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Introduction

In my thesis I consider a system of relations between two objects that lie on the
intersection between algebraic geometry and mathematical physics: cohomological field
theory and global spectral curve. These relations are a part of a larger web of relations
between several important concepts: Frobenius manifold, Landau-Ginzburg superpoten-
tial, Givental group and quantum curve. The motivation to consider these concepts can
be informally traced back to various attempts to develop a rigorous approach to the
quantum field theory that forms the framework of elementary particle physics. These
attempts are very different in nature and their quantum field theory origin doesn’t
provide any natural mathematical context for their interaction. Nevertheless such a
context exists and this thesis partly reconstructs it.

1.1 Basic concepts

In this section I informally introduce some of the key concepts considered in my
thesis, with forward references to the precise definitions in other chapters. This part
is specially targeted for a layman.

Let us start with cohomological field theory (CohFT for brevity). Cohomological
field theories are mathematically rigorous versions of the topological string theory,
whose motivation comes from theoretical physics, see [75]. An informal way to introduce
CohFT comes from quantum field theory.

One of the mathematical problems of quantum field theory is that certain integrals
corresponding to decorated graphs, the so-called Feynman diagrams, diverge whenever
the graph has loops. This happens already for the simplest example of the trivalent
graph with one loop in a scalar QFT:

—(OH—

There are many ways to deal with this problem. In the approach suggested by the
string theory we replace a one-dimensional graph with a two-dimensional surface given
by its tubular neighborhood in three-dimensional space:
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(1.1.1)

A very naive way to explain the construction of topological string theory is the
following: to associate to this surface a well-defined integral we define a space over
which we are integrating and a measure of integration, which in the QFT case was the
product of propagators, and we have to specify the theory of integration that we are
using. There is a way to do this that is natural both from the physics point of view
and the point of view of algebraic geometry.

The integration space is the space of all possible structures of a one-dimensional
complex manifold on the given two-dimensional surface. In other words, we consider
the moduli space of algebraic curves of prescribed topology. The basic topological
invariants are the genus of the surface denoted by g and the number of boundaries
denoted by n. One can choose how to consider the boundaries. They can be either
actual geodesic boundaries, or punctures, or just marked points on a compact curve.
The latter way suits our purposes the best. Thus, the non-compact integration space
is the moduli space My, of all possible complex structures on a given two-dimensional
surface of a fixed genus g with n marked points.

The space M, , has a canonical compactification M, ,,. The curves we add at the
compactification divisor of M, are no longer smooth. Their possible singularities
are nodes that locally look like zy = 0 and are disjoint from the marked points.
Furthermore, all the curves have finitely many automorphisms. Such curves are called
stable.

An example of a stable nodal curve.
’ Its arithmetic genus is 3 + 1.

Extra 1 comes from the degenerate
handle denoted with red dashed circle.
It has 3 marked points and 4 nodes.

The moduli space M, , of stable nodal curves of genus g with n marked points is
the integration space of a CohFT. It is a smooth orbifold. For an introduction into
the theory of the moduli spaces of curves, see [94].

By the integration over Mg,n we understand the intersection of the cohomology
classes considered with rational coefficients. We can integrate either over the fun-
damental class of M, or over a system of the so-called tautological classes that
we introduce in the next paragraph. These tautological classes can be considered as
analogs of observables of the QFT.

Let us introduce the system of the subalgebras of the cohomology algebras of the
spaces M,,, called the tautological ring. We consider three natural operations on
stable nodal curves: one can forget a marked point, one can glue two curves together
at two marked points and one can glue two marked points of the same curve together
to form a degenerate handle:

(1.1.2)
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peod

D 0
(1.1.3)

These operations result in maps 7, o and p between corresponding moduli spaces
(see Section 2.2.3). The tautological ring is the minimal algebra of classes that is
closed under pushforwards and pullbacks with respect to maps 7, o, p. In particular,
the tautological ring contains the so-called psi-classes v, ..., 1,, see Section 2.2.3,
also called gravitational descendants. An introduction to the tautological ring can be
found in [98]. The elements of the tautological ring are called tautological classes.

A cohomological field theory, introduced by Kontsevich and Manin in [67], is a
collection of polylinear maps ay,, : V& — H*(M,,), where V is a vector space
equipped with an inner product, called the space of primary fields. In other words, for
every n-tuple of vectors from V we get a cohomology class on M, ,,. Moreover, these
classes should satisfy certain natural factorization properties with respect to maps m, p
and o (see Section 2.2.3 for the precise definition of the CohFT and these properties).

One can consider the correlators of a CohFT: this is the set of all possible integrals
of the classes oy, intersected with all possible monomials in psi-classes. Thus, when
each marked point ¢ of the surface is decorated with a non-negative integer d; and a
vector e; from V', we integrate the class

gm(er, .. et e (1.1.4)

over the fundamental cycle of the moduli space M, ,.

The free energy function is a formal generating function for the correlators of a
CohFT. Clearly, the free energy function contains & priori less information than the
classes of the underlying CohFT. However, under certain mild assumptions, explained
below, the cohomology classes ¢, can be fully reconstructed from the correlators.

First of all, genus 0 correlators are always completely determined by the integrals
of the classes of a CohFT with no v-classes inserted. These are the so-called primary
invariants of a CohFT. These primary invariants can be considered as the coefficients
of the prepotential of a formal Frobenius manifold (see Section 2.2.1 for the definition).

Frobenius manifolds were introduced by Dubrovin in his systematic study of the
structure of 2d topological field theories [27]. The main part of the structure is
the function F' of n formal variables ti,...,t, that satisfies the celebrated WDVV
equation (summation over repeated indices is assumed)

Ot otPor| DKonor | orordt | DKot or
This function is called the prepotential.

(1.1.5)
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Assume that the prepotential F' is a smooth function defined on an open disk.
By Frobenius manifold we mean this disk together with the differential geometric
structure induced by the prepotential. Triple derivatives of the prepotential define
an algebra structure in each tangent space of the disk and this structure smoothly
depends on a point. When this algebra has no nilpotents in an open subset of the
disk, the Frobenius manifold is called semisimple. A set of points of the manifold
where multiplication is degenerate is called the discriminant. If, furthermore, the
prepotential satisfies a certain homogeniety property, the Frobenius manifold is called
conformal. This concept plays, in particular, the central role in the theory of integrable
hierarchies [30].

The celebrated reconstruction theorem by Teleman [91] states that a CohFT is
determined by its set of correlators in genus 0 if the following conditions are satisfied.
Its underlying Frobenius manifold should be semisimple and conformal, and the CohFT
itself should also be homogeneous in higher genera. The reconstruction is performed
with the help of the Givental group action. The formula for this action is very explicit.
It was first discovered by Faber, Shadrin and Zvonkine [53] as the group action on the
formal free energy functions of CohFTs, and later understood as the action on the
systems of cohomology classes ay,, forming CohFTs independently by several groups
of people (Teleman [91], Katzarkov-Kontsevich-Pantev (unpublished), and Kazarian
(unpublished)).

In the reconstruction every class a5 of the resulting CohFT is a sum over so-called
stable graphs. Stable graphs count topologically distinct stable curves. For example,
the degeneration type of the curve on Figure 1.1.2 is given by the following stable
graph (the vertices are represented by circles, so that the labels fit in)

At the vertices of the stable graph we put classes agm that form a cohomological
field theory of cohomological degree zero and are completely determined by the choice
of a semisimple point of the underlying Frobenius manifold. At the edges we put some

explicit contribution that is also determined by the choice a semisimple point of the
Frobenius manifold (see Section 2.2.3).

The Givental group action is a generalization of this construction. It acts transitively
on the subspace of semisimple CohFTs with a fixed semisimple Frobenius algebra
structure at the origin [56].

We have the following diagram of relations between CohFTs, their restrictions to

4
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genus 0, the underlying Frobenius manifold structures, and Givental group action:

CohFT

in genus
Zero
Givental
COhFTO sum over graphs
correlators
without
-classes
FM if semisimple

and conformal

In this thesis we mostly concentrate only on semisimple, homogeneous CohFTs.
So, for us, a cohomological field theory and the underlying Frobenius manifold are the
often equivalent concepts.

The global spectral curve, the second main character of my thesis, is an algebraic
curve X, with some additional data. Namely, we have two meromorphic functions
z and y on the curve, as well as a symmetric meromorphic bi-differential B called
Bergman kernel, with prescribed pole structure. There are some further technical
conditions on these objects, see Section 2.2.5. Out of this initial data there is a unique
way to construct a system of correlation differentials wg,, where 2g —2+mn > 0, which
are symmetric meromorphic n-differentials on the cartesian powers of the curve. Every
Wy n 1s recursively expressed through other correlation differentials with lower values of
2g — 2 4+ n. The differentials w1 := ydz and wy o := B are the base of the recursion.

The essence of the recursive reconstruction is captured by the following drawing
(see Equation (2.2.30) for precise algebraic expression):

‘ = @ +
2 (1.1.6)

This figure represents the so-called topological recursion. This recursion procedure was
developed in works of Chekhov, Eynard and Orantin [17, 50, 52] hence we sometimes
refer to it as CEO-recursion.

The CEO-recursion has first appeared in the context of matrix models as a method
of computation of the coefficients of the resolvents, also called correlators. The
correlators of a matrix model are certain integrals over a space of finite-dimensional
matrices of some particular type, for example, over the space of N x N Hermitean
matrices. Direct computation of the correlators of a matrix model is a difficult task.
So in practice one substitutes this problem by a different one: to find a solution to the
set of constraints called Ward identities that the correlators must satisfy [76]. In some
cases one can show that the CEO-recursion provides a solution to these constraints.
Moreover, under some assumptions this solution is unique. As for the space of all
solutions to the Ward identities that have genus-expansion form, it is conjecturally
expressed with help of the check-operators of Alexandrov-Mironov-Morozov (see [74]
and references therein). Furthermore, for some matrix models one can compute

)
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all correlators under extra special assumptions and they do not even have a genus-
expansion form [22]. While the CEO-recursion emerged as one of the approaches in
the theory of matrix models and proved to be very useful there, the whole theory of
the CEO-recursion has outgrown its original context and became a subject of its own
with applications in multiple diverse contexts.

The global spectral curve together with the CEO-recursion procedure on it gives a
universal way to encode solutions to various enumerative geometric and combinatorial
problems. For specific choices of the spectral curve data (X, z,y, B) the differentials
wgn are the generating functions for particular problems, such as for instance the
number of the ramified coverings of P! of certain ramification type. The way to obtain
the system of correlation differentials wy ,, from the initial data (2, z,y, B) is, however,
always the same and does not dependent on the enumerative problem at hand.

The notion of global spectral curve can be compared with the notion of local
spectral curve [37]. A local spectral curve is not a Riemann surface, instead, it is a
union of open disks. Accordingly, the functions z and y, and the bi-differential B
are defined only locally, their arguments taking values inside these disks, via their
Taylor or Laurent expansions. One can informally think of these disks as coordinate
charts near the critical points of the function x on some Riemann surface ¥. Since
the recursion step of the topological recursion depends only on the local information
near each critical point (see Equation (2.2.30)), it is defined for a local spectral curve
as well. So, starting from a local spectral curve we can also obtain the system of
correlation differentials wy,. In general, it is not known, whether for a given local
spectral curve there exists such a global spectral curve (¥, z,y, B) whose expansions
of z, y and B near critical points of = coincide with the data of the local spectral
curve, or whether such a global spectral curve is unique if it exists.

Semisimple, homogeneous cohomological field theories and global, or local, spectral
curves are similar: for both concepts we can reconstruct an infinite system of objects,
parametrized by genus g and number of points n, from some simple initial data. In
the former case this data is the structure of a Frobenius manifold and in the latter
case it is given by the functions z, y and B. One of the main motivations for this
thesis is an identification result of Dunin-Barkowski et al. [37]. It establishes a certain
equivalence between semisimple CohFTs and local spectral curves. More precisely,
for every semisimple CohFT one can explicitly construct a local spectral curve, such
that the correlation differentials wy ., obtained from the initial data of this curve, are
generating functions for the correlators of the CohFT. The proof of this result is done
by direct comparison of Givental’s sum over graphs and the sum over graphs that
arises when one applies topological recursion step repeatedly, decomposing a given
Wy into elementary components.

The data of the local spectral curve (coefficients of Taylor expansion of the function
y and the Bergman kernel B in the local coordinates of the disks) is arguably no
simpler than the explicit form of all the ingredients of the Givental formula. So, if
one wants to encode a given CohFT in a compact way, one needs to find a matching
global spectral curve. The identification result does not give any recipe for this. What
it allows to do is to check, whether a given candidate global spectral curve is indeed a
global spectral curve for a given CohFT. But one must come up with this candidate
global spectral curve first, mostly by educated guessing. It would be much better
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if there was an algorithm that directly produced a global spectral curve for a given
CohFT.

Such direct association of the global spectral curve to a CohFT is desirable for one
more reason. From the point of view of Frobenius manifolds, the identification works
point-wise: for each semisimple point of the Frobenius manifold there is a local spectral
curve. But it does not specify what to associate to non-semisimple points. Suppose,
however, that we have a family of global spectral curves over the semisimple points
of the Frobenius manifold and, moreover, dependence on the point of the Frobenius
manifold is sufficiently good. Then we can analyze what happens as we approach a
non-semisimple point. Sometimes, as we take the limit, two or more simple critical
points of function x merge to form a higher-order critical point. For such spectral
curves with higher-order critical points the CEO-recursion procedure needs to be
substituted by the much more involved Bouchard-Eynard recursion procedure [11], so
proving directly that this degenerate spectral curve corresponds to this non-semisimple
CohFT is difficult. However, there is a general statement that taking limits in suitable
families of global spectral curves commutes with evaluating the correlation differentials.
Therefore, in this way we get the correct global spectral curve for some non-semisimple
points of Frobenius manifolds. In this thesis we use this logic to give an easy alternative
proof for the correspondence between the r-spin Witten class and the A, singularity.

So, the main focus of this thesis is the following question: how to go from a
cohomological field theory to a global spectral curve and vice versa and when it is
possible? The answer that we give is very general but not exhaustive. We identify
sufficient conditions that guarantee that some particular ways of direct and reverse
transition work. This results in plenty of interesting applications.

1.2 Outline

In this section I present the main results of my thesis.

1.2.1 Dubrovin’s superpotential as a global spectral curve

In Chapter 2 we start from a cohomological field theory and (under some assumptions)
construct the corresponding global spectral curve. We do this using Dubrovin’s
construction of a superpotential (see Section 2.2.4). Dubrovin’s superpotential is a
particular case of a more general Landau-Ginzburg superpotential (see Section 2.2.2).

In the most interesting examples the Landau-Ginzburg (LG) superpotential is a
family of functions from a ball around origin in C™ to C, such that one function in the
family has isolated degenerate singularity at the origin and for the other functions in
the family this singularity is resolved. An LG superpotential can be used to define
the structure of Frobenius manifold on the space of deformation parameters of the
singularity. The structure constants and the metric of the Frobenius manifold are
given by certain integrals, in the simplest examples by the residues at the critical
points of the superpotential.

Suppose we are given a Frobenius manifold. A natural question would be: can we
interpret this manifold as the space of deformations of some 1-dimensional singularity?
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Dubrovin [28] answers this question by explicitly constructing a family of curves
D, = D(1), parametrized by the semisimple points 7 of the Frobenius manifold,
equipped with two meromorphic functions, A, and p, and showing that it satisfies all
the properties of an LG superpotential. His construction depends on some choices,
which we fix in this chapter in some particular way.

The main results of this chapter, Theorems 2.5.1 and 2.6.1, are devoted to proving
that topological recursion applied to

Z:Drv I:A‘ra Y = Pr,

and some choice of B gives, under the correspondence from [37], exactly the CohFT
we started with.

One of the main tools in the proofs of Theorems 2.5.1 and 2.6.1 is the identification
result of Dunin-Barkowski et al. [37]. The local spectral curve that is obtained from a
CohFT by their procedure is not arbitrary: there is a system of consistency equations
on z, y and B. Our main task is, therefore, to show that A, p, and an appropriately
chosen B satisfy these constraints. Here we give a brief outline of the proof.

The identification of x and A up to some topological properties is the starting
point since the CohFT is based on a vector space formally spanned by the zeros of
dz, respectively the zeros of d\. On the side of topological recursion there is one
requirement that we need, namely we have to assume that there is exactly one critical
point on D, over each critical value of x = A, . This gives a restriction on the possible
choices of analytic continuation in Dubrovin’s superpotential.

The relation of y with structure constants in the Frobenius manifold required in
[37] leads to an identification of y = p,. This theorem (Theorem 2.3.1) is heavily
based on the computations done by Dubrovin in [28]. Next we need to find a good
choice of B that will make either theorem work. In genus zero we find that the unique
possible Bergman kernel B satisfies the conditions required by [37] which we present
in a form that can be checked (or used as a condition) for the superpotentials. This is
Theorem 2.4.1 and its corollaries. It allows us to conclude that topological recursion
applied to the superpotential produces some CohFT and it remains to prove that this
CohFT is the one associated to the Frobenius manifold defined by the superpotential.
We show that in fact it is sufficient to know that we get homogeneous CohFT from the
Bergman kernel — then the correct CohFT is reproduced automatically. This leads to
a general theorem that Dubrovin’s construction indeed gives the right global spectral
curve for a given CohFT, provided it results in genus 0 spectral curve (Theorem 2.5.1).
This theorem is key to several important examples that we discuss in this chapter as
well (we mention these examples in the list of applications in Section 2.1.2).

In higher genera, the Bergman kernel is not canonical and we need to choose the
correct one. In order to have a suitable shape of the Laplace transform of the Bergman
kernel (required for correspondence with Givental graphs), we have to use the Bergman
kernel normalized on a basis of A-cycles for some Torelli marking, using results of
Eynard [46]. We show, using the Rauch variational formulae, that the homogeneity
property is also satisfied in this case, and this allows us to make a general statement
about the correspondence of a global spectral curve to a cohomological field theory in
any genus (Theorem 2.6.1). This is a conditional statement requiring Theorem 2.4.1

8
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that needs to be checked in particular examples. As an application, we work out an
elliptic example in detail (Theorem 2.9.2).

Finally, we develop a theory for the case when the extra assumptions on the choice
of analytic continuation of Dubrovin’s superpotential are dropped. In this case we
have to generalize the setup of topological recursion in order to take into account the
action of the reflection group associated with Frobenius manifold. The correspondence
that we obtain in this case (Theorem 2.10.6) is parallel to the ideas of Milanov [73].

1.2.2 Primary Invariants of Hurwitz Frobenius Manifolds

In Chapter 3 we start with a global spectral curve. We identify sufficient set of
conditions under which this curve corresponds to a CohF'T and, moreover, this CohFT
has a separate geometric meaning.

We observe that the map x from the compact curve ¥ to P! defines a point in
a Hurwitz space H,,, — the space of equivalence classes of meromorphic maps from
genus g surface to P!, with prescribed ramification profile y over infinity. Dubrovin
27] showed that the cover H,,, of this space, where we additionally fix the basis of A-
and B-cycles on the curve, naturally carries the structure of a Frobenius manifold.

The main theorem of this chapter, Theorem 3.1.6, states that it is this, natural,
CohFT that agrees with the global spectral curve we started with, provided some
conditions hold true. Namely, the Bergman kernel B should be a unique Bergman
kernel normalized on the set of chosen A-cycles and the differential of the function y
should be the primary differential on the curve, meaning it should agree with B and x
in some specific way.

Furthermore, we show that correlators of this CohFT can be extracted from the
multidifferentials w,,. Theorem 3.1.4 gives explicit formula for the primary invariants,
which are the CohFT correlators without insertions of v-classes, in terms of multiple
integrations of w, , over the contours from some canonical set of contours, associated
to H,,. Moreover, in Proposition 3.4.12 we state that correlators with insertions of
1-classes can also be extracted from correlation multidifferentials with help of multiple
integration over some contours, though we do not give an explicit formula for these
contours.

The results of this chapter also hold in a bit more general setting. The Bergman
kernel B need not be the canonically normalized one. It is sufficient that it belongs to
Shramchenko’s g x g-parametric family of deformed Bergman kernels [88].

1.2.3 Chiodo formulas for the r-th roots and topological re-
cursion

In Chapter 4 we establish the correspondence between cohomological field theory and
global spectral curve for a particular case: the system of cohomology classes defined
by Chiodo in [19]. This system of classes depends on two parameters r and s, which
are non-negative integers.

This particular CohFT is important in applications. It is the main building block
in the proof of the Pixton conjecture by Janda et al. [62]. Moreover, at particular
values of parameters r and s Chiodo’s CohFT is conjectured to be related to the

9
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so-called Hurwitz numbers with completed cycles. Completed cycles are one of the
central objects in the theory of shifted symmetric functions (see, e.g. [81]). Therefore,
it is interesting to look at the Chiodo CohFT from different angles, in particular, from
the point of view of the corresponding global spectral curve.

The main theorem of this chapter, Theorem 4.4.6, states that Chiodo’s CohFT is
related to the following global spectral curve ¥ = P!

J— '
x=logz— 2",

y= zsé » (1.2.7)
B =5y

In the case s = 1 our theorem reduces to the theorem of Shadrin-Spitz-Zvonkine [87]
about the equivalence of the r-spin Bouchard-Marino and the r-spin ELSV conjectures.

In the case s = r the topological recursion on the spectral curve is known to produce
generating functions for the so-called orbifold Hurwitz numbers [34]. Using our theorem,
we obtain an independent proof of this statement. Namely, we show that at these values
of parameters Chiodo’s class is equal to the class used in the Johnson-Pandharipande-
Tseng formula (the ELSV-type formula for the orbifold Hurwitz numbers). Since
Chiodo’s CohFT is related to the desired global spectral curve, this implies the
topological recursion for the orbifold Hurwitz numbers.

1.2.4 Quantum spectral curve for the Gromov-Witten theory
of P!

In Chapter 5 we prove that a quantum spectral curve exists for a particular cohomo-
logical field theory — the Gromov-Witten theory of the complex projective line.

A quantum spectral curve for a given cohomological field theory is a differential,
or difference, operator P(rc,h%), together with the “wave function” W(z) that is
annihilated by this operator and is assembled from the correlators of the CohFT in
some specific way (see Section 5.1).

When the quantum spectral curve exists, it gives us a guess about the global
spectral curve. Namely, by substituting h% by y in the expression for the differential
operator, we get an implicit equation P(z,y) = 0 of the global spectral curve. Then
we only need to find the correct Bergman kernel B.

It is not known, whether a quantum spectral curve exists for every CohFT and
whether it is unique when it does. However, Bouchard and Eynard [12] showed, that if
the corresponding global spectral curve is known and is plane algebraic and, moreover,
its Newton polygon has no interior points, then at least one quantum spectral curve
can be explicitly constructed.

The particular example of Gromov-Witten theory of P! is interesting, because the
global spectral curve is not algebraic: y = log z, where z is the global coordinate on
the curve. Hence, it is not covered by the general Bouchard-Eynard argument.

The main theorem of this chapter, Theorem 5.1.1, states the precise form of the
quantum curve in this case. The correct differential operator (quantization) of the
global spectral curve is simply

h

d
iz 4 et

d
dz — 1,
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that is, out of two equations z(z) and y(z) we obtain the equation f(z,y) =0 in the
most naive way and then quantize it by simply substituting y — h%. The correct wave
function W(z), which is annihilated by this differential operator, is assembled from
individual Gromov-Witten correlators in a specific way. Namely, there are logarithmic
corrections to the unstable terms (see formulas (5.1.4) and (5.1.5)). Also, there are
explicit insertions of the identity vector field (see formulas (5.1.3) and (5.1.5)).

1.2.5 Combinatorics of loop equations for branched covers of
sphere

In Chapter 6 we discuss in detail one of the combinatorial problems, that appeared
in as an application in Chapter 2 — the enumeration of hypermaps. We construct a
global spectral curve for this problem, as well as a quantum spectral curve.

The main theorem of the chapter, Theorem 6.3.8, states that certain global genus
zero spectral curve encodes the number of hypermaps (equivalence classes of covers of
P! of specific ramification type, see Section 6.2).

Theorem 6.5.1, another important theorem of the chapter, states, how the quantum
curve for this combinatorial problem looks. The quantization is extremely simple:
differential operator is obtained from equation of the spectral curve by simple sub-
stitution y — h%. The expression for the wave function ¥(x) involves logarithmic
corrections to the unstable terms, similarly to the case of Gromov-Witten theory of
the complex projective line.

In principle, since in this case the global spectral curve is plane algebraic and its
Newton polygon has no interior points, Theorem 6.5.1 follows from Theorem 6.3.8
and the argument of Bouchard-Eynard [12]. However, results presented in Chapter 6
appeared before the paper of Bouchard-Eynard, so Theorem 6.5.1 can be considered
as an important step towards their general theory.

Proofs of both Theorem 6.3.8 and Theorem 6.5.1 make heavy use of the loop
equations (6.4.1),(6.4.3). In the work of Chekhov, Eynard and Orantin [17] these loop
equations were derived by the physics argument with help of a certain formal 2-matrix
model. This argument is hard to make precise: there are convergence issues as well as
issues of analytic continuation. So, in Chapter 6 we prove loop equations (6.4.1) and
(6.4.3) directly from the cut-and-join combinatorics of the numbers of the hypermaps
(see Section 6.4.2), without the need to resort to matrix model arguments. Then, in
the proof of Theorem 6.3.8 we are able to re-use the rest of the argument of Chekhov,
Eynard and Orantin, which is completely rigorous.

References
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changes have been made to increase readability. Hence, the chapters are self-contained
and in principle can be read independently. Therefore, they sometimes introduce

!Formal remark on co-authorship, required by the Promotiereglement 2014 of the University of
Amsterdam: the authors of these papers have equally contributed to the obtained results.

11



1. Introduction

the same mathematical objects, though each one does it a bit differently, as different
aspects of these objects are needed.

e P. Dunin-Barkowski, P. Norbury, N. Orantin, A. Popolitov, S. Shadrin
Dubrovin’s superpotential as a global spectral curve
accepted for publication in J. Inst. Math. Jussieu; arXiv:1509.06954

e P. Dunin-Barkowski, P. Norbury, N. Orantin, A. Popolitov, S. Shadrin
Primary invariants of Hurwitz Frobenius manifolds
submitted; arXiv:1605.07644

e D. Lewanski, A. Popolitov, S. Shadrin, D. Zvonkine
Chiodo formulas for the r-th roots and topological recursion
accepted for publication in Lett. Math. Phys.; arXiv:1504.07439

e P. Dunin-Barkowski, M. Mulase, P. Norbury, A. Popolitov, S. Shadrin
Quantum spectral curve for the Gromov-Witten theory of CP?
accepted for publication in J. Reine Angew. Math.; arXiv:1312.5336

e P. Dunin-Barkowski, N. Orantin, A. Popolitov, S. Shadrin
Combinatorics of loop equations for branched covers of sphere
accepted for publication in Int. Math. Res. Not.; arXiv:1412.1698

12



Dubrovin’s superpotential as a global
spectral curve

Abstract

We apply the spectral curve topological recursion to Dubrovin’s universal Landau-
Ginzburg superpotential associated to a semi-simple point of any conformal Frobenius
manifold. We show that under some conditions the expansion of the correlation
differentials reproduces the cohomological field theory associated with the same point
of the initial Frobenius manifold.

2.1 Introduction

2.1.1 The goal

A semi-simple (conformal) Frobenius manifold is an important algebro-geometric
structure, introduced by Dubrovin, that appears naturally in a circle of questions
related to classical mirror symmetry. Closely related to a semi-simple conformal
Frobenius manifold is a cohomological field theory, that is, a system of cohomology
classes on the moduli space of stable curves introduced by Kontsevich and Manin in
order to capture the main universal properties of Gromov-Witten theory. Via Givental-
Teleman theory, these two concepts (semi-simple conformal Frobenius manifolds and
semi-simple homogeneous cohomological field theories) are essentially equivalent.
The theory of Landau-Ginzburg superpotentials associates to a Riemann surface
(or a family of Riemann surfaces) equipped with a meromorphic function and a
meromorphic differential 1-form (or a meromorphic function whose differential is
this 1-form) structure that is essentially equivalent to the concept of a semi-simple
Frobenius manifold, after work of Dubrovin [27]. It is part of a more general theory of
Landau-Ginzburg models that exists in any dimension, not necessarily on a curve.
The theory of spectral curve topological recursion, initially developed for compu-
tation of the correlation differentials of matrix models, uses a very similar input: a
Riemann surface (or a family of Riemann surfaces) equipped with a meromorphic
function, a meromorphic differential 1-form (or a meromorphic function, whose dif-
ferential is this 1-form), and a symmetric bi-differential. It produces a system of
symmetric differentials on the cartesian powers of the underlying Riemann surface.

13



2. Dubrovin's superpotential as a global spectral curve

Under some extra conditions these symmetric differentials can be expressed in terms
of the correlators of a cohomological field theory.

To summarize, we have the following system of relations:

semi-simple conformal > Landau-Ginzburg
Frobenius manifolds (FM) superpotentials (LG)
|3 (2.1.1)
semi-simple homogeneous spectral curve

cohomological field theories (CohFT) < topological recursion (TR)

We give precise definitions of all geometric structures involved in this diagram and
explain the precise statements about their relations in Section 2.2. In all cases the
rigorous formulation of these correspondences requires extra conditions and is not a one-
to-one correspondence or an equivalence of categories. It is more like a dictionary that
allows one to translate from one language to another under various extra assumptions.

The theory of Landau-Ginzburg superpotentials and spectral curve topological
recursion use almost the same input data, namely a Riemann surface equipped with a
meromorphic function and a meromorphic differential 1-form. This input data is used
in a completely different way in these two theories, nevertheless the natural question is
whether one can add a vertical arrow so that the diagram commutes. More explicitly,
if a Landau-Ginzburg superpotential and spectral curve topological recursion produce
the same Frobenius manifold/CohFT structure on the left hand side of this diagram,
do we expect that the input data for the LG model and TR to be the same?

This chapter is devoted to an affirmative answer to this question. As in the case
of all other correspondences in this diagram, it is not an equivalence of categories or
one-to-one correspondence, but rather a system of general statements that allows one
to connect the input data of LG and TR in a large class of examples.

2.1.2 Contributions to the theory of topological recursion

In order to establish a correspondence with the Landau-Ginzburg theory and to work
out several basic examples, we obtain a number of results that are of independent
interest for the theory of topological recursion, and here we collect them all.

Global spectral curve for the CohFT-TR correspondence

One way to present our main result is the following. The correspondence between
CohFT and TR obtained in [37] uses a local version of topological recursion, that
is when the spectral curve is just a union of disks. An important open question is
whether we can glue all these open disks into a global spectral curve. This would
allow one to use a variety of analytical methods developed in the theory of topological
recursion that are applicable only in the case of a global curve [50, 52]. The main
result of this chapter is an affirmative answer to this question, that is, for a large class
of CohF'Ts we can indeed claim the existence of a global spectral curve. In this form
this question was also considered by Milanov for singularity theory [73].
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Bouchard-Eynard recursion locally

Topological recursion requires the spectral curve to have simple critical points. There
is an extension of the theory of topological recursion for the curves with higher order
critical points, due to Bouchard and Eynard [11]. A fundamental question is to identify
the correlation functions of their generalized recursion in the elementary case of one
point of order r + 1. Bouchard and Eynard have announced [10] a theorem that
in this case the correlators are expanded in terms of the string tau-function of the
r-Gelfand-Dickey hierarchy (or, equivalently, in terms of the intersection theory of the
Witten top Chern class on the moduli space of r-spin structures, [95, 53]).

An application of the main theorem of this chapter, i.e. where topological recursion
applied to Dubrovin’s construction of a superpotential produces the same CohFT is
the case of the A, singularity. Careful analysis of this example in its limit at the zero
point implies immediately the theorem of Bouchard and Eynard.

Enumeration of hypermaps

Each time a particular combinatorial problem is solved in terms of topological recursion,
there occurs a natural question whether this leads to an interesting CohFT inside this
combinatorial problem, and, as a consequence, to an interesting ELSV-type formula for
it. This logic is explained in detail in [34, Introduction]. In particular, the topological
recursion was proved in [36] for the enumeration of hypermaps, see also [26].

In the case of hypermaps the correspondence between LG and TR gives us immedi-
ately a full description of the Frobenius manifold structure behind this combinatorial
problem; it is a particular simple example of a so-called Hurwitz Frobenius manifold.
In the simplest case one can say that the Frobenius manifold with the prepotential
13ty /2 + t2log ty resolves, via its associated CohFT and the ELSV-type formula, the
combinatorial problem known, in different versions, as generalized Catalan numbers,
discrete volumes of moduli spaces, or discrete surfaces [4, 32, 52, 79]. This explains,
in a conceptual way, some observations already made in [8, 54].

Bergman kernel and Torelli marking

Another important application of this chapter is to prove a form of independence
of the output of topological recursion from the choice of the bidifferential B for a
global spectral curve. Topological recursion depends on B and there are many ways
to normalize B depending on a choice of Torelli marking on the Riemann surface. We
show that for a global spectral curve satisfying a compatibility condition, topological
recursion gives rise to a so-called homogeneous CohFT with flat identity independent
of the choice of normalisation of B.

2.1.3 Guide to the chapter

In Section 2.2 we give a full description of all concepts mentioned in Diagram (2.1.1)
and explain the known relations between them.

In Section 2.3 we prove that Dubrovin’s superpotential always gives the right
y-function for the topological recursion. Then in Section 2.4 we revisit in geometric
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terms the necessary compatibility conditions between y and B on the spectral curve
from [37]. This allows us to prove the two main theorems of this chapter. Namely, in
Section 2.5 we prove the LG-TR correspondence in the genus 0 case, and in Section 2.6
we generalize this result to higher genera.

Then we discuss several important series of examples, where Dubrovin’s superpo-
tential can be computed explicitly. In Section 2.7 we discuss A,, singularities, with
an application to the Bouchard-Eynard generalisation of topological recursion. In
Section 2.8 we present in detail a computation for a special class of Hurwitz Frobenius
manifolds, corresponding to the case of meromorphic functions on the Riemann sphere
with two poles, one of which is of order 1. In this case the corresponding topological
recursion resolves enumeration of hypermaps. In Section 2.9 we describe a higher
genera case, namely, we consider the case of elliptic curve, where the superpotential is
given by the Weierstrass function.

Section 2.10 is devoted to a general theory where we use a universal construction
of analytic continuation instead of the rather particular constructions of Sections 2.7,
2.8, and 2.9. This essentially reproduces, in our context, the main ideas of the work of
Milanov [73] initially applied by him to the case of simple singularities.

In Section 2.11 we explicitly construct global spectral curves for two rank 2 CohFTs.
We need to vary the construction slightly due to degeneracy of the Gauss-Manin system.
These examples satisfy the conditions of Theorem 2.6.1 and hence topological recursion
produces the CohFT associated to the Frobenius manifold.

2.2 Recollection of basic facts

The purpose of this Section is to recall all necessary definitions and facts on Frobenius
manifold, moduli spaces of curves, cohomological field theories, Dubrovin’s universal
construction of Landau-Ginburg superpotentials, and topological recursion.

2.2.1 Frobenius manifolds

In this Section we recall, following [27, 28], the definition of Frobenius manifold and
recollect some basic facts about its structures.

Consider a function F(t!,...,¢") defined on a ball B C C" and a constant inner
product n*? such that the triple derivatives of F with one shifted index,

., O*F

. Ay
C’aﬂ. 8t“8tﬂ3t)‘n , (2.2.2)

are the structure constants of a commutative associative Frobenius algebra with the
scalar product given by 7.s. We can think about this structure as defined on the
tangent bundle of B C C" (and we denote the corresponding multiplication of vector
field by -), and we require that 0, is the unit of the algebra in each fiber.

Consider a vector field E :=Y"_ ((1 — ga)t* + 74)0;a, here ¢, and r, are some

constants, « = 1,...,n. We require that ¢; = 0 and r, # 0 only in the case 1 — g, = 0.
We require that there exists a constant d such that E.F — (3 — d)F is a polynomial of
order at most 2 in t',... "
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The triple (F, 7, E) that satisfies all conditions above gives us the structure of a
(conformal) Frobenius manifold of rank n and conformal dimension d. The function F
is called the prepotential; the vector field E is called the Euler vector field. Of course,
there are coordinate-free descriptions of this structure as well, we refer to [27, 28] for
details.

Two important structures associated to Frobenius manifolds are the second metric
7 on TB and the extended flat connection V on B x C. The second metric 5/ on TB
is defined in the following way. The first metric n can be considered as an isomorphism
between n: TB — T*B. For any two vector fields 0" and 0" we define 7/(9’, 9") to be
EF (8 -9"). The extended connection V is defined as

Vad' = V3 + 203" (2.2.3)
V. == 0; (2.2.4)
V.0, = 0; (2.2.5)
Vo d = 0.(0)+E-0 — %ua', (2.2.6)

where V7 is the Levi-Civita connection of 7, and the endomorphism p: TB — TB is
defined by

w(v) :==(1—-d/2)v—VIE. (2.2.7)

In the flat basis, u = diag(p, . . ., u,) for constants u, = g, — d/2.

In this chapter we only consider semi-simple Frobenius manifolds, that is, we
require that the algebra structure on an open subset B** C B is semi-simple. In
a neighborhood of a semi-simple point we have a system of canonical coordinates

Ui, ..., Uy, defined up to permutations, such that the vector fields 9,,, i = 1,...,n,
are the idempotents of the algebra product, and the Euler vector field has the form
E= Z?:l uia“z'

The geometric structure that is equivalent to the notion of conformal Frobenius
manifolds can be described in canonical coordinates [27]. The canonical coordinate
vector fields 0,, are orthogonal but not orthonormal. We can normalize them to
produce a so-called normalized canonical frame in each tangent space, that is, if
A7t =1(0y;, y,), then the orthonormal basis is given by A;/Qaui, i=1,...,n. By ¥
we denote the transition matrix from the flat basis to the normalized canonical one.
Hence the columns of ¥ are given by the coordinates of the flat vectors 0y, in the
basis A} / Qﬁui, with first column ¥, = A, 12 representing the unit vector. We have
the relation

E-U=Uy

where E- is differentiation with respect to E.

Define the matrix V' to be the endomorphism p with respect to the normalized
canonical basis, hence V = W - diag(ji1, ..., i) - ¥~F and V + VT = 0. Covariant
constancy of u implies that V' satisfies

dV = [V,d¥ - U~
Define V; = 9,,¥ - U1 so YhuVi=V.
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Remark 2.2.1. Note that Givental [56] (and [37]) uses a different convention for matrices
than what is used here. Givental’s convention uses a right action of matrices on vectors
which is the transpose of the convention we use here.

2.2.2 Superpotential

A convenient way to describe a Frobenius structure is in terms of a so-called Landau-
Ginzburg superpotential. We recall the definition from [27, 28]. A superpotential is a
function A(p, us, ..., u,) of a variable p € D in some domain D that depends on points
(u1,...,un) € By C B* in a ball in the semisimple part of the Frobenius manifold,
and satisfies the following properties:

1. The critical values of A as a function on D are uq, ..., Uy,.
2. The critical points are non-degenerate.

3. If there are several critical points in the inverse image A~!(u;), then the Hessians
of A at these points must coincide.

4. For any choice pq,...,p, € D of the critical preimages of uy,...,u, (that is,
A(piyuay ..., uy,) = u;) and for any choice of the vector fields ', 9", and 9" on
By we have:

J'(Adp)d" (Ndp)
n(d,0") = E Res ————= 2.2.8
< popi d,A 7 ( )
' (log Adp)9” (log Adp)
O = 2.2.
(9.9 Ziipz d,log A : (229)
&' (Adp)d” (Adp)d" (\dp)
/ . /! /// — 221
ng - o%.8") Z o dp d,\ (2.2.10)

where 0'(Adp) gives the action of the vector field by derivation in the parameters
w;. In particular, the map 9 — 9'(Adp) from vector fields on B to meromorphic
differentials on D quotiented out by dyA is injective.

5. There exist some cycles Zy, ..., Z, in D such that the integrals

1 A
— e*dp, a=1,...,n (2.2.11)
V7 )z,
converge and give a non-degenerate system of flat coordinates for V.
In these terms, the identity vector field dy of the Frobenius manifold is represented
by dp, i.e. 9y(Adp) = dp. Indeed, since n(dy - 9,9") = n(9,d’) for all vector fields 9, &,

then non-degeneracy of 7 implies that 0y - 9 = 0 for all 9. The Euler vector field is
represented in these terms by Adp, i.e. E(A\dp) = Adp.
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2.2.3 Cohomological field theories

In this Section we recall all basic definitions that are necessary to introduce the concept
of a cohomological field theory. It is an algebraic structure on a given vector space
that captures the main properties of Gromov-Witten theories, and there is a natural
group action on these structures, due to Givental. The main sources for this Section
are [67, 91, 56, 85, 82].

A stable curve of genus g with k£ marked points is a possibly reducible curve with
nodal singularities, of arithmetic genus g and & non-singular marked points, such that
the group of its automorphisms is finite. By M, we denote the moduli space of
stable curves of genus g with k ordered marked points. There are natural line bundles
L; = Mgy, i =1,..., k, whose fiber of the point [(Cy,z1,...,x1)] € My represented
by the curve Cy with the marked points xy, ...,z € Cy is given by T;7 C;. The first
Chern class of L; is denoted by v; € HZ(Mg,k, C).

There are a number of natural maps between the moduli spaces. By 7: M, 11 —
M, ;. we denote the map that forgets the last marked point and stabilizes the curve.
By 0: My, k1 X Mgy ip1 — Mgy we denote the map that sews the last marked
points on the source curves into a node on the target curve, g = g1 + g2, k = k1 + ks.
By p: ﬂg,l,m — M‘q,k we denote the map that sews the two last marked points on
the source curve into a node on the target curve.

Consider a vector space V = Cey, . .., €,) with a scalar product . A cohomological
field theory with the target (V,n) is a system of cohomology classes ay;: VEF —

H*(Mgy, C) satisfying the following conditions:

1. The form gy, g > 0, k > 0, 29 — 2+ k > 0, is invariant under the action of Sy
that simultaneously reshuffle V®* and relabel the marked points on the curves

in ﬂg,k.

2. We have:
gk = e1 b agr; (2.2.12)
o agri1 = n"ea @ eg b g, k10, k115 (2.2.13)
pragr = n*Pe, ® eg - g1 pto- (2.2.14)

Here by - we denote the substitution of the vector e; at the (k + 1)-st argument
in the first equation, and the substitution of the bivector corresponding to the
scalar product at the marked points that are sewed into the nodes under the
maps o and p.

Note that if all classes {a,} are of degree 0, then the structure that we get is
called a topological field theory (TFT), and it is equivalent to a Frobenius algebra
structure on (V, 7).

Correlators, or ancestor invariants, of the CohFT are defined by:

Js

g:k

k
agsk(€V17 ~~~7euk) : Hl/}]m] (2215)
j=1

for m; € N, {e,, yo1,.n} C H.
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2. Dubrovin's superpotential as a global spectral curve

There is a group action on CohFT's with a fixed target space (V, 7). The group is the
group of matrices R(z) € End(V)® C[[z]] such that R = I4+0O(z) and R(z)R*(—z2) =L
The action is defined as follows. The classes {]  } = R.{a,} are defined as the sums
over so-called stable graphs.

A stable graph is a graph with a set of vertices V', a set of edges F, and a set of
unbounded edges (leaves) L U D. The vertices are labeled by non-negative integers,
that is, we have a map V' — Zso, v — g(v). The stability condition means that for
each vertex v of valency k(v) we require 2g(v) — 2 + k(v) > 0. We say that the stable
graph T' has genus g and k leaves if b;(I') + > ., g(v) = g and |L| = k. So, we allow
an arbitrary number of unbounded leaves in D (these leaves are called dilaton leaves),
that is, the set of stable graphs of genus g with k leaves is infinite. The leaves in L
are labeled from 1 to k.

A stable graph I' gives us a map fr from the Cartesian product of the spaces
ﬂg(v)ﬂk(w, veV, to ﬂg,k. Namely, we associate to each vertex v a curve of genus
g(v), and to all attached half-edges we associate the marked points on the curve. Then
we first apply the maps 7 on each space Mg(v),k(v)u v € V, in order to forget all marked
points corresponding to the dilaton leaves, and then we apply a sequence of maps
o and p, indexed by the edges E of the graph, such that each edge determines the
sewing of the corresponding curves.

We associate to a stable graph I' a map from V& to ®veVH*(mg(U),k(v), C). That
is, a map from e,, @ - -+ ® €4, to the following class. We decorate by R~1(1))e,, the
leaf labeled by i. We decorate each dilaton leaf by —(I — R7(¢)))e;. We decorate
each edge by

I I-— -1 / -1 /"
( = wa(f 3;? R )> 1*eq @ eg, (2.2.16)
where by ¢’ and 9" we denote the 1y-classes associated with the marked points that
correspond to the ends of the edge. Each vertex v is decorated by cg(y) k(v considered
as an element of (V*)®*®) @ H*(M () k), C). We contract the tensor product of
the vectors corresponding to edges and leaves with the tensor product of covectors
corresponding to the vertices according to the graph. This gives us a class ar in

®UEVH*(M9(U)J€(’U>7 (C) .

By definition, the class aj , is given by » .(fr).ar, where the sum is taken over all
stable graphs of genus g with k leaves. Though there is an infinite number of graphs
like that, one can check that only a finite number of them can contribute to this sum
for dimensional reasons. It is indeed a group action on CohFTs, see e. g. [82].

There is a canonical way to associate a CohF'T to a semi-simple point of a Frobenius
manifold. Namely, we associate to a point b € B*® of a Frobenius manifold the
topological field theory {oy} with values in (T3B,ny). The equation for the flat
sections of the connection V has essential singularity at z = co. The asymptotic
fundamental solution near z = oo can be represented in a neighborhood of b as
U1R(z71)e*Y, where all involved matrices are functions on B*, and the matrix R
satisfies all properties required in the definition of the group action. We can construct a
CohFT applying the group element R(z), to the topological field theory on (7B, nlp).
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2.2. Recollection of basic facts

2.2.4 Dubrovin’s superpotential

In this Section we recall a construction of a particular Landau-Ginzburg superpotential
due to Dubrovin [28].

Given a manifold M equipped with a flat metric, a locally defined function ¢ is a
flat coordinate at p € M, if

(i) dt(p) # 0 and
(ii) dt is covariantly constant with respect to to the Levi-Civita connection.

Condition (i) guarantees that ¢ is a local coordinate, i.e. we can find a coordinate
system (t!,...,t") with t! = ¢t and an open neighbourhood B C M of p such that
(t',...,t") : B— By C R" is a homeomorphism onto an open set By of R". Condition
(ii), which uses the induced connection on the cotangent bundle, guarantees that
(t',...,t") can be chosen so that the metric is represented by a constant matrix with
respect to (t1,....t").

We now consider a flat coordinate p(A, «) with respect to the pencil of metrics ' — .
We study covariant constancy of dp via its gradient vector field ¢p(A, u) = Vp(\, u)
defined by

(1" =) (¢,-) = dp.

The Levi-Civita connection of ' with respect to flat coordinates (for 7) is given in [28,
Equation (5.5)]). This leads to the following system of equations for vector fields ¢
expressed in canonical coordinates on a Frobenius manifold (the extended Gauss-Manin
system [28, Equations (5.31) and (5.32)]):

dp=—(U - N)1dU - ) (;H/) ¢+dv -V, (2.217)

Here d = dy + d, is the total de Rham differential; U = diag(uy, ..., u,) and V and ¥

are naturally associated to a Frobenius manifold as defined in Section 2.2.1. Abusing

notation, we use A for the matrix of multiplication by A. So (2.2.17) encodes the system

of PDEs giving covariant constancy of ¢(X, u) = Vp(A, w) in directions 9/9\, 9/0u;.
One can retrieve p from its gradient vector field via

P\ u) = %J(U _ UL (2.2.18)

This is proved in [29, Section 2].

This equation has poles at A = uyq,...,u, on the A-plane, so we choose parallel
cuts Ly, ..., L, from the points u; to infinity (we assume that u; ¢ L; for i # j). On
C\U?_, L; we choose branches of functions v/u;, — A\, i = 1,...,n. We denote by R; the
monodromy of the space of solutions of Equation (2.2.17) corresponding to following
a small loop around u;.

Dubrovin proves that there exists a unique system of solutions ¢, ..., ¢™ to
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2. Dubrovin's superpotential as a global spectral curve

equation (2.2.17) satisfying the following properties:

RoY) = —¢V), j=1...,n; (22.19)
- 1
¢§]) _ \/7/\ + O(\/m) for A — u;, ji=1,...,m (2.2.20)
U; —
o9 = \J/u; — X-O(1) for A\ — uj, a#Fjiaj=1...,n (2221
R;¢® = ¢ — 2G W), L,i=1,...,n  (2.222)

where G¥ := (¢)T(U — A\)¢Y) is a bilinear form that doesn’t depend on A\ and
Upy ooy Up.

Assume that G¥ is non-degenerate and denote by G;; the inverse matrix. Note
that non-degeneracy of G¥ is a property of the Frobenius manifold M which holds
generically. In fact the proof of Theorem 2.3.1 does not require the non-degeneracy
of G¥—see Remark 2.3.2. Consider a special solution of Equation (2.2.17) given by
¢ = Z?,j:1 Gij¢>(j). The main property of this solution is that ¢ has the local behavior

1

¢; = ——=~+ O(1) for A — uy, ji=1...,m (2.2.23)
U/j—)\
o =/ u; — A-O(1) for X — uy, a#ja,j=1...,n. (2.2.24)

We consider the function p = p(A, u) given by the formula

V2

- d¢T(U — \)WL. (2.2.25)

p(A u) =
This function is analytic in C\ U™, L;, with a regular singularity at infinity, and its
local behavior for A — wu; is given by

p(Au) = plug, u) + ¥ 34/2(u; — A) + Ou; — N, i=1,...,n. (2.2.26)

The 1-form dyp has at most a finite number of zeros. We denote them by r1,...,ry
and we assume that they do not belong to the cuts L;, i = 1,...,n. Let D be the
image of C\ U, L; under the map p(\, «). This domain has a boundary given by the
unfolding of the cuts L;, i = 1,...,n. The inverse function A = A(p, u) is a multivalued
function on D. Consider the points p(r.,u), ¢ =1,..., N. We glue a finite number of
copies of D along the cuts from the points p(r.,u) to infinity, ¢ = 1,..., N. In this
way we obtain a domain D, where the function ) is single-valued.

We analytically continue the function A on D beyond the boundary. This procedure
is not unique; for instance, we can glue several copies of D along the boundaries that
are the images of the same cuts on the A-plane. In any case, we can perform this
construction uniformly over a small ball in the space of parameters ug, ..., u,. This
way we obtain a (not necessarily compact) Riemann surface D, with a function
A= Ap,u): D — C (by p we denote some local coordinate on D).

Dubrovin proves in [28] that the family of functions A(p, u) defined this way is a
superpotential of the Frobenius manifold which was the input of this construction.
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2.2. Recollection of basic facts

2.2.5 Spectral curve topological recursion

In this Section, we recall the basic set-up of the topological recursion procedure, which
originated in the computation of the correlation functions of matrix models [50, 40].

Consider a Riemann surface ¥ with meromorphic functions z,y: ¥ — C such that
z has a finite number of critical points, ci,...,c,, and y is holomorphic near these
points with a non-vanishing derivative. Let B be a symmetric bi-differential on ¥ x X,
with a double pole on the diagonal, the double residue equal to 1, and no further
singularities.

We define a sequence of symmetric n-forms wy (21, ..., 2;) on Y*k known as
correlation differentials for the spectral curve, by the following recursion:

wo,1(2) = y(2)dz(z); (2.2.27)

wo2(21, 22) = B(z1, 22); (2.2.28)

Wa st 1(20, 21, - - - 21) 1= (2.2.29)

n oi(2)
f w02(°720) -
Res 2 . @ z,0:(2)|z1, .-, 2k),
2 R 50 0) — o) o B )

where o; is the deck transformation for the function x near the point ¢;, i = 1,...,n,
and @y o is defined by the following formula:

~ ron L /i
Ggok(2, 2" 21, 2) =g e (2, 27 21, )+ (2.2.30)
! "
E Wy, || +1 (Z ) ZI1)wg2,|12\+1 (Z ; Zfz)‘
91+92=9g

[1\_’12:{1,...,k}

291 —1+|1;|>0

2g2—1+|[2‘20

Here we denote by zr the sequence z;,, ..., 2, for I = {in, .-, 4}

Remark 2.2.2. In the global recursion we also allow y to be the (multivalued) primitive
of a differential w on 3. The ambiguity in y consists of periods and residues of w and
hence the ambiguity is locally constant. Since y appears in the recursion only via
y(0i(2)) — y(z) (and there are no poles of w at the zeros of dz) the locally constant
ambiguity disappears and the recursion is well-defined.

Remark 2.2.3. A local version of the recursion was defined in [46] as follows. Consider
some small neighborhoods U; C ¥ of the points ¢;. If we look at just the restrictions of
wg r to the products of these disks, U;, x --- x U;,, we can still proceed by topological
recursion, using as an input the restrictions of wg; to U;, i = 1,...,n, and wys to
U;xUj, 4,5 =1,...,n. Indeed, Equation (2.2.29) uses only local data for the recursion.

Remark 2.2.4. There is a variation of the usual (global) topological recursion that will
also be important in this chapter, especially in Section 2.10. Namely, we can assume
that there is more than one critical point in the fiber of the function x over a critical
value u;. Then we require that the local behavior of the function = near these points
is the same (that is, the Hessians are the same), and in this case it is still possible to
define a version of topological recursion, see Section 2.10. Note that this more general
critical behavior of the function z is exactly the one that is allowed for the function A
in the definition of the Landau-Ginzburg superpotential of a Frobenius manifold in
Section 2.2.1.
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2. Dubrovin's superpotential as a global spectral curve

2.2.6 Spectral curve topological recursion via CohFT's

In this Section we recall a relation of the (local version of) spectral curve topological
recursion to the Givental formulae for cohomological field theories obtained in [37]. A
more convenient exposition is given in [70], so we follow the presentation given there.

We choose the local coordinates w; in the domains U; such that z|y, = —w?/2+xz(c;),
i =1,...,n. The identification with the data of a CohFT then goes as follows:

~1dy

AE_ 0. 2.2.31
G (2231)
1y 1 [* B(w;,w,) wj)—a(c;

RL(c-1Y — / i Wi (@) —a(e)))C. 2.2.32
(C )z 277( o dwz w;=0 ¢ 7 ( )
Rt = Y8 ‘/ dy(w;) - el re)S, 2.2.33

SRt = 7 [l (22.33)

Note that Equation (2.2.31) is in fact a consequence of Equation (2.2.33).
There is an extra condition on the bi-differential B that can be formulated as a
requirement on decomposition of its Laplace transform as

VQ@’ / / By, ;)@= () (e, )G (2.2.34)

— Ekz:l 1 )/c (CZ )k
4;147451
This assumption is always satisfied if the curve is compact and the differential dx is

meromorphic. This uses a general finite decomposition for B(p, ¢) proven by Eynard
in Appendix B of [46] together with (2.2.32).
1

This data (the constants A; 2 and the matrix R~1(¢™!)?) determine for us a semi-
simple CohFT {a,;} with an n-dimensional space of primary fields V := (ey, ..., e,).
The differentials wg; can be written in terms of the auxiliary functions

e = [ )

dwi

(2.2.35)

w;=0
as

: d d\% .
Wok = Z/ g k(ei - 7eik)H1/)jjd<<dI> 5) (2.2.36)
j=1

DL geeny Tk
dy,..,dy

(These kind of formulas are typically of ELSV-type, see [34] for explanation.) In terms
of the underlying Frobenius manifold structure, the basis ey, ..., e, corresponds to the
normalized canonical basis.

2.3 Superpotential and function y

The goal of this Section is to prove that Dubrovin’s superpotential provides us with a
Riemann surface with two functions, x := A and y := p, such that the local expansion
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2.3. Superpotential and function y

of y near the critical points of x reproduces the unit vector at the point (uy, ..., u,) of
the underlying Frobenius manifold as well as the value of the matrix R~ on the unit
vector. These two local properties of y are precisely equivalent to the equations (2.2.31)
and (2.2.33).

Consider Dubrovin’s construction of a superpotential on the Riemann surface D
described in Section 2.2.4. It is associated to a Frobenius manifold with given constants

_1 )
A; % and the matrix R7'(¢™')] at the point with canonical coordinates uy, ..., u,.

Consider the points ¢; = p(u;,u) € D. These points are the critical points of the
function z := .

Theorem 2.3.1. Given a semi-simple Frobenius manifold M, and Dubrovin’s con-

struction of a superpotential D for M, define spectral curve data by > =D, x := ),

y :=p (with B yet to be defined). Then equations (2.2.31) and (2.2.33) are satisfied
1

for the constants A, ? and the matriz R=(¢™")] associated to M.

Proof. Let us prove the first statement, namely, Equation (2.2.31) (though it is a
corollary of Equation (2.2.33), it is convenient to check it directly). Indeed, Equa-
tion (2.2.26) states that near the points ¢; the function p looks like

pP=c¢ =+ \I’m(u)q/Q(uj — )\) + O(U] — )\)

Therefore, the derivative of p with respect to the local coordinate w; = 1/2(u; — A) at
_1
the point ¢; is equal to U; y(u) = A, 2.
Now we prove Equation (2.2.33). We can assume that the contour of integration
on the right hand side in Equation (2.2.33) is the image of L; under the map p. Then,

dp - eAm)¢ = A=y, (2.3.37)

\/\/2% /p(Lz) \/ﬁ/

Here we treat dp and d\ as 1-forms defined on the surface D.
Observe that from equation (2.2.17) we have

T
d¢ — 4" ( - > (U =) (2.3.38)
Therefore, using definition (2.2.25), we get
dp d V2 T _ V2 71 V2 T
N D I—d QS (U—-NV1 = m(ﬁ 3 Vvl m(i) vl (2.3.39)
gy (L N
\f T 1. d 1
= fqﬁ Y (—2+ 2) 1= _ﬁd) vl

(In this computation we used the fact that pll = (—d/2)1.)
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2. Dubrovin's superpotential as a global spectral curve

Equations (2.2.23) and (2.2.24) imply that on the contour p(L;) the vector ¢ is
equal to ¢ + E;, where E; is some holomorphic function of (u; — ). Recall also that
1

(U1), = A, 2. Therefore,

:o»—A

dp cO—ui)¢ 1 = O
e = 2 U\, 2.3.40
V2o /(L ) d Z 2/ ¢ ( )

Dubrovin shows in [28, Proof of Lemma 5.4] that the second factor in this expression
is (R71(¢71))i. Thus the right hand side of Equation (2.3.40) coincides with the left
hand side of Equation (2.2.33). This completes the proof of the Theorem. O

Remark 2.3.2. Note that we have not used the specific formula for ¢ in the proof. We
used only Equation (2.2.17) and the fact that the local expansion of ¢ for A — w;
coincides with the local expansion of ¢ up to some holomorphic non-branching term.
Thus, if we have a solution for (2.2.17) satisfying this property, we can use it directly
in the formula for the superpotential (2.2.25), bypassing the requirement for G¥ to be
non-degenerate. This will be important below in certain applications.

Remark 2.3.3. Flat identity. Topological recursion satisfies the string equation.

n

ZResy P)wg ki1 (P, P, oo k) de]z? <“Jg’“p1)p’“)) (2.3.41)

p=c; dx(p;

where the sum is over the zeros dz(c;) = 0 and d,,, is exterior derivative in the variables
p;. The operator w — Y. Res,—.,y(p)w(p) acts on differentials w. It is non-zero (and
evaluates to 1) on the auxiliary differential ; a;d&? corresponding to the flat identity
and annihilates all others. In particular

Z}J@d(( ){‘v)—o, d; > 0.

This corresponds to insertion/removal of the identity vector in ancestor invariants.

2.4 Compatibility between B and y

In this section we discuss a necessary condition on a spectral curve to be able to apply
the inverse construction of [37], i.e. so that a CohFT can be reconstructed from this
spectral curve.

More precisely, for a given data of a spectral curve (X, z,y, B) (maybe, local)
Equations (2.2.32) and (2.2.33), (2.2.31) imply some relation for z, y, and B, and
we want to state this relation in a direct geometric way rather than in terms of the
Laplace transform.

The compatibility condition below is equivalent to differentiation of the potential
of a CohFT by ¢; producing the string equation. In the language of [50], d(ydz) =
J(dy/dx)(p") B(p,p') = d(dy/dx) gives rise to variations of wy, corresponding to the
string equation (2.3.41).

Recall that x defines a local involution o; near each zero ¢; of dz, i =1,...,n.
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2.4. Compatibility between B and y

Theorem 2.4.1. If a CohFT can be reconstructed from a spectral curve (¥, z,y, B)
via the inverse construction of [37] described in Section 2.2.6, then the 1-form on ¥

n(z) =d ( z)) + Z Res —2(2)B(z, 2). (2.4.42)

is invariant under each local involution o;, i =1,. ..

Proof. The construction of [37] requires equations (2.2.31), (2.2.32), and (2.2.33) to
hold. We will prove that the 1-form (2.4.42) is invariant under each local involution
oi, 1 =1,...,n if and only if equations (2.2.31), (2.2.32), and (2.2.33) are compatible
(as equations for the unknown variables R~' and A; 2, i =1,...,n).
Recall that = = z(¢;) — w?/2 in a neighborhood of ¢;. Note that
d d dw;
Egz ﬁ(wi)B(@wl) uliifz d—uzi(wl) . di' - B(z,w;) (2.4.43)
dy dw; B(z,w;) dy
= — R i) — - —_— 7 " =
wfi dw; (w:) w; dw; dw;

B(Zv wz)
d’l,Ul'

(0) -

w;=0

An equivalent way to say that n is o;-invariant is to say that the following Laplace
transform of 7 is equal to zero:

/ n(w ) (@(wi)=z(e))S — (). (2444)

[ee]

On the other hand,
- (2(w)~2(c:) dy plaw)=a(e))C
n(w;)e el - ; =) do (2.4.45)

B Z / B(wj, w;)
dwj dw;

el@wi)—a(e)S

w;=0
Thus, Equation (2.4.44) is satisfied if and only if
dy(w;) (m(“)i)*m(Ci))C 2.4.46
Vi / i (2:4.46)

elewi)—a(e))¢

w,:O

)

Z = B(wz,w])

= dwj V2mC dw;
which is precisely the compatibility condition for Equations (2.2.31), (2.2.32), and
(2.2.33). 0

We can state (2.4.42) in simpler terms when the spectral curve is connected.

Corollary 2.4.2. For a connected spectral curve, equations (2.2.31), (2.2.32),
and (2.2.33) are compatible if and only if the 1-form defined in (2.4.42) is a pull-back
of a 1-form downstairs, i.e. n(z) = r*w.
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2. Dubrovin's superpotential as a global spectral curve

Proof. If n(z) = z*w for w a differential downstairs then it is invariant under local
involutions hence Theorem 2.4.1 applies. On a comnnected spectral curve X the
converse is also true. This follows from the more general fact that any 7(z) which is
invariant under local involutions defined around simple ramification points of z : 3 — C
is the pull-back of a differential downstairs. Take any regular point of x p € ¥ and a
path « from p to a zero b of dz. Then z(7) is covered by a path 4 C X that contains
p and p’ where x(p) = 2(p’). The local involution defined by z in a neighbourhood
of b can be analytically continued along 4. Since 7(z) is invariant under the local
involution at b, it is invariant under the continued involution above a neighbourhood
of z(y). So n(z) agrees (via identification of cotangent bundles using x ) around p
and p’. Connectedness of ¥ guarantees that the monodromy of the cover defined by
x is transitive and generated by local involutions. Hence we can find paths «; that
can be used to show that 7(z) agrees around p and any point in the fibre over z(p).
Hence n(z) = z*w locally and this pieces together to give the global result. The result
isn’t true on disconnected curves, in particular local curves, because monodromy is
not transitive. O

Let us show how this compatibility test can be used.

Proposition 2.4.3. The differential n = 0, hence Equation (2.4.44) is satisfied, when
> is a global curve equipped with a canonical bidifferential B normalized so that
fp,@_ B(p,p") =0 for a choice of A-cycles oy, and one of the following holds:

1. 3 is rational with global coordinate z chosen so that x(z = 00) = oo;

2. dy is a meromorphic differential such that % has poles only at the zeros of dzx,
for example dy is a holomorphic differential.

Note that in case (2) above, we take y to be the (multiply-defined) primitive
of a differential which is sufficient for the purposes of topological recursion—see
Remark (2.2.2).

Proof. Recall the property that for any function f on X, Resy—,f(p")B(p,p’) = df (p)
(independent of the choice of A-cycles along which B is normalized). For example, in
the rational case B = (jf(fj;? and this property is the Cauchy integral formula. Since

% has poles only at the zeros of dx

> Res 2 )Bp.p) = —Res %(p/)B(pm’) =—d (Zi(p))

hence n = 0. O

Example 2.4.4. Consider x = z+1/z, y = p(2) a polynomial. Then % = % has
poles at z = £1 and possibly = = co. Hence n(z) = dq(z) where q(z) is a polynomial
given by the principal part of dy/dx at z = oco. A non-trivial polynomial has poles only
at z = 00 so if n # 0 it cannot be the pull-back of a differential form downstairs since it
would necessarily require poles at x='(c0) = {0,00}. Hence this fails the compatibility
test, unless n(z) = 0 i.e. degp(z) < 1. If degp(z) = 1 then Equation (2.4.44) is

satisfied.
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2.5. Superpotential as a global spectral curve in genus 0 case

Z

Example 2.4.5. Consider x =2+ 1/z, y =1nz. Then % = 7 has poles only at
z = +1 so Equation (2.4.44) is satisfied.

Example 2.4.6. Since the compatibility test is a linear condition iny, v =z + 1/z,
y = Inz + cz also satisfies the compatibility test and leads to a CohF'T with a flat unit.
This was also observed in [54].

2.5 Superpotential as a global spectral curve in
genus ( case

In this Section we discuss a special case of Dubrovin’s superpotential defined in
Section 2.2.4 and show that it indeed gives a proper spectral curve for the correponding
cohomological field theory.

More precisely, we start with a homogeneous cohomological field theory. Its genus
zero part without descendants defines a Frobenius manifold that we assume to be
semi-simple. Consider Dubrovin’s construction in Section 2.2.4. Assume that this
construction goes through in such a way that

1. The form d,p has no zeros in C\ U, L; ;
2. Mp = o0) = o0

3. The resulting curve D is a compact curve of genus 0 and p is a global coordinate
on it;

4. There is exactly one critical point in each singular fiber of function .

Theorem 2.5.1. Under the conditions (1)-(4) above, the correlators of the CohFT
are related by Equation (2.2.36) to the correlation differentials obtained through spec-
tral curve topological recursion on a curve D with x = A\, y = p and B(p1,p2) =

dpidps/(p1 — p2)*.

In other words, in this case the ancestor potential of CohFT is reproduced by global
topological recursion related to Dubrovin’s superpotential. Note that this identification
happens over an open ball in the underlying Frobenius manifold.

Proof. First of all, note that since p is a global coordinate and A\(p = o0o0) = oo, this
spectral curve satisfies the compatibility condition of Theorem 2.4.1, which means
that one can reconstruct a CohFT such that Equation (2.2.36) is satisfied. We only
need to prove that this CohFT is the same as the original one.

Theorem 2.3.1 implies that we have the right function y, so, in particular, the

functions A;%(u) are correctly reproduced on an open ball in the space of parameters
Ui, ..., U,. Note that these functions determine completely the structure of Frobenius
multiplication, so we can conclude that the CohFT reconstructed from the spectral
curve data coincides with the original one in genus zero.

Higher genera correlators of a semi-simple CohF'T are determined uniquely by genus
0 data in homogeneous cases [91]. Therefore, it is sufficient to prove that the CohFT
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2. Dubrovin's superpotential as a global spectral curve

reconstructed from the spectral curve data is homogeneous. We do this by proving the
Euler equation for the corresponding R-matrix. Namely, a CohFT with an R-matrix
R(&) is homogeneous if and only if the R-matrix satisfies the Euler equation [56]:

< + Z“Z > (&u)=0 (2.5.47)

(or, equivalently, we can consider the same equation for R™1(&,u) = R(—&,u)T). Using
Equation (2.2.34), the Euler equation for the R-matrix can be rewritten as

0 0 & 0\ -
<1+£1(9&+§28§2+;ui8ui> B=0 (2.5.48)

for B = BY(&,, &) given by

e_gl Ao
B- 961 &, 2.5.49
27/ 5152 /(L /p(L ( )

Recall that we consider the case when dyp does not have zeros in C \ U}, L;, and
the Riemann surface D that we get through Dubrovin’s construction has genus 0. The
Bergman kernel B(p, p2) has the form dpidps/(p1 — p2)?.

Proposition 2.5.2. Under these conditions Equation (2.5.48) is satisfied.

We prove this proposition below. It implies that the R-matrix associated to
the Bergman kernel in this case satsifies the Euler equation, and, therefore, the
corresponding CohFT is homogeneous. This proposition completes the proof of
Theorem 2.5.1. |

For the proof of Proposition 2.5.2 we need the following technical lemma:

Lemma 2.5.3. We have:

d ~~ 0 1—d
(Ad)\ + ;u’f)u) p(Au) = TPOH“) (2.5.50)

Proof. Recall Equation (2.3.39):

dxp(A,u) = —%QSTd)\\IJ]l. (2.5.51)

In the same way we prove that
1
dup(\ 1) = —=¢TdU V1 2.5.52
p(h) = 0 (2:5.52)

(this is [28, equation (5.66)]; note that there is a misprint in this equation in [28]).
Combining these equations, we get

( —+ Zu@ > M) = —=¢" (U — N1 = %dp()\,u). (2.5.53)

O

EH
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2.5. Superpotential as a global spectral curve in genus 0 case

Proof of Proposition 2.5.2. We have:

(1+510§ +§28§2 +IZ::UL Z) (2.5.54)

U
Ug

e €1 52 d)\ dAz 5 2
2”\/@ // P(2))? d/\ (>\1) (/\2)6 12 X,

where

L e PO~ p0%)
n 0\ dp n 0\ dp
dp dp
N (A1) i (A2)

Applying the integration by parts to the terms —A; /& and —\y /&, we can rewrite
the right hand side of Equation (2.5.54) as

e & dA dAQ dp . dp M
M N)eatey, 2.5.
o Eﬂg}//, )2dA( )dA( Jeatany, (2.5.55)
where
dp d n o\ dp
M— ; = Ao— ) E
<WM+;“ >w(” <M&+;“m)w(”
Y =2+ i + 7 _
=) L)
d\ dX

_2,( iy * B ) P00~ (s, + ) )
p(A) = p(Xa)

Using Equation (2.5.50), we rewrite Y as

(159 00 (25 0

Y =2+ +
dp dp
1—-d 1—-d
s Tp()\l) - TP(&)

(A1) — p(A2)

1—d 1—d 1—d
=24 (-1+4—= 14— ) 2. "o
+< + 2)+< + 2) 5 =0,

which proves the proposition. O
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2. Dubrovin's superpotential as a global spectral curve

2.6 Superpotential as a global spectral curve for
arbitrary genus

In this Section we extend the result of the previous section to the case of a compact
global curve of arbitrary genus.

Theorem 2.6.1. Given a conformal Frobenius manifold, construct a superpotential
p(\; u) which defines the Riemann surface D according to Dubrovin’s construction of
Section 2.2.4. Assume the following:

e D is a compact curve of genus g;

e there is exactly one critical point in each singular fiber of A : D — C.

Fiz a symplectic basis (A;, B;)]_, of Hi(D,Z) and define B(p1,p2) as the only Bergman
kernel on D normalized by

Vi=1,...,9, 7{ B(p1,p2) = 0. (2.6.56)
p1€A

Further assume that:

e the pair (p, B(p1,p2)) passes the compatibility test of Section 2.4 in any of its
possible forms (given by Theorem 2.4.1, Corollary 2.4.2, or Proposition 2.4.3).

Then the correlators of the CohF'T associated to the Frobenius manifold are related
by Equation (2.2.36) to the correlator differentials obtained through spectral curve
topological recursion on the Riemann surface D with x = X\, y = p and B(p1, p2).

Remark 2.6.2. This result extends Theorem 2.5.1 to an arbitrary compact curve. The
new feature is that one needs to normalize the Bergman kernel on an arbitrary basis

of cycles. In particular, for each basis, we recover a total ancestor potential for the
same CohFT.

Proof. The proof is very similar to the proof of the genus 0 case presented in the
preceding section. However, it is important to remark that this proof only relies on
Rauch’s variational formula, i.e. it is valid for any compact curve presented as a
ramified cover of the Riemann sphere with simple branch points. It does not require
any knowledge about an auxiliary meromorphic form such as the super-potential.

Let us first show that the (0, 3) correlators are independent of choice of normali-
sation cycles for B. wg3 depends on these choices, but when decomposed into linear
combinations of auxiliary differentials d¢/ = B/ds; (for s; defined by z = (1/2)s3 + a;)
the coefficients are independent of A-cycles. By reconstruction, as in the proof of
Theorem 2.5.1, this means that all correlators are the same. The formula

wo 3(21, 22, 23) Z Reb B(p, z1)B(p, 22) B(p, 23)/dz(p)dy(p)
= Z Blag, 21)Blag, 2)Blas, z3) /2" (a:)y/ (a;)
= Z V€ (21)dE  (22)dE' (25)
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2.6. Superpotential as a global spectral curve for arbitrary genus

shows the independence of the coefficients (...) on the choice of B.

For the rest of the proof, the only part differing from the genus 0 case is the proof
of the homogeneity of the CohF'T, i.e. the fact that the R-matrix satisfies the Euler
equation.

The first step consists in proving that there exist a R-matrix. This is due to a
lemma of Eynard [46]:

Lemma 2.6.3. If d)\ is a meromorphic form on D and B the Bergman kernel nor-
malized on a basis of A-cycles as above, then the Laplace transform of the Bergman
kernel satisfies Equation (2.2.34) .

The Euler equation for the R-matrix is then equivalent to the following equation
for the Laplace transform of B:

0 0 ~— 0 ;
(1 + 518751 + 626752 + ;ulam> B=0 (2.6.57)

for B = BY(&;,&) given by

uj

e & Az
27“/@/@)/ B- eél &, (2.6.58)

By inverting the Laplace transform and integration by part, this is equivalent to

AL B(p1, p2) A2 B(p1,p2)
_— D2). 2.6.5
dl( 0102 4 g, (P2 B2 +§ juza B(pr,p») (2.6.59)

In order to prove this equation, we remind Rauch’s variational formula which
expresses the variations of the Bergman kernel under deformation of the spectral curve.
In particular

aB(php?) _ B(plvr) B(vaT)
T s Y (2.6.60)
which implies that
) B 77‘
Z Uig B(p17p2 Z Tficas Zl/\( )) (b, 7) : (2.6.61)

Moving the integration contours around the other poles of the integrands and reminding
that the A-periods of B(p,r) are vanishing, this reads

0 A(r)B(p1,7) B(p2,7) d d
i=—B(p1,p2) = — _ a a 7
;u A P1.p2) = = Res, dX(r) Dy dh B(p1,p2)
(2.6.62)
proving Equation 2.6.59.
O
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2. Dubrovin's superpotential as a global spectral curve

2.7 Global curves for A, singularities

In this Section we apply the results of Sections 2.3, 2.4, and 2.5 in order to construct
the spectral curve for the ancestor potential of A,-singularities, n = 1,2,.... The
structure of this Frobenius manifold is described in terms of Saito’s theory on the
space of polynomials

flp,7)=p" T mp T, (2.7.63)

We refer to [27, 58] for the detailed description of the structure of this Frobenius
manifold. In particular, it is enough to say that A = f(p,7) is a superpotential of this
Frobenius manifold.

The corresponding CohFT is well-studied. It was a subject of Witten’s conjec-
ture [95] proved in [53]. We refer to [82] for an exposition of this CohFT that includes
an overview of its constructions; the CohFT whose correlators give the ancestor poten-
tial at the point 7 of this Frobenius manifold is called there the shifted Witten class
of A, singularity.

Theorem 2.7.1. The correlation differentials of the global spectral curve data X :=
CP', y := p (the global coordinate), x == f(p,7), B := dpidpa/(p1 — p2)? are expressed
via Equation (2.2.36) in terms of the shifted Witten class of A, singularity.

Proof. As we have already mentioned, the function A = f(p,7) is known to be a
superpotential of the corresponding Frobenius manifold. We have to show that this
superpotential can be obtained by Dubrovin’s construction in Section 2.2.4. Then it
is easy to see that all conditions of Theorem 2.5.1 are satisfied, which implies this
theorem.

We construct solutions of Equation (2.2.17) in terms of the integrals over the
vanishing cycles. Namely, consider the tangent bundle over the space of polynomials
parametrized by 7 € T. It is identified with the space C[p]/(d,f(p,T)/dp) by the map
v (d.f(p,7))(v) and equipped with a flat metric given by

o dof(0)de f ()
(vn,00) 1= Res S S0 Ep.

For a cycle B € Ho(f7'()\),C) we denote by I5(\,7) the section of the tangent
bundle specified by the following formula:

(2.7.64)

(Is(A\, 7),v) == /Bde(v) : CZ)—]}. (2.7.65)

In normalized canonical coordinates I5(\, 7) is represented by the vector ¢°(\, 7) with
components given by

QN T) = (Iﬁ()\ T) A9 ) (2.7.66)
SN T) ) 75 7.
is a solution of Equation (2.2.17) (see [58]). Let us discuss the singularities of this
solution, depending on .

Consider the A-plane as the image of the map A = f(p, 7). Let u1,...,u, be the
critical values of f(p,7). We can always choose a system of cuts L;, i = 1,...,n,
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2.7. Global curves for A,, singularities

from u; to infinity such that the preimage f~*(C\ U, L;) is a union of n + 1 disks,
Dy, Dy, ..., D,, glued along the boundary cuts in the following way:

— Dy is glued to D; along the boundary that is a double cover of L;; in particular,
their common boundary contains the critical preimage of u;;

— All other lifts of the cut L; are just cuts inside D;, j # 0,¢; the endpoints of
these cuts are non-critical preimages of w;.

For n = 1,2,3 we give the corresponding pictures for a real orientable blow-up at
infinity (that is, the boundary circle on the picture corresponds to the infinity point of
the source sphere). The domain Dy is shadowed there.

uy

Sit>

(a) Ay (b) 42 (c) A3

Figure 2.1: A,-singularities, 1 <n <3

Consider the vanishing cycles 8; € Ho(f~1(\),C) given by 3; := py — p;, where
A= f(po,7) = f(pi,7), and py € Dy, p; € D;. Then the system of solutions of
Equation (2.2.17) given by ¢()(\,7) := ¢%(\,7) satisfies the properties given by
Equations (2.2.19)-(2.2.22). In particular, G¥ = 1/2 for i # j and G = 1. The
inverse matrix is given by Gy; = 2n/(n+1) and G;; = —2/(n+ 1) for i # j. Therefore,
Dubrovin’s solution ¢ = -7, G0V is equal to ¢ for

n 2 2 &
%—§:<n+1—M—1%+1>@—%m—n+1§;% (2.7.67)

i=1

Recall that for the Frobenius structure A4,,, d = (n — 1)/(n + 1). Also we recall
that for the Euler vector field E = 37" | u;2- and the unit vector field e = > | -2
so that we have:

Bf(n.7) = Jipr) - 2 BT,

ef(p,7) =1 (2.7.69)

(2.7.68)

The formula ¢” (U — A\) U1 can be written as (I5,(), 7), (E — Ae)/v/2). Therefore,

ﬂT* = — e T'idp
Y2 - = AfE )07

-t [ (e - A )

2 n+1 dp .dpf(p,T).

n+1

(2.7.70)
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2. Dubrovin's superpotential as a global spectral curve

Since the cycle By lies in f~1(X), then (f(p,7) — A)|g, = 0. Therefore, the last integral
can be rewritten as

n+1 P 1 «—
: /B =) - ;pl()\ﬂ'). (2.7.71)
Since Y 7, pi(A, 7) = 0 (recall the form of the polynomial f(p,A)), we conclude that
the function %qﬁT(U — AV is equal to the branch Dy of p = f~1(A, 7).

So, p(C\ UX,L;) = Do. It is obvious that dyp has no zeros in C\ U, L;, so
D = D, and one of the possible analytic continuation of the function A = f (p,7)|p, is
its extension to the polynomial f(p,7) defined on CP*. All condition of Theorem 2.5.1
are satisfied, so we apply it here to complete the proof. |

Remark 2.7.2 (Relation to Milanov’s spectral curve). The global spectral curve that
we constructed differs from the one constructed by Milanov in [73]. Milanov gets a
spectral curve with the same local behavior as x = f(y, 7) near the critical points, but,
in our terms, he chooses a different analytic continuation of A|p. He constructs an
analytic continuation using the action of the Weyl group (we revisit his construction
in our terms in Section 2.10), and obtains a curve where all preimages of the critical
points in the z-plane are critical. In our terms, this can be achieved by gluing n! copies
of the curve z = f(y,7) along the cuts connecting the non-critical preimages of the

points w;, ¢ = 1,...,n such that each point belongs to exactly one cut. This makes all
. . . 2
preimages of uy, . .. ,u, critical and will produce a curve of genus 1 + %‘(% -5-2)

where the function z has degree (n + 1)!, and it has n! poles of degree (n + 1) each (cf.
computation in [73] and further explanation in Section 2.10).

2.7.1 Bouchard-Eynard recursion

In this Section we discuss an application of Theorem 2.7.1. There is a more general
formulation of topological recursion that works for functions z with higher order
singular points [11]. Locally, a higher order singularity is given by x = y"*!, B =
dy1dya/(y1 — y2)*. Bouchard and Eynard announced a theorem [10] that identifies the
coefficients of the local expansion in y at y = 0 of the correlation differentials of this
spectral curve with the coefficients of the string solution of the (r + 1)-Gelfand-Dickey
hierarchy, also known as the total descendant potential of the A, singularity. The
proof of Bouchard and Eynard goes through analysis of matrix models. Here we give
a new proof of their theorem, namely, we derive it directly from Theorem 2.7.1.

Theorem 2.7.3. [10] The Bouchard-Eynard recursion applied to x = p"™, y = p,
B = dpidps/(p1 — p2)? produces differentials wy ), whose expansions near infinity are
given by

Work(Pr-- D) = Y (Taa Taga) gk X (2.7.72)
0<ai,...,ap<n—1
diody
H (aj+1)(aj+1+(n+1))(a]+1+d](n+1)) dpj
i=1 (=1)% (n+ )%+t prtDditei+2 |7
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2.7. Global curves for A,, singularities

where (Tayay ** * Tdyay) g,k aT€ the coefficients of the string solution of the (n+1)-Gelfand-
Dickii hierarchy [95, 58, 53].

Note that we don’t recall and don’t use the definition of the Bouchard-Eynard
recursion. The only property that we are using here is that it is compatible with the
usual recursion on the curves with simple singularities and the limits [11]. In this
case, we know that in the neighborhood of infinity the correlation differentials of the
Bouchard-Eynard recursion are the limits for ¢ — 0 of the correlation differentials of
the usual recursion applied to x = y"*! + ey.

Let us now prove theorem 2.7.3.

Proof. The flat coordinates tq = ty,t1,...,t,_1 are given on the space of polynomials
f(p, 7) defined in Equation (2.7.63) by the following formula:

1 1 tn—l tn_2 to 1
T = e 20— ). 2.7.73

Recall that the canonical coordinates are the critical values uy, ..., u, of f(p,7) and
it is obvious that Ou;/9ty = 1. We denote by c1, ..., ¢, the positions of the critical
points of function f(p,7); so u; = f(¢;,7),i=1,...,n
We perform all computations only on a special curve in the space of polynomials,
namely, f(p,7) = p" + ep, and we are interested in all results only up O(e) for € — 0.
In particular, we note that t, = O(e), a =0,...,n — 1.
The full Jacobian of the change from the canonical to flat coordinates is then given
by the following computation:
6Ui 0 Ci, T _n_ 1 auz
o, f(Ta) = flei, 7)™+ (c” - TO0(e )) = o +0(e) = cf +O(e). (2.7.74)

7

The correlation differentials, written in terms of a CohFT considered in normalized
canonical frame in Equation (2.2.36), can be rewritten in terms of the correlators
of the ancestor potential of Givental [58] A;({t4.}) considered at the point ¢ in flat

coordinates tqo, d=0,1,2,...,, «=0,...,n — 1 in the following way:
0 d\*
el s T((2)'6). e
k 4G _q
= Z (Tdaq * Tdkak g,k H (( ) pa7+1> + O(e).
Q1,0 j=1
diyendy,

(by (Taras * * * Tapar ) .1 (t) We denote the coefficients of the expansion of log A;). Indeed,

let us expand the vector > i &(p)A f% near p = oo. Recall that we denote by
¢1, ..., cp the positions of the critical points of function f(p, 7). We have:
- 10 - 1 dz 19
(p)AZ— = A — 2.7.76
;f@ 12 ;(Z_pd TT _) Al e

oo 1 n
=T Zpk+1

k=0

a -1
g - g 5 at ().

i=1
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2. Dubrovin's superpotential as a global spectral curve

(we use Equation (2.7.74) and the fact that ¢! = O(e) for the last equality).

Recall [82] that the correlators of the ancestor potential A, are represented in terms
of the correlators of the descendant potential (which is exactly the string solution of
the (n + 1)-Gelfand-Dickey hierarchy) as

(Tayon " Tagar) gk (1) = (Tdyon *** Tdpay ) gk + O(€). (2.7.77)

Thus we see that

k d;
d\"7 -1
Wek = Z <Td1a1 .. 'Tdkak>gakHd <<d1‘) pa7+l> + O(E) (2778)
j=1

QY yeen, O
di,edy

In the limit € — 0 we get exactly Equation (2.7.72). O

2.8 Frobenius manifolds for hypermaps

In this Section we construct a global spectral curve for the Frobenius manifold given
by the superpotential A = f(p,a), where a = (ag, ..., any1), n > 1, and

a71,+1

f(p.a)=p" +ap" > +agp" *+ - +a, + -
p—a

(2.8.79)
This superpotential defines a semi-simple Frobenius manifold (this Frobenius manifold
is studied in [27, Section 5]). Furthermore the spectral curve

dp1dps )

. e 1 VY
(27'%7y7B) = <CP af(p7 a)7pa (pl _p2)2

satisfies equations (2.2.31)-(2.2.34) hence it stores the correlators of a CohFT via
Equation (2.2.36). The following theorem answers the question of whether these two
CohF'Ts coincide.

Theorem 2.8.1. The CohFT associated to the Frobenius manifold given
by the superpotential X = f(p,a) coincides with the one reconstructed from
the spectml curve (CPI, f(p7 a)>pa dpldp2/(p1 - p2)2)'

Remark 2.8.2. The correlation differentials for this spectral curve considered for the
particular values of the parameters a enumerate hypermaps on the curves. This is
proved in [36], see also [26], where some special case of that was conjectured.

So, Theorem 2.8.1 is to be used in the converse way: We start with a combinatorial
problem that is known to be solved by global topological recursion. It appears that
the correlators of this global topological recursion are expressed in terms of a CohFT.
This CohFT appears to be homogeneous, so it is associated to a Frobenius manifold,
and this Theorem describes precisely the underlying Frobenius manifold.

Proof. The proof is completely parallel to the proof of Theorem 2.7.1. Note that as
in the case of A,-singularity, we claim that the spectral curve is the superpotential
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2.8. Frobenius manifolds for hypermaps

itself. We use Theorem 2.5.1, so it is enough to show that we can reproduce the
superpotential A = f(p, a) via Dubrovin’s construction from Section 2.2.4.

The canonical coordinates uq, ..., u,1 of this Frobenius manifold are the critical
values of f(p,a); the Euler vector field is given by

n a n+1 Z a
; “ ou; g na da; ( )
the unit vector field is equal to
"0 0
= = ; 2.8.81
¢ ; ou;, Oa,’ (2.881)

and the constant d is equal to (n — 2)/n. Note that

_pdf(p,a)
n dp

Ef(p,a) = f(p,a) (2.8.82)
As in the case of A, singularity, the solutions to the Equation (2.2.17) are given by
the integrals over the cycles 8 € Ho(f~*(\),C), where the components of the solutions

are given by )
s _ [AOf(p.a) <df(p7 a))1
o /B\/§ Bu, i . (2.8.83)

Consider the A-plane as the image of the map A = f(p, 7). Recall that u, ..., up1
are the critical values of f(p,7). We can alway choose a system of cuts L;, i =
1,...,n+ 1, from u; to infinity such that the preimage f~!(C \ U,L;) is a union of
n + 1 disks, Dg, D1, ..., D,, glued along the boundary cuts in the following way:

— Dy is glued to D;, i = 2,...,n, along the boundary that is a double cover of L;;
in particular, their common boundary contains the critical preimage of u;;

— Dy is glued to D; along two components of the boundary that are double covers
of Ly and L,y and these boundary components have common point p = a;. In
particular, these boundary components contain the critical preimages of u; and

Un413

— All other lifts of the cut L; are just cuts inside D;, j # 0,4 for ¢ =2,...,n and
j # 0,1 for i = 1,n + 1; the endpoints of these cuts are non-critical preimages of
;.

For n = 1,2,3 we give the corresponding pictures for a real orientable blow-up at
infinity (that is, the external boundary circle on the picture corresponds to the infinity
point of the source sphere, and the internal circle corresponds to p = a1). The domain
Dy is shadowed.

Consider the vanishing cycles 8; € Ho(f~1(\),C) given by B; := p; — po, where
A = f(po,7) = f(pi,7), and py € Dy, p; € D;. Then the system of solutions
of Equation (2.2.17) given by ¢ (\,7) == ¢%(\,7), i = 1,...,n, ¢t = o)
satisfies the properties given by Equations (2.2.19)-(2.2.22). In particular, G¥ = 1
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2. Dubrovin's superpotential as a global spectral curve

yn=1 yn=2 Yn=3

1
Figure 2.2: Hypermaps 2"+ —-,1<n <3
z

fori=1,...,n+1, G4 = G"11 =1 and for all other i # j G¥ = 1/2. So, this
matrix is degenerate.

However, Remark 2.3.2 specifies the properties of ¢ that are sufficient for Theo-
rems 2.3.1 and 2.5.1. Note that

2 N g
¢._n+1;¢ =¢ (2.8.84)

for By := ni“ > i o bi — 2po satisfies all condition of Remark 2.3.2. With this choice of
¢ and, therefore, £y, Dubrovin’s superpotential can be presented as

S T /ﬁ (B =20 (p0)- (df (b, ‘”) - (2.8.85)

dp

Using Equation (2.8.82), we have:
V2 r _n pdf(pa) df(p,a)\ ™
m¢> (U =NV = B} /50 (f(l% a) — 0 dp )\> . < iy ) (2.8.86)

p RN po— 25 n=1;
o =0 n+1 :
(in the last equality we used that we know the sum of all roots of the equation
f(p,a) = A).

Let us now discuss the cases that we get. For n > 1 Dubrovin’s function pp,, =
Ppub(A, @) is the branch Dy of the inverse function of A = f(p, a) shifted by a constant.
Obviously, dyxppu, has no zeros in C \ U;ﬁ'llLi7 and we can choose as the analytic
extension of A|p, the function A = f(p,a) defined on CP*. Then Theorem 2.5.1 is
applied. We get, therefore, not precisely the statement that we want to prove, but
we have instead y = ppun = p — a1/(n + 1) (the Bergman kernel is still the same).
However, it doesn’t change anything in topological recursion if we shift ¢ by a constant.

The case n = 1 is even more interesting. One can easily check by direct computation
that Dubrovin’s function ppup = ppub(A, @) is equal to /(A — uq)(A — uz2)/2. Further

construction of the curve gives the following equation:

1
p2Dub - Z()‘ - a1)2 +ax = 0
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2.9. Elliptic example

It is a rational curve, and it has a global coordinate p = ppu, + (A + a1)/2, which
is our original coordinate p, that is, A = p+ aa/(p — a1). Theorem 2.5.1 can not be
applied directly, but in this case we can just check by hand that we get the statement
that we want to prove. See Appendix 2.11.2.

Note that Theorem 2.3.1 suggests that the right choice of function y is y = ppuyp =
p — (A + a1)/2 rather than y = p. However, it doesn’t change anything in topological
recursion if we shift y by a function of x = A, so there is no contradiction. |

Since in this example we rather start from a combinatorial problem of enumeration
of hypermaps and use Theorem 2.8.1 in order to clarify the structure of the ELSV-type
formula (2.2.36) for this combinatorial problem, it is interesting to have a description
of the underlying Frobenius manifolds (given by superpotentials) in terms of their
prepotentials. We know an algorithm which can produce this prepotential for any
given n (this algorithm follows from Dubrovin’s construction found in [27]), but we do
not know a general formula which would describe these prepotentials for all n > 1.
Here we list the formulas for cases n = 1,2, 3:

2 2
n=1: %—i—%logaz;
3 2 3 342
n=2 %+a1a2a3+%loga3+%—%;
a’ay 3a2 a3 asat  3asalas  3asa®  3al
=3. 1= _ 22, T2 3 3 4 _ 2%
" 5 tmaas = =7+ olog () + T E 4 5 2 8

Note that in the case n = 1 the corresponding combinatorial problem has also
interpretation in terms of the discrete volumes of the moduli space of curves [79]
and discrete surfaces/generalized Catalan numbers [4, 32, 52]. The relation of these
combinatorial problems to a CohFT is also discussed in [8, 54], though it is not
mentioned there that the underlying Frobenius manifold is given by the prepotential
atay/2 + a2/2 - log as.

2.9 Elliptic example

In this section we give an example of a superpotential that satisfies the conditions of
Theorem 2.6.1.
Consider the spectral curve defined by the Weierstrass p-function

A=p(2), p=2z2 B(z,7)=(p(z—72)+0)dzd? (2.9.87)

where b € C and p is only defined locally—it is the primitive of a holomorphic
differential on the curve—which is sufficient for topological recursion. The compatibility
condition (2.4.42) is satisfied by Proposition 2.4.3. It is equivalent to the elliptic
identity:

¢'(2) _ g le —w)
KJI(Z)Q - ; p/l(wi) (2988)

where the sum is over the zeros w; of ¢'(z). Hence the spectral curve defines a CohFT.
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2. Dubrovin's superpotential as a global spectral curve

Introduce three parameters w, w’ and ¢ into the spectral curve to define the following
superpotential taken from [27]:

A=p(zw,w)+ec, p=-= (2.9.89)

1 1 1
p(zw,W) = =+ Z — . (2.9.90)

() 2(0.0) (z = 2mw —2nw')?2  (2mw + 2nw’)?

The Frobenius manifold structure on M = {(w,w’, )} is given by the formulae
(2.2.8), (2.2.9), (2.2.10) where the vector fields J on M are given by, for example 3,
O, Oe. Note that in (2.9.88), w1 = w, wy = w', wg =w +w'.

Remark 2.9.1. Note that we know that the superpotential (2.9.89) defines a Frobenius
manifold due to the existence of flat coordinates, proven in [27], and also given below.
The CohFT produced by topological recursion applied to (2.9.87) is homogeneous if
we choose b in (2.9.87) so that [, B(z,2) =0, i.e. b= n/w where the A and B periods
are 2w = fA dz, 2w = fB dz and

1 1
n==3 § o)z o ==3 § o).
A B

The periods satisfy Legendre’s relation

w/ o lw _ E

n nw= 9

The homogeneous CohFT corresponds to a conformal Frobenius manifold which gives
rise to a superpotential via Dubrovin’s construction (actually, since d = 1 it is a variant
of the construction). What needs to be proven is that the two superpotentials agree.

Theorem 2.9.2. The superpotential (2.9.89) can be obtained via (a variant of)
Dubrovin’s construction described in Section 2.2.J applied to the Frobemius mani-
fold M. The conditions of Theorem 2.6.1 are satisfied for this superpotential. Hence
the two cohomological field theories—obtained from the superpotential (2.9.89) and
topological recursion applied to the spectral curve (2.9.87) with b = n/w—agree.

Proof. To apply Dubrovin’s construction to M we construct a solution of the Gauss-
Manin system as in the proof of Theorem 2.7.1.
The flat metric (2.2.8) for the superpotential (2.9.89) is given by

3

(0,9 := Z Res 6)\;@,8 A

dp. (2.9.91)

i=1

We use this to construct a vector field Ig(A;u) on M for any cycle 8 € Ho(A™!(pt), C)
specified by:

(s(A;u), 0) = /B df,\(?c)zp‘ (2.9.92)
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2.9. Elliptic example

The elliptic curve (2.9.89) is built by gluing two copies of the disk D = C\ U, L; in
the A plane along L;. Choose 8 to be the cycle given by py — py, for py and p; the
pre-images of A in each of the two disks. In normalized canonical coordinates Iz(\; u)
is represented by a solution ¢f(\;u) = 3, ¢7(A;u)d,, of the Gauss-Manin system
(2.2.17) which has components given by

of(Au) = (w;u), jﬁAE&“)
L AT
- B V2- dpA/dp
V2 AZOLN
d,\/dp
where the integral over S simply doubles the integrand since the integrand is skew

symmetric. Since d = 1, we cannot use the inversion formula (2.2.18) so we directly
check that %Qﬁﬁ = V.p as follows.

3 1
1 O\ 1 A2, A 1
Vep=ntdp== A =0, = — LD, = —¢P.
! w 2:21 ©'(2) w ; ©'(2) V2
Using
1 ¢'(2)° zp(wi) +¢(2)
aul)\ - 02
2@ o)~ plw) T ) OO

which can be proven from the known variations ), ukd,., k =0,1,2, we see that the
solution ¢%(\; u) satisfies

3
1 1 Ou N
—Tun ==Y 4
V2 w ; '(2)
3

SIS L ) sl 44

w &= 20" (w;) p(2) — p(wi) 0" (wi)
_ 1 b
Cw'(z)  dX

which is (2.3.39) and hence via Remark 2.3.2 we see that the properties of ¢ are
sufficient for Theorems 2.3.1 and 2.5.1. Hence the theorem follows. |

Theorem 2.9.2 states that we can study the CohFT obtained from the superpotential
(2.9.89) via topological recursion applied to the spectral curve (2.9.87). We will need
the three-point function of this CohFT in calculations below. We calculate it in two
ways to demonstrate the proof, although we know from the theorem that they coincide.

2.9.1 Three-point function.
Superpotential. Introduce the canonical coordinates

u = p(w;) +e, i=1,2,3
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2. Dubrovin's superpotential as a global spectral curve

where, as usual, w; = w, wy = W', w3 = w+w’. The three-point calculations take place
in the ring C[E]/p’ = Clp]/¢’ and we have

O _ (A—uw)A—ws)  ONON _ o N,

ouy (uy — u2)(uy — uz)’ 8771187%: Y ou,’ 7=

and cyclic permutations of the above. This is quite general and also can be proven via
elliptic identities. Hence the three-point function for the superpotential is

333738,8,23:}{8132%, 1
Ou;” Ou; Ou; /| \Ow; Ou;/  \ow;/ z:w? o) w? w2 (w)

j=1
Thus 9 & o
1
where a% =A? Hiv for A;! = <ai, 82 > = w? . p"(w;) give the normalized canonical
coordinates.

Topological recursion. The three-point function obtained via topological recursion

is
3 wdz
wo,3(21, 22, 23) = Z Res — H(@(Zz —2) +b)dz;
P ©'(2) 1
3 w 3
= (p(zi — wj) + b)dz;
= 9" (W) ,11 ’
3
=Y W[ (W) VG (2)Vy (22) Vi (25)
j=1
for b)dzd b
Vi) = (plz —w;) +b)dadz; | _ plz —wy) +b
de 5;=0 g‘)”(wi)

where A = p(2) + ¢ = 357 + p(w;) + ¢ defines the local coordinate s;. The coefficients

of VOJ(,zl) define the three-point function of the cohomological field theory which agree
with (2.9.93).

2.9.2 Flat coordinates

The cohomological field theory is defined on the three-dimensional vector space C[p]/ ¢’
equipped with its natural ring structure and gives rise to a Frobenius manifold structure
on the family M of such rings parametrized by {w,w’, ¢}. It will be convenient to express
the metric on M with respect to a natural basis of vector fields on M corresponding
to the basis {1, p, p?} of Clgp]/¢’ since the metric requires knowledge of the variation
of p under the action of vector fields on the Frobenius manifold. We will see that
{w,w’, ¢} are not flat coordinates and find in Lemma 2.9.4 flat coordinates {t1,t2,t3}
on M, i.e. so that the metric on M is constant with respect to them.
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2.9. Elliptic example

Recall that correlation functions of the cohomological field theory arising from
topological recursion applied to a spectral curve appear as coefficents of auxiliary
differentials on the spectral curve. Proposition 2.9.6 gives the auxiliary differentials
that correspond to the flat basis for the metric.

In the following lemma we calculate the vector fields on M that correspond to
the basis elements 1, p, p? of C[p]/¢'. This uses g» = ga(w,w’) defined by ¢'(2)? =

4@(2) — 920 — g3-

Lemma 2.9.3. Under the map TM — Clp|/¢" defined by 0 — IX(mod ') for
A=p(zw,w)+c

O 1, —% (WO, + W'dy) — g, —% (N0, + 1 0u) + %ggf)c = o7 (2.9.94)
Proof. The variation 0.\ = 1 is obvious. The identity
WA, p(2) + Woyp(2) + 20'(2) = —2¢(2) (2.9.95)

follows immediately from the expansion (2.9.90) of p and yields —1 (wd,, + w'd,/) = p.
The final identification uses the identity proven in [55]

10,9(2) +1'0wp(2) + C(2)9'(2) = —20(2)* + 392 (2.9.96)

where ((z) is the Weierstrass ¢-function

1 1 1 z
ziw,wW) =~ + + +
o ) 0 ;0 0%~ 2mw — 2nw’  2mw + 2nw’ (2w + 2nw’)?

which is not an elliptic function (C.63 in [27]). Note that n = ((w), ¥’ = ((v'). O

The metric X

4 otE dz G
gﬂ,pk = es ——— = —Res——~—
Whof) =2 Res o = RS o
is given by
L1 | e | ¢
1 0 0 1/2uw?
© 0 1/2w? 0
o | 1/20° 0 ga/8w?

Lemma 2.9.4 (Dubrovin [27]). Flat coordinates for the metric are given by

n 1 w'
tlzc—*, t2:77 t3:7.
w w w
Proof. This is (5.95) in [27]. We simply use change of coordinates given by (2.9.94)
and the metric calculated above. We have 0. = 0;,. From the identity

(wo, + w’aw/)ﬂ Y
w w
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2. Dubrovin's superpotential as a global spectral curve

which uses the fact that wd,, +w’d. is the degree operator, * is homogeneous of degree
-2 we have w0,, + w'd, = @8“ — 5@2. The identity

w

U 1 Ui
(n0., + 7]’@#); =TT 2
appearing as (C.69) in [27] gives 70, + 170, = (ﬁgz + Z—Z) Oy, — 50, — 35 0,,. Hence
we have
n 1 n? n i
atl — 1, —;@1«#%&2 = 0, <égg — M) at1+27u)28t2+47uj26t3 — @2. (2997)
Hence the metric is given by:
| 0 [ ] 9
Oy 0 0 | 2/imw
Oy, 0 2 0
Oy 2/im 0 0

which is constant so that {¢1, 2,3} are flat coordinates. O

Remark 2.9.5. As mentioned in Section 2.1.2 we can choose a different (0,2) term
B(z,2') on the spectral curve (2.9.87) which still satisfies the compatibility condition
(2.4.42) by varying b € C. For each b it gives rise to a CohFT with the same
genus 0 three-point function since ancestor invariants are coefficients of B-dependent
differentials. When b is chosen so that B(z,2’) is normalised along a choice of cycle,
eg. b=1n'/w' so [, B(z,2') = 0, then the CohFT is homogeneous and hence the same
CohFT as for b = n/w. Other choices of b gives rise to non-homogeneous CohFTs.

Proposition 2.9.6. The flat coordinates correspond to the following auxiliary differ-
entials:

2 2 1
ity —— T} = (wp + b)dz — 2wd (=) +2pd (2) + (22 4+ L) a( =
p/ @/ 4 w p/

1
dty — T2 = —d (g/) - gd (g)

; 1
dty «— Ty = —;—Zd (p’) :

Proof. The auxiliary differentials on the spectral curve corresponding to the normalized
canonical basis are straighforward. They are given by Vidz where

Vi = p(z —wi)

" (wi)
and for k > 0, V}! is the principal part of the kth derivative of Vi with respect to p(z).
We also have the canonical basis U} = wgp(z — w;). The auxiliary differentials T}dz
corresponding to flat coordinates are linear combinations of Vidz

V=,
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2.9. Elliptic example

where we recall that \IIL is the transition matrix from flat coordinates labeled by i to
normalized canonical coordinates labeled by i. We can calculate ¥ via

1 1 1 B, 1 0 0 o,
plw)  plw)  p(ws) Oy, | = —1 ) = 0 o,
pw)? plw)® plws)® Ous lp—3s 3k 5 s

which we write as M2 = T2 hence M~'T = AY2¥”. The auxiliary differentials
corresponding to 1, g, p? in the Landau-Ginzburg model are:

UL U U - M =
2
oz —w)+b (z—w)+b @(zw3)+b} pw)” — 302 plw)

) 1
) T 9we) T 9w Ewigtfﬁ p(wjg i

(2] s ) () ()

which is proven using the elliptic identities

N

E

2wdz [

Y

¢'(2)?
and slight generalisations for k > 2. Hence

T, 7%, 7% = U, U, U] - M- T
2 2 1
= {_2wd<p,> +(wp+b)dz+( jZ-‘rn )d(,> +277d<p,>,
o © ©
d<@+77/w> iy (1>]
p/ 2(U p/

The following lemma allows us to apply equation (2.2.36) to obtain ancestor
invariants for the CohFT.

Lemma 2.9.7. The following kernels K}

O

1 2 3 4 2 ” o w
K=ol K= -2u0() + 20, K= ot (sl = (1 + ) 24 0002))

are dual (as linear functionals) to T¢ fori=1,2,3, i.c.

3
> Res K{(2)Ti(2) = 8,5650-
=1

Proof. Each kernel is analytic at z = w;, ¢ = 1,2, 3 and hence annihilates differentials
analytic at z = w;. Consider the action of each kernel on d(p*/¢’) for k = 0,1, 2.

k

k
ZB&?” 1(5) =~ X Res i) = i)

— j=1
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2. Dubrovin's superpotential as a global spectral curve

so K¢ = y(2) = z/w annihilates d(p*/¢') for k = 0,1 and sends d(p*/¢’) to —1/2w.
Similarly K2 = ¢(z) annihilates d(p*/¢’) for k = 0,2 and sends d(p/¢’) to 1/2. Apply
the kernels to Ty given in Proposition 2.9.6 as linear combinations of d(p*/¢') (and
terms analytic at z = w;) to achieve the result.

The kernels K} and K2 annihilate exact differentials that vanish to order 2 at
z = 0, in particular 7} for k > 0 by integration by parts. One can also check that Kg
annihilates 7} for k > 0. O

Remark. One can also produce kernels K} dual to each TJ‘
The 3-point function in flat coordinates leads to the prepotential given in [27]

(C.87):
1 o1 = ng" omit
Fy=—ty+tit5 — —t5 | — — = ¢?mils,
0 i71’13+ 1lg 52\ 9 ;1—(]” y g=€

Proposition 2.9.8.

oo

exp Py = t5/"n(q)*, n(q) = ¢"* JJ(1 - q").

n=1
Proof. Topological recursion—defined in Section 2.2.5—applied to the spectral curve
(2.9.87) uses the kernel

w ;(2>(KJ(21 —w) + b)dwdz

Ke2) = = oo
_w(C(z+2) = (21— 2) +2m + 2b(z — wi))dz
4 (z — w)g'(2)dz
where 0;(z) = 2wi — z. Hence
W1,1 Zl Z Bis K Z17 Z ZRW 4 Zl iz)w);g’(zi) Z)) p(Qz)dZdzl
W 2i p(wi)p(z0 — Z p(z ds
- 8 = p// Wz 1
w (200"  (p")° % 1 )
= — — 10 15 11)d
8(@’)2 ()f e T )

where n; € C and b are annihilated by the residues. Integrate the kernels K]Z: against
wy,1 to get

w inw 1 n Gow? — 121
=0Ty + T3+ ——Tg + =T} + =T} + ———T}.
o oFrgo T o g T T Ty
The primary part uses only 75 and yields

1 it 1 <= ng"
F=_1 , -
1 8 Oth + f(ﬁd)v f (td) 2 (24 ; 1— qn>

which is obtained from wy ; since mF L — i = £ agrees with the coefficient of TO2 and
OFy __im (1 oo ng" znw 2
S =13 (2 T ] ) = agrees with the coefficient of T¢.

O
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2.10. General theory

2.10 General theory

In the preceding sections, we have investigated the construction of a global spectral
curve producing the ancestor potential of a Frobenius manifold by topological recursion
in some examples or assuming some additional properties of the curve defined by
Dubrovin’s superpotential. In the present section, we begin with the data of a semi-
simple Frobenius manifold, and produce a global curve in a general setup not coming
from the superpotential but rather from a family of curves built out of the reflection
group generated by the monodromies of the solutions of our Fuchsian system. In
particular, it explains how our setup is related to the spectral curve built by Milanov
in [73].

2.10.1 Spectral curves from reflection group

Here we define a family of spectral curves associated to the reflection group defined
by the monodromies of the Fuchsian system given by Equation (2.2.17). The spectral
curve defined by Dubrovin’s superpotential is a particular point in this family.

Definition 2.10.1. For any v = (1,...,7%) € C", let us define a function ¢M :
C\{L;} = Cby

PP (A ) Zv ¢V (A u) (2.10.98)

where ¢ are solutions to Equation 2.2.17 defined as in section 2.2.4.
We define the corresponding function pl”! analytic on C\{L,} by

(A, ) = % (e")" (U — Ao, (2.10.99)

Finally, let us define the pairing

V(7,7) € C™, (vIY) ——QZ%GU% (2.10.100)

The main property of these functions is that ¢! has the local behavior

e
:Zlﬂ%+0(1) for A > u;, j=1,...n (210.101)
uj —

O = %G\ u; = X-0(1) for X = uy;,  a#jiaj=1,....n (210.102)
=1

)

and pl has a local behavior for A — w; given by

DX, u) = p (s, u +Z%G Wog/20u; — N +O(u; — N), i=1,...,n.

(2.10.103)
Let ey, ..., e, be the standard basis of C". We have ¢ll(\;u) = ¢ (\;u).
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2. Dubrovin's superpotential as a global spectral curve

Remark 2.10.2. Dubrovin’s standard superpotential defined in Section 2.2.4 is obtained
by considering the particular case v; = Y| Gy;.

From now on, we assume that the reflections R; generate a finite group W. Infinite
families of Frobenius manifolds with finite group W are given in [27].

For any v € C", one can define a Riemann surface D as a cover A\ : DM — C
where AP, w) is the inverse function to p"! defined out of pl'! by resolving the
zeroes of dp as in Section 2.2.4. Tt is important to remark that the construction of
Db as a branched cover of C\{L;} does not depend on v but rather on a choice of
gluing for the different sheets—see Remark 2.10.3 for a discussion of these choices. In
this section, we consider the most naive gluing and the resulting spectral curve.

We consider the reflection R; as a linear map on the space C" changing the
coordinates of the vectors by the following rule:

. v it g #F
%_>{%+(v|ei) if j=i - (2.10.104)

We denote w~ the image of a vector v under the action of an element w € W.

We build the spectral curve DI as follows. A point z € DV is defined by a pair
(A\p) € D x C such that pl(\, u) = p. By definition of p!(\, u), this defines a cover
of D with ramification points in the fibres above the critical values uq, ..., u,. We
now glue in the most naive way, meaning that each point in the fibre above any of the
u; is a simple ramification point. Let us now describe this sheeted cover.

Our spectral curve is obtained by analytic continuation of p’! from D through the
(pre-images of the) cuts L;. Each copy of D is then viewed as a sheet of a branched
cover of the A plane. We can analytically continue pl"! through L; seen as a cut on a
Riemann surface giving rise to a new function of A

V2

PR = RipM (N ) = T (Riwl)T (U —\)T1 (2.10.105)
where
I
RioM (A u) =Y R (A u) = 6D\ ) + (v]es) g (A w). (2.10.106)
j=1

In other terms, we glue along the images of the cut L; the sheets given by p®l())
and pl¥(\) for all § in the W-orbit of the initial vector .

The above procedure defines a |W| sheeted cover D of the A plane such that the
fiber above a point A is {pl“7(\, u)}ew. The different sheets of this cover can thus be
labelled by elements w € W and we denote by A! the unique point in the fiber above
a generic point A belonging to the sheet labelled by w. We define by p the unique
function on D such that

vw e W, p (M) = piI(\ u) (2.10.107)

for a generic A.

This cover is branched over all the points in the fibres above the points u;, i =
1,...,n, and a ramification point above u; joins the sheets labelled by w and R;w for
some w € W.
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2.10. General theory

This branched cover is our spectral curve. It has |W|/2 simple ramification points
[w0]

over u;, ¢ =1,...,n. We denote by u; ', w € W, the point in the fiber above u; such

i
[w]

that p (uZ ) = pl*(y;). This notation is ambiguous, so we denote by W; the minimal

set such that

M) = {u? |w e W} (2.10.108)

By definition, one has the important relation

Vw € Wi, p (A1) — p (AR = % b () —p ARD] . (2.10.100)

Thanks to our assumption of finiteness of W, D can be compactified by introducing
ramification points of higher order above co.

The order of these ramification points above co deserves some investigation. Since
the reflection group W is finite, then the ramification index of such a point is equal to
the Coxeter number h(W), i.e. the order of a Coxeter transformation. In such a case,
there exists a longest positive root >, m;o; (reminding that the set {o;} is a set of
simple roots) and the Coxeter number is equal to 1+ ), m;.

Let us recall as well that a Coxeter transformation is a product of all simple
reflections. The different order for this product leading to different transformations, all
with the same order. The different Coxeter transformations correspond to the different
points in the fiber above co. In the case of an infinite group, this order is infinite and
the different ramification points in the fiber above oo correspond to different conjugacy
classes of Coxeter transformations.

We now have a Riemann surface ¥ which is a branched cover of the A plane. In
our case, when the group is finite, its genus is given by the Riemann-Hurwitz formula:

Wi, _
2

Wi

92— 29(%) = 2[W| — T

(h(W) —1) (2.10.110)

Remark 2.10.3. We have built a curve using this procedure. There exist two ways
of changing the cover built in this way. First by specifying some particular value for
the vector . Second, by choosing a different gluing procedure for building the cover:
for each point in the fibre above a critical value u;, one can decide whether it is a
ramification point or not. We followed here the most naive procedure where all the
points are ramification points, recovering the spectral curve built by Milanov in the
case of simple singularities [73]. This procedure is the most general but gives the
highest possible genus of the curve.

In the preceding sections, we had chosen a particular value of v prescribed by
Dubrovin’s construction as well as the simplest possible curve by considering covers
where only one point in the fibre above each critical value is a ramification point. This
leads to the lowest genus spectral curve possible but requires one to study the gluing
procedure carefully case by case.
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2. Dubrovin's superpotential as a global spectral curve

2.10.2 Global topological recursion and correlation functions
of a CohFT

Global topological recursion

We remark that we are not in the cases discussed in the preceding sections since the
spectral curve has |WW|/2 ramification points in the fibre above one critical value. This
implies that the topological recursion has to be modified a little in order to take the
right form.

Definition 2.10.4. We define the correlation functions defined by the global topolog-
ical recursion applied to D as the differential forms defined by induction through

wWor(21, ..., 26) =

oise(z) B(Zla )

- fZ
Z Z Re[i] 2 (w01 (2) — won (@:(2)) Wy—1,4e+1(2, 010 (2), 22, - . -, 21)

i=1 weW; #7%

g
+ Z th,mm(% Za)Wg—n|B1+1(0iw(2), ZB) | »

AUB={2,...,k} h=0

where
wo,1(2) == p(2)dA(z), (2.10.111)
wo2(z1, 22) = Z (7|wy)B(z1, 22) (2.10.112)
weWw

and o, is the local involution exchanging the two sheets meeting at «”. In the right
hand side, all the contributions involving a factor of wg; are set to 0.

Note that, in this recursion, the recursion kernel does not involve wy o itself but
rather B. This might seem to break the usual symmetry between the different
arguments of wy;, but, as we shall see in the next section, it is not the case.

From global to local

In [37], the correspondence between topological recursion and CohFT was discussed
only at the local level. In order to match the correlation functions defined by the global
topological recursion with those of the CohFT, let us translate the global recursion
into a local one written in terms of integrals in the A-plane around the critical values
Uj.

Lemma 2.10.5. The global topological recursion on the spectral curve D with x = )\,
y =p and B(p1, p2) is equivalent to the local recursion with local spectral curve

Vi=1,...n, wih(0) = ApAI9)d (2.10.113)

and
Vij=1,...n, wid (O, A2) = A A agwo 2 (AL ATD) (2.10.114)
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2.10. General theory

where » -
Awly — )\le
Apaf (A = fO) 2f( ) (2.10.115)
for a meromorphic form f on D.
In other words, the discontinuities
o k
Wi MO, ) = [ A weeOFY ALY (2.10.116)

Jj=1

of the correlation functions wyy, produced by the global recursion satisfy the correspond-
ing local recursion.

Proof. Tt is first important to note that

Ainywosrt AL ATy = (mfg) Aiyworst AT AN (2.10.117)
This is proved by induction and follows from the definition of wp s in terms of the
Bergman kernel. This property allows us to rewrite the topological recursion in a local
version where one sums only over one of the ramification points in the fiber above
each of the critical values u;.

Writing 2 = A/, one can rewrite the term Res v as aresidue when A — u; in

the following way:
Res =2 Res. (2.10.118)

Alw] g ] A—u;

This gives

wgﬂk(zl, RN Zk) =

n AR;w]

w 21, ) w w
Z /\R_WS Mﬁi,xﬁi,x wgfl,kle()\[ ], N ]7227 Cees 2E)
i=1 wew; T

> thmm L Za)weon 1 (VM Z)

AUB={2,...,k} h=0 Y

Plugging property (2.10.117) into this equation, the global recursion reads

wyr (71, . .. 7zk)
(wryles) AR
. W, 2 e S B,
€ Id) y/[Id]
Res “ AiAiy | w (AUl i 2k)
Td 7, 7, g—1,k+1 ) )22y 0y Rk
P A—u; 2Ai7,\w071()\[ ])

g
Z th,mm(/\[ld], Za)wgn B (NI, Zp)

AUB={2,...,k} h=0 M=\
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2. Dubrovin's superpotential as a global spectral curve

Finally, using the fact that 2 Zwew,- = > e in the expression above, one gets

wgyk(zl, e Z) =

Alzd)
1 Res mf woa(21,-)
4 1 )\—)uz Aly)\u.)(),l()\[ld])

1=

Aq‘,,/\Ai’)\/ wg,17k+1()\[1d], )\/[Id]./ 22y vy ij)

g9
Z Z wh,\A\+1(/\[Id]7 ZA)wgfh,\BIH(XUd]a Zp)
AUB={2,...,k} h=0 N=A

Acting with the operators H?Zl A;; 5, on both sides proves the lemma. O

Identification of the local initial data with a CohFT

Now that we have derived a local topological recursion equivalent to the global one,
one only needs to identify its initial data with the data of a CohFT following the
dictionary of [37]. For this purpose, we will follow exactly the same steps as in the
preceding sections. Let us first state precisely the identification that we want to find
since it is slightly different from the usual setup where one has only one ramification
point in each fiber and a specific value for .

First of all, let us remind that, according to [46], the Laplace transform of the local
two point function reads

SRR >/ (), 91() 8
27“/@ // T, Ae)e” G = a (2.10.119)

A1—u; ER
AzfuJE]R
where
ij]
; 1 w0]2 (/\1, )\2) A —uy
L= = _— e < . 2.10.120
==t v (210120)
A —u; ER Ag=
In these terms, the identification consists in showing that
FQOr =Y (1e))GiR(); (2.10.121)
j=1
and
n n ) . 1 . Ao,
;('ﬂe]‘)Gﬁ 2 R(Q)RA* = o / w([)]l()\) e < (2.10.122)

where R(C) is the R-matrix defining the CohFT we started from for deriving our
Fuchsian system.

Note that the proof of Equation (2.10.122) is a simple verbatim of the proof of
Section 2.5 by replacing ¢ by Z?Zl('y\ej)Gjiqb(i). A corollary of this identification is
the following theorem:
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2.11. Frobenius manifolds of rank 2

Theorem 2.10.6. The correlation functions wyy, produced by the global recursion
generate the correlation functions of the original CohFT through

oA () Az ) =

> H (vlej) Gy /7 agrei, .. e Hw ((C;i)dl&l(zz))

11, ,tk =1 Mgk
Jiyedk
1y-+,0Fk

Compatibility condition and homogeneity

Let us now remark the compatibility between Equation (2.10.121) and
Equation (2.10.122) can be written as the usual compatibility condition for the Bergman
kernel by considering all the ramification points, i.e.

Z > Res w}% )B(z,#) + Res j—i( YB(z,?) (2.10.123)

i=1 weW; z/*u

is invariant any local involution \/A(2) — u; — —/A(2) — ;.
Finally, it is an easy exercise to prove the homogeneity at the level of wp o by using
Rauch’s variational formula as in Section 2.6.

2.11 Frobenius manifolds of rank 2

In this Section we explicitly construct global spectral curves for two rank 2 CohFTs.
We begin with the prepotential F'(t1,ts) which one uses to produce the structure of a
Frobenius manifold. We follow Dubrovin’s construction to produce a superpotential.
In both cases we need to vary the construction slightly due to degeneracy of the Gauss-
Manin system. The two examples satisfy the conditions of Theorem 2.6.1 and hence
topological recursion produces the CohFT associated to the Frobenius manifold. Note
that although the two examples are of genus zero, they do not satisfy the conditions
of Theorem 2.5.1.

2.11.1 Gromov-Witten invariants of CP!

2
F="1Z241¢e2 E=t0,+20, E-F=2F+t)
01 1 et/ ot2/4
af _ —
n - < 10 ) ) U= ﬁ < —iﬁ_t2/4 Z'etg/4

-10 i /0 —1
_ 2 — -1 _ 2
u—( ;), V =Tuv —2<1 0)

Uy = t] + 26t2/27 Uy — tl — 26t2/2
1

Uy — U2

Vi=0,V -0 = V==V
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2. Dubrovin's superpotential as a global spectral curve

The vector fields ¢ given in canonical coordinates satisfy (2.2.17) which is equivalent
to the Fuchsian system:
(U=XNdorp=(3+V)o (2.11.124)

and

B:
Ou ¢ = <A _’u_ + %) ¢, Bi=-E(L+V), Vi=0,¥ - (211.125)

This has general solution

Ug — A
_ 1 U — A C2 {
¢ (1 — ug) '/ 72_\/u1 — + (a1 — up) /2 ( 1 > .
Ug — A

We choose the solution ¢; = 1, ¢co = 0. Since d = 1 (2.2.25) does not apply. Nevertheless,
¢ is the gradient of p so we can calculate

B 1 Ug—)\ ’ Ul_)\
dp()\, LL) = u — (\/u1 — )\dU1 + \/Ug—)\dUQ) .

In this example, we will also go through the equivalent treatment in terms of flat
coordinates for the pencil of metrics. The vector fields ¢ are gradient vector fields of
the flat coordinates

¢ = qjianaﬁaﬂx(tl — A to, . ty)

for the pencil of metrics g — An where

2et? ¢t
af 1
=% %)

The flat coordinates for the pencil are of the form (¢t — A, ta, ..., t,) so it is enough to
consider the case A = 0, i.e. find flat coordinates for the intersection form. These are
given by solutions of the Gauss-Manin system of linear differential equations ((5.9) in
[28]):

9" 088, + Z(% — py)cE =0, & = s
v

2@”8%30 + t1010x + 0 =0
220,00 + 4,02z + €Oz = 0
tla%fl' + 281(92.%‘ + 81.1' =0

= & = ¢y - arccos (%tle%zp) +co -ty
Choose
p = iarccos (1(t; — \)e "2/?)
A=t — 2¢"/2 cos(—ip) = t; — e2/%(eP + e7P)

Note that the critical points of A are indeed t; 4 2¢/2/2 = u, /2- It was proven in [37]
that the curve p = Inz, A\ = a + b(z + 1/z) does indeed produce the CohFT for
Gromov-Witten invariants of CP!.
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2.11. Frobenius manifolds of rank 2

2.11.2 Discrete surfaces

The 2-dimensional Hurwitz-Frobenius manifold Hy 1y of double branched covers of
the sphere, with two branch points and unramified at infinity was defined by Dubrovin
[27]. Tts potential is

2ty 1
F = 172 + étg log ty, E= tlatl + 2t28t2, E-F =4F (—i—t%)

1/4 —1/4
naﬁz<o 1> \p:i )
10) Vo \ i/t g

10 { 0 -1
= 2 1
1% < 0 % R V = \I/M\I/ ,2 1 0

up =t + 267, up =t -2ty
—1
Vi=0,V- -Vt = V==V
Uy — Us
The general solution of (2.11.124) and (2.11.125) is
Ug — A
_ 2! U — A C2 i
T |, fu= | o (1)
Ug — A

The solutions of Dubrovin described in (2.2.19)-(2.2.22) yield ¢ = ¢ hence G is
degenerate. We use one of the solutions ¢ = ¢! in (2.2.25) to get

3 Uy — Uz — .
p()\,u):% ((u1 —Ai(z)m Nty ( ! ) :% (ur — N (s — V).

This corresponds to the spectral curve A = t; + z + t3/2z, p = z — to/z which arises
from the well-studied Hermitian matrix model with Gaussian potential hence discrete
maps [52] and was shown to correspond to the given CohFT in [8].
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Primary Invariants of Hurwitz Frobenius
Manifolds

Abstract

Hurwitz spaces parameterizing covers of the Riemann sphere can be equipped with
a Frobenius structure. In this chapter, we recall the construction of such Hurwitz
Frobenius manifolds as well as the correspondence between semisimple Frobenius
manifolds and the topological recursion formalism. We then apply this correspondence
to Hurwitz Frobenius manifolds by explaining that the corresponding primary invariants
can be obtained as periods of multidifferentials globally defined on a compact Riemann
surface by topological recursion. Finally, we use this construction to reply to the
following question in a large class of cases: given a compact Riemann surface, what
does the topological recursion compute?

3.1 Introduction

Consider a diagonal flat metric on a complex manifold M with local coordinates
U= (U, ., Up)

N
ds* = Z:m(u)duz2 is flat, (3.1.1)
i=1
generated by a potential H : M — C
ni(u) =0, H, i=1,..,N. (3.1.2)

Metrics satisfying (3.1.1) and (3.1.2) are known as Darboux-Egoroff metrics [27].
Condition (3.1.1) is equivalent to a nonlinear PDE in 7;(u) which gives vanishing
of the Riemann curvature tensor R;j;;; = 0. The PDE becomes integrable when
condition (3.1.2) is added. By a metric we mean a smooth family of complex non-
degenerate symmetric bilinear forms on the tangent space T,,M, so in particular it is
not Riemannian.

Analogous to K. Saito’s construction [84] of flat coordinates on unfolding spaces of
singularities, Dubrovin [27] and Krichever [68] produced beautiful families of Darboux-
Egoroff metrics on moduli spaces of pairs (3, ) consisting of an algebraic curve ¥
equipped with a meromorphic function z : ¥ — C. Such a pair (X, x) is a point in
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3. Primary Invariants of Hurwitz Frobenius Manifolds

a Hurwitz space H,, which parametrises covers z : ¥ — P! of genus g with points
above infinity marked and with fixed ramification profile (1, ..., jq). Further, choose
a symplectic basis of cycles (A;, B;)i=1,..4 on 3 to define a point in a cover I?[W of
a Hurwitz space. Namely, ﬁg,u consists of the data of a point in a Hurwitz space
together with the data of a Torelli marking. One goes from one sheet of the cover H g

to another one through the action of modular transformations Sp(2g,7Z).

Definition 3.1.1. Given (2, x, {A;, Bi}iz1,.. 4) define a set of generalised contours D
on X as follows. Choose representatives for {A;, B;i}i—1.. , in Hi(X\ 27'(c0)) and
choose a set of relative homology classes v; € Hi (X, 271(00)), i = 2, ...,d such that
v C X\ {A, ... Ay, By, ..., By} runs from oo; to ooy where the poles of x are given by
7 (00) = {001, ...,004} with respective orders {j, ..., a}. Let Coo,, @ = 1,...,d be
small circles around each pole 0o; of . Then define

D= {2 A1, ...v A, B1, .. By} | {m 2Cxc,} U {z"1iC}. (3.1.3)
i=2,.d k=1, -1,
j=1,..,d

If « has only simple poles, so each p; = 1, then the contours are built out of classes in
Hy(%\ 27" (00)) and Hy (X, 27" (c0)). A contour C acts on a differential w by w — [, w,
and by zC we mean w — [ .w = fc zw. We often enumerate the elements of D by
Co€Dfora=1,..,N =|D|. Note that N = dim H,,—see (3.4.39).

Definition 3.1.2. On any compact Riemann surface (X, {A;}i=1,.4) with a given set
of A-cycles, define a Bergman kernel B(p,p’) to be a symmetric bidifferential, i.e. a
tensor product of differentials on ¥ x X, uniquely defined by the properties that it has
a double pole on the diagonal of zero residue, double residue equal to 1, no further
singularities and normalised by fpeAi B(p,p') =0,i=1,...,g. It satisfies the Cauchy
property for any meromorphic function f on ¥

df(p) = Res f(2)B(p,p')- (3.14)

On X, choose a Bergman kernel B(p, p') normalised to have zero periods over the
A-cycles in the Torelli marking {A;, B;}. For any C, € D define a primary differential
by

ba(p) = ]{w B(p,p) (3.1.5)

where C¥ is a cycle dual to C, defined in section 4. Each primary differential is locally
holomorphic on ¥\ z71(c0).

Denote by P; € X the finite critical points of z, i.e. dz(P;) = 0. For a generic
point in fIM the critical points of x are simple and the critical values u; = z(P;),
t=1,..., N of z are local coordinates in the open dense domain of ﬁ;’u C ﬁg,u defined
by u; # uj for i # j and { Ay, ... Ay, B, ..., By} avoid 2! (00).

Define a metric on H, , by

- ¢-¢

= du? - R 3.1.6
n ; u; - Res — (3.1.6)
for any choice of primary differential ¢ = ¢, on ¥ obtained from C, € D via (3.1.5).
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3.1. Introduction

Theorem 3.1.3 (Dubrovin [27]). (i) The metric n defined in (3.1.6) is flat with local
flat coordinates given by

tg = o, CseD, p=1,.,N (3.1.7)
Cp
i.e. the metric is constant with respect to the coordinates tg.

(i) The flat metric n forms part of a Frobenius manifold structure on I:Tg,# with
multiplication on the tangent space of I?;'_’# defined using the local basis of vector fields
Ou; by

O, + Ou; = 0350y, (3.1.8)

The theorem was proven by Dubrovin in [27] using a definition of primary differential
via deformations of y,dr—see Lemma 3.4.5. As stated here we use an equivalent
definition of primary differential (3.1.5) proven by Shramchenko [89].

Recall that a Frobenius manifold M comes equipped with a a flat metric 1 to-
gether with a commutative, associative product - on its tangent space satisfying the
compatibility condition n(u - v, w) = n(u,v - w) for all u,v,w € T,M. Associated to
each semi-simple point p of a Frobenius manifold M is a cohomological field theory
[53, 57, 71, 91] defined on (H,n) = (T, M, n|z,a), which is a sequence of S,,-equivariant
maps

Iy, H®" — H*(M,,)

that satisfy gluing conditions on boundary divisors in Mg,n given explicitly in Sec-
tion 3.2.2. For any collection of vectors vy, ..., v, € T, M, the integral fﬂq . Iyn(v1 ®

... ®1v,) € C (which is a function of p € M) is known as a primary invariant of M.

Recently, [37] explained that one can compute the primary (and ancestor) invariants
of a semisimple Frobenius manifold efficiently using the topological recursion procedure
of [50]. In this chapter we apply this result to Hurwitz Frobenius manifolds.

The main observation is that just as the flat coordinates can be obtained as periods
of a primary differential along cycles taken from D via (3.1.7), the primary invariants
of the Hurwitz Frobenius manifolds can also be obtained as periods along cycles taken
from D. Since we need multiple insertions of vectors into the primary invariants, we
need to take periods of symmetric multidifferentials on ¥ which are tensor products of
differentials on X" =¥ x ... X 3.

Theorem 3.1.4. Given a point p = (3, z, {A;, Bi}) € f[;u and a choice of primary

differential dy, that determines a Frobenius manifold structure on H o there exist
multidifferentials wy,, defined on X whose periods along contours in D give the pri-
mary invariants of the Frobenius manifold at p. More precisely, for flat coordinates
{t1,....,tn}, put eq = 04, and define the dual vector with respect to the metric (3.1.6)

by e* = Zn“ﬁeﬁn Then

B
/ / Wy = / Ig,n(e(” ®..® e“")
Coy C Mg

an

where Co, and e,, = 0y, are related by (3.1.7)
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3. Primary Invariants of Hurwitz Frobenius Manifolds

Theorem 3.1.4 is a consequence of the more general Theorem 3.1.6 that proves
that the w,, store all ancestor invariants of the Frobenius manifold, using a larger
class of cycles than those in D.

Remark 3.1.5. The statement and conclusion of Theorem 3.1.4 can be made for any
point in Hg x not just the semisimple points H o C Hg u- 1t would be interesting to
prove the theorem with these weaker hypotheses. There are candidate multidifferentials,
such as those defined in [11] where the zeros of dz are not required to be simple, or
in the case of Dubrovin’s superpotential, studied from the perspective of topological
recursion in [35], which applies to any semi-simple Frobenius manifold, and where
there may be multiple zeros of dz above a critical value.

The multidifferentials w,, in Theorem 3.1.4 are obtained from the topological
recursion procedure associated to the spectral curve (X, z, y,, B) where B = B(p,p’)
is the Bergman kernel defined in Definition 3.1.2 using the Torelli marking and y,, is a
function defined on ¥\ {A;, B;} such that locally ¢, = dy, . In general [50], the w,,
are a family of symmetric multidifferentials on the spectral curve that encode solutions
of a wide array of problems from mathematical physics, geometry and combinatorics.
By a spectral curve! we mean the data of (X, ,y, B) given by a Riemann surface ¥
equipped with a meromorphic function z and a locally defined meromorphic function
y: 3 — C such that the zeros of dz given by {P1, ..., Px} are simple and dy is analytic
and non-vanishing on {Pi, ..., Py}, and equipped with a symmetric bidifferential B on
3 x 3, with a double pole on the diagonal of zero residue, double residue equal to 1,
and no further singularities. The spectral curve may be a collection of N open disks,
known as a local spectral curve, because wy, are defined using only local information
about z, y and B around zeros of dz—see Section 3.3. On a compact spectral curve
we relax the condition on y being globally defined, and instead require that dy is a
locally defined meromorphic differential (a connection) ambiguous up to dy + df (z)
for any rational function f. This gives rise to a locally defined function y on ¥ which
is sufficient to apply topological recursion.

In [37, 72], it was proven that, starting from a semi-simple CohFT, or equivalently
a semi-simple Frobenius manifold M, it is possible to compute its correlation functions
by the topological recursion procedure applied to a specific local spectral curve:

{semisimple CohFT} — {topological recursion applied to a local spectral curve}

(3.1.9)
Under this correspondence whose details are reviewed in Section 3.3.1, the number
of zeros of dx on the local spectral curve (X, z,y, B) is equal to the dimension N of
the Frobenius manifold M. It was then proven in [35] that, under some additional
assumptions on the Frobenius manifold M, it is possible to arrange that the image
of (3.1.9) is a compact spectral curve producing the same correlation functions. This
compact Riemann surface is given by Dubrovin’s superpotential [27, 28] which is a
family of compact Riemann surfaces parametrised by the semi-simple points of M and
constructed out of flat coordinates of a pencil of metrics on M.

IThe term spectral curve is inherited from the matrix model origin of this formalism. In the
general formalism, this term is expected to make sense due to the probable existence of an associated
integrable system.
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3.1. Introduction

We can now try to reverse the direction of the arrow in (3.1.9). Given a compact
spectral curve, when does it lie in the image of (3.1.9), and can we reconstruct the
corresponding CohFT (or, equivalently, the Frobenius manifold)? The following
theorem answers this question. It begins with the observation that a compact spectral
curve gives a point (X, z) in a Hurwitz space H, ,.

Theorem 3.1.6. Given a generic point (¥,x) € Hy,, equip it with a bidifferential B
normalised over a gz’uen set of A- cycleé and choose C € D to define a locally defined
function y on ¥ by dy(p fc (p,p'). The topological recursion procedure applied to
the spectral curve (X, z, y7 B) computes the ancestor invariants of the CohF'T associated
to Dubrovin’s Frobenius manifold structure on the cover f[;,u via

n

Wy (D1 ey D) Z / Ion(ei, ... ) Hd)jj ®V;]J(p]) (3.1.10)
j=1 j=1

o
where Vi(p), i = 1,..,N, k = 0,1,..., are canonical differentials on ¥ defined by
(3.3.36) in Section 8.5.1.

The proof of Theorem 3.1.6—contained in Section 3.4.3—is a simple combination
of results from [28, 37, 56, 90] which we recall below. The main tool in the proof is
the map (3.1.9) from [37] which shows how topological recursion relates to Givental’s
construction [56] of the total ancestor potential associated to each semi-simple point of
a Frobenius manifold. To apply the reverse construction of (3.1.9) one needs a specific
relationship between the Bergman kernel B on the spectral curve and the R-matrix of
the Frobenius manifold which is proven in [90].

Remark 3.1.7. Theorem 3.1.6 also answers the following question. Given a compact
spectral curve, what does the topological recursion procedure compute? For a large
class of spectral curves—where B and y are determined almost canonically by 3 and
z—the answer is that it produces generating functions for ancestor invariants of a
Hurwitz space to which the branched cover underlying the spectral curve belongs.
In particular, it completes the picture drawn by Zhou in [96] for relating Frobenius
manifolds and spectral curves.

Remark 3.1.8. Theorem 3.1.4 concerns only the primary invariants in (3.1.10), cor-
responding to d; = 0, j = 1,...,n. One can also construct generalised contours
Co = pi(2)Cy, for C, € D and pi(x) = ¥ + ... a monic polynomial of degree k in
z, so that the ancestor invariants, corresponding to d; > 0, appear as periods thus
generalising Theorem 3.1.4:

/ / . /wagn( .. ®€a”>'jﬁl¢fj. (3.1.11)

Theorems 3.1.4 and 3.1.6 enable one to generate primary invariants and all ancestor
invariants of H, , of all genera. Previously only genus 0 and genus 1 primary invariants
were known. Theorems 3.1.4 and 3.1.6 also have applications to the topological
recursion procedure. Using the generalised contours in D one gets a direct map from
wgn to primary invariants via integration over the cycles.

Cay by
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The chapter is organised as follows. In Sections 3.2 and 3.3, we remind the reader
of the general theory of Frobenius manifolds and topological recursion, as well as
the correspondence between the two, following [37]. In Section 3.4, we describe the
construction of Dubrovin of Frobenius manifold structures on covers of Hurwitz spaces
and prove Theorems 3.1.4 and 3.1.6. In Section 3.5, we discuss an extension of the
results to non-semi-simple points.

3.2 Frobenius manifolds

In this section we give a short introduction to Frobenius manifolds. An important
construction for this chapter is Givental’s R-matrix defined in Section 3.2.3.

3.2.1 Frobenius manifold

Definition 3.2.1. A Frobenius algebra (H, 7, ) is a finite-dimensional vector space H
equipped with a metric n = (, ) and a commutative, associative product - satisfying
(u-v,wy = (u,v-w).

Example 3.2.2.
Hg(C@(C@@(Q <€i7€j> :5ij7]ia 61"6]' :52']'61'

for any n; € C\ {0}, i =1,..., N and where {e;} is the standard basis. Conversely any
semisimple Frobenius algebra is determined uniquely by N non-zero complexr numbers
{n:} and is isomorphic to this example.

A Frobenius manifold is defined by the data of a Frobenius algebra on the tangent
space at each point of the manifold and such that the metric is flat. In terms of flat
coordinates {t*} a Frobenius manifold can be defined locally as follows. Consider a
function F(¢!,...,t") defined on a ball B C C" and a constant inner product n*?
such that the triple derivatives of F' with one raised index,

., O*F

R —— 2.12
Cos = gragap! (3.2.12)

are the structure constants of a commutative associative Frobenius algebra with the
scalar produce given by 7n,3. We can think about this structure as defined on the
tangent bundle of B C CV (and we denote the corresponding multiplication of vector
field by -), and we require that 9 is the unit of the algebra in each fibre.

We further consider structures (almost) homogeneous under a vector field E :=
Zgil((l — o )t* + 74) 0, where ¢, and 7, are constants for « = 1,..., N, satisfying
g1 = 0 and 7, # 0 only in the case 1 — g, = 0. We require that there exists a constant
d such that E.F — (3 — d)F is a polynomial of order at most 2 in ¢!,... V.

The triple (F,n, E) that satisfies all conditions above gives us the structure of a
(conformal) Frobenius manifold of rank N and conformal dimension d with flat unit.
The function F' is called the prepotential; the vector field F is called the Euler vector
field. The coordinate-free description of this structure requires a flat metric with

64



3.2. Frobenius manifolds

associated Levi-Civita connection, unit and Euler vector fields satisfying compatibility
conditions—see [27] for details.

In this chapter we only consider semi-simple Frobenius manifolds, that is, we require
that the algebra structure at each point on an open subset B** C B is semi-simple
hence isomorphic to Example 3.2.2. In a neighborhood of a semi-simple point we have
a system of canonical coordinates uy, ..., uy, defined up to permutations, such that
the vector fields 0,,, ¢ = 1,..., N, are the idempotents of the algebra product, and
the Euler vector field has the form F = Zfil u;0,,. This gives rise to two important
systems of coordinates: flat coordinates, leading to a fixed metric and varying product,
and canonical coordinates, leading to a fixed product and varying metric. With respect
to the canonical coordinates, the flat metric on M is diagonal with diagonal terms
generated by a potential H : M — C via (3.1.2) which satisfies (3.1.1).

Define the rotation coefficients

By = 2wl (3.2.13)

N
Then (3.1.1) and (3.1.2) imply that f;;(u) satisfy the Darboux-Egoroff system

Bij = Bjis (3.2.14)
Ou,Bij = BikBik- (3.2.15)
Flatness of the identity and conformality imply
> 04,85 =0, (3.2.16)
k
Zukaukﬁij = —fBy- (3.2.17)
k

Assemble the rotation coefficients into a symmetric N x N matrix I' = I'(u)—whose
diagonal is not a part of the structure—by I';; = f;;. Then equations (3.2.15-3.2.17 )
are equivalent to the Darboux-Egoroff equation

d[l, U] = [[T, U], [T, U] (3.2.18)

where U = diag(uy, ..., uy).

The rotation coefficients give less information than the metric, i.e. there are
different solutions of (3.1.1) and (3.1.2) that give rise to the same rotation coefficients.
The system

Ou, i = Bithy, 1# ]

N
> 0 =0, i=1,..,N
j=1

has an N-dimensional space of solutions 1 = (¢1(u), ..., ¥n(u)) which enables one to
retrieve a metric for each solution from the rotation coefficients. Put N independent
solutions of this system into the columns of a matrix ¥, so the system becomes

AV = I, dU]¥. (3.2.19)
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3. Primary Invariants of Hurwitz Frobenius Manifolds

The canonical coordinate vector fields d,, are orthogonal but not orthonormal. We
can normalise them to produce a so-called normalised canonical frame in each tangent
space, that is, if 7; = 1(9,;, Oy, ), then the orthonormal basis is given by 0,, ==, v 28%“
i=1,...,N. The matrix ¥ in (3.2.19) is the transition matrix from the flat basis to
the normalised canonical basis.

3.2.2 Cohomological field theory

A cohomological field theory is a pair (H,n) composed of a finite-dimensional complex
vector space H equipped with a metric 7 and a sequence of S,-equivariant maps.

I, H" — H*(M,,,)
that satisfy compatibility conditions from inclusion of strata:

w :ﬂg—l,n+2 — mg,na ¢I ql,\1|+1 X ng [J]+1 — Mg ) IruJ= {17 ,Tl}

given by
¢§[q7n(vl ®R...R® ’Un) = 191,\I|+1 ® Igz"J‘+1(® U, QAR ®U‘j) (3.2.20)
iel jeJ
Y IV ® ... QUp) = Ij_1 p2(V1 ® ... Q U, @A) (3.2.21)

where A € H ® H is dual to the metric. In local coordinates it is given by A =
n*fe, @ eg.
The metric n = (-,-) and the 3-point function I3 induce a product - on H via

(u-v,w) = Inz(u,v,w) € H*(Moz) = C.

Correlators, or ancestor invariants, of the CohF'T make use of the Chern classes
¥; = c1(L;) of the tautological line bundles L;, j = 1,...,n over My ,,. The correlators
are defined by:

Ty (€01)--Thon (€0, )Y g ::/f Iyn(en, e, ) qu (3.2.22)

g,n

for k; € N, {ey, y=1,..v } € H. When k; =0, i = 1, ...,n the ancestor invariants are
also known as primary invariants of the CohFT.

Givental [56] introduced a group action on genus 0 potentials of a CohFT, and used
it to propose a formula for higher genera. Faber, Shadrin, Zvonkine [53] proved that
the higher genera formula satisfies all properties that might be imposed to correlators
of CohFT, hence the Givental group acts on partition functions of CohFTs in all
genera. The interpretation of the action on correlators as an action on cohomology
classes was constructed by several people independently, namely, by Teleman [91],
Katzarkov-Kontsevich-Pantev (unpublished), and Kazarian (unpublished)—see [85].
There is a good account of this action on cohomology classes by Pandharipande-Pixton-
Zvonkine [82]. Hence we can associate a CohFT to a semi-simple point of a Frobenius
manifold. Conversely a CohFT gives rise to a Frobenius manifold structure on (a
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3.2. Frobenius manifolds

neighborhood inside) H using the constant metric 7 as the flat metric and a varying
family of products using Iy, in place of Ins. See [71] for details.

If the Frobenius manifold has flat identity—meaning that the identity vector field
for the product on the tangent bundle is parallel with respect to the Levi-Civita
connection of the flat metric n—then this is realised on the CohFT level by an extra
relation involving the forgetful map

T Mgpi1 = Mgy
given by

[g,7z+1(vl®' : '®Un®]1) = 7T*Ig,n(vl(g' : '®Un)7 ]0,3(7}1 ®U2®ﬂ) = 7](7)1 ®U2) (3223)

where 1 is the unit vector for the product.

3.2.3 Classification of semi-simple cohomological field theo-
ries

The Givental-Teleman theorem [56, 91] states that a semi-simple CohFT is equivalent
to the pair (H,n) together with a so-called R-matrix. An R-matrix

k=0

is a formal series whose coefficients are N x N matrices where N = dim H is the
rank of the Frobenius manifold. Givental used R|[z] to produce a differential operator,
a so-called quantisation of R[z], which acts on a known tau-function to produce a
generating series for the correlators of the CohFT.

The coefficients Rj, are defined using ¥, the transition matrix from flat coordinates
to normalised canonical coordinates determined by (3.2.19), via Ry = I and the
inductive equation
[R(z),dU] T

z

d(R(2)¥) = (3.2.24)
which uniquely determines R(z) up to left multiplication by a diagonal matrix D(z)
independent of u with D(0) = I. We recall that this equation is a consequence of the
fact that R(z) is the regular part of the expansion of the solution of a linear system
associated by Dubrovin to any semisimple Frobenius manifold around its essential
singularity (see for example lecture 3 in [27] for more details).

Using d¥ = [I', dU] ¥ one can write

d(R(2)¥) =d[R(2)]¥ + R(2)d¥ = d[R(2)] ¥V + R(z) [T, dU] ¥.
Together with equation (3.2.24) and the invertibility of W, this gives

RE)dU)

z

dR(z) = (2) [T, dU]. (3.2.25)
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3. Primary Invariants of Hurwitz Frobenius Manifolds

This re-expresses the equation for R(z) in terms of the rotation coefficients, which uses
less information than the full metric, encoded in W. Since dU(1) = I, an immediate
consequence of (3.2.25) is

1-R(z)=0. (3.2.26)

If the theory is homogenous, then invariance under the action of the Euler field
(20.4+ E)-R(z)=0 (3.2.27)

fixes the diagonal ambiguity in R(z).
The first non-trivial term R; of R(z) is given by the rotation coefficients

R =T. (3.2.28)
This follows from comparing the constant (in z) term in (3.2.24) which is
d¥ = [Ry,dU ¥

to equation (3.2.19) given by d¥ = [I',dU]¥. Since dU is diagonal with distinct
diagonal terms, we see that (3.2.28) holds for off-diagonal terms, and the ambiguity in
the diagonal term for both is unimportant—it can be fixed in R; by (3.2.24) together
with £+ Ry = —R;.

3.3 Topological recursion and CohFT

In this section, we give a brief overview of topological recursion defined in [50]. Consider
a Riemann surface ¥ equipped with meromorphic functions z,y: ¥ — C such that
the zeros of dz, given by {P4, ..., Py} are simple and dy is analytic and non-vanishing
on {Py,...,Py}. Let B be a Bergman kernel on ¥ x ¥ as in definition 3.1.2.

Define a sequence of symmetric multidifferentials wg,,(p1,. .., p,) on ¥*"* by the
following recursion:
wo(p) = y(p)dz(p); (3.3.29)
wo,2(p1, p2) = B(p1, pa); (3.3.30)
wg,m+1(p07p17' . '7pn) = (3331)
N f”z‘(ﬁ) wo.2(
s 7p0) -
Res . Wg,Q\n(p., Ji(p)|p17 s 7pn)7

— =P 2(wo,1(03(p)) — wo,i(p))

where o; is the local involution defined by x near the point P;, i =1,..., N, and Qg g,
is defined by the following formula:
g2 (P, 0" D1, - - Pn) =Wt 2 (P, D" 1y )+ (3.3.32)
Z wg1,|11\+1(p/7ph)wgz,ﬂzHl(p”apIz)'
91+92=9
LUL={1,...,n}
2g1—1+|11|>0
2g2—1+|I2|>0

Here we denote by p; the sequence p;,, ..., p;, for I = {ir,...,qn}.
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Remark 3.3.1. The recursion was defined on so-called local spectral curves in [42] as
follows. Consider small neighborhoods U; C ¥ of the points P;. If we look at just the
restrictions of wy, to the products of these disks, U;, x - - - x U;, , we can still proceed by
topological recursion, using as an input the restrictions of wy; to U;, ¢ =1,..., N, and
woe to U; x Uj, 4,5 =1,..., N. Indeed, Equation (3.3.31) uses only local expansion
data around the points P;. Hence, the word local refers to the unique knowledge of
these local data.

Remark 3.3.2. In the topological recursion on a compact spectral curve we also allow
y to be the (multivalued) primitive of a differential w on 3. The ambiguity in y
consists of periods and residues of w and hence the ambiguity is locally constant.
Since y appears in the recursion formula (3.3.32) only via y(o;(p)) — y(p) (and there
are no poles of w at the zeros of dz) the locally constant ambiguity disappears and
the recursion is well-defined. We go even further and allow w to be a locally defined
meromorphic differential (a connection) ambiguous up to dy + df (z) for any rational
function f. In this case the ambiguity y — y + f(x) is no longer constant, but again
y(o:(p)) — y(p) is unchanged.

3.3.1 Topological recursion from CohFTs

We recall the relation (3.1.9) of topological recursion on a local spectral curve to the
Givental formulae for cohomological field theories obtained in [37].

Definition 3.3.3. For a Riemann surface equipped with a meromorphic function
(3, z) we define evaluation of any meromorphic differential w at a simple zero P of dx

by

w(P) := Res S

r=P /2(z(p) — =(P))

where we choose a branch of \/z(p) — x(P) once and for all at each P to remove the
+1 ambiguity.

Theorem 3.3.4. [37] Given a semi-simple CohF'T presented via the R-matriz R(z) =
Sone o Riz" and constants ny, ...,ny define a local spectral curve (3, z,y, B), presented
as (the Laplace transform of) local series for dy(p) and B(p,p’) around each zero
p="P;, v =P; of dx (which is locally canonical) as follows:

[R(2)]" = _VE B(P;,p) - I (3.3.33)

J vV 27 T;

N
1 (ui—=(p))
Z [R_l(z)}f = / dy(p) -e = (3.3.34)
k=1 v2rz Jr,

s o) S (R ()] (R (=)
o

1
- B(pi,p2)e = —
2m.\/Z1%25 /pi /F] (p1.p2) 21+ 29
(3.3.35)

where I'; is a path containing u; = x(P;). Then the multidifferentials wy (1, ..., Pn)
obtained via topological recursion applied to the local spectral curve (¥, z,y, B) are
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3. Primary Invariants of Hurwitz Frobenius Manifolds

polynomials in differentials V;i(p;) defined by

Vi(p)
dz(p)

with coefficients given by ancestor invariants of the CohFT:

Vi(p) = B(Pi,p), Vi(p) :d< ) k=0,1,2,.. (3.3.36)

n n

wg,n(p17---,pn) = Z /ﬂ Igﬂ(eilw'-vein)ngd‘j ®lej(pj)

i1,eerin g:n =1 j=1

Remark 3.3.5. The spectral curve thus obtained is local, i.e. a collection of open sets
U; each containing a unique zero P; of dx. Thus I'; is defined only locally, which is fine
since we are interested only in the asymptotic expansion for R around z = 0. Let us
also remind the reader that this result is valid for any semisimple Frobenius manifold.
We shall see in the next section that, in the case of Hurwitz Frobenius manifolds,
one can make these Laplace transform globally well-defined by choosing carefully the
integration cycles to consider.

Remark 3.3.6. This data (the constants 7; and the matrix R(z)]) determine for us
a semi-simple CohFT {I,,} with an N-dimensional space of primary fields V' :=

(é1,...,en) corresponding to a chosen point (u,...,ux) on a Frobenius manifold—see
Section 3.2.3. In terms of the underlying Frobenius manifold structure, the basis
e1,...,ey corresponds to the normalised canonical basis

Remark 3.3.7. Note that the limit of (3.3.34) at z = 0 yields:
n'? = dy(P,) (3.3.37)

which tells us that dy encodes the metric.

Remark 3.3.8. Compatibility of (3.3.33) and (3.3.35) is a condition on the bidifferential
B, not satisfied in general, nevertheless always satisfied if the spectral curve is compact
and the differential dz is meromorphic. Compatibility for compact spectral curves
uses a general finite decomposition for B(p1, ps) proven by Eynard in Appendix B of
[46] together with (3.3.33). This is recalled in section 3.5.1.

Theorem 3.3.4 produces a map
{semisimple CohFT} — {topological recursion applied to a local spectral curve}

with image consisting of spectral curves with B and y necessarily satisfying compati-
bility conditions—compatibility of (3.3.33), (3.3.34) and (3.3.35). A general spectral
curve will not satisfy such compatibility conditions, i.e. in general one can choose
B and y independently. For example, the rational spectral curve (P!, x,y, B) for
r=z2+1/2 B=dzd/(z— )2, dy = z"dz, m € {—1,0,1,2,...}, lies in the image
of the map only for m = —1 or 0.

Compatibility of (3.3.33) and (3.3.35) is discussed in Remark 3.3.8 and compatibility
of (3.3.33) and (3.3.34) is characterised by the following theorem.
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3.4. Hurwitz Frobenius manifolds

Theorem 3.3.9 ([35]). Equations (3.3.33) and (3.3.34) are compatible (as equations
for the unknown variables R™' and n;), i = 1,...,N) if and only if the 1-form

w(p) =d (Zi(m) +2_ Res %( )B(p, ). (3.3.38)

is tnwvartant under each local involution o;, 1 =1,..., N.

The characterisation in Remark 3.3.8 and Theorem 3.3.9 allows a converse con-
struction of semisimple CohFTs from compact spectral curves. The following is a
sufficient condition for compatibility of (3.3.33) and (3.3.34).

Definition 3.3.10. We say that a compact spectral curve (X, z,y, B) is dominant if
x and dy are meromorphic and the poles of dr dominate the poles of dy.

Corollary 3.3.11. A dominant compact spectral curve (¥, z,y, B) lies in the image
of (3.1.9) and hence gives rise to a semisimple CohFT.

Proof. Any Bergman kernel satisfies the Cauchy property (3.1.4). If the poles of dx
dominate the poles of dy then dy/dz has poles only at the zeros P; of dx. Then
w(p) = 0 since

Z Res () B(p,p') = — Res @(p’)B(p,p’) =—d (ji(lﬁ)

p'=p dz

and hence it is invariant under each local involution ;. Since the Riemann surface
is compact it automatically satisfies (3.3.35) hence the claim is proven. O

Remark 3.3.12. In fact Corollary 3.3.11 allows a weaker hypothesis which we will
need. We can instead allow dy to be a locally defined meromorphic differential,
essentially a connection, which is ambiguous up to dy — dy + Adx. The conclusion of
Corollary 3.3.11 still holds since d ( ) is globally defined.

dz

3.4 Hurwitz Frobenius manifolds

In this section we first remind the reader of Dubrovin’s construction of a Frobenius
manifold on a cover of Hurwitz space and then prove a number of deformation lemmas,
which will be useful in the following sections.

3.4.1 Dubrovin’s construction

As defined in the introduction, denote by Iﬂfg# the moduli space of tuples
(2,2, {A;, Bi}iz1,. 4) consisting of covers z : ¥ — P! of genus g with fixed ramification
profile above infinity p = (u1, ..., pn) together with a choice of a symplectic basis of
cycles (A;, B;)i1,. 4 and marked branches of x at each point above oo.

Given such a generic cover x, we denote its simple branch points

Vi=1,...,N, u; = z(P;) where dz|p, = 0.
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3. Primary Invariants of Hurwitz Frobenius Manifolds

By the Riemann-Hurwitz formula:
N =2g—2+n+|u|

and since an element of the Hurwitz space is defined up to a finite information by its
critical values, this gives the dimension

dime I;Tgwﬂ =2g9—2+n+ |y
In the introduction we claimed that

#D = N = #{p| de(p) = 0} (3.4.30)

i.e. the number of generalised contours, defined by D in (3.1.3), coincides with
dimg Hy,. This follows from the fact that dz is a meromorphic differential so its
divisior (dz) = Z — P has degree 2g — 2, where Z and P are the zeros and poles of dz.
Hence

d
dime ﬁg,u =|Z| =29 —2+|P| =dim H, (2,2 (c0)) — 1 + Zui = #D.
=1

The last equality is clear since the elements of D consist of firstly

{x A1, ...,0Ay, By, ..., By, v, i = 2, ...,d} which has cardinality equal to

dim H, (X, 27 (00)) = 29— 1+d, together with —1+ Y, y1; = |P|—d—1 extra elements
*Co k=1, .. iy i = 1,....d remove 2Cs,.

_ We use the critical values u; as local coordinates in an open dense domain of
H; , C Hy, where u; # u; for i # j. The vector fields 9,, give a basis of TH,,, and
define a multiplication - given by:

By - Oy = 61500, (3.4.40)

We denote the unity and the Euler vector fields:
N N
e=Y 0u, E=) ud,,. (3.4.41)
i=1 i=1

Let us now define one-forms on ﬁg,u- For any quadratic differential @) on %, define
the one-form

N
- Q(p)
Qg = ;:1 du; Ei%? I

Dubrovin defines a set of differentials ¢ on X, defined in (3.1.5) and described in
more detail below, which have poles dominated by the poles of dx. They are known
as primary differentials and used to produce a quadratic differential Q = ¢2.

Theorem 3.4.1 (Dubrovin [27]). For any primary differential ¢, ]:T;M (ul|p(P;) #0}
is equipped with a structure of a Frobenius manifold with multiplication (3.4.40), unity
and Euler vector fields (3.4.41) and metric

N ) _ §
— 2 _ 5 \2
" ;dui W dr(p) ;d"i 6(P:) (3.4.42)
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where we used the notation of definition 3.3.3 for the evaluation of a one-form at
a point. In addition, the corresponding flat coordinates (t,) v can be explicitly
written in terms of periods of ¢ via

a=1,.

ta= [ ¢

Ca
for any C, € D.

This means that the data of such a Frobenius manifold structure on ffw is given
by the choice of a primary differential ¢. The definition of a primary differential uses
the Torelli marking of ¥ as follows. Fix a point in H ,, i.e. a pair (X, ) (a point in a
Hurwitz space) together with a basis (A;, B;),_; _, (a sheet of flg# seen as a cover).
Recall from the introduction that there is a unique Bergman Kernel B(p, p’) which is
a bidifferential of the second kind normalised to have zero periods over the A-cycles in
the Torelli marking {.A;, B;}. For any generalised contour C, € D we define a primary
differential by

0(p) = donlr) = §_Blo.)
which is locally holomorphic on ¥\ z7!(c0). Here, the dual C} = 1,5Cs with respect
to the metric 7.
Following Dubrovin, let us classify these cycles in 5 types:

e Type (1): fori=1,....,dand k=1,...,u; —1:

/@ J(p) = —— Res z(p)7 f(p):

i — 1 p—=oo;

Type (2) : fori=2,...,d:

/EC ) = pli‘ifix(p) f(p);

Type (3): fori=2,...,d:

4@wﬂm—vp1:7@x

Type (4): fori=1,...,¢:

Type (5): fori=1,...,¢:

1
[ =g 10

We see that the two important systems of coordinates—flat coordinates and
canonical coordinates—correspond to cycles in D, respectively zeros of dz. These sets
have the same cardinality by (3.4.39).
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3.4.2 Vector fields, cycles and meromorphic differentials.

Let us now introduce a correspondence between vector fields and meromorphic forms
using the Bergman kernel B which allows us to express all the quantities defining the
Hurwitz Frobenius manifold in terms of meromorphic forms. For flat coordinates

Oro > Ga(p) = / N B(p,p).

By linearity, for any vector field v, we can define a cycle C, by

Co=)Y (v0d,),Ca (3.4.43)

«

a meromorphic differential
o) = [ B
p'€Cy

and the metric n by

(i1,02), = 3 Res ZZ{(Q;:)Z. (3.4.44)

Note that (3.4.43) and (3.4.44) are proven by verifying them on a basis. We choose
the flat basis, to prove (3.4.43). Substitute v = 0, into (3.4.43) to get Cs, =
P <8ta,8tﬂ>n Cs = > 51asCs = C;, as required. We choose the canonical basis to
prove (3.4.44) as follows.

Apply (3.4.43) to the canonical vector fields to get

Co, = > (O 01,), Ca =Y _ (P)V.Ca

and hence

ba,, (p) = /C

Bp) = Y 0PIV, [ B

= Y 6P [ o) = 3 6P oalr)
a,fB B a,B

We will study ¢,, via evaluation at P;.

0., (Pj) =D ¢(P)ULPdu(Py) =Y d(P)Win W, = 5;;6(P)
B B

which uses the relation ¢g(P;) = \I/fg proven in Proposition 3.4.6. Since ¢, (p) vanishes
at P; for j # i, (3.4.44) becomes rather simple:
¢*(p)

®a,., Do,
B0 ) =5 Res 2% _ 5, Res 2.
(OucsBus ) - =P da(p) I 02%, da(p)

in agreement with (3.4.42) and hence proving (3.4.44) for all vector fields.
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The product in terms of the canonical basis gives us a formula in terms of the
matrix ¥ of change of basis from flat to canonical which takes the form of the Verlinde
formula, or Krichever formula depending on the context. (The Verlinde formula is
actually for the degree 0 part of the theory.) This can be written for example following
[27] equation (5.61)

Cosr = 5™ Res Pa(p)P5(P) 0y (P)
—r=Pi  dz(p)o(p)

This depends on the choice of Frobenius structure through ¢ which appears in the
denominator and a point in the Frobenius manifold through the dependence on z.

Let us finally identify the identity and the Euler field. The consistency condition
for the identity vector field 1 = 0,

<ai&7 8t5>¢ = LaBag

(3.4.45)

imposes
¢11 = d)ao = ¢
and the Euler vector field
¢E =-FK. ydr|z fixed — E- Idy‘y fixed — Idy = $¢

uses variations of the structures which are described below.

3.4.3 Rauch variational formula

An important tool used in this chapter is Rauch variational formula expressing the
variation of the Bergman kernel with respect to the position of the critical values.

, ) B(p, p1)B(p, p2)
amB(phP?) = Res - dx(p)

(3.4.46)

Rauch originally derived the dependence of the Riemann matrix of periods of a Hurwitz
cover on the critical values of the covering map in [83]. It later led to the expression
of the variation of the Bergman kernel in [65].

In the present context, the meaning of the variation is as follows. Over the
Frobenius manifold M = H,, we have a universal curve 7 : C' — M and a function
z: C'— M x C satisfying:

(i) Each fibre C' = C, = 7*(u) is a Riemann surface.
(if) x is meromorphic on each fibre C.

(iii) The critical values {uy, ..., u,} of z on each fibre above a semi-simple point are
canonical coordinates for M.

For any vector field 0 € I'(T'M), we choose a lift d € T(TC) so that dz = 0. We
abuse terminology and write 0 = 0. Hence we make sense of variations of a function
f(p1,p2) on C x C by identifying p; € C,, with p; € Cy when z(p;) = x(p}).
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Rauch’s variational formula for the Bergman kernel leads to variational formulae
for other quantities, in particular primary differentials.

Dusdy(p) = O, / (.7 / 9, B(p.7) / B(p.P)B(. ;) = dy(P,)B(p, P,).

(3.4.47)
We apply this to give a short proof of flatness of the metric (3.4.42) and refer to
[27] for the full proof of Theorem 3.4.1 which gives a different proof of flatness. The
tangent space to ﬁlg# is spanned by primary differentials constructed from contours in
D. Hence the following lemma proves flatness of the metric.

Lemma 3.4.2. When C,C' € D then (¢c, ¢cr)o is constant in {uy, ..., un}.

Proof. From the Rauch’s variational formula (3.4.46), we have

O, 0c(p) = ¢c(Pi)B(p, Pi). This uses the fact that the contour C depends only on a
geometric contour independent of the choice of u;, and possibly a function of z which
is constant, i.e. 0,,& = 0 by assumption. Hence

Ou; (De, per) = 57%, W
— N Res B(p, P;)(¢c(Pi)¢c (p) + ¢c(p)de (P))) _ .
— p=P: dl‘(p) .

2

Note that the integrand potentially has poles at P; and ooy, but since each ¢¢(p) is
dominated by dz(p) at each p = ooy, the poles at ooy are removable. Hence the last
equality uses the fact that the integrand has poles only at P;, i = 1, ..., N so that the
sum of its residues at P; is 0. O

The following theorem proven by Shramchenko identifies the R(z) matrix of the
Hurwitz Frobenius manifold with the Laplace transform of the Bergmann kernel. It
uses the Rauch’s variational formula.

Theorem 3.4.3 (Shramchenko, [90]). Given a point (X, z, (A;, B;)iz1,...4) in the cover
of a Hurwitz space with B(p,p’) normalised on the A-cycles together with a choice of
admissible differential ¢ the R(z) matriz of the Hurwitz Frobenius manifold is given

by:
_Gwwy)

[RT(2)] - ' B(p.P). (3.4.48)

J’ m

The resemblance of (3.4.48) and (3.3.33) means we are now in a position to prove
Theorem 3.1.6. Let us also remark that Shramchenko’s result goes further than a
formal series in z. Indeed, [90] defines integration cycles I'; such that R(z) is the
regular part of the expansion of a solution to Dubrovin’s linear system which is well
defined in a half plane.

Proof of Theorem 3.1.6. The proof combines Theorem 3.3.4, Theorem 3.3.9 and The-
orem 3.4.3.

Define the spectral curve (X, z, y, B) by a generic point (X, z) € H, , equipped with
a bidifferential B normalised over a given set of A-cycles, and a primary differential by
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3.4. Hurwitz Frobenius manifolds

dy(p) := §, B(p,p') for some C € D, defined in (3.1.3). If the spectral curve satisfies
the conditions (3.3.33)-(3.3.35) of Theorem 3.3.4 for the R(z) matrix of the Hurwitz
Frobenius manifold then topological recursion applied to the spectral curve produces
the ancestor invariants of the Frobenius manifold via the decomposition of wy,, given
by (3.1.10) and the theorem is proven.

By Theorem 3.4.3 the R(z) matrix of the Hurwitz Frobenius manifold is given by
(3.4.48) hence condition (3.3.33) is satisfied. Next we need to show that the choice
of y is the correct one. But since dy(p) := fc B(p,p') the poles of dy are dominated
by the poles—the pole behaviour of the integrals over generalised cycles described in
Section 3.4.1 is given in [27]—hence the spectral curve is dominant and Corollary 3.3.11
applies, proving that condition (3.3.34) is satisfied. Finally condition (3.3.35) is satisfied
by Lemma 3.5.4 since ¥ is compact and x is meromorphic.

O

3.4.4 Shramchenko’s deformation.

Following methods of Kokotov-Korotkin [66], Shramchenko [88] defined deformations
of Dubrovin’s Frobenius manifold structures on H,,. See also Buryak-Shadrin [15].
Recall that once we are given (X, z, {A;, B; }iz1,.. 4) and D, we define a Bergman kernel
and use that to define primary differentials ¢, for a € D. Instead of the Bergman
kernel B(p,p’) Shramchenko considered arbitrary Bergman kernels w([f’%(p,p’) on ¥
which is a symmetric bidifferential on ¥ x 3, with a double pole on the diagonal of
zero residue, double residue equal to 1, and no further singularities. The set of such
kernels is parameterised by symmetric matrices x of size g x g. We denote by w([f]Q =B
the Bergman kernel normalised in the basis of cycles chosen, i.e.

wzlw”y,f‘A2:0
A

The key ingredients in the proofs of Theorems 3.1.4 and 3.1.6 are Rauch’s variational

principle for B(p,p’) which holds more generally for Bergman kernels normalised on

geometric cycles and Eynard’s formula (3.3.35) which is valid for any B = w([f%

Theorem 3.4.4. The conclusion of Theorems 3.1.4 and 3.1.6 holds for Frobenius
manifold structures on Hy,, defined by w([f%(p,p’) when K is such that there exist a basis

of geometric cycles (AEK],BZ[H’])_ satisfying

7

W:lwwgh% wia(p,p) = 0.
p’ EAEN] '

3.4.5 Landau-Ginzburg model.

In Section 3.4.2 we described a map from the tangent space at p € }NIW to the vector
space spanned by primary differentials, denoted by Vppri"‘. It was defined via a map to

contours which are linear combinations of contours in D. For v € T,H,, we defined

v = Cy = ¢u(p)
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A more direct path uses variations. It is known as a Landau-Ginzburg model for
(3, z,dy) and defined by:

TpHg,,u N V'pprim
v = v (—ydz)

So the claim is that the variation gives the composition of the two maps above, i.e.
«(—ydz(p)) = ¢.(p). We prove this relation in terms of flat coordinates.

Lemma 3.4.5. For C, € D, the coordinate t, = fC(, dy is associated to the differential
da(p) via

O, [=y(p)dx(p)] = dalp) = /C B(p,p').

*
@

Proof. The main idea of the proof is to consider evaluation of 9, ydz(p) at p = P;
in order to be able to integrate by parts. From the variation of dy with respect to
canonical coordinates given in (3.4.47) we have

O dy(p) = Z U0y, dy(p) = Z d;(l;';i)ﬁuzdy(p) (3.4.49)
= 3 ey PIB.P) = B P
Then
0. [~yda)(P,) = — Res Q(x(;)_u)a lydr) = Res /2a(p) — w)0l, dy
= Res W; U, B(p, P))

I)Fieg 2(z(p) — u;) B(p, Pi) ¥,
- \I/L = ¢a(732)

where the second line uses (3.4.47), the third line uses the fact that B(p,P;) has no
pole at P; for j # i, the third line uses Res,—p, v/2(z(p) — u;)B(p, P;) = 1, and the
final equality uses Proposition 3.4.5.

Hence

O, [ydx)(Pi) = ¢u(Pi), i=1,...,N

which is nearly enough to guarantee that the differentials 9, ydz and ¢, agree. Define
the function on ¥ by
_ Owydz(p) — da(p)

f(p) ()

Then f(p) has no poles since the numerator of f(p) vanishes at p = P; and dz(p) has
simple zeros at p = P;. Also, from (3.4.49) we see that 9, ydx has no poles at z = oo
hence 0, ydx — ¢, has poles only at 2 = oo, dominated by poles of dz, since this is
true of ¢,. In particular f(p) has no poles at z = co.
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3.4. Hurwitz Frobenius manifolds

Thus f(p) = ¢ constant and Oy, ydz(p) = ¢a(p) + cdz(p). In [27] Dubrovin proves
that the differential ¢,(p) is either strictly dominated by dx at at least one point
00; € x71(00), in which case f(oo;) = 0, or ¢,(p) is a connection with ambiguity given
by cdx for any constant c. Hence we may assume ¢ = 0 and the lemma is proven. [

We can now identify the transition matrix U between flat and normalised canonical
vector fields in an elegant way. Flat coordinates correspond to periods along generalised
contours while canonical coordinates correspond to (finite) critical points of z. The
Bergman kernel allows a natural marriage of the two.

Proposition 3.4.6 ([88]). The transition matriz U between flat and normalised
canonical vector fields, defined in (3.2.19) is given by
v, = / B(p,Pi) = ¢a(Pi).
peEC

As usual the indices i = 1, ..., N are associated to the canonical coordinates and
a=1,...,N are associated to the flat coordinates.

Proof. We have

aulta = aul/ dy = / 8Uzdy = dy(Pz)/ B(p7 Pl)

where the last equality uses (3.4.47), hence
O, = Z/ B(p,P;) 0. (3.4.50)

Now
[av17 ceey 8’0]\7]\1} = [atm ceey 615]\1]
and since UTW =5, or Un~'U7T = | we have
[am, ...,BUN] = [8{/1, ...7851\,]7771\1/11
hence

0o = ™50,
B8

and comparing this with (3.4.50) we see that

S owy = [ Bo.P)
B

«

SO

= a0 = Zma/ B(p,P;) = / B(p,P;) = / B(p, )
B @ Ca > Mala C;
as required. The second equality in the statement of the proposition simply uses the
definition ¢, (p) = prC* B(p,p'). -
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3. Primary Invariants of Hurwitz Frobenius Manifolds

Remark 3.4.7. The column of ¥ corresponding to the vector field gives the square
root of the diagonal coefficients 772-1 /2 of the metric 7 in canonical coordinates. From
Proposition 3.4.6, we have 7; = ¢(P;)? which agrees with (3.4.42).

The transition matrix ¥ gives rise to the R matrix of the Frobenius manifold built
from a choice of point (X, z, (A;, B;)i=1,..4) in Hy,, given in Theorem 3.4.3 together
with a choice of admissible differential 7.

3.4.6 Flat coordinates

Let us now explain how to recover the expression of the correlators of the CohFT in
flat coordinates out of integration along contours in D.

Lemma 3.4.8. For any generalised contour C € D and any (g,n) € N x N*, the map

Won = / Wg,n
e

defining the action of integration of the correlation functions is well defined.

Proof. Since C is only an isotopy class of contours (with coefficients that are functions
of ) in £\ 27! (00) and w,,, has poles in £\ 27! (c0) we need to prove that the integral
is independent of the choice of contour. This is a consequence of the fact that wy,,
and zwg, have zero residues at P;. Note that the residues at co; might not be zero,
but the contours are not allowed to deform through oo;. O

Proposition 3.4.9. For any C € D define ¢c(p) = fc = dfc where f¢ is
locally valued. As operators acting on wyy, for 2g —24+n > O

; Res fo = /C .
in other words,
S Res fepon(pin ) = | nlp.paser)
7 p=P;i peC

Proof. Recall Riemann’s bilinear relation. For meromorphic differentials ¢ and w such
that ¢ is residueless

ZResf W—Tm [7{ ¢fw—7{¢& } (3.4.51)

where df = ¢ for a locally defined primitive f and the sum is over all poles P of ¢ and
w.

Primary differentials ¢¢ of types 1, 2 and 5, with respect to the classification given
in Section 3.4.1, are residueless so apply (3 4. 51) to ¢ = ¢¢ and w = wy. .

For C = Bj, i = j,....q, ¢c(p) = fB = 0; = dfe (f defined locally) is a

holomorphic differential satisfying fAk 0; = 27rz 5]k. Then (3.4.51) becomes:

1 g
ot S o fof ] f o f
Xi:” " 27”1; a s s ST s e

J
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3.4. Hurwitz Frobenius manifolds

since fAk wgn = 0.

For C = z*/(+0¢; k= 1,...,n; +1,i = 1,...,d, (which this includes both types
1 and 2) then ¢¢ = Reso, gF/mitD B — df, is residueless and normalised so that
J 4 ¢ =0. Then (3.4.51) becomes

> Res fo - won = 2m lji ¢c}§ Wyn — j{%ﬁ qu} =

P=P},,00p

= E Res fo-wgn =—Res fe-wgn = P wWyn
T Pr 004 C '

where the last equality uses the fact that fo ~ —z®/ %+ near oo;.

For C=2xC;, i =1,....d, ¢¢ = sz B is a differential of the 3rd kind with simple
poles at co; and oo; normalised so that f A ¢¢ = 0. Since w,,, is residueless we switch
the roles of ¢ and w in (3.4.51). Choose F, such that dF,, = wy,, i.e. a primitive
with respect to one variable. Then

Z Res Fyn(p, 2, s Pn)de(p) 27rz [7{1 ¢67§ om ]{ ¢C]i o } B

p="Pk,00¢

= Z Res Je(P)wyn(P, D2, -+ Pn) = Z Res Fyn(p.p2, s Pn)dc(p)
= pl;{gos Fgm(!ﬁpm ~~7pn)¢(3(p)
+ Res Eyn(p,p2s -, Pn) e (p)

= Fg,TL(OOiap27 "'7pn) - Fg,7L(Ool7p2> --'apn)

00;
:/ Wy,n :/Wyﬁn
001 C

For C =z A;, i =1,...,g, we cannot apply (3.4.51) directly since ¢¢ is not a globally
defined differential. Instead we need to apply the proof of (3.4.51) as follows. Cut
Y along A and B cycles meeting at a common point Fy to leave a simply-connected
region R C ¥ on which ¢¢ and a primitive (with respect to one variable) F,(p)
of wy,(p) (suppress variables po, ..., p,) are well-defined. As in the proof of (3.4.51)
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3. Primary Invariants of Hurwitz Frobenius Manifolds

integrate ﬁq&ch,n along the boundary of R given by the A and B cycles to get

Z Reb Fyn(p)oe(p) [?i] ¢C]i I ]ij e ]{4;' Wg,n]

Po+B;+A;
- / Fg,n(p)dx(p)

Po+B;

Po+Bi+A;

Po+B;

dx(
- / 2(p)Wyn(p) = — /c Wy.n(P)

i

3 Res fel@henlp) = [ wnlo)

p=Py

O

Theorem 3.1.6 proved that topological recursion applied to the spectral curve
(2, z, (A, Bi)iz1,.,4) with a choice of admissible differential ¢ = dy and wyo = B,
stores the ancestor invariants of the Hurwitz Frobenius manifold and hence proves
Theorem 3.1.4. We now prove the remainder of the statement of Theorem 3.1.4
by showing how to extract the ancestor invariants via integration over generalised
contours.

Proposition 3.4.10. Integration over flat contours C, € D produces primary invari-

ants:
/ / Wy = /7 Ig,n(em Q.0 ea">
Cay Can My.n

Proof. We will prove the dual statement

/ / wgyn:/i Igﬂ(em@...@e%). (3.4.52)
n Jes, M

g,n

For k£ > 0,
Z%)sta-W:O7 k>0

where V! are defined in (3.3.36) and dy, = ¢,. Hence the operator 3. Res p, yo- only
detects coefficients of Vi (p) = B(P;,p) in wy,, which stores the primary invariants by
(3.1.10). Now

Res ya(p) - V5 (p) = Res ya(p) - B(Pi,p) = 0ij¢a(Py) = T,

since B acts as a Cauchy kernel which sends y,, to evaluation of dy,. Hence Z %}es Yo

acts as insertion of the vector
v ~3v1:at = €

[e3 e
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3.4. Hurwitz Frobenius manifolds

into the ancestor invariant. Thus, using Proposition 3.4.9 we see that as an operator

acts as insertion of the vector e® into the ancestor invariant and in particular (3.4.52)
holds. Note that since C; = > ;145Cs is a constant linear combination of contours in
D, then Proposition 3.4.9 applies also to CJ. O

on Wy n

Remark 3.4.11. Let us apply Proposition 3.4.10, or more precisely (3.4.52), to the
simplest case of wy 3 to get the following.

Copy = /M0,3 Ios (ea ®es® ev)
= [ [
N e
S]] Bz

%(p dm(p)dw( )
B Z P, (p)dy(p)

which agrees with (3.4.45) as expected. Here we have used the formula

B B(p1, p)B(p2, p)B(ps3,p)

proven in [50].

The following proposition generalises Theorem 3.1.4.

Proposition 3.4.12. There ezist generalised contours Cy = pr(2)Cq, for Co € D and
pp(r) = 2% + ... a monic polynomial of degree k in x, so that the ancestor invariants,
corresponding to d; > 0, appear as periods.

/ / /ﬂ Tom (eal ®..8 60“”) ‘]ﬁll/’f]- (3.4.53)

Cay kg Can kn gn

Proof. Using integration by parts, we see that the contour z*C; acts on the differential

Vii(p) by
. vit) = [ Vi,

i i

Hence there exists a monic polynomial py(z) = 2 + ... of degree k in x such that

/ V(D) = 6 0km.
Pr(2)Ci
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3. Primary Invariants of Hurwitz Frobenius Manifolds

Define C; , = pi(x)C;, for C, € D then we have

/* /C wgyn:qﬁ[l%(e%». (3.4.54)

a1,k an,kn

3.5 Topological recursion in compact case

In this section we associate to a spectral curve a so-called R(z) matrix, which in the
case of spectral curves lying in the image of the map (3.1.9) from CohFTs to spectral
curves, coincides with the R(z) matrix of the Frobenius manifold.

Definition 3.5.1. Given a spectral curve (X, z,y, B) define a formal series
R(z) = Ry*
k=0

with coefficients N x N matrices where N = number of zeros of dz by

[R_l(z)}; = —\/\;/F e B(p.P). (3.5.55)

In fact I:Z(z) depends only on (3, z, B). This definition begins with the spectral
curve and produces R(z) which reverses the direction of (3.3.33) where one begins
with a Frobenius manifold and its associated R(z) and produces a spectral curve. In
general R(z) will not arise out of a Frobenius manifold.

Remark 3.5.2. Note that {R’l(z)}l_ is well-defined for ¢ = j because the integrand

J
has a pole of residue zero at P;, so I'; can be deformed to avoid P; in a well-defined
manner.

Remark 3.5.3. The paths I'; were defined only locally in a neighbourhood of P; in
Section 3.3.1. That is also sufficient here, because again we are only concerned with
the asymptotic expansion of I?(z) at z = 0. Nevertheless, we can choose paths along
which z/z — oo in both directions, such as a path of steepest descent of —x/z so that
the series R(z) converges.
Let us denote [1:2(2)} Z_ =3 [f%k}z 2% In particular, one has
J

J

[Rly = Byj = B(P,P;). (3.5.56)

J

3.5.1 Factorisation property

On a compact spectral curve R(z) shares the symplectic property of any R(z) associated
to a Frobenius manifold. This is proven below as a consequence of a factorisation
formula for the (Laplace transform of the) bidifferential B in terms of R(z). The
factorisation formula is also required in the proof of Corollary 3.3.11.
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3.5. Topological recursion in compact case

Lemma 3.5.4 (Eynard, [46]). Whenever the spectral curve is a Hurwitz cover of P*
with dz a meromorphic form with simple zeroes, R(z)—defined in (3.5.55)—satisfies
the symplectic condition

R(2)RY(—z) = Id. (3.5.57)

Furthermore, the Laplace transform of a Bergman kernel

_z(@ _ =)

B - CR—
(21722 277\/%// PP 1 2

satisfies

Bi’j(zh 22) = _ZkZI {R_lz(fl-l)-};z {R_l(zg)}j ’ (3~5~58)

This means that the coefficients B,ZCJZ of the expansion of the Bergman kernel around
the branch points P; and P; can be defined recursively in terms of the initial data
B We give a proof here that differs from the proof in [46].

Proof. We have

al Res Bp,9)BW,49) _

Bp.9)BW.q) . B,9BW.q)
q="P; dCE( )

" dz(q) a=p' dz(q)

_ 4 (Bwr)\ _, (B.p)
"\ dx(p) "\ da(p)
where the first equality uses the fact that the only poles of the integrand are

{p,?/,Pi,i = 1,..,N}, and the second equality uses the Cauchy formula (3.1.4)
satisfied by the Bergman kernel. The Laplace transform of the LHS of (3.5.59) is

— Res (3.5.59)
s

i=1

B(p,q)B(¥', q)

- Res
277,/21,22/ / “— 4=Py dx(q)
N i Yy
ez 22 z(p

and the Laplace transform of the RHS of (3.5.59) is

s [ (G e ()
_ <z11 4 ;) B (21, 2)
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since the Laplace transform satisfies

Ja(ag) = e

for any differential w(p), by integration by parts. Hence we see that the Laplace
transform of (3.5.59) gives (3.5.58) as required. Then (3.5.57) is a consequence of
(3.5.58) and the finiteness of B% (21, 2z5) at zp = —z;. O

3.5.2 Defining equation for R;(z)

In the preceding section we defined an R-matrix from which is equivalent to the
Bergman kernel. When the Bergman kernel is normalised on a basis of geometric

cycles, we can go further and compute all the terms {Rk} ~in terms of some minimal
quantities. This uses the Rauch variational formula (3.4.46J) which allows us to derive
an equation for the R matrix.

When a spectral curve lies in the image of the map (3.1.9) from CohFTs to spectral
curves, the following theorem is a consequence of the properties (3.2.25), (3.2.26),
(3.2.27) of the R matrix of a CohFT. For compact spectral curves, by Theorem 3.4.3
generically R =R, but R is a little more general, and for example exists when critical
values u; coincide and R is problematic, since it is defined over the semi-simple part
of the Frobenius manifold. The outcome of the following theorem is that R resembles
R and it can be used to give an alternative proof of Theorem 3.1.6.

Theorem 3.5.5. Given a triple (3, z, B) consisting of a compact Riemann surface ¥,
a meromorphic function x : ¥ — C with zeros of dz simple, and a Bergman kernel B,
then R(z) satisfies (3.2.25), (3.2.26), (3.2.27), i.e

o [Reau]
dR(z) = ~——— — R(2) [l dU], (3.5.60)
1-R(z)=0, (3.5.61)
(20.+E)-R(z) =0 (3.5.62)

Proof. Although (3.5.61) is a consequence of (3.5.60) we first prove (3.5.61) and use
this to prove (3.5.60).

Proof of (3.5.61): Differentiate Eynard’s formula (3.5.58)

; o LR R
e _z(p) =@
B Z1 212 p 21 2z — § k
( ’ 27’(’,/2’122 ’ 21+ 29
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ﬂ.[g—l(zl)}__iaay 1]:—,22%3”20 =0, Vij

and since 1 - R(z) = 0« 1 - R7'(2) = 0 this proves (3.5.61).
Proof of (3.5.60): For k # 1,

G[R_l(z)r

) o \/5 (2(p)—uj)

J— _ -—— = B ; 3.5.63
u ur vz Jo € (p, Pi) ( )

_Gwwy)

- [ 1<z) j B(p, Px)B(Py, P;)

R7(2)
=5k,j{z]ﬂ+[ ()] B

For k =i, by (3.5.61),

9 [Rfl(z)]i

\/ﬁ

o] )

Oy, ’ z

T

m#i
which gives the (4, j) component of the equation
{]:Tl(z), dU}

dR7'(2) = .

+ [0, dU) R7Y(2).
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and (3.5.60) holds.

Proof of (3.5.62): We begin with a variation of the proof of (3.5.58), replacing the
identity vector field with the Euler vector field. We have

9 = Bp.a)B(.a) <~ ., 2(a)B(p,9)BW,q)
" Du; By = ;”i RSl - R dz(q)
(3.5.64)
_ _ Res Y98 ( ¢9)B(¥.q) z(q)B(p,9) B, q)
TS ol ey dalg
_ z(p")B(p, p
—=a () - ()
Then
<1+zla8 +z2a%2 +—1 - Z) B (2, 29)
:27T\/%( (’)z1+22 >// Blp.p)

- 27T\/2122//Zuk

. 9\ . .
== + % up— | B (21, 22)
21 2 - Ouy,

where the second equality uses (3.5.64) and integration by parts to show that for any
differential w(p) the Laplace transform satisfies

[ a("any) =i [ e

Hence we are left with the following equation which is essentially the Laplace transform
of (3.5.64):

0
L2+ 25 Z i -| B(z1,22) = 0. (3.5.65)

We will now take the zo — 0 limit of (3.5.65). From Eynard’s formula (3.5.58) we see
that %B(zl, 2z3) is well-defined at z = 0, hence limozmiB(zl, 29) = 0. We also have
2 Z2— 22

Bik(z,0) = -1+ [R‘l(zl)r, Thus the zz — 0 limit of (3.5.65) becomes
k

21

0=

1+21 +Z [ 1(31)}1—;[216(1+Z:Ui£ {R_l(zl)}:

which gives (3.5.62). O
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Remark 3.5.6. A spectral curve (3, z,y, B) with dy a primary differential is dominant—
see Definition 3.3.10—hence by Corollary 3.3.11 it corresponds to a CohFT, which
we have identified with the Hurwitz Frobenius manifold corresponding to primary
differential. More generally we can take dy to be any linear combination of primary
differentials, which is no longer a primary differential hence Theorem 3.1.6 does not
apply, but the spectral curve is still dominant and hence corresponds to a CohFT.

3.6 Topological recursion
for families of spectral curves

Vector fields on the Frobenius manifold f[g# can give rise to recursion relations
between ancestor invariants. In this section we show how the vector fields act on the
multidifferentials w, ,, arising out of topological recursion and give rise to the recursion
relations between ancestor invariants.

Over the Frobenius manifold Hy , is a universal curve which is a family of spectral
curves constructed via the underlying Hurwitz map (¥, ) together with natural cycles
on X used to define the full spectral curve (X, z,y, B). Note that topological recursion
applied to a single spectral curve produces a CohFT which extends uniquely to a
family of CohFTs, nicely encoded in a Frobenius manifold, and each giving rise to
a corresponding spectral curve. Hence in this way the family of spectral curves is
reconstructed from any single spectral curve in the family.

Consider the family of multidifferentials w,, obtained by applying topological
recursion to the universal curve. We can differentiate the multidifferentials w, ,, with
respect to vector fields on the Frobenius manifold H gu- As usual, for any vector field
v € F(Tﬁg’#) we choose a lift o € I'(T'C') where C'is the universal curve over ﬁgw S0
that v - z = 0. We abuse terminology and write v = v.

First order deformations of topological recursion are described in [50]. There it is
shown that deformations of w1 propagate via the recursion to determine deformations
of wy . Specifically, for v a vector field on }NIW, if we can express the variation of ydx
as an integral of B over a generalised contour C, then the variation of wy,, uses the
same contour as follows.

Uydl'(p) = /B(p//p) = v'wg,n(pla“'7pn) = /wg,n+1(p/7p17“'>pn)~ (3666)
C C

Deformations with respect to natural vector fields on the Frobenius manifold
correspond to relations between correlators in the CohFT. In the remainder of this
section we describe the dictionary between deformations by the unit and Euler vector
fields and their realisations via topological recursion.

3.6.1 Identity vector field.

When v = 1 is the identity vector, we have

L ydoly fxea = =1+ 2dyly fea = —dy = = Res y() B(p,p') = 3 Res y() B(p.p')
P
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3. Primary Invariants of Hurwitz Frobenius Manifolds

where the sum is over the poles P of y. Hence by (3.6.66)
1-won= Z Res y(p)wy i1 = ZpR:evi () wgms1- (3.6.67)

We can calculate the action of 1 on wy, in a different way via the lift of 1 to the
universal curve. Note that there are flat coordinates #1, .,, .ty such that 1 = 9/9t
where t; appears in x as x = xg + t; for zy independent of ¢;. The lift 1 necessarily
annihilates  so with respect to a local parameter z on >

O=T-z2=2'G)01-2+1 = 1.-z2=-1/2'(2)

where we used the explicit partial derivative 0;,& = 1. Hence for any differential &
with no explicit ¢; dependence, locally ¢ = df so we have

L-&(2) =dl- f(2) = d(f'(2)1 - 2) = —d(f'(2)/2'(2)) = —d(df /dz) = —d({/dx).
In other words the lift of 1 coincides on fibres with the operator

a4
dx

which acts on functions or differentials. In particular, £ have no explicit ¢; dependence

SO o
1. = —d (2;) -2

Furthermore wy, has no explicit ¢; dependence since topological recursion is unchanged
under x — x + t;. Hence

= W n(pla"'7pn)
! ; dx(p;)

The relation N
w n(ph --'7pn)
E Resy Ngn E d<g’>
g1 = = dz(p;)

is proven in a different way in [50] as a direct consequence of topological recursion.
Here we have shown it to be a consequence of the action of the lift of the identity
vector field on the universal curve.

The Hurwitz Frobenius manifold from Section 3.4 have flat identity hence the
CohFT satisfies the pull-back relation (3.2.23). A consequence of (3.2.23) on correlators
is known as the string equation which expressed in tau notation:

<H Tk, (vl)> = /7 Ijn(1 ® - @ vy) Hz/}fi

Mgn i1

is given by

n

(To(1)7ay (v1) - Tkn(Un)>g = Z (Twy (V1) =+ iy (v3) -+ Tkn(vn)>g‘

i=1
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3.6. Topological recursion for families of spectral curves

But this is precisely equivalent to the relation (3.6.67) since

&\ e
I (dI(Pj)> =&

where coefficients of £ correspond to insertions of the vector field 9/0t,.

3.6.2 Euler vector field.

When v = E is the Euler vector field, we have
E - ydz|, fixed = —E - zdyly fixea = —xdy (3.6.68)
= Res (@ —ay) () Blp.p) = ZRes — 2y)B(p, 1)
where d® = ydz and the sum is over the poles P of ® — zy. Hence

E-wy,= Z Res — TY )Wy nt1 = Res (<I> — Y )Wgn+1 (3.6.69)

p] wgn Pi1;-- 7pn)
29 — 2+ n)Wgn(Pr, .y Pn) — d( )
- Fan(prscespn) Z =y

where the last equality uses the dilaton and second string equation satisfied quite
generally by the w,,, proven in [50]. Analogous to the string equation above, which
enables one to remove or insert the identity vector field, this last expression enables
one to remove or insert the Euler vector field in correlators. For example, in the
Gromov-Witten case, it is given by the divisor equation.

A conformal Frobenius manifold corresponds to a homogeneous CohFT. A CohFT
is homogeneous of weight d if

((g—1)d+n)l,, = deg Ijw( ® ... @ vy) (3.6.70)

— zjlg,n(v1 ®..0[E,v]®..0v,)
j=1
+ T dgp1(1 ® ... QU @ E)
where F is the Euler vector field and 7 : ﬂg,nﬂ — Mg,n is the forgetful map.

Equation (3.6.70) allows one to remove or insert the Euler vector field in correlators
and (3.6.68) is equivalent to this relation.
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Chiodo formulas for the r-th roots and
topological recursion

Abstract

We analyze Chiodo’s formulas for the Chern classes related to the r-th roots of
the suitably twisted integer powers of the canonical class on the moduli space of
curves. The intersection numbers of these classes with -classes are reproduced via
the Chekhov-Eynard-Orantin topological recursion.

As an application, we prove that the Johnson-Pandharipande-Tseng formula for
the orbifold Hurwitz numbers is equivalent to the topological recursion for the orbifold
Hurwitz numbers. In particular, this gives a new proof of the topological recursion for
the orbifold Hurwitz numbers.

4.1 Introduction

4.1.1 Topological recursion

The topological recursion in the sense of Chekhov, Eynard, and Orantin (see, e.g., [50])
takes as an input a spectral curve (X, z,y, B), i.e., the data of a Riemann surface 3,
two functions x and y on ¥ with some compatibility condition, and the choice of a
bi-differential B on the surface (which is canonical in the case ¥ = CP?, so we will
omit it in this case). The recursion produces a collection of symmetric n-differentials
W, (called correlation differentials) defined again on the surface whose expansion
can generate solutions to enumerative geometric problems.

In particular, under some conditions the expansion of W,, is related to the
correlators of semi-simple cohomological field theories [37].

4.1.2 Chiodo’s formula

In [78], Mumford derived a formula for the Chern character of the Hodge bundle on
the moduli space of curves M, in terms of the tautological classes and Bernoulli
numbers. In [19], Chiodo generalizes Mumford’s formula. The moduli stack M, , is
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4. Chiodo formulas and topological recursion

"5

substituted with M, . the proper moduli stack of rth roots of the line bundle

n
®s e
Wiog | — E a;T;

i=1

where wiog = w(D x;), the integers s, ai, ..., a, satisfy

(29—2—|—n)5—2a2—6rz,

i

and the z;’s are the marked points on the curves. Let 7: C — M;n be the universal
curve and denote by & — C the universal r-th root. Chiodo’s formula computes
the Chern character ch(R*m,S), again in terms of tautological classes and values of
Bernoulli polynomials at rational points with denominator . The push-forward of
the corresponding Chern class to the moduli space of curves will be called the Chiodo
class.

In one particular case we know a relation between the Chiodo classes and the
topological recursion. Namely, the coefficients of some expansion of the differentials
W, for the spectral curve data (¥ = CP',z = logz — 2",y = z) are expressed in
terms of the intersection numbers of the Chiodo classes for s =1, r=1,2,.... The
main result of this chapter is an extension of this correspondence to arbitrary s > 0.

4.1.3 Chiodo classes and topological recursion

We consider the spectral curve
(L =CP'2(2) = —2" +logz,y(2) = 2°). (4.1.1)

We prove that (see Theorem 4.4.6)

the expansion of the corresponding correlation differentials in some auxiliary basis of
1-forms is given by the intersection numbers of the corresponding Chiodo class for
these particular r,s > 1.

The case s = 0 is exceptional. In this case, the intersection numbers are the same
as in the case s = r, so we still have to use the spectral curve (X = CP!, z(z) =
—2" +logz,y(z) = 2").

These spectral curves are known in the literature, in some particular cases, in
relation to various versions of Hurwitz numbers.

4.1.4 Hurwitz numbers

Hurwitz numbers play an important role in the interaction of combinatorics, repre-
sentation theory of symmetric groups, integrable systems, tropical geometry, matrix
models, and intersection theory on moduli spaces of curves.

There are several kinds of Hurwitz numbers. Simple Hurwitz numbers enumerate
finite degree d coverings of the 2-sphere by a genus g connected surface, with a
fixed ramification profile (1, ..., u,) over infinity, """ | y1; = d while the remaining
2g — 2 + n + d ramifications over fixed points are simple.
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These Hurwitz numbers are known to be the coefficients of the expansions of the
correlation forms of the spectral curve (4.1.1) for r = s = 1. This was conjectured
in [13] and proved in several different ways, see, e.g., [49, 33].

Chiodo’s formula in this case is reduced to the standard Mumford formula, so the
Chiodo class is the Chern class of the dual Hodge bundle on the moduli space of curves.
The fact that the same correlation differentials are related, in different expansion,
to simple Hurwitz numbers and to the intersection numbers, implies that there is a
formula for simple Hurwitz numbers in terms of the intersection numbers. Indeed, it is
the celebrated ELSV formula [39]. The equivalence between the topological recursion
and the ELSV formula is proved in [42], see also [33, 87].

Another example is r-spin Hurwitz numbers. In this case, the definition is a bit
involved; roughly speaking, we still consider the maps of genus g algebraic curves
to CP!, with a fixed profile over infinity, but the remaining simple ramifications
are replaced by more complicated singularities, so-called completed cycles. We refer
to [86, 87] for the precise definition.

In this case, the r-spin Hurwitz numbers are conjecturally related by the spectral
curve (4.1.1) for that particular r and s = 1, see [77, 87]. The same logic as for the
simple Hurwitz numbers implies that this conjecture is equivalent to an ELSV-type
formula that expresses the r-spin Hurwitz numbers in terms of intersection numbers [87].
The corresponding ELSV-type formula was conjectured in [99] and is still open.

4.1.5 Orbifold Hurwitz numbers

A case of special interest for us is the r-orbifold Hurwitz numbers. They enumerate
finite degree d, r|d, coverings of the 2-sphere by a genus g connected surface, with a fixed
ramification profile (p1, ..., t,) over the infinity, > - | ; = d, the fixed ramification
profile (r,r,...,7) over zero, while the remaining 2¢g — 2 + n + d/r ramifications over
fixed points are simple.

It is proved in [14, 25] that the r-orbifold Hurwitz numbers satisfy the topological
recursion for the spectral curve (4.1.1) with this particular r and s = r. Johnson-
Pandharipande-Tseng [63] exhibited an ELSV-type formula that can be restricted to
express r-orbifold Hurwitz numbers in terms of intersection numbers. As an application
of the general correspondence between the Chiodo formulas and topological recursion,
we prove the equivalence of these two statements (see Theorem 5.1).

Since the Johnson-Pandharipande-Tseng formula (the JPT formula, for brevity)
is proved independently, our equivalence result implies a proof of the topological
recursion of r-orbifold Hurwitz numbers.

It is a new proof of the topological recursion; the existing proofs [14, 25] do use the
JPT formula, but only its combinatorial structure, and not the geometry of the classes.
The topological recursion is then derived in [14, 25] from an additional recursion
relation for r-orbifold Hurwitz numbers called cut-and-join equation.

4.1.6 Further remarks

A natural question is whether we can use the equivalence between the topological
recursion and the JPT formula for r-orbifold Hurwitz numbers in order to give a new
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4. Chiodo formulas and topological recursion

proof of the JPT formula, as it is done in [33] for the simple Hurwitz numbers. This
approach requires a new proof of the topological recursion that wouldn’t use the JPT
formula. This is done in [34], so we refer there for further details.

Another natural question is whether there is any natural combinatorial and/or
geometric problem of Hurwitz type related to the other spectral curves (4.1.1) for
arbitrary r and s. The only indication of a possible relation that we know is that
similar spectral curves are used in [77] for the so-called mixed Hurwitz numbers in the
context of the quantum spectral curve theory.

4.1.7 Plan of the chapter

In Section 2 we review the semi-simple cohomological field theories, possibly with a
non-flat unit, that correspond to Chiodo classes. In Section 3 we recall the general
formula of the differentials W, in terms of integrals over moduli spaces of curves
as described in [37, 46], while in Section 4 we compute explicitly all the ingredients
of that formula and prove our main theorem, Theorem 4.4.6. Finally, in Section 5
we identify the particular Chiodo class with the one used in the JPT formula and
prove the equivalence of the JPT formula and the topological recursion for r-orbifold
Hurwitz numbers.

4.2 Chiodo classes

In this Section we recall the definition and some simple properties of the Chiodo
classes. These classes are defined on the moduli spaces of tensor rth roots of the line
bundle w%; (= >_ myz;), but here we will only need their push-forward to the space of
curves M, ,. A more detailed discussion of the space of rth roots in the case s = 0 is
contained in Section 4.5.2. We also refer the reader to [19, 21, 20, 87] for all necessary
background and origin of the lemmas in this section.

4.2.1 Definition

Let r > 1 be an integer and 1 < ay,...,a, <1, 0 < s be integers satisfying
(2g—2+n)s— Y a €rZ (4.2.2)
i=1

Consider the morphisms

s R
C - Mg%alvu«,an - Mg,n:
where M, is the space of rth roots S = w® (— 3 a;x;), C is its universal
G301 5eeesCn p log 1)

curve, and € is the forgetful morphism to the space of curves.
~ While the boundary strata of Mg, are described by stable graphs, those of
iy are described by stable graphs with a remainder mod r assigned to each

Mg;al,...,an

half-edge in such a way that the sum of residues on each edge vanishes and that
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4.2. Chiodo classes

Condition (4.2.2) is satisfied for each vertex. The boundary divisors correspond to
one-edged graphs with two opposite remainders mod r assigned the two half-edges.

The Chern characters of the derived push-forward R*m,S are given by Chiodo’s
formula [19]

. - Bna(3) " Bpi(%)
chy,(R*7.S) = mﬁm — Z (m+1)] — ] (4.2.3)

. B (% (W)™ + (1)L ()™

+§Z (m—|—1)' * w/_’_q/}// )

a=

where j, is the boundary map corresponding to the boundary divisor with remainder a
at one of the two half-edges and 1',¢" are the 1-classes at the two branches of the
node.

We are interested in the Chiodo classes

Cg,n(ra S7A1, ... 7an) = (424)
exc(—R*'m,S) =
e [e(R'T.S)/c(R'T.S)| =

€, exp (Z(—nm( —1)!ch,, (R* 7*5)> € H(M,.,,).

m=1

An explicit expression of the classes Cy,,(r, s;a1,...,a,) in terms of stable graphs,
obtained by expanding the exponential in the expression above, is given in [62],
Corollary 4.

Consider Cy (7, s;a1,...,a,) as a coefficient of a map
Cynlr,s): VE" — H™(M,.,), (4.2.5)
where V = (vy,...,v,), and
Con(r,8): Vo, @ -+ @ Va, — Cyp(r,s;ar,. .., a,). (4.2.6)

4.2.2 Cohomological field theories

Lemma 4.2.1. For0 < s < r the classes {Cg (1, 8)} form a semi-simple cohomological
field theory.

A semi-simple cohomological field theory (CohFT) is obtained via the action of an
element of the upper-triangular Givental group on a topological field theory. In order
to determine a topological field theory {w,,}, we have to fix its scalar product n and
wp 3. An element of the upper-triangular Givental group is determined by a matrix
R(¢) € End(V)[[¢]] that should satisfy the symplectic conditions with respect to .

In the case of {C,,(r, s)} we have the following description.
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4. Chiodo formulas and topological recursion

Lemma 4.2.2. For 0 < s <r the classes {C,,(r, )} are given by Givental’s action
of the R-matriz R(() on the topological field theory w with metric n on V, where

V= (v1,...,0), (4.2.7)
o diagy B (9)
0= (3 Vb)), (429
. diagT:(l)Bm+1 (g)
R! = — a0 A/ (™ 429
© o (-3 Wb () gr), (129
1
VI(Uaa'Ub) = ;5(L+b mod 7 (4210)
1
wO,B(Ua QU & Uc) = ;5a+b+c—s mod 7 (4211)
Wy (Vay @+ @ 0a,) = 1297184 4 han—s(2g—21n) mod - (4.2.12)

4.2.3 Cohomological field theories with a non-flat unit

Let us discuss now what happens for s > r. We need an extension of the notion of
cohomological field theory, namely, we have to consider the cohomological field theories
with a non-flat unit, CohFT/1 for brevity.

The CohFT/1s are obtained by an extension of the Givental group by translations,
which allows one to use the dilaton leaves (in the terminology of [38, 37]) or s-legs (in
the terminology of [82]) with arbitrary coefficients. We refer to the exposition in [82]
for further details.

One of the possible descriptions of a CohFT/1 is in terms of stable graphs without
any k-legs. The vertices, leaves, and edges of these graphs are decorated in exactly
the same way as in the case of a usual CohFT, but in addition every vertex is also
decorated by exp(>_>°_, Tinkm) for some constants T,,, m =1,2,. ...

In the case of Chiodo classes (4.2.4) for s > r, we have the following:

Lemma 4.2.3. For s > r the classes {Cy(r,$)} form a CohFT/1. The corresponding
element of the extended Givental group coincides with the one described in Lemma 4.2.2,
but instead of the dilaton shift, we decorate each vertex by

exp (Z(—l)mMKm> : (4.2.13)

m=1

4.3 Topological recursion and Givental group

In this Section we revisit the main result of [37, 46]. We present a bit refined version of
it, in order to make precise relation that incorporates a torus action on cohomological
field theories.

4.3.1 General background

The input of the local topological recursion consists of a local spectral curve ¥ =
LI, U;, which is a disjoint union of open disks with the center points p;, i =1,...,7,
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holomorphic function z: ¥ — C such that the zeros of its differential dx are py, ..., p:,
holomorphic function y: ¥ — C, and a symmetric bidifferential B defined on ¥ x 3
with a double pole on the diagonal with residue 1.

The output is a set of symmetric differentials W, , on X". This set of differentials
is canonically associated to the input data via the topological recursion procedure.
Under some conditions (for example, when 3 is an open submanifold of a Riemann
surface, where dz is a globally defined meromorphic differential, see [46], and we should
assume some relation between y and B, see [37] and below), we can represent this set
of differentials in terms of the correlators of a CohFT multiplied by some auxiliary
differentials. This representation is not canonical, the choice of it is controlled by the
action of the group (C*)".

Our goal is to make this action on all ingredients of the formula (that is, the matrix
R of a CohFT, its underlying TFT, and the auxiliary differentials) precise.

4.3.2 The formula

We fix a point (CY, ..., C;) € (C*)". We also fix some additional constant C' € C*. All
constructions in this Section depend on these choices.
We choose a local coordinate w; on U, i = 1,...,r, such that w;(p;) = 0 and

In this case, the underlying TFT is given by

n(ei, ej) = 0, (4.3.15)

)) —2g+2-n |

In particular, the unit vector is equal to Y ,_ ( 20202 (0 )) e;.
The matrix R(¢) is given by

d
Top(ell R ® ein) = 5i1...in (—20220 d

wl,w])

w
e ¢

Q=

(4.3.16)

el

We have to check that the function y satisfies the condition

202C [ i . dy
YA dy e <—Z )i <2ck k(O)) (4.3.17)

1
—-ZR
¢

w;=0

Finally, the auxiliary functions &;: ¥ — C are given by

&ir) = /I B(w;, w)

4.3.1
duw, (4.3.18)

w;=0

Using Formulas (4.3.15) and (4.3.16) we define a CohFT, whose classes we denote
by aloMen, ®@--- @ e,).
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Theorem 4.3.1. [46, 37] The differentials W, produced by the topological recursion
from the input (X, z,y, B) are equal to

Wem = C272 3" alhe; @ Qe (4.3.19)

g n
DL yeney 7,7, Mg n

dy,..

4 1 d\%
E%d(ﬂdw) f)

In particular, this formula doesn’t depend on the choice of (Cy,...,C,) € (C*)" and
C € C*, though all its ingredients do.

The proof of this theorem is given by exactly the same argument as in [46, 37],
with a different choice of local coordinates near the points p;, so we omit it here.
Remark 4.3.2. Let us discuss what happens if the condition (4.3.17) is not satisfied.
Still, under the same conditions a version of Theorem 4.3.1 holds. Namely, we can
represent the correlation differentials as

Wgn OQg 2+n Z / COh/l 6“ R X ein) (4320)
Mg.n
d1::::
L 1 d\%
Hq/,jfd ((wdw) f@) )
iy 5 AW;

where the classes agflh/ ! are described, in terms of the graphical formalism recalled in

Section 4.2.3, via the same TFT and R-matrix as ozg’:;’lh in Theorem 4.3.1, but instead
of the dilaton leaves, we decorate each vertex labeled by i (that is, the one that is
decorated by o] %(e; @ - - ® e;)) with the -class

exp <Z Tm> : (4.3.21)
k=1

where the constants T, are given by

0) exp <; Ti,k(—C)k> = ﬁ /j:) dy - 67%. (4.3.22)

This is a direct corollary of [42, Theorem 3.2], see also [37, Lemma 3.5].

4.4 Computations with the spectral curve

Consider the following initial data on the spectral curve ¥ = CP! with a global
coordinate z:

z(z) = —z" + log z; (4.4.23)
y(z) = 2%

dzdz
B(Z’7 Z/) = m
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In this section we compute all ingredients of the Formula (4.3.19) for this initial
data with a special choice of the torus point. In particular, for 1 < s < r we prove that
the correlation differentials are controlled by a CohFT, and the corresponding CohFT
coincides with the one given by Chiodo classes (4.2.4) considered in the normalized
canonical frame.

4.4.1 Local expansions

As it was computed in [87], we can associate with this curve the following local data.
The critical points are

pii=r" T i=0,...,r—1, (4.4.24)
and the critical values of the function = at these points are

1 2miv/—1 logr
xi::x(pi):—;+%—%7 i=0,. ... —1. (4.4.25)

If we choose a local coordinate w; near the point p; such that w;(p;) = 0 and —w?/2r +
ri=x,1=0,1,...,r — 1, then there are two possible choices for the expansion of the
function z in w;. We fix it to be

2(w;) = VY 4 (rl*%y‘) w; + O(w?), (4.4.26)
With this choice we also fix the expansion of y = 2°, namely,
y(w;) = r" I + (sr7 71 I) w; + O(w]). (4.4.27)
Lemma 4.4.1. We have:

dy w;) e_%? ~ (sr”*%J“) exp (— Z Bml(ﬁ)(—(f”) . (4.4.28)

= m(m+1)

Proof. This Lemma is analogous to [87, Lemma 4.3]. Indeed, we introduce a new
coordinate ¢t = rz". In this coordinate we have:

=t Jh (4.4.29)
1t logt
T T T
dz =t r 0 gL (4.4.31)

We can then make a change of variables and use the standard asymptotic expansion
of the gamma function, cf. the proof of Lemma 4.3 in [87]:

1 s .1
\/—27/ G wn srT27rJ%ec

t

tiet (4.4.32)

=2 " At
1/_71-4'

~ (9 —27’7%7%(]“') exp (—mi_l M(_C)m> .
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Lemma 4.4.2. We have:
w2
J

W)l (4.4.33)

1 /°° B(
vV 27’(’( —oc0 dwl w;=0
oo Bm - m
r—1 chfci eXp <_ Zmzl m(J’rrnl-I(—l)) (_C) )

~

c=0 r (74-)
Proof. This Lemma is just a refined version of Lemma 4.4 in [87], so the proof is
exactly the same as there. O

Note that this Lemma means that we have to consider the Givental group action
defined by the matrix R((), where

= S T g (3 B Gl (4430
R ex — -\~ . SR
L c=0 r P m=1 m(m + 1)
We choose the constants Oy = --- = C, := 1/4/=2r and C := r'**/"/s. In particular,
with this choice the structure constants of the underlying TFT are given by
dy Jis
—2C7C—(0) = — 4.4.35
e OEE (1.435)
Lemma 4.4.3. For 1 < s <r the condition (4.3.17) is satisfied.
Proof. This is a direct computation. We have:
202C [ _w? Jis >\ Byt (%)
i dy-e 2 = —"— — — ()™ 4.4.36
e Woe . eXp( mZ::lm(erl)( <) ( )
r r—1 ; . o)
JmiCk Bm+1 (2) < Jkg>
= exp | — 7T(_<—)m Y
k:lg r ( mzzlm(m—kl) r
T ) dy
= R™Y: (202C—(0
(0 (202052 0)

k=1

The second equality is true for 0 < s < r — 1, and also for s = r, since By,+1(1) =
By1+1(0) for m > 1. O

This Lemma implies that we indeed have correlators of a cohomological field theory
inside Formula (4.3.19) in this case.
Finally, Definition (4.3.18) implies that
J R
rJt
g =0 (4.4.37)
rorJt—z

and it is easy to see that
1d 1d
wdw  rdr’
This completes the description of all the ingredient of the Formula (4.3.19) for the
correlation differentials W ,,.

(4.4.38)
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4.4.2 Correlation differentials in flat basis

In the previous section we described all ingredients of the formula for the correlation
differentials (4.3.19) for the case of the spectral curve data (4.4.23). In particular, for
1 < s < r we proved that there are the correlators of a CohFT inside this formula,
otherwise we have a CohFT/1. Our goal now is to show that the cohomological field
theories obtained in the previous Section is the one given by the same formulas as in
Lemmas 4.2.2 and 4.2.3. In order to do that we apply a linear change of variables to

the basis ey, ..., e._1 used in the previous Section.
We use the change of basis from eg,...,e,_1 to vy,...,v, given by the formula
T r—=1 14
€; = Z J_mva; Vg = . TGi (4439)
a=1 i=0
Lemma 4.4.4. In the basis vy, ..., v, we have:

o The underlying TFT oz:;';‘;f’ (4.3.15) with the choice of constants given by Equa-
tion (4.4.35) is given by

1
W(Ua,, vb) = ;6a+b mod 73 (4440)

1
wo,3 (Uu ® v ® Uc) = ;6a+b+c—s mod r

2g—1
wg,n(val ® M ® ’Uan) =T 9 6a1+m+a”75(29,2+n) mod r

o The R-matriz is given by

R(¢) = exp (Z Glisz%EL‘(;;LB;”_*11)(f)(g‘)’”) (4.4.41)

m=1

e The auziliary functions &, are given by

S (or - — )P
> Mgmww)z, (4.4.42)
p.

p=0

Proof. The computation of the underlying TFT is fairly simple:

'L jaitbi Ut (CE R LR
n(vay Ub) = TU(Gu 6]‘) = 2 = ;511-0—1) mod r (4443)
i,j=0 i=0
r=1 jaitbitei
wo,3(Va ® v ® V) = s wo3(€; ® € @ e;)
=0
r—1 Jai+bi+cifsi 1
- § ) - §6a+b+cfs mod 7

and the other correlators of the underlying TFT are determined uniquely.
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4. Chiodo formulas and topological recursion

The change of basis for the matrix R~ reads:

r—1 btiq T—1 i 00
J—]IH—za Jei—ci Bm (g)
-1 b __ . N +1\y) / am
R7((), = iEjzo . 62:0 ——oxp < mE:1 mm+ 1) 1)( ) ) (4.4.44)
— Eoo Bm+1 (E) m
= exp ( — m(*g) ) : 5c—b mod 7 ° 6c—a mod r

exp (— )y M<—om> Sun,

which implies Equation (4.4.41).
Finally, Equation (4.4.42) follows from Lemma 4.6 in [87]. O

Remark 4.4.5. Observe that Equations (4.4.40) and (4.4.41) and Lemma 4.4.3 imply
that for s < r the cohomological field theory that we have in the flat basis coincides
with the one given in Lemma 4.2.2. For s > r, where Lemma 4.4.3 does not apply, we
have obtained the topological field theory and the R-matrix as in Lemma 4.2.3, but
we still have to compare the power series that determines the x-legs.

Lemma 4.4.4 allows us to rewrite formula (4.3.19) for the correlation differentials
of the spectral curve data (4.4.23) in the following way.

Theorem 4.4.6. The correlation differentials of the spectral curve (4.4.23) are equal
to

o0
Won = i@ ®d, eXi=1 1 (4.4.45)
My =1
></ Cg_,n(T,s;r—r<%>,.,.,r—r<%>)
n i
ﬂg,n H]:l(l - N?djl)

| Al (2g—2+n)s+3"_

y ﬁ (F:J) I. TJ " T29—2+n+#
LL)‘J! §29—2+n )

Jj=1 T

Proof. First, consider the case s < r. Using Equation (4.3.19), together with
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4.5. Johnson-Pandharipande-Tseng formula and topological recursion

Lemma 4.4.4, Remark 4.4.5, Equation (4.4.38) and C = 1%/ /s, we have:

Won(@1,. .. 2p) (4.4.46)

2972+n+w

r
= E —m /7 Con(r,s;ar,...,a,)

di,...,dn>0 Mg.n
1<ai,...,an <7

n dj oo p’f’+7”
di _gq. "%
XijJT | § /‘ (p7+7 —aj)T;
. dx]
j=1 —0
n
d
:d1®® n / Cg7nras;a17"'7an)Hw]’]
dn>0 Mg.n j=1
1<a1, ,an<r

2g—2+n)s—"_
29724,271,2]":1 d]+%

r G
x S2g72+n
n oo
— a.)Ptd
% H § : (pr +r CL]) ’ e(pr+r7aj)z]
|
j=1p=0 P

Equation (4.4.45) is just a way to rewrite the last formula using a summation over the
parameter p; = p;r + r — a; instead of a double summation over p; and a;.

In the case s > r, we should compute separately the r-classes. In this case,
Remark 4.3.2 and Equation (4.4.28) imply that the k-class attached to the vertex of

index 4 (in the basis eg, ..., e,_1) is equal to exp (Zizl(—l)m%/@m). Since it
doesn’t depend on i, it remains the same in the basis vy, ..., v,, where it coincides
with the one given by Lemma 4.2.3. O

Remark 4.4.7. Note that in the case s = 1 we reproduce Theorem 1.7 in [87].

4.5 Johnson-Pandharipande-Tseng formula
and topological recursion

In this Section we consider a special case of the correspondence between the Chiodo
formulas and the spectral curve topological recursion. We assume that s = r. In this
case, the correlation differentials of this spectral curve are known to give the so-called
r-orbifold Hurwitz numbers in some expansion.

An r-orbifold Hurwitz number hg,; is just a double Hurwitz number that enumerates
ramified coverings of the sphere by a genus g surface, where one special fiber is
arbitrary (given by the partition ji of length n) and one has ramification indices
(r,r,...,r). Therefore, the degree of the covering Y " | y; is divisible by r and there
are b=2g —2+4+n-+ >, p;/r simple critical points.

The r-orbifold Hurwitz numbers are also known to satisfy the
Johnson-Pandharipande-Tseng (JPT) formula that expresses them in terms of the
intersection theory of the moduli space of curves. The main goal of this Section is to
show that the JPT formula is equivalent to the topological recursion for r-orbifold
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4. Chiodo formulas and topological recursion

Hurwitz numbers. In particular, this gives a new proof of the topological recursion for
r-orbifold Hurwitz numbers.

4.5.1 The JPT formula

The formula of Johnson, Pandharipande and Tseng is presented in [63] for a general
abelian group G, its particular finite representation U and a vector of monodromies .
Here we consider only the case of G = Z/rZ, the representation U sends 1 € Z/rZ to
62% and -~y is empty. In this case the JPT formula reads

n L%J YAV
el | & 2o (4.5.47)
! i=1 L)Y I, Hj:l(l — wiy)

where the class e, 7, o(—7)"A; is described in detail below.

4.5.2 Two descriptions of rth roots

Let G = Z/rZ be the abelian group of rth roots of unity. The space M., a4, (BG)
is the space of stable maps to the stack BG with monodromies a; € {0,...,r — 1}
at the marked points. This space, and the natural cohomology classes on it, can be
constructed in several ways, see, for instance, [1, 18]. Johnson, Pandharipande, and
Tseng [63] use the description via admissible covers. Chiodo [19] uses the moduli space
of rth roots of the line bundle O(— 3" a;z;). Here, we apply Chiodo’s formulas to a
result of Johnson, Pandharipande, and Tseng, so we recall and briefly explain the
equivalence between the two approaches.

The r-stable curves.

An r-stable curve is an orbifold stable curve whose only nontrivial orbifold structure
appears at the nodes and at the markings. The neighborhood of a marking is
isomorphic to A/G, where an rth root of unity p € G acts on the disc A by z — pz.
The neighborhood of a node in a family of r-stable curves is isomorphic to (A x A)/G,
where p € G acts by (z,w) — (pz, p~ w).

The moduli space of r-stable curves has the same coarse space as M, ,, but an
extra factor of G appears in the stabilizer for every node of the curve.

Line bundles over r-stable curves.

A line bundle L over an r-stable curve has a particular structure at the neighborhoods
of markings and nodes. At a marking it can be given by the chart A x C with the action
of an element p € G given by (z,s) — (pz, p®s). Thus the number a € {0,...,r — 1}
describes the local structure of L at a marking. At a node L can be given a by a chart
(A x A) x C with the action of an element p € G given by (z,w, s) — (pz, p~lw, p%s).
Note, however, that the number «a is replaced with —a (mod ) if we exchange 2z and w.
Thus the local structure of L at node is described by assigning to the branches of the
node two numbers o«’,a” € {0,...,r — 1} such that ' + a” =0 mod r.
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4.5. Johnson-Pandharipande-Tseng formula and topological recursion

Roots of O.

In [19] an element of M, ..(BG) is an r-stable curve C with an orbifold line
bundle L — C endowed with an identification L®" ~4 O. The integers a; € {0,...,r—1}
prescribe the structure of L at the markings.

From r-th roots to G-bundles.

To make the connection with the description of My, ..(BG) in [63] we look at
the multi-section of L that maps to the section 1 of O when raised to the power r.
This multi-section is a principal G-bundle 7 : D — C ramified over the markings and
the nodes. At a marking with label a the G-bundle has the monodromy given by
adding a in Z/rZ. This can be seen from the G-action (z, s) — (pz, p®s). If we choose
p = e*™/"_a path from z to pz in the chart corresponds to a loop around the marking
in the stable curve and its lifting leads from s to p®s in the fiber of L.

Similarly, at the node the G-bundle has monodromies a’ and a” at the two branches,
satisfying @’ + a” =0 mod 7.

Note that, because D is formed by a multi-section of L, the pull-back of L to D
has a tautological section. We will denote this section by ¢y.

From G-bundles to r-th roots.

In [63] an element of M., .. (BG) is G-cover 7 : D — C ramified over the markings
and the nodes and satisfying the “kissing condition”: the monodromies of the G-action
over two branches of a node are opposite modulo r. The integers a; € {0,...,r — 1}
prescribe the monodromies at the markings. Suppose we are given a principal G-bundle
m: D — C like that. Using this data it is easy to construct a line bundle L over the
r-stable curve C corresponding to C'. Over any contractible open set U C C' that does
not contain markings and nodes we create a chart U x C and identify the r-roots of
unity in C with the sheets of the G-bundle in an arbitrary way that preserves the
G-action. At the markings we create the orbi-chart A x C endowed with the G-action
(2,8) = (pz, p*s) as above and also identify the r-th roots of unity with the sheets of
the bundle. The transition maps between the charts are obtained from the matching
of the sheets over different charts (every transition map is the multiplication by a
locally constant r-th root of unity).

Sections of L and of K ® L*.

Let ¢ be a section of L over an open set U C C. Then 7*¢/¢, is a holomorphic
function on #=1(U) C D. Moreover, the G-action on this function has the form
f(pz) = p~Lf(2). A global section of L gives rise to a global holomorphic function on
D satisfying the above transformation rule. It follows that L has no global sections
over C, with the exception of the case where all a;’s vanish, L is the trivial line bundle
and D =C x G.

Similarly, let ¢ be a section of K ® L* on an open set U C C. Then oo = 7*¢ - ¢g
is a section of the canonical line bundle Kp over 7! (U). Moreover, the G-action on
this function has the form a(pz) = pa(z). In particular, the space of global sections
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4. Chiodo formulas and topological recursion

of K ® L* coincides with the space of holomorphic differentials on D satisfying the
transformation rule a(pz) = pa(z).

Two ways of writing R*p, L.

Chiodo’s formula expresses the Chern character of R*p, L, where p : Cy, .. 0 (BG) —
Mg;mman(BG) is the universal curve. Using this formula one can also easily express
the total Chern class of —R*p, L.

According to our remarks above, if there is at least one positive a; then R%p,L = 0.
In that case R!p,L is a vector bundle, and we have ¢(—R*p,L) = c¢(R'p.L).

If all the a;’s vanish, the space M., 4. (BG) has a special connected component
on which the line bundle L is trivial. Over this component R%p,L = C. On the other
connected components we have, as before, R%p,L = 0. Therefore the total Chern class
of R%,L is equal to 1 and we have, once again, ¢(—R*p,L) = ¢(Rp.L).

Johnson, Pandharipande, and Tseng use the Chern classes A; of the vector bundle
of equivariant sections of Kp. Our analysis above shows that this vector bundle is the
dual of R'p,L. In other words, we have

o(~Rp.L) = (~1)'\,, (4.5.48)

which is the equality that we use in our computations.

Remark 4.5.1. In the Johnson-Pandharipande-Tseng formula the monodromies at the
markings are given by the remainders modulo r of —u;, that is, minus the parts of
the ramification profile. Thus if we denote by a; = p; mod r, we will use Chiodo’s
formula with remainders r — ay,...,7 — a, at the markings. If an a; is equal to 0, we
can plug either 0 or r in Chiodo’s formula. Indeed, we have By (0) = By(1) for any
k > 1, thus replacing 0 by r will only affect the Chern character of degree 0, that is
not used in the expression for the total Chern class.

In particular, in Equation (4.5.47) we use the push-forward of Y (—1)'\; to M, .,
for monodromies equal to minus the remainders of uy, ..., u,. This class coincides
with Cy (7, 8;7 — a1,...,7 — a,) defined by Equation (4.2.4).

4.5.3 The equivalence

Now we are armed to prove the following

Theorem 4.5.2. The expansion of the correlation differentials of
the spectral curve (4.4.23) for s =r is given by

> " By
Wg,n = Z dl ® Tt ® dn er:l Hi%i %7 (4549)
m

LyesHn=1

if and only if the numbers hy.; are given by the Johnson-Pandharipande-Tseng formula

(4.5.47).
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4.5. Johnson-Pandharipande-Tseng formula and topological recursion

Proof. The proof is indeed very simple. First, Equation (4.5.48) allows us to replace
Chiodo class in (4.4.45) with the push-forward of the linear combination of A-classes.
Then we notice the following rescaling of the integral

T Zizo(_r)i)‘i _ Ro—3n T Zi>o(_1)i)"
Mg.n H?:l(l — withi) Mg.n H?:l( m 1)
The equivalence then follows from comparison of coefficients in front of particular

dy®---®d, eXi=14% in (4.5.49) and (4.4.45), which is obvious, modulo the following
simple computation of the powers of r. For s = r,

(4.5.50)

J 2g9—2+n)s+
) : 2g2++<; s+ g
By
T

n
" _TT1TH 2g-2+nt 30, (4
J §29—2+n *HL&JITg ! J1<r>
j=1 rd°

is the coefficient in Equation (4.4.45). This is equal to

-
115

Jj=1

4
I

n
p39=3+n,. 1— J+Z 7’” H z

L
p= !

which is the coefficient of (4.5.47) after rescaling (4.5.50). O
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Quantum spectral curve for the
Gromov-Witten theory of P!

Abstract

We construct the quantum curve for the Gromov-Witten theory of the complex
projective line.

5.1 Introduction

The purpose of this chapter is to construct the quantum curve which is a Schrddinger-
like equation

Pz, h)¥(z,h) =0 (5.1.1)

for the Gromov-Witten invariants of the complex projective line P!. Quantum curves
are conceived in the physics literature, including [3, 23, 24, 48, 59, 61]. They quantize
the spectral curves of the theory, and are conjectured to capture the information
of many topological invariants, such as certain Gromov-Witten invariants, quantum
knot invariants, and cohomology of instanton moduli spaces for 4-dimensional gauge
theory. In this chapter we show that the conjecture is indeed true for the Gromov-
Witten theory of P!. This gives the first rigorous example of a direct connection
between Gromov-Witten theory and quantum curves. Our construction requires the
fermionic Fock space representation of the Gromov-Witten invariants [81], and a subtle
combinatorial analysis based on representation theory of symmetric groups.

5.1.1 Main theorem

Let M,,,(P!,d) denote the moduli space of stable maps of degree d from an n-pointed
genus g curve to P'. This is an algebraic stack of dimension 2g — 2 4+ n + 2d. The
dimension can be understood via the Riemann-Hurwitz formula applied to a generic
map from an algebraic curve to P! which has only simple ramifications. The descendant
Gromov-Witten invariants of P! are defined by

n d n
H Ty, () = /7 H Vvt (), (5.1.2)
i=1 g [Mgn(PLd)|vir ;2
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5. Quantum spectral curve for the Gromov-Witten theory of P!

where [M,,,(P!,d)]""" is the virtual fundamental class of the moduli space,
ev; : Myn (P, d) — P*

is a natural morphism defined by evaluating a stable map at the i-th marked point of
the source curve, o; € H*(P!, Q) is a cohomology class of the target P!, and 1); is the
tautological cotangent class in H?(M,,(P',d), Q). We denote by 1 the generator of
HO(P',Q), and by w € H*(P',Q) the Poincaré dual to the point class. Classes 74 (w)
are known as stationary since the pull-back ev;(w) C M, (P!, d) restricts to stable
maps f with f(p;) = z; for a given point z; € P! representing the Poincaré dual of
w € H*(P') and hence f(p;) is stationary.

We assemble the Gromov-Witten invariants into particular generating functions as
follows. For every (g,n) in the stable sector 2g — 2 +n > 0, we define the free energy

of type (g,n) by

Fyn(z1,. .. 1) = <H < Z b'TZH >> . (5.1.3)

i=1 —o i :
Here the degree d is determined by the dimension condition of the cohomology classes
to be integrated over the virtual fundamental class. We note that (5.1.3) contains the
class 79(1) known as the puncture operator. For unstable geometries, we introduce two
functions

—2)! d
So(z) = leogz+z< W> , (5.1.4)
0,1

s

d

Si() :—flogx—i— Z<< (1) Zb';’jf)>> . (5.1.5)

b=0

5

The appearance of the extra terms, in particular the log x terms, will be explained in
Section 5.3. We shall prove the following.

Theorem 5.1.1 (Main Theorem). The wave function

h2972+n

n!

U(x, h) := exp (71150(95) + Sy (x) + Z Fynlz,... ,r)) (5.1.6)

29—2+4n>0

satisfies the quantum curve equation of an infinite order

oo (1) o () a0

Moreover, the free energies Fy,(21,...,%,) as functions in n-variables, and hence all
the Gromov- Witten invariants (5.1.2), can be recovered from the equation (5.1.7) alone,
using the mechanism of the topological recursion of [17, 50].
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Remark 5.1.2. It was proven in [37, 80] that the stationary Gromov-Witten theory of
P! satisfies the topological recursion of [17, 50] with respect to the spectral curve

a1
{x_z+ 2 (5.1.8)
L

e

The WKB analysis provides a perturbative quantisation method of a classical mechan-
ical problem. We can recover the classical problem corresponding to (5.1.7) by taking
its semi-classical limit, which is the singular perturbation limit

i ((e-iso@ 4 Y | ehSe@) S, i1
Flil_I}(l] <e h [exp (hdx> +exp( hdw | en e 1

- (656(1) +emShe) ac) 5@ =0, (5.1.9)
In terms of new variables y(z) = Sh(x) and z(z) = €Y, the semi-classical limit gives
the spectral curve (5.1.8).

Remark 5.1.3. A key part of the proof of Theorem 5.1.1 shows that the quantum curve
equation (5.1.7) is equivalent to a recursion equation

1
"t Xy (z,h) = 0 (5.1.10)

z (e‘ﬁ% - ) Xa(z,h) + T
h

h

for a rational function

. 2 L(N) . )
Xo(a,h) =" (dlg;A> HmJF(Z_AZ)h. (5.1.11)

A-d z + ik

Here A is a partition of d > 0 with parts A\; and dim A denotes the dimension of the
irreducible representation of the symmetric group Sy characterized by A.

Remark 5.1.4. Put

Sult)i= 3 %Fg,n(x, ). (5.1.12)

2g—2+n=m—1 :

Then the wave function (5.1.6) is of the form

U(z,h) = exp (i hm_ISm(x)) , (5.1.13)

m=0

which provides the WKB approximation of the solution of the quantum curve equation
(5.1.7). The significance of Theorem 5.1.1 is that the exponential generating function
(5.1.6) of the descendant Gromov-Witten invariants of P! gives the solution to the
exact WKB analysis for the difference equation (5.1.7).
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5.1.2 Organization of the chapter

This chapter is organized as follows. In Section 5.2 we start with a solution W, ,, to
the topological recursion equation with respect to the spectral curve ¥ of (5.1.8). It is
a symmetric differential form of degree n on ¥". We then propose a unique mechanism
to integrate W, into a rational function. The goal of this section is to show that this
primitive function is identical to (5.1.3). Then in Section 5.3, we re-write U(z, i) in
a different manner, only involving stationary Gromov-Witten invariants of P!. This
formula allows us to express it in terms of a semi-infinite wedge product in Section 5.4.
Using this formalism, we reduce the quantum curve equation (5.1.7) to a combinatorial
equation (5.1.10) in Section 5.5. Equation (5.1.10) is then proved in Section 5.6 using
representation theory of Sy, which in tern establishes (5.1.7).

5.2 The functions F), in terms of Gromov-Witten
invariants

The significance of the idea of a quantum curve which is a Schrddinger-like equation
(5.1.1) is that it captures all information of the topological invariants of the theory.
The key process from this single equation to the topological invariants is the integral
form of the mechanism known as the topological recursion of [17, 50]. We refer to
[31, 32, 80] for mathematical formulation of the topological recursion. This section is
devoted to providing the unique mechanism to integrate the topological recursion, in
the context of the Gromov-Witten theory of P!.

Let us begin with a solution W, (21, ..., z,) to the topological recursion of [17,
37, 50] associated with the spectral curve ¥ = C* defined by

z(z) =z + .
{y(Z) =logz 521)

This means that symmetric differential forms W, ,(z1, ..., z,) of degree n on X" for
(g,m) in the stable range 2g — 2 +n > 0 are inductively defined by the following
recursion formula:

w =

Wg77l(21, ey Zn)

1/z

1 f Woa( -, 21)
=5 = : W, n ) 1 3 R2y 020
271 o Wa (172) — Wi () Vot 5 o)

stable
+ Z ng7|[‘+1(z,Z[)Wg27lj‘+1(1/z,ZJ) N (522)
g1+91=9
TUJ={2,...n}

where the residue integral is taken with respect to the variable z € 3 on two small,
positively oriented, closed loops around z = 1 and z = —1, and for the index set
I Cc {2,...,n}, we denote by |I| its cardinality, and z; = (2;);e;. For (¢g,n) in the
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unstable range, we define

Woa(z) :==y(z)dz(z), (5.2.3)
dz1dzy dx(z1)dx(z)
W, = - . 5.2.4
oot ) = G T ) — e 20
The goal of this section is to derive the integral Fy (21, ..., 2,) of Wya(z1,. .., 2,) in

a consistent and unique way that has the z-variable expansion (5.1.3).

Remark 5.2.1. The second term of the right-hand side of (5.2.4) does not play any
role in the topological recursion (5.2.2). It is included here for the consistency of the
primitive Fy (21, 22) to be discussed in Section 5.3.

Definition 5.2.2. For 2g — 2+ n > 0, we define the primitive Fy (21, ..., z,) of the

n-form Wy (21, ..., 2,) to be a rational function on X" that satisfies the following
conditions:
dy - dnFyn(z1, o0 20) = Wynlz, -0 20); (5.2.5)
Fonlzt, o zic, Yz ziga, oo zn) = —Fou(z1, .. 002), i=1,...,m; (5.2.6)
ngn(zb R Zﬂ) ’21:"'2271:0 =0. (527)

If it exists, then it is unique.

It is established in [37, 80] that the solution W, ,, of the topological recursion has
the following z-variable expansion in terms of the stationary Gromov-Witten invariants

of PL:
Wyn(@1,. .. 2,) = <H (Z(b + 1)l (w) jﬁf) > ) (5.2.8)

i=1 \b=0
There is no systematic mechanism to integrate this expression to obtain (5.1.3). Instead,

we establish the following theorem in this section.

Theorem 5.2.3. For every (g,n) in the stable sector 29 — 2 +n > 0, there exists a
primitive Fy,(z1,...,2,) of (5.2.8) satisfying the conditions of Definition 5.2.2, such
that its x-variable expansion is given by

Fyn(z, ... 1) = <H (_70;1) -3 b:’;ﬁ’)>> . (5.2.9)

i=1 b=0 ¢

Remark 5.2.4. We need a different treatment for the unstable primitives Fy;(z) and
Foa(z1, z2). They are calculated in Section 5.3.

The rest of this section is devoted to proving this theorem. We start with recalling
some results of [37]. The most important one is the formula for Wy (1, . . ., 2,) in terms
of the auxiliary functions W(z) (defined below) with the ancestor Gromov-Witten
invariants as its coefficients. We will then prove the existence of the anti-symmetric
primitives of the functions Wi, and their z-expansions. This will then lead us to the
proof of the above theorem, where we will also utilize the known relations between the
ancestor and the descendant Gromov-Witten invariants.
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5. Quantum spectral curve for the Gromov-Witten theory of P!

5.2.1 Some results from [37]

The ancestor Gromov-Witten invariants of P! we need are

<H7'b1(04i)> = /7 Hd_)flev;‘(ai), (5.2.10)

gn Mg,n (PLd)] 527

where 1; denotes the pull back of the cotangent class on M, by the natural forgetful
morphism

M, (P d) — M.

Since we adopt a quantum field theoretic point of view in calculating Gromov-Witten
invariants, we often call them correlators in this chapter. The ancestor and descendant
correlators do not agree. We will give a formula to determine one from the other in
(5.2.15).

Let us define

1) dz
Wa(e) = = oo (5.2.11)
o, ddz

Wi(z) :=d ((—QCJ(Z))k/WS(zO , i=1,2, k>0. (5.2.13)

Then for g > 0 and n > 1 with 29 — 2+ n > 0, from Theorem 4.1 of [37] (as shown in
the proof of Theorem 5.2 of [37]), we have
Wir(z1) Wi ()

L daEn) 5.2.14
g 2d1\/§ Qd”'\/i ( )

Won(21,- 2 20) = > (Fay (&) - - Ta, (63,)

d, i
Here the sum over d and 7 are taken over all integer values 0 < dj, and i = 1,2. Note
that the coefficients of this expansion are the ancestor Gromov-Witten invariants. The

cohomology basis for H(P!, Q) is normalized as follows. First we denote by e; = 1
and e; = w. Using the normalisation matrix

=50 7)

éi = (A_l)ibeu.
In this section we use the Einstein convention and take summation over repeated
indices.
With the help of the Givental formula, Proposition 5.1 of [37] relates the ancestor
and the descendant correlators for P! by

D (Fa (@) Ta (E,), 0wt

d,i

we define

(5.2.15)

VI

(7 () - - T (€, ) £ 00,

8
=
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5.2. The functions Fj,, in terms of Gromov-Witten invariants

where v®* and t%* are formal variables related by the following formula:

(oo}

v = ALY (Spa)it™. (5.2.16)

m=d

Here (Sk)# are the matrix elements that define the Givental loop group action [56]
and defined by

- = . (00
S(¢ 1)=k§8kc F—T1d+¢ 1~(1 0)

+Z C-w; (1—2k (1++17) O> (5.2.17)
k=1

e ]

k+1

In the proof of Theorem 5.2 of [37] it was shown that the x~'-expansion of Wi(z) near
z = 0 is given by the following formula:

Wi(z) = 2'V2 A, Y " (Sp_a)h 05 (m+1)!

m=d

dx
Im+2 )

(5.2.18)

where (5; is the Kronecker delta symbol. The above formula, together with formulas
(5.2.14)-(5.2.17), implies (5.2.8).

To define a primitive of W, ,, satisfying the conditions of Definition 5.2.2 we first
identify suitable primitives of the differential 1-forms Wi(z). Given the property

Wa(l/z) = =Wa(z)
if there exists a uniquely defined rational function #/(z) on ¥ such that
doiy(z) = Wi(z), (5.2.19)
05(1/2) = — 04(2) (5.2.20)
then it is unique. The following proposition supplies existence of 0%(z).

Proposition 5.2.5. For given i = 1,2 and d > 0, there exists a unique rational
function 0(2) on ¥ satisfying (5.2.19) and (5.2.20). It is recursively defined by

1 1
1—z 2

R (5.2.21)

0l .= e
0 142 2

02 =

04(z) = (—2d;l(z)>d93(z). (5.2.22)

Moreover, the x~'-expansion of 0'(z) near z = 0 is given by

. X 1 1
@ d i v sm v
0i(2(x)) = 20V2 A m§:d(sm,d)g <—51 0y 5 — o5 m! IM) . (5.2.23)
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5. Quantum spectral curve for the Gromov-Witten theory of P!

5.2.2 Proof of Proposition 5.2.5

It is easy to verify by direct computation that (5.2.21) are the unique solutions of
(5.2.19) and (5.2.20) for d = 0.

Equation (5.2.13), together with condition (5.2.19), implies that if §%(2) exists,
then it has to satisfy (5.2.22). Since z is symmetric under the coordinate change
2z —> 1/z, we see that the right-hand side of equation (5.2.22) satisfies the skew-
invariance property (5.2.20). This means that 6%(z) defined by (5.2.22) is, for given i
and d, indeed the unique solution of (5.2.19) and (5.2.20).

It remains to prove the expansion (5.2.23) of 8(z) at = oo. We denote by 6/, the
right-hand side of (5.2.23). We wish to prove that the x~!-expansion of %(z) near
z =0 is given by éfi Let us introduce the following notation:

1 )
o= AH) gl 5.2.24
nd 2d \/i ( )z d ( )
Then we have
1 1 z
Ny = - = 2.2
o (1—22 2’1—z2)’ (5:2.25)
d k
M) = | — H 2.2

and condition (5.2.23) becomes equivalent to the condition that the z~!-expansion of
nl near z = 0 is equal to 7}/, where

IR veoml 1
m=d

Let us prove formula (5.2.27) for d = 0. Note that Sy = Id, so for the constant term
of 7y we have

1] . 1

It is easy to see from (5.2.25) that 1§ has the same constant term at z = 0.
For k > 1 we have

I
L%_l 77(1) = —(2k - 2)! (SQk—Q)% =0,

L’il o = —(2k = 2)! (Sap-2); = —%’
L (2k — 15; (5.2.29)
Lgk iy = —(2k — 1)1 (Sap_1)3 = _m’

17.
L% s = —(2k — 1) (Sa_1)3 = 0.
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5.2. The functions Fj,, in terms of Gromov-Witten invariants

For the corresponding coefficients in the z~!-expansion of ny near z = 0 we have

(k>1):

2k—2

Res 22 () do(z) = — R_e(:)s 22 (14 27) dz =0,
_ 2k — 2
be 222 do(z) = — ng 2 (14 22)% Ydz = (((kk_ 1)'))2,
. - (5.2.30)
2k—1 1 3. _ —2k—1 2\2k—1 _ (Qk_ 1)
Resx (2 )T]Od.L(Z>——E{:GOSZ (1+27) dz = — M=)
Iz{zeos o) ndde(z) = — I}:QOS 22 (14 22)%71 dz = 0.

We see that the coefficients in (5.2.29) precisely coincide with the ones in (5.2.30).
This implies that the z~!-expansion of 7}y is indeed given by 7.

By virtue of (5.2.26), we see that the 2~ '-expansion of 7} near z = 0 is given by
the following formula (for k& > 1):

a\ g, S , 1
<—dx> = (Snk (—52 (m+k)!$m+k>
m=0
> 1
= (Smi)l (—52”m! M)

m=d

This coincides with the formula for 7} for k > 1. Thus, we have proved that the
x~l-expansion of 7} is given by 7}, which, in turn, implies that Equation (5.2.23)

holds. This concludes the proof of the proposition.

5.2.3 Proof of Theorem 5.2.3

Recall Equation (5.2.14) for W, ,,:
s - Wc;i (1) W;Z (2n)
Woyn(z1, .. 2,) = Z (Tay (&i,) - - Ta, (€20)), G e 25

d7

Since we know how to integrate every Wi(z), we simply define

o o (=) ()
Fg,n(zl-, ERE) Zn) = Z <Td1 (eil) te Tdn(ein»g 2(2171\/5 T 2(3;\/5 . (5231)

7

Then from Proposition 5.2.5, we see that (5.2.5) and (5.2.6) are automatically satisfied.
We also know from Proposition 5.2.5 that the 2~ '-expansion of Fj, near z; = --- =
z, = 0 is given by

Fon(zy, ... @)

L S |
= 3 ), T4 St (o5 =t ).

7 m=d k

s
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5. Quantum spectral curve for the Gromov-Witten theory of P!

Using (5.2.15) and (5.2.16), we find

Fl]ﬂ(xlv s >xn)
- i sdi 1 i g 1
= Z (Tay (epr) -+ - T, (€,) g H —01"d 9 05" d;! pditl
r i—1 (5.2.32)

()

The final condition (5.2.7) follows from the fact that (7o(1)"),, = 0 for all g and n in
the stable range. This concludes the proof of the theorem.

5.3 The shift of variable simplification
Let us now turn our attention toward proving (5.1.7) of Theorem 5.1.1. In this
section, as the first step, we establish a formula for the wave function ¥(z, i) of (5.1.6)

involving only the stationary Gromov-Witten invariants.
Our starting point is

log ¥U(z,h) = %So(x) + 51 (x)

g,d=0 n=1 b=0
29—2+n>0

Using the string equation (5.3.6) and some earlier results in [32], we shall give an
expression for log ¥(z, i) purely in terms of the stationary sector. More precisely, we
prove the following lemma.

Lemma 5.3.1. The function logV(z,h) is a solution to the following difference
equation:

exp <—hdr> log U(z, h) = %(x —zlogx)

+Zzhg +n<( Zb:lgﬂ )> . (53.2)

9,d=0 n=1 b=0

5.3.1 Expansion of S; and 5

The functions Sp(z) and Si(x) of (5.1.4) and (5.1.5) are derived from the first steps
of the WKB method, that is, they are just imposed by the quantum spectral curve
equation. In this subsection, we represent them in terms of the unstable (0, 1)- and
(0, 2)-Gromov-Witten invariants.
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5.3. The shift of variable simplification

First let us calculate these functions from the WKB approximation (5.1.13). After
taking the semi-classical limit (5.1.9), we can calculate S(z) as follows:

e*%so(m)fsl(m)(eh% + e”’% _ x)e%&)("”)*sl(m)

— So(@)+h(55F ()45 (2)) hik + o~ So@+h(357 (@) =51 (@) p~hk _ . +O(12)

= %@ (1 +h (;S()’(m) + Si(x))) + ¢~%0(@) (1 +h (;56’(36) - 51(?6)))
—x+ O(h?)
Sy (@)

=h <2 (esé(z) + e"%(m)) + 51 (z) (esé(m) - 655(’3))> + O(R?).

The coefficient of A must vanish, hence we can solve for S{(x). Since
d d % log 2z é 1
) = sia) = o logr =B o e L

x'(2) 1 Z% zfi

we find
1 1 z+1 1z2(z241)
2211 2(z2-1)¥
z z

It is proved in [32, Equation (7.9) and Theorem 7.7] that

s L bl (w) ’ N /(24 =2 maa(w) ’
; < (— bz:; : eS| ) >071 B ; << s EQ‘H ) >o,1 (5.3.4)

=22+ <z+i> 10g(1_|_22)7

Sl (z) = (5.3.3)

and

SI(-5%9)) -wea-ae oo

d=0 \i=1 b=0 ?

The string equation for stationary Gromov-Witten invariants of P! enables one to
remove the puncture operator 7o(1):

n d n n d
<TO(1) I (w)> =Y <T,,_7.1(w) I (w)> . (5.3.6)
2,
Applying this to a single stationary insertion
(To(V)T11(w))g5 = (1(@))i1 -

together with Equation (5.3.4), we calculate that

5(oo) (Bt

= %% (—22 + (z + i) log (1 + z2)) (5.3.7)

*11 +11
= 5 logz + S logz.
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5. Quantum spectral curve for the Gromov-Witten theory of P!

Note that the only condition we have for Sy(x) is that Sj(x) = log z. Therefore, if we

define
So(2) == Foa(z /Wol /y(z)dw(Z)

by formally applying (5.1.12) for m = 0, and impose the skew-symmetry condition
(5.2.6) to the primitive F1(z), then from (5.3.4) we obtain

1 1
So(x) == —2z+ <z+> log z

z

R (=

0,1

(5.3.8)

The determination of S (z) is trickier. If we formally apply (5.1.12) for m = 1,

then we obtain )
Sl(.I) — *§F072(Z, Z) (539)

for the primitive

F02 2’172’2 / / WOQ 2172’2
B / / ( dudzy  dzdey >
(21— 22)? (21— 32)?

—log(l — z122) + f(z1) + f(22) + . (5.3.10)

Here we are imposing the condition that Fy(z1, z2) is a symmetric function. The fact
that Fpo is a primitive of Wy does not determine the function f(z). Therefore, we
are free to choose f(z) so that the differential equation (5.3.3) holds. Obviously, we
need to choose f(z) = 4log z. In this way, using (5.3.5) and (5.3.7) as well, we obtain

1 1
Sy (x) = —Elog (1-2%)+ Qlogz

L by d (5.3.11)
D) g+ 5 Z Z xb+1 02'

=0

Remark 5.3.2. This adjustment of the choice of Si(z) also appears in the Hitchin
fibration case of [31]. Still we have one degree of freedom for choosing a constant ¢ of
(5.3.10). It does not matter to the linear quantum curve equation (5.1.7), because the
constant term c only affects on the overall constant factor of ¥ of (5.1.6).

5.3.2 A new formula for log ¥

We use Equations (5.3.8) and (5.3.11) to rewrite the formula (5.3.1) for log ¥ in the
following way:

h2g 24+n 1
log ¥ (z, h) Z Z ( i CH. (5.3.12)

g,d=0 n=1
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5.3. The shift of variable simplification

where

h
@811 = —z+xlogx + §logx

+Z<To( Ti—2(w) >Ok+l%(1{:ﬂ€771) (5.3.13)

and

NN , (=D*n* TL, b
0, =y > < )Hm > TR (5.3.14)
gn+k

k=0 b1,....bp=0

It is obvious that for dimensional reasons, ©f,, = 0 for any n > 2. Lemma 5.3.1 is
then a direct corollary to the following statement.

Lemma 5.3.3. The quantities defined in (5.3.13) and (5.3.14) are given by

00, =— <a: + Z) + <x + h) log < Z) ; (5.3.15)

d
- K
@Z,n: Z <HTbi(w)> l_%),irm7 (5.3.16)

=1 gmn (I + 2

where in the second equation the sum is taken over all by,...,b, > 0 such that
S bi=2g+2d—2.

5.3.3 Proof of Lemma 5.3.3

The difference between the definitions (5.3.13)-(5.3.14) and the values (5.3.15)-(5.3.16)
is simply the elimination of 79(1). Thus we prove Lemma 5.3.3 by using an iterated
string equation:

<TO(1)’€HTbL(w)> - Z <To(1)kl7'bj1(w)HTbl(w)> , (5.3.17)

=1
gtk Ff7'>0 i#] gn+k—1
where we assume 2g —2+n > 1 and k > 0.
First, let us directly compute 6871. Equation (5.3.17) implies that

(ro(1)Fri_s w)>0k+1 {(ro(1)F ' 7_s( >0k <Tg(1)27'0(w)>0,3 =1. (5.3.18)

Therefore,

- (=1)*R* (k - 2)!
Z<TO(1 Th—2(w >0k+1 kLl gkl

k=2
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This proves Equation (5.3.15).
The proof of Equation (5.3.16) goes as follows. Recall that ¢ + d > 0 and

n > 0. Equation (5.3.17) implies that any correlator (7o(1)* [T"_, 7, (w)> ik Can be

represented as a linear combination of the correlators ([}, 7, (w ))Zn with S b=

2g + 2d — 2. Moreover, for any & > 0 and ¢y, ...,c, > 0 such that Zn ¢; =k, the
coefficient of a particular correlator ([T}, 7, (w))j_’ in (7o(DF T, Tt (w)>Zn+k is
equal to

E!

Therefore, the total coefficient of ([T}, 7, (w)>gn in ©¢  is equal to

ad 1)kpk 1 + ¢ k!
ZZ() [T, (bi + )

k=0 c1,...,cn=0 24K n+2t71(b e Cl! o Cn!
et . (5.3.19)
_ T (0)! <—h> Z H bi + ci)!
Tk (b |
il )k:o 2z Clynen >0 i=1 bile;!
Cl+"'+Cn:k

On the other hand, expansion of the coeflicient of ([ ]\, 7, (w))‘;n in Equation (5.3.16)
is equal to l

[ ()" 712[ (b:)!

(.T/' n g)nwLZZ”:l(b,) - P (x + g)bi+1
B ﬁ (b;)! i —h\" (bi + c)!
_, (;L')thl =0 2x bz'cz' '

Since (5.3.19) and (5.3.20) are identical, we have proved Equation (5.3.16). This
completes the proof of Lemma 5.3.1.

(5.3.20)

5.4 Reduction to the semi-infinite wedge formal-
ism

In this Section we represent the formula for W(z, i) in terms of the semi-infinite wedge
formalism. We use the formula of Okounkov-Pandharipande [81] that relates the
stationary sector of the Gromov-Witten invariants of P! to the expectation values of
the so-called £-operators. In order to include the extra combinatorial factors that we
have in the expansion of log ¥(x, ), we consider the -operators with values in formal
differential operators.

5.4.1 Semi-infinite wedge formalism

In this subsection we recall very briefly some basic facts about the semi-infinite wedge
formalism. For more details we refer to [33, 81, 86].
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5.4. Reduction to the semi-infinite wedge formalism

Let us consider a vector space V := @~ V., where V, is spanned by the basis

vectors a3 Aag Aag A--- such that a; € Z+1/2,i=1,2,..., a1 > as > as..., and
for all but a finite number of terms we have a; = 1/2 — i + ¢. We denote by 9, the
operator kA: V., — V.iq, and by ¢} the operator 9/0k: V. — V._;. Both are odd
operators, and they satisfy the graded commutation relation [i;,¢;] = 1, with all
other possible pairwise commutators equal to zero.

We denote by : 49} : the normally ordered product, that is, : ¢;9} := ¢¢] for
J > 0and : ] == =iy for j < 0. We introduce the operators £,(2), n € Z as

En(z) = Z exp (z (k — g)) Sk g F Ono (5.4.1)

vz ¢)

where ((z) = exp(z/2) — exp(—z/2). These operators satisfy the commutation relation
[E0(2), Em(w)] = C(nw — m2)Epnim(z + w).

For any operator A = &,,(z1) -+ - &, (2m) we denote by (|.A|) the coefficient of the
vector vy := —1/2 AN —3/2 A —5/2 A --- in the basis expansion of Avy. If we want to
compute a particular correlator {|€,,(21) - -+ En,, (2m)]), first we use the commutation
relation for the E-operators, and then appeal to the simple fact that &,(z)|) = 0 for
n >0, {|€(2) =0forn <0, and (|E(z1) - E(2zn)]) = 1/ (¢(21) -+ {(z,)). In this

section we are mostly interested in correlators for the form

(lAl) = < > : (5.4.2)

For the purpose of establishing the results in [81], Okounkov and Pandharipande
considered the disconnected version of Gromov-Witten invariants and Hurwitz numbers.
The disconnectedness here means we allow disconnected domain curves mapped to
P!, For example, they establish in [81, Proposition 3.1, Equation 3.4] a formula for
disconnected stationary Gromov-Witten invariants of P!, which reads

> ,  (5.4.3)

n ed 1
bl _
Z <H7—b1(w)> HIZ T (d)? <
biyebn>—2 \i=1 i=1
where ( )* denotes the disconnected Gromov-Witten invariant. Counting the number
of disconnected domain curves and connected ones are related simply by talking the
logarithm. Thus we have

51(0)dH50(zi)5,1(0)d

£1(0)? _Hgo(xi)s_l(oﬂ

[ee] n d n
> % (flnw) 112
9=0 b1,....bp>—2 \i=1
n od n
s (fe) T
1 i=1

b1y bn>—2 \i=

gm =1

This prompts us to introduce the connected correlator notation, corresponding to
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5. Quantum spectral curve for the Gromov-Witten theory of P!

(5.4.3), as follows:

oo d n

bi+1
> X HTb [I=
9=0 by,....bp>—2 g i=1

d')2< HEO(CL > o (5.4.4)

The connected correlator is also known as the cumulant in probability theory, which is
calculate via the inclusion-exclusion formula. In general, for an operator A of (5.4.2),
we denote by (|A|)° the contribution coming from the single operator of the form
E(D>°1, ) in the end, after applying the commutation relation successively. Of course
in terms of generating functions, this simply means we take the logarithm of the
expression. See [33, Definition 2.12, Definition 2.14] for more detail.

5.4.2 A new formula for V¥

Noticing that exp (f—) is an automorphism, from (5.3.2) we find

log ¥(, ) = exp (h d ) T(x),

2dx
where
proe RS
=3 Y () T(-55)
g,d=0 n=1 b1,e.sbn=0 gm i=1
1
+ 7 <T_2(w))871 (x —zlogx).

Here we have used the convention of [81] that <7'_2((,U)>8’1 =1and 7_1(w) = 0. We are

now ready to re-write the right-hand side in terms of expectation values of £-operators.
Corollary 5.4.2 of the following lemma is the main result of this section.

Lemma 5.4.1. For anyd >0, n > 1, (d,n) # (0,1), we have

Zoh2g*2+n Z <H Tb > H (_:L.bﬁ’l>
9= gn

b1,...,bn=0 i=1 i

- G < sor[e (-3

Ford=0 and n =1, we have
1 - " " (29 —2)!
_ g —2)!
L ra(@), (e — loga) + 310 <Hw<w>> &=
g,1

[y Y P

) (o) €0

> . (5.4.5)

>O . (5.4.6)
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Here we denote by { )° the connected expectation value. This means that after
the successive application of the commutation relation, all differential operators appear
in one correlator. Of course for d = 0, n = 1, we have (£)° = (&). The following
corollary is a straightforward application of Lemma 5.4.1.

Corollary 5.4.2. We have the following expression for log W:

log U(x, k)
— 1
- dz:% h24(d1)? <

5.4.3 Proof of Lemma 5.4.1

oS (0 () & () tosn)”

> . (547)

The starting point of the proof is (5.4.4). Note that only negative b; contribution
comes from (7_5(w))0, = 1, which is the coefficient of 27 in (|& (z;)])°.
Let A(z) =Y 7° | a;z' be an arbitrary Laurent series. Observe that

d x—zlogx = (-1
A <h> (logz) = a_4 <hg> + aplogx — Zai%. (5.4.8)

dz i=1

d > (5.4.9)

We can apply this observation to the correlator

1
(@)

El (O)d H 50 (l’1> 8_1(0)7

i=1
and change & (z;) to
7]
& <_h8xi> log z;.
If (n,d) # (1,0), then we have a formal Laurent series in 1, . . ., Z,,, where the degree of

each variable in each term is less than or equal to —1. Together with the computation
of the degree of h, which is ., (b;+1)—2d = 2g—2+n, we establish Equation (5.4.5).
If (n,d) = (1,0), then it is sufficient to observe that (|& (7)])° = 27 +O(z). Thus
we have one additional term (x — xlogz)/h as in (5.4.8), which is exactly the first
term in Equation (5.4.6).
This completes the proof of Lemma 5.4.1, and hence, Corollary 5.4.2.

5.5 Reduction to a combinatorial problem

The expression (5.4.7) of log ¥ in the form of the vacuum expectation value of the
operator product allows us to convert the quantum curve equation (5.1.7) into a
combinatorial formula.
Our starting point is the WU-function represented in the form
> (5.5.1)

(xh—1+zh2d1d' < Zi A(z)"E_1(0)?

8

n!
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where

Alx) =

|
@
»
ke
N

h d d

<<k: + ;) h(i) (log ) : Yyl : (5.5.2)

d r—xlogx
B(-hi—|)|—F——.
o (o) (=)

Here B(t) :=t/(e' — 1) in (5.5.2) is the generating series of the Bernoulli numbers, and
the notation (—)* in (5.5.1) means that in the computation of this expectation value
using the commutation relations, we never allow any & (0) and £_,(0) to commute
directly. We need this requirement since we exponentiate the series (5.4.7), which does
not have terms without £y-operators. The goal of this section is to prove Corollary 5.5.2.

[
ElNg

@

o]

i)

Lemma 5.5.1. We have

exp (};) U(z, h) = exp <B (—hi) (W)) X, (5.5.3)

where X =7 X4/h?9, and X4 is given by

Xa= < e exp | 3 tog (w = (k- 5 ) 1) sveri: | o >
[ redr} (5.5.4)
() I

A-d i=1

Corollary 5.5.2. The quantum spectral curve equation

o (1) o () - o] sty o

is equivalent to the following equation for the function X:

1 d d
h— —h— ) —2z| X =0. 5.
[I TP < dx) + zexp < dz) m} 0 (5.5.5)

Proof of Lemma 5.5.1. Corollary 5.4.2 implies that

i (|£1(0)? exp (exp (%ﬁ;i%jz d(!)—Qh;;) (log ) £_1(0)¢])° (556)
=log U(z,h) + L +1.

B2
Indeed, we add terms with n = 0, and it is easy to see that

(|€(0) -1 (0))" =0,  d=>2,
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5.5. Reduction to a combinatorial problem

and {|&;(0)E_1(0)])° = (|1d])° = 1. Therefore,

exp <7_32> U(zx (5.5.7)
> (|€1(0) exp (exp (3hdL) & (—hk) (logx)) £-1(0)7])
dX:(; h2(d!)? ’

From the definition of the operator &, we have

1,4d d
exp <2hd )50 ( hdm) (log )

d
= exp (éhdr> Z log (x — kh) : Yty :

kEZ+1/2

+ex (1hd) —hi <x—xlogz>
P(2"%) o () —ew (A B

h
- N 5) e p (-l (o tlosT
- 5 ) oo () ().

Now define

(5.5.8)

A= Y log (33 - (k - ;) h) e (5.5.9)

keZ+1/2

B d x—xlogx
nmn () (2o sk, 5510

Since A; and Ay commute, we have exp(A; + As) = exp(As) exp(A;). Furthermore,
since A, is a scalar operator, we have

= ([€1(0)? exp(Ay) exp(A1)E-1(0)%])
Z 12 (d!)2

d=0

£1(0) exp(A;)E_(0)°
—exp A2 Z <’ hi(d) |>

This is exactly the right-hand side of Equation (5.5.3). O
Proof of Corollary 5.5.2. We just have to show that

d 1 d
exp(—As) exp (hdx> exp(As) = oy exp (hd1> ;
(—Az)exp (—h-L ) exp(Az) = wexp (—h- )
exp 2) exp 7y ) exp(Az) = zexp 7 )

exp(—Ay)x exp(As) = x.

The last equality is tautological, and the first two are obtained by a straightforward
computation. [
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5. Quantum spectral curve for the Gromov-Witten theory of P!

For completeness, let us also explain Equation (5.5.4). It is based on several
standard facts about the semi-infinite wedge formalism. For any partition A = (A\; >
Ay > A3 > ...) we associate a basis vector vy € Vj given by

R PR PPV PO s

Then, we have £_1(0)%y = Y ,dim A - vy, (|€1(0)%, = dim A, and the fact that for
any constants a,, n € Z+1/2, vy is an eigenvector of the operator -, c; 1 /» an @ Ynt;, :

with the eigenvalue Z;ﬁl (Clxifnl/z — CLi+1/2)- Therefore, vy is an eigenvector of the
operator

Ar=exp | Y log <l - (k - ;) h> RTINS (5.5.12)

kezZ+3

with the eigenvalue

exp (i log (z + (i — \)h) — log (x + ih)) - ﬁ 2+ (= Mk (5.5.13)

i=1 i=1 z +ih

and the total weight of the vector vy in {|€;(0)2A;E_1(0)4]) is (dim\)*. This implies
Equation (5.5.4).

5.6 Key combinatorial argument

We have shown that the quantum curve equation (5.1.7) is equivalent to a combinatorial
equation (5.5.5), which is indeed a first-order recursion equation for X, of (5.5.4) with
respect to the index d. In this section we prove (5.5.5).

Let A F d be a partition A = (A > A > ... > Aoy > 0) of d > 1. We can always
append it with d — () zeros Agny41 :=0,..., s := 0 at the end so that we would
have a partition of d of length d with non-negative parts. Throughout this section we
use this convention that a partition of d has length d.

Counsider the following sum over all partitions A = (Ay > Ao > ... > N\g) of d > 1

d .
1 x4 (i—N)h
X,=> — J[—/———25 5.6.1

¢ %Hfll x +ih (5.6.1)

Here H) := [[;; hij, where h;; is the hook length at the vertex (ij) of the corresponding
Young diagram, so that d!/[] h;; is the dimension of the irreducible representation
corresponding to A. Or equivalently, it is the number of the standard Young tableaux
of this shape. We use the convention that X, := 1.

In this Section we prove the following key combinatorial lemma.

Lemma 5.6.1. The series X :=Y°, Xq/h* satisfies the following equation:

1 d d
[ac n 7> eXP (hdx> + T exp <hd1> — x} X =0. (5.6.2)
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5.6. Key combinatorial argument

Proof. In fact, (5.6.2) is a direct consequence of the following more refined statement.

Lemma 5.6.2. For any d > 1 we have

1 d x d x
T h— ) Xa_ - —h— ) —=| Xq=0. 5.6.3
m/h—i—leXp( dm) ot {hexp< d.r) h} a (5.6.3)
Indeed, since [z exp (fhﬁ) — x] Xo = 0, the sum of Equation (5.6.3) for all d > 1
with coefficients 1/h%?~! yields Lemma 5.6.1. O

To prove Lemma 5.6.2, we need to recall some standard facts on the hook length
formula as well as a recent result of Han [60].

5.6.1 Hook lengths and shifted parts of partition

We use the following result from [60]. For a partition A - d, d > 1, we define the

so-called g-function:
d

() =+ x—1). (5.6.4)

i=1
For any A+ d, d > 1, we denote by A\ 1 the set of all partitions of d — 1 that can be
obtained from A (or rather the corresponding Young diagram) by removing one corner

of A
Lemma 5.6.3 (Han [60]). For every partition A\ we have

1 1
7 @G+ =)= Y 7o) (5.6.5)
A pENL m
Here y is a formal variable.
We need the following corollary of this lemma.
Corollary 5.6.4. For an integer d > 1 we have
1 1
Z Ve oy +1) —gy) = Z ﬁgu(y). (5.6.6)
Ard+1 A ukd M
Proof. We recall that for any p - d, d > 1, we have:
1 1
— = (5.6.7)
oo I Hy
PNV ETT]
Therefore,
1 1 1
Do) =D D )
pd TR pd TP AFdpr A
PARET
1 1
Yy Ly Lo
Ardrl A kg A
peEX\1
1
=2 o) -aw).
Ad4+1 A
O
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5. Quantum spectral curve for the Gromov-Witten theory of P!

5.6.2 Reformulation of Lemma 5.6.2 in terms of g-functions

We make the following substitution: y := —z/h. Then we see that

1 9 (y)
X, =3
; H; [Tici (v —1)

Moreover,

1 d d T
h) X he) - Il x
z/h+1eXp< dz ) a1t {heXp< dx) h} a

! J o J P (5.6.8)
=, 1o | gy ) e yexp g ) +v| Xa
Observe that
-1 ( d > 1 gy—1)
exp | —— | Xyo1 = — — = (5.6.9)
y—1 dy )\;1 Hi H?:l (y —1)
d 1 g(y+1)
()= L 0D
i ZH 00
yXa=vy Z
A-d Hy Hz 1 )
Using Corollary 5.6.4 we can rewrite the right hand side of Equation (5.6.9) as
-1 < d ) 1 gy—1)—g:(y)
exp| —— | Xg1 = e (5.6.10)
y—1 dy ;Hﬁ Hilzl(y_l)
Therefore, the right hand side of Equation (5.6.8) is equal to
Y,
#7 (5.6.11)
[Tici(y —9)
where
d— l 1 —1 -1
Yaly) = Z (d=—yoy+1)+ W —Dan) + 9y ) (5.6.12)

HQ
A-d A

Note that Y;(y) is a polynomial in y of degree < d+ 1, and Lemma 5.6.2 is equivalent
to the following statement:

Lemma 5.6.5. For any d > 1 we have Y(y) = 0.

5.6.3 Proof of Lemma 5.6.5

In this subsection we prove Lemma 5.6.5 and, therefore, Lemmas 5.6.2 and 5.6.1.
First of all, it is easy to check that for any d > 1 the polynomial Y;(y) has at least
one root. Namely,
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5.6. Key combinatorial argument

Indeed, gx(d) is not equal to zero only for A = (1,1,...,1). In this case gx(d) = d!,
Hy =4d!, and (d—1)gy(d)/H} = (d—1)/d!. Notice that gy(d— 1) does not vanish only
for A = (2, 1,1,...,1,0). In this case g\(d — 1) = —d - (d = 2)!, Hy=d - (d —2)!, and
gr(d—1)/H? = —(d —1)/d!. Thus we see that always Y;(d) = 0, establishing (5.6.13).

Now we proceed by induction. It is easy to check that Y;(y) = 0. Assume that we
know that Y5(y) = 0. Corollary 5.6.4 then implies that

Yal) = 3 (d—yoly+ 1+ —Da(y) + oy — 1)

H3
S d=—ypy+2)+2y—d-Day+ 1)+ 2-yonl) — gy —1)
Ard+1 H/%
=S (d+1D) -+ +2)+(w+1D) - Doy +1) + W)
Ard+1 H
(d+1) =9y + D+ —Da@) + oy -1)

=Yau(y+1) = Yau(y).

By assumption, we have Yy(y) = 0. Therefore, Yyi1(y + 1) = Yy1(y) for any y.
HenceYyy1 is constant. Since we have shown that Yy, 1(d + 1) = 0, we conclude that
Yd+1 =0.

This completes the proof of Lemmas 5.6.5, 5.6.2, and 5.6.1. Thus we have established
the main theorem of this chapter.
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Combinatorics of loop equations for
branched covers of sphere

Abstract

We prove, in a purely combinatorial way, the spectral curve topological recursion for
the problem of enumeration of bi-colored maps, which are dual objects to dessins
d’enfant. Furthermore, we give a proof of the quantum spectral curve equation for
this problem. Then we consider the generalized case of 4-colored maps and outline the
idea of the proof of the corresponding spectral curve topological recursion.

6.1 Introduction

In this chapter we discuss the enumeration of bi-colored maps. They are decompositions
of closed orientable two-dimensional surfaces into polygons of black and white color
glued along their sides, considered as combinatorial objects. We count such decompo-
sition of two-dimensional surfaces into a fixed set of polygons with some appropriate
weights. This problem is then equivalent to enumeration of Belyi functions with fixed
type of local monodromy data over its critical values (they are called hypermaps [69]),
which is a special case of a more general Hurwitz problem.

Belyi functions are objects of principle importance in algebraic geometry; they
allow to detect the algebraic curves defined over the field of algebraic numbers. There
is a way to study them in terms of “dessins d’enfants”, that is, some embedded graphs
in two-dimensional surfaces, see [69] for a survey or [2] for some recent developments.

The local monodromy data of a Belyi function can be controlled by the choice
of three partitions of the degree of the function. We consider a special generating
function for enumeration of Belyi functions. Namely, we fix the length of the first
partition to be n and we introduce some formal variables z1,...,z, to control the
first partition as an n-point function; we introduce auxiliary parameters ¢;, ¢ > 1, in
order to control the number of parts of length 7 in the second partition as a generating
function; and we take the sum of all possible choices of the third partition so that the
genus of the surface is equal to g > 0. This way we get some functions W )(gcl, cey X))
that also depend on formal parameters ¢;, i > 0.

As soon as we get some meaningful combinatorial problem, where it is natural
to arrange the answers into the generating functions of this type, it makes sense to
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6. Combinatorics of loop equations for branched covers of sphere

check whether these functions W,S,g> (21,...,%,) can be reproduced via the topological

recursion [50]. The theory of topological recursion has initially occurred as a way to
solve a set of loop equations satisfied by the correlation functions of a particular class
of matrix models [45, 16, 51, 17]. Then it has evolved to a more abstract and much
more general mathematical theory that associates some functions W (@1,...,2,) tO
some small input related to an algebraic curve called spectral curve, see [50]. The
question is whether we can prove the topological recursion for the generating functions
W (x1,...,2,) and, if yes, what would be the spectral curve in this case.

For an expert in matrix models the answer is obvious. Indeed, we go back to
the original formulation in terms of bi-colored maps. It is a standard representation
of correlation functions of a two matrix model, see a survey in [41] or more recent
paper [5], and the topological recursion in this case is derived in [17]. However, the
general question that one can pose there is whether there is any way to relate the
topological recursion to the intrinsic combinatorics of bi-colored maps. There are two
steps of derivation of the topological recursion in [17]. First, using skillfully chosen
changes of variables in the matrix integral, one can define the loop equations for the
correlation functions [43]. Then, via a sequence of formal computations, one can
determine the spectral curve and prove the topological recursion.

The loop equations of a formal matrix model are equivalent to some combinatorial
properties of bi-colored maps [93]. In this chapter, we exhibit these combinatorial
relations deriving the loop equations directly from the intrinsic combinatorics of the bi-
colored maps. This procedure can be generalized for deriving combinatorially the loop
equations of an arbitrary formal matrix model. This allows us to give a new, purely
combinatorial proof of the topological recursion for the functions W (1,0 Tn).

Let us stress that in [41, 5, 17] this problem of counting dessins d’enfant was
addressed in matrix model approach. Here, by proving loop equations in a combinatorial
way, we have a purely combinatorial approach to this problem.

Let us also note that although the above mentioned papers dealt with the same
numbers (counting dessins d’enfant), different generating functions were considered.
The link to the spectral curve topological recursion was not established there. Since
spectral curve topological recursion arose in the context of matrix models, the step
from a matrix model for a particular counting problem to the topological recursion
is a well-known one, and in this particular case it follows from existing works. We
stress, however, that we circumvent the matrix model approach and obtain a purely
combinatorial proof for the spectral curve topological recursion.

A motivation for this chapter comes from a recent question posed by Do and
Manescu in [26]. They considered the enumeration problem for a special case of our
bi-colored maps, where all polygons of the white color have the same length a. In
this case, they conjectured that this enumeration problem satisfies the topological
recursion and proposed a particular spectral curve. So, as a special case of our result,
we prove their conjecture, and it appears to be a purely combinatorial proof. Though
similar problems were considered a lot recently [64, 6, 7], the question posed by Do
and Manescu was not covered there.

There is a general principle that associates to a given spectral curve its quantisation,
which is a differential operator called quantum spectral curve [59]. Conjecturally, this
operator should annihilate the wave function, which is, roughly speaking, the exponent
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6.2. Branched covers of P!

of the generating series of functions [*--- [* W (z1,...,2,)dzy -+ - dx,. We show
that this general principle works in this case, namely, we derive the quantum spectral
curve directly from the same combinatorics of loop equations. This generalizes the
main result in [26] .

The combinatorics that we use in the analysis of bi-colored maps is in fact of a
more general nature. The same idea of derivation of the loop equations can be used in
more general settings. In particular, we outline the idea of how it would work for the
enumeration of 4-colored maps, where the topological recursion was derived from the
loop equations by Eynard in [44].

6.1.1 Organization of the chapter

In Section 6.2 we recall the definitions of hypermaps and discuss generating functions
corresponding to hypermap enumeration problems.

In Section 6.3 we reformulate the definition of hypermaps in terms of bi-colored
maps and, for use as a motivation for our combinatorial proof, recall the 2-matrix
model which gives rise to enumeration of bi-colored maps.

In Section 6.4 we recall the form of the loop equations for the 2-matrix model and
then we show that using purely combinatorial argument to prove the basic building
blocks of loop equations, we can obtain a purely combinatorial proof of the spectral
curve for the enumeration of bi-colored maps.

In Section 6.5 we review the problem of finding the quantum curve for enumeration
of hypermaps.

In Section 6.6 we outline the idea of the proof of the spectral curve topological
recursion for the even further generalization of our problem: the case of 4-colored
maps, which corresponds to 4-matrix models.

6.2 Branched covers of P!

6.2.1 Definitions

We are interested in the enumeration of covers of P! branched over three points. These
covers are defined as follows.

Definition 6.2.1. Consider m positive integers ay,...,a, and n positive integers
bi,...,by. We denote by Mg (a1, .., amlb1,. .., b,) the weighted count of branched
covers of P! by a genus g surface with m + n marked points
f:(S;q1,- -, qm;p1s - -+, Pn) — P! such that

e [ is unramified over P*\{0,1, c0};
e the preimage divisor f=1(c0) is a1q1 + . . . QnGm;
e the preimage divisor f=(1) is bypy + . .. bppn;

Of course, a cover f can exist only if a; + -+ a,, = by + -+ + b,. In this case
d=b;+---+b, is called the degree of a cover.
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6. Combinatorics of loop equations for branched covers of sphere

These covers are counted up to isomorphisms preserving the marked points
P1, ..., Pn pointwise and covering the identity on P'. The weight of a cover is equal to
the inverse order of its automorphism group.

Example 6.2.2. In [26] the authors consider the case of
Mgyajanla,... alby,... by),
and relate this enumeration problem to the existence of a quantum curve.

Since such a branched cover can be recovered just from its monodromy around 0, 1
and oo, it is convenient to reformulate this enumeration problem in different terms.

Definition 6.2.3. Let us fix d > 1, ¢ > 0, m > 1, and n > 1. A hypermap of type
(g,m,n) is a triple of permutations (0¢, 01, 04) € S5 such that

® 00010, = Id;
e o is composed of n cycles;
® 0. is composed of m cycles.

A hypermap is called connected if the permutations oo, 01, 0o generate a transitive
subgroup of Sy. A hypermap is called labelled if the disjoint cycles of o1 are labelled
from 1 to n.

Two hypermaps (0g, 01, 000) and (79, 71, 7o) are equivalent if one can conjugate all
the ;s to obtain the 7;’s. Two labelled hypermaps are equivalent if in addition the
conjugation preserves the labelling.

By Riemann existence theorem, one has

Lemma 6.2.4. The number Mg, n(ai,...,anlbi,...,b,) is equal to the weighted
count of labelled hypermaps of type (g,m,n) where the cycles of oo have lengths
ai,...,an and the cycles of o1 have length by, ..., b,. Here the weight of a labelled
hypermap is the inverse order of its automorphism group.

6.2.2 Generating functions

In order to compute these numbers, it is very useful to collect them in generating
functions. For this purpose, we define:

Definition 6.2.5. Let us fix integer ¢ > 0 and n > 1 such that 29 — 2 +n > 0. We
also fix one more integer a > 1 that will be used to restrict the possible length of cycle
in os.

The n-point correlation function is defined by

Qg“%(xl,,xn) = i Z Mg,m,n(al,...,am\bl,...7bn)ﬁtalﬁbjzi_bj_l.
- o1

m=0 1<ai,....,am<a i=1
0<b1,...,bn
(6.2.1)
It is a function of the variables z1, ..., z, that depends on formal parameters ti, ..., t,.
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6.3. Maps and matrix models

Remark 6.2.6. Note that the product
Mg.’m’n(al, ey amlbh “ee bn) H b]'

counts the same covers as in Definition 6.2.1, but with an additional choice, for each ¢,
of one of the possible b; preimages of a path from 1 to 0 starting at point p;.

For later convenience in the definition of the quantum curve, we define the symmetric
counterpart of the n-point correlation function by (for (g,n) # (0,1))

/ / (X1, xp)day .. day, (6.2.2)

The special case (g,n) = (0, 1), as usual, includes a logarithmic term:

Fo3) (@) = log(x / Q5 (1) day (6.2.3)

Then we define the wave function by

h29+n 2

Z9(x,h) := exp [ZZ ]—";“ r)] . (6.2.4)

g=0 n=1

Remark 6.2.7. Note that in Do and Manescu’s paper [26] a different definition of F,
was used, differing by (—1)", which leads to a different definition of Z(®, and, in turn,

to a slightly different quantum spectral curve equation. See more on this in Section
6.5.

6.3 Maps and matrix models

In the present section we discuss the definition of bi-colored maps and review certain
matrix model results for the corresponding counting problem.

These matrix model results serve as a motivation for our combinatorial proof of
the spectral curve topological recursion, which is given in the next section.

Namely, we recall known matrix integral formulas for the generating functions for
bi-colored maps, and then we refer to the known proof of the spectral curve topological
recursion corresponding to this matrix model. We note that this latter proof only uses
the loop equations of the corresponding matrix model as its input. This allows us
to give a new, purely combinatorial proof this spectral curve topological recursion,
by proving the loop equations independently in a combinatorial way (in Section 6.4).
This is the main result of this chapter.

6.3.1 Covers branched over 3 points and maps

There exists a natural graphical representation of hypermaps, given in [97].
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6. Combinatorics of loop equations for branched covers of sphere

Let us now describe how to associate a colored map! to any labelled hypermap.

Each independent cycle p; in the decomposition of o1 = p1ps ... p, is represented
by a black |p;|-gon whose corners are cyclically ordered and labelled by the numbers
composing p;. We glue these black polygons by their corners following oy. Namely,
for each disjoint cycle p = (au, ..., ax) of og, one attaches the corners of black faces
labelled by ay, ... ax to a 2k-valent vertex such that:

e Turning around the vertex, one encounters alternatively white and black sectors
(k of each) separated by the edges adjacent to the vertex;

e when turning counterclockwise around the vertex starting from the corner labelled
by aq, the labels of the corner corresponding to the black sectors adjacent to the
vertex form the sequence aq, am, . .., .

Example 6.3.1. Let us give an example of a bi-colored map. Consider a hypermap
corresponding to d =7, g =0,

(1,5,7)(4,6),

(1,2,3,4)(5,6,7),

(1,6,3,2)(4,5)

Then the corresponding bi-colored map can be seen in Figure 6.1.

3 4
6
7
2 1 5

Figure 6.1: Bi-colored map

In this figure we see two black polygons corresponding to cycles (1,2,3,4) and
(5,6,7) of o1; they are glued according to oy.

In the following, when referring to a map, we refer to a combinatorial object corresponding to
a polygonalisation of a surface. These objects appear naturally in the literature in the context of
random matrices and were introduced in physics as part of various attempts to quantize gravity in 2
dimensions and to approach string theory from a discrete point of view.
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6.3. Maps and matrix models

Let us fix a > 1. We denote by Gé‘f}nm the set of bi-colored maps, where m is the
number of white polygons, n is the number of black polygons, and g is the genus
of the surface we get by gluing the polygons and a is the maximum perimeter of a
white polygon. We assume that the black polygons are labelled, and we consider the
maps up to combinatorial isomorphisms preserving this labelling. For a particular
map M € Géa)nn we denote by Aut(M) its automorphism group.

One can restate the problem of enumerating covers of P! as counting bi-colored
maps as follows.

Lemma 6.3.2. The function Qé‘f%(.rl, ..., &) is the generating function of bi-colored
maps with an arbitrary number m > 1 of white faces whose perimeters are less or equal
to a and n marked black faces with perimeters by, ..., b,. That is,

nl(lbl n

(a) 1 1 i —b;(M)—
Q) (2., Z > At (10)] Hb (M)x (6.3.1)

™= preGi
Here by n;(M) we denote the number of white polygons of perimeter i in M, and
bi(M),...,bo(M) are the perimeters of the black polygons in M.

6.3.2 Matrix model and topological recursion

In the present subsection we recall the matrix model techniques of solving the problem
of enumeration of bi-colored maps, which provide the motivation for our subsequent
combinatorial proof of spectral curve topological recursion for this problem.

The enumeration of bi-colored maps is a classical problem of random matrix theory
which is equivalent to the computation of formal matrix integrals. One can state this
equivalence in the following way.

Lemma 6.3.3. (see, e. g. [{1]) Consider the partition function of a formal Hermitian
two-matriz model

formal
Z (0, 1) = / dMy d My e~ NI M) =T Vi (M) T Vo (M) (6.3.2)
Hy

where the potentials Vi(z), i = 1,2, are polynomials of degree d;,

d;
Vi(w) =D . (6.3.3)

Z (f0,?) = Z > | Aut(ﬂ)\ (6.3.4)

g,m,n=0MecS?

g,m,n

where

141



6. Combinatorics of loop equations for branched covers of sphere

o Sy .n 1S the set of bi-colored maps, possibly disconnected, of genus g composed
of n black polygons and m white polygons glued by their edges, such that black
polygons are glued only to white polygons and vice versa. Neither black nor white

polygons are marked.

e By n( )(]W) (resp. n (]M)) we denote the number of black (resp. white) polygons
of perimeter i in ]W,

It is also possible to enumerate connected maps with some specific marked faces
by computing certain correlation functions of this formal matrix model.

Definition 6.3.4. For any set of words (non-commutative monomials) {f;(z,y)}5_,
in two variables, we define the correlator of the formal matrix model by

formal d/lN(Mh MQ) H?*l Tr fi(jwla ]\/12)

where the measure of integration pu(Mj, M) is the same as before,

dMN(AI17 Mg) — d]\/{l dMQ e—N[Tr(AhMQ)—TrVl(Ml)—Ter(J\Iz)]_

We denote by <H Tr f; (M, ]V[2)> its connected part.
i=1 c
In matrix models, one classically works with generating series of such correlators
(named correlation functions) defined by

Wk,l(mlw"?mk;ylw'wJZ <HTY M HTI‘ ]\/I> -
1 2

c

These correlation functions have to be understood as series expansions around x;, y; —
0!

k l m;
Tr M Tr M, "~
Wea(@n, - mkiyn - u) = Y <H xnﬁll ot > : (6.3.5)

AeENk meNl \i=1 g j=1 Jj

These correlation functions admit a topological expansion, i. e. they can be written as

W1, sy, - 0) = Y N2 (@, )
g=0

where each of W,Si) does not depend on N.
With this notation,

[Ny @) p,
dy |:t(1)i| n;” (M) ld_2[ |:t(2)j| n;” (M)
1

. i
ngi)(zh...,Ik;yl,...,yl): Z Z Z i=

k l ’
< : 841
mn=0aent Mesy s |Aut(M)] [T gt [Ty’
BEN i=1 j=1

(6.3.6)

i=1
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6.3. Maps and matrix models

where S;,m,n\&ﬁ is the set of connected bi-colored maps of genus g composed of n
unmarked black faces, m unmarked white faces, k¥ marked black faces of perimeters
ai, . ..,qx, each having one marked edge, and | marked white faces of perimeter
B1y .-, Bn, each having one marked edge too; black faces are only glued to white faces
and vice versa, as above.

Such a model admits a spectral curve. This means that there exists a polynomial
P(z,y) of degree d; — 1 in z and d2 — 1 in y such that the generating function for

discs Wl(f)o) (x) satisfies an algebraic equation:

Boun(z, W (x)) =0, zeC,

where
Eyvm(z,y) = (Vi(z) —9)(V3(y) —2) — Pz,y) + 1.

In [51, 17], it was proved that the correlation functions W,Ef’o) can be computed by
topological recursion on this spectral curve.
First, let us recall the definition of the spectral curve topological recursion.

Definition 6.3.5. [50] Let C' be an algebraic curve, z and y two functions on C' and
wp 2 a bidifferential defined on C' x C. Denote ydx by wp 1 and let a; stand for zeroes of
dz and 0;(z) stand for the deck transformation near a;. Then spectral curve topological
recursion defines n-multidifferentials w,,, by the following recursive formula

oi(z)
1 f woa( -, 21)
n s cn) T § Res z , —1,n ;04 3 R2y -y An
Wy, (Zl/ 2 ) 2 zi:z_gzi WO,l(Ji(Z)) — WO,I(Z) Wg—1, +1(Z,O' (Z) 22 z )
stable
+ Z w917|1\+1(z7Zf)w927\~]|+1(ai(z)vZJ) ., (6.3.7)
g1+91=9
1UJ={2,..n}

“Stable” above the summation sign stands for taking the sum excluding the terms
where (g1, [1]) = (0, 1) or (g2, ]J]) = (0,1).

Theorem 6.3.6. [51, 17] The correlation functions of the 2-matrixz models can be
computed by the topological recursion procedure of [50] with the genus 0 spectral curve

Eovin(w,y) = (Vi) —y)(V3(y) — 2) = P(x,y) +1
and the genus 0, 2-point function defined by the bilinear differential
dz1dzs
(21— 2)?

for a global coordinate z on the spectral curve.

wo,z(zh 2’2) =

The proof of this theorem consists in three steps:

e First, find a set of equations satisfied by the correlation functions of the matrix
model.

e Second, show that these equations admit a unique solution admitting a topological
expansion.

e Third, exhibit a solution which immediately implies the topological recursion.
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6. Combinatorics of loop equations for branched covers of sphere

6.3.3 A matrix model for branched covers

Since the problem of enumerating branched covers can be rephrased in terms of
bi-colored maps, one can find a matrix model representation for it.

Using the definition of the preceding section together with the hypermap represen-
tation of section 6.3.1, one immediately finds that

Lemma 6.3.7. The correlation functions of the formal two matriz model with poten-
tials Vi(z) = 0 and Va(z) = i%ﬁ coincide with the generating series of covers of P!
branched over 8 points deﬁn;ilin (6.3.1), for (g,k) # (0,1):

W/E,go)(l’17~~~71’k) :anli(frlv,l’k) (6.3.8)
For (g,k) = (0,1) we have

1 a
Wi (1) = —+ Q) (). (6.3.9)
Applying [50, 17], one can thus compute the generating series using topological
recursion.
We have:
Theorem 6.3.8. The generating series for hypermaps

wch(xl, ey .%'k) = Qg(flz'(xh . ,.Z'k)dl'l . d.%'n (6310)

can be computed by topological recursion with a genus 0 spectral curve

ED(z,y) =y (Z tiy' ™! - x) +1=0 (6.3.11)

i=1
and the genus 0 2-point function defined by the corresponding Bergmann kernel, i. e.
le ® dZQ
(21 — 22)?

for a global coordinate z on the genus 0 spectral curve.

wo2(21, 22) = (6.3.12)

For brevity, we are not reproducing here the arguments from [50, 17], but we note
that the only fact about the matrix model that is used in these arguments to prove
the spectral curve topological recursion is the loop equations for the matrix model.

In the next section we prove these loop equations independently in a combinatorial
way, and thus obtain a new, purely combinatorial, proof of Theorem 6.3.8, which is
the main result of this chapter.

Remark 6.3.9. Theorem 6.3.8 in particular answers the question by Do and Manescu [26]
considering such covers with only type a ramifications above 1. The spectral curve is indeed,
like Do and Manescu suggested,

E9@y) =y (y" " —x) +1=0 (6.3.13)

coinciding with the classical limit of their quantum curve.

Remark 6.3.10. Spectral curve (6.3.11) can be used as a superpotential to define a certain
Frobenius manifold, and the wg,’s turn out to be generating functions for the correlators
of the corresponding chomological field theory via the identification of [37] (see [35] for the
details).
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6.4. Loop equations and combinatorics

6.4 Loop equations and combinatorics

The proof of Theorem 6.3.8 in [50, 17] relies on the representation of our combinatorial
objects in the form of a formal matrix integral. Actually, the only input from the formal
matrix model is the existence of loop equations satisfied by the correlation functions
of the model. These loop equations are of combinatorial nature and should reflect
some cut-and-join procedure satisfied by the hypermaps being enumerated. However,
a simple combinatorial interpretation of these precise 2-matrix model loop equations
could not be found in the literature, even if some similar and probably equivalent
equations have been derived combinatorially in some particular cases [9, 93]. In this
section, we derive such an interpretation, allowing to bypass the necessity to use any
integral (matrix model) representation and thus getting a completely combinatorial
proof of the results of the preceding section.

Remark 6.4.1. While writing the paper, on which this chapter is based, we have been
informed that such a direct derivation of the loop equations for the 2-matrix model is
performed in chapter 8 [47] which is in preparation and whose preliminary version can be
found online.

6.4.1 Loop equations

In order to produce the hierarchy of loop equations whose solution gives rise to the
topological recursion, one combines two set of equations which can be written as
follows:

e The first one corresponds to the change of variable

n

1
MQ%]Wngex_A/[lHTr

i=1

1
Z‘i—Ml

in the formal matrix integral defining the partition function. To first order in e,
the compensation of the Jacobian (which is vanishing here) with the variation of
the action gives rise to the equation:

M, ° 1 1 i 1
T T——y={(T VJ(M. T——
< r(x—Ml)ﬂ r;L'i—Ml> < r<:c—M1 2( 2)>1H rxi—]wl>

(6.4.1)
e The second one corresponds to the change of variable
1 Vi(y) — Vi (My) £ 1
M, — M 2 2 T 6.4.2
IV A— 11 v (642)

i=1
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6. Combinatorics of loop equations for branched covers of sphere

and reads

1 Vi(y) = V3(Ms) u 1
<Tr <1 -My  y—M Me E Tr 7 — M, (6.4.3)
Vi(My) Vy(y) — V5 (Ma)
= (T 1 2 5( T
< ' <x — M y— M, H — Ml
! ! L Vi(y) - V(M)
— (T T 2 5 ( Tr
+N<r(x—M1> r(x—Ml y— My >21_[ —Ml>

1 n 1 1 V/(y) j\/_{Q
= T 5 T
i N;< r((‘ri]\/.{l)2xj\/jl Yy — ]bIQ H 7]\41

Note that in these equations the correlators are not the connected ones, but they
are generating functions of possibly disconnected maps of arbitrary genus.

6.4.2 Combinatorial interpretation

The loop equations (6.4.1), (6.4.3) make sense only in their z,z;,y — oo series
expansions. These expansions generate a set of equations for the correlators of the
matrix models which can be interpreted as relations between the number of bi-colored
maps with different boundary conditions. In this section, we give a combinatorial
derivation of these relations.

Definition of boundary conditions

In order to derive the loop equations, we have to deal with bi-colored maps with
boundaries (or marked faces) of general type. A map with n boundaries is a map with
n marked faces (polygons), each carrying a marked edge. The boundary conditions
are defined as the colors of the marked faces.

However, in the following, we need to also introduce mixed-type boundary conditions
described as follows.

A bi-colored map with n mized-type boundaries is a map with n marked faces ,
where all unmarked faces are colored either black or white (as usual, black faces can
border only white ones and vice versa). We do not assign color to the marked faces
themselves; instead, we color their edges in the following sense. We say that each
edge has two flanks, associated with two possible normal directions to the edge. Each
of these two flanks for each edge is colored either black or white such that 1) for a
given edge its two flanks are oppositely colored and 2) if a given edge belongs to an
unmarked face, its flank in the direction of this face has the same color as the face.
For convenience, for a given face F let us call the F-facing flanks of the edges of F
inner with respect to F. Note that marked faces can be self-touching, and for an edge
of a marked face F where self-touching occurs both flanks are inner with respect to F.
Also, in addition to everything described above, we mark one inner flank of exactly
one of the edges of each marked face.

Slightly abusing the terminology, we call a marked face black if all inner flanks of
its edges are black, and we call it white if all inner flanks of its edges are white.
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6.4. Loop equations and combinatorics

The boundary conditions of a marked face are then given by the sequence of colors
of the inner flanks of the edges of this face starting from the marked flank and going
clockwise from it.

For a given bi-colored map with n mixed-type boundaries consider a set of n
sequences of non-negative integers

Si = bi,17 ai,l: biﬁg, 04'72 e bi,l“ a“i, 1= 1, Loon. (644)

Here b; 1 is the number of consecutive inner black flanks of the i-th marked face starting
from the marked inner flank and going clockwise (it is equal to zero if the marked
flank is white), @, is the number of the following consecutive white flanks, and so on.

We define ’7';?) s, to be the number of connected bi-colored maps of genus g with
n boundaries with the boundary conditions Sy, ..., S,.

Remark 6.4.2. In terms of correlators of a two matrix model, one can write

n g9
s, = (T (oot arz o a ) ) o4
c

i=1

where the superscript ¢ means that we only consider the g’th term of the expansion in N—2
of this correlator.

Cut-and-join equations

With these definitions, we are ready to derive the loop equations (6.4.1) and (6.4.3).

Namely, we can generalize to the two matrix model the procedure developed by
Tutte for the enumeration of maps [92] and then extensively developed in the study
of formal random matrices. Let us consider a connected genus g map with n + 1
boundaries with boundary conditions

So=k+1,0, S;=k,0, i=1,...,n. (6.4.6)

This means that the inner flanks of all the edges of the marked faces are black. This
map contributes to 7;83)1,0*1’0‘___:,%0. Let us remove the edge with the marked inner
flank from the boundary 0. Since one can only glue together faces of different colors, on
the other side of this edge one can find only a white (unmarked) I-gon with 1 <1 < d.
After removing the edge, let us mark in the resulting joint polygon the edge which
is located clockwise from the origin of the removed edge (the origin of an edge is
the vertex located on the counterclockwise side of the edge). We end up with a map
that contributes to ’7652Lk’0;k1_O:W;kn_o. This procedure is bijective between the sets
considered. We take the sum over all possibilities, taking into account the weight of
the edge and I-gon removed, and we see that

da

(9) (2)7(9)
TkiLo;kho;..,;kmo = Ztl 7?),19717k,0;k1,0;...;kn,0~ (64-7)
I=1
Multiplying by = *~tz=%~1 _ x=*—=1 and taking the sum over
k, ki, ..., kn, one recovers the loop equation (6.4.1).
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6. Combinatorics of loop equations for branched covers of sphere

This first equation produces mixed boundary condition out of homogeneous black
conditions. Let us now proceed one step further and apply Tutte’s method to the
maps produced in this way.

Let us consider a map contributing to 751+1 k.0tky 0:.ckn 00 1 € & genus g connected
map with boundary condition:

So=0,14+1,k0; Si=k,0, i=1...,n (6.4.8)

Note that it follows from our definition that the marked inner flank of the 0-th marked
face is white. When we remove the corresponding edge, we can produce different types
of maps, namely, strictly one of the three following cases takes place.

e On the other side of the edge lies an unmarked black m-gon. We remove the
edge and this gives a map that contributes to 76(7'2]7),%,”_1,0.,61, ik 0

e The opposite flank of the edge is a black inner flank of the same marked face.
Then two possible cases occur. The resultmg surface can still be connected,
giving rise to a map contributing to 7;,1007“ 1.0v1.,0:.1Fn 0 for some 1 <m <k,
i. e. with one more boundary but a genus decreased by one. Or removing
the edge with the marked flank can dlsconnect the map mto two connected
components giving contributions to 7:n0 g 05k 0 and Tl kh)mO e, O, 0
respectively, where 0 < h < g and {oq,..., o5} U{b1,...,Bus} = {1,...,n}.
This type of behavior can be thought of as a ”cut” move.

e On the other side of the edge lies a marked black face with boundary condition
(k;,0). Removing the edge, one gets a contribution
to %SZLMFLO;MO; ki1, 0i— 1m0k 1.0.. 5k 0+ LIS type of behavior can be thought
of as a ”join” move.

Once again, this procedure is bijective, if we take the sum over all cases. Taking into
account the weight of the elements removed, we end up with an equation relating the
number of bi-colored maps with different boundary conditions:

(9)
7;),l+1,k,0;k1,0;...;kn,0 (649)
da
(2)
E b 751k+m 1,051,055k ,0
m=0
+ E T OOlk m,03k1,0;...3kn 0
m=0
(h) (g—h)
+ ZZ Z o0y 05k 0 TOL o=, 03ki Ok, .0
m=0 h=0 g on}

(9)
+ § :73,1,1«+k1—1,0;k1,o;m;kl_l,o;kz—m,o;km,o...;kmo
i=1

where & = {ay,...,q;} and B = {B1,...,Bn—j}. This equation is the genus g con-
tribution to the expansion of the loop equation (6.4.3) when all its variables are
large.
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6.5. Quantum curve

This concludes the fully combinatorial proof of the two matrix model’s loop
equations. The latter can be seen as some particular cut-and-join equations. One can
now apply the procedure used in [17] for solving them (without having to introduce any
matrix model consideration!) and derive the topological recursion for the generating
functions of bi-colored maps with homogenous boundary conditions, which implies
Theorem 6.3.8.

6.5 Quantum curve

In this section we prove a generalization of the theorem of Do and Manescu from [26]
on the quantum spectral curve equation for enumeration of hypermaps.

Theorem 6.5.1. The wave function Z\®(z), defined in (6.2.4), satisfies the ODE:

0 . o\’
—hr— = (@) () =
( hxax +1+ ;:1 t; (h%) ) ZW(z)=0 (6.5.1)

Remark 6.5.2. The differential operator in the previous theorem is given by the naive

quantization of the classical spectral curve (6.3.11), y < ha— Note that in Do and
x

Manescu’s paper [26] a different definition of Z(®) was used, as noted above, and a

different convention y <> —h—.

ox

6.5.1 Wave functions

In the proof we use the notations coming from the formal matrix model formalism
for simplicity, but as usual in the formal matrix model setup, they just represent well
defined combinatorial objects which satisfy the loop equations derived in the preceding
sections.

In what follows we identify N with 1/A.

From the definition of the Wave function Z@, given in formulas (6.2.2)-(6.2.4),
from the identification between Wk ¢ and Q(a)
definition of Wy, (6.3.5), we have

given by Equation (6.3.8) and from the

Z@(z) = exp <7li log(z) + i (=1" i": (Tran) .. Tr(M1”)>C) . (6.5.2)

n! by...byabr ... xbn
br,bn=1 1 m

The standard relation between connected and disconnected correlators imply

0 bl T Mbn)>
Z@(z) = gV (- 1)” <Tr My r(My
I = U
b1,...bp=1
In order to simplify the notation, we introduce functions Z" (z1, ..., z,) and Z"(y, x)
for integers n > 1, r > 0 (we call these functions non-principally-specialized wave
functions).
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6. Combinatorics of loop equations for branched covers of sphere

Definition 6.5.3. The n-point wave function Z of level r is defined as

ZN (21, ) 1= (6.5.4)

log (1) (—1)"~1 i (Te(Mg) Te(MP?) . Tr(MP))

by...bp=1
= (Tr(MyMyY) Te(M7?) ... Te(MP))

G

b1,ba...bp=1

b
by...by x? ... xbe

>0

b
by...by .. b

2, .. ) = (=1)" i <Tr(M{’1)...Tr(an)>

b1
b1 bs. bp=1 b1 e bn Ty oo T

n

and the almost-fully principally-specialized wave function of level r is

oo

T 1 T
Z"(y,x) = Z aZn(y7 x,...T) (6.5.5)
n=0
Note that with these definitions
Z@(z) = 2" 2%z, x) (6.5.6)

6.5.2 Loop equations in terms of 2

Considering the coefficient in front of particular powers of 1/x and 1/x;’s in loop
equations (6.4.1) and (6.4.3) we get the following equations relating particular formal
matrix model correlators

(Tr(MYY) ... Te(Mym)) = Za: to (Tr (MY M) Te(M7?) ... Te(M"))  (6.5.7)

(Tr (Mg M{*) Te(Mp2) ... Tr(M{")) =

By b, <Tr (Mg*lel“’fl) Te(MP). . Te(MY) ... Te(Mb )>
j=2

+h Z <Tr(M§'*1]V[f) Tr(M?) Tr(MP2). .. Tr(]%f")> ,

p+q=b1—1

Here the hat above Tr(]ij ) means that it is excluded from the correlator.
Let us sum the above equations over all by, ..., b, from 1 to oo with the coefficient

(=n"

b b :
x'by .. by . abe

(note the absence of the 1/b; factor). We get:
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6.5. Quantum curve

Lemma 6.5.4. Loop equations, written in terms of Z, read

d 0\ i 1
(—xlaxl)Zg(:rl, e Ty) = ;ti(—axl)zn Yy, ..o ) — hfng_l(xg, T,
(6.5.8)

1 0

n 8
- (_T)Zn—l(xjvx27 €L In) + h Zn—Q(I% €T xn)

=2 J J

2 0 1

ﬁ(*aj,l)Zg(Ih s Tp) — %an(x% s Tn)

62

— I aul6u2 I Zn+1(u17 Uz, T2, 7xn)

- 1 d . 9
— Z R {xlalegl(xl, Ty ) — .7}j%Z271($]‘7fL'2, ST xn)} ,
j=2 J J

and, for all r > 1,

1 0
Rl gy a0 ) = 6.5.10
h xlaxl) n(:rlu 71) ( )

n

o . ~ .
,;(*%)Zn_%(xﬁxz,...xj,..zn)+ﬁ(f671)zn Y a)
92

iy o Zh N,

118?“8“2 S 7L+1(u17u27$2, , X )

n 1 erl( ~ ) 8 erl( R )
B T — a0 1T e X1, Ty TjoeXn) — Tjm—Ly 1 (XTj, T2y Tj oo Xp) | -

‘ (:L.l_x]) 18.%'1 n—1\*1, 42, J ]afL'] 1\&Lj, L2 j

Jj=2

6.5.3 Symmetrization of loop equations
Last step to obtain quantum curve equation is to put all equations (6.5.8)—(6.5.10)
into principal specialization: put all x;’s equal to x.
The following obvious statement plays a crucial role in the induction:
Lemma 6.5.5. Let f(z1|xa, ..., x,) be a symmetric function in the variables za, . . ., T,

(so, x1 is treated specially here). Then we have the following formula for the derivative
in the principal specialization.

0 0 0 g
%f(l‘|$7 v ,l’) - %‘u:xf(uu‘? cee 7'T) + (n - 1)% u:wf(x|u7x7 .. '7‘T)' (6011)
In particular, if f(x1,29,...,2,) = (,)Ilg(xl, To,...,Tp), then
g 0 92
950y y:zg(y|$, cex) = e uzzg(u|x, cey ) (6.5.12)
2
+(n— 1)0u18u2 ul:m,uz:mg(uﬂug7 Tyoooy T).
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6. Combinatorics of loop equations for branched covers of sphere

Since Z9 is symmetric in all its arguments, the first equation of (6.5.8) is equivalent
to

*( x*)ZO( L) = (6.5.13)

1 10
— Z° -——Z ey
tlh n— 1(‘7’ ‘%) nam n('L.7 >£)

+ tl(ii ZZ 1(7 PRI)
; ay‘ -z v ?)

We multiply this by ﬁ and take the sum over n > 0. We have:

9\ 0
(fx%)Z (,...,2) = (6.5.14)
0 1 0
a o0 1 a )
+ t; — Z y, @, ..., 1).
; 2= 1),( ay) iy )

Then, the existence of a quantum curve equation relies on two observations:

Lemma 6.5.6. We have:

i>1: ;}(nll)!(_aay) yzzzg(y,x,...,x) (6.5.15)
1 0\ 1 0 i
B <x+ %);}(nl)'( 8y) Zu(y, /)
, =1 ) ;
i=1: ;}m(—a—y) y:zZn(y,x,...,x)

0r?2 hzox 2

o110\,
(3 +hax> z

Proof. These equations are direct corollaries of Equations (6.5.8), we just have to put
them into principal specialization and apply Lemma 6.5.5. O

Y R L EE

We combine Equation (6.5.14) and Lemma (6.5.6), and we obtain the following
equation:

(— hx— Zt < ) AR (6.5.16)

which, with help of commutation relation

z/h < + h@i) ha—ax ox'/m, (6.5.17)

leads directly to the statement of Theorem 6.5.1.
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6.6 4-colored maps and 4-matrix models

It turns out that the ideas above can be applied not only to bi-colored maps (which
correspond to the 2-matrix model case), but also to 4-colored maps. In the current
section we outline the idea of the proof of the spectral curve topological recursion for
the enumeration of 4-colored maps.

4-colored maps arise as a natural generalization of bi-colored maps. Instead of
considering partitions of surfaces into black and white polygons, we consider partitions
into polygons of four colors ¢y, ¢, 3, ¢4, such that polygons of color ¢; are glued only
to polygons of color ¢q, polygons of color ¢y are glued only to polygons of colors ¢; and
c3, polygons of color c3 are only glued to those of color ¢y and ¢4 and finally polygons
of color ¢4 are only glued to polygons of color c3. This can be represented in terms of
the following color incidency matrix:

0100
1010
0101 (6.6.1)
0010

Applying considerations similar to the ones in the above sections, it’s easy to see
that the problem of enumeration of such 4-colored maps is governed by a 4-matrix
model with the interaction part of the potential being equal to

—N Tr(My My — My My + M3 M,), (6.6.2)
since the inverse of the above incidency matrix is equal to

1

o = O

(6.6.3)

— o O O

0
1
0

o O O

-1

We see that in the 4-colored maps case, after a renumeration of matrices and a certain
change of signs, this still gives us the matrix model for a chain of matrices (which
is no longer true for, e.g., 6-colored maps). Fortunately, the case of matrix model
for a chain of matrices was studied by Eynard in [44], and the master loop equation
obtained there gives rise to the spectral curve topological recursion for this problem.
Again, it’s easy to see in the analogous way to what was discussed in the previous
sections that the individual building blocks of loop equations can be proved to hold
by purely combinatorial means.
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Summary

In my thesis I consider interplay between several different structures in mathematical
physics. These structures are used to solve a large class of problems in enumerative
algebraic geometry and combinatorics in a universal way. The problems can range from
counting certain one-dimensional drawings on two-dimensional surfaces to counting
maps of certain type from a two-dimensional surface to some higher-dimensional space.
The structures that we study in this thesis allow to encode the solutions to this type of
enumerative and combinatorial problems in some general compact form.

In one approach the solutions to the enumerative problems are encoded in a complex
algebraic curve with certain functions on it. From this initial small set of data one can
reconstruct the full solution with the help of a recursive procedure that is absolutely
universal and does not depend on a particular problem.

In another approach the solutions to the enumerative problems are encoded as certain
integrals over some complicated spaces that parametrize different complex structures on
two-dimensional surfaces. This reveals that the solutions to the enumerative problems
reflect the geometric properties of the space of complex structures, also in a universal
way.

These two approaches turn out to be related in many different ways. In this thesis
their relation is studied in the framework of an advanced differential geometric structure
called Frobenius manifold.

Samenvatting

Dit proefschrift gaat over het samenspel van verschillende structuren in de mathema-
tische fysica. Deze structuren worden gebruikt om een grote klasse van problemen in
enumeratieve algebraische meetkunde en combinatoriek op te lossen. De problemen
kunnen variéren van het tellen van bepaalde eendimensionale tekeningen op opper-
vlakken tot het tellen van een bepaald type afbeeldingen van oppervlak naar een
hogerdimensionale ruimte. De structuren die worden onderzocht in dit proefschrift
laten de oplossingen van dergelijke enumeratieve en combinatorische problemen coderen
in een aantal algemene compacte vorm.

In één benadering worden de oplossingen voor de enumeratieve problemen gecodeerd
in een complex-algebraische kromme met daarop bepaalde functies. Uit deze kleine
begindata kan men de volledige oplossing reconstrueren met behulp van een recursieve
procedure die volledig universeel is en niet afhankelijk is van een bepaald probleem.

In één andere benadering worden de oplossingen voor de enumeratieve problemen
gecodeerd als bepaalde integralen over een aantal ingewikkelde ruimten die verschillende
complexe structuren op oppervlakken parametriseren. Hieruit blijkt dat de oplossingen
voor de enumeratieve problemen de meetkundige eigenschappen van de ruimte van
complexe structuren weerspiegelen, ook op een universele manier.

Beide benaderingen blijken op verschillende manieren samen te hangen. In dit
proefschrift wordt het verband onderzocht in het kader van een geavanceerde differenti-
aalmeetkundige structuur genaamd Frobeniusvariéteit.
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