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Chapter 1 

Introduction 

 

1.1  Introduction 

  The atomic nucleus is the core of the atom having dimensions of the order of 

fermi and contains protons and neutrons which are the charged states of nucleons. A 

nucleus can be thought of as a unique quantum many body system that exhibits three 

modes of excitations namely rotational, vibrational and single-particle excitation modes. 

In spherical nuclei, the vibrational modes can be excited and are studied by using the 

harmonic phonon model [1, 2]. In deformed nuclei, vibrational motion is possible around 

equilibrium of a deformed shape configuration. The deformed intrinsic shape is usually 

parameterized in terms of β and γ deformation variables. These parameters are related to 

the axial and non-axial shapes of a deformed nucleus. The one-phonon vibrational mode 

in deformed nuclei with no component of angular momentum along the symmetry axis 

(K=0) is called β-vibration and the vibrational mode with component of angular 

component along the symmetry axis (K=2) is referred to as γ-vibration. The rotational 

bands based on the γ-vibrational state are known as γ-bands [3-6]. 

The interest in nuclear physics became a passion with the availability of energetic 

heavy ion beams that opened up an enormous possibility of investigating various 

macroscopic as well as microscopic features of collision processes involving complex 

nuclei far away from the line of β-stability. In low energy heavy ion collisions, it has 

been found that, apart from direct reactions on the one hand, and highly complex 

compound nucleus reactions on the other, there are also a host of processes which are 

intermediate between the two extremes and have become possible to study. The study of 

these intermediate processes, broadly categorised as damping nuclear reactions play a 

crucial role in understanding the relaxation mechanisms of various collective nuclear 

degrees of freedom  vis-à-vis the reaction mechanisms between complex nuclei from a 

more fundamental, microscopic point of view.  
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With the development of sophisticated, high precision measuring devices, it 

became possible to investigate the properties of nuclei far away from the line of β-

stability. In the early 1980’s fusion evaporation reactions became the standard tool to 

populate very high spin states in nuclei that were not previously accessible to 

investigation [7-17]. In this technique, two stable nuclei are brought together at energy 

above the Coulomb barrier; the resulting compound system subsequently evaporates 

nucleons before decaying by γ-ray emission. However, such a process produces nuclei on 

the neutron-deficient side of the valley of stability. This is because stable light nuclei such 

as the target and projectile have a lower N/Z ratio compared to the heavy stable nuclei. In 

addition, the compound system preferentially emits neutrons, leaving a more neutron-

deficient nucleus. The γ- and proton-emission channels are less probable for heavy 

compound nuclei near stability. In order to produce nuclei that are more neutron-rich with 

this technique, radioactive beams can be used. 

The study of decay schemes from fusion evaporation reactions has greatly 

enhanced our understanding of nuclear structure. It has led to the discovery of collective 

rotational bands in regions far away from the line of β-stability. Apart from this, for more 

than a decade in the past, deep inelastic heavy ion reactions have been employed for 

spectroscopic studies of nuclei located at the neutron rich edge of the β-stability valley 

and beyond [18-24]. The high quality gamma coincidence data obtained in thick target 

experiments performed with the available large arrays of germanium detectors allow to 

achieve selectivity which is satisfactory to identify structures of many unknown nuclei.  

Nuclear structure is also investigated by in beam spectroscopy. In in-beam 

spectroscopy the beam is incident on the product target which is surrounded by a 

spectrometer to detect the prompt radiation, typically a ball of germanium detectors for γ-

ray spectroscopy such as GAMMASPHERE, JUROGAM, or a conversion-electron 

spectrometer such as SACRED [25,26]. In addition, nuclear structure is also investigated 

by various experimental techniques that include γγ, e-γ, e-e coincidence measurements, 

coulomb excitation, discrete γ-ray spectroscopy with heavy ions, and advance time 

delayed βγγ (t) method [27-31]. 
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The study of heavy elements has been approached through decay spectroscopy 

and limited particle number transfer reaction experiments. It gives information on the 

limited number of nuclear states, and is subjected to the selective nature of the decay 

processes and reaction mechanisms. The field of decay spectroscopy has developed in 

recent years from technological development of multi-detector systems. The application 

of in-beam techniques to heavy nuclei can give access to a range of experimental 

observables which compliment the information from decay spectroscopy. It is now 

possible to study rotational bands which in-turn give the information about deformation, 

collectivity, and pairing. At high spins, rotational alignment properties and blocking 

arguments can give insight into particles active at the Fermi surface. 

The heaviest doubly magic nucleus found in nature is 
208

Pb, which has 82 protons 

and 126 neutrons. This nuclide also marks as border line of nuclear stability. It was a 

challenge for the theorists to investigate whether magic proton or neutron numbers 

would exist beyond Z =82 and N =126, respectively, and what would be the properties of 

nuclei in that region, since locally enhanced nuclear stability could be expected.  

The first prediction of the next spherical closed proton and neutron shell at Z 

=114 and N =184 was presented by Meldner at the Lyrekil Conference [32]. This 

initiated a long series of experiments designed not only to synthesize such nuclei in the 

laboratory but also to search for them in nature, which seemed reasonable considering 

the long half lives predicted. New predictions of nuclear stability resulted in modifying 

nuclear life by several orders. But the location of the nuclear shells has not changed 

essentially. The maximum shell corrections are still obtained at Z =114 [33, 34] and 

corresponding neutron numbers slightly differs resulting in N= 182 or N =178 [33, 34]. 

Nuclei in that region however are not spherical but strongly deformed, having substantial 

quadrupole deformation (β2) and hexadecapole deformation (β4) [33, 34]. To understand 

the properties of nuclei in this region, it is very important to study the properties of 

nuclei in the actinide mass region as they are the heaviest known quasi-stable nuclei that 

have been synthesized and observed. 

The most common practical significance of the actinides arises from the 

fissionability, or potential for splitting certain of their isotopes. When an atomic nucleus 
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breaks apart, or undergoes fission, enormous amounts of energy and several neutrons are 

liberated. This energy can be used to generate an atomic explosion, or it can be 

controlled and used as a fuel to generate heat for the production of electrical power. 

There is a potential for an enormous electrical energy production inherent in nuclear 

energy-generating technologies, and since the actinide elements are the only known 

fissionable materials, the practical impact of their availability is great. Other fissionable 

isotopes of great importance are 
233

U, 
239

Pu and 
241

Pu. Fissionable Plutonium isotopes 

are formed as by-products of fission in reactors using Uranium; when neutrons are added 

to 
238

U, which is not itself fissionable, and it is converted to the fissionable isotope 
239

Pu. 

The heavier actinides, those beyond Plutonium in the periodic table are of interest 

principally to research scientists, though they have some potential practical uses as 

sources of thermoelectric heat and neutrons. 

A brief overview of the experimental and theoretical studies of Uranium, 

Plutonium and Curium mass chains are presented in the following paragraphs.   

Multiple coulomb excitation of 
234,236

U by 5.3 MeV/u 
208

Pb ions by using gamma 

ray spectroscopy has been studied by Ower et al. [35]. They have observed the excitation 

of levels of the ground state band of 
234,236

U up to spins I=26
+
 and 28

+
, respectively. 

Transition energies between ground state band levels of these nuclei have also been 

studied by them, suggesting that at I≈28
+
 several units of angular momentum are carried 

by single particles aligned with the rotational axis. They have discussed their 

experimental results by using the concept of rotational alignment and compared them 

with predictions of the rotation-vibration and Interacting Boson Model. The gamma ray 

spectroscopy of states populated in multiple coulomb excitation has been performed by 

Ward et al. [36]. They have obtained the ground state band of 
238

U up to spin 30
+
 and 

compared their experimental data with cranked random phase approximation 

calculations. These calculations described well the low spin properties of the positive 

parity bands but the high spin states could not be explained satisfactorily. The 

transuranium nuclei on the neutron rich side on the β-stability line have scarcely been 

studied because of experimental difficulty. Ishii et al. [37-39] have measured in beam γ-

rays in the neutron rich 
240

U, 
246

Pu and 
250

Cm produced by the (
18

O,
16

O) two neutron 
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transfer reaction by selecting the reaction channel completely, using high resolution Si 

detectors. They have obtained the level energy of the ground state band up to spin I=12
+
. 

The g-factors of the high spin yrast states in 
238

U have been measured by Hausser et al. 

[40]. They have found the first evidence for the onset of proton alignment of i13/2 protons 

at spin I= (18-24). The existence of ground state rotational bands with identical transition 

energies up to spin I= 8ħ in 
244

Cm and 
246

Cm have been observed by Ahmad et al. [41]. 

They have found that the importance of these bands is that the single particle states are 

well characterized at normal deformation and hence there is a better chance of 

understanding the underlying physics in these identical bands. They provide an ideal first 

test for calculations which attempt to explain identical bands. States with higher spin 

than 8ħ have not been observed in the nuclei 
240

Pu, 
244

Cm and 
246

Cm because these 

nuclei are difficult to produce by fusion reactions and available structure information 

comes from radioactive decay studies. However, high spin states in 
232

Th [35, 42]        

234-238
U [35, 43], 

242,244
Pu [44] and 

248
Cm [45] have been identified in coulomb excitation 

studies. The E2 transition matrix elements of 
248

Cm nucleus involving the ground band 

states up to spin 24
+
 by coulomb excitation using 641 MeV 

136
Xe and 260 MeV 

58
Ni 

projectiles have been extracted by Czosnyka et al. [45]. They have also measured static 

electric quadrupole moments up to spin 20
+
. Piercey et al. [46] have studied ground state 

band of 
248

Cm up to spin 28
+
 by observing γ-rays following multiple coulomb excitation 

with use of 
208

Pb ions at 5.3 MeV/u. These authors have found that a smooth, gradual 

increase in the effective moment of inertia is seen at lower spin with an anomalous 

forward bend above spin 22
+
. 

Spectroscopy of the heavy nuclei up to high spin states is challenging. Most of 

the studies have been focused on collective structure of even-even nuclei [47, 48]. They 

are easier to investigate but the information on odd-A nuclei allows for more sensitive 

tests of theoretical predictions of single particle energies, moment of inertia, 

electromagnetic quantities. There are few predictions on high spin properties of odd-A 

nuclei [49]. Tandel et al. [50] have identified rotational bands in the odd-A nuclei 

247,249
Cm and 

249
Cf up to high spins. They have provided detailed information on high 

spin collective structure in 
247

Cm and have found that υ[734]9/2 is the highest-lying 

neutron configuration investigated up to high spin. Braid et al. [51] have determined the 
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properties of states in 
243

Cm, 
245

Cm, 
247

Cm by (d,p) and (d,t)  reactions on targets of 

244
Cm, 

246
Cm and 

248
Cm. They have made assignments of 1-qp states. Single-particle 

level schemes are extracted from the data by use of a pairing calculation.  The extracted 

single particle level scheme is compared with the single particle calculations, which 

include β4 and β6 deformations. They have also estimated the equilibrium values of β2, β4 

and β6 for the odd mass Cm isotopes. Hota et al. [52] have studied 
247

Cm through 

inelastic excitation and transfer reactions with radioactive targets. They have observed 

that the ground state band in 
247

Cm is built on a υj15/2[734]9/2
-
 Nilsson configuration. 

Ahmed et al. [53] have measured α particle, conversion-electron and γ-ray spectra of 

251
Cf with high resolution semiconductor detectors. They have measured α-γ coincident 

and level half-life measurements. On the basis of these measurements the following 

single-particle states have been identified in 
247

Cm: 9/2
-
[734], 0 KeV; 5/2

+
[622], 277.4 

KeV; 7/2
+
[624], 285.4 KeV; 1/2

+
[620], 404.9 KeV; 1/2

+
[631], 518.6 KeV. Abharam et 

al. [54] have employed electron paramagnetic resonance (EPR) spectroscopy in making 

the first direct measurements of the nuclear spins of 
243

Cm and 
247

Cm (I=5/2 and I =9/2), 

respectively. They have obtained nuclear moments for 
243

Cm as │0.4µN│  and │0.36 

µN│ for 
247

Cm. Yates et al. [55] have measured life times of the E2 transition from the 

1/2
+
[631] state to the 5/2

+
[622] state in several actinide nuclei using pulse beam and 

delayed coincidence techniques. The 1/2
+
[631] level was excited in 

239
U and 

243
Pu by the 

(d, p) reaction and in 
241

Pu by (d, t) reaction and the subsequent γ decay to the 5/2
+
[622] 

level was observed between beam pulse. They have observed corresponding E2 

transitions in 
243

Cm and 
245

Cm from the radioactive decay of 
243

Bk and 
245

Bk, 

respectively and also determined life time from electron-proton delay coincidence 

experiments. From these measurements, the half-lives obtained are 
239

U (0.78±0.04µs), 

241
Pu (0.88±0.05µs), 

243
Pu (0.33±0.03µs) and 

245
Cm (0.29±0.02µs).  

On the theoretical side the ground state energies, first excited states, and 

deformation parameters of a wide range of heavy to the super heavy nuclei were 

calculated in a macroscopic-microscopic approach by Sobieweski et al. [56]. The 

Yukawa-plus-exponential model is taken for the macroscopic part of energy and the 

Strutinsky shell correction is used for the microscopic part. Detailed predictions for the 

even mass isotopic chains 
226-236

Th and 
226-242

U are given with the minimum of excitation 
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energy of the first excited 2
+
 state and a maximum of deformation energy at N=144, 146.  

A macroscopic-microscopic model based on the Lublin-Strasbourg, the Strutinsky shell-

correction method, and the Bardeen-Cooper Schrieffer approach for pairing correlations 

was used with the cranking model by Nerlo-Pomorska et al. [57].  They have taken into 

account a dynamical coupling of rotation with the pairing field. The results describe the 

rotational bands in even-even Radium to Copernicium isotopes. Vretenar et al. [58] have 

obtained results on sequence of heavy nuclei from Thorium to Nobelium within self 

consistent relativistic Hartree Bogolyubov mean-field calculations. From these 

calculations they have provided a unified description of particle hole and particle-particle 

correlations. They have also predicted the ground state axial quadrupole and 

hexadecapole moments along the isotopic chains of various actinide nuclei. Kumar et al. 

[59] have calculated the ground, first intrinsic excited states and density distribution of 

neutron rich Thorium and Uranium isotopes within framework of relativistic mean field 

approach. They have analysed possible modes of decay like α-decay and β-decay and 

found that neutron rich isotopes are stable against α-decay and unstable against β-decay. 

They have also predicted the lifetime of the nuclei to be tens of second against β-decay. 

The ground state band and the low-lying alternative parity bands in the heaviest 

nuclei are calculated within a cluster model by Shneidman et al. [60]. The model is based 

on assumption that reflection asymmetric shapes are produced by the motion of nuclear 

system in the mass asymmetric coordinates. They have obtained detailed results on the 

levels of the ground-state rotational bands and low-lying alternative parity bands in the 

heaviest nuclei. Calculations of moments of inertia have been performed for actinide 

nuclei by Brack et al [61] using quasiparticle formalism. These calculations reproduce the 

observed moments of inertia within 10% only. For example, the ratios of theoretical 

moments of inertia to experimental values are 1.11 (
236

U), 1.00 (
238

U), 0.96 (
240

Pu), 1.00 

(
244

Cm), 1.10(
246

Cm) and 0.89(
250

Cf) have been reported. In these calculations the 

moments of inertia were shown to be very sensitive to the pairing interaction, which was 

not adjusted to reproduce the moments of inertia. The calculation indicates that it is 

difficult to reproduce the moments of inertia to the experimental accuracy for the ground-

state bands. Afanasjev et al. [62, 63] have employed cranked relativistic Hartree 

Bogoliubov calculations for a systematic study of pairing and normally deformed 
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rotational bands of even-even and odd-mass actinides. The calculations have been 

performed with the NL1 and NL3 parameterization of the relativistic mean-field 

Lagrangian. Pairing correlations are taken into account by Brink-Booker part of the 

finite-range Gogny DIS force. The stabilization of the octupole deformation at high spin 

is suggested by an analysis of discrepancies between theory and existing experimental 

information in the band crossing region of A ≈ 240 nuclei. Muntian et al. [64] have 

studied rotational structure in very heavy nuclei by employing cranking approximation 

based on a macroscopic-microscopic approach.  

The first microscopic calculations in the framework of the Hartree-Fock-

Bogoliubov approximation was carried out by Egido and Robledo [49], in which 

properties of the ground state rotational band in 
254

No were discussed. Khudair et al. [65] 

have performed Projected Shell Model (PSM) with deformed single particle states 

generated by the standard Nilsson potential. They have studied systematical behaviour of 

rotational-alignment and associated band crossing phenomena in Cf, Fm and No isotopes. 

They have found that neutrons and protons from high j orbits are found to compete 

strongly in rotational-alignment. They suggested that the observation of these effects will 

provide direct information on the single-particle states in the heaviest nuclear mass 

region. The microscopic study of yrast line in well deformed actinide nuclei have been 

performed by Egido and Ring [66]. They have discussed several versions of the cranking 

model and applied it to reproduce the alignment and band crossing pattern at the yrast 

line. The energy spectra and B(E2)s of 
232-238

U have been calculated by Chiang et al. [67] 

in the interacting boson plus fermion model. They have found that in order to reproduce 

the identical energy bands, weak boson pairing, a weak angular momentum interaction 

and a strong quadrupole interaction are needed in these nuclei. Zhang et al. [68] have 

investigated rotational bands in nuclei with Z = 96 by using cranked shell model (CSM) 

with the pairing correlations treated by particle-number conserving (PNC) method. A new 

set of Nilsson parameters and deformation are proposed by fitting experimental single 

particle spectra in nuclei with Z= 96. They have also calculated bandhead energies of the 

1-qp bands in odd-A nuclei by PNC-CSM (cranked shell model) method. Zhang et al. 

[69] have also investigated odd-A 
247

Cm nucleus by using CSM with pairing correlations 

treated by PNC method. They have found that the experimental moments of inertia, 
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alignments and their variations with rotational frequency � are reproduced well by PNC-

CSM calculations. Neutron one-quasi-particle states of 
243-247

Cm nuclei have been 

calculated by Parkhomenko and Sobiczewski [70] by using macroscopic-microscopic 

approach. They have considered even Z and odd N nuclei with Z=96. They have found 

that the characteristics of the experimental known ground states are well reproduced. The 

rotational properties of actinide nuclei in the cranked HFB model with pairing and 

quadrupole interaction have been studied by Ploszajczale and Faessler [71]. They have 

found that the i13/2 protons are mainly responsible for causing the gradual increase of 

moment of inertia in 
236

U. Shirikov et al. [72] have performed the calculations of the 

excitation energies and the wave functions of the low-lying states of the nuclei with Z 

=96 by using quasi-particle phonon model and have found that the excitation of the 

phonons and quasi-particle phonon interaction play an important role in the description of 

the properties of the excited states of these nuclei with Z = 96 

Single particle states in odd-A actinide nuclei using the reflection asymmetric 

mean field approach with an average Woods Saxon potential and monopole residual 

interaction have been calculated by Cwiok and Nazarewicz  [73]. They have found that 

the deformed Woods Saxon model gives over all agreement to single particle band heads 

in reflection symmetric actinide nuclei and also found that the calculated symmetry 

energies in the odd-A nuclei are generally larger than those calculated for the 

neighbouring even-even cores.  

In this thesis, the Projected Shell Model has been employed to study the nuclear 

structure properties of even-even Uranium, Plutonium and Curium nuclei and also some 

odd-A Curium isotopes.  

The organisation of the present thesis is as follows: 

Chapter 2 is devoted to the study of some Uranium and Plutonium isotopes. The results 

have been obtained for yrast energy levels, B(E2) transition probabilities and g-factors. 

The results of BCS subshell occupation numbers indicate that deformation systematics in 

Uranium and Plutonium isotopes depend on the occupation of low k components of high 

''j'' orbitals in the valence space and polarization of (1h11/2) proton orbit. The calculation 
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reproduced the observed positive parity yrast bands. The low lying states of yrast spectra 

have been found to arise from 0-qp intrinsic states whereas the high spin states arise from 

multi-quasiparticle bands. The calculated B(E2;2�
�
⟶ 0�

�)  values are in good agreement 

with experimental data for all Uranium and Plutonium isotopes. The present calculations 

has predicted the B(E2) values for higher transitions for 
232-234

U, 
238-240

U and 
236-242

Pu 

isotopes. The theoretical results for g-factors show a decrease at a certain spin in 
230,232

U 

isotopes, thereafter the theoretical g-factors show an increasing trend. In case of 
234-240

U 

the g-factor shows a reverse trend. The experimental g-factors for 
238

U has been found to 

be in good agreement with the theoretical values qualitatively. The theoretical results of 

g-factors of 
236-242

Pu isotopes predict an increase in g-factors at higher spins. The present 

calculation predicts an increase in g-factors at higher spins in U and Pu isotopes due to 

alignment of protons in 1i13/2 orbit. 

Chapter 3 presents the microscopic study of some even-even and odd-A Curium 

isotopes. The yrast bands, B(E2) transition probabilities and g-factors have been 

calculated and compared with the available experimental data. The structure of the yrast 

bands has been investigated from the band diagrams. The calculated B(E2;2�
�
⟶ 0�

�) 

values are in good agreement with experimental data for 
244-248

Cm isotopes. In case of 

248
Cm, the experimental data is available up to spin 24

+
 which is reproduced by the 

present calculation. The g-factors are also calculated for 
242-248

Cm isotopes which shows 

an increasing trend with spin. The experimental level energies of ground state bands of 

243-247
Cm and lowest excited state bands in 

243,245
Cm have been reproduced qualitatively 

by the present calculation. The transition energies of ground state bands of odd 
243-247

Cm 

have been also reproduced qualitatively by the present calculation. 

Lastly, Chapter 4 summarizes the overall work of the thesis. 
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Chapter 2 

Projected Shell Model study of even-even Uranium and 

Plutonium nuclei 

 

2.1 Introduction 

In the past few years, researchers have made significant progress in synthesis of 

new elements [74-77]. Presently, little is known about their structure. The heaviest nuclei 

for which the detailed spectroscopy measurements can be performed lie in the actinide 

region [78-80]. These nuclei are not super heavy elements but at the gateway of super 

heavy element region. These nuclei are well deformed and their study may provide an 

indirect way to access the single particle states of the closed spherical shells, which are of 

direct relevance to the location of the predicted island. In the actinide region the energy 

spectra of many nuclei have been measured now with high precision up to higher spins 

(~30
+
). The moments of inertia of the actinide nuclei are nearly twice than those of the 

rare-earth nuclei. Because of this, the two quasi-particle s-band does not compete with 

ground state band up to high spin [81]. The yrast levels with even spin and parity in the 

actinide nuclei usually belong to the ground state bands up to higher spins. The available 

experimental data on the positive parity rotational bands of these nuclei, therefore, 

provides an ideal opportunity to test the applicability of various models. 

Ower et al. [35] have studied the multiple coulomb excitation of 
234,236

U by 5.3 

MeV/u 
208

Pb ions by using gamma ray spectroscopy and observed the excitation of 

ground-band levels of 
234,236

U up to spins I=26
+
 and 28

+
, respectively. Transition energies 

between ground-band levels of these nuclei have also been studied by them, suggesting 

that at spin (I) ≈ 28
+
 several units of angular momentum are carried by single particles 

aligned with the rotational axis. They have discussed their experimental results by using 

the concept of rotational alignment and compared them with predictions of the rotation-

vibration and Interacting boson model. Ward et al. [36]  performed the gamma ray 

spectroscopy of states populated in multiple coulomb excitation and obtained the ground 

state band of 
238

U up to spin 30
+
. They compared their experimental data with cranked 
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random phase approximation calculations. These calculations described well the low spin 

properties of the positive parity bands but the high spin states could not be explained 

satisfactorily. Ishii et al. [39] have measured the de-excitation of gamma rays of the 

heaviest neutron rich 
240

U and obtained the level energy of the ground state band up to 

spin I=12
+
. Hausser et al. [40] measured the g-factors of the high spin yrast states in 

238
U 

and found the first evidence for the onset of proton alignment of i13/2 protons at spin 

I=(18-24). Nadirbekov et al. [82] have studied excited collective states of even–even 

nuclei by employing quadrupole and octupole deformations within a nonadiabatic 

collective model. They have demonstrated the importance of asymmetric degrees of 

freedom of the quadrupole–octupole motion of the system, which determine not only 

low-lying levels in the yrast band but also higher lying levels in the first and second 

nonyrast bands. Nadirbekov et al. [83] have described the structure of the lowest positive 

and negative-parity levels in the spectra of heavy even–even nuclei. They have 

reproduced the overall structure of the lowest alternating-parity energy sequences in 

several actinide nuclei. Govor et al. [84] have investigated the structure of excited levels 

and gamma transitions in 
238

U by using gamma radiation associated with the respective 

(n, n׳γ) reaction and with fission fragments. They have proposed level scheme and 

gamma transitions in 
238

U.  They have also proposed new levels (including those of spin–

parity J
π
 = 0

+
) at excitation energies below 2 MeV. Levon et al. [85] have studied 

excitation spectra of 
232

U by means of the (p, t) transfer reaction. They have found 13 

excited 0
+
 states in 

232
U up to energy of 3.2 MeV. They have also derived moments of 

inertia and found that most of the values of moments of inertia are not much higher than 

the value of ground state band. Shneidman et al. [86] have suggested the cluster 

interpretation of the properties of multiple negative parity bands and positive parity 

rotational bands in 
240

Pu. They have also explained the observed excitation spectrum and 

the angular momentum dependences of the parity splitting and of the electric E1 and E2 

transition moments. Diebel and Mosel [87] have performed cranked Hartree-Fock-

Bogoliubov (HFB) calculations of the yrast line for the nuclei 
234-238

U. Their HFB 

calculations could not explain the observed proton alignment in these nuclei. Ploszajczale 

and Faessler [71] have studied the rotational properties of actinide nuclei in the cranked 

HFB model with pairing and quadrupole interaction and found that the i13/2 protons are 
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mainly responsible for causing the gradual increase of moment of inertia in 
236

U. Egido 

and Ring [66] have performed microscopic study of the yrast line in the well deformed 

actinide nuclei. They have discussed several versions of the cranking model and found 

that the mean-field approach, in the form of cranking model in the simplified version of 

the rotating shell model is able to reproduce the alignment and band crossing pattern at 

the yrast line. Chiang et al [67] have calculated the energy spectra and B(E2) values of 

232-238
U in the interacting boson plus fermion model and found that in order to reproduce 

the identical energy bands, weak boson pairing, a weak angular momentum interaction 

and a strong quadrupole interaction are needed in these nuclei.  

In order to investigate the properties of U and Pu nuclei, projected shell model 

(PSM) is employed as a theoretical tool in the present work. I was prompted to use this 

model of calculation as it produces satisfactory results in rare earth mass region [88-97]. 

For example, Bian et al. [89] have studied the systematics of g-factors of the first 2
+ 

states in even-even nuclei from Gd to Pt by using the same approach. Their calculations 

reproduced the energy bands and B(E2)s for low-lying states for all the nuclei. Besides, 

the down-sloping trend of g(2��) factor in the Gd, Dy and Er isotopes, the  up-sloping 

trend in W isotopes and the flat behaviour of Yb and Hf isotopes have been very well 

reproduced in their calculations. Sometime back, the PSM was used by Wei et al. [90] to 

investigate the ground bands and β-bands of 
230,232

Th and 
232,234

U. The energy schemes 

and E2 transition rates calculated by them agree well with the experimental data. In the 

present work, the positive parity yrast bands of isotopic mass chains of U and Pu are 

investigated by employing quadrupole-quadrupole plus monopole and quadrupole-pairing 

force in the Hamiltonian within the framework of Projected Shell Model approach. The 

results have been obtained for yrast levels, BCS subshell occupation numbers, B(E2) 

transition probabilities and  g-factors.   

2.2 Calculational Details 

In this section an attempt is made to present briefly the formal aspects of 

Projected Shell Model (PSM) [88]. The Hamiltonian used in the present work is specified 

and for this, the HFB procedure leads essentially to the Nilsson + BCS scheme. 
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Obviously, this is the main reason why the present model can describe various types of 

nuclei over a wide range of isotope or isotone chains quite accurately. 

To understand the major features of PSM, it is important to introduce certain 

elementary concepts of projection operators and their properties. Accordingly, the general 

discussion of the model is presented under the following sub headings: 

2.2.1 Projection operator 

The projection operator associated with a compact Lie Group is a well-known 

concept in the theory of group representations [98]. To begin with, an attempt is made to 

summarize the important properties of the projection operator. In the present context, one 

is primarily interested in the Rotation or SU(2) Group whose elements are specified by 

the group parameter Ω, which represents a set of Euler angles (α, γ = [0, 2π] and β =  [0, 

π]). The explicit form of the group element is  

,)(ˆ ˆˆˆ
zyx JiJiJi eeeR γβα −−−=Ω                                               (2.1) 

where, 
^

Js are the angular momentum operators. Its (unitary) representation is  

),()(ˆ * ΩδδνΩµ µν
I

MKIJDJKRIM =                                    (2.2) 

where the symbol * means the complex conjugation and )(ΩI

MKD  is the D-function [99]. 

The D-functions form a complete set of functions in the parameter space of Ω . For a 

state 〉IMµ|  belonging to the angular momentum IM , µ designates a set of quantum 

numbers that specify the quantum state uniquely, so that the following closure holds: 

.1||∑ =〉〈
IM

IMIM
µ

µµ                                                              (2.3) 

One needs not to specify details of the state 〉IMµ| , except for the fact that it belongs to 

a complete set of orthonormal vectors in a Hilbert space in which the operator (2.1) acts. 

From eqs. (2.2)  and (2.3), it follows that 
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),(||)(ˆ * Ω〉=〉Ω ∑
M

I

MKDIMIKR νν                                       (2.4) 

which is the multiplet relation between the states belonging to a representation (angular 

momentum) I . Using equation (2.4) and the orthogonality of the D-functions  

'''

12

8
)()(

2
'

''

*

ΚΚ
δδδ

π
ΩΩΩ

MMII

I

KM

I

MK
I

DDd∫ +
=                       (2.5) 

one obtains the relation 

,||ˆ
''

'' 〉=〉 IMKIP
KKII

I

MK νδδν                                           (2.6) 

where the operator 
I

MKP̂  is defined by 

)(ˆ)(
8

12ˆ
2

ΩΩΩ
+

= ∫ RDd
I

P I

MK

I

MK
π

                                       (2.7) 

and is called angular momentum projection operator. From eqs. (2.3) and (2.6), one 

obtains its spectral representation and the “sum rule” 

,||ˆ ∑ 〉〈=
ν

νν IKIMPI

MK

 
∑ =
IM

I

MMP .1ˆ                                   (2.8) 

Using the spectral representation, one can easily derive the properties  

I

KM

I

MK PP ˆˆ † =        and   
I

KKMMII

I

KM

I

KM PPP '''

'

''
ˆˆˆ δδ=               (2.9) 

In general, a set of projection operators must satisfy the relations ,†

ii PP =  ,iijji PPP δ=  

,1=∑i iP  so that 
I

MKP̂  is a projection operator in the usual sense only if .MK ≡  

In an analogous way, the particle number projection operator is introduced in terms of a 

gauge group [element= )ˆexp( Niφ−  and representation = )exp( Niφ ] by 

,
2

1ˆ
2

0

)ˆ(∫ Ν−Ν−Ν =
π

φφ
π

i
edP                                                     (2.10) 
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where Ν̂  is the particle number operator. The group parameter φ  is called the gauge 

angle. The operator ΝP̂  is a projection operator in the usual sense. 

When projecting the angular momentum and particle number simultaneously, one can 

combine two projectors (2.7) and (2.10) 

( ) ( ) ( ).ˆ
16

12ˆˆˆ ˆ

3 ∫ Ν−Ν−Ι
Κ

Ν
Κ

Ν ΩΩΩ
+

=≡ φφ
π

i

M

I

M

I

MK eRDdd
I

PPP           (2.11) 

It should be noted that 
I

MP Κ
ˆ  and ΝP̂  commute with each other. What is shown above is 

only a formal definition. It is therefore, supplemented with a discussion which 

demonstrates how such an operator comes into play in a physical problem taking the 

angular momentum projection operator as an example. 

2.2.2  Shell model in projected basis 

Suppose that 〉Φ|  is a “deformed” state, which means that it is not an eigen-state 

of the angular momentum. Because of the rotational invariance of the Hamiltonian  

( ) ( ) ,ˆˆˆˆ †
HRHR =ΩΩ                                                            (2.12) 

the energy expectation value  

〉ΦΦ〈

〉ΦΦ〈

|

|ˆ| H
                                                                     (2.13) 

remains the same even if one rotates the state 〉Φ| . In other words, all states 〉ΦΩ |)(R̂  

having different orientation Ω  are mutually degenerate. It is noted that 〉ΦΩ |)(R̂  can be 

linearly independent of 〉Φ|  since deformed states do not satisfy a linear relation such as 

eq. (2.4). A wider class of states can be constructed by forming a superposition  

( ) ( ) ,|ˆ| 〉ΦΩΩΩ=〉Ψ ∫ RFd                                              (2.14) 

where ( )ΩF  is a function to be determined by minimizing the energy expectation value  
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〉ΨΨ〈

〉ΨΨ〈
=Ε

|

|ˆ| H
                                                            (2.15) 

This procedure should and does give an energy lower than that given by eq. (2.13) 

because the space spanned by 〉ΦΩ |)(R̂  is larger than that consisting of just a single 

state 〉Φ|  which corresponds to 0=Ω . The variational procedure can be simplified 

greatly by making use of the completeness of the D-functions. The trial function ( )ΩF  

can be expanded as  

( ) ( )∑ Ω
+

=Ω
IMK

I

MK

I

MKDF
I

F
28

12

π
                                       (2.16) 

Substituting eq. (2.16) into eq. (2.14) one gets, 

,|ˆ| 〉Φ=〉Ψ ∑
IMK

I

MK

I

MKPF                                                     (2.17) 

where, 
I

MKP  is the angular momentum projection operator defined by eq. (2.7). The 

coefficients 
I

MKF  now play the role of the variational parameters in place of the 

variational function ( )ΩF . If the variational procedure is carried out with eq. (2.17), the 

summation over I  and M  actually drops away (i.e., a sharp I  and M ) due to eqs. (2.9) 

and (2.12). Note, in particular, that (2.12) implies that the Hamiltonian commutes with 

the projection operator. Thus, it is sufficient to carry out the variational calculation with  

∑ 〉Φ=〉Ψ
K

I

MK

I

K PF |ˆ|                                                       (2.18) 

by omitting the summation over I  and M . This means that 〉Ψ|  becomes an eigenstate 

of the angular momentum. The rotational symmetry violated in the original state 〉Φ|  is 

thus recovered in the new state 〉Ψ| . The resulting variational equation takes the form of 

an eigenvalue equation (and a normalization condition) independent of M : 

{ } ,0
'

'''∑ =−
K

I

K

I

KK

I

KK FENH ,1
'

''∑ =
KK

I

K

I

KK

I

K FNF                  (2.19) 
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where the Hamiltonian and norm matrix, are respectively defined by 

〉ΦΦ〈= |ˆˆ| ''

I

KK

I

KK PHH  and 〉ΦΦ〈= |ˆ| ''
I

KK
I
KK PN            (2.20) 

If the state 〉Φ|  is triaxial, a given spin I  appears, in general, more than once in the 

whole spectrum, 0=I  being a trivial exception. On the other hand, if it is axially 

symmetric for which the relation 〉Φ=〉Φ ||ˆ
0KJ z  holds where 0K  is the conserved K -

quantum number, the problem is simple. The solution of eq. (2.19) then becomes 

I

KK

I

KK

N

H
E

00

00=  with 
I

KK

I

K

N
F

00

0

1
=                                (2.21) 

since only term with 0KK=  remains in the summation over K . This represents the most 

primitive form of the angular momentum projection theory. It does not allow admixture 

of excited bands and thus can describe one “rotational band” whose “rotational energy” is 

obtained by evaluating E  as a function of spin I . In contrast to the triaxial case, a given 

spin I  appears only once in the spectrum. It is noted that, for an axially symmetric case, 

the projection operator 
I

MKP̂  reduces effectively to  

( )∫
−









+

π
ιβ

βββ
0

ˆ

sin
2

1
yJI

MK eddI                                    (2.22) 

since α  and γ  can be integrated explicitly when evaluating the matrix elements. The 

state 〉Φ|  used in the above argument can be generated, in practice, in various ways. One 

may construct such a symmetry violating state using the Nilsson (or Hartree-Fock) 

single-particle basis or, if the pairing correlations are strong, the Nilsson + BCS (or 

Hartree-Fock-Bogoluibov) quasiparticle basis. The state 〉Φ|  may violate various 

symmetries of the Hamiltonian because it represents an “intrinsic” state. It is seen from 

above that such a symmetry violating state is highly degenerate and a better state 〉Ψ|  

can be constructed by using this degeneracy. Moreover, it is shown that the violated 

symmetry is recovered in the new state. This implies that one can accept 〉Ψ|  as a 
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possible approximate solution of the Hamiltonian. Here ( )〉Φ〉Ψ ||  is referred to as a state 

in the “space-fixed” (“body-fixed”) system. This is the conventional terminology, whose 

origin can be traced back to the mathematical nature of the D-function appearing in the 

projection operator eq. (2.7). As is well-known there exist two sets of (mutually 

commuting) differential operators both representing the angular momentum, which are 

called, respectively, the space-fixed and body-fixed type, the latter being characterized by 

“wrong” signs in the angular momentum commutation relations. The quantum number 

( )KM  of ( )ΩΚ
I

MD  originates from the former (latter). It is natural to associate M  and 

K  of the operators 
I

MKP̂  with the same physical interpretation as those of ( )ΩΚ
I

MD  and, 

as eq. (2.18) shows, the quantum number M  belongs to 〉Ψ|  and K  to 〉Φ| . One refers 

to the former (latter) as the “space-fixed” (“body-fixed”) state in this sense. Thus, the 

projection operator transforms a “body-fixed” state into a “space-fixed” state. The 

contents of the projection theory are rather abstract. However, it is possible to use many 

concepts developed in the semiclassical theory, such as the rotor model, [1] also in the 

projection theory as one translates them using an analogy. For example, it should be clear 

from the structure of the wave functions that the rotational motion of the “body” as a 

whole is described phenomenologically by the D-function 
I

MKD  in the former and 

microscopically by the projection operator 
I

MP Κ
ˆ in the latter. 

2.2.3 Semi classical limit 

In the previous subsection, a simple example of projecting just one 

“configuration” 〉Φ|  onto a good angular momentum is given. In the early days of the 

theory, the formula (2.21) represented, in fact, the whole contents of the angular 

momentum projection method [100]. A pioneering calculation [101, 102] was carried out 

using the Nilsson + BCS quasiparticle vacuum state 〉0|  for 〉Φ|  (with 00 =K ) which 

represents the ground state band or g-band of a doubly-even nucleus. The outcome of the 

theory is as follows: 
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After the - α  and −γ  integration, the matrix element ( )HOPO
I ˆ,1ˆ0|ˆˆ|0 00 =  becomes 

( ) ( )∫ −+
2

0

ˆ
0|ˆ|0cossin12

π

ββββ yJi
I eOPdI  for =I even       (2.23) 

and 0 for =I odd. Here, ( ) ( ) ( ) ( )ββπβ cos0000 I

III
Pdd =−−=  is used and the symmetry 

of the integrand with respect to 
2

π
β =  due to 〉=〉=〉 −−

0|0|0|
ˆˆ

zy JiJi
ee

ππ
 has been used. 

The above integral is estimated in the large deformation limit, which is referred to as the 

“semiclassical” limit. Since the fluctuation of the angular momentum is a good measure 

for the deformation, the result may be written as a power series in 
2/1 yJ∆ . 

First, the overlap of  0||0
ˆ

yJi
e

β−
, is examined which may be written in the form  

[ ] ,0|'ˆ|0'0||0
0

ˆ








−= ∫−

β
β ββ y

Ji Jdie y exp , [ ] ,
0||0

ˆ

ˆ

y

y

Ji

Ji

e

e

β

β

β
−

−

≡    (2.24) 

as can be verified by differentiating both sides with respect to β . The left-hand side of 

eq. (2.24) corresponds to the characteristic function and the exponent of the right-hand 

side to the cumulant function known in statistical physics. The required expansion in 

terms of moments is given by what is known as the cumulant expansion, which is a 

power series expansion of the cumulant function. In the present case, it is obtained easily 

from the power series expansion of the operator [ β ] for small β , 

[ ] ( ) ( ) ...ˆ
2

1ˆ1 222 +∆−−−−= yyyy JJJJi βββ                         (2.25) 

The first order moment 0ˆ0 yy JJ =  is zero due to the time reversal symmetry of 〉0|  

(generally, all odd moments vanish). It is better to stop at the second order moment 
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( ) 0ˆ00ˆ0
2

2
2

yyyy JJJJ =−=∆ , which represents the fluctuation of the angular 

momentum. The following approximate relations are thus obtained: 
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where 
222 ˆ:ˆ: yyy JJJ ∆−≡ . The overlap is strongly peaked at 0=β  if 

2

yJ∆  is large. The 

integral in eq. (2.23) can be obtained in a closed form by using the approximation given 

by eq. (2.26) as well as an asymptotic form ( ) ( )( )ββ 1cos 0 +≈ IIJPI  valid for small β

, where ( )xJ0  is the Bessel function of order zero, and by extending the integration range 

to infinity 
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Also one has, 
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where, ( )xLn  is the Laguerre Polynomial of the order n. The energy 
II

I NHE 0000=  and 

the norm 
I

N00  (for =I even only) are obtained approximately as  

( )
ℑ

+
+≈
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1
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II
EEI
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,
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respectively, where the above quantities are defined as  

( )
0:|ˆ:ˆ|0 2

22

y

y

JH

J∆
=ℑ  and .0|ˆ|0

2

0

00

0

00
0

ℑ

∆
−≈=

yJ
H

N

H
E                     (2.30) 



22 

Note that ℑ  is nothing other than the Peierls-Yoccoz moment of inertia and also that the 

projected ground state energy 0E  is lower that the unprojected one, 0|ˆ|0 H , by an 

amount ℑ∆ 2

yJ . This energy gain is due to the fluctuation of the angular momentum, 

which causes a “zero-point rotation”. In fact, since 
22

yx JJ ∆=∆ , it may be written as 

( )22

2

1
yx JJ ∆+∆

ℑ
, which represents the fluctuation of the rotational energy. 

The norm 
I

N00 represents the probability distribution of the angular momentum in the 

ground state 〉0|  as can be seen by using the spectral representation of eq. (2.8), 

∑==
ν

ν
2

0000 0|00|ˆ|0 IPN
II . Its approximation 

IQ  is normalized to 1 under the 

replacement  ∑ ∫=

∞

→
evenI

dI

0
2

. The metric 
2

1
 corresponds to the summation only over 

evenI = . It is pointed out that the formulas depend only on two quantities, 0EEI −  on ℑ  

and 
I

N00  on 
2

yJ∆ , namely eq. (2.29) is the same for any Hamiltonian, which yields the 

same ℑ  and 
2

yJ∆ . It means that the result does not depend on details of the Hamiltonian. 

2.2.4 Projected Shell Model (PSM) 

Here, an attempt is made to formulate the PSM by generalizing the single-band 

theory discussed above and derive its basic equations. If one selects a set of multi-

quasiparticle (multi-qp) states { }〉Φ κ|  which one wants to take into account in the shell 

model configuration space by projecting them onto good angular momentum I  and 

particle number N , whose concrete specification will be given later for doubly-even, 

doubly-odd, and odd-mass nuclei. 

Once the quasiparticle basis is prepared, the Hamiltonian is diagonalized in the shell 

model space spanned by { }〉Φκ|ˆ IN

MKP . This leads to the eigenvalue equation 

{ } ,0
''

'''''' =−∑
K

I

K

I

KK

I

KK FENH
κ

κκκκκ                                     (2.31) 
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with the normalization condition 

.1
''

'''' =∑
KK

I

K

I

KK

I

K FNF
κκ

κκκκ                                                 (2.32) 

Note that the eqs. (2.31) and (2.32) are the straightforward generalization of eq. (2.19) to 

a multi configuration space. The Hamiltonian and norm elements are defined, 

respectively, by 

''''
ˆˆ

κκκκ ΦΦ= IN

KK

I

KK PHH  and ,ˆ
'''' κκκκ ΦΦ= IN

KK

I

KK PN      (2.33) 

which is the generalization of eq. (2.20) 

The normalized eigenstate is given by 

,ˆ∑ Φ=Ψ
K

IN

MK

I

KIM PF
κ

κκ                                             (2.34) 

which is the generalization of eq. (2.18). It is noted that κΦ  and its time reversal 

κΦ  yield the same projected state. This reduces the dimension of the configuration 

space by a factor of 21 . 

To compute the matrix element of a tensor operator of rank λ with respect to the 

projected states, the matrix element of the operator 
IN

MK

NI

MK PTP ˆˆˆ ''

'' λµ  has to be evaluated. This 

is obtained as follows. On the one hand, one has the relation 

( ) ( ) ,ˆˆ''|,'''|,ˆˆˆ
'

'

'' ∑ −−=
ν

νλνλµ λννλµ I

KK

I

MK

I

MK PTKIIKMIIMPTP  (2.35) 

which follows from the transformation property of a tensor operator of rank λ under the 

rotation as well as the reduction theorem of a product of two D-functions. On the other 

hand, one has 

N

NNN

NN
PTPTP ˆˆˆˆˆ

'

'

λµλµ δ ∆+=  with λµλµ TNTN ˆ]ˆ,ˆ[ ∆=                        (2.36) 
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Here, N∆  is an integer, which represents the difference between the number of single-

particle creation and annihilation operators that constitute the operator λµT̂ . Namely, it is 

given by ( )20 ±=∆N  for the electromagnetic (pairing type) multipole operator. 

Combining the above two results, one obtains the relation ( )NI

MK

IN

MK PPP ˆˆˆ ≡  

( ) ( ) ,ˆˆ''|,'''|,ˆˆˆ
'

''
'' ' ∑ −∆+ −=

ν
νλνλµ λννλµδ IN
KKNNN

IN
MK

NI
MK PTKIIKMIIMPTP  (2.37) 

So far, the mathematical framework of the projected shell model is given in full 

generality. It is formulated in quite a general manner allowing for triaxiality of the 

quasiparticle basis and taking into account the simultaneous angular momentum and 

particle number projection. In practice, some simplifications can be made, for example, 

by omitting the particle number projection. Although the particle number projection may 

improve the result, the essential physics of the yrast spectroscopy can be described even 

without taking it into consideration. Therefore, most of the present calculations have been 

done by replacing 
IN

MKP̂  with ( )1ˆˆ →NI

MK PP . 

The presence of axial symmetry and/or the omission of the particle number projection 

will simplify the equations and their numerical treatment. In particular, axial symmetry 

implies that the set of quantum numbers κ  contains, amongst other things, the total 

intrinsic magnetic quantum number K  implicitly. One can, therefore, omit writing K  in 

the amplitude 
I

KFκ  for such a system. Moreover, the summations over K  may also be 

omitted since only one specific K  contributes to the sum for a given κ . This leads to the 

set of equations on which (most of) the present numerical calculations are based: 

{ } ,0'

'

'' =−∑ III
FENH κ

κ
κκκκ  ,1

'

''∑ =
κκ

κκκκ
III

FNF  

,ˆˆ
''' κκκκ ΦΦ= I

KK

I
PHH  .ˆ

''' κκκκ ΦΦ= I

KK

I
PN          (2.38) 

Then, the matrix element of a tensor operator of rank λ can be evaluated by  
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( ) ,ˆ''|,ˆ
''' IIIMMI TMIIMT ΨΨ=ΨΨ λλµ λµ  

( ) ,ˆˆ''|,'ˆ '

'''

'

'

III

KKII FFPTKIIKT κκκνλµκ
νκκ

λ λνν ΦΦ−=ΨΨ −∑
      

(2.39) 

which follows from the operator identity (2.35) and  is, therefore, also valid for the 

triaxial case with an obvious extension of the formula for the triaxial basis. 

2.2.5 Choice of the Hamiltonian 

The Hamiltonian which has been used throughout the present work, is described 

as follows. The interaction consists of a sum of schematic (i.e. +QQ.  Monopole Pairing 

+  Quadrupole pairing) forces which represent different kinds of characteristic 

correlations between active nucleons. The total Hamiltonian of the present model 

assumes the form 

.ˆˆˆˆˆˆ
2

ˆˆ ††

M

†

0 ∑∑ −−−=
µ

µµ
µ

µµ

χ
PPGPPGQQHH Q                           (2.40) 

The first term represents the harmonic oscillator single-particle Hamiltonian 

( )[ ] ,.2ˆ 22†

0 ∑ 













 −+−≡=

α
αααα µκωεε

jN
llsjNccH h

          

(2.41) 

where 
†

αc  and αc  are, respectively, the single-particle creation and annihilation operator 

labeled by a set of the spherical harmonic oscillator quantum numbers { }mjN ,,=α . Note 

that l  is known when N  and j  are specified. The Fermi energy will be included in the 

single-particle energy ( )λεε αα −→  for convenience and obvious dependence on the 

isospin degrees of freedom will be omitted for simplicity. Here in the present work, three 

major shells N = 4, 5, 6 (5, 6, 7) for protons (neutrons) for the valence single-particle 

space, have been taken. The Nilsson parameters used in the present calculation are taken 

from Ref. [103]. The multiparticle configurations are constructed from the Nilsson SP 



26 

states near the Fermi levels.  The one-body operators in eq. (2.40) are defined (for each 

kind of nucleons) by  

,ˆ †∑=
αβ

βµαβαµ cQcQ  ,
2

1ˆ ††† ∑=
α

ααccP  ,
2

1ˆ ††† ∑=
αβ

βµαβαµ cQcP

    

(2.42) 

where α  represents the time reversal of ( )( )
mjN

mj
cTcTc

−

−
−== †ˆˆ

ααα  while 

( )''''' mjNQNjmQ NN µµαα δ=                                                         (2.43) 

is the matrix element of the SU(3) quadrupole generator, whose matrix elements are 

equal to those of the dimensionless mass quadrupole operator 

    µ

π
2

2

5

4
Y

b

r








 

for 'NN = , but vanish for 'NN ≠  where b is  the harmonic oscillator length 

    
ωm

b
h

=2  

Note the symmetry properties of the matrix element 

( ) µαβ

µ

µβαβαµαβµ −−==≡ QQQQ                                                  (2.44) 

which ensure the relations ( ) µ

µ

µµµ −−=== QQTQTQ ˆˆˆˆˆˆ †† . 

The HFB single-particle Hamiltonian resulting from eq. (2.40) is 

( ) ( ).ˆˆˆˆˆˆˆˆˆˆ ††

0 ∑∑ +−+−−=
µ

µµµ
µ

µµχ PPPGPPPGQQHH QMHFB      (2.45) 

Here, K  means the expectation value with respect to the HFB vacuum state 〉0| . Note 

that 
µQ̂  vanishes for odd=µ  while

µµ QQ ˆˆ =  if even=µ , due to the time reversal 
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symmetry. For axially symmetric nuclei, all vanish except for 0=µ . The same applies to 

µP̂ . 

Before going into the isospin dependence of the above forces, nuclear size is adjusted by 

using the conventional harmonic oscillator parameters. 

,0 ττ ωω a=  ,
2

02

τ

τ
a

b
b =  ,

0

2

0
ωm

b
h

=  ,1
3

1







 −

±≡
A

ZN
aτ        (2.46) 

with ( )−+  for τ = neutron(proton). If one uses the value ,4678.41 3

1

0 MeVA
−

=ωh  for 

example, one finds 
23

1

2

0 fmAb =  which is not only easy to remember but also practical. 

The monopole pairing force constants GM are adjusted to give the known energy gaps.  

The monopole-pairing strength is taken to be  

�� = ��� ∓ �	 
��
 � ���                                                                        (2.47) 

with ‘-’ for neutrons and ‘+’ for protons. Here, �� and �	  are taken as 20.12 and 13.13 

MeV, respectively. These strengths are taken from [96]. The strength of quadrupole-

quadrupole pairing force ��  is proportional to ��. In the present calculation, the ratio 

of �� ��⁄  is fixed as 0.240 for 
230,232

U, 0.220 for 
234

U, 0.200 for 
236

U, 0.160 for 
238,240

U 

and 0.160 for 
236-242

Pu. 

For QQ.  force, the second term of (2.45) can be identified as the (stretched) Nilsson 

potential 
0

ˆ
3

2
Qωεh . Introducing 

τ
ττ ω 0Q̂x h≡  and ( ) 1

'''

−
≡ ττττττ ωωχ hhC , one obtains the 

self consistent condition 

( ) ( ) ,
3

2
,, npnpnppnnnn xCxC εεεεε =+  

( ) ( ) ,
3

2
,, ppnppppnnpn xCxC εεεεε =+                              (2.48) 
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whose solutions nε  and pε  are, in general, different from each other [104]. Here, it is 

assumed that the neutron and proton deformation parameters are equal to each other, 

2εεε == pn . The necessary and sufficient condition for this is that two equations of 

(2.48) reduce to a single equation, namely, they have to be linearly dependent: 

( )
nppnnpppnn CCCCC ==− ,02

,                                           (2.49) 

which is the condition for the determinant of eq. (2.48) to vanish, so that eqs. (2.48) and 

(2.49) lead to the isoscalar coupling npppnn CCC == . Thus, the following relation is 

obtained  

p
p

n
n QQ 00

'2

' ˆˆ
3

2

ωω

ωωε
χ

ττ

ττ
hh

hh

+
=                                            (2.50) 

This is a very useful relation since the nuclear deformation is a well-studied quantity 

[105]. The QQ.  force coupling constant corresponding to a given deformation parameter 

2ε  is obtained by eq. (2.50). This strategy is adopted to ensure that the QQ.  force 

generates the correct nuclear deformation. Note, however, that 'ττχ  remains 

undetermined for 02 =ε  (a spherical nucleus) since both 
n

Q0
ˆ  and 

p
Q0
ˆ

 vanish. 

The present force model works surprisingly well despite its simplicity. Nevertheless, it 

has obvious shortcomings. In the first place, the nuclear deformation is restricted to the 

quadrupole type only. Secondly, the neutron-proton interaction is present only in the 

(particle-hole type) QQ.  force. Depending on the problem, all this might be too restrictive 

and one will have to introduce (schematic) forces of a more general type. 

The logical structure of the theory is summarized as follows: 

The calculation proceeds in the following sequence. For each nucleon, first Nilsson 

Hamiltonian 
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020
ˆ

3

2ˆ QH ωε h−                                                            (2.51) 

is diagonalized for the known deformation parameter 
2ε  and the usual BCS procedure is 

carried to take the (static) Monopole Pairing force into account. This defines the Nilsson 

+ BCS quasiparticle basis. In principle, one should use the HFB basis to take also the 

(static) Quadrupole Pairing force into account. In practice, however, this does not make 

much difference to the Nilsson + BCS basis after the final shell model diagonalization, so 

that the simpler procedure may be used to a good approximation. Now, the strengths of 

the Q.Q force can be evaluated by the relation (2.50). This fixes the Hamiltonian (2.40), 

which is then diagonalized within the shell model space spanned by a selected set of 

projected multi-qp states. The quasiparticle configurations are listed below for different 

types of  nuclei. 

Doubly-even nucleus: ,0|,0|,0|,0| †

2

†

1

†

2

†

1

†

2

†

1

†

2

†

1 〉〉〉〉 ππννππνν aaaaaaaa  

Doubly-odd nucleus: ,0|†† 〉πνaa  

Odd-neutron nucleus: ,0|,0| †

2

†

1

†† 〉〉 ππνν aaaa  

Odd-proton nucleus: ,0|,0| †

2

†

1

†† 〉〉 ννππ aaaa  

where, ( )ss '' πν  denote the neutron(proton) Nilsson quantum numbers which run over 

properly selected (low-lying) quasi-particle states. Those configurations has been 

discarded that contain three or more like-nucleon quasi-particles because they have 

higher excitation energies due to mutual blocking of levels and thus affect the results 

little in the energy (and the spin) ranges of  interest. This restriction can be easily released 

if necessary.  
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2.3 Results and discussion for even-even 
230-240

U and 
236-242

Pu isotopes 

2.3.1  Deformation systematics of 
230-240

U  

The quadrupole and hexadecapole deformation parameters used in the present 

calculations are listed in Table 2.1. The quadrupole deformation parameters (ε2) used in 

the present calculation are near to the values suggested by Bengtsson [106]. In Table 2.2, 

the systematics of �	�, ��� �	�⁄  are presented for 
230-240

U isotopes. It is known that the 

ratio of energies of the first 4
+
 and 2

+
 states gives a good criterion for assessing the shape 

deformation of a nucleus [107]. The value of this ratio has the limiting value 2 for a 

quadrupole vibrator, 2.5 for a nonaxial gamma soft rotor and 3.33 for an ideal symmetric 

rotor. From Table 2.2, it is observed that the experimental ��� �	�⁄   ratio of all 
230-240

U 

isotopes is greater than 3.0. Consequently, these isotopes lie in the rotational limit. From 

the systematics of experimental �	� energies, it is seen that its value for 
230

U is 0.052 

MeV and thereafter it shows a gradual decrease up to 
234

U. The value of �	� for 
234

U is 

0.044 MeV, thereafter the �	� values show a slight increase and remains constant as one 

moves from 
236-240

U .The ��� �	�⁄   ratio shows a slight increase in their values as one 

moves from 
230

U
 
to 

232
U, 

234
U to 

236
U and 

238
U to 

240
U due to an increase in the 

��� values. The calculated values of �	�and ��� �	�⁄  ratio of U isotopes follow nearly the 

same trend as exhibited by the experimental ones. For example, the experimental value 

of �	� decreases from 0.052 MeV for 
230

U to 0.044 MeV for 
234

U whereas the theoretical 

value decreases from 0.051 MeV for 
230

U to 0.043 MeV for 
234

U.  

In order to understand the deformation systematics in U isotopes, the BCS 

subshell occupation numbers are presented for protons and neutrons in Tables 2.3 and 

2.4, respectively. The proton shells below Z  82 i.e 3s1/2, 2d3/2, 2d5/2, 1g7/2 and 1g9/2 orbits 

for protons and neutron shells below N 126 i.e 3p1/2, 3p3/2, 2f5/2, 2f7/2, 1h9/2 and 1h11/2 

orbits for neutrons are nearly full, thus the occupation numbers for these shells are not 

presented in Tables 2.3 and 2.4. From Table 2.3, it is seen that occupation probability of 

protons is spread over 3p1/2, 3p3/2, 2f5/2, 2f7/2, 1h9/2, 1h11/2, 2g9/2, 1i11/2 and 1i13/2 proton 

orbits. The occupation probability of 1h11/2 proton orbit decreases slowly as one moves 

from 
230

U to 
240

U. The decrease in the occupation of (1h11/2)π  orbit can be responsible for 
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the observed trend of deformation as one moves from 
230

U to 
240

U. Besides this, the 1h9/2, 

2f7/2, 2f5/2 and 3p1/2 proton orbits are also having sizable occupation probability. The 1i13/2 

proton orbit has occupation number greater than 4.0. Thus, the occupation of 1i13/2 and 

1h9/2, 2f7/2, 2f5/2, 3p1/2 proton orbits also contributes to the collectivity of 
230-240

U. 

From Table 2.4, it is seen that the occupation of neutrons is spread over the 4s1/2, 

3d3/2, 3d5/2, 2g7/2, 2g9/2, 1i11/2, 1i13/2, 2h11/2 and 1j15/2 orbits. It is observed that the 

occupation probability of 2g7/2, 2g9/2, 1i11/2, 1i13/2 and 1j15/2 neutron orbits increases with 

neutron number, thereby bringing more and more collectivity for the U isotopes. Thus, 

the observed deformation trend of low-lying states in 
230-240

U isotopes could be linked 

with the occupation of down-sloping components of high j orbits in the valence space. 

2.3.2  Deformation systematics of 
236-242

Pu  

  The quadrupole and hexadecapole deformation parameters used for the 

calculation of 
236-242

Pu are listed in Table 2.5. In Table 2.6, the systematics of �	�,
��� �	�⁄  are presented for 

236-242
Pu. From Table 2.6, it is observed that the experimental 

��� �	�⁄   ratio of 
236-242

Pu isotopes is greater than 3.0. Consequently, these isotopes lie in 

the rotational limit. From the systematics of experimental �	� energies, it is seen that its 

value for 
236

Pu is 0.045 MeV and thereafter it shows a gradual decrease up to 
240

Pu. The 

value of �	� for 
240

Pu is 0.043 MeV, thereafter the �	� value shows a slight increase for 

242
Pu. The experimental ��� �	�⁄   ratio shows a slight increase in their values as one 

moves from 
236

Pu
 
to 

238
Pu and from 

240
Pu to 

242
Pu due to an increase in the ��� values. 

The calculated values of �	�and ��� �	�⁄   ratio of Pu isotopes follow nearly the same trend 

as exhibited by the experimental ones. For example, the experimental value of
 �	� 

decreases from 0.045 MeV for 
236

Pu to 0.043 MeV for 
240

Pu whereas the theoretical value 

decreases from 0.045 MeV for 
236

Pu to 0.043 MeV for 
240

Pu.
  

In order to understand the deformation systematics in Pu isotopes, the BCS 

subshell occupation numbers are presented for protons and neutrons in Tables 2.7 and 

2.8, respectively. From Table 2.7, it is seen that occupation probability of protons is 

spread over 3p1/2, 3p3/2, 2f5/2, 2f7/2, 1h9/2, 1h11/2, 2g9/2, 1i11/2 and 1i13/2 proton orbits. The 

occupation probability of 1h11/2 proton orbit decreases slowly as one moves from 
236

Pu to 
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242
Pu. The decrease in the occupation of (1h11/2)π  orbit can be responsible for the 

observed trend of deformation as one moves from 
236

Pu to 
242

Pu. Besides this, the 1h9/2, 

2f7/2, 2f5/2 and 3p1/2 proton orbits are also having sizable occupation probabilities. The 

1i13/2 proton orbit has occupation number greater than 4.0. Thus, the occupation of 1i13/2 

and 1h9/2, 2f7/2, 2f5/2, 3p1/2  proton orbits also contributes to the collectivity of 
236-242

Pu. 

From Table 2.8, it is seen that the occupation of neutrons is spread over the 4s1/2, 

3d3/2, 3d5/2, 2g7/2, 2g9/2, 1i11/2, 1i13/2, 2h11/2 and 1j15/2 orbits. It is observed that the 

occupation probability of 2g7/2, 2g9/2, 1i11/2 and 1j15/2 neutron orbits increases with neutron 

number, thereby bringing more and more collectivity for the Pu isotopes. Thus, the 

observed deformation trends of low-lying states in Pu isotopes could be linked with the 

occupation of down-sloping components of high j orbits in the valence space.   

2.3.3  Yrast Spectra of 
230-240

U  

In Fig. 2.1, a comparison of calculated and experimental yrast energies of 
230-240

U 

isotopes are presented. The experimental level scheme of positive parity yrast bands for 

230-240
U  [108-113] isotopes are available up to spins 22

+
, 20

+
, 30

+
, 30

+
, 30

+
, 12

+
  

respectively. The yrast spectra have been obtained for prolate deformation as these nuclei 

are observed to be prolate in their ground state. It is seen from Fig. 2.1 that the PSM 

calculation reproduces the available yrast energy levels up to known spins qualitatively. 

The maximum absolute energy difference (in MeV) between theory and experiment for 

highest known spins is 0.032, 0.210, 0.144, 0.019, 0.255, 0.067 MeV for 
230-240

U, 

respectively. It is seen that energy levels of these nuclei are reproduced well by present 

calculation by taking set of Nilsson parameters suggested by Rozmej [103].  

2.3.4 Yrast Spectra of 
236-242

Pu  

In Fig. 2.2, a comparison of calculated and experimental yrast energies of 
236-242

Pu 

isotopes are presented. The experimental level scheme of positive parity yrast bands for 

236-242
Pu [111-114] isotopes are available up to spins 16

+
, 26

+
, 30

+
, 26

+
,  respectively. It is 

seen from Fig. 2.2 that the PSM calculation reproduces the available yrast energy levels 

up to known spins qualitatively. The maximum absolute energy difference between 
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theory and experiment for highest known spins is 0.14, 0.019, 0.073, 0.286 MeV for     

236-242
Pu, respectively. 

2.3.5  Structure of yrast bands of 
230-240

U  

Fig. 2.3(a) represents the band diagram of 
230

U. In this nucleus, the yrast states up 

to spin I=18
+
 are seen to arise from the 0-qp intrinsic state. Between spins 18

+
 and 20

+
, 

the ground state band is crossed by one 2-qp neutron band having configuration 2νj15/2(-

3/2, 5/2) K=1. Between  spins 18
+
 to 22

+
, the ground state band is crossed by five 2-qp 

neutron and one 2-qp proton bands having configurations 2νj15/2(-3/2,5/2) K=1, 

2νj15/2(5/2,-7/2) K=-1, 2νj15/2(-3/2,-3/2) K=0, 2νj15/2(-3/2,-7/2) K= 2, 2νj15/2(5/2,5/2) K=0 

and 2πi13/2(-3/2,5/2) K=1. Thus, the yrast band from spin I=0
+
 to 18

+
 arise from 0-qp state 

and above spin 18
+
 to 24

+
 arise from 2-qp bands. Above spin 26

+ 
multiple 2-qp bands 

contribute to the yrast band. 

Fig 2.3(b) represents band diagram of 
232

U, wherein, the yrast states up to spin 

I=18
+
 are seen to arise from the 0-qp intrinsic state. At spin 20

+
, the ground state band is 

crossed by two 2-qp neutron bands having configurations 2νj15/2(-3/2, 5/2) K=1 and 

2νj15/2(5/2, -7/2) K=-1. At spin 22
+
, the ground state band is crossed by three 2-qp 

neutron bands having configurations 2νj15/2(-3/2, -3/2) K=0, 2νj15/2(-3/2, -7/2) K=2 and 

2νj15/2(5/2, 5/2) K=0. Thus, the yrast states of yrast band in 
232

U arise from 0-qp state up 

to spin 18
+
 and between spins 20

+
 to 24

+
, the yrast states arise from the superposition of 

two-2qp neutron bands. Above spin 24
+
, the yrast states of yrast band arise from multiple 

2qp bands. 

Fig 2.3(c) represents the band diagram of 
234

U. In case of 
234

U, the yrast states up 

to spin I=16
+
 are seen to arise from the 0-qp intrinsic state. Between  spins 18

+
 and 20

+
, 

the ground state band is crossed by one 2-qp neutron band having configuration 

2νj15/2(5/2, -7/2) K=-1. Between spins 22
+
 and 24

+
, the ground state band is crossed by 

one 2qp proton band having configuration 2πi13/2(-3/2, 5/2) K=1. Between spins 24
+
 to 

26
+
 ground state band is crossed by two 2qp proton bands having configurations 

2πi13/2(1/2,-3/2) K=-1 and 2πi13/2(-3/2,-3/2) K=0. Thus the yrast band in 
234

U arise from 

0-qp intrinsic state up to spin 18
+
 and between spins 20

+
 to 26

+
, the yrast band arise from 
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2qp neutron band. Above spin 26
+
, the yrast band is seen to arise from the one 2qp 

neutron and one 2qp proton bands.  

Fig 2.3(d) represents the band diagram of 
236

U. In case of 
236

U, the yrast states up 

to spin I=18
+
 are seen to arise from the 0-qp intrinsic state. At spin 20

+
, the ground state 

band is crossed by one 2-qp neutron band having configuration 2νj15/2(5/2, -7/2) K=-1. At 

spin 22
+
, the ground state band is crossed by two 2qp neutron and one 2qp proton bands 

having configurations 2νj15/2(-7/2, 9/2) K=1, 2νj15/2(-7/2, -7/2) K=0 and 2πi13/2(-3/2, 5/2) 

K=1. Thus the yrast states of yrast band in 
236

U are seen to arise from 0-qp intrinsic state 

up to spin 18
+
 and between spins 20

+
 to 26

+
, the yrast states arise from one 2qp neutron 

band. However, the yrast state at higher spins   I ≥ 26
+
 are seen to arise from multiple 2qp 

proton and neutron bands.  

Fig 2.3(e) represents the band diagram of 
238

U. In of case 
238

U, the yrast states up 

to spin I=18
+
 are seen to arise from the 0-qp intrinsic state. At spin 20

+
, one 2-qp neutron 

band having configuration 2νj15/2(-7/2, 9/2) K=1 crosses the ground state band and 

becomes lowest in energy. At spin 22
+
, the 2qp neutron band is crossed by one 2qp 

proton band having configuration 2πi13/2(-3/2, 5/2) K=1. Thus the yrast states of yrast 

band in 
238

U, arise from pure 0-qp band up to spin 18
+
. Above spin 18

+
, the yrast states 

arise from 2qp neutron band. However at higher spins I ≥ 24
+
, the yrast states are seen to 

arise from the two 2qp proton bands.  

Fig 2.3(f) represents the band diagram of 
240

U. In of case 
240

U, the yrast states up 

to spin I=16
+
 are seen to arise from the 0-qp intrinsic state. At spin 18

+
, the ground state 

band is crossed by one 2-qp neutron band having configuration 2νj15/2(-7/2, 9/2) K=1. At 

spin 26
+
, the 2qp neutron band is crossed by two 2qp proton bands having configurations 

2πi13/2(-3/2, 5/2) K=-1, 2πi13/2(1/2, 5/2) K=-2. Thus the yrast states of yrast band in 
240

U 

arise from pure 0-qp band up to spin 16
+
. Between spins 20

+
 to 24

+
 the yrast states are 

seen to arise from 2qp neutron bands. However at higher spin I ≥ 26
+
, the yrast state are 

seen to arise from 2qp proton bands. 
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2.3.6  Structure of yrast bands of 
236-242

Pu  

Fig 2.4(a) represents the band diagram of 
236

Pu, which indicates that the yrast 

states up to spin I=18
+
 are seen to arise from 0-qp intrinsic state. At spin 20

+
, the ground 

state band is crossed by one 2-qp neutron band having configuration 2νj15/2(5/2,-7/2) K=-

1. Between spins 22
+
 and 24

+
 one 2qp proton band having configuration 2πi13/2(5/2, -7/2) 

K=-1 crosses the ground state band and contribute to the yrast states in addition to 2qp 

neutron band. However, at higher spin one 4qp band having configuration 2νj15/2(5/2,-

7/2) +2πi13/2(5/2,-7/2) K=-2 contribute to the yrast band. 

Fig 2.4(b) represents the band diagram of 
238

Pu. In of case 
238

Pu, the yrast states 

up to spin I=20
+
 are seen to arise from the 0-qp intrinsic state. From spins 20

+ 
to 24

+
, the 

ground state band is crossed by three 2qp neutron and two 2qp proton bands having 

configurations 2νj15/2(5/2,-7/2) K=-1, 2νj15/2(-7/2,9/2) K=1, 2νj15/2(-7/2,-7/2) K=0, 

2πi13/2(-3/2,5/2) K=1 and 2πi13/2(5/2,-7/2) K=-1  However at the higher spin I ≥ 26
+
, one 

4qp band having configuration  2νj15/2(5/2,-7/2) +2πi13/2(-5/2,-7/2) K=-2 also contribute 

to the yrast states in addition to 2qp bands. 

Fig 2.4(c) represents the band diagram of 
240

Pu, the yrast states up to spin I=18
+
 

are seen to arise from the 0-qp intrinsic state. At spin 20
+
, the ground state band is 

crossed by one 2-qp neutron band having configuration 2νj15/2(-7/2, 9/2) K=1. Between 

spins 22
+
 to 26

+
 the ground state band is crossed by two 2qp neutron and three 2qp proton 

bands having configurations 2νj15/2(5/2, -7/2) K=-1, 2νj15/2(-7/2, -7/2) K=0, 2πi13/2(-

3/2,5/2) K=1, 2πi13/2(5/2,-7/2) K=-1 and 2πi13/2(1/2,-5/2) K=-2. Thus, the yrast states of 

yrast band upto 18
+
 arise from 0-qp band and above spin 18

+
 the yrast states are seen to 

arise from superposition of multiple 2qp proton and neutron bands. 

 Fig 2.4(d) represents the band diagram of 
242

Pu, the yrast states up to spin I= 16
+
 

are seen to arise from the 0-qp intrinsic state. At spin 18
+
, the ground state band is 

crossed by one 2qp neutron band having configuration 2νj15/2(-7/2, 9/2) K=1. Between  

spins 20
+
 to 26

+
, the ground state is crossed by two 2qp neutron and six 2qp proton bands 

having configurations 2νj15/2(5/2, -7/2) K=-1, 2νj15/2(5/2, 5/2) K=0, 2πi13/2(-7/2, -7/2) 

K=0, 2πi13/2(-3/2, 5/2) K=1, 2πi13/2(5/2, -7/2) K=-1 , 2πi13/2(1/2, 5/2) K=-2 , 2πi13/2(-3/2, -
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3/2) K=0 and  2πi13/2(-3/2, -7/2) K=2. However, at higher spin I ˃ 28
+
, one 4qp band also 

contribute to the yrast states. 

2.3.7  Electromagnetic quantities 

2.3.7.1 B(E2)  transition probabilities of 
230-240

U  

B(E2) transition probabilities can disseminate strategic information on the nuclear 

structure and provide stringent test of a particular model. The reduced transition 

probabilities B(E2)s from the initial state Ii = I  to the final state If  = I-2 are given by [97] 

���2; � → � − 2� = �	��� �� ��	��!"	�� �#�	
                    (2.52) 

in which the wave functions  $| � $〉 are those of eq. (2.34). The operator  !	 is related to 

the quadrupole operators by 

!	' = (')**+ 516/ !'	 

!	0 = (0)**1 2�30 !0	, 

where / and  4 are for protons and neutrons, respectively. In the calculation, we have 

used the effective charge for neutrons (5)** = 0.5( and for protons (0)** = 1.5( 

The transition probability B(E2) values obtained from the PSM wave function for 
230-240

U 

isotopes are presented in Table 2.9. The experimental data for B(E2) values of  
230-234

U, 

238
U are available for  2�� → 0�� transition [108-113] only. In case of 

236
U the 

experimental data is available up to spin 20
+
 [111]. The calculated B(E2; 2�� → 0��) 

values are in good agreement with experimental data for all the U isotopes. 

Experimentally, the dip in the B(E2) values of  
236

U is observed at spin 16
+ 

but the 

theoretical values show a dip at spin 20
+
. The dip in the B(E2) values could be due to 

change in the structure of yrast band due to crossing of g-band by 2qp bands.
 
The 

experimental data of B(E2) values for higher spins in  
230-234

U, 
238,240

U are not available, 

so one cannot make any comment. 
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2.3.7.2 B(E2)  transition probabilities of 
236-242

Pu  

The transition probability B(E2) values obtained from the PSM wave function for 

236-242
Pu isotopes are presented in Table 2.10. The experimental data for B(E2) values of 

238-242
Pu nuclei are available for 2�� → 0�� transition [111-114] only. The calculated    

B(E2; 2�� → 0��) values are in good agreement with experimental data for all the Pu 

isotopes. The experimental data of B(E2) values for higher spins are  not available, so one 

cannot make any comment. 

2.3.7.3 g-factors of 
230-240

U  

A gyromagnetic factor (g-factor) is a quantity very sensitive to single particle 

components in wave functions as well as to their interplay with collective degrees of 

freedom. By studying g-factors one can gain information of specific neutron and proton 

orbitals in the structure. In the PSM, g-factors [97] can be directly computed by  

[ ]ννπ µµ
µµ

µ
)()(

1)(
)( II

II

I
Ig

NN

+==

                                    

(2.53) 

with  )(Iτµ  being the magnetic moment of a state  $| � $〉, expressed as   

I

Iz

I

II ψµψµ τ
τ ˆ)(   =  

= �8������� Iψ 9 τµ̂ 9 Iψ  

= �8���� + 1� �;<= Iψ 9 τ
ĵ 9 Iψ + �;>= − ;<=� Iψ 9 τ

ŝ 9 Iψ �, 
where, ? = / and ʋ for protons and neutrons, respectively. The following standard values 

for ;< and ;> are taken:  

;<0 = 1,             ;>0 = 5.586 × 0.75, 
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;<ʋ = 0,                 ;>ʋ = −3.826 × 0.75, 

where ;<0 and ;>ʋ are damped by a usual factor  0.75 from the free-nucleon values to 

account for the core-polarization and meson-exchange current corrections [99,115,116].   

In Fig. 2.5 the results of g-factors obtained theoretically for 
230-240

U are presented. 

The experimental values for g factors are only available for 
238

U. For this nucleus, a 

comparison of calculated and observed values is also presented in the same figure. The 

predicted values of  g-factors in all U isotopes show a meager variation with spin upto 

18
+
. From the analysis of band diagrams, it is seen that the energy states upto spin 18

+
 of 

all these isotopes arise from nearly only one zero quasi-particle configuration in which all 

nucleons are paired. Therefore, g-factors of these isotopes upto spin 18
+ 

are not showing 

much variation. In the same figure, the theoretical value of g-factors show a decrease at 

certain spin in 
230,232

U isotopes thereafter, the theoretical g-factors show an increasing 

trend. For example, in case of 
230

U, the theoretical g-factor has a value 0.2515 at spin 18
+
 

whereas its value at spin 20
+
 decreases to 0.0329, thereafter it starts increasing with spin. 

Similar trend is obtained for g-factors of 
232

U. These results can be understood from the 

band diagrams presented in Fig 2.3 (a) for 
230

U, the ground state band is crossed by 2qp 

neutron bands arising from 1j15/2 orbit. The decrease in the g-factors around the crossing 

region could be due to the alignment of neutrons in the 1j15/2 orbit. In case of 
234-240

U, the 

g-factors shows a reverse trend. In these isotopes g-factor values, show an increase after 

the band crossing. For example in case of 
234

U the value of g-factor at spin 22
+ 

is 0.1521 

whereas at spin 24
+
 the value shows an increase to 0.2018. In case of 

238
U the 

experimental values of g-factor are known up to spin 24
+
 and there is experimental 

evidence [40] that an increase in g-factors at spin (18-24) is attributed to rotational 

alignment of protons in 1i13/2 orbit. From the band diagram (Fig. 2.3(e) for 
238

U), it is 

seen that at spin 22
+
, the g-band is crossed by 2qp proton bands arising from 1i13/2 orbit.  

2.3.7.4  g-factors of 
236-242

Pu  

In Fig. 2.6 the results of g-factors obtained theoretically for 
236-242

Pu isotopes are 

presented. In 
236-242

Pu isotopes, all these isotopes show an increase in the value of g-

factors above spin 18
+
. For example in case of 

236
Pu, the g-factor value increases from 



39 

0.388 at spin 24
+
 to 0.4632 at spin 26

+
. The increase in the g-factors at higher spins in all 

these isotopes is due to crossing of  g-band by 2qp proton bands from 1i13/2 orbit. The 

present calculation predicts an increase in g-factors at higher spin in Pu isotopes due to 

alignment of protons in 1i13/2 orbit. The experimental values of g-factors of 
236-242

Pu are 

not known, so one cannot make any comment regarding the level of agreement. 

2.4  Summary 

i. The PSM calculations performed with the quadrupole-quadrupole plus 

monopole and quadrupole pairing force reproduce the observed 

deformation systematics in 
230-240

U and 
236-242

Pu isotopes. 

ii. The deformation systematics in these nuclei depend on the pattern of 

occupation probabilities of (1h11/2)π  orbit. The observed deformation trend 

of low-lying states in 
230-240

U and 
236-242

Pu isotopes could also be linked 

with the occupation of down-sloping components of high j orbits in the 

valence space. 

iii. The calculated yrast positive parity bands in 
230-240

U and 
236-242

Pu show 

good agreement with the experimental data. The experimental level 

scheme of positive parity yrast bands for 
230-240

U and 
236-242

Pu isotopes are 

available up to spins 22
+
, 20

+
, 30

+
, 30

+
, 30

+
, 12

+ 
and 16

+
, 26

+
, 30

+
, 26

+
, 

respectively which are reproduced  by the PSM calculations.  

iv. The results on band diagrams predict that in all 
230-240

U and 
236-242

Pu 

isotopes, the yrast states upto spin I ≈ 18
+
 arise from 0-qp band (ground 

state). At higher spins the ground state band is crossed by 2-qp neutron 

and proton bands and contributes to the yrast states. 

v. The calculated values of B(E2; 2�� → 0��) transition probability are in 

agreement with the available experimental data for all the 
230-240

U and 
236-

242
Pu isotopes . In case of 

236
U the experimental B(E2) values for higher 

transition are available upto spin 20
+
 which are reproduced by the present 

calculation. The present calculation has predicted the B(E2) values for 

higher transitions for 
230-234

U, 
238-240

U and 
236-242

Pu isotopes.  
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vi. The calculated values of g-factors in all 
230-240

U and 
236-242

Pu isotopes 

show a slight variation with spin upto 18
+
 because the energy states upto 

spin 18
+
 arise from almost single zero qp configuration in which all the 

nucleons are paired. The theoretical g-factors, in case of 
230,232

U, show a 

decrease above spin 18
+
 due to crossing of g-band by 2qp neutron bands. 

However, in case of 
234-240

U, the g-factors shows a reverse trend. In these 

isotopes the g-factors show an increase after the band crossing region due 

to the crossing of g-band by 2qp proton bands. In case of 
238

U, the 

theoretical values of g-factors follow the same trend as followed by the 

measured values and confirm the observed proton alignment in 
238

U at 

higher spin.  

vii. The theoretical results of g-factors of 
236-242

Pu isotopes predict an increase 

in g-factors at higher spins arising theoretically due to alignment of 

protons in 1i13/2 orbit. However, this feature in these isotopes remains to be 

verified experimentally. 
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Table 2.1 Quadrupole and hexadecapole deformation parameters used in the present   

calculations for 
230-240

U isotopes. 

 

 

Table 2.2 Comparison of experimental (Exp.) and calculated (Th.) excitation energies (in 

units of MeV) of 2����	��, 4������� EFG  ��� �	�⁄  ratios for   
230-240

U isotopes. 

Nucleus 

Exp.
 

Th.
 

HI� HJ� HJ� HI�⁄  HI� HJ� HJ� HI�⁄  

230
U 0.052 0.169 3.250 0.051 0.167 3.27 

232
U 0.048 0.157 3.270 0.047 0.156 3.319 

234
U 0.044 0.143 3.320 0.043 0.141 3.279 

236
U 0.045 0.150 3.330 0.043 0.142 3.302 

238
U 0.045 0.148 3.289 0.045 0.148 3.288 

240
U 0.045 0.151 3.356 0.045 0.150 3.333 

 

 

 

 

Nucleus 

 

230
U 

 

232
U 

 

234
U 

 

236
U 

 

238
U 

 

240
U 

ε2 0.240 0.240 0.250 0.250 0.255 0.250 

ε4 -0.025 -0.025 -0.035 -0.035 -0.025 0.020 
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Table 2.3 The BCS sub-shell occupation numbers of protons in the ground state of  

 
230-240

U isotopes.  

 

 

 

 

 

 

 

 

Nucleus 

 

230
U 

 

232
U 

 

234
U 

 

236
U 

 

238
U 

 

240
U 

3p1/2 0.128 0.129 0.143 0.144 0.143 0.112 

3p3/2 0.513 0.514 0.541 0.542 0.558 0.546 

2f5/2 0.658 0.659 0.687 0.688 0.707 0.710 

2f7/2 1.826 1.827 1.803 1.804 1.854 2.058 

1h9/2 3.733 3.742 3.662 3.670 3.757 4.155 

1h11/2 11.166 11.162 11.116 11.111 10.998 10.783 

4s1/2 0.004 0.004 0.005 0.005 0.005 0.004 

3d3/2 0.007 0.007 0.008 0.008 0.008 0.008 

3d5/2 0.042 0.042 0.052 0.052 0.049 0.029 

2g7/2 0.025 0.026 0.028 0.028 0.029 0.029 

2g9/2 0.430 0.430 0.483 0.483 0.486 0.403 

1i11/2 0.099 0.100 0.102 0.103 0.108 0.118 

1i13/2 4.209 4.199 4.238 4.229 4.286 4.290 
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Table 2.4 The BCS sub-shell occupation numbers of neutrons in the ground state  of    
230-240

U isotopes. 

 

Nucleus 

 

230
U 

 

232
U 

 

234
U 

 

236
U 

 

238
U 

 

240
U 

4s1/2 0.187 0.194 0.230 0.289 0.348 0.386 

3d3/2 0.317 0.334 0.418 0.572 0.715 0.751 

3d5/2 1.117 1.150 1.192 1.226 1.307 1.472 

2g7/2 1.148 1.194 1.282 1.362 1.452 1.549 

2g9/2 3.156 3.320 3.422 3.800 4.325 4.893 

1i11/2 3.857 4.143 4.414 4.750 5.107 5.923 

1i13/2 12.738 13.094 13.375 13.546 13.590 13.500 

4p1/2 0.003 0.003 0.003 0.003 0.003 0.001 

4p3/2 0.014 0.014 0.019 0.020 0.018 0.005 

3f5/2 0.009 0.009 0.010 0.011 0.009 0.004 

3f7/2 0.111 0.114 0.146 0.151 0.144 0.072 

2h9/2 0.025 0.023 0.026 0.028 0.027 0.015 

2h11/2 0.811 0.860 0.992 1.035 1.094 1.016 

1j13/2 0.062 0.058 0.060 0.066 0.068 0.049 

1j15/2 4.345 4.700 5.010 5.445 6.038 6.694 
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Table 2.5 Quadrupole and hexadecapole deformation parameters used in the present 

calculations for 
236-242

Pu isotopes. 

 

Nucleus 
 

236
Pu 

 

238
Pu 

 

240
Pu 

 

242
Pu 

ε2 0.275 0.265 0.260 0.250 

ε4 -0.045 -0.050 -0.020 0.020 

 

 

Table 2.6  Comparison of experimental (Exp.) and calculated (Th.) excitation energies 

(in units of MeV) of 2����	��, 4������� EFG  ��� �	�⁄  ratios for 
236-242

Pu isotopes. 

Nucleus 

Exp.
 

Th.
 

HI� HJ� HJ� HI�⁄  HI� HJ� HJ� HI�⁄  

236
Pu 0.045 0.147 3.267 0.045 0.147 3.267 

238
Pu 0.044 0.146 3.318 0.043 0.143 3.326 

240
Pu 0.043 0.142 3.302 0.043 0.141 3.279 

242
Pu 0.045 0.147 3.326 0.044 0.146 3.318 
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Table 2.7 The BCS sub-shell occupation numbers of protons in the ground state of  

 
236-242

Pu isotopes. 

zNucleus 
236

Pu 
238

Pu 
240

Pu 
242

Pu 

3p1/2 0.172 0.162 0.150 0.118 

3p3/2 0.634 0.615 0.615 0.605 

2f5/2 0.773 0.745 0.751 0.745 

2f7/2 1.941 1.954 2.061 2.283 

1h9/2 3.983 4.084 4.216 4.540 

1h11/2 11.272 11.25 11.228 11.061 

4s1/2 0.007 0.007 0.005 0.004 

3d3/2 0.010 0.009 0.008 0.007 

3d5/2 0.075 0.072 0.050 0.029 

2g7/2 0.035 0.032 0.028 0.027 

2g9/2 0.636 0.605 0.539 0.445 

1i11/2 0.118 0.111 0.109 0.114 

1i13/2 4.907 4.90 4.893 4.891 

 

 

 

 

 

 

 

. 
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Table 2.8  The BCS sub-shell occupation numbers of neutrons in the ground state of  
236-242

Pu isotopes. 

Nucleus 
236

Pu 
238

Pu 
240

Pu 
242

Pu 

4s1/2 0.286 0.317 0.358 0.390 

3d3/2 0.554 0.649 0.732 0.755 

3d5/2 1.255 1.234 1.341 1.477 

2g7/2 1.398 1.416 1.479 1.555 

2g9/2 3.415 3.656 4.337 4.900 

1i11/2 4.478 4.723 5.106 5.913 

1i13/2 13.053 13.512 13.524 13.492 

4p1/2 0.008 0.008 0.003 0.001 

4p3/2 0.038 0.036 0.017 0.005 

3f5/2 0.024 0.022 0.010 0.004 

3f7/2 0.219 0.212 0.145 0.073 

2h9/2 0.052 0.047 0.028 0.015 

2h11/2 1.173 1.156 1.122 1.021 

1j13/2 0.096 0.089 0.070 0.050 

1j15/2 4.974 5.248 6.036 6.674 
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Table 2.9 Comparison of calculated (Th.) and experimental (Exp.) B(E2) reduced transition probabilities (in units of  e
2
b

2
) for           

230-240
U isotopes. Experimental data are taken from Refs. [108-113]. 

Transition 

 �KL� ⟶ KN�) 

230 
U 

232
U 

234
U 

236
U 

238
U 

240
U

 

Exp. Th. Exp. Th. Exp. Th. Exp. Th. Exp. Th. Exp. Th. 

2 ⟶ 0 1.92�P.	Q�P.	Q 1.982 2.11�P.�R�P.�R 2.008 2.09�P.PR�P.PR 2.207 2.25�P.PR�P.PR 2.284 2.55�P.Q3�P.Q3 2.452 - 2.473 

4 ⟶ 2 - 2.843 - 2.878 - 3.158 3.21�P.	P�P.	P 3.269 - 3.508 - 3.539 

6 ⟶ 4 - 3.154 - 3.188 - 3.488 3.46�P.�S�P.�S 3.611 - 3.874 - 3.909 

8 ⟶ 6 - 3.334 - 3.365 - 3.664 3.50�P.Q2�P.Q2 3.796 - 4.071 - 4.109 

10 ⟶ 8 - 3.466 - 3.489 - 3.778 3.23�P.Q2�P.Q2 3.918 - 4.201 - 4.240 

12 ⟶ 10 - 3.574 - 3.588 - 3.856 3.68�P.3	�P.3	 4.010 - 4.300 - 4.337 

14 ⟶ 12 - 3.666 - 3.669 - 3.904 4.04�P.P��P.P� 4.081 - 4.377 - 4.411 

16 ⟶ 14 - 3.744 - 3.719 - 3.918 3.41�P.Q2�P.Q2 4.130 - 4.440 - 4.458 

18 ⟶ 16 - 3.787 - 3.605 - 3.903 4.40�P.P��P.P� 4.121 - 4.476 - 4.455 

20 ⟶ 18 - 0.052 - 2.581 - 3.911 4.58�P.PT�P.PT 3.858 - 4.441 - 4.329 
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Table 2.10 Comparison of calculated (Th.) and experimental (Exp.) B(E2) reduced 

transition probabilities (in units of  e
2
b

2
) for 

236-242
Pu isotopes. Experimental data are 

taken from  Refs. [111-114]. 

Transition 

 �KU� ⟶ KN�) 

236
Pu 

238
Pu 

240
Pu 

242
Pu 

Exp. Th. Exp. Th. Exp. Th. Exp. Th. 

2 ⟶ 0 - 2.767 2.522�P.PQ��P.PQ� 2.663 2.60�P.P3�P.P3 2.677 2.68_�P.PQ	�P.PQ	  2.595 

4 ⟶ 2 - 3.957 - 3.808 - 3.829 - 3.713 

6 ⟶ 4 - 4.365 - 4.200 - 4.226 - 4.100 

8 ⟶ 6 - 4.578 - 4.406 - 4.435 - 4.306 

10 ⟶ 8 - 4.712 - 4.537 - 4.571 - 4.440 

 12 ⟶ 10 - 4.805 - 4.631 - 4.670 - 4.538 

14 ⟶ 12 - 4.869 - 4.702 - 4.747 - 4.613 

16 ⟶ 14 - 4.907 - 4.756 - 4.808 - 4.665 

18 ⟶ 16 - 4.908 - 4.796 - 4.851 - 4.677 

20 ⟶ 18 - 4.869 - 4.791 - 4.857 - 4.587 
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Fig. 2.1 Comparison of calculated (Th.) and experimental (Exp.) positive-parity yrast 

bands of even-even 
230-240

U isotopes. The experimental data are taken from Refs.      

[108-113]. 
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Fig. 2.2 Comparison of calculated (Th.) and experimental (Exp.) positive-parity  yrast 

bands of even-even 
236-242

Pu isotopes. The experimental data are  taken from Refs. 

[111-114]. 
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Fig. 2.3 Band diagrams (bands before configuration mixing) for (a) 
230

U, (b)
 232

U,                

(c) 
234

U, (d)
 236

U, (e)
 238

U, (f) 
240

U isotopes. Only the important lowest lying bands in 

each configuration are shown. 
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Fig. 2.3 (continued) 
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Fig. 2.3 (continued) 
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Fig. 2.3 (continued) 
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Fig. 2.3  (continued) 
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Fig. 2.3 (continued) 
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Fig. 2.4  Band diagrams (bands before configuration mixing) for (a) 
236

Pu,                     

(b) 
238

Pu, (c) 
240

Pu and (d) 
242

Pu. Only the important lowest lying bands in each 

configuration are shown. 
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Fig. 2.4 (continued) 
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Fig. 2.4 (continued) 
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Fig. 2.4 (continued) 
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Fig. 2.5  Theoretical g-factors as a function of angular momentum for 
230-240

U isotopes. 

Comparison between calculated (Th.) and experimental (Exp.) g-factors [40] for 
238

U is 

also presented. 
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Fig. 2.6 Theoretical g-factors as a function of angular momentum for 
236-242

Pu isotopes. 
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Chapter 3 

Projected Shell Model study of Curium isotopes 

3.1  Introduction 

 Spectroscopic studies of low-lying states in heavy nuclei have been carried out 

with the objective of understanding the properties of new super heavy nuclei [30,117-

125].
 

In this regard, spectroscopic data on nuclei with atomic number in the 

neighbourhood of Z≈96 gives one an opportunity of carrying out systematic studies on 

some new features of nuclear structure [30,78].
 
Most of the studies have focused on 

collective structures in even-even nuclei [47, 48] since these are relatively easier to 

investigate. Information on odd-A nuclei allows for more sensitive tests of theoretical 

predictions of single particle energies and moments of inertia. High spin collective 

properties has become available on some even-even and odd-A Cm isotopes wherein, it 

has become possible to map energy spectra up to high spins [45,46,51,52]. 

Ahmad et al. [41] have observed the existence of the ground state rotational bands 

with identical transition energies up to spin I= 8ħ in 
244

Cm and 
246

Cm and have found that 

the importance of these bands is that the single particle states are well characterized at 

normal deformation and hence there is a better chance of understanding the underlying 

physics in these identical bands. Czosnyka et al. [45] have extracted E2 transition matrix 

elements of 
248

Cm nucleus involving the ground state band up to spin 24
+
 by coulomb 

excitation using 641 MeV 
136

Xe and 260 MeV 
58

Ni projectiles. They have also measured 

static electric quadrupole moments up to spin 20
+
. Piercey et al. [46] have studied ground 

state band of 
248

Cm up to spin 28
+
 by observing γ-rays following multiple coulomb 

excitation with use of 
208

Pb ions at 5.3 MeV/u. These authors have found that a smooth, 

gradual increase in the effective moment of inertia is seen at lower spin with an 

anomalous forward bend above spin 22
+
. Hota et al. [52] have studied 

247
Cm through 

inelastic excitation and transfer reactions with radioactive targets. They have observed 

that the ground state band in 
247

Cm is built on a νj15/2[734]9/2
-
 Nilsson configuration. 

Tandel et al. [50] have studied odd-A nuclei 
247,249

Cm and 
249

Cf through inelastic 
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excitation and transfer reactions. They have provided detailed information on high spin 

collective structure in 
247

Cm and have found that ν[734]9/2
-
 is the highest-lying neutron 

configuration investigated up to high spin.  

Zhang et al. [68] have investigated rotational bands in nuclei with Z = 96 by using 

Cranked Shell Model (CSM) with the pairing correlations treated by particle-number 

conserving (PNC) method. A new set of Nilsson parameters are proposed by fitting 

experimental single particle spectra in nuclei with Z= 96. They have also calculated 

bandhead energies of the 1-qp bands in odd-A nuclei by PNC-CSM (Cranked Shell 

Model) method. Zhang et al. [69] have also investigated odd-A 
247

Cm nucleus by using 

CSM with pairing correlations treated by PNC method. They have found that the 

experimental moments of inertia, alignments and their variations with rotational 

frequency � are reproduced well by PNC-CSM calculations. Pomorski et al. [126] have 

investigated the properties of fission isomers, like moment of inertia, pairing energy and 

collective gyromagnetic ratios. They have also discussed the effect of some changes in 

the pairing interaction. Ibrahim et al. [127] have obtained a core cluster potential by 

combining the best features of a microscopic and phenomenological core cluster potential 

and have used it to analyze the spectra and exotic decays of heavy even-even nuclei. 

Adamain et al. [128] have studied the low-lying one quasi-particle states in the isotonic 

chains with N =147, 149, 151, 153 and 155 within the microscopic-macroscopic and self 

consistent approaches. They have also suggested alpha-decay schemes of several nuclei. 

Parkhomenko and Sobiczewski [70] have calculated neutron one-quasiparticle states of 

243-247
Cm nuclei by using macroscopic-microscopic approach. They have considered even 

Z and odd N nuclei with Z=96 and N=147-151. All of them are well deformed. They have 

found that the characteristics of the experimentally known ground states are well 

reproduced. Egido and Ring [66] have performed microscopic study of the yrast line in 

242-248
Cm. Several versions of Cranking Model have been discussed by these authors. 

They have found that the mean–field approach, in the form of Cranking Model in the 

simplified version of the Rotating Shell Model, is able to reproduce the alignment and 

band crossing pattern at the yrast line. Shirikova et al. [72] have investigated low-lying 

states of the nuclei with Z = 96. They have calculated excitation energies and wave 

functions of low lying states of the nuclei with Z = 96 by using quasi-particle phonon 
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model and have found that the excitation of the phonons and the quasi-particle-phonon 

interaction play an important role in the description of the properties of the excited states 

of these nuclei with Z = 96.  

In this chapter, even-even Curium and some odd-A Curium isotopes have been 

studied by employing Projected Shell Model approach. The results have been obtained 

for yrast levels, B(E2) transition probabilities and g-factors for even-even 
242-248

Cm. The 

calculation of transition energies of yrast and excited bands of odd mass 
243,245,247

Cm is 

also performed and structures of these bands are analyzed.  

3.2  Theoretical Framework    

  The detailed description of PSM has been presented in Chapter 2 of the present 

thesis. The present calculations are performed by considering three major harmonic-

oscillator shells with N=4, 5, 6 and N =5, 6, 7 for protons and neutrons, respectively. For 

all the calculations, the monopole pairing strengths GM used in the calculation are 

�� = ��� ∓ ��
	
�

� 
 �
� with ʽ-ʼ for neutrons andʽ +ʼ for protons. Here �� and ��  values 

were varied to reproduce pairing gaps in even-even and even-odd Cm isotopes on an 

average basis. The values that reproduce the pairing gaps are taken as 20.12 and 13.13 

MeV respectively for even-even 
242-248

Cm, and 18.52 and 13.13 MeV for odd-N 
243-247

Cm 

isotopes. These strengths are nearly the same as used in Refs. [129,130]. The quadrupole-

pairing strength GQ is assumed to be proportional to GM, with the proportionality constant 

being fixed to be 0.18 for 
242

Cm, 0.16 for 
244-248

Cm and 0.14 for 
243-247

Cm.  

3.3 Results and discussion for even-even 
242-248

Cm isotopes 

3.3.1  Yrast Spectra  

The theoretical calculations for 
242-248

Cm have been performed by carrying out 

PSM calculations using the deformation parameters which are presented in Table 3.1. 

The quadrupole deformation parameter ε2 was varied around the experimental [106] 

value to reproduce ���
�

 energy values. The quadrupole deformation parameters were 

adjusted so that the energy gap between the ���
�  and ground state for the 

242-248
Cm 
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isotopes are reproduced. The experimental level scheme of positive parity yrast bands of  

242-248
Cm [131-134] are available up to spins 26

+
, 8

+
, 26

+
 and 30

+
 respectively. In Fig. 

3.1, the theoretical yrast spectra are compared with the experimental data for 
242-248

Cm. It 

is observed from the figure that the yrast spectra for 
242,246,248

Cm are reasonably well 

reproduced for spins ≤ 18
+
 and for 

244
Cm, up to spin 8

+
 only. The disagreement between 

the observed and calculated values occurs as one goes to the higher spins. The maximum 

difference between the experimental and calculated values of energy for the highest 

known spins are 0.34, 0.02, 0.57 and 1.04 MeV for 
242-248

Cm, respectively. In Fig. 3.2, 

transition energies [E(I) - E(I-2)] are compared with the experimental data. It is seen from 

the figure that the calculated transition energies reproduce the experimental data upto 

spin 18
+
. However, at higher spin the theoretical transition energies are higher than 

experimental ones. The reason for this discrepancy could be the assumption of fixed 

pairing used throughout the band spectra for all nuclei. 

3.3.2  Structure of yrast bands of even-even 
242-248

Cm 

In Figure 3[3 (a) - 3(d)], the band diagrams are presented for 
242-248

Cm. From 

these figures, it is observed that the yrast states in 
242-248

Cm do not arise from a single 

intrinsic state. The yrast states up to certain spin arise from zero quasi particle (0-qp) 

intrinsic state. After that spin, higher angular momentum states are found to arise from 

different intrinsic states and have a composite structure. They are predicted to arise from 

two or more than two intrinsic states. The details are described isotope-wise here under: 

Fig. 3.3 (a) represents the band diagram of 
242

Cm, which indicates that the yrast 

states up to spin I=18
+
 are seen to arise from 0-qp intrinsic state. Between spins 20

+
 to 

24
+
, the ground state band (g-band) is crossed by four 2-qp neutron and two 2-qp proton 

bands having configurations 2νj15/2(1/2,-3/2) K=-1, 2νj15/2(1/2,-3/2) K=0, 2νj15/2(-3/2,-

3/2) K=0, 2ν[j15/2(-3/2)+ j13/2(1/2)] K=-2, 2πi13/2(1/2,-3/2) K=-1 and 2πi13/2(1/2,1/2) K=0, 

respectively. Thus, the yrast band from spins I =20
+
 to 26

+ 
arises from the contribution of 

2-qp proton and neutron bands. At spin 28
+
 one 4-qp band having configuration 

2νj15/2(1/2,-3/2) + 2πi13/2(1/2, 1/2) K=-1 crosses the above mentioned 2-qp proton and 

neutron bands. Thus, the yrast band for spins I ≥ 28
+
 arise from the  4-qp band in addition 

to 2-qp proton and neutron bands. 
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Fig. 3.3(b) represents the band diagram of 
244

Cm. In this nucleus, the yrast states 

up to spin I=16
+
 are seen to arise from the 0-qp intrinsic state. At spin 18

+
, the ground 

state band is crossed by one 2-qp neutron and one 2-qp proton bands having 

configurations 2νj15/2(-3/2,-3/2) K=0 and 2πi13/2(1/2, 1/2) K=0, respectively. Between 

spins 20
+
 to 26

+
, the ground state band is crossed by two 2-qp neutron and one 2-qp 

proton bands having configurations 2νj15/2(1/2,-3/2) K=-1, 2ν[j15/2(-3/2)+ j13/2(1/2)] K=-2 

and 2πi13/2(1/2,-3/2) K=-1, respectively. Thus, the yrast band from spins I = 20
+
 to 26

+
 

arises from the contribution of three 2-qp neutron and two 2-qp proton bands. At higher 

spins I ≥ 28
+
, in addition to 2-qp neutron and proton bands, one 4-qp band having 

configuration 2νj15/2(1/2,-3/2)+2πi13/2(1/2,1/2) K=-1 also contributes to the yrast band. 

 Fig. 3.3(c) represents band diagram of 
246

Cm, wherein, the yrast states up to spin 

I=12
+
 are seen to arise from the 0-qp intrinsic state.  Between spins 14

+
 to 16

+
, the ground 

state band is crossed by one 2-qp neutron and one 2-qp proton bands having 

configurations 2νj13/2(1/2, 1/2) K=0 and 2πi13/2(1/2, 1/2) K=0, respectively. Above spin 

18
+
, the ground state band is crossed by two 2-qp neutron and one 2-qp proton bands 

having configurations 2ν[j15/2(-3/2) +j13/2(1/2)] K=-1, 2ν[j15/2(-3/2)+ j13/2(1/2)] K=-2 and 

2πi13/2(1/2,-3/2) K=-1, respectively. Thus, the yrast band from spins 16
+
 to 20

+
 arise from 

the contribution of one 2-qp neutron and one 2-qp proton bands. Above spin 20
+
, the 

yrast band arises from the superposition of three 2-qp neutron and two 2-qp protons 

bands.  At  spin  I  ≥  26
+
, one 4-qp band having configuration 2νj15/2(1/2,3/2)+2πi13/2(1/2,1/2) 

K=-1 is also seen to contribute to the yrast band in addition to three 2-qp neutron and two 

2-qp proton bands. 

Fig. 3.3(d) represents the band diagram of 
248

Cm. In case of 
248

Cm, the yrast states 

up to spin I=8
+
 are seen to arise from the 0-qp intrinsic state. At spin 10

+
, one 2-qp 

neutron band having configuration 2νj13/2(1/2, 1/2) K=0 crosses the ground state band and 

becomes lowest in energy. Thus, the yrast band from spins 10
+
 to 20

+
 arises from the one 

2-qp neutron band. However, at higher spins with I ≥ 22
+
, multiple 2-qp neutron and 

proton bands are seen to contribute to the yrast band. 
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3.3.3   Electromagnetic quantities 

3.3.3.1  B(E2) transition probabilities  

B(E2) transition probabilities can give important information on the nuclear 

structure and provide stringent test of a particular model and are defined by eq. (2.52) of 

chapter 2 of the present thesis. In the calculation, the effective charge for neutrons 

��
��� = 0.55� and for protons ��

��� = 1.55� has been taken. 

In Table 3.2, the comparison of experimental B(E2) transition probabilities have 

been made with the theoretically calculated values. The experimental data for the 

 2�
� → 0�

� transitions are taken from Ref. [135]. From this table, it is seen that the PSM 

calculations reproduce the experimental values of 2�
� → 0�

� transition for 
244-248

Cm. In 

case of 
248

Cm, the experimental data is available up to spin 24
+ 

[45]. Experimentally, the 

dip in the B(E2) values of 
248

Cm is observed at spin 10
+
. The calculated B(E2) values 

reproduce the increasing trend of the observed B(E2) values upto spin 8
+
. The calculated 

values show a small increase with spin for higher transitions upto spin 24
+
.
 

3.3.3.2  g-factors  

The g-factors are defined by eq. (2.53) of chapter 2 of present thesis. In Fig 3.4 

the total g-factors and the contribution of the protons (� ) and neutrons (�" ) to the total 

g-factors are plotted as a function of the spin (I). In all Cm isotopes the contribution of 

neutrons (�") decreases and contribution of protons (� ) increases. From the figure, it is 

seen that the theoretical total g-factors show an increasing trend in all Cm isotopes. The 

total contribution of g-factors is due to �  and that may be due to alignment of protons. 

The g-factors can be understood from the analysis of the band diagrams, where it is seen 

that energy states up to spins 18
+
, 16

+
, 12

+
 and 8

+
 in 

242-248
Cm, respectively, arise from 

zero quasi-particle configuration. Therefore g-factors are not showing much variation. 

Above spins 18
+
, 16

+
, 12

+
 and 8

+
 in 

242-248
Cm isotopes, respectively, the yrast band arises 

from 2-qp neutron and 2-qp proton bands. The theoretical g-factors show an increasing 

trend in all Curium isotopes. For example, in case of 
242

Cm, the theoretical g-factor has a 

value 0.2653 at spin 18
+
, whereas at 30

+
, the value shows an increase to 0.3114. Similar 
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trend is obtained for 
244-248

Cm isotopes. The small increase in the g-factors at higher spin 

in all Cm isotopes is due to crossing of g-band by 2-qp proton bands. The experimental 

values of g-factors in 
242-248

Cm isotopes are not available so one cannot make any 

comment regarding the level of agreement. 
 
 

3.4 Results and discussion for odd mass 
243-247

Cm isotopes 

3.4.1 
243

Cm 

In Fig. 3.5, the experimental and theoretical excitation energy spectra of the two 

positive parity bands of 
243

Cm are compared. For 
243

Cm, the experimental values of 

energies of the ground state band [136] (g-band) are known up to spin 13/2
+ 

and that of 

excited band [136] up to spin
 
11/2

+
. The band having configuration 1νi11/2(5/2) K=5/2 is 

the ground state band and 1ν2g9/2(-7/2) K=-7/2 is the lowest excited band. The results 

obtained indicate that reasonably good agreement is obtained. The difference between the 

calculated and experimental value of energies for the highest known spin are 0.02 MeV 

in g-band and 0.04 MeV in the excited band. The band diagram for 
243

Cm is displayed in 

Fig. 3.6. From this diagram, it is observed that 1νi11/2(5/2) K=5/2 band is the lowest in 

energy and is in agreement with the configuration ν5/2
+ 

[622] assigned by the authors of 

Ref. [51]. In Fig. 3.7, transition energies [E(I) - E(I-1)] are compared with the 

experimental data. From this figure, it is seen that the theoretical transition energies are in 

agreement with the available experimental data. 

3.4.2   
245

Cm 

Fig. 3.8 displays the comparison of calculated and experimental excitation energy 

of the two positive parity bands of 
245

Cm. The band having configuration              

1ν2g9/2(-7/2) K=-7/2 is the ground state band and 1νi11/2(5/2) K=5/2 is the lowest excited 

band.  Experimental data is taken from Ref. [137]. From Fig. 3.8, it is seen that the 

available experimental energy levels are well reproduced. The difference between the 

calculated and experimental value of energies for the highest known spin are 0.005 MeV 

in g-band and 0.12MeV in the excited band. The band diagram for 
245

Cm is displayed in 

Fig. 3.9. From Fig. 3.9, it is observed that 1ν2g9/2(-7/2) K=-7/2 band is the lowest in 



 

70 

energy and is in agreement with the configuration ν7/2
+
 [624] assigned by the authors of 

Ref. [51]. Thus, the yrast band is seen to arise from the 1-qp band having configuration         

1ν2g9/2(-7/2) K=-7/2 up to spin I= 51/2
-
. In Fig. 3.10, transition energies [E(I) - E(I-1)] 

are compared with the experimental data. From this figure, it is seen that the theoretical 

transition energies reproduce the available experimental data qualitatively. 

3.4.3   
247

Cm 

The experimental level scheme in Refs. [50, 138] shows that the negative parity 

band is the g-band in 
247

Cm having configuration 1νj15/2(9/2) K=9/2. The comparison of 

calculated energy levels for this negative parity band with the experimental data is 

presented in Fig. 3.11. In the same figure we have also presented the lowest excited 

negative parity band energies having configuration 1ν2h11/2(1/2) K=1/2. This band has 

two signature partners α=±1/2. The band having signature   α=-1/2 is the lowest excited 

band. There is no experimental data available so, we cannot compare their energy levels. 

The experimental energies are known up to spin 51/2
-
 in g-band, which are well 

reproduced by the present calculations. The difference between the calculated and 

experimental value of energies for the highest known spin is 0.25 MeV in g-band. The 

band diagram for 
247

Cm is displayed in Fig. 3.12. From Fig. 3.12, it is observed that 

1νj15/2(9/2) K=9/2 band is the lowest in energy and is in agreement with the configuration     

ν9/2
+
 [734] assigned by the authors of Ref. [50]. A careful examination of Fig. 3.12 

shows that the yrast states up to spin 51/2
- 
are seen to arise from the 1-qp neutron band 

with configuration 1νj15/2[9/2] K=9/2. In Fig. 3.13, transition energies [E(I) - E(I-2)] are 

compared with the experimental data. From this figure, it is seen that the theoretical 

energies reproduce the available experimental data on the ground state band qualitatively.  

3.5  Summary 

From the PSM study of Curium isotopes, the following broad conclusion can be drawn. 

i. The PSM calculation reproduces the available experimental data of yrast bands of 

even-even 
242-248

Cm. 
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ii. The study of the structure of the yrast bands of 
242-248

Cm from band diagrams 

reveals that in the low spin region, the yrast states arise from 0-qp configuration. 

However, at the higher spin, the yrast bands have multi-quasiparticle structure. 

iii. The calculated B(E2) values for 2�
� → 0�

� transition reproduce the available 

experimental values for 
244-248

Cm. 

iv. In case of 
248

Cm the experimental B(E2) values for higher transitions are available 

upto spin 24
+
 which are reproduced by the present calculation. The present 

calculation has predicted the B(E2) values for higher transitions for 
242-246

Cm 

isotopes. 

v. The calculated values of g-factors show an increasing trend with spin in all        

242-248
Cm isotopes. The small increase reflected in the g-factors at higher spins in 

all these isotopes is due to the crossing of g-band by 2qp proton bands. The 

experimental values of g-factors of these isotopes are not known, so it is not 

possible to make a comment regarding the level of agreement. 

vi. The theoretical values obtained for the level energies of ground state bands in    

243-247
Cm and lowest excited state bands in 

243,245
Cm reproduces the available 

experimental data qualitatively. For 
247

Cm, the lowest excited state negative parity 

band has been predicted. 

vii. The calculated value of transition energies of the ground state bands of odd       

243-247
Cm reproduces the available experimental data qualitatively.  
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Table 3.1 Quadrupole and hexadecapole deformation parameters used in the present 

calculations for 
242-248

Cm isotopes. 

Nucleus 
242

Cm 
243

Cm 
244

Cm 
245

Cm
 246

Cm 
247

Cm      
248

Cm 

ε2 0.260 0.255 0.260 0.255 0.260 0.255 0.260 

ε4 0.010 0.003 0.018 0.003 0.033 0.003 0.040 

 

Table 3.2 Comparison of calculated (Th.) and experimental (Exp.) B(E2) reduced 

 transition probabilities (in units of  e
2
b

2
) for 

242-248
Cm isotopes. Experimental data are 

taken from Refs. [45,135] 

Transition 

 (#$
� ⟶ #&

�) 

242
Cm 

244
Cm 

246
Cm 

248
Cm 

Exp. Th. Exp. Th. Exp. Th. Exp. Th. 

2 ⟶ 0 - 3.136 2.916±0.038 3.095 2.988±0.038 2.888 2.74
).))*
�).))� 2.861 

 4 ⟶ 2 - 4.490 - 4.429 - 4.131 3.58
).)��
�).)-. 4.091 

6 ⟶ 4 - 4.964 - 4.893 - 4.560 5.07
).)0-
�).)-  4.515 

8 ⟶ 6 - 5.222 - 5.143 - 4.788 5.95
).)�2
�).)�� 4.740 

10 ⟶ 8 - 5.398 - 5.310 - 4.936 3.87
).)*3
�).*)  4.885 

12 ⟶ 10 - 5.533 - 5.437 - 5.046 4.83
).)��
�).))4 4.992 

14 ⟶ 12 - 5.646 - 5.541 - 5.134 6.21
).))�
�).)�- 5.077 

16 ⟶ 14 - 5.744 - 5.632 - 5.209 4.51
).)).
�).))3 5.141 

18 ⟶ 16 - 5.825 - 5.706 - 5.246 4.65
).)*3
�).)�� 5.152 

20 ⟶ 18 - 5.867 - 5.753 - 5.242 4.78
).).�
�).)*4 5.243 

22 ⟶ 20 - 5.862 - 5.764 - 5.343 6.27
).)�0
�).)-. 5.269 

24 ⟶ 22 - 5.964 - 5.853 - 5.383 5.97
�.00�
�).30  5.290 

26 ⟶ 24 - 5.987 - 5.888 - 5.359 - 5.312 

28 ⟶ 26 - 5.762 - 5.734 - 5.333 - 5.288 

30 ⟶ 28 - 5.502 - 5.639 - 5.312 - 5.254 
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Fig.  3.1 Comparison of calculated (Th.) and experimental (Exp.) positive-parity  yrast 

bands of 
242-248

Cm isotopes. The experimental data is taken from  Refs. [131-134]. 
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Fig. 3.2  Comparison of calculated (Th.) and experimental (Exp) transition energies 

[E(I)-E(I-2)] versus spin for even-even 
242-248

Cm isotopes. Exp. data taken from Refs. 

[131-134]. 
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Fig. 3.3 Band diagrams for (a) 
242

Cm, (b)
 244

Cm, (c) 
246

Cm and (d) 
248

Cm isotopes. 
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Fig. 3.3 (continued) 
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Fig. 3.3 (continued) 
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Fig. 3.3  (continued) 
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Fig. 3.4 Theoretical g-factors as a function of angular momentum for 
242-248

Cm 

 isotopes. 
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Fig. 3.4 (continued) 

 

 

 

 

  

 

 

 

 

 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

246
Cm

 

g
-f

ac
to

rs

Spin (Ι)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

 g
n

 g
p

 g
total

248
Cm

 

 



 

81 

 

 

 

 

 
 

 

Fig. 3.5 Comparison of calculated (Th.) and experimental (Exp.) energy levels for ground 

state band (A) [136] and excited band (C)  [136]  of positive-parity of 
243

Cm. The 

experimental data is taken from Ref. [136]. 
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Fig. 3.6  Band diagram for 
243

Cm. 
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Fig. 3.7 Comparison of calculated (Th.) and experimental (Exp) transition energies  

[E(I)-E(I-1)] versus spin for 
243

Cm. 
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Fig. 3.8 Comparison of calculated (Th.) and experimental (Exp.) energy levels for ground 

state band (A) [137] and excited band (C) [137] of positive-parity of 
245

Cm. The 

experimental data is taken from Ref. [137]. 
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Fig. 3.9  Band diagram for 
245

Cm. 
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Fig. 3.10  Comparison of calculated (Th.) and experimental (Exp) transition energies 

[E(I)-E(I-1)] versus spin for 
245

Cm. 
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Fig. 3.11 Comparison of calculated (Th.) and experimental (Exp.) energy levels for 

ground state negative parity band of 
247

Cm. The branch of band with signature α=-1/2 has 

not been as yet measured. However their energies are predicted. The experimental data 

are taken from Refs. [50,138]. 
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Fig. 3.12  Band diagram for 
247

Cm. 
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Fig. 3.13 Comparison of calculated (Th.) and experimental (Exp) transition energies 

[E(I)-E (I-2)] versus spin for 
247

Cm. Exp. data taken from Refs. [50, 138]. 
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Chapter 4 

Summary of the work done 

 

 

In this thesis a detailed study of some nuclei in the actinide mass region have been 

performed by using quadrupole-quadrupole plus monopole and quadrupole pairing force 

in the Hamiltonian within the framework of Projected Shell Model (PSM) approach. The 

results have been obtained for yrast levels, B(E2) transition probabilities and g-factors for 

even-even Uranium, Plutonium and Curium isotopes. The level energies and transition 

energies are also calculated for odd-A Curium isotopes. 

Based on the research work presented in chapters 2 and 3, the following conclusions have 

been drawn:- 

i. The projected shell model calculations performed with the quadrupole-quadrupole 

plus monopole and quadrupole pairing force reproduces correctly the observed 

deformation systematics in 
230-240

U and 
236-242

Pu isotopes.  From the results of 

BCS subshell occupation numbers, it is seen that the observed deformation trends 

of low-lying states in U and Pu nuclei could be linked with the occupation of 

down-sloping components of high j orbits in the valence space.   

ii. The experimental level schemes of positive parity yrast bands for 
230-240

U  and    

236-242
Pu isotopes which are available up to spins 22

+
, 20

+
, 30

+
, 30

+
, 30

+
, 12

+
 and

 

16
+
, 26

+
, 30

+
 26

+
 respectively, are reproduced  by the PSM calculations. The 

maximum difference between the results of theory and experiment for highest 

known spins is 0.032, 0.210, 0.144, 0.019, 0.255, 0.067 MeV for 
230-240

U and 

0.14, 0.019, 0.073, 0.286 MeV for 
236-242

Pu, respectively.  

iii. The structure of the yrast bands of 
230-240

U and 
236-242

Pu investigated from band 

diagrams show that in the low spin region, the yrast states arise from 0-qp 

configuration in which all nucleons are paired. However, at the higher spins, the 

yrast bands have multi-quasiparticle structure i.e yrast band arise from 2-qp 

neutron and 2-qp proton bands. 
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iv. The calculated values of B(E2; 2�

�
→ 0�

�) transition probability are in agreement 

with the available experimental data for all the 
230-240

U and 
236-242

Pu isotopes. In 

case of 
236

U the experimental B(E2) values for higher transitions are available 

upto spin 20
+
 which are also reproduced by the present calculation. The present 

calculation has predicted the B(E2) values for higher transitions for 
230-234

U,      

238-240
U and 

236-242
Pu  isotopes.  

v. In case of 
230-232

U the theoretical values of g-factors decrease at a certain spin, 

thereafter they show an increasing trend. In 
234-240

U isotopes, the theoretical 

values of g-factors show a reverse trend. In these isotopes the g-factors show an 

increase after the band crossing region due to the crossing of g-band by 2-qp 

proton bands. In case of 
238

U, the theoretical values of g-factors follow the same 

trend as followed by the measured values and confirm the observed proton 

alignment in 
238

U at higher spin. 

vi.  In case of 
236-242

Pu isotopes, the theoretical values of g-factors predict an increase 

at higher spins arising theoretically from the alignment of protons in 1i13/2 orbit. 

However, this feature in these isotopes remains to be verified experimentally. 

vii. The experimental level schemes of positive parity yrast bands of 
 242-248

Cm are 

available up to spins 26
+
, 8

+
, 26

+
 and 30

+
 respectively, which are reproduced  by 

the PSM calculations. The maximum difference between theory and experiment 

for highest known spins is 0.34, 0.02, 0.57 and 1.04 MeV for 
242-248

Cm, 

respectively. 

viii. The theoretical transition energies obtained for 
242-248

Cm, reproduces the available 

experimental data qualitatively. 

ix. The structure of the yrast bands of 
242-248

Cm investigated from the band diagrams 

show that in the low spin region, the yrast states arise from 0-qp configuration in 

which all nucleons are paired. However, at the higher spin, the yrast bands have 

multi-quasiparticle structure. 

x. The calculated values of B(E2; 2�

�
→ 0�

�) transition probability are in agreement 

with the available experimental data for
 244-248

Cm isotopes. The experimental 

B(E2) values for higher transitions in 
248

Cm are available upto spin 24
+
 which are 
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reproduced by the present calculation. Besides, the present calculation has 

predicted the B(E2) values for higher transitions for 
242-246

Cm isotopes. 

xi. The theoretical g-factors show an increasing trend in all the Curium isotopes. The 

small increase in the g-factors at higher spins in all these isotopes is due to 

crossing of g-band by 2-qp proton bands.  

xii.  Now coming to odd-A 
243-245

Cm, the theoretical values of energies of ground 

state and first excited state bands reproduce the available experimental data 

qualitatively. In case of 
247

Cm the experimental level scheme of negative parity g-

band is known upto spin 51/2 which is reproduced by the present calculation. The 

first excited negative parity band has also been predicted by the present 

calculation.  

From the overall study, it is seen that the calculated results of band spectra and 

electromagnetic quantities are not in good agreement with the experimental data as one 

goes to higher spins. The reason for the discrepancy at the higher spins may be due to the 

assumption of fixed pairing used throughout the calculation of band spectra for all the 

nuclei. Besides this, the nuclei under study are known to have some degree of octupole 

deformation which has not been taken into consideration in the present study. Inclusion 

of these aspects will improve the agreement of theoretical results with the experimental 

data at higher spins. 
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