This effect increases the larger
the cutoff mass Ap becomes.

The results described above with the two values of the ¢, pp+ coupling constants, both
support a small downward mass shift for the 7, in nuclear matter, and open the possibility
to study the binding of 7. meson to nuclei [72].

We now turn to the discussion of the |/ vector meson [105,106], following the same
procedure as in the ¢ meson. In Refs. [11,42,43], the | /1 self-energy intermediate states
involved the D, D, D*, and D* mesons. However, it was found that the ] /¢ self-energy has
larger contributions from the loops involving the D* and D* mesons, which is unexpected;
see Ref. [11,42,43] for details on the issues and possible explanations. As explained in
Ref. [11], this is related to the divergent behavior of the vector meson propagator. We
present results for the J /1 mass shift in nuclear matter and nuclei considering only the
lightest intermediate state mesons in the ] /1 self-energy, namely the DD loop [105,106].



Symmetry 2025, 17,787 11 of 56
0 . — . ; O/ 1 T T
D AR
RN 10RO -
NN NN
-50 AR 20 \\\\
NS - - N s
< NS % '\'\\\ .
§ ‘.\.\\\ E \.\\\
~,-100 AR ;_—'*_30 ~ >~ ]
ES—_ ~ o \\\\ g \‘\' ~—_
EE ~ T 3 40 ~ T
1sokl— Ap=2000 MeV "-\\ A= 1500 MeV. "~ ]
ST |- Ap=4000 Mev - T = A .
c— AD= 6000 MeV C—- /\::30011 MeV
2005 ——s————5——3 . o5 T 15 2 25 3
0 0.5 1 1.5 2 2.5 : . .

PP (Pg=0.15 fm™)

Py/P, (Pg=0.15fm™)

Figure 5. 1. mass shift (i) with the SU(4) symmetric coupling [90], gy.DD = 7.64 (left panel), and
(ii) with the broken SU(4) symmetry coupling [72] (0.6/v/2) x ( $y.DD* = 7.64) (right panel), versus
nuclear matter density for various values of the cutoff parameter.

We use the following phenomenological effective Lagrangian densities at the hadronic
level, which are similar to those used above for the ¢-meson,

Lint = Lypp + LyypdD, (24)
LL,IJDD = iglpDD l,l)’4 [D(E)HD) — (E)HD)D], (25)
Lyypp = gippYuy"DD. (26)

where gypp is the ] /1 DD coupling constant and we use the convention

DO

For notational simplicity, we have written i to denote the field representing the J /1 vector

D= (D" D). (27)

meson. We note that the Lagrangians are an SU(4) extension of light-flavor chiral-symmetric
Lagrangians of pseudoscalar and vector mesons. In the light flavor sector, they have been
motivated by a local gauge symmetry, treating vector mesons either as massive gauge
bosons or as dynamically generated gauge bosons. Local gauge symmetry implies the
contact interaction in Equation (26) involving two pseudoscalar and two vector mesons.

In view of the fact that SU(4) flavor symmetry is strongly broken in nature, and in
order to stay as close as possible to phenomenology, we use the experimental values for
the charmed meson masses and use the empirically known meson coupling constants.
For these reasons, we do not use gauged Lagrangians for the study of |/ nuclear bound
states—a similar attitude was followed in Ref. [112] in a study of hadronic scattering of
charmed mesons. However, in order to compare results with Ref. [57] and assess the impact
of a contact term of the form Equation (26), we also present results for the /i mass shift
including such a term.

We are interested in the difference of the in-medium, ml’;], and vacuum, 1y,

Amy = my, — my, (28)
with the masses obtained from
my = (my)? + Zpp(mg) = (my)? — [Zpp(m)]- (29)

Here mgj is the bare mass and X5 (k?) is the total ] /¢ self-energy obtained from the DD-
loop contribution only. The in-medium mass, 11y, is obtained likewise, with the self-energy
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calculated with medium-modified D meson mass calculated by the QMC model (see again
the middle panel of Figure 1).

The scalar self-energy for the ] /1 meson in the rest frame of [ /¢, 5 (m%/,), is obtained
from Equation (25). The Feynman diagram contributing to ]/ self-energy O( glzp) is

identical to the one in Figure 3 with the replacements ¢ — ]/, K — D and K — D.
For a | /1 meson at rest, the self-energy is given by

2
8ypD [
2) = — ;;TZ /0 dqqZ FDE(qZ) KDE(qz)f (30)

where g = |q|, and F5(9%) = up(g®)up(g?) is the product of vertex form-factors with
up(q?) and ug given as in Equation (21) with cutoff parameters Ap and A, respectively
(we use Ap = Ag); and K5(¢2) for the DD loop contribution is given by

2y _ 4 92
KDE("] >:%<w%_m3p/4_‘:>r (31)
where wp = (92 +m3)'/2, & = 0 for the non-gauged Lagrangian of Equation (25) and
¢ = 1 with Equation (26), for the gauged Lagrangian of Ref. [57].

As before, the cutoff parameter Ap is an unknown input to our calculation. However,
it may be fixed phenomenologically. In Ref. [42] the value of Ap has been estimated to
be Ap =~ 2500 MeV, and serves as a reasonable guidance to quantify the sensitivity of
our results to its value. Since this is a somewhat rough estimate, and it is made solely
to obtain an order of magnitude estimate, we allow the value of Ap vary in the range
2000 MeV < Ap < 6000 MeV; see Ref. [11,42,43].

The bare | /¢ mass molp and the coupling constants remain to be fixed. The bare mass
is fixed by fitting the physical mass 1/, = 3096.9 MeV using Equation (29). is strongly
broken, we use experimental values for the meson masses and known empirical values for
the coupling constants. For the D meson mass, we take the averaged masses of the neutral
and charged D mesons. Thus mp = 1867.2 MeV [108]. For the coupling constants, we use
gypD = 7.64, which is obtained by the use of isospin symmetry [114]. Note that, for /1,
we use only the SU(4) coupling constant extracted, different from that of the 7. case (no
extra SU(4) breaking effect on the coupling constant).

The nuclear density dependence of the J/1-meson mass is influenced and determined
by the intermediate-state D and D meson interactions with the nuclear medium through
their medium-modified masses. The in-medium masses 11y, and 5. = np. are calculated
within the quark-meson coupling (QMC) model [42,43], in which effective scalar and
vector meson mean fields couple to the light # and d quarks in the charmed mesons [42,43].
However, in the self-energy of the DD loop, the vector potentials cancel out, and there is
no need to consider the effects.

Again, see the middle panel of Figure 1; we present the medium-modified masses for
the D and D mesons (m%* = mp,), calculated within the QMC model [42] as a function
of pg/po- In Figure 6, we show the contribution of the DD-loop to the |/ mass shift for
¢ = 0. As the cutoff mass value increases in the form factor, the DD-loop contribution
obviously becomes larger.

First, from the result shown in the left panel of Figure 6 without the gauge term (¢ = 0),
one can see that the |/ obtains the attractive potential for all the values of the cutoff Ap,
2000-6000 MeV [105,106]. In contrast, one can see from the right panel in Figure 6, that
the effect of the gauge term tends to oppose the effect (repulsion) of the contribution of
the DD-loop as noticed in Ref. [42,105,106]. When the value of Ap is smaller, the mass
shift actually becomes positive. The results shown in Figure 6 reveal a negative mass shift



Symmetry 2025, 17, 787

13 of 56

(attractive potential) for the J /¢ meson in symmetric nuclear matter for all values of the
cutoff mass parameter Ap when ¢ = 0 and, as in the #. meson case, open the possibility to
study the binding of | /¢ mesons to nuclei [105,106].
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Figure 6. Contribution from the DD —loop to the ] /¢ mass shift in symmetric nuclear matter without
the gauge term (¢ = 0) for five different values of the cutoff Ap (left panel), and the comparison with
including the gauge term (¢ = 1) for two values of Ap (right panel).

4.3. Y and n, Mesons

First, we discuss the Y (vector) meson. The Y mass shift in nuclear matter originates
from the modifications of the BB, BB*, and B*B* meson loops contributions to the Y self-
energy, relative to those in free space; the lowest order Feynman diagrams associated with
these contributions are similar to Figure 3. The Y self-energy is calculated using an effective
SU(5)-flavor symmetric Lagrangian at the hadronic level [31,77], where mesons are con-
sidered to be point like, for the interaction vertices YBB, YB*B*, and YBB* neglecting any
possible imaginary part. In Ref. [77] we made an extensive analysis of these contributions
to the Y self-energy and found that, for example, the B* B* loop gives an unexpectedly large
contribution, similar to the case of /. For this reason, and to be consistent with the 7,
case studied below, we consider only the BB loop contribution to the Y self-energy [77],
leaving for the future a full study of all three contributions. This treatment is also consistent
with the ]/ self-energy calculation with the lowest DD loop contribution, and we can
compare the amounts of mass shift for the Y and J/¢ based on a similar footing. The
interaction Lagrangian for the YBB vertex is given by [77]

ﬁygg = l'gYBBYy [EaHB — (ayﬁ) B], (32)

where gy pp is the coupling constant for the vertex Y BB vertex, and the following convention
is adopted for the isospin doublets of the B mesons

B= (B* @).

The coupling constant gypp is calculated from the experimental data for [(Y — e*e™) using
the vector meson dominance (VMD) model. This gives gypp = 13.2; see Refs. [31,77] and
references therein for details. We note that a similar approach was taken in Refs. [42,114] to
determine the coupling constant g;,,pp = 7.64 for the vertex | /¢ DD.

Including only the BB loop, Equation (32), the Y self-energy Ly for an Y at rest is given
by [77]

g
Zy(nd) = ~SY2 ["dq 2 1(77 3)
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where

1) = — <qz> (34)

~ wp \ wp—mi /4

with g = |q| and wp = (4* + m%)l/z. As is always the case in an effective Lagrangian
approach, when mesons are treated as point-like particles, the self-energy loop integrals
like Equation (33) are divergent and therefore need to be regularized. To this end, we
introduce into the integrand of Equation (33) a phenomenological vertex form factor ug(4%)
with cutoff parameter Ap [42,43,58,99,100,102-104,109], for to each YBB vertex, as we did
in previous cases; see Equation (21). We recall that form factors are necessary to take into
account the finite size of the mesons participating in the vertices, while the cutoff Ap, which
is an unknown input to our calculation, may be associated with energies needed to probe
the internal structure of the mesons. Thus, in order to reasonably include these effects,
and to quantify the sensitivity of our results to its value, we vary Ap over the interval
2000-6000 MeV (roughly up to around the mass of the B meson); see Ref. [77] for a more
extensive discussion.

The Y mass shift in nuclear matter, Amy, is calculated from the difference between its
mass in the medium, myJ, and its value in vacuum, my, in the rest frame of the Y, namely,

Amy = my — my, (35)
where these masses are computed self-consistently from
my = (my)? +Zy(my) = (my)* — [Ty (m3)], (36)

with m{ the bare Y mass and the Y self-energy Ly (m?) is given in Equation (33). The
Ap-dependent Y bare mass, mY, is fixed with the physical Y mass, namely my = 9640 MeV.

The in-medium Y mass my, is obtained by solving Equation (36) with the self-energy
calculated with medium-modified B mass. This medium-modified mass was calculated
using the quark-meson coupling (QMC) model as a function of the nuclear matter density
pp, and the results are shown in Figure 1 (left panel). From Figure 1, it can be seen that the
QOMC model gives a similar downward mass shift for the B and B* in symmetric nuclear
matter. For example, at the saturation density pg = 0.15fm ™, the mass shift for the B
and B* mesons are respectively, (my —mp) = —61 MeV and (mp. —mp:) = —61 MeV,
where the difference in their mass shift values appears in the decimal place. The val-
ues for the masses in vacuum for the B and B* mesons used are mp = 5279 MeV and
mp+ = 5325 MeV, respectively.

The nuclear density dependence of the Y mass is driven by the intermediate BB state
interactions with the nuclear medium, where the effective scalar and vector meson mean
fields couple to the light u and d quarks in the bottom mesons, B and B*. In Figure 7 we
show the results for the Y mass shift as a function of the nuclear density, pp/py, for five
values of the cutoff parameter Ap. As can be seen in Figures 1 (left panel) and 7, a decrease
in the in-medium B meson mass induces a negative mass shift for Y. As expected, the mass
shift amount of the Y is dependent on the value of the cutoff mass Ap used, being larger for
larger Ap; see Ref. [77] for further details. For example, for the values of the cutoff shown
in Figure 7, the Y mass shift amount varies from —16 to —22 MeV, at pg = po.
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Figure 7. Y mass shift in symmetric nuclear matter as a function of the nuclear matter density (og/po).

For the calculation of the #;, mass shift in nuclear matter, we proceed similarly to
the Y case and take into account only the BB* loop (pseudoscalar-pseudoscalar-vector)
contribution to the 7, self-energy. In Ref. [77], we have also studied the mass shift, including
the 1, B*B* interaction in the 7, self-energy, and found that its contribution to the mass
shift amount turned out to be negligible. Thus, in order to be consistent with the Y case
above, in both cases we consider only the minimal contribution, and here we only give
results for the BB* loop in the #;, self-energy. This is also a consistent treatment with
the 7. mass shift calculation, and later we can compare based on a similar footing of the
self-energy calculation.

For the calculation of the #, mass shift in symmetric nuclear matter, we proceed
similarly to the Y and 7, cases, and take into account only the BB* loop contribution to
the 7, self-energy. As already mentioned, in Ref. [77], we have also studied including the
71, B* B* interaction in the 7, self-energy and found that its contribution to the mass shift
amount is negligible.

The effective Lagrangian for the 7, BB* interaction is [77]

Ly = igy,pe [(9m,) (BB — BB; ) — 1y (BL(2"B) — (" B)By, ), (37)

where g, pp+ is the coupling constant for the 17, BB* vertex. We will use its value in the
SU(5) scheme [77], namely g, pp+ = §YBB = §YB*B* = 457%. Using Equation (37), the 7,
self-energy for an 7, at rest is given by [72]

883,580 [
Ty =g /O dq q*1(q%), (38)

where

q 2_ 2 — —
(% WB*)(% My, wp)

o=y, —wp
my, (—1+ q3/m}.)

(g0 — wp+) ((q0 — my,)? — w)

, (39)

Jo=—wpx

with g = |q| and wp- = y/¢? + m%.. The mass of the 77, meson, in vacuum and in
nuclear matter, is computed similarly to the Y case [77]. First, we introduce form factors,
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as in Equation (21), into each #,BB* vertex, with Ap = Ap+, to regularize the divergent
integral in the self-energy Equation (38). Second, we fix the value of the 7, bare mass
using the physical (vacuum) mass of the 7, namely m,;, = 9399 MeV, using Equation (36)
appropriately written for the 7, case. Then, for the calculation of the #;, mass shift in
nuclear matter, the self-energy %, is computed using the medium-modified B and B*
masses calculated with the QMC model and shown in Figure 1 (left panel). The results
for the 7, mass shift behavior in nuclear matter are shown in Figure 8 as a function of
the nuclear matter density pg/po, for the same range of values for the cutoff mass Ap as
for the Y [77]. As can be seen from Figure 8, the mass of the 7, is shifted downwards
in nuclear matter for all values of the cutoff Ap, similarly to the Y. For example, at the
normal density of symmetric nuclear matter pg, the mass shift value varies from —75 MeV
to —82 MeV when the cutoff varies from Ap = 2000 MeV to Ap = 6000 MeV. Similarly to
the Y mass shift, the dependence of the 7, mass shift amount on the values of the cutoff is
small, for example, just —7 MeV when the cutoff is increased by a factor of 3 at pg = pg [77].
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Figure 8. 17, mass shift in nuclear matter as a function of the nuclear density pg/po.

4.4. B. and B} Mesons

The B, (B}) in-medium downwards mass shift comes from the enhanced B*D + BD*
(BD) loop contribution to the self-energy, relative to those in free space. See Figure 3 but
replacing the KK loop properly by B*D and BD* loops (BD loop). See Refs. [90] for details.
By expanding the SU(5) flavor symmetric effective meson Lagrangian [31] in terms of the
components of pseudoscalar (P) and vector (V) 5 x 5 matrices, we obtain the following
Lagrangians for the interactions B.B*D, B.BD* and B}BD [90]:

Lppp = 1igppp[(uB;)D — B (9,D)]B*" +h.c.,
Lp.pp+ = 1gB. BD*[(ayB B — Bf(3,B)D*" + h.c.,
—igpeppBe "' [B(2,D) — (3,B)D] + h.c., (40)

\_/\_/

Lp:BD

where the conventions for the B, D and B* mesons have been already given.

The SU(5) symmetric universal coupling g yields the relations, gp_p*p = gB.BD* =
gB:ap- The value of g is fixed by gypp = 45—3’0 ~ 13.2 by the Y decay data T(Y — eTe™)
with the vector meson dominance (VMD) model [31,77], and thus we obtain,

2 g
i = —— , wp = « = Qpipp = —=— ~ 11.9. 41
8B.B*D \/EgYBB 8B.B*D = &B.BD &B*BD 2\@ (41)



Symmetry 2025, 17, 787

17 of 56

The in-medium mass shift of the B, meson, Amp_, is computed by the difference of the
in-medium mj_and the free space mp, masses

*

Amp, = mp —mpg, (42)

where, the free space mass mp_ (input) is used to determine the bare mass m%c by

wh, = (mh) + 2.3 = (m} )"~ 12,031 3)

Note that the total self-energy Zp_ is calculated by the sum of the B*D and BD* meson loop
contributions in free space, ignoring the possible B, meson as well as all the other meson
widths (or imaginary part) in the self-energy The in-medium B, mass mgz is similarly
calculated, with the same bare mass value m$ p, determined in free space, and the in-medium

masses of the (B, B*, D, D*) mesons (my, my., mp,, mj,.), namely,

2

my, = |m},(B"D+BD")|" —|Zs(B*D) + Iy (BD*)|(n},), (44)
2

mig = |[m§ (B*D+BD")|" — [T} (B"D) + =5 (BD*) | (m2). (45)

We note that, when the self-energy graphs contain different contributions, as
Yp, (total) = L(B*D) + Z(BD*), m® depends on both £(B*D) and %(BD*) to repro-
duce the physical mass mp . Thus, one must be careful when discussing the B. in-
medium mass and mass shift of each loop contribution X(B*D) and X(BD*), since
m®(B*D + BD*) # m°(B*D) # m°(BD*), and m°(B*D + BD*) # m°(B*D) + m°(BD*).
The dominant loop contribution can be known by the decomposition of the self-energy
=) (B*D + BD*) = £ (B*D) + £ (BD*). It turned out that the dominant contribution
is from the BD* loop [90]. This is due to the dominant contribution from the lighter vector
meson D* due to the vector meson propagator Lorentz structure.

As an example, in the case considering solely the B*D loop without the BD* loop, the

“in-medium” B, self-energy in the rest frame of B is given by

x 4
ZEP () = —SED [ 4018 0 o), (46)

with g = |q|, and I B D(4?) is expressed, after the Cauchy integral with respect to g° complex

plane shifting ¢° Varlable for the vector potentials as,
my? (=1 + g5/ mi)
(90 — wE*)(ko —my + wp)(q0 — mp, — wp)
m (-1 + /)
(90 + wp ) (q0 — Wi ) (g0 — mp_ — wp)

IEP(?) =

QO:—WE*

;o (47)

¥ *
q{)*mBC 7wD

where, Fp_p:p in Equation (46) is the product of vertex form factors in medium to regularize
the divergence in the loop integral, Fp_pp(q°) = up,p+(9?)up.p(4%). They are given by

. . . . A%* +m§2
using the corresponding meson in-medium masses, up g+ = A%Tw*i(cqz) and ug.p =
B B

2
A} +mi? . . . .
(A%&;ZB(CZ)) with A+ and Ap being the cutoff masses associated with the B* and D

mesons, respectively. We use the common value A = Ap- = Ap. A similar calculation is
performed to obtain the BD* loop contribution, namely, in Equations (46) and (47), as well
as in the form factors, by replacing (B*, D) — (B, D*).
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The choice of cutoff value has no negligible impact on the results. We use the common
cutoff A = App+ p p+ x k+ by varying the A value. The A value may be associated with
the energies to probe the internal structure of the mesons. In the previous study [77],
it was observed that when the values of the cutoff become close to the masses of the
mesons in calculating the self-energies, a certain larger cutoff mass value range did not
make sense to serve as the form factors. This is because the Compton wavelengths of the
corresponding cutoff mass values reach values near and/or smaller than those of the meson
sizes. Therefore, we need to constrain the cutoff A value in such a way that the form factors
reflect properly the finite size of the mesons. Based on the heavy quark and heavy meson
symmetry, we use the same range of values for A as it was practiced for the quarkonia [77].
Thus, we use the values, A = 2000, 3000, 4000, 5000, and 6000 MeV.

The B, mass shift amount Amp_ (BD* + B*D) at py, which includes the total (BD* +
B*D) loop contributions, ranges from —90.4 to —101.1 MeV (mp (BD* + B*D) = 6184.1 to
6173.4 MeV). Later, we will compare the B, mass shift and those of the #; and 7.

Next, we study the in-medium mass shift of the B meson calculated in the rest
frame of B;. For the B} self-energy, we include only the BD loop contribution, as already
commented based on the Y and ]/ self-energies [77],

x —485:5D
B () = —5 5 / dqq* I8P (%) Fa:pp (1), (48)
where | ggD (4%) is expressed by,

1
(90 — wi)(q0 — mpe + wp)(qo — mp. — wpy)

Jo=—wj
1

(90 + wg) (g0 — wi) (q0 — my, —wp)

gk *
qo—mBg —wh

with g = |q|. In Equation (48), Fz:pp(4?) is given by the product of the form factors,

2 2 2
Faenn () = upp(q? 2), with d upp bei — () and
B:8p(97) = up:p(q°)up:p(q”), with up:p and up:p being up:p = A () an

My \? .
ugsp = (/\%)Jilcu{;fqz)) . Again we use A = Ag = Ap ranging 2000 to 6000 MeV.

4.5. Comparison with Heavy Quarkonia

We now compare in Figure 9 the results of B, and B} [90], with those of the heavy
quarkonia [11,42,72,77]. Since the B, meson is a pseudoscalar meson, we compare with the
bottomonium 7;, and charmonium 7. (upper panel), while for the B} meson, we compare
with those of the Y and |/ (lower panel).

For the comparison, we would like to emphasize that we use the empirically extracted
SU(4) sector coupling constants for the charm sector (1, and | /), which would be more
reasonable than using the empirically extracted SU(5) sector coupling constant from the
I'(Y — ete™), since the SU(5) flavor symmetry breaking is expected to be much larger than
that of the SU(4) based on the quark masses.

The value for the coupling constant of the vertex | /¢ DD used in the calculation of
J /¢ mass shift, was obtained from the experimental data for I'(J/¢ — e*e™ ) by the VMD
hypothesis (note that the slight difference, 7.64 — 7.7 below, but the difference is negligible)
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where g is the universal SU(4) coupling constant.
For the coupling constant g, pp+ used in the calculation of the 7. mass shift, we also
adopt the SU(4) symmetry for the charm sector, which gives the relation

g
87.DD* = &J/yDD NG (51)

A comprehensive list of the values used for the coupling constants is presented in
Table 2.

Table 2. Coupling constant values in SU(4) and SU(5) symmetries.

SU(5)
g 18.9
&8J/yDD 7.7
81.DD* 7.7
SU(5)
g 33.4
8YBB 13.2
8y BB* 13.2
&B.B*D 11.9
&8B:BD 11.9

Although we make this comparison, we repeat that this is not made based on a
rigorous SU(5) symmetry of the same footing. Namely, the coupling constant g is calculated
for the charm sector (J /1, 1) based on the SU(4) symmetry, and for the bottom sector (Y,
1p) and (B¢, BY) based on the SU(5) symmetry. This comparison would make sense based
on the fact that SU(5) symmetry is much more broken by the quark masses than that of
SU4).

Note that, although for the mass shift amount Am;, [72], the cutoff mass values
A = Ap = Ap+ = 3000 and 5000 MeV are missing, it is irrelevant to see the mass shift
range for the cutoff range between the 2000 MeV and 6000 MeV.
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Figure 9. Comparison of the mass shift of B, with #;, and 7. (upper panel) as well as of B} with Y
and J /¢ (lower panel).

In the study of the 7. mass shift, only the DD* loop contribution was included, and
it corresponds to the mass shift value Am, (DD*) at pg ranges —49.2 to —86.5, for the
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cutoff mass values Ap = Ap- of 2000, 4000, and 6000 MeV. The estimated values for the 7
mass shift Am,, (BB*) at pg including only the BB* loop, ranges from —74.2 to —82.0 MeV,
where the same range of the cutoff mass value is applied for the present study. The total
B*D + BD* loop contributions for the B, mass shift give a more negative mass shift than
those of the 7, and 7. This fact indicates that the B, mass shift value does not show the
middle range mass shift value between those of the 7. and #;, which may be different from
one’s naive expectation.

Next, we compare the mass shift behaviors of Y, B} and [/ in Figure 9 (lower panel).
The Y and J /1 mass shift values are calculated by taking, respectively, only the (minimal)
BB and DD loop contributions corresponding to the present B} meson treatment with only
the BD loop. The mass shift value Amy (BB) at py ranges from —15.9 to —22.1 MeV, while
Amj,y(DD) at pg ranges from —5.3 to —20.7, when the common range of the A (2000 to
6000 MeV) is used. The corresponding B; mass shift value Amp: (BD) at pg ranges from
—14.5 to —19.7 MeV. The B} meson in-medium mass shift value is less dependent on the
cutoff mass value than that of the J/¢. Although the mass shift behavior depends on the
cutoff mass value, the global trend shown in the lower panel of Figure 9 indicates that
Amp is more or less in the middle of the corresponding Amy and Amj .

5. Meson—-Nucleus Potential

The baryon density dependence of the mass shift behaviors of the 17, 4/, ¢, ¢, [/, 13,
Y, B;, and B! mesons in nuclear matter, shown in Figures 2, 4 (left panel), 5-8, 10 and 11
indicate that the nuclear medium provides attraction to these mesons, and opens the
possibility for their binding to nuclei.
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< 100f AR :
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150 —— A=3000MeV T S ]
S0P =20 A 24000 Mev SR S
----- A = 5000 MeV TS
[ —— A=6000 MeV

R P T P R R B
2000 0.5 1 1.5 2 2.5 3

PPy

Figure 10. Total (B*D + BD*) loop contribution for the in—medium B, mass shift versus baryon
density (og/pp) for five different values of the cutoff mass A.

Therefore, we now consider the nuclear bound states for several of these mesons,
which we generally denote the meson as &1, when the mesons have been produced nearly at
rest inside nucleus A, and study the following nuclei in a wide range of masses, namely
4He, 12C, 10, ¥0Ca, 8Ca, Zr, 1 Au, and 2%Pb.

In a local density approximation, the meson h potential within a nucleus A is given by

i
Via(r) = Una(r) = 5 Wia(r), (52)
where r is the distance from the center of the nucleus; Uy (r) = Amy,(pp(r)), with Amy,(pp)
the value of mass shift computed previously for meson & as a function of nuclear density
pg; and p4 (r) is the baryon density distribution in the nucleus A. The imaginary part
of the potential W), 4 (r), which is related to the absorption of the meson / in the nuclear
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medium, is included only for the ¢, 77, and " mesons in the present study. For the ¢ meson
it is given by Wya(r) = Ty (04 (r)) where T(pp) is the ¢ decay width in a nucleus A,
Equation (16). For the 77 and 1" mesons Wy, (r) = —yAmy,(op(r)) + 7. Here I} the
meson decay width in vacuum (1“;7’ac = 1.31 keV and F;}’?C = 0.188 MeV [97]), and vy is a
phenomenological parameter used to simulate the strength of the absorption of the meson
in the nuclear medium. The values of the v parameter used below cover the estimated
widths of the 77 and 7’ mesons in the nuclear medium [98]. The nuclear density distributions
p4 (r) for the nuclei listed above are calculated using the QMC model [123], except for
“He, which we take from Ref. [124]. Before proceeding, a comment on the use of the local
density approximation might be useful, in particular for “He nuclei. At the position r
inside nucleus A, the nuclear density is p4(r), and the potentials (effective masses) are
taken from the uniform (constant) nuclear density calculation in nuclear matter. For small
nuclei, such as “He, this might appear problematic at first sight since for such a nucleus the
r-dependence of the nuclear density is expected to be relatively rapid (strong). Because the
r-dependence of the nuclear density can be faster than for larger nuclei, depending on the
interval value Ar, to use the local density approximation, it might not be good enough to
assume the uniform nuclear density between the interval Ar. However, our calculation uses
Ar = 0.04 fm with the interpolation, and we expect the local density approximation even
for the “He nucleus to be sufficiently good. For the “He nucleus, the nuclear density change
within the interval 0.04 fm is very small and thus can be regarded as a constant density.
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I —— A=6000MeV ]
_ A L 1 L 1 L 1 L 1 L 1 L 1
05 1 15 2 25 3

P&/P,

Figure 11. BD loop (total) contribution for the in—medium B} mass shift versus baryon density
(oB/ po) for five different values of the cutoff mass A.

In the following figures, we present the meson—-nucleus potentials for some selected
nuclei computed using Equation (52).

In Figures 12 and 13, we present the ¢-meson potentials calculated for some nuclei,
for three values of the cutoff parameter Ag, 2000,4000, and 6000 MeV. One can see that
the depth of the real part of the potential, Uy (), is sensitive to the cutoff parameter, from
—20 MeV to —35 MeV for *He and from —20 MeV to —30 MeV for 2%8Pb [100]. In addition,
one can see that the imaginary part does not vary much with Ag. Furthermore, note that the
imaginary part of the potential is repulsive. This observation may well have consequences
for the feasibility of experimental observation of the expected bound states [100].

In Figures 14 and 15, we present, respectively, the 77.-meson potentials for selected
nuclei listed above and various values of the cutoff parameter Ap [72], with the SU(4)
breaking parameter of 0.6/+/2 for the coupling constant as explained in Section 4.2. From
the figures, one can see that the 7. and |/ potentials in the nuclei are attractive in all cases,
but their depth depends on the value of the cutoff parameter, which becomes deeper the
larger Ap becomes. This dependence is, indeed, an uncertainty in the results obtained in
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our approach when using an effective Lagrangian approach. Note that this is the same
conclusion we reached from the mass shift computed in the previous Section 4.2 [72].
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Figure 12. Real [Uy(r)](r)] part of the ¢ —meson——nucleus potentials in some nuclei selected, for

three values of the cutoff parameter Ag.
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Figure 14. 57.-nucleus potentials for various nuclei and values of the cutoff parameter Ap [72]. Note
that the potentials are calculated with the SU(4) breaking parameter, 0.6/+/2 for the coupling constant,
as explained in Section 4.2.
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Figure 15. | /i-nucleus potentials for various nuclei and values of the cutoff parameter Ap.

In Figures 16 and 17 we present the bottomonium-nucleus potentials for some of

the nuclei listed above and the same values of the cutoff parameter Ap that were used

in the computation of the mass shift in the previous Section 4.3 [80]. We can see from

Figures 16 and 17 that the V} 4 potentials, for h = Y and #;, respectively, are attractive
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for all nuclei and all values of the cutoff mass parameter used [80]. However, for each
nucleus, the depth of the potential depends on the value of the cutoff parameter, being more
attractive the larger Ap becomes. This dependence is expected and is, indeed, an uncertainty

in the results obtained in our approach [80].
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Figure 16. Y-nucleus potentials for various nuclei with several values of the cutoff parameter Ap.

Next, the calculated potentials for the # and 1’ mesons in nuclei are shown in
Figures 18 and 19 [98]. These figures show that all potentials for the  and 7’ in nuclei
are attractive. This is so because the corresponding value of the mass shift (in nuclear
matter) is negative for both mesons (see Section 2). The differences in the potentials, for a
given meson, reflect the differences in the baryon density distributions for the nuclei stud-
ied [98]. Furthermore, note that for a given nucleus, the potentials for the 77 and #’ are very
similar; the reason for this is that the values of the mass shift are very similar, as shown in

Figure 2 [98].
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Figure 17. 17,-nucleus potentials for various nuclei with several values of the cutoff parameter Ap.
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Figure 19. 5'-nucleus potentials for several nuclei.

Finally, the nuclear strong interaction potentials for the Bf-A systems are presented
in Figure 20, together with the attractive and repulsive Coulomb potentials, where the
Coulomb potentials are not added, but they will be included in calculating the bound state
energies in next section.
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Figure 20. Attractive and repulsive Coulomb potentials, together with the strong nuclear potentials
for the BX —A systems.
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6. Numerical Results for the Meson-Nucleus Bound State Energies

We now compute the meson h-nucleus A bound state energies, for h = n, 1/, ¢, 1.,
J/¢, 1, Y and B}, in a wide range of nuclear masses A = 4He, 12C, 160, 40Ca, 48Ca, 07r,
197 Au, and 2%8Pb by solving the Klein-Gordon equation (KGE)

(=2 + m+ V()2 () = E2¢(x) (53)

where V(r) = V(r) is the scalar nuclear potential associated with mass shift, given by
Equation (52), r = [r| is the distance from the nucleus, and m is the reduced mass of the
meson h-nucleus A system myma/(my + my4), in vacuum. The bound state energies E
and widths I' are given by are givenby E = £ — m and I’ = —2Im &, respectively, where
€ is the energy eigenvalue in Equation (53). Note that, when the Coulomb or vector
potential is relevant, the right hand side of Equation (53) must be modified properly as
Er — (€ - VV,COHI)Z with Wy coy being the vector and Coulomb potentials, respectively.
See Ref. [101] for details.

Before proceeding to solve Equation (53), we note that we have also solved to approx-
imations of Equation (53), namely the Schrodinger equation and also the KGE dropping
the V2(r) term in Equation (53) for some meson-nucleus systems. In all cases, we obtain
essentially the same results, which do not change the conclusions about the existence of the
bound states.

We solve the Klein—Gordon equation using the momentum space methods [125].
Here, Equation (53) is first converted to momentum space representation via a Fourier
transform, followed by a partial wave-decomposition of the Fourier-transformed potential,
or we obtain directly the partial wave decomposition in momentum space by a double
Spherical Bessel transform. For 77, 7', ¢, ¢, and ] /1, the method used is the partial wave-
decomposition of the Fourier-transformed potential. For the BY we employ the direct
double Spherical Bessel transform, and for Y and #;, we use both methods. Then, for a
given value of angular momentum /, the eigenvalues of the resulting equation are found
by the inverse iteration eigenvalue algorithm. The detailed comparison and discussions
were made in Ref. [101], and it turned out that the main conclusions remain valid in both
methods. The calculated bound state energies are similar, with, at most, a difference of a
few MeV, which we would think is within the desired experimental accuracy for the strong
interaction bound state energy measurement.

In Table 3 we show our results for the ¢-nucleus bound state energies and half widths,
obtained with and without the imaginary part of the potential, for three values of the cutoff
parameter [100].

We first analyze the case in which the imaginary part of the ¢-nucleus potential, Wy (),
is set to zero. These results are shown in parentheses in Table 3. From the values shown
in parenthesis, we see that the ¢-meson is expected to form bound states with all seven
nuclei selected, for all values of the cutoff parameter Ak studied. However, the bound state
energy is obviously dependent on Ak, increasing in magnitude with Ag [100].

Next, we discuss the results obtained when the imaginary part of the potential is
retained. Adding the absorptive part of the potential, the situation changes considerably.
From the results presented in Table 3, we note that for the largest value of the cutoff
parameter, which yields the deepest attractive potentials, the ¢-meson is expected to form
bound states in all the nuclei selected, including the lightest “He nucleus. However, in this
case, whether or not the bound states can be observed experimentally is sensitive to the
value of the cutoff parameter Ag [100]. Given that the widths are large, the signal for the
formation of the ¢-nucleus bound states may be difficult to identify experimentally.
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Table 3. ¢-nucleus single-particle energies, E, and half widths, I'/2, obtained with and without the
imaginary part of the potential, for three values of the cutoff parameter Ag. When only the real part
is included, where the corresponding single-particle energy E is given in parenthesis and I' = 0 for

"

all nuclei. “n” indicates that no bound state is found. All quantities are given in MeV.

Ag = 2000 Ag = 3000 Ag = 4000
E T2 E T2 E TI2
oHe 1s n (—0.8) n n(—1.4) n ~1.0(-3.2) 8.3
}ch 1s —21(-42) 106 —64(-77) 111  -98(-107) 112
}Pﬁo 1s —40(-59) 123 —89(-10.0) 125 —12.6(—134) 124
1p n (n) n n (n) n n (—1.5) n
sCa 1s —9.7(-11.1) 165 -159(—-16.7) 162 —205(-212) 158
1p —1.0(=35) 129 —63(=7.8) 133 —104(-114) 133
1d n (n) n n (n) n n(—14) n
sCa 1s —105(-11.6) 165 —165(—172) 16.0 —21.1(-21.6) 15.6
1p —25(—4.6) 136 —79(-92) 137 —120(-129) 136
1d n (n) n n (—0.8) n -21(-3.6) 11.1
2 Zr s —129(-13.6) 171 —19.0(-195) 164 —23.6(-24.0) 158
1p ~71(-84) 155 —128(-136) 152 —172(-17.8) 148
1d —02(—25) 134 —56(—6.9) 135 —9.7(-106) 134
2s n(—14) n —34(-5.1) 126 —~74(-85) 127
2p n (n) n n (n) n n(—1.1) n
20Pb  1s —15.0(—15.5) 174 —21.1(-214) 166 —258(-26.0) 16.0
1p —11.4(-121) 167 —174(-178) 160 —21.9(-222) 155
1d —69(—8.1) 157 —12.7(-134) 152 —17.1(-17.6) 14.8
2s —52(—6.6) 151 —109(-117) 148 -152(—158) 145
2p n(—1.9) n —48(—6.1) 135 —89(-9.8) 134
2d n (n) n n (—0.7) n —-22(-3.7) 119

We also observe that the width of the bound state is insensitive to the values of Ak for
all nuclei. Furthermore, since the so-called dispersive effect of the absorptive potentials is
repulsive, the bound states disappear completely in some cases, even though they were
found when the absorptive part was set to zero [100]. This feature is obvious for the *He
nucleus, making it especially relevant to the future experiments, planned at J-PARC and
JLab using light and medium-heavy nuclei [126-129].

The bound state energies E of the 7.-nucleus system were calculated for four values of
the cutoff parameter Ap and are listed in Table 4 [72]. Note that the #. bound state energies
are calculated with the SU(4) broken coupling constant by (0.6/ \ﬁ) Seta, DD, thus the values
shown below are expected to be smaller in magnitude than those calculated with the
SU(4) symmetric coupling constant, g+;,pp (See Section 4.2). These results show that the
1c.-meson is expected to form bound states with all the nuclei studied, and this prediction is
independent of the value of the cutoff parameter Ap [72]. However, the particular values
for the bound state energies are clearly dependent on Ap, namely, each of them increases
in absolute value as Ap increases. This was expected from the behavior of the #. potentials,
since these are deeper for larger values of the cutoff parameter. Note also that the 7, bounds
more strongly to heavier nuclei [72].

We remind that we have ignored the natural width of ~ 31 MeV [130] in the free space
of the 7, and this could be an issue related to the observability of the predicted bound
states. Furthermore, we have no reason to believe the width will be suppressed in the
medium. Thus, even though it could be difficult to resolve the individual states, it should
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be possible to see that there are bound states, which is the main point here. It remains to be
seen how much the inclusion of a repulsive imaginary part will affect the predicted bound
states. We believe this can be determined in future work.

Table 4. 7.-nucleus bound state energies for different values of the cutoff parameter Ap. All
dimensional quantities are in MeV.

Bound State Energies

nt Ap = 1500 Ap = 2000 Ap = 2500 Ap = 3000
5 He 1s —1.49 -3.11 —5.49 —8.55
wC o 1s -5.91 -8.27 —-11.28 —14.79
1p —0.28 —1.63 —3.69 —6.33
2O s ~7.35 —-9.92 -13.15 —16.87
1p —1.94 —3.87 —6.48 —9.63
PCa s —11.26 —14.42 -18.31 —-22.73
1p ~7.19 —10.02 —13.59 —17.70
1d —2.82 —5.22 —8.36 —12.09
2s —2.36 —4.51 —7.44 —10.98
pCa s —-11.37 —14.46 —18.26 —22.58
1p ~7.83 —10.68 -14.23 —18.32
1d —3.88 —6.40 —9.63 —13.41
2s -3.15 —5.47 —8.54 -12.17
wZr s —-12.26 —15.35 —-19.14 —23.43
1p —9.88 —12.86 —16.53 —20.70
1d ~7.05 —9.87 —13.38 —17.40
2s —6.14 —8.87 -12.29 ~16.24
1f —3.90 —6.50 —9.81 —13.65
AU 1s —-12.57 —15.59 —-19.26 —23.41
1p —11.17 —14.14 —17.77 —21.87
1d —9.42 -12.31 —15.87 —19.90
2s —8.69 —11.53 —15.04 —19.02
1f ~7.39 —10.19 —13.70 —17.61
2BPb s —12.99 —16.09 -19.82 —24.12
1p —11.60 —14.64 —18.37 —22.59
1d —9.86 —12.83 —16.49 —20.63
2s —9.16 —12.09 —15.70 —19.80
1f ~7.85 —10.74 —14.30 ~18.37

The results for the J/¢-nucleus bound states are presented in Table 5. These results
show that the ]/ is expected to form J/¢-nuclear bound states for nearly all the nuclei
considered, except some cases for 4He, for all values of the cutoff parameter Ap [105,106].
Therefore, it will be possible to search for the bound states, for example, in a 208Ph nucleus
at JLab, the 12 GeV upgraded facility. In addition, one can expect quite rich spectra
for medium and heavy mass nuclei. Of course, the main issue is to produce the J/¢
meson with nearly stopped kinematics, or nearly zero momentum relative to the nucleus.
Since the present results imply that many nuclei should form J/¢-nuclear bound states,
it may be possible to find such kinematics by careful selection of the beam and target
nucleus [105,106].
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Table 5. ]J/ip—nucleus bound state energies taking into account the change in the self-energy in
medium, calculated with the Schrodinger equation. All dimensioned quantities are given in MeV.

Bound State Energies

Ap = 2000 Ap = 3000 Ap = 4000 Ap = 5000 Ap = 6000

4 _ _ _
jHe s n n 0.70 2.70 5.51
}§¢C 1s —0.52 -1.98 —4.47 —7.67 —11.26
1p n n n —1.38 —-3.84
}ﬁwo 1s -1.03 —2.87 —5.72 —9.24 —13.09
1p n n —0.94 —3.48 —6.60
‘}%Ca 1s —2.78 —544 —9.14 —13.50 —18.12
1p —0.38 —2.32 —543 -9.32 —13.56
1d n n ~152 —4.74 —8.49
2s n n —1.27 —4.09 —7.60
‘}%Ca 1s —2.96 —5.62 —9.28 —13.55 —18.08
1p —0.73 —2.83 —6.03 —-9.95 —14.18
1d n n —2.46 —5.87 —9.73
2s n —0.07 -1.90 —5.00 —8.65
?%Zr 1s —3.64 —6.40 —-10.12 —14.41 —18.92
1p -1.93 —442 —-792 —12.03 —16.40
1d —0.03 —2.13 —531 -9.18 —13.37
2s —0.02 —1.56 —451 —8.26 —12.37
2p n n —152 —4.71 —8.45
}%Pb 1s —4.25 —7.08 -10.82 —15.11 —19.60
1p —-3.16 —5.86 —952 —13.74 —18.18
1d —1.84 —4.38 —7.90 —12.01 —16.37
2s —1.41 —3.81 —7.25 —11.30 —15.61
2p —0.07 -1.95 —5.10 —897 —13.14

The bound state energies E of the Y-nucleus and #,-nucleus systems are listed in
Tables 6-9, respectively, for all nuclei listed at the beginning of this section and the same
range of values for the cutoff mass parameter as used in the mass shift calculation (see
Section 4.3) [80]. We note that for the Y-nucleus systems, we have only listed a few bound
states for each nucleus since that number increases with the mass of the nucleus, and for
the heaviest of these, 28Pb, the number of bound states is quite large. For the 2%Pb nucleus,
we have found ~70 states [80].

Table 6. Y-nucleus bound state energies obtained by the Woods—Saxon Fourier transform for several
nuclei A. All dimensioned quantities are in MeV.

Bound State Energies

nf Ap = 2000 Ap = 3000 Ap = 4000 Ap = 5000 Ap = 6000

{He 1s —5.6 —6.4 ~7.5 —-9.0 -10.8
PC 1s -10.6 —11.6 -12.8 —14.4 -16.3
1p —6.1 —6.8 -79 -93 -10.9
1d -15 -21 -29 —4.0 —5.4
2s -1.6 -21 -2.8 -3.8 -5.1
¥O 1s -11.9 —-129 —14.2 —15.8 -17.8
1p —83 -9.2 —10.4 ~11.9 -13.7
1d —44 —5.1 —6.2 ~7.5 -9.2
2s —37 —44 —5.4 —6.7 -83

1f n —-0.9 -1.8 -29 —4.3
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Table 6. Cont.

Bound State Energies

né Ap =2000 Ap = 3000 Ap = 4000 Ap = 5000 Ap = 6000

PCa  1s —155 —16.6 —182 —20.0 -22.3
1p ~133 —14.4 ~15.9 -17.7 -19.8
1d —10.8 —11.9 ~133 -15.0 -17.1
2s -10.3 -11.3 -12.7 —144 —16.4
1f -8.1 -9.1 -10.4 -12.1 -14.0
P$Ca 1s ~15.3 —1l6.4 -17.9 -19.7 —-21.8
1p ~135 —14.6 -16.0 -17.8 -19.9
1d —11.4 —12.4 ~13.8 -15.6 -17.6
2s -10.8 ~11.8 -13.2 -14.9 -16.9
1f -9.1 -10.1 —-11.4 -13.1 -15.0
$zr  1s —155 —16.6 -18.1 199 -22.0
1p —145 ~155 -17.0 —18.8 —20.9
1d —132 —14.2 -15.7 —174 -19.5
2s -12.7 -13.8 -15.2 -16.9 -19.0
1f —11.7 —-12.7 -14.1 ~15.9 ~17.9
YVAu 1s ~15.3 ~16.3 -17.7 -19.4 —-21.5
1p —14.7 ~15.8 ~17.2 -189 —20.9
1d ~14.0 ~15.0 —16.4 -18.1 —20.1
2s —13.7 -14.7 -16.0 -17.8 -19.8
1f —13.2 —14.2 —15.6 -17.3 -19.3
Bpb  1s -15.7 -16.8 -182 —20.0 —221
1p ~15.2 -16.2 -17.7 -19.4 -215
1d —145 -15.5 -16.9 -18.7 —20.8
2s —14.1 —15.2 —16.6 -183 —20.4
1f —13.6 —14.7 ~16.1 -17.8 -19.9

Table 7. Y-nucleus bound state energies obtained by the Direct Bessel transform for several nuclei A.
All dimensioned quantities are in MeV.

Bound State Energies (MeV)

Direct Bessel Transform

nt Ap = 2000 A = 4000 Ap = 6000
{He 1s ~5.93 —6.25 —6.56
PC o 1s -13.22 —15.26 —18.41
1p —8.30 —9.57 —11.51
Yo 1s —14.30 —16.57 —20.06
1p —10.81 —12.37 -14.73
PCa  1s —18.17 —21.63 —23.16
1p —15.22 —18.11 —19.58
PCa 1s —16.74 —-19.33 —23.20
1p —15.36 —17.76 —21.53
PZr s —15.87 —18.24 —21.89
1p —12.52 —14.78 —18.32
2%8ppb  1s —15.95 —18.41 —2223

1p —13.23 —15.49 —19.91
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In Table 8 we show the 7,-nucleus bound state energies for the same nuclei and range
of values of the cutoff mass parameter as in Table 6 [80]. Furthermore, as in the case of the
Y-nucleus bound state energies, we have listed only a few bound states for each nucleus.
For the 2%Pb nucleus, we have ~ 200 states, and clearly, it is not practical to show them
all [80].

Table 8. 17,-nucleus bound state energies obtained by the Woods—Saxon Fourier transform for several
nuclei A. All dimensioned quantities are in MeV.

Bound State Energies

nf Ap=2000 Ap=23000 Ap=4000 Ap=15000 Ap = 6000

5, He 1s —63.1 —64.7 —66.7 —69.0 ~71.5
1p —40.6 —42.0 —437 —45.8 —48.0
1d ~17.2 -18.3 -19.7 —21.4 —232
2s ~15.6 -16.6 -17.9 -19.4 -21.1
Cc s —65.8 —67.2 —69.0 —71.1 —73.4
1p —57.0 —58.4 —60.1 —62.1 —64.3
1d —47.5 —48.8 —50.4 —52.3 —54.4
2s —46.3 —475 —49.1 —51.0 —53.0
1f —37.5 —38.7 —40.2 —42.0 —43.9
PO 1s —67.8 —69.2 -71.0 -73.1 ~75.4
1p —61.8 —63.2 —64.9 —67.0 —69.2
1d —54.9 —56.2 —57.9 —59.9 —62.0
2s —53.2 —54.6 —56.3 —58.2 —60.3
1f —47.3 —48.6 —50.2 —52.1 —54.2
WCa 1s ~79.0 —80.6 —82.6 —85.0 —875
1p ~75.4 ~77.0 —79.0 —81.4 —83.9
1d ~71.4 ~73.0 —74.9 —77.2 -79.7
2s ~70.5 ~72.0 ~74.0 ~763 —788
1f —67.0 —68.5 ~70.4 —72.7 ~75.1
pCa 1s ~76.7 ~782 —80.2 —825 —85.0
1p ~74.0 ~75.5 —77.4 ~79.7 -82.1
1d ~70.8 —723 —74.2 ~76.4 —78.8
2s —69.9 ~71.4 ~733 ~755 —77.9
1f —67.2 —68.6 ~70.6 —72.8 ~75.1
wZr s ~755 ~77.0 ~789 -81.1 —835
1p ~74.1 ~75.6 ~775 ~79.7 —82.1
1d ~72.3 ~73.8 ~75.7 —77.9 —80.2
2s ~71.6 ~73.0 ~74.9 -77.1 ~79.5
1f ~70.2 ~71.7 ~73.6 ~75.8 -78.1
AU 1s —72.8 —74.2 ~76.1 ~78.2 —80.5
1p ~72.3 —737 ~75.6 ~77.7 —80.0
1d ~71.3 ~72.8 —74.6 ~76.7 ~79.0
2s ~70.7 -72.1 ~74.0 ~76.1 —784
1f ~70.2 ~71.7 ~73.5 ~75.6 ~77.9
PB8Pb s ~747 ~76.2 -78.1 -80.3 —82.6
1p ~74.2 ~75.7 ~77.5 -79.7 —82.1
1d ~73.2 ~74.7 ~76.6 —788 —81.1
2s ~72.7 ~74.1 ~76.0 —78.2 —80.5

1f —72.1 —73.6 —75.5 —77.6 —80.0
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Table 9. %bA bound state energies obtained by the Direct Bessel transform for several nuclei A. All
dimensioned quantities are in MeV.

Bound State Energies (MeV)

Direct Bessel Transform

nt Ap = 2000 Ap = 4000 Ap = 6000
5, He 1s —68.71 —71.59 —75.44
1p —39.97 —41.50 —43.54
1d —37.73 —39.56 —42.03
2s —29.14 —30.09 —31.38
2C o 1s —63.70 —66.93 —70.27
1p —53.17 —55.13 —59.38
1d —46.47 —48.50 —51.17
2s —34.53 —36.30 —39.43
PO s —68.37 ~71.25 ~75.14
1p —57.02 —59.58 —63.02
1d —47.05 —49.37 —52.50
2s —23.18 —25.50 —28.69
Ca 1s —79.11 —82.59 —87.27
1p —70.60 —73.86 —78.26
1d —53.31 —55.99 —59.61
2s —48.35 —51.31 —55.32
mCa 1s —63.94 —66.88 —70.83
1p —58.60 —61.10 —64.43
1d —34.04 —36.40 —39.60
2s —26.35 —28.30 —30.95
wZr 1s —71.32 —74.52 —78.85
1p —63.78 —67.03 —71.42
1d —57.78 —60.82 —64.93
2s —51.53 —54.07 —57.46
2BPb s —61.44 —64.25 —68.02
1p —59.82 —62.95 —67.18
1d —51.36 —54.05 —57.65
2s —48.71 —51.25 —54.66

These results given in Tables 6-9 show that the Y and #;, mesons are expected to form
bound states with all the nuclei studied, independent of the value of the cutoff parameter
Ap. However, the particular values for the bound state energies are dependent on the
cutoff parameter values, increasing in absolute value as the cutoff parameter increases.
This dependence was expected from the behavior of the bottomonium-nucleus potentials,
since these are more attractive for larger values of the cutoff parameter. Note also that
bottomonium (;, or Y) binds more strongly to heavier nuclei; therefore, a richer spectrum
is expected for these nuclei [80].

However, from Tables 6-9, we see that the bound state energies for the 7, are larger
than those of the Y for the same nuclei and range of cutoff values explored. These dif-
ferences are probably due to two reasons: (a) the couplings g, pp+ and gypp are very
different. Indeed, the results obtained in Ref. [72] on the #. nuclear bound state ener-
gies are closer to those of the /i when the SU(4) flavor symmetry is broken, such that
800+ = (0.6/v2) g1 /ypp ~ 0.424 g1 /ypp [72,113]. Thus, a reduced coupling gy, gg+ can
bring the 7, nuclear bound state energies closer to those the Y, since the 7, self-energy is
proportional to g%b gp+- (b) the form factors are not equal for the vertices YBB and 1, BB¥,
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and we have to readjust the cutoff values, which means Ag # Ap+, and the comparisons
for the mass shift values and bound state energies have to be made for different values of
the cutoff parameters.

The bound-state energies associated with each energy level can be confirmed by
analyzing the number of nodes in the corresponding coordinate—space wave function as
described in Ref. [101]. We present the wave functions of some meson—nucleus systems
and cutoff values in Appendix A, which will help to better understand the meson-nucleus
bound systems.

In Tables 10 and 11, we show, respectively, the results for the bound state energies (E)
and full widths (T) of the - and #’-mesic nuclei of mass number A, obtained by solving
the Klein-Gordon equation, for various values of the strength of the imaginary part of
the potential v = 0.0, 0.25, 0.5, 1.0 (See below Equation (52) about the ). The results for
v = 0, for both the 7 and 7’ mesons, correspond to the case where the imaginary part of
the potential has been ignored. The bound state energies and full widths are obtained from
the complex energy eigenvalue £ as £ = E 4 m — il'/2. We also note that for each nucleus,
we have computed all bound states but have only listed up to four. In fact, the number
of bound states increases with the mass of the nucleus in such a way that for the heavier
nuclei, we have a richer structure of bound states. Furthermore, we note that the relativistic
corrections shallower the bound state energies for the 7 and 7’ by approximately 2 MeV
and 1 MeV, respectively.

Table 10. Bound state energies (E) and full widths (I') of # meson in nucleus of mass number A
obtained by solving the Klein-Gordon equation for various values of the parameter .

Y=0 v =025 ¥ =05 ¥y=1.0
nt E r E r E r E T
gHe 1s  —10.99 0 —-10.79 821 —10.20 16.65 —8.13 34.94
;ZC 1s  —25.25 0 —25.16 10.86 —24.91 21.82  —24.02 44.29
1p —0.87 0 —043 497 N N N N
10 1s  —30.78 0 -30.72 12.00 —30.53 2407 —29.86 48.67
1p —6.47 0 —6.26 7.84 —5.67 15.99 —3.77 33.80
‘}70Ca 1s  —46.93 0 —46.89 15.12 —46.79 30.28  —46.43 60.87
1p  —26.93 0 —26.85 12.67 —26.61 2544  —25.77 51.59
1d —6.67 0 —6.47 9.48 —591 19.27 —4.15 40.31
2s —543 0 —5.09 7.51 —4.18 15.59 N N
‘}78Ca 1s  —47.78 0 —47.75 1498 —47.66 30.00 —47.38 60.25
1p  —29.97 0 —29.90 1299 —29.71 26.06 —29.04 52.71
1d  —11.08 0 -1093 1045 —10.51 21.10 -9.15 43.52
2s —8.7 0 —8.11 8.83 —7.42 18.06 N N
gOZr 1s  —52.56 0 —5254 1534  —52.50 3071 —52.34 61.56
1p  —39.85 0 —39.81 1417 —39.71 2840 —39.36 57.11
1d —25.32 0 —2525 12.74  —25.06 2557  —24.40 51.75
2s  —21.04 0 —2094 11.95 —20.65 2404 —19.70 49.03
},97Au 1s  —55.12 0 —55.11 1520 —55.09 3041 —55.01 60.89
1p —47.13 0 —47.11 1458 —47.06 2019  —46.90 58.53
1d  —37.60 0 —3758 13.83 —37.49 2769 —37.20 55.67
2s  —34.01 0 —3397 1345 —33.86 2696 —33.47 54.31
%Ost 1s  —56.85 0 —56.84 15.61 —56.82 3124 —56.75 62.55
1p  —48.92 0 —4890 14.99 —48.86 30.01 —48.70 60.17
1d  —39.81 0 —39.45 1424  —39.37 2851  —39.09 57.29
2s  —35.95 0 -3591 13.87  —35.80 2780 —35.43 55.96
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Table 11. Bound state energies (E) and full widths (T') of 4’ meson in nucleus of mass number A
obtained by solving the Klein—-Gordon equation for various values of the parameter .

¥=0 ¥ =0.25 ¥ =0.5 ¥ =10
nt E r E r E r E r
3,He 1s  —22.11 0 —-2196 1137 —2155 2289 —20.06 46.83
;%C 1s —33.88 0 —33.82 1230 —3364 2466 —33.00 49.73
1p —12.72 0 —12.57 906 —12.15 1829 —10.67 37.68
;?O 1s —38.64 0 -3859 13.06 —3846 2617 —38.00 52.65
1p —19.75 0 —1965 1076 —1934 2164 —1828  44.07
2s  —1.39 0 —084 4.48 N N N N
1d —0.33 0 —0.69 7.20 N N N N
39Ca 1s —52.38 0 —5235 1559 —5228 3122 —52.00 62.61
1p  —3841 0 -3835 1418 —3819 2841 —37.63 57.22
1d —23.12 0 —23.02 1246 —2274 2503 -21.75 50.81
2s  —20.38 0 —-2025 11.72 —19.87 23.60 —1858  48.25
3§Ca 1s  —52.40 0 -5238 1529 —5232 3060 —5211 61.35
1p  —40.30 0 —4026 1418 —40.13 2840 —39.68 57.12
1d —26.68 0 —2659 1282 —2637 2572 —2558  52.02
2s —23.45 0 —2334 1219 —23.04 2451 —2201 4985
392r 1s —55.20 0 -5519 1531 —55.16 30.63 —55.04 61.35
1p —47.05 0 —47.02 1470 —4696 2943 —46.72  59.04
1d —37.42 0 -3738 1396 —3727 2796 —36.86 56.22
2s  —34.19 0 —3414 1361 —3399 2729 —3347 5498
;?7Au 1s —56.03 0 -56.03 1494 —56.01 29.89 —5596 59.83
1p  —51.12 0 —-51.10 1464 —51.07 2930 —5096 58.67
1d —45.15 0 —45.14 1427 —4508 2856 —4489 57.26
2s  —42.80 0 —42.78 1410 —4271 2822 —4247  56.63
598Pb 1s —57.65 0 —-5764 1534 —57.63 30.68 —5757 61.40
1p —52.77 0 -5276 15.03 —5273 30.07 —5262  60.23
1d —46.87 0 —4685 1466 —4680 2933 —46.61  58.80
2s  —44.56 0 —4454 1449 —4447 2900 —4424  58.19

From Tables 10 and 11, (column with -y = 0) we conclude that the 7 and 7’ are expected
to form bound states with all the nuclei considered.

However, the situation changes appreciably once we take into account the absorption
effects of these mesons by nuclei, which we simulate with nonzero phenomenological
parameter . We study the values v = 0.25, 0.5, 1.0, where a larger value means a stronger
absorption of the meson by the nuclear medium. When 7y # 0, some of the bound states
that are present when oy = 0 disappear. The columns with v = 0.25, ¥ = 0.5,and y = 1.0in
Tables 10 and 11 show the results for the bound state energies E and full widths I' of the #-
and 7’-mesic nuclei of mass number A, obtained by solving the Klein—-Gordon equation,
for some values of the strength of the imaginary part of the potential y = 0.25, 0.5, 1.0.

Considering only the ground states, adding and absorbing part of the potential changes
the situation appreciably, where the effects are larger the larger v is. Clearly, the imaginary
part of the potential is repulsive, being more repulsive for v = 1. Whether or not the
bound states can be observed experimentally is sensitive to the value of the parameter v,
since I increases with increasing y. Furthermore, because the so-called dispersive effect of
the absorptive potential is repulsive, the binding energies for all nuclei decrease with +.
However, they decrease very slightly. Even for the largest value of v, there is at least one
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bound state. We have found similar results for the ¢ meson in our past work [100]. Note
that the width of the ground state increases with 7 for all nuclei, as expected, since a larger
7 means that the strength of the imaginary part of the potential is larger.

Finally, in Tables 12 and 13, we present the B -nucleus bound state energies for several
nuclei restricted to the 1s and 1p states, where we certainly expect shallower bound states.
(More detailed results will be presented elsewhere in the near future). For details on the
momentum space and the Coulomb potential treatment focusing on the %EC case, see
Ref. [101]. From Tables 12 and 13, we conclude that the BY are expected to form bound
states with all the nuclei studied.

Table 12. Bound state energies of B;” in nucleus of mass number A, obtained by the Direct Bessel
transform method. All dimensioned quantities are in MeV.

Bound State Energies (MeV)

Direct Bessel Transform

nt Ag = 2000 Ap = 4000 Ag = 6000

};c 1s —79.12 —80.63 —87.03
1p —56.15 —57.53 —63.38

1B€o 1s —75.00 —76.16 —80.94
‘ 1p —54.86 —56.13 —61.55
‘}30_ Ca 1s —104.27 —105.69 —111.87
‘ 1p —81.71 —83.51 —91.34
‘gi Ca 1s —96.63 —98.37 —105.81
‘ 1p —72.02 —73.56 —80.24
]930, Zr 1s —96.34 —98.32 —106.82
1p —83.82 —85.44 -9235

%(’?Pb 1s —95.88 —97.39 —103.79
1p —70.46 —71.76 —77.34

Table 13. Bound state energies of BJ in nucleus of mass number A, obtained by the Direct Bessel
transform method. All dimensioned quantities are in MeV.

Bound State Energies (MeV)

Direct Bessel Transform

nt Ap = 2000 Ap = 4000 Ap = 6000

B C 1s ~71.01 —~72.53 —~78.94
1p —49.11 —50.49 —56.32

20 1s —64.64 —65.80 —70.59
‘ 1p —45.94 —47.22 —52.64
Ca 1s —84.89 —86.31 —92.49
1p —62.80 —64.57 —72.23

gCa 1s —77.09 —78.83 —86.26
1p —53.64 —55.13 —61.60

N Zr 1s —65.51 —67.49 —75.99
1p —55.11 —56.75 —63.75

205Pb 1s —48.61 —50.13 —56.53

1p —29.27 —30.58 —36.22
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7. Summary and Conclusions

We have computed the mass shift amount Amy, = m; — m;,, with m;, being the meson
mass in vacuum and m; that in nuclear medium, for the mesons h = 7, 1, 0,100 T/, 1, Y,
and BF in symmetric nuclear matter and nuclei. For this, we have used two approaches
for some meson in this study, namely the quark-meson coupling model and a hybrid
approach that combines the quark-meson coupling model with an effective Lagrangian.

We found in all cases that the mass shift amount (Lorentz scalar potential) is negative,
which means that the nuclear medium provides attraction to these mesons (these mesons
do not acquire any repulsive vector potentials) and opens the possibility of their binding
to nuclei. Even though the precise values for the negative mass shifts reported in this
work are based on the quark-meson coupling model and effective Lagrangian approach,
negative mass shifts have also been observed in other approaches and experimental results.
Thus, we believe this is a robust prediction of our approach. Using the baryon density
distributions of several nuclei calculated in the quark-meson coupling model, we have,
except for “He nucleus (taken from Ref. [124]), and the mass shift amount computed
previously, calculated the meson—nucleus potentials in a local density approximation for
these mesons in nuclei in a wide range of nuclear masses, namely A = 4He, 12C, 160, 40Ca,
48Ca, 07r, 197 Au, and 298Pb. In all the nucleus cases selected for each meson, the resulting
nuclear potentials have turned out to be attractive, reflecting the characteristics of the mass
shift in the nuclear medium.

Finally, we have solved the Schrodinger or Klein-Gordon equation with the calculated
nuclear potentials to obtain the meson—nucleus bound state energies and widths when
the nuclear potential is complex. Although the details differ for each meson, we have
found that all the mesons studied are expected to form bound states with nuclei. For the
nuclear potential that is complex, the signal for the formation of the meson-nucleus bound
state might be difficult to identify experimentally, depending on the imaginary part of the
obtained bound state energy.
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Appendix A. Wave Functions

The results for the B -nucleus system wave functions, for different cutoff values, are
presented in Figures A1-A6. The wave functions for the Y- and #;,-nucleus systems, for
different methods of partial wave decomposition and cutoff values, are also presented in
Figures A7-A20.

The wave functions obtained when using the Bessel transform of the original poten-
tial and the decomposition of the Fourier transform of the fitted Woods-Saxon potential
produce different shapes of wave function distributions at various energy levels. These
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treatments slightly depend on the bound-state energies and on the method used to obtain
the partial-wave decomposition of the momentum space potential. For possible future
improvements of the treatments, and so that one can compare with different treatments,
we present all the wave functions obtained for the two different methods. These will be
very useful in the future. However, we believe that the difference originated from the
numerical procedure and treatments, the difference will not change our main conclusions,
especially in connection with the accuracy required and achieved associated with the strong
interaction experimental measurement.
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Figure A3. Coordinate—space wave functions for the 1s and 1p states of the B*-*°Ca systems with
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Figure A4. Coordinate—space wave functions for the 1s and 1p states of the BF-*3Ca systems with

the Coulomb potentials for different values of A.
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Figure A5. Coordinate—space wave functions for the 1s and 1p states of the BX-*0Zr systems with
the Coulomb potentials for different values of A.
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Figure A6. Coordinate—space wave functions for the 1s and 1p states of the BF-28Pb systems with
the Coulomb potentials for different values of A.
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Figure A7. Coordinate—space 1s state wave functions of the Y-*He system for different values

of cutoff A, obtained by the direct Bessel transform and by the Fourier transform of the fitted
Woods-Saxon form potential (FWS).
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values of cutoff A, obtained by the direct Bessel transform and by the Fourier transform of the fitted
Woods—-Saxon form potential (FWS).
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Figure A10. Coordinate—space 1s and 1p state wave functions of the Y-**Ca system for different

values of cutoff A, obtained by the direct Bessel transform and by the Fourier transform of the fitted
Woods-Saxon form potential (FWS).
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values of cutoff A, obtained by the direct Bessel transform and by the Fourier transform of the fitted
Woods-Saxon form potential (FWS).
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Figure A15. Coordinate—space wave functions for the 1s to 2p states of the 17,-12C system for different
values of cutoff A, obtained by the direct Bessel transform and by the Fourier transform of the fitted
Woods-Saxon form potential (FWS).
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Figure A17. Coordinate—space wave functions for the 1s to 2s states of the ,-*°Ca system for
different values of cutoff A, obtained by the direct Bessel transform and by the Fourier transform of
the fitted Woods-Saxon form potential (FWS).
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different values of cutoff A, obtained by the direct Bessel transform and by the Fourier transform of
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Figure A19. Coordinate—space wave functions for the 1s to 2s states of the 17,-"°Zr system for different
values of cutoff A, obtained by the direct Bessel transform and by the Fourier transform of the fitted
Woods—-Saxon form potential (FWS).
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different values of cutoff A, obtained by the direct Bessel transform and by the Fourier transform of
the fitted Woods-Saxon form potential (FWS).
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