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Summary

Within the Standard Model of particle physics, Quantum Chromodynamics (QCD) de-
scribes the strong interaction between particles carrying color charge. The basic con-
stituents of the theory are quarks and gluons. From these fundamental degrees of free-
dom, color-neutral composite particles are formed. In a simple quark model view, these
are mesons, which are bound states of a quark and an antiquark, and baryons, which
consist of one quark of each of the three colors. In the relativistic quantum field the-
ory, these hadrons may also contain gluonic excitations or additional quark-antiquark
pairs. In this thesis, we study hadrons from an ab initio calculation in a discrete, four-
dimensional Euclidean space-time. A discrete lattice is introduced to regularize the
theory of Quantum Chromodynamics which enables us to calculate observables using
numerical techniques developed in the context of statistical mechanics.

The parameters of the theory are the inverse gauge coupling β and the masses for each
quark flavor. For practical calculations, only the light quarks are treated dynamically and
one either uses two mass-degenerate light quarks (up and down quarks) or includes the
somewhat heavier strange quark in the simulations and works with 2+1 flavors of quarks.
In general, lattice calculations involving light quarks are computationally demanding.
Therefore, current simulations are performed at unphysically large quark masses. While
the lightest mesons, the pions, which are also the pseudo-Goldstone bosons of the theory,
have a physical mass of roughly 140MeV, most lattice simulations are performed with
pion masses of 300MeV or larger. In addition to an extrapolation to the continuum and
infinite volume limits, this necessitates an extrapolation to the physical quark masses.

Lattice QCD is the method of choice for calculations of strong-interaction properties.
In particular, the calculation of the ground state spectrum of hadrons improved consid-
erably over the years and in some cases, an impressive agreement between theory and
experiment can already be reached. While these states are a good benchmark for lattice
calculations, a large number of hadron excitations are known from experiment and cal-
culating their properties from first principles would be desirable. Unfortunately, extract-
ing information about excited states from lattice calculations is not straight-forward. In
general, excited states only contribute as sub-leading exponentials to Euclidean space
correlation functions. The isolation of these small contributions is the topic of this thesis.

In Chapter 1 we provide some general information and briefly introduce the reader to
this topic. The basics of both Quantum Chromodynamics and its lattice discretization
are briefly reviewed in Chapter 2. We introduce the gauge links and identify their
counterpart in the continuum. We then proceed to present the plaquette gauge action
and, after a short discussion of problems associated with a näıve discretization, the
Wilson action. As this action lacks chiral symmetry, an important symmetry of the
(massless) continuum theory, we also briefly review chiral fermion actions and introduce
Chirally Improved fermions with which we work throughout the larger part of this thesis.
For the remainder of the chapter, we discuss the calculation of observables on the lattice
and the extrapolations needed to obtain results that can be compared to experiment.
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In Chapter 3 we explain why lattice calculations of excited state properties are a chal-
lenge and we discuss methods for excited state spectroscopy. In particular, we introduce
our method of choice, the variational method [1, 2]. For this method a suitable basis
of interpolating field operators has to be constructed. Complications due to the loss of
continuous rotational symmetry are discussed and we introduce two distinct ways of con-
structing suitable interpolating fields. Towards the end of the chapter, we briefly point
out some other recent methods which are computationally expensive but promising.

The first three chapters serve to introduce the basic concepts, which are applied
to compute observables in the remaining chapters of this thesis. Many of the results
presented here have already been published with my co-authorship. In this summary, I
will refer to those publications.

In Chapter 4 results from light-quark meson spectroscopy are presented. We start
with results from a study of mesons in quenched QCD. Here, so-called derivative quark
sources are used to increase the overlap with both ground and excited meson states of
spins 0 and 1. Most of our findings have previously been published in [3] and preliminary
results can be found in [4]. After demonstrating the benefits of this construction, we
move on and apply the same methods to a larger number of channels using the dynamical
lattices created within the BGR collaboration’s dynamical fermion project. An overview
of the current status of these simulations has been provided in [5]. Previous results with
a direct connection to this thesis have also been discussed in [6, 7] and we use some
of the results presented in [8]. We also compare the results from dynamical QCD to
older quenched results and comment on possible improvements. In the last section, we
introduce an alternative tetraquark interpretation for some of the experimental states
and study the spectrum of scalar mesons with an appropriate basis. This last section
is work done in collaboration with Sasa Prelovsek and published in [9]. In addition,
Appendix A provides tables of interpolating fields and Appendix C collects source and
run parameters for our CI simulations.

In Chapter 5 we use similar methods for the spectroscopy of charmonium states
on the lattice. This exploratory study has been done in collaboration with Carleton
DeTar, Tommy Burch and Ludmila Levkova from the Fermilab-MILC collaboration.
The MILC collaboration provided the gauge configurations for this study and Carleton
DeTar modified existing code to be used for our purposes. We motivate our approach by
briefly commenting on the experimental situation concerning charmonium excitations.
We then modify the method described in Chapter 3 to be more suitable for our purpose.
Tables of the interpolating fields we use can be found in Appendix B. First results from
one ensemble of gauge configurations are presented and we comment in detail which
of the physics objectives outlined previously can realistically be achieved in a larger
scale study. In a short outlook, we comment on the steps needed for a more thorough
investigation. Such an investigation is already planned for the near future.

Chapter 6 provides a brief overview of results from ground state spectroscopy of
baryon states using CI lattices. These results will be needed for the study of baryon
axial charges presented in Chapter 7. For this part of the thesis, we change the point of
view and use the methods developed for the spectroscopy of excited states to suppress
exited state contaminations to baryon three-point functions. We outline our approach
for the calculation of sequential propagators, which are needed for a lattice evaluation
of axial charges. We briefly comment on the renormalization constants which relate the
lattice results to values in the MS renormalization scheme. We then present preliminary
results for the axial charges of the nucleon and the Σ and Ξ hyperons. We conclude this
chapter with a brief outlook. Appendix D provides additional details about the Krylov
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subspace solver we used for the calculation of sequential propagators. We are currently
extending our calculations for the axial charges and plan to report more details in a
forthcoming publication. A first presentation will also appear in [10].

To conclude, we summarize our main findings and outline possibilities for further
research in Chapter 8. For this, we focus on the general achievements from the previous
chapters and point out possible extensions of existing calculations.
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Chapter 1

Introduction

While Quantum Chromodynamics (QCD) is established as the theory of the strong
interaction, computing observables from first principles has proven to be a rather non-
trivial task. At short distances or large momenta, QCD exhibits the phenomenon of
asymptotic freedom enabling a perturbative expansion in the coupling constant. At a
certain energy scale, this expansion breaks down and non-perturbative effects have to
be taken into consideration.

Lattice QCD, as introduced by K. Wilson [11], provides a regularization of QCD
by a grid in four-dimensional Euclidean space time. This regularization enables an
ab-initio calculation of strong interaction properties in the non-perturbative regime.
For the calculations one applies the path integral quantization and obtains integrals
similar to those in statistical mechanics. One then exploits this formal equivalence to
apply Markov-chain Monte Carlo methods, which have been used for a long time in
the context of statistical physics. Monte Carlo simulations involving light dynamical
fermions on the lattice are computationally demanding, and therefore, simulations are
usually performed at unphysically heavy quark masses. In recent years, calculations with
quark masses corresponding to pions of approximately 300MeV have been performed by
multiple collaborations using a variety of fermion discretizations [12]. First attempts of
lattice QCD simulations directly at physical quark masses have also been made [13].

In this thesis the focus will be on hadrons, the QCD bound states of quarks and
gluons. Such states have to be color neutral and there are two basic types: Mesons and
baryons. In the näıve quark model, mesons consist of a quark and an antiquark and
baryons consist of one quark of each of the three colors. In QCD, more general states
may exist which contain gluonic excitations or additional quark-antiquark pairs. For
lattice QCD, the spectrum of hadronic states is interesting in several ways. For one, it
can be viewed as a benchmark calculation, as there are a large number of experimental
states which are known to a good accuracy. At the same time, lattice QCD also predicts
states that are so far not observed and may help to shed some light on the structure
of known hadronic states. Over the years, calculations of the ground state meson and
baryon spectrum have been refined and an impressive agreement with the experimentally
observed ground state spectrum has recently been achieved [14]. Taking a look at the ex-
perimental situation, which is periodically documented in the Review of particle physics
[15], one however realizes, that ground states are only a small part of the observed spec-
trum. In addition, there are a large number of well known hadronic excitations. Lattice
QCD calculations of excited state properties are more difficult. In Euclidean correlation
functions, which are measured on the lattice, contributions from excited states appear as
sub-leading exponentials. This necessitates more elaborate methods to reliably extract
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16 CHAPTER 1. INTRODUCTION

such states. Moreover, most excitations are not stable states but rather resonances and
ultimately, one would like to also extract their width. As an additional challenge, lattice
artifacts from the breaking of continuum rotational symmetry complicate the analysis
of the excited state spectrum.

The topic of this thesis is the calculation of excited state properties from Lattice
QCD. As such, it is part of the larger effort pursued by the Bern-Graz-Regensburg
(BGR) collaboration. Within this collaboration, gauge configurations containing two
flavors of light dynamical sea quarks are generated. This thesis is organized as follow:
In Chapter 2, some basics of the lattice approach to Quantum Chromodynamics are
presented along with a short account of the methods used for simulations with Chirally
Improved (CI) quarks. Chapter 3 focuses on the techniques for extracting excited state
properties from the variational method. In Chapter 4, we apply these methods to light-
quark mesons and calculate the spectrum of ground and excited states on both quenched
and dynamical CI configurations. Similar methods are subsequently used in Chapter 5
to study the spectrum of meson states containing heavy charm quarks and antiquarks.
In Chapter 6 we briefly present some of the results for the ground state spectrum of
baryons. These will be used in Chapter 7 for the calculation of the axial charge Ga of
some of the octet baryons. Finally, we present our concluding remarks in Chapter 8. In
addition, the appendices provide more details about our simulations and some reference
tables.



Chapter 2

Quantum Chromodynamics on

the lattice

In this chapter, we review some basics of the lattice discretization of Quantum Chro-
modynamics. First, we take a short look at the classical theory and its discretization.
After a discussion of the Wilson-action, we briefly describe the construction of lattice
actions with chiral symmetry. We proceed with a short outline of the steps involved in
calculating hadronic observables on the lattice, including the Hybrid Monte Carlo [16]
algorithm used to generate the gauge configurations. We finish this chapter by discussing
the extrapolations needed to compare lattice results to experiment and the continuum
theory. Where appropriate, we focus on the example of Chirally Improved (CI) fermions
(see Section 2.5) which will be used for most of the calculations in subsequent chapters.

2.1 The classical theory

In a 4-dimensional Euclidean space, the action of QCD can be written as

SQCD[ψ, ψ̄,A] = SF + SG

=

Nf
∑

f=1

∫

d4x
(

ψ̄(f)(x)
(

γµDµ +m(f)
)

ψ(f)(x) (2.1)

+
1

2g2
tr[Fµν(x)Fµν(x)]

)

,

with the field-strength tensor Fµν given by

Fµν(x) = ∂µAν(x)− ∂νAµ(x) + ı[Aµ(x), Aν(x)] .

Here, Aµ is an algebra-valued non-abelian gauge field and ψ, ψ̄ are Dirac spinors repre-
senting the quark fields. SF stands for the fermionic part of the action, while SG denotes
the purely gluonic part. The sum runs over all quark flavors and the mass m is in general
different for all six species of quarks occuring in Nature1.

The field strength tensor Fµν and the covariant derivative Dµ = ∂µ + ıAµ(x) are
defined such that the total action is invariant under local SU(3) gauge transformations.

1For most of our lattice simulations, we will restrict ourselves to two mass-degenerate flavors of sea
quarks and 2+1 flavors of valence quarks. In Chapter 5 we use 2+1 light flavors of sea quarks and heavy
valence charm quarks.

17
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Notice that Aµ is a non-abelian field and that the resulting self-interactions of the gluon
fields give rise to the complex nonlinear behavior which leads to confinement.

This theory can be quantized using the Path Integral method of quantization. For
details of this method, we refer the reader to standard textbooks of quantum field theory
(for a nice account see for example [17]).

2.2 Euclidean correlation functions

For the calculation of observables in subsequent chapters, the main objects of interest
will be correlation functions in Euclidean space-time. Here, we motivate the lattice
calculation of Euclidean correlators of some general Hilbert-space operators Ô1 and Ô2.
We summarize the most important formulas and refer the reader to [18] for more details.
Using standard time evolution, a correlator of two Hilbert-space operators can be written
as

〈

Ô2(t)Ô1(0)
〉

T
=

1

ZT
tr
(

e−TĤetĤÔ2e
−tĤÔ1

)

.

Taking the formal limit T →∞ of this expression we obtain

lim
T→∞

〈

Ô2(t)Ô1(0)
〉

T
=
∑

n

e−t∆En

〈

0|Ô2|n
〉〈

n|Ô1|0
〉

, (2.2)

where ∆En = En − E0 is the energy difference relative to the energy of the vacuum.
The same correlator can also be expressed as a path integral

〈

Ô2(t)Ô1(0)
〉

T
=

1

ZT

∫

D[ψ, ψ̄, U ]e−SEO2[ψ, ψ̄, U ]O1[ψ, ψ̄, U ], (2.3)

ZT =

∫

D[ψ, ψ̄, U ]e−SE .

Here ZT ensures the proper normalization and the fields U will be introduced in the
next section. To regularize QCD, we will discretize it on a space-time grid - the lattice -
and exploit the formal equivalence to expressions from statistical mechanics to evaluate
the path integral using some sort of (importance sampling) Markov chain Monte-Carlo.

2.3 A simple formulation of Lattice QCD

We discretize space-time on a four dimensional (hyper)cubic lattice Λ, which serves as an
ultraviolet regulator. In the following, we present the simplest formulation of a lattice
action for QCD, which has been suggested by K. G. Wilson in 1974 [11]. Wilson’s
approach is to define a lattice theory with an action that is explicitly gauge invariant at
any lattice spacing a. The other important demand is, that the lattice action approaches
the continuum form in the limit a→ 0. In a näıve discretization of the Dirac field [11],
terms involving fermion fields at different space-time points arise. As an example, terms
of the type ψ̄(n)ψ(n+ µ̂), where n+ µ̂ is the neighbor of site n in the positive µ-direction,
occur. These terms are not gauge invariant. To obtain gauge invariant expressions, we
will need objects that take the role of the gauge-transporter G(x, y) from the continuum
theory. In the continuum, it is defined as

G(x, y) = P exp

(
∫

C
ıgAds

)

, (2.4)
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where P stands for the path ordered expression, the fields A are the usual gauge fields
from the continuum theory and the integral is along a curve C connecting the space-time
points x and y. To construct such an object on the lattice, it is sufficient if we recover
the continuum expression in the limit a→ 0. We therefore define link variables Uµ which
live on the links between adjacent lattice sites n and n+ µ̂:

Uµ(n) = exp

(

ıaAµ

(

n+
µ̂

2

))

. (2.5)

Here the Aµ are algebra-valued lattice fields and the link variables Uµ are elements
of the gauge group SU(3). It is straight-forward to show [18], that this construction
approximates the continuum gauge transporter up to terms of order a:

Uµ(n) = G(n, n+ µ̂) +O(a) .

Therefore, the quark fields ψ and ψ̄ live on the lattice sites and, in analogy to the gauge
transporter of the continuum quantum field theory, the link variables live on the links
between two adjacent lattice sites.

2.3.1 The Wilson gauge action

It is now straight forward to discretize the gauge part of the action, as the trace over
closed loops of link variables. Any such trace over closed loops is a gauge invariant
quantity as required for Wilson’s construction. Counting each loop only once, the gauge
part of the action SG can then be written as

SG[U ] =
2

g2

∑

n∈Λ

∑

µ<ν

Re tr(1− Uµν(n)) , (2.6)

where the so called plaquettes Uµν are the smallest possible loops given by the product
of four link variables

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂) ,

and U−µ(n) = U †(n− µ̂). Instead of the coupling g, one usually uses the inverse gauge
coupling β

β =
6

g2
.

In general, it is advantageous to replace this simplest type of gauge action by an improved
action displaying less discretization errors. For generating the gauge configurations used
in this thesis, the Lüscher-Weisz gauge action [19, 20] has been used instead of the simple
Wilson plaquette action.

2.3.2 Näıve fermions and the doubling problem

The discussion in this section follows closely the account in [18]. A näıve discretization
of the fermionic part of the action using central differences for the derivatives is given
by Equation 2.7,

SF [ψ, ψ̄, U ] = a4

Nf
∑

f=1

∑

n∈Λ

(

ψ̄f (n)

4
∑

µ=1

γµ
Uµ(n)ψf (n+ µ̂)− U−µ(n)ψf (n− µ̂)

2a
(2.7)

+mf ψ̄f (n)ψ(n)

)

.
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Here the index f runs over all quark flavors, ψ and ψ̄ are fermion fields and the link
variables U are defined as in the previous section. Taking a look at the free theory (this
corresponds to setting all link variables to 1: Uµ(n) ≡ 1∀n) with massless fermions, one
can obtain an analytic expression for the Dirac operator and for its inverse, the quark
propagator. In momentum space we obtain

D̃(p) =
ı

a

4
∑

µ=1

γµ sin(apµ) , (2.8)

D̃(p)−1

∣

∣

∣

∣

mq=0

=
−ıa−1

∑

µ γµ sin(pµa)

a−2
∑

µ sin(pµa)2
. (2.9)

At any finite lattice spacing, this expression has a pole not only at p = (0, 0, 0, 0), but
also whenever pµa = π

a , which is also the case for a whole set of points

{(π

a
, 0, 0, 0

)

,
(

0,
π

a
, 0, 0

)

, . . . ,
(π

a
,
π

a
,
π

a
,
π

a

)}

.

These fifteen unwanted poles are called doublers. To solve this problem, a so-called
Wilson term can be added to the lattice Dirac operator. In momentum space this
additional term reads

W̃ (p) = 1
1

a

4
∑

µ=1

(1− cos(apµ))

and the whole momentum space Dirac operator including the Wilson term is given by

D̃W = D̃ + W̃

= 1m+
i

a

4
∑

µ=1

γµ sin(apµ) + 1
1

a

4
∑

µ=1

(1− cos(apµ)) .

We therefore obtain for the full Wilson Dirac operator in position space

D(f)(n|m)αβ
ab = − 1

2a

±4
∑

µ=±1

(1− γµ)αβUµ(n)abδn+µ̂,m +

(

m(f) +
4

a

)

δαβδabδmn . (2.10)

The Wilson term is a lattice discretization of a second derivative and gives an additional
mass to all doublers, such that they decouple from the theory in the continuum limit.
Notice that, just like a quark mass term, such a term also breaks chiral symmetry
explicitly. We will talk about lattice fermions preserving this important symmetry in
the next two sections.

2.4 Chiral symmetry and the Ginsparg Wilson relation

In the limit of vanishing quark masses, the QCD action 2.1 is symmetric under SU(NF )L×
SU(NF )R chiral symmetry. The Dirac-Operator for such a chirally symmetric theory
fulfills the equation

{D, γ5} = 0 . (2.11)

As the Wilson term introduced in Section 2.3.2 breaks this symmetry, the task was to
find a lattice implementation of chiral symmetry that would be free of doublers. It turns
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out that relation 2.11 has to be relaxed to achieve this, as the Nielsen-Niomiya Theorem
[21, 22] states, that a Dirac operator which is free of doublers cannot simultaneously
be local, translation invariant, chirally symmetric in the sense of 2.11 and give rise to a
hermitian Hamiltonian.

The way out is to replace 2.11 with the milder condition [23]

{D, γ5} = a
1

2
D (γ5R+Rγ5)D , (2.12)

where R is a local operator on the lattice. This enables us to implement chiral symmetry
on the lattice [24]. In the next section, we present an overview of Dirac operators fulfilling
this so-called Ginsparg-Wilson relation either exactly or approximately.

2.5 Implementations of chiral fermions

In this section, we will briefly introduce the Overlap solution to the Ginsparg-Wilson
relation 2.12. We then focus on a particular type of approximate solution used within
the Bern-Graz-Regensburg (BGR) Collaboration, the Chirally Improved (CI) Dirac op-
erator. For completeness we also would like to briefly mention two other approximate
solutions of the Ginsparg-Wilson relation which we will not discuss in detail:

• Domain wall fermions
Domain wall fermions [25, 26] approach the overlap operator in the limit of infinite
extent of an additional 5th dimension. In practical calculations, a finite extent for
this fifth dimension has to be chosen. For recent simulations with 2+1 flavors of
domain wall fermions please refer to [27] and references therein.

• Fixed point fermions
The fixed point operator [28, 29] has an Ansatz similar to the CI (see below), but
its coefficients are chosen from a saddle-point approximation of the renormalization
group equation [30].

2.5.1 Overlap fermions

The Overlap Dirac operator [31, 32] fulfills the Ginsparg-Wilson relation with R = 1.
The massless version is given by

D
(0)
O = 1 + γ5sign(γ5Dk) , (2.13)

where Dk is a suitable, doubler-free kernel operator. For computational reasons, the
Wilson Dirac operator 2.10 is usually used. To simulate massive fermions,

DO(m0) = 1 +m0 + (1−m0)γ5sign(γ5Dk) (2.14)

with mass parameter m0 ∈ [0, 1] can be used (see for example [33]). In addition to this
solution, more general versions can be found and we refer the reader to [34] for their
construction. We would also like to point out, that, while simulations with Overlap
fermions are desirable and are being pursued by several groups [35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45], the evaluation of the matrix sign function appearing in 2.13 makes
implementations of Overlap fermions extremely costly in terms of computing power. For
our calculations, we therefore opt for an approximate solution to 2.12 which we will now
introduce.
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2.5.2 Chirally Improved fermions – An approximate solution of the

Ginsparg-Wilson relation

The Chirally Improved (CI) lattice Dirac operator [46, 47] uses the general Ansatz

Dmn =
16
∑

α=1

Γα

∑

p∈Pα
m,n

cαp
∏

l∈p

Ul δn,m+p (2.15)

to express the Dirac operator as a sum over all elements of the Clifford algebra Γα times
paths of links weighted by coefficients cαp . The number of non-vanishing coefficients can
be restricted by symmetry arguments. One then inserts this Ansatz into the Ginsparg-
Wilson relation 2.12 and truncates the length of possible paths occuring in 2.15. This
leads to a set of algebraic equations which can be solved by norm minimization to obtain
an approximate solution of the Ginsparg-Wilson relation. For our simulations, the length
of the paths contributing to the construction of the CI has been limited to length four.

For full-QCD simulations with CI fermions, the approach described in [5] has been
used. The coefficients for the CI are fixed for one simulation and the same coefficients
are used for all other simulations. This implies an additive mass renormalization. For a
list of CI parameters please refer to [5]. In addition, a list of current ensembles and run
parameters can be found in Appendix C.

2.6 Calculating hadronic observables on the lattice

Starting with a discretization of the path integral from Equation 2.3, we can integrate
out the fermion degrees of freedom and obtain integrals of the type

〈

Ô2(t)Ô1(0)
〉

=
1

Z

∫

D[U ]e−SG[U ]detDf1detDf2 . . . detDfN (. . . ) (2.16)

for a number N of flavors where detDf1 stands for the fermion determinant of flavor
1 as obtained from the Grassmann integration over the fermion fields and (. . . ) stands
for the omitted part which depends on the observables. The partition function Z which
normalizes this expression is given by

Z =

∫

D[U ]e−SGdetDf1detDf2 . . . detDfN .

One then includes the fermion determinants as a weight factor into the Monte-Carlo
simulation of the gauge fields. For dynamical simulations with mass-degenerate pairs
of quark flavors and a γ5-hermitian Dirac operator, this weight factor will be a positive
real number

det[D] det[D] = det[D] det[D†] = det[DD†] ≥ 0 .

To calculate this determinant, one introduces one or more complex pseudofermion fields
φ [48] and rewrites the product of determinants as an integral over these fields

det
[

DD†
]

= π−N

∫

D[φRe]D[φIm]e−φ†(D D†)−1φ .

This integral can subsequently be performed numerically, which is the topic of the next
section.
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Neglecting the fermion determinants in integrals of type 2.16 is known as the quenched
approximation. This is equivalent to neglecting the creation of quarks from and the
annihilation of quarks into the vacuum (there are no quark loops in quenched QCD).
While this is clearly an uncontrolled approximation which has mainly been motivated
by considerations about computing time, it is surprising how well this approximation
works for calculations of the mass spectrum. Some of the results in Chapter 4 have been
obtained in the quenched approximation and we will clearly indicate this. In 4.2.4, we
will also point out some of the artifacts arising from the quenched approximation.

2.6.1 Generating gauge field configurations using the Hybrid Monte-

Carlo algorithm

In this section, we will briefly describe the generation of gauge fields with the so-called
Hybrid Monte-Carlo or HMC algorithm [16] (see also [18] for a nice description of the
ideas). The algorithm combines a molecular dynamics evolution of the gauge fields with
a Metropolis-type accept/reject step. For the molecular dynamics part, one introduces
hermitian matrices Pj,µ as conjugate momenta to the gauge links Uj,µ. To ensure that the
gauge links remain in SU(3) [49] the derivative with respect to the molecular dynamics
time U̇j,µ is defined by

U̇j,µ := ıPj,µUj,µ ,

which is the equation of motion for Uj,µ. To obtain the equation of motion for the
conjugate momenta P , we demand that the derivative of the HMC Hamiltonian

H =
1

2

∑

j,µ

tr
(

P 2
j,µ

)

+ SG + φ†(DD†)−1φ

with respect to the HMC time vanishes, Ḣ = 0. For the CI Dirac operator, the equation
of motion for the conjugate momenta is rather involved and details can be found in
[50]. As the molecular dynamics evolution is only approximate, an accept/reject step is
needed to correct this.

The current HMC implementation for CI fermions described in detail in [50, 5] fea-
tures Hasenbusch mass preconditioning [51] with two pairs of pseudofermions, and a
chronological [52] mixed precision [53] inverter. More recently, a new version of the
algorithm employing a higher order Omelyan integrator [54] (instead of the Leap-Frog
scheme used previously) and multiple timescale integration [55, 56] has been tested.

2.6.2 Quark propagators

To determine hadronic observables, we will have to calculate quark propagators result-
ing from the Wick-contractions of the fermion fields. Those propagators need to be
computed on each gauge configuration within our ensemble. It however turns out, that
the calculation of full quark propagators from all sites of a lattice to all other sites of a
lattice would not be feasible, both from the point of view of the computations involved
and from the point of view of computer storage. As an example, for one full propagator
on a typical 4-dimensional lattice of size 163 × 32

(

163 × 32× 3× 4
)2

(2.17)

complex doubles would have to be kept in storage. On standard computer systems, one
single matrix of this size would therefore require roughly 36 Terabytes of storage, which
is clearly too much.
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The usual way of circumventing this problem is to create some sort of quark source
and just store the result of applying a propagator to this quark source. In the simplest
case, the quark source is just a point in space, color-space and Dirac-space and the result
is known as a point-to-all propagator2 . Quark smearing, as detailed in Section 3.6.2, will
lead to more general quark sources.

Once we have constructed our quark sources bi, the source-to-all propagators are
obtained by finding the solutions xi to the Matrix equation

Axi = bi , (2.18)

where A is the Dirac matrix. In general, this system of linear equations is solved by itera-
tive methods such as Conjugate Gradient (CG) for symmetric positive definite matrices,
the MINRES-method for symmetric non-definite matrices or some sort of Bi-Conjugate-
Gradient (BiCG) method for non-symmetric matrices. For some applications, the linear
system of equations 2.18 needs to be solved for many different sources (also referred to
as right-hand sides) bi. In this case so called deflation algorithms are a useful tool. In
Appendix D we present a more elaborate method for solving linear systems of equations
with many right-hand sides. This method is used in Chapter 7 for the calculation of
sequential propagators.

2.6.3 Calculating observables

Once both the gauge fields and the quark propagators have been calculated, the same
propagators can be used to calculate various observables on the given ensemble of gauge
configurations. In Chapter 4, we will discuss in some detail how this is done on the
example of general meson correlators.

2.7 The threefold of lattice extrapolations

In this section, we discuss the extrapolations necessary to obtain results that can be
compared quantitatively to experiment. Any given lattice simulation is performed at
some value of the bare mass parameter (or the mass parameters in case of simulations
including the strange or even the charm quark) and at a certain inverse gauge coupling
β. To obtain dimensionful quantities such as masses, one then uses a physical observable
to set the lattice scale a. Possible scale-setting methods are summarized in Section 2.8.
In the following we briefly outline the basic strategy for extrapolation of lattice results
to the continuum, infinite volume and chiral limits.

2.7.1 Continuum limit

Observables measured on the lattice contain lattice spacing dependent discretization
errors. For the example of masses M measured as Mlat on the lattice we have [18]

Mlat = M (1 +O(aα)) (2.19)

with some positive integer power α. In general, α depends on the details of the lattice
action used for the simulation as well as on the observable in question. To compare
with experiment, one needs to perform a continuum extrapolation of lattice results,
which corresponds to the limit a(g,mq)→ 0. The usual strategy for this is to calculate

2Another common practice is to fix the gauge and use so-called wall sources.
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the observables, whose scaling behavior is to be investigated, on lattices with the same
physical size and multiple different lattice spacings. For a given observable, one can then
determine the leading error term in Equation 2.19 and fit the data to obtain the values
in the continuum limit.

This procedure is a delicate business with dynamical fermion simulations, as an
extrapolation to the continuum should be performed along lines of constant physics. In
[53], simulations at several values of the inverse gauge coupling β and at several quark
masses are performed and interpolations are used to obtain masses of several hadrons
along constant lines of physics. The volume is then, in general, not the same for each
ensemble, but the authors of [53] keep the box size large to ensure that effects from the
finite volume on the masses of stable particles are negligible.

For quenched simulations with CI fermions, the scaling behavior of masses has been
studied in [30], and discretization effects have been found to be small even on rather
coarse lattices. For simulations with dynamical CI lattices the current runs (see Table
C.1 in the appendix) all have a similar lattice spacing and such a study is not possible
with the current data.

2.7.2 Infinite volume limit

At any given volume, interactions due to the periodicity of the lattice lead to finite
volume effects which, for large enough lattices, cause exponentially small corrections to
the mass spectrum of hadrons [57]. The leading corrections come from the exchange of
pions and are of the order exp(−mπL). One often assumes that these corrections are
small for mπL > 4. In Chapter 7 we will present some data for an observable where
this might not be the case. For resonances, the situation is more complicated and the
method developed by Lüscher [58, 59] should be used to obtain the masses of resonances.

To estimate the size of these corrections and to correct the measured observables
the usual approach would be to use lattices of varying box size while keeping all other
parameters fixed. In practical calculations, one has to make sure that one stays far
away from any phase transitions associated with a finite time extent and therefore with
effects of finite temperature. In addition, for a fit to a form obtained from theory, one
also has to make sure that the range of applicability of the theory is respected3. While
the ground states of most hadrons show small effects from finite volume in the range of
quark masses commonly used, the effect from squeezing excited states in a small box
may be more severe.

2.7.3 Chiral limit

For lattice QCD, the values of the current quark masses are parameters of the simulation.
Depending on the action, the mass parameter m0 does not give the quark mass directly.
In general one therefore first calculates the so-called axial Ward identity (AWI) quark
mass, defined through

mAWI =
〈∂tA4(~p = 0, t)P (0)〉
〈P (~p = 0, t)P (0)〉 . (2.20)

By themselves, the quark masses are not observables. At the same time, the quark
masses determine the mass of the pion, the nucleon and other hadrons. The famous

3See for example Colangelo et al. [60] for a discussion of the range of box sizes for which the
corresponding χPT formulae are expected to produce the correct result.



26 CHAPTER 2. LATTICE QCD

Gell-Mann - Oakes - Renner (GMOR) relation [61]

f2
πm

2
π = −2mqΣ , (2.21)

where fπ is the pion decay constant and Σ is the chiral condensate, relates (to leading
order in the quark mass) the quark mass mq and the pion mass mπ.

Compared to the typical hadronic scale, the pions (as the pseudo-Goldstone bosons
of the theory) are rather light (approximately 140MeV), and so are the up and down
quarks (mu+md

2 ≈ 2.5−5MeV [15] in theMS scheme at µ = 2GeV ). For such light quark
masses, lattice QCD calculations get prohibitively expensive and numerical calculations
may even break down completely due to small eigenvalues of the Dirac operator caused by
discretization and finite volume effects. Therefore most current lattice QCD calculations
are performed at pion masses substantially higher than in Nature4, necessitating some
sort of extrapolation when comparing results to experiment. In addition, the light quarks
are usually assumed to be mass-degenerate, even though experimental data indicates a
small mass-splitting between the up and the down quarks.

To guide extrapolations to the physical pion mass, the low energy effective theory
of QCD, called Chiral Perturbation Theory or χPT [63, 64] is often used. At a given
order, a certain number of low energy constants appear and have to be fixed from
experiments or lattice data in order for the theory to be predictive. Order by order,
more such low energy constants appear in the chiral expansion as the effective theory is
not renormalizable with a finite number of counterterms. Comparison between lattice
QCD and χPT is therefore of mutual benefit, as Chiral Perturbation Theory can be
used for extrapolating lattice results while we may learn something about the range of
applicability of the effective theory and determine the low energy constants from lattice
data. As an example, it is not a priori clear if SU(2) Chiral Perturbation Theory or
SU(3) Chiral Perturbation Theory should be used for an analysis of the pseudoscalar
meson sector. In the real world, the kaon mass is not really heavy compared to the
pion mass and, at the same time, the strange quark mass is heavy enough to doubt that
SU(3) is a good symmetry. Recent next-to-leading order calculations [13, 65] suggest
that SU(2) χPT may in fact be more suitable.

From a theorists point of view, varying the pion mass can be regarded as another
tool in the toolbox to understand QCD. There are reasons to assume that calculations
at light-quark masses corresponding to the physical pion mass will be feasible in the near
future and, as mentioned previously, first attempts have been made [13]. This progress
is mainly due to the continuous increase in computing power and due to algorithmic
improvements.

2.8 Setting the scale

There are various possibilities for the determination of the lattice scale. Before we
describe the method used for simulations with dynamical CI fermions, we comment on
some other possibilities and point out some of the issues associated with these choices.
As pointed out in [14], it is desirable to choose a quantity for the scale setting, which can
be measured on the lattice to a high accuracy and is precisely determined experimentally.
At the same time the systematic errors in the determination of the quantity should be
well under control. This last requirement makes masses of unstable particles like the ρ

4Although the PACS-CS collaboration is working at pion masses as low as 156 MeV [13], which is
close to the physical point. Using reweighting techniques [62], they may be able to translate these into
results at the physical point.
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meson mass, which in the past has often been used to set the scale, a bad choice, as the ρ
is a resonance rather than a stable bound state and therefore extrapolation to the chiral
limit (see also 2.7.3) is a rather non-trivial task. On the other hand, the mass of the
Ω baryon has only minimal ambiguities from the chiral extrapolation [27], and several
groups [14, 27, 65, 13] use the mass of the Ω (or in [14] alternatively the Ξ) baryon to set
the lattice scale. All above groups determine the light and strange quark masses from a
chiral extrapolation [27, 13] of the mass or from an extrapolation of the ratio of the pion
mass over the omega mass and the kaon mass over the omega mass [14] respectively. As
pointed out in [27], the determination of the quark masses and the lattice spacing is a
coupled problem.

Another choice for the setting of the scale has been adopted by the European Twisted
Mass Collaboration [66, 67]. The pion decay constant fπ is used as a physical input and
three different forms are used for the chiral extrapolations. They find that the systematic
uncertainties from the choice of extrapolation are not negligible and therefore work with
different values of the lattice spacing and quote this as a systematic error for quantities
determined consistently within the same approach.

We instead use the Sommer parameter [68] to determine the lattice scale for the
dynamic CI simulations [5]. This has been a popular choice for many quenched simu-
lations and has also been used for other dynamical simulations [37]. In this approach,
one extracts the static quark potential V (r) from linear fits to the logarithm of the r× t
Wilson loops ln (W (r, t)). The potential can then be fit to the form

V (r) = A+
B

r
+ σr + C∆V (r) ,

∆V (r) =

[

1

r

]

− 1

r
,

where the perturbative lattice Coulomb potential for our case can be found in [5]. The
Sommer parameter r0 is then given by

r0,lat =

√

1.65 +B

σ
=
r0
a
.

We use r0 = 0.48 fm to set the lattice scale. As the value of r0 is not determined precisely
from experiment, other groups use different values. In [37] a Sommer parameter of
0.49 fm is used. The MILC Collaboration [69] uses mass differences in the Υ spectrum
and the static quark potential to determine the Sommer scale. They obtain a value of
r0 = 0.462(11)(4) fm after a continuum extrapolation. After first setting the scale using
hadronic observables, the authors of [13] try to determine the Sommer parameter r0 at
the physical point and obtain a value of 0.4921(64)(+74)(−2) fm. Using the method
described above, Boucaud et al. [66] obtain the value of r0 = 0.454(7) fm. As a word
of caution, one should note that, depending on the method and the data available,
systematic errors from setting the lattice scale may be substantial and in some cases even
larger than the statistical errors stemming from the finite number of configurations.
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Chapter 3

Excited state spectroscopy

In this chapter, we describe how to obtain information about the mass spectrum of
QCD from a lattice approach. While ground states are rather straightforward to extract,
excited hadrons are difficult to study on the lattice. In the first part of this chapter,
we revisit the Euclidean correlation functions introduced in Chapter 2 and explain why
excited states are more difficult to extract. We proceed in Section 3.2 with a short
overview of methods that have been successfully used for lattice spectroscopy of excited
states and describe one of these approaches, the variational method [1, 2], in more detail
in Section 3.3. There, we also outline how the variational method can be used to calculate
quantities other than the mass spectrum. After having described our method of choice
for excited state spectroscopy, we briefly outline our procedure for analyzing and fitting
data from the variational method in Section 3.4.

For the variational method, a suitable basis of interpolating fields is needed. On
a discrete space-time lattice, the construction of such a basis is complicated as the
continuous rotational symmetry is broken. In Section 3.5 we describe how this affects
the construction of a suitable basis and we proceed to explain how this problem can be
attacked. Once those technical obstacles are out of the way, we introduce (see 3.6) two
different approaches commonly used in the literature along with the techniques needed
for their implementation. We conclude the chapter by briefly mentioning some new
developments which may be of importance for future studies.

3.1 Euclidean correlators revisited

In Section 2.2, we sketched how Euclidean-space correlation functions C(t) can be ex-
pressed as a path integral which can be computed on the lattice. From Equation 2.2, we
see

C(t) ∼
∑

n

ane−tEn . (3.1)

Therefore, to a given correlator, a whole tower of states with different energies En

contributes. If there is a large enough gap between the ground state and the excitations,
a clean signal for the ground state can be extracted by fitting the correlator to a single
exponential at large Euclidean time separations.

To visualize the behavior of single correlators, one often plots so called effective
masses defined by

aMeff

(

t+
1

2

)

= ln

(

C(t)

C(t+ 1)

)

, (3.2)

29
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Figure 3.1: Effective mass from a single pseudoscalar meson correlator at intermediate
quark mass. At small timeslices contributions from excited states are clearly visible. At
large Euclidean times, the data is described well by a single exponential.

instead of the correlators themselves. Figure 3.1 shows an example of an effective mass
plateau for a meson correlator in the pion channel.

While the extraction of ground states with above method is straightforward in a
number of channels, excited states appear only as sub-leading exponentials in Euclidean
two-point functions. With the intrinsically noisy data on a finite number of gauge
configurations, extracting those sub-leading exponentials reliably is not straightforward:
Simple multi-exponential fits are usually unstable. At the same time, contaminations
from excited states may severely limit the fit ranges for observables associated with the
ground state. In the next section, we will introduce a method to extract excited states
which can also be used to obtain a cleaner signal for ground states in channels with
significant excited state contributions.

3.2 Methods for excited state spectroscopy

Over the years a variety of approaches have been pursued to extract excited states on
the lattice. While we focus on our method of choice in the rest of the chapter, we want
to briefly mention other methods. We provide some references for each method, but this
account is surely incomplete.

• Bayesian methods: In the context of the maximum entropy method, this ap-
proach has been discussed in [70] and such an approach has been used in [71, 72, 73].
Another approach is the so-called Sequential empirical Bayes method from [74].
This method has been used for various studies [75, 76]. Bayesian methods have
also been used in [77].

• NMR-inspired black-box method: This method has been suggested in [78]
and been applied in [79, 80].

• Evolutionary fitting techniques: Recently, evolutionary fitting techniques have
been proposed [81] to extract excited states from lattice data. In [82], this method
has been applied successfully to a study of the light meson spectrum.
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• The variational method: The variational method [1, 2] described in detail below
has been used extensively [83, 84, 85, 3, 86, 87, 88, 89, 90, 9, 91, 92, 93] by various
collaborations. So far it is the most established method for the extraction of excited
state properties from lattice QCD.

In the next section and for the rest of our discussion in this chapter, we focus on the
variational method, which is used throughout this thesis.

3.3 The variational method

The basic idea is to use several different interpolators Oi, i = 1, . . . N with the quantum
numbers of the desired state and to compute the full matrix of cross-correlators1,

C(t)ij = 〈Oi(t)O
†
j(0)〉. (3.3)

These correlators have the Hilbert-space decomposition

C(t)ij =
∑

n

〈0|Oi|n〉〈n|O†
j |0〉e−tEn (3.4)

=
∑

n

v
(n)
i v

(n)⋆
j e−tEn .

It can be shown [2], that the eigenvalues of the generalized eigenvalue problem

C(t)~ψ(k) = λ(k)(t)C(t0)~ψ
(k) (3.5)

behave as

λ(k)(t) ∝ e−tEk
(

1 +O
(

e−t∆Ek
))

. (3.6)

At fixed t0, ∆Ek is given by

∆Ek = min|Em − En|, m 6= n , (3.7)

while for the special case of t ≤ 2t0 and a basis of N correlators [94] ∆Ek is given by

∆Ek = EN+1 − En. (3.8)

Therefore, at large time separations, each eigenvalue is dominated by a single state,
allowing for stable two parameter fits to the eigenvalues. Consequently, the largest
eigenvalue decays with the mass of the ground state, the second largest eigenvalue with
the mass of the first excited state, and so on. In practice one first calculates the cor-
relation matrix for a given set of interpolators. This matrix will have real eigenvalues
provided that the matrix C(t) is hermitian for all Euclidean times t and provided C(t0)
is positive definite. One then simply diagonalizes the correlation matrix at each time
slice and sorts the eigenvalues according to their magnitude. For the analysis, truncating
the matrix to a suitable sub-matrix of interpolators may be favorable as it may lead to
results with a smaller statistical uncertainty. We will come back to this when discussing
results in Chapters 4 and 5.

1Unless mentioned otherwise, we will assume a projection to zero momentum for the following dis-
cussion.
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In addition, the time independence of the eigenvector components can serve as a
“fingerprint” for the physical state. To deal with orthogonal eigenvectors ~ψ(k)′, it is
useful to switch to the regular eigenvalue problem,

C(t0)
− 1

2C(t)C(t0)
− 1

2 ~ψ (k)′ = λk(t)~ψ
(k)′ . (3.9)

In plots of eigenvector components we always plot ~ψ (k)′ = C
1
2
0
~ψ (k).

In the analysis, one is not limited to energy levels alone. Following [91], one can also
extract the overlap factors vi which are related to decay constants2 for the case of point

interpolators. With the definition of the v
(n)
i from Equation 3.4

C(t) =

∞
∑

n=1

v
(n)
i v

(n)⋆
i e−tE(n)

,

we can calculate ratios

R(t)
(k)
i =

|∑j C(t)ijψ
(k)
j |2

∑

k

∑

l ψ
(k)⋆
k C(t)klψ

(k)
l

≈ v(k)
i v

(k)⋆
i e−tE(k)

,

to extract the overlap of the i-th operator with the k-th state.

For the simulations in Chapter 7, we will also need to calculate three-point functions
between baryon states. To isolate and suppress contaminations from excited states, we
follow the approach outlined in [91]. More specifically, we calculate ratios of three point
functions T1(t, t

′) and T2(t, t
′)

R(k) =

∑

i

∑

j ψ
(k)
i T1(t, t

′)ijψ
(k)
j

∑

l

∑

m ψ
(k)
l T2(t, t′)lmψ

(k)
m

, (3.10)

as well as at ratios of three-point functions over two-point functions C(t)

R(k) =

∑

i

∑

j ψ
(k)
i T1(t, t

′)ijψ
(k)
j

∑

l

∑

m ψ
(k)
l C(t)lmψ

(k)
m

.

Notice that we are using the simplified version from Equation (27) of [91]. We will
describe this approach in more detail in Chapter 7. For now, we just want to state that
the choice assumes translation invariance and time reflection symmetry which should
both be manifest in an ensemble average.

3.4 Data analysis and fitting methodology

Just like in Equation 3.2 we can now define effective masses

aMeff

(

t+
1

2

)

= ln

(

λ(k)(t)

λ(k)(t+ 1)

)

, (3.11)

where λ(k) is the eigenvalue corresponding to the k-th state, as obtained from the gen-
eralized eigenvalue problem. Figure 3.2 shows a plot of typical eigenvalues and the
corresponding effective masses. The effective masses are used to visually determine the
fit ranges, while all fits will always be performed directly to the eigenvalues. In addition,
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Figure 3.2: Upper plot: The three smallest eigenvalues from a 4 × 4 matrix of vector
meson correlators. Lower plot: Corresponding effective masses. The plateaus for the
excited states are clearly visible but rather short. The data is taken from the quenched
simulations of Section 4.2.
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Figure 3.3: Eigenvector components corresponding to the ground state (left-hand side)
and to the second excited state (right-hand side) from Figure 3.2. Clear plateaus can be
observed in the range of the mass plateaus. The eigenvector components at t0 = 1 are
omitted as they are arbitrary.



34 CHAPTER 3. EXCITED STATE SPECTROSCOPY

one should also observe a plateau in the components of the eigenvectors ψ(k). To illus-
trate this, we plot the eigenvector components of the ground and second excited state
corresponding to the data from Figure 3.2 in Figure 3.3. We now describe the fitting
techniques employed in subsequent chapters for fits to the eigenvalues. The simplest type
of fits are two parameter fits Ce−(t−t0)m to the eigenvalues of the generalized eigenvalue
problem, where m is the resulting energy and C is a pre-factor. To obtain an estimate
of the statistical errors we follow two approaches.

• Uncorrelated fits: We perform simple two parameter fits to the eigenvalues,
weighting each point by its error as determined from a single-elimination jackknife
procedure.

• Correlated fits: For these fits we take into account autocorrelation3 in Euclidean
time t. The method we usually use has been described as “Jackknife reuse” in
reference [95]4. To estimate the covariance matrix we use the following Jackknife-
estimate:

Cov(t, t′) =
N − 1

N

N
∑

i=1

(

λ̄(i)(t)− λ̄(t)
)(

λ̄(i)(t′)− λ̄(t′)
)

,

where (i) denotes the i-th jackknife block and the bars denote averages. For noisy
data the covariance matrix may have artificially small eigenvalues and the corre-
lated fits may break down. We usually restrict the covariance matrix to the region
between t0 and the end of the fit range.

When stable correlated fits are possible, the χ2/d.o.f. can be used as another criterion
to determine suitable fit ranges. For larger data sets, this is much more reliable than
a simple visual inspection of effective masses and eigenvector components. In addition
to these fits, a more complicated functional form has been used in [9], where scattering
states are present. Some of these results will be presented in Section 4.4.

3.5 Angular momentum on the lattice

While it is simple to write down lattice expressions with the desired behavior under par-
ity transformation and charge conjugation, the lattice breaks the continuous rotational
symmetry explicitly and we will have to work with the symmetry group of the lattice. In
this section, we will briefly discuss this issue on the example of meson interpolators. For
a more detailed account, the reader is referred to [82] and for the group theory basics to
[96].

For mesons we deal with the octahedral group O and therefore with five irreducible
representations A1, A2, T1, T2 and E, each of them containing an infinite number of
continuum spins. Table 3.1 lists the lowest few continuum spins in each irreducible
representation along with the dimensionality of the lattice representations. Notice that
spins 0 and 1 only occur in the A1 and T1 representations while the higher spins listed
occur in multiple representations. The last column of the table also lists the Dirac
structures belonging to the A1 and T1 representations.

2A similar prescription can be extracted from [94].
3The autocorrelation we take into account is due to correlations within each configuration and is not

to be confused with autocorrelation resulting from Monte-Carlo simulations, which we will comment on
in Chapter 4.

4Notice that all methods described in [95] should agree for large enough sample sizes. For small
samples one may correct the error from the method of choice using the formulas provided in the reference.
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Irrep of O Dimension J Spinors in irrep

A1 1 0,4,. . . 1,γt,γ5,γtγ5

A2 1 3,6,. . .

E 2 2,4,5,. . .

T1 3 1,3,4,5,. . . γi,γtγi, γ5γi,γtγ5γi

T2 3 2,3,4,5,. . .

Table 3.1: Irreducible representations of the octahedral group and lowest continuum
spins in each irreducible representation.

One possible approach to disentangle contributions of different continuum spin J
to the same interpolators consists of identifying degeneracies in different irreducible
representations. As an example, degenerate states in the E and T2 representations
would be an indication for a spin 2 state, but not for a spin 3 state. Considering that a
lot of experimental states are almost degenerate themselves (especially when one looks
at high excitations) this is not a straightforward task in many cases. In dynamical
simulations, the situation is even worse, as scattering states may be present. Therefore
degenerate states alone are not a suitable criterion for the spectroscopy of excited states.
It will therefore be crucial to look at the overlap between certain correlators and the
respective state at different values of the lattice spacing or to identify common couplings
in the continuum limit [86]. A comparison with quenched studies may be helpful, as all
observed mesons are stable in quenched simulations.

To extend this discussion to baryon interpolators one has to consider the double
valued representations of the octahedral group OD [97]. For details and the construction
of specific baryon interpolators please refer to [97, 98].

3.6 A suitable basis for the variational method

To obtain a suitable basis for the variational method, we have to construct interpolating
operators which create and destroy particles with definite quantum numbers and have an
improved overlap with the physical states of interest. In this section, we focus on possible
ways to construct meson interpolators with the correct quantum numbers. Relevant
literature for baryons is also discussed briefly.

3.6.1 Construction from displaced quarks

In this approach one uses quark sources placed at different lattice sites which are then
connected in a gauge invariant way by suitable paths of links. The paths are chosen
to obtain both a definite irreducible representation and a definite behavior under parity
transformations and charge conjugation. For simplicity, we will again focus on mesons in
our examples. In addition to straight paths, one can use L- and U-shaped paths [99] as
well as closed path consisting of full plaquettes [82]. While this last approach [82] may not
be the most realistic (both quarks sit essentially at the same point), it has the advantage
that only one set of quark propagators is needed to access all irreducible representations.
One then proceeds to combine these paths with suitable Dirac matrices into bilinears
belonging to a specific lattice representation. Notice that multiple representations can
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be reached with a certain combination of path and Dirac matrix. Consider for example

T1 ⊗ T1 = A1 ⊕ E ⊕ T1 ⊕ T2 .

Therefore, with similar Dirac structures and the same sort of displacements one can
create meson interpolators of various continuum spins. A similar approach has also
been used to classify baryon interpolators [98, 97] and has subsequently been applied
to baryons by the LHP Collaboration [87, 88, 89, 90]. In general this approach is also
combined with quark smearing, which plays an essential role in the second approach
described below.

3.6.2 Construction with smeared quark sources

In the second approach, extended sources are created by quark smearing of point sources.
Such smeared sources have been widely used in the literature to minimize the contribu-
tions of excited states to the ground state. In the context of excited state spectroscopy,
quark smearing is used to construct sources which have good overlap with the ground
state but also with the lowest excitations. In [83, 84, 85] Jacobi-smearing [100, 101] is
used to create Gaussians of different widths for meson and baryon spectroscopy involving
light quarks. One starts with a point source

S
(α,a)
0 (~y, t)ρ,c = δ(~y,~0 )δ(t, 0)δραδca , (3.12)

and applies N iterations of the smearing operator H

S(α,a) =

N
∑

n=0

κnHnS
(α,a)
0 , (3.13)

H(~x, ~y) =

3
∑

i=1

(

Ui(~x, 0)δ(~x + î, ~y ) + Ui(~x− î, 0)†δ(~x− î, ~y )
)

,

with a suitable weight κ. This type of smearing has two parameters, κ and N , and leads
to gauge covariant, approximately Gaussian shaped sources. The parameters used for
the runs with dynamical CI fermions are listed in Table C.2 in the appendix. A slightly
different type of Gaussian smearing has been used in [86] and will be used in Chapter 5.
More recently, a similar approach has been used in [93] to study the Roper resonance5.

One can extend this approach by applying covariant lattice derivatives to Gaussian
smeared sources to construct smearings belonging to different irreducible representa-
tions. This approach has been pursued for charmonium in [102, 86] and has also been
applied to light-quark spectroscopy of J = 0, 1 states in [3]. More recently, results for
higher spin mesons have been presented in [92] and some of our results will appear in
[8]. The covariant derivative is usually implemented with a symmetric nearest neighbor
construction:

Pi(~x, ~y) =
Ui(~x, t)δ(~x + î, ~y)− Ui(~x− î, t)†δ(~x− î, ~y)

2
. (3.14)

In Chapter 4 we apply such covariant derivatives Pi to our wide Gaussian sources Sw to
obtain derivative quark sources

W∂i
= PiSw . (3.15)

5We briefly review the current status of the Roper resonance on the lattice in Chapter 6.
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Once a quark smearing which leads to a certain irreducible representation is defined,
one proceeds similar to the first approach by combining quarks with the given smearing
with combinations of Dirac matrices to obtain interpolators of a given PC transforming
according to the representation of choice. In Appendix A.1 we list interpolators of
various irreducible representations R containing quantum numbers RPC which are used
for meson spectroscopy in Chapters 4 and 5.

3.6.3 Gauge link smearing

For both methods of constructing interpolators, it is advisable to use smeared links
when constructing hadron sources and sinks. Once the quark sources are generated, the
unsmeared gauge fields are used for the calculation of quark propagators. In the case of
CI simulations with dynamical quarks, the Chirally Improved Dirac operator is defined
with one level of stout smearing [103] in the action. Our ground state results presented
in [5] have been obtained with no additional link smearing. For more recent results, we
also use a three-dimensional smearing prescription to create the sources and sinks. To
keep the smearing local, we opted for 3-dimensional HYP-smearing [104]. As observed
previously by other authors [89], this considerably reduces the statistical uncertainty on
a given number of configurations [105]. Therefore, three levels of hypercubic smearing
with the parameters listed in Appendix C are used for the results presented in Section
4.3 and in Chapters 6 and 7.

3.7 All-to-all propagators and new developments

For the calculation of disconnected diagrams, which play a role for isoscalar quantities,
different methods have to be used. Here, the full propagators have to be estimated using
so called all-to-all techniques. In addition, we will briefly describe a recent new proposal
[106] for constructing quark sources which may lead to smaller statistical errors in some
cases and which is in general more versatile.

3.7.1 All-to-all propagators

While an exact calculation of all-to-all propagators is not possible, stochastic estimation
techniques can be used to estimate the full quark propagator which are needed for the
calculation of disconnected diagrams. A state-of-the art approach for all-to-all propaga-
tors can be found in [107]. For completeness, we describe this method briefly. For the
details please refer to [107] and references therein.

The method consists of multiple parts. The first part is given by a standard noisy
estimator technique. The Dirac operator is inverted on a set of noise vectors η(r) to
obtain an estimate for the full propagator

D−1(x, y)ijαβ = lim
N→∞

1

N

N
∑

r=1

ψiα
(r)(x)η

jβ
(r)(y)

† , (3.16)

where ψ(r) are the solutions corresponding to the source vectors η(r). This method is
further improved by working with diluted noise vectors which have support on only part
of the lattice. In [107], color, spin, time and even/odd dilution are suggested. The
second part of the method consists of an exact treatment of the low-lying modes of the
four-dimensional Dirac operator. After calculating these eigenmodes, only the remaining
part of the quark propagator is estimated using above noisy estimator techniques with
diluted noise vectors.
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3.7.2 A new type of quark sources

Recently, the Lattice Hadron Physics Collaboration suggested a new and promising
method [106] for creating smeared quark fields. The basic observation is that only
a small number of lowest eigenmodes of the lattice Laplace operator ∇2 contributes
significantly to their construction of sources J , which are defined to obey

lim
N→∞

Jσ,N (t) = exp

(

σ2∇2(t)

4

)

. (3.17)

They therefore use a truncation of the lattice Laplacian to the lowest few modes to
approximate the smearing operators. They proceed to define the distillation operator

2(t) = V (t)V †(t) (3.18)

where V (t) is the matrix of lowest eigenmodes of the lattice Laplace operator. This
distillation operator is used to create the quark sources. To construct arbitrary isovector
two-point functions, the quantities

ταβ(t′, t) = V †(t′)D−1
αβ (t′, t)V (t) , (3.19)

need to be calculated. This requires 4 × N inversions of the Dirac matrix, where N
is the number of modes used for the construction of the distillation operator. Let us
summarize the merits of this approach:

• The sources created with the help of the distillation operators 2(t) have support
in the whole timeslice. This has two benefits: First, a momentum projection is
possible not only at the sink but also at the source. Secondly, the links in the
immediate vicinity of the source location strongly influence the shape of the final
quark sources in the conventional approach. This problem should not exist for this
new method.

• The choice of source and sink operators is independent of the calculation of ταβ(t′, t).
Once the whole set has been calculated, it can be used for various different inter-
polator constructions. The width of the sources can also be varied by introducing
weight factors in the definition of the distillation operators.

• Three-point functions can be constructed by calculating two sets of propagators,
one set from the source-location and one set from the sink location. This construc-
tion merely doubles the effort needed for the two-point functions. All propagators
calculated for the two-point functions can be recycled and any momentum transfer
should remain accessible.

• For small lattices, a small number of eigenmodes (i.e. roughly 32) of the three
dimensional Laplace operator seems to be sufficient [106]. The resulting number
of inversions is then of the same magnitude as it is for usual calculations of excited
states.

While the advantages of this new approach are clear, detailed comparisons of both
methods should be performed. One potential problem is that the number of eigenmodes
needed grows linearly with the number of lattice points in the three-volume. While a
direct calculation of disconnected diagrams within this method would require one set of
propagators on each timeslice, a method similar to the all-to-all method described in the
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previous section can be used to estimate the contributions that are not treated exactly
with the distillation method.

As a last comment, we would like to point out, that the Incremental EigCG-Inverter
[108] described in Appendix D is especially well suited for practical calculations with the
methods described in this section, as the Dirac matrix D needs to be inverted for many
right-hand sides.
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Chapter 4

The spectrum of light-quark

mesons

In this chapter we give an overview of light meson spectroscopy with Chirally Improved
valence quarks on both quenched and dynamical CI lattices. In the first section, we dis-
cuss a basis of meson interpolators containing derivative quark sources. We then present
results from a quenched study for ground and excited state mesons in 4.2. In Section
4.3, we take a look at the meson spectrum using both Gaussian smeared and derivative
quark sources on lattices with dynamical sea quarks. For the dynamical lattices, we
also present some results for higher spin and exotic states. We attempt a näıve chiral
extrapolation of some of the results and compare these to a previous quenched study and
to experimental meson states. Finally, in Section 4.4, we present an alternative basis of
tetraquark interpolators and study the spectrum of scalar tetraquarks.

Ignoring the possibility of tetraquark states for now, a general meson correlator can
be written as

O = q̄sΓqs , (4.1)

where Γ is a single Dirac matrix or a combination of Dirac matrices, the quarks q can in
general be different quarks and the index s indicates a general smearing as introduced in
3.6.2. Neglecting the smearing indices s for a moment, isotriplet correlators built from
such interpolators are given by1 (see for example [18])

〈

O(n)Ō(m)
〉

F
=
〈

d̄(n)Γu(n)ū(m)Γd(n)
〉

F
(4.2)

= Γα1β1Γα2β2

〈

d̄(n)α1,c1u(n)β1,c1ū(m)α2,c2d(m)β2,c2

〉

F

= −Γα1β1Γα2β2 〈u(n)β1,c1ū(m)α2,c2〉u
〈

d(m)β2,c2 d̄(n)α1,c1

〉

d

= −Γα1β1Γα2β2D
−1
u (n|m)β1α2

c1c2 D
−1
d (m|n)β2α1

c2c1

= −tr[ΓD−1
u (n|m)ΓD−1

d (m|n)] .

Here D−1
q stands for the quark propagator of a quark with flavor q. To see that it is

sufficient to calculate only one set of propagators for each source smearing, one can use
the γ5-hermiticity of the Dirac operator

D−1
q (m|n) = γ5D

−1
q

⋆
(n|m)γ5 ,

thereby getting rid of the backwards running propagator. This computational trick
enables us to sum over all sites at the sink timeslice, performing a momentum projection
to momentum zero as needed for meson spectroscopy.

1For concreteness we use u and d for the quark flavors in this example.
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t = 0 t = t′
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B

Figure 4.1: This figure illustrates the quark lines for connected (A) and disconnected
(B) contributions.

While this is the simplest case, additional disconnected contractions of the type
tr[ΓD−1

u (n|n)]tr[ΓD−1
d (m|m)] occur for isosinglet mesons. These terms are very hard to

compute and all-to-all methods (for a short introduction see Section 3.7) are needed to
compute such disconnected contributions. We therefore restrict ourselves to the calcula-
tion of isovector quantities for most of our calculations. Figure 4.1 shows an illustration
of connected and disconnected contributions. As the mass splitting between up and
down quarks is small compared to the quark masses employed in our calculations, we
consider up and down quarks to be mass-degenerate, mu = md.

4.1 Light-quark spectroscopy with derivative quark sources

For the Variational Method described in Section 3.3, it is crucial to use a basis of
interpolators which have good overlap with the ground and lowest excited states in the
given channel. One possibility to construct a basis consists of using Gaussian sources of
different width [84]. As described in Section 3.6.2, this approach can be extended with
sources containing derivatives [3]. In the following, we use a basis of both Gaussian and
derivative sources for the spectroscopy of light-quark mesons.

Tables A.1 and A.2 in Appendix A.1 show the interpolators used2 in [3]. For consis-
tency, the interpolators are not numbered consecutively but according to their structure.
Numbers 1-6 denote the Jacobi-smeared interpolators of [84], while all other interpola-
tors contain at least one derivative. For all of our plots in this chapter we will refer to
these numbers in combination with the quantum numbers of the channel to uniquely
identify the correlators.

For non-strange mesons, an anti-symmetrization of the interpolators is used to ob-
tain a definite behavior under charge conjugation. While we make this symmetrization
explicit in Tables A.1 and A.2, we will sometimes omit it later on. Nevertheless, in-
terpolators containing a single derivative denoted as ū∂i

Γdn/w should always be read as
ū∂i

Γdn/w − ūn/wΓd∂i
. In Chapter 5 we discuss why a symmetrization is needed even at

zero momentum and present a way to avoid this symmetrization. Similar interpolators
will be used in Section 4.3 on configurations with dynamical CI quarks, where we further
extend the basis and also take a look at strange-light mesons.

All interpolators have been classified with regard to continuum quantum numbers
I JPC . In [3], the quantum numbers in the chiral limit are also discussed. As usual, P
denotes the spatial parity, J is the total continuum spin, I is the isospin and C denotes

2The tables also contain additional interpolators which will be used in 4.3.
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the behavior under charge conjugation of the neutral q̄q system. As detailed in Section
3.5, the lattice interpolators in A.1 will in general also couple to continuum states with
higher J due to the loss of rotational symmetry [99, 86]. We will point out where such an
admixture may play a role in the identification of states. For the case of spin 2 mesons
on dynamical lattices we explicitly construct correlators belonging to distinct irreducible
representations.

4.2 Results from quenched QCD

In [3] derivative quark sources were used for a study of the light-quark meson spectrum.
In particular, the pseudoscalar, scalar, vector and pseudovector channels were investi-
gated. In this section, we summarize the most important findings of [3] and provide an
overview of the method.

4.2.1 Technicalities

We work on a set of 99 uncorrelated quenched gauge configurations generated with the
Lüscher-Weisz gauge action [20, 109]. We use a 163× 32 lattice with a lattice spacing of
0.148 fm, determined [110] from the Sommer parameter (using r0 = 0.5 fm). We study
several valence quark masses ranging from amq = 0.02 to amq = 0.2. We fold the data
obtained from propagation in positive and negative Euclidean time and subsequently
determine the errors with a single elimination jackknife procedure. In addition to the
purely statistical error, we also provide a rough estimate of the systematic error from
varying the fit range and from altering the choice of interpolating field operators. This
systematical error is indicated by a shaded area in the plots. The horizontal error bars in
the plots over the pion mass squared m2

π are from the uncertainty in the determination
of mπ. For most of the results in this section, we use uncorrelated fits (see Chapter
3), which usually leads to an unrealistically small χ2/d.o.f. (for tables see [110]) and an
overestimation of the statistical error.
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Figure 4.2: Diagonal entries of the correlation matrix as a function of Euclidean time t.
The data are for bare quark mass amq = 0.04. The 0−+ (left-hand side plot) and 1−−

(right-hand side) channels are shown. The numbers next to the correlators are according
to Tables A.1 and A.2 respectively.
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Figure 4.3: Left-hand side: First excited state of the pseudoscalars for two different sets
of interpolators. Right-hand side: Second excited state for the pseudoscalars. The error
bars are statistical only and the shaded regions indicate the additional systematic errors.
The filled symbols correspond to the experimentally measured resonances π(1300) and
π(1800).

4.2.2 A first look at our quark sources

To illustrate the effect of using derivative sources, we show the diagonal correlators for the
0−+ and 1−− channels in Figure 4.2. Compared to Gaussian sources, the interpolators
with derivative sources show stronger contributions from excited states, which can be
deduced from the steeper slope at small timeslices. At large Euclidean time t, it can
nevertheless be clearly seen that all diagonal correlators are eventually dominated by
the respective ground states.

4.2.3 The 0−+ channel

In Figure 4.3, we display the results for the first and second excited states of the pion.
On the left-hand side the first excitation is extracted from two different sets of interpola-
tors. Circles are used for the combination of Gaussian interpolators 1, 4, 5, 6, while the
squares correspond to the choice 1, 4, 6, 9, 12 of Gaussian and derivative interpolators.
The latter allow for fits at slightly lighter quark masses. At the same time, the inter-
polators with derivative sources couple weaker to the ground state. The systematical
uncertainty (shaded region in the figure) from the choice of interpolators is consistent
with statistical effects as reasonable combinations of four or more interpolators always
lead to comparable results. While there is no significant improvement, the new results
with the enlarged basis nicely confirm the existence of the measured state and the sta-
tistical error for the first excited state shrinks as the derivative interpolators are added
to the basis.

It is also worth mentioning, that contributions from the ground state propagating
back in time spoil the signal of the first excited state at small quark masses and limit
the usefulness of the variational method for fits of the ground state pion [3]. We will
illustrate this effect in Section 4.3, where it turns out to be a severe limitation for the
extraction of excited pion states. Similar effects have also been observed previously in
[89].

On the right-hand side of Figure 4.3, we display our results for the second excitation
of the pion. Unlike with Gaussian sources alone, it is possible to obtain fits for this
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Figure 4.4: Eigenvector components from the standard eigenvalue problem (Equation
3.9) as a function of t. The eigenvectors correspond to the pion ground state (left-hand
side plot), the first and second excited states (center and right-hand side plots) and are
obtained from a 4× 4 matrix of the interpolators 1, 6, 9, 10, at quark mass amq = 0.12.

second excitation with a combination of Gaussian and derivative interpolators. In the
chiral limit, this state can most likely be identified with the π(1800). Fits with various
different combinations of interpolators lead to the same results, which all show stable
eigenvector entries. We would like to stress that a correlation matrix of the same size
consisting solely of non-derivative operators does not enable us to see this excitation.

It is instructive to look at the components of the eigenvectors for all three states
observed in the pseudoscalar channel. Figure 4.4 shows such a plot for the case of
interpolators 1, 6, 9 and 10. While the derivative interpolators 9 and 10 do neither
contribute significantly to the ground state nor to the first excited state, they are most
important for obtaining the newly observed second excited state. The good overlap of
the derivative sources with the second excitation explains why we could not observe it
with Gaussian sources alone. This behavior is qualitatively the same for all possible
combinations of interpolators, for which the second excited state can be seen.

4.2.4 The 0++ channel

In the 0++ channel, contributions from so-called ghost states [111, 112, 113, 114, 115, 75]
complicate the analysis. For light quarks, these unphysical quenching artifacts dominate
the correlators at small Euclidean time separation and lead to correlators becoming neg-
ative at intermediate time separations. This effect is demonstrated in Figure 4.5, where
diagonal correlators for the 0++ channel are shown. The contributions from ghost states
seem to vary greatly, depending on the structure of the interpolator. In general, they
seem to be much milder for interpolators containing derivative quark sources. From the
analysis of the dynamical CI data presented in Section 4.3, we will see that interpola-
tors 7 and 8, which lead to a good signal in the quenched case, show only a very weak
signal in the case of dynamical mesons. While, for a pure q̄q system, these interpolators
should not couple to scalar mesons in the chiral limit [3], this is a puzzle we do not fully
understand.

Most of the ghost contributions can be separated by the variational method [113].
Nevertheless the signal becomes very noisy when these ghost contributions set in and a
reliable fit is no longer possible.

In Figure 4.6 we present our results for the ground state of the isovector scalar a0.
Compared to a basis of Gaussian sources alone, we are able to perform fits at smaller
quark masses and with increased statistical accuracy (for the intermediate and larger



46 CHAPTER 4. MESON SPECTROSCOPY

0 3 6 9 12 15
t

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

 d
ia

go
na

l 0
+

+
 c

or
re

la
to

rs

amq = 0.02

1
2 3

9,10
7,8

11

Figure 4.5: Diagonal entries of the correlation matrix for the scalar channel at amq =
0.02. The numbers next to the data label the correlators according to Table A.1. There
are clear contributions of ghost states for some interpolators (i.e., negative values), while
other interpolators seem to be almost free of them.

quark masses). An extrapolation of the quenched data to the chiral limit3 is difficult, as
there is a large dependence of the results on the interpolators used. While interpolators
with large ghost contributions suggest an extrapolation to the a0(1450), some of the
derivative interpolators lead to values in the lower part of the shaded region. As we
will see in Section 4.3, some of this ambiguity will persist even in the case of dynamical
simulations. Nevertheless, there are some arguments speaking for an extrapolation to
the a0(980) which we will discuss in 4.3.

For a general description of the puzzles associated with low lying scalar mesons, see
Section 4.4 and references [116, 117].

4.2.5 The 1−− channel

The ground state in the vector meson channel is given by the ρ(770). While this state
can be fit from single correlators the results improve quite drastically when a matrix
of interpolators is used. Figure 4.7 shows the ground state, which is of good quality
in the quenched approximation where decays are absent. As usual the grey error band
indicates the systematic uncertainties from the choice of different interpolators and fit
ranges. In this case, the error is dominated by the statistical error. A näıve linear (in
m2

π) extrapolation leads to masses somewhat higher than the ground state. We will
revisit this issue when analyzing data from dynamical configurations.

In addition to the ground state, two more energy levels can be extracted whose inter-
pretation in terms of physical particles is less obvious. While there are multiple known
excitations with J = 1 below 2GeV (most notably the ρ(1450) and the ρ(1700)) there is
also at least one excitation with J = 3 (the ρ3(1690)) in this mass range. As mentioned
in 3.5, the loss of continuous Lorentz symmetry implies that lattice interpolators may
also couple to higher spins. More specifically, at any finite lattice spacing coupling to

3We refer to the limit of the pion mass going to the physical pion mass as the chiral limit, even though
the real chiral limit is given by a massless pion.
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Figure 4.6: Ground state mass of the isovector scalar (a0). The error bars are statistical
only and the shaded region indicates the additional systematic error described in the
text. The black circle shows the (experimentally) measured a0(1450) and the triangle
indicates the a0(980).

states with J = 3 is not excluded for interpolators in the T1 irreducible representation.

Figure 4.8 shows the results for the first and second excited states in the 1−− channel.
Overall, results from a combined basis of Gaussian and derivative interpolators agree
qualitatively with results obtained from just Gaussian interpolators alone. At the same
time, the larger basis leads to smaller error bars and more stable plateaus enabling
us to perform fits at slightly lower valence quark masses. The observed excitations
are rather close together and are both consistent with the ρ(1700). In [3] this has been
attributed to discretization effects, as data from a finer 203×32 lattice with a = 0.119 fm
leads to two distinct excitations. This argument was supported by similar eigenvector
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Figure 4.7: Ground state for the ρ(770) meson.
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Figure 4.8: First (left-hand side) and second (right-hand side) excited states of the vector
mesons compared to the experimental spin 1 resonances ρ1450 and ρ(1700). To illustrate
possible discretization effects we also display data from [84] for a finer lattice of the same
volume (203 × 32, a = 0.119 fm).

components for both the coarse 163 × 32 and the fine 203 × 32 lattice. Newer data from
configurations created with dynamical CI quarks [5, 8] (see Section 4.3) indicates that an
unambiguous interpretation may require higher statistics as runs with the same lattice
spacing at different quark masses reveal similar problems for the excitations of the ρ
meson. This may be seen as a reminder that data obtained at different valence quark
masses in a quenched simulation is highly correlated. Näıve extrapolations assuming
an uncorrelated sample may therefore be dangerous. To settle these issues, more data
points from dynamical simulations, preferably also at a finer lattice spacing, will be
needed.

4.2.6 The 1++ channel

For the 1++ channel, there is only one interpolator containing derivative quark sources.
Figure 4.9 shows data obtained from different combinations of Gaussian interpolators
and the one containing derivatives. An indication of error bands, as shown for the other
channels, has been omitted here, since the two combinations plotted already show the
extremes.

For the 1++ pseudovectors, derivative sources drastically improve the signal for the
ground state. While the results from the Gaussian and the full sets agree qualitatively,
the statistical errors towards smaller quark masses are significantly reduced. The reason
for this are longer, more stable effective mass plateaus allowing for larger fit ranges. At
larger quark masses there is a slight deviation of the order of two standard deviations.

The excited state previously observed [84] stays the same if one includes the new
interpolator in the analysis. Looking at the components of the modified eigenvalue
problem we see that this interpolator contributes only weakly to the excited state. A
matrix analysis therefore combines the advantages of both types of interpolators.

In Section 4.3 an enlarged basis of interpolators will be used for both the 1++ (or
a1) pseudovectors as well as the 1+− (or b1) pseudovectors. These results confirm the
usefulness of derivative sources for spectroscopy of pseudovector mesons.
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Figure 4.9: Ground- and first excited state of the pseudovector mesons (a1). The filled
circles indicate the physical states.

4.2.7 Summary of results from the quenched simulation

We explored the use of an enlarged basis of meson interpolators containing both Gaussian
as well as derivative quark sources in light-quark meson spectroscopy. Depending on the
channel, the determination of both ground and excited states may be improved by the use
of derivative interpolators. For the 0−+ channel, a second excited state can be extracted
that was not seen with a basis of similar size consisting of Gaussian sources alone. In
the case of scalar mesons, interpolators with derivatives showed a reduced contamination
from ghost states which enabled us to obtain fits at smaller quark masses. The results for
the 1−− channel are fully consistent with previous results, while a larger basis can serve
to reduce the statistical uncertainty. The most drastic improvement has been observed
in the 1++ channel, where the ground state pseudovector a1 could be extracted more
reliably. In the next section, we will apply the same methods to data from dynamical
CI simulations, where we will also explore additional channels including mesons with
J = 2.

4.3 Results from dynamical CI simulations

Within the Bern-Graz-Regensburg Collaboration, lattices with dynamical CI quarks
have been generated [5]. Currently, there are three ensembles on lattices with 163 × 32
lattice points with a volume of approximately 2.4 fm3 × 4.8 fm. The pion masses range
from 525MeV (which we call “run A”) down to 322MeV (“run C”), which corresponds
to quark masses mAWI in a range 42 − 15MeV. For more details about ensembles with
dynamical CI quarks please refer to Appendix C and to reference [5].

In this section, we will discuss results for meson spectroscopy on dynamical CI con-
figurations. Our main focus will be on the derivative sources of [3], which we apply to
the dynamical ensembles A-C. Selected results for the ground state masses employing
standard Gaussian sources without additional gauge link smearing4 have already been

4The Chirally Improved Dirac operator already contains one level of stout-link smearing. For more
details refer to Section 3.6.3 and references therein.
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presented in [5]. Here we mostly use results obtained from sources constructed with three
levels of HYP-smearing [104]. We will indicate when we use results already presented in
[5] instead. More recently, results for both ground and excited states have been reported
in [8]. In addition, preliminary results have been presented in [6, 7].

For our spectroscopy calculations, propagators have been calculated on every fifth
configuration. To further reduce the autocorrelation between subsequently analyzed con-
figurations, we shift the sources through the lattice in a periodic fashion. For estimates
of autocorrelation times in measurements of simple observables please refer to [5]. A
reliable estimate of autocorrelation times for hadron masses would require a larger en-
semble size. We therefore treat the chosen configurations as uncorrelated and determine
the statistical errors with a single-elimination jackknife procedure.

4.3.1 Results for light-quark mesons

For the dynamical CI ensembles listed in Appendix C, we use a slightly enlarged basis
of interpolators compared to the quenched case. We now use the full set of interpolators
presented in Tables A.1 and A.2 for spin 0 and spin 1 mesons. Details on the quark
smearing parameters for the dynamical configurations can be found in Table C.2.

Chiral extrapolations

Unfortunately, there are no results from Chiral Perturbation Theory to guide the chiral
extrapolations for excited states. The same is true for most of the ground states consid-
ered in this section. In the absence of a better understanding, we will have to resort to
phenomenological fits motivated from the fact that some states seem to exhibit a linear
behavior in m2

π at low enough pion masses. We therefore use the form

mH = c+ bm2
π (4.3)

for most of our chiral fits. Such fits have been used in the past for quenched results [84]
and more recently also for the extrapolation of dynamical data [92].

The results obtained in this way should mainly serve to guide the eye as we cur-
rently do not have enough data points for reliable fits. In addition, the statistical errors
associated with our limited data are large and a higher statistics would be beneficial
to better constrain the fit parameters. In the future, we hope to add more data points
and increase the statistics for some of our runs. Overall it is quite surprising how well
the results of these simple extrapolations agree with the experimental data, especially if
one considers that continuum and finite volume extrapolations are still lacking. We will
discuss some of these shortcomings in the outlook presented in Chapter 8.

The 0−+ channel

We would like to start the discussion with the pion channel, where, for the ground
state, the best signal can be extracted. Figure 4.10 shows the two largest eigenvalues as
obtained from the variational method using the generalized eigenvalue problem compared
to a single diagonal correlator (q̄wγ5qw) normalized at timeslice t0 = 1. Neglecting
wrap-around effects from the finite time extent of the lattice, these eigenvalues should
correspond to the ground state and first excited state of the pion. As we work with a
periodic lattice, this simple picture does not hold. For all three runs, the backwards
running ground state is clearly visible in the data, starting between timeslice 5 and 8
depending on the pion mass. This backwards running ground state severely limits the fit
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Figure 4.10: Eigenvalues for the ground and first excited states in the pseudoscalar
channel. The open circles show a single diagonal correlator which exhibits the typical
cosh type behavior expected for a periodic lattice. The eigenvalues from the generalized
eigenvalue problem show a large contamination from the backwards-running ground state
which is discussed in the text. The figure is taken from [5].

range for the first excitation. Notice that this can be remedied by a larger time extent of
the lattice. Similar artifacts from the periodicity of the lattice have also been observed
in channels where particles scattering back-to-back may be present [118]. These artifacts
are discussed in detail in reference [9] and this effect may be an additional complication
for dynamical simulations at light quark masses. We will come back to this observation
when discussing the results for scalar mesons.

Figure 4.11 shows the results for the first excitation in the pion channel obtained from
sources constructed with smeared links. The filled symbols are the results at the unitary
points, where sea and valence quark masses are equal. The open symbols show partially
quenched data with valence quark masses that are larger than the sea quark masses.

0 0.4 0.8 1.2

Mπ
2
 [GeV

2
]

0

0.5

1

1.5

2

2.5

m
as

s 
[G

eV
]

A from 3,8,11
B from 3,8,11
C from 3,8,11
π(1300)

Figure 4.11: First excited state in the pion channel compared to the experimental
π(1300). The filled symbols are the dynamical points, while the open symbols are par-
tially quenched results. The solid line denotes the fit to the three dynamical points
and the dashed lines indicate the error of the fit. The data is taken from the talk
corresponding to [8].
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Figure 4.12: Ground state of the ρ meson. The filled symbols are the dynamical points,
while the open symbols are partially quenched results. The solid line denotes the fit to
the three dynamical points and the dashed lines indicate the error of the fit. The data
is taken from the talk corresponding to [8].

Compared to the quenched case, the signal seems to be somewhat noisier, especially
at larger quark masses. Notice also that runs B and C corresponding to the lightest
two pion masses are from simulations on 200 configurations, while only 99 independent
configurations have been used for the quenched results in Section 4.2. While our results
have a large statistical uncertainty, we are able to extract the first excited state at pion
masses which are lower than in the quenched case. For the larger masses, the quenched
results agree nicely with the dynamical results and there is no indication for larger
quenching errors. Notice also that the lattice spacing and volume are comparable to the
quenched simulations.

In addition to the lattice data, we show the results of a näıve linear fit (see 4.3.1
for a short discussion) which is the solid line in Figure 4.11. The dashed lines indicate
the associated error bars. As can be seen, the results agree with experiment but the
remaining statistical and systematical errors are quite large.

At the light dynamical quark masses used for our simulations we are not able to
obtain a signal for the second excitation which we saw in quenched calculations at large
quark masses [3].

The 1−− channel

Let us now proceed with the ground state in the vector meson channel, which can
be identified with the ρ meson. Figure 4.12 shows data for the ground state in the
1−− channel, the ρ(770). At larger partially quenched quark masses the data from the
three different runs falls on one curve. In this regime all data agrees well with the
quenched results (not shown in the figure), although the error bars are larger for the
dynamical data. While a linear fit to the quenched data from Figure 4.7 describes the
data well in the whole range of quark masses, the resulting mass of 825MeV turns out
to be roughly 50MeV larger than the experimental value. The data from dynamical
simulations deviates from a purely linear behavior. A fit using just the three dynamical
points is shown in the plot and the results agree with experiment within large error
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Figure 4.13: First excited state of the ρ meson. The symbols are the same as in Figure
4.12. The data is taken from the talk corresponding to [8].

bars. This is surprising, as the physical ρ meson is a resonance which can decay into
two pions at small pion masses. This decay is a p-wave decay and we expect the ρ to be
lattice-stabilized in a small volume, where the threshold for a decay at rest is given by

2

√

m2
π +

(

2π
L

)2
[117], with the lattice size L.

Figure 4.13 shows the first excited state in the 1−− channel. Again the linear ex-
trapolation leads to results compatible with the first known excitation, the ρ(1450). In
the quenched case, the data on the coarse lattice extrapolated to a value significantly
above the physical resonance. This was attributed to discretization effects in [3]. The
dynamical data on a similar lattice spacing and in a similar volume does not exhibit
this behavior, but the statistical errors are large. More data would be needed to make
a stronger statement.

The 1++ and 1+− pseudovectors

In the pseudovector channels the situation is less clear. While the interpolators with
Gaussian sources alone show a very weak signal, some of the derivative interpolators
exhibit short but clear plateaus. At the same time, there is a large systematic uncertainty
associated with the choice of interpolators. We therefore present two different fits in each
channel to illustrate this error. For a more detailed analysis, more precisely to see if these
systematic uncertainties persist with increased statistical accuracy, a larger number of
configurations would be desirable.

Figure 4.14 shows the masses in the 1++ channel, which corresponds to the pseudovec-
tor meson a1(1260). We provide results for two different combinations of interpolators
built from derivative sources. The left-hand side of Figure 4.14 shows results for inter-
polator 8 alone, while the right-hand side shows results from a matrix of interpolators
9 and 10. While the former extrapolate to a lower value which is more consistent with
the experimental state, the latter extrapolate to slightly higher values. Nevertheless the
final results agree within the large statistical errors.

In addition to the dynamical data, the quenched results from reference [3] are also
shown on the left-hand side. While the dynamical results with interpolator 8 alone
show a noticeable difference compared to the quenched results, the results from the new
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Figure 4.14: Ground state for the pseudovector mesons a1 from two different interpo-
lator combinations with derivative sources. For comparison we also show the physical
a1(1260). While partially quenched points are denoted with open symbols, the filled
symbols correspond to the unitary points (i.e. equal masses for sea and valence quarks).
In addition to the data, a simple linear fit to the dynamical points is shown.

interpolators 9 and 10 agree qualitatively with the quenched results from 8. At large
partially quenched masses, all sets agree within two standard deviations.

For the 1+− pseudovector the situation is similar. In Figure 4.15 we again show
two different sets of results, this time for interpolators 8 (left-hand side) and a matrix
of interpolators 4, 5 (right-hand side) respectively. In addition the usual linear fits are
shown and the results are compared to the lowest experimental state, the b1(1235).
While the two sets agree qualitatively with an interpretation as the b1(1235), the results
from interpolator 8 have much larger error bars. Also, when taking a matrix of all three
interpolators, the results are very close to the results with just 4 and 5 alone, but the
statistical errors grow. This indicates that other effects may lead to an artificially large
mass for this state. Data at multiple different lattice spacings and possibly in multiple
different volumes would be needed for a thorough investigation.
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Figure 4.15: Ground state for the pseudovector mesons b1 from different interpolator
combinations with derivative sources. In addition to the lattice data, the experimental
value for the b1(1235) is shown.
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Figure 4.16: Ground state in the 0++ channel. The data points are from fits to the
single interpolator 8. Most other interpolators either show no plateaus at all or produce
inconsistent results. The linear fit seems to indicate an interpretation of the scalar
ground state as the a0(980) which is shown for comparison.

We also want to point out, that the results from standard interpolators without
derivatives agree qualitatively with the results for the b1 while reliable fits for the a1

were impossible. In general the associated mass plateaus were shorter and usually more
noisy. Notice that the a1 is a very broad resonance (with a width of 250 to 500 MeV
[15]) and scattering states may influence the picture considerably.

The 0++ channel

Low-lying scalar resonances have been an active topic of research for a while [119, 111,
112, 114, 115, 75, 120, 121, 116]. In the isovector channel, the quenched analysis has
been complicated by artifacts of the quenched approximation, so called ghosts. (For a
discussion see Section 4.2.4.) Most of those results lead to masses for the scalar ground
state which were more consistent with the a0(1450) than with the lowest experimental
resonance, the a0(980). As there are other puzzles surrounding a q̄q interpretation of the
a0(980), some of which we will summarize in Section 4.4, this can be seen as a supporting
argument for a tetraquark interpretation of this state. In dynamical calculations ghost
states are absent and the inclusion of sea-quark loops may alter the coupling of q̄q
interpolators to a resonance with a strong four quark component. At the same time,
scattering states, which were not present in the quenched calculations, make the picture
more difficult. We now take a look at the results for the isovector scalar channel using
our basis of smeared interpolators.

Figure 4.16 shows our results for the ground state in the a0 channel using just in-
terpolator 8 alone. We are forced to adapt this choice, as most other interpolators (and
most matrices of multiple interpolators) lead to very poor plateaus for either run B or
run C. To illustrate the quality of the plateaus for interpolator 8, we show effective
masses for the two lightest pion masses in Figure 4.17. One possible cause for the very
short plateaus in some interpolators may be the presence of scattering states with one
particle propagating forward in time while the other propagates backwards in time. Such
contributions have been found to play a role in other simulations [122]. In addition, we
plot both our best fit and the systematic uncertainty (from fit ranges and choice of in-
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Figure 4.17: Effective masses from interpolator 8 in the 0++ channel for run B (left-
hand side) and run C (right-hand side). In addition to the effective masses the results
of simple uncorrelated two-parameter fits are shown.

terpolators alone) as determined from the quenched data in [3]. While the error bars are
large and the linear extrapolation should not be taken too seriously, all of the dynamical
data shows a trend towards smaller masses for the ground state of the a0, making the
results more compatible with the a0(980) than with the a0(1450). Notice that we refrain
from displaying partially quenched results in the a0 channel as they contain remnants
of the quenched ghosts mentioned above. For a description of such partially quenching
artifacts, please refer to [115]. In our case, we gained no significant insight from the
partially quenched data and we do not discuss it here.

In [120, 117], the authors focus on the mass difference between the lowest state in the
0++ and 1+− channels to identify the lightest scalar meson state with an experimental
resonance. While the error bars from such an analysis are rather large, the results suggest
that the lightest scalar meson may indeed correspond to the experimental a0(980). We
would like to mention that our results from derivative sources qualitatively agree with
this assessment and, for the central values, we obtain a mass difference m1+− −mo++

ranging from approximately 140MeV to 220MeV depending on our choice of interpola-
tors for the b1.

To understand the role of scattering states better, it would be useful to work with
several volumes and to include scattering states in a variational analysis. There are
currently several efforts to investigate such multiparticle states using lattice QCD. For
an unambiguous determination of the ground state in the a0 channel, the possibility of
the ground state being a scattering state has to be excluded.

4.3.2 Derivative quark sources for higher spin mesons and exotics

So far, we applied derivative quark sources to mesons of spin 0 and 1. Using only one
derivative, we can also access the non-exotic spin 2 channels. For a list of interpolators
used in this section, please refer to Tables A.3 and A.4 in the appendix. In addition to
these channels, we also take a brief look at interpolators with exotic quantum numbers
(see Table A.5).

Similar interpolators have been used by Burch et al. for a study on Nf = 2 Clover-
Wilson lattices [92]. We will compare some of their results with our results in Section
4.3.3.
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Figure 4.18: Ground state of the a2 from both the T2 (left-hand side) and E (right-hand
side) irreducible representations. The experimental a2(1320) is shown for comparison.

The 2++ channel

Figure 4.18 shows our results for the 2++ channel in both the T2 (left-hand side) and E
(right-hand side) irreducible representations. While the data from the latter extrapolates
to slightly larger values, both lead to consistent results which confirms that the ground
state in both channels can safely be identified with an a2 state.

In the E representation, the data from run C turns out rather high which gives
a negative slope to our linear fits. We are confident that results from further dynamic
ensembles and better statistics would remedy this problem, thereby making the fits from
the two different lattice representations more consistent.

The 2−− channel

A somewhat weaker signal can also be extracted for the 2−− channel, using interpolators
in both the E and the T2 representations. In both cases, the mass plateaus for the fits
are very short and a fit has to be performed at rather small Euclidean time separations.
The results of such fits can be seen in Figure 4.19. Again, both representations agree
and are consistent with an interpretation as the ground state in the respective spin 2
channel, the ρ2(1940). Notably, there is no sign of a lower-lying spin 3 state (i.e. the
ρ3(1690)) which could appear in the T2 representation as a lattice artifact. As a word
of caution, we again stress that the fit ranges for the determination of the mass are very
short and that higher statistics would be desirable to make the fits less ambiguous.

The 2−+ channel

Finally, Figure 4.20 shows the results for the 2−+ channel, where the lowest experimental
state is the π2(1670) [15]. Here, the statistical errors are even larger and systematic un-
certainties from different interpolators make an extrapolation less reliable. Still, results
from both sets of interpolators and for all three ensembles are consistent within two σ.
Extrapolations of the lattice data would be consistent with both the π2(1670) and the
π2(1880). Similar to the other spin 2 channels, higher statistics would be desirable.
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Figure 4.19: Ground state of the ρ2 from both the T2 (left-hand side) and E (right-hand
side) irreducible representations. The experimental ρ2(1940) is shown for comparison.
In the T2 representation, more statistics for run A would be needed to obtain an un-
ambiguous fit of the signal. With only two points we therefore refrain from a chiral
extrapolation in the T2 representation.
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Figure 4.20: Ground state of the π2 from both the T2 (left-hand side) and E (right-hand
side) irreducible representations. The experimental π2(1670) is shown for comparison.
The results of linear extrapolations are also shown.

A look at correlators in exotic channels

In addition to the data described so far, we also took a look at so called exotic quantum
numbers, for which simple q̄q states do not exist in the näıve quark model. If these
states exist, most of them are expected to be rather heavy. Nevertheless, there are two
known exotic particles below 2GeV, the π1(1400) and the π1(1600). They have quantum
numbers 1−+ which can be constructed using lattice interpolators with derivative quark
sources. In addition to this channel, we also calculated correlation matrices in the exotic
0−− and 0+− channels. Table A.5 shows the interpolators we used.

Unfortunately all those interpolators lead to very noisy data and we are unable to
report any masses for the 1−+ channel. To illustrate the typical quality of data we
show the lowest two eigenvalues from a matrix analysis of all four interpolators in the
π1 channel in Figure 4.21.
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Figure 4.21: The largest two eigenvalues in the exotic 1−+ channel. While there is a
very weak signal, considerable improvements of our method are needed for a reliable
determination of the associated energy levels.

Clearly a much larger number of configurations or better interpolators are needed
to obtain a reliable signal. As there is considerable interest in these states, from both
theorists and experimentalists, this will be a task for the future.

We would like to point out that results from dynamical lattices for the 1−+ channel
using different interpolators have been presented in [92]. There are also previous results
from quenched QCD [73, 123].

4.3.3 Overview and comparison to previous work

We now want to compare the results of our näıve chiral extrapolations to similar results
obtained with quenched CI quarks [84]. In the case of spin 2 mesons, we instead com-
pare to the results from dynamical Clover-Wilson lattices as obtained in [92]. For this
purpose, we plot the results of our chiral extrapolations compared to the physical meson
excitations. Figure 4.22 shows such a plot. To illustrate nearby experimental states,
more experimental states than lattice results are shown. While the errors are rather
large, the extrapolated results agree well with the observed spectrum, which is depicted
by grey shaded areas or (where the grey areas would only be one line thin) solid black
lines. For the pseudovector mesons, results from different interpolators are shown. For
an explanation please refer to 4.3.1.

Let us now compare these results with a similar plot from [84]. For light-quark
spectroscopy, the results from quenched QCD agree already surprisingly well with ex-
periment in a number of channels. While the errors are too large for strong statements,
comparing our results to those of Figure 4.23 indicates that the biggest differences can
be seen for the ground state in the 1−− channel, the ρ(770), and for the ground state in
the a0 channel.

While the quenched data from a similar volume and lattice spacing leads to a value for
the ρ(770) that is about 6% larger than the experimental value, the result obtained from
linear extrapolations of our dynamical data is consistent with the experimental value.
For the ρ(770) calculations in χPT are available which predict a more complicated fit
form [124]. As of now, we lack the number of data points needed to constrain such a fit
and therefore only fit to the leading behavior in mπ.
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Figure 4.22: Overview of the results from our chiral extrapolations of the dynamical
data for spin 0 and spin 1 mesons compared to experimental results from [15]. The
experimental results including the errors are depicted as shaded grey areas or solid black
lines. The results of our extrapolations are the black circles and the error bars are
statistical only. In the pseudovector a1 and b1 channels, we display two different results
corresponding to Figures 4.14 and 4.15.

For the isovector scalar a0, the linear fits to our dynamical data from interpolator
8 indicate an extrapolation to masses consistent with the a0(980). Unfortunately, this
interpretation remains somewhat ambiguous as the systematics from the choice of in-
terpolating fields are large and as the data in this channel is very noisy. To settle this
issue, high statistics simulations in multiple volumes or a basis which explicitly contains
scattering (and possibly also tetraquark states) may be needed. In Section 4.4 we will
briefly revisit this channel to present a different point of view.
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Figure 4.23: Results for the spectrum of light-quark mesons from quenched CI simula-
tions. The shaded areas indicate the experimental data. The plot has been taken from
[84].
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Figure 4.24: Overview of the results from our chiral extrapolations of the dynamical
data for spin 2 mesons from both the T2 and E irreducible representations compared to
experimental results from [15]. The experimental results including the errors are depicted
as shaded grey areas surrounded by solid black lines. The results of our extrapolations
are the black circles and the error bars are statistical only. In the ρ2 channel a fit was
not possible for the T2 representation. We therefore omit this point.

As a general remark, we would like to point out that the method for setting the
lattice scale (see Section 2.8 for a brief discussion) is an overall source of error that will
shift the results for the whole spectrum either up or down, depending on the physical
value of the Sommer parameter.

Let us now switch to the results we obtained for spin 2 mesons in Section 4.3.2. Here,
we have no quenched results from Chirally Improved fermions to compare to. Instead we
compare to experiment and to a recent Nf = 2 dynamical simulation on Clover-Wilson
lattices generated by the CP-PACS collaboration [92]. Figure 4.24 shows our dynamical
results compared to experimental results.

As mentioned in Section 4.3.2 all of our results have rather large statistical errors
and are obtained from short plateaus at small Euclidean time separations. We first take
a look at the channel with the most stable mass plateaus, which is the 2++ channel. For
the a2, Burch et al. use interpolators in the T2 representation, while we use interpolators
in both the T2 and the E representations. The approach in [92] leads to a slightly higher
energy of the ground state, but systematic effects can probably account for this small
difference. Just like in [92], our results for the a2 mesons come out slightly higher than
the experimental results.

The results in the ρ2 channel have very large statistical uncertainties and are con-
sistent with experiment. While we use a slightly different basis than [92], there again
is a nice agreement between the results obtained from different lattice actions. Notice
however that the results from the fine lattice in [92] have considerably smaller errors in
this case. For the π2 channel on the other hand, we use interpolators with a different
structure and obtain somewhat smaller errors. To constrain the linear extrapolations
better, more data points and increased statistics will be useful. As we are working on
rather coarse lattices, cutoff effects may be important for states in this mass region. This
will have to be investigated in the future.
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4.4 Light scalar mesons from tetraquark interpolators

It has been conjectured [125, 126] that scalar mesons below 1GeV may be tetraquark
states rather than conventional q̄q states. In [9] we provided some of the empirical
arguments for such an interpretation and studied light scalar mesons on the lattice using
a variational basis of tetraquark interpolators. In this section, we briefly summarize
the main arguments for a tetraquark interpretation of light scalar mesons, introduce
our interpolating fields and present the most important results. For more details, the
reader is referred to [9]. Similar studies restricted to the isospin 0 and 2 cases have been
performed by other authors [127, 75, 72, 128]. Our findings are in general agreement
with these results.

4.4.1 Arguments for a tetraquark interpretation of light scalar mesons

There are several arguments from phenomenology suggesting that light scalar mesons
are given by tetraquark states rather than conventional q̄q states:

• The pattern of observed states below 1GeV resembles the pattern expected from
a tetraquark nonet, rather than the pattern expected from q̄q states.

• The observed K⋆
0 or κ resonance, which would be identified with a ūs state or

a [ud]
[

d̄s̄
]

tetraquark respectively, is observed at a mass much lower than the
a0(980), which should either be a ūd state or a [us]

[

d̄s̄
]

tetraquark. This would
be natural in the tetraquark picture, while it cannot be reconciled with a näıve q̄q
picture.

• Quark model calculations lead to masses well above 1GeV for the isovector scalar
a0, while correctly describing the levels of the a1 and b1 pseudovector mesons.

• The fact that the a0(980) couples strongly with KK̄ also suggests a tetraquark
nature of this state [129].

4.4.2 Tetraquark interpolators

For our variational analysis we use diquark-antidiquark interpolators composed of a
scalar diquark

[qQ]a ≡ ǫabc[q
T
b Cγ5Qc −QT

b Cγ5qc] ,

in the color anti-triplet, and a scalar-antidiquark in the color-triplet

[q̄Q̄]a ≡ ǫabc[q̄bCγ5Q̄
T
c − Q̄bCγ5q̄

T
c ] .

We then simulate the following combinations

OI=0 = [ud][ūd̄] ,

OI=1/2 = [ud][d̄s̄] ,

OI=1 = [us][d̄s̄] ,

where all quarks are Gaussian smeared quarks with the smearing parameters of [84]
as described in Section 3.6.2. When calculating the Wick-contractions contributing to
correlation functions, we neglect single and double annihilation diagrams.
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Figure 4.25: Energies from tetraquark correlators in the isospin 0, 1
2 and 1 channels as

presented in [9]. The symbols show the lattice data, while the lines represent analytic
energy levels for scattering states: solid lines display the non-interacting energies, while
the dashed lines include tree-level energy shifts. For an explanation why the scattering
state with relative momentum is missing please refer to [9].

4.4.3 Results and discussion

For the simulations in [9], lattices of size 123 × 24 and 163 × 32 have been used. For
both lattices, the lattice spacing a = 0.148 fm has been determined from the Sommer
parameter in [110]. The pion masses used for the analysis range from 344MeV to
576MeV.

For scattering states, contributions from states wrapping around the temporal extent
of the lattice play an important role. Specifically, these are contributions where one of
the particles propagates forward in time, while the other particle propagates backward
in time (and vice-versa) [118]. For the eigenvalues corresponding to the ground states
we obtain

λP1(0)P2(0) = C
(

e−E0t + e−E0(T−t)
)

+A
(

e−m1te−m2(T−t) + e−m1(T−t)e−m2t
)

, (4.4)

where P1(0)P2(0) stands for the scattering state involving particles P1 and P2 with
masses m1 and m2 and vanishing momentum p = 0. Using the single hadron masses
obtained from regular meson correlators, we can perform a three parameter fit to this
form. In the case of particles with equal mass, the second term on the right-hand side
of Equation 4.4 reduces to a constant.

Figure 4.25 shows the results in the larger volume for all three isospin channels.
In each case the observed ground states are compatible with the energy levels for the
respective scattering states. In addition to the expected scattering states, no other low-
lying states are observed5. While we refrain from an interpretation of the higher-lying
observed states, we want to stress that with the basis we used, we did not see any
evidence of tetraquark states below 1GeV in our range of pion masses. We also want

5For an explanation why the scattering states with momenta are not seen please refer to [9].
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to emphasize that this is not in contradiction with the results in [75], where evidence
for a tetraquark assignment of the σ-meson has been found. More recently, Prelovsek
et al. used a larger basis of tetraquark interpolators on dynamical CI configurations.
Preliminary results have been reported in [130].



Chapter 5

Excited charmonium on the

lattice

The methods introduced in Chapter 3 to deal with excited states on the lattice can also be
applied to systems involving heavy quarks. In this chapter, we will present preliminary
results of an exploratory study of the charmonium spectrum. For this purpose, we use
gauge field configurations created by the MILC-collaboration (for a description of the
ensembles see [131, 69, 132]) using 2+1 flavors of Asqtad staggered quarks. For the heavy
valence quarks, we use Clover-Wilson type quarks and employ the Fermilab Method
[133]. Previous results from this approach by the Fermilab-MILC collaboration have
been presented in [134, 135, 136], where the main focus has been on ground states. In
addition, the effects of disconnected diagrams on the hyperfine splittings in charmonium
have been investigated in [137, 138]. For an overview of general results from 2+1 flavors
of Asqtad staggered quarks including previous results for charmonium, we refer the
reader to [132].

Here our approach will be different. After briefly discussing the physics of interest in
5.1, we will present our basis of interpolators for the spectroscopy of excited charmonium
in Section 5.2. We will proceed by presenting preliminary results from a single dynamical
ensemble. We compare these results to the previous literature in 5.3.4 and conclude with
a short outlook.

5.1 Physics of interest

Charmonium physics is both a challenging and promising topic for lattice QCD simula-
tions. On the one hand, there are very accurate experimental results that can serve as
a precision test for lattice calculations, provided all systematic errors are under control.
On the other hand, there is quite a vivid dispute about the nature of some excitations
observed by experiments. In particular, there is renewed interest in exotics (states with
quantum numbers that do not exist in a simple quark model) and in hybrid mesons
(states with some sort of gluonic excitation). Notice that we will refer to all of those
as charmonium, even though there is a possibility that some observed states may be
tetraquark states. We will now take a brief look at possible states of interest.

More specifically, we will focus on channels which should be accessible with our basis
of both conventional and hybrid charmonium interpolators. We now discuss some states
where our approach might be promising. For a more comprehensive overview of the
experimental situation we refer to [139, 140].

65
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• Exotics: With our interpolators constructed from derivative sources, we can access
the 0−−, 0+− ,1−+ and 2+− exotic channels. For all of these quantum numbers,
already the ground state is of interest.

• X(3872): The X(3872) most likely has quantum numbers 1++. If this is the case,
it will be the first excitation in this channel. Based on either phenomenological
arguments or lattice calculations, there are speculations about the nature of this
state. On the lattice there have been two studies, one of them concluding that
the state is probably the first radial excitation of the χc1 [141], while the other
finds indications for a tetraquark nature of the state [142]. For the arguments from
phenomenology we refer the reader to [139, 140].

• Z(3920): The Z(3920) is now commonly viewed as the χ′
c2, the first radial exci-

tation in the 2++ channel. If this is the case, this state should be accessible with
our method.

• X(3940): There is evidence that this state is either a scalar or, more likely, a
pseudoscalar meson state [140]. This would suggest an interpretation of this state
as the η′′c . If this is the case, a reliable extraction of this state on the lattice could
be feasible.

• Y(4260): The Y(4260) with quantum numbers 1−− is of special interest as there
are many states in this channel which are well known. While most interpretations
agree that this state is not a radial charmonium excitation, there are arguments
for both an interpretation as a hybrid meson as well as an interpretation as a
tetraquark or molecular state. On the lattice, the authors of [143] calculate both
molecular as well as diquark-antidiquark states and come to the conclusion that
the Y(4260) might be a tetraquark state. The authors of [144] take a look at
hybrid interpolators and find masses in the vicinity of the Y(4260). At the same
time, their ground states in the 1−− channel show a significant deviation from
the J/Ψ when compared to traditional charmonium interpolators. To extract the
Y (4260) unambiguously, one should work with a combined basis of regular and
hybrid interpolators (or tetraquark states) and try to extract both the Y (4260)
as well as all lower excitations. Currently, extracting this state will probably be
too difficult of a task as many lower excitations will have to be identified without
ambiguities as well.

In addition to those states, there are many well established charmonium states which
can serve as a benchmark for our calculation. Apart from the ground states, these in-
clude the η′c and the Ψ′ excitations, which should both lie below the respective two
particle thresholds. For higher excitations, the situation might be complicated by scat-
tering states. In [145], an analysis with a basis including multi-particle states has been
performed to identify possible mixing with those states.

5.2 A variational basis for our goals

To reach our objective, we will need a diverse basis which covers all quantum numbers
and all irreducible representations. We opt for a basis built from interpolators with
derivatives and use interpolating operators similar to those suggested by Liao and Manke
[102], which have also been used by Dudek et al. [86]. Like in [86], we use a large set of
interpolating operators and apply the variational method as detailed in Section 3.3.
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In addition to point sources S0 we use Gaussian-smeared sources, which are imple-
mented by acting with a smearing operator M on point sources S0 to obtain Gaussian
sources

G = MS0 = A (1 + κH)N S0 , (5.1)

H(~x, ~y) =
3
∑

i=1

(

Ui(~x, 0)δ(~x + î, ~y ) + Ui(~x− î, 0)†δ(~x− î , ~y )
)

,

where A is just a normalization and κ and N have been chosen such that this approx-
imates a Gaussian (in coordinate space) with standard deviation σ. This is the case
for

κ =
σ2

4N

A
,

and by exp(a) ≈ (1 + a
N )N we obtain for N →∞

lim
N→∞

SG = eσ2∇2/4 .

Notice that this definition differs slightly from Equation 3.13 and was already mentioned
in Equation 3.17. We want to stress that H is hermitian and we have M † = M .

Let us now discuss some technical aspects of our construction which are particular to
the lattice implementation of interpolators containing derivatives. For interpolators with
a single derivative Pi as presented in 3.6.2 (for a similar construction see also [86]) an
anti-symmetrization is needed to ensure the correct behavior under charge conjugation
at finite spatial momenta. The same symmetrization is also needed with the particular
construction presented in Chapter 3. Implementing this as presented in Chapter 4, one
needs n2 source-sink combinations where n is the number of different source smearings.
As we are planning to include an even larger number of source smearings, calculating
all these combinations would be prohibitively expensive, regarding both CPU time and
memory requirements. To understand how we can construct similar sources with less
effort, let us take a look at Equation 4.2 again. For the connected part of unsmeared
charmonium correlators we have

〈

O(n)Ō(m)
〉

F
= −tr

[

Γ2D
−1
c (m|n)Γ1D

−1
c (n|m)

]

.

Let us now discuss two versions of smeared quark sources:

A Smeared quark sources created by first constructing a Gaussian source and subse-
quently applying a covariant derivative. This is the technique used in Chapter 4.
For a derivative source constructed in this way we write

∇(A)
i = PiMS0 .

B Smeared sources created by first point splitting the source with a derivative and
subsequently smearing the results. Here we have

∇(B)
i = MPiS0 .

In the following, we will denote quark propagators from such sources at point m to a sink
at point n = (x, t) by P∇,A(n,m) and P∇,B(n,m) for derivative sources and PG(n,m)
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for Gaussian sources. We now take a look at different possibilities. Let us denote by
CBA;DC a correlator with smearing A and B for the antiquark at the source and the sink
and smearings C and D for the quark at source and sink. Let A-D either be Gaussian
(G) or derivative type (∇) of smearings.

Let us now discuss variant A from above. For derivatives that always act on the
antiquark we obtain (all color and Dirac indices are suppressed for clarity)

C∇∇;GG(t, 0) =
∑

x

tr
[

P∇,A(m,n′)Γ1(
←−
Pi
←−
M)(n′, x)

−→
M (x, n′′)PG(n′′,m)Γ2

]

, (5.2)

where we use a symbolic notation with the intermediate indices n′ and n′′ summed over
and the final smeared propagators transport the particles from a source at m in timeslice
0 to a sink at n = (x, t), where a momentum projection is performed. Γ1 and Γ2 are
in general different for off-diagonal elements and, in our symbolic notation, the arrows
indicates the direction in which the smearing is applied. Notice that we have Pi = −P †

i .
Let us now take a look at a second term arising out of 5.2 by acting with the derivative
on the quark instead of acting on the antiquark at the sink. We obtain

CG∇;∇G(t, 0) = −
∑

x

tr
[

P∇,A(m,n′)Γ1
←−
M(n′, x)(

−→
M
−→
Pi)(x, n

′′)PG(n′′,m)Γ2

]

. (5.3)

Notice that this term arrises in addition to the first term when the operator at the sink
is symmetrized. For smeared quarks these two terms are in general not the same, as
Pi and M do not commute. In an anti-symmetrized operator, the part arising from
the commutator gets killed while it is isolated in the symmetrized operator. This leads
to an admixture of the wrong charge conjugation in näıve, unsymmetrized operators,
which we verified numerically for interpolators in exotic channels. As an example one
will measure an ηc in interpolators with exotic quantum numbers 0−−. Using the same
notation we obtain for the remaining terms

CGG;∇∇(t, 0) = −
∑

x

tr
[

PG(m,n′)Γ1
←−
M(n′, x)(

−→
M
−→
Pi)(x, n

′′)P∇,A(n′′,m)Γ2

]

.

C∇G;G∇(t, 0) =
∑

x

tr
[

PG(m,n′)Γ1(
←−
Pi
←−
M)(n′, x)

−→
M(x, n′′)P∇,A(n′′,m)Γ2

]

.

Let us now take a look at variant B, where the Gaussian-smearing and the derivative
are exchanged. In this case we obtain for the terms of Equations 5.2 and 5.3:

C∇∇;GG(t, 0) =
∑

x

tr
[

P∇,A(m,n′)Γ1(
←−
M
←−
Pi)(n

′, x)
−→
M (x, n′′)PG(n′′,m)Γ2

]

.

CG∇;∇G(t, 0) = −
∑

x

tr
[

P∇,A(m,n′)Γ1
←−
M(n′, x)(

−→
Pi
−→
M)(x, n′′)PG(n′′,m)Γ2

]

.

In this case there is no need for an anti-symmetrization and we can restrict ourself to one
of the terms. We choose the variant where the derivative always acts on the antiquark at
the source and on the quark at the sink. This choice reduces the number of propagators
we need to calculate, as the antiquark propagator will be expressed as a quark propagator
by making use of the γ5-hermiticity of the Dirac operator, as mentioned in Chapter 4.
Therefore, quark sources correspond to antiquark sinks.

Having discussed these issues, we can finally list the different quark smearings. In
analogy to [86], we use
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∇i = M
−→
P iS0 ,

Bi = εijkM
−→
P j
−→
P kS0 , (5.4)

Di = |εijk|M
−→
P j
−→
P kS0 .

Notice that the continuum version of operator Bi has a relation to the chromomagnetic
parts of the field strength tensor

B
(cont.)
i = − ı

2
εijkF

jk .

To obtain interpolators with a smearing in the A2 irreducible representation we could
use

A = |εijk|M
−→
P i
−→
P j
−→
P kS0

in addition. In Appendix B we present tables of interpolators for each lattice irreducible
representation along with information on some of the details of their evaluation. We
also experimented with the type of derivative and the width of the smearing for the
Gaussian sources. We therefore also provide information on our final parameters in the
same appendix.

5.3 Preliminary results

We now want to present some preliminary results from one medium coarse ensemble on
a 163 × 48 lattice with a lattice spacing of 0.15 fm. The light quark masses correspond
to a pion mass of approximately 322MeV and the strange quark mass is approximately
the physical strange quark mass. The charm quark masses have been determined within
the Fermilab-MILC collaboration by tuning the heavy quark hopping parameter κ to
obtain the correct kinetic mass for the Ds meson. This tuning is done for a light sea
quark mass and subsequently adopted for all ensembles with the same lattice spacing.
For a discussion of discretization effects arising within the Fermilab interpretation of
heavy quarks we refer the reader to [133]. We use 600 configurations with four time
slices per configuration. For the analysis we first average the resulting four matrices and
subsequently perform a single-elimination jackknife to determine the statistical errors.

5.3.1 A first look at the data

Figure 5.1 shows results for effective masses from single diagonal correlators in the ηc

channel. At large Euclidean times all correlators receive a good signal from the ground
state. At small times only the Gaussian smeared interpolators 1 and 3 start out almost
flat, all other correlators show signs of significant contributions from excited states.
While the interpolators containing the B operator are the noisiest ones, they also contain
the strongest contributions from excited states at small Euclidean times.

Figure 5.2 shows a similar plot for the J/Ψ channel. Here the situation is more
interesting as some of the interpolators from Table B seem to couple only very weakly
to the ground state. At the same time the behavior of cross correlators and at large
Euclidean times verifies that these interpolators also couple to the J/Ψ.

To illustrate the quality of single correlators in one of the more typical channels we
also present a similar figure from the T++

2 channel. Here we have only 4 correlators and
one of them is very noisy. We will see how this affects the number of states that can be
fit in the next section.
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Figure 5.1: Effective masses from single diagonal correlators in the A−−
1 channel. The

ground state in this channel corresponds to the ηc. The interpolators are labeled like in
the appendix.
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Figure 5.2: Effective masses from single diagonal correlators in the T−−
1 channel. The

ground state in this channel corresponds to the J/Ψ. The interpolators are labeled like
in the appendix.
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Figure 5.3: Effective masses from single diagonal correlators in the T++
2 channel. The

ground state in this channel corresponds to the χc1. The interpolators are labeled like
in the appendix.

5.3.2 Effective masses

The main goal of this exploratory study is to get an idea what kind of results we can
reasonably obtain from this method. In this section, we therefore focus on the physics
objectives formulated in 5.1. We also make some comments on necessary interpolator
pruning and present effective mass plots for the respective ground states and lowest
charmonium excitations. We compare these results with existing literature in 5.3.4. For
the eigenvalue fits we use correlated fits as described in Section 3.4.

Let us start our discussion with the J/Ψ channel. In this channel, the signal is the
best, our basis is the largest and there are the most experimentally known excitations.
While we can use our full basis of interpolators for this channel, we obtain the best
results for the combination displayed in Figure 5.4. With a basis of six interpolators we
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Figure 5.4: Effective masses from a correlation matrix analysis in the T−−
1 channel. The

ground state corresponds to the J/ψ. The first excited state is the ψ(2S). To identify
the other states we would need more data.
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Figure 5.5: Eigenvectors corresponding to the six lowest energy levels in the T−−
1 channel.

All plateaus are stable (within error bars) in the range the masses have been fit. The
states are displayed from left to right and from top to bottom, starting with the ground
state on the left-hand side of the top row.

can fit six states, although the highest one may not be reliable. To obtain the fit ranges
displayed in Figure 5.4, we took a look at the components of the eigenvectors for all
six states displayed. The result of this can be seen in Figure 5.5. For our fit ranges we
observe stable plateaus in all eigenvector components. While a larger submatrix would
be desirable, some of our interpolators just contribute more noise and not more signal.
Notice that the Y (4260) mentioned in 5.1 is in this channel. As at least one of the
energy levels we see here is likely a state with spin 3 (or maybe even a scattering state),
a substantial increase in quality of the data on the finer lattices would be needed to
identify this state.
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Figure 5.6: Effective mass plot for the lowest three states in the A−+
1 channel. The

ground state in this channel can readily be identified with the ηc and the first excited
state corresponds to the ηc(2S).

Next, let us turn our attention to the ηc channel. Figure 5.6 shows fits for the three
lowest states in this channel. On finer lattices even more energy levels may be obtainable
but as the quality of the fourth mass plateau is very bad we restrict the fits to the three
lowest energies. As mentioned, the ground state in this channel corresponds to the ηc

and the first excited state is readily identified as the ηc(2S). The third state may or may
not correspond to the X(3940). We will present a rough comparison of energy levels
with the pattern of experimental states in the next section.

Another experimental state of interest is theX(3872), which most likely has quantum
numbers 1++. Figure 5.7 shows an effective mass plot for this channel. The ground state
can be identified as the χc1 and if the X(3872) is a regular quarkonium state it should
correspond to the first excited state. Currently the systematic uncertainty for a fit of
the second excitation is rather large and we obtain the best signal from a correlation
matrix with just three interpolators.

The Z(3920) is now commonly viewed as the first radial excitation in the χc2 channel.
There are two lattice irreducible representations (see Table 3.1 in Chapter 3) which both
contain the continuum spin 2 states. While the next lowest spin in the E representation
is spin 4, the T2 representation may also couple to spin 3 states. Unfortunately, the
results from our current data are less than conclusive as there is still an error in the
data from the E representation and we therefore had to prune the correlation matrix
in this channel to just two interpolators. Doing the same in the T2 channel leads to
unrealistically high values for the first excited state, while adding more interpolators
brings down the energy level corresponding to the first excited state. We will show both
values in our overview plot in Section 5.3.3, but we want to remind the reader about
the preliminary nature of these results. Figure 5.8 shows a comparison of the effective
masses obtained for the J++ channel from both representations.

For the exotic channels, the signals are usually very weak. In the A+−
1 , the T−+ and

the E+− channels indications for exotic excitations can be seen but, as the plateaus are
very short, we will only show some of the diagonal correlators to illustrate the quality
of the data. On finer lattices, fits to these states should become much more reliable.
Figure 5.9 shows diagonal correlators for the T−+

1 and A+−
1 channels. In both of those
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Figure 5.7: Effective masses for the three lowest energy levels in the T++
1 channel.

The ground state in this channel corresponds to the ηc while the first excitation may
correspond to the X(3872).
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Figure 5.8: Effective masses for the T++
2 and the E++ representations. For a description

of the data please refer to the text.

channels a signal can most likely be identified with an exotic, as the lowest-spin non-
exotic contamination due to breaking of continuum rotational invariance would have
quantum numbers 4−+ and contribute to the T1 representation. Such an admixture of
a non-exotic spin 4 state can however not be fully excluded at this stage. While there
is only one correlator with a good signal in the A+−

1 channel, there are multiple good
correlators in the T−+

1 channel.

In addition to the results discussed so far, we can extract various non-exotic spin 2 and
spin 3 ground states as well as a couple of higher energy levels whose interpretation is not
clear. We will present some data in the next section and postpone a more comprehensive
analysis.

5.3.3 Mass splittings

Before we present an overview of our results compared to the physical charmonium
excitations, we want to remind the reader that there are a number of steps missing for
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Figure 5.9: Diagonal correlators for two of the exotic channels. On the left-hand side
four different correlators in the T−+

1 channel are shown while we display a single diagonal
correlator for the A+−

1 channel on the right-hand side.

a thorough investigation. We will discuss those in 5.4.

While discretization effects for the meson rest masses (sometimes also referred to as
the pole masses) are large, some of these effects drop out when considering energy differ-
ences between rest masses [146]. In a similar spirit to [134, 135, 136], we therefore plot
energy differences to the spin averaged 1S mass

(

3Mj/Ψ +MηC

)

/4. Figure 5.10 shows a
plot of the energy levels in the non-exotic channels discussed in the previous section. In
addition, the T+−

1 channel containing the hc is also included. The experimental states
including their errors are denoted by black boxes. In most cases, the errors from the
experimental determination are smaller than the box. Comparing the ground states to
the results from [136] shows a nice agreement. The small differences probably stem from
the lack of a chiral extrapolation in our preliminary data. This fact may also lead to
artificially small error bars, as the data usually gets noisier towards the chiral limit.

In addition to the ground states we plot all other energy levels in the respective
channel. Apart from regular excitations, these may also include states of higher con-
tinuum spin and scattering states. As a general trend, the excited states turn out to
be too high. This is especially visible with states above the DD̄ threshold, where we
expect a stronger effect of a chiral extrapolation. Some of the energy levels most likely
correspond to states of a higher continuum spin. To investigate this further, we plot
the ground states in the non-exotic A2 channels in Figure 5.11. A näıve comparison of
energies suggests possible spin 3 states in the J/Ψ, hc and in the χc2 channels, which we
will have to investigate more thoroughly in the future. As far as our physics objectives
described in Section 5.1 are concerned, there is a good chance to determine properties of
the states in question. One exception is the Y (4260) in the 1−− channel. Even assuming
that this state is either a regular charmonium or a hybrid state, we already noticed that
at least one spin 3 state can be found in this channel. This shows that an unambiguous
identification of this state will be very complicated.

5.3.4 Comparing our results to the literature

In addition to the studies from the Fermilab-MILC collaboration, the ground states in
various channels have also been determined by the HPQCD collaboration using HISQ
fermions on MILC lattices [147]. Also the χQCD collaboration studied the charmonium
spectrum in quenched QCD using overlap quarks [148].
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Figure 5.10: Energy levels obtained from our lattice simulation compared to experimental
states (black boxes). Most experimental errors are smaller than the box. Note that no
definite spin assignment of lattice data has been made. It is likely that some of the
excitations displayed are either spin 3 or spin 4 ground states. The two different data
sets for the χc2 are from the T2 (left) and the E representation (right). For a discussion
please refer to the text.

As previously mentioned, Dudek et al. [86] studied the spectrum of excited charmo-
nium on a single quenched ensemble. In general our results are of a similar quality for
most of the channels of interest. In addition to smeared derivative sources, the authors of
[86] also use local derivative sources without any Gaussian smearing in the construction.
This makes their basis larger for some of the higher spin channels. At the same time,
our construction without an explicit symmetrization is computationally less expensive.
Having established that our method works, we can extend our approach in the future.
We will outline a possible program in the next section.

Calculations of excited charmonium on dynamical lattices have also been presented
by Ehmann and Bali [149, 145]. In [149] they obtain first excited states in various
channels and observe a pattern similar to the results presented in the previous section,
with excitations in general coming out too high.

5.4 Outlook

So far, we calculated a large set of regular and hybrid charmonium interpolators on
a single ensemble of gauge configurations. For a comprehensive study, the program
outlined in Section 2.7 remains to be done. We will need to repeat our calculations for
multiple sea quark masses to perform an extrapolation in the light quark mass. The
authors of [135, 136] find that the dependence of the ground states on the light quark
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Figure 5.11: Ground states in the A2 representation, corresponding to states of spin 3.
To our knowledge there are no spin 3 states known experimentally.

masses is rather mild and they use simple linear fits for the extrapolations. For excited
states, a larger discrepancy might be observed, especially for states close to or above
multi-particle thresholds. In addition, calculations at multiple lattice spacings will have
to be performed to investigate discretization effects. When changing the lattice spacing,
we will need to retain a similar spatial extent of our quark sources and sinks. We
comment further on this in Appendix B. Notice, that multiple lattice spacings might
also be useful to identify the continuum spins of excitations, as the overlap to other spin
states should be suppressed by powers of the lattice spacing for all our interpolators [86].
Finally, one should also investigate finite volume effects. This last step will be necessary
to make sure that we obtain the correct picture in the presence of scattering states. Also,
some of the higher excitations may need a substantially larger volume than the ground
states. Fortunately, the large repository of gauge configurations generated by the MILC
collaboration should enable us to perform these extrapolations in a controlled manner.
In addition to calculations on further ensembles, an improved action for heavy quarks
which includes interactions of dimension 6 and 7 has been presented in [150]. While
this approach should be especially beneficial for simulations of bottomonium, it would
also be useful to use this action for future calculations of the excited state spectrum of
charmonium.
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Chapter 6

The spectrum of light-quark

baryons

Within the BGR Collaboration, the ground and excited state spectrum of baryons has
been studied within the quenched approximation [151, 85] and, more recently, also on
dynamical CI configurations [6, 7, 5]. In this chapter, we describe the baryon interpo-
lators used for quenched and dynamical spectroscopy on CI lattices. We present results
for baryon ground states and our emphasis will be on channels where we would like to
determine the axial charges GA. In particular, this chapter serves as the basis for the
discussion of nucleon and hyperon axial charges in Chapter 7. In addition, we will briefly
comment on a general issue which has been a topic of vital discussions in recent years:
The determination of the first excited state of the nucleon, the Roper resonance.

A local interpolator for the nucleon has the following form

ON = ǫabc Γ1 ua

(

uT
b Γ2 dc − dT

b Γ2 uc

)

. (6.1)

Exchanging light quarks for strange quarks we obtain interpolators for the Σ and Ξ
baryons

OΣ = ǫabc Γ1 ua

(

uT
b Γ2 sc − sT

b Γ2 uc

)

, (6.2)

OΞ = ǫabc Γ1 sa

(

sT
b Γ2 uc − uT

b Γ2 sc

)

. (6.3)

Table 6.1 shows the relevant Dirac structures for nucleon-type interpolators. All three
types couple only to the spin 1

2 states, but they have have different diquark structures:
Interpolators χ1 and χ3 contain a scalar diquark (which is sometimes also labeled “good”
diquark as there is a pronounced attractive interaction for scalar diquarks), while inter-
polator χ2 contains a pseudoscalar diquark. Interpolators χ1 and χ3 couple mainly to the

Name Γ1 Γ2

χ1 1 Cγ5

χ2 γ5 C

χ3 i1 Cγtγ5

Table 6.1: Nucleon-type interpolators (for N , Σ, Ξ) from [85] as used for the analysis of
dynamical CI configurations. C denotes the charge conjugation.
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Figure 6.1: Nucleon effective masses for dynamical CI runs B (left-hand side) and C
(right-hand side). In addition to the data, results from fits to the eigenvalues of the
generalized eigenvalue problem are displayed.

nucleon ground state, interpolator χ2 predominantly to excited states of both positive
and negative parity [151, 85]. For a more detailed discussion please refer to [151].

For the delta-baryon the following interpolator is considered:

O∆,k = ǫabc ua

(

uT
b C γk uc

)

, k = 1, 2, 3 . (6.4)

This interpolator has overlap with both spin 1
2 and spin 3

2 states [85], which necessitates
a spin 3

2 projection for the Rarita-Schwinger field, given in our case by

P
3
2

µν(p) = δµν −
1

3
γmuγnu−

1

3p2
(γ · pγµpν + γνpµγ · p) . (6.5)

All interpolators are projected to both positive and negative parity using the projection
operators P± = 1

2 (1± γt). Data from both branches is subsequently folded to enhance
the signal. In addition to the different spin structure, we use Jacobi-smeared sources of
two widths with approximately Gaussian shape to create a larger basis of interpolators.
For details of the sources used in baryon spectroscopy with CI quarks please refer to [85]
and to Appendix C.

6.1 Results for nucleon and delta baryons

Let us start our discussion with the nucleon, where the best signal can be obtained.
Figure 6.1 shows effective masses of the nucleon ground state from runs B and C, using
the interpolators indicated in the legends1. In addition to the data, we display the
error bands resulting from correlated fits in the range indicated by the black lines. In
both cases the correlated fits lead to a reasonable χ2/d.o.f., which we indicate in the
figure. Excited state contributions to the nucleon ground state are clearly visible at
small separations in Euclidean time and correlated fits starting at t < 4 will lead to a
bad χ2. This plays a role in the discussion of our preliminary results for the axial charge
Ga in Chapter 7, where we will need to ensure that contributions from excited states
are sufficiently suppressed. We would like to point out that single diagonal correlators
show even much larger contributions from higher energy states.

1For an explanation of the numbers see Table VI in [5].
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Figure 6.2: Nucleon masses from dynamical CI runs. On the left-hand side we display our
results for run A-C including partially quenched data (open symbols) compared to the
nucleon ground state (magenta star). On the right-hand side we use a purely empirical
fit form, which is linear in the pion mass. For a discussion of this unusual approach
please refer to the text. The data has been obtained from a matrix of interpolators 1,
2, 3, 13, 14, 15 for all three runs.

In Figure 6.2, we display the results of our eigenvalue fits for all three dynamical CI
runs, including partially quenched data. While the left panel shows the results plotted
over M2

π , the right panel shows just the dynamical points plotted over Mπ. In [152, 153] it
was noticed that lattice data for the nucleon from several groups is described surprisingly
well by a simple fit linear in the pion mass. We checked if this observation is true for
our data as well and the corresponding plot, including a linear fit, is shown in the right
panel of Figure 6.2. While more data is needed to constrain the fit, our current results
show a similar trend.
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Figure 6.3: The energy levels corresponding to the lowest (GS) and first excited (1E)
states in the negative parity nucleon channel from runs A-C compared to the N(1535)
and N(1650). Partially quenched data is indicated by open symbols. The data is taken
from the talk corresponding to [8].
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Figure 6.4: Masses of the ∆++ from dynamical CI runs. We display our results for
run A-C including partially quenched data (open symbols) compared to the ∆(1232)
(magenta star). The data has been obtained from a matrix of interpolators 1, 2, 3, 4 for
all three runs.

Let us now turn our attention to the negative parity nucleon channel. Figure 6.3
shows some recent results for the two lowest energy levels presented in the talk corre-
sponding to [8]. In general, effective mass plateaus for the negative parity states are
noisy and the possible fit range is very limited. As we were not able to use the same
combination of interpolators for each run, different combinations have been used. Typi-
cally, fits can be performed in the Euclidean time interval 3 ≤ t ≤ 7. At larger Euclidean
times, contributions from the positive parity nucleon state and possibly also from back-
to-back scattering states [154] are present, which leaves only a narrow window for a fit.
Due to the bad quality of our mass plateaus and our experience with the positive parity
states, we did not attempt a calculation of the axial charge of negative parity nucleon
states in Chapter 7. We will briefly comment on a possible improvement in that chapter.

In addition to the nucleon, we also take a look at the delta resonance. In Figure 6.4
we present the results. While the statistical errors are in general slightly larger than for
the nucleon and the fit ranges are a little bit shorter, reasonable fits can be obtained
for various combinations of interpolators with different quark smearing. From this point
of view, a determination of the axial charge Ga should be feasible. Before we move on
to our results for hyperons, we will make some brief remarks on determinations of the
Roper resonance from lattice QCD.

6.1.1 The Roper resonance from lattice QCD

In this section, we would like to briefly comment on the current status of extracting the
Roper resonance from lattice simulations. In quenched simulations with CI fermions [151,
83, 85], the first excited state in the positive parity nucleon channel was systematically
too high. In particular, the state corresponding to the negative parity N(1535) was
observed with a smaller mass than the first excited state in the nucleon channel, although
the experimental Roper resonance, or N(1440), has a substantially lighter mass. While
several studies using the variational method found this reverse level ordering [151, 83,
85, 155, 156, 87], the authors of [71, 76] identified a positive parity state which, within
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Figure 6.5: Masses of the Σ and Ξ hyperons from dynamical CI runs. We display our
results for run A-C including partially quenched data (open symbols) compared to the
experimental ground states (magenta stars). The data has been obtained from a matrix
of interpolators 1, 2, 3, 13, 14, 15 for all three runs.

large statistical errors, rapidly approaches the Roper resonance at light quark masses.
Recently, Mahbub et al. [93] observed a similar behavior with the variational method
using a large basis of Gaussian smeared interpolators.

It would be desirable to confirm this behavior using the variational method on dy-
namical ensembles. In [90], results from anisotropic lattices with 2 flavors of light quarks
have been reported. In their range of pion masses, the first positive parity excited state
has a substantially larger mass than the negative parity states corresponding to the
N(1535) and the N(1650). Our data for the excitations in the nucleon channel is rather
noisy and an extraction of the first positive parity nucleon excitation is somewhat am-
biguous. In particular, while the results for mesons and for baryon ground states from
all three dynamical runs show consistent results, the situation is different for some of
the excited states, including the positive parity nucleon channel. While this may just be
a problem of statistics, dynamical results from a single ensemble should always be taken
with a grain of salt. For a thorough analysis, multiple dynamical points are needed and
more than one volume and lattice spacing are desirable.

6.2 Results for Σ and Ξ hyperons

In addition to hadrons which are made from light up and down quarks alone, we also
studied mesons and baryons containing strange quarks. For this thesis, we restrict
our presentation to data for the ground states of the Σ and Ξ hyperons. Figure 6.5
shows masses for these baryons. The results for the Σ show a reasonable agreement with
experiment. Like in the nucleon case, an extrapolation linear in m2

π would lead to results
slightly larger than the physical ground state. For the Ξ such a simple extrapolation leads
to results in agreement with the experimentally observed ground state. As our strange
valence quark masses have been determined through the mass of the Ω baryon, the
spectrum results for the octet hyperons are a nice cross-check for this determination. This
concludes the chapter on baryon spectroscopy and we will use these results from baryon
two-point functions in the next chapter, where baryon axial charges are determined.
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Chapter 7

Baryon axial charge from lattice

QCD

The axial charge of the nucleon, or more precisely the ratio Ga(q2=0)
Gv(q2=0)

has been determined

to a high precision from neutron β decay, Ga(0)
Gv(0) = 1.2695(29) [15]. In general, the axial

form factor Ga,BB′ for an octet baryon is given by

〈B|Aµ(q)|B〉 = ūB(p′)

(

γµγ5Ga,BB′(q2) + γ5qµ
Gp(q

2)

2MB

)

uB(p)e−iq·x , (7.1)

whereGp is the induced pseudoscalar form factor. The axial charge is defined as the value
of the axial form factor at zero momentum transfer Ga,BB′(q2 = 0). In the following,
we will omit the indices B and B′ when referring to the nucleon. For the nucleon in the
chiral limit, the Goldberger-Treiman relation [157] connects the axial charge to the pion
decay constant fπ, the pion-nucleon coupling constant gπNN and the nucleon mass MN

Ga =
fπgπNN

MN
. (7.2)

Away from the chiral limit, this relation is still approximately fulfilled. If one assumes
the conservation of the vector current (which is the case for mass-degenerate light quarks
mu = md), also referred to as CVC, the nucleon axial charge is also related to the polar-
ized quark distributions in the proton: Ga = ∆u−∆d [158]. In an isovector combination,
disconnected contributions will cancel, making high-precision lattice computations fea-
sible. As pointed out in [159], this is also related in a direct way to the fraction of the
nucleon spin arising from the spin of the quarks.

The χPT expressions relevant to the nucleon axial charge have been calculated in
references [160, 161], where finite volume effects are taken into consideration. While a
recent simulation with domain wall fermions [162] finds considerable finite volume effects
and scaling in mπL, volume effects calculated in χPT lead to differing conclusions.
Trying to attribute this difference to excited state contaminations arising from finite
separation in Euclidean time, Tiburzi [163] estimates the effects of such contaminations
and suggests that they would lead to an over-estimation of Ga rather than an under-
estimation. He also suggests to study Ga using the variational method. Lattice results
for the nucleon axial charge have furthermore been presented in [164] and [154]. For a
recent review, please refer to the review by Renner [165].

So far, only one group has reported results on the axial couplings of sigma and cascade
hyperons [166]. The corresponding Chiral Perturbation Theory calculations can be found

85



86 CHAPTER 7. BARYON AXIAL CHARGE

t = 0 t
′

t
′′

t = 0 t
′′

t1 ≤ t
′ ≤ t2

Figure 7.1: Different possibilities for the calculation of sequential quark propagators.
On the left-hand side, sequential sources are built from specific diquark propagators,
while on the right-hand side, the propagators are calculated for each possible insertion
separately. Please refer to the text for additional comments. For an illustration of the
full baryon three-point function see Figure 7.2.

in [167, 168]. In [169] input from experiment and lattice QCD is used to determine the
unknown parameters in the χPT expansion and predict the mass dependence and values
of the axial charges in the chiral limit.

In the next section, we will explain the setup for calculations of baryon axial charges
using CI fermions and the variational method. We will then move on and present results
from lattice calculations of the axial charges of the nucleon and of Σ and Ξ hyperons. In
the final part of this chapter, we will comment on our results and make some remarks
about further quantities of interest.

7.1 Details of our calculational setup

Assuming mass-degenerate up and down quarks1, the conservation of the vector current
enables us to only consider the non-flavor changing current insertion [158]

2A3
µ =

(

Au
µ −Aµd

)

, (7.3)

Au
µ = ūγµγ5u ,

Ad
µ = d̄γµγ5d ,

in which u denotes an up quark and d denotes a down quark. In the following, we
will show how three-point functions with insertions like those in Equation 7.3 can be
evaluated on the lattice.

7.1.1 Sequential quark-propagators

For the calculation of three-point functions on the lattice we will use so-called sequential
propagators. In [158], two methods for the calculation of sequential quark propagators
are presented. Figure 7.1 illustrates these two approaches. A priori it is not clear which
approach needs less computations for our objective. Therefore, we briefly summarize
the main features of each approach for the example of nucleon interpolators. For an
illustration of the full baryon three-point function please refer to Figure 7.2.

1This is an assumption which is fulfilled only approximately in Nature. For the status of light-quark
mass determinations please refer to the Review of Particle Physics [15].
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Sequential sources from diquark propagators

This possibility is illustrated on the left-hand side of Figure 7.1. The sequential sources
are constructed from diquark propagators. The diquarks are built from regular quark
propagators calculated on smeared sources. Depending on the details of the basis, a
certain number of sequential sources will be needed.

• For nucleon-type interpolating fields we would like to use the basis introduced
in Chapter 6, which has been successfully applied to baryon spectroscopy. Each
combination of interpolators χ1, χ2 and χ3 forms new diquark propagators and
therefore results in a new set of sequential propagators. Even if we restrict ourselves
to positive parity using χ1 and χ3 alone, there are still 4 possible combinations.

• For each different quark smearing appearing in the sequential propagators, a new
set of sequential propagators is needed. Notice that two different quark smearings
already lead to 32 combinations in the most general case2 of 8 different baryon
smearings. This number could be reduced to 4 by only allowing an overall narrow
or wide smearing for each quark in the baryon.

• Each new sink momentum will require new sequential sources. As we are only
interested in the axial charge Ga (i.e. q2 = 0), this is not an issue in our case.
For a study of form factors at non-vanishing momentum transfer, this limits the
number of accessible momenta.

• In the case of the nucleon we need two sets of sequential propagators, one for an
up-quark-removed diquark and one for a down-quark-removed diquark.

• If we are only interested in certain current insertions, we can reduce the number
of open Dirac indices on the diquark-propagators by applying the appropriate
projection operators at the sink [158]. In our case, we are interested in the vector
and axial-vector current insertions. This again leaves us with two distinct sets of
sequential propagators.

In addition, a part or even the whole set of sequential propagators will have to be
recalculated whenever the contractions needed for the calculation of a new observable
are different. In our case this is relevant for the calculation of the axial charge of Σ and
Ξ hyperons. We will now take a look at a second possibility which does not have this
disadvantage.

Sequential sources from single quark propagators

On the right-hand side of Figure 7.1, the sequential propagators are constructed from a
single quark propagator using the appropriate current insertion and a specific momentum
transfer.

• For each type of quark smearing at the source, a new set of sequential propagators
is needed.

• For each different current insertion, a new set of sequential propagators is needed.

2A factor 4 comes from the source and a factor 8 from the sink, where the sequential propagator
contains three quark lines.
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t = 0 t
′

t
′′

Figure 7.2: Illustration of the full baryon three-point function.

• For each momentum transfer q2, a new set of sequential propagators is needed.
In our case this is no issue, as the only momentum transfer we are interested in
is q2 = 0. In the more general case of form factors at non-vanishing momentum
transfer, sequential sources from single propagators become very expensive and are
effectively no longer an option.

• For each insertion timeslice, new sequential propagators will be needed. For a
symmetric source-sink construction one expects a plateau at insertions which are
separated sufficiently far from both the source and the sink location. One can
therefore restrict possible insertion locations to a few timeslices.

From this discussion, it is obvious, that which approach is computationally cheaper
depends on the physics objective. In our case, we want to use two different insertions and
two widths of smearing for three different interpolator types. As we are using a rather
coarse lattice, a small number of insertion timeslices should be enough. Therefore,
even just considering the nucleon case, the second approach using sequential sources
from single quark propagators is slightly cheaper. Moreover, these propagators can
subsequently be used for other hadrons and for the calculation of transition form factors.
As an added bonus, this method will enable us to systematically investigate the effect
of moving source and sink closer together, as the sink location remains variable with
this method. In [163], the expectation that contaminations from excited states lead
to an overestimation of Ga has been expressed. Varying the sink location at fixed
source location, thereby reducing the separation between the source/sink and insertion
timeslices, will help us to investigate the effects of excited states on the determination
of the axial charge of the nucleon. We will comment further on this in Section 7.4. In
principle, also the sink momentum can be varied at fixed momentum transfer.

7.1.2 Renormalization constants and vector charges

To relate lattice operators, which receive a finite renormalization, to their continuum
counterparts, we need to estimate the renormalization factors ZΓ of the bilinear currents
in question. In general, we have to multiply the lattice result Glat

Γ by the appropriate
renormalization factor to obtain values that can be compared with results extracted from
experiments

Gphys
Γ = ZΓG

lat
Γ ,

which are typically given in the modified minimal subtraction (MS) renormalization
scheme.
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Run ZV bilinears ZV 3-pt functions

A 0.818(2) 0.803(2)

B 0.826(1) 0.792(2)

C 0.829(1) 0.77(1)

Table 7.1: Values of the vector renormalization constant ZV from [170] compared to
the estimates from nucleon three-point functions. For details on run A-C please refer to
Appendix C.

For dynamical CI fermions, these renormalization constants have been estimated
using local bilinear quark field operators in [170]. It would however be useful to have an
independent estimation of these constants from a different method. In the case of the
vector current, one can estimate the constant ZV by calculating the vector charge GV

defined in analogy with (7.1) via

〈B|Vµ(q)|B〉 = ūB(p′)

(

γµGV (q2) + qνσνµ
GT (q2)

2MB

)

uB(p)e−iq·x , (7.4)

as GV (q2 = 0). This quantity has to be 1 in the continuum, as it is related to the electric
charge of the proton in the limit of equal quark masses [158].

For lattice fermions with exact chiral symmetry (i.e. Neuberger’s Overlap fermions
[31, 32], see also 2.5.1), the axial vector renormalization constant ZA and the vector
renormalization constant ZV have to be equal. For lattice fermions which only fulfill
the Ginsparg-Wilson relation approximately (see Section 2.5), there should be small
deviations from this. To obtain an independent estimate of ZV , we use a ratio of two-
point over three-point functions

R(k) =

∑

l

∑

m ψ
(k)
l C(t)lmψ

(k)
m

∑

i

∑

j ψ
(k)
i TV (t, t′)ijψ

(k)
j

= ZV ,

where C(t) is the matrix of two-point correlation functions and TV (t, t′) is the matrix of
three-point correlators with a vector insertion. The eigenvectors ψ are the ones obtained
from a variational analysis of C(t). We then compare with the preliminary estimates
from [170]. Table 7.1 lists the respective values from both local quark bilinears and from
our determination. While the two methods seem to agree within 2−3% for runs A and B,
there is a rather large discrepancy between both values from run C. Notice also that two
different methods for the determination of the renormalization constants are presented
in [170] which only agree after a chiral extrapolation of the results is performed. At the
same time, the ratio ZA

ZV
determined from the values in [170] is almost identical for both

methods used and also stable under chiral extrapolation of the results.

In our determination of the axial charge from run C, we will encounter what we
suspect to be large finite volume effects. Notice that the value of ZV obtained from
the nucleon three-point functions might be plagued by the same effects. As we can not
calculate ZA from baryon three-point functions, we therefore always use the ratio ZA

ZV

from [170]. These renormalization constants from local bilinear currents are currently
our best choice. In the next section, we discuss in detail which ratios we measure on the
lattice to obtain the renormalized axial charge Ga.
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7.2 Nucleon axial charge from dynamical CI fermions

The usual approach in the literature [158, 162] is to extract the nucleon axial charge
from ratios of GA over GV

GA =
ZA

ZV

T 3
A(t, t′)

T 4
V (t, t′)

, (7.5)

using single correlation functions built from either smeared quarks or gauge fixed box
or wall sources. This approach has the advantage that some of the systematic errors
entering the lattice determination will cancel. Figure 7.3 shows an example from 50
configurations of run C for ratios of diagonal correlators obtained from our smeared quark
sources. We plot results from all interpolators of types χ1 and χ2. While the results
from different interpolators agree within their statistical errors and stable plateaus are
observed for each correlator, the errors on such a small number of configurations are
rather large.

To make full use of our variational basis, we apply Equation (3.10) to this problem
to obtain an expression for GA:

GA =
ZA

ZV

∑

i

∑

j ψ
(k)
i T 3

A(t, t′)ijψ
(k)
j

∑

l

∑

m ψ
(k)
l T 4

V (t, t′)lmψ
(k)
m

. (7.6)

Figure 7.4 shows the plateau for the axial charge of the nucleon from runs B and C
extracted from such a ratio. The horizontal lines denote the results from a linear fit
in the displayed range. Notice that we observe a plateau in the full range of points we
calculated. For all three ensembles, we choose timeslice 9 for the position of the sink.
This corresponds to a source-sink separation of roughly 1.2 fm. For run B, we currently
only have data for insertion timeslices 5 to 9. Instead of assuming that the central value
at 5 is the physical one, we perform a linear fit to all three values displayed.

We compare our data to recent results from domain wall fermions [162] in Figure
7.5. The upper plot shows the results for Ga plotted over the square of the pion mass
m2

π. While results at large pion masses lead to values close to the experimental value,
the result from run C deviates substantially from this behavior. The same is true for the
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Figure 7.3: Ratios of diagonal correlators (from Equation (7.5)) for nucleon interpolators
χ1 and χ3 and various combinations of Gaussian quark smearing.
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Figure 7.4: Example plots to illustrate typical plateaus observed with a variational basis
for a source-sink separation of ≈ 1.2 fm. In the upper plot, data from run B is shown,
while in the lower plot the results from run C can be seen.

domain wall data and this behavior seems to be a universal feature associated with finite
volume effects [162, 165]. In the lower part of the figure we therefore plot the results for
Ga over MπL, where L corresponds to the spatial extent of the lattice. This plot can be
directly compared to Figure 3 of [162].

Before we move on to calculations for hyperons, let us briefly comment on the sink-
dependence of our results. While results from run A and B are rather insensitive to
the sink location in the region explored (timeslices 9-13)3, a systematic shift upwards
can be observed for run C when reducing the distance between the source and the sink
from 1.2 fm to 0.9 fm. We want to point out that this does not affect the quality of the
plateau which still stretches over the entire region of insertion times. Taking a look at
the nucleon two point functions, contributions from excited state to the ground state of
the variational analysis are visible up to timeslice 4. This is an indication that excited
states may indeed be responsible for measuring a larger value of Ga if excited state
contributions are not sufficiently suppressed. However, with our current accuracy from
just 50 configurations, the statistical errors from our preliminary dataset are by far too
large to make a stronger and more quantitative statement. We plan to revisit this once

3We observe no systematic shifts as we change the sink location. At the same time, the errors increase
as the source-sink separation is increased.
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Figure 7.5: We compare the results for Ga to a recent determination from domain wall
fermions. Our data is labeled as “2 flavor CI”. Results from 2+1 flavor domain wall
fermions are taken from Yamazaki et al. [162]. In the upper plot, we plot the results
over m2

π. Towards lower quark masses finite volume effects are clearly visible. In the
lower plot we display our data in units of MπL.

our statistics allows less ambiguous fits at multiple separations in Euclidean time.

7.3 Hyperon axial charges

In this section we will present results for a calculation of hyperon axial charges. For the
Σ and Ξ hyperons we adopt the following definitions:

〈

Σ+|A3
µ|Σ+

〉

−
〈

Σ−|A3
µ|Σ−

〉

= GΣΣū
νγµγ5u

ν , (7.7)
〈

Ξ0|A3
µ|Ξ0

〉

−
〈

Ξ−|A3
µ|Ξ−

〉

= GΞΞū
νγµγ5u

ν . (7.8)

Again, no disconnected contributions appear in the isovector quantities and the cal-
culation proceeds similar to the nucleon case. In particular, no additional sequential
propagators are needed for these quantities.

Figure 7.6 shows our results for the axial charge of the Σ hyperon. We compare our
data to [166] and we can see a quantitative agreement in the full range of masses. Unlike
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Figure 7.6: Results for the axial charge of the Σ hyperon compared to the mixed action
results by Lin and Orginos [166].

in the nucleon, no decrease is observed towards the chiral limit. Our purely statistical
errors on the preliminary dataset of 50 configurations are still rather large but can be
substantially reduced by using our full statistics.

Figure 7.7 shows a similar plot for the Ξ hyperon. Again the data agrees nicely with
the results from [166]. In this case our value corresponding to the smallest pion mass
shows a slight decrease towards the chiral limit, but the error bars are large and this
may be an effect from our limited statistics.

7.4 Summary and outlook

We have presented preliminary results from a calculation of baryon axial charges using a
full variational basis to efficiently suppress contaminations from excited states. We used
a basis of baryon interpolators with different Dirac structures and two different smearing
widths for the quarks. The results are in good agreement with the literature and we
obtain clear plateaus for ratios calculated with the method of [91]. Provided the signal
for the states in question is strong enough, this method can also be applied to several
other quantities of interest. In this section we discuss a few possible applications.

• Axial charge of the delta baryon: The conventional definition [171] of the
axial charge of the ∆ resonance is given by

〈

∆++|A3
µ|∆++

〉

−
〈

∆−|A3
µ|∆−

〉

= G∆∆ū
ν(p)γµγ5u(p)

ν , (7.9)

where u(p)ν is a Rarita Schwinger field. As has been pointed out in [171], it is
therefore enough to calculate the connected part of 〈∆++|ūγµγ5u|∆++〉 to deter-
mine G∆∆ on the lattice4. This can be done without the need for any additional
sequential propagators.

• Axial charges for negative parity nucleon states: Takahashi and Kunihiro
[154] calculated the axial charges of negative parity nucleon states. More specific,

4Notice that this is only sensible as long as the delta resonance can not decay on the lattice. As the
∆ resonance decays via a p-wave decay, this is the case for most current lattice simulations.
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Figure 7.7: Results for the axial charge of the Ξ hyperon compared to the mixed action
results by Lin and Orginos [166].

they investigated the axial charges of the N(1535) and the N(1650). While they
found a value consistent with zero for the N(1535), they found a value of roughly
0.5 within large errors for the N(1650). This is interesting as values much smaller
than 1 are expected under the assumption of effective chiral restoration for excited
states [172]. As the axial charges of these states can not be measured in experiment,
indirect evidence from the smallness of decays into Nπ is presented in [172]. The
lattice offers an opportunity to extract the axial charges directly. Unfortunately,
plateaus for the negative parity Nucleon are very short and an extraction with our
current data is at best ambiguous. Implementing different boundary conditions as
used in [154] may potentially serve to overcome this issue.

• Transitions : In addition, our sequential quark propagators could for example be
used to calculate three-point functions for the N -∆ or Σ-Λ transitions. So far the
only determination we are aware of concerns the axial Nucleon-Delta transition
form factor [173].

In general, the method we use can also be applied to three-point functions involving
excited states, provided that the signal is good enough to ensure the necessary separa-
tion between the source/sink and the current insertion. In addition, the method from
[106] discussed in Section 3.7 seems promising for the calculation of baryon three-point
functions as expensive sequential quark propagators are not needed anymore, once all
propagators are calculated from both the source and the sink timeslice.



Chapter 8

Conclusions and Outlook

In this thesis, the variational method was used to determine properties of both ground
and excited state hadrons. For each of the projects presented in the previous chapters,
we constructed a suitable basis of interpolating fields for the states of interest. In the case
of ground states, the variational basis helps to isolate contaminations from excitations,
which leads to effective mass plateaus starting at smaller distances in Euclidean time.
This is especially beneficial for channels where the signal is noisy and plateaus are short.
As detailed conclusions have been provided in most chapters, we just summarize the
most important findings and provide a short outlook.

In Chapter 4 we constructed derivative quark sources and applied them to the spec-
troscopy of isovector mesons. For this project, we used quenched and dynamical lattices
with two flavors of Chirally Improved fermions generated within the BGR Collaboration.
We demonstrated that these sources improve the overlap with both ground states and
low-lying excitations, depending on the channel. Here, we specifically want to point out
their usefulness for the scalar and pseudovector channels. In addition, states of higher
spins can be extracted with these sources and we provided some encouraging results for
spin 2 mesons. As a possible extension of this project, baryon interpolators could be
constructed with the same derivative sources. This is a rather straight-forward proce-
dure and would not require any further expensive calculations. In general, our analysis
on dynamical CI configurations would benefit from both, more dynamical ensembles and
a higher statistics for current ensembles. As there are several indication for finite volume
effects in our data from CI runs (see also Chapter 7), calculations in a larger volume
would be useful. We are currently creating further ensembles of dynamical gauge con-
figurations and are planning to extend some of the current runs to reduce the statistical
uncertainties. Ultimately, multiple lattice spacings should be used and an extrapolation
to the the continuum limit will need to be performed.

In Chapter 5 we used a large basis of regular and hybrid charmonium interpolators
for an exploratory study of charmonium excitations. We identified states of interest
in Section 5.1 and demonstrated that these physics objectives can be studied with our
approach. In particular, the dynamical results we obtain are competitive with previous
quenched results. We can now use the large number of gauge configurations created
by the MILC collaboration to systematically control the extrapolations needed for a
comparison with experiment. Previous systematic studies have mostly been restricted
to ground states. Studies using the variational method have either used quenched gauge
configuration or have lacked the necessary extrapolations.

So far, we were concerned mainly with the determination of hadron masses. In Chap-
ters 6 and 7, we calculated the the baryon correlators needed for an extraction of axial
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charges. We demonstrated that our method efficiently suppresses contaminations from
excited states and we presented preliminary results for the axial charge of the nucleon
and of Σ and Ξ hyperons. To our knowledge, this is the first time that the variational
method has successfully been applied to extract axial charges. We also outlined other
directions of research and are currently extending our calculations to a larger statistics.

In Section 3.7 we briefly described a recently proposed method [106] which seems
quite promising for several of our projects. We would like to investigate this approach
and combine it with some of the methods used in this thesis. In our opinion, this new
method may be especially well suited for studies of baryon form factors. A subset of
propagators needed for such a project can also be used for the simpler case of meson
spectroscopy or studies of meson three-point functions. We believe these projects would
be good starting points for incorporating the new techniques.

Excited state spectroscopy is a challenging and active topic of research for lattice
theorists and impressive progress has been made in recent years. I hope that the projects
presented in this thesis will stimulate further research and thereby contribute a small
share to the advancement of the field.



Appendix A

Interpolators for mesons and

baryons

A.1 Tables of interpolators for light-quark spectroscopy

In this appendix, we collect tables of interpolators used for the different projects. For
the construction of the quark sources from which those interpolators are build, please
refer to Section 3.6.2. In the case of the two-dimensional (E) and the two three di-
mensional representations (T1 and T2), all correlators are summed over the independent
components.

A.1.1 Meson interpolators with smeared CI quarks

Here we present the meson interpolators used on quenched and dynamical CI configura-
tions. All lattice interpolators may also couple to states with higher angular momentum
J [99, 86], as discussed in 3.5. We denote Gaussian smeared quarks by subscripts n
and w standing for narrow and wide smearing of u and d quarks. The subscript ∂i de-
notes derivative smearing in the i-direction. Where they appear, repeated indices i are
summed over the spatial directions 1,2,3. The time direction is 4 and the correspond-
ing Dirac matrix is γ4. Where necessary, we explicitly show the (anti)symmetrizations
needed to obtain the proper charge conjugation for the corresponding neutral mesons.

Tables A.1 and A.2 show the interpolators used for the spin 0 (A1 representation) and
spin 1 (T1 representation) mesons. Notice that the numbers have been chosen such that
interpolators from [3] which have been used in 4.2 and new interpolators used in 4.3 can
all be found in the tables presented here. For a given component i of the interpolators
involving the Levi-Civita Tensor ǫijk, the indices j and k run over the two non-vanishing
entries which are summed. Again the final results for interpolators are summed over all
directions i.

Table A.3 shows the interpolators in the T2 representation which are used in 4.3 for
the spectroscopy of spin 2 mesons. Notice that we omitted the appropriate symmetriza-
tion here. As an example, |ǫijk|u∂k

γjγ4dw has to be read as |ǫijk| (u∂k
γjγ4dw − uwγjγ4d∂k

).

Table A.4 lists the interpolating fields from the E representation used for the analysis
of spin 2 mesons. Just like for the case of the T2 representation, we again omit the
symmetrization in this list. The non-vanishing coefficients Qijk for the interpolators in
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Number 1 0++ 1 0−+

1 undn unγ5dn

2 undw unγ5dw − uwγ5dn

3 uwdw uwγ5dw

4 unγ4γ5dn

5 unγ4γ5dw

6 uwγ4γ5dw

7 u∂i
γidn − unγid∂i

u∂i
γiγ5dn + unγiγ5d∂i

8 u∂i
γidw − uwγid∂i

u∂i
γiγ5dw + uwγiγ5d∂i

9 u∂i
γiγ4dn − unγiγ4d∂i

u∂i
γiγ4γ5dn − unγiγ4γ5d∂i

10 u∂i
γiγ4dw − uwγiγ4d∂i

u∂i
γiγ4γ5dw − uwγiγ4γ5d∂i

11 u∂i
d∂i

u∂i
γ5d∂i

12 u∂i
γ4γ5d∂i

Table A.1: List of spin 0 meson interpolators (A1 representation). The numbers in the
first column together with the quantum numbers IJPC label the interpolators uniquely.

the E-representation are given by

Q111 =
1√
2

Q122 = − 1√
2
,

Q211 = − 1√
6

Q222 = − 1√
6

Q233 =
2√
6
.

For completeness, we also list the interpolators for exotic mesons. Table A.5 shows
a list of interpolators with derivative sources which we calculated on our dynamical
ensembles.
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Number 1 1−− 1 1++ 1 1+−

1 unγkdn unγkγ5dn

2 unγkdw − uwγkdn unγkγ5dw − uwγkγ5dn

3 uwγkdw uwγkγ5dw

4 unγkγ4dn unγkγ4γ5dn

5 unγkγ4dw − uwγkγ4dn unγkγ4γ5dw − uwγkγ4γ5dn

6 uwγkγ4dw uwγkγ4γ5dw

7 u∂k
dn − und∂k

u∂k
γ5dn + unγ5d∂k

u∂k
γ5dn − unγ5d∂k

8 u∂k
dw − uwd∂k

u∂k
γ5dw + uwγ5d∂k

u∂k
γ5dw − uwγ5d∂k

9 u∂k
γ4dn + unγ4d∂k

u∂k
γ4γ5dn + unγ4γ5d∂k

u∂k
γ4γ5dn − unγ4γ5d∂k

10 u∂k
γ4dw + uwγ4d∂k

u∂k
γ4γ5dw + uwγ4γ5d∂k

u∂k
γ4γ5dw − uwγ4γ5d∂k

11 u∂i
γkd∂i

u∂i
γkγ5d∂i

12 u∂i
γkγ4d∂i

u∂i
γkγ4γ5d∂i

13 ǫijk (u∂k
γjγ5dn − unγjγ5d∂k

) ǫijk (u∂k
γjdn − unγjd∂k

)

14 ǫijk (u∂k
γjγ5dw − uwγjγ5d∂k

) ǫijk (u∂k
γjdw − uwγjd∂k

)

15 ǫijk (u∂k
γjγ4dn − unγjγ4d∂k

)

16 ǫijk (u∂k
γjγ4dw − uwγjγ4d∂k

)

Table A.2: List of spin 1 meson interpolators in the T1 representation. The numbers
in the first column together with the quantum numbers IJPC label the interpolators
uniquely. For the vector and pseudovector channels the index k can have values k =
1, 2, 3.

Number 2−− 2−+ 2++

1 |ǫijk|u∂k
γjγ5dn |ǫijk|u∂k

γjγ4γ5dn |ǫijk|u∂k
γjdn

2 |ǫijk|u∂k
γjγ5dw |ǫijk|u∂k

γjγ4γ5dw |ǫijk|u∂k
γjdw

3 |ǫijk|u∂k
γjγ4dn

4 |ǫijk|u∂k
γjγ4dw

Table A.3: Interpolators for spin 2 mesons belonging to the T2 irreducible representation
of the octahedral group. Repeated indices are summed over. We omit the symmetriza-
tion here but a symmetrization similar to the spin 0 and spin 1 cases is also performed.
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Number 2−− 2−+ 2++

1 Qijku∂k
γjγ5dn Qijku∂k

γjγtγ5dn Qijku∂k
γjdn

2 Qijku∂k
γjγ5dw Qijku∂k

γjγtγ5dw Qijku∂k
γjdw

3 Qijku∂j
γ5d∂k

Qijku∂k
γjγ4dn

4 Qijku∂j
γ4γ5d∂k

Qijku∂k
γjγ4dw

5 Qijku∂j
d∂k

Table A.4: Interpolators for spin 2 mesons belonging to the E irreducible representation
of the octahedral group. Repeated indices are summed over. Again, a symmetrization
of the interpolators as described in the text is implied for equal quark masses.

Number 0−− 1−+ 2+−

1 u∂k
γiγ4 dn u∂k

γtdn Qijku∂j
γtd∂k

2 u∂k
γiγ4 dw u∂k

γtdw

3 ǫijku∂k
γjγtγ5dn

4 ǫijku∂k
γjγtγ5dw

Table A.5: Interpolators with derivatives whose lowest contributing quantum numbers
are exotic. We list those lowest quantum numbers only. The interpolator for the 2+−

exotics belongs to the E representation. Repeated indices are summed over. The sym-
metrization has been omitted for clarity.



Appendix B

Correlators for charmonium

spectroscopy

In this section, we provide some details about the basis of interpolators used in Chapter
5. As parameters σ and N for the Gaussian smearing of Equation 5.1 we chose σ = 2.2a
and 20 smearing steps. For the derivative sources, we implemented a general n-point form
and experimented with different possibilities. In the end we opted for a derivative using a
split of two lattice points (in each direction) instead of just a single site displacement. For
both smearing types, we tested several combinations of parameters on a small number
of configurations. While different smearing parameters for different sources may be
slightly better, we opted for a compromise, thereby cutting down on computer time for
the calculations. When extending these calculations to several lattice spacings, we will
keep the physical extent of our sources constant. To achieve that, we will have to scale
up the number of smearing steps needed for the Gaussian smearing and we will have
to use a larger displacement for the derivatives. Notice that, in addition to the quark
smearing, we apply 15 steps of 3D APE-smearing with a staple weight of 0.1 to the gauge
links used to construct the quark sources.

In the following, we list tables of interpolators for each irreducible representation.
The smearing types ∇i, D and B are defined in Equation 5.4. The names of the inter-
polators in the tables are also used for the figures in Chapter 5.

J−− J+− J−+ J++

γ5γi∇i γ5γiBi γ5 1

γt γtγ5 γi∇i

γtγ5γi∇i γtγi∇i

γiBi γtγ5γiBi

γtγiBi

Table B.1: Interpolators belonging to the A1 representation containing J = 0, 4, . . . .
Repeated indices are summed over. Interpolators without derivatives are used with
both point and Gaussian sources and sinks.
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J−− J+− J−+ J++

γi γtγ5γi γt∇i γ5γi

γtγi γ5∇i εijkγtγ5γj∇k εijkγj∇k

∇i γtγ5∇i εijkγjBk εijkγtγj∇k

εijkγ5γj∇k |εijk|γtγ5γjDk εijkγtγjBk |εijk|γ5γjDk

|εijk|γjDk Bi γtBi

|εijk|γtγjDk εijkγ5γjBk εijkγtγ5γjBk

γ5Bi

γtγ5Bi

Table B.2: Interpolators belonging to the T1 representation containing J = 1, 3, 4, 5, . . . .
Repeated indices are summed over. Interpolators without derivatives are used with both
point and Gaussian sources and sinks.

J−− J+− J−+ J++

|εijk|γ5γj∇k γtDi |εijk|γtγ5γj∇k |εijk|γj∇k

γ5γjA |εijk|γ5γjBk γ5Di |εijk|γtγj∇k

γtγ5Di Di

|εijk|γjBk |εijk|γtγ5γjBk

|εijk|γtγjBk γiA

γtγ5γiA γtγiA

Table B.3: Interpolators belonging to the T2 representation containing J = 2, 3, 4, 5, . . . .
Repeated indices are summed over.

J−− J+− J−+ J++

Qijkγ5γj∇k Qijkγtγ5γjDk Qijkγtγ5γj∇k Qijkγj∇k

QijkγjDk Qijkγ5γjBk QijkγjBk Qijkγtγj∇k

QijkγtγjDk QijkγtγjBk Qijkγ5γjDk

Qijkγtγ5γjBk

Table B.4: Interpolators belonging to the E representation containing J = 2, 4, 5, . . . .
Repeated indices are summed over.
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J−− J+− J−+ J++

γiDi γtγ5γiDi γtA γ5γiDi

γtγiDi γ5A

A γtγ5A

Table B.5: Interpolators belonging to the A2 representation containing J = 3, 6, . . . .
Repeated indices are summed over.
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Appendix C

Parameters for the dynamical CI

runs

Here we present the relevant parameters for the dynamical CI runs on which all observ-
ables have been determined. For a table of CI coefficients for dynamical simulations,
please refer to the appendix of reference [5]. Table C.1 lists the lattice spacing a as well
as the quark mass1 mAWI and the pseudoscalar meson mass for each run. Notice that
the lattice spacing for our ensemble with the lightest pion mass is roughly 4% smaller
than for the other two runs, resulting in a spatial volume which is close to 2.3 fm.

Run a [fm] a/r0,exp amAWI mAWI [MeV] mπ [MeV]

A 0.1507(17) 0.3139(35) 0.0327(3) 42.8(4) 525(7)

B 0.1500(12) 0.3126(24) 0.0259(2) 34.1(2) 470(4)

C 0.1440(12) 0.3000(24) 0.0111(2) 15.3(4) 322(5)

Table C.1: Run parameters for dynamical CI runs on a 163 × 32 lattice.

Run κn Nn κw Nw

A 0.212 17 0.184 63

B 0.222 15 0.184 68

C 0.223 15 0.184 70

Table C.2: Smearing parameters for dynamical CI runs A-C. Indices n and w stand for
narrow and wide Gaussians. Parameters were chosen to keep the width of the Gaussians
approximately constant (in physical units) between different runs.

Table C.2 lists the smearing parameters κ and N used for the Gaussian quark sources
introduced in 3.6.2. The derivative sources and sinks are always created on top of the
Gaussian wide sources, which have been tuned to double the width of the narrow sources
(for runs A-C). The gauge links for the creation of the quark sources are obtained from
the original gauge links2 by applying three levels of 3D HYP smearing with parameters

1Calculated from the axial ward identity, see [5].
2Our Dirac operator contains one level of stout smearing which is always applied.
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α1 = 0.8 and α2 = 0.4. The values have been chosen as a compromise between parame-
ters which maximize the average plaquette and parameters which maximize the minimal
plaquettes.



Appendix D

Sequential sources for baryon

axial charges

For the calculation of baryon three-point functions, a large number of sequential prop-
agators [158] have to be calculated. Making use of Krylov space solvers for multiple
right-hand sides which use information about the lowest eigenpairs to accelerate the
convergence of subsequent right-hand sides (for Deflation algorithms working directly
with the non-hermitian Dirac matrix D see [174, 175, 176]) is most useful for such a
calculation.

In this appendix, we present some results obtained with our own implementation
of the incremental EigCG solver suggested by Stathopoulos and Orginos [108]. The
strength of the algorithm is that it gathers and consecutively improves information
about the lowest eigenpairs while solving linear systems. This information is used to
deflate all subsequent systems, resulting in large speedups for the Conjugate Gradient
(CG) used in the algorithm. The authors of [108] report overall speedups of 4 or more
when comparing the EigCG algorithm to a traditional CG.

In the following, we present some plots that show the performance of the algorithm
in a practical application, namely the calculation of sequential quark sources needed to
determine baryon axial charges. We compare the performance to both a simple CG and
to the BiCGStabM algorithm [177]. The latter is used for the calculation of source-to-all
propagators which are used in the determination of hadron masses in Chapters 4 and 6.

EigCG is based on a Conjugate Gradient. Therefore, we work with the hermitian
positive definite matrix A instead of the Dirac matrix D. We would like to gather
eigenpairs

AV = ΛV ,

A = D†D ,

of this matrix. These eigenpairs are then used to accelerate the convergence for subse-
quent systems by using

x0,i = V Λ−1V †bi , (D.1)

as an initial guess (this part is known as InitCG). After a certain number of initial
iterations the convergence will not improve significantly anymore. At this point the
EigCG part of the algorithm is exchanged for a mixed precision CG.

Figure D.1 shows how eigenvector deflation improves the convergence of subsequent
systems already while incrementally improving and expanding the number of eigenpairs
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Figure D.1: Solving the 24 first right-hand-sides using the EigCG-algorithm [108] for an
example configuration of Run C. Significant speedups can be observed compared to the
first system, which is representative for the behavior using a simple CG algorithm.

gathered. In Figure D.2, the accuracy of the lowest 200 eigenpairs after solving 24 linear
systems is shown for all three runs.

We now compare the performance of EigCG with subsequent mixed-precision1 InitCG
to the performance of inverters used for other CI projects. To obtain comparable data,
we use similar conditions for the three cases2.

Run A Run B Run C

EigCG(10,100)+InitCG 233 240 256

InitCG 208 210 216

CG 706 870 1688

BiCGStabM 187 229 501

Overall speedup compared to CG 3.0 3.6 6.6

Overhead from EigCG routines 1.6% 1.6% 1.3%

Table D.1: Comparison of different inverters for solving 264 (Run A and B) and 288
linear systems respectively. The numbers listed are the average numbers of iterations
needed to solve one right-hand side. EigCG(10,100)+InitCG refers to an average of both
the initial EigCG and the subsequent InitCG phases. InitCG lists the average number of
iterations for the second phase only. For all inverters, two matrix-vector multiplications
per iteration are needed. The last row shows the percentage of walltime spent in routines
particular to EigCG.

1See [53] for a description of a mixed precision inverter with iterative refinement.
2In the case of BiCGStabM the final accuracy was slightly lower due to a different stopping criterion.

A full comparison would have to include this effect. With the same accuracy the iteration numbers for
BiCGStabM would have been a few percent higher.
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Figure D.2: Residual norm for the 200 lowest eigenpairs after the first 24 right-hand
sides have been solved using the EigCG algorithm. Data from all three runs are shown.

Table D.1 shows results for all three runs comparing the performance of EigCG to a
conventional CG and to BiCGStabM. Clearly, for the number of right-hand sides consid-
ered, EigCG is superior to CG, while the additional overhead from EigCG is completely
negligible in our case. Notice that the number of iterations needed to obtain a solution
is almost independent of the pion mass in our range of parameters, demonstrating the
main advantage of deflation algorithms. Unfortunately, a comparison to the BiCGStabM
algorithm is much less favorable in our situation. For run A the number of iterations
with a double-precision version of BiCGStabM are even less. We however would like to
point out that these numbers can not be directly compared, as we compare the mixed-
precision InitCG with the double-precision BiCGStabM and as the desired accuracy has
been set slightly different due to a different stopping criterion. The speedup from the
use of a mixed precision version compared to a double precision version is roughly 1.5.

Recently, a version of EigCG based on the BiCG algorithm instead of the simple CG
has been presented in [176]. As our Dirac operator is γ5-hermitian, a J-hermitian version
of the BiCG algorithm is preferred. For the second phase, the BiCGStab algorithm [178]
can be used. While the authors of [176] state that the incremental part does not work
quite as well as for the EigCG, the results from EigBiCG+InitBiCGStab are always
better than those for the undeflated BiCGStab. This suggests that we could profit
from this inverter for runs with a larger pion mass (run A and B). So far, we have not
implemented this algorithm.
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[58] Lüscher, Martin, Two particle states on a torus and their relation to the
scattering matrix, Nucl. Phys. B354 (1991) 531–578.
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