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1 Introduction

Feynman integrals are essential ingredients of perturbative quantum field theories. For
cutting-edge phenomenological applications, it is of high importance to develop efficient
methods for their calculation. A complicated multi-loop scattering amplitude may involve a
gigantic amount of Feynman integrals. A first step to evaluate the amplitude is to employ
the linear relations among the Feynman integrals, and reduce them to a finite set of master
integrals (MIs). This not only significantly reduces the number of Feynman integrals to
calculate, but is also a crucial step in the method of differential equations [1-4].

Currently, the standard method for multi-loop integral reduction is the Laporta algo-
rithm [5, 6] that solves the integration-by-parts (IBP) identities [7, 8] of Feynman integrals.
There are already numerous software tools implementing the IBP reduction, including AIR [9],
FIRE [10], LiteRed [11], Reduze [12], Kira [13] and AmpRed [14-17]. There are also recent
efforts to generate a smaller set of IBP identities, such as NeatIBP [18] and Blade [19]. This
small set of identities potentially leads to a speed up of the reduction procedure.

The intersection theory [20-29] provides an intriguing new perspective to formulate IBP
relations. It was initially developed in algebraic geometry to analyze general (Aomoto-Gelfand)
hypergeometric functions, and has proven applicable across various fields in mathematics
and theoretical physics. By elucidating the vector space structure of so-called period inte-
grals, it provides an alternative framework for computing Feynman integrals and scattering
amplitudes [30, 31]. A family of period integrals is generated by a specific multivalued
function called twist, along with a family of meromorphic differential forms. Such an integral
family exhibits a finite-dimensional vector space structure, which can be articulated within
the framework of twisted de Rham cohomology. The vectors in such a cohomology group
represent equivalence classes of integrals.



The twisted cohomology group can be endowed with an inner product structure known
as intersection numbers. They can be used to facilitate the decomposition of a vector into
the linear combination of a basis. When applied to Feynman integral reduction [31-41], this
decomposition is completely equivalent to IBP reduction, and the basis simply corresponds
to a set of MIs. Besides the reduction of Feynman integrals, this framework is applicable to a
wider range of mathematical systems, including Aomoto-Gelfand hypergeometric functions,
Euler-Mellin integrals and Gelfand-Kapranov-Zelevinsky systems [42—44]. Furthermore, it
has demonstrated great capability in various areas of theoretical physics. For example, it has
been applied to the construction of canonical bases for Feynman integrals and the derivation
of canonical differential equations [45-48], to the computation of correlation functions in
lattice gauge theories [49-51], to the solution of quantum mechanical problems [52], to
gravitational wave physics in classical general relativity [53, 54], to Fourier calculus [55], to
string theory [56], and to the study of cosmological correlators [57, 58].

Given the wide applicability of intersection theory, the calculation of intersection numbers
has recently become an important topic under investigation. For the special case where
the differential forms are logarithmic, the computation of intersection numbers is straight-
forward [21, 29]. For general multivariate differential forms, the most established method
is to perform the computation variable-by-variable [33, 36], although method employing
multivariate higher-order partial differential equations is also available [59]. In the variable-
by-variable approach, the intersection numbers are calculated recursively. For each variable,
one needs to compute a sum of residues at the singularities determined by the twist. These
singularities are roots of a polynomial, which often involve algebraic extensions. To avoid
explicitly working with algebraic extensions, one may employ the global residue theorem
to calculate the sum of residues with the help of polynomial division [40, 41, 60]. When
combined with the idea of companion matrices [61], this technique has been applied to
cutting-edge problems in Feynman integral reduction.

In the context of integral reduction, it is often the case that the singularities of the
differential forms are different from those of the twist. To define the intersection num-
bers, one needs to introduce extra regulators, and take them to zero after performing the
integral decomposition. Alternatively, one may employ the concept of relative cohomol-
ogy [37, 38, 41, 62], which treats the twisted boundaries (singularities of the twist) and the
relative boundaries (singularities of the differential forms) differently. When working with the
Baikov representation [63, 64] of Feynman integrals, the differential forms are singular when
the propagator denominators approach zero. One may introduce boundary-supported d-forms
as duals of Feynman integrals, and use relative cohomology to compute the intersection
numbers. This approach avoids the necessity of intermediate regulators, and can substantially
improve the computational efficiency.

In this paper, we initiate the application of relative cohomology and intersection theory
to the Feynman parametrization of loop integrals. There are a few benefits when working
with the Feynman parametrization. The Symanzik polynomials appearing in the Feynman
parametrization are usually simpler than the Baikov polynomial. They are homogeneous
polynomials of the Feynman parameters, and can be naturally interpreted in a projective
space. In the Feynman parametrization, the recursive structure of representations in different



sub-sectors of an integral family is manifest. The integrals in all sectors can be represented
using the Symanzik polynomials of the top sector, and the sub-sectors are characterized
by one or more J-functions in the integrals. This should be contrasted with the recursive
structure of the Baikov representation [65, 66], where one needs to integrate out a couple of
variables to arrive at sub-sectors. In the Feynman parametrization, one also does not need to
worry about irreducible scalar products (ISPs). The loop integrals with ISPs in the numerator
can be easily converted to integrals with Symanzik polynomials in the denominator, which
can be treated straightforwardly using intersection theory. Finally, from the above discussions,
we observe that the sub-sector integrals can be naturally regarded as boundary-supported
differential forms in relative cohomology. We may then perform the integral reduction with
intersection theory without introducing extra regulators for relative boundaries.

The paper is organized as follows. In section 2, we introduce the ingredients of our
method, including the Feynman parametrization, the intersection theory and the concept of
relative cohomology. In section 3, we provide several examples to demonstrate the correctness
of our method, and point out the subtleties in degenerate limits. We summarize in section 4.

2 Intersection theory for the Feynman parametrization

2.1 Feynman parametrization
An L-loop Feynman integral is defined by
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where D; are propagator denominators or irreducible scalar products. We will work with a
slightly different version of the Feynman parametrization proposed by Lee and Pomeransky
(the so-called LP parametrization) [67]:

e (=1)"T'(d/2) o0 2V —d/2
o, ) = et UG / (H S ) U+w) (22

where v =3, v;, U and W are the so-called Symanzik polynomials. We denote
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where @); are combinations of external momenta. The two Symanzik polynomials can then
be written as

L
U=det(M), W=det(M)|> M;' Qi -Q—J—i0|. (2.4)
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From the above expressions, it is clear that &/ and W are homogeneous polynomials of degree
L and L + 1 in the variables x;, respectively.

Suppose S is a non-empty subset of {1,2,--- ,n}. In the LP parametrization, we can insert
(0.9]
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and then rescale x; — nx;. Integrating over 7, we arrive at the standard Feynman parametri-

zation:
I(vy, - ) = eBL (1) T (v — Ld/2) (2.6)
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In the above, we have assumed that all v; > 0. If some of the v;’s are zero, the
corresponding propagator denominators D; are actually absent in the integral. These kind
of integrals belong to sub-sectors within the integral family. In this case, we don’t need to
introduce the z; variable at all into the Feynman parametrization. Equivalently, we can
insert a d(z;) into the integration measure, and get rid of the I'(»;) in the denominator.
This is also equivalent to introducing a regulator D, ” in the integrand. After Feynman
parametrization, this becomes

= 0(z) + O(p'). (2.7)

By introducing these §(z;), we can express integrals in all sectors of the family using a unified
LP polynomial G = U + W. To ensure mathematical rigor, we emphasize that the Dirac
d-functions employed in this framework constitute Radon measures within the context of
Lebesgue integrals. These are related to the concept of relative cohomology to be introduced
later. For these measure-theoretic concepts, we refer the readers to chapter 6 of [68] for
a comprehensive introduction.

With the regulators as above, we can also incorporate the situations where some v; < 0.
The corresponding D;’s are present in the numerator instead of in the denominator, and
are usually called irreducible scalar products (ISPs) in the literature. In this case, we can
integrate by parts and obtain'
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Therefore, we can again express the integrals using the same G polynomial. Note that
the action of the partial derivatives will result in a factor G¥ multiplying the usual G~%2.
These correspond to integrals in shifted spacetime dimensions, and are often regarded as
troublesome in many IBP reduction methods. However, it is a trivial problem in methods
based on intersection theory, since integrands with extra factors of G in the denominator
are treated automatically in a unified way.

! Alternatively, one may perform a formal expansion in terms of derivatives of the d-function, as discussed
in [41].



In the following, we will strip the pre-factors and be concerned with the family of integrals
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The second line in eq. (2.9) makes it clear that the ISP variables are actually not needed to
express the integrals. Note that the original Feynman integrals are given by
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We want to establish linear relations among these integrals, and reduce them to master
integrals of the family. For that we will employ the method of intersection theory and
relative cohomology.

2.2 Intersection theory

The intersection theory was introduced into Feynman integrals in [31]. We consider a family
of integrals

/ uer, (2.12)
Cr

where wu is a multivalued function called twist, which vanishes on the boundary of the
integration domain: w(9Cg) = 0, and ¢y, is a differential n-form, where n is the number of
integration variables. The fact that w vanishes on the boundary means that the integral
of a total differential vanishes:

d(ué) =0, (2.13)
Cr

where ¢ is an arbitrary (n — 1)-form. This then leads to the integration-by-parts (IBP)
equivalence relations

or ~ or + V€, (2.14)

where the covariant derivative is defined by
Ve =d+wA, (2.15)

with the connection 1-form w = dlog(u).



Instead of working with equivalence classes of n-forms, one may also define equivalence
classes of integration domains. Given the twist u, the central idea of the intersection theory
is to treat the equivalence class [Cg] of integration domains as an element (cycle) in a twisted
homology group, and the equivalence classes (| of n-forms as an element (cocycle) in
a twisted cohomology group H'. The integral in eq. (2.12) can then be interpreted as a
non-degenerate bilinear form (see [44] for more details):

(pLlCr] = /C upr . (2.16)

R

With the help of the Poincaré duality, one can introduce dual integrals of the form

[CLler) E/c uw R, (2.17)

L

where [Cr| is an element of the dual homology group, and |¢r) is an element of the dual

n

cohomology group H” , respectively. In particular, the dual vector |¢g) is the equivalence

class of n-forms under the equivalence relation

YR~ PR+ V_u§. (2.18)

Notably, the dimension of the cohomology group as a vector space corresponds to the
number of MIs before considering possible symmetry relations among them. In the framework
of Morse theory, this dimension can be determined by counting the critical points of the
Morse height function, where log(u) serves as a canonical example of such a function [67]:

dim HY} , = #{zeroes of w}. (2.19)

Here, it is assumed that all possible singularities of the differential forms ¢ are regularized by
the twist u. If not, one needs to introduce extra regulators when computing the number of
critical points. Note that there are freedom in the choice of basis vectors. In practice, we
usually choose monomials or dlog-forms due to their algebraic and analytic simplicity.

Due to the isomorphism between H and H", , one can introduce a non-degenerate

w?
bilinear pairing between (bra) vectors and dual (ket) vectors, known as the intersection
number (¢r|¢r),, that can be calculated using the methods outlined in [32, 36, 41, 61]. This
can be used to perform integral reduction: choosing a basis {(e;|} of the bra vectors and a

basis {|h;)} of the ket vectors, any bra vector (yr| can be expressed as a linear combination:

(orl =3 (el hid, (C7Y) (el (2.20)
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where C~! is the inverse of the matrix C with matrix elements
Cij = <€Z' | hj>w . (221)

In the definition and evaluation of intersection numbers, the singularities of the connection
w and those of the n-forms play an important role. We denote the set of singularities of w as
P, (including infinity). In general, it can happen that some singularities of the n-forms ¢,
and g are not contained in P,. In that case, one needs to introduce extra regulators into



the connection (similar to the counting of dimensions discussed previously), and take the
regulators to zero in the end of the calculation. With the regulators in place, the intersection
numbers are then given by?

(pLler), = (2%11)71 /c Lpr) AR = ((27712)): /CSOL Au(pr) (2.22)

where the integration domain is C = C" \ P, U D, with D being the set of singularities of
the n-forms, while (1) and t(¢pr) are compactly-supported representatives of (pr| and
|oRr), respectively. Taking the univariate case as an example, these compactly-supported
representatives can be obtained using

Wer) =¢r —Vo(Mbr), uer) =eL — V_w(lhYr), (2.23)

where h is a combination of Heaviside functions given by

h= Y (1=0sp), Oup="0(z—pl—¢), (2.24)
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and the functions ¥, and ¢ are the solutions to the following differential equations:

VoL =vr, V_uwUr=9¢R. (2.25)

Note that if o, or i contains singularities which are not regularized by w, the above equations
may have no solution. That’s the reason why the extra regulators are necessary. It can be
seen that the compactification guarantees that the integrals in eq. (2.22) are well-defined since
the neighborhoods of all singularities are avoided. Therefore, the intersection number should
actually be regarded as a bilinear map (e|e) : H x H, . — Cor (e|e): H} - x H  — C,
where the subscript ¢ denotes compactification.

2.3 Relative cohomology in the Baikov representation

In the existing approaches of using intersection theory for Feynman integral reduction, one
usually works in the Baikov representation. In the Baikov representation, the integration
variables are the propagator denominators: z; = D;, and the n-forms ¢, corresponding to
Feynman integrals contain factors like 1/z;%. It is often the case that the singularities at
z; = 0 are not regularized by the connection w, and one needs to introduce extra regulators
as discussed previously. In practice, this increases the complexity of the calculation.

In [69], it is observed that the cohomology group of compactly-supported forms is
isomorphic to a so-called relative cohomology group. In [37, 38], it is then proposed that
one can replace the dual cohomology group H”, . by the corresponding relative cohomology
group H” (C"\ P,, D). We recall that D is the set of singularities in the n-forms, which
are called relative boundaries in the language of relative cohomology. On the contrary, the
set P, contains the so-called twisted boundaries. For the Baikov representation, the set

of relative boundaries is just D = |J;{z; = 0}. The concept of relative cohomology allows

2Technically, one needs to reverse the order of the variables in ¢y, or wr. This may lead to an extra minus
sign in the formula.



for the computation of intersection numbers without introducing extra regulators, hence
simplifies the problem of Feynman integral reduction.

For the purpose of integral reduction, the most important concept in relative cohomology is
the boundary-supported form, or §-form for short. These forms live on the relative boundaries.
They give rise to equivalent contributions to the intersection numbers as introducing extra
regulators for these boundaries [41]. Without loss of generality, we consider a d-form living

on the boundary z,41 = --- = 2, = 0. It is defined by
U(Z1) Ctt y Rmy AmA4ly 7zn)
1) = A db A---Ndb 2.26
Zm—+1, 7zn¢R U(Z]_,"‘ ,Zm,O,'-- ’0) (Z5R Zm+170 Z'mO? ( )
where the f-function is defined in eq. (2.24), and ¢ is an m-form of the variables z1,-- - , z;,.

Here, the ¢ operator is a realization of the Leray coboundary map (see, e.g., [70] for a
comprehensive review). The differential form df, o should be regarded as a distribution.
When acting on a test function f, it gives
+o00
do.o[f] = —lim f'(2)0(z —e)dz. (2.27)

e—0 /_o
The intersection number between a bra vector (pr| and a d-form is given by

_1)n
<(pL | 5Zm+1,~~~ 7Zn¢R>w = ((27”,))71 /C er A\ L((Szm+1,~~~ 7Zn¢R)

U
= <Reszm+1:...:zn:0 —QL ¢>R> , (2.28)
(A wo
where the (-map only deals with the variables z1,--- , z;,, and
uo =u(z1, -, 2m,0,---,0), wo=dlog(up). (2.29)
Note that if ¢ has only simple poles in the variables z,,11, - , z,, the multivariate

residue is trivial to take, and the factor u/ugp has no effect in the residue. However, since
o, represents the Feynman integrals to reduce, it generally contains higher-order poles
corresponding to, e.g., doubled propagators. In this case, one may convert ¢y to another
representative with only simple poles in the same equivalence class, by performing IBPs
on the variables z;,41, -+, 2n.

2.4 Relative cohomology in the Feynman parametrization

We now introduce the main novel idea of this work. Looking at the Feynman integrals in
the LP representation (2.9), we see that the integrands automatically have the structure of a
relative cohomology. The n-forms that are not boundary-supported correspond to Feynman
integrals in the top sector, while those living on the boundary correspond to integrals in
sub-sectors. Therefore, instead of introducing J-forms in the dual cohomology, we will have
d-forms in the bra vectors (¢r|, which represents equivalence classes of Feynman integrals
and belongs to the relative cohomology group H]'(C" \ P,,D). Here, the set of relative
boundaries is just the zero locus of Feynman parameters: D = (J;{z; = 0}.

In our approach, the dual cohomology is now the usual cohomology group H" . The
n-forms in the dual cohomology will contain factors such as 1/x;, that are singular at the



relative boundaries. These singular terms are necessary to correctly pick up the contributions
from the relative boundaries to the intersection numbers.

At this point, it is worth discussing again the counting of dimensions in the case of relative
cohomology. Since the relative cohomology groups are isomorphic to the usual cohomology
groups, the dimensions can be computed as before by introducing regulators for the relative
boundaries. Alternatively, one may perform the counting by combining the number of MIs
living in the bulk (top-sector) and those living on each relative boundary (sub-sectors). In
the latter approach, one needs to be careful with the possible “magic-relations” that relates
integrals in different sub-sectors.

Without loss of generality, an n-form in the bra vector has the form

U(l‘l,"‘ al‘mvof" 70)

U(.’L‘l, oy Ty Tm1, ,ﬂ:’n)

(5$m+17... ,a:n(ﬁL = ¢L A d@xm+170 A A dGMO . (2.30)
The Riesz-Markov-Kakutani representation theorem guarantees the uniqueness of the measures
in the df form (see [68] for more mathematical details). Hence, the action of df on a test
function f, eq. (2.27), is equivalent to the integral of f with a d-distribution inserted as a
Radon measure as in eq. (2.30). This exactly corresponds to what we have in the Feynman
parametrization. For convenience, we will write the above §-form as

5$m+17"' ,zn¢L =o¢r A 5(xm+1)dxm+1 VANERRIA (5(xn)dmn . (2.31)

For the reduction of these integrals, we choose a basis {|h;)} in the dual cohomology, and
evaluate the intersection numbers

(Basr b | i) = <¢L

ug
Resmm_H:...:mn:o hl> . (2.32)
u o/
Note that we can always choose the dual basis {|h;)} to have at most simple poles at the
relative boundaries, and therefore the above intersection numbers can be simplified as:

<6xm+1;'” 733n¢L ’ h7f>w = <¢L | Resmm-!—l:"':l'nzo hi>w0 . (233)

This can be contrasted with the other approaches with §-forms in the dual basis, where the
integrand ¢y, for reduction can have higher-order poles at the relative boundaries.

After taking the residues, we still need to compute the “normal” intersection numbers
between ¢; and the residues of h;. For completeness and for later applications, we briefly
outline the relevant procedure in the following. For more details, we refer the readers to
refs. [32, 36, 41, 61].

The computation of the multivariate intersection numbers usually proceeds variable-
by-variable. For that we first choose an order of the variables z = {z1,--- , 2y}, where we
assume that there are N variables involved in the intersection number. Furthermore, we
use the boldface letter n to denote the sequence {1,--- ,n}, where 1 < n < N. The bra
vector <g0(Ln)\ at layer n is the equivalence class of n-forms

goS—Jn) = cﬁ%n)(z) dzy Adzg A -+ Adzy,, (2.34)



with the connection given by

0
w™ = @1 (2)dzy + @o(2)dzg + - + On(2)dzn, @i(2) = 5. log(u). (2.35)
(2
Note that the variables z,41,--- , 2y are treated as constants here. The ket vector ]cp( )>

defined similarly, with the connection —w(™. The intersection number between (cp I \ and

| P? ) can then be computed recursively as follows. We choose a basis <e§n_1 | and a dual
basis |h ) for the layer n — 1. The metric matrix for the layer n — 1 is given by
_/ (n-1)] ;1 (n—-1)
(Camny),, = (" V[ 7Y) sy - (2.36)

These ingredients can be used to compute the coefficients

(o = (@A) e (Coly)y o ey = (CLly)i (e I} yeny » (2:37)

where repeated indices are summed over. The bra and ket notation means that these
coeflicients are equivalence classes of vector-valued one-forms in the variable z,. For the dual
coefficients, the relevant connection matrix is given by

Q;;'(n) - (0(711—1))% <e](€n—1) ‘ (0z, — a’n)h('n_l)>w(n_1) . (2.38)

The intersection number at layer m is finally given by

(e | %)) == D Resemp (417 (Clne 1)) i) (2:39)

PEPn

)

where P, is the set of singularities of Q;;(n , and 1/11(%1; is the solution to the equation

0., 0 + Q) = o) (2.40)

3 Examples

3.1 One-loop bubble

As a simple example, we consider the one-loop bubble diagram shown in figure 1. The

kinematic variables are m?, m3 and p? = s. The integrals in this family can be represented by

JBub(v1,12) = /o (H zyp ! dﬂ?i) G2, (3.1)

where the LP polynomial is
G=U+W =z + 22 +m3x? + m3a3 + mizixo + mix120 — 57123 . (3.2)

To proceed, we choose the variable order as {x1,z2}, i.e., 1 = {1} is the inner layer,
while 2 = {1,2} is the outermost layer. As discussed in the previous section, there are

,10,
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Figure 1. The one-loop bubble diagram with two different masses m, and mo.

two equivalent methods for counting the dimension for each layer, with or without extra
regulators. For the inner layer, the critical condition with the regulator is given by

wf,l) = 88x1 log (x’l’lG_d/Q) dz; =0, (3.3)
where the subscript p signals that the connection form is regularized. The above equation
has two solutions, meaning that the dimension of the inner layer is v(*) = 2. Alternatively,
we can perform the counting in each sectors separately, and sum the results. For the inner
layer, there are two sectors: the top-sector 1 and the sub-sector §(z1). The dimension for the
sub-sector §(z1) is simply 1, since the only integration variable x; is fixed by the ¢ function.
For the top-sector, the critical condition reads

0
W= log (G™4?)da; =0 3.4
w . og ( ) x1 , (3.4)
which has one solution. Therefore, the total dimension is »(!) = 2, in agreement with the
result with regulators. For the outer layer, the counting proceeds similarly. The regularized
critical condition reads
0 0
(2) — i v p1_.p2 1—d/2) _

w (dxl Hur T2 8331) (logaf'ag2G="2) =0, (3.5)
which has 3 solutions. In the sector-by-sector counting scheme, we need to consider 3 non-zero
sectors 1, d(z1) and 6(x2). The number of MIs in each sector is again 1 and the total
dimension is »(?) = 3.

The basis of the inner layer should be chosen according to the dimensions of each sector.
For example, we may choose

&M =1, &V =65). (3.6)

For the outer layer, we can choose the basis as

A

=P =1, =2 =61), &= =d(za). (3.7)

They correspond to the MIs Jpu,(1,1), Jub(0,1) and Jpup(1,0). The dual bases can be
chosen correspondingly with the following rule: for each 6(x;), the dual vector needs to
contain a factor of 1/z; in order to correctly account for the relative boundaries. For example,
the dual bases for the inner and outer layers can be chosen as

) 1 A 11
h§”e{1,}, hi:h§2)e{1,,}. (3.8)

I
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To demonstrate our method outlined in the previous section, let us decompose the target
integral Iy, (1,2) into the 3 MIs:

IBub(]-a 2) =cC1 IBub(L 1) + co IBub(O7 1) + c3 IBub(]-7 0) . (39)

To do that we first need to compute the metric matrices C(y,). For the inner layer, we find

_d[mg)\(mf,mg,s)—2(m%—m§+8)r2+1] (m2+m2—s)za+1
Cu 4(d—1)(d+1)m] 2(d—1)my , (3.10)
0 1
where we have introduced the Kéllén function A(z,y, z) for convenience:
Nz, y,2) = 22 + % + 2% — 2zy — 2yz — 22z (3.11)
The connection matrix for the second layer can then be computed as
(d+1)[A(m%,m%,s)mgfm?rm%fs] (0l+1)[(m1 mes)mg l]m1
QV(Q) _ A(m3,m3,s)z3—2(m3—m2+s)z2+1 (x2+m2w2)[)\(m1,m%,s) —2(m2— m2+s)x2+1] . (312)
0 d(14+2m3z2)
2x2(1+m§x2)

We can then compute the metric matrix for the second layer, whose non-zero entries are

452
(C(2))171 (4 —d?)A(m2,m3, )3’

(s —mi + m3)[d(A(m?,m3, s) — 4m3s) + 4m3s]
(C(Z) 1 4(d 22)(d2—i) 2)\(m1,m2, s)?2 : ’
_(s—i—m )[d( (m?3,m3, s) 5)+4ms}
CE ) a 1(d 2)(d2—i) 2)\(m1,m2, 5)2 =
d
(o). = =31y
d
(C ) T i@ —nmt (3.13)

Our target integral corresponds to the two-form ¢ = zadz; A dxy. Its intersection
numbers with the dual basis are given by

(2)\ _ [ m2-m3+s m2+4+m2—s 1
(or|n?) = (s s g @omommz) (3:-14)

We multiply the above vector by the matrix C( 2) and take care of the conversion factors

between Ipyy(v1,v2) and Jpup(v1, v2), and finally arrive at the reduction coefficients

(d—3)(m? —m3 + s) . __(d—2)(m%+m%—s) o — d—2

(3.15)

Ccl — —

9 = _ .
A(m?2,m3, s) ’ 2miX(m2,m3,s) A(m?,m3, s)

They agree with the results of Kira.
We can reduce integrals with numerators as well, according to eq. (2.9). Taking the
target integral Iy, (—1,2) as an example, we can write the corresponding two-form as

dazo (14 m2xe + miwy — sx9)
L a

5($1)dl’1 A dxy . (3.16)
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(a) Sunrise sub-topology diagram. (b) Full two-loop bubble diagram.

Figure 2. The sunrise integrals with two different internal masses, m; and ms3. The thick lines
denote massive propagators, while the thin internal line denotes a massless propagator.

As mentioned below eq. (2.8), we have the polynomial G in the denominator here. Since
G = 0 is a twisted boundary that is regularized by wu, this denominator poses no difficulty in
the computation of intersection numbers. Repeating the procedure as above, we find

2m3 — (d —2) (m} —mj3 —s

2
2ms

Iz (—1,2) = ) Iguw(0,1), (3.17)

which is again verified by Kira.

3.2 Two-loop sunrise

We now consider a two-loop example, the sunrise family regarded as a sub-topology of the
two-loop bubble diagram shown in figure 2. The propagator denominators for the bubble
diagram are given by

Dlzk‘%—m%, DQZ(k]_—kg)z, Dgz(kg—f—p)z—m%, D4:k‘§, D5:(k:1—|—p)2.

(3.18)
The kinematics variables are m?, m2 and p?> = s. The LP polynomial for the full bubble
family is

G = (x122 + 173 + Tox3 + T1T4 + Toxy + Toxs + 2325 + 2425)(1 + My + mix3)

— s (z1x2x3 + T123%4 + T2T3T4 + T1T2T5 + T1T3T5 + T1X4X5 + TaXAT5 + TIT4T5) .
(3.19)

Since we are interested in the sunrise sub-topology, we only need to compute intersection
numbers with the LP polynomial restricted to the relative boundary z4 = x5 = 0:

Go = 2129 + 2123 4+ Toxs + mix3 (w9 + 23) + (M3 +m3 — s)x129w3 + mix3(z1 + x2) . (3.20)

In the context of the sunrise sub-topology, D4 and Ds are ISPs. When performing the
reduction in the momentum representation or the Baikov representation, ISPs are generically
required for two-loop integrals and beyond. On the contrary, in the Feynman parametrization,
ISPs do not need to appear in the computation of intersection numbers, as discussed around
egs. (2.9) and (2.10). This leads to simplification of the reduction procedure.
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The counting of the dimensions for each layer proceeds similarly as the one-loop case.
We choose the variable order as {x1,z2,23}. For the first layer, there are again two sectors:
the top-sector 1 and the sub-sector 0(z1), each with dimension 1. For the second layer,
there are two irreducible sectors: the top-sector 1 and the sub-sector §(z2). Note that the
sub-sector d(z1) in the second layer is reducible, since after taking z; — 0, Go becomes a
linear polynomial of x5, which leaves no irreducible integrals. This is related to the fact that
the second propagator is massless. The critical condition for the sub-sector d(z2) is given by

@ _ g, 9 —d/2 _
W(ze) = A1 pr. (logG ) =0, (3.21)

xo=0

which has one solution. For the top-sector, the critical condition is given by

0 0
(2) = -z —d/2 _
w (dxl R + dao o 1) (logG ) =0, (3.22)

which has two solutions. Therefore, the dimension for the second layer is ¥(?) = 3, which
coincides with the result from the regularized twist. Finally, for the outer layer we have
v3) = 4. The bases for all layers are chosen as the following:

! e (1,6(1)}, e e {129, 6(x2)}, & =28 € {1,a1,25,0(z2)}. (3.23)

The basis for the outer layer corresponds to the MIs Igy,(1,1,1,0,0), Isun(2,1,1,0,0),
Isun(1,1,2,0,0) and Igyn(1,0,1,0,0). The corresponding dual bases are given by

) 1 . 1 . 1
KY€ {1} W2 e {1,x2, x} hi=h® e {1,:{:1,x3,x}. (3.24)
2 2

We begin by considering the reduction of integrals without numerators, i.e., ay = a5 = 0.
As an example, we reduce the target integral Igy,(1,2,1,0,0) into the 4 MlIs:

ISun(L 27 17 Oa 0) = CIISun(17 17 17 07 0) + CZISun(27 17 17 07 0)
+ e3lsun(1,1,2,0,0) + calsun(1,0,1,0,0) . (3.25)

Repeating the procedures as in the one-loop example, we find

(d —3)(3d — 8)(m? +m3 — s)

T T d—aAmEmds)
o = Ad=Bmi(mi — 5
(d— 4)A(m3,m3,5)
oy = _Ald = 3ymi(m —s)
(d — HA(m3,m3, s)
cq4 = — (d—2)" (3.26)

(d—4)A(mF, m3,s)

They again agree with the results of Kira.
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For integrals featuring numerators, we examine a representative case involving the
decomposition of Igy,(1,1,1,—1,—1). Following egs. (2.9) and (2.10), the corresponding
differential form is expressed as

2
oL = lGd/zaG“’/2 dzy A dag A das

85648.%5

x4=x5=0

=i [d(xl + xo0) (2o + 23) (1 + m3zy — sz1 4+ m3x3)(1 + mix — sxs + mixs)
0

+ 2(sz1x3 + 29(1 + M3y + m%xg))ﬂ dzy A dag Adzs . (3.27)

The basis and dual basis for each layer remain unchanged. By calculating intersection
numbers it reveals that

Isun(]-7 17 17 _17 _1) = C/1ISHH(17 17 17 07 0) + CI2ISUII(27 17 17 07 0)
+ Aylsun(1,1,2,0,0) + ¢ Isun(1,0,1,0,0) . (3.28)
with

o = (6 — 2d)(m7 +m3) + (17d — 36)m3m3 + (16 — 7d)(m3s + m3s) + (d — 2)s?

9d — 12
y _ 2m3mt = 5)(m3 —5m3 + 5)
2 9d — 12 ’
o 2m(m = s)(m} = 5md + )
3 9d — 12 ’
;o (d=2)(m3+m3) + (10d — 14)s
— , 2
“ 9d — 12 (3.29)

Note that one may choose integrals with numerators as master integrals as well, by selecting
the form (3.27) into the basis.

We have repeatedly emphasized the advantages of using the LP parametrization over the
Baikov representations, and it is a good time to show this explicitly. The first advantage is
the reduced number of variables which leads to reduced number of layers in the computation
of intersection numbers. In the setup phase of the computation, one needs to calculation
v x () jvariables intersection numbers at layer i to determine the matrix C;) and its
inverse, with additional calculations for the connection matrix QV®. In the reduction phase,
one needs to compute the projections of the target integrals onto the dual basis vectors,
which again requires the calculation of n-variables intersection numbers where n is the total
number of layers. Therefore, the reduced number of variables is already a big computational
advantage. Using the two-loop sunrise family as an example, there are only three layers in the

LP parameterization, while all five layers need to be considered in the Baikov representation.?

30ne may employ the so-called loop-by-loop Baikov representation with four variables. However, that
would leads to new problems such as increased dimensionalities due to the presence of non-Feynman-integrals
in the integral family. This has been thoroughly discussed in [46].
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The second advantage of the LP parameterization is the simplicity of the LP polynomials.
For comparison, the Baikov polynomial for the two-loop sunrise family is given by

B = m%m% (—23:1 4+ xo — 23 + x4 + 5 — m% — m%)
+ m% (—x% — 22123 4+ Tox3 + T4x3 + T5T3 — ToXy + T4Ts — m%xg)

+ mg (—.’L‘% + Tox1 — 22371 + T4x1 + T5x1 — Ty + T4T5 — m%xl)
2.2 2 2
+s {mlmg) + mi(xe + x3 — x5) + ms(z1 + x2 — 24) — 81‘2} (3.30)
+ s (961362 — a;% + T3T2 + T4x2 + T5T2 + T1X3 — T3T4 — T1X5 + 3341’5)
—x123 (21 — T2 + k3 — T4 — X5) + X425 (¥1 + T2 + 23 — Ty — x5) — T2 (T1T4 + T3T5) .

Due to the fact that there are a lot of manipulation of the polynomials involved in the
computation of intersection numbers, the simplicity of the LP polynomial provides an
additional advantage over the Baikov one. Finally, one may also compare the dimensions of
each layer, since it also affects the number of intersection numbers one needs to calculate.
As present earlier, the dimensions in the LP parametrization are v(1) = 2, »(2) = 3 and
v3) = 4, while the dimensions in the Baikov representation are v(1) =1, v(2) =4, y(8) = 4,
v =4 and v® = 4 with the variable order {5, 4,2, 23,21}. In principle, one may also
compare the intermediate expressions such as the C(;) and QY@ matrices. These expressions
are too lengthy and we do not give them here explicitly.

3.3 The degenerate limits

The method of relative cohomology has subtleties in certain degenerate limits [37]. For
example, in the one-loop bubble family, if the external momentum becomes light-like, i.e.,
p?> = 0, the LP polynomial becomes factorized:

G = (z1 + z2) (1 +xym? + $2m%) . (3.31)

In this case, the dimension of the cohomology group decreases by one, since the top-sector
now become reducible. Hence, there are only two master integrals instead of three. We have
checked that by simply choosing a smaller basis, such as Iy, (1,0) and Iy, (0, 1), we can
correctly perform the reduction as usual. In particular, we can find the correct reduction
rule of Iz, (1,1), which was a master when p? # 0.

An even trickier degenerate limit is when m; = mg = m, in addition to p? = 0. In
this case, the two tadpoles Ipy,(1,0) and Iy, (0,1) are equivalent by IBP relations alone,
without invoking the symmetry relations. This is the so-called “magic-relations”, which leads
to subtleties in the sector-by-sector dimension counting, since such relations are only evident
when considering the three sectors (the top-sector and two sub-sectors) together. In the
one-loop bubble case, this relation follows from the fact that in the limit m; = mgs = m
and p? = 0, the G polynomial becomes a function of the sum 1 + 3, but not of the
two variables separately. By a simple variable change n = x; 4+ z2, the integrals in this
family can be written as

0 e n
/0 Ay dag 2T 21 Gmd/2 :/0 dnG(n)*dﬂ/o dzy 22T (np—zp)PT2 71 (3.32)
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where we have made the regulators explicit to account for the cases when v; < 0. Through
integration by parts, one can lower v, to 0 while increasing 15, which shows that the two
sub-sectors are connected by IBP relations. In practice, these relations can always be found
by checking the appearance of such situations in all sectors. This can also be validated by
counting the dimension with the regularized u function: u = x{ 2§ G=%2. For the case at
hand, there is only one MI which can be chosen as Iy, (1,0), i.e., € = d(x2). The dual
basis vector needs to be taken as h = 1/x1 + 1/x4, since both the relative boundaries
r1 = 0 and x2 = 0 should be accounted for. We have checked that this leads to the correct
reduction relations, including Ig,,(0,1) = Iy (1,0). Note that similar considerations have
been discussed in the appendix of [37].

4 Summary

In this paper, we initiate the application of relative cohomology and intersection theory
to the reduction of loop integrals in the Feynman parametrization. In our approach, the
sub-sector integrals correspond to boundary-supported forms in relative cohomology. We
can then treat all sectors in an integral family using the Symanzik polynomials of the top
sector, which becomes the twist in the language of intersection theory. With an appropriate
choice of the dual basis, the reduction of Feynman integrals can be achieved by computing
the relevant intersection numbers.

The usage of the Feynman parametrization has a few advantages over the Baikov
representation that is usually employed in the literature. The Symanzik polynomials are
homogeneous in the Feynman parameters, and are usually simpler than the Baikov polynomial.
In the Feynman parametrization, one does not need to introduce ISPs unless they appear in
the numerator. When that happens, the integral can be easily represented by integrands with
Symanzik polynomials in the denominator. While these integrands appear to be Feynman
integrals in shifted spacetime dimensions, they can be straightforwardly reduced within
intersection theory without extra burden. Finally, the dual basis can always be chosen
to have at most simple poles at the relative boundaries. All the above lead to the fact
that performing integral reduction using intersection theory and relative cohomology in the
Feynman parametrization can be simpler than in the Baikov representation.

We have applied our method to several simple examples to demonstrate the correctness of
our approach. To improve the efficiency further and to tackle more difficult problems, it will
be necessary to employ the technology of finite fields and modular arithmetics [71-77]. There
are also recent developments in the computation of intersection numbers [39, 59, 61], that
can potentially be adopted in our method as well. Finally, in the Baikov representation, one
may apply a set of spanning cut to simplify the calculation. In the Feynman parametrization,
cutting a propagator corresponds to removing a boundary of the integration domain [78].
It is therefore well possible to adopt the same trick of spanning cut in our approach. We
leave these for future investigation.
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