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Abstract

Neutrinos are very light fermions, which have three flavour states (νe,νμ,ντ)

and three mass states (ν1,ν2,ν3). Being neutral leptons, they participate only

in the weak and gravitational interactions. Gravitational effects are negligibly

small, since neutrinos are light and consequently ultrarelativistic. Until the

detection of neutrino oscillations during the turn of the millennium, neutrinos

were thought to be massless. Now we know better. Neutrino mixing is a result

of a mismatch between neutrino flavour and mass bases, which can be easily

implemented to the Standard Model (SM), but their masses cannot. On one hand,

insertion of Dirac neutrino mass terms requires the existence of right-handed

neutrinos, which are not observed yet. On the other hand, insertion of Majorana

neutrino mass terms would imply that neutrino is its own antiparticle. This

could be confirmed upon the discovery of neutrinoless double beta decay, which

is also unobserved today.

Light neutrino masses lead to lepton flavour violating (LFV) decays and

nonzero magnetic moment. These are unobserved due to suppression by small

neutrino masses. In contrast, another consequence of neutrino masses - neutrino

oscillation - was spectacularly observed, earning the 2015 Nobel Prize in Physics.

Neutrino oscillation experiments are approaching precision measurements on

mass squared splittings and mixing angles, but these are partially spoiled by

degeneracy of θ23 mixing angle octant, ambiguousness of neutrino mass order-

ing and low confidence limit on leptonic CP phase angle. A high-luminosity

long-baseline neutrino oscillation experiment is needed to decisively constrain

the parameter space and guide neutrino physics to a new era. Studies on non-

standard interactions (NSI) allow us to quantify the effects of new physics as

a perturbation from the standard three neutrino framework. We have devel-

oped a formalism in the case of matter NSI in long baseline neutrino oscillation

experiments and derived baseline-dependent bounds for the prospects of a fu-

ture discovery of NSI. We have also chosen a popular neutrino mass generation

model called Type II seesaw and studied how the next-generation long baseline

neutrino oscillation experiment, DUNE, can constrain the model parameters.

While the experiments at the Large Hadron Collider (LHC) have found hints

of new physics beyond the SM in addition to SM Higgs boson, these hints are

far from conclusive evidence. Thus it is increasingly likely that there are no



new physics at the TeV energy scale. Most neutrino mass models also induce

LFV decays. Constraints from them push the limits of new physics of neutrino

mass models to higher energies than center-of-mass energy of LHC. New physics

may manifest itself also as nonstandard interactions or nonunitary mixing. We

studied the likelyhood of confirming neutrinophilic two Higgs doublet model at

the LHC and found out that Z2 conserving version of the model has been ruled

out by current data, and constrained the parameters of the theory further.

Current experimental efforts on neutrino physics are concentrated on the

precise measurements of neutrino oscillation parameters. On both short- and

long-baseline experiments, neutrino mass models will induce subleading cor-

rections to neutrino flavour transition. Current hints point to a existence of

an eV-scale sterile neutrino. Neutrino mass models predict the vanilla seesaw

scale to be at ∼ 1011 GeV or higher, but at such a high scale, Higgs mass must
be fine-tuned. Dark matter searches favor keV scale sterile neutrinos. These

incompatible mass scales show that the search for neutrino physics beyond the

SM is far from straightforward.

Keywords. Neutrino, neutrino oscillation, neutrino mixing, CP violation,
neutrino mass, seesaw mechanism, nonstandard interactions, neutrinophilic

Higgs, beyond the Standard Model.
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Preface

I see now that the circumstances of one’s birth are irrelevant; it is
what you do with the gift of life that determines who you are.

Mewtwo (1999)

In Lewis Carroll’s book, Alice’s Adventures in Wonderland (1865), Alice falls

through a rabbit hole to fantasy world full of strange nonsensical characters

and events. During the Master’s studies I stumbled on elementary particle

physics and quantum field theory, finding that our present knowledge of Nature

is clearly deficient. There was a huge rabbit hole of unknown ahead. I didn’t fall

into it until I started my doctoral studies. I felt like Alice, emerging to particle

wonderland, where I met invisible schizophrenic neutrinos, loyal hard-working

Higgses, familiar charged leptons with differently tasting flavours and looking

up and down, from top to bottom, many more unbelievably strange and charming

particles.
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Outline of thesis

Chapter 1 contains the history of neutrino physics and paints an overall view of

the Standard Model. It also briefly displays the shortcomings of the Standard

Model. Chapter 2 demonstrates the consequences of neutrino masses and demon-

strates the weakness of these effects. Chapter 3 describes the phenomenology of

three-neutrino oscillations and moves beyond it to nonstandard and nonunitary

approaches. Chapter 4 showcases the most important ways to generate mass for

neutrinos via the Seesaw mechanism.
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Notations and conventions

I abuse the terminology slightly by calling Lagrangian density simply La-

grangian. Einstein summation convention is in use. There repeated Latin indices

are summed over from one to three and repeated Greek indices are summed over

from zero to three or over lepton flavours (e,μ,τ). Complex conjugation, Hermi-

tian conjugation, charge conjugation and matrix transpose are denoted by star

(*), dagger (†), lower case letter c and capital letter T in superscript, respectively.

Three- and eight-component vectors are in bold. Imaginary unit is denoted by
i, which is also sometimes a summation index. Spatial indices are Latin and

spacetime indices Greek. Minkowski spacetime metric gμν = diag(1,−1,−1,−1)
is used. Spacetime point is denoted x = (t,x).
Unit and zero matrices are denoted by I and 0, respectively. If the dimension-

ality is specified, it is placed in the subscript and In ≡ In×n. Diagonal matrix

is denoted by diag(a, · · · ) with the diagonal elements placed inside parenthesis,
separated by commas. If A and B are matrices, then A < B means that the

matrix elements of A are smaller than corresponding matrix elements of B.

Placement of a matrix in a denominator signifies matrix inverse. When a sum

of an expression and its Hermitian conjugate is confronted, sometimes only the

first part is explicitly shown, the second term being shortened to abbreviation

"h.c.". Adjoint spinor is defined as Ψ≡Ψ†γ0. Feynman slash notation is adopted:

�a ≡ γμaμ.

Natural unit system is in place, where reduced Planck constant �, speed of

light in vacuum c and Boltzmann constant kB are defined to be dimensionless

and one. Equal by definition and identically true is denoted by ≡. Order-of-
magnitude estimation is denoted by ∼ and big O notation. Base-10 logarithm is
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1
INTRODUCTION

The only way of discovering the limits of the possible is to venture a
little way past them into the impossible.

Arthur C. Clarke
Profiles of the Future (1962)

Standard Model (SM) is the pinnacle of the human knowledge of elemen-

tary particle physics. This chapter begins with a historical tour on the

world of neutrino physics. As neutrinos are Standard Model (SM) par-

ticles, history of neutrino physics naturally coincides with the history of the

SM. The Lagrangian density of the SM is discussed in detail, concentrating on

electroweak sector. In this chapter, neutrinos are treated as massless particles.

Currently we know this is not true. Massive neutrino phenomenology will be

discussed in the next chapter. This chapter concludes with a short review of

existing problems in the SM.

1.1 History

1.1.1 History of non-oscillation neutrino physics

Chadwick [4] discovered in 1914 that β decay energy spectra were continuous.

The decay was back then believed to be a two-body decay, resulting in a Dirac

1



CHAPTER 1. INTRODUCTION

delta-distribution smeared by detector. Unbeknownst to physicists, the missing

energy was stolen by a neutrino, a third particle ejected in β decay. This was

proposed by Pauli [5] in 1930, who called the proposal a desperate remedy, since

in those times it was unusual to postulate the existence of a new particle in

order to make an anomaly disappear. Indeed, Bohr had even suggested that

conservation of energy does not hold in weak interactions.

In 1934, Fermi [6] formulated the theory of weak interactions, which made

it possible to calculate the neutrino cross section. Pauli, Bethe and Peierls

concluded that there is no possible way of observing the neutrino. After the

development of nuclear weaponry, the detection of a neutrino was possible [7].

As a matter of fact, one of the first proposals to detect a neutrino by Pontecorvo

[8] involved detonating a small nuclear bomb. The plan didn’t come to fruition,

but a nuclear reactor instead was used as an intense νe source. Using inverse β

decay, a neutrino was detected in 1956 by Cowan, Reines et al [9].

Weak interaction was predicted to contain parity violation by Lee and Yang

[10] in 1956 and confirmed by Wu et al [11] in 1957. Fermi’s theory conserved

parity, so Feynman, Gell-Mann, Marshak and Sudarshan [12, 13] upgraded it to

V−A theory in 1958, where the inclusion of axial vectors results in the desired
parity violation. In the same year, Goldhaber et al [14] showed that neutrinos

are exclusively left-handed particles, demonstrating maximal parity violation

in weak interactions. Later, the theory was combined with QED by Glashow,

Weir, Weinberg and Salam [15–19] by combining QED and weak interactions to

electroweak theory in the 1960s. Removal of the four-fermion vertex meant that

the electroweak interaction could possibly be renormalizable. This was proven

by ’t Hooft and Veltman [20–22] in 1972.

Muon neutrino was discovered by Lederman et al [23] in 1962. The experiment

observed neutrinos which were produced from charged pion decay together

with muons. These muon-associated neutrinos upon interaction with target

material produced only muons, proving the existence of a second type of neutrino.

Three generations of matter was proposed in 1973 by Kobayashi and Maskawa

[24], prompting a search for a tau neutrino. Indirect evidence for three light

active neutrino flavours surfaced in 1989, upon the analysis of Z boson decay in

ALEPH experiment. Tau neutrino was eventually detected in 2000 by DONUT

collaboration [25].

After the first detection of supernova neutrinos in 1987 by various experiments

2



1.1. HISTORY

and geoneutrinos in 2005 by KamLAND [26], some experimental efforts are

underway to detect the cosmic neutrino background, first proposed by Weinberg

[27] in 1962. In fact, astrophysics and cosmology have brought new insight to

neutrino physics. The newest PLANCK upper limits for neutrino masses [28]

(
∑

mν � 0.12 eV) are stricter than the limits imposed by terrestial experiments
by one order of magnitude.

1.1.2 History of neutrino oscillations

Neutrino oscillation was first proposed in 1957 by Pontecorvo [29, 30]. By then,

only νe had been detected, and he proposed neutrino-antineutrino oscillation

νe ↔ νe, inspired by kaon-antikaon oscillations K0 ↔ K
0
. After the νμ was

detected in 1962, Maki, Nakagawa and Sakata published in the same year their

proposal [31] on flavor oscillations, like νe ↔ νμ.

First hint of neutrino oscillations appeared during the late 1960s, when Davis

et al. detected a deficit of electron neutrino flux from the sun [32]. Only 1/3

of electron neutrinos from the sun were detected. This could have meant that

the rest of electron neutrinos had oscillated to different flavors invisible to the

detector or the stellar nucleosynthesis theory developed by Bethe [33] in 1939

had to be altered. This discrepancy was known as solar neutrino problem.
In the absence of confirmation of neutrino oscillations, the efforts on the theory

side marched on. In 1968 Pontecorvo discovered [34] that the existence of at

least one neutrino flavor transition channel implies that at least one neutrino

mass state has nonzero mass - the oscillation frequency for νi ↔ ν j transition is

proportional to |m2
νi
−m2

ν j
|.

As the neutrinos have extremely tiny cross sections, they smash through

matter almost without any interactions, as Bethe calculated in 1930s. For this

reason the discovery of large effects of matter potential to oscillation parameters

by Wolfenstein [35] in 1979 was very surprising. In 1985 Mikheyev and Smirnov

[36] noticed that slow decrease of matter density can enhance neutrino mixing

to even a maximal case. This effect is currently known as MSW effect by the

initials of the physicists. It can be used to determine the average electron density

of matter through which the neutrinos travel.

Neutrino oscillation was first detected in 1998 by Super-Kamiokande collabo-

ration [37], where a deficit of muon neutrinos was detected. The detector was

designed to detect atmospheric neutrinos. When high-energy cosmic rays collide

3



CHAPTER 1. INTRODUCTION

with air molecules in the upper atmosphere, a large number of unstable elemen-

tary and composite particles are produced, and the most relevant to neutrino

studies are pions. Lion’s share of the neutrinos are produced from pion decay

chain, producing twice as many muon-flavored neutrinos than νe. An equal

amount of both neutrino flavors was seen instead. As the average oscillation

length was much longer than the distance from upper atmosphere to the ground,

the deficit was seen to increase as a function of arrival angle (and therefore,

baseline length), confirming atmospheric neutrino oscillation. The experiment

was also the first to measure atmospheric mixing angle θ23 and mass splitting

|m2
3−m2

2|.
The measurements by Super-Kamiokande were followed by Sudbury Neutrino

Observatory (SNO), which confirmed [38] solar neutrino oscillation in 2001,

complemented the Super-Kamiokande experiment and provided the first mea-

surement of solar mixing angle θ12 and mass splitting |m2
2−m2

1|, solved the solar
neutrino problem and confirmed MSW effect, which is very important in the sun,

where matter density is high.

Afterwards the efforts have been concentrated to precision measurements of

the already measured oscillation parameters. In the neutrino community there

were high hopes of discovering a symmetry within the neutrino mixing matrix

and several proposals were soon published, where the matrix elements were

some simple irrational numbers. In the beginning stages, trimaximal mixing
matrix [39]

UTri =
1�
3

⎛
⎜⎜⎝
1 1 1

z 1 z∗

z∗ 1 z

⎞
⎟⎟⎠ (1.1)

where z = ei2π/3 was very popular, but was ruled out during the first decade of

2000s. Next, a tribimaximal mixing matrix [40] devoid of CP violation was
proposed:

UTribi =

⎛
⎜⎜⎜⎝

√
2
3

1�
3

0

− 1�
6

1�
3

− 1�
2

− 1�
6

1�
3

1�
2

⎞
⎟⎟⎟⎠ (1.2)

In 2011, Daya bay, RENO and Double Chooz collaborations measured [41] the

reactor angle θ13 to be nonzero, meaning that the top-right element of the mixing

matrix could not be zero. Currently there are no comparable proposals for exact

values for mixing matrix elements. However, the tribimaximal case remains

4



1.1. HISTORY

to be a good approximation if one is willing to ignore the effect of θ13 and CP

violation.

Current objective is to find out the sign ofm2
3−m2

2 and the value of CP violating

phase δ. In addition θ23 angle is degenerate, meaning that there are two almost

equally probable values the angle might be at ≈ (45± few) degrees. These can
be probed with next generation long baseline neutrino oscillation experiments,

of which there are several proposals, for example DUNE, Hyper-Kamiokande,

JUNO and INO.

1.1.3 History of speculative neutrino physics

In 1937, Majorana proposed the existence of Majorana fermions [42], which

would be their own antiparticles. Neutrino, being electrically neutral, was

the only possible candidate. Furry noted in 1939 that if neutrinos are Majo-

rana fermions, a neutrinoless double beta (0νββ) decay is possible but did not

prove that 0νββ decay implies that neutrinos are Majorana fermions [43]. That

was done in 1982 by Schechter and Valle [44], and today goes by the name of

Schechter-Valle theorem. To this day, 0νββ is unobserved.

Weinberg noted [45] in 1979 that the only effective dimension-five operator

allowed by SM gauge symmetries is Majorana neutrino mass term
1
Λ

LLHH,

which explicitly breaks the lepton number symmetry by two units. This effec-

tive operator appears as a low-energy limit of seesaw theories, proposed by

Minkowski [46], Yanagida [47], Gell-Mann [48], Mohapatra and Senjanović [49],

Schechter and Valle [50] and Glashow [51]. They do not aim to achieve grand

unification, but increase the field content. In the simplest version (Type I) pro-

posed in 1977-1979, the SM is extended by three heavy sterile right-handed

Majorana neutrinos. Instead of inclusion of right-handed neutrinos, neutrino

masses could be generated by extending the scalar sector (Type II) by one or

more doublet or triplet, the triplet case being more popular. Scalar extension

approach was proposed in 1980-1981. Third way to generate tree-level neutrino

mass terms (Type III) was proposed [52] in 1989 by Foot, Lew, He and Joshi.

Their model extends the SM by three singlet fermions, causing a rich collider

phenomenology at lepton sector.

Alternative solution to neutrino mass problem is to generate neutrino mass

at one- or many-loop level, called radiative seesaw or Zee-Babu model. One-

loop version was proposed by Zee [53] in 1980, and has been ruled out after

5



CHAPTER 1. INTRODUCTION

the discovery of solar neutrino oscillations in the beginning of 2000s. Two-loop

version was proposed by Babu [54] in 1988. More exotic seesaw mechanisms

have been proposed. Wyler and Wolfenstein [55], Mohapatra and Valle [56] and

Ma [57] considered a model in 1983-87 where in addition to three right-handed

neutrinos, there are also three SM gauge-singlet neutrinos. In addition, the

lightness of Dirac type neutrinos can be explained by assuming the existence

of extra dimensions, proposed by Arkani-Hamed, Dimopoulos and Dvali [58] in

1998. Also, the possibility of attributing the lightness of neutrinos to small VEV

was considered by Ma [59] in 2001, and the model is called neutrinophilic model.

1.2 Standard Model

Standard Model (SM) is a theory, which is the pinnacle of the work done by
several particle physicists during the second third of the 1900s. All the known

particle interactions governed by electromagnetism, weak nuclear force and

strong nuclear force are described in a gauge theory called the SM. Its gauge

symmetry group is

GSM ≡SU(3)C ⊗SU(2)L ⊗U(1)Y , (1.3)

with SU(3)C group responsible for strong nuclear force1 and SU(2)L⊗ U(1)Y for

the electroweak interaction. Being a Yang-Mills theory, the SM has a non-Abelian

gauge groupGSM. It is a Lie group, consisting of three Lie groups SU(3)C, SU(2)L
and U(1)Y , having eight, three and one group generators, respectively. Each

generator corresponds to a gauge boson: eight gluons of SU(3)C and the W± and
Z bosons and photon γ of SU(2)L⊗ U(1)Y . The field content of SM can be seen

from Table 1.1.

In addition to the gauge bosons, SM contains also a Higgs boson, which via

the Higgs mechanism generates a vacuum expectation value and mass to quarks,

leptons, W and Z bosons and to Higgs itself. The rest of the particles in SM

are fermions, which are divided to quarks and leptons. Quarks are sensitive to

strong interactions, and leptons are not.

All SM phenomena can be encapsulated to its Lagrangian density2. The

equations of motion may be derived from the Lagrangian with the use of Euler-

1SU(3)C group interactions are commonly denoted as quantum chromodynamics (QCD),
strong force or color force, with the subscript C referring to color charge, which is conserved in
SM.

2Simply called Lagrangian afterwards.
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CHAPTER 1. INTRODUCTION

Lagrange equations. For clarity, I split the Lagrangian to four parts:

LSM =Lgauge+LYukawa+Lkinetic−V (H) (1.4)

1.2.1 Gauge sector

Local gauge transformations induce extra terms in the Lagrangian. To retain

gauge invariance, SM is formulated with covariant derivatives. Terms included

in the covariant derivatives will cancel the gauge-induced terms. Consider a field

ψ transformed via a Lie gauge group G with dimension n, having generators

t1, · · · , tn and thus general transformation matrices are U = exp
(
i

n∑
j=1

t jθ j(x)

)
.

The field and its derivative transform as follows:

ψ 
→Uψ (1.5)

∂μψ 
→U

(
∂μ+ i

n∑
j=1

t j∂μθ j(x)

)
ψ (1.6)

The extra term is seen above in Eq. (1.6). To cancel it, one needs to postulate the

existence of n gauge boson fields Kμ

1 (x), · · ·K
μ
n(x) and define a covariant derivative

as

Dμ = In∂
μ+ iC

n∑
j=1

t jK
μ

j (x)≡ In∂
μ+ iCKμ(x) (1.7)

where C is a constant and I defined Kμ(x) ≡
n∑

j=1
t jK

μ

j (x). To fulfill local gauge

invariance, it is imperative for ψ and Dμψ transform the same way. This can be

achieved by requiring

Dμ 
→UDμU† (1.8)

which implies gauge boson field transformation rule

Kμ 
→UKμU†+ i
C
(∂μU)U†. (1.9)

Now the field strength tensor corresponding to these gauge bosons can be defined

as

Kμν(x)≡− i
C
[Dμ,Dν], (1.10)

and the trace Tr(KμνKμν) will be invariant under local gauge transformation.

Gauge principle is a crucial ingredient in SM, which states that Lagrangian

8



1.2. STANDARD MODEL

must be invariant when the fields transform in their corresponding gauge group

transformations, both global and local. Due to local gauge invariance require-

ment, the gauge fields must be massless as long as the symmetry group is

unbroken.

Let’s return to SM. The gauge part of the SM Lagrangian

Lgauge =−1
4

FμνFμν− 1
2
Tr

(
WμνWμν

)− 1
2
Tr

(
GμνGμν

)
=−1

4

(
FμνFμν+

3∑
i=1

WiμνWμν

i +
8∑

j=1
G jμνGμν

j

)
(1.11)

contains the field strength tensors Fμν, Wiμν and G jμν for gauge groups SU(3)C,

SU(2)L and U(1)Y , respectively, defined as

Fμν = ∂μBν−∂νBμ (1.12)

Wiμν = ∂μWiν−∂νWiμ+ g2εi jkW j
μWk

ν (1.13)

G jμν = ∂μG jν−∂νG jμ+ g3 f jmnGm
μ Gn

ν (1.14)

where g2 and g3 are the gauge coupling constants of SU(2)L and SU(3)C gauge

groups, respectively. The elements of the totally antisymmetric tensors εi jk and

f jmn are the structure constants of the groups SU(2)L and SU(3)C, respectively

(see Appendix A.1). While the Abelian Bμ field doesn’t have any self-interactions,

theWμ

i andGμ

j fields interact with themselves due to the existence of the nonzero

structure constants of the corresponding gauge groups.

1.2.2 Kinetic sector

The formalism above is now applied to SM kinetic Lagrangian, which reads as

Lkinetic =
3∑

i=1

(
QiLiγμD′

μQiL +uiR iγμD′
μuiR +diR iγμD′

μdiR

)
(1.15)

+ ∑
α=e,μ,τ

(
LαLiγμDμLαL +�αR iγμDμ�αR

)
+ (DμH)†(DμH)

where the covariant derivatives are defined as follows:

Dμ = ∂μ− i
2

g1Y Bμ− i
2

g2σ ·Wμ (1.16)

D′
μ = Dμ− i

2
g3λ ·Gμ (1.17)

9



CHAPTER 1. INTRODUCTION

Here Wμ and Gμ vectors are assumed to be in their standard three- and eight-

dimensional spaces. σi and λi are the three Pauli and eight Gell-Mann matrices,

and the generators of gauge groups SU(2)L and SU(3)C, respectively (for explicit

forms, see Appendix A.1). Hypercharge operator Y is the generator of U(1)Y
gauge group. Higgs, leptons and quarks couple to SU(2)L and U(1)Y gauge fields,

but SU(3)C case is exclusive to quarks, which is the reason for extended covariant

derivative D′
μ for quark fields. The kinetic Lagrangian therefore consists of the

interactions between the fermions and gauge fields and also the interactions

between Higgs field and gauge fields.

1.2.3 Brout-Englert-Higgs mechanism

The mass terms in the SM Lagrangian are not gauge invariant. Clearly quarks,

leptons and W± and Z bosons are massive, so a mass generation mechanism is

required. Therefore the existence of a scalar field giving masses to elementary

particles is crucial. The phenomenon of spontaneous symmetry breaking was mi-

grated from solid state physics to particle physics by Nambu, although Anderson

was the first to apply it in a nonrelativistic context. Relativistic version was done

by Brout and Englert [60], Higgs [61] and Hagen, Guralnik and Kibble [62] in

1964, and this is now known as Brout-Englert-Higgs (BEH) mechanism3.

In SM, Higgs potential is defined as

V (H)=μ2H†H+λ(H†H)2, (1.18)

where H is an SU(2) doublet containing two complex scalar fields. Assuming

λ> 0 leads to the existence of global minimum of Higgs potential. If μ2 > 0, the
minimum is trivial: Hmin = 0. In the case of μ2 < 0, defining v ≡

√
−μ2/λ and

completing the square in the potential one gets

V (H)=λ

(
(H†H)2+2μ

2

2λ
H†H+

(
μ2

2λ

)2
−
(
μ2

2λ

)2)
(1.19)

=λ

(
(H†H)2−2v2

2
H†H+

(−v2

2

)2
−
(−v2

2

)2)
=λ

(
H†H− v2

2

)2

where a constant term in the potential is ignored. From this form it is clear that

at Higgs potential minimum H†H = v2/2, or |H| = v/
�
2 . The minimum energy is

3For conciseness, I simply call it Higgs mechanism.

10



1.2. STANDARD MODEL

shared by a continuous set of degenerate vacua, φ0(x)= v�
2
eiθ, where θ ∈ [0,2π[.

Moving along this degree of freedom does not require any energy, so it will

correspond to a massless field, which is called the Nambu-Goldstone boson
(NGB). The vacuum state must still choose a particular value from the set, which

breaks the symmetry spontaneously, destroying the degrees of freedom of the

NGB [63–65].

This potential minimum corresponds to vacuum state, in which it contains a

nonzero energy, called vacuum expectation value (VEV). Since only neutral
Higgs fields may develop a VEV, the Higgs doublet gains a VEV

〈H〉 =
(
0

v/
�
2

)
(1.20)

where v ≈ 246 GeV. At tree-level it is advantageous to build the theory and
calculations using unitary gauge fixing (ξ→∞), where the phase of the neutral
complex Higgs field is set to zero. The Higgs doublet can be rotated with an

SU(2) matrix, which has three degrees of freedom. In the unitary gauge they are

fixed by requiring Re(φ+) = Im(φ+) = Im(φ0) = 0 and NGB has been destroyed.
The Higgs doublet now reads as

H = 1�
2

(
0

v+h(x)

)
(1.21)

where h(x)∼ Re(φ0) is a real scalar field, the physical Higgs boson. We may now
generate the masses for W± and Z gauge bosons by looking at the covariant

derivative term of Higgs doublet in unitary gauge:

(DμH)†(DμH) mass terms
of W /Z

= 1
2

v2
(
1
2

g22W
+
μ Wμ−+ 1

4
(g21+ g22)ZμZμ

)
. (1.22)

Here I have defined new fields after spontaneous symmetry breaking (SSB):

Zμ =
g2W3μ− g1Bμ√

g21+ g22
, Aμ =

g1W3μ+ g2Bμ√
g21+ g22

, W±
μ = 1�

2
(W1μ∓ iW2μ).

(1.23)

Here Aμ denotes the photon field. The mass terms are proportional to v2. In-

specting these terms from Eq. (1.22), the gauge boson masses are recognized

as

MW± = 1
2

g2v, MZ = 1
2

√
g21+ g22 v, mA = 0. (1.24)

11
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Photon stays massless, as it should. Defining Weinberg angle θW = arctan g1
g2
,

it is evident that the physical fields Zμ and Aμ are related to the fields W3μ and

Bμ by a simple rotation: (
W3μ

Bμ

)
= R(θW )

(
Zμ

Aμ

)
. (1.25)

Here R(θW ) denotes two-dimensional rotation matrix (see Appendix A.1), with

rotation angle θW . There remains a residual U(1)Q symmetry group, which has

a generator

Q = I3+ Y
2
, (1.26)

where I3 = τ3 is the third generator of the SU(2) group (third component of weak

isospin I) and Y is the hypercharge operator. This formula is known as Gell-

Mann–Nishijima -formula [66, 67]. Q is the electric charge operator, which has

the eigenvalues of electric charge of the target field, in the units of elementary

charge (e).

1.2.4 Yukawa sector

Since in the unbroken phase all the SM particles are massless, and in the broken

phase W± and Z bosons become massive, it is natural to ask if it is possible to

generate masses to fermions the same way. The answer turns out to be yes, and

it utilizes the same Higgs mechanism I described in previous section. Consider

the Yukawa terms in the Lagrangian:

LYukawa =−
3∑

j,k=1
Q jLY d

jkHdkR −
3∑

j,k=1
Q jLY u

jkH′ukR − ∑
α,β=e,μ,τ

LαLY �
αβH�βR +h.c.

(1.27)

where H′ = iσ2H∗ and Yukawa matrices Y u, Y d and Y � are dimensionless

3×3 matrices. Note that H and H′ have opposite hypercharges, otherwise the
Lagrangian wouldn’t be gauge invariant. After SSB, mass terms emerge in the

Yukawa Lagrangian LY ≡LYukawa:

LY =− v�
2

(
3∑

j,k=1

(
Y d

jkd jLdkR +Y u
jku jLukR

)
− ∑

α,β=e,μ,τ
Y �
αβ�αL�βR

)
+h.c.+·· ·

=− v�
2

(
3∑

jk=1
Y d

jkd jdk +
3∑

j,k=1
Y u

jku juk +
∑

α,β=e,μ,τ
Y �
αβ�α�β

)
+·· · (1.28)

12



1.3. SOME PROBLEMS IN THE STANDARD MODEL

From this expression, fermion mass matrices for down-type quarks, up-type

quarks and charged leptons, respectively, can be read:

Md = Ydv�
2
, Mu = Yuv�

2
, M� = Y�v�

2
(1.29)

Together with W± and Z bosons, this accounts all the massive fields in the SM.

The remaining terms describe Higgs-fermion interactions. I will discuss the

Higgs-lepton interactions in more detail in the next chapter.

1.3 Some problems in the Standard Model

Even though the SM has an impressive track record, describing nearly all the

non-gravitational particle interactions, it is far from complete. It is presently

understood that the SM is an effective theory, which holds on until new inter-

actions kick in at a large energy scale. This is expected to happen even below

the Planck scale 1019 GeV. Any theory replacing the SM should reduce back

to SM at low-energy limit. Unfortunately it is not evident which of the various

proposed SM extensions describes reality. Here I briefly describe some of the

most serious issues.

1.3.1 Flavour problem

Masses of quarks and leptons are generated by the Higgs mechanism, and the

dimensionless proportionality constants are the Yukawa couplings, which scale

the base value of electroweak VEV v ≈ 246 GeV. The coupling for the top quark
is O (1), but for the lightest charged lepton it is O (10−6). It is unclear why the
couplings would have numerical values over six orders of magnitude.

1.3.2 Neutrino masses

Neutrino oscillations were experimentally confirmed during the turn of the

millennium by Super-K and SNO collaborations. Therefore at least two of the

three SM neutrinos are massive, but SM is missing a neutrino mass term. Direct

inclusion of the mass term implies the existence of a right-handed neutrino and

if there are no new active scalar fields, neutrino Yukawa matrix elements are so

tiny, they would make the flavour problem even worse. A very popular solution

to this is the seesaw mechanism, which will be discussed in Chapter 4.

13
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1.3.3 Hierarchy problem

Loop corrections to SM Higgs mass are proportional to the SM cutoff scale which

is the energy scale where the SM is expected to break down. The cutoff scale

can be very large, even the Planck scale. Since the SM Higgs is 17 orders of

magnitude lighter than the Planck scale, there must be a Planck scale order

cancellation to tame the large value. The cancellation should be fine-tuned to

provide the observed Higgs mass, and for this reason it is also known as fine-

tuning problem. One proposed solution to this problem is supersymmetry, as

it would induce cancellations to Higgs mass of supersymmetry breaking scale,

which is regarded to be much lighter than the Planck scale.

1.3.4 Cosmological issues

Majority of matter content of the universe is now known to be dark matter,
which is non-electromagnetically interacting elementary particles not included

in the SM. Neutrinos are too light to account for suitable dark matter, but

right-handed neutrinos (among many other proposals) might be the necessary

ingredients.

All efforts to quantize gravity have failed, and gravity is not included in the
SM. Gravity itself is weak compared to other interactions, a fact which is also

unexplained. Also, the accelerating expansion of the universe can be associated

with the vacuum energy, but the expansion rate predicted by the SM is too large.

In addition, cosmic inflation is currently understood to be driven by one or

more scalar fields. The only scalar field in the SM (Higgs) is a candidate, but

such a Higgs inflation suffers from breakdown of perturbative unitarity below

the energy scale of inflation, and a more elegant beyond-the-SM inflation theory

is usually preferred.

Lastly, baryonic asymmetry in the universe (BAU) is larger than the SM
expectation by factor of 1010. The amount of BAU must be generated during

the early universe and fulfilling Sakharov’s conditions. The crux of the issue is

that in the SM the amount of CP violation is too small. This might be solved

in leptogenesis theories, where heavy Majorana neutrinos produce a lepton

asymmetry, which is converted to baryon asymmetry during the early universe.

14



1.3. SOME PROBLEMS IN THE STANDARD MODEL

1.3.5 Strong CP problem

It is possible to construct a θ-term in the QCD Lagrangian which is proportional

to θεμνρσG j
μνG jρσ. The coupling constant θ must be extraordinarily small (�

10−10) due to nonobservation of electric dipole moment of neutron. θ-term also

breaks CP invariance, which gives the name for the problem. The source of the

problem is not the expected breaking of CP symmetry itself but the suppression

mechanism which renders the symmetry breaking feeble with tiny θ. A possible

solution to this would be the existence of invisible axion, which promotes the θ

constant to a field.
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PHENOMENOLOGY OF MASSIVE LIGHT NEUTRINOS

Neutrino physics is largely an art of learning a great deal by
observing nothing.

Haim Harari (1988)

At least two of the three active neutrinos definitely are massive due to the

observation of neutrino oscillations. Ergo, it is enlightening to consider

the implications of a minimal extension of the SM, where right-handed

neutrinos are added to the SM and where the neutrinos are massive. Neutrino

oscillations is a vast topic, which is why Ch. 3 is dedicated to it. I will discuss

the case where SM Higgs mechanism generates Dirac mass terms for the light

neutrinos. Majorana mass terms and the mass generation mechanism itself are

discussed in Ch. 4. Massive neutrinos open an avenue for many new phenomena,

which are however notoriously hard to detect, including lepton number violating

decays and neutrino electromagnetic interactions.

Since neutrino oscillations probe only the absolute values of the neutrino mass

squared differences, |m2
i −m2

j |, the values of individual neutrino masses and
their ordering are unknown. The two possible mass ordering schemes are normal

hierarchy (NH: m1 < m2 < m3) and invered hierarchy (IH: m3 < m1 < m2). See

Fig. 2.1 for details. In both the NH and IH cases neutrinos are nearly mass

degenerate if the lightest neutrino is � 0.1 eV. In NH case m1 and m2 are nearly

16
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Figure 2.1: Neutrino masses in normal (left) and inverse (right) ordering. If the
lightest neutrino mass exceeds ∼ 0.1 eV, neutrinos can be considered to be nearly
mass degenerate. PLANCK limits require

∑
mν < 0.12 eV (95 % CL). Red line

corresponds to the limit, and right side of the red line is excluded.

mass degenerate if m1� 0.02 eV. Conversely, in IH case m1 and m2 are almost

mass degenerate regardless of the magnitude of m3.

PLANCK limits impose stringent restrictions on the neutrino masses. In

NH case, m1 � 0.03 eV and 0.05 eV � m3 � 0.06 eV. IH case is possible only

if
∑

mν > 0.1 eV, giving even stricter constraints: m3 � 0.016 eV and 0.050 eV
� m1 ≈ m2� 0.055 eV.
However the case for effective neutrino masses is different (see Fig. 2.2). Even

if one neutrino state is massless, all the effective masses of flavour neutrinos

are nonzero, since they are linear combinations of all three physical neutrino

masses mi. It is now known that all the coefficients of the linear combinations

are nonzero. With similar deduction, lightest effective neutrino mass can be

0.004 – 0.031 eV (NH) or 0.021 – 0.031 eV (IH), and the heaviest 0.031 – 0.046

eV (NH) or ≈ 0.05 eV (IH).

2.1 Dirac mass term

Consider the existence of a right-handed neutrino field νR , with zero hypercharge.

At first, I assume only the existence of one generation. Before spontaneous

symmetry breaking, the Higgs-lepton (HL) part of Yukawa Lagrangian would

then include an extra term containing νR .

LHL =−YeLLHeR −YνLLH′νR +h.c.+·· · (2.1)
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Figure 2.2: Flavour neutrino masses in normal (left) and inverse (right) ordering.

Then after spontaneous symmetry breaking, the extra term produces neutrino-

Higgs interaction term and neutrino mass term

− Yνv�
2
νLνR +h.c.=−mννν, (2.2)

where neutrino mass is mν =Yνv/
�
2 and ν= νL +νR . The mass term together

with the derivative term gives

ν(i�∂−mν)ν, (2.3)

which produces Dirac equation for neutrinos. The next step is to generalize the

treatment to three generations.

I now add an additional object to the theory: flavour. Yukawa couplings will

be promoted to matrices, and they must be diagonalized. Flavour states will be

marked with additional index and the original untransformed fields and Yukawa

matrices will be denoted with prime (′). The three lepton doublets are denoted
as follows:

L′
eL =

(
ν′eL
e′L

)
, L′

μL =
(
ν′
μL

μ′
L

)
, L′

τL =
(
ν′
τL
τ′L

)
.

In addition there are six SU(2) singlet fields e′R ,μ
′
R ,τ

′
R ,ν

′
eR ,ν

′
μR and ν′

τR . Yukawa

Lagrangian in lepton sector with three generations before SSB is straightfor-

wardly generalized:

LHL =− ∑
α,β=e,μ,τ

(
Y ′�
αβL′

αLH�′βR +Y ′ν
αβL′

αLH′ν′βR

)
+h.c. (2.4)
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2.1. DIRAC MASS TERM

After the SSB, it can be written as

LHL =−v+h�
2

∑
α,β=e,μ,τ

(
Y ′�
αβ�

′
αL�

′
βR +Y ′ν

αβν
′
αLν

′
βR

)
+h.c.

=−v+h�
2

(
�′LY ′��′R +ν′LY ′νν′R

)
+h.c., (2.5)

where I have defined flavour triplets

�′L =

⎛
⎜⎜⎝

e′L
μ′

L

τ′L

⎞
⎟⎟⎠ , �′R =

⎛
⎜⎜⎝

e′R
μ′

R

τ′R

⎞
⎟⎟⎠ , ν′L =

⎛
⎜⎜⎝

ν′eL

ν′
μL

ν′
τL

⎞
⎟⎟⎠ ,ν′R =

⎛
⎜⎜⎝

ν′eR

ν′
μR

ν′
τR

⎞
⎟⎟⎠ ,

From the Lagrangian one can now peel off the charged lepton and neutrino

mass matrices, which are proportional to corresponding Yukawa matrices: m′� =
vY ′�/

�
2 and m′ν = vY ′ν/

�
2 .

As far as I have now become, all has been analogous to one generation case. I

will proceed by diagonalizing the Yukawa matrices with 3×3 unitary matrices
V �

L ,V
�
R ,V

ν
L and Vν

R . This procedure - biunitary transformation - works for any

matrix. The transformed fields are thus

�L ≡V �†
L �′L ≡

⎛
⎜⎜⎝

eL

μL

τL

⎞
⎟⎟⎠ , �R ≡V �†

R �′R =

⎛
⎜⎜⎝

eR

μR

τR

⎞
⎟⎟⎠ ,

νL ≡Vν†
L ν′L ≡

⎛
⎜⎜⎝

ν1L

ν2L

ν3L

⎞
⎟⎟⎠ , νR ≡Vν†

R ν′R ≡

⎛
⎜⎜⎝

ν1R

ν2R

ν3R

⎞
⎟⎟⎠ .

Note that the neutrinos lose their flavour index. It is easily seen that kinetic

terms in the Lagrangian are invariant under this transformation. Looking at

Higgs-lepton Lagrangian, I get

LHL =−v+h�
2

(
�LV �†

L Y ′�V �
R�R +νLVν†

L Y ′νVν
RνR

)
+h.c.

=−v+h�
2

(
�LY ��R +νLY ννR

)
+h.c. (2.6)

where I have defined V �†
L Y ′�V �

R =Y � and Vν†
L Y ′νVν

R =Y ν. The matrices Y � ja Y ν

are diagonal, and the diagonal entries are real and positive. That allows us to

write them in the index notation as Y �
αβ

= y�αδαβ and Y ν
i j = yνi δi j. Reverting the
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Lagrangian back to index notation one arrives at

LHL =−v+h�
2

( ∑
α=e,μ,τ

y�α�αL�αR +
3∑

i=1
yνi νiLνiR

)
+h.c. (2.7)

We can now work backwards from chiral decomposition, resulting in

LHL =− ∑
α=e,μ,τ

vy�α�
2
�α�α−

3∑
i=1

vyνi�
2
νiνi −

∑
α=e,μ,τ

y�α�
2
�α�αh−

3∑
i=1

yνi�
2
νiνih (2.8)

where the first two sums are the charged lepton and neutrino mass terms,

respectively, with masses mα = vy�α/
�
2 and mνi = vyνi /

�
2 , where α= e,μ,τ and

i = 1,2,3. Note that the mass of charged lepton is defined by its flavor, unlike
mass of neutrinos. The latter two sums describe the lepton-Higgs interactions.

2.2 Weak lepton current

In the previous Chapter it was found out that interactions between fermions

and gauge bosons reside in kinetic sector of the Lagrangian. The interactions

are categorized to charged current (CC) and neutral current (NC) Lagrangians:

LCC+LNC =−g2
∑

�=e,μ,τ
L′
�Lγ

μτ ·WμL′
�L − g1Bμ

∑
�=e,μ,τ

Y (L′
�L)L

′
�Lγ

μL′
�L (2.9)

− g1Bμ

∑
�=e,μ,τ

Y (�′R)�
′
Rγ

μ�′R + (quark - gauge boson interactions)

Here Y (ψ) denotes the hypercharge of field ψ. Right-handed neutrino νR is

absent, since it is hyperchargeless. Terms containingW1μ andW2μ (and therefore,

the W± fields) form the CC part and the rest, containing W3μ and Bμ (which lead

to Z and photon fields), form the NC part.

The CC part Lagrangian can be written compactly:

LCC =− g
2
�
2

jρWWρ+h.c.

where jρW = jρL + jρQ is the weak CC, which is the sum of the weak lepton (L) and

weak quark (Q) currents. The CC term is part of the SM kinetic term Lkinetic.

The lepton current

jρL = ∑
α=e,μ,τ

ν′αγρ(I −γ5)�′α = 2 ∑
α=e,μ,τ

ν′
αLγ

ρ�′αL = 2ν′Lγρ�′L (2.10)
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2.3. LEPTON FLAVOUR VIOLATION

is relevant for neutrinos. Above I used the property γρ(I−γ5)= 2γρPL = 2γρPLPL =
2PRγ

ρPL. Changing to primeless fields by defining �L ≡V �†
L �′L and νL ≡Vν†

L ν′L
as before, the current is then

jρL = 2νLVν†
L γρV �

L�L = 2νLVν†
L V �

Lγ
ρ�L = 2νLU†γρ�L (2.11)

where I defined neutrino mixing matrix U ≡V �†
L Vν

L . Now it’s possible to define

neutrino flavour fields

ν≡UνL =V �†
L ν′L ≡

⎛
⎜⎜⎝

νeL

νμL

ντL

⎞
⎟⎟⎠

and write the lepton current in the final form:

jρL = 2 ∑
α=e,μ,τ

ναLγ
ρ�αL (2.12)

In this form, it is seen that each flavour neutrino appears alongside its corre-

sponding charged lepton flavour field. During neutrino creation in W± boson
decay, a same-flavoured charged lepton must be present in the interaction vertex.

Similarly when a neutrino is detected, a corresponding charged lepton must be

seen. Once its mass is identified, the flavour of the lepton - and therefore the

flavour of the neutrino is clear.

2.3 Lepton flavour violation

In SM one can assign lepton flavour numbers Le,Lμ and Lτ to all leptons,

assigned as in Table 2.1. Lepton flavour numbers and (total) lepton number

L = Le +Lμ +Lτ are conserved quantities, which corresponds to U(1) gauge

invariance. Indeed, for U(1) transformation

�αL 
→ eiφα�αL, ναL 
→ eiφαναL (2.13)

where α = e,μ,τ, the lepton current is invariant. Similarly the Higgs-lepton

Lagrangian, Eq. (2.8) is invariant in such a transformation. However, the right-

handed neutrino νR kinetic part of the Lagrangian is not invariant, which

leads to nonconservation of flavor lepton number. If one postulates right-handed

neutrinos and adds a neutrino mass term, this is the inevitable conclusion.
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Fields Le Lμ Lτ L

νe, e− 1 0 0 1

νμ,μ− 0 1 0 1

ντ,τ− 0 0 1 1

νe, e+ −1 0 0 −1
νμ,μ+ 0 −1 0 −1
ντ,τ+ 0 0 −1 −1

Table 2.1: Leptons and the corresponding lepton numbers in SM.

However, total lepton number L is still conserved. If neutrinos are Majorana

fermions, L will be broken by two units.

One important consequence of massive neutrinos, which has been widely

studied, is the rise of a new set of decays which violate lepton flavor, for exam-

ple μ− → e−γ, μ− → e−e−e+ and μ−e+ → μ+e− (see Fig. 2.3). Bounds for these
processes are quite strict. Given neutrino masses mi =O (1) eV, for example the

branching ratio

BR(μ− → e−γ)= 3α
32π

∣∣∣∣∣
3∑

i=1
U∗

μiUei
m2

i

m2
W

∣∣∣∣∣
2

� 10−50 (2.14)

is heavily suppressed by ∼ (mi/mW )4. Fine structure constant is defined as

α ≡ e2/4π. MEG collaboration has reported BR(μ→ eγ) to have experimental

upper limit of O (10−13) [68], while for other lepton flavor violating processes the
limit can be relaxed. The large suppression can be understood by considering the

typical neutrino oscillation length. The baseline length for a neutrino in lepton

flavour violating decay is of the order of the characteristic length scale of weak

interaction, O (10−18) m, while the average oscillation lengths are O (1) m and

longer.

2.4 Neutrino electromagnetic interactions

In the SM, even though neutral and massless, neutrino has loop-level electromag-

netic interactions (for a recent review, see [69]), resulting in nonzero neutrino
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μ

W

e

νμ νe

γ

Figure 2.3: An example of a lepton flavour violation process μ→ eγ. In this case,
muon neutrino oscillates to electron neutrino in-flight. The blob corresponds to
neutrino oscillation.

charge radius. In one-loop approximation, Bernabéu et al [70–72] calculated the

following expression for the square of charge radius:

〈r2ν�
〉SM = GF

4π2
�
2

(
3−2ln m2

�

m2
W

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
〈r2νe

〉SM ≈ 4.1×10−33 cm2

〈r2νμ
〉SM ≈ 2.4×10−33 cm2

〈r2ντ
〉SM ≈ 1.5×10−33 cm2

(2.15)

Here GF = �
2 g22/8M2

W in Fermi coupling constant. This shifts the neutrino

vector coupling constant [73] by an amount

Δgν�

V = 2
3

M2
W〈r2ν�

〉sin2θW ≈ 2.47 ·10−3 · 〈r2ν�
〉

10−33 cm2 , (2.16)

which may be observable with the next-generation neutrino-electron scattering

experiments. The current experimental constraints of scattering cross section

measurements infer 〈r2ν�
〉�O (10−32) cm2, only one order of magnitude from the

SM prediction [74, 75]. It is possible that the experimental accuracy will in near

future improve to confirm the SM prediction of the neutrino charge radius.

Since neutrinos are massive, there are other electromagnetic properties avail-

able for neutrinos. Massive neutrinos imply a nonzero magnetic moment for

neutrinos. Assuming Dirac masses (m1,m2 and m3) for neutrinos, the mag-

netic moment can be calculated via the one-loop radiative Feynman diagrams,

resulting in [76]

μk j =
eGF

8
�
2π2

(mk +m j)
∑

�=e,μ,τ
f

(
m2

�

M2
W

)
U∗

�kU� j, (2.17)
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where j,k = 1,2,3 and the loop function is

f (x)= 3
4

(
1+ 1

1− x
− 2x
(1− x)2

− 2x2 lnx
(1− x)3

)
. (2.18)

In leading order, taking m2
�
/M2

W small, the neutrino diagonal magnetic moment

is

μkk ≈
3eGF mk

8
�
2π2

≈ 3.2×10−19mk

eV
μB. (2.19)

It is intriguing to see that in leading order, the magnitude is insensitive to

charged lepton masses and neutrino mixing matrix elements. The current exper-

imental efforts are frustratingly insufficient to measure the neutrino magnetic

moment, devoid of any additional new physics contributions, lagging eight or

more orders of magnitude behind [77–79]. Nondiagonal magnetic moment is

further suppressed by ratio m2
τ/M

2
W ∼ 10−4.

It is natural to investigate whether it is possible that a theory beyond the SM

produces a large enough magnetic moment for the neutrinos so that it is feasible

to be measured in the near future. It would also have a role of constraining

classes of such theories. Assuming such a theory exists at scale Λ, producing

a contribution μν to neutrino magnetic moment, it will provide a correction to

neutrino mass [80]:

Δmν ∼ Λ2

2me

μν

μB
= μν

10−18μB

(
Λ

TeV

)2
eV. (2.20)

Therefore theories, which produce large neutrino magnetic moments, addition-

ally induce large mν corrections. However, in some theories it is possible to

suppress neutrino mass without suppressing its magnetic moment [81].
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3
NEUTRINO OSCILLATION

Earth is the cradle of humanity, but one cannot live in a cradle forever.

Konstantin Tsiolkovsky

Leptons mix, just like quarks. In this chapter, I derive the transition

probability for a general neutrino three-flavour oscillation1 (see Fig.

3.1). In neutrino oscillation, the neutrino flavour changes during the

propagation. I will cover the most important approximations, matter effects and

nonstandard effects. At the end of this chapter, I consider neutrino oscillations

beyond the three-neutrino (3ν) framework, where the neutrino flavour might

differ from the corresponding lepton during the creation and detection processes

and where matter potential is modified.

3.1 Derivation of transition probability

Neutrino eigenstates of weak interaction are superpositions of the physical mass

states: the neutrino states mix. The mixing is described with a Pontecorvo-Maki-

1Neutrino flavor oscillations are sometimes called oscillations of the first kind, to distinguish
them from neutrino-antineutrino oscillations, which are called oscillations of the second kind.
Since Majorana neutrinos are their own antiparticles, it does not make sense to define oscillations
of the second kind for them.
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CHAPTER 3. NEUTRINO OSCILLATION

π+ μ+

νμ

νe

W+

e−

n p

Figure 3.1: A Feynman diagram of vacuum neutrino oscillation. A muon neutrino
is created in pion decay. This oscillates to electron neutrino, which interacts via
virtual W+ boson with a nucleus, producing an electron, which is subsequently
seen in a detector. This process violates lepton flavour and is therefore forbidden
in the SM. Lepton number is conserved. Time flows from left to right.

Nakagawa-Sakata (PMNS) neutrino mixing matrix [29–31, 82]

U =

⎛
⎜⎜⎝

Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3

Uτ1 Uτ2 Uτ3

⎞
⎟⎟⎠≡ R23(θ23)P3(δ)R13(θ13)P3(−δ)R12(θ12)

=

⎛
⎜⎜⎝

c12c13 s12c13 s13e−iδ

−s12c23− c12s23s13eiδ c12c23− s12s23s13eiδ s23c13
s12s23− c12c23s13eiδ −c12s23− s12c23s13eiδ c23c13

⎞
⎟⎟⎠ , (3.1)

where ci j ≡ cosθi j, si j = sinθi j and by convention θi j ∈ [0,π/2[ (i, j = 1,2,3) and
δ ∈ [0,2π[. θ12 is called the solar angle, θ13 the reactor angle and θ23 the

atmospheric angle. This matrix was encountered already upon examining
the weak lepton current in Eq. (2.12). For alternate parameterisation, see [83].

If neutrinos are Majorana fermions, the mixing matrix gains two additional

phases:

UM =UP1(α)P2(β), (3.2)

where α,β ∈ [0,2π[ are Majorana phases. The currently known experimental
values are listed in Table 3.1. With this notation, neutrino oscillations can be

written in a compact form:
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3.1. DERIVATION OF TRANSITION PROBABILITY

Parameter Normal hierarchy Inverted hierarchy

θ12 (◦) 33.63+0.78−0.75 33.63+0.78−0.75
θ23 (◦) 48.7+1.4−3.1 49.1+1.2−1.6
θ13 (◦) 8.52±0.15 8.55±0.14
δ (◦) 228+51−33 281+30−33

Δm2
21 (eV

2) 7.40+0.21−0.20 ·10−5 7.40+0.21−0.20 ·10−5
Δm2

3� (eV
2) 2.515±0.035 ·10−3 −2.483+0.034−0.035 ·10−3

Table 3.1: Currently known neutrino oscillation parameters with their corre-
sponding 1σ errors. For normal hierarchy �= 2 and for inverted hierarchy �= 1.
[84]

⎛
⎜⎜⎝

νe

νμ

ντ

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3

Uτ1 Uτ2 Uτ3

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ν1

ν2

ν3

⎞
⎟⎟⎠ (3.3)

Treating neutrino mass and weak interaction states as state vectors in three-

dimensional quantum mechanical Hilbert spaces, one can define

|ν�〉 ≡
3∑

i=1
U�i|νi〉, |νi〉 =

∑
�=e,μ,τ

U∗
�i|ν�〉. (3.4)

From this one can define the effective mass of flavour neutrinos:

mν�
=

3∑
i=1

∣∣U2
�i
∣∣mi. (3.5)

Flavour neutrino masses are sensitive to Majorana phases. Considering that

only mass eigenstates are eigenvalues of Hamiltonian operator, I may write the

Schrödinger equation for the state:

H|νi〉 = E|νi〉.

Time evolution is plane wave solution of it:.

|νi(t)〉 = e−iEi t|νi(0)〉 ≡ e−iEi t|νi〉 (3.6)

Using Eq. (3.4),

|ν�(t)〉 =
3∑

i=1
U�ie

−iEi t|νi〉 (3.7)
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it can be seen that the time evolution of the flavor state is just a superposition

of the time evolutions of the mass states. However it should be noted that the

neutrinos in this Chapter are considered to be ultrarelativistic, which is an

excellent approximation2. This is important, because at the ultrarelativistic

limit the momentum and energy of both the flavor and mass eigenstates of

neutrinos are the same. Using again Eq. (3.4), the time evolution of flavor state

becomes apparent:

|ν�(t)〉 =
∑

�′=e,μ,τ

(
3∑

i=1
U�ie

−iEi tU∗
�′ i

)
|ν�′ 〉 ≡

∑
�′=e,μ,τ

A��′ |ν�′ 〉. (3.8)

Here A��′ is the transition probability amplitude for the case, where a neutrino

of flavour � at time 0 has transformed to flavour �′ at time t. If a neutrino is at

pure state at t = 0, the time evolution causes the state to immediately evolve to
mixed state for t > 0. The corresponding transition probability is then

P��′ ≡ P(ν� → ν�′)≡ |A��′ |2 =
3∑

i, j=1
U∗

�iU�′ iU� jU∗
�′ je

−i(Ei−E j)t. (3.9)

These probabilities should obey unitarity conditions

∑
�

P��′ =
∑
�′

P��′ = 1. (3.10)

Violation of these conditions leads to nonunitary mixing, which is discussed

in Section 3.6. From Eq. (3.9), it can be shown that inclusion of the Majorana

phases does not affect the transition probability (see Appendix). Consequently,

oscillation experiments are insensitive to the Majorana phases, and one must

turn to, for example, neutrinoless double beta decay to determine them.

Since I assumed neutrinos are ultrarelativistic, the energy difference trans-

lates to mass difference. If E is the energy and p ≈pi ≈p j is the momentum of

a neutrino, then

Ei −E j =
√

p2+m2
i −

√
p2+m2

j ≈ |p|
(
1+ m2

i

2p2
−1−

m2
j

2p2

)
≡
Δm2

i j

2E
(3.11)

where I use notation Δm2
i j ≡ m2

i − m2
j for the difference of squared neutrino

masses. Therefore it can be also negative. Since neutrinos are ultrarelativistic,

2This does not hold with the cosmic neutrino background, but we do not consider it anyway in
this Chapter.
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after time t they have travelled a distance L ≈ t, called a baseline. The tran-
sition probability now depends only on constants of nature, neutrino energy

and baseline, and defining a dimensionless quantity Δi j = LΔm2
i j/4E, it can be

written as follows:

P��′ ≡ |A��′ |2 =
3∑

i, j=1
U∗

�iU�′ iU� jU∗
�′ je

−2iΔi j (3.12)

From this expression it is clear that the existence of neutrino oscillations requires

that there are at least two neutrinos with different masses, as the oscillation

is driven by the squared mass differences Δm2
i j. This was first discovered by

Pontecorvo in [34]. See Table 3.1 for experimental values.

The current knowledge of parameters is clearly inadequate, since the ordering

of neutrino masses is ambiguous. First, the neutrino mass hierarchy is unknown.

Also, it is unclear which octant the θ23 mixing angles does belong to: higher

(θ23 > π/4) or lower (θ23 < π/4)? Optimal baseline for the octant determination

was investigated in [85], where longer baseline was found to be more sensitive

for low luminosity neutrino beams. Interference from new physics effects to

octant determination was considered in [86]. Running behaviour of the mixing

angles and CP phase were studied in [87–89]. The CP violating phase and its

implications are discussed in Section 3.4.

Even though the oscillation parameters still have inaccuracies with varying

degree, the tribimaximal mixing (TBM) approximation is shown to be false, since

θ13 angle has been known to be nonzero since 2012 [41]. The angle is small, and

the TBM pattern approximation is useful in circumstances where the effect of

θ13 can be ignored (see next Section for examples).

Instead of hoping that PMNS matrix exhibits clear patterns corrsponding to a

particular symmetry group, it can be considered that the TBM is created by a

pattern in neutrino mass matrix and that the deviations of TBM are produced

by subleading effects. A neutrino mass matrix invariant under Z2×Z
magic
2 ×Z

μ−τ
2

symmetry can produce the TBM pattern. Here the magic symmetry group refers

to the second column of TBM matrix, where all the values are equal. The μ−τ-

symmetry (or 2−3-symmetry) refers to the third column, where theUe3 element

is zero and Uμ3+Uτ3 = 0. Invocation of these symmetries allows one or more
elements of neutrino mass and Yukawa coupling matrices to vanish. These

elements are called texture zeros. Implementing these to a neutrino mass
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model will decrease the amount of free parameters, and therefore increase the

predictability of the model.

3.2 Two flavour approximation

From an experimentalist standpoint, it is possible to tune the baseline L and

neutrino energy E. This is used to gain sensitivity for a particular oscillation

channel. With a proper choice of L and E, one can suppress all but one oscillation

channel, resulting in effective two flavour neutrino oscillation approximation.

Depending of the assumptions, the transition matrix elements may coincide with

exact two-neutrino (2ν) scenario, where the mixing matrix is R(θ) and mass

difference is Δm ≡ m2
2−m2

1. Assuming neutrino flavours � and �′, the transition
probability matrix would be(

P�� P��′

P�′� P�′�′

)
=
(
1−sin2(2θ)sin2Δ sin2(2θ)sin2Δ

sin2(2θ)sin2Δ 1−sin2(2θ)sin2Δ

)
(3.13)

where Δ≡ LΔm2

4E is dimensionless. Returning back to 3ν scenario and looking at

Eq. (3.12), the periodic exponential function can be written as e−2πiL/Li j , where

Li j ≡ Li j(E)≡ 4πE
Δm2

i j
(3.14)

is the oscillation length, providing an estimate for any neutrino oscillation ex-
periment baseline aiming to be sensitive to Δm2

i j. Defining a shorthand notation

J jk
��′ ≡U∗

� jU�′ jU�kU∗
�′k (3.15)

one can write Eq. (3.12) in the following forms:

P��′ =
3∑

i=1
Jii
��′ +2Re

∑
i> j

J i j
��′e

−2πiL/Li j (3.16)

= δ��′ −
∑
i> j

(
4sin2(Δi j)Re(J

i j
��′)−2sin(2Δi j)Im(J

i j
��′)

)
(3.17)

In most oscillation experiments, the neutrino energy can be tuned to a narrow in-

terval. For simplicity, here E is regarded as constant. Considering Δm2
21�Δm2

31,

then Δm2
31 =Δm2

32+Δm2
21 ≈Δm2

32. Therefore there are two relevant oscillation

lengths: L21 and L31 ≈ L32 � L21. In the case L � L32, baseline is too short

for the neutrino oscillation to be observable (all Δi j are zero), resulting in a
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trivial case P��′ ≈ δ��′ . On very long baseline L � L21 one is able to gain only

the averaged-out effects. Most experiments utilize GeV energy scale, result-

ing in oscillation lengths ranging from a few kilometers to a couple thousand

kilometers.

3.2.1 Small L/E region

Consider a case where L/E is small and it can be approximated that Δ21 ≈ 0.
This is the case for atmospheric neutrinos produced by high-energy cosmic ray

collisions in the upper atmosphere. Disappearance of flavour � is driven purely

by Δ32 terms. Tau neutrino cannot be detected from atmospheric channel, since

neutrino energies are too low. Assuming s13 ≈ 0.02 to be negligible, the relevant
transition probability matrix block is

Pe×μ =
(

Pee Peμ

Pμe Pμμ

)
=
(
1 0

0 1−sin2(2θ23)sin2Δ32

)
(3.18)

To maximize the prospects of detecting the muon neutrino disappearance, it

is necessary to set sin2Δ32 = 1, corresponding to a distance L = L32
(
n+ 1

2

)
,

where n ∈N. For such cases Pμμ = cos2(2θ23), allowing a measurement of mixing
angle θ23. Note that the matrix block in Eq. (3.18) is nonunitary, which is the

consequence of ignoring the tau neutrino contribution. Atmospheric neutrino

oscillations were first discovered in 1998 by Super-Kamiokande collaboration

[37], which measured θ23 and |Δm2
32|.

3.2.2 Large L/E region

Consider next a case where L/E is large. Now the effect by Δ21 cannot be ignored.

For low-energy neutrinos on keV and MeV scale, it is advantageous to measure

the electron neutrino disappearance. At such a low energy, νμ and ντ cannot

be directly seen, as the incoming neutrinos can’t produce on-shell muon or tau

leptons. Assuming sinθ13 ≈ 0, the survival probability for electron neutrino is

Pee = 1−sin2(2θ12)sin2Δ21 (3.19)

Measuring the amount of detected electron neutrinos allows then the measure-

ment of mixing angle θ12. Analogously to atmospheric neutrino case, the effect

is largest at baselines L = L21
(
n+ 1

2

)
(n ∈N). In 2002, KAMLand collaboration
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π− μ−

e− e−

W−

νe

ντ

τ+

W−νμ

νe

Figure 3.2: An example of neutrino charged current matter interactions. Elec-
trons in medium interact with the electron flavour state neutrinos in-flight
via neutrino-electron scattering. This is the origin of index of refraction for
neutrinos.

discovered that antielectron neutrinos produced in nuclear reactors oscillate

[90, 91], and measured θ12 and Δm2
12.

3.2.3 θ13 measurement

If the goal is measure θ13 angle, small L/E is favored in order to remove interfer-

ence from Δ21 term. Electron antineutrino survival probability is then

P(νe → νe)= P(νe → νe)= 1−sin2(2θ13)sin2Δ32 (3.20)

Since θ13 ∼ 9◦ is a small angle, confirming nonzero value of it took significantly
longer than for θ12 ∼ 34◦ and θ23 ∼ 45◦. Similarly to atmospheric oscillation case,
the disappearance is largest, when the baseline is L = L32

(
n+ 1

2

)
. The value of

θ13 was discovered in 2011 by Daya bay, RENO and Double Chooz collaborations

[41].

3.3 Matter effects

In previous Chapter, I covered the neutrino CC and NC interactions, where

the weak current couples to gauge bosons. From the SM point of view, neutrino

oscillations are in most cases a low energy process. At the low energy limit, it is
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Fermion gV gA

νe,νμ,ντ 1
2

1
2

e−,μ−,τ− −1
2 +2sin2θW −1

2

u, c, t 1
2 − 4

3 sin
2θW

1
2

d, s,b −1
2 + 2

3 sin
2θW −1

2

Table 3.2: Vector and axial vector coupling constants of fermions in the SM.

possible to invoke effective field theory and integrate out the W± gauge bosons,
resulting in current-current interactions3:

L CC
eff =−GF�

2
jμL jLμ =−2

�
2GF

∑
�=e,μ.τ

(νL�γ
μ�L)(�LγμνL�) (3.21)

For a derivation of above result, see Appendix A.5. Via Fierz transform, this can

be written as

L CC
eff =−2

�
2GF

∑
�=e,μ.τ

(
νL�γ

μνL�

)(
�Lγμ�L

)
(3.22)

Integrating out the Z boson, one acquires effective NC interaction:

LNC
eff =−2

�
2GF

∑
�=e,μ.τ

(
νL�γ

μνL�

)∑
f

(
f γμ

(
gf

V − gf
Aγ5

)
f
)
. (3.23)

Here gf
A and gf

V are axial and vector coupling constants of a fermion f (see Table

3.2).

In terrestrial experiments, the medium consists of electrons and u and d

quarks. For CC interactions, see Fig. 3.2. In 1977, Wolfenstein [35] calculated

the refractive index for neutrinos:

n = 1+ 2πN
|p|3 × E2−M2

16πE2 ×M (θ = 0) (3.24)

Here N is the number density of potential scatterers, p is the momentum of neu-

trino, E is the center-of-mass energy of the scattering and M (θ) is the Feynman

amplitude of the scattering as a function of scattering angle θ. Calculating this

for elastic neutrino-electron scattering leads to

n = 1−
�
2GF Ne

E
. (3.25)

3Also known as four fermion interaction or Fermi interaction.
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Neutrino momentum is |p| = nE, leading to effective matter potential

V = E−|p| =
�
2GF Ne, (3.26)

resulting in Hamiltonian operators

HCC =
�
2GF Nediag(1,0,0), HNC =

�
2GF I3

∑
f

Nf gf
V , (3.27)

where the NC operator is obtained similar to CC case. Eigenvalues of these

operators with respect to neutrino state |ν�〉 are

VCC(x)≡
�
2δe�GF Ne, VNC(x)≡

�
2GF

∑
f

Nf gf
V =−

�
2
2

GF Nn (3.28)

where Ne ≡ Ne(x) and Nf ≡ Nf (x) are electron and fermion f number densities of

the medium, respectively, at spacetime point x. In general, the CC operator would

contain also muon and tau lepton number densities, but in terrestrial neutrino

oscillation experiments, their background is negligible. Due to neutrality of

matter, proton and electron number densities are the same. Consequently the

gV contributions by protons and electrons cancel, leaving the NC operator to be

dependent only on the neutron density Nn ≡ Nn(x).

Now it is possible to construct the effective Hamiltonian in medium. At the

ultrarelativistic limit, energy of neutrino (with mass mi) can be approximated

(see Eq. (3.11)) as

E ≈ |p|+ m2
i

2|p| . (3.29)

Defining neutrino mass matrix M ≡ diag(m1,m2,m3), the effective Hamiltonian

in flavour space can be constructed:

H = EI3+ 1
2E

UM2U†+diag(VCC+VNC,VNC,VNC) (3.30)

Since during propagation, neutrino energy is constant, the EI3 and VNCI3 terms

may be removed as unphysical phase factors, since neutrino propagator has

the form e−iHL. In addition, phasing the Hamiltonian with −m2
1UU†/2E, the

Hamiltonian can be written as

HSI =
1
2E

U

⎛
⎜⎜⎝
0 0 0

0 Δm2
21 0

0 0 Δm2
31

⎞
⎟⎟⎠U†+

⎛
⎜⎜⎝

VCC 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠ (3.31)
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where the subscript SI stands for standard (neutrino) interactions in medium.

It is interesting to note that the disappearance of NC potential reflects the

irrelevance of a flavour universal potential. Now the transition probability from

Hamiltonian formalism can be written as

P��′ =
∣∣∣〈ν�′ |e−iHSIL|ν�〉

∣∣∣2 . (3.32)

3.3.1 Mikheyev-Smirnov-Wolfenstein effect

Large density in Sun’s core, where solar neutrinos are produced, indicates that

matter effects are important with solar neutrinos. Solar neutrino disapprearance

was first seen in 1968 by Homestake experiment [32], which found only 1/3 of the

expected solar νe flux. Pontecorvo [34] considered this as a hint of neutrino oscil-

lations. However, naively calculating the survival probability of solar electron

neutrinos in vacuum approximation gives Pee ≈ 0.58 [92], a clearly incompatible
result with Homestake experiment. It turns out that effective neutrino masses

and mixing angles differ significantly in medium, contributing corrections to

oscillation probabilities. These matter effects were first described by Wolfenstein

[35] in 1978 and elaborated by Mikheyev and Smirnov [36] in 1985. This reso-

nance enhancement of neutrino oscillation probabilities is presently known as

Mikheyev-Smirnov-Wolfenstein (MSW) effect, which was confirmed in 2001
by Sudbury Neutrino Observatory (SNO) collaboration [38]. The solar νμ and ντ

fluxes participate in NC interactions, but not in CC interactions. SNO discovered

the CC reaction rate to be one third of NC rate.

Since in matter the transition probability is dependent on electron density of

matter, this opens new avenues for neutrino tomography. It is possible to mea-

sure the density of Earth’s mantle with next-generation atmospheric neutrino

oscillation experiments [93] or even search oil [94]. In the case of solar neutrinos,

the day-night effect [95] refers to a case where one observes more solar neutrinos

during the night than during the day due to the matter effects.

For simplicity, consider 2ν scenario, with electron and non-electron flavours

(νe,ν�) and neutrino mass eigenvalues m1 and m2. This can be encoded to mass

matrix M′ = diag(m1,m2). Consider Hamiltonian of Eq. (3.31) in 2 dimensions

with NC current intact:

H = 1
2E

U

(
0 0

0 Δm2

)
U†+

(
VCC+VNC 0

0 VNC

)
(3.33)
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Here U = R(θ) is the neutrino mixing matrix (in vacuum) with two generations

and mixing angle θ. Mass squared difference is Δm2 = m2
2−m2

1. Performing a

phase shift, the Hamiltonian can be simplified to

H = Δm2

4E

(
−cos(2θ) sin(2θ)

sin(2θ) cos(2θ)

)
︸ ︷︷ ︸

=R(2θ)P1(π)

+
(

VCC− 1
2VCC 0

0 −1
2VCC

)

= Δm2

4E
R(2θ)P1(π)+ VCC

2
diag(1,−1)

≡ Δm2
m

4E
R(2θm)P1(π)≡ 1

2E
M2, (3.34)

where I approximated Ne ≈ Nn, resulting in VNC = −1
2VCC. M is the effective

mass matrix in medium. On the last row the Hamiltonian is reparameterised

with θm and Δm2
m, which are the effective matter mixing angle and effective

matter mass squared difference, respectively. Ergo, it is possible to treat the

matter oscillations as vacuum oscillations with different oscillation parameters.

The changes to vacuum oscillation parameters are driven by the VCC term. First,

I solve Δm2
m. The effective mass matrix

M2 = 1
2

(
−Δm2 cos(2θ)+EVCC Δm2 sin(2θ)

Δm2 sin(2θ) Δm2 cos(2θ)−EVCC

)
(3.35)

has eigenvalues

λ± =±1
2

√
(Δm2 cos(2θ)−EVCC)2+ (Δm2)2 sin2(2θ) (3.36)

and therefore the effective mass squared difference in medium is

Δm2
m ≡λ+−λ− =

√
(Δm2 cos(2θ)−EVCC)2+ (Δm2)2 sin2(2θ) , (3.37)

and dependent of the CC potential. In the vacuum limit VCC→ 0, Δm2
m →Δm2,

as expected. The next stage is to find the matter mixing angle θm. It can be

solved from the last line of Eq. (3.34), resulting in [35]

tan(2θm)= sin(2θ)

cos(2θ)− EVCC
Δm2

, (3.38)

from where one can see that θm → θ, when VCC → 0, as it should. The matter

angle can gain a value which maximizes the oscillation effects in 2ν probability

matrix in Eq. (3.13). This maximal value is π/4, and it is achieved when

cos(2θ)= EVCC
Δm2 (3.39)
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This is the MSW resonance condition [35, 36].

3.4 Leptonic CP violation

The existence of CP violation in the lepton sector can be verified by counting

the available free parameters of the neutrino mixing matrix. A general complex

n×n matrix has 2n2 free parameters. Requiring unitarity reduces the number

of parameters to n2. Number of mixing angles of a unitary matrix is equal to the

number of parameters of a orthogonal matrix of same dimension, that is n(n−1)/2.
The remaining n(n+1)/2 parameters are phase angles. However, the amount of
physical phases is lower, since 2n−1 of them can be removed by redefining the

neutrino fields. Therefore the number of physical Dirac phases is (n−1)(n−2)/2.
Since the existence of CP violation requires physical phases, at least three

generations are required. Indeed, in two generations, the mixing matrix is

simply two-dimensional rotation matrix. If neutrinos are Majorana fermions,

number of physical phases is increased by n−1. However, as discussed earlier,
these Majorana phases have no effect on neutrino oscillations. Summarising

these remarks, number of mixing angles (nA) and physical phases (nP ) are

nA = n(n−1)
2

= nMajoranaP , nDiracP = (n−1)(n−2)
2

. (3.40)

The amount of CP violation can be quantified using Jarlskog invariant [96]

J = Im J23μe = Im (Uμ3Ue2U∗
μ2U

∗
e3), (3.41)

which is parameterization-free up to sign. In the standard parameterization,

|J| = 1
8
|sin(2θ12)sin(2θ13)sin(2θ23)c13 sinδ| ≤ 1

6
�
3
, (3.42)

where the upper limit is realized by trimaximal mixing (see Eq. (1.1), where

θ12 = θ23 = π

4
, s13 = 1�

3
and |sinδ| = 1). Since trimaximal mixing is decisively

ruled out by neutrino oscillation experiments, CP violation cannot be maximal

even if the Dirac phase is ±π

2
. See Table 3.1 for experimental limits. If δ= 0 or

π, there is no CP violation in the lepton sector. However, this has been ruled

out within 2σ confidence limit [84]. Jarlskog invariant would vanish also if any

mixing angle was zero. Conversely, the angle −π

2
is favored by the current data,

with IH favoring it slightly more than NH.
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3.4.1 Contribution to baryon asymmetry of the universe

The existence of matter particles today and nonobservation of antimatter sug-

gests that a larger amount of matter than antimatter was produced in the early

universe. The amount of difference is denoted by the ratio of number densities

of baryons and photons today, ηobs ∼ 10−10. In the context of baryon-to-photon
ratio, or baryon asymmetry of the universe (BAU), there exists a dimension-12

Jarlskog-like invariant [97–99]:

J′ ∼ s12s13s23 sinδ(m2
τ−m2

μ)(m
2
τ−m2

e)(m
2
μ−m2

e)Δm2
31Δm2

32Δm2
21

≈ s12s13s23m4
τm2

μΔm2
31Δm2

32Δm2
21 ≈ 1.7×10−29 MeV12 (3.43)

where I approximated mτ � mμ � me and assumed δ=π/2. If the energy scale

where the generation of BAU is relevant is E ∼ 100 GeV, then a rough estimate
of it is

ηPMNS ∼
|J′|
E12 ∼ 10−89� ηCKM ∼ 10−20� ηobs (3.44)

from where it is seen that the contribution by massive light neutrinos to BAU is

highly suppressed by the lightness of neutrinos, and completely negligible. ηCKM
refers to the expected BAU from the quark sector. The estimation is analogous

in the CKM matrix case. Introducing extra massive neutrinos may produce the

correct value for η given a suitable mass hierarchy for them. This approach is

called leptogenesis [100], and it has been widely studied in the literature, see for

example [101–103].

3.4.2 Optimal experimental setup for CP phase

Measurement of leptonic CP phase is currently ongoing by several collaborations,

and the discovery of it might be confirmed by next-generation long baseline

neutrino oscillation experiments. The most useful channel for the CP phase

detection would be the electron-to-muon neutrino oscillation.

Leptonic CP violation can be confirmed by measuring nonzero value of differ-

ence of two probabilities:

P(νe → νμ)−P(νμ → νe)= 16Im (U∗
e1Uμ1Ue2U∗

μ2)sinΔ12 sinΔ13 sinΔ23. (3.45)

If CP is conserved, this will yield zero. Note that if the mixing matrix is real,

there is no CP violation. The goal is to plan the experiment so that the expression
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Figure 3.3: Contribution to Peμ − Pμe by CP violation as a function of L/E
assuming |sinδ| = 1. Note the use of natural units.

in Eq. (3.45) is extremized. With the exception of trivial solution L/E = 0, this
problem can be solved only numerically, the first nontrivial extremum being at

L
E

≈ 580 km
GeV

. (3.46)

The neutrino energies which can be produced for oscillation experiments are on

MeV and GeV scale. For this reason a long baseline experiment is obligatory.

If |sinδ| = 1, then the coefficient corresponds to approximately 2.7 % change to

probability Peμ compared to case sinδ= 0. See Fig. 3.3 for illustration.

3.5 Nonstandard interactions

The present 3ν oscillation framework has thus far been very successful in

describing the neutrino flavor transition. While the oscillations must be the

dominant mechanism behind it, there might be subleading effects contributing

to it. This would cause the future neutrino flavor transition data to be unfittable

to 3ν framework. This is the case in most extensions of the SM, since they often

alter the neutrino sector. This might result in new interactions which change the

standard oscillation probabilities. Invoking effective field theory, heavy degrees
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of freedom may be integrated out from the SM extension, leading to nonstandard

interaction (NSI) formalism described in this section. For recent reviews, see

[104–110].

In the low energy limit, nonstandard interactions manifest themselves as the

following Lagrangians [111, 112]

L CC
NSI =−2

�
2GFε

f f ′,C
��′ (νLαγ

μνLβ)( f γμPC f ′),

LNC
NSI =−2

�
2GFε

f ,C
��′ (νLαγ

μνLβ)( f γμPC f ).
(3.47)

It should be noted that NSI Lagrangians are nonrenormalizable dimension-6

operators and that they break SU(2)L gauge symmetry explicitly. Here summing

over chiralities (C = L,R), fermions ( f , f ′) and flavours (�,�′ = e,μ,τ) is implied.

The Lagrangians are reminiscent of Eq. (3.22) and (3.23). Indeed, the NSI La-

grangians provide correction terms to standard 3ν oscillation paradigm (the CC

NSI Lagrangian), and to creation and detection processes of neutrinos (the NC

NSI Lagrangian). The NSI parameters ε f ,C
��′ ≡ ε

f f ,C
��′ and ε

f f ′,C
��′ are dimensionless

complex numbers. Possible nonvanishing imaginary parts of these parameters

induce additional CP violation. Absolute values of the NSI parameters describe

the strength of the interaction with respect to weak interaction. As the weak

coupling GF ∼ M−2
W , then |ε| ∼

(
MW

Λ

)2
, where Λ is the scale of the high-energy

theory responsible for nonstandard interactions. Λ is expected to be at TeV scale

or higher.

In the presence of NSI in matter, effective neutrino Hamiltonian in medium is

H = HSI+
∑

f=e,u,d
Vf

⎛
⎜⎜⎝

ε
f
ee ε

f
eμ ε

f
eτ

ε
f ∗
eμ ε

f
μμ ε

f
μτ

ε
f ∗
eτ ε

f ∗
μτ ε

f
ττ

⎞
⎟⎟⎠

︸ ︷︷ ︸
=HNSI

, (3.48)

where Vf ≡
�
2GF Nf (x) is the matter potential of fermion f and ε

f
��′ ≡ ε

f ,L
��′ +ε

f ,R
��′

is the corresponding NSI parameter summed over chiralities. The ε f = (ε f
��′)

matrices are Hermitian. The total amount of matter NSI is defined as a sum

over the fermions, too:

εm
��′ ≡

∑
f
ε

f
��′

Nf

Ne
= εe

��′ +2εu
��′ +εd

��′ +
Nn

Ne
(εu

��′ +2εd
��′). (3.49)

Here neutrality of matter was presumed, resulting in Np = Ne. Note that εm is

unitary: εm
��′ = εm∗

�′� . For current experimental limits for ε
m matrix elements, see
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Constraint on Upper bound

|εm
ee −εm

μμ| 4.2

|εm
eμ| 0.3

|εm
eτ| 3.0

|εm
μτ| 0.04

|εm
ττ−εm

μμ| 0.15

Table 3.3: 90 % confidence limit upper bounds to absolute values of matter NSI
matrix elements and their differences, from [113].

Constraint on Upper bound

|εs/d
ee | 0.041

|εs/d
eμ | 0.025

|εs/d
eτ | 0.041

|εs/d
μe | 0.026

|εs/d
μμ | 0.078

|εs/d
μτ | 0.013

|εs/d
τe | 0.120

|εs/d
τμ | 0.018

|εs/d
ττ | 0.130

Table 3.4: 90 % confidence limit upper bounds to absolute values of source and
detector NSI matrix elements, from [110].

Table 3.3. Taking NSI effects into account also at the neutrino vertices, the state

vectors should be altered accordingly:

|νs
α〉 = |να〉+εs

αβ|νβ〉, 〈νd
β | = 〈νβ|+εd

αβ〈να|, (3.50)

where the superscripts s and d refer to neutrino states at source and detector,

respectively. Source and detector NSIs are related by εs
αβ

= εd∗
βα
. See Table 3.4 for

current experimental bounds for εs and εd matrix elements.
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Neutrino flavor transition probability is therefore

Pαβ = |Aαβ|2 =
∣∣∣〈νd

β |e−iHL|νs
α〉

∣∣∣2 . (3.51)

3.5.1 Zero-distance flavour transition

In the presence of NSI at source and detector, neutrino flavour in the vertex is

not determined by the corresponding charged lepton. Also, the modified neu-

trino flavour states will not form an orthonormal set of vectors in the three-

dimensional flavour space. This results in zero-distance flavour transition
(zero-distance effect), since the inner product of two does not any more simply

result in Kronecker delta. Instead, the transition amplitude for να → νβ is

Aαβ = (〈νβ|+εd
σβ〈νσ|)(|να〉+εs

αγ|νγ〉)
= δαβ+εs

αβ+εd
αβ+εd

σβε
s
ασ

= (I +εs +εd +εsεd)αβ,

(3.52)

from which the zero-distance transition matrix can be read:

A = I +εs +εd +εsεd = I +εs +εs†+εsεs† (3.53)

This results in transition probability

Pαβ = (δαβ+εs
αβ+εd

αβ+εd
σβε

s
ασ)(δαβ+εs

αβ+εd
αβ+εd

σβε
s
ασ)

∗

≈ δαβ(1+2Re (εs
αβ+εd

αβ+εd
σβε

s
ασ))+|εs

αβ|2+|εd
αβ|2+2Re (εs

αβε
d∗
αβ),

(3.54)

where O (|ε|3) terms are ignored. From this form it is apparent that the zero-

distance disappearance effect (α=β) to oscillation probabilities is of order O (|ε|)
and appearance effect (α �=β) of order O (|ε|2). To confirm this effect, a neutrino

oscillation expirement with very short baseline would be needed.

It should be noted that the transition probability may exceed 1 with the

definition of the transition amplitude given in Eq. (3.52). To get the physical

probability, proper normalisation must be done. Assuming that N is the nonuni-

tary 3×3 light neutrino mixing matrix, where the interference of NSI parameters
is included (see Section 3.6 for details), the physical transition probability is

Pαβ = Pαβ

(NN†)2αα
. (3.55)
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3.5.2 Interference from CP angle to matter NSI determination

Since the value of δ is unknown, it will severely interfere the efforts to determine

the limits for some of the matter NSI parameters. This was investigated in

Paper [1] and expanded in [114]. For earlier studies, see [115, 116]. I expand the

transition amplitude in Eq. (3.51), resulting in

A��′ =
3∑

j,k=1

L
2Eν

U� j(M2) jk(U†)k�′ +LV��′ . (3.56)

Next, I parameterise the amplitude in the following way to isolate the depen-

dence on the CP phase:

2E
L

A��′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N��′ +K��′ e−iδ, when � �= �′

N��+K�� cosδ, when �= �′

Nμτ+K (−)
μτ e−iδ+K (c)

μτ cosδ, for νμ → ντ transition

(3.57)

See Paper [1] for complete expressions of N and K functions. It is interesting to

note that since Kee = 0, the νe survival probability is independent of the CP phase

at first order of approximation. Note that the appearance and disappearance

channels have different parameterisations. The N��′ and K��′ functions are

linear functions in εm
��′ matrix elements, one at a time. The CP phase factors are

multiplied by the K��′ functions. The absolute value of the K function reflects

the CP phase measurement sensitivity. The transition probabilities for the

appearance and disappearance channels are therefore

P��′ = L2

4E2 ×
⎧⎨
⎩N2

��′ +K2
��′ +2N��′K��′ cosδ, when � �= �′

N2
��

+K2
��
cos2δ−2N��K�� cosδ, when �= �′

(3.58)

The νμ → ντ transition does not follow the above rule. CP interference is strong

in the νe → νμ and νe → ντ transitions but not in the other transitions. See

Fig. 3.4 for examples of theis interference. Until δ is measured, experiments

attempting to discover precise upper bounds for matter NSI should concentrate

on oscillation channel(s) with small interference. The magnitude of interference

can be quantified by considering relative variation of transition probability

R ≡ Pmax
��′ −Pmin

��′

Pmin
��′

, (3.59)

43



Figure 3.4: Upper plots: 90 % CL discovery reach of |εm
eμ| as a function of baseline

length for SPS (left) and DUNE (right) setups. Band thickness results from
the ambiguity of δCP , which visibly interferes with constraining NSI. Absolute
exclusion area is above the band. Dashed line in DUNE plot represents the case
δCP = 0 and dot-dashed line the case δCP = π/2. Middle plots are for |εm

ττ| and
lower plots for |εm

μτ|. Plots are from [114].



3.6. NONUNITARY MIXING

Constraint on Upper bound

αee 0.02

αμμ 0.01

αττ 0.07

|αμe| 0.010

|ατe| 0.042

|ατμ| 0.0098

Table 3.5: Current experimental upper limits of the nonunitarity of the light
neutrino mixing matrix [119]. All limits are given at 90 % C. L. confidence limit.

where Pmax
��′ and Pmin

��′ are, respectively, the largest and the smallest value the

transition probability achieves when δCP varies in the range 0 to 2π for a given

value of εm
��′ . If R � 1, the interference is small, if R ≈ 1, it is intermediate and if

R > 1, it is large.

3.6 Nonunitary mixing

If the PMNS matrix turns out to be nonunitary in the future, it could be an

indication that it would be a constituent of a larger mixing matrix, of type

(3+ s,3+ s), where s is the amount of extra neutrinos. These neutrinos would be

considered sterile, that is, being singlets with respect to the SM gauge group. In

such a case, the PMNS matrix should be modified. I will discuss such extensions

in the next Chapter. Within a reasonable degree of accuracy, PMNS matrix is

unitary, and any corrections to it will be small. Therefore it is advantageous

to parameterise the nonunitarities as a small perturbation. Consider a lower

triangular matrix [117]

α≡

⎛
⎜⎜⎝

αee 0 0

αμe αμμ 0

ατe ατμ αττ

⎞
⎟⎟⎠ . (3.60)

For alternate parameterisation, see [118]. For all the α matrix elements the

condition |α��′ | � 1 is valid (see experimental constraint from Table 3.5). Now

the new nonunitary light neutrino mixing matrix is defined N ≡ (I3−α)U . In the
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CHAPTER 3. NEUTRINO OSCILLATION

context of long baseline neutrino oscillations, the effects on neutrino propagation

by the nonunitarity neutrino mixing matrix are similar to effects induced by

nonstandard interactions in matter, when matter effects are significant. Com-

paring the Hamiltonian operator of nonstandard matter interactions (Eq. (3.48))

to nonunitary oscillations in matter (Eq. (3.31) with the replacement U 
→ N)

yields the following condition

N†

⎛
⎜⎜⎝

VCC+VNC 0 0

0 VNC 0

0 0 VNC

⎞
⎟⎟⎠N =VCCU†

⎛
⎜⎜⎝

εm
ee εm

eμ εm
eτ

εm∗
eμ εm

μμ εm
μτ

εm∗
eτ εm∗

μτ εm
ττ

⎞
⎟⎟⎠U (3.61)

One finds that the same effect can be described in these two different ways. The

εm and α parameters can be related to each other. Approximating Np ≈ Ne ≈ Nn

and eliminating an irrelevant phase, within the first order, the relation between

them is

εm
ee =−αee, εm

eμ =
1
2
α∗
μe, εm

eτ =
1
2
α∗
τe (3.62)

εm
μμ =αμμ, εm

μτ =
1
2
α∗
τμ, εm

ττ =αττ (3.63)

This interpretation should not be taken too far. One must be aware that this

approximation is valid only at long-baseline experiments with substantial matter

effects. Since nonunitarity constraints are significantly stricter than bounds

on nonstandard interaction in matter, any nonunitarity in such an experiment

wears a mask. This mask hides the identification of the source of the deviation

of the standard neutrino interactions. In contrast, any signal suggesting the

existence of matter NSI matrix elements exceeding the nonunitarity bounds

cannot be fully attributed to nonunitarity of neutrino mixing matrix. In such

a case, to obtain a true minimal amount of NSI which could be considered one

should reduce the nonunitarity bound from the detected amount of NSI.

3.7 Charged lepton oscillation

Since the flavour of charged lepton is defined by its mass, the flavour of a charged

lepton can not change. Therefore there are no charged lepton flavour oscillations.

However, charged leptons do oscillate analogous to neutrino oscillations [120]. In

neutrino oscillations, a neutrino with a definite unchanging mass propagates. In

the creation and detection processes, different charged leptons are associated in
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3.7. CHARGED LEPTON OSCILLATION

the interaction vertices (see Fig. 3.1). Analogously in charged lepton oscillations,

a charged lepton with a definite unchanging mass (and therefore, flavour) prop-

agates. In the creation and detection processes, different neutrino mass states

are associated in the interaction vertices.

There are significant obstacles in the way of a detection of charged lepton

oscillations. In order to identify the change in neutrino mass at the charged

lepton creation and detection vertices, one would need to measure neutrino

masses precisely enough to distinguish from the three mass states. While such

a feat might not be unrealistic in the future, there is another, awful problem.

Consider the longest possible oscillation length [121],

Lμe = 4πE
m2

μ−m2
e
≈ 2 ·10−11 E

GeV
cm. (3.64)

In order to have an oscillation length of ∼ 1 m, the charged leptons should have
ultra-high energies, O (1012) GeV.
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NEUTRINO MASS MODELS

It doesn’t matter how beautiful your theory is. It doesn’t matter how
smart you are. If it doesn’t agree with experiment, it’s wrong.

Richard Feynman

Long before the discovery of neutrino oscillations, neutrinos were gener-

ally thought to be massless. Today neutrino mass is one of the biggest

mysteries of particle physics, since the SM is unable to accomodate them.

There are dozens of competing models on the generation of neutrino mass. This

Chapter does not aim to list all of them. The most widely studied models belong

to seesaw playground, and I will present detailed descriptions of the three main

types of seesaw models, inverse and linear seesaw and neutrinophilic two Higgs

doublet model.

4.1 Neutrino mass terms

So far the topic of neutrino mass has repeatedly come up, and the phenomenology

of it has been thoroughly reviewed. Nevertheless I have omitted one crucial

chunk: where the neutrino Majorana mass term

− 1
2

mLLνLν
c
L +h.c. (4.1)
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4.1. NEUTRINO MASS TERMS

H H

νR

LL

Figure 4.1: A Feynman diagram of a loop correction to SM Higgs mass induced
by the inclusion of right-handed neutrinos νR in Type I seesaw theory. A similar
correction results also in Type III seesaw.

originates? A direct inclusion of the mass term is forbidden due to SU(2)L gauge

invariance. Seesaw mechanism assumes that at first such a term doesn’t exist,

but it can be generated at the effective field theory level. Using only the SM

fields, there is one possible gauge invariant dimension-5 operator (Weinberg

operator) [45],
f

ΛNP
(LTC†εH)(HTεL), (4.2)

where f is a dimensionless constant1 and C is the charge conjugation operator.

Eq. (4.2) corresponds to Majorana neutrino mass, when H acquires its VEV.

At tree-level, there are three distinct ways to generate the Weinberg operator.

This works by introducing additional heavy degrees of freedom: right-handed

neutrinos (Type I) [46–49, 51, 124], scalars (Type II) [50, 125–128] or fermions

triplets (Type III) [52]. All these seesaw types suffer from a seesaw-induced
fine-tuning problem if the new fields are too heavy: a large loop-correction

(see Fig. 4.1) for SM Higgs is induced if the seesaw scale exceeds ∼ 107 GeV [129–
131]. See Appendix A.4 for a detailed calculation. For a high-energy scale seesaw,

additional new physics must be assumed. A possible way out would be to assume

that seesaw scale resides below the scale where the level of fine-tuning becomes

unacceptable, or to invoke supersymmetry, where sneutrino loop corrections

produce cancellations, stabilising Higgs mass.

1The running of f was considered in [122, 123].
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CHAPTER 4. NEUTRINO MASS MODELS

In contrast to the left-handed neutrino mass term, Eq. (4.1), the mass term

for right-handed Majorana neutrinos

− 1
2

MRRνRν
c
R +h.c. (4.3)

does not break gauge invariance, since right-handed neutrinos are assumed to

be sterile, i.e. singlets with respect to the SM gauge symmetries. Indeed, they

have only three interaction types: gravitational interactions, mixing to active

flavours and decays. In addition, ’left-right’ -mass terms

mLRνLνR +mT
LRν

c
Rν

c
L (4.4)

may be generated by the SM Higgs mechanism when right-handed neutrinos

are included. These mass terms are of Dirac type: mLR =Y νv.

Seesaw mechanism combines two mass scales to explain the tiny neutrino

masses: the electroweak scale ΛEW ∼O (100) GeV where the SM Higgs operates

and new physics scale ΛNP, here also known as seesaw scale. Requiring the

Dirac type Yukawa coupling of neutrino mass term to be O (1), the scale of new

physics is usually considered to be very high: ΛNP�O (1010) GeV. This scale can

be pushed up to the Grand Unified Theory (GUT) scale, but not at Planck scale

O (1019) GeV, since Planck scale seesaw would generate too small active neutrino

masses. Assuming lightest neutrino mass to be mν, the Yukawa coupling will be

perturbative if

MR � 1.1×1016 GeV× 0.07 eV
mν

. (4.5)

As the Dirac and Majorana mass terms are generated by different mechanisms,

the magnitude of their matrix elements is expected to be proportional to the

electroweak and seesaw scale, respectively. Since ΛEW�ΛNP, then mLR � MRR .

4.2 Type I seesaw

Equations (4.3) and (4.4) can be combined to represent the neutrino mass terms

in the following matrix form:

(
νL νc

R

)( 0 mLR

mT
LR MRR

)(
νc

L
νR

)
(4.6)

Here one can read the symmetric mass matrix in the middle. It is in block form,

where 0 and MRR are square matrices, with dimension corresponding to the
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MRνL

H
H

νL

νR νR

Figure 4.2: Mass of light neutrinos is generated at tree-level. Integrating out
the heavy neutrino degrees of freedom, one obtains the Weinberg operator for
light Majorana neutrinos.

amount of active (three) and sterile (s ≥ 2) neutrinos, respectively2. To get the
mass matrices of the corresponding neutrinos, the mass matrix must be block

diagonalized [132] with a unitary transformation matrix U :

Mν =UT

(
0 mLR

mT
LR MRR

)
U =

(
mν 0

0 MN

)
. (4.7)

Mass matrix type is then (s+3)× (s+3), subblock mLR is 3× s, MRR and MN is

s× s and mν is 3×3. Light and heavy neutrino mass matrices are mν and MN ,

respectively. Without losing generality, the block structure ofU can be written

as follows:

U =
(

A D†

−C B†

)
, (4.8)

where A is of type 3×3, B is s× s and C and D is s×3. From unitarity condition

U†U =UU† = I the following matrix equations appear:

A†A+C†C = I AA†+D†D = I

BB†+DD† = I B†B+CC† = I (4.9)

DA−BC = 0 B†D−CA† = 0

2Case s = 2 is called the minimal seesaw.
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Substituting, additional constraints appear.

(
−AT mLRC−CT mT

LR A+CT MRRC AT MLRB†−CT mT
LRD†−CT MRRB†

−D∗mLRC+B∗mT
LR A−B∗MRRC D∗mLRB†+B∗mT

LRD†+B∗MRRB†

)

=
(

mν 0

0 MN

)

(4.10)

The matrix elements of C and D are assumed to be small, so the quadratic

terms involving these matrices may be ignored. Equating the off-diagonal block

matrices, one arrives at

C = M−1
RR mT

LR A

C = (MRR)−1T mT
LR A

from which M−1
RR = M−1T

RR ⇒ MRR = MT
RR , so MRR is symmetric. Substituting C

into eq. (4.9) we get

D = BM−1
RR mT

LR (4.11)

Once C and D are entered to the diagonalized mass matrix we obtain

Mν =
(
−AT mLR M−1

RRmT
LR A 0

0 B∗(MRR +M−1
RR m†

LRmLR +mT
LRm†

LR M−1†
RR )B

†

)
(4.12)

In the lower right block MRR � m2
LR M−1

RR , so it is justified to approximate

Mν =
(
−AT mLR M−1

RR mT
LR A 0

0 B∗MRRB†

)
(4.13)

This procedure works for any matrices A and B of the given type, as long as

for the matrix elements A,B � C,D is valid, too. Choosing A and B as unit

matrices will keep the hierarchy between block matrix elements valid, since

then C = D = M−1
RR mT

LR . With this choice, the final form of the neutrino mass

matrix is

Mν =
(
−mLR M−1

RR mT
LR 0

0 MRR

)
. (4.14)

This is usually shown as a result of Type I seesaw mechanism (see Fig. 4.2),

also known as canonical seesaw. Negative sign of the upper diagonal element
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can be removed by performing a phase rotation with respect to the neutrino

doublet. To wit, consider the following Majorana phase transformation matrix:

T = diag(eiα1 , eiα2 , eiα3 , eiα4 , · · · , eiαs+3︸ ︷︷ ︸
s

)=
(

iI3 0

0 Is

)
, (4.15)

where α1 =α2 =α3 =π/2 and α j = 0 for j > 3. Clearly T is unitary: TT† = T†T =
Is+3. Inserting the unit matrix in Eq. (4.6), the neutrino mass Lagrangian then
reads:

L m
ν =−1

2

(
νL νc

R

)
T

[
T†

(
−mLR M−1

RR mT
LR 0

0 MRR

)
T†

]
T

(
νc

L
νR

)

=−1
2

(
iνc

L νR

)
C

(
mLR M−1

RR mT
LR 0

0 MRR

)(
iνc

L
νR

)
(4.16)

=−1
2

(
νL νc

R

)( mLR M−1
RR mT

LR 0

0 MRR

)(
νc

L
νR

)
(4.17)

where C is charge conjugation operator. On the last row, the left-handed neutrino

field was redefined as νc
L 
→ −iνc

L. The seesaw mechanism elegantly relates

the lightness of active neutrinos to heaviness of sterile neutrinos, as the light

neutrino mass matrix is

mν = mLR M−1
RR mT

LR = v2Y νM−1
RRY νT (4.18)

The mechanism is named seesaw, since the product of light and heavy neutrino

masses is expected to be ∼Λ2EW. Decreasing light neutrino mass increases the

heavy neutrino mass and vice versa, resembling a seesaw-like dynamic. Invoca-

tion of seesaw mechanism leads to nonunitarity of light neutrino mixing matrix

via active-sterile mixing, which must be small due to nonobservation. Indeed, the

active-sterile mixing block element is proportional to M−1/2
N , providing a large

suppression.

4.3 Inverse and linear seesaw

In addition to adding the right-handed neutrinos νR , in inverse seesaw theories

[55–57] additional heavy singlet neutrinos (S1,S2, ...) are added to the theory.
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The mass matrix in flavor space spanned by (νL,νR ,S) is then⎛
⎜⎜⎝

0 mLR 0

mT
LR 0 MRS

0 MT
RS MSS

⎞
⎟⎟⎠ . (4.19)

The goal is to diagonalize this mass matrix as was done previously. This diagonal-

ization problem can be reduced to familiar 2×2 block case by looking only at the
lower right 2×2 block in above matrix. Assuming MSS � MRS and performing

the block diagonalization, the resulting partially block diagonalized form is⎛
⎜⎜⎝

0 mLR 0

mT
LR MRS M−1

SS MT
RS 0

0 0 MSS

⎞
⎟⎟⎠ (4.20)

Repeating this procedure for the upper left 2×2 block in above matrix, the final
mass matrix is obtained:⎛

⎜⎜⎝
mLR M−1

RS MSS M−1T
RS mT

LR 0 0

0 MRS M−1
SS MT

RS 0

0 0 MSS

⎞
⎟⎟⎠ (4.21)

This mechanism is called inverse seesaw3, because instead of postulating just

heavy fields, the inverse seesaw assumes the existence of additional light degrees

of freedom. The MSS matrix can be naturally small in ’t Hooft sense [133], if

the right-handed neutrinos have lepton number +1 and the singlet neutrinos

−1. Then the only lepton number violating term is proportional to MSS, and the

symmetry of the theory is enhanced at the limit MSS → 0.

Light neutrinos are light by double suppression (light singlets and heavy

right-handed neutrinos), reducing the preferred energy scale for sterile neutrinos

compared to the standard type I seesaw. With inverse seesaw, the seesaw scale

can be naturally at TeV scale along with keV scale singlet neutrinos, which are

favoured by present cosmological bounds [134].

Instead of postulating the existence of a small lepton number violating term,

one could assume direct mixing of active and singlet neutrinos. Linear seesaw

3In the literature, this mechanism occasionally goes by the name double seesaw, since
the neutrino masses are doubly suppressed by heavy right-handed neutrinos and light singlet
neutrinos. On the other hand, the name may refer also to amount of times needed to block
diagonalize the flavor space mass matrix to arrive at the effective light neutrino mass matrix.
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[135] was first proposed embedded in a SO(10) grand unified theory, resulting in

mass matrix ⎛
⎜⎜⎝

0 mLR mLS

mT
LR 0 MRS

mT
LS MT

RS 0

⎞
⎟⎟⎠ . (4.22)

The inclusion of the mLS term induces the breakdown of U(1)B−L symmetry. The

key feature of linear seesaw is that the neutrino mass is suppressed by SO(10)

breaking scale regardless of the B−L breaking scale, which can lie at the TeV

scale, or higher.

4.4 Neutrinophilic two Higgs doublet model

Many extensions of the SM assume an enlarged Higgs sector. The most popular of

them add an extra singlet or doublet. Singlet extension has been widely studied

in the literature due to its simplicity. On the other hand, doublet extension is very

well motivated by supersymmetric models and due to its rich phenomenology.

Here I review the doublet extension (commonly denoted 2HDM, Two Higgs

Doublet Model) with a twist.

Neutrinophilic 2HDM (νHDM) [136] aims to explain the tiny neutrino

masses without a need to use an experimentally unfeasible mass scale the

standard seesaw theories operate in. After spontaneous symmetry breaking, the

light neutrino Majorana and Dirac mass terms are often written as

mν
M = Y 2

ν v2

M
, mν

D =Yνv, (4.23)

respectively, where Yν is the neutrino Yukawa coupling and M is the mass scale

of new physics responsible for Majorana masses. If one simply adds Dirac type

neutrino masses to SM utilizing SM Higgs VEV, Yukawa coupling turns out to

be unnaturally small. Majorana type cases usually utilize a huge seesaw mass

scale, rendering the new physics phenomena unobservable. A third option is to

generate neutrino mass via an enlarged Higgs sector, here the neutrinophilic

Higgs doublet, with a tiny VEV vν of eV or keV scale.

νHDM extends the SM by a second Higgs doublet Hν and three right-handed

sterile neutrinos (νR1,νR2,νR3). However, just inserting these fields would impli-

cate a SM Higgs coupling to right-handed neutrinos and the new Higgs coupling
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to charged leptons. These couplings can be forbidden by inserting an extra sym-

metry in the model. The simplest alternatives are either a discrete Z2 parity

symmetry [137] or a global U(1) symmetry [138]. For the Z2 case, the new fields

are odd with respect to Z2 and all SM fields even. Similarly for the U(1) case,

the new fields carry a U(1) charge and all SM fields are chargeless with respect

to the new U(1) charge.

4.4.1 Higgs sector

Upon enlarging the Higgs sector, the Higgs potential takes the form

V (H,Hν)=−m2
1H†H+m2

2H†
νHν−m2

3(H
†Hν+H†

νH)+ λ1

2
(H†H)2+ λ2

2
(H†

νHν)2

+λ3(H†H)(H†
νHν)+λ4(H†Hν)(H†

νH)+ λ5

2

(
(H†Hν)2+ (H†

νH)2
)
. (4.24)

This is the most general possible Higgs potential for any 2HDM theory. It has

been shown that the vacuum is stable with this Higgs potential in νHDM against

radiative corrections [139]. The term containing factor m2
3 explicitly breaks the

extra symmetry.

It is possible to consider a case where m2
3 = 0, where the extra symmetry is

broken spontaneously. In the case of discrete symmetry, spontaneous symme-

try breaking will produce domain walls [140]. The surface energy density of

this domain wall is proportional to v3ν. This will contribute to the temperature

anisotropies of cosmic microwave background,

ΔT
T

∼ Gv3ν
H0

, (4.25)

where H0 is Hubble constant and G is Newton’s gravitational constant. Since

the observed temperature anisotropies by PLANCK are ∼ 10−5 [141], domain
walls will not contradict cosmological data if the neutrinophilic VEV is at most

O (MeV), as can be seen from Eq. (4.25). However, to maintain consistency with

CLFV decays and neutrino oscillation parameter data it has been shown that

vν �O (10) MeV [142], which contradicts the PLANCK constraint. Therefore a

Z2 conserving neutrinophilic model is ruled out. For this reason I consider the

case m2
3 �= 0, removing the CMB limitations.

There are other constraints which need to be considered. The right-handed

neutrinos must be heavy enough to fall off of thermal equilibrium during pri-
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mordial nucleosynthesis in the early universe. This follows from PLANCK con-

straints for effective number of neutrino degrees of freedom Nν = 3.15±0.23
[141], giving a constraint MνR > 100 MeV.
The mixing of the Higgs bosons is heavily suppressed by the ratio of the VEVs,

vν/v � 1, which means that the mixing can be ignored altogether. The Higgs

sector consists of charged Higgs boson H±, neutral pseudoscalar A, and two

neutral scalars h and H, where h denotes the SM Higgs. The squared masses of

the Higgs bosons are

m2
h =λ1v2 m2

H = m2
3

v
vν

+λ2v2ν

m2
A = m2

3
v
vν

−λ5(v2+v2ν) m2
H± = m2

3
v
vν

− v2+v2ν
2

(λ4+λ5) (4.26)

In general, an extended Higgs sector usually couples to electroweak gauge

bosons, providing self-energy diagram loop corrections, denoted oblique cor-

rections. These loop corrections contribute to the self-energy diagrams of elec-

troweak gauge bosons and the γ−Z mixing loop diagram, and are parameterised

by dimensionless real-valued Peskin-Takeuchi parameters (also known as
STU formalism) [143, 144]. The absolute values of these parameters mirror the

amount of deviations from SM by a BSM theory if there are no BSM gauge bosons

sensitive to electroweak interactions and that the nonoblique corrections are neg-

ligible. The experimental constraints of Peskin-Takeuchi parameters translate

to constraints in νHDM Higgs sector. This was studied in Paper [3], where it was

found out that only a relatively small mass gap Δm ≡ |mH± −mH/A|� 100 GeV
is consistent with the current bounds [145] for the Peskin-Takeuchi parameters.

4.4.2 Neutrino sector

Once the extra symmetry imposed by νHDM is broken by neutrinophilic VEV

at TeV energy scale or higher, neutrinos acquire their mass. The relevant La-

grangian is

ΔL =Y ν
i jLiHννR j + 12MR

i jνR iνR j +h.c., (4.27)

where the Yukawa terms are responsible for Dirac neutrino mass term after the

spontaneous symmetry breaking. νHDM does not predict texture for neutrino

Yukawa coupling matrices. Nonstandard interactions arising from low-energy

limit were studied in [146]. The second term in Eq. (4.27) is the Majorana mass
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term. From equation (4.27) it can be seen that after spontaneous symmetry

breaking, the Dirac mass is given by

mD ≡ mLR =Y νvν. (4.28)

The notation introduced should be reminiscent of Type I seesaw framework.

Following the usual seesaw procedure, the 6×6 neutrino mass matrix is then
block diagonalized, giving the light neutrino 3×3 mass matrix:

mν = mLR M−1
RR mT

LR ≡UT mdiag
ν U (4.29)

where U is the PMNS mixing matrix and mdiag
ν = diag(m1,m2,m3) is the diago-

nal light neutrino mass matrix. Going beyond tree level, it is seen that one-loop

H and A corrections to light neutrino masses may be large enough to contradict

present experimental data [147, 148]. The loop contributions cancel out exactly

if mH = mA [149], which can be accomplished by setting λ5 = 0 in the Higgs
potential.

4.4.3 Collider phenomenology

Since νHDM contains charged Higgs bosons, they can be produced and detected

with LHC. There are extensive studies constraining the mass of charged Higgses

[150–152], but these studies assume that they couple to quarks. Since the νHDM

extended Higgs sector is leptophilic, these constraints do not apply. Possible

decay modes of H± are

H± →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
νR�

±

HW±

AW±,

(4.30)

where �= e,μ,τ. Under the assumption that νHDM Higgs sector is observable

at the LHC, the Higgs boson and right-handed neutrino masses should lie at

100 — 1000 GeV scale. This forces the neutrino Yukawa coupling to be small,

but it will not worsen the flavour problem. If Δm > MW , the branching ratio of

H± to HW± and AW± decay modes dominates, since H+ can decay to on-shell
W boson. Nonetheless, decay via virtual W boson dominates even if 50 GeV

�Δm < MW , since the decay via νR�
± is suppressed by small Yukawa couplings.

At Δm < 50 GeV, νR�
± is the dominant decay mode [3].
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Neutrino Number of events
mass hierarchy 6L 5L SS3L

Normal 8 84 83

Inverted 25 199 85

SM background 0 2 1

Table 4.1: Adapted from Paper [3]. Number of six-lepton (6L), five-lepton (5L)
and same sign trilepton (SS3L) states seen in 13 TeV center-of-mass energy
LHC with 1000 fb−1 integrated luminosity with different neutrino mass hierar-
chies. The contribution by SM background is on the last row. For corresponding
neutrinophilic scalar masses, see text.

Resulting right-handed neutrinos, neutral Higgs bosons and W bosons are

unstable, and produce more leptons, which results in an excess of multilepton

states: particularly six-lepton, five-lepton and same-sign trilepton (SS3L) signals

would be seen significantly more than the SM predicts at the LHC. Of these

signal regions, same-sign trilepton signal has the largest cross section, and it is

therefore the most promising signal to search for. In all decay modes, the amount

of multilepton states is larger for inverted neutrino mass hierarchy, since the

corresponding branching ratio for H± → e±νR is larger for IH. This provides an

indirect hint on neutrino mass hierarchy, since the high electron multiplicity

events are more frequent for IH [3].

To obtain useful benchmark points, we scanned through the parameter space

for the masses of neutrinophilic scalars in different signal regions for LHC with

13 TeV center-of-mass energy. The five- and six-lepton signals are largest at

small mass gaps. In contrast, SS3L signal cross section is lower for small Δm,

while obtaining largest values at Δm ≥ MW , with on-shell W boson. As expected,

the signal cross sections drop, when the scalar masses increase or end-state

lepton multiplicity increases. We performed the same analysis for a 1 TeV center-

of-mass energy electron-positron collider, and obtained similar results. With

latter collider analysis, the cross section sinks significantly slower at low scalar

masses, and significantly faster at high scalar masses. All signal regions have

tiny SM background contamination, which turns out to be small enough to be

safely neglected.

In [3], we have chosen one particular benchmark point such that mH± =
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188.5 GeV and mH/A = 187.5 GeV. To promote the decay mode via heavy neutri-
nos, we chose the right-handed neutrino to be much lighter than the charged

neutrinophilic scalars (mνR = 100 GeV) and a small mass gap Δm. With 1000 fb−1

integrated luminosity, we obtained a significant amount of events, see Table 4.1,

which elucidates the cleanliness of the chosen signal regions for this benchmark

point.

4.5 Type II seesaw

Instead of postulating heavy right-handed neutrinos and integrating them out

as was done in the previous section, an extended Higgs sector may be presumed.

Since neutrino masses are so light, one may conjecture that vastly different

mass scales are generated by different Higgs bosons. Seesaw models with new

Higgs fields are called Type II seesaws [50, 125–128].
The Weinberg operator can be produced also by integrating out a BSM scalar

field. Since the combination ννc has hypercharge 2, one could instead couple

the neutrino to a scalar with hypercharge −2. In Type II theories by default
one scalar SU(2) triplet is added, but there are also proposals which extend the

Higgs sector with one or more SU(2) doublets. The inclusion of extra scalars

leads to

1. contribution to the SM Higgs self-interaction

2. contribution to masses of electroweak gauge bosons and SM Higgs

3. contribution to charged lepton flavor violating decays

4. nonstandard neutrino interactions

5. neutrino masses

4.5.1 Higgs sector

I will present the default case, where the SM is extended with only a scalar

triplet Δ= (Δ1,Δ2,Δ3)∼ (3,2). In some cases, a lepton number L =−2 is assigned
to Δ. This would preserve the lepton number symmetry in Majorana mass term.

The scalar sector of the Lagrangian is then significantly more complicated than
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in SM:

Lscalar = (DμH)†(DμH)+Tr
[
(DμΔ)†(DμΔ)

]
+Y νLT

LCiσ2ΔLL −V (H,Δ) (4.31)

Here V is the Higgs potential, Y ν is neutrino Yukawa matrix, C is charge

conjugation operator, and the triplet is presented as a bidoublet form

Δ= 1�
2
σiΔi = 1�

2

(
Δ3 Δ1− iΔ2

Δ1+ iΔ2 −Δ3

)
≡
(
Δ11 Δ12

Δ21 Δ22

)
(4.32)

The covariant derivative of Δ is

DμΔ= ∂μΔ+ ig2
[
τ ·Wμ,Δ

]+ ig1YΔBμΔ/2 (4.33)

where YΔ = 2 is the hypercharge of the triplet. The Higgs potential in Eq. (4.31)
is

V (H,Δ)=−m2
H H†H+λ

4
(H†H)2+M2

ΔTr(Δ
†Δ)+

(
λφ HT iσ2Δ†H+h.c.

)
, (4.34)

where λφ is dimension-1 coupling. Corresponding term contributes to SM Higgs

quartic self-interaction (see Fig. 4.3.d). The next stage is to find out the electric

charges of the triplet using Gell-Mann–Nishijima -formula (Eq. 1.26):

QΔ= [τ3,Δ]+ Y
2
Δ=

(
+Δ11 +2Δ12
0 ·Δ21 +Δ22

)
=
(
1 2

0 1

)
�Δ (4.35)

Here � refers the Hadamard product for matrices. The charges of corresponding
fields in units of e are easily read from the decomposed form. Hence I define

Δ1− iΔ2 =
�
2Δ++, Δ1+ iΔ2 =

�
2Δ0, Δ3 =Δ+, (4.36)

arriving at the following bidoublet form

Δ=

⎛
⎜⎝

Δ+�
2

Δ++

Δ0 − Δ+�
2

⎞
⎟⎠ VEV
−→

(
0 0

v′ 0

)
, (4.37)

where v′ is the VEV of the triplet Higgs. The explicit form of it can be found by

considering the effective Higgs potential, where H has acquired a VEV but Δ

has not:

V (v,Δ)=−1
2

m2
Hv2+ λv4

16
+M2

ΔTr(Δ
†Δ)

+
⎛
⎝λφ

(
0 v

)( 0 1

−1 0

)
1�
2

(
Δ+ �

2Δ++
�
2Δ0 −Δ+

)† (
0
v

)
+h.c.

⎞
⎠ (4.38)

= M2
Δ

(|Δ++|2+|Δ+|2+|Δ0|2)−v2λφΔ
0∗ −v2λφΔ

0+constant (4.39)
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Minimizing the potential, the VEV of Δ0 is solved:

∂V (v,Δ)
∂Δ0∗

= 0⇒〈Δ0〉 ≡ v′ =λφ
v2

M2
Δ

(4.40)

The triplet VEV v′ will contribute to electroweak gauge boson masses. The SM ρ

parameter is then shifted (see Appendix A.3 for details):

ρ ≡ M2
W

M2
Z cos

2θW
=
1+2

(
v′

v

)2

1+4
(

v′

v

)2 . (4.41)

In the SM ρ = 1 exactly at the tree level. The experimental limits are quite strict,
which implicates a low VEV of the neutral component of the scalar triplet with

respect to SM Higgs VEV v ≈ 246 GeV. Indeed, for ρ = 1.00037±0.00023 [153]
the triplet VEV is at most 4.3 GeV. The measured value corresponds to 1.6σ

deviation from the SM prediction. The triplet VEV might not lie at the GeV

scale, but could be naturally small to account for tiny neutrino masses, which

are given by light neutrino mass matrix

mν =−Y νv′ = −Y νλφ
v2

M2
Δ

. (4.42)

Similar to Type I seesaw, the troubling negative sign may be removed by phase

redefinition. Neutrino masses would be suppressed by a small coupling Y ν or

λφ or heaviness of triplet Higgs, or by a combination of these. If the triplet is

assigned with L = −2, the only term in the Lagrangian which would violate

lepton number conservation would be proportional to the coupling λφ. Since at

the limit λφ → 0 the symmetry of the theory would be enhanced, it could be

naturally small in ’t Hooft sense [133], providing a natural reason for lightness

of neutrinos. Direct searches for Δ in colliders have produced a lower bound

MΔ � 750 GeV [154]. Additional constraints for parameters MΔ and λφ were

considered in Paper [2].

In this Section, the triplet scalars were assumed to be mass degenerate. This

turns out to be a good approximation, since the mass gap |Δm| ≡ |mΔ++ −mΔ+|
is not allowed to be larger than ∼ 40 GeV due to the constraints given by

Peskin-Takeuchi parameters [155, 156].

Even though Type II seesaw solves many problems and provides exciting

opportunities for collider and neutrino oscillation phenomenology, it is not perfect.
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(c) Four-lepton NSI (d) SM Higgs self-coupling

Figure 4.3: Tree-level Feynman diagrams for interactions between neutrinos
ν, leptons � and the Standard Model Higgs scalar φ, and are mediated by the
triplet Higgs fields Δ.

The tree-level correction to the SM Higgs mass is small in Type II seesaw:

m2
H = λ

4
v2−

�
2λφv′ =

(
λ

4
−
�
2λ2φ
M2

Δ

)
v2 (4.43)

However, loop-level corrections can be large, as was mentioned in Sec. 4.1.

4.5.2 Yukawa sector

Written in terms of component fields, the Yukawa terms from Eq. (4.31) take the

form

L =Y ν
αβ LT

αL C iσ2ΔLβL +h.c.

=Y ν
αβ

[
Δ0νC

αR νβL − 1�
2
Δ+

(
�C
αR νβL +νC

αR �βL

)
−Δ++�C

αR �βL

]
+h.c., (4.44)

which correspond to the Feynman diagrams shown in Fig. 4.3.a, 4.3.b and 4.3.c.

Currently neutrino flavor transition is in excellent agreement with the 3ν

oscillation framework, but there is still room for moderately large subleading

effects. Unfortunately Type II -model does not provide any hints for texture

or patterns on neutrino mixing matrix. This stems from elements of Yukawa
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coupling matrix Y ν, which are arbitrary. It is possible to integrate out the heavy

scalar to produce the low-energy Lagrangians, resulting in

L m
ν = Yαβλφ v2

M2
Δ

(
νC
αR νβL

)
=− (mν)αβνC

αR νβL, (4.45)

LNSI =
YσβY †

αρ

M2
Δ

(
ναLγμνβL

) (
�ρLγμ�σL

)
, (4.46)

L4� =
YσβY †

αρ

M2
Δ

(
�αLγμ�βL

) (
�ρLγμ�σL

)
, (4.47)

which are low-energy versions of Fig. 4.3.a, Fig. 4.3.b and Fig. 4.3.c, respectively

[157–160]. Running of the model parameters was studied in [158]. CLFV decays

induced by four-lepton NSI were studied in [161]. Solving Yukawa matrix ele-

ment Yαβ from Eq. (4.45), inserting it to Eq. (4.46) and comparing it to Eq. (3.47),

the NSI coupling constant can be solved for left-handed leptons:

ε
ρσ

αβ
=− M2

Δ

2
�
2 GF v4λ2φ

(mν)σβ (m†
ν)αρ, (4.48)

This relation allows to interpret the neutrino NSI bounds as bounds on
MΔ

λφ
,

which is dimensionless. See Fig. 4.4 for such bounds. Neutrino NSI gives an upper

bound O (1012). Combining the lower bound for MΔ by CMS collaboration[154],

lower bound for trilinear coupling from neutrino NSI is |λφ| > 31 meV [2].

4.6 Type III seesaw

It turns out that there is a third way of accommodating tiny neutrino masses at

tree-level. As in Type I and II cases, Type III seesaw [52] is a simple extension:

add a hyperchargeless fermion triplet field Σ= (Σ1,Σ2,Σ3)∼ (3,0) to the SM. The
relevant Lagrangian of Type III seesaw mechanism is

L =Tr(Σi��DΣ)− 1
2
Tr(ΣMΣΣ

c +ΣcM∗
ΣΣ)︸ ︷︷ ︸

Majorana mass

−H
′†Σ

�
2YΣL︸ ︷︷ ︸

Yukawa

+h.c., (4.49)

where similar to Eq. (4.32), Σ is presented as a bidoublet:

Σ= 1�
2
σiΣi = 1�

2

(
Σ3 Σ1− iΣ2

Σ1+Σ2 −Σ3

)
≡
(
Σ11 Σ12

Σ21 Σ22

)
(4.50)
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Figure 4.4: Bounds for MΔ/|λφ| as function of the lightest neutrino mass for NH
(solid lines) and IH (dashed lines). The white region is excluded at 90% CL when
m1. The yellow region shows the values which are sensitive to DUNE. The green
region is insensitive to DUNE but is distinguishable from nonunitarity effects. A
signal from the blue region could be misinterpreted as matter NSI effect. This
plot is from Paper [2].
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Figure 4.5: Tree-level realization of light Majorana neutrino mass term in Type
III seesaw mechanism. At low-energy limit this Feynman diagram produces
Weinberg operator.
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Using Gell-Mann–Nishijima -formula, the electric charges can be determined:

QΣ= [τ3,Σ]+ Y
2
Σ=

(
0 ·Σ11 +Σ12
−Σ21 0 ·Σ22

)
=
(
0 1

−1 0

)
�Σ (4.51)

Now the Σ fields can be defined by their charge:

Σ3 =Σ0, Σ1∓ iΣ2 =
�
2Σ± (4.52)

The first (kinetic) term in Eq. (4.49) contains interactions, which couple Σ to

W and Z bosons. Ergo, Σ fermions can be produced by colliders. Current direct

search bounds from LHC imply MΣ > 840 GeV [162].
The Yukawa term in Eq. (4.49) induces mixing between Σ± and charged

leptons �± and also between Σ0 and neutrinos ν, with mixing strength YΣv/MΣ.

This will generate flavour violating vertices, producing CLFV decays, like μ→ eγ.

The effect corresponds to nonstandard interactions at source and detector,

εs = v2

2
Y †
Σ(M

†
ΣMΣ)−1YΣ � 1. (4.53)

CLFV decays provide stricter limits than direct search bounds. Model-independent

CLFV limits can be found from Table 3.4. These constraints provide most strin-

gent limit for triplet mass: MΣ > 200 TeV.
Neutrino mass generation is similar to Type I case (see Fig. 4.5). The neutrino

mass Lagrangian is identical to Eq. (4.6), with MRR 
→ MΣ. Then following the

derivation of light neutrino mass matrix in Section 4.2 results in

mν ∼
Y 2
Σv2

MΣ
, (4.54)

which is analogous to Eq. (4.18). As in Type I case, the mass term breaks lepton

number and light neutrino mixing matrix will be nonunitary due to ν−Σ0 mixing.
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5
CONCLUSIONS AND OUTLOOK

The saddest aspect of life right now is that science gathers knowledge
faster than society gathers wisdom.

Isaac Asimov
Isaac Asimov’s Book of Science and Nature Questions (1988)

Arguably, this is the dark age of particle physics. Quantum field the-

ory and the SM have been rigorously tested and no significant deviations

have been measured. However, as stated in Section 1.3, black clouds

have been gathering on top of our heads, namely dark matter, inflation, strong

CP problem, hierarchy problem, Higgs mass instability and so on. There might

be a desert between the electroweak scale and GUT scale, meaning that we will

find new interactions only in the distant future, when we go up 14 degrees of

magnitude on the energy scale. BSM particle theorists are increasingly cornered.

They have retreated to speculate an endless amount of increasingly exotic theo-

ries, adressing a small amount of anomalies of the SM. There is not a theory in

sight which would smash all the problems of the SM altogether. But is everything

so hopeless?

Albert Michelson, known from Michelson-Morley experiment, famously said

in 1894:

"...it seems probable that most of the grand underlying principles
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have been firmly established [...] the future truths of physical science

are to be looked for in the sixth place of decimals."

This mirrors the situation today in 2018. Many predictions of QFT and the

SM have been tested to tenth place of decimals. Soon after Michelson’s speech,

Röntgen rays, radioactivity, quantization of light, Zeeman effect and many other

phenomena were discovered, and it would take several decades of work of several

physicists to unravel the mysteries of these phenomena in the modern language

of quantum mechanics and QFT. I expect the same thing happen here in the

next two decades, and I expect the neutrino sector to play a crucial role due to

several unsolved problems related to it.

It is almost certain that a powerful long-baseline neutrino experiment will

begin operation in near future. Such an experiment will be able to distinguish the

neutrino mass hierarchies and atmospheric octant angle and measure leptonic

CP violating angle. 0ν2β decay experiments will be able to distinguish neutrino

Dirac and Majorana masses. Also, next-generation tritium beta decay electron

energy measurements will be able to measure the absolute masses of neutrinos.

Neutrino charge radius can also be measured in the near future. For some

oscillation parameters, the experimental errors are already small enough to

characterize neutrino physics entering a new era - a precision era.

This thesis is a tribute for all the hard work that has been done. I have ex-

tensively considered the possibilities of measuring matter NSI in long baseline

neutrino oscillation experiments and using it as a tool for deriving constraints

from Type II seesaw framework. I have also analyzed the properties and con-

straints of neutrinophilic two Higgs doublet model.

After measuring phenomena predicted by the SM extended by three light mas-

sive neutrinos with increasing precision, the road is open for a more speculative

territory of measuring possible anomalies of neutrino oscillation, measuring a

large value of magnetic moment of neutrinos, detecting cosmic neutrino back-

ground and perhaps finding hints of leptogenesis or right-handed neutrinos. In

fact, there are several tantalizing oscillation anomalies hinting at the existence

of sterile neutrinos. For example, see [163]. It is too early to say whether these

anomalies are statistical fluctuations or the winds of new beginnings.
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A.1 Definitions

• Pauli spin matrices:

σ1 =
(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.1)

In addition I define τ j =σ j/2 and σ0 =σ0 = I2, σ j =−σ j ( j = 1,2,3). The τ
matrices are SU(2) group generators.

• Gamma matrices:

γμ =
(
0 σμ

σμ 0

)
, γ5 = iγ0γ1γ2γ3 (A.2)

• Projection operators:

PL = 1
2
(I −γ5), PR = 1

2
(I +γ5) (A.3)

• SU(2) group generators in 3×3-representation:

T1 = 1�
2

⎛
⎜⎜⎝
0 1 0

1 0 1

0 1 0

⎞
⎟⎟⎠ , T2 = 1�

2

⎛
⎜⎜⎝
0 −i 0

i 0 −i

0 i 0

⎞
⎟⎟⎠ , T3 =

⎛
⎜⎜⎝
1 0 0

0 0 0

0 0 −1

⎞
⎟⎟⎠

(A.4)
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• Gell-mann matrices:

λ1 =

⎛
⎜⎜⎝
0 1 0

1 0 0

0 0 0

⎞
⎟⎟⎠ , λ2 =

⎛
⎜⎜⎝
0 −i 0

i 0 0

0 0 0

⎞
⎟⎟⎠ , λ3 =

⎛
⎜⎜⎝
1 0 0

0 −1 0

0 0 0

⎞
⎟⎟⎠ , (A.5)

λ4 =

⎛
⎜⎜⎝
0 0 1

0 0 0

1 0 0

⎞
⎟⎟⎠ , λ5 =

⎛
⎜⎜⎝
0 0 −i

0 0 0

i 0 0

⎞
⎟⎟⎠ , λ6 =

⎛
⎜⎜⎝
0 0 0

0 0 1

0 1 0

⎞
⎟⎟⎠ ,

λ7 =

⎛
⎜⎜⎝
0 0 0

0 0 −i

0 i 0

⎞
⎟⎟⎠ , λ8 = 1�

3

⎛
⎜⎜⎝
1 0 0

0 1 0

0 0 −2

⎞
⎟⎟⎠

Gell-Mann matrices are SU(3) group generators.

• Levi-Civita-symbol of n > 1 dimensions has n indices, defined with ε1···n = 1
and antisymmetricity of the indices. In the case where at least two indices

are the same, the symbol is zero. In two dimensions, it has a matrix form

(ε) jk = iσ2 =
(
0 1

−1 0

)
(A.6)

In three dimensions, they form the structure constants of SU(2) group.

Contracting Levi-Civita with a symmetric tensor yields zero.

• SU(3) structure constants:

f123 = 1 (A.7)

f147 =− f156 = f246 = f257 = f345 =− f367 = 12
f458 = f678 =

�
3
2

All the other nonzero f i jk (i, j,k = 1, · · · ,8) can be inferred from these by

permutation and utilizing antisymmetricity.

• Rotation matrix in two dimensions in counterclockwise direction through

and angle θ reads

R(θ)=
(
cosθ −sinθ
sinθ cosθ

)
(A.8)

These matrices form the rotation group SO(2). Notably R(θ)−1 = R(−θ).
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• Rotation matrices in three dimensions are defined

R1(θ)≡ R23(θ)=

⎛
⎜⎜⎝
1 0 0

0 cosθ −sinθ
0 sinθ cosθ

⎞
⎟⎟⎠ (A.9)

R2(θ)≡ R13(θ)=

⎛
⎜⎜⎝

cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

⎞
⎟⎟⎠ (A.10)

R3(θ)≡ R12(θ)=

⎛
⎜⎜⎝
cosθ −sinθ 0

sinθ cosθ 0

0 0 1

⎞
⎟⎟⎠ (A.11)

In the one-index notation the subscript defines the rotation axis (with 1,

2 and 3 corresponding to x1, x2 and x3, respectively). Two-index notation

defines the rotation plane: with Ri j the rotation is confined to xix j-plane.

These matrices form the rotation group SO(3).

• Phase matrices in three dimensions are defined

P1(θ)= diag(eiθ,1,1), P2(θ)= diag(1, eiθ,1), P3(θ)= diag(1,1, eiθ),

(A.12)

where the index corresponds to the placement of the phase factor on the

diagonal. Note also that for any j, P j(0)= I and P j(θ)−1 = P j(−θ).

A.2 Oscillation probability insensitivity to
Majorana phases

Let U be neutrino mixing matrix without Majorana phases. Transition probabil-

ity for oscillation ν� → ν�′ is

P��′ =
∣∣∣∣∣
3∑

i=1
U∗

�iU�′ i e−iEiL

∣∣∣∣∣
2

(A.13)

where Ei is neutrino energy and L its baseline. Majorana phases can be added

by performing Majorana transform

U 
→U ·diag(1, eiα1 , eiα2 ), (A.14)
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where diag(1, eiα1 , eiα2 )≡ D. Clearly |Di j| = δi j. On element-level Majorana trans-

form is

Ui j 
→UikDk j =Uikδ jkDk j =Ui jD j j. (A.15)

Therefore the matrix element product in transition probability transforms as

U∗
�iU�′ i 
→U∗

�iD
∗
iiU�′ iDii =U∗

�iU�′ i (A.16)

where DiiD∗
ii = |Dii|2 = δ2ii = 1. Therefore P��′ is invariant in Majorana trans-

form and Majorana phases do not enter to transition probability expressions of

neutrino oscillation.

A.3 Electroweak gauge boson masses in Type II
seesaw

Covariant derivative of Δ= (Δ++Δ+Δ0)T is

DμΔ= (
I3∂μ− ig2T ·Wμ− ig1BμYΔ

)
Δ (A.17)

= ∂μΔ−

⎛
⎜⎜⎝

g2W3
μ + g1Bμ gW−

μ 0

g2W+ g1Bμ gW−
μ

0 g2W+
μ −g2W3

μ + g1Bμ

⎞
⎟⎟⎠Δ, (A.18)

where T j are the SU(2) group generators in 3×3 representation. Since the
charged fields do not gain a VEV, they will not affect the masses of W and Z

bosons. Therefore I replace Δ by the form of the triplet after it has acquired its

VEV,

〈Δ〉 = 1�
2

⎛
⎜⎜⎝

0

0

v′ +Δ0
′

⎞
⎟⎟⎠ . (A.19)
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Now looking at kinetic term and considering only terms relevant mass correc-

tions of W and Z bosons,

(DμΔ)†(DμΔ)= (0 0 1)

⎛
⎜⎜⎝

g2W3
μ + g1Bμ gW−

μ 0

g2W+ g1Bμ g2W−
μ

0 g2W+
μ −g2W3

μ + g1Bμ

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

g2W3
μ + g1Bμ gW−

μ 0

g2W+ g1Bμ gW−
μ

0 g2W+
μ −g2W3

μ + g1Bμ

⎞
⎟⎟⎠
†⎛⎜⎜⎝

0

0

1

⎞
⎟⎟⎠
(

v′ +Δ0
′

�
2

)
+·· ·

(A.20)

= v
′2

2

(
g2W+

μ W−
μ + (g21+ g22)ZμZμ

)
+·· · , (A.21)

where the corrections for mass terms can be read:

Δm2
W = 1

2
g22v

′2 Δm2
Z = 1

2
(g21+ g22)v

′2 (A.22)

⇒ m2
W = g22

(
1
4

v2+ 1
2

v
′2
)

m2
Z = (g21+ g22)

(
1
4

v2+ 1
2

v
′2
)
. (A.23)

The ρ parameter in Type II seesaw is therefore (note: cos2θW = 1+ (g1/g2)2):

ρ ≡ m2
W

m2
Z cos

2θW
=
1+2

(
v′

v

)2

1+4
(

v′

v

)2 . (A.24)

Solving this with respect to the fraction of VEVs, one obtains

v′

v
=
√

ρ−1
4−2ρ =

√
ρ−1
2

(
1+ 1

2
(ρ−1)+ 3

8
(ρ−1)2+·· ·

)
(A.25)

where on the last stage the expression is expanded as binomial series, centered

on ρSM = 1.

A.4 Fine-tuning of Higgs mass in seesaw theories

The correction to Higgs mass can be calculated from a Feynman loop diagram,

Fig. 4.1, where a SM lepton with mass m and heavy neutrino (Type I) or fermion

(Type III) with mass M � m produce it. I approximate Higgs momentum p to

be low and SM lepton mass negligible. Relevant Yukawa coupling is Y . The
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amplitude of loop diagram is then calculated. Symmetry factor of the diagram is

S =−1 (negative sign from fermion loop).

A =−Y 2

2
S−1

∫
d4k
(2π)4

Tr
(
(�p−�k)+M
(p−k)2−M2 ·

�k+m
k2−m2

)
(A.26)

Performing Feynman parameterization to the above integral and changing vari-

ables to �= k− xp, the integral is transformed to

A = Y 2

2

1∫
0

dx
∫

d4�
(2π)4

(
�2

(�2+Δ)2
+ N
(�2+Δ)2

)
= Y 2

2

1∫
0

dx(I1+ I2) (A.27)

where Δ=−x2p2+xp2+(m2−M2)x−m2 and N = x2p2−xp2−Mm. Using cutoff

regularization (with Λ being the seesaw scale), the integrals I1 and I2 can be

calculated:

I1 ≡
∫

d4�
(2π)4

�2

(�2+Δ)2
=
∫

dΩ4

∫
d�
(2π)4

(
�+ 2Δ

�

)
(A.28)

I2 ≡
∫

d4�
(2π)4

N
(�2+Δ)2

= N
∫

dΩ4

∫
d�
(2π)4

1
�

(A.29)

Here I grabbed only the divergent part of the integrals.
∫

dΩ4 = 2π2 is the area
of a four-dimensional unit sphere. Combining the momentum integrals I1 and

I2, one gets

I1+ I2 = 1
8π2

Λ∫
M

d�
(
�+ 2Δ+N

�

)
= 1
8π2

(
Λ2+ (2Δ+N) ln

Λ

M

)
(A.30)

Performing the parameterization integral, one arrives at

A = Y 2

2

1∫
0

dx
1
8π2

(
Λ2+ (2Δ+N) ln

Λ

M

)
(A.31)

= Y 2

16π2

(
Λ2+

(
p2

6
−m2−M2−mM

)
ln

Λ

M

)
(A.32)

≈ Y 2

16π2

(
Λ2+M2 ln

M
Λ

)
, (A.33)

where on the last step I neglected terms involving p and m, being small compared

to M.
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A.5 Effective field theory

Any theory proclaiming to describe reality at high-energy scale must reduce to

SM interactions at low-energy limit. Taking a low-energy limit of a high-energy

theory produces a corresponding effective field theory (EFT), which describes
the phenomenology at an energy scale easier to access. This means that the SM

itself is considered an effective theory. Here I briefly present some basic tools of

EFT and a couple of illuminating examples. Low-energy Lagrangians of Type II

seesaw and seesaw mass terms introduced in Chapter 4 can be derived using

EFT. For reviews of EFT, see [164–167].

Upon applying an EFT, one must be aware of the validity region. Every EFT

breaks down at sufficiently large energy scale. Effective operator of dimension

d > 4 with cutoff scale Λ will predict scattering amplitudes proportional to(
E
Λ

)d−4
, where E is the center-of-mass energy. At high enough E, the cross

sections will eventually break unitarity bounds, rendering the predictive power

of an EFT worthless. Once
E
Λ

=O (1), one must abandon the corresponding EFT.

From a BSM perspective the total EFT Lagrangian contains operators with

d > 4:
L =LSM+ O5

Λ
+ O6

Λ2
+·· · (A.34)

It should be noted that such high-dimensional operators are nonrenormalizable,

even if the original high-energy operators are not.

A.5.1 Propagator expansion

The first step in propagator expansion technique is to write a full amplitude

of tree-level scattering involving a heavy field mediator, with mass M. This

heavy field provides momentum transfer, which must be small at E � M. The

momentum transfer is put to zero, producing a point interaction amplitude

corresponding to an effective Lagrangian.

The best way to elucidate propagator expansion is via a concrete example.

Consider the μ− decay amplitude in the SM, Fig. A.1. It has the form

A(μ− → νμνe e−)=
(

ig2�
2

)2
(eγμPLνe)

−igμν

p2−M2
W
(νμγνPLμ). (A.35)

At the low energy limit, the momentum transfer p by the W boson is negligible,

and the denominator of the W propagator can be replaced by simply −M2
W . In
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μ−

νμ

W−

νe

e−

μ−

νμ

νe

e−

Figure A.1: Left diagram represents the μ− decay in the SM. At low energy,
the scattering amplitude and muon decay width can be calculated within zero
momentum transfer approximation, without considering the W boson, in the
right diagram.

the leading order, the amplitude is then

A(μ− → νμνe e−)≈ −ig22
2M2

W
(eγμPLνe)(νμγνPLμ) (A.36)

First subleading term is proportional to M−4
W , which produces an even smaller

constribution provided that the center-of-mass energy is not at the same scale as

MW . At EFT level μ− decay is a point interaction, which corresponds to a vertex
factor. This leading order amplitude can be produced from an EFT Lagrangian

Leff =−C(eγμPLνe)(νμγνPLμ), (A.37)

where C is an effective coupling constant. Comparing the expressions in Eq.

(A.36) and Eq. (A.37) one arrives at relation

C = g22
2M2

W
≡ 2

�
2GF , (A.38)

where GF =�
2 g22/8M2

W is the Fermi coupling, the coupling constant of effective

Fermi theory of weak interactions. Eq. (A.37) is the EFT realization of Eq. (A.36).
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A.5.2 Heavy field substitution

Consider a rather generic Lagrangian, which contains the following terms:

L =Lkinetic+M2V †
μVμ+∑

i
giVμJμ

i +∑
i

gi J
μ†
i V †

μ (A.39)

The Lagrangian includes conserved currents Jμ

i , real coupling constants gi, a

heavy field Vμ and mass of the field M. If Vμ is self-adjoint, the mass term

has an additional factor of 1/2. Simple dimension analysis indicates that Vμ

field must be bosonic. Nevertheless the procedure described here is applicable to

fermions too, having a mass term mf f f .

Since the validity of EFT is exclusively at low energy domain, where kinetic

energy of heavy particle is insignificant with respect to its rest mass the kinectic

Lagrangian may be neglected. The first step is to solve Vμ from the Euler-

Lagrange equation with respect to its conjugate field V †
μ :

∂L

∂V †
μ

−∂μ

(
∂L

∂(∂V †
μ )

)
= M2Vμ+∑

i
gi J

μ†
i = 0⇒Vμ =− 1

M2

∑
i

gi J
μ†
i (A.40)

After plugging the solution back to the original Lagrangian, Eq. (A.39), the heavy

degrees of freedom have been effectively integrated out, and a current-current

interaction emerges.

L =− 1
M2

∑
i

gi J
μ†
i

∑
j

g j J
μ

j . (A.41)

Example: Fermi theory

The power of this formalism is now illustrated by deriving the Fermi Lagrangian

from lepton sector of electroweak theory. In this case, there is only one relevant

coupling constant g2/2
�
2 and one relevant current - the leptonic current, Eq.

(2.12).

Using the technique developed above, W boson is integrated out, resulting in

the effective Fermi Lagrangian

L =− g22
8M2

W
Jμ

l J†lμ ≡−GF�
2

Jμ

l J†lμ (A.42)

Historically, after measuring GF , the energy scale of the high-energy theory

(which would be electroweak theory) was accurately estimated to be O (102) GeV,

assuming g ∼O (1).
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A.5.3 Path integration

The integration referred in the phrase integrating out the heavy degrees of free-

dom is just a path integral. Consider a (full) Lagrangian L (ψH ,ψL) containing

both heavy and light fields, ψH and ψL, respectively. The effective Lagrangian

Leff(ψL) containing only light fields can be obtained by performing a path inte-

gration [168, 169]:

eiSeff = exp
(
i
∫

Leff(ψL)d4x
)
=
∫
(DψH)(Dψ

†
H)exp

(
i
∫

L (ψH ,ψL)d4x
)
(A.43)

= exp
(
i
∫(

L (0,ψL)+O (ψL)
)
d4x

)
. (A.44)

Here Seff is effective action corresponding to the effective Lagrangian and O(ψL)

is an effective operator consisting of light fields ψL, and not necessarily having

dimension 4

Next, I demonstrate how the path integral approach applied to Type I see-

saw model results in the effective Weinberg operator. The relevant part of the

Lagrangian, containing the right-handed neutrinos N = (N1,N2,N3) reads as

LN = 1
2

Ni i�∂Ni − 12MiNiNi −
(
�αLY

′ν
αiH

′Ni +h.c.
)

(A.45)

= 1
2

NK N − 1
2

NJ− 1
2

JN (A.46)

where I defined

K ≡ i�∂−M, J ≡Y
′νT HT�c

L +Y
′ν†H

′†�L (A.47)

The next stage is to literally integrate out the heavy neutrino.

S =
∫
(DN)(DN)exp

(
i
∫

LN d4x
)

(A.48)

=
∫
(DN)(DN)exp

(
i
∫(

1
2

NKN − 1
2

NJ− 1
2

JN
)

d4x
)

(A.49)

= det(K)exp

⎛
⎜⎜⎜⎝i

∫
1
2

JK−1J︸ ︷︷ ︸
=Leff

d4x

⎞
⎟⎟⎟⎠ (A.50)

The path integral is Gaussian, which allows a quick evaluation of the resulting

effective Lagrangian. The determinant factor contributes only a constant in the
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Lagrangian, so its effects can be ignored. The result is

Leff =
1
2
(�LY

′νH′ +�c
LY

′ν∗H
′∗)(i�∂−M)−1(Y

′νT HT�c
L +Y

′ν†H
′†�L)

= 1
2
�LH′Y

′νM−1Y
′νT H

′T�c
L +h.c. (A.51)

= 1
2
να(v+h)2(Y

′νM−1Y
′νT )αβνβ+h.c.

where on the second row the propagator was approximated by −M−1, since
the right-handed neutrino is assumed to be very massive. The last row is the

situation after SSB. Picking up the term proportional to v2, the effective mass

term for light neutrinos emerges:

L ν
mass = να

⎡
⎣(Y ′νv)︸ ︷︷ ︸

=mLR

M−1 (vY
′ν)T︸ ︷︷ ︸

=mLR

⎤
⎦
αβ

νβ = νmLR M−1mT
LR︸ ︷︷ ︸

=mν

ν (A.52)

See Eq. (4.18) for comparison.
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