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Chapter 1

Introduction

L’homme est né libre, et
partout il est dans les fers.

Jean-Jacques Rousseau

Quantum many-body systems have been at the core of many studies in
condensed matter physics, through combining the principles of quantum
mechanics and of statistical mechanics. Large-scale behaviours of quan-
tum many-body systems are particularly rich and intricate, and at the
core of theoretical physics. Even though people have studied the quantum
many-body systems in equilibrium thoroughly, especially on the classifi-
cation of phases of matters and their phase transitions, there are many
aspects of quantum many-body systems in the non-equilibrium regime
that are still under scrutiny. The reasons are twofold: first, the enormous
amount of particles involved makes it difficult to study the problem both
analytically and numerically; second, the interactions between particles
have to be treated non-perturbatively, especially in the low-dimensional
regime. However, out-of-equilibrium phenomena are ubiquitous, and it
is of vital importance to understand the physical properties of various
quantum many-body systems.

In this thesis, we aim to present analytical and numerical results on
a specific type of many-body systems, integrable models, out of equilib-
rium. We study the one-dimensional systems with strong interaction. By
virtue of the exact solvability of the integrable models, we obtained exact
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solutions in the non-perturbative regime. In this chapter, we will present
several examples of the physical systems that we are interested in, and
they will serve as a gentle introduction and motivation to the results in
the rest of the thesis.

1.1 Integrable models

Looking for the exact mathematical language to describe the physical
world has always been the pursuit of theoretical physicists. Integrability
allows us to solve strongly interacting systems non-perturbatively in a
mathematically accurate manner.

We start with classical integrable models. Even though our goal in this
thesis is to elucidate the non-equilibrium properties of quantum many-
body systems, classical integrable models are still crucial, because many
quantum many-body phenomena remain the same in the semi-classical
limit which enables their study using classical integrability. Some of the
most notable examples are the classical-quantum correspondence in spin
transport [2] and hydrodynamics [7, 8]. Therefore, it is useful to study
the classical integrable models which reveal similar features as in their
quantum counterpart. Classical integrability used in this thesis focuses
on the theory of exactly solvable partial differential equations [9, 10, 11].
It has played an instrumental role in a broad range of physics applica-
tions, ranging from experimentally relevant setups with ultracold atoms,
Josephson junctions and nonlinear optics, and many theoretical concepts
including the AdS/CFT correspondence [12; 13], Gromov-Witten the-
ory [14], Painlevé transcendents [15, 16] and random matrix theory [17].
The techniques developed for the classical integrable models will be used
extensively in Chapters 4 and 5.

Not all quantum many-body systems are semi-classical, where a fully
quantum approach is needed. In that case, we make use of the the-
ory of quantum integrability. The quantum integrable models under our
consideration are solved by Bethe ansatz, an ingenious construction of so-
lutions to one-dimensional Heisenberg model that was proposed by Hans
Bethe in 1931 [18]. The anisotropic version of the one-dimensional Heisen-
berg model, the spin-1/2 XXZ model, plays a central role in this thesis.
Moreover, those quantum integrable models satisfy the Yang-Baxter re-
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lation [19, 20]. The Yang-Baxter relations are obtained with the obser-
vation that the one-dimensional quantum integrable lattice models can
be mapped into two-dimensional classical statistical mechanical models,
usually vertex models. For instance, the quantum XXZ model is mapped
into the 6-vertex model [21, 22, 19]. The transfer matrix formalism of the
latter allows us to obtain exact results using Yang-Baxter relations. This
approach is used extensively in Chapters 6 and 7.

Both classical and quantum integrable models give us the opportunity
to exploit the exact solvability. Most importantly, integrable models are
not merely a theoretical mirage, but are in fact captured in many recent
experiments with ultracold atoms [23].

For example, the bright soliton solution in non-linear Schrodinger
equation [9], a classical integrable field theory, has been observed in ultra-
cold atom experiment [24]. In addition, one of the most celebrated exper-
iments, which eventually led to a full development of the modern ideas on
thermalisation in quantum many-body systems, is that of the motion of
one-dimensional Bose gases in a confining potential [25]. The absence of
thermalisation in the one-dimensional Bose gases, well approximated by
quantum integrable model called Lieb-Liniger model [26], motivated the
study of quantum quench 1.2. The advances in experimental ultracold
atom physics, which turn the theoretical models into tunable experimen-
tal set-ups with often unexpected discoveries of new physical phenomena,
have provided an enormous boost to the applications of integrability to
describe quantum many-body systems far from equilibrium, which is our
aim.

1.2 Quantum quench

We are particularly interested in the out-of-equilibrium properties of quan-
tum many-body systems. One of the simplest yet most influential ap-
proaches is the quantum quench [27, 28]. Quantum quench studies the
scenario when an initial state |¢), which is not an eigenstate of the Hamil-
tonian H, evolves under Hy. Typically, 1) is a ground state of an initial
Hamiltonian H;. In that case quantum quench is subject to a sudden
change of the Hamiltonian, H; — H. For instance, we are interested in
the time evolution of correlation functions that reveals the relaxation of
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the quantum quench,

w(e) Oy = 3 LAIOmY i) e (g

(nfn)(mlm)

where |n) is a eigenstate of H with eigenvalue E,,. In principle, we would
like to have the knowledge of the full spectrum of Hy to study the time
evolution of correlation functions. For quantum integrable models, it is
possible and we study the full spectrum of XXZ model in Chapter 6.
We first consider the initial state |1)) to be homogeneous. Specialised
to quantum integrable models, it is hypothesised that after a quantum

quench, the time averaged correlation functions of local operator will relax
to value described by a Generalised Gibbs Ensemble (GGE),

t
lim [ dr{u(r)|O(r)) = tr (Oggar) (1.2)
> Jo
where the GGE is obtained with preserving all conserved charges of inte-
grable model @); while maximising the entropy,

1
(QGGE = 26_ Zj 'uij7 Z — tI‘ (6_ Ej “ij) . (]‘3)

p; are Lagrange multipliers fixed by the initial state |¢). In fact, we
could obtain much more information about the non-equilibrium dynamics
knowing the overlaps between the initial states and the eigenstates of the
quantum integrable Hamiltonian. This method is dubbed Quench Action
[29, 30], and it leads to numerous studies such as the interaction quench
in Lieb-Liniger model [31] and Néel quench in XXZ model [32, 33, 34].
When the initial state is inhomogeneous, we can use Generalised Hy-
drodynamics (GHD) [35, 36], which has been developed in recent years.
GHD uses the approximation of the local relaxation in the mesoscopic
scale, and it has been extremely successful in describing the dynamics
of an inhomogeneous initial profile in integrable models (both classical
and quantum), as well as the correlation functions [37, 38], which has
been demonstrated in the atomic chip experiment [39] too. GHD is able
to capture the ballistic transport of physical quantities [40, 41], and the
corrections are diffusive, which is deciphered in [42]. Interestingly, a su-
perdiffusive regime in quantum integrable models is studied in [43, 44, 45]
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that is beyond the paradigm of GHD. We encounter a similar scenario for
the classical counterpart in Chapter 4, where we use classical inverse scat-
tering method to demonstrate the superdiffusion.

1.3 Outline

The outline of this thesis is as follows. In Chapter 2 we give a detailed
introduction on the classical integrability on the classical Landau—Lifshitz
model, which is the model we use in latter chapters. We present both the
classical inverse scattering method, applied to the infinite system size, and
finite-gap integration method, applied to systems with periodic boundary
condition.

In Chapter 3 we introduce the basic notions of quantum integrability,
with an emphasis on the transfer matrix formalism and algebraic Bethe
ansatz. These two methods are of vital significance when constructing
eigenstates for quantum integrable models.

The first result about the domain-wall quench in classical Landau—
Lifshitz model is presented in Chapter 4. We use the classical inverse
scattering method introduced in Chapter 2 to study the spin transport
problem with domain-wall profile. We obtain three different regimes of
spin transport and find a remarkable classical-quantum correspondence
with the quantum counterpart, spin-1/2 XXZ model.

Chapter 5 is devoted to the semi-classical quantisation of finite-gap
solutions of Landau-Lifshitz model. In order to find a quantitative de-
scription of the classical-quantum correspondence found in Chapter 4,
we use the finite-gap integration method to construct the semi-classical
eigenstates of the quantum XX7 model, whose Bethe root density is well
described using classical theory. This allows us to treat the problems con-
cerning quantum out-of-equilibrium properties with methods developed
for the classical integrable models.

We switch the focus from the regime with semi-classical limit of quan-
tum models to the regime where a fully quantum description is needed in
Chapter 6. To begin with, we construct Baxter’s (Q operator of quantum
XXZ model. Specialised to the anisotropic parameter at root of unity,
we obtain the full spectrum and elucidate the exponential degeneracies in
the spectrum. Eventually, the structure of the spectrum helps us under-
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stand the out-of-equilibrium properties such as non-vanishing spin Drude
weight in XXZ model at root of unity.

We continue the investigation on the spectrum of XXZ model at root
of unity in Chapter 7, where we conjecture the existence of hidden On-
sager algebra symmetries. Onsager algebra symmetry implies two sets of
conserved charges that do not commute with each other, and the out-of-
equilibrium properties of XXZ model at root of unity should be influenced
tremendously due to the non-Abelian nature of the conserved charges.

In the concluding chapter 8, we summarise the results presented in
previous chapters and give an outlook over the open problems that are
intriguing and have the potential to be solved using methods introduced
in this thesis.



Chapter 2

Classical integrability

Tous pour un, un pour tous.

Les Trois Mousquetaires,
Alexandre Dumas, pere

In this chapter we introduce the important concepts and techniques
of classical integrability using classical Landau—Lifshitz model as an ex-
ample, which will be used extensively in Chapters 4 and 5. We start
with the definition of the physical model and derivations of some basic
physical properties of the model. This is followed by a pedagogical intro-
duction to classical inverse scattering method, the central method behind
the results in Chapter 4. Furthermore, we move to the finite-gap inte-
gration method, a well-established method of algebraic geometry, which
will play a pivotal role in the semi-classical quantisation of the classical
Landau-Lifshitz model in Chapter 5.

2.1 Classical Landau—Lifshitz model

We start with introducing the Landau-Lifshitz (LL) model, a classi-
cal field theory which governs the precessional motion of spin field de-
fined on a unit sphere S?. The equation of motion of the spin field

7
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S = (5%, 5,897 is

§t:§x§m+§x<J§>, §.§=1, (2.1)
with derivative denoted as % f = f.. The anisotropy tensor J can be
parametrised by three parameters

J =diag(Jy, Jy, J2), Ju, Jy, J. € R (2.2)

In fact, for arbitrary anisotropy tensor J, the model is classically inte-
grable [9]. We focus on a specific regime when J, = J, =0, J, =6, ie. J
is uniaxial. Sometimes we use another parametrisation of the anisotropy
parameter

§=¢e R (2.3)

When 6 > 0 (e € R), we are in easy-azis regime. When § < 0 (e € iR), the
regime is called as easy-plane. We also denote the regime with 6 =€ =0
as the isotropic regime.

As we will explain in Chapter 4, the classical LL model with uniaxial
anisotropy can be considered as the semi-classical limit of a ferromagnetic
spin-1/2 XXZ model, which is the main focus of the latter chapters.

The Hamiltonian of the classical LL model is

l
H= /0 da [§x(x)-§$(a;)—5(sm))2 , (2.4)

with classical system size ¢. We will consider different boundary condi-
tions later. Even though the Hamiltonian looks like a “free” Hamiltonian
with only quadratic terms, classical LL model is interacting because of
the constraint |S(z)|2 = 1, which can be seen as a non-relativistic sigma
model.

The equation of motion (2.1) can be obtained through the Poisson
structure

{5%(2), 8"(y)} = —€weS ()0 (2 — y). (2.5)

€abe 18 the antisymmetric Levi-Civita symbol and d(x) denotes the delta
function.
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2.2 Classical inverse scattering method

Classical LL model is a classical integrable field theory, permitting an
auxiliary linear description that transforms the non-linear equation of
motion in terms of spin field S (x,t) to a linear problem of auxiliary (ma-
trix) function ¥(xz,t). The auxiliary linear problem reads

Vo, t) = Ups 2, )0 (s 2, t), Ve, t) = V()W (s 2,t),
(2.6)
where the Lax connections U(y; x,t) (spatial component) and V (u; x,t)
(temporal component) satisfy the zero-curvature condition,

Uiz, t) = Va(ps . 1) + [U(p; 2, t), V(s 2, t)] = 0. (2.7)

The spectral parameter p € C is introduced in order to obtain the spec-
tral properties of the model. The existence of UV pair and zero-curvature
condition in auxiliary linear problem (2.6) is universal for all classical in-
tegrable field theories. Specifically for classical LL model, the Lax con-
nections are expressed in terms of spin field, i.e.

wS? V4685
2.
U(p;z,t) = Y (\/ﬁ5+ S ; (2.8)
V(o t) __( (12 +6)S* /12 + S)
T 2 \u/p2 + 05T —(u?+6)5”

(2.9)
1 e Jg Vi +0Jy
21 \\/ 2 + 0 Jy —p JE ’
with
Jo=S5, xS, (2.10)
denoting the spin current density at 6 = 0. From the definitions of

Lax connections, it is easy to show that zero-curvature condition (2.7)
is equivalent to the equation of motion for spin field (2.1).

2.2.1 Spectral problem of domain-wall initial condi-
tions

We consider the system size ¢ — oo and with boundary condition S(+o0) =
+1, i.e. domain-wall initial condition. We demonstrate the classical in-
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verse scattering method using this example, and the results will become
important in Chapter 4. More specifically, we study the following initial
conditions

S*(z,t = 0) = tanh(z), S (x,t=0)=S"(z,t =0)=sech(z), (2.11)

satisfying STS™ + (5%)? = 1.
The direct scattering problem of auxiliary linear problem can be writ-
ten as

9T (x,y) = Ulp, )T (x,y), (2.12)

with transition matrix 7'(z,y) = P exp fxy U(p, 2")da’ satistying T'(y,y) =
1 and det T'(xz,y) = 1. P denotes the path ordering. Equivalently, from
the definition of the transition matrix we have

0,1 (z,y) = =U(p, y)T(z,y). (2.13)

Further differentiating (2.12) and taking into account the zero-curvature
condition (2.7), we have (omitting the dependence on the variables for
simplicity)

or equivalently

8,(0,T —VT) =U(9,T — VT). (2.15)

Together with the property that T'(y,y) = 1, we write down the time
evolution of the transition matrix which is of vital importance,

o1 (z,y) = V(u,z)T(x,y) — T(x,y)V(1,y). (2.16)

Asymptotically, we have two Jost solutions labelled as T% (z)

Ty (z — +00) = exp (,uz-cr ) : (2.17)
i

and

T (z = —00) = exp <—‘“;f’ ) i, (2.18)
1
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These two Jost solutions can be obtained by taking into account U(u, z —
oot) = +&o0”.

According to the definition of transition matrix, two Jost solutions are
expressed as

Ti(x) = lim T(z,y)exp (Mya )

y—+o0 21

(2.19)

T (z)= lim T(x,y)exp (-M?/U ) io™.

y——00 21

Taking the appropriate limit of the time evolution (2.16), we obtain
the time evolution of the Jost solutions, i.e.

OT.(w) = V. Talr) ~ Tole) T ED ()
Therefore, we introduce the classical monodromy matrix 7'(u) as
T (p, ) = T4 (p, )T (), (2.21)
satisfying simple time evolution
o) = WD 1 7). 222
From the time evolution of T'(11), we have
otrT (p) = tro T (p) = 0, (2.23)

i.e. the trace of the classical monodromy matrix is time-invariant (con-
served). We can define the transfer function

() = T (1) (2.24)

as the generating function for the local conserved charges. A detailed
analysis is postponed to the periodic case in Sec. 2.3.2.

With the initial profile (2.11), the classical monodromy matrix 7'(u)
is written as

~ (a(p) —b(p) B 5 9
T(u)—<b(m a(u)), det T(u) = la(P + b2 = 1. (2.25)
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The scattering data reads

L Vi2 + T2 (5 u)
(1,0 =0) = 2T (1 — 5(p +1€)) T (1 — 5(pu —ie))’ (2.26)
b(p,t = 0) = 1%

where I'(x) is the Gamma function.
From the time evolution (2.22), we obtain the time evolution of the
components in a simple manner

a(/%t) = a(:“? 0)7 b( ) - b(:“? ) (et " (2'27)

The detailed analysis of the scattering data for different regimes (different
values of § or €) is postponed to Chapter 4.

2.2.2 Inverse scattering

After obtaining the scattering data, we convert the (non-linear) time evo-
lution of the spin field to the simple time evolution of the scattering data
a(p) and b(p). However, eventually we are interested in the spin field
after time evolution S(x,t) itself. What is needed now is to find the
transformation that maps the scattering data back to the time-evolved
spin field S (x,t). This procedure is called “inverse scattering”.

To begin with, we introduce the uniformisation parameter z, such that

1 € 1 €
p=g5l2=7 ) \/u2+62:§ 24— . (2.28)
z

z

The auxiliary linear problem (2.6) can then be expressed in terms of z,

0,0 = <415 - ES> (2.29)

where S = 06“So”. Let us rewrite the equation above in integral form.
More specifically, for Jost solution 7' (x) we have

T(e) = B@)+ % [l @B + 5 [ T B
. g (2.30)

-1

z oo
v [ e Ew.
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where the matrix

E(z) = exp <”Z’> = exp <%> . (2.31)

The kernels T';(z,y) do not depend on the spectral parameter z.
Since T, satisfies the auxiliary linear problem (2.29), the kernels
[;(x,y) satisfy the following Goursat equations,

0. U (z,y) = —=S(x)0,T 1 (z,y)o” + S(z)To(x,v), (2.32)
0,0 (z,y) = =S()9,T (x,y)0” — &S(x)To(x,y), (2.33)
o.Lo(e,y) = 2Dy (4 ) 4 @SOS () sy

Integrating by parts, we obtain the following equations for the Landau—
Lifshitz model,

o, / T Ay (o) B() = 2 (ST (2 2)0 — T (o, 0)] B)

oy g L (2.35)
S5 s [ areaEw) + 55 [ amues)Ew)
8/ dyl'_(z,y)E(y) = 4 [SF (x, )O‘Z—F_([E,I)} E(x)
41 Z_EZ/ZS/ dyl'_(z,y)E(y) (2.36)
8 [ sw),
0. [ duTule.v)E() = ~Tofe ) B
5-§ [ 5-§ [ (2.51)
20 [ Ee) + 27 [ e E),

As for the boundary values of the Goursat problem, we have
o’ + S(x)l'y(z,2)0” — Ty (z,2) = S(z),
0% — S(z)Ty (z,2)0” —T_(x,x) = 25(x), (2.38)
Co(z,x) =0.
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We parametrise the kernels I'; as
Mo Ve of M T2 z
I, = 2], I'.=—¢ ), To=mvyo”. 2.39
* (72 —71) <—72 —71) o= ( )
Once obtaining the values of the kernels, we can reconstruct the spin field
via (2.38),

t)— 112 —
SZ(ZL‘7t) _ "'}/1(55,.77, ) |2 ‘72(33,
|’71(ZL‘,[L’,t) - 1| + |’72($a
S_ _ 2[’}/1($,I,t) _1]’72(377:671%)
”}/1(1’, x, t) - 1‘2 + |")/2(.Z', x, t)’2
The numerical and analytic results in Chapter 4 are obtained via
numerically or analytically solving equations above.

)2
t

n P (2.40)

GLM equation with 6 =0

In principle, solving the Goursat equations (2.32), (2.33) and (2.34) and
using reconstruction formulae (2.40), we are able to obtain analytic solu-
tions to the time-evolved spin field. However, sometimes it is difficult to
obtain the solutions analytically. In order to study the transport proper-
ties, which typically need to perform numerical simulations for a relatively
long time scale, we rewrite the Goursat equations into integral equations,
i.e. Gelfand-Levitan—Marchenko (GLM) equations that are efficient for
numerical simulations.

For the domain-wall profile that we are interested in, the GLM equa-
tions are especially needed in the isotropic regime (§ = 0). In that regime,
we can express the one of Jost solutions as

7.0) = B@) + & Ayl (e, ) E (). (2.41)

By integrating the auxiliary linear problem, we obtain the GLM equation

[(z,y) — Ki(z+y) + /00 dsI'(z, s)Ka(s +y) =0, (2.42)

with kernels defined as
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k(z) = % /_ Z d,i%ew/w%, (2.44)
Fu) = lim 20 _ 2 Lo = i/2) (2.45)

—0a(p)  cosh(mp/2) T3(1/2 —ip/2)
The integral equations above can be solved numerically in an efficient
manner, forming the basis for the numerical evaluation of the spin trans-
port properties with domain wall profile in the isotropic regime.
Similar to the anisotropic case above, we can parametrise the matrix
[(x,y) as

Ye(r,y) —Y(z,y)

Using the reconstruction formulae (2.40), we could obtain the numerical
results for the time-evolved spin field, thus spin transport properties.

F(a:,y) =14+ (’71(‘%9) 72(I7y) > ) (2.46)

2.2.3 Solitons and radiation modes

Before proceeding with the finite-gap integration for the periodic case, we
would like to mention types of solutions to the classical inverse scattering
method, i.e. solitons and radiation modes. Solitons are the non-dispersive
modes of the classical integrable models, while radiation modes are dis-
persive. In general, the spectrum of a generic initial state might contain
both. They are directly related to the analytic structure of the scattering
data a(p) and b(p).

More specifically, the soliton part of the spectrum is given by the zeros
of a(z) in the upper half plane (or the poles in the lower half plane) !,

while the radiative part is given by the regular part of a(z) in C, i.e.

a(2) = [[ ==L 2). (2.47)

When b(z) = 0, and |ayeg(2)| = 1, the spectrum only contains the solitons.
In this case, the GLM equations become algebraic, leading to exact ana-
lytic solutions to the non-linear equations of motion. We will demonstrate
this point in Chapter 4 in the easy-axis regime.

'here we use uniformisation parameter z
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2.3 Finite-gap integration

In this section we consider the periodic boundary condition, i.e. system
size £ € O(1) and S(z = 0) = S(z = ¢). In this circumstance we can no
longer use the classical inverse scattering method introduced in Sec. 2.2.
Furthermore, the periodicity induces a constraint on possible modes in
the spectrum, different from the ¢ — oo case. We need to use finite-gap
integration method to obtain exact solutions of classical Landau—Lifshitz
model with periodic boundary condition.

2.3.1 Adjoint linear problem

We begin with rewriting the auxiliary linear problem in the adjoint form.
The advantage of doing so is to avoid the ambiguity of normalisation in
the usual construction of Baker—Akhiezer vectors.

The solution to the auxiliary linear problem (2.6) can be written as

W(p;x) = Pexp (/ dx’U(u;x’)) = Tu(z, o), (2.48)
o

by formally integrating along the spatial direction with fixed time. &

stands for the path ordering. With the periodic boundary condition

— —

S(x =0) = S(x =), we define the (classical) monodromy matrix
Mcl(ﬂ) = Tcl(xo + 6, l’o), (249)
which does not depend on the initial starting point. Therefore, we have

Y(p;x + ) = p(p)(u; ), (2.50)

where p(p) = diag(py (1), p— (1)) is given by the eigenvalues of M (),
i.e. ps(p). The eigenvalues are time-invariant and unimodular because of
the zero-curvature condition (2.7) and TrU(u) = 0. We can parametrise
the eigenvalues as

pi+(p) = exp (Fip(p)) , (2.51)

where quasi-momentum p(u) encodes the information about the con-
served charges as we will see. Subsequently, we express the monodromy
matrix as

Meo(p1) = cos(p(p)) + isin(p(u)) ¥ (1; ), (2.52)
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where the squared eigenfunction can be written as

W (s ) = (s )"~ (s ). (2.53)
From the definition, det ¥ = —1.
The squared wavefunction is periodic, W(u;x 4+ ¢) = W(u;z) and it
satisfies the adjoint linear problem
o (s, t) = (U @, t), © (2, 1)]

Wi 2.t) = [V (i 2. 8), Wi 1) (254)

2.3.2 Local conserved charges

We introduce the uniformisation of the spectral parameter pu,
1 ) 1 )
,qu(z——), VM2+6:§<Z+_)) (255)
z z

the same as in (2.28). The squared eigenfunction, i.e. solution to the
adjoint linear problem, can be expressed in terms of a formal Laurent
series of z,

[e'S) \I’n
n=0
We define two matrices,
= L S7 ST ~ oz
S:S~a:(S+ —SZ>’ S =0*So”°. (2.57)

The expansions in ¥ read

U,=9S, ¥, =i[S,S,]

5 (2.58)

W, = —tr(S,)?S — [S,[S, Su]] + 1 [S, S, 8],

and so forth.
As for the local conserved charges, we start from the quasi-momentum,

¢
p(z) = —i/o tr[U(¥ + 0%)] = _ + Z %, (2.59)
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where (),, are the local conserved charges that do not evolve with respect
to time. For example, the first two with local density are essentially
momentum and Hamiltonian,

it -qo+ _ g+g- P
Y ]
10 . 5 50 (2.60)
a2 7\ 2
= —= — |l =—H4+ =
Q Q/de{smwu (577) ~ 5 +
and in spectral parameter p we have
w P H g
=—— = - — . 2.61
P = 5 — 5 — O™ (2.61)

2.3.3 Finite-gap solutions

We focus on a special class of solutions, i.e. finite-gap solutions, parametrised
by finite-many branch cuts in the Riemann surface. Most notable exam-
ples are the elliptic solutions that become magnetic soliton in the soliton
limit. We start with parametrising the squared eigenfunction as

_ 1 ag1(p) V 12+ €2 by(p)
Folw) = VRagr2(1t) (\/u2 +2by(p)  —aga(p) ) - (26

where functions aq(p), ba(p) and R4(p) are polynomials in variable p of
degree d. In particular, Rog2(pt) is a polynomial of degree 2g + 2,

g+1 2g+2
Ragra(i) = [ (= ) (e = 715) = > (=1)Fragrapt®, (2.63)
j=1 k=0

which specifies a hyperelliptic algebraic curve in C2,

Sy (1) = Rogra(p)- (2.64)
The curve is fully characterised by 2(g + 1) branch points p; (or, equiv-
alently, symmetric polynomials r thereof, with rog,o = 1). Because

det ¥y = —1, functions a(p) and b(x) are not independent but satisfy

a§+1(u) + (N2 + 5) by (10)bg (1) = Ragra(p). (2.65)
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From the trace identity (2.59) we obtain the following compact ex-
pression for the quasi-momentum

¢ 2
1 pe+o S”by (1) + STby (1)
p(u) = ——/ dz §%(x) — d . (2.66)
2 )y 4 V Rogra(p) + ag+1(p)

This form is compatible with the correct asymptotic expansion about
i — 00. A series expansion of p(u) will involve only (g + 1) functionally
independent integrals of motion ,,. They can be expressed as certain
functions of coefficients r; of Rog+2(t). Moreover, the total filling fraction

v with respect to the ferromagnetic vacuum 5%, =1,

V4
)= 2%/0 dz (1 — S*(x)). (2.67)

can be obtained as

. Y .
p(p = +ie) = :Fg/ de S*(z) = ;%(1 — ). (2.68)
0

2.3.4 Dynamical divisor and Dubrovin equations

As we see from above, the diagonal part of ¥ contains the information of
the quasi-momentum p, equivalent to the conserved charges. We would
like to know about the dynamical degrees of freedom too, which are the
dynamical zeros of the off-diagonal elements of W.

To satisfy (2.65), we have

g
bg(1; x, 1) H 1 —7;(z, 1)) (2.69)
j=1

The set D = {v;}%_, is known as the dynamical divisor of the Riemann
surface ¥. Since S~ (x,t) should also be regarded as an independent dy-
namical variable, we have in total (g + 1) dynamical degrees of freedom.
This number exactly matches the number of action variables and corre-
sponds to the number of forbidden zones in the finite-gap spectrum.

We employ an extended dynamical divisor Dey; by adjoining it two
extra non-dynamical variables 74+ = =ie which we label by ~,1; and
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Vg+2, Tespectively. Using the Lagrange interpolation formula, we restore
ag+1(p) from (2.65), yielding

Ak R
agr1(p;z,t) Rogro(vi(z,t - : 2.70
9+1( g 1\/ 2g+2 J( ))g%(ﬂ%t)—%(%t) ( )

From the adjoint linear problem (2.54), we obtain the equations of
motion for the dynamical divisor,

g

0, ) = 13/ Rag o (5w, 1) T [y, ) = el )7,

o (2.71)
03 (,1) = 1 G (,8) \[Ragea s, 1) T [y, 1) = el 1)~
ki
where
" g+1
G(z,t) = E—Z’yk z,t), 7“1:Z(uj+ﬂj). (2.72)
k#j J=1

We have obtained a system of differential equations that governs the
motion of the dynamical divisor of a Riemann surface, commonly known
in the literature under the name of Dubrovin equations [46, 47, 48]. The
form of these equations is universal, not depending on the model under
consideration. The reconstruction formulae, i.e. how 7-variables relate
to physical fields, are model-dependent. A spin field can be described by
two degrees of freedom, e.g. the S* and S~ components. These can be
restored from (2.54), which yields

g2
z v Ragra(v;(z,1))
S%(x,t) = : ’ )
0= 2 T2 o) — ) 279

and

S (l‘, t) o2 Vi \/R2g+2 Vi (xv t))
5~ (z,t) ]11_[22(%( t) — (1))’

So(xt) o Sp(n,t) T2V Ragr2(%) (Zii;?w( ))
- L TG e ) ) T

(2.74)
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2.3.5 Abel-Jacobi transformation

The Dubrovin equations (2.71) allow for exact integration. We define
the standard basis of 2g closed cycles on Riemann surface ¥. They are
g-many A-cycles and their conjugate B-cycles according to the following
prescription: Aj-cycle encircles the the jth branch cut C; on the upper
Riemann sheet of 3, whereas B, denotes a cycle that passes through cut
C; on the upper sheet and closes back to itself through Cj, as shown in
Fig. 2.1.

Dubrovin equations for the dynamical divisor on ¥ can be integrated
with aid of the Abel-Jacobi transformation,

9 Vi (2,t)
0; = 272/ wj, (2.76)
k=1 ’Wﬁ(oao)

where w; form the basis of holomorphic differentials of the Riemann sur-
face. The above mapping provides a variable transformation from ~-
variables to angle variables ¢, {v;(x,t)} — {¢;(z,t)}.

The holomorphic differentials w; are expressed as

g—
Z Cie i=1,2,.. .4 (2.77)

\V R2g+2

Coefficients C;, are determined by requiring canonical normalisation with
respect to A-cycles

Aj

Taking into account Eq. (2.76), equations of motion of the dynamical
divisor (2.71) linearise. Using the Lagrange interpolation formula, we
obtain

Opp(x,t) =21 Cy, Op(x,t) = 27 [%le + ng} , (2.79)

implying
@j(l',t) = l{:]x—l—wjt—l—(p]((),O), (280)

with wave numbers k; and frequencies w;

ki = 2miCy,  w; = 27r1[; O+ ng] (2.81)
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Phases ¢;(z,t) satisfy linear evolution in both space and time, executing
quasiperiodic motion on a Liouville torus T?¢ of real dimension 2g. ~-
variables evolve along closed trajectories which are equivalent to A-cycles

B,

Cj Cr

Figure 2.1: Cycles on a two-sheeted Riemann surface, illustrated on an
example of two cuts C; and C,. Upon tunnelling to the other Riemann
sheet, the integration orientation is reversed [13].

In order to obtain physical solutions, we need to impose another con-
straint, namely periodicity of the spin field. We would like to consider a
family of periodic solutions S(z) = S(z + ). They can be achieved by
demanding the periodicity of angles, ¢;(x + ¢, t) = p,(z,t) + 2w n; where
integers n; € Z specify the mode numbers assigned to each branch cut.
Similarly, invariance under translation for a temporal period 7T implies
quantisation of frequencies w;. Under these extra conditions, coefficients
Cj1 and (r1/2)Cj; + Cjp become integer-valued, imposing a non-trivial
restriction on the admissible algebraic curves.



Chapter 3

Quantum integrability

Algebra is generous; she often
gives more than is asked of her.

Jean-Baptiste de Rond
d’Alembert

In this chapter we introduce the algebraic Bethe ansatz technique to
solve the quantum spin-1/2 XXZ model, a paradigmatic quantum inte-
grable model. The generalisation of the method introduced here will be
of vital importance in Chapter 6. Instead of introducing the coordinate
Bethe ansatz technique (a la Bethe [18]) first, we construct the transfer
matrix formalism of 6-vertex model, a two-dimensional classical statis-
tical mechanical model. In fact, the quantum spin-1/2 XXZ model can
be considered as the Hamiltonian limit of 6-vertex model, which will be
explained later in this chapter. This is the reminiscence of the correspon-
dence between D-dimensional quantum system and (D + 1)-dimensional
classical system. The transfer matrix constructed for 6-vertex model will
play the central role in constructing the conserved charges of XXZ model
[20].

23
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I

w1 W2 ws Wy Wws We

Figure 3.1: Six possible configurations satisfying the ice rule. The weight
of each configure is denoted as w;, j =1,2---6.

3.1 6-vertex model

We start by defining a statistical mechanical model on a square lattice
imposing the so-called “ice rule”:

For each vertex, there are two arrows of the edges pointing toward the
vertex and the other two arrows of the edges pointing away from the vertex.

This leaves us six possible configurations on each vertex, shown in
Fig. 3.1.

In principle, the weights of different types of vertices might differ. We
only consider the case when w; = wy = a, w3 = wy = b, Wy = wWg =
¢, i.e. symmetric 6-vertex model. When all weights are different, i.e.
asymmetric 6-vertex model, which can be achieved by acting horizontal
and vertical “electric fields” on the vertices. We will not use asymmetric
6-vertex model in the rest of the thesis.

The partition function of the 6-vertex model is written as

2= ]I wene (3.1)

configurations vertex

Equivalently, we could define the partition function on a L x N torus as
Z = tr'TF, (3.2)

where T is the 2V x 2 matrix which corresponds to a periodic strip of
N sites, demonstrated in Fig. 3.2.
From the weight configurations in Fig. 3.1, we express the transfer
matrix T as
T = tro(Ron - - - Ro2Ro1), (3.3)
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Figure 3.2: A demonstration of transfer matrix of 6-vertex model. It is
defined on a periodic strip of IV sites.

where R;; is defined on (C2)®(V+1 and acts on the tensor product of i-th
and j-th spaces. Matrix R in terms of the weights reads

a 000
0 b c O
R = 0 cb 0 (3.4)
000 a
3.1.1 Integrability: Yang—Baxter relation
We choose a specific parametrisation of the weights, i.e.
a =sinh(A+7), b=sinh\, ¢=sinhn. (3.5)

Two parameters A and n are enough to parametrise three different weights
up to a global scaling factor. We also define two additional parameters
independent of A for later convenience,

a?+ b — 2

g=expn, A= = cosh 7. (3.6)

Remarkably, matrix R satisfies the renowned Yang-Baxter relation
[20],
Rij(A = )R (M R(1) = Rje ()R (MR (A — ), A, peC. (3.7)

From the Yang—Baxter relation, we apply the “train argument” and ob-
tain the relation
[T(A), T(w)] =0, (3.8)
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i.e. we obtain infinitely many commuting operators. We define a set of
conserved charges in the 6-vertex model as the logarithmic derivatives of
the transfer matrix T, i.e.

dJ
(n) — _y —_
I = Y log T()\) . n € N. (3.9)

From the commuting property of transfer matrices (3.8), it is easy to
observe that the conserved charges are in involution,

(1™, 1] =0, Vn,meN. (3.10)

3.1.2 Relation to spin-1/2 XXZ model

To begin with, we first define the spin-1/2 XXZ model with periodic
boundary condition, a one-dimensional quantum spin chain, as

N
1 — — A z _z
H= {5 (00 +0;00,)+ 7 (0707, — 1)] , (3.11)
j=1
where 0% = 1907 @ 0% @ 18V~9) are Pauli matrices and o, = 0¥
The relation between 6-vertex model and spin-1/2 XXZ model can be
readily seen, since

2 AN
I = —iT71(0)9\T(0) = el (H + T) : (3.12)
after identifying that A = coshn are the same in both models.

From (3.10), we readily identify infinitely many conserved charges
in the spin-1/2 XXZ model associated to the transfer matrix T(u) of
6-vertex model to XXZ model. Furthermore, we define the 2V+1 x 2N+1.
dimensional monodromy matrix M such that

M) = Rax (- ReVBa) = (0] DY) - @313

where the transfer matrix (3.3) is the partial trace of monodromy matrix

T(A) = troMp(A) = A(\) + D(N). (3.14)
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The reason why we introduce the monodromy matrix is as follows. The
transfer matrix T(\) contains the information about the spectrum, namely
the conserved quantities, which is the diagonal part of the monodromy
matrix. As we will show in the next section, the off-diagonal part of the
monodromy matrix can actually be used to construct the eigenvectors of
the transfer matrix.

3.2 Algebraic Bethe ansatz

From Yang-Baxter relation (3.7), we obtain the “RMM relation”, i.e.
Rab()‘ - M)Ma(A)Mb(/O = Mb(ﬂ)Ma<)‘)Rab<)‘ - M)? )‘7 e C. (315)

This relation essentially guarantees the commuting property of the trans-
fer matrix. Hence, (3.15) ensures the quantum integrability of spin-1/2
XXZ model.

Moreover, from RMM relation (3.15), we can derive the relation be-
tween the diagonal and off-diagonal terms, the central object of algebraic
Bethe ansatz (ABA),

[AN); A(w)] = [B(A), B(p)] = [C(A), C(n)]

[D(A), D(p)] =0, (3.16)

ANB() = T DB A+ B BOAGY), (3.7
BOVA(0) = 50 AGBO) + A, (315)
BOUDG) = D0 BO) - B DB, (3.19)
DOVB() = 5 B )D0) - B, (3:20)

and the other relations are not listed here, since we will not use them in
most parts of the thesis. They can be found in Ref. [49, 20].

In order to construct the eigenvalues of the transfer matrix, we start
with a pseudo vacuum state |@) = | 11 --- 1) which is an eigenstate of
both A and D operators, i.e.

A(N)[@) =sinh™ (A +7)[@), DW)|@) =sinh¥(\)|@).  (3.21)



28 Chapter 3. Quantum integrability

In the meantime, |@) is annihilated by C operator C(\)|@) = 0. (C
operator change the magnetisation by +1, and B operator change the
magnetisation by —1.) We assume that all eigenstates of XXZ model
with M down spins can be written as

M
{0 A, A d) == [ BOA (3.22)
J=1
and from the commutation relations above, we can infer the relation that

Aj has to satisty.
We focus on the following equation,

_]21
u (3.23)
+) AB(A HB o)D),
Jj=1 k#j

and A are the unwanted terms, when Hj‘il B()\;)|@) is an eigenstate of
transfer matrix. By demanding A, = 0, we obtain

Sinh(/\j + 77) N _ ﬁ Sinh()\j - )\k + 7]) (3 24)
sinh A, oy sinh(\j — A\, —n)’ .

We reparametrise the spectral parameter, i.e. u = A + /2, and all
the arguments in equations above are shifted by /2. We obtain

sinh(u; +1/2) N B M sinh(u; — ug +n)
(Slnh( 77/2)) N kH;é] sinh(u; — ug — 1)’ (3.25)

The scattering phase between two Bethe roots is thus

sinh(u; — up — )

Sy, ue) = sinh(u; —ug + 1)’

(3.26)

by rewriting (3.25) as

M
e T S (uj,w) = 1. (3.27)
k#j
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These coupled non-linear equations are known as the Bethe ansatz
equations for XXZ model, with solution u; called Bethe roots. The (quasi-
Jenergy and (quasi-)momentum of each magnon with Bethe root u; are

sinh(u; — n/2)
sinh(u; +n/2)’

pj = 1ilog
3.28

sinh? 7 ( )
2 sinh(u; + n/2) sinh(u; —n/2)

Ej = cos(p;) — A =

The total momentum and energy of the eigenstate |{u;}}L,) are thus

M M
p=Yp, E=)E; (3.29)
=1 =1

This construction of eigenstates has caveats when ¢ = expn is at root
of unity value. We devote the entire Chapter 6 to study the complete
spectrum of XXZ model at root of unity. As we shall show in Chapter 6,
Bethe equations are equivalent to Baxter’s TQ relation, which is a linear
matrix equation, in principle easier to solve compared to (3.25).

The ABA is a very powerful tool to study quantum integrable systems.
Notably it can be used to calculate the norm and overlaps between Bethe
states |[{u;}) in terms of determinants. This allows us to obtain analytical
and numerical results for the form factors or correlation functions in the
realm of quantum integrable systems. We will not expand on this here.
One can find extensive results and discussions in Refs. [20, 49].
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Chapter 4

Domain wall quench in the
Landau—Lifshitz ferromagnet

The contents of this chapter were published in [1].

In this chapter we aim to study an inhomogeneous quench problem in
the classical Landau-Lifshitz model. In general it is rare to obtain exact
results on the out-of-equilibrium properties of soliton systems (classical
integrable systems) due to the fact that the formal integration scheme can-
not be implemented analytically except for a few exceptions. Specifically,
we consider the time evolution of the domain-wall initial condition in the
Landau—Lifshitz ferromagnet, which enables us to analytically explore the
non-equilibrium transport properties using methods developed in Chapter
2. Another motivation lies in the results obtained in the quantum spin-1/2
Heisenberg XXZ7 ferromagnet, where the time evolution of domain-wall
initial state |--- ™)) ---) has been investigated. Landau-Lifshitz fer-
romagnet can be considered as the semi-classical (long-wavelength) limit
of the quantum Heisenberg XXZ ferromagnet. With this observation, we
discover a remarkable classical-quantum correspondence for the macro-
scopic spin transport with domain-wall initial condition.

Explicitly, we consider the initial condition

S(z,t = 0) = (sech(z/x),0, tanh(z/z0))" (4.1)

evolving under the Landau-Lifshitz Hamiltonian (2.4) with anisotropic
parameter 0. This is an analogue of the quantum domain-wall state
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|-+ M4 --+). Instead of being defined in a lattice, the spin field is
defined in R. We use hyperbolic functions to imitate the domain-wall
property, where ¢ denotes the width of the domain wall.

It is worth noting that if we rescale the profile as x — zxg and t — tz2,
according to the equation of motion (2.1), it is equivalent to the rescaling
of the anisotropy § — dz2. Hence, our quench protocol is equivalent both
to quenching the initial profile and quenching the anisotropy parameter
0. Without losing generality, we consider the initial condition with xq =1
and arbitrary anisotropy parameter 9.

4.1 Landau—Lifshitz model as semi-classical
limit of XXZ model

In this section we show that the classical Landau—Lifshitz model is the
semi-classical limit of the quantum Heisenberg XXZ model from the in-
tegrability perspective. Equivalently, one may obtain the same result by
considering the low energy excitation (spin wave) above the ferromagnetic
vacuum in the XXZ model in the spin coherent state formalism. After tak-
ing the continuum limit, we would arrive at the classical Landau—Lifshitz
model too. This method provides us a physical intuition that the Landau—
Lifshitz model can describe the low-energy (long-wavelength) spin wave
excitations above the ferromagnetic state of XXZ model. We will not
explain the procedure in details!, and rather focus on the integrability
side.

We start with showing how the (classical) Lax connection (2.8) and
(2.9) in Chapter 2 can be retrieved from the Lax operator of the quantum
model (3.4) in Chapter 3. The fundamental Lax operator L(u) acts on a
one-site (physical) Hilbert space V, = C? of a spin-1/2 degree of freedom
and an auxiliary space V, associated to the fundamental representation of
the quantum group U,(sl(2)) (with deformation parameter ¢ = €"), and
depends analytically on the complex (spectral) parameter p. It reads

1A detailed derivation can be found in [50].
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explicitly

_ 1 sinh(u + 7S”) sinhnS~
Liu) = sinh n ( sinh nS* sinh(u —nS?*) )’ (4.2)

in terms of auxiliary spin generators which enclose the ¢-deformed com-
mutation relations 2

[ST,87] =[257],, ¢*'S* =¢*S* >, (4.3)

with the standard notation [z], = q;:qu.

The fundamental row transfer matrix of the quantum XXZ spin chain
is given in (3.3), and we rewrite it here,

T(u) = Try, M(u) = Try, Loy (w) - - - Lag(w) - - - Log (w). (4.4)

By virtue of the quantum Yang—Baxter relation, matrices T(u) mutu-
ally commute, [T(u), T(u')] = 0 for all u,u € C. Therefore, commuting
transfer matrices serve as the generating operator for the local (and non-
local) conserved charges [49, 13]. An infinite tower of commuting fused
transfer matrices T;(u) with (25 + 1)-dimensional auxiliary unitary repre-
sentations of U, (s[(2)) can be constructed in a similar manner, providing
additional quasilocal conservation laws of the XX7 model. While these
are of utmost importance for thermodynamic properties at finite energy
density (see e.g. Refs. [51, 52, 34, 53]), they do not play any role upon
taking the semi-classical limit.

We take the asymptotic scaling limit L — oo at the level of the transfer
matrix by parametrising the interaction parameter as n = e//L — 0 and
subsequently taking n — 0 (¢ — 1) . We will consider either ¢ — oo
in this chapter or ¢ € O(1) in Chapter 5. As we will see, ¢ has the
physical meaning of classical circumstance. In this case we are allowed
to substitute the ¢-deformed spin generators with the fundamental s((2)
spins, S* — S¢ = %00‘ for € {x,y,z}. The diagonal elements of the
quantum Lax operator become

. sinh(ul +7S”) sinhu
lim =

1 h (u)S” 4.
lim Sinh 7 + cosh (u)S* + O(n), (4.5)

2Discussions about different Lax operators for quantum XXZ model can be found
in Chapter 6.
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while

v =00 [ (0 Saiog)] 09

By reinstating the lattice spacing @ = ¢/L and using the spectral param-

eter
€

~ tanhu’

f (4.7)

the Lax matrix reads

1 . 15? \/,u2—|—55”_)1
L)~ ——— |1 +ia . . : 4.8
0= s e (s Vs -

whereas the asymptotic scaling limit of the associated monodromy matrix
M(p) is given by the following path-ordered product

M ! Gz 2 S
Ml e )]
In the final step we replace the quantum spins Se with classical spin

variables via S¢ = S%(r = ja), and subsequently take the continuum
limit. We thus arrive as the following semi-classical approximation of the

quantum monodromy matrix

Mai(1) = Pexp {5 # e S—jw;x,w] , (4.10)

with U(u; z,t) being the spatial component of the Lax connection intro-
duced earlier in Eq. (2.8).

4.2 Properties of the scattering data

In Chapter 2, we obtained the scattering data for a domain wall profile,
_ Vit +eT? (5 - 5p)
2T (1 — 3 (p+ie)) T (1 — 3(n—1ie))’ (4.11)

cos(Ze)
b(p,0) =i——2".

a(p,0)
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When § < 0, i.e. € € iR, scattering data a(u) has no zeros in the
upper half plane. This means that the domain wall profile (4.1) contains
only radiation modes and no soliton.

However, when 6 > 0, i.e. € € R/{0}, scattering data a(u) always has
zero(s) in the upper half plane, implying the existence of the soliton(s)
in the domain wall profile (4.1). Furthermore, when ¢ = 2j — 1 with
Jj €Z,b(n) =0. In that scenario, the domain wall profile consists of only
soliton(s)!

Using the uniformisation parameter z, in the case of b(1) = 0, we have
=il M2 e giz2m — 1)
alz) = Tt ilef -1 224 €+2iz(2m— 1)

(4.12)

We will analyse the soliton spectrum in details in Sec. 4.5.

4.3 Easy-plane regime: hydrodynamics

The absence of zeros of a(u) in the upper half p plane for the easy-plane
regime (0 < 0) means that the spectrum comprises only a dispersive
continuum of radiative modes. We find ballistic spin transport in this
case, as exemplified in the first panel of Fig. 4.2. The emergence of
ballistic spin transport can be explained without using the non-linear
transformation of classical inverse scattering transformation. Instead, we
make the hydrodynamic approximation of the equation of motion (2.1),
which reveals the leading order of the spin transport.

We start with introducing two slow variables S* and v = —i(log S™),.
We use shorthand notation (---), := 0, - -+ here. We recast the equation
of motion (2.1) into

Sy —([t=(S)°]v), =0, v+ ((e+2%)85") =R, (4.13)

where the non-linear coefficient R satisfies

sz |
(w = <sz>2>m i <Sz>2] R (414

R:
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Neglecting the non-linear coefficient R, we obtain

(),

This WKB-type approximation can alternatively be viewed as the sim-
plest case of a more general Whitham theory describing modulation of
multiphase solutions to nonlinear wave equations.

Next, we would like to bring the Whitham-like equation (4.15) into
the Riemann diagonal form

Ora(z,t) + Vi(z,t)0rs(z,t) =0 (4.16)
through diagonalising the 2 x 2 matrix in (4.15). We have

re = S+ /[T~ (S — 2),
r—  3ry

re o 3r_ (4.17)
Vi=—+4+"1+ yv =4
=5 T 5 T3

The absence of scale in the initial profile motivates us to seek a self-
similar solution depending on the ray coordinate £ = x/t, which yields
the hydrodynamic equation

V(&) — €]Oer+(€) = 0. (4.18)

In order to solve the hydrodynamic equation, we need to provide appro-
priate boundary conditions. In the domain-wall case, we have

S%(&1) = +1, wv(&s) = vy = const, (4.19)
with &4 being the boundaries of the ballistically expanding region connect-
ing two vacua (S%(+00) = +1 and S%(—oc0) = —1). Inside the ballistic
region the solution reads

S%(€) = %, v = |e| = v, Ex = £2|¢l, (4.20)

which implies linear growth of magnetisation, cf. Fig. 4.2. Integrating
along the = axis, we have the magnetisation profile

2/
m(t) =~ 1 / A€ (1 - 5,(6)) = |elt. (4.21)
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signalling the ballistic spin transport. The density of states p(u) =
log |a(p)|* develops a singularity at p, = |e|, which defines a natural scale
in the spectrum. The velocity of the hydrodynamic region is nothing but
the velocity of the critical dispersive modes V, = 2, = |£4].

The non-trivial solution at the Euler scale (depending only in vari-
able £ = x/2) exists only strictly in the easy-plane regime § = €2 < 0,
whereas for § = €2 > 0 the hydrodynamic solution trivializes, implying
sub-ballistic transport that cannot be captured by the hydrodynamic ap-
proximation. We need to fully take into account the effect of non-linearity
of the equation of motion (2.1) for isotropic and easy-axis regimes.

4.4 Isotropic regime: log-enhanced diffu-
sion

For € = 0, the density of states p(u) diverges logarithmically at u — 0,
since a(0) = 0 when 6 = 0. As we demonstrate, this turns out to be
an artefact of the specific domain-wall profile with perfectly anti-parallel
asymptotic spin fields (S*(£o00) = £1). For this reason, we now consider
a deformed profile § = (cos ®, 0,sin )T, where & = (v/7) arcsin (tanh z)
with the ‘twisting angle’ v € [0, 7). We recover the anti-parallel domain
wall profile (4.1) in the limit v — 7. The induced correction to the
scattering data for v ~ m, computed with the first order perturbation
theory, displaces the zero of a(u) at the origin, a(0) ~ i(7—~)/2, rendering
the density of states p(u) finite.

At the isotropic point, there is a unique class of self-similar solutions to
equations of motion (2.1) which depend on the scaling variable ¢ = z/v/t,
governed by an ODE [54],

—2¢S = § x S, (4.22)

which has been studied in the context of the vortex filament dynamics [55].
For initial conditions with a jump discontinuity at the origin, Eq. (4.22)
can be solved analytically. For large times, we observe that the twisted
domain wall approaches the self-similar profile. The latter manifestly
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yields normal spin diffusion m(t) ~ ®(y)vt. The diffusion constant
D(v) plays a role of the filament curvature and can be approximated
as ¢/ E, with ¢ = V2(r — 2log(v2+ 1)) =~ 2 and E = 5’3 being the
conserved energy [56]. Using relation e™¥/2 = cos(v/2), we conclude that
D(v) diverges as v — m, explaining the breakdown of normal diffusion
for the untwisted profile (4.1). Diverging diffusion coefficient hints at
superdiffusive behaviour of the spin transport.

In order to quantify it, we have implemented an efficient numerical
solver of the inverse (GLM) transform explained in Sec. 2.2.2. The nu-
merical data indicates a mild logarithmic (in time) divergence of m(t) (cf.
Fig. 4.1, inset plot), which nicely conforms with the type of singularity in
the density of states. The twist of the boundary conditions removes the
singularity and restores normal spin diffusion, as shown in Fig. 4.1.

3 9
3 1
1
1
m(t) &
1
vt ? o
2 /"+
£ 1 ‘
2 4 [§ 8 ‘
logt e
. e
.ol e
R 4
N 4
7o
Q,’Q
0-~
0 w/4 /2 3r/4 ™
Y

Figure 4.1: Spin diffusion constant ©(+y) as a function of the twisting angle
«, shown for the self-similarity solutions (open circles) and numerical
integration up to ¢ = 2000 (red crosses). The blue dashed line shows
the leading term in the large-E asymptotic expansion of the self-similar
solution. Inset: Numerical solution to the inverse scattering transform of
the untwisted domain wall profile (4.1).

3This definition of the diffusions constant should not be confused with that of the
Kubo linear response theory.
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4.5 Easy-axis regime: stable kink

In distinction to the previous two regimes, the scattering data a(u) acquire
an additional discrete component (zeros at the upper half plane), which
corresponds to the (multi)soliton modes. The simplest among them are
static (anti)-kink modes with topological charge () = £1, which coincide
with domain wall (4.1) for zp = 1 and § = € = 1. In this case, we have

z—1
&<2)_lz+i’

b(z) = 0. (4.23)

From inverse scattering calculation, we find that the spin field is time
independent, i.e.

S(z,t) = S(x,0) = (sechz, 0, tanh )" . (4.24)

We will discuss the manifestation of the static kink in the periodic case
in Chapter 5.

The kink persists in the spectrum for all § > 0. Besides solitons,
the spectrum involves a continuous spectrum of radiative modes, which,
however, vanish for the the discrete set of ‘reflectionless anisotropies’ € =
(2m — 1), m € Z. The analyticity of a(u) can be restored with the
uniformization map, u(z) = (z — e2z71)/2.

The spectrum of the domain wall (4.1) does not involve any asymptot-
ically free solitons, implying the absence of ballistic transport. Therefore,
the asymptotic scaling m(t) ~ t° is a consequence of the finite differ-
ence between the domain wall profile and the stable kink, i.e. the radi-
ation modes. For instance, on the interval 0 < ¢ < 3i, the kink is the
only soliton mode and the steady state of the domain wall dynamics in
the limit ¢ — oo. On the other hand, for larger values of anisotropy
we obtained an infinite family of bound states which undergo periodic
oscillatory motion, the existence of breathers. Such solutions have not
been explicitly described previously in the literature [57, 58, 59, 60], but
similar ‘wobbling kinks” have been already identified in the sine-Gordon
model [61, 62, 63, 64].

Let us focus on the case with ¢ = 3 and xg = 1. The scattering data
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can be extracted from (2.26),

(2=31)(z2=2i2+9) z—zz—2,2—2
a(z) =i =i
(z + 3i)(22 + 2iz + 9) 242z —Zy2— 2 (4.25)

where zy = 3i, 24 =14+ 2V/2.

Solving the Goursat equations (2.32), (2.33) and (2.34) which be-
come algebraic with only solitons in the spectrum, we obtain the so-
lution describing the kink-breather bound state that can be compactly
parametrised by a complex stereographic angle ¢,

1 — Jo]? . 2
7 = R Y Pt 4.26
L+ ]2 1+ ]2 (4.26)

where
6770 + 677+ _|_ 26777

L + 2emo+n—  enotn+
The phases n;(z,t) = i(kiz + w;it) and kg = —3i, wp = 0, and kL = =+i
and wy = k2 —? = —10 are determined from the scattering data (4.25).
This wobbling kink solution is plotted in the third panel of Fig. 4.2, with

. . . 2 _
oscillatory period T' = @ = Z.

(4.27)

4.6 Classical-quantum correspondence

The quantum integrable (lattice) counterpart to the equation of motion
(2.1) is the quantum spin-1/2 XXZ model (3.11), as explained in Sec. 4.1.
The time-evolution following a sharp magnetic domain and its dependence
on anisotropy A has already been a subject of study in the past [65, 66,
36, 67, 68, 69, 70].

In the remainder of this chapter, we would like to elaborate on the
perfect qualitative agreement in the spin dynamics of the classical and
quantum anisotropic ferromagnets, in spite of rather discernible differ-
ences in the respective microscopic dynamics: the spectrum of excita-
tions of quantum dynamics (classified in [71, 72]) consists of magnons
(and bound states) carrying a quantised amount of spin, whereas classi-
cal dynamics corresponds to the semi-classical long-wavelength spectrum
of large spin-coherent states [73, 74, 13, 75].
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In order to facilitate the comparisons, we review the key known results.
Ballistic expansion of the magnetic domain wall in the gapless regime
|A| < 1 has been first computed numerically using the hydrodynamic
theory for quantum integrable models [36] and latter obtained analyti-
cally in [67]. The dynamical freezing of the magnetic domain wall in the
gapped regime |A| > 1 has been reported in [65, 68, 69]. In fact, the ob-
served effect is once again a consequence of stable topological kink vacua,
representing an inhomogeneous (infinite-volume) ground states with a fi-
nite spectral gap [76, 77, 78, 79] (which become unstable at A = 1). At
the isotropic point, the observed logarithmically enhanced diffusion law
in the isotropic Landau-Lifshitz model (cf. Fig. 4.1 and the second panel
of Fig. 4.2) appears to be compatible with the state-of-the-art numerical
study [69]. In the meantime, the same type of correction has been found
in the asymptotic behaviour of the return probability amplitude for the
domain wall initial state [80] too. Our twisted domain wall profile should
be understood as a classical analogue of the tilted domain wall product
states employed in [70] which also exhibit normal spin diffusion.

Comparing to the results in the previous sections, and noticing the re-
lation between classical anisotropic parameter § and quantum counterpart
A, it is remarkable that the spin transport in all three regimes (easy-plane,
isotropic and easy-axis) behaves qualitatively the same as the quantum
cases, strongly supported by the numerical results in previous works. It
is thus convincing to expect such classical-quantum correspondence holds
even quantitatively. We explore this direction in the easy-axis regime,
where we study the stable kink after the semi-classical quantisation in
Chapter 5.

Although in this chapter we concentrated on the spin transport dy-
namics in the far-from-equilibrium regime (with domain wall initial con-
dition), there exists other evidence that the classical-quantum correspon-
dence holds also in thermal equilibrium in the conventional framework
of linear response theory. The thermal spin diffusion constant (at half
filling) in the classical lattice Landau—Lifshitz model (the lattice version
of Landau—Lifshitz model studied here) — defined via the thermal average
of the time-dependent auto-correlation C(t) = (J(0)J(t))/L of the spin
current J(¢) — has been numerically investigated in [81], where three dis-
tinct regimes have been identified: ballistic transport with a finite Drude
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weight D = lim;_,o, C(¢) in the easy-plane regime, normal diffusion with
finite D = lim;_, fot C(t")dt’ in the easy-axis regime, and superdiffusion
with a time-dependent diffusion constant D(t) ~ t!/3 at the isotropic
point. In the quantum spin-1/2 XXZ model, the picture remains qualita-
tively the same: in the easy-plane regime (|A| < 1), the finite spin Drude
weight has been attributed to quasi-local conservation laws [82, 53] (also
see discussions in Chapter 6) and computed exactly in [40, 41] using the
generalised hydrodynamics for quantum integrable models [35, 36]. In
the easy-axis regime (|]A| > 1) one finds normal diffusion, theoretically
explained in [42]. Finally, the divergence of the spin diffusion constant at
the isotropic point (at finite temperature and half filling) has been estab-
lished in [43]. Numerical simulations [68] provide a convincing evidence
for super-diffusion with the Kardar-Parisi-Zhang (KPZ) dynamical expo-
nent o = 2/3, later theoretically justified with the aid of a dimensional
analysis in [44].

50

40,

0
Figure 4.2: Time-dependent density profiles of S* component in the easy-
plane § = —1 (left), isotropic § = 0 (middle) and easy-axis 6 = 9 (right)
regimes, displaying ballistic spin transport, logarithmically enhanced dif-
fusion and absence of transport, respectively. The dashed lines show
|S#] = {0.2,0.4,0.8}.

4.7 Summary of results

We studied the spin transport in the anisotropic Landau-Lifshitz ferro-
magnet initialised in the domain wall profile, summarised in Fig. 4.2. We
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calculated the exact spectrum of nonlinear normal modes analytically and
expressed the time-evolved spin field as a solution of the inverse scattering
transformation.

In the easy-plane regime we observe a ballistic expansion of the mag-
netisation profile, which, to the leading order, can be captured by a Rie-
mannian hydrodynamic theory.

For the isotropic interaction, we rigorously established a divergent spin
diffusion constant and explain the origin of the a modified diffusion law
with a multiplicative logarithmic correction. The effect is shown to be a
particularity of the initial state and can be regularized by a twist of the
boundary conditions which restores normal diffusion. Such a ‘r-anomaly’
can be understood as an ‘infrared catastrophe’ due to a logarithmic di-
vergence of the mode occupation function in the low-energy A — 0 limit.

In the easy-axis regime, the spectrum of the domain wall acquires
non-trivial topologically charged (multi)soliton states which consists of
breather modes superimposed on a kink. It remains an interesting open
question whether wobbling kinks survive quantization, similar to the
problem of quantum stability of cnoidal waves addressed in [75]. Analytic
continuation into the easy-plane phase, ¢ — —ie, can also be understood
as destabilization of the kink mode into a dynamical domain wall.
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Chapter 5

Semi-classical quantisation of
magnetic solitons in Landau—Lifshitz
model

The contents of this chapter were published in [2, 3].

In this chapter, we will take the semi-classical limit of the Bethe
ansatz equations of quantum spin-1/2 XXZ model, obtaining asymptotic
Bethe ansatz equations, which is equivalent to the equations that quasi-
momentum of finite-gap solution in classical Landau-Lifshitz model. This
construction reveals the connections between the spectral problem of clas-
sical Landau—Lifshitz model and the distribution of Bethe roots of spin-
1/2 XXZ model. Moreover, the corresponding semi-classical eigenstates
of the quantum model can be considered as the quantised non-linear spin
waves of the classical counterpart. This leads to a quantitative description
of the classical-quantum correspondence in Chapter 4. The study of semi-
classical eigenstates of quantum integrable lattice models has been initi-
ated in [73, 74], and the method is often referred to as Asymptotic Bethe
ansatz [83]. In recent years, asymptotic Bethe ansatz has drawn lots
of attention originated from the AdS/CFT integrability side [13], which
has been proven to be a crucial tool to study the correlation functions
in four-dimensional supersymmetric Yang-Mills gauge theories. In fact,
the semi-classical limit of quantum isotropic XXX model is of particular
interest [13, 75], due to its close relation to the SU(2) sector of N' = 4 su-
persymmetric gauge theories. We extend the study of the isotropic case to

45
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the anisotropic case, i.e. the semi-classical limit of quantum XXZ model,
which can be equivalently considered to be the semi-classical quantisation
of the classical anisotropic Landau—Lifshitz model.

We only consider the case with |A| > 1 in this chapter. We will focus
on the finite-gap solutions which only involves finitely many degrees of
freedom. In particular, we aim to bring further understanding of the bion
solution which becomes static kink described in Chapter 4 in the soliton
limit. In the regime 0 < |A| < 1, the bion solution does not exist, similar
to the non-existence of static kink in the domain-wall quench in the same
regime.

5.1 Semi-classical limit of Bethe ansatz equa-

tions: asymptotic Bethe ansatz

We start from the Bethe ansatz equations (3.25), where we use spectral
parameter ¥ = —iu, i.e.

{Sin(ﬁj +id)
n
2

] = - 6.)

oy sin(¥; — 9y + i)

The total momentum and energy of an eigenstate are obtained by sum-
ming over all the constituent magnons, yielding manifestly additive ex-
pressions of the form

P({9;}m) Zp E({v; }M):Z sin” 1 —, (5.2)

— COS 20 — cosin

with pseudo-momentum of each magnon defined as
(5.3)

We introduce the Q function (polynomial) of any eigenstate |{0;}),

QI; {0,}) = Hsmzﬁ‘ 9;) (5.4)
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which is proportional to the eigenvalue of the Q operator, which will be
crucial in Chapter 6. Here we use the notation

fEW) = f(0 £ijn/2) (5.5)

for the simplicity of the derivations.
Q function is a ‘trigonometric polynomial’ of degree M whose zeros
correspond precisely to the Bethe roots of a given eigenstate. Denoting
Qo(¥) = sin®(¥), and making use of compact notations for imaginary
shifts, f#* (1Y) = f(¥ & in/2), the Bethe equations can be presented in
the form
Qs(0) _ @)
Qo (0;) Q)

where Q;(V) = Hﬁi ;sin(¥ — ¥g). In an equivalent logarithmic form, we
have

log Q7 (9;) — log Qg (9;) = 2n;mi +1log Q74 (W) — log Q7 (9;).  (5.7)

The above form is universal and provides a useful starting point to obtain
the semi-classical limits in many other quantum integrable models.

(5.6)

5.1.1 Derivation of asymptotic Bethe ansatz equa-
tions

In order to derive the asymptotic Bethe ansatz equations, we need to start
with a small parameter that can be effectively treated as the “A”. We start
with a low-energy scaling limit (with respect to the ferromagnetic vacua)
by taking the number of sites L — oo and number of magnons M — oo
while demanding that all magnons have low momentum ~ O(1/L). In
this limit, we have only finitely many m ~ (1) macroscopic bound
states. This low-energy effective limit is different from the conventional
thermodynamic limit, where the number of bound states m ~ O(L).
This low-energy eigenstates have been first investigated by Suther-
land [73] and afterwards also in [74], where they are dubbed as ‘quantum
Bloch walls’. Their classical nature has been elucidated in [13], establish-
ing an explicit connection with (nonlinear) spin waves governed by the
continuous Landau-Lifshitz ferromagnet with isotropic interaction.
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The method outlined in [13, 75] can be extended to accommodate
also for the interaction anisotropy. In the presence of the interaction
anisotropy 7, the thermodynamic scaling limit that governs the semi-
classical spectrum of low-energy eigenstates requires to additionally as-
sume that anisotropy is weak, A Z 1. After reinstating lattice spacing
a and writing ¢ = La € O(1), we can express the anisotropy parameter
n~O1/L)— 0 as

el 1
with parameter
2(A -1
e=Vo, &= (T) € 0(1), (5.9)

kept fixed while taking the continuum thermodynamic limit, L — oo
and a — 0. The same limit has been discussed in Sec. 4.1 when con-
sidering Landau-Lifshitz model as semi-classical limit of quantum XXZ7
model. Here parameter ¢ plays the role of a length, corresponding to the
circumference of the emergent classical phase space.

Expanding the logarithm of @7, we obtain

d
2 2 (5.10)
n° d 1

— = 3 108 Qo(V)]9=g, + O (L2>’

log QE(0,) =log Qu(¥;) +

8 dv?

where we have assumed that ¢ € O(1). It is convenient to perform a
change of variable by introducing new spectral parameter

€
T ey T g (5.11)

d

We rewrite the expansion using the new spectral parameter u,

g Q5 (0) ~1og Qg 0) =it +0 (1) (612

The part involving Q(¥) can be treated analogously. By combining
the two contributions, we finally arrive at the following compact repre-
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sentation in the p-variable

M
2 2= itk + O 1
=" 2N BT o2, 5.13

Taking the low-energy scaling limit, the Bethe roots j; condense along
certain one-dimensional segments (contours). In general, there are several
disjoint contours C = U;C;. Accordingly, the Bethe equations turn into
singular integral equations of the form

Y=y — o Ksln o), e, (5.14)
c
with integral kernel
_pA+D
Ko(n,3) = B2 (5.15)

Egs. (5.14) are known as the asymptotic Bethe ansatz equations (ABE).
To satisty the reality constraint, the Bethe roots must appear in complex-
conjugate pairs, implying that contours C; are symmetric under reflection
about the real axis. The leading correction term to Eq. (5.13) is of the
order O(1/L), derived in Appendix B

1

pr'(p)EQ(/f + 0)? coth [ml(p* + 6)p(p)] - (5.16)

The correction to Egs. (5.14) can be neglected only when
ml(p? + 0)p(p) # imn, n € Z, (5.17)

i.e. the density of roots near the real axis is sufficiently low. In con-
trast, when the density of Bethe roots is high enough, the assumptions
underlying the above perturbative expansion are no longer justified and
one has to solve the full quantum Bethe equations non-perturbatively.
We study this non-perturbative behaviour in Sec. 5.4.2 and examine it
closely on a specific class of solutions. As it turns out, the effect is re-
sponsible for emergence of certain special features in the solutions called
condensates [13, 75].
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The asymptotic Bethe ansatz equations (5.14) can be formulated as a
Riemann-Hilbert problem. We define the spectral resolvent

Gly) = ¢ / AN (1, M)p(N). (5.18)
and define )
pl) = Glu) + 5 (5.19)

At every point o along the density contour C; function p(u) experiences
a jump discontinuity that is proportional to the density (of Bethe roots)

o),
plp+i0) — p(p —i0) = 2iml(p® +6)p(p),  peCy, (5.20)

with +i0 denoting infinitesimal displacements to either side of the con-
tour. Individual contour C; is depicted as the jth branch cut (of square-
root type) of a two-sheeted Riemann surface. The end points of C; cor-
respond to branch points. In this view, function p(u) is a double-valued
complex function which, apart from contours C;, is analytic everywhere
on the complex p-plane. A branch cut of square-root type implies that
upon crossing it the function jumps to the other Riemann sheet and p(u)
flips its sign. In addition, p(u) picks up an integer multiple of 27, namely

p(p+10) 4+ p(p —i0) = 27n;, w e C;. (5.21)

Remarkably, p(u) is precisely the classical quasi-momentum pertaining to
the completely integrable classical anisotropic ferromagnet (2.59), which
has been introduced in Chapter 2. Alternatively, quasi-momentum en-
codes the eigenvalues of the classical monodromy matrix obtained from a
path-ordered exponential of the classical Lax connection, which has been
demonstrated partially in Sec. 4.1.

5.2 An exact solution to the discrete asymp-
totic Bethe ansatz equations

When there is only one branch cut in the Riemann surface and the density
of Bethe roots is sufficiently low, there exists an exact solution to the



Chapter 5. Semi-classical quantisation

51

discrete asymptotic Bethe ansatz equations (5.13) where the Bethe roots
are zeros of a generalised Jacobi polynomial. When system size L — oo,
the distribution of the Bethe roots on the Riemann surface is described
exactly by the distribution of the zeros of generalised Jacobi polynomial.
The isotropic case has been studied in [84] and the Bethe roots in the

isotropic case are zeros of a Laguerre polynomial.

To illustrate this, we define two polynomials P(y) and P(u) similar

to Baxter’s Q function,

and

For those two polynomials, we have the following identities,

1 d273 dP

2%; =T AT
P dp

Y T i~ AT / 01/

Denoting P'(p) = %P(u), we obtain

P dp d P(u)
d(1/p) — d(/p) dp \ ()M pM T3 gy
_ MpP(p) — 1P (p)

M )
(=D)MpM Hj:l Hj

=1y

H=1

and

P MM — PP () — 2(M — )P’ () + p P ()

d(1/p)? (=DM T 1y

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)
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Figure 5.1: Comparison between solution to Eq. (5.33), the numerical
solution to a finite-size Bethe equation and the branch cut for L = 300,
M =30, n; = 1. The figure is plotted in ( = 1/u variable. The blue dots
denote the numerical solution to Bethe equation (5.1). The black crosses
are the solution to Eq. (5.33) and the red dashed line is the location of
the branch cut in the limit L — oo.

Therefore, we can recast the discrete asymptotic Bethe ansatz equa-
tions (5.13) to an equation of polynomial P using (5.26) and (5.27), i.e.

(12 + 8)P" (1) + | (L — 2M + 2)p; —

Vj=1,-- M.
(5.28)

By matching the coefficient of the highest order, P(u) satisfies the
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following ordinary differential equation,

2
L P ()

(1* +0)P" () + | (L = 2M + 2)p — — (5.29)

— M(L = M +1)P(u) = 0.

The solution to the ordinary differential equation is given by the gener-
alised Jacobi polynomial J I(? ) which has the property

1=y )P"(y) +[b—a—(a+b+2)y|P(y)

, (5.30)
+K(K+a+b+1)Py) =0, P(y)=J"(y).

Through a simple change of variable z = 11/(iv/§), we have

9
UL P(z)

(> = 1)P"(2) + | (L — 2M +2)z — V3l (5.31)

— M(L—M +1)P(z) =0,

L, a+b=L—-2M, K=DM. (5.32)

The (polynomial) solution to the original ordinary differential equa-
tion is given as

Pp) o P (ﬁ) . (5.33)

The comparison of the zeros of (5.33) and the solutions to the Bethe
equations (5.1) is given in Fig. 5.1.

We end up with this discussion by stressing that the zeros of gener-
alised Jacobi polynomial are solutions to the discrete asymptotic Bethe
ansatz equations, which is valid only when the density of Bethe roots is
sufficiently small. In that case, we can neglect the contribution from the
higher order term (5.16). When the density of Bethe roots increases, we
need to take into account the “quantum correction” non-perturbatively.
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5.3 Two examples of finite-gap solutions

Before studying the semi-classical quantisation of the classical finite-gap
solutions, we give two explicit examples of finite-gap solutions, one-cut
rational solution and bion solution, which serve as the benchmark for the
semi-classical quantisation. Moreover, these two examples are of partic-
ular interest, since they are closely related to the low-energy excitations
above the ferromagnetic vacuum S(z) = 1. The bion solution is respon-
sible for the domain-wall frozen phenomenon in the easy-axis regime in
Chapter 4, which becomes the static kink solution in the soliton limit.

5.3.1 One-cut rational solutions

The simplest solutions of the Riemann-Hilbert problem (5.21) belong to
algebraic curves of genus zero (Riemann surfaces with a single branch
cut). The Riemann surface is characterised by a quadratic polynomial of
the form

Ro(p) = (1 — ) (p — fin), (5.34)

where branch points uq, ji; € C are conjugate to one another in order to
obey the reality condition. This leads to solutions that involve two real
degrees of freedom.

In what follows, we set the classical period to ¢ = 1. With this choice,
the admissible values of the wave numbers are k = 27 n with n € Z. As
a consequence, the branch points cannot be chosen arbitrarily but get
“quantised” as well.

The quasi-momentum p(u) for one-cut solution becomes

14

p) = — (m L (vRaGa + \/Rz(—i€)>) C (539)

2

To satisfy the “quantisation condition” and to obtain the prescribed
filling fraction (2.68), we have

% (VR:() + VRa(=i6) ) = 27,

: (5.36)
-1 (VR = VRa(i6)) = —5 (1= 2w),
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allowing us to parametrise the branch points as
pr+ iy = 4mn(l1 —2v),  |w|? = 47°n® + 4ov(1 —v). (5.37)

The algebraic curve can be expressed in terms of the mode number n and
filling fraction v,

v () = Ro(p) = p® — drn(l — 20)p + 47*n® +46(1 —v),  (5.38)

as well as the quasi-momentum,

pi(p) = —mn — %\/(M — pa) (e — 1)
(5.39)

1
= —7mn — 5\/,u2 —Admn(l —2v)p + 472n2 4+ 46(1 — v).

Notice that presently (i.e. in the zero-genus case) there is no canon-
ical A-cycle. There is a single wave number which can be retrieved by
evaluating the ‘open’ B-cycle

k= ]i dpr = — (pr(00s) + pr(00_)) = 2mn. (5.40)

Here n € Z is the mode number of the solution.
Coeflicients of the asymptotic expansion of p;

w P H

p—> 00 pl(N)N_E_E_E+O(N_2)> (5.41)

provide phase-space averages of local charges evaluated on a particular
one-cut solution. The initial two coefficients correspond to total momen-
tum and energy, reading explicitly

1
P =2mny, H= 5(47r2n? +8)v(l —v). (5.42)

The knowledge of the one-cut quasi-momentum allows to express the
dynamics of the spin field S (z,t) in terms of canonical separated -
variables. However, since we deal with an algebraic curve of genus zero,
there is no genuine y-variable present. Instead, the only dynamical degree
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of freedom is the transversal spin component S~ (x,t). We use (2.73) to
obtain the longitudinal component

Ra(m) n Ra(72)

S 1) = (11 —72) (v2 =)

=1- 2y, (5.43)

where we have made use of the frozen (i.e. non-dynamical) ~-variables
v1 = i€ and v, = —ie.

In the next step, we solve Egs. (2.74) and (2.75) to obtain the transver-
sal component of the spin field,

i0,log S~ = 2mn, i (9, log S~ — wn(1 — 2v)d,log ™) = §(1—2v). (5.44)

By imposing normalisation constraint ]5_" (x,t)| = 1, we finally arrive at
the following general form of the one-cut solution

S*(x,t) =1 —2v =cosby, ST(x,t)=sinbyexp [Fi(kr —wt)], (5.45)
with the wave number and frequency
k=2mn, w= (47°n®+ §)cosbp. (5.46)

The momentum and energy can be alternatively computed by direct in-
tegration

P

1 /1 S=SF—S8tS;
dx
0

= — s 2
% 1+ 57 e,

L X (5.47)
H = 5/0 dz [5 S+ 61— (59| = 5(47r2n2 +0)v(l —v),

in agreement with (5.42).

5.3.2 Classical bion solution

We now focus on the class of two-cut solutions, which have non-trivial
dynamics in both S* and S*. Two-cut solutions are periodic elliptic
magnetisation waves which are often referred to as ‘cnoidal waves’. Two-
cut solutions are associated to elliptic algebraic curves corresponding to
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Riemann surfaces of genus g = 1, characterised by two branch cuts. In the
special limit of unit elliptic modulus (soliton limit), the physical solutions
become trigonometric and one retrieves the celebrated soliton solutions.
In the case of the easy-axis anisotropic Landau—Lifshitz model, there
exist special types of two-cut solutions known as bions, i.e. two-mode
bound states formed of a kink and an anti-kink. Moreover, a special
degeneration of such a bion solution produces a static kink. Kinks are
responsible for the observed freezing of a magnetic domain wall in Chapter
4. In Sec. 5.4.3, we shall perform the semi-classical quantisation on a bion.
The elliptic curve encoding the bion spectrum has the form

Rion(1) = RE(1) = (1* + &) (1® + &3), (5.48)

parametrised by two pairs of complex-conjugate branch points located on
the imaginary axis Re(p) = 0 at p; € {£i;, £i,}, satisfying

& >e>0, 0<&<e (5.49)

It is obvious that the bion solutions can only be found in the regime § > 0
(the easy-axis regime). For the sake of simplicity, we set 6 = ¢ = 1 for
the rest of the section. In fact, from the classical equation of motion for
the spin field g(a:, t) given by (2.1), the solution at = 1 can be mapped
to another solution with ¢’ > 0 by a simple rescaling

S(z,t) — S =ex,t' =5t). (5.50)

Now we outline the procedure of the reconstruction of the spin field
from the algebraic curve. We introduce the standard full elliptic integrals,
cf. Appendix C,

K—K(g—%) K—K(l—g—%) (5.51
1 — 2 > 2 — 2 ] : )
S i

When the argument of the elliptic function is omitted, we adopt that
k=&/6.

Since the Riemann surface involves two branch cuts, we have a genuine
dynamical y-variable 7 (x,t). The same as before, there exist two extra



58 Chapter 5. Semi-classical quantisation

non-dynamical variables pinned to locations v = i and v3 = —i (recall
that € = 1). From the Dubrovin equations (2.71) we have
i . .
7 (x,t) = & —i&ysn(u + 1K), u=~E&x+ o, (5.52)
sn(u)

where we made use of sn(x + iK3)sn(z)k = 1 (o denotes the integration
constant). Remarkably, it turns out that in this particular type of two-cut
solutions, bions, even 7, is static.

Using the reconstruction formulae (2.73), we find

_ VRO + VRO

v+ 1

SZ

(5.53)

To fix the integration constant p, we impose the reality condition S” € R,

0 = arcsn <i%N / é——_%) , (5.54)

which yields a time-independent profile

S%(x) ::__fzziiiii;' (5.55)

The solution has a spatial period

=k (5.56)
&1

where £n are the mode numbers associated with the two cuts. Variable
~1 can be expressed as

—i&1y/Ra(i) en(§z)dn(&2) +i(6F — &5)sn(&x)
§E(1—&5) + (& — &5 sn(62)? '

The other independent component of the spin field, S~ (z,t), can be
reconstructed with the aid of formulae (2.74) and (2.75),

TV Ra(i) VRM) _ (5.58)

S (r,t) = ———=exp | -1 [ dz
(1) 1+ 9% (z,t) p( L+ i(z, 1)

(5.57)

4! (x) = &6
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Using the properties of elliptic functions in Appendix C, we obtain

&1z + 0+ 1K)

_ ©
Sl =0 O(&x + Ky)

mi o'(6)
exp <§1x2Kl +&x o.9) ) ) (5.59)

where function ©(z) is defined as

K
O(z) = ¥ (2”—[?1 + g —zﬁ) . (5.60)

Finally, constant C is can be fixed by requiring normalisation S? = 1,
yielding

O(&1x + p+1K3)
O(&x + Ky)
i o'(B)
P (mm TR

where ¢g € R is a phase that is determined by the initial condition.
Remarkably, for the bion solutions S~ is time-independent as well. A
representative example of a bion solution is shown in Fig. 5.2.

§7(z) =\/1-&

(5.61)

+ i¢o> ;

Static kink. In order to see the connection between the bion solution
and the domain-wall frozen phenomenon [1], we consider a particular
degeneration of a bion solution which produces a static kink. One of the
consequences of taking soliton limit is that the classical period ¢ — oo.
This requires to bring both branch points of \/R4(u) in the upper-half
plane together to meet at ie, i.e. we send & o — € (presently € = 1),
collapsing both branch cuts to a point.

In order to perform this soliton limit, we first shift the argument of the
elliptic function by quarter period K;/&;; for instance the §* field takes
the form (cf. Egs. (C.6))

en(& (v + K1 /&)
1dn(§1(;1: + K1/&))

Now taking the limits &; o — 1 and accordingly k = & /&, — 1, we find

S*(x) = =¢ = &sn(&yx). (5.62)

Siini(7) = tanh(z), (5.63)
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Figure 5.2: Spin-field components of a typical bion solution, depicted
for anisotropy parameter 4 = 1 and branch points & ~ 1.0583559 and
& = 0.9. Components S*(z), S*(z) = Re S~ (x), and S¥(z) = —Im S~ (z)
are shown by blue, yellow and red curves, respectively. The bion solution
is periodic with period ¢; = 4K /& ~ 15.956517.

which is precisely a static kink. The transversal components can be easily
deduced from the equation of motion (2.1), yielding

S (%) = sech(z) € (5.64)

where ¢g € R is a phase determined by the initial condition. The static
kink solution is the same as the frozen domain-wall configuration without
breathers in Chapter 4.

5.4 Semi-classical quantisation

In the following, we carry out the semi-classical quantisation on finite-gap
solutions, which paves the way to quantitative studies of quantum corre-
lation functions in the semi-classical limit. In this respect, the associated
spectral curves, which encode complete information about the conserved
quantities, will be of vital importance.

Before proceeding, we would like to make a remark on the choice
of branch cuts of the classical spectral curve. First, recall that moduli
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of algebraic curves are completely fixed by locations of the square-root
branch points, i.e. roots of polynomial Rog12(st), which have to appear in
complex-conjugate pairs due to reality condition. Local conserved charges
are expressible as functions of symmetric polynomials of branch points,
namely coefficients r; of Rogyo(). While branch points {y;} themselves
are directly linked physical quantities, the branch cuts (of square-root
type) obtained by pairwise connecting the branch points are not physical
but merely a matter of convention in the classical regime. There is plenty
of freedom in assigning branch cuts to a given set of branch points. For
instance, the prevalent choice in the finite-gap literature [11] is to place
the cuts along straight vertical lines connecting every complex conjugate
pair of branch points, which are in turn encircled by the canonical ba-
sis A-cycles. Such a choice is, purely from the standpoint of classical
finite-gap solutions, perfectly adequate. On the other hand, if classical
solutions are instead considered as emergent macroscopic bound states of
magnons of the corresponding quantum integrable lattice model, it is nat-
ural to cut the surface along one-dimensional disjoint segments associated
to forbidden zones of the classical transfer function [13], corresponding to
contours on which magnons (Bethe roots) condense.

This prescription for the branch cuts is physically distinguished. As
demonstrated in this section, such physical cuts not only differ from the
conventional straight cuts in general, but also undergo the phenomenon
of condensate formation. Computing the Bethe root densities along the
physical contours is thus the essential step to perform the semi-classical
quantisation.

5.4.1 Physical contours

We describe a general procedure to determine the physical contours that
magnons condense onto. The algorithm we employ here has been pro-
posed and implemented in Ref. [75]. We also facilitate a direct comparison
with exact low-momentum quantum eigenstates at finite L in the weakly-
anisotropic regime. For our convenience, we carry out this computation
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in the (-plane ! by applying the following transformation 2

1 tand
peC) (== (5.65)

First, we introduce the complex density function

_ p(C+1i0) —p(¢—10)  p(C£i0) —mn;
/0= 2iml(1 4 0¢?) == mar+&aj

¢eC, (5.66)

where n; € Z is the mode number associated to cut C;. By virtue of
the second equality in (5.66), the density function p(¢) can be defined on
the entire Riemann surface. As a consequence of p(¢ = (,) = mn; at the
square root branch points ¢, € {(j,(;}, the density always vanishes at
the branch points, p(¢;) = 0. In a small neighbourhood around it, one
finds p(¢ = ¢ +¢) = O(V/e) [75]. Away from the branch points p(¢) in
general takes complex values.

Now we would like to determine the physical contours C;. The latter
can be singled out by the following condition: starting from the branch
point (;, the integrated density differential p({)d¢ must always remain
real,

¢
/ d¢'p(¢) eR for ¢ eC,. (5.67)
¢
This prescription has a transparent physical interpretation: physically
p(¢)d¢ corresponds to the number of magnon excitations (Bethe roots)
within an infinitesimal interval in (-plane, which is a positive definite
quantity by definition.

This condition alone is however not sufficient yet. It turns out that
there are three distinct contours emanating out of each branch point com-
patible with the above positivity requirement [75]. Among those three
contours, one of them carries an infinite filling fraction and can be thus
immediately ruled out as unphysical. Out of the remaining two contours,
only one can be physical. The remaining condition is that the total fill-
ing fraction does not exceed the threshold value of maximal total filling

LOur variable ¢ is analogous to variable z used in Refs. [13, 85, 75] in the case of
the isotropic Heisenberg model.
2Upon this transformation, the orientation of integration contours gets reversed.
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Vmax = 1/2, that is

/ d¢'p(¢) S vmax € ={]C;. (5.68)

c

Consider now a certain reference finite-gap solution. To quantise it
at the semi-classical level, every density contour (physical cut) has to be
dissolved into a large (but finite) number of individual magnons. This
requires us to reinstate the length L of the underlying spin chain, thus
rendering the total magnetisation carried by individual coherent states to
come in integer quanta of M; ~ O(L).

The precise requirements are that (i) M;/L ~ v; and (ii) that the
Bethe roots are distributed approximately with density p;(¢) along C;.
It is crucial to make a distinction with the exact quantisation which
takes quantum fluctuations fully into account to all orders in the effective
Planck constant. This means that the semi-classical solutions produced
with the outlined procedure can be at best an approximation of finite-
volume exact quantum-mechanical eigenstates at long wavelengths, while
a full non-perturbative (i.e. exact) quantisation would require obtaining
the exact solutions to the Bethe ansatz equations (5.1).

Single contour at low density. To benchmark the above procedure,
we start with illustrating how one-cut solutions in Sec. 5.3.1 emerge as
semi-classical eigenstates in the anisotropic easy-axis quantum spin-1/2
XXZ model.

We first suppose that the filling fraction of a physical cut is sufficiently
low, ensuring that the finite-size effects (cf. Egs. (5.16) and (B.16)) can be
safely neglected at large system sizes. We then find that the Bethe roots
patterns which solve the asymptotic Bethe equations (5.14) distribute
along certain arcs in the complex rapidity plane, as exemplified in Fig. 5.3.
To be concrete, we put anisotropy to 6 = 1 and set the filling fraction to
v = 0.1 and the mode number to n = 1. Using the above prescription,
we next compute the density contour satisfying Eqgs. (5.67) and (5.68),
as shown in Fig. 5.3. Taking the L — oo limit and rescaling the rapidity
variable, the semi-classical eigenstate will eventually be described by a
dense arrangement of Bethe roots distributing along the contour specified
by the conditions (5.67) and (5.68).
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By increasing the filling fraction v, we observe that ‘quantum fluc-
tuations’, which are contained in higher order terms in the ABE (5.16),
progressive amplify. As announced earlier, this eventually leads to a crit-
ical phenomenon of condensate formation. This feature will be closely
examined in the following section.
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Figure 5.3: Direct comparison between the physical density contour of a
classical one-cut solution (red dashed line, corresponding to anisotropy
d = 1, filling fraction » = 0.1 and mode number n = 1) determined by
imposing the positivity condition (5.67), and the corresponding solution
to Bethe ansatz equations (5.1) with M = 30 Bethe roots, system size
L = 300 and anisotropy 7 = v/d/L = 1/300 (blue dots). The Bethe roots
are given by (; = tan(é‘j)/\/g.

5.4.2 Formation of condensates

Condensates refer to segments of a uniform density as a part of a physical
contour. The phenomenon has first been studied in Refs. [86, 13] where
the term has been coined. Condensates appear as part of the physical
contours whenever the maximal density along one of the physical contours
exceeds a particular critical value which is signalled by a divergence of
the finite-size correction given by Eq. (5.16) (see also Eq. (B.16)).
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We first examine the phenomenon on the simplest case of the one-cut
solution, using the (-plane parametrisation. Starting at some sufficiently
low filling fraction v, we observe that as we gradually increase the filling
fraction, the value of p(¢)(1+ 6¢?) on the real axis approaches the critical
value i.

This value is reached at the critical filling fraction v, precisely when
quantum fluctuation of order O(1/L) become divergent, cf. (B.16). For
larger fillings v > v, the density contour develops a vertically straight
segment of unit uniform density. Such a condensate appears first on the
real axis (right after crossing v.i.) and expands outwards when further
increasing v.

From the viewpoint of the underlying quantum model, the spacing
between constituent Bethe roots is always equal to in. One can consider
condensates as giant regular Bethe strings. In the complex spectral plane
associated to finite-gap solutions, the end points of a condensate corre-
spond to branch cuts of logarithmic type. 3

Despite the appearance of an additional condensate above v > v, it
is still possible to obtain the physical contour solely from the knowledge of
a finite-gap solution by taking into account conditions (5.67) and (5.68).

The emergence of condensates is intimately related to the notion of
‘fluctuation points’, which plays a pivotal role in classical modulation
stability theory [87]. Fluctuation points can be perceived as small fluc-
tuations of a reference finite-gap solution, corresponding to tiny cuts as-
sociated with infinitesimal filling fraction. While increasing their filling
fractions, they become nonlinear finite-gap mode.

Consider a reference finite-gap solution with m cuts, and let {ny,ns - - - n,, }
be the occupied mode numbers for each cut respectively. To excite a mode
with an unoccupied n, call it n,, the quasi-momentum p({) has to satisfy
the periodic boundary condition,

p(Cm,n*) = N, (569)

3Logarithmic branch cuts get likewise produced in a well-known soliton degenera-
tion process, corresponding to merging two nearby standard square-root branch cuts
by coalescing their branch points in a pairwise manner. In that case, finite-gap quasi-
momentum is no longer meromorphic. Condensates are different in this respect, as
their quasi-momentum differential remains meromorphic all the way through.
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Figure 5.4: Branch points (¢; and (;) and fluctuation points ({r) for
the one-cut solution with anisotropy parameter 6 = 1 and various filling
fractions v = {0.1,0.206354963, 1/3}, increasing from left to right. Panel
(b) corresponds to the critical filling fraction v, ~ 0.206354963, when the
fluctuation point (g collide with the physical cut.

where we use (,,, to label distinct fluctuation points. Note that these
can either be real, or may occur in complex-conjugate pairs due to the
square-root branch cut nature of the quasi-momentum.

Fluctuation points are treated as “almost degenerate” branch cuts,
so small that they do not affect the form of the quasi-momentum p(¢).
This raises an interesting question whether classically any given finite-gap
solution is modulationally stable under such fluctuations, see for instance
discussions in Ref. [87]. In this respect, we observe that the stability
condition coincides with the condition for the formation of condensates
in the semi-classical quantisation of finite-gap solutions.

We first take a look at the basic case with a single cut. We find
the physical contours made out of Bethe roots consist of three pieces:
two parts of to the contours which connect to the square-root branch
points are joined by a uniform condensate attached to ‘the middle’, with
two additional bent contours emanating from the intersection points that
connect to the nearby fluctuation point(s). We give an explicit demon-
stration of this scenario in Sec. 5.4.2. Presence of multiple excited cuts
makes the situation even more involved as cuts experience among them-
selves an effectively attractive interaction. This situation is described in
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Sec. 5.4.2.

Let us also mention that a reminiscent phenomenon is known to ap-
pear in the context of matrix models [88] (which are described by a sim-
ilar type of Riemann-Hilbert problems) and also elsewhere, e.g. in the
large-N Yang—Mills theory [89, 90, 91] and random tiling models [92, 93].
They are commonly called as the Douglas-Kazakov phase transition [91],
a variant of a third-order phase transition.

Analogous condensates also appear in the semi-classical regime of the
Lieb-Liniger model with attractive interaction [94, 95] where a quantum
phase transition can be detected through the calculation of correlation
functions in the ground state [95]. We emphasise however that in our
case there is no real phase transition going on in the sense that branch
points and the quasi-momentum p(() itself do not undergo any discontin-
uous change, in distinction with the case of Douglas—Kazakov transition
where the free energy becomes non-smooth after formation of a “conden-
sate” [93].

One-cut case with condensate

In the case of a single cut, we have

/ ACp(C) = 1 € O(1), (5.70)

C1

with an upper-bounded filling fraction v; < 1/2. Locations of fluctuation
points, denote below by (; i, can be obtained from the density

— 7k

PO = 5T Bl = b, .71
Mode number n = 1. The condensate phenomenon can be best il-
lustrated on the basic example of a one-cut solution with mode number
n = 1. Below the density threshold we find a single smooth arc-shaped
contour, as exemplified in panel (a) in Fig. 5.4. The closest fluctuation
point sits at a finite distance away from the cut (somewhere to the left of
it), whereas the density at the real axis satisfies

p(G)(1+6¢Y) < i. (5.72)
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Increasing the filling fraction leads to an increase in the density on the
real axis. During the process, the nearby fluctuation point approaches
the physical contour until at the critical filling it eventually collides with
it at ¢, i.e.

p(C)(1+0¢) =1 (5.73)

This event is depicted in panel (b) in Fig. 5.4. 4
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Figure 5.5: (a) Fluctuation point (r, lying on the real axis, can be viewed
as an infinitesimal (collapsed) branch cut — a deactivated mode. (b)
Comparison between the classical contour (dashed line) with anisotropic
parameter 6 = 1, filling fraction v = 0.3, and mode number n = 1 (com-
puted based on reality condition (5.67)) with a condensate (red dashed
line) and an additional contour originating from (r (brown dashed line)
and the corresponding solution to the Bethe equations (cf. Eq. (5.1))

with M = 48, L = 144 and n = ¥® = -1 (blue dots). Notice that the

N 144
Bethe roots plotted are reparametrised as %.

Increasing the filling fraction even further, the fluctuation points af-
ter collision ‘tunnel through’ the branch cut. This results in a straight

4Comparing to the isotropic case in [75], v. ~ 0.2092896452, the condensate appears
with a slightly smaller filling fraction.
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condensate positioned in the vertical direction. The nearest fluctuation
point on the real axis appears to the right of the physical cut, as pictured
in panel (c) in Fig. 5.4. One can nonetheless recover the same quasi-
momentum p(() by considering an additional pair of contours which em-
anate out of the fluctuation point(s), satisfying p({)d¢ € R with density
defined through Eq. (5.71) (depicted by brown dashed lines in panel (c)
in Fig. 5.4). Due to the existence of an extra condensate, the original con-
tour cannot accommodate for all the Bethe roots, and the “excess” Bethe
roots lie along those additional contours. We would like to emphasise
again that the quasi-momentum p(() remains intact.

There is a suggestive explanation behind the above picture if one
considers a one-cut solution as a limiting (degenerate) case of a more
general two-cut solution with one of its cuts ‘shrinks’ to a fluctuation
point. This is demonstrated in Fig. 5.5 in panel (a), where the blue
solid lines represent parts of the original physical connecting to the pair
branch points (¢, (;), while the red dashed line depicts the Bethe-root
condensate of uniform density. The extra green solid line belongs to one
of the “unphysical contours”® associated with the infinitesimal branch
cut (Cr,(r). Combining all the ingredients, we are able to determine
the densities of Bethe roots along these three contours. This amounts
to account for the leading-order quantum corrections to ABE (5.14) in a
non-perturbative fashion.

An indirect confirmation of the physical interpretation of the conden-
sate and additional contours is achieved by calculating leading order of
Gaudin norm of the semi-classical eigenstate associated with condensate
[2]. The functional approach of calculating Gaudin norms of semi-classical
states [96] depends on the choice of physical contours and the correct re-
sults are obtained using the contours with condensate in [2].

Mode number n > 2. One may encounter even more exotic situations
with larger mode number. While p(¢,) = (n + 1)7 has only one real
solution for n = 1, higher mode numbers n > 2 permit for complex-
conjugate pairs of fluctuation points [75]. In this scenario, the same

®We call it “unphysical” because the green contour alone does not yield the correct
value for the filling fraction for the infinitesimal cut. Yet the combination of all three
parts here has clear physical meaning.
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condition p,+1(¢)d¢ € R yields an additional contour with a conden-
sate appearing between the intersection points. Such contours can be
understood at the classical level as arising from a three-cut solution with
one large physical cut and two almost degenerate tiny cuts located at the
complex-conjugated fluctuation points ¢z and (p with infinitesimal filling
fractions.

For instance, in Fig. 5.6 we give an illustration of that for the isotropic
Heisenberg XXX model with mode number n = 2. Unfortunately, for the
anisotropic ferromagnet the employed numerical method for producing
analogous solutions no longer works for n > 2 [2]. Given that the dis-
tributions of Bethe roots do not change much upon introducing a tiny

1

deformation parameter n ~ O (E)’ we expect the phenomenon to remain

the same in the presence of weak interaction anisotropy.

Multiple cuts

When multiple branch cuts get involved, the situation becomes more com-
plicated. In that case, the condensates can appear not only out of fluctu-
ation points but also via the effectively attractive interaction between the
physical cuts. For simplicity we focus on the two-cut case, since a general
scenario with more cuts can be described based on the phenomenology
of the two-cut case. In Ref. [75], the authors made an exhaustive sur-
vey on the two-cut case at isotropic point (6 = 0). The anisotropic case
with n = £ > 0 can be analysed in a similar fashion. There are several
discernible features we wish to highlight.

First, when two physical cuts are far apart from one another, each
branch cut can produce a condensate from colliding with their nearby
fluctuation points, in analogy with the one-cut case discussed in Sec.
5.4.2. However, when the physical cuts approach each other, their mutual
attraction increases until they eventually merge with one another. This
phenomenon results in two joined contours glued via a condensate at the
cusps.

An example of the above phenomenon involves two branch cuts with
consecutive mode numbers, namely ny = n; + 1. The moment the two
physical contours intersect, say at points (i and G, the combined den-
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Figure 5.6: (Left) Complex fluctuation points (r and (r. They can be
seen as collapsed cuts of a three-cut solution with (71 — (r2 — (r and
Cpl — CFQ — (p. (Right) Comparison between the classical density
contour (dashed line), including with the condensate (red dashed line)
and the additional contours emanating from fluctuation points (r and (g
(brown and purple dashed lines), obtained from reality condition (5.67)
for the case of isotropic interaction (6 = 0), with filling fraction v =
0.1 and mode number n = 2, to the corresponding solution to Bethe
equations (5.1) with M = 60, L = 600 and n = 0. The Bethe roots ¢
(blue dots) are rescaled by the system size L and plotted in the inverse
spectral plane, i.e. (; = 1/(L);), where \; solve the isotropic Bethe

. Aj+i/2 M Aj=Apti
equations, (Ari/2> Hk;é] Aj=Ap—i
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Figure 5.7: (Left) Comparison between the density contour (dashed line)
of a classical two-cut solution (shown for the isotropic case (0 = 0), with
partial filling fractions vy = 0.02, v, = 0.06 and mode numbers n; = 1,
ny = 2), obtained from reality condition (5.67), and the corresponding
numerical solution to Bethe equations (5.1) with M; = 10, My = 30,
L =500 and = 0 (blue dots). (Right) Comparison between the classical
contour (dashed line) (shown for the isotropic case (§ = 0), with partial
filling fractions v; = 0.025, v5 = 0.075 and mode numbers ny = 1, ny = 2),
obtained from reality condition (5.67), to the corresponding numerical
solution to Bethe equations (5.1) with M1 = 10, M, = 30, L = 400 and

n =0 (blue dots). The Bethe roots plotted are (; = 1/(L);), same as in
Fig. 5.6.
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sity satisfies

[0 (Gine) + g1 (Gne)] (14 0¢2,) =
[0 (o) + P (Gan)] (14 6C2,) =1,

which yields the appearance of a condensate. Indeed, adding a condensate
between the two intersection points does not alter the quasi-momentum
and hence the filling fraction remains the same. We have confirmed this
to be the case by numerically solving the Bethe ansatz equations for
moderately large system sizes, as demonstrated in Fig. 5.7 (again for the
isotropic case).

In particular, at low filling fractions for both cuts their mutual attrac-
tion becomes apparent (cf. the second cut connecting ({;,(;) in panel
(a) in Fig. 5.7). The four branch points in panel (a) of Fig. 5.7 are
¢; = 0.10884679 + 0.0476657161 and (, = 0.07330641 4 0.04152184i (with
filling fractions v; = 0.02, v, = 0.06, ¢/ = 1 and mode numbers n; = 1,
ny = 2). At a certain critical value of the filling fractions the two cuts
merge together. The intersection point becomes a logarithmic branch
point of a condensate, as exemplified in panel (b) of Fig. 5.7. The four
branch points in panel (b) in Fig. 5.7 are ¢; = 0.09587725 + 0.05961115i
and (o = 0.07169871 + 0.04814544i with filling fractions v; = 0.025,
vy = 0.075, £ = 1 and mode numbers n; = 1, no = 2. For the anisotropic
interaction we encountered the same numerical difficulties as previously
for the one-cut solution with n > 2 [2]. However, we do not expect any
qualitative difference in the anisotropic case compared to the isotropic
model.

(5.74)

5.4.3 Special case: bion

The easy-axis regime (i.e. for § > 0) permits for a distinguished sub-
class of two-cut solutions that do not take place in the other two (that
is isotropic and easy-plane) regimes, bion solutions, as described and
parametrised in Sec. 5.3.2. One part of the motivation for investigating
this case is to elucidate the microscopic origin and stability of kinks in
Landau—Lifshitz model, which we expect to have a pivotal importance for
understanding the freezing property of a domain-wall profile in Chapter
4. This has been investigated recently in Refs. [1, 97] as well.
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Figure 5.8: Quantised bion configuration with the proposed density con-
tours (physical cuts). The two nonlinear modes with ¢ = 1, parametrised
by pairs of branch points (¢1,(;) and (2, ;) on imaginary (-axis, have
associated mode numbers n; = 1 and ny = —1. The branch points
have been found numerically and are located at ¢; = (1/0.9)i and
C2 = (1/1.058355921)i. The red dashed line represents the “double con-
densate”. The corresponding classical solution is plotted in Fig. 5.2.

In order to quantise the classical bion solution, we use the same reality
conditions as previously in the one-cut case. Notice however that bion
solutions belong to maximally saturated states with the total filling v =
%. Condensates appear to be a common feature at half filling. When
describing the bion solution, we fix the mode numbers of the two cuts to
+1, such that An = 2. Recall that in a general situation with two cuts
being far apart, each cut can form a condensate on its own. The bion
case is quite different because the two branch cuts reside close to each

other and share a condensate in common therefore.

In fact, in the isotropic ferromagnet studied in Refs. [75, 86], the
two-cut solution with mode numbers set to £1 is able to form a “dou-
ble condensate”. Motivated by this observation, we conjecture that the
same phenomenon takes place in the case of bions; a “double condensate”
emerges when a pair of branch cuts with mode numbers £1 intersect with
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one another, thereby producing a logarithmic cut with of ‘doubled’ uni-
form density 2i. Analogous objects which are twice as dense as ordinary
Bethe strings have been previously found numerically in Ref. [86] in the
study of solutions to the isotropic Bethe equations.

Semi-classically we quantise the bion solution using the conjectured
contours with a double condensate, depicted in Fig. 5.8 by the red dashed
line satisfying

p(O)(1 +4¢%) = 2i. (5.75)

We have been able to explicitly match the classical values of the filling
fraction, momentum and energy: the two partial filling fractions add up
exactly to one half, ie. v = v +1n = %, whereas total momentum
P = 0 (mod 27) and total energy E = 3.96045 (obtained by numerically
integrating along the proposed contours) match those of a classical bion
configuration, with P = 0 and E = 3.960358(6). These results strongly
indicate that we have indeed correctly identified the physical contours
associated to a quantised bion.

As discussed earlier in Sec. 5.3.2, stable kink arises as the soliton limit
of a bion solution in which the two branch points (i, (s on the imaginary
axis coalesce at i/e. By inspecting this degeneration process at the level
of semi-classical eigenstates, we find a uniform condensate with a double
density of Bethe roots running along the imaginary axis between —i/e
and i/e. Kinks and anti-kinks are not compatible with periodic boundary
conditions. In an infinitely extended quantum chain however, the kink
and antikink eigenstates exist and represent the extra degenerate ground
states (with broken translational symmetry) of the XXZ ferromagnet in
the easy-axis regime [76, 77]. Kink eigenstates have been derived in [78,
79] using a curious correspondence between the quantum XXZ model and
the problem of a melting crystal corner. This derivation however does
not require any use of the Bethe quantisation condition (Bethe ansatz
equations) and consequently cannot reveal the internal magnon structure
of the kink. It would be valuable to devise a method to extract the
corresponding numerical solution to the Bethe equations for large system
sizes. The task of solving the anisotropic Bethe equations (5.1) in the
vicinity of half filling remains quite challenging at this moment. Perhaps
one could get some hints by first scanning through the complete list of
exact eigenstates for relatively small system sizes (typically of order L ~
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10, using e.g. the techniques proposed in [98, 99]) and look for traces of
quantised bions in the setting of finite system sizes. So far, our conclusions
regarding the kink solutions remain conjectural.

5.5 Summary of results

In this chapter we have studied the finite-gap solutions of classical Landau—
Lifshitz model and their semi-classical quantisation in depth. More specif-
ically, we investigated the phenomenology of finding the Bethe root den-
sities of one-cut solutions and forming of condensate due to the non-
perturbative quantum corrections. The one-cut solutions, representing
the spin precession as the low-energy excitations above the ferromagnetic
vacuum, are well understood now. A more interesting setup, i.e. bion
solutions in the easy-axis regime, is discussed too, but the results remain
conjectural so far.

Using the semi-classical quantisation described here, we can also em-
ploy the functional approach to study quantum quantities such as Slavnov
overlaps between semi-classical eigenstates [96, 100, 101, 102, 103]. This
opens a possibility of studying the semi-classical limit of quench action,
and are summarised in [2]. As it turns out, the classical-quantum corre-
spondence between the semi-classical eigenstates and the classical finite-
gap solutions can be extended to correlation functions too, which is stud-
ied in [2].



Chapter 6

Q operator and spectrum of XXZ
model at root of unity

Algebra is the offer made by
the devil to the
mathematician.

Michael Atiyah

The contents of this chapter were published in [4].

After focusing on the quantum spin-1/2 XXZ model at weak anisotropy
and its semi-classical limit, Landau—Lifshitz model, we move on to the
quantum regime. We start with constructing Baxter’s QQ operator for
quantum spin-1/2 XXZ model with arbitrary anisotropy, which is related
to the Lax operator with auxiliary space being infinite-dimensional com-
plex spin representation. Despite the difficulty of dealing with infinite-
dimensional auxiliary space, the problem simplifies to a finite-dimensional
auxiliary space when the anisotropy parameter is at root of unity. Quan-
tum XXZ model at root of unity has further impact on the spectrum,
resulting in the descendant-tower structures of eigenstates. In this case,
the conventional algebraic Bethe ansatz introduced in Chapter 3 cannot
be applied to construct all the eigenstates. We present a set of conjectures
on the creation/annihilation operators for solutions associated with the
Fabricius—McCoy exact strings. Further effects on the thermodynamic

7
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limit of the quantum XXZ model at root of unity are discussed using the
theory developed for deciphering the spectrum.

6.1 Some examples of special solutions

Before we start to construct the QQ operator for XXZ model, we first show
the phenomenology of Bethe roots at infinity and Fabricius—-McCoy exact
strings, which are of great use when considering the descendant tower
structure for XXZ model at root of unity.

6.1.1 Bethe roots at infinity

When A = +1 the spectrum exhibits degeneracies due to sls-invariance of
the model. Although there are additional degeneracies in the spectrum of
H due to parity invariance, the latter are lifted when taking into account
the momentum, or any other parity-odd charges generated by the transfer
matrix. The lowering operator » ;0; of sly can be thought of as adding
a magnon with vanishing quasimomentum; indeed, it can be shown that
a Bethe-ansatz vector has highest weight iff p,, # 0mod 27 [20]. The
isotropic limit of (3.28) (by rescaling u,, — nu,, and taking the limit
n — 0) shows that p,, = 0 corresponds to u,, = +oo. Therefore, for
the XXX model, Bethe roots at infinity lead to descendant states of the
global sly symmetry.

Now let us consider the cases with the anisotropy parameter A # +1.
> ; Jjj-t are no longer generators of global symmetries, so one might expect
that there is no more Bethe roots at infinity. However, numerical solutions
of the Bethe equations (e.g. via the recipe from Appendix E.0.1) show that
infinite Bethe roots are in fact present for the XXZ7 model.

To understand when Bethe roots at infinity would occur, we turn to
the Bethe equations (3.25). Write ni. for the number of Bethe roots
at o0, so that of course n o +n_o < M. Note that p,, — Fin for
Uy, — F00, while S (U, u,) — €T3 as long as u,, is finite or goes to Foo.
Let us assume that the roots at +o0o do not scatter (S = 1) amongst
each other. Then the Bethe equation for the infinite root u,, = *oo
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becomes [104, 105, 106]

exp[£(N — 2 (M — nioo))n] = exp(—ig). (6.1)

Let us examine the possible values of ny,, € N in each regime of the XXZ
spin chain.

For n € R, i.e. in the gapped regime (|A| > 1), and twist ¢ € R the
only solutions are

2M — N

5 (6.2)

o =0, Nioo =N =
This implies that physical solutions with Bethe roots at infinity only exist
when M > N/2 (also known as ‘beyond the equator’) and N is even, and
that the infinite Bethe roots appear in pairs.

Next consider the gapless regime (|A| < 1). When n € i (R\7Q), so
not at root of unity, there are more possibilities to allow for Bethe roots
at infinity, as long as the twist ¢ is tuned to an (even or odd, depending
on the parity of N) integer multiple of in:

2M — N Fio/n
Nioo = 9 .

(6.3)

In particular, the number of roots at +0o0 and —oo do not coincide if
¢ # 0. Finally, at root of unity n = ir ¢;/¢s the condition becomes

oM — N Fi 2mi k
Mgoo = ]F1¢2/’7+ mke/n L ew (6.4)

In this case there is an additional condition that we will discuss momen-
tarily, see (6.6).

The meaning of ni, # 0 for the XXZ model can be understood
from the algebraic Bethe ansatz (cf. Chapter 3). Bethe roots at infinity
correspond to applications of the lowering operators of the global U,(sls)
algebra (see Appendix D.1). Namely, when N is even and ¢ vanishes,
each eigenstate beyond the equator (say at M’ > N/2) is obtained from
a Bethe eigenvector at M = N — M' < N/2 by M' — N/2 = N/2 — M

applications of the parity-invariant product S™S~. Up to an overall factor
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the result is the spin-reverse of the Bethe vector we started with. We find
that

o 300y o (S78) Y2 ™M un}2y) o T[]0t Huwdly) . (6.5)

k=1

If N is odd the XXZ spin chain is still invariant under a global spin flip,
reversing 1 < | everywhere, but there are no infinite roots and we have
not been able to find a simple relation between the Bethe roots {vm/}%lzl
and {u,, }M_, on the two sides of the equator.

At root of unity we have to be more careful, because S~ and S~ are
nilpotent. Here an additional requirement is needed to ensure that (6.5)
is nonzero:

0 < Npoo <y —1, 0<n_ o <¥l—1. (6.6)

In particular, in the periodic case (¢ = 0) there is at most one nonzero
solution to (6.4) in the range (6.6), leaving only three possible scenarios:

Nioo = N0} Nioo > N = 0; Moo > Nyoo = 0. (6.7)

The method that we develop in the following sections will help to elucidate
the structure present in the spectrum in the presence of Bethe roots at
infinity. The conclusion (6.7) will be useful in Section 6.7.1 when we
discuss applications to the spectrum of the XXZ model.

6.1.2 Fabricius—McCoy strings

At root of unity n = imly /¢, the spectrum of the XXZ spin chain possesses
many degeneracies than the spectrum not at root of unity [107]. Fabricius
and McCoy realised [105, 108] that this is related to solutions to the
Bethe equations (3.25) that contain exact fo-strings. An earlier work
of Baxter [109] has shown similar solutions in the 8-vertex model (XYZ
model). A Fabricius—McCoy (FM) string consists of {5 Bethe roots that
are equally spaced (in the imaginary direction) around a string centre

a™ e C:

2m—1—1¢

bl 57 2 i, 1L <m </l (6.8)
2

Uy, = OZFM
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This describes a bound state, which as a whole does not scatter with
other Bethe roots:

12
[[S(m wm) =1, G<m' <M. (6.9)

m=1

A FM string is not only ‘transparent’ in scattering, but carries vanishing
energy. In fact, it does not carry any local charge generated by transfer
matrix T;/s(u), except that it may carry momentum 7 as we explain
Section 6.7. It actually carries a specific type of quasilocal charges called
the Z charges [110, 52, 111]. The physical implications of this will be
discussed in Section 6.9.2.

When any FM string is present among the Bethe roots for a given
eigenstate, it is impossible to determine the location of the string centre
o™ by solving Bethe ansatz equations (3.25) or the (functional) TQ rela-
tion using method in Appendix E.0.1. In this thesis we present a method

FM

to determine . We begin with a concrete example.

Example. Consider a homogeneous spin chain with N =6, ¢ = 0 and
A =1/2 = cos(r/3), i.e. {4 =1 and {5 = 3. At M = 3 there are two
degenerate states with the same eigenvalues of Ts(u), 2s € Z~o . These
eigenvalues moreover coincide with those of |TMM1111) and [{JJJJl) up
to a m phase. Using the techniques from Section 6.5 we find that the
two degenerate states have FM strings whose centres we can determine
exactly:

um:aI{MjL(m—Q)%T,

U = QM - (m — 2)%, (6.10)
log(10 + 3v/1T) i

apy = +0BIOTVID Ty g

where the Bethe roots are found analytically using the truncated two-
parameter transfer matrix that we will introduce in Section 6.5.

The degeneracies imply additional symmetry acquired by the XXZ
model at root of unity. Namely, in this case a there is a representation
of the loop algebra sly [107]. Although the yth powers of S* and S*
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vanish one can regularise these operators to get generators of the loop
algebra. This yields lowering operators that produce the eigenvectors
corresponding to the FM string (6.10): the eigenspace is spanned by any
two of the four vectors

. (87)°
nggl/?) [3] [ |TTTTTT> 3 |{U1, Uz, U’3}> )
e (6.11)
EB}/?’ [3] ‘ |TTTTTT> ? ’{U17 U27 /03}> :

The Bethe vectors are nontrivial linear combinations of the two ‘loop
descendants’ on the left in (6.11). We would like to remark that the loop
descendants are not eigenvectors of the two-parameter transfer matrix
T(x,y) that we will introduce in Section 6.5.2.

6.2 Two-parameter transfer matrix

In this section, we generalise the Lax operator with two-dimensional spin-
1/2 auxiliary space to Lax operator with auxiliary space being other rep-
resentation of quantum algebra U, (sly).

We start with the Lax operator associated to a single spin-1/2 site.
Consider an auxiliary space V,, which is an irreducible representation
of U,(sly). Generators ST along with K, = ¢ satisfies the following
commutation relations,

K2 - K2

K,.STK,'=q¢"'S, [S!.S,] —
q—4q

a

(6.12)

Although the local Hilbert space of the spin-1/2 model is always two-
dimensional, we consider various representations V, for the auxiliary space.
The representations of U, (slz) used in this thesis are summarised in Ap-
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pendix D.2. The Lax operator on V, ® C? is

K, +K; ! K, - K;!
L,;(u) = sinh(u) Lot B + cosh(u) % o;
+ sinh(n) (S} o + S, o)

1 (e*K,—e“K;! 2sinh(n)S; (6.13)
2sinh(n) S K ' —e K, ;

T2
_ (sinh(u+nSZ)  sinh(n)S,

N ( sinh(n) S;  sinh(u —7 Sfl))j ’

where the matrix acts on the spin—% representation at site j and the
entries are operators acting on the auxiliary space a. Importantly, the
Lax operator L,;(u) obeys the RLL relations

R (u = v) L (1) Ly (v) = Ly (v) Lo (1) Rap(u — v) (6.14)

on V, @V, ®C2, where V}, = V, is a second copy of the auxiliary space. We
parametrise the entries of the R matrix as Ryy(u) = Ly (u+1n/2), keeping
the current form of RLL relation (6.14). In case the auxiliary space is
the spin-1/2 representation the R-matrix becomes (3.4) introduced in
Chapter 3.

Now consider N spin-1/2 sites, each with its own (local) Lax operator
L,;j(u). The monodromy matrix on V, ® (C?)®" is defined as'

M (u, @) = Lan (1) - - Liaz (1) Lt () Ea(9), (6.15)

where twist ¢ is introduced through the twist operator E,(¢). We will
only consider diagonal twists, so that the R-matrix commutes with E,(¢) Ey(¢).
When V, is the Spin-% irrep we have E,(¢) = diag(e'?, 1); see Appendix

F for the other representations that we will use. It is easy to show that

the monodromy matrix obeys the RLL relations (6.14) as well using the
“train argument”.

From the monodromy matrix whose auxiliary space is in spin-1/2 rep-
resentation we can construct the Hamiltonian (3.11) as demonstrated in
Chapter 3. The transfer matrix T is the trace of monodromy matrix M,
over the auxiliary space

T(u,¢) = tr, My (u, ¢). (6.16)

'We omit the inhomogeneities here for simplicity.
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Figure 6.1: Graphical representation of the transfer matrix with N sites.
The red line represents the auxiliary space and the black lines represent
the spin-1/2 spaces. The twist operator is labelled by ¢.

The RLL relations imply that there is a one-parameter family of com-
muting operators,

[T (u, ¢), T(v,¢)] =0 for all w,v e C. (6.17)

As a consequence any expansion in u generates a hierarchy of commuting
operators that do not depend on u. In particular, important conserved
charges are obtained by taking logarithmic derivatives with respect to the
spectral parameter u at u = 7/2:

j—1

) — _j
= Ny

log T'(u, ¢) (6.18)

)
u=n/2

because of their “locality”. Those conserved charges can be expressed in
local density terms when auxiliary space a is in spin-1/2 representation.
More generally, when V,, & C?*™! is the spin-s irrep of U,(sly) with s > 1
the resulting conserved charges are quasilocal [110, 52, 111].

The spectrum of the transfer matrix with V, = C? can be characterised
via the algebraic Bethe ansatz, which is briefly introduced in Chapter 3.
In the presence of a diagonal twist, the operators on the diagonal in (3.13)
give rise to the (twisted) transfer matrix,

s=1/2: T(u, ¢) = ®A(u) + D(u). (6.19)

The eigenstates of transfer matrix can be constructed through the off-
diagonal terms of (3.13)

M

{ombmes) = [[Blom) 1) (6.20)

m=1
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with eigenvalue

sinh(v,, —u + n)
sinh (v, — u)

T(u, {vm}m=1, ¢) = € sinh™ (u +1/2)
1

(6.21)
sinh(u — vy, +7)
sinh(u — vy,)

— =i

+sinh™ (u — 1/2)
1

3
I

provided the parameters {v,,} satisfy the Bethe ansatz equations (3.25).

Remark. When the spectrum of transfer matrices of a system at root
of unity contains eigenstates associated with FM strings, the construc-
tion (6.20) is not enough to obtain all the eigenstates [105, 108, 106].
However, it is still possible to label the eigenstates as |{uj}§\i1> where
{u;}}L, are interpreted as the zeros of the eigenvalue of the Q operator
constructed in Section 6.5.2. We will use this definition to label all the
eigenstates of Q operator. In the absence of FM strings they can be ex-
plicitly constructed via the algebraic Bethe ansatz (6.20); for the case
with FM strings see our conjectures in Section 6.8.

6.2.1 Transfer matrices

Different transfer matrices are obtained by using different representations
in the auxiliary space. For example, we have already constructed the
(‘fundamental’) s = 1/2 transfer matrix of the six-vertex model in (3.3) in
Chapter 3. We denote the transfer matrices with different representation
by decorating each T with a subscript that reminds us of the choice
of representation in the auxiliary space V, that was traced over. For
example, from now on we denote the fundamental transfer matrix (3.3)
by T1 /2

We will work with the following choices, see Appendix D.2 for the
details:

e The unitary spin-s representation with s € %Zzo- Here V, = C?+1,
We denote the monodromy and transfer matrices by M, and T.
This generalises the case s = 1/2 considered so far, and leads to the
quasilocal charges mentioned above.
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e The highest-weight spin-s representation with ‘complex spin’ s € C.
We denote its transfer matrix by Thv.

— For generic ¢ (not at root of unity) this representation is infinite
dimensional. One has to take care that the trace in (6.16)
makes sense in this case.

— If s € $Z>¢ it can be truncated to a (2s + 1)-dimensional
(sub)representation. The result coincides with the unitary
spin-s representation up to a gauge transformation (conjuga-
tion). In particular, having taken the trace over the auxiliary
space, the truncated transfer matrix is equal to T. See Sec-
tion 6.4.1.

— At root of unity both the lowering and raising operators of the
complex-spin highest-weight representation become nilpotent,
allowing for another truncation to a fs-dimensional subspace
for any s € C. We will denote this truncated transfer matrix
by Ts.

There is an important difference between the two truncated transfer ma-

trices. Since ¢y varies as 1 = iﬂ'% runs through ir Q, the spectra of the

truncated transfer matrices ’i‘s, with />-dimensional auxiliary space, are
not continuous when varying 7. Instead, the transfer matrices T, for
5 € %Z have spectra that vary smoothly with respect to 7.

The RLL relations (6.14) guarantee that each of the above transfer
matrices commute among themselves, like in (6.17), as well as with each
other (for different s, s"). As aresult, they share the eigenvectors produced
by the algebraic Bethe ansatz (6.20).

The transfer matriz fusion relations are a system of equations that
show how the higher-spin transfer matrices T can be constructed from
Ty/2. These relations are typically obtained by fusion, i.e. taking the
tensor product of several spin—% representations and projecting onto the
spin-s submodule [112, 113]. We instead obtain the transfer matrix fu-
sion relations via decomposing the auxiliary space representation, cf. Sec-
tion 6.4.3.
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6.2.2 (Q operators

There have been numerous endeavours to understand the relations be-
tween the different transfer matrices and how they can be used to char-
acterise all eigenstates of the XXZ model. The most famous of these was
found by Baxter in the 70s [114, 115, 109], where he constructed the Q
operator that satisfies the matriz T'Q) relation (with respect to Ty /,) for
the eight-vertex model, which is closely related to the quantum spin-1/2
XYZ model. A similar construction can be performed for the six-vertex
model and the XXZ model [19]. The eigenvalues of the Q operator are
called @) functions which have been already mentioned in Chapter 5, and
their zeros are precisely Bethe roots, i.e. solutions to the Bethe equa-
tions (3.25). The corresponding eigenvectors are constructed via ABA in
(6.20). Baxter constructed the Q operator by solving the matrix TQ re-
lation directly. For the purpose of numerically obtaining Bethe roots it is
much easier to solve the functional TQ relation, i.e. the relation between
the eigenvalues of T/, and the Q operator. Functional TQ relation can
be solved as coupled linear equations so long as we know the eigenvalues
of transfer matrix T/, for certain eigenvector, instead of coupled non-
linear equations in Bethe equations (3.25). At root of unity, however, the
functional TQ relation is not enough to determine the full spectrum due
to the existence of exact FM strings.

We will construct the Q operator explicitly and prove the matrix
TQ relation and the transfer matrix fusion relation. We use a new ap-
proach that is based on the factorisation and decomposition of transfer
matrix T! associated to an auxilary space that is an infinite-dimensional
complex-spin representation [116]. This construction works for any anisotropy
parameter A € R. In the case of root of unity, we further prove the trun-
cated fusion relations for the transfer matrices T using the same method.

These truncated fusion relations allow us to prove a conjecture made
in Refs. [117, 118, 119]. This enables us to construct the Q operator ex-
plicit at root of unity using a finite-dimensional monodromy matrix, and
elucidate the exponentially many degeneracies, which are closely related
to the FM string but cannot be resolved via the functional TQ relation.
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6.3 Factorisation of TV

We start with showing that the spin s € C highest-weight transfer matrix
gives rise to a two-parameter transfer matrix that can be factorised. In
this section we consider the cases with arbitrary ¢ (thus A € R). We will
specialise to root of unity later.

6.3.1 Factorisation of Lax operator

Before we start to prove the factorisation of the transfer matrix TIY
we need to study the factorisation of the Lax operator with the auxil-
iary space V, being an infinite-dimensional complex spin-s representation.
Although for T! we are interested in the ‘half-infinite’ highest-weight
(Verma) module (D.9), we start with infinite-dimensional auxiliary space
that does not have a highest-weight vector.

We need to truncate the auxiliary space for such a monodromy matrix
in order to take the trace. Let V, be the infinite-dimensional Hilbert
space with orthonormal basis |n),, n € Z. It decomposes as a direct sum
Vo, =Vt @V, , where V' is spanned by |n), with n > 0, which is the
space that we are after, while V™ is the span of |n), with n < 0. For this
auxiliary space we implicitly assume that the trace in (6.16) is only over
V.

We denote |n)(n/|, = |n), « (7| as the matrix basis. Consider the
following operators:

Wo= 3@l Xo= St Dl (622)

n=—oo n=—oo

If we think of V, as the sequence space ¢* by identifying |n), with the
sequence 9, with entries (4,,); = d,; then X, is the right shift. The two
operators (6.22) form a Weyl pair, W, X, = ¢ X,W,. We also use the
adjoint X! =" |n)(n+1],. On V, it is the inverse of X,. In particular
Xfl commutes with X, on V.

The half-infinite space V" is preserved by both of (6.22), but not by
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X1. Instead of X!, we use the following operator in V,*,

Y, =Y [n)(n+ 1, (6.23)

Hence, on V& we have Y, X, = 1 while X, Y, = > _ |n){nl. # 1.
Together, (6.22) and (6.23) can be used to give a highest-weight repre-
sentation of U,(sly) on V.t with spin s € C:

Ka = q_s Wa = Z qn—s |’I’L> <n|a7
n=0

2s5+1 ‘Nr—l —2s5—1 AWV o0
q o — 49 a
St = = X, = E 2s —n],In+1)(n].,  (6.24)

See also Appendix D.2.

Now we turn to the Lax operator L,;(u, s) associated to a site j. We
introduce two ‘spectral parameters’ x and y as simple combinations of u
and s,

2s+1 o 2s+1
9 n, Yy =u-— B
They are convenient when deriving the transfer matrix fusion relations.
Starting with the auxiliary space V, the Lax operator can be decomposed
into a product of operators separating the dependence on these spectral
parameters (see also appendix B of Ref. [120]):

L) =5 (5 1) w0 (0w ) w0 (5 1) @2

a

Ti=u+ n. (6.25)

where the two by two matrices u(z) and v(y) are defined as

1 -1 ey=n/2  e=ytn/2
o) = (L b ae) e v = (7)) e

The factorisation (6.26) coincides with the one introduced in [121]. To
understand (6.26) we compute the product on the right-hand side. The
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result is

1 [ evtn2W, — e v=1/2 W X! (W, — W, )
La]'(x7y) = § (ezfy WL e sty W )X et /2 WL _ e—ztn/2 W )
a a a a a j

(6.28)
where we simplified the top-left entry using W, X, = ¢ X, W, and X! X,
1. ITmportantly, the four matrix elements preserve the subspace V.". This
is obvious for all but the top-right entry, for which the point is that
X! (W, — W, 1) |n), = (¢"—¢") |n — 1), has vanishing prefactor when
n = 0. Thus the effect of the restriction is to replace X! by Y,. In view
of (6.24) and g = € we recognise the entries of (6.28) as

K, =eVT?W,, e 'K, = e "T2W,,
on V' 2sinh(n) ST = (" YW, I — e "V W,) X,, (6.29)
2sinh(n) S, = Y, (W, — W, ).
This shows that the right-hand side of (6.26) is the same as that in (6.13).
The point of this discussion is to show that (6.26) can be used instead of

.13) when computing the transfer matrix provided that we restrict the
6.13) wh ting the t fi tri ided that trict th
trace to V.*.

6.3.2 Intertwiners

For convenience, we denote the product on the right-hand side of (6.26)
by L,;(u,,v,). Exchanging u, and v, we obtain

Laj(vy,uz)
L (erW, = e WX (YW — e YW,
=3 < (W, — W)X eP—1/2 W1 _ o—mtn/2 W ) (6.30)
a a a a /;

= La]‘ (llx s Vy)T.

In the second line the transpose is both in the auxiliary space and in the
physical space; note that (on the auxiliary space) XTI = X! while the
diagonal operator W, = W, is symmetric.

This time the matrix elements clearly preserve V-, which allows us

to consider their action on the quotient V/V,~ = V:* ie. we treat all
basis |n), with n < 0 as zero. When acting on V", (6.30) is equivalent to
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substitute Y, for X!. Therefore we construct the monodromy matrix as
in (6.15). We take the trace over V. as in (6.16) to obtain the transfer
matrix.

It is straightforward to intertwine Lg;(u,,v,) with L,;(v,,u,) when
both are viewed as acting on V,*:

F.(z,y) Loj(uy,vy) = Laj(vy,u,) Fo(z, y), (6.31)

where the solution for the intertwiner is

Fa(SE, y) = Fa(x - y) = Z |:(x 0 n)/rr]:| 7 ‘n><n|a7

n
n=0 q
n

[(:z: —y— n)/n] _ {23] 11 sinh[(2s +1— k)] (6.32)

n n Pt sinh(kn)
Note that F,(x,y) only depends on z — y = (2s + 1)n, and not on the
original spectral parameter u. It is well defined for generic values of this
quantity, namely for x —y ¢ nZ @ 2miZ. 1t is clear that the intertwining
relation holds for the entries on the diagonal. For the remaining two
entries (which are related by transposition) the relation follows from

Vj J RESTE m s =l

Now we introduce a copy V, = V, with its own spectral parameter v’
and spin s € C, or equivalently 2/, as in (6.25). Consider the product
L,;(u;,vy) Lyj(vy,u,). We can construct an intertwiner Ggp(y,y’) that
interchanges v, and v, in this product:

Gus(¥,¥') Laj(ue, vy) Ly (v, up)

(6.33)
= Laj (ux s Vy’) Lbj (Vy y ux’) Gab (ya y/) .

To solve this we first consider the big space V, ® V, and write the Lax
operators as products like in (6.26). We look for Gay(y, 1) = gy (Xa X})
in the form of a power series g,/ in Zg = X, XZ This commutes with
X! on the left and with X, on the right. Further using Z,, WX! =
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qTP W Zy, and Wi Zy, = ¢ Zo, W' (6.33) reduces to

gyvy’(qil Zab) 0 ) T (Zab 0) /
Vi Vi
( O gyvy’ (q ZGb) j ! (y) 0 1 j ! (y )

z 0 7)o (6.34)
— v (v T ( ab > v (gy,y/ q ab ) '
i(Y) 0 1 ; 3(Y) 0 Gy (0 Zap) }
Using (6.27) this reduces to the functional equation
Gy (q2) A+ ze7 ) =g, (g7 2) (1 + ze¥7Y), (6.35)
which is solved by
[y - y /1|
Gy, y Z z,
"0 N (6.36)
(y — y )/n Hsmhy y — (k=D
P sinh(kn) '

Since X, XZ preserves the subspace V,* @ V,~ the intertwiner does so too.
Restricting to V,* and passing to the quotient V,/V,”~ = V;*, we replace
X! by Y;. Then the relation (6.33) is obeyed on V;t @ V;* with

Gt/ =3 (V7] xviy (6.37)

n
n=0

Similarly, we define an intertwiner Hy,(z, 2) which interchanges u,
and u,:
Hop(, 2") Loj(vy, ug) Ly (ugr, vy)

6.38
= Laj (Vy,um/) Lbj(ux,vy/) Hab(ZE, ZL’I). ( )

This time the roles of V, and V}, are reversed and we seek a power series
in X! X,. Proceeding as before, now taking the quotient V,/V,” = V.*
and restricting Vj, to V,*, we find

Ho(ea) =3 {“ il ’7} (Y, X,)" (6.39)

q
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6.3.3 Two-parameter transfer matrix

As discussed above, we reparametrise the transfer matrix with infinite-
dimensional complex spin-s auxiliary space as a two-parameter transfer
matrix:

T(z.y,¢) = T;"(u, ¢). (6.40)

There are two spectral parameters, x,y or equivalently u, s, related by
(6.25). The twist ¢ can be considered as a parameter of the transfer
matrix that does not change. Due to the existence of the intertwiners
this two-parameter transfer matrix satisfies

T(x,y,¢) T(z',y', ¢) = T(2',y,¢) T(z,y', ¢)
=T(z,y,0) T(z",y, ),

and in particular forms a family of commuting operators,

T(z,y,¢) T(z',y', ¢) = T(2", ¢/, ¢) T(w,y, ¢). (6.42)

The proofs of (6.41) are routine, using a variation of the argument
that establishes (6.17). We demonstrate the first equality in (6.41), and
the rest can be obtained in similar manner. We start with site j, for
which the preceding implies

(6.41)

Fa(x,7 y)_l Hab(ZE, (L’/) Fll(xa y) L&j(uﬂf7vy) Lbj(uﬁf’ ) Vy’)

6.43
= Laj(“m/avy) Lbj (ux s Vy’) Fa(xl7 y)il Hab(xa .Z'/) Fa(xa y) ( )

By the ‘train argument’ this readily extends to the two-parameter mon-
odromy matrix:

Fo(2',y) " Hup(z,2') Fo(z, y) My (2, y) My (2, /)

= M, (2, y) My(z,y) Fo(z',y) " Huy(z, 2') Fu(z, y). (6.44)

We assume that H,,(x,2’) is invertible; this is true so long as x — 2’ ¢
—N Lo @ 2L

Then we multiply from the left by Fo(x,y) ™ Hyp(z, 2') ! Fo(2’, y) and
take the trace over V," @ V,". By the cyclicity of the trace the conjugation
by Fo(2',y) Hep (2, 2') " Fo(z, )" drops out on the right-hand side, and
we arrive at the desired equality.
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More precisely, F, is well defined for s ¢ %Zzo ¢ 27iZ, and we fur-
thermore need x — 2’ ¢ —nZ>o @ 27i7Z to ensure that H,, is invertible.
Thus the preceding argument establishes the first equality in (6.41) only
for almost all values of x,y. However, the Lax operator, and therefore
the two-parameter transfer matrix, are continuous in these two spectral
parameters. Thus the conclusion holds in full generality by continuity.
(The situation is analogous in the standard proof of commutativity of
ordinary transfer matrices from the RLL relations; there the R matrix is
only invertible for almost all values of the spectral parameter.)

The exchange of y and ' is shown analogously. Let us note that,
together, the intertwiners give rise to an R matrix

Rop(2,y;2',9) = Py Fo(z,9) "' Gup(y,y) Fo(2,v)

6.45
ST (o) oy (2, ) P2, 1), (6.45)

where Py, is the permutation operator between the auxiliary spaces V"
and V,". Using the properties of the intertwiners one can show that this is
the R matrix for which the Lax operator (6.26) satisfies the RLL relation,

Rab<x7 y: xlu y/) Laj(uiﬂ ) Vy) Lbj(u$'7vy/) =

6.46
Ly; (g, vy ) Loj (g, vy) Rep(z, y; 27, y). ( )

A direct proof of the commutativity (6.42) is done using the train argu-
ment.

6.3.4 Factorisation of two-parameter transfer ma-
trix
The property (6.41) implies that the two-parameter transfer matrix T(z, y, ¢)

can be factorised into two parts that only depend on the spectral param-
eter x or y, respectively. Namely,

T(xv Y ¢) = Qyo (I, ¢) Pxo,yo (y7 ¢)7 (6'47)

where

Qyo (.T, ¢) = T(SE, Yo, (b)v

6.48
Pxo,yo(ya ¢) = T(%,y,(b) T(x07y07¢)_17 ( )
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provided that T(zg, yo, ¢) is invertible, which is the case for generic values
of zy and yo. It further allows us to change the value of y, at will: note
that

le (37’ ¢) = Qyo (.CIJ, d)) T<x0> Y1, ¢) T(x(b Yo, ¢)_1- (649)

Therefore we omit the dependence on yy. A similar argument applies to
P, .0 (y, @), whose dependence on zg, yo will from now on be omitted.

According to (6.41) the operators (6.48) commute with themselves (at
different values of the spectral parameter) and with each other:

Q(z,9),Q(2",¢)] =0, =,2"€C,
[Q(z,¢), Py, ¢)] =0, z,y €C, (6.50)
[P(y,¢), Py, ¢9)] =0, y,y €C.

6.4 Matrix TQ relation and transfer matrix
fusion relation

We will show in the following that Q from (6.48) is precisely Baxter’s
Q operator, satisfying the matrix TQ relation with twist ¢, see (6.60).
Moreover, P obeys a very similar matrix ‘TP relation’, see (6.61).

In particular, in the periodic case (¢ = 0) Q, P are two linearly inde-
pendent solutions of the matrix TQ relation. We will furthermore derive
the transfer matrix fusion relations as well as an interpolation formula
that expresses the half-integer spin transfer matrix in terms of Q opera-
tors. We would like to remark that in this section ¢ is arbitrary, i.e. the
construction works for both gapped and gapless regime of XXZ model.

6.4.1 Decomposition of highest-weight transfer ma-
trix

In order to demonstrate that the Q operator in (6.48) is indeed the same
as Baxter’s Q operator, satisfying matrix T(Q relation, we need to decom-
pose the two-parameter transfer matrix T(x,y, ¢), when specialising the
complex spin to 2s € Z>o. Recall from Section 6.3.1 that the auxiliary
space is spanned by |n) for n > 0; this is what we denoted by V. in
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Section 6.3.1. When 2s € Z>, we can decompose the infinite-dimensional
auxiliary space as VI & V,», where V. is the span of all |n) with n > 2s,
while the finite-dimensional piece V,~ is spanned by |2s) ,---,|1),]0). The
latter is certainly preserved by the diagonal operator K, as well as by S_,
whose block-triangular form is shown in Fig. 6.2. Since 2s € Z> the op-
erator S} preserves V,» too. Indeed, as [2s — n], = 0 for n = 2s the
coefficient of |2s + 1)(2s|, in S} vanishes: this entry is marked in red in
Fig. 6.2. That is, all of K,, ST are of block lower triangular form. The
(25 + 1) x (2s + 1) blocks that act on V,» differ from the unitary spin-s
representation by a simple gauge transformation.

S *x O
* O O
e e e

2s+1

* ©O © © O
oS O O o o
o O O O o
S O O O %
S O O x O
o O O O O
S ¥ © O O

Figure 6.2: The decomposition of S; (left) and ST (right) in the infinite-
dimensional highest-weight auxiliary space V. & V,» for s € %Zzo- The
* represent non-zero entries. The square orange (pink) block acts on VI
(resp. V), while the rectangular blue block maps V.} to V,». Note that
we order the basis decreasingly, - - -, |1),|0), cf. Appendix D.2.

]2s—|—1

Since the Lax operator is built from K,, ST, see (6.13), for 2s € Zx it
assumes a block lower triangular form with respect to the decomposition
V¥ @ Vo too. Let us indicate its block structure, paralleling that in
Fig. 6.2, by

L. 0
L, = < eI ) , (6.51)
aj La’”j La"j a
in auxiliary space a. Here we can think of L,/; as a square infinite matrix
acting on VI, L,v; as a square matrix on V,r, and (for want of a better

notation) L, as a rectangular matrix sending V.| to V,~; all with entries
that are operators acting at site j. Note that the blocks on the diagonal
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only ‘interact’” amongst themselves:

Lasj Lar 0 ) . (6.52)

Laj Lak - (La/ "j La/k + La”j La’ "k La”j La"k

Hence the monodromy matrix inherits the block triangular form

M, 0
M, = (M M) (6.53)

By taking the trace we obtain the transfer matrix
Tgw =try, M, = tryy My + tryr Myn. (654)

Since the unitary spin-s representation differs from that on V,» only by a
gauge transformation, tr,» Mg~ is nothing but the transfer matrix T, for
spin s € 5Zsg. As V. = V. moreover try, My is another complex-spin
highest-weight transfer matrix! Accounting for the twist and the correct
value of the new complex spin we arrive at the decomposition

T (u, ¢) = P TVOTN | (u, ¢) + Ty(u, §). (6.55)

6.4.2 Generalised Wronskian and matrix TQ rela-
tion

From (6.25) and (6.40), we rewrite (6.47) as

2s+1
2

2s+1
2

T (u,6) = Q(u + 1,0) P(u 1), (6.56)

In these terms the decomposition (6.55) becomes

T.(w.0) = Q(u+ =5 —n.0) P(u— =3 =n.0) 657)
—6(25+1)1¢Q<U—28;1n,¢)P<u+28;1n,¢>- )

This is the generalised Wronskian relation.
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For s = 0 the operator Ty(u, ¢) is a scalar, which is independent of
the twist according to our choice of the latter. We use Ty(u) = sinh® (u)
instead. We obtain the Wronskian relation

To(u):Q(u—IrZ 0)P(u—1.0)

2
“rafe-Lo)e(usdo)

Note that Tp(u) is independent of the twist ¢ while Q and P in the
right-hand side do depend on ¢.

When s = 1/2 we obtain a relation for the fundamental (six-vertex)
transfer matrix:

(6.58)

T1/2(ua gb) = Q(U+777¢)P(U_na¢)—€2i¢Q(U_77a ¢)P(U+777¢) (659)

Multiplying both sides by Q(u, ¢) and using Wronskian relation (6.58) to
eliminate P, we find

+ e Ty(u+1/2) Q(u—1n,9).
We have recovered Baxter’s matrix T(Q relation [19]!
If we instead multiply by P(u,¢) and use (6.58) to eliminate the Q
operator we analogously obtain a matrix ‘TP relation’

Note the different positions at which the twist e appears in (6.60)
and (6.61). More precisely, the TP relation for the rescaled operator
¢4/ P(u, ¢) becomes the TQ relation with the opposite twist —¢. In
the periodic case, ¢ = 0, the Q and P operators are two linearly inde-
pendent solutions to the matrix TQ relation (6.60). They are linearly
independent because their Wronskian, the right-hand side of (6.58), is
nonzero (1y # 0).
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6.4.3 Transfer matrix fusion relations

The decomposition of the two-parameter transfer matrix T(x, y, ¢) further
allows us to derive the transfer matrix fusion relations [122, 123, 112, 113].

Based on the derivation for the Wronskian relation, a simple derivation
is given as follows. We multiply both sides of (6.57) from the left by
T1j2(u £+ 2y, ¢) and apply (6.60)-(6.61). Collecting terms with the
same T and using (6.57) for each side, we obtain

2s+1

T1/2<Ui 1, ¢> o(u,¢) = To(u+sm) Ts+1/2<Ui gﬁb)

(6.62)

e Ty (u (5 + 1)) Toajo (1 F 2,0).
These two equations are exactly the transfer matrix fusion relations.
Taken together for all half-integer values of the spin s the functional
form of these relations, i.e. the analogous relations for the eigenvalues T,
comprises a system of difference relations called a T-system. Together
with a reformulation known as the Y-system it is of vital significance for
physical applications like the thermodynamic Bethe ansatz. See Ref. [124]
for a thorough review and further references.

6.4.4 Interpolation formula

When 2s € Z> the transfer matrix T, can be expressed in terms of Q.
We rewrite (6.57) as

Ts(u

)
Q(u+ 21 Q(u — 2ty
_ ( _ 25“ ) 6(25+1)1¢P(u+ 2 "

Q(u 25;177) Q(u i 25;177)
The meaning of the fractions for multiplication with the inverse is unam-
biguous since the operators involved all commute. For the case of s = 0,
we rewrite (6.58) as

To(u) _Plu—n/2) s Plutn2)  oa

Qu+1/2)Qu—n/2)  Qu—n/2) Q(u+1/2)

a1, (6.63)
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We translate the arguments of (6.64) by kn, multiply by e*¢ and sum
over k from 0 to 2s € Z. The telescoping sum on the right-hand side
yields the right-hand side of (6.63). We obtain the interpolation formula
[112, 113]

Ts(u):Q(u—l—%;—ln)Q(u—25;177)

To(u+ (k—s)n) (6.65)

- (ko
sz—o Qu+ (k—s+1/2)n) Q(u+ (k—s—1/2)n)

6.4.5 Structure of the eigenvalues of Q and P

Now we focus on the properties of the Q and P operators, and their
eigenvalues, on their respective spectral parameters. It is convenient to
use multiplicative spectral parameters r := e€* and t := e¥. For the Lax
operator, we have

oy — (Lo (@ y) Li(ey)
Lot = (5 L%f(ac,w)j' (6:60)

We start with the dependence on ¢. We call that a Laurent polynomial
f(t) is a ‘trigonometric polynomial of degree n’ if ¢ f(¢) is a polynomial in
t? of degree n. From (6.28) we see that LL!, I2! are trigonometric polyno-
mials of degree one in ¢ while L!? 12 are independent of ¢. It follows that
on a vector with S* = N/2 — M the two-parameter monodromy matrix
M., (x,y, ¢) acts by a matrix whose entries are trigonometric polynomials
of degree N — M in t. Thus the same holds for the two-parameter transfer
matrix T(z,y, ¢).

For the other spectral parameter r, we see that Lt L2 are both de-
gree zero while I I?? are trigonometric polynomials in r of degree one.
This implies that when acting to the left on (the dual of) the M-particle
subspace, M, (z,y) has entries that are trigonometric polynomials in 7 of
degree M. This carries over to T(z,y, ¢). Since the latter preserves the
value of M, this remains true when acting to the right. Eventually, the
operator T(x,y, ¢) acts on the M-particle subspace, with S* = N/2 — M
fixed, by a matrix with entries that are trigonometric polynomials of de-
gree M in r and degree N — M in t. Therefore, Q(z, ¢) acts by a matrix
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consisting of trigonometric polynomials in r of degree M, and P(y, ¢)
likewise by a matrix of trigonometric polynomials in ¢ of degree N — M.
These properties are inherited by the eigenvalues, since the eigenvectors
are independent of r, ¢.

Using the commutativity of all transfer matrices, the eigenvalues of
the Q and P operators are constructed by the algebraic Bethe ansatz
with the exception of the FM strings, cf. Sec. 6.8. For any on-shell Bethe
state, i.e. (6.20) subject to the Bethe equations (3.25), we have

Q(u, &) Humbm=1) = Qu, {tm 1. 0) {um ) (6.67)

The TQ relation determines the eigenvalues @) in the same way. The
eigenvalues () are trigonometric polynomials of degree M in t := e* with
zeros denoted by t,,,

M
Qu, @) =cst x [ (t t = tmt™"). (6.68)
m=1

According to the matrix TQ relation (6.60), the eigenvalues obey the
functional T(Q relation

T1/2(ua gb) Q(ua ¢) :TO(U - 77/2) Q(U + 1, gb)
+e?To(u+1n/2) Qu —1,9).

Taking the limit u — u,, = logt,,, the left-hand side of (6.69) vanishes.
We recover the Bethe ansatz equations (3.25). It means that the zeros of
the eigenvalues of the () operator are precisely the Bethe roots [19].

This observation can be used to find Bethe roots numerically. Once
knowing the eigenvalues of transfer matrix T/, the functional TQ re-
lation is a set of coupled linear equations of the coefficients of )
t—M (ij\io ¢;t7). In the meantime, the Bethe equations (3.25) are coupled
non-linear equations which are much harder to solve. In the presence of
any Bethe root at infinity, which does occur for XXZ, the form of the
eigenvalues has to be modified a little. Indeed,

(6.69)

Up — +00:  ty =00, tlt—t,t t =t

. S, _1 (6.70)
Uy, —> —00 : t,, — 0, t,t—tmt™ —t.
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Therefore, Bethe roots at infinity show up in the eigenvalues of the Q
operator: if we rearrange the u; so that the infinite roots are last then

M—n_oo—Ntoo

Q(u,¢) =cst x t"="=x  J[ (' t—tmt ). (6.71)

m=1

One can similarly show that the eigenvalues of the P operator P are of
the form (6.71) but with M replaced by N — M. The functional version of
the TP relations (6.61) gives rise to Bethe-type equations for the N — M
zeros of the eigenvalues P(v, ¢) for an M-particle eigenvector:

sinh(v, +1/2)\" = sinh(v, —vw — 1) 44
. 11 = = ¢, (6.72)
sinh(v,, — n/2) ) sinh(v, — vy + 1)

These are precisely the Bethe equations for a Bethe state |{v,}2 M) of
the XXZ model with opposite twist —¢. Note that (6.20) only uses the
pseudovacuum |1 - -+ 1) and the B operator B(u), which is independent of
the twist ¢, cf. (3.13). Therefore, the off-shell Bethe state [{v,, }Y ') does
not depend on the twist either; the latter only enters on shell, i.e. upon
imposing the Bethe equations. When we impose (6.72) the Bethe vector
{v 1M is not an eigenstate of T(u, ¢), but rather of Ty(u, —¢). In
particular, in the periodic case (¢ = 0) it can be interpreted as a Bethe
vector beyond the equator (if M < N/2, so that N — M > N/2). A
detailed calculation is presented in Appendix E.0.3.

6.5 Truncated transfer matrix at root of
unity
Now we concentrate on the cases with anisotropy parameter ¢ at root of
unity,
14
qg=-expn, n= iﬂg—l, (6.73)
2

where ¢; and /¢y are coprimes. In this scenario the iqﬁnite-dimensional
auxiliary space V' has a finite-dimensional subspace V,,, whose size only
depends on the parameter (o, preserved by U,(sly). Truncating to V,
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allows for another decomposition of the two-parameter transfer matrix
that leads to a proof of a conjecture of an interpolation formula specialised
for root of unity cases [117, 118, 119] and to truncated fusion relations.

The truncation enables us to construct the Q operators explicitly,
using finite-dimensional matrices at all intermediate steps. In practice
we can construct the QQ operator for all eigenvectors of a spin-1/2 spin
chain with N < 16 at root of unity and thus obtain the full spectrum
of the XXZ spin chain with arbitrary twist ¢, revealing the conditions
for the appearance of exponential degeneracies that have been observed
before [106]. This has significant consequences for the thermodynamic
limit, too.

6.5.1 Truncation and intertwiners at root of unity

At root of unity n = 17r L the matrix elements of the Lax operator (6.28)
in the auxiliary space acqu1re the periodicity:

ok + o] Loy [m+05), =& % o (k| Loy |m), . (6.74)

where we recall that € = ¢*2 = €™ . The periodicity implies that only a
finite part of the Lax operator is really relevant, allowing us to truncate
the auxiliary space to a finite-dimensional subspace.

We decompose the infinite-dimensional highest-weight U, (sl;)-module
Vit as VoI @ Vi, where VI is the span of |n), with n > ¢y and V,»
be the span of |n), for 0 < n < ¢, — 1. At root of unity we have
(5], = 0 so one of the entries of S, vanishes as illustrated in Fig. 6.3. This
time all generators of U,(sly) preserve the infinite-dimensional subspace
V7. We are interested in the finite-dimensional subspace V. Like in
Section 6.3.2 we can get there by taking the quotient V,» = % /VJr
In this way we get a finite-dimensional representation of U,(slz) on Vi,
see also Appendix D.2. More concretely, all of K,, ST are block upper
triangular with respect to the decomposition V¥ = VI & V,, see again
Fig. 6.3. This property is inherited by the Lax operator

o La’j La///‘j
L, = < o i ]>, (6.75)

where L,/; can be viewed as an infinite square matrix on V1", Ly#/; as an

{5y X oo rectangular matrix mapping Vo to Va’f, and ia /j as an €2 X lo



104 Chapter 6. @ operator and spectrum of XXZ

00000 0000
* 0000 00 %00
00000 000 0
00 %00 2 0000 {5
000 %0 00000

Figure 6.3: The decomposition of S, (left) and S} (right) at root of unity
with 5 = 3, where * represents non-zero elements of the matrices. As in
Fig. 6.2 the bottom-right entry corresponds to |0)(0].

matrix on V. The entries of each of these are 2 x 2 matrices acting at site
j. The truncation to the fo-dimensional space V,» amounts to treating
all |n), with n > {5 as zero.

In the following, we only focus on the ¢y-dimensional auxiliary space
V., dropping the double prime. We denote the Lax operator is(u) defined
in (6.13) with £5-dimensional auxiliary space V,, which also satisfies RLL
relations.

6.5.2 Truncated Wronskian and T(Q relations

Repeating the arguments from Section 6.4.1 for an arbitrary complex spin
s € C we have the decomposition of the highest-weight transfer matrix
at root of unity

T (u, ¢) = €% T, (u, ¢) + Ts(u, ¢), (6.76)

s—/{o

where up to the twist factor, T2, (u, ¢) coincides with the matrix T (u, ¢)
restricted to the basis |m + ¢3) with m > 0. With (6.74), we simplify the
decomposition (6.76) into

T,(u, ¢) = (1 — Ve 2®) T (u, ¢). (6.77)

This implies the similar decomposition of the transfer matrix T(u, ¢),
ie.

Ts(u,qzﬁ):Q(u—F%;—lﬁ,cb)f’(u—28;—177,q5). (6.78)
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We define the two-parameter transfer matrix as

T(z,y,¢) == Ts(u, 9), (6.79)

such that 3 _ ~
T(ﬂ?, Y, Cb) = Qyo ($a Cb) Pa:myo (y> ¢)7 (680)

where the truncated Q and P operators are defined as
Qyo (l’, ¢) = T(JZ’, Yo, ¢)7 f)zo,yo (ya ¢) = P]T(:L‘Oa Y, ¢) PTIq<x07 Yo, ¢)71' (681)

The truncated Q and P operators share the same eigenvalues up to a con-
stant as Q and P operators in (6.56). Therefore, the eigenvalues share the
same zeros, cf. (6.67). We find all the eigenvalues of () operator and their
zeros (Bethe roots) by dealing with only finite-dimensional monodromy
matrices at root of unity!
When 2s € Zx, the decompositions (6.55) and (6.77) yield a decom-

position of T in terms of T:

(1- gNeiEQ‘z’) Ts(u, @)

= (1Y) (T, 0) — @0 TN (u,0))  (6.82)

= Ts(ua ¢> - 6i(28+1)¢ T—s—l(uv qb)

From (6.78) we obtain the truncated Wronksian relation

(1 _ €N€i€2¢) TS(U, ¢) = Q(u+ 25 + 17),¢> f’(u - 25+ 17]7¢>
(6.83)

2 2
a2 (a2 )
When 1 — eNel2? = 0, i.e. for commensurate twist
eV =41 = (2716;2)%’
2
Ny g aouyr PSS (08
12

the left-hand side of (6.83) vanishes. Comparing (6.84) to the condi-
tions (6.4) for the existence of Bethe roots at infinity we see that when
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(6.84) is satisfied there exist certain numbers M of down spins for which
(6.4) is satisfied too.

Proceeding exactly as before we obtain TQ and TP relations that look
the same as (6.60)—(6.61), now involving truncated matrices

T j2(u, 6) Qu, 6) =To(w — 1/2) Q(u +1,0) (6.85)
+ 6 Ty(u+n/2) Qlu — . 6), |

and

Tija(w, ) P, 6) =e“Tou =/ Plutmo)
+ To(u+n/2)Plu—1n,¢). |

6.5.3 Truncated fusion relations

Proceeding as in Section 6.4.3, but using (6.78) instead of (6.57), we
readily obtain fusion-like relations for T:

2s+1 ~ -
T/ (U + 5 Cb) T (u, ¢) = To(u % s1) Ter1)2 (U + g, ¢>

+ e Ty (u (s + 1) Tuoajo (uF 5.9).

In analogy to the cases of general ¢, we dub these relations the truncated
fusion relations. However, we stress that in the present case the internal
auxiliary spaces have the same dimensions ¢y for all truncated transfer
matrices in (6.87), unlike for the fusion relations (6.62).

(6.87)

6.5.4 Interpolation formula: proof of a conjecture

In Refs. [117, 118, 119], e.g. Eq. (S22) in the supplementary material of
Ref. [119], it has been conjectured that the complex spin transfer matrix
eigenvalues can be expressed in terms of Q, similarly for the situation
of half-integral spin representations from Section 6.4.4. In our notation,
after introducing the dependence on the twist, the formula reads

Ts(u):Q(u+25+1n>Q(u—25+1n)

2 2
iy T(] (U —+ (]{7 — )77)

(6.88)
X ek I .
kz; Qu+ (k—s—3n) Qu+ (k—s+ 1))
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We prove this using arguments like those leading to (6.65). We start
with rewriting (6.78) as

§ Ts(v) _ Plu—(s+1/2m) (6.89)
Q(u+(s+1/2)n)Q(u—(3+1/2)77) Q(u—(3+1/2)77)
Setting s = 0, we have
(1 . gNeiequ) _ TO(%)
i Q(u+n/2) Qu —n/2) (6.90)
B2, Plutn/2) '
Q(u—n/2) Q(u+n/2)

Translating u by (k — s)n, multiplying both sides by e*¢ and summing
over k from 0 to /5 — 1, we obtain
(1 —eN eibd’)
-1
y Zeik¢~ To(u+(k~— s)n)
~  Qu+(k—s+1/2)n) Q(u+ (k—s—1/2)n) (6.91)
f’(u —(s+1/2)n) e lf(u + (6, — s —1/2)n) '
Q(u—(s+1/2)77) Q(u+(€2—s—1/2)77)
Using (6.77), the second ratio in the second line simplifies to eV times the
first ratio in that line. As long as the twist is not commensurate, i.e. does
not obey (6.84), we can cancel 1 —e"e2¢ on both sides of the equation.

In fact, since the two sides of (6.91) are continuous in the twist, the result
holds for any twist. So we have

&Z_:leik‘p ] To(u + (k~— 3)77)
P Q(u+(k—s+1/2)n)Q(u+(k—s—1/2)77)

i (6.92)
P(u—(s+1/2)n)

Qu—(s+1/2)n)

Multiplying both sides by Q (u + %n), and using (6.78) we arrive at
(6.88).
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6.5.5 Structure of eigenvalues of Q and P

Similar to the discussion in Section 6.4.5 the eigenvalues of the truncated
Q operator,

Q(u, ) {vmbmot) = Qu, {vm}ni1, ) Hvmbn) (6.93)

can be expressed as

M
Qu, {vm}n_1,0) = cst x [ ('t —tmt ™), (6.94)
m=1

with v, = logt,, obeying the Bethe ansatz equations (3.25) due to the
truncated TQ relations (6.85). In particular, the eigenvalues Q(u, ¢) and
Q(u, ¢) of a given eigenvector share the same zeros.

Since we are at root of unity, the eigenvalues of the truncated Q op-
erator on the M-particle sector are quasiperiodic too:

Qu=£ o, 6) = " Q(u, 9). (6.95)

Similarly it follows that

Q(u = lan, ¢) = V>S5 Q(u, ). (6.96)

Likewise, we can show that the eigenvalues of the truncated P operator
are of the form (6.71) but with M replaced by N — M, and

P(u = by, ¢) = V2S5 P(u, ¢). (6.97)

6.6 Applications to XXZ at root of unity:
general results

Now we apply the general formalism developed in previous sections to the
spectrum of the XXZ model at root of unity. The results derived in this
section and other features of the spectrum at root of unity are illustrated
by numerous examples in Section 6.7.
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6.6.1 Preliminaries

Recall that the Q operator and all transfer matrices commute with each
other. The eigenvectors of Q operator are states denoted as |[{u,, }M_,),
which are labelled by the zeros of their Q functions. We assume that the
Bethe ansatz is complete, so that any state is of the form |{u,,}M_,).

For the XXZ model at root of unity there are states |[{u,,}M_,) for
which certain special roots can be added to get another state without
affecting the values of {u,,}M_, or eigenvalues. We will call states that
are minimal in this sense ‘primitive’; it is analogous to a highest-weight
condition except that we do not use representation theory to characterise
it. We call a state |{u,, }_,) primitive if no nontrivial subset of {u,, }*/_,
corresponds to a physical state whose eigenvalue for T, differs at most
by a sign. (For the reason why we allow for a sign see Section 6.6.2.)

Primitive states contain no FM strings. We denote the numbers of
Bethe roots at +00 as nis. Typically, namely for twist ¢ ¢ {0,7}, a
primitive state has no roots at infinity either.? In the (anti)periodic case
¢ € {0,7} a primitive state may have ny., # 0 as long as nyo = 0, cf.
Section 6.7.1.

We remark that it is possible for two primitive eigenstates to be de-
generate, namely when N is odd and the two states are related by the
spin flip operator [] ;05 We discuss this case in Section 6.6.4.

Any state that is not primitive is a descendant of certain primitive
state: it satisfies

Q(u, 9) [{vm Hn—y)
x Hsmh (U — up,) Hsmh —wy) Hvm Y,

n=M+1

(6.98)

where |{u, }*_,) is primitive and the additional Bethe roots {w, }},
consist of FM strings and pairs of roots located at +oco. Away from
the isotropic points descendant states only exist when condition (6.84) is
satisfied.

2 States with n4o, # 0 but nzeo = 0 do occur at twist ¢ ¢ {0, 7}. In Section 6.7.2
we show that they have the same Ts-eigenvalues as certain primitive states at twist —¢
that have the same finite Bethe roots, and of which they should be considered descen-
dants.




110 Chapter 6. @ operator and spectrum of XXZ

Remark. Unlike the descendant states in the isotropic XXX model,
those descendant states considered here do contribute to the Thermody-
namic Bethe Ansatz calculations, cf. Sec. 6.9.2. One should notice the
difference here.

Finally, for ¢ ¢ {0, 7} away from the (anti)periodic points, a primitive
state and its descendants might be eigenstates for Hamiltonians with
opposite twist, ¢ and —¢, see Appendix E.0.3. The sign of the twist in
T, (u,+0¢) is fixed accordingly. We further illustrate this in Section 6.7.2.

6.6.2 Impact of FM strings on transfer-matrix eigen-
values

With this terminology let us show that a descendant state |{v,}*_,)
of a primitive state |{u,,}M_,) has T,(u, +¢)-eigenvalues that differ by
at most a sign. This means that the momentum of the primitive state
and its descendant may differ by 7 while all other (quasi-)local charges
generated by Ts(u, +¢) are identical.

The eigenvalues of T/, and the Q operator for the primitive state

{tm Y1) are

T12(u, @) Humbmer) = Ta2(u) [{tm )
Q(u, ¢) [{m }mer) = Q1) {uim bua) -
For simplicity we assume that |[{u,,}*_,) does not contain any Bethe

roots at +oo. By Section 6.4.5 the eigenvalue of the QQ operator is a
trigonometric polynomial of degree M,

(6.99)

M
Qu) o [t t —tmt™), t=e", (6.100)
m=1

and satisfies the functional TQ relation

Thy2(u) Q(u) = To(u—n/2) Q(u+1n) + € To(u +1/2) Q(u — n). (6.101)

A descendant, |[{v,,}M_ ) of the primitive state |[{u,,}}_,) is also an

eigenvector of the QQ operator,

Q(u, £0) {ombmy—1) = Q'(w) [{om}uiy) . (6.102)
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where for ¢ ¢ {0, 7} the sign of the twist £¢ has to be chosen to match
that of the Hamiltonian, see Section 6.7.2. From the definition (6.8) of an
FM string we note that the eigenvalue of the Q operator on the descendant
state 1s

TEm

Q' (u) o Q(t) m-=+o H tez _ 2laalyy 62)7 t=e", (6.103)

where ni. and ng, are the numbers of roots at +oo and FM strings,
respectively, of the descendant state. Observe that @'(u) satisfies the TQ
relation

"™ Tyya(u) Q'(w) =To(u —n/2) Q'(u +1n)

: (6.104)

+ e Ty(u+1/2) Q' (u—n),
where we recall that ¢ = ¢2 € {£1}. Hence, the eigenvalue of T, for
the descendant state |{v,,}M_,) is

Ty, £6) [omdMos) = € Tyou) Hom}_) . (6.105)

Since the T /p-eigenvalue of the descendant state differs by at most a
sign from that of the primitive state, the descendant has the same local
charges generated by T/, as the primitive state, except that its momen-
tum might differ by 7. More generally, from the transfer matrix fusion
relations (6.62) we obtain

T, ¢) {umbme) = To(w) {tm}ino1)
T, (u, £0) [{om}mi—r) = €™ Ty(u) [{vmHh_y)
We will give several explicit examples of the descendant states associ-

ated with primitive states, and the descendant towers that they form, in
Secs. 6.7.1 and 6.7.2.

(6.106)

6.6.3 FM strings at commensurate twist

In Section 6.5.2 we saw that, at root of unity, when the twist ¢ is com-
mensurate as in (6.84) the truncated Wronskian relations (6.83) trivialise
in the sense that the eigenvalues of Q and P are proportional to each
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other. This can only be achieved when the eigenvalues of P are related
to those of Q through adding or subtracting Bethe roots at infinity or
FM strings, cf. (6.83): eigenstates with FM strings must occur when
the twist is commensurate. Conversely, if FM strings are present among
the zeros of the eigenvalues of Q or P the truncated Wronskian rela-
tions (6.83) vanish, since for s = 0 the left-hand side of (6.83) does not
contain zeros of FM strings while the right-hand side does. This means
that descendants containing FM strings can only exist when the twist ¢
is commensurate. In conclusion, FM strings can only, and necessarily do,
occur at commensurate twist.

From (6.77), whenever T, (u, ¢) has nonzero eigenvalues it follows that
the eigenvalues T™ (u, ¢) must have poles if (1 —e"e2?) = 0 to compen-
sate the vanishing prefactor. This corroborates Refs. [125, 126] in which
it was shown that terms proportional to logt can arise when solving the
functional TQ relations, yielding eigenvalues that are quasi-polynomials
in ¢t [126]. As it turns out, the appearance of these quasi-polynomials is
also closely related to the FM strings and their string centres, cf. (6.84).
A detailed discussion of this is postponed to future work.

When (6.84) is satisfied, a quantisation condition for the centres of
FM strings based on (6.92) was obtained in Refs. [117, 118, 127]. Let us
review their arguments. For an eigenstate |{u,, }*’_,) we have

Q(u,0) Humbm-1) = Qu) {um}ny)
P(u,¢) {um}m=r) = P() {um}m=r)

where the eigenvalues are trigonometric polynomials in ¢ = e*. Let us
decompose the @ function in to a ‘regular’ part @Q(u), consisting of n,
factors whose zeros are Bethe roots that are neither FM strings nor in-
finite, a ‘singular’ part Qs(u), consisting of ng, FM strings, along with
factors accounting for Bethe roots at infinity as in (6.71):

Q(u) = Qr(u) QS(U) tn—oo_n+oo’ = eu’

(6.107)

w) o [Tt —tut™),  Qulu) H (50t — 2 1), (6.108)
m=1 foter?

where the number of down spins M = n, + {5 Ny + N + N_oo. Because
the Wronskian (6.83) vanishes, the eigenvalue P(u) has the same regular



Chapter 6. @) operator and spectrum of XXZ 113

zeros as Q(u):

P(u) = Q:(u) Py(u)t™==""+= " Py(u) ﬁ({,;@ t2 —ff2¢7%), (6.109)

m=1

where N4, and 7y, are the number of Bethe roots at 00 and FM strings,
respectively, present among the zeros of the P operator. The total number
of zeros of Q(u) and P(u) is equal to the system size N:

N =2n; 4+ lonpy + lofipy + Moo + Moo + Ngoo + Moo (6.110)

Consider the functional form of the interpolation formula (6.92),

B L To(udt (k+1/2)n)
P(u) —Q(u);e ¢Q(u+kn>Q(u+(k+1>n). (6.111)

Using (6.108)—(6.109) and the fact that Qs(u + 1) = €™ Qs(u) this can
be rewritten as

gnFM Qs<u> Ps(u) tn—oofn+oo+ﬁ—oofﬁ+oo
lo—

\ oiko To (u + (k+1/2) 77) (6.112)
Qu(u+kn) Qu(u+ (k+ 1)n) elGrHDrcc—nio)n’

k=0

This is a ‘quantisation condition’ for the string centres of FM strings.
Indeed, (6.112) implies that for any two states belonging to the same
descendant tower, i.e. sharing the same regular part of their Q functions,
the combination Qs(u) Ps(u) contains the same zeros. In other words, the
string centres of FM strings for any state belonging to a descendant tower
are determined solely by the regular part of the Q functions. Moreover,
string centres of FM strings are free within a descendant tower in the
sense that adding or removing FM strings whose string centres are given
by the zeros of Qs(u) Ps(u) results in other eigenstates within the same
descendant tower. We can add FM strings from the zeros of Qs(u) Ps(u)
to the primitive state in order to generate the descendant states. We
present explicit examples of the resulting tower structures in Secs. 6.7.1
and 6.7.2.
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6.6.4 Primitive degenerate eigenstates

When the system size N is odd and condition (6.84) for a commensurate
twist is satisfied, it is possible to have two primitive eigenstates with de-
generate eigenvalues of T [128]. Namely, the two eigenstates are related
by reversing all spins,

{vm bt }) = HO’f [{ttm =1 }) (6.113)

and, most importantly, their Bethe roots {v,,}", % and {u,,}M_, are

completely different: both are primitive states. This is only possible
when the parities of M and N — M differ, i.e. the system size N is odd.
When this happens, the eigenvalues of T are zero for both states,

Ta(u, ¢) Humbpo}) = T, —¢) Hom b3 = 0. (6.114)

In this case, the matrix T<$, y,») = Ts(u, ¢) can not be inverted for any
z,y € C. Despite this, the decomposition (6.89) still applies, where rather
than via (6.81) the P operator is defined through the TQ relation for the
state beyond the equator with opposite twist. However, it is no longer
possible determine the eigenvalues of the Q operator Q for the degenerate
primitive states. This is not a problem since, as both states are primitive,
we can use the numerical recipe in Appendix E.0.1 to find the zeros of
the Q functions (Bethe roots) for both states by solving the functional
TQ relation numerically.

Curiosity at supersymmetric point. In general the number of de-
generate primitive eigenstates at root of unity and commensurate twist
increases as the (odd) system size N grows. The exception to this rule is
the special point n = 2, ¢ =0 (or n = %, ¢ = m, cf. Appendix E.0.2), for
which there are only two degenerate primitive eigenstates for any odd N.
(There are no degenerate primitive eigenstate when N is even.) These
values of 7 correspond to the supersymmetric point A = —%. For com-
mensurate twist ¢ = 0 and odd system size NN, the antiferromagnetic
ground states are always doubly degenerate, and have been well studied.
We call them Razumov-Stroganov (RS) states, from the conjecture made
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in Ref. [129] and later proven in Ref. [130]. RS states are closely related
to lattice supersymmetry [131, 132]. (Note that in our convention for the
Hamiltonian the RS states are the highest excited states in the spectrum.)

Interestingly, RS states are the only two primitive degenerate states
at A =—1/2 and ¢ =0, for any odd N. Let us denote them by |RS;), in
the sector with M = (N — 1)/2 down spins, and |RS;) = vazl of |RSy),
with M = (N +1)/2. Their eigenvalues for Ty, are

T12(u,0) |RS;) = sinh™ (u) |RS,),

.. (6.115)
T1/2(u,0) [RSy) = sinh™ (u) |RS,).

The Bethe roots can be obtained using numerical method in Appendix E.0.1.
For instance, for N =5 we have

IRS1) = {um}met)
log(11 — v/21) —log10  ir

UL 5 > (6.116)
log(11 + v/21) —log 10 im
Ug = a0
2 2

and

RS2) = {vm }owor)

_im  log(2 — V3) im
nw=5 b oty (6.117)
log(2++/3) i
yy = 1082 T V3) i

2 2"
Naturally one might wonder what the structure of the truncated two-

parameter transfer matrix T(m, y,¢) is at A = 1/2, and how it relates to
the RS states. We postpone this question to future work.

6.6.5 Q functions for fully polarised states

Since all transfer matrices and the Hamiltonian commute with the total
magnetisation S# the two fully polarised states [11---1) and [{|---])
are eigenstates of all transfer matrices, and therefore of the Q and P
operators. Let us study this in more detail.
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For the pseudovacuum [11---1) on top of which magnon excitations
are built it is easy to see that for any system size N and twist ¢,

Qu, @) 11+ 1) = Qp(u, @) 111, Qqplu,¢) =cst,  (6.118)

with Q function that does not depend on u or ¢.
From the definition of the two-parameter transfer matrix (6.16), we
have

Q(u, @) [Hh-- 1) = Qulu, 0) [Lh--- 1), (6.119)

where the Q function is

Quu, @) = (L1 T(w,0,8) |1+ 1)

= tr, u—n/2 Wfl _—u+n/2 Wa NE
; 1[(6 « ) (M (6.120)
y—

_ Z (q—k—1/2 ‘_ qk+1/2 t—l)Neikd)’ t— ot
k=0

which is consistent with (6.112). (Beware that one needs to compare
Qu(u, ¢) with Py(u, —¢).)

From the final expression in (6.120) we see that

£o—2
QU(U+ 77>¢) _ ei¢ {Z(q—k—u% N qk:+1/2 t—l)N eikqu
k=0 (6.121)
+ (q—eg+1/2t . qeg—1/2 t_l)N pilta=1)0 (gN 6—i€2¢)

)

and since € = ¢ = £1, we conclude that if 1 — eVe'2? = 0 then

Qu(u+n,0) = Qu(u, 9). (6.122)

This is precisely the commensurate-twist condition (6.84) for the appear-
ance of FM strings. When ¢ = 0 and the condition (6.84) is satisfied
Qy(u, @) is a trigonometric polynomial in 2z = t¢%2 = €82 with £ = 1
(€ = 2) if £ is even (odd). In that case the Bethe roots, i.e. the zeros of
(6.120), consist of only FM strings and pairs 400, —o0.
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6.7 Applications to XXZ at root of unity:
examples

The physical Hilbert space (C?)®V consists of all joint eigenstates of the
transfer matrices. Assuming the completeness of the Bethe ansatz these
states can be distinguished by their Bethe roots. Degeneracies are known
to occur in terms of the eigenvalues of the transfer matrices T when the
condition (6.84) for commensurate twist is satisfied [105, 108, 106]. At
first sight, this might resemble the degeneracies due to the SU(2), or sly =
(sug)c, symmetry at the isotropic point. Yet such degeneracies are not
expected away from the isotropic point. In this section we will show with
several concrete examples how to construct the descendant towers (Hasse
diagrams) that link all different eigenstates with the same eigenvalues
(possibly up to a sign for T,, /2, n € Z~, cf. Section 6.6.2), for the transfer
matrices. Moreover, we illustrate in Section 6.7.1 that these degeneracies
grow exponentially. These degeneracies have significant consequences in
the thermodynamic limit, which are discussed in Section 6.9.2.

We use the following method. In order to study the spectrum of XXZ
spin chain at root of unity we need to know the Bethe roots associated
to the eigenstates of the model, which is equivalent to knowing the Q
functions, i.e. the eigenvalues of the Q operator, for these eigenstates.
Making use of the decomposition of the truncated two-parameter transfer
matrix Q(z,¢) = T(x,0,¢), we construct the Q operator for the XXZ
spin chain at root of unity explicitly for system size N < 16. This is
possible owing to the truncation of the auxiliary space at root of unity.
All the explicit examples in Secs. 6.7.1 and 6.7.2 are obtained through
this procedure. In many instances, analytic expressions can be obtained
using symbolic algebra software.

6.7.1 Descendant towers in periodic case

Let us first consider cases with twist ¢ = 0, i.e. periodic boundary condi-
tions, and illustrate how descendant states can be found from a primitive
state together with FM strings or pairs +00, —oo. The result is a descen-
dant tower, consisting of all eigenstates with degenerate (possibly up to
a sign for s = 1/2) eigenvalues of T for all 2s € Z-y. At ¢ = 0 every
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eigenstate [{u,, }27_}) (M < &) has at least one eigenstate with the same
eigenvalue for Ty, namely the spin-flipped state beyond the equator,

{vm b2t 1) o HU? {tmbmer }) - (6.123)

We refer to [{u,}M_,}) and |{v,}2,2}) as states on the opposite side
of the equator with respect to each other. These two states are closely re-
lated when (6.84) is satisfied, forming the top and bottom of a descendant
tower that includes various intermediate states.

In this section we focus on the case with system size N = 12, anisotropy
A =1 (n=1), and twist ¢ = 0. Similar constructions of descendant
towers apply to the antiperiodic case ¢ = 7, which we shall not discuss

separately.

Descendant towers of FM strings and their ‘free-fermion’ nature

We start with an example of a descendant tower that is generated by
adding FM strings to a primitive state. Consider the simplest primi-
tive state: the pseudovacuum state |{@}) = [11---1), with no magnons
(My = 0 spins down). The corresponding state beyond the equator,
12, 0% {@}) = |---1) has Q function given by (6.120):

=17
Q(t) o t"? +220¢° + 924 + 2200 + ¢~ 12, (6.124)
The zeros of this Q function® are of the form
oM = a1+ig, ay' = 042+i%, ag" = Oé3+ig, ay’ = 064+i% (6.125)

with numerical values of the real parts of the Bethe roots given by

a; = —0.89566465, ap = —0.23210918,

(6.126)
az = 0.23210918, ay = 0.89566465.

Thus the state corresponding to [{@}) beyond the equator is itself a Bethe
vector:

12
[Ie7 K2} = Kom i) = {ad™, 5", a5, af"}) . (6.127)
j=1

3 Recall that each pair +t of zeros of @ corresponds to one Bethe root: u+inm = u.
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Recall that each {a}"} stands for the FM string with , = 3 Bethe roots
sharing the centre a;".

For any root of unity, (6.112) implies that FM strings behave like free
fermions within a descendant tower. For a primitive state |{u,, }M_,), if
the state |[{u, }M_, U {af™, a5™}) belongs to the descendant tower, then
so does |[{um }M_, U {af™}) for n € {1,2}. That is, FM strings are ‘trans-
parent’: they do not scatter with (feel or influence the values of) other
roots.

This observation yields the following descendant tower. Given a prim-
itive state, we first construct the corresponding eigenstate beyond the
equator and find its Bethe roots as above. The descendant tower is ob-
tained from the primitive state through adding FM strings one by one,
with magnetisation M jumping by /5 each time, until we reach the eigen-
state beyond the equator at the bottom. For example, the descendant
tower obtained in this way from the pseudovacuum that we considered
above is illustrated in Fig. 6.4. This structure is easily verified by ex-
plicitly constructing the Q operator, and one sees that the eigenvalues of
the transfer matrices T are degenerate (up to a sign) for all descendant
states.

In particular, we observe that the number of descendant states within
the magnetisation sector with number of down spins fixed to M = M, +

Ng

nlsy is equal to nM>’ i.e. grows binomially with respect to the number

npy of FM strings for the state beyond the equator. By adding up all
descendant states at the occurring values of M we find that the total
number within the descendant tower is

Ngotal = Z (n:LM) = 2nm’ (6128)
n=0

in agreement with the sly prediction [117]. The descendant tower is ex-
ponentially large in the number ng, of FM strings present in the state
beyond the equator corresponding to the primitive state.

Descendant towers with pairs of roots at infinity

Next we turn to an example of a descendant tower that is generated
by adding FM strings as well as pairs 400, —oco to the Bethe roots of a
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Figure 6.4: Illustration of a descendant tower from the pseudovacuum for
N =12, A =1/2, ¢ = 0. Arrows of different colours correspond to the
addition of different FM strings.

primitive state. Recall that Bethe roots at infinity correspond to appli-
cations of the lowering operators of U,(sly) (see Appendix D.1). At root
of unity ¢, applications of either of S* or S* already gives zero, so the
total numbers of Bethe roots at +00 and —oco must be smaller than /5,
i.e. Nio < f. Pairs of Bethe roots at +00, —oo play a similar role as
FM strings.

We continue with the example N = 12, A = % (n = %), ¢ = 0.
Let us now start from a primitive state with one down spin (M, = 1),
|{u1}> We pick the solution to Bethe ansatz equations (3.25) given by

u =1 5 log i*} We consider the corresponding state beyond the equa-

tor, |{vm/} _q) X H] 107 [{ur}). We obtain its eigenvalue for the Q
operator by solving (6.112), yielding the Q function

11
t)oc [T (¢ et
m/=1

_ (t__ % t—l) (6.129)

X (t6 - @(—8 +3V3) + 91— 48V3 t—6>.

74 37
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The zeros of this Q function are u;, two FM strings, along with (cf.
Section 6.4.5) two pairs of roots +o00, —00:

U1 = Uy,

i(k—2)m
U3(TL71)+]€+1 = afLM + T’ (6130)

I<n<npy=2, 1<k<l=3,
U8:U10:+OO, Vg — V11 — —OQ.

Here the FM strings are centred at

o™ = oy + i%, M = ay + i%, (6.131)
with real parts that have numerical values
o = —0.38464681, a9 = 0.12649136, (6.132)

satisfying the quantisation condition (6.112). Note that ni.,, =2 <l =
3.

Unlike for FM strings, Bethe roots at infinity cannot added one by
one: {uj,+too} does not satisfy the Bethe equations, as it violates the
condition (6.1). On the other hand, using (D.7) we can easily check that

{u1,2 x £00}) = [{u, +00, —00, 00, —00})
o (87)%(87)" [{wi})
is an eigenstate with the same eigenvalues for T as |[{u;}).
Hence, pair(s) of Bethe roots +oo, —co can be viewed as a ‘bound
state’. These roots always appear together in order to satisfy condi-
tion (6.4). Like FM strings, pair(s) of Bethe roots +o00, —oo do not scat-
ter with other magnons. Therefore, when the corresponding descendant

state beyond the equator contains one pair of infinite Bethe roots as in
our example, the total number of states in the descendant tower is

npyn+1
w1
Miotal = D (”*“Jr >:2"FM+1, (6.134)

m

(6.133)

m=0
as illustrated in Fig. 6.5.
Almost all (primitive) states at M = 1 give rise to a descendant tower
of this form, only differing in the locations of the FM string centres. There
are two exceptions which we study next.
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M=1 [{u1})

M=4 {ur, 04™}) {ur, 05™})

M=5 11,2 x £00}) / \
M=7 / [{us, o™, a5™})
M=8  |{us,a®™ 2 x +oo0}) [y, aB™, 2 xy

M=11 [{ug, ™, ab™ 2 x +o00})

Figure 6.5: The descendant tower of |{u;}) with finite uy for N = 12,
A=1/2,¢=0.

Mirroring descendant towers

There is one more interesting feature present in the spectrum for N = 12,
A=1(n=1%5),¢=0 When M =1, there are two eigenstates, namely
|{+00}) and |[{—o0}), which have an infinite Bethe root. These are prim-
itive: their Tg-eigenvalues are different from those of the pseudovacuum.
We concentrate on [{+00}) in this section, while the situation for [{—oc})
is analogous.

In general, in the (anti)periodic case ¢ € {0, 7}, the existence of an
eigenstate of the form |{u,,}M_, U{n x +oo}) for some n > 0 implies
the existence of another eigenstate |{u;,}Y_; U{(f2 —n) x —oco}) with
the same eigenvalues of T (up to a sign), whose Bethe roots can be
found from the Bethe equations (3.25). (Likewise, the presence of a state
Hum M, U {n x —oo}) implies that of [{u,, }M_, U{(fy — n) X +00}).)

One can verify that the state beyond the equator corresponding to
[{+00}) does not belong to the same descendant tower as [{+oc0}), un-
like for the examples presented in the previous sections. The eigen-
value for the QQ operator on the corresponding state beyond the equator,
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H{om HL_ 1) o H;il of |{+00}), is obtained through (6.112), yielding

= 165 11
20, 4—1) _ 411 5 -1 -7
Q(t) |/:I1(t—e ) =t"+ b6t -t (6.135)

Its zeros contain three FM strings and two Bethe roots at —oo,
V1 = Uy = —OQ,
i(k—2)m
3 )
I<n<nm=3, 1<k<{6=3,

(6.136)

FM
U3(n—1)+k+2 = O, +

where the FM strings have centres

™M = a, s, ap = —0.404723313,
6 (6.137)

g = 0.075767627, a3 = 0.613080368,

which satisfy the quantisation condition (6.112).

The resulting descendant-tower structure is as follows. The primitive
state |[{4+o00}) gives rise to descendants via the addition of the above FM
strings. This yields a descendant tower that accounts for half of the states
with the same eigenvalues (possibly up to a sign) of the transfer matrices
T,. The other half of the states form a ‘mirroring tower’, obtained from
the first tower by spin reversal. At the top of the mirroring tower we
find the primitive eigenstate |[{2 x —oo}), whose eigenvalues for T are
the same as those of |{+00}) except for a sign for s = 1/2. Spin reversal
relates states on opposite sides of the equator as

12
x M 12— M
0% [ 1Um fm=1) X |[1Vm/ fpy—
JHIJH PM) o [{vm }2200) 6139
— [{+00,2 x —00, ™ a5 af" I\ {um M) .

See Fig. 6.6 for an illustration.

6.7.2 Descendant towers for nonzero commensurate
twist

Now we turn to cases with commensurate twist ¢ ¢ {0, 7}. It is useful
to consider two commensurate twists £¢ simultaneously. Similar to the
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M=1 [{+00})
M=2 {2 x —oo})
M=4 [{+00,af™M}) [{+00,afM}) {+00,afM})

M=5 \ [{2 x —o00, af™}) {2 x —o0,afM})
M=7 [Fhoo, o)) (oo, o)) \

M=238 {2 x —00,af™,afM}) {2 x —oc0,af™, afM}) {2 % —o0, ™, aPM}
M=10 {00, 0™, afM, M })
M=11 {2 x —oc0,af™, o }

Figure 6.6: Illustration of descendant towers from degenerate primitive
states at My = 1,2 with Bethe roots at infinity for N = 12, A = 1/2,
¢ = 0. Global spin reversal acts by reflection through the middle of the
figure: the states with the same colour are pairs corresponding to each
other beyond the equator.

mirror-pair of descendant towers in Section 6.7.1 we need to consider two
copies of descendant towers. This time, however, the two copies include
states at twist ¢ as well as states at opposite twist —¢. In Appendix E.0.3,
we show that the transfer matrices T(u, ¢) with twist ¢ are related to
those with opposite twist by flipping all spins,

N N
o7 To(w.0) [ [o7 = € Tulu, —¢). (6.139)
j=1 =1

Thus vazl 0% H{um}h—) is an eigenstate of (the Hamiltonian, and more
generally) the transfer matrices T(u, —¢) whenever |[{u,,}*_,) is so for
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Ts(u, ), cf. (E.17). (Observe that ¢ = 0,7 are the only two values for
which ¢ = —¢mod 27.)

We study the example N = 6, A = 1 (son = ir/3) and commensurate
twist ¢ = =7 2” . We wish to understand the descendant tower for primitive

states with M() = 1 down spin. Consider |[{u;}) with u; = arctan —tan%18)>

which is an eigenvector for the Hamiltonian with twist ¢ = 2?“ Its quasi-
momentum is
_ sinh(u; —n/2) 6r—¢ 87

D=1 Gih(ur 1+ 1/2) 6 9 (6.140)

Next consider the primitive state [{us})" with uy = —arctan tan(%lg),

where we add a prime to the state to indicate that it is an eigenstate for
the Hamiltonian with twist ¢’ = —%’r. This second state has opposite
quasimomentum

sinh(ug —n/2) —6m — ¢ 8t 107
- = T 2T hod2 141
sinh(ug + 1/2) 6 9 g MotsT (6.141)

p =1ilog

These two primitive states have the same eigenvalues for the energy

H) fu}) =E [ud), o 7 % (6.142)

H(=¢) {us}) = E' {w})', — 9

We would like to remark that these two states are not degenerate for the
transfer matrices. For example, the fundamental transfer matrix T/,
acts by

1<b/2
+ as ti + ag t74 +art” ) |{U1}> s
in terms of t = e¢* as usual, while
T deW}%—wm@ﬁ+a#+aﬁ+a
1/2 9 2 - 4 7 6 5 4 (6144)

+CL3t 2—|—a2t 4+CL1 ) ‘{UQ})
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has the opposite order of the coefficients. The coefficients read

. T
a; = —2, a2:a5:9—6smﬁ—6(:os§,
2

a3:—6(1—3cosz+cos—ﬂ—4sin1>,

5 ) 18 (6.145)
a4:—1+18008?—188m5,

2
CL6:—6<1+COS§—SH1%>, a7 = 1.

To construct the descendant towers we turn to the corresponding
states beyond the equator. For [{u;}) thisis H?:1 of {u1}) o< [{ur, —oo, ™)',

whose eigenvalue for the QQ operator Q(t, @) is

Q/(t) o t (t o 62u1t_1) (t3 _ €6a§1\r1t_3)

~t° — 1.2266816 13 -1 -3 (6.146)
~t° —1. +3.4456224 71 — 4.2266816¢ 3.

The state beyond the equator corresponding to [{us})" is [{ug, +00, a5™),
with eigenvalue for the Q operator Q(t, ¢) given by

Q(t) oc t ™t (¢t — 2t (#7 — b2t )

3 - 5 (6.147)
~ t° — 0.8152075t 4 0.2902233¢° — 0.2365922¢°.
Here the numerical values of the two FM string centres are
FM 17T FM 17T
ap = 0.20618409 + G Y2 = —0.20618409 + e (6.148)

The descendant towers can again be constructed using the ‘free fermion’-
like property as in Section 6.7.1. The resulting tower structure is depicted
in Fig. 6.7, where in general states come in pairs that have the same
(possibly up to a sign, as always) eigenvalues for all transfer matrices
eTi59 T (u, £¢), where the sign in +¢ is determined by the Hamiltonian
for which the state is an eigenvector.

A key difference with the (anti)periodic case is that, in order to con-
struct the descendant tower by considering the state beyond the equator
corresponding to the primitive state, we need to consider the systems
with twists ¢ and ¢’ = —¢ simultaneously. The states within either tower
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o= I
M=1 H{ui}) : H{ua})'
M=2 [{uz, +o0)
M=4 [{ua, aEM})
M=5 {un +00,0BM)) 1 [{u, —oo,al™))

Figure 6.7: Illustration of descendant towers from the primitive states
[{u1}) and [{us})" for N =6, A = 1/2 and commensurate twist ¢ = 27
and ¢’ = —¢. Like in Fig. 6.6 states of the same colour correspond to
each other via global spin reversal.

in Fig. 6.7, e.g. [{u1}) and |[{u;, —oc})’, have degenerate (possibly up to
a sign) eigenvalues for all e¥5¢ T, (u, £¢), with sign of the twist deter-
mined by the states. On the other hand, between the two different towers,
the eigenstates are only degenerate for the energy. For the two primitive
states, the degeneracy of eigenvalues does not extend to the higher order
charges generated by the transfer matrices. This is the second impor-
tant difference with the (anti)periodic case from Section 6.7.1, where all
eigenstates in Fig. 6.6 have degenerate (up to a possible sign) eigenval-
ues for T,. We remark that the descendant-tower structure for twists
+¢ ¢ {0, 7} can get more complicated for roots of unity with ¢, > 3.

6.7.3 Full spectrum at root of unity: an example

Although we have not been able to construct an algorithmic description of
the structure of the spectrum for given values of the spin-chain parameters
N, A, ¢, our numerical investigations of numerous examples suggest that
the full spectrum can be described in terms of the descendant towers that
we have described in this section. Let us demonstrate this for a system
with N =10, A =3 (n= %) and ¢ = 0. The resulting description of the
full spectrum is given in Table 6.1.
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We stress that, due to the vanishing Wronskian relation (6.83) and
the ‘free fermion’-like behaviour of FM strings, each primitive state is at
the top of a descendant tower, with descendants that are obtained by
adding FM strings or pairs of Bethe roots +o00, —0o. By (6.7) the states
come in three categories, classified by the number of Bethe roots located
at infinity:

1) Nyoo = N_oo (= 0 for primitive states),
) Nis >N_oo =0,
i) N_o > Nioo = 0.
More precisely, the conditions (6.4) and (6.6) allow for ni., = (M +
1) mod 3. Since of course n, o, +n_o < M infinite roots can first occur at
M =3 (N4oo = 1), then at M =4 (nie =2), not at M =5 (nio = 0),
after which the pattern repeats.

We begin with [f---1) = [{@}). From the zeros of the Q func-
tion (6.120), we find that the corresponding state beyond the equator
is |4+ d) oc {af™, ad™, 2 x +o0}), with FM strings of length /o = 3. We
can use the result in Section 6.7.1. Note that (6.4) and (6.6) require that
all four infinite roots must be added at the same time. The primitive state
at M = 0 thus gives rise to a descendant tower with two descendants at
M = 3 and at M = 7, and one descendant at each of M = 4,6, 10.

All ten states |[{u;}) at M = 1 are primitive. Their Bethe roots are
finite in accord with (6.4) and (6.6). The corresponding states beyond
the equator have room for two FM strings and one pair of infinite roots
(Nioo = N_oo = 1, allowed at M = 9). The descendant tower is similar
to Fig. 6.5, except that there is just a single pair of infinite roots. All
intermediate descendants can be easily obtained. The pair of infinite
roots at M = 3,6,9 is allowed by (6.4) and (6.6). Each M = 1 vector
thus sits at the top of a descendant tower containing one descendant at
each of M = 3,7 and two descendants at M = 4,6.

The 45 states at M = 2 are also primitive, and have finite Bethe roots.
The corresponding states beyond the equator allow for two FM strings.
By the free-fermion property each descendant tower contains four states.

Now we consider the cases with M = 3, where there are 120—12 = 108
primitive states. In this scenario, infinite Bethe roots (ni., = 1) may oc-
cur within primitive states. Due to parity invariance there must be equally
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many states in the classes (ii) and (iii). Suppose that ny =1, n_o =0
(the opposite case is treated analogously). There are two finite Bethe
roots left to be determined. Their Bethe equations effectively acquire a
twist due to the presence of the infinite root, cf. the discussion preceding
(6.1). We solve these Bethe ansatz equations, and remove solutions of
these two roots that contain infinite root(s). The corresponding states
beyond the equator need four more Bethe roots. For the primitive states
with ny. = n_, = 0 these extra roots come from n, ., = n_, = 2, while
for the primitive states with ni, = 1 and ny = 0 these descendants
have nis = 2, nyoe = 0 plus one FM string.

We proceed in similar manner for the 210 — 12 = 198 primitive states
at M = 4. The corresponding states beyond the equator need two more
Bethe roots, which come from adding a pair +o00, —oco for the primitive
states in class (i). For class (ii) they are of the form [{uy, us, +00, +00}),
but the corresponding states beyond the equator are only allowed to have
one infinite root. In this case one of the infinite roots is removed to make
place for an FM string: the descendants are |[{uy, us, a™, +00}).

The 252 — 90 = 162 primitive states left at the equator must fall in
class (i).
The resulting spectrum is summarised in Table 6.1, where ‘xk’ counts

the different FM string configurations (choices of afM) for the descendant
states at a given magnetisation.

6.8 Conjectures for FM creation and anni-
hilation operators

We use semi-cyclic representation of U, (sly) as the auxiliary space of the
transfer matrix in order to construct degenerate states with different mag-
netisation. Our construction is a continuation of the ideas in [133, 127].
We present conjectures for explicit constructions of the FM string cre-
ation and annihilation operators that commute with the XXZ transfer
matrix while changing the magnetisation in steps of /5.
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M | total # | # prim. | # prim. | # prim. | # desc. # desc. | # desc.
Nico = | Ntco > | Moo > | Ngoo =Moo | Nhoo > | Neoo >
0 0 0 0 0

01 1 0 0 0 0 0

11|10 10 0 0 0 0 0

2 |45 45 0 0 0 0 0

3 |120 40 34 34 1x2410 0 0

4 1210 121 34 34 1+10x2 0 0

5 | 252 162 0 0 45 x2 0 0

6 | 210 0 0 0 1+10x2+121 | 34 34

7 | 120 0 0 0 1x24+10+40 | 34 34

8 |45 0 0 0 45 0 0

9 |10 0 0 0 10 0 0

10 |1 0 0 0 1 0 0

Table 6.1: The full spectrum for N = 10, A = % (n = %r) and ¢ = 0,
organised in terms of primitive and descendant states with n,., = n_.,

Nioo > Neoo =0, N_og >Nyo =0.

6.8.1 Case ¢ = +1

We start with roots of unity satisfying ¢ = ¢ = +1. We start with
modifying the matrix entry ST = L2!/sinh 7 to

S5 =S+ B10)(ly — 14, (6.149)

while keeping the other three matrix elements in (6.28) unchanged. In
this way we obtain a Lax operator L7, and the usual construction (6.15)-
(6.16) gives the transfer matrix

T (u, 6, 8) = tra[Li(u, B) - L3 (u, ) Ba(¢)] (6.150)

depending on s € C and § € C. Here the twist E,(¢) acts on V° in the
same way as before, i.e. (F.1). The matrix elements of (6.150) change
the magnetisation (N — 2M)/2 by —n {5 and are proportional to 3" for
positive n € Zq. For example, in a chain of length N = /5, the expansion
of the transfer matrix contains a term tr,[(S; )] H;VZI o; that changes
the magnetisation by —/5, creating ¢, magnon excitations.

The matrices T (u, ¢) do not commute with each other at different

values of u, but do commute with T /5(u, ¢) when the twist is commen-
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surate. To see this, note that the construction of the semi-cyclic Lax
operator guarantees that the following version of the RLL relation (6.14)
with (six-vertex) R-matrix (3.4) holds true for any £:

Ry (u — v) L (u, 8) L (v, 8) = L (v, B) LS (. B) Rye(u — v). (6.151)

This is an identity of operators on V; ® V,, ® V;¢. The symmetry property
R ;i = Ry; of (3.4) allows us to view the R-matrix as a Lax matrix Ly,
whereas L, takes the role of an R-matrix R};. Reversing the two sides of
(6.151) and changing v — u — v we arrive at an equivalent RLL relation
on V¥V, ®Vj:

a1 = v, B) L5 (w, B) L (v) = Ly (v) L5 (w, B) Ry (u — v, B). - (6.152)

Here a corresponds to the semi-cyclic auxiliary space, b to a spin-1/2
auxiliary space, and k to a spin-1/2 physical space. The train argument
implies that the twisted semi-cyclic transfer matrix (6.150) commutes
with the twisted fundamental transfer matrix (6.15)—(6.16), provided RZ;
commutes with the tensor product of the twists matrices. This requires
the twist to be commensurate, €2? = 1, cf. (6.84).

Using transfer matrix fusion (6.150), T5¢ also commutes with T (u, ¢)
for any 28" € Z~y:

[T5(u, ¢, 8), Ty (v,0)] =0, se€C, BeC, 2¢€Zsy (6.153)

Since the twisted semi-cyclic transfer matrix T5(u, ¢, ) changes the mag-
netisation of an eigenstate of the Q operator in steps of /5, it mixes states
that are degenerate for Ty (u, ¢) within each descendant tower.

We use T%(u, ¢, ) to construct eigenstates of the Q operator itself.
Because the part of T5¢(u, ¢, §) of first order in 5 changes the magneti-
sation of eigenstates of the Q operator by —/5, we make the following
conjectures.

Conjecture 1. When € = ¢*2 = +1 the linearisation in 3 of (6.150) at
s=(ly—1)/2,

B™(u) = 05 T (u, ¢, B (6.154)

) ‘6:0, 25=lr—1"

is the creation operator for the FM string {a™} = {u,u + %, e u A+

iw%—j}. The spectral parameter can be taken to be any Bethe root from
the FM string, e.g. u as in (6.154).
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Note that at 8 = 0 the semi-cyclic Lax operator becomes the Lax
operator whose auxiliary space is the fo-dimensional highest-weight rep-
resentation. By (6.150) the operator (6.154) can thus be expressed more
explicitly as

BFM Ztra aN ‘ La,j+1 (U) e27£2710'j_ (6155)

Lo 1(u) - Lot (u) Eq(¢)],

where we write € = |n)(n/|, acting on V.

The construction of the FM-string creation operator (6.154) is similar
to that of the generating function of the quasilocal Y charges proposed
in Ref. [133], except that the transfer matrices are evaluated at different
values of s. Therefore B™ (u), like those Y charges, commutes with T'(u)
with 2s € Z( but not with Ty (u) when 25’ € C\ Zs.

Example. We verify our conjecture in many examples. To illustrate this
consider N =6, A = —3 (n = &%) and ¢ = 0. The descendant tower of
the pseudovacuum [{@}) = [T11117) contains three descendants:

{od"}) . Hax"h), Ko™, ad"}) = [ LD, (6.156)
with FM strings centred at

o log(10+3v11) L. log(10 + 3/11)

Q= — G ;o O =+ 5 : (6.157)
We verify that (6.154) does indeed create these FM strings:
‘{O‘zM}> o BFM( FM) ’{@}> n = 17 2’ (6158)

and the consistency condition
|{Oél;1\/l, OZ2M}> e BFI\/I( FI\/I) |{agl\l}> BFM( FM) |{041;M}> (6159)

holds, even though the B™ do not commute with each other in general.
More generally, whenever two FM strings with centres af, al)' occur

among the descendants of some primitive state |{wy, }nm) we ﬁnd that

BFM( FM) |{um}m U {O[FM}> BFM( FM) ’{um}m U {thl}>

XX ‘{um}m U {CYFM :‘;/vl}> ‘ (6160)
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The creation operator (6.154) can be used to construct the whole descen-
dant tower described in Section 6.7.1.

The annihilation operator can be obtained in the same fashion. We
denote the parameter of the cyclic representation by ~. If we repeat
the same construction with the transposed Lax matrix Lg;(v,, u,) from
(6.30), this time replacing the entry S; = L?(v,, u,)/sinhn by
ST =87 + | — 1)(0|a, (6.161)

a

we obtain a semi-cyclic transfer matrix

~ SC

T3 (u, 6,7) = tra Loy (u,7) -+ Ly (u,7) Ea(9)] (6.162)

that changes the magnetisation by positive multiples of /5. Similarly, we
have

Conjecture 2. When ¢ = ¢ =

1)/2,

+1 the linearisation in v at s = (¢ —

CFM(“) = 8’7 TT(”? o, 7)‘

=0, 2s=03—1
N
= Z try [LaN(u) T La,j—l—l(u) et?_l’oo-]—'i_ (6163)
j=1
Lo 1(u) - - Lai(u) Ea()],

annihilates the FM string with Bethe roots {u,u + iz—;r, e U+ iﬂele—;l}.

We checked the constructions in many examples, e.g. the one above.
We find that the consistency condition

C™ (e, ") B (o) {utm}pm Uten"}) = {um}m Udan'}) o)
= B () (1) [{, h U {0]") (0160
holds so long as |[{tm }m U {aM}) and [{um, }m U {af)'}) are eigenstates of
the Q operator, even though we do not know the commutation relations
between B™(u) and C™(v) in general. We postpone these relations to
future work.
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6.8.2 Case ¢"> = —1

When € = ¢2 = —1 the RLL relation (6.152) has to be modified and it
becomes

ap (U — v, B) L5 (u, —3) Ly (v)
= Ly;(v) Lg; (u, B) R (u — v, —p3).
This RLL relation can be shown by direct calculation on V, ® V;. The
resulting monodromy matrix is ‘staggered’, with alternating sign of [,

similar to the inhomogeneities added to the Lax operator. For general
e = ¢ = %1 the semi-cyclic monodromy matrix can thus be defined as

MZC(% S, ¢7 6) ::LZCN(uv S, gNﬁ> T szcj(uv S, 5jﬁ)
o 'chl(uv S, 55) Ea(¢)'

(6.165)

(6.166)

When € = +1 all s have the same sign, reproducing the result in (6.152),
while for ¢ = —1 the sign alternates. Taking the trace we obtain the
general expression for the semi-cyclic transfer matrix

T3 (u, ¢, B) = tr, [Li‘j\,(u, s, 5Nﬁ) e LZ‘;(U, s, 5jﬁ)

o -chl(U,,s?gﬂ) Ea<¢>} (6167)

For ¢ = +1 this reduces to (6.167); in particular, the use of the same
notation as in (6.167) should not cause any confusion.

b b
-5 |8 |+ /3@_ ¢
x =
a ()= P R e L

1 2 3 4 1 2 3 4

Figure 6.8: Graphical proof of Eq. (6.169) for an even number N of sites.

Recall that for ¢ = —1 the commensurate twist ¢ depends on the
system size N through the condition ¢?? = (—1)" from (6.84). Therefore
on V> ® V, we have

Eo(0) Ey(¢) Ry (u, B) = R (u, (—1)" ) Eo(0) Ey(¢). (6.168)
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b : b b
Lo ;
f) = o) = g
. = - (“] . @

1 2 3 1 2 3 1 2 3

Figure 6.9: Graphical proof of Eq. (6.169) for an odd number N of sites.

Combining (6.165) and (6.168) the train argument, illustrated in Figs. 6.8
and 6.9, yields

RZ%(U -, 6) MZC(UJ S, 57 ¢) Mb(v7 ¢)

= Mb(v> ¢) M(Szc(uv s, —0, ¢) Z%(u -, ﬁ)
Multiplying by R (u — v, 8)"" = R (v — u + 1, —f)/sinh*(u — v + ),
provided it exists, and taking the trace over the f>-dimensional auxiliary

space we see that the semi-cyclic transfer matrix (6.167) commutes with
the fundamental transfer matrix in the sense that

TZC(U, ﬁa ¢) T1/2<U, ¢) = T1/2(U> ¢) Tzc<u7 _65 ¢)7 u,v, s € C. (6170)
With the aid of the fusion relation we obtain the commutation relations

Tzc(u’ ﬁa gb) T51<U, ¢) = Ts’(”» gb) Tic (uv (_1)25157 ¢)7

u,v,s € C, 25 € Z-y.

(6.169)

(6.171)

In particular, the semi-cyclic transfer matrix commutes with T, for in-
teger s'.
Therefore, we have

Conjecture 3. For any ¢ = ¢*2 = 41 the linearisation in 3 of (6.167) at
s=(l,—1)/2,

BFM(U) = aBTEC(’LL, (b, ﬁ) ‘ﬁ=0, 95—l —1
N
= &try [Lay(u) -+ Loy (u) €0 o (6.172)
Jj=1

La,j—l(u) < L1 (u) Ea(gb)} )

creates an FM string with Bethe roots {u/, v’ + ié—;r, e+ iw%—;l}. The
spectral parameter in (6.172) is related to the FM string by u = o' if

€:+1andu:u’—%when5:—1.
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This conjecture has been successfully tested on all examples in Sec-
tion 6.7, as well as for various cases when /5 is even.

We demonstrate another property with ¢ = —1. Taking the derivative
of (6.171) with respect to the parameter § we obtain the (anti)commutation
relations

{B™(u),Ty(v)} =0, 25 +1¢€Z,
[B™(u), Ty(v)] =0, & € Zso.

The anticommutation of B™(u) with T;/3(v) for ¢ = —1 might seem
surprising at the first sight, but it can be elucidated as follows. When
e = —1, each FM string adds 7 momentum to the state without affecting
the energy or other higher order charges. This means that B™(u) anti-
commutes with the translation operator, and commutes with all higher
conserved charges, which are logarithmic derivatives of T;/,. This yields
the anticommutation.

The annihilation operator for FM strings can be defined like in (6.163).
We generalise the semi-cyclic transfer matrix (6.162) to arbitrary ¢ €
{41, —1} by modifying into &/~ like in (6.167). We propose

(6.173)

Conjecture 4. When ¢ = ¢*2 = £1 the operator

CFM(U/) = 87 Tzc<u7 ¢7 7)’

=0, 2s=03—1
N
= &l trg[Lon(u) -+ Loy (u) e 00 f (6.174)
j=1
Loj 1 Lai(u) Ea()]
annihilates an FM string with Bethe roots {u/, v’ + i, -+ o/ + ir2-1}.
2 2

The spectral parameter is again related to the FM string by v = o' if
5:1andu:u’—%for5:—1.

6.9 Thermodynamic limit

6.9.1 FM strings and Z charges

In Section 6.6.2 we have seen that all states within a descendant tower
have the same eigenvalues (up to a possible minus sign) for T,. This
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may lead one to wonder if those states can be distinguished at all using
charges that are (quasi)local in the thermodynamic limit. The answer to
this question is positive: the (exponentially many) degeneracies can be
lifted by taking into account the quasilocal Z charges [110, 52, 111, 53]
that can be constructed at root of unity as logarithmic derivatives of the
truncated transfer matrix T, from Section 6.5. The quasilocality of the
Z charges in the thermodynamic limit was demonstrated in Refs. [110, 52,
111, 53]. The Z charges were used to study out-of-equilibrium phenomena
such as quantum quenches in Ref. [119]. Here we focus on their role in
distinguishing states that are degenerate for Tj.

In Section 6.5 we already studied the key ingredient for the construc-

tion of the Z charges viz. the truncated two-parameter transfer matrix

T(x,y,¢) = Ts(u, ¢) at root of unity. Similar to Ref. [119] we define the
generating function of the Z charges as

1 -
Z(u, o) = 2— 05 log T(u, ¢) |s:(e2—1)/2
1
~ 2

(6.175)

T(zi 1 /2(“ ¢) O, T s(u, )‘25:52—1'

Like in (6.18) the quasilocal Z charges are the coefficients of the expansion
around u = 7,
&7t

Z0) = —j Z(u, ®) : (6.176)

dui—1 u=n/2
The Z charges are able to distinguish each member of the descendant

tower. Let us illustrate this for the example N =6, A =1 (n =) and
¢ = 0 from Section 6.1.2. Consider the descendant tower formed by

{a}) = 111111, Hea"h s Heo™h s Hen™, 05"} oc L),

(6.177)
where the string centres for the two FM strings are
log(10 + 3v/11 i log(10 + 3v/11 i
oo — _JBUOFSVID) | im - ey Jog(0+ VD) T

6 6’ 6 6
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The generating function (6.175) acts on the descendant tower as

18 cosh(6u)

10 — cosh(6u)
9v11

10 — cosh(6u)
9VI11

10 — cosh(6u)

18 cosh(6u ,

10— cosl<1(61)1) Hen™saz7}).

Z(u,0)|{2}) = {2}),

Z(u,0) {ai™}) = {ed™}),

(6.179)

Z(u,0) [{e"}) = {e2"}),

Z(u,0) {a7", a5™})

The eigenvalues of Z(u) are different for each eigenstate.

Now consider the thermodynamic limit N — oo. There is a subtlety
in the presence of FM strings. For instance, when ¢ = 0 and n = inl; /s
with ¢ odd, (6.84) implies that for odd N there are no FM strings in
the spectrum, while for even N there are (exponentially many) states
associated with FM strings. The spectrum of systems at finite size is
therefore sensitive to the parity of IV, and it is not a priori clear whether
the thermodynamic limit is well defined. However, numerics suggests that
at odd N there are states in the spectrum that differ by terms that vanish
as N — oo to give rise to the same asymptotic degeneracies as obtained
when taking the limit via even /N. Thus the result in the thermodynamic
limit should be independent of the way in which the limit N — oo is
taken.

The role of the Z charges in separating the degeneracies in the presence
of FM strings has important implications for the thermodynamic limit. In
practice, Z charges have to be taken into account when constructing the
generalised Gibbs ensemble (GGE) for the non-equilibrium steady state
after a quantum quench with XXZ model at root of unity[119].

6.9.2 TBA, string-charge duality, and a conjecture
for string centres of FM strings
One of the cornerstones in the study of the thermodynamic properties of

quantum integrable models is the thermodynamic Bethe ansatz (TBA)
[71, 72, 134], which has been used extensively to study out-of-equilibrium
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problems such as transport, quantum quenches and generalised hydrody-
namics.

In order to solve the TBA equations for the XXZ spin chain at root of
unity one relies on the string hypothesis [72], which stipulates the types
of bound states that the model permits. This is a powerful tool that has
produced numerous results for thermodynamic properties of the XXZ
model. In the following we will use the notation of Ref. [135].

As shown in [135], the root densities of the Bethe strings (bound
states) are in one-to-one correspondence with the generating functions of
(quasi)local charges (6.18) of the model. This string-charge duality is very
convenient for the study of expectation values of (quasi)local charges, es-
pecially for quantum quenches [34]. For example, we can obtain the root
densities for the non-equilibrium steady states using string-charge dual-
ity [135, 136]. However, at root of unity there seems to be an ambiguity
when determining the root density of the ‘last two string types’ in the list
of Takahashi [72, 134]. This ambiguity was elucidated in [119] by relating
the root densities of the last two string types to the generating function
of Z charges (6.175). Together with the generating functions 9, log T's(u)
one can obtain the long-time steady state with microcanonical GGE de-
scribed by root densities of allowed Bethe strings for a quantum quench
with any initial state [1306].

The existence of FM strings at root of unity is closely related to the
truncated two-parameter transfer matrix T(x, y, ») and the Z charges that
it generates. The string-charge duality implies that the eigenvalues of the
generating function of the Z charges have a functional relation to the root
densities of the last two string types [135, 119]. This suggests that at
root of unity the last two string types might be directly linked to the FM
strings. In fact, two Bethe strings, one of each of the last two string types,
that have coinciding real parts of their string centres * together form an
FM string. For example, consider A = % (n = %), for which the string
hypothesis says that the last two string types are (2,+) and (1, —). Call
a bound state with n magnons whose Bethe roots have the same real part
an ‘n-string’. Then (2, +)’ denotes a 2-string with even parity (centred
at the real axis, i.e. a complex conjugate pair), and ‘(1,—)" a l-string

4 Of course we need to take into account the ‘Brillouin zone’: wu,, + im = um,,
cf. Footnote 3 on p. 118.
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with odd parity (centred at Imuw,, = ir/2). For n = I the imaginary
parts of the 2-string with even parity are &7 while the imaginary part of
the 1-string with odd parity is iF. On the other hand, according to the
examples in Section 6.7, FM strings for n = ir/3 can be expressed as

m=f— = uy =+, uz=E+—, EER (6.180)
6 6 2

But this can be viewed as strings of types (2,+) and (1, —) with the same

real part of the string centre.

We expect that for any system size with commensurate twist FM
strings can be decomposed in terms of the last two string types of the
string hypothesis in this way, even at finite system size. Indeed, for any
principal root of unity 7 = i7 with {; = 1 the last two string types are
(6 — 1,+) and (1,—). We have checked FM strings for all ¢, < 6 and
found that they can all be viewed of strings of the last two string types
with equal real parts of the string centres. In addition we have verified it
for various examples with non-principal root of unity, including n = 21%7
for which the last two string types are (2,4) and (1,+), and n = 2=,
where they are (3,4) and (2, +).

Combining with numerical evidence in [4], we have

Conjecture 5. For any finite system size N and root of unity n = iﬂ'%

with commensurate twist, any Fabricius-McCoy string

i (0 +1
ak:a”wlg( 2; —k:), 1<k <4ty (6.181)
2

has string centre imaginary part

o™ — i% if /1 is odd, (6.182)
0 if £ is even,

This conjecture has been confirmed for all examples in Section 6.7. If
this conjecture is correct then the generating function of the Z charge (6.175)
is dual to the root density of FM strings in the sense of the string-charge
duality.

Meanwhile, we remark that the descendant states that we define in
this thesis (at root of unity) contain FM strings and they do contribute



Chapter 6. @) operator and spectrum of XXZ 141

in TBA. Their root densities of last two types of strings in the thermody-
namic limit are fixed with Z charges. They are completely different from
the sl descendant states in XXX model, which do not contribute to TBA
directly, after fixing the total spin of the state.

6.9.3 FM strings and spin Drude weight

One of the most important physical consequences of the quasilocal Z charges
is the non-vanishing high-temperature spin Drude weight of the XXZ
model at root of unity, due to the non-commutativity between the spin
flip operator [[; 05 and the Z charges [110, 52, 111]. It can be consid-
ered as a manifestation of the exponentially many degeneracies in the
thermodynamic limit.

In [4] it is shown that perturbing the anisotropy parameter 1 away
from root of unity can change the structure of the Bethe roots dramati-
cally. Meanwhile, the spin Drude weight [110] also changes significantly
under such perturbations. This hints at a connection between the exis-
tence of FM strings at root of unity and the fractal structure of the spin
Drude weight.

Another example is the domain-wall quench, i.e. the time evolution
of an initial state |T--- 1)) --]), for the XXZ model at root of unity.
Here ballistic spin transport (non-vanishing spin Drude weight) can be
treated analytically using generalised hydrodynamics [67]. The right half
of the system, i.e. the fully polarised state |} ---{), has Q function given
in Section 6.6.5 for finite size. In the thermodynamic limit, according to
the TBA, this fully polarised state consists of a filled ‘Fermi sea’ with
Bethe roots of the last two string types [134, 67], cf. Section 6.9.2, com-
bining into FM strings. For the domain-wall quench the ballistic spin
transport from the right half of the system is solely carried out by the
quasilocal Z charges [67]. Notice that, even though the FM strings do
not directly contribute to the dynamics, the ‘FM strings’ of the right half
of the system are not true excitations from the perspective of the whole
system. Thus they do contribute to the dynamics, as combinations of
Bethe strings of the last two string types, resulting in the domain-wall
melting phenomenon.
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6.10 Summary of results

In this chapter, we have studied the full spectrum of the transfer matrices
associated to the quantum spin-1/2 XXZ model, focussing on root of unity
with arbitrary twist. First, we constructed the Baxter’s Q operator from
the factorisation of a two-parameter transfer matrix (6.47). The eigen-
values of the Q operator, i.e. Q functions, are polynomials whose zeroes
encode the physical solutions of the Bethe equations (3.25). As a by-
product, we rederived the matrix TQ relation (6.60) and transfer-matrix
fusion relations (6.62) from a decomposition of the two-parameter trans-
fer matrix, providing a simplification of the conventional approach. At
root of unity we derived truncated transfer-matrix fusion and Wronskian
relations from the two-parameter transfer matrix with auxiliary space
truncated to a finite-dimensional space. We also proved an interpolation-
type formula previously conjectured in Refs. [117, 118, 119].

Using the method developed for XXZ model at root of unity, we anal-
ysed the full spectrum at root of unity, obtaining analytic results on the
properties of primitive states and their descendant towers. We elucidated
the exponentially many degeneracies in the spectrum at root of unity
in terms of states with FM strings, and provided numerous examples of
different descendant tower structures. We found new semicyclic transfer
matrices that satisfy unconventional RLL relations (6.169), from which
we conjectured an explicit expression for the creation and annihilation
operators of FM strings (Section 6.8).

Eventually, we compared our results with recent works on the ther-
modynamic limit (Section 6.9). We explained the relation between the
truncated two-parameter transfer matrices and the quasilocal Z charges,
which are directly related to out-of-equilibrium phenomena such as quan-
tum quenches and spin transport at root of unity.

The spectra at different roots of unity are similar to each other, where
at the free fermion point (A = 0, n = ir/2) it is known to possess Onsager
algebra symmetry. This leads to the results in Chapter 7.



Chapter 7

Hidden Onsager algebra symmetries
in XXZ model

The contents of this chapter were published in [5].

The Onsager algebra was used for the first time to solve two-dimensional
Ising model with zero magnetic field by Lars Onsager in his seminal pa-
per in 1944 [137], which is considered to be the herald of exactly solvable
models in statistical mechanics.

Later the Onsager algebra has been used to study two-dimensional chi-
ral Potts model, a generalisation of Ising model and its quantum counter-
part, the Zy-symmetric spin chain [138, 139, 140, 141, 142]. Those mod-
els studied via the Onsager algebra are integrable and possess Kramers—
Wannier duality [143]. Later, Dolan and Grady used the self-duality of
these models to construct infinitely many conserved charges without us-
ing integrability [144], and the equivalence to the Onsager algebra has
been discovered by Perk [145]. This approach has led to a deeper un-
derstanding of the algebraic structure of the Onsager algebra and its
relation to self-duality and integrability [146, 147, 148, 149]. A thorough
and comprehensive summary of the mathematical structures of the On-
sager algebra is provided in [150]. Recently, the Onsager algebra has
been used to study the spectra of quantum lattice models [127], the out-
of-equilibrium dynamics of quantum states [151], and the construction
of quantum many-body scars [152], eigenstates of non-integrable models
that fall out of the paradigm of Eigenstate Thermalisation Hypothesis.

143
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Following the results of Chapter 6, the spectra of quantum XXZ model
at root of unity are of particular interest, and the models coincide with
the ones in [127] despite being investigated with different techniques. In
particular, XX model with Hamltonian in the form of (7.21) possesses the
Onsager algebra symmetry [127], cf. Sec. 7.2.1. Moreover, from Chapter
6 we observe that the underlying quantum group structure at root of
unity results in huge degeneracies (of transfer matrices T(u) as well as
the Hamiltonian) in the spectrum of quantum many-body systems. In the
meantime, we can identify similar degeneracies of spectrum for eigenstates
of free fermionic Hamiltonian. For instance, taking the limit A — 0 for
XXZ Hamiltonian (3.11), we obtain the XX model, which can be mapped
into a free fermionic model with aid of Jordan-Wigner transformation.
In that case, ¢ = exp(in/2), i.e. at root of unity. We can construct
the Onsager algebra symmetry for XX model explicitly, cf. Sec. 7.2.1,
which motivates us to consider the possibility of the existence of similar
Onsager algebra symmetries for XXZ model at arbitrary roots of unity [5].
The difficulty of finding the hidden Onsager algebra symmetries at other
roots of unity is that the Onsager generators in XX model are expressed
in terms of local operators, while the generators at other roots of unity
are not if they were to exist, which are discussed in Sec. 7.3. We make
use of the analogue between XX model and XXZ models at other roots of
unity, and formulate a series of conjectures on the existence of the hidden
Onsager algebra symmetries in XX7 model at arbitrary root of unity.

7.1 Omnsager algebra in a nutshell

We use the notations in Onsager’s original paper [137] to define the On-
sager algebra. Consider the following infinite-dimensional Lie algebra
with basis

{A,,, G, |m,n € Z}. (7.1)

The canonical generators are defined with the following properties,

[Ama An] = 4Gmfn7

Gy Anl =2 (Ansm — Ann),  [Giny Gl = 0. (7.2)
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From the definition, we have
G_,,=-G,, VmelZ. (7.3)

As shown and proven by Perk [145] and Davies [146], the Onsager
algebra is equivalent to the Dolan—Grady (DG) relation, which imposes
requirement only on two generators Ay and Ay, i.e.

[AO, [AO, [AO,AI}H = 16[Ao, A4], [Al, [Al, [Al,AO]H = 16[Ay, A].

(7.4)
We mainly use the DG relation in this chapter as the defining property
for the Onsager algebra. Namely, once finding two operators that satisfy
DG relation in certain physical systems, we can construct a family of
operators fulfilling the canonical definition (7.2), which can be considered
as a specific representation of the Onsager algebra. For example, one-
dimensional transverse field Ising model can be expressed in the Onsager
generators, cf. Sec.7.1.1.

Let us assume that

In this scenario, we rewrite the operators in three parts, i.e.

A, =A) +AL+ A, (7.6)

where A% commute with total magnetisation A = S~ ¢%, and A

J=1"3>
satisfy

[AD A] = H4A;. (7.7)
From relation (7.2), we obtain the following relations,
A=A AF =A% (7.8)
(AL ALl =0, e {0+ -} [AL ATl = AL, —AL,,  (T9)
A An] =2 (A = Arn) s [An A] =2 (A0 — Aryn)
(7.10)

Using these recursive relations, we can generate all higher order generators
from knowing just the A;.
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Self-duality DG relation (7.4) also implies the Kramers—Wannier self-
duality [143], which has been used to obtain the value of the phase tran-
sition point of models possessing the Onsager algebra. Suppose that the
operators Ay and A; can be expressed in terms of local terms, i.e.

N N
AO = Za()’j, Al = Zal,j. (711)
i=1 i=1

Kramers-Wannier self-duality implies that the mapping ag; — a;; (and
conversely a; ; — ag;) leaves the algebraic structure intact, which is
obvious from DG relation (7.4). Let us consider a Hamiltonian H that
can be expressed in terms of Ay and Ay,

H=A;+ ), MeR, (7.12)

such as 1-dimensional transverse field Ising model and chiral Potts model,
cf. Sec. 7.1.1. Using Kramers-Wannier self-duality, one could detect a
phase transition at A = 1 without solving the entire system [143].

7.1.1 Example: transverse field Ising model

We give an explicit example of one-dimensional transverse field Ising
model, which can be solved via the Onsager algebra approach. A quantum
phase transition is present due to the Kramers—Wannier self-duality.

The Hamiltonian of one-dimensional transverse field Ising model in
terms of Pauli matrices are

N
Hiyng = Z (Jf(f;ﬁrl + /\sz») ) (7.13)

j=1

For the sake of convenience, we consider periodic boundary condition and
even number of sites N mod2 = 0. The Hamiltonian can be mapped into
a free fermionic one with aid of Jordan-Wigner transformation *. We
instead use the Onsager algebra to solve the model, aiming at obtaining
extensively many conserved charges.

!There is a subtlety with the boundary condition (Neveu-Schwarz or Ramond)
after the Jordan—Wigner transformation. We will not use it in this thesis though.
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First of all, we identify the Onsager generators, i.e.

N N
Ag=> 07, A=) olol,, (7.14)
j=1

J=1

satisfying DG relation (7.4). Therefore, the Hamiltonian in terms of the
Onsager generators reads

HIsing - A() + )\Al (715)

From the Onsager algebra (7.2), we obtain extensively many conserved
charges that commute with the transverse field Ising Hamiltonian,

Qi =(Aj+A) +AMA1; + A1), JEL (7.16)

It is easy to observe that Qp = 2Hig,,. Using the definition (7.2), we
show that these conserved charges are in involution, i.e.

[Q;,Qu] =0, jkeZ (7.17)

These conserved charges are expressed in terms of fermionic bilinears,
which are linear combinations of conserved charges found in the solutions
of the model in terms of free fermions.

A quantum phase transition happens at A = 1 due to the Kramers—
Wannier self-duality, as demonstrated in the previous section.

Transverse field Ising model does not possess the property of being
U(1)-invariant, i.e.

Higing, Aj] #0, j€Z, (7.18)

when A # 0. We will focus on the other example, spin-1/2 XX model,
which is a U(1)-invariant Hamiltonian, mainly in the scope of the thesis.

7.2 U(l)-invariant Hamiltonian

In the remaining part of the chapter, we concentrate on a specific type of
Hamiltonians that commutes with both Ay and Ay, i.e.

[H, Ao] = [H,Ay] = 0. (7.19)
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These models are referred as U (1)-invariant [127], because both operators
Ay and A, are considered as U(1) charges. However, Ay and A; do not
commute with each other, cf. (7.2).

From (7.2), it is easy to observe that H commutes with all generators
in the Onsager algebra,

H,A' =0, r€{0,+, -}, meZ (7.20)

Two examples of U(1)-invariant Hamiltonians are spin-1/2 XX model and
spin-1 ZF model with anisotropy parameter n = % or 217” These examples
belong to the U(1)-invariant clock models defined in [127] and they are
quantum integrable lattice models at root of unity. Now we examine the

case of XX model in details.

7.2.1 Example: XX model

We illustrate the relation between the Onsager generators and semi-cyclic
transfer matrix T5(u, 3, ¢) using the example of spin-1/2 XX model.
Twist ¢ considered here is always commensurate, satisfying (6.84). When
system size N is even, ¢ € {0, 7}, and ¢ € {m/2,37/2} with system size
N being odd.

The XX Hamiltonian is written as

N
1
Hxx = Z 5 (0+ O to; (7]+1) (7.21)

7j=1

where the Onsager generators are

N
1
=52.0, Q=0 Q=Qi+Qj+Q, (7.22)
j=1

+.—- +
(07 051 = 077 071) 5

[\ I

. N
Z J+1’

. (7.23)
Q =Y (-1Vo;0i,, Q=Q)+Qf +Q;.
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They satisfy DG relation (7.4) such that

[Qo, Q. [QO,QJH — £[Q0, Q.
(7.24)

{Ql, Q. [Ql,Qo]H = Q1. Q)

with ¢5 = 2. It is easy to check that Hxx is U(1) invariant, i.e. commuting
with all Onsager generators,

[Hxx, Q:n] =0, re {0, =+, —}, m € 7. (725)
Rescaling the generators Q,,, we obtain the canonical generators A,, in

Q, = g—AT meZ, re{0,+,—} (7.26)
2

The Onsager generators in terms of local spin operators are given in
Appendix G.

Since XX model is equivalent to XXZ model at root of unity ¢ =
exp(ir/2), we can define generating functions for (quasi-)local Z and Y
charges that are mentioned in Chapter 6,

Z(u,¢) = — 8 log T (u, 8, 0)|,— (62—1)/2,=0 > (7.27)

and

Y(u,gb) = aﬂ IOg TSC(“ ﬁ ¢)’ (63—1)/2,8=0 > (7'28)

2sinhn

where the prefactors are chosen for convenience when comparing to the
Onsager generators. The definition of the generating function of Z charges
coincides with (6.175). Note that we define the generating functions for
Z and Y charges for arbitrary root of unity ¢ = exp (imfy/l3).

We expand the generating functions at u = wug to obtain the (quasi-
Jlocal Z and Y charges, i.e.

u¢:§: (u—up)" Zy,, uqb:i (u—up)" Y, (7.29)

n=0 n=0
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where .
n—ir
5
The choice for the different values of uy with respect to different ¢ values
is explained in Appendix H.
What is truly striking here is that the Onsager generators Qf can be
identified with the Z and Y charges Z, and Y, i.e.

5:—1=>u0:g; e=+1 = ug = (7.30)

Q'=Z, Qi =Yy Q=Y (7.31)

Moreover, all operators Q7 , Z,, and Y,, can be written in terms of bilinear
fermion operators, reflecting the free fermion nature of XX model. One of
the consequences is that there exists a closure condition for the Onsager
generators in XX model, namely

nton = Qn, Vn e Z. (7.32)

The discussion of the physical meaning of the closure condition is post-
poned to Sec. 7.3.1. One notices that there are infinitely many Q) , Z,
and Y,. In fact, there are the relations between all of them. All operators
can be obtained recursively, and the first few read

1 1
2= 5 (Q-Q)), Z=5 (Q-QY), %= (6Q) - 5Q8+2Q)),
Yi Z%(QE—QE), Yz:%(2Q5—QI), Y3=%(6QZ—8Q5+2Q5),
(7.33)

revealing a deep connection between the Onsager generators Q) and
charges Z,, Y,. Relations between higher order terms can be obtained
similarly.

7.3 Conjectures on hidden Onsager algebra
symmetries in spin-1/2 XXZ models at
root of unity

Motivated by the exact correspondence between the Onsager generators
Qf and Z and Y charges in the XX case (n = in/2), cf. (7.31) and
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(7.33), it is natural to generalise similar relations for the spin-1/2 XXZ
model at arbitrary root of unity (¢ = exp (it;/ls)), despite the fact that
the generators are no longer expressible in local densities but quasilocal
ones [52, 111, 53, 133]. Another motivation to the following conjectures
is that the structure of descendant towers and exact (Fabricius—-McCoy)
strings are of no difference between XX model and XXZ model at other
root of unity. After numerically verifying the relations, we are able to
compose the following conjectures for the existence of hidden Onsager
algebra symmetry in spin-1/2 XXZ spin chain at arbitrary root of unity:

Conjecture I:

There exists a hidden Onsager algebra symmetry in spin-1/2 XXZ spin
chain at root of unity with commensurate twist (6.84). Spin-1/2 XXZ
models at root of unity with commensurate twist (6.84) are U(1) invari-
ant, i.e.

H(¢),Ql]=0, re{0,+,-}, meZ. (7.34)
The generators of the hidden Onsager algebra are

N

Qp = %fo Q; =0, (7.35)

j=1

Y

s=(l2—1)/2,u=up,3=0

1
Q(l) = ZO = %as IOg Tic(ua 67 Qb)

Q =Yo= ———05log T (u, B, ¢ = (QhH',
1 0 2sinh 7 B 108 ( ) 1)) 2 50 ( 1)
(7.36)
which satisfy DG relation
|:Q07 |:Q07 [Q07 Ql]]:| = f% |:Q07 Ql}?
(7.37)

[Ql, Q. [Ql,QO]H ~ 3[Q1, Q0.

with any ¢y € Z-o. Notice that the definition of semi-cyclic transfer
matrix T5¢(u, 5, ¢) depends on the root of unity through ¢ = £1.
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Similar to (7.33), the higher order Onsager generators are conjectured
to be related to the higher order Z and Y charges.

Conjecture II:
In general, higher order Z and Y charges are functions of higher order
Onsager generators such that

1 /0,\" L(n+1)/2]
— n (0
Zn = (E) > Qs

J=0

Yo =3 (5) > GQuinyop nEL

J=0

(7.38)

where ¢} € N. The first three terms Z, and Y, n € {1,2,3} can be
expressed as

0 2%
—hR@-a). z-g (7)) eat-a).
/ 3
23=§(§> (6Qi — 8Q5 +2Q%) ,
P A (7.39)
@) =g (3) o),

1 (6N, . .
3:§(§> (6Q4_8Q2 +2Qo)'

Conjecture I (7.36) and part of Conjecture II (7.39) are proven for
the case of XX model (¢, = 2), already shown in Sec. 7.2.1. (7.38) of
Conjecture II can be considered as a generalisation of (7.39). Conjectures
I and II, cf. (7.36) and (7.39) have been verified numerically for cases
whose roots of unity satisfy /o = 3,4,5 and all permitted values of ¢,
with system size N up to 12. The numerical evidence is convincing that
Conjectures I and II are true for arbitrary root of unity value of the
anisotropy and system size.
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7.3.1 Closure condition: free v.s. interacting

In this section, we assume that the conjectures above are true. We can
answer the question about the physical difference between XX model and
XXZ model at root of unity other than exp(ir/2). On the one hand,
they all possess the Onsager algebra symmetries, which are identical on
the level of algebraic structure, cf. (7.2); on the other hand, XX model
permits a free fermionic description with Jordan—Wigner transformation,
while XXZ models at other roots of unity do not, because of their intrin-
sically interacting nature [153].

The Onsager generators Q,, of different models under consideration
are regarded as different representations of the Onsager algebra. Even
though the algebraic structure of those generators is identical, they still
might possess different properties. For XX model, all the Onsager gener-
ators are bilinear in fermionic operators after Jordan—-Wigner transforma-
tion [127]. Hence, only the representation associated with n = ir/2 has
the free fermionic behaviour, guaranteed by the closure condition (7.32)

[127, 151]. For other roots of unity ¢ = exp (iw%) # exp (im/2), the clo-
sure condition is no longer satisfied, since these models are interacting.

This observation implies that we cannot apply all the nice properties and
methods used for XX model to XXZ models at other roots of unity.

7.4 Summary of results

This chapter can be considered as a continuation of Chapter 6, where we
use the Z and Y charges generated by the semi-cyclic transfer matrices
to construct and conjecture the existence of the hidden Onsager alge-
bra symmetries in quantum XXZ model at arbitrary root of unity. This
method can be generalised to the higher spin version of XXZ model via
transfer matrix fusion relation, demonstrated in [5]. One of the most no-
table examples is the spin-1 Zamolodchikov-Fateev model. The physical
consequences of the existence of infinitely many non-Abelian conserved
charges, especially in thermodynamic limit, remain to be elucidated.
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Chapter 8

Discussion and outlook

All in all, it was just another
brick in the wall.

Pink Floyd

In this thesis we studied classical and quantum integrable models in
great length, most focusing on the aspects that are closely related to the
out-of-equilibrium properties of those models. The models under consid-
eration are classical Landau—Lifshitz field theory and quantum spin-1/2
XXZ model. They are closely related to each other, namely classical
Landau-Lifshitz field theory is the semi-classical (long-wavelength) limit
of the quantum XXZ model close to the isotropic point. These two mod-
els are archetypical for classical integrability and quantum integrability,
respectively.

In Chapter 2, we introduced the notion of classical integrability in two
parallel approaches, i.e. classical inverse scattering method and finite-
gap integration method. Classical inverse scattering method describes
the classical integrable model on an infinite line, and we demonstrate the
method using the example of a domain-wall profile in Landau-Lifshitz
model that is the centre of attention in Chapter 4. Finite-gap integra-
tion method uses language of algebraic geometry to study the classical
integrable model with periodic boundary condition. This setting is of
vital importance when considering the semi-classical limit of quantum in-

155
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tegrable models, which are typically with periodic boundary condition.
The techniques developed in Chapter 2 are directly used in Chapter 5.

In Chapter 3, we briefly introduced the formalism of algebraic Bethe
ansatz for quantum spin-1/2 XXZ model, motivated from the 2-dimensional
statistical mechanical counterpart, 6-vertex model. We constructed the
transfer matrix using Lax formalism and illustrated the Yang-Baxter re-
lation that plays a pivotal role in quantum integrability. The algebraic
Bethe ansatz is used in Chapter 6 when studying the eigenstates of quan-
tum XX7Z model.

After the two introductory chapters, we proceed with the main results
of the thesis. To begin with, we studied the domain-wall quench problem
in classical Landau-Lifshitz model in Chapter (4). We discovered three
different regimes of spin transport with respect to the anisotropic param-
eter . When 0 < 0, i.e. easy-plane regime, we found ballistic transport
of spin, explained with hydrodynamic approximation. When § = 0, i.e.
isotropic regime, we found out that the spin transport is superdiffusive,
which we further conjectured to be logarithmic-enhanced diffusion. When
0 > 0, i.e. easy-axis regime, the domain-wall profile is frozen. The rea-
son is that the spectrum contains soliton part. Therefore, the asymptotic
spin transport is absent. The soliton content consists of a static kink and
possible breathers on top of the kink. What is truly remarkable is that all
three regimes qualitatively behave the same as the three regimes of spin
transport in the quantum domain-wall quench. This is summarised as
the classical-quantum correspondence of spin transport, reported in [1].

Next, we took on the task of deeper understanding on the classical-
quantum correspondence. We studied the semi-classical quantisation of
the finite-gap solutions of classical Landau—Lifshitz model, which be-
come the semi-classical eigenstates of the quantum XXZ model with weak
anisotropy, in Chapter 5. We mainly focused on two types of finite-gap
solutions, one-cut ration solution and two-cut bion solution. The first
one describes the spin wave (precession) near the ferromagnetic state and
the latter becomes the static kink in the soliton limit. Using the semi-
classical quantisation procedure, we were able to obtain the distribution
of Bethe roots for semi-classical eigenstates of the quantum XXZ model.
Further calculations on the quantum quantities such as the Slavnov over-
lap can be obtained using functional method based on the semi-classical
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quantisation. They are presented in [2, 3], which lead us closer to a
full quantitative understanding of the classical-quantum correspondence
alluded by the study of domain-wall quench.

After the investigation of semi-classical quantisation, we switched the
topic to the quantum regime. Our next goal is to construct the Baxter’s
Q operator and study the full spectrum of quantum XXZ model at root
of unity, which does not have a classical counterpart, in Chapter 6. We
first used the factorisation of two-parameter transfer matrix to construct
the Q operator for arbitrary anisotropy parameter A. A further trun-
cation of the auxiliary space happens at root of unity ¢ = exp(infy/¢5),
and it allows us to construct the Q operator for XXZ model at root of
unity with a finite-dimensional auxiliary space. We used this property
to study the spectrum of XXZ model at root of unity, and we discovered
the descendant tower structure that explains the exponential degenera-
cies of the spectrum. We substantiated the existence of descendant tower
structure with numerous examples. Moreover, the degeneracies have sig-
nificant consequences in thermodynamics of the model. We related the
degeneracies and the existence of FM strings to quasi-local Z charges as
well as the non-vanishing spin Drude weight in XXZ model at root of
unity. A full exposition can be found in [4]

Ultimately, we continued with the XXZ model at root of unity. We
extended the observation that XX model (XXZ model with A = 0) pos-
sesses Onsager algebra symmetry and consequently conjectured the hid-
den Onsager algebra symmetries in XXZ models at other roots of unity.
The Onsager algebra symmetry guarantees two sets of non-Abelian con-
served charges, both infinitely many in the thermodynamic limit. These
conjectures together with the higher spin generalisation are given in [5].

Even though we have presented plenty of results in classical and
quantum integrable models aiming at applications to out-of-equilibrium
physics, there are still many open questions to be investigated in the
future.

Extended from Chapter [2], it is of great interest to formulate the out-
of-equilibrium dynamics of semi-classical states of quantum integrable
lattice model in the manner of Quench Action. Using the property of
the semi-classical states, we hope to obtain a functional-integral formal-
ism of Quench Action, which exploits exact knowledge of thermodynamic
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overlap coefficients. This is possible with the functional approaches in
[100, 101, 2]. Similarly, there is a conjecture on the classical-quantum
correspondence of correlation functions for semi-classical states [2]. Mak-
ing use of the quantum separation of variable approach [154, 155, 156], we
hope to prove such correspondence which can help us access information
of quantum correlation functions for semi-classical states. Such correla-
tion functions are typically difficult to obtain and they are important in
probing non-equilibrium dynamics.

In the quantum regime, there are several interesting open problems
too. One of the most notable problems is the thermalisation in the pres-
ence of non-Abelian charges, for example from Onsager algebra symme-
try. The Onsager generators can be easily constructed as the dynamical
symmetry of the Hamiltonian, and they result in persistent oscillatory be-
haviour in the auto-correlation functions, exemplified in [157, 158]. This
out-of-equilibrium phenomenon manifests to models that are not inte-
grable, such as quantum many-body scars [152]. This also leads to the
maximal number of conserved charges needed to the Generalised Gibbs
Ensemble after a quantum quench, when the model possesses non-Abelian
charges. Even though we conjectured about the hidden Onsager algebra
symmetry in XXZ model at root of unity, a rigorous proof is still ab-
sent. Such a proof will help us understand the deep connection between
the underlying quantum group structure and the hidden Onsager symme-
try. Meanwhile, a generalisation of such constructions is not available for
models built with higher-rank quantum algebra. We hope to comprehend
the mathematical and physical properties of such models more.

To conclude, many open problems in the field of classical and quan-
tum integrability out of equilibrium are available at present. The field
is rapidly developing and both physical and mathematical breakthroughs
are needed that provide us better understanding of the out-of-equilibrium
physics using integrability as a tool.



Appendix A

Riemann-Hilbert problem in (-plane

In order to study the formation of condensates, the Riemann-Hilbert
problem is most conveniently written in terms of spectral parameter { =
1/, namely

P(C+10)+P(C—io) = 2mn;, CGCJ‘, (Al)

where C; denotes the j-th branch cut in ¢ plane, whereas quasi-momentum
p(() is defined as

14 14

PO =GO - 5o =€ [ARs(C. O~ 5z (A2
with integration kernel
Ral.€) = -2 (A3)
The density (of the Bethe roots) is accordingly given by

2ml(1+0¢?)

Note that the orientation of integration along C; is now in the opposite
direction as previously, i.e. it goes from the branch point with negative
imaginary part to the one with positive imaginary part.
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Appendix B

Finite size corrections to
Riemann-Hilbert problem

Here we outline how to take the semi-classical limit of the logarithm of
Qgﬂ}. The first step is to split the term into the anomalous part and
normal part [85, 159], i.e

log Q[ﬂ] Z log sin(¥; — 9y £ in)
k7 (B.1)
= Z logsin(d; — 9y £1in) + Z log sin(¥; — ¥y £ in),
0<|k—j|<K lk—j|>K

where parameter K is a cut-off with the following properties,

1/L k—j|l <K
PN (LTS T -
We denote the anomalous part as
log Q5 (¥; +in) = Z logsin(¥; — Jx £1in), (B.3)
0<|k—j|<K
while the normal part is
log Q7 (¥; £ 1in) Z log sin(¥; — ¥ £ in). (B.4)
|k—j|>K
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For the normal part, we can perform the same expansion as in Eq. (5.10),
namely

. . . d i
log Q5 (9; =+ in) = log Qf (9;) & in— log Q7 () o=,

n d? 1 (B.5)
QdﬁQIOgQ ( )’19=19j+0<ﬁ)7
and J ) .
€
in—1 ()] g=y, = — _—
lnd’ﬁ Ong( )|19719J I Z tan(ﬁ- — 19k)
Ik JI>K (B.6)
Z M]#k + 5 .
|k jI>K Hi—
Combining the two parts, we obtain
n , N o Wit + 0 1
log Q4 (0, +in) ~log @} (0, ~in) = |kZ|>K o O (L) (B.7)
J

Meanwhile, for the anomalous part, denoting m = k — j, we have

log Q7 (V; +in) — log Q7 (J; — in)
=Y g S%n(ﬁj — Ujim + %n)
sin(d; — Vjm + in) (B.8)

0<|m|<K
=Y g L(p15 — pjpm) +1€(p7 +0)
L(pj = pjem) — i(pF + 0)

0<|m|<K
We can develop an expansion

1 c3m? 1
L,uj+m ~ ClL + com + 5 I + @ (ﬁ) s |m| S K, (Bg)

where all the “constants” can be expressed in terms of density p(u), i.e.

1= pj, Co= (B.10)
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and

plu) = %Zé(u — 1), plp) = dd—i- (B.11)

By combining the m-th and (—m)-th terms in the sum, we can express
the leading order of the sum as

i 1 (log Lt — ft-m) +10(pi2 + 0)
—i L(pj — pj—m) — i(pF +0) (B.12)
L(pj — pjem) +il(pf + 0)
+ log Y 5
L(pj = pjem) — WU(p5 +9)
using
1 (log L(pj — pj—m) +il(pf + )
i L(pj — prj—m) — il(u3 +9)
L log L(pj — prjem) +il(uF + 5))
L(pj — pjem) — W(pF +9)
L bPm? — [il(p2 + 0) — “m]? (B.13)
= —1log . 2
b7 agm? = [il(pF +0) + %)
2e30(p3 + 0 1 1
SRR IS e (L_) _
& a1
The first part can be combined with the sum for |m| > K, since
20(btjm +08) | 20(piptjm +0)  2cs(pf +0) (B.14)

L(pj = pj-m) Ly = pjem) AL

Taking the limit K — oo (beware that K/L — 0), for the second part
we have

2 AL e + 1]
_ csl(pf + ) [1 B (3 + 0) coth (WE(M? + 5))] .

AL o c3

(B.15)



Appendix B. Finite size corrections 163

Substituting back in the values in Eq. (B.10), we will obtain the finite-size
correction in Eq. (5.16).

In addition, the finite-size correction in terms of { variable takes the
form

mp (O (1 4 0¢?)?
L

coth [m(1+6¢*)p(¢)] + O (%) : (B.16)



Appendix C
Useful formulae for elliptic functions

We collect several useful functions and formulae used in the derivations
for the classical bion solutions in Chapter 5.
We define the elliptic integral of the first kind as

(C.1)

_ /1 dz
0 VA-)1 %)

The Jacobi elliptic function sn(z, k?) is defined as the inverse of the elliptic
integral of the first kind,

(C.2)

w = :L'k2

[
\/1—22 1—k2z2)

and, without ambiguity, we can put sn(z,k?) =: sn(z). Other types of
Jacobi elliptic functions can be defined in a similar way,

w=cn(z, k), x= / dz (C.3)
V(I = 22)(1 = K2 +k222)

and ) 1
w=dn(z,k?), x= / : , (C4)
w V(1 —22)(22+k2—1)
such that
sn’r +cen’r =1, kKisn’r +dn’r = 1. (C.5)
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When shifting the argument by one quarter of the period of K (k?),
we have

en (2 + K(K2)) = _mj;((g,
| (C.6)

dn(z)

en (z+ K(k%) = V1 -k

We also use theta functions to express the spin field S (x,t). The most

important one is
+00

193(277') — Z eiﬂ7n2+2izn' (07)

n=—oo

For a more detailed exposition and other properties of elliptic func-
tions we refer to Refs. [160, 161].



Appendix D

Quantum sl

The quantum group U,(sl) is the unital associative algebra with gener-
ators ST, S~ and K satisfying the commutation relations

K? - K2

Ksﬂ: K_1 — qzl:l S:I:’ |:S+’S_:| — —
q9—4q

(D.1)
We take the coproduct to be ST =+ ST K '+ K®S* and K — K® K.
There is a counit and antipode, see e.g. Egs. (1.2)—(1.4) in Ref. [162] and
Ref. [163].

In this appendix we summarise the representations of U,(sly) used in
this thesis. It is easy to verify that the commutation relations (D.1) hold
and that K = exp(nS#). The spin of an irrep is defined by the eigenvalue
5] [s + 1], of the quantum Casimir operator

+ Q- -Q+ % K-K 'Y
(STS™+S 8%+ 5 (q_q_1>, (D.2)

N | —

which generates the centre of U,(sly).

D.1 Global representation

The physical Hilbert space (C?)®V of the spin chain has two different
‘elobal’ representations. When N = 1 the representation is given by

166



Appendiz D. Quantum sly 167

S* = g% and K = ¢°7/2. For N > 2 repeated application of the coproduct
gives the (reducible) representation

N
gt Z qaf/Z Q- ® qa;_l/z ® U]j-[ ® q—oj-+1/2 R ® qfa?v/z’ 03
j=1 .

K= qu _ qaf/2 ® qo§/2 ® - ® qo]z\,/27

satisfying commutation relation (D.1). By reversing the factors (taking
the opposite coproduct) we obtain another (reducible) representation:

N
Si = Zq_of/2 (SN q_UJZ'—l/2 X o-;t X q‘732‘+1/2 R ® q”]zv/27 (D 4)
J=1 .

K= qsz _ qaf/Q ® qﬂi/2 R ® qgfv/z =K.

All of these operators can be obtained from the entries (3.13) of the
monodromy matrix in the limits u — +o0o. The B operator from the
ABA (3.13) is closely related to the above spin-lowering generators. To

see this we write the Lax operator (3.4) with spin—% auxiliary space in the
form

() — () by(w)
L) = (30) &), 05
b;(u) = sinh(n) oy, ¢;(u) =sinh(n) o} .

In the limits © — +o00 the diagonal entries become

+u E=7)
a;(u) ~ i% ¢, d;(u) ~ i% q " u — +oo. (D.6)

Therefore, using the definition of monodromy matrix (3.13), we have

ul_i)rz&(—Q ¢")YN"!'B(u) = sinh(n) S,
: —uyN-1 . & (D.7)
lim (2¢7 )"~ B(u) = sinh(n) S™.

U—>—+00

Similarly we can recover the spin-raising operators from C, and K, K™!
from either of A, D.
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D.2 Auxiliary representations

We also use various choices for the auxiliary space, which is a represen-
tation of U,(sly). We summarise the key ingredient here.

First, we use the finite-dimensional unitary spin-s representation of
U,(slz). Denote the orthonormal basis of C**! by |n) forn = 0,1, -, 2s.
Then the generators are given by

St — i \/[25 —nlgn+ 1, o+ 1)nl,
S — 2_: \/[2s—n}q[n+1]q n)(n + 1], (D.8)
K =Y a8 = (~s+n)nnl

with 2s € Z>¢. When s = 1/2 this recovers the case N =1 of (D.3) with
1) = [1) and |0) = |{).

We also use the complex spin-s highest weight representation of U,(sl,).
It is defined on an infinite-dimensional Hilbert space with orthonormal
basis (n| indexed by n € Z>,. The generators are given by

o0

St =Y "[25 — ]y In+ 1)(nl,
S™ =) [n+1,n)(n+1], (D.9)
K =) ¢*"n)nl, S°=> (=s+n)n)n,

with s € C. This is related to the transfer matrices T™ (6.40). When
2s € Z>y, the infinite-dimensional highest-weight representation contains
a finite-dimensional submodule, because the entry of ST for n = 2s van-
ishes (cf. Fig. 6.2). The subspace labelled by 0 < n < 2s is preserved
by all of (D.9). Thus we can truncate to a representation of dimension
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2s + 1 with generators

2s—1

St = 3" (25— nl, In + 1)(n],

n=0
2s—1

S™=> [n+1[n)(n+1], (D.10)

n=0
2s

K =Y ¢ ™ nynl,  S§* =3 (~s+n)n)nl,

n=0

with 2s € Zso. This representation is equivalent to (D.8) by a gauge
transformation.

When n = inl; /¢5 (g at root of unity), there exists another truncation
yielding an fy-dimensional representation, shown in Fig. 6.3. This rep-
resentation is referred to as nilpotent representation, because (Si)g2 =0
in this case. The generators act on the subspace with basis |n) for
0<n</l,—1by

lo—2

St = S (25— nl, In + 1)(n],

n=0
lo—2

S™=> [n+1],n){n+1], (D.11)

n=0
lo—1 lo—1

K =Y ¢ "), S =3 (~s+n)n)nl

n=0

with s € C.

There is one more truncated f>-dimensional representation that we
will use at root of unity: the semi-cyclic representation. It is similar
to the truncated highest-weight representation (D.11) with an additional
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entry in S™:
lo—2
St =B10)(ta = 1|+ D _[25 — nly In + 1)(n],
n=0
lo—2
™= [n+1n)n+1], (D.12)
n=0
lo—1 lo—1
K =Y ¢*"n)n,  S*=> (=s+n)n)nl,
n=0 n=0

with s € C, § € C. We can also construct another semi-cyclic represen-
tation as the truncated highest-weight representation an additional entry
in S~ analogously.



Appendix E

Some properties of eigenstates of
XXZ model

E.0.1 Numerical recipe for finding Bethe roots

Here we review a numerical recipe to solve the functional T(Q relation
[106]. The idea is that rather than by solving the coupled nonlinear Bethe
ansatz equations (3.25), one obtain the Bethe roots by solving a few sets of
linear equations instead. Once we know the form of the eigenvalues of the
(fundamental) transfer matrix, we can solve Q function from functional
TQ relations which are linear equations. Zeros of Q functions are the
Bethe roots that we desire. The recipe goes as follows:

1. Construct the transfer matrix T/5(u) at generic u € C, and nu-
merically diagonalise it. One obtains 2%V eigenstates that span the
physical Hilbert space. The eigenvectors are independent of the
spectral parameter, so these will be eigenvectors for T o (u) for any
u, since they commute with each other.

2. The eigenvalues of Ty/5(u) depend on u. Pick one of the eigen-
vectors. Its eigenvalue is found by acting with T /o(u). This may
again be done numerically by writing the eigenvalue as a Laurent
polynomial in ¢t = e* of order NV,

N N
Tipp(t) =Y cht" " = sty [[ (' t =7t ™) (E.1)
m=0 n=1
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172 Appendiz E. Properties of eigenstates of XXZ model

with zeros 7, that can be fixed by acting with T 5(uy,) for N distinct
values u,, € C.

3. The corresponding Bethe roots are the zeros of the Q operator,
found by solving the functional TQ relation (6.69), i.e.

Tyjo(u; ¢) Q(u, ) = To(u —n/2) Q(u +1, )

i (E.2)
+e%To(u+n/2) Qu —1,¢),
Here Ty(u) = sinh™ (u) and the eigenvalues are of the form
M
Qt) =cstq [[ (£ t = tmt™), (E.3)
m=1

where M is the number of down spins of the eigenvector under
consideration. The zeros t,, can once more be found numerically by
taking ¢ = e" equal to the zeroes 7, of T}/, and solving the linear
problem.

The zeroes give the Bethe roots u,, = logt,,. One needs to be careful to
interpret the result correctly in the presence of Bethe roots at infinity:
U, = Zoo corresponds to t,, € {0,00} so the corresponding factor in
(E.3) collapses to t*!, yielding (6.71):
M-—nioco—n_oo
Q) =cstg x t"="= [ (t," t—t,t7"). (E.4)
n=1
The numerical recipe works very well for the XXZ model away from
root of unity, as well as for the XXX model (A = +1). However, one
cannot find all the Bethe roots for the XXZ spin chain at root of unity, due
to the existence of degenerate eigenstates of the transfer matrix T/, with
the same magnetisation. At root of unity, we need to use the construction
of Q operator in Chapter 6 instead.

E.0.2 Relation between Bethe roots for anisotropies

A and —A

In the gapless regime (—1 < A < 1) there is a simple relation between
Bethe roots of all the physical solutions at anisotropy A and those at
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anisotropy —A, even though the corresponding eigenstates are different
since the B-operators in the algebraic Bethe ansatz differ. We will denote
the parameters of the second spin chain by primes: A’ = —A and

n = arccosh(A) € iR, n' = arccosh(A') =im — 1. (E.5)

Consider any solution to Bethe equation (3.25) with 7, system size N
and twist ¢: assume that the Bethe roots {u,, }*_, obey

(sinh(um + n/2))N ﬁ sinh(un —un =) _ iy (E.6)

sinh(u,, —n/2) o sinh(u, — u, + 1)
Then define {u/, }M_, by
u = =y, — —, 1<m< M. (E.7)
In terms of these parameters (E.6) reads

sinh(—u!, +in/2 +1n/2) N H sinh(—u;, +u;, —n) - (E.8)
= e .
sinh(—u!, +im/2 —n/2) i) sinh(—u!, +u, +n)

This precisely of the form (E.6) with ' = ir — n and twist ¢’ chosen
such that e7'* = (1) ¢7*¢. This shows that for each solution {u,, }*_,

at anisotropy A there is a corresponding solution {u/ }M_, at A’ = —A
provided the twist is modified to
o — ) N even, (E.9)
o+ N odd.

The two eigenstates are related by the unitary gauge transformation

N j [N/2]
U = exp (m > 5 a;) = TN TT o3, . (E.10)

j=1 j=1

It is easy to check that this transformation changes the sign of A in the
Hamiltonian (3.11):

UH(A,¢) U = —H(-A,¢). (E.11)
Moreover, the eigenstates are related by

{un}) o< U {um}) - (E.12)
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E.0.3 Relation between eigenstates with opposite twist

Recall from Section 6.4.5 that an M-particle Bethe state |{u,,}}_,) for
the XXZ model obeys

Q(u, &) Htm}m=1) = Q1) {ttm}m=1) »

E.13
P(u,6) [{um s} = Pla) [{um L) 1
with eigenvalue Q(u) and P(u) of the form
M
Qu) = csto x [ (tn' t —tmt ™), t = €',
m=l t=e" (E.14)

N-M
P(u) = cstp x H (fglt—fnt_l), & = e’
n=1

The zeros u,, = logt,, of Q(u) are the Bethe roots. We show that the v,
can be interpreted as the Bethe roots of the spin-flipped counterpart of
{3 _1) ‘beyond the equator’ with opposite twist.

Under global spin inversion the transfer matrices Ts(u) with 2s € Z>

become
N

N
[} To(u,0) [[oF = € Tu(u, —¢). (E.15)
Jj=1 Jj=1
For the unitary spin-s representation (D.8) the Lax operator (6.13) is
invariant under total spin reversal, which acts by conjugation by o7 in the
physical space and by the antidiagonal matrix U = Zis:o |25 — n)(n| in
the auxiliary space. Spin reversal in the physical space is thus equivalent
to spin reversal in the auxiliary space. This property is inherited by the
monodromy matrix. In the (anti)periodic case (¢ € {0,7}) it follows
that spin flip in the physical space does not affect the transfer matrix.
In the twisted case (¢ ¢ {0,7}) we only have to change the sign of the
twist (F.1), UE(¢) U™! = % E(—¢). Therefore, (E.15) is proven.
Now consider the TQ equation (6.60) with ¢ inverted to —¢. By

conjugating both sides with the global spin-flip operator Hj.vzla;”, us-

ing (E.15) and multiplying both sides by ¢ we see that Q(u,¢) =
H;.V:laf Q(u, —9) Hj.vzla;” precisely obeys the TP equation (6.61). More-
over, comparing the eigenvalues in (E.14) shows that the eigenvalues of



Appendiz E. Properties of eigenstates of XXZ model 175

Q(u, ) on M-particle Bethe vectors are trigonometric polynomials of de-
gree N — M, just as for the P operator. It follows that the eigenvalues
of Q(u, ¢) are proportional to those of the P operator; in particular they
have the same zeros:

N—-M

Q(u, @) o< P(u, @) H (& t—&t). (E.16)

Since Q(u, ¢) and Q(u, —¢) have the same characteristic polynomial this
shows that the M-particle eigenvalues of the P operator are the same as
the (N — M)-particle eigenvalues of Q(u, —¢). But we know that the
latter can be interpreted as the Bethe roots. Therefore the zeros of the P
operator can be interpreted as the Bethe roots of the spin-reversed Bethe
vector beyond the equator with opposite twist.

Finally notice that the Bethe vectors (3.22) are constructed using the
B-operator, which is independent of the twist, see (3.13). This implies
that the result of reversing all spins on an off-shell Bethe vector (for the
Hamiltonian with original twist ¢) is

Lot Humbnis) = Hoab25M) (E.17)

where the Bethe roots v,, beyond the equator are related to the zeros of
eigenvalues of the P operator on [{u,, }M_,).



Appendix F

Quasiperiodicity: twist operator

We define the twist operator E,(¢) for the auxiliary space. Each of the
U,(sly) representations on the auxiliary space from Appendix D.2 is ex-
pressed in terms of an orthonormal basis {|d — 1) ,--- ,|1),|0)} with d the
dimension of the representation. Here d = 2 s + 1 for the unitary spin-s
representation with s € %Z, d = oo for the highest-weight representation
with s € C, and d = {5 for the truncation at root of unity. We consider
diagonal twist operator E,(¢) given by

d—1

E.(6) = 3 " [n) (nl.. (F.1)

n=0

In view of our ordering of the basis this yields the twist from (3.13) for
s=1/2 (d=2).

In particular, the complex spin-s representation yields monodromy
matrix MY

M. (u, ¢) = Loy (u) - - Lo (u) Lt (u) B (),

EN(G) = 3 6" [n)(nl.. (F-2)

resulting in the transfer matrix T™ (u, ¢) = tr, M™ (u, ¢). When |¢| < 1
the diagonal matrix elements of M can be bounded by Ay |¢" €?|" for
some constant Ay, and so the trace is convergent if || < |¢|V. At this
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point we do not know if TH" can be analytically continued outside this
disc of convergence.
The truncation at root of unity n = inf; /{5 likewise has

Ms(u7 Cb) - LsN<u> e LSQ(U) LSl (U) ES(¢)7

- L1l F.3
B.(6) = 3 e njnl, ()

n=0

and transfer matrix T (u, ¢) = try M, (u, ¢). In this case the trace is well
defined for any value of the twist ¢.



Appendix G
Onsager generators in XX case

In the case of XX model, we obtain analytically all the Onsager generators
when the twist is commensurate, cf. (6.84) by calculating the recursion
relation analytically. The results are as follows.

. N
1 . _ _
Q?n = B) Z(_l)m 1UJJ'FU;+1 o U;+mflaj+m (G.1)
j=1 '
- im_l“j_%z‘ﬂ SO m10
i f
Q=73 D ()05 05y 010 = (@) (G2)
j=1

where o7 = et9/267F with 1 < k < N. All generators are bilinear in
fermionic operators after Jordan-Wigner transformation [127].
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Choice of uy in (7.30)

In (7.30) we expand the generating functions Z(u, ¢) and Y (u, ¢) at dif-
ferent spectral parameter values for cases with ¢ = £1. We would like
to provide some details in this appendix. As usual, the twist ¢ satisfies
commensurate condition (6.84).

To begin with, we notice that when ¢ = 41,

SC 77
(ta—1)/2 (5,0, ¢> (H.1)

is not invertible (i.e. not full-ranked), while it is invertible when ¢ = —1.
Meanwhile, transfer matrices with € = 41 are related to transfer matrices
with ¢ = —1. We can see that from the existence of a unitary gauge
transformation U [20, 4]

N .
U =exp (iﬂ' Z %05) : (H.2)
j=1
such that
UH(A,§)U' = ~H(-A, ¢). (H.3)
The twists are related as
, ) N even,
¢ = (H.4)
o+m N odd.
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We consider 2 transfer matrices, one with 7 (¢ = exp(fan) = —1) and
the other one with n' = ir —n (¢/ = exp(fan’) = +1). This implies that
ly is odd. When s = 627_1 and 8 = 0, we have

UT*(u, 0, ¢, n)U" = T5(—u,0,0,7). (H.5)

The above equation is satisfied only when s € Z-y. This implies that
422_1 € Z~y, i.e. ly is odd. Moreover, if ¢ with parameter n in (H.4)
satisfies commensurate condition (6.84), ¢’ with parameter 1’ in (H.4)
also satisfies commensurate condition (6.84).

Therefore, if we were to define

1 SC
Q(lJ(na Qb) = ZO - % as IOg Ts (u7 ﬁ? ¢7 77)|s:(fg—1)/2,,8:0,71:77/2 ) <H6)

it is natural to define
QY (7, ¢") = UQu(n, ¢)U"

1 H.7
= 2_7], as IOg TZC(% 57 ¢/a 77/) |s:(62—1)/2,,8:0,u:—77/2 ’ ( )
satisfying the same algebraic relations after applying the unitary gauge
transformation U. Similar relations for Qi can be inferred.

In this case —3 = %/ — 2 indicating (7.30). We have used the value
of uy defined in (7.30) to numerically verify the conjectures in Sec. 7.3.
For instance, for the cases of n = 2in/3, 2ir/5 and 4ir /5, the conjectures

remain true with system size N up to 12.
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Summary

In recent years, the advance of ultracold atom experiments boosted theo-
retical endeavours on the quantum many-body systems out of equilibrium.
However, due to the large number of degrees of freedom and the interact-
ing nature, there are few exact results on the non-equilibrium properties
of quantum many-body systems. With the aid of classical and quantum
integrability, we are able to obtain several exact results that are presented
in this thesis.

The physical systems that we consider are integrable models. Due to
the exact solvability, we have a plethora of mathematically accurate tech-
niques that apply to integrable models. We use those techniques to study
a specific type of non-equilibrium scenario, quantum quench. Quantum
quench is an adequate theoretical approximation of many ultracold atom
experiments. For example, we study the transport properties of an inho-
mogeneous quench, the semi-classical limit of quantum eigenstates and
the full spectra of quantum integrable lattice models.

Domain-wall quench of classical Landau—Lifshitz model

We study the inhomogeneous quench problem of a domain-wall ini-
tial profile in classical Landau-Lifshitz model, the semi-classical (long-
wavelength) limit of quantum spin-1/2 XXZ model with weak anisotropy.
Using classical inverse scattering method, we find three different regimes
of spin transport: ballistic transport in easy-plane regime, solved by hy-
drodynamic approximation; superdiffusion in isotropic limit; domain-wall
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frozen phenomenon in easy-axis regime. Comparing to the results in the
quantum counterpart, we summarise the classical-quantum correspon-
dence of spin transport for domain-wall quench.

Semi-classical quantisation of finite-gap solutions

In order to shed light on the relation between the classical and quan-
tum domain-wall frozen phenomena, we study the semi-classical quan-
tisation of finite-gap solutions in classical Landau-Lifshitz model. In
the classical regime, a bion solution causes the domain-wall frozen phe-
nomenon, becoming a static kink in the soliton limit. We quantise the
classical bion solution to obtain Bethe root distribution of the quantum
semi-classical eigenstate, which is responsible for the quantum domain-
wall frozen phenomenon. We construct the semi-classical quantisation
theory, and it leads to a more quantitative description of the classical-
quantum correspondence.

Full spectrum of quantum XXZ model at root of unity

In order to study the quantum quench problem in XXZ model, we
would like to investigate its full spectrum. Full spectrum gives us access
to quantities such as correlation functions and entanglement entropy. We
are able to obtain the full spectrum by constructing Baxter’s () operator,
which contains the information of every eigenstate. Using the proper-
ties of transfer matrices, we obtain the full spectrum as eigenvalues of Q
operator in XXZ model at root of unity. From the full spectrum, it is elu-
cidated the exponential degeneracies. We further use the full spectrum to
explain the results of out-of-equilibrium properties in the thermodynamic
limit.

Hidden Onsager algebra symmetry in XXZ model at root of
unity

The full spectrum of XXZ model at root of unity also reveals a possible
hidden Onsager algebra symmetry, motivated by known results for XX
model, i.e. XXZ model with anisotropic parameter A = 0. We conjecture
the relations between the Onsager algebra and the (quasi-)local conserved
charges derived from different transfer matrices.



Samenvatting

Gedurende de afgelopen jaren heeft de vooruitgang van experimenten
met ultrakoude atomen veel theoretische werken op het gebied van kwan-
tum veel-deeltjes-systemen geinspireerd. Door het grote aantal vrijheids-
graden en de van nature aanwezige interacties in deze systemen zijn er
echter weinig exacte resultaten beschikbaar voor de eigenschappen van
deze systemen buiten evenwicht. Met behulp van klassieke- en kwan-
tum integreerbaarheid zijn wij er in geslaagd enkele exacte resultaten te
behalen die in deze scriptie gepresenteerd worden.

De fysische systemen die we beschouwen zijn integreerbare modellen.
Door de exacte oplosbaarheid is er een veelvoud van wiskundige tech-
nieken die van toepassing zijn op integreerbare modellen. Wij gebruiken
deze technieken om een specifiek scenario te beschouwen waar het kwan-
tumsysteem niet in evenwicht is: een kwantum quench. Een kwantum
quench is een adequate theoretische benadering van veel experimenten
met ultrakoude atomen. Wij bestuderen bijvoorbeeld de transporteigen-
schappen van een inhomogene quench, de semi-klassieke limiet van kwan-
tum eigentoestanden en het volledige spectrum van kwantum integreer-
bare roostermodellen.

Domeinmuur quench van het klassieke Landau-Lifschitz model

We bestuderen de inhomogene quench van het klassieke Landau-Lifschitz
model, de semi-klassieke (lange golflengte) limiet van het kwantum spin-
1/2 XXZ model met zwakke anisotropie, met een domeinmuur in de be-
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gintoestand. Door gebruik te maken van de klassieke inverse verstrooi-
ingsmethode vinden we drie verschillende regimes van spintransport: bal-
listisch transport in het easy-plane regime, opgelost door middel van een
hydrodynamische benadering; superdiffusie in de isotropische limiet; het
domeinmuur bevroren fenomeen in het easy-axis regime. Door de resul-
taten te vergelijken met die voor het kwantum equivalent, vatten we de
klassiek-kwantum correspondentie van het spintransport voor de domein-
muur quench samen.

Semi-klassieke kwantisatie van finite-gap oplossingen

Om licht te werpen op de relatie tussen het klassieke en het kwantum
domeinmuur bevroren fenomeen, bestuderen wij de semi-klassieke kwan-
tisatie van van finite-gap oplossingen in het klassieke Landau-Lifschitz
model. In het klassieke regime veroorzaakt een bion-oplossing het bevroren
domeinmuur fenomeen en wordt een statische kink in de solitonlimiet.
Wij kwantiseren de klassieke bion-oplossing om een Bethe wortelverdel-
ing van de kwantum semi-klassieke eigentoestand te verkrijgen, die ver-
antwoordelijk is voor het kwantum bevroren domeinmuur fenomeen. Wij
construeren de semi-klassieke kwantisatietheorie wat leidt tot een meer
kwantitatieve beschrijving van de klassiek-kwantum correspondentie.

Het volledige spectrum van het XXZ-model bij een
eenheidswortel

Om het kwantum quench probleem in het XXZ-model te bestuderen
willen we het volledige spectrum van XXZ7 onderzoeken. Het volledige
spectrum geeft ons toegang tot grootheden zoals de correlatiefuncties en
de verstrengelingsentropie. Wij zijn in staat het volledige spectrum te
verkrijgen door Baxter’s Q-operator te construeren, die de informatie
over elke eigentoestand bevat. Door gebruik te maken van de eigen-
schappen van transfer matrices verkrijgen we het volledige spectrum als
eigenwaardes van de Q-operator in het XXZ-model bij een eenheidswortel.
Het volledige spectrum geeft inzicht in de oorsprong van de exponentiéle
hoeveelheid ontaardingen. Verder gebruiken wij het volledige spectrum
om resultaten voor eigenschappen van het systeem buiten evenwicht te
verklaren in de thermodynamische limiet.
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Verborgen Onsager algebra symmetrie in het XXZ-model bij
een eenheidswortel

Het volledige spectrum van het XXZ-model bij een eenheidswortel
onthult ook een mogelijk verborgen Onsager algebra symmetrie, gemo-
tiveerd door bekende resultaten voor het XX-model. d.w.z. het XXZ-
model waar de anisotropie gelijk is aan 0. Wij formuleren een vermoeden
voor de relaties tussen de Onsager algebra en de quasi-lokale behouden
grootheden afgeleid van verschillende transfer matrices.
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