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ABSTRACT: The effective actions describing the low-energy dynamics of QFTs involving
gravity generically exhibit causality violations. These may take the form of superlumi-
nal propagation or Shapiro time advances and allow the construction of “time machines”,
i.e. spacetimes admitting closed non-spacelike curves. Here, we discuss critically whether
such causality violations may be used as a criterion to identify unphysical effective actions
or whether, and how, causality problems may be resolved by embedding the action in a
fundamental, UV complete QFT. We study in detail the case of photon scattering in an
Aichelburg-Sexl gravitational shockwave background and calculate the phase shifts in QED
for all energies, demonstrating their smooth interpolation from the causality-violating ef-
fective action values at low-energy to their manifestly causal high-energy limits. At low
energies, these phase shifts may be interpreted as backwards-in-time coordinate jumps as
the photon encounters the shock wavefront, and we illustrate how the resulting causality
problems emerge and are resolved in a two-shockwave time machine scenario. The impli-
cations of our results for ultra-high (Planck) energy scattering, in which graviton exchange
is modelled by the shockwave background, are highlighted.

KeEywoRDS: Effective field theories, Classical Theories of Gravity

ARX1v EPRINT: 1512.04952

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP®. doi:10.1007/JHEP03(2016)129


mailto:t.hollowood@swansea.ac.uk
mailto:g.m.shore@swansea.ac.uk
http://arxiv.org/abs/1512.04952
http://dx.doi.org/10.1007/JHEP03(2016)129

Contents

1 Introduction 1
2 Shockwave time machines 9
2.1 A naive analysis 9
2.2 A consistent analysis 10
2.3 Drummond-Hathrell shifts 11
3 Geometry of gravitational shockwaves and the Penrose limit 12
4 Photon-shockwave scattering 17
5 The beam shockwave 20
5.1 High frequency limit 23
6 The particle shockwave 25
7 The fate of time machines and causality 26
8 Scalar field theory 27
9 Conclusions 30

1 Introduction

The relation of IR effective theories to their UV completion in quantum field theories
involving gravity is a rich and far-reaching topic which raises many fundamental issues. In
this paper, our focus will be on causality, in particular how the apparent causality violations
which generically arise in low-energy effective theories in curved spacetime can be resolved
in a fundamental, UV complete theory.

This work was inspired in part by the idea that causality may restrict the class of
physical low-energy effective theories by placing constraints on the allowed values of the
couplings [1]. More recently, it has been proposed that circumventing the causality prob-
lems present in an effective theory in the IR may be used as a guide to constructing a
consistent, causal UV completion, especially for gravity itself [2].

The potential causality problems in effective theories may take the form of superlu-
minal propagation, or the closely related Shapiro time advances, in certain gravitational
backgrounds. Shapiro time advances can at first sight be used to construct “time ma-
chines”, that is closed null or timelike trajectories for particles propagating in specifically
engineered gravitational backgrounds.



The immediate question is whether these apparent causality violations do indeed imply
that the effective theory is unphysical, or whether, and how, causality is realised when the
effective theory is embedded in a consistent, causal UV completion. To test this, we consider
a theory that has a known UV completion with sound causal properties,! namely QED
in curved spacetime, but which does display superluminal propagation (the Drummond-
Hathrell effect [3]) in its low-energy effective action, i.e. at scales below the electron mass.
The spacetime is chosen to be the Aichelburg-Sex! gravitational shockwave [4], which even
at the classical level admits null geodesics with discontinuous Shapiro time advances. The
propagation of photons, dressed by vacuum polarization, in a gravitational shockwave
spacetime therefore provides an excellent template for how causality problems that are
manifest in an IR effective theory may be resolved if a consistent UV completion exists.

As demonstrated in our previous investigations of the realisation of causality in curved
spacetime [5—10], in order to verify that causality is respected we need to demonstrate that
the phase velocity, which may be superluminal for low frequencies, is equal to 1 in the
high-frequency limit [5, 11-13]. This implies constraints on the phase shift of the photon
modes as they scatter from the shockwave. Here, we complement this approach by using
the Shapiro time advances in the effective theory to engineer potential time machines in
a spacetime describing the collision of two shockwaves [1, 2, 14]. We will show explicitly
how causality problems emerge and are resolved in these scenarios.

The propagation of a massless particle in a gravitational shockwave background is of
considerable importance in its own right as a model of Planck energy scattering. The
scattering of particles at ultra-high energies is dominated by graviton exchange and is
therefore an important theoretical laboratory to test fundamental ideas in quantum field
theory, string theory and quantum gravity (see refs. [15-27] for a selection of papers). The
results derived here for the energy-dependence of the phase shifts for a photon propagating
in the shockwave background can therefore be directly translated to the amplitudes for
Planck energy scattering. The interpretation of our results in terms of Planck energy
scattering in QFT and associated issues involving causality and unitarity are the subject
of a companion paper [28].

The relation of IR and UV theories may also be studied directly using dispersion rela-
tions, especially the Kramers-Kronig identity which relates the phase velocity, or refractive
index, of photons at high and low frequency. Indeed, the conventional flat-space Kramers-
Kronig relation, with the usual analytic properties of the relevant Green functions, would
imply that the UV theory necessarily inherits the causal problems of the low-energy theory.
However, in our previous work [5, 10], we have shown how the novel analytic structure in-
duced by geometric properties of the curved spacetime background imply a re-interpretation
of the usual flat-space dispersion relations, with important consequences for causality and
the optical theorem. In another paper in this series [29], we return to these issues and
present a new analysis of dispersion relations for QFT in curved spacetime. In that work,
we will show how the dispersion relation is violated by non-analyticity in the upper-half

!Fundamentally, causality is guaranteed by the vanishing of the retarded Green functions outside the
backward light-cone. This is known to be true in QED, even in curved spacetime [5].



plane. In flat space, that would imply a breakdown of micro-causality, the non-vanishing
of the retarded Green function outside the backward lightcone. But in curved space the
shape of the lightcone is non-trivial and this allows for upper-half-plane non-analyticity
whilst preserving micro-causality.

A central role in our work is therefore played by the Aichelburg-Sexl metric [4],

ds? = —2dudv + f(r)é(u)du® + da? + da3 | (1.1)

which describes a shockwave localised on the lightcone u = 0 and satisfies the Einstein
equations

Ry = 87GT,,, = —%Af(r) ) (1.2)

For an ultra-high energy particle as the source, Ty, = p(r)6(u) with p(r) = ué?(z), which
gives the profile function?

F(r) = —4Gplog(r/ro)? . (13)

The null geodesics for a massless particle propagating in the opposite direction to the
shockwave, initially with v = 0 and impact parameter r = b, are well known. Explicitly,

1 1,
v = S FO)) + LI O ud)
r=>b+ %f’(b)uﬁ(u) . (1.4)

In Aichelburg-Sexl coordinates, therefore, the photon experiences a discontinuous jump in
the null coordinate v,

1 b
Avys = 5 /(D) = ~4Gplog (15)

which is negative, since b > 1y, and so backwards in time. The fact that this jump in the
null coordinate Awvag is negative, that is a Shapiro time advance, is the first indication
that issues regarding causality are subtle in shockwave spacetimes. This is one reason why
the shockwave provides a perfect stage on which to confront issues with causality in QFT
with gravity.

However, as it stands, the fact that the null coordinate is shifted backwards does
not constitute a prima facie violation of causality. The geodesics (1.4) describe straight,
null trajectories in both half-planes v < 0 and u > 0 with a discontinuous coordinate
shift Avag = %f(b) and a deflection angle ¢, with tan¢/2 = —%f’(b), at u = 0. The
full shockwave spacetime can therefore be viewed as two Minkowski half-planes patched
together along the surface u = 0 with a displacement Awvag. The classical Shapiro time
advance (for f(b) < 0) depends on this patching, which at this geometric level is arbitrary.
Indeed, the null geodesics are continuous through the shockwave expressed in terms of
the adapted (or Rosen) coordinate V' defined in section 3. Assigning a physical meaning

2Here, 70 is some UV cut off scale. One way to understand this is to smear the particle energy density in
the transverse directions over a scale ro. This gives rise to the “beam” shockwave [30], which is described
in detail in section 3. Then f(r) as above describes the geometry outside the beam r > rq.
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Figure 1. The geodesic of the massless particle involves an instantaneous shift in the null coordinate
Awvpg as it passes the shockwave at u = 0 as well as a deflection in the transverse space.
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Figure 2. A closed trajectory for a massless particle made from two shockwaves moving in opposite
directions with some impact parameter of the same order as the shifts Avag at each shockwave.
Mirrors are placed at at the points just before and just after the photon gets close the shockwaves
to direct the photon in the right direction. The right-hand picture is a side view showing the
non-vanishing impact parameter.

to the Shapiro time advance depends on a physically motivated identification of the past
and future Minkowski half-planes, i.e. the asymptotic definitions of time. This will be
important when we come to discuss the interpretation of our results for Planck scattering
amplitudes (see section 9).

A particularly striking way to highlight these causality issues is to use the time advance
to engineer a “time machine”. In the present context, a natural idea is to consider the prop-
agation of the photon in the background of two shockwaves which are moving in opposite
directions with some non-vanishing impact parameter L, illustrated in figure 2. The two
shockwave time machine was first discussed in [14] and then in [1, 2]. In order to ensure
that the the gravitational interaction between the shockwaves is small, we need Gu/L < 1.
As long as this separation L is of the order of the shift Avag, it seems a closed non-spacelike
trajectory can be constructed, as illustrated in figure 2. In fact, such a time machine does
not actually work because the shockwave 1, say, also induces a shift Avag on the wavefronts
of the second shockwave and this effectively cancels out the effect of the shift on the photon.
This is just the equivalence principle in action; equivalently, the time shifts may be seen as
an artefact of working in Aichelburg-Sexl coordinates. So there are no closed non-space-like
curves in the two-shockwave geometry, as we describe in section 2, following [14].



According to Camanho el al. [2], the plot thickens if one now considers the effect on
the scattered particle of additional terms in its (effective) action over and above the usual
minimal coupling to gravity. This reference considered two cases:

1. The particle is a graviton and the additional terms in the action correspond to the
Gauss-Bonnet term in D > 4.

2. The particle is a photon (a U(1) gauge boson) and the additional interactions involve

coupling to the curvature:

1
S = / d*z\/g [—4FWFW + aRy F'AFY\ + @Ry, FPF | (1.6)

We will concentrate on the second possibility in this work.

In QED, the photon trajectories are realised in the eikonal, or geometric optics, ap-
proximation, where solutions to the field equations in the shockwave geometry are written
in terms of a rapidly-varying phase O(x), with the tangent vector field 9#©(x) defining a
collection of rays, i.e. a congruence of null geodesics. The new curvature-dependent terms
in the effective action now lead to additional shifts in the null coordinate as the photon

4

passes the shockwave.* We find that, for the two physical polarizations, the additional

curvature-coupling induced shifts are

326G _
b2“a , (1.7)

The fact that this result is independent of the Ricci tensor term is because the particle

Av ==

shockwave is Ricci flat even in the transverse directions along the wavefront (and of course
the curvature vanishes except on u = 0).

The implication is that one of the polarization states has Av < 0. The additional shift
in the null coordinate is now a genuine Shapiro time advance that is not just an artefact
of the choice of coordinates. As we show in section 2, it is now in principle possible to
engineer a two-shockwave time machine and causality is apparently violated.

The question that Camanho et al. [2] posed was how could this apparent causality vio-
lation be remedied by embedding the effective action in a more fundamental, UV complete
theory, possibly involving new physics. One proposal, for the graviton scattering example,
is to add new massive particles to the theory. It turns out that this can restore causality
if the new states form an infinite tower of higher spin massive particles as in string theory.
This has the effect of Reggeizing the amplitude and this solves the causality problem associ-
ated with the original action [2, 31]. What is very striking here is that a potential causality
violating effect in an effective action can be fixed by introducing a tower of particles of the
form we have in string theory. This introduces a new scale into the problem in the form of
As = Va/. The moral is that even actions which on their own exhibit causality violations
may be the low-energy effective actions for some causal, UV complete theory.

3In fact [2] only considered the Riemann tensor term.

“There is a hidden assumption here, that the geometric optics limit applies so we can describe the
scattering by a particle trajectory. This requires that the frequency of the photon w > G,u/b2, the transverse
curvature scale.



There are other issue that are relevant in the Gauss-Bonnet gravity example; namely,
whether the two shockwave spacetime can actually be engineered. Papallo and Reall [32]
have argued that in Gauss-Bonnet gravity, small black holes cannot be boosted close to
the speed of light in order to approximate the shockwaves and make the time machine.
This constraint is not strictly relevant to our set up, since we are not considering the
Gauss-Bonnet gravity theory.

In the present paper, we investigate these issues in the case of QFTs which are known
to have consistent UV completions. In particular, we consider in detail the case of a photon
scattering with a gravitational shockwave. In that case, it has been shown by Drummond
and Hathrell (DH), that QED® produces a term precisely of the form (1.6) in the effective
action of the photon when the electron is integrated out. In this case,

< i= (1.8)

“= 720mm?2’ 1440mm?2’

where m is the electron mass. The corresponding Compton wavelength A, = 1/m provides
the fundamental length scale of the QFT. For these values of the couplings, we will denote
the corresponding shift in the shockwave as Avpy which, for the particle shockwave, equals

o Gu
457 b2m?2

AUDH =+ (19)

QED in a curved spacetime is, of course, a perfectly causal theory, so the question
naturally arises: if there are terms like (1.6) in the photon’s effective action when the
electron is integrated out, and these lead to causality violations involving the shockwave
time machine, how is causality cured? It is the purpose of this paper to answer this
question. We will show that a resolution of the apparent problems with causality attributed
to the effective Lagrangian is obtained entirely within the framework of the UV completion
provided by QED, even though gravity is involved in an essential way. In particular,
this will demonstrate how causality is respected in Planck energy scattering mediated by
graviton exchange in renormalisable QFTs [28].

Before we explain the mechanism, let us consider the various parameters that we
have in the photon-shockwave scattering process. The shockwave is described by pu, which
gives the energy of the original particle,” and the photon by its frequency w. The usual
Mandelstam parameter is s = 2uw. It will also be useful to define

4G
—

== (1.10)

5We consider scalar QED, where the electron is a complex scalar rather than a Dirac spinor. This is
technically simpler than its spinor counterpart, although the necessary formalism for the latter is established
in [8]. In section 8, we also discuss a super-renormalizable scalar theory, which exhibits interesting differences
from QED in its UV behaviour.

SNote that by UV completion we mean at the perturbative level. The non-perturbative issue involving
the Landau pole will not be relevant in the present discussion.

"In this paper, we relate the lightcone coordinates in (1.1) to the time coordinate by u = (¢ + 2),
v =t — z. With these identifications, w is the photon energy while u is twice the energy of the source
particle generating the shockwave. Hence s = 2uw.



Figure 3. The one-loop Feynman diagram contributing to the vacuum polarization in QED in the
curved background of the shockwave. The figure illustrates the gravitational tidal forces acting on
the virtual electron-positron cloud screening the dressed photon.

where b is the impact parameter, which is the curvature scale experienced by the photon
(expressed as a mass scale) and the dimensionless frequency scale

Gs wo
§= ous=—x. 1.11
b2m?2  2m?2 (1.11)
Also note at this point that having a shift Avpy is not by itself sufficient to engineer
a time machine and demonstrate a violation of causality. The point is that the violation
should be observable within the resolution scale provided by the photon mode. This means

that frequency of the photon needs to be
_1 L1
w > Avpy == 5> > 1. (1.12)

So in order to assess the efficacy of the time machine, we need to work with photons with
suitably large enough frequency so that 3 > 1.8 This is to be expected when discussing
causality: it is the high frequency limit that is relevant [5, 11-13]. The DH calculation is
only valid at low frequency and so by itself is not adequate to make judgements regarding
causal issues.

In the context of QED, the calculation of the DH effective action and its extension to
the high-frequency regime, means that we must take into account the effects of vacuum
polarization, namely the fact that the photon is an extended object consisting of a bare
photon surrounded by a cloud of virtual electron-positron pairs. The task before us is
therefore to calculate the tidal effect of the background geometry on the dressed photon
for all energies. This is encoded in the self-energy of the photon at one loop with curved
space propagators for the electron and positron; see figure 3. In general, such a calculation
would not be tractable. However if we impose the following two conditions there does exist
a tractable window on high frequencies [5]:

1. w > o. This is the geometric optics, or eikonal, limit which allows us to analyse the
propagation of photons in terms of trajectories in spacetime.

8Note that (1.12) implies that we need 5 to be non-perturbatively large for observability. However, we
shall find that observability is violated well before § reaches that scale.



2. m > o. This is the requirement that the size of the virtual cloud set by the Compton
wavelength of the electron A, = 1/m is small compared with the scale over which the

curvature varies.?

The key point is that the two limits leave a window on the high frequency regime via the
dimensionless ratio § = wo/2m?. We will go beyond the DH result by calculating the full
dependence of the shift on §. We also show that Awv is a function of the null distance from
the shockwave,

Av(u,w) = AvppF(ou, §), (1.13)

where we can think of v = Av(u,w) as describing the trajectory of the dressed photon
in the (u,v) subspace. In the low frequency limit, F'(ou,§ — 0) = ¥(ou), the Heaviside
function. In what follows, we determine F'(ou, §) for all §, including the crucial high-energy
limit.

We derive our results in terms of the instantaneous phase O(u,w) which characterises
the photon modes as they are scattered by the shockwave. This depends on (u,w) via the
two dimensionless quantities cu and §. In turn, ©(u,w) is derived from a local refractive
index'? along the photon’s trajectory:

10
_ - - . 1.14
n(u,w) =1+ An(u,w), An(u,w) - au@(u,w) (1.14)
The corresponding cordinate shift is then identified as'!
1
Av(u,w) = —O(u,w) . (1.15)

W

Note that all the quantities n(u,w), ©(u,w) and Av(u,w) actually have both real and imag-
inary parts. The scattering phase, which determines the amplitude for photon-shockwave
scattering, is then obtained in the limit

Oscat.(8,0) = O(u — oo, w) . (1.16)

The paper is organised as follows. In section 2 we discuss how two colliding shockwaves
can potentially be used to engineer time machines, that is a spacetime where a particle can
follow a closed non-spacelike trajectory. Then, in section 3, we review the essential features
of the geometry of the gravitational shockwave and its Penrose limit and evaluate the Van
Vleck-Morette matrix, which plays a key role in our analysis. Section 4 describes the

9This is rather subtle in a shockwave spacetime which has a delta function curvature. However, it is the
curvature in the transverse directions that is actually relevant and this is determined by the mass scale o.

08trictly speaking, this interpretation is only valid if An remains perturbatively small.

1 An alternative definition appropriate to a wave packet rather than a single Fourier mode would be

7]
a—w@(u,w) .

This has essentially the same high-frequency dependence as the definition (1.15), as described in section 5

Av(u,w) =

(see in particular figure 11).



basic formalism we apply to analyse photon-shockwave and contains the formulae for the
refractive index and phase shift derived in our earlier work. In sections 5 and 6, we analyse
the scattering of a photon with a beam and particle shockwave, respectively, complementing
our exact analytical results with a detailed numerical analysis of the phase and coordinate
shifts. Having obtained their high-frequency limits, we then return to the shockwave time
machine in section 7 and discuss how causality is restored in the UV complete theory.
Section 8 is devoted to an analysis of a simpler, super-renormalizable scalar theory with
vacuum polarization to provide a comparison with QED in a theory in which the UV
behaviour is rather different. Finally, in section 9, we draw some conclusions, including a
brief discussion of the relation of our results to scattering amplitudes at ultra-high energies.

2 Shockwave time machines

The fact that classical null geodesics and quantum loop corrections exhibit lightcone coor-
dinate shifts Av < 0 characteristic of a Shapiro time advance naturally raises the question
of whether we can build a time machine. In this context, by “time machine” we mean a
piecewise smooth closed non-spacelike trajectory in spacetime.

The possibility of using a two-beam shockwave spacetime to construct a time machine
was studied in detail in [14]. Here, we present a closely related analysis by studying
in detail the case of two colliding particle shockwaves at non-vanishing impact parameter.
This allows us to control the curvature. First, we present a naive argument for the existence
of a time machine and then go on to show that a proper treatment invalidates one of the
implicit assumptions. The conclusion is that time machines based on the general relativity
shift Av cannot exist. In fact this is ensured by the equivalence principle. However, if
additional contributions to the shift coming from quantum corrections are present, then
the (strong) equivalence principle is broken and a time machine can be constructed.

2.1 A naive analysis

The putative time machine is sketched in figure 4. Consider two shockwaves travelling in
the opposite direction along the z-axis with v = 0 and v = 0, and profile functions fi(r)
and fa(r), respectively. They collide with some impact parameter L, so shockwaves 1 and
2 have x; = (0,0) and z; = (L, 0), respectively.

A photon coming in following shock 2 hits the wavefront of shock 1 at point S with
u =0, v = vg > 0 and impact parameter x1 = b. It then jumps back by an amount
Avpag = %fl(b) < 0, which we can arrange to be greater than vg, to point P. It is clear
that we can then connect P to a point () lying on the wavefront of shock 2 at impact
parameter b’ by a timelike or null trajectory. A photon at this point can then be made
to jump back by an amount Ausg = % f2(b') in the null coordinate u (for shock 2 the
coordinates u and v are reversed) to a point R which is in the past lightcone of point S. So
a time machine has been engineered. In fact, in [14] a completely closed geodesic trajectory
of a single photon was constructed in the case of zero impact parameter L = 0.
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Figure 4. The proposed time machine consisting of two shockwaves moving in opposite directions
that collide with some impact parameter L. The photon collides with the first at .S, experiences a
shift back to P which then allows it to catch up with shockwave 2 with a jump back to R in the
past lightcone of S.

2.2 A consistent analysis

However, before accepting this construction as a true time machine, we need to critically
analyse the assumption that the shockwaves are non-interacting [14]. The shockwave ge-
ometry can be analysed in terms of the four regions I, II, III and IV shown in figure 4.
The geometry in regions I, II and III is actually flat whereas in region IV the collision
curves the spacetime in a way which is difficult to analyse [33]. However, if we take the
shockwaves to be particle shockwaves (having the same energy g for simplicity) and the
impact parameter such that Gu/L < 1, then we expect that the curvature in region IV
will be small.

So working in this regime, one would suspect that the shockwaves have a negligible
effect on each other. However, each shockwave carries with it a wavefront located at
u = 0, for shockwave 1, and v = 0, for shockwave 2. These wavefronts are extended in
the transverse directions x;. So even though shockwave 2 has a large impact parameter
L > G relative to shockwave 1, its wavefront Ws(u) extends out infinitely in the transverse
directions.

The wavefronts are generated by null geodesics, so as it moves in the geometry of
shockwave 1, each point in shockwave 2’s wavefront moves according to (3.4). So we
can describe the evolution of the wavefront in terms of the coordinates (u,v,r,¢), with
x1 =rcos¢ and xo = rsin ¢, as

Walu) : ola) = 5 £(r)0(u) + 3/ PSud(w).
(2.1)

W) =r S ), 6=or .

At u = 0, the wavefront of shockwave 2 passes the wavefront of shockwave 1 and so in
shockwave 1’s Aichelburg-Sexl coordinates the point (r1,¢1) experiences a shift Avag =
$f(r1). The jump in the wavefront is shown in figure 5, which shows the (z, ;) plane.
The photon, also shown, hits the wavefront of the first shockwave at S, which is at u = 0,
v =wvg and z; = b. It jumps to point P which lies behind the wavefront Ws(01) [14].

~10 -
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Figure 5. The plot shows the photon and wavefront of shockwave 2 in the (z,z1) plane. The
photon is behind the wavefront. When the wavefront collides with shockwave 1, it gets shifted by
an amount Avag = % f(z1) < 0. This corresponds to jump forward in z and backwards in time. At
u = 07, the wavefront becomes curved as shown. Since the photon collides with shockwave 1 at
some time later and for z < 0 at S it gets shifted froward to P which lies behind the wavefront of
shockwave 2. If the photon receives an additional Avpg(b) < 0 then it can then jump to point P’
in front of shockwave 2 and a time machine can then be constructed.

The fact the wavefront Wh(u) experiences a Shapiro time advance all along its length
is, of course, just the equivalence principle in action: if photon experience a Shapiro time
advance then so should the shockwaves themselves.

We now prove that the point P is spacelike separated from the future evolution of the
wavefront Wh(u), u > 0, implying that the photon can never catch up with the second
shockwave. In order to show this, we will assume that the curvature in region IV, where P
is located, is small and can be neglected. Using the flat metric, and coordinates (u, v, r, ¢),
the spacetime separation between an arbitrary point on the wavefront K = (u, 5 f(r1) +
$f/(r1)%u,m1 + 3 f'(r1)u, ¢1) and the photon at P = (0,vg + & f(b),b,0) is

As%p = 2uvg + 8Guu(f(b) —flr1) —(b— rl)f/(rl)) + (b —rycosd1)? + (risingy)? .
(2.2)

Since u > 0 and vg > 0, and noting that for the particle shockwave, the function in the
bracket is positive semi-definite:
b b
f(b)—f(m)—(b—ﬁ)f’(ﬁ)=a—1—loga >0, (2.3)

we have As% p > 0. Therefore, as claimed, P is spacelike separated from any point on the
wavefront Wa(u).

So figure 4 should be replaced by figure 6 which shows a cross section in the transverse
direction at x1 = b.

2.3 Drummond-Hathrell shifts

The next issue is whether the obstruction to the time machine construction can be circum-
vented if we include the additional discontinuous coordinate shift Avpp(b) < 0 implied by
the effective Lagrangian (1.6).

11 -
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Figure 6. In the true picture, both shockwave 2 and the photon undergo the same shift Avpag =
% f(b) < 0. This is illustrated in the figure, which shows a cross-section at z; = b, the impact
parameter of the photon. It is clear that the photon can, therefore never catch up with the shockwave
2 to complete the circuit shown in figure 4. However, an additional shift Avpy can take the photon
to point P’, in which case a time machine can be constructed.

With the additional shift, the point P in figure 5 can become P’, now in front of the
wavefront Wa(01). In that case, the spacetime interval between P’ and the point K on
the evolution of the wavefront is

Asepr = 2u(vs + Aopu (b)) +8Gpu(f(8) = f(m) = (b—m)f(m))

24
+(b—r cos¢1)2+ (r1 sin<;51)2 . @4)

Since the Drummond-Hathrell coordinate shift Avpg(b) < 0, we see that As% 5, can now
be negative. For instance, this can be achieved by taking x1 = b and vg < |Avpy(b)|. The
implication is that the photon can reach the wavefront of the second shockwave and then
be shifted back in u to make a time machine.

At the level of the effective action, therefore, a two-shockwave time machine can be
constructed and causality is apparently violated. The next question is whether causality is
restored and the time machine fails when the effective action is embedded in the full UV
complete theory. We return to this issue in section 7, after determining the dependence of
the coordinate shifts Av on the photon frequency in QED itself.

3 Geometry of gravitational shockwaves and the Penrose limit

Our results on photon propagation in the gravitational shockwave background are written
entirely in terms of geometrical quantities characterising the spacetime and its null geodesic
congruences. In this section, we briefly review the essential features of the geometry of
the Aichelburg-Sexl shockwave and its Penrose limit that we need for our analysis. In
particular, we will focus on geodesic deviation and the construction of the Van Vleck-
Morette (VVM) determinant, which plays a key role in the discussion.

The Aichelburg-Sex] metric for a gravitational shockwave is given in (1.1),

ds? = —2dudv + f(r)6(u)du® + dz? + da3 . (3.1)
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We consider four-dimensional spacetime in this work. The profile function f(r) is de-
termined by the Ricci curvature Ry, = 87GT,, and depends on the nature of the mat-
ter source for the shockwave. We consider two sources, an infinitely boosted particle
with Ty, = p(z)6(u) with p(z) = pé?(z) and a homogeneous beam with Ty, = pd(u),
p = const. [30]. The corresponding profiles follow from the relation R, = —%A f(r),
where A is the two-dimensional Laplacian, so we find

Flr) = {_4Gﬂ log(r/ro)?  (particle)

3.2
—4nGpr? (beam) , (3:2)

where p(r) = mpr? gives the energy density of the beam within radius r. In the particle
case, the solution depends on an arbitrary constant ry which should be thought of an a
UV cut off and so r > rg. One way to make this concrete is to consider the particle as a
beam with a finite size. This would correspond to a profile function

) = {—4Gu(r/R)2 r<R

_ (3.3)
—4Gplog(r/rg)? r>R.

Matching the solutions at r = R fixes 79 = €2R. So 19 can be identified with the scale
of the size of the beam. Taking this small then gives the profile function of the particle
shockwave.

The null geodesics corresponding to the trajectories of a massless particle, the photon,
propagating in the u-direction in this background are well-known and, as we have discussed,
display a discontinuous jump in the Aichelburg-Sexl v coordinate as the photon crosses the
shockwave (see figure 1). In polar coordinates for the transverse space,

- % FIR)YO(u) + é F(R)2ud (),
r=R+ %f’(R)uﬁ(u) , (3-4)
=9,

where V, R, ® are constants labelling the individual geodesics in a null congruence. They
are therefore natural “adapted coordinates”, in terms of which the Aichelburg-Sex]l metric
can be rewritten as

1 2 1 2
ds* = —2dudV + |1+ 3 f”(R)uﬂ(u)] dR* + [1 + 55 f'(R)ud(u)| R?dd? (3.5)

Now, as discussed extensively in our earlier work, the effect of vacuum polarization on
the propagation of a photon in a curved spacetime background depends on the geometry of
geodesic deviation. This is precisely the feature of the background that is encoded in the
Penrose limit [34]. The Penrose limit is a plane-wave spacetime which is determined from
the original spacetime metric and a preferred geodesic. In a general spacetime, in adapted
coordinates with preferred geodesic V.= X% =0 (a = 1, 2), the metric may be written as

ds? = —2dudV + C(u, V, X*)dV? +2C,(u, V, X)dX*dV + Cop(u, V, X)dX*dX" . (3.6)
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The Penrose limit is then

1

v ds?(u, N2V, AX?) = —2dudV + Cyp(u,0,0)dX*dX" . (3.7)
For the Aichelburg-Sexl shockwave, we choose a preferred geodesic with impact pa-

rameter b, ie. V =0,R = b,® = 0, so that X' = R — b, X? = b®. The Penrose limit is

then [8]

ds? = limy_o

ds? = —2dudV + Cy(u)dX"dX7, (3.8)
with
1 2 1 2
Cii= |1+ if”(b)uﬁ(u) , Cyp = |1+ %f/(b)m?(u) . (3.9)

This is written in Rosen coordinates, which are well-suited to describing the geodesic
congruence. An alternative presentation is in terms of Brinkmann coordinates, where the
metric is instantly recognisable as a plane wave:

ds? = —2dudv — hij(v)z'z! du® + 6;;dz"dz? . (3.10)

The profile function h;j(u) = Rjuj, in terms of the Aichelburg-Sexl curvature. This
makes clear the connection with geodesic deviation, since the separation vector z* between
geodesics in a null congruence satisfies the Jacobi equation

d?z
du?

Rosen and Brinkmann coordinates are related by

=Rl . (3.11)

4 4 1
' =FE. X uv=V+ 5QM,X‘ZX”, (3.12)

where E’, is a zweibein defined from the Rosen metric as Cpp(u) = E'4(u)d;j E7p(u) and
Qup = EiaQijEjb with Qij = Ej“%Eia, (with E;® the inverse zweibein). The profile
function is given by
a &? d k
hij =-F; WE]'G = _%Qij — Qle j - (313)

For the shockwave metric (3.8), the zweibeins are

Ely(u) =1+ % P (b)yud(w), E2(u) = 1 + 2ib FB)ud(w), (3.14)

and we find 1 1
M= -y PO, b =g fB)), (3.15)

clearly showing the dependence of the Penrose limit metric on the impact parameter of the
chosen photon geodesic. Evaluating for the particle and beam shockwaves, we have

4G —10 —10 .
hij = bTM ( 0 1) S(u)=0c ( 0 1) o(u) (particle) ,

(3.16)
_4Gu(b) (10 (10
= —3 <0 1) (u)=o0 (0 1> 0(u) (beam) ,
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where p(b) is the energy of the beam within the impact parameter radius b. We see that
the particle shockwave gives a Ricci flat plane wave (Ry, = Trh;; = 0) provided b # 0,
while the beam gives a conformally flat plane wave (Cjyj, = 0). This introduces the key
parameter o = 4G /b? which combines the energy of the shockwave and the photon impact
parameter.

The next step is to derive the Van Vleck-Morette matrix which encodes the geometry
of geodesic deviation. The VVM matrix is defined from the geodesic interval

1

1
o(z,2') = —2/ dr g (x)iHa"” (3.17)
0

where z#(7) is the null geodesic joining = x(0) and 2’ = (1), and is

0?0 (x, ")
Oxt Ox'v

In Rosen coordinates, the elements of the VVM matrix for the transverse directions is

Ay (z,2') = (3.18)

u —1
Agp(u,u') = (u—u) [/ du"C(u”)] . (3.19)
u’ ab
Writing the (diagonal) zweibeins as E’,(u) = (1 — o;ud(u))d’y, where —o1 = 09 = o for
the particle shockwave and o; = 09 = ¢ for the beam shockwave, we can readily calculate
Agp(u,u') in the three separate cases (u < 0,4 < 0), (u > 0,u’ < 0) and (u > 0,u" > 0).
The result is most simply expressed in Brinkmann form. Defining,

Aij(u,u') = B (u)Agp(u, v )E;P (') (3.20)
we find
u—u
— ;i Ju! ite sides),
A ) = d w—w F o (u,u’ opposite sides) (3.21)
dij (u,u/ same side) .

We can also evaluate the VVM matrix in the transverse directions directly in
Brinkmann coordinates as

Ay (u, ') =—(u—u) [A(u,u')_l]jl. , (3.22)
where the matrix A;;(u,u) satisfies the Jacobi equation'?
d2

12This comes from the fundamental definition of A;j(u,u’) from the solution of the geodesic deviation
equation _
d*z

_ _pt
T h'jz

as
2'(u) = BY(u,u') 2 (u') + A% (u,u') 2 (u') .

~15 —



T

\
/
u\
)

Figure 7. A pair of conjugate points (u,u’) and the focal point at o ! where parallel rays from
—oo are focussed for the beam shockwave.

with “geodesic spray” boundary conditions A;j(u,u) = 0, %Aij(u, o’ )‘u:u, = 0;;. This
definition makes the connection of A;j(u, ') with geodesic deviation completely transpar-
ent. A short calculation using the expressions (3.16) for h;; then reproduces the expres-
sion (3.21) for A;;.

It is clearly important in our analysis that the VVM matrix is only non-trivial when
the arguments u, v’ lie on opposite sides of the shockwave. Another crucial general feature
is that A;j(u,u') becomes singular when v and «’ correspond to conjugate points on the
geodesic congruence. These singularities directly affect the analytic properties of the Green
functions and the refractive index and phase shift as functions of the photon energy w. For
the shockwave, with u > 0,4’ < 0, there are conjugate points when

% ”i’| =0 . (3.24)
associated to the transverse direction z’. This is just the lens formula and identifies the
focal length as o, L For o; positive, as is the case for both transverse directions for
the beam, but only one for the particle shockwave, the congruence is converging. The
other transverse direction for the particle shockwave is diverging. Note that a congruence
of parallel geodesics coming in from —oo will be focussed at the point o, ! behind the
shockwave: see figure 7. Recalling that o; is independent of b for the beam shockwave,
this implies geodesics of all impact parameters focus at the same point. For the particle
shockwave, the focal point varies with the impact parameter as b2.

For spacetimes with a smooth curvature, we can expand the VVM matrix for nearby
points in terms of the curvature and its derivatives. We then have

Az‘j(u,ul) = (51']‘ + éRiuju(u . u/)2 — %

where iju = %iju. This will be used below to relate the general formulae for the

Riju(u —u')3 4 - (3.25)

refractive index and phase shift in terms of the vacuum polarization tensor to the effective
Lagrangian. Clearly, however, the expansion (3.25) is not appropriate for the shockwave
since the curvature Rjyj, ~ d(u) is singular in u and since A;;(u,u’) = §;; unless u and v’
are separated on opposite sides of the shock. This is directly relevant to the interpretation
of results inferred from the low-energy effective Lagrangian.
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Figure 8. The scale of the e® loop is set by the electron’s Compton wavelength 1/m. If this is
much smaller than the scale over which the transverse curvature varies, the length scale 1/o, then
the full metric may be approximated by a tubular neighbourhood around the photon’s null geodesic.
This is the Penrose limit, which is a plane wave geometry.

4 Photon-shockwave scattering

With these geometrical results in hand, we can now analyse the dynamics of the scattering
of a photon from a gravitational shockwave at the quantum loop level. The main goal is
to find an explicit formula for the instantaneous coordinate shift Av(u,w) and local phase
shift ©(u,w). This yields the scattering phase shift in the limit (1.16).

The phase shift O(u,w) actually depends on two dimensionless ratios. The first is
§ = wo/2m? = Gs/b*m? = Gs (A\./b)?, which combines the total energy squared s = 2w
of the collision and the ratio of the impact parameter b and the Compton wavelength
Ae = 1/m of the ‘electrons’ in the quantum loop, which characterises the fundamental
scale of the quantum field theory.

As anticipated in the introduction, this phase shift also depends on the lightcone
distance u the photon has travelled beyond the collision; in fact, we find this dependence is
entirely on the rescaled variable & = ou. Unlike the classical shift, which is discontinuous
and localised at u = 0, the photon still experiences the effect of the shockwave even for
u > 0, which we can picture as due to the finite size of the vacuum polarization cloud and
is made mathematically precise using causal Green functions in the expressions below.

This picture, where we view the scattering process as the evolution of the photon field
through a fixed curved spacetime background, is the quickest and most straightforward
way to derive the phase shift. We build this up in three stages.

Since we are working in the limit of geometric optics, it is meaningful to analyse the
effect of vacuum polarization on a particular ray, or null geodesic. One of the main insights
of our previous work [5-10], is that, as long as m > o (the transverse curvature scale), we
may approximate the geometry in the vicinity of the chosen ray with its associated Penrose
limit geometry. This is illustrated in figure 8. We start with the solution of the classical
Maxwell equations V,F*” = 0 for a propagating photon in the Penrose limit geometry.
The solutions can be found exactly [5],

A = 6, B o(u)g(u) A exp [ — i(wV + paX® +(u))] (4.1)
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where ]
Outp(u) = 5—C*(u)paps (4.2)

In (4.1), i = 1,2 labels the two physical polarization states.

The amplitude is governed by the metric factor 9 = g(u)~Y%. This is identified as
the expansion, one of the optical scalars occurring in the Raychoudhuri equations, which
describes how the area of the null congruence changes along the photon trajectory. For our
purposes here, we can focus on the solution associated to the null geodesic labelled by V
and X = 0, and so we will take the transverse momenta p, = 0. Then,

Al(j) = 5““Eia(u)g(u)_1/4e_iwv , (4.3)

where 7 = 1, 2 labels the polarization.

Next, consider the solution to the field equation arising from the effective La-
grangian (1.6) which includes the DH terms linear in the curvature. The solution can
be written as

A;(LZ) = 5,LLaEZa(’U,)g(u)_1/46_Z(wv_ei(%w» ) (44)

(no sum over i on the right-hand side) for each polarization state i = 1,2.!3 The phase is
expressed as the integral of the local matrix quantity An;;(u,w) as follows:
u

0;(u,w) = eigenvalues of [w/ du’ Angj(u,w)| , (4.5)

—00

where the refractive index is**

N5 (u,w) = (Sij + Anij(u, w) = 51'3‘ — 2aRuu(5ij — 8C~LRiuju . (4.6)

Notice that the DH refractive index is actually independent of w.
If we apply this formula to the shockwave, we find that the refractive index has a delta
function contribution at u = 0:

1+ 8acd(u article) ,
n(u,w) = (u) ) (particle) (4.7)
1 —4o(a+2a)d(u) (beam) .

The =+ for the particle shockwave case corresponds to the two polarizations, whereas for
the beam both polarizations propagate in the same way.
Consequently the phase shift takes place discontinuously at the collision surface:

O(u,w) = +8acwi(u) (particle) , (4.8)
’ —4(a + 2a)owd(u) (beam) . ‘

The corresponding coordinate shift Avpy = ©O/w is given in (1.7) for the particle
shockwave.

13The result here assumes that hij, the profile matrix function of the plane wave is diagonal. In the
general case, we must replace exp 10 (u,w) with Pexp [iw ffoo du’ An(u’, w)} for the matrix refractive index.
MStrictly speaking n;; is only the refractive index when Ang; is perturbatively small.
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Finally, we come to the complete picture in which the one-loop vacuum polarization
contribution to photon propagation is fully implemented. This has been discussed exten-
sively in our previous work and we only quote the final results here. In particular, ref. [10]
gives a careful derivation of the solution in terms of an initial value problem, evaluated
using the correct causal propagators. The field equation is

VY Fy(r) = —4 / dta’ /g T (o, 2!) A (o) (4.9)

where IT;5 (2, 2’) the retarded (Schwinger-Keldysh) vacuum polarization tensor.

It turns out that since the null coordinate is playing the role of time in the plane wave
background, the retarded polarization is actually equal to the Feynman polarization when
integrated with positive frequency modes A, () as in (4.9). At one loop, it is expressed in
terms of the Feynman scalar propagators of the electron/positron as

i (z,2') = €29, 0" (@ — 2)G(x, )

2 A% / ! / / (4'10)
+ 2e [QLG(x, x')0,G(x,x") — G(x,2")0,0,G(x, x")

The idea is now to solve (4.9) at the one loop level but also within the eikonal approx-
imation. The latter should really be termed a re-summation since it involve a perturbative
correction to the phase rather than A, (z) itself. In this sense, it is in the same spirit as
the Wigner-Weisskopf approach to time dependent states in quantum mechanics, or the
dynamical renormalization group (see, for example, [36]). The solution takes the form (4.4),
where the phase is expressed in terms of the matrix refractive index (4.5), with

2

Anij(u,w) = w2/ < d4ZL‘, (9/9)1/4 H;f?t(x’x/)e—iwv” (4‘11)
u' <u

where z = (u,0,0,0). The fact that the integral over v’ is restricted to u < u is just
a manifestation of the causal properties of Hret( x’) which vanishes when 2’ lies outside
the backward lightcone of x. In fact, the restriction happens automatically because the
integral vanishes when «' > u in a plane wave background where the null direction u plays
the role of time.

The integrals in (4.11) can be evaluated using the explicit expression for the scalar
Feynman propagator in a plane wave spacetime in the proper time formalism:

oo—i0 dT {ia(x,x’)
p —

G(z, ") —im?T| . (4.12)

The integral in (4.11) over V’ yields a delta functlon and those over X'* are Gaussian. The

calculation, described in detail in [5], yields a very elegant solution in terms of the VVM
matrix, neatly capturing the insight that the physics of vacuum polarization is determined
by the geometry of geodesic deviation. We find

Angj(u,w) = / dEE(1 —€)

X/—oo+i0+(u—u) e [\/WA” w,u') — ] :
with = = m?/(2we(1 — €)).

(4.13)
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Some remarks are in order. The integral over u/ in the above can be thought of as
the position of one of the vertices of the one-loop diagram that lies in the past v’ < u of
the other vertex. This expresses the causal nature of the correction. The parameter £ is
a Feynman parameter familiar from a one-loop calculation. The v’ integral comes with a
prescription of how to avoid singularities due to conjugate points where the VVM matrix
diverges. The prescription requires that these are avoided in the upper-half plane.

For a general background spacetime with a differentiable curvature, we can use the
expansion (3.25) of the VVM matrix in powers of (u — ') to find the low-frequency ap-
proximation to An(u,w) from this expression. A short calculation, making the convenient
change of variable t = u — v/, gives

E 2rw Jy
> dt —izt 1 2 1 . . 3
X /0 2 e {12(Ruu6ij + 2iju)t — ﬂ(Ruu&j + 2iju)t 4. }
o oW . .
=~ So0mpz Pty + 2Biugu) + J5e5 7 (Rundiy + 2haju) -, (414)

recovering the result (4.6) derived above from the effective Lagrangian, together with the
leading higher derivative correction.!®

This series is not well defined for the shockwave because of the delta function in the
Riemann tensor. This is of course really just an idealization, but even for the idealized
shockwave we can still use the integral expression (4.13). Finally, recall that for the grav-
itational shockwave, the VVM matrix is the identity A;;(u,u’) = d;; if u and «’ are on
the same side of the shock surface v = 0. This means that the integral over u’ in (4.13)

actually has an upper limit of v/ = 0 rather than u' = u.

5 The beam shockwave

We begin with the simplest case, the beam shockwave. In this case, where the background is
conformally flat, both polarization states propagate in the same way and so the polarization
indices on the refractive index and phase can be dropped.

Inserting the explicit form (3.21) for the VVM matrix into (4.13), the refractive index
is given by

An(u,w) = _2;% /01 d¢g(l—¢) /uOOi0+ dte " [(t + ou(u — t))72 - t72] ., (5.1

where z = m?/(2wé(1 —€)). Note that the deformation of the ¢ contour in (5.1) evades the
pole in the VVM determinant at t = (ou)?/(ou — 1), which is the location of the conjugate
points of the congruence according to (3.24), by veering into the lower-half plane. Note
also that An(u,w) vanishes when u < 0, i.e. before the shockwave is reached.

5Notice that, if we assume the scale of derivatives of the curvature is of the same order as the curvature
itself, the expansion parameter here is wv/ 9%/7712 [8, 13] where R is a typical curvature component. This is
the parameter wo/m? for the shockwave.
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Figure 9. The behaviour of the refractive index as a function of the distance from the shockwave
u. The position of the focal point at u = o1
real part approaches a delta function centred on the focal point, while the imaginary part changes
sign (see egs. (5.10), (5.11)).

is very pronounced. As the frequency increases, the

The integral over ¢t can be performed analytically, giving the following expression for
the refractive index in terms of incomplete Gamma functions:

am? ! 1 iocu?z 1z
An(u,w) = — d {r 1, uz) — [ }r(—1, )} 5.2
n(u,w) dw? Jo &=L iuz) (1—ou)? Pl " ou 1—ou (5:2)
This expression makes it clear that
O ~/n A N ~ wo
An(u,w) = ;F(u, s), G=ou, $=_5. (5.3)

The behaviour of the refractive index as a function of the frequency w at fixed u shows a
characteristic oscillatory behaviour, with An(u,w) taking both positive and negative values,
before approaching 1 in the high-frequency limit as required by causality. Its dependence
on u is plotted in figure 9. This shows a striking behaviour near the focal point of the
geodesic congruence at ou = 1, which is explained below.

The shift Av and local phase O(u,w) can then be obtained by integrating as in (4.13).
Because An(u,o0) is implicitly only non-vanishing when u > 0, we have

Av(u,w) = /Ou du' An(u',w), O(u,w) = wAv(u,w) . (5.4)

The results of a numerical integration for O(u,w) are shown in figure 10 as functions of
both u and w.

Before commenting on these figures in detail, it is interesting to study the form of
the phase shift for small values of § = wo/2m? analytically in order to make contact with
the effective Lagrangian and contrast the corresponding predictions. We can do this by
expanding the integrand of (5.2) in a power series in the curvature o. The leading term
for the phase is

. 1 u o'} 2t — uu )
@(u,w):—zzof/o df/o du'/ dt(t;t)ue_m—&—~--. (5.5)
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Figure 10. The real and imaginary parts of the phase ©(u,w) as a function of u and w for the
beam shockwave. Notice especially the step function shift in the high-frequency limit of Re ©(u,w)
at the focal point u = o~1. Also note that in QED, Re ©(u,w) approaches a negative constant for
high frequencies.

Performing the integral over t gives

L0 e g
T Jo (5.6)

u
X / du/ [(1 i 2)e ™™ 4 iu/2(2 + iu’z)Ei(—iu/z)} +--
0

O(u,w) =

We can now explicitly perform the integral over u' by using the prescription v’ —
w — 40T in the u — oo limit to find the scattering phase shift. We have,

oo
. 1
/ du/ {(1 +iu'2)e™™F +iu'2(2 + iu'z)Ei(fiu'z)} =35, (5.7)
0 12
and so finally performing the integral over ¢ we find, to linear order in the curvature,

aow o Gs
@scat(s,b>56(u—>OO,CU):—m+:—EW—F . (58)
This is precisely the DH phase shift for the beam shockwave, as can be seen by substituting
the values (1.8) into (4.8). This behaviour is also evident in the plots in figure 10 for ©(u, w)
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Figure 11. The effective coordinate shift Re Av(u,w) as a function of lightcone distance u from
the beam shockwave for different values of the photon frequency w (LH figure) and as a function
of w for different values of v (RH figure).

at low frequency, where we can see the u-independence and linear dependence on w of Re ©
given in (4.8), while Im © = O(w?).

The key point here, however, is that this value of the phase shift is only realised
asymptotically far from the collision surface © = 0, whereas the DH effective Lagrangian
predicts that it takes place discontinuously at © = 0. The full quantum field theory smooths
out the discontinuous effect of the shockwave collision by virtue of its intrinsic scale, in this
case the size of the vacuum polarisation cloud dressing the photon. Of course, this impacts
on the question of whether such a phase shift could be used in time machine constructions
which assume a discontinuous Shapiro time advance

oo

AVDH = 552

<0, (5.9)

even setting aside the fact that it holds only in the low-energy limit.

The behaviour of the real part of Av as a function of u and w is shown in figure 11. It
is clear from the plots that the shift Av does not occur discontinuously at © = 0. Rather,
Re Av(u,w) oscillates before eventually settling to a fixed limit far from the shockwave.

The frequency dependence of Re Av(u,w) is shown in the right-hand plot in figure 11.
It shows clearly how the full, UV complete, quantum field theory reproduces the effective
Lagrangian prediction for low collision energy, Av(u,w — 0) = Avpy < 0, but then has

an oscillatory dependence on w before vanishing asymptotically for large w as w™?.

5.1 High frequency limit

The key regime for a proper discussion of causality is the high frequency limit. In present
circumstances this corresponds to wo/m? > 1. We can calculate the behaviour in this limit
analytically by going back to the integral expression (5.1). The asymptotic high frequency
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regime is obtained by taking z = 0 in the integrand. The ¢ integral is then trivial and gives

co—i0T

Yo 1 B -
An(u,w — 00) = _W/O dg&(1 _5)/11 di [(t+au(u—t)) ! 2] (5.10)

12710 ou—1—i0t’

where the prescription for avoiding the double pole at the focal point follows from the
original contour deviation in (4.13), which is determined by causality. For the real part,
we therefore have

Re An(u,w — o0) = —%5(u —o 1, (5.11)

which is evident in the left-hand plot of figure 9. It is interesting, therefore, to compare
this with the low frequency limit for the real part of the refractive index, that is (4.7)

oo

ReAn(U,W — O) = —W

o(u) . (5.12)
So both involve a delta function contribution, but at low frequency this occurs at the
shockwave, while at high frequency it occurs at the focal point.

Integrating as in (5.4) gives the high frequency behaviour of the phase:

@(u,w—)oo):% —7719(0u—1)+i10g‘0u—1u . (5.13)
T

The high frequency dependence of the phase is evident in the left-hand plots of figure 10
which illustrate the step function shift in Re ©(u,w) at the focal point, arising from inte-

gration of the corresponding delta function in An(u,w). For the scattering phase itself,
we find

Oscat. = O(u — 00, w — 0) = —% + % log(ou) . (5.14)
Notice that the requirement of causality that An(u,w — 00) goes to zero does not preclude
a non-vanishing value for Ogcat.. It is particularly noteworthy for the later discussion of
causality that Ogcat. (s,0) is a perturbatively small constant.
In this limit, the imaginary part of the phase can be understood as a modulation of
the photon amplitude of the form

|ou — 1717 (5.15)

This decreases once the focal point is passed and manifests a real-time wavefunction renor-
malization of the photon field which we can interpret as an increased dressing of the photon
by the virtual e*e™ cloud [10].
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Figure 12. The real and imaginary parts of the phase shift as a function of w for the two polarization
states for QED in a particle shockwave.

6 The particle shockwave

In this section, we consider the particle shockwave. In this case, unlike the beam, the
background is not conformally flat and the photon propagation is polarization dependent,
i.e. displays gravitational birefringence. However, the conclusions regarding causality and
time machines are essentially the same as for the beam shockwave, so our discussion will
be brief.

The refractive index, for the the polarization states labelled as j = &+, takes the form

1 1

Anj(u,w) = — 5— ; dg&(1 - &)

27w (6.1)

co—i0T ‘ |
X / dt et [(t + ou(u — t))_%—l(t —ou(u — t))%_l - t_2i|

This can be integrated numerically to find the local phase shifts ©4(u,w) for the two
polarizations, and the results are illustrated in figure 12.

The low-frequency features from (4.8) are again apparent in the plots. Note particularly
the equal and opposite sign values of Re ©(u — oo,w) at low frequency which reproduce
the Drummond-Hathrell values. This feature was first identified as the “polarization sum
rule” for Ricci-flat spacetimes in [37]. The imaginary parts are again of O(w?).
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Mirroring our discussion of the beam shockwave, we can determine the high frequency
limit analytically. Setting z = 0 in the integrand gives us the asymptotic form

(e’ 1+ou
Ang (u,w — 00) = "o [,/ Tou 1F au} . (6.2)

In this case, the singularities at the focal point become branch points rather than the

poles occurring for the beam shockwave. The prescription for dealing with these in the
expression above is to take ou — ou — i0". Performing the integral in (5.4), we then find
the high frequency limit of the phase shift:

ia [$1m

127 ou

O+ (u,w — 00) = +lo

log 1+ \/12— (au)Q} ' (6.3)

The conclusion for causality is the same as for the beam shockwave. Since An(u,w)

1

is O(1/w), the phase velocity goes to 1 as w™". The high-frequency limit of the phase

is a negative constant (for both polarizations) and is bounded by a perturbatively small

amount, ensuring that the coordinate shift goes to zero like w™!.

7 The fate of time machines and causality

Given these exact results for the high-frequency limit of the refractive index and phase
shifts, we can now see why the shockwave time machine fails to work. In fact it fails on
several counts.

First of all, the real part of the local phase ©(u,w) is bounded by its high frequency
limit far from the shockwave:

O(u,w) < O(u — 0o, w — ) = —% . (7.1)
In other words, the scattering phase always remains perturbatively small. This means that
the observability requirement (1.12) can never be satisfied.

This is sufficient in itself to recover causality, but the coup de grace for a time machine
is provided by the fact that the coordinate shift Av(u,w) goes to zero in the high-frequency
limit. As we have frequently emphasised, in order to discuss causality we need to consider
the high-frequency limit of photon propagation — in this context, to show that the closed
null trajectory is realised by a wave with phase velocity vpn(c0). However, we have shown
that in this limit the refractive index goes to 1, i.e. the phase velocity vpn(w — 00) = 1. It
follows that in this limit, there is no coordinate shift from the quantum loop diagrams.

Yet another reason for the failure of the time machine is clear from figure 11, which
shows that the shift Av(u,w) does not occur instantaneously at the shockwave itself (v = 0).
In fact, for the high-frequency photons relevant for causality, the shift occurs at the focal
point u = o~ in front of the shockwave. Since the jump is not discontinuous, the coordinate
shift necessarily takes the photon trajectory into the curved region IV (see figure 4) where
the Aichelburg-Sexl geodesic equations no longer apply. The photon never reaches the

post-collision point P in figure 4, or P’ in figure 5, in the time machine trajectory.
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In the end then, we see that the implication of the effective Lagrangian that there
is a causality-violating Shapiro time advance when a photon scatters from a gravitational
shockwave, and that this permits the construction of a closed null curve or time machine,
does not survive in the full quantum field theory. The consistent UV completion encoded
in the full theory ensures that causality is preserved.

8 Scalar field theory

Since the resolution of the causality problem arising in the low-energy effective Lagrangian
is intimately related to its UV completion, it is interesting to consider the same issues
in a super-renormalizable theory, for which the UV behaviour differs from that of QED.
We therefore consider a 4-dim theory with a massless scalar field A, playing the role of
the “photon”, and a massive scalar field ¢, playing the role of the “electron”, with an
interaction eA@¢?. We find that while the causality problem is resolved in a qualitatively
similar way to QED, there are significant differences of detail arising from the different UV
power counting.

The analogue of the Drummond-Hathrell curvature-dependent term in the effective
action of the scalar photon is

1
S = /d4a: Vg [29‘“’8“148,,/1 +aRM"0,A0,A| . (8.1)
The curvature term arises by integrating out the heavy field ¢, and we have
e? e?
- — = 8.2
CTdom2 YT dmm2 (8.2)

where « is a dimensionless coupling. The curvature coupling leads to a local refractive
index

n(u,w) =1—aRy, . (8.3)

So for the beam shockwave, there is a singular contribution to the refractive index:

n(u,w) =1-— mmc?( u) . (8.4)

This leads to a negative shift in the null coordinate

[0 o

Avpr = —mo0 e

(8.5)

occurring discontinuously at the shockwave u = 0.
Calculating the vacuum polarization in the full QFT gives the following expression for

the refractive index:

An(u,w) 167rw2/ d¢ (8.6)

/
x[ [ e Vi A -Re [ )
oo+i0+

sotio+ U—u’ u—u
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Figure 13. The real and imaginary parts of the refractive index An(u,w) in the scalar eA¢? theory
as a function of u at fixed values of the frequency w.

with z = m?/2¢(1 — &)w as before, where the second term is a mass renormalisation
counter-term.'® Using the VVM determinant for the beam shockwave, we have

co— 107L
—zzt _ o —izty—1 8.7
An(u,w) 167Tw / / [(t + ou(u —t))"' —Ree * } . (87)

and performing the ¢ integral gives

1 ‘ .
An(u,w) = LmQ d{{ 1 exp [ iz ]F(O, e ) — ReT(0, zuz)} . (8.8)
0

167w? 1—ou 1—ou 1—-ou

The u-dependence of the refractive index for different fixed values of the frequency is shown
in figure 13.

Once again, we can integrate (8.8) numerically to find the local phase ©(u,w) and the
corresponding coordinate shift. The results for © are shown in figure 14, as functions of u
and w. These plots show many features in common with those of QED but also significant
differences, especially in the w dependence, related to the distinct UV behaviour of the
eAd? theory.

Before commenting on these plots, we can again determine the high frequency be-
haviour analytically. We find

am2 au

167w? ou—1—i0+

An(u,w — 00) = — logw + O(w™?), (8.9)

while the high-frequency behaviour of the phase is

log w

O(u,w — 0) = — omn? +Ow™) . (8.10)

T6ro (au +log |ou — 1| + imd(ou — 1))

16The eA¢? theory in four dimensions requires a mass renormalisation. The corresponding modification
to the vacuum polaristion tensor I1(x, ') produces the second term in (8.6), as explained in detail in ref. [10],
sections 5 and 7. Note that this means that keeping the A field massless in this theory is a fine-tuning,
unlike the case of QED where the real photon is kept massless by gauge invariance. Compared to the
formulae of [10], we have always taken the initial value surface to be ug = —oo here.
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Figure 14. The real and imaginary parts of the phase ©(u,w) in eA¢? theory as functions of u
and the frequency w.

These expressions show several differences from the equivalent formulae for QED. First,
notice that a relative factor of ¢ difference in the integral expressions for An(u,w), itself
related to the different power counting, effectively reverses the real and imaginary parts of
the refractive index. This is evident in figure 13 where the delta function-like behaviour
at the focal point appears in Im An(u,w). However, power counting also results in a
different w-dependence. Here, An(u,w) ~ w™?logw at high frequencies, so the near-
singular behaviour at the focal point is softened and vanishes in the w — oo limit.

This softening of the behaviour near the focal point is also evident in the plots in fig-
ure 14 showing the u-dependenceof the phase ©(u,w). These also show the u-independent,
linear w dependence of Re O(u,w) at low frequencies implied by the effective Lagrangian
(see (8.4) above). At high frequencies, however, we now find ©(u,w) ~ w™!logw, so the
phase itself also vanishes in this limit. The frequency dependence of the corresponding
coordinate shift is qualitatively similar to figure 11.

Overall, therefore, the essential features of the refractive index and phase which en-
sure that causality is not violated also appear in the eA¢? theory. However, its super-
renormalizable nature implies a softer high-frequency behaviour for the refractive index
and scattering phase, while the coordinate shift Av vanishes at high frequency as w2 log w.
Once again, this demonstrates that causality is respected and, just as for QED, time ma-
chine constructions do not work.
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9 Conclusions

In this paper, we have demonstrated that (effective) actions for QFTs in gravitational
backgrounds which, on their own, violate causality are not necessarily unphysical, but may
be valid low-energy effective actions if they can be embedded in a causal, UV complete
theory. Superluminality in a low-energy effective action in curved spacetime can therefore
not be used by itself to discard the theory as unphysical. The key question is whether there
exists a consistent UV completion.

Notice the key role of gravity in this conclusion. For theories in flat space, the com-
bination of the optical theorem (which implies Im n(w) > 0) and the Kramers-Kronig
dispersion relation for the refractive index,

2 [ dw
n(oco) = n(0) — / — Im n(w) (flat space), (9.1)
T )y w

would imply that the high-frequency phase velocity exceeds its low-frequency limit,
Vph(00) > vpn(0). The superluminal causality violations in the IR effective theory would
therefore be inherited by its UV completion and the theory would indeed be unphysical.
In curved spacetime, however, the novel analytic properties of the relevant Green functions
induced by the background geometry modify the dispersion relations and invalidate this
conclusion. In our example, this is evident in the branch cuts extending to the origin in
the complex w-plane in the explicit expressions for the refractive indices in (5.2) and (8.8).
We will return to the issue of dispersion relations in curved spacetime theories in [29].

We explored these ideas in the challenging case of QFT's in a gravitational shockwave
background, for which the classical null geodesics for a particle crossing the shock wavefront
experience a discontinuous Shapiro time advance Avag < 0 in Aichelburg-Sexl coordinates.
The corresponding causality issues for the classical, effective, and full UV-complete theo-
ries were interrogated in a two-shockwave time machine scenario. We showed that while
a correct treatment of the shock wavefront, in accordance with the equivalence principle,
ensured that causality was respected at the classical level, the additional coordinate shift
Awvpy implied by the effective action did permit a causality-violating, time machine trajec-
tory. However, the vanishing of the coordinate shift at high-frequency, Av(u,w — c0) — 0,
ensures that causality is restored in the fundamental, UV complete theory.

To establish these results, we calculated the complete frequency dependence of the
refractive index and phase shift ©(u,w) for a photon scattering from a gravitational shock-
wave in QED itself. First, in contrast to the prediction of the effective action, all the quan-
tities An(u,w), O(u,w) and Av(u,w) were shown to be local in the full theory, depending
on the lightcone distance beyond the shockwave. This smoothing out of the discontinu-
ous jumps associated with the effective action reflects the scale of the vacuum polarization
cloud as it passes through the shockwave. Curiously though, in the high-frequency limit for
QED in the beam shockwave, the shifts Av and A© again become step functions, but this
time taking place at the focal point u = 1/0 of the classical null geodesic congruence. This
behaviour was calculated analytically in (5.13), and is yet another reason contributing to
the failure of the shockwave time machine. Similar discontinuities at the focal point were
also found for the particle shockwave and A¢? theory.
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Figure 15. The effective coordinate shift Re Av(u,w) and phase O(u,w) in QED as a function of
logw at fixed lightcone distance u from the (beam) shockwave.

The frequency dependence of Av(u,w) and O(u,w) is most vividly illustrated in fig-
ures 10 and 11, which we reproduce here for convenience. These plots make it clear how
the coordinate shift Av(u,w) interpolates between its low-frequency effective action value
Avpyg and zero at high frequency.

Notice that in QED, although we found that the refractive index becomes 1 in the high-
frequency limit as required by causality, the phase shift itself asymptotically approaches a
non-vanishing constant, as shown in figure 15. This initially surprising finding, which is
nevertheless completely consistent with causality, led to a closer inspection of the contrast-
ing high-frequency behaviour in QED and the super-renormalizable scalar A¢? theory in 4
dimensions. We found that the high-frequency behaviour of the phase shift and refractive
index (at fixed u beyond the focal point) is

An(u,w) ~ —% , O(u,w) ~ — const (QED) 02
Anfuw) ~ B2 Buw)~ B (g |

Extrapolating this pattern suggests that non-renormalizable theories may exhibit non-
causal high-frequency behaviour, and indeed, as will be demonstrated in [28], this turns
out to be true. This sheds further light on the question raised in the introduction [2],
viz. how overcoming the causality problems inherent in the effective action could serve as a
guide in constructing a consistent UV completion and confirms a close relationship between
causality and renormalizability of the fundamental QFT.

Finally, we comment briefly on the translation of our results to Planck energy scat-
tering. This will be discussed in more detail in the companion paper [28]. First, in order
to discuss scattering as such, we need to define the asymptotic past and future Minkowski
spacetimes. Recall that the full shockwave spacetime can be viewed as two Minkowski
half-planes patched together along the surface u© = 0 with a displacement Awvag. The
classical Shapiro time advance depends on this patching, so giving a physical meaning
to Awvag depends on making a physically motivated identification of the past and fu-
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ture regions. For our discussion of scattering, we make the obvious choice implied by
the Aichelburg-Sexl coordinates, thereby attributing physical significance to the classical
phase shift wAvag = —Gslogb?/r3.

In this case, the scattering amplitude A(s,?) may be written in terms of the classical
and quantum phase shifts as a Fourier transform,

. iqb . S b2 .
A(s,t = —¢%) = —225/d2b elat [expz (—W log % + @Scat,(s)> - 1] . (9.3)
p
Here, s and t are the usual Mandelstam variables and we have introduced the Planck mass
M, through G = l/Mg. Crucially, Ogcat.(8), defined as the u — oo limit of the phase
O(u,w), is a function of the single key variable

§= <>\c>2 (9.4)
M2 \'b ’

which combines the scattering CM energy and the impact parameter. Notice especially
the role played by the QFT scale A\, which characterises the vacuum polarization cloud.
The equivalent réle for the Reggeized UV completion in the case of graviton scattering is
played by the string scale A [2, 31].

Here, we have shown that in the case of photon-shockwave scattering at near Planck
energies, Ogcat.(§) is an exactly calculable function in QFT for all values of §, including the
crucial high-$ limit. This demonstrates that the full amplitude A(s, t) is entirely compatible
with causality for (super-) renormalizable QFTs, despite the apparent causality problems
associated with their IR effective actions. Further discussion of the properties of the Planck
energy scattering amplitude A(s, t) and its relation to UV completion and renormalizability
in QFT may be found in [28].
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