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Abstract. We present a detailed study of the finite-size one-dimensional
quantum XY chain in a transverse field in the presence of boundary fields coupled
with the order-parameter spin operator. We consider fields located at the chain
boundaries that have the same strength and that are oppositely aligned. We
derive exact expressions for the gap ∆ as a function of the model parameters
for large values of the chain length L. These results allow us to characterize
the nature of the ordered phases of the model. We find a magnetic (M) phase
(∆ ∼ e−aL), a magnetic-incommensurate (MI) phase (∆ ∼ e−aLfMI(L)), a kink
(K) phase (∆ ∼ L−2) and a kink-incommensurate (KI) phase (∆ ∼ L−2fKI(L));
fMI(L) and fKI(L) are bounded oscillating functions of L. We also analyze the
behavior along the phase boundaries. In particular, we characterize the univer-
sal crossover behavior across the K-KI phase boundary. On this boundary, the
dynamic critical exponent is z = 4, i.e. ∆ ∼ L−4 for large values of L.
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1. Introduction

Understanding how classical or quantum many-body systems order under the action of
an external field is an important problem in condensed-matter physics. These ordering
phenomena are signaled by phase transitions which, in classical or quantum settings,
can be broadly classified into two categories. First, there are continuous transitions
characterized by long-range correlations decaying generically as powers of the distance
and by universal large-scale behavior. In this case, many features—for instance, the
nature of the two phases that are separated by the transition—are independent of the
microscopic details and can be determined in simplified models that are only character-
ized by a few properties, like the global and local symmetries, the dimensionality of the
order parameter and the nature of the symmetry breaking pattern at the transition. In
a finite-size system, long-distance global quantities have a nonanalytic dependence on
the system size, which is also independent of the specific nature of the interactions and
of the boundary conditions, which, however, may affect scaling functions and universal
amplitudes, see, for example [1]. A second class of transitions are the first-order ones,
characterized by the discontinuity of thermodynamic and global observables. From the
point of view of phase behavior, discontinuous transitions are more interesting, as their
phase behavior is more diverse. For instance, the nature of the coexisting phases cru-
cially depends on the nature of the boundary conditions, even in the infinite-volume
limit, see, for example [2]. Therefore, by simply varying the boundary interactions, one
can generate a variety of different bulk behaviors.

In this work, we consider the one-dimensional quantum XY model in a transverse
magnetic field [3–10], a paradigmatic integrable system, for which it is possible to obtain
exact results for many ground-state properties, using its relation with a model of non-
local free fermions. The Hamiltonian of an XY chain of length L is given by

H = −1

2

L−1∑
i=1

[
(1 + γ)σ

(1)
i σ

(1)
i+1 + (1− γ)σ

(2)
i σ

(2)
i+1

]
− g

L∑
i=1

σ
(3)
i , (1)

where σ(i) are the Pauli matrices. It is easy to verify that the spectrum is invariant under
g→−g, so we can set g ⩾ 0 without loss of generality. For periodic or open boundary
conditions, the model is also invariant under γ→−γ. However, this symmetry is broken
by the boundary conditions we will use and, therefore, we will consider positive and
negative values of γ. For γ = ±1, we obtain the simpler Ising chain, while for γ= 0, the
Hamiltonian becomes that of the XX chain with an enlarged U(1) symmetry.

For g = 1 and any γ, the system undergoes a continuous quantum transition that sep-
arates a paramagnetic (disordered) phase (g > 1) from an ordered phase with a degen-
erate ground state (g < 1). The nature of the latter phase depends on the boundary
conditions. For periodic and open boundary conditions, the phase diagram for g < 1 is
well known, see, for example [11]. For g2 + γ2 > 1, there is an ordinary ferromagnetic
phase: in the infinite-volume limit the ground state is doubly degenerate. This degener-
acy is lifted in a finite volume, with a gap that behaves as e−aL. On the other hand, for
g2 + γ2 < 1, an oscillatory phase appears: the energy gap shows oscillating behavior as
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a function of the system size, and correlation functions show oscillations as a function
of the distance. The behavior for g2 + γ2 = 1 is somewhat peculiar, as the ground-state
wavefunction factorizes into a product of single spin states [12, 13].

If boundary fields are added, the phase behavior for g < 1 becomes more complex.
The analysis of [14–16] for the Ising chain (γ= 1) shows that the addition of oppositely
oriented longitudinal magnetic fields at the chain boundaries stabilizes a new phase,
named the kink phase. In this phase there is no ferromagnetic order and the low-
energy excitations are propagating kink states [17] of momentum of order 1/L. The
kink phase and the ferromagnetic phase are separated by a continuous transition, with
a universal crossover behavior. Using the quantum-to-classical mapping, one can relate
this transition to the wetting transition [18–21] that occurs in classical two-dimensional
Ising systems in a strip geometry [22–32].

The finite-size behavior of the Ising and of the XY chain has been extensively studied
[1, 14–16, 33–46]. In this work, we study the finite-size behavior of the gap in the pres-
ence of oppositely oriented boundary longitudinal fields (OBF), extending the results
obtained in [15, 16] for the Ising chain to the XY model. By combining analytic and
numerical methods, we obtain exact results for the large-size behavior of the low-energy
excitations of the model which, in turn, allow us to determine the different possible
phases for g < 1.

The two phases that occur when periodic boundary conditions are used, the conven-
tional ferromagnetic phase (we name it the magnetized (M) phase) and the oscillatory
phase (named the magnetized-incommensurate (MI) phase) also occur in the presence
of OBF. In both cases the gap decreases exponentially, with additional size oscillations
in the MI phase. If the boundary fields are sufficiently strong, we find a kink (K) phase,
as in the Ising chain [15], with delocalized excitations and a gap that decreases as 1/L2.
Finally, we find a novel phase, that we name the kink-incommensurate (KI) phase, in
which excitations are delocalized, so that the gap decreases as 1/L2, but which is also
characterized by incommensurate oscillations, as the MI phase. We have also studied
the behavior of the gap along the boundaries that separate the different phases. In
particular, along the K-KI boundary, we find that the gap scales as L−4, i.e. with a
dynamical critical exponent z = 4.

Finally, we discuss the crossover behavior that is observed when parameters are
varied across a phase boundary. We have considered the crossover between the M and
the K phase, obtaining the same behavior as observed in the Ising chain. As expected,
the crossover across the M-K boundary is universal. We also discuss the behavior across
the K-KI boundary. Also, in this case, we find a universal scaling regime. We determine
the appropriate scaling variable and compute the scaling function for the energy gap.

The paper is organized as follows. In section 2, we introduce the one-dimensional
quantum XY chain with boundary fields. In sections 3 and 4, we compute the low-energy
spectrum by generalizing the approach of [16] and exploiting the equivalent quadratic
fermionic formulation of the Hamiltonian [3, 7]. The different phases are discussed in
the subsequent sections. In section 5, we sketch the phase diagram as a function of
the model parameters and characterize the behavior of the low-energy excitations in
the different phases. In section 6, we discuss the magnetized phases, and in section 7,
the kink phase. In sections 8 and 9, we discuss the crossover behavior across the M-K
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and K-KI boundaries. In section 10, we present our conclusions. Technical details are
reported in the appendices.

2. Model and definitions

In this work, we focus on the low-energy spectrum of the XY model with Hamiltonian
(1). It is important to observe that the model is ferromagnetic for any value of γ. For
|γ|⩽ 1, both hopping terms favor the alignment of the neighboring spins. For |γ|> 1,
instead, the two terms have opposite signs, i.e. one is ferromagnetic and one is antifer-
romagnetic. The ferromagnetic interaction, however, is always the dominant one.

The XY chain undergoes a continuous transition at g = 1 [3, 4], separating a quantum
ordered phase (g < 1) from a quantum paramagnetic phase (g > 1). In this paper, we
investigate the effects of boundary magnetic fields aligned along the x axis. They give
rise to an additional energy term

Hb = −ζ1σ
(1)
1 − ζLσ

(1)
L , (2)

which is added to Hamiltonian (1). In the following, we only consider the case of OBF,
that correspond to

ζ1 = −ζL. (3)

We focus on the low-energy spectrum of the model. In particular, we will obtain exact
finite-size results for the energy differences between the lowest states and the ground
state

∆n ≡ En−E0, (4)

(here, En are the energy eigenvalues ordered so that E0 ⩽ E1 ⩽ E2 . . .) and, in particular,
for the finite-size gap ∆ = E1 −E0.

3. Jordan–Wigner representation and Hamiltonian diagonalization

To determine the spectrum of Hamiltonian (1), we use the technique introduced in [15].
We extend the model, considering two additional spins located in 0 and L+ 1 and the
Hamiltonian

He = −1

2

L−1∑
i=1

[
(1 + γ)σ

(1)
i σ

(1)
i+1 + (1− γ)σ

(2)
i σ

(2)
i+1

]
− J0σ

(1)
0 σ

(1)
1

− JLσ
(1)
L σ

(1)
L+1 − g

L∑
i=1

σ
(3)
i . (5)

This is the XY Hamiltonian with two different couplings on the boundary links and
zero transverse field on the boundaries. To compute the spectrum of Hamiltonian (5),
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we follow [15]. We first perform a Jordan–Wigner transformation, and then we perform
a Bogoliubov transformation (see appendix A for details). The Hamiltonian takes the
form

He = Egs +
L+1∑
k=0

Ekη†kηk, (6)

with 0 ⩽ E0 ⩽ E1 ⩽ . . ., where ηk are canonical fermionic operators, and

Egs = −1

2

L+1∑
k=0

Ek. (7)

The squared energies E2
k of the fermionic modes are the eigenvalues of the matrix C

given by

C =



e h d
h f c b
d c a c b
0 b c a c b

. . .
. . .

. . .
. . .

. . .
...

b c a c b 0
b c a c 0

b c l 0
. . . 0 0 0 0


(8)

with

a= 2
(
1 + γ2

)
+ 4g2

b= 1− γ2

c= 4g

d= 2J0 (1− γ)

e= 4J2
0

f = 4g2 + (1 + γ)2

h= 4J0g

l = 4J2
L + 4g2 + (1− γ)2 . (9)

The matrix C has a zero eigenvalue, E2
0 = 0, that is related to the double degeneracy of

the spectrum of He (see appendix A for a more detailed discussion). To determine the

non-zero eigenvalues, we consider the square matrix Ĉ of size (L+ 1)× (L+ 1) that is
obtained from C by deleting the last column and the last row. The gap in the presence of
OBF is expressed [15] in terms of the two lowest eigenvalues of Ĉ, E2

1 and E2
2 , computed

by setting J0 = JL = ζ1 = −ζL, as

∆OBF = E2 −E1. (10)
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4. Determination of the spectrum

To determine the spectrum of the matrix Ĉ, we extend the results of [16, 46]. Reference

[16] introduced a parametrization of the eigenvectors of the matrix Ĉ that is exact
for the Ising chain (γ= 1). This parametrization was generalized in [46] to discuss the

spectrum of the XY chain. Although it does not provide exact eigenvectors of Ĉ for
finite values of L, [46] argued that the approximation becomes exact in the infinite-
size limit, if the eigenvectors are localized (if the ground state is magnetized in the
language we use in this paper). Here, we generalize the approach of [16], obtaining the

exact eigenvectors ψL of Ĉ for any finite L. By definition, they satisfy the eigenvalue
equations

Eqk =
∑
i

ĈkiψL,i−E2ψL,k = 0, (11)

with k, i = 1, . . . ,L+ 1.
To determine ψL, we first note that a vector of components

ψ̄ L,1 =
1 + γ

2J0
A(−x) ψ̄ L,k =A(−x)k for k ⩾ 2, (12)

(x and A are arbitrary complex numbers) satisfies equation (11) for any k = 3, . . . ,L− 1,
provided we identify E2 = ε2(x), where

ε2 (x) =
(
1− γ2

)(
x+x−1

)2 − 4g
(
x+x−1

)
+ 4

(
g2 + γ2

)
. (13)

Equation (11) for the boundary components k = 1,2,L,L+ 1 instead is not satisfied, and

therefore this vector is not an eigenvector of Ĉ. To obtain an eigenvector, we define ψL as
a linear combination of vectors of the form reported above. The vector ψL depends on a
few parameters that are fixed by requiring equation (11) to also hold on the boundaries,
i.e. for k = 1,2,L,L+ 1.

Specifically, as in [46], we consider two different complex numbers x 1 and x 2. Then,

we parametrize the eigenvectors of Ĉ as3

ψL,1 =
1 + γ

2J0

(
c1x

2
1 + c2x

2
2 + d1x

3−L
1 + d2x

3−L
2

)
,

ψL,i = (−1)i−1 (c1x
3−i
1 + c2x

3−i
2 + d1x

2−L+i
1 + d2x

2−L+i
2

)
,

(14)

where i = 2, . . . ,L+ 1. With the parametrization, equation (14), equations Eqk = 0 with
k = 3, . . . ,L− 1 are exactly satisfied for any c1, c2, d1 and d2, provided that E2 = ε2(x1) =

ε2(x2). If we require ψL to be an eigenvector of Ĉ, equations Eqk = 0 for k = 1,2,L,L+ 1
should also be satisfied. Explicitly, they can be written as:

3 To make contact with equation (12), note that the terms with coefficient c1 correspond to a vector ψ̄L with A = −c1x3
1 and

x = 1/x1, while those with coefficient d1 correspond to a vector ψ̄L with A = −d1x
2−L
1 and x = x1.
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Eq1 = c1E (x1)F (x1) + c2E (x2)F (x2)

+ d1x
5−L
1 E

(
x−1

1

)
F
(
x−1

1

)
+ d2x

5−L
2 E

(
x−1

2

)
F
(
x−1

2

)
= 0,

Eq2 = c1E (x1) + c2E (x2) + d1x
5−L
1 E

(
x−1

1

)
+ d2x

5−L
2 E

(
x−1

2

)
= 0,

EqL =
(
1− γ2

)(
c1x

1−L
1 + c2x

1−L
2 + d1x

4
1 + d2x

4
2

)
= 0,

EqL+1 = d1A(x1) + d2A(x2) + c1A
(
x−1

1

)
x3−L

1 + c2A
(
x−1

2

)
x3−L

2 = 0, (15)

with

A(x) = x2
[
(1 + γ)2 +x2

(
1− γ2

)
− 4gx− 4J2

L

]
,

E (x) = x3 (1− γ)
[
1 + γ− 2gx−1 + (1− γ)x−2

]
,

F (x) = −
(γ+ 1)

(
−γ+ 2gx+ (γ− 1)x2 − 1

)
+ 4J2

0

2(γ− 1)J0x
. (16)

Let us note that the second and the third equation in equation (15) are trivial for γ= 1,
since in the transverse-field Ising chain there are only two nontrivial equations, see [16].

Equation (15) together with the constraint ε2(x1) = ε2(x2) allow us to determine
the parameters x 1 and x 2 and the coefficients c1, c2, d1 and d2 (up to a common

multiplicative constant) that make ψL an eigenvector of Ĉ.4 Once these quantities are
determined, the energies are obtained using E2 = ε(x1)

2 or, equivalently, E2 = ε(x2)
2.

Note that the parametrization is invariant under the exchange of x 1 and x 2, and
under a second set of symmetries. If we define

c ′1 = d1x
5−L
1 d ′

1 = c1x
5−L
1 , (17)

we have

c1x
3−i
1 + d1x

2−L+i
1 = c ′1

(
1

x1

)3−i

+ d ′
1

(
1

x1

)2−L+i

, (18)

which shows that the parametrization is invariant under x1 → 1/x1. The same holds
for the parameter x 2. The presence of these symmetries allows us to always choose
x 1 and x 2 such that |x1|⩾ 1, |x2|⩾ 1, and |x1|⩾ |x2|. Moreover, ψL is defined up to a
multiplicative constant. Thus, we can arbitrarily set one of the parameters c1, c2, d1

and d2 equal to one or zero.
It is important to stress that the relevant parameters for the analysis of the spectrum

are the two complex numbers x 1 and x 2. Indeed, each eigenvalue E2 is uniquely related
with a pair x 1, x 2 of solutions of the equation E2 = ε(x)2.5 Since the parametrization
is invariant under xi → 1/xi and under the exchange of x 1 and x 2, x 1 and x 2 can be
identified with any pair of solutions that are not related by the inversion symmetry.

4 This procedure allows us to obtain vectors ψL that are eigenvectors of Ĉ for finite L. In appendix B we prove that this approach
provides all eigenvectors of Ĉ.
5 In some cases we will need to explicitly specify to which eigenvalue the values x 1 and x 2 correspond. As we label the eigenvalues
of Ĉ with a positive integer n (the nth eigenvalue is E2

n), we refer to the corresponding values of x 1 and x 2 as x1,n and x2,n.
An analogous notation will be used for the coefficients that parametrize the large-L behavior of x 1 and x 2. Thus, if we define
x2 ≈ exp(iθ1/L), θ1,n indicates the value of θ1 for the nth eigenvalue of Ĉ.
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To make contact with the solution in the presence of periodic boundary conditions,
see, for example [11], note that, if x= eiq, the function ε(x) can be rewritten as

ε
(
eiq

)2
= 4

[
(g− cosq)2 + γ2 sin2 q

]
, (19)

which is the dispersion relation between the momentum q and the energy for the XY
model with periodic boundary conditions. Thus, in our parametrization, the eigenstates
are linear combinations of two different excitations, whose momentum is encoded in the
parameters x 1 and x 2. These excitations are delocalized if |xi| = 1, localized in the
opposite case.

In the following, we will study the phase diagram of the model for J0 > 0. The case
J 0 = 0 (open boundary conditions) can also be addressed with the same method, but
requires a priori separate treatment, since our parametrization becomes singular in the
limit J0 → 0, see equation (14). In practice, only the coefficients ci and di are singular for
J0 → 0. The parameters xi are continuous and thus all the results for the phase diagram
also apply for J 0 = 0, i.e. for open boundary conditions. We only consider the case
0< g < 1, in which the bulk behavior depends on the boundary conditions. Indeed, for
g > 1, the system is paramagnetic and the gap is finite while, for g = 1, the behavior is
independent of the microscopic details and thus the value of γ only affects nonuniversal
constants and scaling corrections [1].

5. Numerical determination of the phase diagram

As we have already discussed, the parameters x 1 and x 2 satisfy ε(x)2 = E2. Let us first
discuss some general properties of the solutions of this equation, assuming that the
eigenvalue E2 is known. First, if x is a solution, 1/x is also a solution. Moreover, if x
is a complex solution, its complex conjugate x̄ is also a solution. These two properties
allow us to classify the solutions of the equation into four classes:

i) All solutions are real, with |x| ̸= 1; they can be written as x = p, q, 1/q, 1/p, where
p and q are real numbers satisfying |p|, |q|> 1.

ii) There are four complex solutions with |x| ̸= 1. They can be parametrized as x= peiϕ,
pe−iϕ, eiϕ/p, e−iϕ/p, where p is a real positive number with p> 1.

iii) There are two real solutions with |x| ̸= 1 and two complex solutions with |x| = 1.
They can be parametrized as x= p,1/p, eiϕ, e−iϕ, where p is a real number with
|p|> 1.

iv) There are four complex solutions with |x| = 1 that can be parametrized as (0 ⩽
ϕ1,ϕ2 ⩽ π) x= eiϕ1, eiϕ2, e−iϕ1, e−iϕ2.

The solutions xi provide the two quantities x 1 and x 2 that we use to parametrize
the eigenvectors of Ĉ. The equations, as well as the parametrization of the eigenvectors,
are invariant under x1 → 1/x1, x2 → 1/x2 and under the exchange of x 1 and x 2, and
thus any pair of solutions that are not related by the inversion symmetry (x→ 1/x) can
be identified with x 1 and x 2. To unambiguously define the two parameters, we define
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x 1 and x 2 such that |x1|, |x2|⩾ 1 and |x1|⩾ |x2|. More precisely, let us assume that the
parameters p, q, ϕ, ϕ1 and ϕ2 that we have used above to parametrize the solutions
satisfy |p|> |q|> 1, 0 ⩽ ϕ,ϕ1,ϕ2 ⩽ π, and ϕ1 > ϕ2. Then, we define:

Solutions i): x1 = p, x2 = q.

Solutions ii): x1 = peiϕ, x2 = pe−iϕ.

Solutions iii): x1 = p, x2 = eiϕ.

Solutions iv): x1 = eiϕ1, x2 = eiϕ2.

In the following, we will always assume that x 1 and x 2 have been determined as discussed
here.

As a first step of our analysis, we perform a numerical study, with the purpose of
determining x 1 and x 2 in the infinite-chain limit, for given model parameters g, γ and
J 0. For this purpose, we determine the two lowest eigenvalues E2

1 and E2
2 of the matrix Ĉ

for a given size L using a standard numerical algorithm and then we solve the equation
ε(x)2 = E2

i . This procedure allows us to compute x1(L) and x2(L) for the two eigenvalues.
We repeat the procedure for several values of L (typically, L varies from 20 up to
100–300) and then we analyze the size behavior of the solutions. For some parameter
values we observe a very fast convergence: within errors, the estimates of E1 and E2 are
approximately the same and do not depend on L for L≳ 100. In this case, we take the
results for L= 100 as the infinite-chain estimates of x 1 and x 2. This type of behavior
occurs when the parameters satisfy |x1|> 1 and |x2|> 1, i.e. when the solutions are of
type (i) or (ii). For some other parameter values, instead, E1 and E2 show a significant
size dependence. Size corrections apparently decay as an inverse power of L. Therefore,
if xi(L) is real, it is extrapolated to a0 + a1/L+ a2/L

2. If xi(L) is complex, we separately
extrapolate |xi(L)| and the corresponding phase to a0 + a1/L+ a2/L

2. As expected (for
g < 1, the ground state is degenerate in the infinite-size limit), the extrapolated values
for the two levels are approximately the same. This type of convergence occurs when
the solutions are of type (iii) or (iv).

As an example, in figure 1 we report the infinite-length estimates of |x1| and |x2| as
a function of g for different values of J 0 and γ. The boundaries between the different
types of solutions have been obtained using the exact results presented in the follow-
ing sections. In the upper left panel, solutions change from type (i) to type (iii) as g
increases, while in the lower panels, we go from type (iv) to type (iii). In the upper right
panel, as g increases, we observe the transitions (ii)→ (i) → (iii).

The analysis of the size behavior of the eigenvalues Ei suggests that there is a strict
relation between the nature of the solutions of the equation ε(x)2 = E2

i and the phase
behavior of the model. This is even more evident from the analysis of the gap, which
shows that the parameter space J0,γ,g (0 ⩽ g < 1) can be divided into four phases. In
each phase, the parameters x 1 and x 2 belong to one of the four classes discussed above.

If, for given Hamiltonian parameters, x 1 and x 2 are both real (solutions of type (i)),
we find that the gap ∆ = E1 −E0 decreases exponentially with the chain length. This
is the behavior expected at a magnetic first-order transition: thus, solutions of type
(i) characterize what we name the magnetized (M) phase. If the values of x 1 and x 2
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Figure 1. Plots of |x1| and |x2| as a function of g, for given J 0 and γ. (a) (Top
left) Here, x 1 and x 2 are both real (M phase, type (i) solution) for g ≲ 0.755, while
x 1 is real and x 2 is complex (K phase, type (iii) solution) in the opposite case. (b)
(Top right) Here, x 1 and x 2 are both complex (MI phase, type (ii) solution) with
|x1| = |x2|> 1 up to g ≈ 0.377; then, they become real (M phase, type (i) solution)
up to g ≈ 0.752. For larger values of g, x 1 is real and x 2 is complex (K phase, type
(iii) solutions). (c) (Bottom) In both cases for small g, we have |x1| = |x2| = 1 (KI
phase, type (iv) solution). Then, x 1 becomes real, while x 2 is complex (K phase,
type (iii) solution); the transition occurs for g ≈ 0.908 (left) and g = 0.75 (right).

for given Hamiltonian parameters are of type (ii), the system is also in a magnetized
phase, since size corrections decay exponentially with L. However, in this case, the
gap behaves as ∆ = f(L)e−mL, where f (L) is an oscillatory bounded function, whose
oscillations are not commensurate with the chain size. We will name this phase the
MI phase. The size behavior changes at phase points where |x2| = 1, i.e. if x 1 and x 2

are solutions of type (iii) and (iv). If x 1 is real (solutions of type (iii)), the gap scales
as 1/L2: the corresponding phase will be named the kink (K) phase. When x 1 is also
complex with |x1| = 1 (the solution is of type (iv)), there are additional oscillations
and the gap decreases as ∆ = f(L)/L2 for large L, where f (L) is an incommensurate
oscillatory bounded function. This phase will be named the KI phase.

In figures 2–4, we anticipate the phase diagrams obtained from the analysis. For fixed
values of J 0, there are three possible different regimes that correspond to 0< J0 < 1 and
γ > 0, to J0 ⩾ 1 and γ > 0, and to γ < 0—in this last case the value of J 0 is irrelevant.
In the first case, we observe all four possible phases (see the panels for J0 = 0.5 and
J0 = 0.9 in figure 2). For small values of γ, the system is in the KI phase for small g
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Figure 2. Phase diagrams in the g− γ plane for fixed values of J 0 and positive
values of γ: behavior for J 0 = 0 (top left), J0 = 0.5 (top right), J0 = 0.9 (bottom
left) and J 0 = 2 (bottom right).

and in the K phase for g close to 1. As γ increases, the KI phase is replaced by the
MI (for small g and only up to γ= 1) and by the M (intermediate values of g) phase.
The behavior changes as J 0 increases. Indeed, the M and the MI phases shrink and
disappear for J 0 = 1. For larger values of J 0, the phase diagram is independent of J 0,
with two phases, the KI phase (in the region γ < 1) and the K phase: see the panel for
J 0 = 2 in figure 2. In figure 3, we report the phase diagrams for two fixed values of γ. For
γ= 2, the behavior is analogous to that observed in the Ising chain, with a magnetized
phase for small boundary fields and a kink phase for large values. For γ= 0.6, all four
different phases appear.

The behavior for γ < 0 is independent of J 0, see figure 4, and is the same as in the
case of periodic boundary conditions: the boundary between the MI and the M phase
satisfies the equation g2 + γ2 = 1. The same phase behavior is observed for J 0 = 0 (open
boundary conditions). This result is quite obvious for the Ising chain with γ = −1.
Indeed, for this value of γ, the system orders ferromagnetically in the y direction,
irrespective of the boundary fields that instead point in the x direction.
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Figure 3. Phase diagrams in the g−J0 plane for fixed values of γ: behavior for
γ= 0.6 (left) and for γ= 2.0 (right).

Figure 4. The phase diagram in the g− γ plane for γ < 0. The phase diagram does
not depend on J 0.

6. The magnetized phases

We now wish to characterize the magnetized phases. In the infinite-size limit we expect
two degenerate solutions of the eigenvalue equation. No degeneracy is present for finite
L, and therefore we expect two low-lying states with an exponentially small gap. In
section 6.1, we determine the values of the parameters x 1 and x 2 that correspond to
the two degenerate ground-state eigenvectors (details are given in appendix C), while
in section 6.2, we determine for which values of the parameters the system is in the
magnetized phases (M and MI phases, as discussed in section 5).
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6.1. Determination of the parameters x1 and x2

In this section, we compute x 1 and x 2 for the ground state in the infinite-chain limit.
As discussed in section 5, in the magnetized phases, |x1| and |x2| are both larger
than 1. Therefore, for large system sizes, the quantities x−L1 and x−L2 are exponen-
tially small and thus the leading behavior is obtained by neglecting these exponential
terms. Equation (15) is analyzed in appendix C. For γ > 0, x 1 and x 2 are solutions of

x1x2 =
(1 + γ)2 − 4J2

0

1− γ2
, (20)

x1 +x2 =
2g

[
(1 + γ)2 − 4J2

0

]
(1− γ2)(1 + γ− 2J2

0 )
. (21)

On the other hand, for γ < 0, x 1 and x 2 both satisfy f1(xi)f1(1/xi) = 0, where the
function f1(x) is defined as

f1 (x) = (1 + γ)x2 − 2gx+ (1− γ) = 0. (22)

If the solutions are both real and larger than 1 in absolute value, the system is in the M
phase for the given set of parameters. If they are complex conjugate with |x1| = |x2|> 1,
the system is in the MI phase.

It is important to note that, for each set of Hamiltonian parameters, we obtain
two independent eigenvectors, as expected in a magnetized phase. In a finite volume
the degeneracy is lifted. The splitting of the two degenerate levels should be due to
the terms of order x−L1 and x−L2 that are neglected in the computation of the infinite-
size behavior. Since |x2|⩽ |x1|, the gap should scale as |x2|−L, with incommensurate
oscillations if x 2 is complex.

In figure 5, we show the rescaled gap for some points that correspond to the four
different phases. The results for the MI and M phases (see the lower panels) are res-
caled by |x2|L and xL2 , respectively, where x 2 has been determined using equations (20)
and (21). In the M case, xL2 ∆(L) is apparently independent of L for L⩾ 20, indicat-
ing that ∆(L) ≈ ax−L2 with negligible size corrections (they are expected to be of the
order x2L

2 and xL1 ). In the MI case, the rescaled data are constant on average, but show
oscillatory behavior: apparently, we have |x2|L∆(L) ≈ f(L), where f (L) is a bounded
oscillating function, so that ∆(L) ≈ f(L)|x2|−L.

Let us note that, in the M case, x 1 and x 2 should be both real and their absolute
value should be larger than 1. This condition does not exclude that one or both of them
is negative, smaller than −1. Numerically, we have found that x 2 is always positive,
excluding the possibility of oscillations of the gap with the parity of the size: indeed, if
x2 <−1, we would have ∆(L) ≈ a(−1)L|x2|−L. The absence of even–odd oscillations is
expected as the model is ferromagnetic. Instead, x 1 is positive or negative, depending
on γ: x 1 is positive for |γ|< 1 and negative in the opposite case. This last result can
be explained by noting that, for |γ|> 1, the Hamiltonian is the sum of a ferromag-
netic dominant hopping term and of an antiferromagnetic subdominant hopping term.
Apparently, the latter term induces subdominant even–odd oscillations that decrease
as (−1)L|x1|L.
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Figure 5. The rescaled gap for different sizes in the four phases. Top left: g = 0.3,
γ= 0.2 (KI phase); top right: g = 0.9, γ= 0.6 (K phase); bottom left: g = 0.3, γ= 0.6
(MI phase); bottom right: g = 0.3, γ= 1.2 (M phase). In all cases J0 = 0.5. The gap
∆ has been determined numerically for several values of L, diagonalizing the matrix
Ĉ. We use the exact results for x 2 and δ. We have (see equations (20) and (21))
|x2| = 1.5612495 for g = 0.3, γ= 0.6 (MI phase), x2 = 1.7914396 for g = 0.3, γ= 1.2
(M phase), while, for g = 0.9 and γ= 0.6 (K phase), the gap behaves as δ/L2 with
δ= 76.9829 (see equation (34)).

Finally, let us discuss the limits γ→±1, in which the XY chain becomes the simpler
Ising chain. For γ→ 1, we have

x1 ≈
2g

1− γ
x2 =

1− J2
0

g
. (23)

As expected, x 1 and x 2 are real for γ close to 1, in agreement with the Ising results: no
MI phase is observed in the Ising chain. Moreover, x 1 diverges as γ→ 1, in agreement
with the fact that the Ising solution can be parametrized in terms of a single variable x,
see [16]. The result for x 2 is in agreement with the results for the gap obtained in [15].

For γ→−1, we instead obtain

x1 ≈
2g

1 + γ
x2 =

1

g
. (24)

As before, x 1 diverges on the Ising line. Here, x 2 is independent of J 0, and therefore the
gap scales as for open boundary conditions (J 0 = 0).
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6.2. Boundaries of the magnetized phases

We are now in the position to discuss the boundaries of the magnetized phases. We first
discuss the behavior for γ ⩾ 0. In this case, the values of x 1 and x 2 are determined using
equations (20) and (21). Let us first determine the boundary between the M and the
MI phase. Since, in the MI phase, x 1 and x 2 are complex numbers satisfying |x1| = |x2|,
while in the M phase they are real, on the boundary, x 1 and x 2 should be real satisfying
x1 = ±x2. As we have discussed above, the MI phase lies in the region J0 < 1 and γ < 1.
In this range of parameters, both x 1 and x 2 are positive and therefore the boundary is
defined by x1 = x2. If we set x1 = x2 in equations (20) and (21) and solve for g (assuming
J0 < 1 and γ < 1), we obtain

gM/MI =
(
1 + γ− 2J2

0

)√ 1− γ2

(1 + γ)2 − 4J2
0

. (25)

At the boundary we have

x1,M/MI = x2,M/MI =

√
(1 + γ)2 − 4J2

0

1− γ2
. (26)

Since J0 < 1, gM/MI decreases as γ increases. Moreover, we have gM/MI = 0 for γ= 1.

Note that we have gM/MI =
√

1− γ2 for J 0 = 0, which is the result that also holds for
periodic boundary conditions.

To derive the boundary between the KI phase and the MI phase, let us note that
x1 = peiϕ and x2 = pe−iϕ in the MI phase, and x1 = eiϕ1 and x2 = eiϕ2 in the KI phase.
Thus, as we move in the MI phase toward the boundary, the parameter p converges to
p = 1. Therefore, the boundary is characterized by the condition x1x2 = 1. Equation (20)
then gives

γKI/MI =
1

2

(√
1 + 8J2

0 − 1

)
, (27)

which is independent of g. Note that γKI/MI increases with increasing J 0 and that
γKI/MI = 0,1 for J0 = 0,1, respectively. Moreover, x1,M/MI = x2,M/MI is larger than 1 only
for γ > γKI/MI, so that the MI phase lies in the region γ > γKI/MI (see the phase diagrams
for J0 = 0.5 and 0.9 in figure 2).

Let us finally determine the boundary between the K phase (x1 > 1 and |x2| = 1) and
the M phase (|x1|, |x2|> 1), which only exists for J0 < 1: see the plots shown in figure 2.
As we have already discussed, in the M phase x 2 is always positive and, therefore,
the boundary is defined by the condition x 2 = 1. Substituting x 2 = 1 in equations (20)
and (21), we obtain

gK/M =

(
1 + γ− 2J2

0

)2

(1 + γ)2 − 4J2
0

, (28)
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with

x1,K/M =
(1 + γ)2 − 4J2

0

1− γ2
. (29)

For γ= 1, we obtain gK/M = 1− J2
0 , in agreement with the results of [15]. For J0 < 1, the

two conditions, (i) gK/M is real and lies in [0,1], and (ii) x1,K/M > 1, are satisfied only
for γ > γKI/MI. The boundary therefore lies in the region γ > γKI/MI. Finally, let us note
that, for fixed J0 < 1, gK/M decreases with increasing γ, reaches its minimum at γ= 1,
and then increases, converging to 1 for γ→∞ (see the phase diagrams for J0 = 0.5 and
J0 = 0.9 in figure 2). Correspondingly, x1,K/M is an increasing positive function of γ for
γ < 1, while it is a decreasing negative function of γ for γ > 1.

The three boundaries meet along a multicritical (MC) line characterized by the
condition x1 = x2 = 1. We obtain

γMC = γKI/MI gMC =
1

2

(√
1 + 8J2

0 + 1− 4J2
0

)
= 1− γ2

MC. (30)

The MC line only exists for J0 < 1—for J0 > 1 we indeed obtain gMC < 0—as the KI
and MI phases. Note that gMC is a decreasing function of J 0, satisfying gMC = 1,0 for
J 0 = 0 and 1.

The behavior for γ < 0 is much simpler. In this case, x 1 and x 2 are solutions of
f1(x1) = f1(x2) = 0. They satisfy |x1|> 1 and |x2|> 1, and therefore there are only the M
and the MI phases. For γ ⩽−1, all points belong to the M phase, while, for −1< γ < 0,
systems with g < ĝM/MI are in the MI phase and systems with g > ĝM/MI are in the M
phase. The boundary is specified by

ĝM/MI =
√

1− γ2 x1,M/MI = x2,M/MI =
g

1 + γ
. (31)

The corresponding phase diagram is reported in figure 4.
It is interesting to compare our results with the expressions reported in [46]. They

used an approximate ansatz to solve the eigenvalue equations, which is correct, in the
infinite-chain limit, only in the magnetized phases. This approximation allowed them to
correctly identify the boundary between the M phase and the MI phase, equation (25),
as well as the position of the MC line, equation (30).

7. The kink phase

The kink phase has been extensively discussed in [15] for the Ising case γ= 1. For a finite
chain of length L, the energies En of the lowest levels (the ‘kink’ states) are proportional
to n2/L2 and, thus, in the infinite-length limit, there is an infinite number of degenerate
states. As we shall see, the same result holds for the XY model.

In the kink phase, the relevant solutions are those of type (iii), i.e. x 1 is real and larger
than 1 in absolute value, and x 2 is a complex number that satisfies |x2| = 1 and that can
therefore be written as x2 = eiϕ. A detailed analysis of the equations in equation (15)
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is reported in appendix D. It turns out that if we only consider the low-lying energy
states, we have, for large L

x1 = x10 +O
(
L−2

)
ϕ =

θ1

L
+O

(
L−2

)
, (32)

where

x1 = x10 ≡
1

1− γ2

[
2
√
g(γ2 + g− 1) + γ2 + 2g− 1

]
. (33)

The phase θ1 depends on the eigenvalue. For the nth level of the matrix Ĉ we have θ1,n =

nπ. Thus, the low-energy eigenvectors of Ĉ are superpositions of a ‘localized’ excitation
(the contribution depending on x 1) and of a delocalized excitation of momentum q =
ϕ = nπ/L, as for γ= 1.

Since the lowest-lying state corresponds to x2,1 = eiπ/L, while the first excited state

corresponds to x2,2 = e2iπ/L (with corrections of order 1/L2), the gap in the K phase is

∆ = ε(x2,2)− ε(x2,1) =
3π2

(
γ2 + g− 1

)
1− g

1

L2
+O

(
L−3

)
. (34)

If we set γ= 1, we re-obtain the Ising-chain result of [15]. A numerical check of the
validity of equation (34) is provided in figure 5. For g = 0.9, γ= 0.6 and J0 = 0.5, we

determine ∆(L) by numerically diagonalizing the matrix Ĉ. Then, we report ∆(L)L2/δ,
where δ/L2 is the expected leading behavior computed using equation (34). The ratio
converges to 1 as L increases, confirming the correctness of equation (34).

In the K phase, the parameter x 1 should be real, which is only true for g > 1− γ2.
Since x10 = 1 for g = 1− γ2, this condition characterizes the boundary between the K
phase and the KI phase, i.e. the K-KI boundary is given by

gK/KI = 1− γ2. (35)

This surface lies in the region γ < 1 and also ends at the MC line, equation (30), see,
for example, the phase diagrams for J0 = 0.5 and 0.9 in figure 2.

The K-KI boundary can also be determined by analyzing the minima of the disper-
sion relation, equation (19), which should apply both in the K and the KI phase as the
low-energy behavior is associated with propagating excitations of real momentum q. In
the K phase, g > gK/KI, ε(e

iq) has a minimum for q = 0, in agreement with the idea that
the low-energy excitations are kink states of momentum q ∼ 1/L. On the other hand,
in the KI phase, the low-energy behavior is associated with propagating excitations of
momenta q = ±q* with cosq* = g/(1− γ2). References [47, 48] used these arguments to
discuss the phase behavior of an antiferromagnetic XY model with frustrated boundary
conditions. They found two different phases for g > gK/KI and g < gK/KI that we can
identify with the K and KI phases that are present in the ferromagnetic case with OBF.
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8. The boundary between the K and the M phases

8.1. Behavior along the boundary

Let us now determine the gap on the boundary between the M phase and the K phase.
Equations (32) and (33) also hold on the boundary, with x10 = x1,K/M. Moreover, also in
this case, the phases θ1 are integer multiples of π, i.e. θ1 = kπ. However, while inside the
K phase only positive values of k are allowed, on the boundary, the value of x 2 corres-
ponding to the state with energy E1 (the lowest eigenvalue) is x 2 = 1 with exponential
corrections, which implies θ1 = 0. Therefore, on the boundary, we have θ1,n = (n− 1)π for
the nth eigenvalue. This different behavior for points inside the K phase and on the M-K
boundary is not surprising, as the same occurs in the Ising chain (for this model, analytic
proof is given in [15]). Correspondingly, we obtain, for the gap ∆ = ε(x2,1)− ε(x2,0):

∆ =
π2

(
γ2 + g− 1

)
1− g

1

L2
+O

(
L−3

)
, (36)

in full agreement with the Ising chain results [15].

8.2. Crossover behavior across the M-K boundary

References [14, 15] showed the presence of universal crossover behavior across the bound-
ary between the M and the K phase. We will now show that the same behavior occurs
for generic values of γ. We work with g and γ fixed, as in [15], and vary J 0 close to the
boundary point

J0c =

√
1

2
(γ− g+ 1− s) s=

√
g (γ2 + g− 1), (37)

which is obtained by inverting equation (25).
We parametrize the crossover in terms of the scaling variable [14, 15]

ζs =RL(J0 − J0c) , (38)

where R is a nonuniversal parameter that will be determined below. In terms of this
variable, in the large-L limit, we expect the scaling behavior

∆(J0)

∆(J0c)
= f∆ (ζs) . (39)

The constant R can be fixed so that f∆(ζs) is universal, i.e. it is the same on the whole
M-K boundary. In particular, we choose R to obtain the same scaling curves determined
in [15]. The details of the calculation are reported in appendix E. We find

R=
4gJ0c

(g+ s)2 s=
√
g (γ2 + g− 1). (40)
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Figure 6. The ratio ∆(J0)/∆(J0c) as a function of ζs =RL(J0 −J0c) for two distinct
points belonging to the M-K boundary. We used: (a) J0c = 0.341010, R = 0.764235
for γ= 0.5 and g = 0.9; (b) J0c = 0.640518, R = 1.60235 for γ= 0.8 and g = 0.6. The

gap ∆(J0) has been obtained by a numerical diagonalization of the matrix Ĉ for
two different values of L. The continuous line is the universal scaling curve f∆(ζs)
computed in [15].

We can compare this expression with the Ising results obtained in [15]. For γ= 1, the
boundary occurs at J0c =

√
1− g. Correspondingly, we find R= J0c/g, in agreement

with [15].
To verify the previous calculations, in figure 6 we show the ratio ∆(J0)/∆(J0c) for

two different values of L and two different points belonging to the M-K boundary (the

gap is obtained by a direct diagonalization of the matrix Ĉ). Using the value of R
reported in equation (40), as L increases, the data approach the universal curve derived
in [15], confirming the universality of the scaling behavior.

9. The boundary between the K and the KI phases

9.1. Behavior along the boundary

We now discuss the behavior along the K-KI boundary, which is defined by the relation
g = 1− γ2, see equation (35), with γ > 0. In the infinite-chain limit we have x1 = |x2| = 1
for the ground state. To proceed further, we need to determine the finite-size corrections
to the previous relation. We have first performed a finite-size numerical analysis, finding
that x 1 is real and larger than 1 for finite values of L, while x 2 is a phase that converges
to 1 as L increases. Thus, for large values of L we can write

x1 = 1 +
x11

L
+O

(
L−2

)
x2 = 1 +

iθ1

L
+O

(
L−2

)
, (41)

with x 11 and θ1 strictly positive. Inserting these expansions in the equation ε(x1)
2 =

ε(x2)
2, we find x11 = θ1. To compute θ1, we proceed as before, keeping both x−L1 and
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x−L2 , as both quantities have a finite limit as L→∞. We consider equation (15), setting
c2 = 1. We eliminate c1, d1 and d2, obtaining a single equation for θ1, which is then
expanded in powers of 1/L. The leading term vanishes. Requiring the next-to-leading
term to vanish, we obtain the relation

cosθ1 coshθ1 = 1. (42)

This relation, which is the same for all points that belong to the K-KI boundary, allows
us to compute θ1. There is a trivial solution θ1 = 0 and an infinite number of positive
solutions that we indicate with θ̄1,k, k ⩾ 1. The smallest positive solution θ̄1,1 is

θ̄1,1 = 4.73004 . . . (43)

Solutions θ̄1,n > θ̄1,1, n= 2,3 . . ., can be accurately determined using

θ̄1,n = kn +
(−1)n

coshkn
kn =

π

2
(2n+ 1). (44)

In particular, θ̄1,2 = 7.8532 . . .. To understand the relation between the solutions θ̄1,k and

the large-L behavior of x 1 and x 2 for the low-energy levels of Ĉ, we have performed a
detailed numerical analysis, computing x1(L) and x2(L), as described in section 5. We

find x2,n = 1 + i θ̄1,n/L for the nth eigenvalue of Ĉ, i.e. the nth eigenvalue correction
term θ1,n is equal to θ̄1,n. In particular, θ̄1,1 and θ̄1,2 refer to the ground state and to the
first excited state, respectively. Given that θ1,n = θ̄1,n, in the following we will label the
solutions of equation (42) simply with θ1,n.

We can finally compute the gap. Since

ε(x1)
2 ≈ 4γ4 +

(
1− γ2

)
θ4

1

1

L4
(45)

for large values of L, we obtain

∆K/KI =
1− γ2

4γ2

(
θ4

1,2 − θ4
1,1

) 1

L4
. (46)

While in the K and KI phases the gap decreases as L−2, at the boundary between the
two phases, the gap decreases faster, as L−4: the dynamic exponent z is equal to 4.

To verify the predicted behavior, equation (46), we have considered points on the K-
KI boundary and numerically computed the gap ∆(L) for different sizes (we determine

it via a direct diagonalization of the matrix Ĉ). As expected, the ratio ∆(L)/∆K/KI

approaches 1 as L increases (numerically we find 1/L corrections), see figure 7.
Critical behavior with z = 4 was also observed in an antiferromagnetic XY model

with frustrated boundary conditions [48]. It appears to be generic behavior for g = gK/KI

in XY models. Indeed, for this value of g, the dispersion relation, equation (19), has an
expansion ϵ(q)2 = a+ bq4 for q → 0 (this is equation (45) with q = θ1/L). The quartic
dispersion relation implies z = 4.
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Figure 7. The ratio ∆(L)/∆K/KI(L) as a function of L for g = 0.64, γ= 0.6 and
J0 = 0.8, on the K-KI boundary. The gap ∆(L) has been obtained by a numer-

ical diagonalization of the matrix Ĉ, while ∆K/KI(L) is the asymptotic expres-
sion, equation (46). For these values of the parameters, ∆K/KI(L) = δL−4 with
δ= 1467.98.

9.2. Crossover behavior across the K-KI boundary line

Let us now discuss the crossover behavior as the K-KI boundary is crossed by varying
g at fixed γ and J 0. We parametrize the coupling g in terms of a scaling variable ϵK as

g =
(
1− γ2

)(
1 +

ϵK
Lα

)
, (47)

where α is an exponent that we determine below. We expand x 1 and x 2 as in
equation (41), and substitute all expressions in the equation ε(x1)

2 = ε(x2)
2. We obtain

− 4

Lα
ϵK − 1

L2

(
θ2

1 −x2
11

)
+O

(
L−3

)
= 0. (48)

Thus, nontrivial scaling behavior is obtained by taking α= 2 and requiring

x2
11 = 4ϵK + θ2

1. (49)

Note that, in equation (41), we are not assuming that x 11 is real. This is correct in the
K phase, but it is not valid deep in the KI phase where both x 1 and x 2 are phases.

An additional relation between x 11 and θ1 is obtained as before. We consider the
set of equations, equation (15), set c2 = 1 and eliminate c1, d1 and d2. After a lengthy
calculation, we finally obtain the equation

cosθ1 coshx11 − 1 = 2ϵK
sinθ1

θ1

sinhx11

x11
. (50)
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Figure 8. The crossover function across the K-KI boundary. We report the finite-
size gap ratio ∆(ϵK,L)/∆(0,L) versus ϵK = L2(g/(1− γ2)− 1) for two different sys-
tems: (a) γ= 0.6, J0 = 0.8; (b) γ= 0.3, J0 = 0.6. The gap ∆(ϵK,L) has been obtained

by a numerical diagonalization of the matrix Ĉ. The solid curve is the scaling
function fK/KI(ϵK). In the KI phase (ϵK < 0), the crossover function vanishes for
ϵK = −24.674,−49.348,−83.8916,−128.305,−182.588, . . . , see equation (53). The
dashed line corresponds to a fit of the maxima of the scaling curve for ϵK <−50,
see the text.

For ϵK = 0, we re-obtain equation (42). This equation, together with equation (49),
allows one to compute x 11 and θ1 for each value of ϵK. The equations have an infinite
number of solutions that are directly related to the eigenvalues of the matrix Ĉ. We
label the solutions as θ1,n and x11,n, n⩾ 1: they are ordered so that 0< θ1,1 < θ1,2 < .. ..
The values x11,n and θ1,n are obviously related by equation (49). As it is implicit in the
notation, θ1,n and x11,n are the values of θ1 and x 11 for the nth eigenvalue of the matrix

Ĉ. In particular, the values x11,1 and θ1,1 correspond to the ground state, while x11,2

and θ1,2 correspond to the first excited state.
Finally, the large-size behavior of the gap is given by

∆ =

(
1− γ2

)
2γ2

(
θ2

1,2 − θ2
1,1

)(
4ϵK + θ2

1,2 + θ2
1,1

) 1

L4
. (51)

As it occurs for ϵK = 0, the gap decreases as L−4 for generic values of ϵK.
The previous results allow us to predict the scaling behavior

∆(ϵK,L) = ∆0 (L)fK/KI (ϵK) , (52)

across the K-KI boundary for large values of L, where ∆0(L) = ∆K/KI is the large-size
expression for the gap on the boundary line, i.e. for ϵK = 0, given in equation (46). In
figure 8, we report the scaling curve fK/KI(ϵK) together with numerical results for two
different systems. The numerical data are in good agreement with the asymptotic curve
with size corrections that increase as ϵK becomes more negative. The existence of a
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universal K-KI scaling allows us to interpret the K-KI boundary as a surface of con-
tinuous transitions. Correspondingly, in the language of renormalization-group theory,
g, or, more precisely, the difference g− gK/KI, plays the role of relevant perturbation of
the K-KI transition, with the renormalization-group dimension yg = 2.

Some general properties of the scaling curve fK/KI(ϵK) are discussed in appendix F.
For positive ϵK the curve is very well approximated by a straight line: fK/KI(ϵK) ≈
aϵK + b, with a = 0.0356478, see figure 8. For large negative values of ϵK, fK/KI(ϵK)
behaves as ϵK times an oscillating bounded function of ϵK. The data are consistent with
this behavior: for instance, the maxima of the scaling curve for ϵK <−50 are well fitted
by the linear function 0.264− 0.0035ϵK, see figure 8. Finally, the curve vanishes for

ϵK = −π
2

2

(
m2 + 2m+ 2

)
, (53)

where m is a positive integer.

10. Conclusions

In this work, we have considered the one-dimensional XY quantum chain in a transverse
field g, see equation (1), in the presence of OBF. For g = 1, the model undergoes a
continuous transition separating a disordered paramagnetic phase (g > 1) from a low-
g phase, in which the bulk phase behavior depends on the boundary conditions. We
determine the energy spectrum of the model. By a generalization of the approach applied
to the Ising chain in [16], the problem of determining the energy spectrum for a chain of
length L is reduced to the problem of solving a system of five algebraic equations in five
unknowns. The analysis of the solutions of these equations gives us exact analytic results
for the energy gap ∆ (the energy difference between the two lowest-energy states) as a
function of the model parameters for g < 1 and large values of L. On the basis of these
results, we are able to classify the different phases occurring in the small-g regime. Four
different phases emerge:

i) A magnetized (M) phase. In this case the system is ferromagnetic, with two low-
lying states. The gap ∆ decreases exponentially with the size, as e−aL.

ii) An magnetized-incommensurate (MI) phase. Also, in this case, there are two low-
lying states. The gap behaves as e−aLf(L), where f (L) is a bounded oscillating
function of L. The oscillations are not commensurate with the system size.

iii) A kink (K) phase. There is a tower of low-lying delocalized states of momenta of
order 1/L, which become degenerate in the infinite-volume limit. The gap behaves
as L−2.

iv) A kink-incommensurate (KI) phase. Also, in this case, there is a tower of low-lying
delocalized excitations that are degenerate in the infinite-volume limit. The gap
behaves as L−2f(L), where f (L) is a bounded oscillating function of L.

The M and the MI phases, with two quasidegenerate low-energy states, are the
only ones present when periodic or open boundary conditions are considered, see, for
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example [11]. The K phase was already discussed in [15] in the context of the Ising chain
and it appears when the boundary fields are sufficiently strong. It can also be induced in
Ising rings by sufficiently strong defects that destroy the ferromagnetic order [14]. The
KI phase is a phase that is only present in the XY model for γ < 1. It has delocalized
excitations as in the K phase, but it also shares, with the MI phase, the property that
the gap shows incommensurate oscillations with the chain size L.

We have also discussed the behavior of the model along the boundaries that separate
the different phases. References [14, 15] discussed the crossover behavior across the M-K
boundary for Ising chains. Here, we perform the same calculation for the XY model,
confirming the universality of the M-K crossover behavior. We have also investigated
the behavior along the K-KI boundary. On the boundary, we find that the gap decreases
as L−4, i.e. that the dynamic critical exponent z is equal to 4. Moreover, we are able
to completely characterize the crossover across the boundary, determining the relevant
scaling variable and the crossover scaling function for the gap. As expected, the scaling
function is universal, provided the nonuniversal normalization of the scaling variable is
appropriately chosen.

In this paper we have focused on the finite-size behavior of the gap for finite chains
with OBF, but results also apply to XY rings with defects with minor changes, as
discussed in [14]. Moreover, it should be possible to extend these results to correlation
functions, using the general techniques of [8, 9], or the perturbative approach of [15].
In particular, it would be interesting to compute the two-point correlation function and

⟨σ(i)
x ⟩ as a function of x. Results for the KI phase or, at least for the K-KI boundary,

would provide a better understanding of the origin of the size oscillations of the gap.
One could also determine the entanglement properties [49] of the phases, to understand
their dependence on the boundary interactions [50], as well as the dynamic behavior
under different dynamic protocols [2, 51], extending the results of [52, 53]. From a
technical point of view, our method is quite general and it can also be applied to
the antiferromagnetic XY model in a transverse field with different types of boundary
conditions. In this case, we expect (for a discussion of these issues, see [54–56] and
references therein) rich phase behavior, with different frustrated phases that can be
stabilized by an appropriate choice of the boundary conditions and of the (even or odd)
length of the chain. In particular, we should mention the recent results of [48] for the
antiferromagnetic XY model with frustrated boundary conditions. Their model presents
two phases, which we can identify with the K and KI phases discussed here and which
are separated by a transition line with the dynamic exponent z = 4, as we observe on
the K-KI boundary. It would be interesting to perform a more detailed comparison of
the two models (for instance, one might compare the K-KI crossover function in the
two models) to verify the expected universality.
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Appendix A. Jordan–Wigner representation and Hamiltonian diagonalization

To compute the spectrum of Hamiltonian (5), we follow [3]. We first perform a Jordan–

Wigner transformation, defining the fermionic operators ci and c†i ,

c†i =Riσ
+
i , ci =Riσ

−
i , Ri = (−1)i−1

i−1∏
j=0

σ
(3)
j , (A.1)

where σ± = (σ(1) ± iσ(2))/2. These relations can be inverted, obtaining

σ
(1)
i =Ri

(
c†i + ci

)
, σ

(2)
i = −iRi

(
c†i − ci

)
, σ

(3)
i = 2c†ici − 1. (A.2)

In terms of the fermionic operators, Hamiltonian (5) becomes

He = −
L−1∑
i=1

[
c†i+1ci + c†ici+1 + γ

(
c†ic

†
i+1 − c†ici+1

)]
− g

L∑
i=1

(
2c†ici − 1

)
−

∑
i=0,L

Ji

(
c†i+1ci + c†ici+1 + c†ic

†
i+1 + ci+1ci

)
(A.3)

where the last term is the boundary contribution (i takes the values 0 and L only). The
previous expression can be rewritten in the more compact form

He = Lg−
L+1∑
i,j=0

[
c†iAijcj +

1

2
c†iBijc

†
j +

1

2
ciBijcj

]
, (A.4)

where the matrices A and B are symmetric and antisymmetric, respectively. Finally, we
perform a Bogoliubov transformation, introducing new canonical fermionic variables

ηk =
L+1∑
i=0

(
gkic

†
i +hkici

)
, (A.5)

where gki and hki are fixed by the requirement that He takes the form

He = Egs +
L+1∑
k=0

Ekη†kηk, (A.6)

with 0 ⩽ E0 ⩽ E1 ⩽ . . .. Following [3], we define the vectors

Uk = (gk0 +hk0,gk1 +hk1, . . .) , Vk = (gk0 −hk0,gk1 −hk1, . . .) . (A.7)
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The variables ηk satisfy canonical anticommutation relations if the vectors Uk form an
orthonormal basis, and so does the set Vk. The vectors Vk satisfy

(A+B)(A−B)Vk = E2
kVk. (A.8)

Thus, if we define C = (A+B)(A−B), the determination of the energies Ek is equivalent
to the determination of the eigenvalues of the matrix C. Note that the Hamiltonian He is

invariant under a parity transformation generated by Pz =
∏L+1

i=0 σ
(3)
i ). Note also that the

spectrum is doubly degenerate. This implies that C has, necessarily, a zero eigenvalue.
The matrix C is given in equation (8) in the text.

The previous calculations allow us to obtain the spectrum of He. We should now
discuss how to use these results to obtain the spectrum of H in the presence of OBF.

Let us first note that the Hamiltonian He commutes with both σ
(1)
0 and σ

(1)
L+1, which

can therefore be simultaneously diagonalized. The Hilbert space can be divided into
four sectors, which we label as (1, 1), (−1,1), (1,−1) and (−1,−1), where (s0,sL+1)

are the eigenvalues of σ
(1)
0 and σ

(1)
L+1. The restriction of He to each sector gives rise

to the Hamiltonian H, defined in equation (1), with a boundary term of the form in
equation (2). In particular, the restriction to the sector (1,−1) gives the spectrum in
the presence of OBF, while the restriction to the sector (1,1) gives the spectrum with
parallel boundary fields. To conclude the calculation we should determine the states
that belong to the sector (1,−1). The analysis is reported in [15]. In the sector s0 = 1,

sL+1 = −1, the lowest-energy state is the first excited state η†1|0⟩ of the Hamiltonian He

and all states are obtained as η†k1
. . .η†km|0⟩ with ki ⩾ 1 and m odd. In particular, the

first excited state in the sector is η†2|0⟩, so that the energy gap is ∆ = E2 −E1.

Appendix B. Consistency of the parametrization of the eigenvectors

In section 4, we proved that a vector of the form in equation (14) is an eigenvector of

Ĉ if the coefficients c1, c2, d1 and d2 satisfy equation (15) and ε(x1)
2 = ε(x2)

2. In this

appendix, we wish to prove the opposite result: any eigenvector of Ĉ can be written as
in equation (14) with appropriate coefficients c1, c2, d1, d2, x 1 and x 2.

Let us consider an eigenvector ϕL of Ĉ with eigenvalue E2. We wish to show that we
can determine c1, c2, d1, d2, x 1 and x 2, so that ψL = ϕL. We first determine x 1 and x 2 so
that ε(x1)

2 = ε(x2)
2 = E2 (this is discussed in detail in section 5). Then, we determine

c1, c2, d1 and d2 by solving the linear system of equations ψL,i = ϕL,i for i = 1,2,3,4.
We now wish to prove that the resulting vector ψL is equal to ϕL, i.e. that ψL,i = ϕL,i

for i ⩾ 5. Let us notice that equation (15) can be reinterpreted as a recursion relation

for the vector components. For k ⩾ 5, taking into account the particular structure of Ĉ,
we can write

Eqk−2 =
k∑

i=k−4

Ĉk−2,iψL,i−E2ψL,k−2 = 0, (B.1)
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which gives

ψL,k =
1

Ĉk−2,k

[
E2ψL,k−2 −

k−1∑
i=k−4

Ĉk−2,iψL,i

]
. (B.2)

Since the parametrization, equation (14), satisfies Eqk = 0 for 3 ⩽ k ⩽ L− 1 (therefore,
Eqk−2 = 0 holds for 5 ⩽ k ⩽ L+ 1), we can use equation (B.2) to determine all compon-
ents ψL,k, k ⩾ 5, in terms of ψL,i with i = 1,2,3,4. Recursion (B.2) (with ϕ replacing ψ)
also holds for ϕL (it satisfies Eqk = 0 for any k) and thus the same recursion gives ϕL,k

in terms of ϕL,i with i = 1,2,3,4. It is then enough to note that the starting values of
the recursion are the same (ψL,i = ϕL,i for i = 1, ...,4) to conclude that ϕL,k = ψL,k for
any k.

Appendix C. Magnetized phases: determination of the parameters xi

In this appendix we wish to determine the values that x 1 and x 2 take for L→∞, when
the system is in a magnetized phase. Here, x 1 and x 2 always refer to the (degenerate)
ground state.

As discussed in section 5, in the magnetized phases, |x1| and |x2| are both larger than
1. Therefore, for large system sizes, the quantities x−L1 and x−L2 are exponentially small
and thus the leading behavior is obtained by neglecting these terms6. Equations (15)
decouple: Eq1 and Eq2 depend only on c1 and c2, while EqL and EqL+1 depend only d1

and d2.
There are two classes of solutions of EqL = 0 and EqL+1 = 0. First, there is the trivial

solution d1 = d2 = 0. If this is not the case, we obtain

d2 = −
(
x1

x2

)3

d1 (C.1)

and the relation

x1x2 =
(1 + γ)2 − 4J2

0

1− γ2
. (C.2)

Equations Eq1 = 0 and Eq2 = 0 have a larger set of solutions. Beside the trivial solution
c1 = c2 = 0, we have four different possibilities:

• c1 = 0 and f1(x2) = 0, with f1(x1) ̸= 0;

• c2 = 0 and f1(x1) = 0, with f1(x2) ̸= 0;

• f1(x1) = 0 and f1(x2) = 0;

6 More precisely, these terms can be neglected provided that the coefficients ci and di do not increase exponentially with the system
size. We have verified this assumption numerically: we compute the eigenvectors by diagonalizing the matrix Ĉ and then determine
the coefficients c1, c2, d1 and d2 as explained in appendix B. The analytic results presented in this appendix are consistent with
this assumption.
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• x 1 and x 2 satisfy equation (C.2) and

c2 = −c1

x1

[
1− γ− 2gx1 + (1 + γ)x2

1

]
x2 [1− γ− 2gx2 + (1 + γ)x2

2]
. (C.3)

Here, the function f1(x) is defined as

f1 (x) = (1 + γ)x2 − 2gx+ (1− γ) = 0. (C.4)

Finally, we should determine the additional constraints due to the fact that x 1 and x 2

should satisfy the equation ε(x1)
2 = ε(x2)

2, which we rewrite in the more convenient
form

x2
1x

2
2

[
ε(x1)

2 − ε(x2)
2
]

= 0. (C.5)

Let us first assume that x 1 and x 2 satisfy equation (C.2). We rewrite each term xa1x
b
2

as (x1x2)
Kxa−K1 xb−K2 , with K = min(a,b) and then we use equation (C.2) for x1x2.

Equation (C.5) drastically simplifies, allowing us to obtain

x1 +x2 =
2g

[
(1 + γ)2 − 4J2

0

]
(1− γ2)(1 + γ− 2J2

0 )
. (C.6)

A second possibility is that x 1 satisfies f1(x1) = 0. If this is the case, we obtain that x 2

satisfies either f1(x2) = 0 or f1(1/x2) = 0. Analogously, if f1(x2) = 0, x 1 satisfies either
f1(x1) = 0 or f1(1/x1) = 0. Combining all the results, we conclude that there are two
possibilities for x 1 and x 2 in the magnetized phase. They should satisfy one of these
two conditions:

• equations (C.2) and (C.6);

• f1(xi)f1(1/xi) = 0 for both x 1 and x 2.

We have not been able to understand analytically which of the two conditions is the
relevant one for each value of the parameters g, γ and J 0, and we have thus performed a
numerical analysis, as discussed in section 5. We numerically determine the eigenvalues
of the matrix Ĉ, and then obtain the values x 1 and x 2 for the ground state by solving
ε(x)2 = E2

1 . Finally, we check which of the two conditions is satisfied. The result is
particularly simple. For γ > 0, x 1 and x 2 satisfy equations (C.2) and (C.6). On the
other hand, for γ < 0, x 1 and x 2 both satisfy f1(xi)f1(1/xi) = 0.

The previous equations allow us to determine x 1 and x 2, as long as they both satisfy
|xi|> 1. If the solutions are both real and larger than 1 in absolute value, the system
is in the M phase for the given set of parameters. If they are complex conjugate with
|x1| = |x2|> 1, the system is in the MI phase.

It is important to note that we obtain a two-dimensional space of solutions. Indeed,
if x 1 and x 2 are computed by using equations (C.2) and (C.6), we can arbitrarily fix
c1 and d1 and compute c2 and d2 using equations (C.1) and (C.3). On the other hand,
if f1(xi)f1(1/xi) = 0, we should set d1 = d2 = 0 and arbitrarily choose c1 and c2, or,
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viceversa, set c1 = c2 = 0 and choose d1 and d2. Therefore, if we neglect exponentially
small terms, the solutions form a degenerate two-dimensional space. This is exactly
the expected behavior for the two lowest-energy states in a magnetized phase. The
degeneracy is lifted for finite values of L. To compute the splitting, one should consider
the terms of order x−L1 and x−L2 . Since |x2|< |x1|, the dominant contribution is due to
x 2. We thus predict the gap to scale as |x2|−L, with incommensurate oscillations if x 2

is complex.

Appendix D. The kink phase

To determine the behavior of the gap in the kink phase in which x 1 is real and larger
than 1 in absolute value, and x2 = eiϕ, we have first performed a numerical study of the
size behavior of the phase ϕ. We diagonalize Ĉ and then compute x1,n(L) and x2,n(L)
for the low-lying energy states (the ‘kink’ states) by solving the equation ε(x)2 = En. We
find that for all these states ϕ vanishes in the infinite-size limit as 1/L, i.e. ϕn ≈ θ1.n/L
for large sizes (as usual, the suffix n indicates that ϕn is the values of ϕ for the nth

eigenvalue of the matrix Ĉ). Moreover, inside the kink phase, θ1,n never vanishes.
On the basis of these numerical results, we parametrize ϕ for the lowest-lying states

as

ϕ =
θ1

L
+
θ2

L2
+O

(
L−3

)
. (D.1)

This specific behavior of x 2 allows us to determine x 1 in the infinite-size limit from the
equation ε(x1)

2 = ε(x2)
2. Setting x 2 = 1, we obtain

x1 = x10 ≡
1

1− γ2

[
2
√
g(γ2 + g− 1) + γ2 + 2g− 1

]
, (D.2)

a result that is fully supported by the numerical results obtained by the direct diagon-
alization of Ĉ. Corrections decay as 1/L2, as described below.

To determine the correction term θ1, we expand x 1 as

x1 ≈ x10 +
x11

L
+
x12

L2
. (D.3)

Substituting this expansion and equation (D.1) in the equation ε(x1)
2 = ε(x2)

2, we
obtain x11 = 0 at the order 1/L, and x12 =Aθ2

1 (A is a function of g and γ) at the
order 1/L2. Thus, at the order 1/L we can approximate x 1 with the leading term x 10.
Then, we consider the four equations Eqk = 0 reported in equation (15). We drop the
terms that are proportional to x−L1 , which are exponentially small (in the kink phase
|x1|> 1) and replace x 1 with x 10. The coefficients c1, c2, d1 and d2 can be determined
up to a multiplicative constant (the normalization of ψ). We have numerically verified
that c2 never vanishes for generic values of the parameters in the kink phase, and there-
fore we can use the above freedom to set c2 = 1. Then, we solve the linear equations
Eq2 = 0, EqL = 0 and EqL+1 = 0 in terms of c1, d1 and d2 and substitute the results in

Eq1 = 0. The equation depends on x 2 and x−L2 . If we now take the limit L→∞ and use
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the expansion of x 2, we obtain the condition

A(g,γ,J0)sinθ1 = 0, (D.4)

where A(g,γ,J0) is a nontrivial function of the parameters. It implies

θ1 = kπ ϕ =
kπ

L
+O

(
L−2

)
. (D.5)

It is not restrictive to assume that ϕ⩾ 0, so that k is a nonnegative integer. We will
now argue that, for generic points in the kink phase, k should be strictly positive. More
precisely, for the nth eigenvalue we have θ1,n = nπ. This result is the same as that
obtained in the kink phase of the Ising chain with γ= 1 [15].

To show that θ1 cannot be zero, we combine numerical and analytic results. Let
us suppose the opposite, assuming that ϕ ≈ θk/L

k for large L, with k ⩾ 2. Equation
Eq1 = 0 gives

B (g,γ,J0)θnL
1−n +O

(
L−n) = 0, (D.6)

implying θk = 0. Thus, if θ1 = 0, ϕ should decrease faster than any power of L (most
probably exponentially) which, in turn, would imply x1 = x10, x 2 = 1 with corrections
that decrease faster than any power of L. As already mentioned, the numerical analysis
reported at the beginning of this appendix allows us to exclude this type of behavior
inside the kink phase. Thus, in the kink phase, we should only consider positive integer
values of k, as was proved rigorously for the Ising chain [15]. We have thus fully char-

acterized the values of x 1 and x 2 that correspond to the eigenvectors of Ĉ.
Relations (D.2) and (D.5) also hold on the boundary between the M phase and the

K phase, see equation (28). However, numerically we find that x 2 = 1 with essentially no
corrections for the lowest-energy state (eigenvalue E2

1 ), implying θ1,1 = 0. Higher-energy
eigenstates correspond to θ1,n = (n− 1)π with n > 1. This different behavior for points
inside the K phase and on the boundary K-M is not surprising, as the same occurs in
the Ising chain (for this model, analytic proof is given in [15]).

Appendix E. The magnetized-kink boundary

In this appendix we wish to show the validity of equation (39) along the whole M-K
boundary and, in particular, we wish to compute the constant R so that the scaling
curve f∆(ζs) is the same as that computed in [15]. This result proves the universality
of the M-K crossover.

To determine the gap scaling function we should determine the relation between
x 1,x 2 and the scaling variable ζs . For this purpose we proceed as in appendix D. We
expand x 1 and x 2 as

x1 = x1,K/M +
x11

L
+O

(
L−2

)
, x2 = 1 +

iθ1

L
+O

(
L−2

)
(E.1)
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and set J0 = J0c + ϵ/L. Note that we have included a factor i in the expansion of x 2,
to make the expansion look similar to that performed in [15] (θ1 corresponds to k in
[15]). However, we are not assuming θ1 to be real: θ1 will be purely imaginary in the
magnetized phase.

As in appendix D, we first verify that x11 = 0, so that, at the order 1/L, we can
replace x 1 with x1,K/M in all the equations in equation (15). Then, we set c2 = 1, determ-
ine c1, d1 and d2 using three of the four equations in equation (15), and substitute the
result in the equation Eq1 = 0. The calculation is quite involved. At the end, we obtain
an equation of the form

Aϵθ1 cosθ1 +Bθ2
1 sinθ1 +Cϵ2 sinθ1 = 0, (E.2)

where A, B, C are complicated functions of the model parameters. This equation relates
θ1 with the parameter ϵ.

We would now like to show that, by an appropriate choice of the constant R defined
in equation (38), we can re-express this relation as in [15]:

4ζsθ1 +
(
4ζ2

s − θ2
1

)
tanθ1 = 0. (E.3)

This would prove that the scaling functions for the XY model are the same as those
computed for the Ising chain.

Equations (E.2) and (E.3) look similar. By comparing the two expressions, we find
that it is possible to rewrite equation (E.2) as equation (E.3) via an appropriate choice
of R, only if A, B and C satisfy the relation

A= −2
√
−BC. (E.4)

We have not been able to verify relation (E.4) analytically. We have therefore performed
a numerical check. We have considered 100 different boundary points, finding that
equation (E.4) is verified to machine precision in all cases. If relation (E.4) holds, the
crossover function is universal, provided the constant R is

R=
1

2

√
−C
B

. (E.5)

We have not been able to analytically simplify the expression (E.5). We will now derive
R differently, assuming that universality holds and using the results of [15]. This quick
and simple method provides a significantly simpler expression for the constant. For
ζs →−∞, i.e. deep in the magnetized phase, the scaling function can be expanded as
(see [15])

f∆ (ζs) =
32

π2
ζ2
s e2ζs =

32

π2
R2L2 (J0 − J0c)

2 e2RL(J0−J0c). (E.6)
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In the M phase, we expect ∆(J) = ax−L2 (a depends on all model parameters), while
∆(J0c) = b/L2, so that

f∆ (ζs) =
a

b
L2e−L lnx2. (E.7)

Comparing the two expressions, we obtain

lnx2 = −2R (J0 − J0c) (E.8)

in the limit J0 → J0c. Expanding x 2 (obtained by solving equations (20) and (21)) close
to the point J0 = J0c, this relation gives equation (40).

Appendix F. Properties of the K-KI crossover function

The scaling curve fK/KI(ϵK) defined in equation (52) shows two different types of beha-
vior. For positive ϵK the curve is essentially a straight line. This linear behavior can be
predicted by noting that ∆(ϵK), computed for ϵK →∞ (deep in the K phase), should
reproduce equation (34) computed in the limit g→ 1− γ2 (close to the boundary). This
implies fK/KI(ϵK) ≈ aϵK for ϵK →∞, with

a=
12π2

θ4
1,2 − θ4

1,1

≈ 0.0356478. (F.1)

where θ1,2 and θ1,1 are the phases on the K-KI boundary, i.e. for ϵK = 0, see equations (43)
and (44).7

The approximately linear behavior is observed as long as x11,1 and x11,2 are both real
and positive. When one or both become complex, the behavior changes. To determine
the values ϵK,n of ϵK where x11,n = 0, we first note that the values x11,n are all positive
for ϵK > 0. If we decrease ϵK, the parameters x11,n decrease, as expected on the basis of
equation (49). Therefore, there is a value ϵK (a different one for each n, that we indicate
with ϵK,n), for which x11,n = 0. If ϵK is further decreased, x11,n becomes complex. To
determine the values of ϵK for which there is a solution with x11 = 0, we set x11 = 0 in
equation (49), which gives ϵK = −θ2

1/4. Then equation (50) becomes

1− cosθ1 =
θ1

2
sinθ1. (F.2)

There are two classes of solutions of this equation: (i) θ1 = 2kπ; and (ii) the solutions of
tanθ1/2 = θ1/2. To understand the relation between these solutions and the values θ1,n,
we have performed a numerical analysis, finding that each solution of equation (F.2) cor-

responds to a different eigenvalue of the matrix Ĉ. For θ1 = 2π, we find that the lowest-
energy x11,1 vanishes. Thus, θ1,1 = 2π and ϵK,1 = −π2 = −9.8696. The second smallest θ1

that is a solution of equation (F.2) is θ1 = 8.98682 (the smallest θ1 that is a solution of
type (ii)). It corresponds to x11,2 = 0, so that ϵK,2 = −20.1907. We thus conclude that all

7 As before, x11,n and θ1,n indicate the values of x 11 and of θ1 for the nth eigenstate of the matrix Ĉ.
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x11,n are positive and real for ϵK > ϵK,1 = −9.8696, while, for −20.1907< ϵK <−9.8696,
x11,1 is complex and x11,2 (and also x11,n, n > 2) is real. For ϵK <−20.1907, x 11 is purely
imaginary both for the ground state and for the first excited state. In this regime, the
scaling function shows expected oscillatory behavior.

A second interesting property of the scaling function is that it vanishes on a sequence
of values of ϵK, where θ1,1 = θ1,2, i.e. the correction term is the same for the ground state
and the first excited state. To determine these points, let us rewrite equation (50) as
f(θ1) = 0, replacing x 11 with the expression obtained using equation (49). The solutions,
such that θ1,1 = θ1,2, should also satisfy f ′(θ1) = 0, a condition that can be written as(

θ2
1 +x2

11

)
(cosθ1 coshx11 − 1) (F.3)

+x11

(
θ2

1 − 2ϵK
)

cosθ1 sinhx11 − θ1

(
x2

11 + 2ϵK
)

sinθ1 coshx11 = 0.

Thus, the values of ϵK where the phases of two different eigenstates coincide, i.e.
θ1,n = θ1,n+1 for some n, can be determined by solving equations (49), (50) and (F.3)
in terms of θ1, x 11 and ϵK. By inspection, it is immediate to verify that θ1 = 2πm1,
x11 = 2πm2i, ϵK = −π2(m2

1 +m2
2) is a solution for any integer m1 and m2. Numerically,

we have verified that all solutions that correspond to θ1,1 = θ1,2 belong to this class. More
precisely, they are a subset with m1 =m2 + 2. Therefore, the points with vanishing L−4

correction correspond to

ϵK = −π
2

2

(
m2 + 2m+ 2

)
, (F.4)

where m is a positive integer. For these values of ϵK, θ1,1 = θ1,2 = 2π (m+ 2) and x1,1 =
x1,2 = 2πmi.

Finally, let us discuss the behavior of the scaling function in the limit ϵK →−∞,
i.e. deep in the KI phase. To obtain analytic results, we should use exact results for
the gap in the KI phase. Unfortunately, we have not been able to determine the exact
asymptotic behavior of the gap in this limit. Numerically, we find that the gap decreases
as L−2f(L), where f (L) is an oscillatory function, see, for example, the upper left panel
in figure 5. If this is correct, we conclude that fK/KI(ϵK) behaves as ϵK times an oscillating
bounded function of ϵK for ϵK →−∞. The data are consistent with this behavior: for
instance, the maxima of the scaling curve for ϵK <−50 are well fitted by the linear
function 0.264− 0.0035ϵK: see figure 8 in the text.
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