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Résumé
Le calcul quantique tolérant aux fautes est un ensemble de techniques dont le but est
d’effectuer des calculs quantiques de manière fiable en utilisant des composants bruités.
Dans ce contexte, l’utilisation de codes correcteurs quantiques maintient le nombre
d’erreurs présentes dans le système en dessous d’un seuil tolérable. L’un des principaux
problèmes de ce domaine est d’évaluer le coût minimum (en mémoire et en temps)
nécessaire pour transformer un calcul quantique idéal en un calcul tolérant aux fautes.
Dans cette thèse, nous montrons que la famille des codes expanseurs quantiques associée
à l’algorithme de décodage small-set-flip peut être utilisée dans la construction de ref.
[46] pour réaliser du calcul quantique tolérant aux fautes avec coût constant en mémoire.

La famille de codes correcteurs ainsi que le décodeur que nous étudions ont été
introduits dans ref. [67] où un modèle de bruit adverse est considéré. En nous appuyant
sur les résultats de cet article, nous analysons le comportement des codes expanseurs
quantiques face à un modèle de bruit stochastique qui est pertinent dans le cadre du calcul
tolérant aux fautes [38], [37]. De plus, nous montrons que l’algorithme de décodage
peut être parallélisé pour fonctionner en temps constant. Cette propriété est essentielle
pour éviter que les erreurs ne s’accumulent pendant que l’algorithme est exécuté.

Au-delà des résultats théoriques décrits ci-dessus, nous avons effectué une analyse
numérique des codes expanseurs quantiques dans le but d’évaluer leurs performances
en pratique [49]. Le modèle de bruit choisi pour ces simulations consiste à générer des
erreurs de types X et Z de manière indépendante et identiquement distribuée sur les
qubits. Les résultats obtenus pour ces codes de rendement constant sont prometteurs
puisque nos simulations montrent que leur seuil est décent et que leurs performances à
taille finie sont bonnes.
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Abstract
Fault tolerant quantum computation is a technique to perform reliable quantum compu-
tation using noisy components. In this context, quantum error correcting codes are used
to keep the amount of errors under a sustainable threshold. One of the main problems
of this field is to determine the minimum cost, in terms of memory and time, which is
needed in order to transform an ideal quantum computation into a fault-tolerant one.
In this PhD thesis, we show that the family of quantum expander codes and the small-
set-flip decoder can be used in the construction of ref. [46] to produce a fault-tolerant
quantum circuit with constant space overhead.

The error correcting code family and the decoder that we study has been introduced
in ref. [67] where an adversarial error model was examined. Based on the results of this
article, we analyze quantum expander codes subjected to a stochastic error model which
is relevant for fault-tolerant quantum computation [38], [37]. In addition, we show that
the decoding algorithm can be parallelized to run in constant time. This is very relevant
to prevent errors from accumulating while the decoding algorithm is running.

Beyond the theoretical results described above, we perform a numerical analysis
of quantum expander codes to measure their performance in practice [49]. The error
model used during these simulations generates X and Z type errors on the qubits with
an independent and identically distributed probability distribution. Our results are
promising because they reveal that these constant rate codes have a decent threshold and
good finite length performance.
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Chapter 1

Introduction (Français)

Un ordinateur quantique est un objet capable d’accomplir des calculs plus rapidement
que les meilleurs algorithmes classiques, en tirant avantage des lois de la physique
quantique. Shor a par exemple montré dans ref. [97] que cette technologie accélèrerait
de manière exponentielle la résolution du problème de factorisation des entiers. D’autres
exemples sont présentés dans [25] tels que l’algorithme de Grover qui permet une
accélération quadratique pour une requête dans une base de données non structurée
[50], ou bien l’algorithme HHL utilisé pour résoudre des systèmes linéaires [53]. Du
point de vue pratique, l’un des objectifs à court terme est d’atteindre la suprématie
quantique en construisant un dispositif quantique capable de faire une tâche spécifique
plus rapidement que les super-ordinateurs actuels [11, 54, 13]. Pour résumer, un circuit
quantique utilise des portes quantiques qui agissent sur des états quantiques utilisés
pour stocker de l’information quantique dont l’unité de base est appelée le qubit (qui est
une abréviation pour “bit quantique”).

Aujourd’hui, plusieurs architectures sont en compétition telles que les circuits basés
sur les supra-conducteurs ou bien les ions piégés. Toutefois, malgré de nombreux
efforts et des progrès intéressants, les ordinateurs quantiques en sont encore au stade
expérimental [60, 4, 75, 31, 114, 23, 33]. Le principal problème est qu’un tel système
est inévitablement sujet à du bruit et aux phénomènes de décohérence. Ainsi, les
états quantiques sont fragiles et une protection active est nécessaire pour y stocker
et manipuler de l’information. La suprématie quantique pourrait être atteinte grâce
à des technologies avec un niveau de bruit intermédiaire (dites “noisy intermediate-
scale quantum technology”) dont le but est de construire des appareils avec un bruit
suffisamment petit pour accomplir un calcul non trivial qui soit hors de portée pour les
ordinateurs classiques [87]. Toutefois, cette stratégie n’est pas viable pour effectuer
des calculs longs et contrairement au cas des machines classiques, il est peu probable
qu’il soit possible de supprimer complètement le bruit qui affecte les circuits quantiques.
Heureusement, étant donné un circuit quantique C, il est possible de construire un autre
circuit C′ appelé circuit tolérant aux fautes, qui effectue le même calcul que C mais
fonctionne également si ses composants sont bruités.

Pour formaliser l’idée de bruit, un circuit quantique est divisé en étapes élémentaires

1



2 Chapter 1. Introduction (Français)

appelées sites qui représentent les endroits où une erreur peut advenir. Par exemple, un
site de porte représente un endroit dans le circuit où une porte est appliquée, et un site
d’attente fait référence à un qubit sur lequel aucune action n’est faite pendant que des
portes sont appliquées sur d’autres sites. Étant donné que les composants utilisés pour
construire un circuit quantique sont bruités, certains sites sont défaillants ce qui signifie
que l’opération effectuée par ce site n’est pas celle escomptée. Le modèle de bruit le
plus simple est le modèle d’erreurs iid (indépendantes et identiquement distribuées) ou
les sites sont défaillants indépendamment avec une certaine probabilité p. Le résultat
fondamental dans le domaine du calcul tolérant aux fautes est appelé le théorème du
seuil et a été prouvé par Aharonov et Ben-Or dans ref. [1]. Ils ont montré que si les
sites sont sujets à un modèle de bruit iid de paramètre p < pth (pth est une constante
universelle appelée seuil), alors pour tout circuit quantique C et pour toute probabilité
cible ε > 0, il existe un circuit tolérant aux fautes qui simule C et dont la probabilité
d’échec est au plus ε. Au-delà du modèle de bruit iid, cette thèse de doctorat s’intéresse
au modèle de bruit plus général appelé stochastique local [44, 46]. Nous voudrions
mettre l’accent sur le fait que la tolérance aux fautes est également possible avec d’autres
modèles de bruit [1, 2, 105].

Il existe deux manières naturelles de mesurer l’efficacité d’un protocole de tolérance
aux fautes, à savoir le coût en temps et le coût en espace. Soit C un circuit quantique
et soit C′ un circuit tolérant aux fautes pour C. Supposons que C (resp. C′) ait |C|
sites (resp. |C′| sites), qu’il utilise m qubits (resp. m′ qubits) et nécessite t étapes pour
fonctionner (resp. t′ étapes pour fonctionner). Alors, le coût en temps est défini comme
le rapport t′/t et le coût en espace est m′/m. Par exemple, avec le théorème du seuil
habituel de ref. [1], les coûts en temps et en espace sont polylogarithmiques en |C|:

|C′|
|C| = polylog

(
|C|
ε

)
,

t′

t
= polylog

(
|C|
ε

)
,

m′

m
= polylog

(
|C|
ε

)
. (1.1)

La principale motivation de cette thèse est ref. [46] où il est démontré qu’il est
possible d’atteindre un coût en espace constant en utilisant des codes correcteurs
d’erreurs bien choisis. En partant d’un état avec k qubits, l’idée de la correction
d’erreurs quantiques est de l’encoder dans n > k qubits en ajoutant de la redondance,
de telle manière que des erreurs sur un petit nombre de qubits n’est pas problématique
pour retrouver l’état initial. La procédure utilisée pour retrouver l’état initial est appelée
décodeur et le temps d’exécution de cet algorithme classique est un paramètre critique.
En effet, pour chaque site de C, le circuit tolérant aux fautes fourni par [46] nécessite
d’exécuter le décodeur. Dans cette thèse de doctorat, nous nous intéressons aux codes
expanseurs quantiques et nous montrons que le décodeur small-set-flip qui leur est
associé peut être parallélisé pour fonctionner en temps constant. En suivant ref. [46],
nous obtenons un protocole de tolérance aux fautes avec un coût en espace constant. De
plus, chaque étape du circuit quantique résultant nécessite d’exécuter un circuit classique
de profondeur constante (ceci est réaliste si les calculs classiques sont suffisamment
rapides).

Le but de ce résumé est de décrire et d’expliquer notre résultat. Entre autres, nous
aurons besoin de définir certains termes utilisés en correction d’erreurs classiques et de
discuter les concepts de produits d’hypergraphes et de codes expanseurs classiques.
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1.1 Correction d’erreurs classiques
Le domaine de l’informatique qui étudie la correction d’erreurs est appelé théorie des
codes et a été initié par le travail de Claude Shannon en 1948 [94]. Shannon a montré
qu’une transmission peut être décomposée en deux étapes: le codage source et le codage
de canal. Le codage source est utilisé pour la compression de données [111, 26], mais
nous n’en discutons pas dans cette thèse et nous nous focalisons sur l’étape du codage
de canal où les codes correcteurs sont utilisés. Dans [94], Shannon a défini le concept de
capacité qui est le taux maximal auquel de l’information peut être transmise de manière
fiable sur un canal bruité donné. Il a également prouvé que la capacité de n’importe quel
canal est atteinte par des codes correcteurs aléatoires qui, malheureusement, ne peuvent
pas être implémentés de manière efficace. Alors que ces résultats révolutionnaires
étaient publiés, Richard Hamming a introduit la première famille fonctionnelle de codes
correcteurs qui est maintenant appelée le code de Hamming [52].

Figure 1.1: Le diagramme de Shannon pour la communication [94].

Les codes correcteurs d’erreurs sont souvent présentés à l’aide du scénario de
communication où deux protagonistes, généralement appelés Alice et Bob, souhaitent
communiquer. L’information classique est représentée par une suite de bits (des 0 et
des 1) et donc un message de k bits est un vecteur binaire s ∈ Fk2 = {0, 1}k. Alice
et Bob sont éloignés et le seul canal de communication auquel ils ont accès est bruité.
Cela signifie que certains des bits qu’Alice envoie à Bob sont corrompus par le canal.
Lorsqu’Alice envoie un message x ∈ Fn2 à travers le canal bruité, Bob obtient comme
sortie un autre message y ∈ Fn2 suivant une distribution de probabilité donnée qui
dépend de x. Deux modèles de canaux importants sont le canal binaire à effacement et
le canal binaire symétrique. Tous deux prennent en entrée un unique bit, c’est à dire
que n = 1. Pour le canal binaire à effacement de paramètre p ∈ [0, 1], le bit qu’Alice a
envoyé est correctement transmis avec probabilité 1− p et est effacé avec probabilité p.
Lorsque Bob reçoit un 0 ou un 1, il sait que le bit est correct et lorsque le bit est effacé,
il reçoit le symbole ’?’. Pour le canal binaire symétrique, chaque bit transmis est flippé
(0 7→ 1 and 1 7→ 0) avec probabilité p et est correct avec probabilité 1 − p. Lorsque
le canal est utilisé une seule fois, Alice peut envoyer un bit à Bob mais elle peut aussi
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l’utiliser n ∈ N fois d’affilée pour envoyer n bits. Dans ce cas, nous supposons que les
n utilisations du canal sont indépendantes en terme de probabilité.

0

1

0

?

1

1− p

1− p

p

p

Figure 1.2: le canal binaire à effacement.

0

1

0

1

1− p

1− p

p

p

Figure 1.3: le canal binaire symétrique.

Dans ce qui suit, nous nous intéresserons principalement au cas du canal binaire
symétrique. Le but d’Alice est d’envoyer un message arbitraire s ∈ Fk2 à Bob de telle
manière qu’il puisse retrouver s avec une bonne probabilité. Bien évidemment, puisque
n’importe quel message s ∈ Fk2 aurait pu être envoyé, Bob n’a aucun moyen de corriger
un bit-flip sous l’hypothèse qu’Alice envoie s directement à travers le canal. À la place,
elle peut envoyer x ∈ Fn2 une version encodée de s choisie de telle manière que Bob
peut retrouver s même si le canal a flippé quelques bits de x. En particulier, les bits de x
doivent contenir de la redondance et donc la condition n > k doit être vérifiée. Un code
correcteur d’erreurs C ⊆ Fn2 satisfait

∣∣C∣∣ =
∣∣Fk2∣∣ = 2k et est défini comme l’ensemble

des mots binaires x, appelés les mots de code, qu’Alice peut envoyer à travers le canal.
Un code correcteur C est appelé un [n, k] code linéaire lorsque l’ensemble des mots

de code est un sous-espace de dimension k de Fn2 et, à partir de maintenant, les codes
que nous considérerons sont linéaires. La distance minimale est le poids minimum d’un
mot de code différent de zéro. Si la distance minimale d est connue, on dit que le code
est un [n, k, d] code linéaire. Les bits de s sont appelés les bits logiques, les bits de x
sont appelés les bits physiques et le nombre de bits physiques est appelé la taille du bloc.

La Figure 1.4 représente le protocole basé sur les codes correcteurs d’erreurs
qu’utilisent Alice et Bob pour communiquer avec un canal bruité:

• Alice encode le message s en un mot de code x et envoie x à Bob via le canal
bruité.

• Bob obtient y comme sortie du canal et essaye d’inférer le mot de code x qu’Alice
a envoyé, sa conjecture est notée x̂.

• Bob décode x̂ en un message ŝ en appliquant l’inverse de la fonction qu’Alice a
utilisée pendant l’étape d’encodage.

Le protocole ci-dessus est un succès lorsque s = ŝ et est un échec lorsque s 6= ŝ.
Dans cette thèse, nous nous intéressons aux codes linéaires pour lesquels la première
et la troisième étape peuvent être faites facilement en utilisant de l’algèbre linéaire.
Ainsi, nous allons principalement nous intéresser à la seconde étape, appelée l’étape de
correction d’erreurs ou l’étape de décodage, où Bob déduit x̂ à partir de y en utilisant
un algorithme appelé l’algorithme de décodage ou le décodeur. L’un des principaux
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Alice Bob

s ∈ Fk2
Ex: s = 0

Étape
d’encodage

Canal
bruité

Algorithme
de décodage

ŝ ∈ Fk2
ŝ : conjecture pour s

Inverse de
l’étape

d’encodage

x ∈ Fn2
Ex: x = 000

y ∈ Fn2
y = x⊕ erreur
Ex: y = 100

x̂ ∈ C
x̂ : conjecture pour x
Ex: vote de majorité

Figure 1.4: une communication classique avec des codes correcteurs d’erreurs.
Par exemple, Alice envoie le bit s ∈ F2 trois fois à Bob qui peut le retrouver en

utilisant un vote de majorité (ceci est appelé le code de répétition à 3 bits).

objectifs de la théorie des codes est de trouver des familles de codes correcteurs pour
lesquels le rapport k/n est large et qui admettent un décodeur efficace en temps dont la
probabilité d’échec est faible.

L’un des principaux résultats de ref. [94] est la possibilité d’utiliser un canal
bruité pour transmettre de l’information de manière fiable avec un taux constant. Au
lieu d’utiliser un unique code correcteur d’erreurs, considérons une famille de codes
C1, C2, . . . où Ci encode ki bits logiques avec ni bits physiques. Lorsque le rapport ki/ni
converge et ni tend vers l’infini, la limite r ∈ [0, 1] est appelée le rendement asympto-
tique de la famille. De plus, quand un canal binaire symétrique de paramètre p est utilisé,
le seuil de Ci est le nombre réel maximal p ∈ [0, 1] tel que la probabilité d’échec tend
vers 0 lorsque i tend vers l’infini. Nous disons que Ci permet une transmission fiable via
le canal binaire symétrique quand le paramètre p est en dessous du seuil de la famille
de codes. Un canal binaire symétrique avec paramètre fixe p ∈ (0, 1) ne peut pas trans-
mettre de l’information de manière fiable avec un rendement arbitrairement proche de 1.
En fait, il existe une limite appelée la capacité du canal qui est une borne supérieure
sur le rendement asymptotique de n’importe quelle famille de code qui permet une
transmission fiable. Le notion de capacité a été introduite par Shannon dans [94] et est
égale à CBEC(p) := 1− p pour le canal binaire à effacement et à CBSC(p) := 1− h2(p)
pour le canal binaire symétrique où h2(p) := −p log2(p) − (1 − p) log2(1 − p) est
l’entropie binaire.

Dans sa thèse en 1962 [42], Robert Gallager a introduit la famille des codes LDPC
(Low Density Parity Check) et a suggéré de les décoder avec un algorithme appelé
décodeur itératif. Toutefois à cette époque, les ordinateurs n’étaient pas suffisamment
puissants pour implémenter le décodeur itératif et donc les codes LDPC n’avaient pas
d’intérêt pratique. À la fin des années 1990, il y a eu un regain d’intérêt pour les codes
LDPC avec les papiers [70, 71, 73, 72]. De nos jours, ces codes sont utilisés de manière
intensive dans les réseaux de communication [91, 95].
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Afin de définir les codes LDPC, nous avons besoin d’expliquer les concepts de matrice
de parité et de graphe de Tanner. Soit C un code linéaire et soit H une matrice binaire
telle que C = ker(H). On dit alors que H est une matrice de parité pour C. Un
graphe de Tanner G pour C est un graphe biparti construit à partir de H de la manière
suivante: les sommets gauches de G représentent les colonnes de H , les sommets droits
représentent les lignes de H et deux sommets sont reliés si et seulement si l’entrée
correspondante dans H est égale à 1 [104]. Par définition, une famille de codes est
LDPC si et seulement si les degrés dans le graphe de Tanner sont bornés supérieurement
par une constante uniforme.

Au début des années 1990, les turbo codes de Berrou, Glavieux et Thitimajshima [9]
ont fait prendre conscience à la communauté scientifique qu’il est possible d’implémenter
en pratique des codes correcteurs dont la probabilité de succès est haute et dont le
rendement est proche de la capacité du canal. Les turbo codes sont basés sur les codes
de convolution [59] introduits par Elias dans [36]. Pour un code de convolution, un flux
de bits est encodé dans un autre flux de bits. Dans cette thèse, nous nous intéressons aux
codes par blocs tels que les codes LDPC qui, par opposition aux codes de convolution,
encode un bloc de bits dans un autre bloc plus large (un bloc est une chaîne de bits de
taille fixée).

Pour simplifier, les codes classiques que nous considérerons sont des codes LDPC
réguliers comme définis par Gallager dans sa thèse [42]. Par définition, un code régulier
est tel que les sommets droits dans le graphe de Tanner ont degré dV et les sommets
gauche ont degré dC où dV , dC ∈ N sont des entiers fixés. On remarque toutefois
que les performances des codes LDPC réguliers ne sont pas aussi bonnes que celles
d’autres familles de codes LPDC. Par exemple, ref. [83] montre qu’une famille de
codes réguliers ne peut pas atteindre la capacité du canal binaire à effacement. Il a
également été démontré que les codes irréguliers ont de meilleurs seuils [72, 73, 71, 70]
et de meilleures performances à taille finie [90, 110, 113, 115]. Plus généralement, de
nombreuses familles de codes ont été introduites dans le but d’augmenter la probabilité
de succès et de réduire le temps nécessaire aux étapes d’encodage et de décodage. On
peut par exemple citer les codes concaténés [40], les codes algébriques de Reed-Solomon
[103, 64, 89] et plus récemment les codes LDPC spatialement couplés [39], les codes
polaires [3] et les codes irréguliers basés sur les protographes [106]. De plus, il existe
de nombreuses techniques pour optimiser les codes LDPC [24, 93, 57, 107].

Pour plus de détails à propos des codes correcteurs d’erreurs classiques, voir [111,
92, 59].

1.2 Information quantique

Cette partie introduit les concepts fondamentaux de la théorie de l’information quantique
dont nous aurons besoin pour expliquer nos résultats, voir [82] pour plus de détails à
propos d’information quantique et de calcul quantique.

Un état pur sur n qubits |ψ〉 ∈ C2n (“ket psi”) est défini mathématiquement par un
vecteur complexe normalisé pour la norme Euclidienne avec 2n entrées. Il est pratique
de voir |ψ〉 comme un élément de

(
C2)⊗n où tout au long de ce manuscrit, ⊗ est le



1.2. Information quantique 7

produit tensoriel (ou le produit de Kronecker). Le vecteur ligne 〈ψ| := |ψ〉† (“bra psi”)
est défini comme étant le transpose conjugué de |ψ〉. De plus, pour i ∈ J0; 2n − 1K,
l’état |i〉 est le vecteur colonne dont la seule entrée non-nulle est un 1 à la ième position.

La dynamique des états quantiques purs est divisée en deux types d’opérations: les
évolutions unitaires et les mesures. Une évolution unitaire est de la forme U : |ψ〉 7→
U |ψ〉 où U est n’importe quelle matrice unitaire complexe de dimension 2n×2n. Parmi
les matrices unitaires, le groupe de Pauli est particulièrement important et est défini par:

Pn :=
{
αP : α ∈

{
1,−1, i,−i

}
et P ∈

{
1, X, Y, Z

}⊗n}
où X est appelé le bit-flip et Z est appelé le phase-flip:

X :=
(

0 1
1 0

)
, Y := iXZ =

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
.

Pour une erreur de Pauli P ∈ Pn, le poids de P désigné par |P | est défini comme
étant le nombre de qubits sur lesquels P agit de manière triviale. Formellement, si
nous écrivons P = αP1 ⊗ . . . ⊗ Pn où α ∈ {1,−1, i,−i} est une phase globale et
P1, . . . , Pn ∈ {1, X, Y, Z} sont des matrices de Pauli agissant sur un qubit, alors |P |
est défini par:

|P | := #
{
i ∈ J1;nK : Pi 6= 1

}
.

Une matrice Π est un projecteur orthogonal lorsque Π2 = Π et Π = Π† où Π† est
l’opérateur adjoint de Π (l’opérateur adjoint est la matrice transpose conjuguée).
En général, les mesures d’états purs |ψ〉 ∈ C2n ont pour sortie un bit classique b ∈ F2
et modifient |ψ〉 (on dit que |ψ〉 est réduit à un autre état quantique). Pour la correction
d’erreurs, nous nous intéressons aux mesures projectives définies par deux projecteurs
orthogonaux Π0,Π1 de taille 2n × 2n satisfaisant Π0 + Π1 = 1 où 1 est la matrice
identité:

• Avec probabilité 〈ψ|Π0 |ψ〉: la sortie de la mesure est b = 0 et l’état est réduit à
Π0 |ψ〉√
〈ψ|Π0 |ψ〉

.

• Avec probabilité 〈ψ|Π1 |ψ〉: la sortie de la mesure est b = 1 et l’état est réduit à
Π1 |ψ〉√
〈ψ|Π1 |ψ〉

.

En particulier, une mesure de Pauli associée à un opérateur de Pauli P ∈ Pn est la
mesure projective définie à partir de Π0 et Π1 où:

– Π0 := (1+ P )/2 le projecteur orthogonal associé à la valeur propre +1 de P .

– Π1 := (1− P )/2 le projecteur orthogonal associé à la valeur propre −1 de P .
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En général, un système quantique S n’est pas isolé dans le sens où il interagit avec
d’autres systèmes que l’on appelle l’environnement. Dans ce cas, l’état de S n’est pas
nécessairement un état pur mais est toujours un mélange probabiliste d’états purs. Une
matrice de densité est un moyen pratique de représenter un tel mélange par un opérateur
semi-défini positif de taille 2n × 2n avec des coefficients complexes et trace 1. Par
exemple, la matrice de densité associée à un état pur |ψ〉 est |ψ〉 〈ψ| où 〈ψ| = |ψ〉†
comme précédemment. Plus généralement, soient |ψ1〉 , . . . , |ψm〉 des états purs et
soient p1, . . . , pm ∈ [0, 1] des probabilités telles que p1 + . . . + pm = 1. Alors, la
matrice de densité d’un système où chaque état |ψi〉 a été préparé avec probabilité pi est:

ρ =
m∑
i=1

pi |ψi〉 〈ψi| . (1.2)

Lors de l’interaction d’un système quantique S avec un environnement E, le nombre
de qubits dans S peut changer. En effet, certains qubits de S peuvent être jetés et certains
qubits de E peuvent être ajoutés à S. Formellement, n’importe quelle évolution d’un
système avec n qubits vers un système avec n′ qubits peut être représenté par une
application CPTP E (completely positive trace preserving map) parfois appelée un
canal quantique ou une opération quantique. Une application CPTP est définie par un
ensemble de matrices complexes Ek de taille 2n′ × 2n appelées les opérateurs de Kraus
satisfaisant

∑
k E
†
kEk = 1:

E : ρ 7→
K∑
k=1

EkρE
†
k.

Par exemple, une évolution unitaire U est représentée par un unique opérateur de Kraus
E1 = U où n = n′.

Comme indiqué précédemment, la mesure d’un opérateur de Pauli P ∈ Pn d’un état
pur |ψ〉 est la mesure projective associée à Π0 := (1+ P )/2 et Π1 := (1− P )/2. Soit
M une application CPTP représentant cette mesure et soient:

p0 := 〈ψ|Π0 |ψ〉 , |ψ0〉 := Π0 |ψ〉√
〈ψ|Π0 |ψ〉

,

p1 := 〈ψ|Π1 |ψ〉 , |ψ1〉 := Π1 |ψ〉√
〈ψ|Π1 |ψ〉

.

AlorsM est équivalente à préparer l’état |ψ0〉 avec probabilité p0 et l’état |ψ1〉 avec
probabilité p1. En utilisant eq. (1.2), nous avons:

M : |ψ〉 〈ψ| 7→ |0〉 〈0| ⊗Π0 |ψ〉 〈ψ|Π0 + |1〉 〈1| ⊗Π1 |ψ〉 〈ψ|Π1.

Ici, pour simplifier, la sortie classique de la mesure b ∈ {0, 1} est stockée comme un
qubit. Plus généralement, pour n’importe quelle matrice de densité ρ nous avons:

M : ρ 7→ |0〉 〈0| ⊗Π0ρΠ0 + |1〉 〈1| ⊗Π1ρΠ1. (1.3)

Les opérateurs de Kraus deM sont E0 = |0〉 ⊗Π0 et E1 = |1〉 ⊗Π1 avec n′ = n+ 1.
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1.3 Correction d’erreurs quantiques

Dans la Section 1.1, nous avons utilisé le scénario de communication présenté dans la
Figure 1.4 pour introduire les codes correcteurs classiques. De manière similaire, un
code correcteur quantique peut être utilisé dans un protocole où Alice souhaite envoyer
à Bob un état quantique |ϕ〉 avec K qubits via un canal de communication bruité. L’idée
générale est la même que dans le cas classique: elle commencent par encoder |ϕ〉 de
manière redondante dans un état |ψ〉 avecN qubits, puis elle envoie |ψ〉 à travers le canal
bruité et finalement Bob applique une opération quantique pour corriger ρ l’état mixte
reçu. La communication est un succès quand l’état |ϕ̂〉 que Bob obtient à la fin est égal à
|ϕ〉. Dans ce protocole, chaque état |ϕ〉 est encodé par un état du code |ψ〉 et l’ensemble
des états du code noté Q est appelé l’espace de code ou un code correcteur d’erreurs
quantiques. Par définition, l’encodage est une application linéaire de

(
C2)⊗K vers(

C2)⊗N et donc l’ensemble Q est un sous-espace vectoriel de
(
C2)⊗N de dimension

2K . Le nombre entier K est appelé le nombre de qubits logiques et N est appelé le
nombre de qubits physiques.

Alice Bob

|ϕ〉 ∈
(
C2)⊗K Étape

d’encodage

Canal
quantique

bruité
Algorithme
de décodage

|ϕ̂〉 ∈
(
C2)⊗K

|ϕ̂〉 : conjecture pour |ϕ〉

Inverse de
l’étape

d’encodage

|ψ〉 ∈ Q ⊆
(
C2)⊗N

N > K

État mixte ρ
sur N qubits

|ψ̂〉 ∈ Q
|ψ̂〉 : conjecture pour |ψ〉

Figure 1.5: scénario de communication pour les codes correcteurs quantiques.

Dans ce travail, nous nous intéressons aux canaux quantiques qui satisfont la pro-
priété stochastique locale de paramètre p ∈ [0, 1]. Un modèle de bruit est stochastique
local quand la probabilité qu’un certain ensemble de qubits S soit dans le support de
l’erreur décroît exponentiellement en |S|. Formellement, soit VQ l’ensemble des qubits
et soit E un canal quantique alors:

• E a la propriété d’être stochastique si E peut être décrit par un processus en deux
étapes:

– Lors de la première étape, un ensemble aléatoire E ⊆ VQ appelé le support
de l’erreur est choisi aléatoirement.

– Lors de la deuxième étape, un canal quantique EE est appliqué sur les qubits.
Ici, pour chaque F ⊆ VQ, EF est une application CPTP agissant sur les
qubits de F .
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• E est stochastique local de paramètre p ∈ [0, 1] s’il est stochastique et la distribu-
tion de probabilité de E satisfait pour tout S ⊆ VQ:

P
[
S ⊆ E

]
≤ p|S|. (1.4)

En d’autres termes, un bruit stochastique local E est tel que:

E : ρ 7→
∑
F⊆VQ

P
[
E = F

]
EF (ρ),

où le support E ⊆ VQ est choisi aléatoirement de telle manière que eq. (1.4) soit vérifiée
pour tout S ⊆ VQ.

Par exemple, le canal qui applique des bit-flips et des phase-flips de manière indépen-
dante et identiquement distribuée a la propriété stochastique locale. Un autre exemple
est le canal dépolarisant qui applique sur chaque qubit indépendamment le canal D
défini ci-dessous:

D : ρ 7→ (1− p)ρ+ p

3

(
XρX + Y ρY + ZρZ

)
.

Le canal dépolarisant pour n qubits est égal àD⊗n et est stochastique local de paramètre
p/3.

Lorsque nous parlerons de probabilité de succès (ou de probabilité pour l’erreur
d’être corrigée) pour un bruit stochastique local, cela fera référence à la probabilité sur
E pour la communication d’être un succès:

P
[
Succès

]
=
∑
F⊆VQ

P
[
E = F

]
P
[
|ϕ̂〉 = |ϕ〉

∣∣∣ E = F
]
.

Notons que si l’algorithme de décodage est déterministe, on a P
[
|ϕ̂〉 = |ϕ〉

∣∣∣ E =

F
]
∈ {0, 1}.
Dans le cas classique, nous nous sommes concentrés sur le modèle de bit-flips qui

est assez réaliste. En revanche dans le cas quantique, l’ensemble des erreurs possibles
est infini: n’importe quelle unitaire ou même n’importe quelle application CPTP peut
potentiellement être appliquée sur l’état que l’on essaye de protéger. De manière
surprenante, il suffit de corriger l’ensemble fini des erreurs de Pauli pour corriger
les erreurs générales (voir [8] ou [82]). Par exemple, si une procédure de correction
d’erreurs est capable de corriger n’importe quelle erreur de Pauli qui agit sur les qubits
de F ⊆ VQ, alors la même procédure corrige une application CPTP arbitraire agissant
sur F . En conséquence, pour un modèle de bruit stochastique local, nous pouvons
supposer sans perte de généralité que les applications CPTP EF sont des canaux de Pauli
(c’est à dire qu’ils appliquent des erreurs de Pauli sur les qubits de F ).

Dans les années 1990, la question de savoir si la correction d’erreurs quantiques
est possible était débattue jusqu’à ce que Shor [96] et Steane [102] montrent que c’est
en effet possible. Suite à ces travaux fondateurs, la théorie de la correction d’erreurs
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quantiques a été développée, par exemple dans [63, 20, 101, 43]. En particulier dans
[43], Gottesman a introduit les outils mathématiques utilisés pour définir et étudier une
large classe de codes quantiques appelés les codes stabilisateurs. Un code stabilisateur
Q sur N qubits physiques est défini à partir d’un ensemble fini d’opérateurs de Pauli
appelés les générateurs du stabilisateur. Ces générateurs g1, . . . , gM ∈ PN doivent
commuter et Q est alors défini de la manière suivante:

Q :=
{
|ψ〉 ∈

(
C

2)⊗N : g1 |ψ〉 = . . . = gM |ψ〉 = |ψ〉
}
.

Le code Q est appelé un [[N ;K]] code stabilisateur où K est le nombre de qubits
logiques.

Dans cette thèse, nous nous concentrons sur un groupe particulier de codes stabil-
isateurs appelés les codes CSS LDPC. La terminologie “CSS” vient de Calderbank,
Shor et Steane qui ont introduit la construction CSS en 1996 [20, 102]. Un code CSS
est construit à partir de deux codes classiques CX et CZ avec C⊥Z ⊆ CX où CX est
utilisé pour corriger les erreurs de bit-flips et CZ est utilisé pour corriger les erreurs de
phase-flips. La première étape de la procédure de correction d’erreurs est de mesurer les
générateurs du stabilisateur. La sortie de la mesure est un mot binaire appelé syndrome.
D’un point de vue pratique, pour être capable de mesurer les générateurs du stabilisateur,
il est important que chacun implique un petit nombre de qubits et que chaque qubit soit
impliqué dans un petit nombre de générateurs. Ces propriétés sont satisfaites quand les
deux codes classiques utilisés pour construire le code CSS sont LDPC et dans ce cas le
code est dit CSS LDPC.

La distance minimale d’un code stabilisateur est le poids minimum d’une erreur
de Pauli qui envoie un état du code sur un autre état du code orthogonal au premier.
Cette quantité est une bonne indication de la performance du code et c’est une question
ouverte de savoir si des codes avec distance minimale D = Θ(N) existent. Sans la
contrainte LDPC, cette question a été résolue par l’affirmative lorsque les codes CSS
ont été introduits dans [20, 102]. Pour les codes LDPC, la meilleure distance minimale
connue est D = Θ(

√
N 4
√

log(N)) pour une famille de codes avec K = 1 qubit
logique, dont la construction s’appuie sur une variété en quatre dimensions [41]. Avec
la contrainte additionnelle d’un rendement constant K = Θ(N), la meilleure distance
minimale connue est D = Θ(

√
N) et est atteinte par le produit d’hypergraphes de

Tillich et Zémor [108]. Quand la distance minimale D d’un [[N ;K]] code stabilisateur
est connue, on dit que le code est un [[N ;K;D]] code stabilisateur.

Un décodeur ou algorithme de décodage pour un code stabilisateur est un algorithme
classique qui prend en entrée un syndrome et renvoie une erreur de Pauli. L’algorithme
réussit lorsqu’appliquer cette Pauli sur l’état quantique reçu par Bob, lui fait retrouver
l’état originel qu’Alice a envoyé par le canal quantique. Pour les codes CSS, le but
du décodeur est de corriger les deux codes classiques initiaux en prenant en compte la
dégénérescence du code CSS. Le terme “dégénérescence” fait référence au fait qu’il
existe des erreurs équivalentes, i.e. des opérateurs de Pauli différents qui agissent de
la même façon sur les états du code. Par exemple, un générateur du stabilisateur d’un
code envoie n’importe quel état du code sur lui-même. Il est donc équivalent à l’identité
et aux autres générateurs du stabilisateur. Par comparaison, dans le cas classique, deux
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erreurs agissent de la même façon sur un mot de code si et seulement si elles sont égales.
À cause de la dégénérescence, le décodeur d’un code quantique peut avoir corrigé
l’erreur même s’ il n’a pas retrouvé l’erreur physique qui est advenue sur l’état initial.
Ceci est crucial pour les code CSS LDPC puisque les codes classiques utilisés dans la
construction doivent contenir des mots de code de poids constant. Les codes CSS LDPC
sont donc fortement dégénérés. Un exemple de décodage avec de bonnes performances
est le décodeur de poids minimum: il renvoie une erreur de Pauli de poids minimum
dont le syndrome est égal au syndrome d’entrée. Un seuil pour une famille de codes
quantiques est une probabilité non nulle pth ∈ (0, 1] telle que l’erreur générée par un
canal stochastique local de paramètre p < pth est corrigée avec une probabilité qui tend
vers 1 quand la taille de bloc tend vers l’infini.

Parmi les codes CSS LDPC, le code torique introduit par Kitaev est le plus connu
et a été abondamment étudié [61, 62, 30, 86, 28, 68]. Le code torique de paramètre
L ∈ N∗ est défini à partir du pavage d’un tore en deux dimensions, ce qui conduit à un
[[2L2, 2, L]] CSS LDPC code stabilisateur. Le code torique a beaucoup d’avantages, par
exemple sa distance minimale D = Θ(

√
N) est large et les générateurs du stabilisateur

impliquent seulement des interactions plus proches voisins. Ceci est approprié pour une
implémentation puisqu’un tore en deux dimensions peut être plongé dans notre espace
euclidien à trois dimensions. Ainsi, une implémentation du code torique nécessiterait de
ne faire interagir que des qubits proches dans l’espace. De plus, les performances du code
torique sont vraiment bonnes même pour de petites tailles de blocs. Enfin, le décodage
de plus petit poids peut être implémenté en temps polynomial avec l’algorithme de
Edmonds [30, 34].

Au-delà du code torique, n’importe quel pavage d’une variété définit un code CSS
LDPC appelé code topologique. Ce principe permet d’utiliser de puissants arguments
issus de la topologie pour étudier de tels codes et pour concevoir des décodeurs. Voir
par exemple le code de surface [15], les codes hyperboliques de dimension deux [16],
les codes semi-hyperboliques [17] et les codes hyperboliques de dimension quatre
[51, 69, 55]. Il existe deux résultats qui imposent des contraintes fortes sur le compromis
entre les paramètres N , K et D d’un code topologique en deux dimensions [14, 27]. Le
premier établi que KD2 = O(N) et est satisfait pour n’importe quel code topologique
construit à partir d’une variété euclidienne de dimension deux [14]. Le second résultat
est KD2 = O(N log2(N)) et doit être satisfait même si l’espace sous-jacent n’est pas
euclidien [27]. Par conséquent, l’avantage d’utiliser des codes topologiques construits
à partir d’espaces de dimension quatre est d’outrepasser ces deux résultats négatifs.
En particulier, les paramètres K = Θ(N) et D = Ω(N0.2) sont atteints pour des
codes hyperboliques en quatre dimensions [51, 69]. Notons en revanche qu’il n’est pas
possible de plonger un code hyperbolique ou un code de dimension quatre dans notre
monde réel en conservant des interactions plus proches voisins.

Une autre généralisation du code torique est le code produit d’hypergraphes introduit
par Tillich et Zémor dans [108]. Cette construction combinatoire a l’avantage de
construire des codes quantiques à partir de bons codes classiques et donc des arguments
de théorie des codes peuvent être utilisés pour les étudier. Si les codes classiques initiaux
sont LDPC, ont un rendement constant et ont une distance minimale linéaire, alors le
produit d’hypergraphes correspondant est également LDPC, a un rendement constant et
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sa distance minimale croît comme la racine carrée de la taille de bloc. Ce comportement
asymptotique des paramètres est l’un des meilleurs parmi les constructions connues
de codes quantiques. Le principal objet d’intérêt dans cette thèse de doctorat est une
famille spécifique de produits d’hypergraphes appelés codes expanseurs quantiques [67].
Contrairement aux codes produits d’hypergraphes plus généraux, les codes expanseurs
quantiques ont l’avantage d’être équipés d’un décodeur efficace appelé le décodeur
small-set-flip.

Dans Figure 1.6, nous donnons des exemples de codes CSS LDPC. Les colonnes
“Dimension” et “Distance minimale” contiennent les paramètres K et D des codes. Par
définition de la distance minimale, n’importe quelle erreur de poids jusqu’à b(D−1)/2c
est corrigée par le décodeur de poids minimal qui (en général) fonctionne en temps
exponentiel. Toutefois, les décodeurs connus fonctionnant en temps polynomial ne
corrigent pas nécessairement toutes les erreurs jusqu’à une fraction de la distance
minimale. C’est pourquoi, nous reportons dans la colonne “Poids maximum d’une
erreur adverse corrigée par un décodeur efficace”, la meilleure valeur connue T telle que
n’importe quelle erreur de poids jusqu’à T soit corrigée par un algorithme de décodage
en temps polynomial.

Dimension Distance minimale
Poids maximum d’une
erreur adverse corrigée

par un décodeur efficace

Code torique [62] 2 Θ(
√
N) Θ(

√
N)

À partir de variété 4D [41] 1 Θ(
√
N 4
√

log(N)) Pas de décodeur efficace

Hyperbolique 2D [41] Θ(N) Θ(logN) Θ(logN)
Hyperbolique 4D [51, 55, 69] Θ(N) Ω(N0.2),O(N0.3) Θ(logN)

Code produit d’hypergraphes [108] Θ(N) Θ(
√
N) Pas de décodeur efficace

Codes expanseurs quantiques [67] Θ(N) Θ(
√
N) Θ(

√
N)

Figure 1.6: exemples de codes CSS LDPC.

1.4 Codes produits d’hypergraphes

La question de savoir s’il existe des codes CSS LDPC avec rendement constant et
distance minimale linéaire est toujours ouverte. Une approche naïve serait de construire
un code CSS à partir de deux codes LDPC CX et CZ avec une bonne distance minimale.
Malheureusement, si CZ est LDPC alors l’espace vectoriel C⊥Z contient des éléments
de poids constant. Ainsi, l’inclusion C⊥Z ⊆ CX implique que le distance minimale de
CX est constante. C’est pourquoi, de bons codes LDPC classiques ne peuvent pas être
utilisés directement pour construire de bons codes CSS LDPC.

Un code produit d’hypergraphes est un code CSSQ issu de deux codes classiques C1
et C2 sans condition supplémentaire telle que C⊥2 ⊆ C1. Plus précisément, deux codes
classiques CX et CZ sont construits à partir de C1 et C2, et le code produit d’hypergraphes
est le code CSS associé à CX et CZ . Ceci est particulièrement intéressant pour les codes
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LDPC parce que si C1 et C2 sont des codes LDPC de rendement constant alors Q
l’est aussi. De plus, quand C1 et C2 ont des distances minimales linéraires, le produit
d’hypergraphes a une distance minimale égale à D = Θ(

√
N) où N est le nombre de

qubits physiques. Grâce à ces paramètres favorables, il est attendu que les codes produits
d’hypergraphes se comportent favorablement pour la correction d’erreurs quantiques et
le calcul quantique tolérant aux fautes.

Une idée naturelle pour décoder les codes produits d’hypergraphes est d’utiliser
les décodeurs des codes classiques. Toutefois, cette stratégie ne marche pas dans le
cas général. Par exemple, le décodage itératif est utilisé de manière intensive dans
le cas classique mais ne fonctionne pas bien pour les codes produits d’hypergraphes
[86, 78]. Heureusement, il peut être amélioré en utilisant des réseaux de neurones
[68] ou l’amélioration OSD (ordered statistics decoding) [85]. Ref. [85] montre que
les produits d’hypergraphes ont de bonnes performances en pratique: pour un canal
dépolarisant avec un taux d’erreurs physiques en dessous de 10%, un code produit
d’hypergraphes bien choisi avec 28 qubits logiques a de meilleures performances qu’un
code de surface avec 1 qubit logique décodé avec le décodeur de poids minimum (voir
la figure 3 de [85]).

1.5 Codes expanseurs quantiques
En 1996, Sipser et Spielman ont introduit le concept de graphes expanseurs et ont défini
un code expanseur classique comme étant un code dont le graphe de Tanner est un
expanseur [98]. La propriété d’expansion est utile pour montrer certaines propriétés
du code, comme par exemple le fait que la distance minimale d’un code expanseur
classique est linéaire en la taille du bloc. Pour cette thèse, nous nous intéressons en
particulier à la manière dont une expansion suffisante implique que n’importe quelle
erreur de poids jusqu’à une fraction de la distance minimale est corrigée par un décodeur
appelé l’algorithme de bit-flip. L’algorithme de bit-flip est l’un des algorithmes les plus
simples qu’il soit possible de concevoir, et c’est pourquoi il est intéressant pour une
analyse théorique. Toutefois, les simulations numériques montrent que le décodage
itératif est le meilleur décodage pour les codes LDPC classiques et qu’il bat largement
l’algorithme de bit-flip. De plus, le décodage itératif peut également être analysé avec
des arguments d’expansion [19].

Le problème de trouver les paramètres d’expansion d’un graphe est un problème
co-NP-difficile [10] et la construction de codes expanseurs n’est pas aisée. Dans ce
travail, nous nous appuyons sur une construction probabiliste appelée le modèle de
configuration, qui permet de construire avec grande probabilité un code avec n’importe
quel paramètre d’expansion et n’importe quel rendement [98, 10, 80]. La première
construction déterministe de graphes expanseurs est basée sur des arguments algébriques
de Margulis [77] et a été améliorée par Barg et Zémor [5, 7, 6]. Il est également possible
de construire des graphes expanseurs avec la méthode du produit zig-zag [22]. Voir [56]
pour une veille sur les graphes expanseurs.

Par définition, un code expanseur quantique est un [[Θ(n2),Θ(n2),Θ(n)]] code sta-
bilisateur défini comme le produit d’hypergraphes d’un [n,Θ(n),Θ(n)] code expanseur



1.6. Calcul quantique tolérant aux fautes 15

classique avec lui-même [67]. Ref. [67] a également introduit le décodeur small-set-flip
et a montré que n’importe quelle erreur de poids jusqu’à une fraction de la distance
minimale est corrigée. La principale motivation pour étudier ces codes est le résultat
de Daniel Gottesman qui montre que le calcul tolérant aux fautes avec coût constant en
espace est possible [46]. Comme discuté au début de ce résumé, ce résultat est soumis à
la conjecture qu’il existe des codes quantiques avec les propriétés appropriées. Grâce à
[67], il est déjà connu que les codes expanseurs quantiques satisfont plusieurs de ces
propriétés: il sont LDPC, ils ont un rendement constant et une bonne distance minimale.
Le principal résultat de cette thèse est de montrer que les codes expanseurs quantiques
satisfont aussi les autres propriétés nécessaires, et qu’ils peuvent donc être utilisés pour
implémenter le schéma de tolérance aux fautes de Gottesman.

De par la construction produit d’hypergraphes, un code expanseur quantique est un
code CSS associé à deux codes classiques CX et CZ construits à partir du code expanseur
classique initial. Modulo une permutation des bits, le code CX est égal à CZ . Ainsi,
comme c’est le cas pour beaucoup de codes CSS, il est suffisant de décrire et d’analyser
seulement le décodeur pour les erreurs de type bit-flip. Sous cette hypothèse, le support
de l’erreur détermine l’erreur sur les qubits et donc nous supposerons souvent qu’une
“erreur” et un “support d’erreur” sont les mêmes objets. Le décodeur small-set-flip est un
algorithme de décodage à décisions dures. Cela qui signifie que son exécution est divisée
en plusieurs tours et qu’à chaque tour, les qubits appartenant à un certain ensemble F
sont flippés. L’implémentation de l’algorithme small-set-flip est assez simple: à chaque
tour, un petit ensemble F ∈ F est sélectionné de telle manière que le poids du syndrome
diminue suffisamment lorsque les qubits de F sont flippés (le poids du syndrome est le
nombres de bits du syndrome égaux à 1).

1.6 Calcul quantique tolérant aux fautes
Le but du calcul tolérant aux fautes est de concevoir des circuits robustes contre le bruit
[44]. Un circuit C est décrit par des fils (qui contiennent des états quantiques) et par
des opérations élémentaires telles qu’une préparation d’état, une mesure ou une porte
unitaire. On suppose souvent que C a une sortie classique r ∈ Fm2 : pendant la dernière
étape, tous les fils quantiques sont mesurés et un post-traitement classique est appliquée
pour obtenir r. Dans cette thèse, une préparation d’état crée un état |0〉, une mesure
correspond à la mesure d’une matrice de Pauli Z et les portes unitaires appartiennent à
l’ensemble fini G :=

{
X,Z,H, S, T, CX

}
où:

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
, H = 1√

2

(
1 1
1 −1

)
,

S =
(
e−iπ/4 0

0 eiπ/4

)
, T =

(
e−iπ/8 0

0 eiπ/8

)
, CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
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Notons que G n’est pas minimal car Z = S2 = T 4 et X = H ◦ Z ◦H . Par contre, G
est universel dans le sens où n’importe quelle unitaire peut être approchée par des portes
appartenant à G. Formellement, pour tout η > 0 et pour toute unitaire U , il existe une
unitaire V construite à partir des portes de G telle que:∥∥(U − V ) |ψ〉

∥∥ ≤ η pour n’importe quel état pur |ψ〉.

De plus, le théorème de Solovay-Kitaev [61] affirme que n’importe quel circuit fait de m
portes CX et de portes arbitraires sur un qubit peut être approché par O

(
m log2(m/η)

)
portes de G.

Un site est un point du circuit où une erreur peut se produire. Par exemple, chaque
préparation d’état, chaque mesure et chaque porte unitaire est un site. Le modèle de bruit
que nous utiliserons est le modèle de bruit stochastique local de paramètre p ∈ [0, 1].
Soit L l’ensemble des sites d’un circuit arbitraire C. Alors l’erreur est représentée par
une variable aléatoire F ⊆ L appelée l’ensemble des sites défaillants qui satisfait pour
tout R ⊆ L:

P
[
R ⊆ F

]
≤ p|R|.

Une fois que F a été choisi, un site de L \ F se comporte normalement, mais un site
défaillant l ∈ F est remplacé par une application CPTP arbitraire dont les espaces
d’entrée et de sortie sont les mêmes que pour l. Soit r la sortie de C dans le cas sans
bruit F = ∅, alors le but du calcul tolérant aux fautes est, étant donné un paramètre
ε > 0, de concevoir un circuit C′ dont la sortie est r avec probabilité supérieure à 1− ε
quand les sites sont soumis à un bruit stochastique local.

Dans ref. [1], le circuit tolérant aux fautes C′ est construit en utilisant la concaté-
nation de codes. L’idée est de définir une fonction Φ qui envoie un circuit C sur un
autre circuit Φ(C) qui est plus robuste contre le bruit. Finalement, le circuit C′ est défini
par C′ = Φk(C) pour un k ∈ N bien choisi. Dans Φ(C), chaque fil de C est encodé
avec N fils en utilisant un code stabilisateur [[N, 1]]. De plus, de la correction d’erreurs
est régulièrement effectuée sur les fils de Φ(C). Dans ce protocole de tolérance aux
fautes, les qubits sont encodés un par un ce qui résulte en un coût en temps et en espace
polylogarithmique comme décrit dans eq. (1.1).

Dans ref. [46] où de la tolérance aux fautes avec coût constant en espace est atteinte,
les fils de C sont divisés en blocs de K ∈ N fils et chaque bloc est encodé en utilisant
un [[N,K]] code stabilisateur Q. Contrairement au cas de la concaténation de codes, la
taille du bloc de Q dépend du nombre de fils dans C, et Q est choisi parmi une famille
de codes LDPC quantiques avec rendement constant. Dans cette thèse, nous montrons
que les codes expanseurs quantiques peuvent être utilisés dans cette construction pour
corriger les erreurs qui apparaissent dans le circuit C′.

1.7 Résumé des contributions
Les auteurs de ref. [67] ont étudié comment le décodeur small-set-flip corrige un code
expanseur quantique dans le cas d’erreurs adverses. L’inconvénient de ce cadre est
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que la distance minimale du code est une limite fondamentale sur le poids de l’erreur
que n’importe algorithme peut corriger. Lorsque l’erreur est générée avec un canal
quantique (par exemple avec le canal dépolarisant), le poids de l’erreur est en général
linéaire en la taille du bloc bien au delà de la meilleure distance minimale connue
Θ
(√

N 4
√

log(N)
)

pour un code LDPC quantique [41]. Malgré cette borne supérieure,
il est connu que certains codes LDPC quantiques ont un seuil et donc corrigent un
bruit dépolarisant (voir [30, 17] pour des simulations numériques et [30, 66] pour des
arguments théoriques). Dans cette thèse, nous montrons que le décodeur small-set-flip
a un seuil pour n’importe quel modèle de bruit qui satisfait la propriété stochastique
locale que nous avons défini dans la Section 1.3.

Kovalev et Pryadko ont déjà montré l’existence d’un seuil quand un bruit stochas-
tique local est corrigé avec le décodeur de poids minimum [66]. Comme expliqué
ci-dessous, nous avons montré dans ref. [38] que des techniques similaires peuvent être
utilisées pour le décodeur small-set-flip. Soit VQ l’ensemble des qubits et soit GX le
graphe de Tanner de CX . On dira qu’un ensemble de qubits est un petit groupe lorsque
n’importe quelle erreur adverse dont le support est inclus dans ce groupe est corrigée
par le décodeur. Par exemple pour les codes expanseurs quantiques, un “petit groupe”
est un ensemble de qubits K ⊆ VQ de tailleO(

√
N). Ici, nous utilisons le mot “groupe”

comme un synonyme d’“ensemble” pour éviter la confusion entre “petit groupe” et “petit
ensemble”. De plus, pour une erreur initiale E ⊆ VQ, deux ensembles de qubits K1,K2
sont dits indépendants lorsque le comportement du décodeur sur l’erreur K1 ∩ E ne
dépend pas de l’erreur K2 ∩ E. Dans ref. [66], les qubits sont divisés en petits groupes
indépendants de telle manière que le décodeur corrige les erreurs de chaque groupe et
donc corrige l’erreur globale.
Afin de décomposer les qubits en petits groupes indépendants, nous dirons que le dé-
codeur est local lorsque deux ensembles de qubits sont indépendants dès que l’intersection
de leur voisinage dans GX est vide (pour rappel, le voisinage d’un ensemble de qubits
dans GX est un ensemble de bits de parité). Par exemple, le décodeur small-set-flip et
le décodeur de poids minimum sont locaux. On définit le graphe d’adjacence du code
comme étant le graphe dont l’ensemble des sommets est VQ et tel que deux qubits sont
reliés si et seulement si ils partagent un bit de parité dans GX . En particulier, si deux
ensembles K1,K2 ⊆ VQ ne sont pas adjacents dans le graphe d’adjacence alors aucun
bit de parité ne peut être adjacent à la fois à K1 et à K2 dans GX . Dans ce cas, K1 et
K2 sont donc indépendants.
Lorsque le décodeur est utilisé, on appelle erreur résiduelle l’erreur physique qu’il reste
sur les qubits après avoir appliqué la correction donnée par le décodeur. On définit aussi
le support d’exécution comme étant l’ensemble de tous les qubits qui appartiennent au
support de l’erreur à un moment quelconque de l’algorithme. Par exemple avec le dé-
codeur small-set-flip, le support d’exécution contient les qubits de l’erreur initiale ainsi
que les qubits de tous les petits ensembles qui ont été flippés par l’algorithme. Ensuite,
on décompose les qubits en groupes indépendants K1,K2, . . . en définissant Ki comme
étant les composantes connexes du support d’exécution dans le graphe d’adjacence.
Finalement, on utilisera des arguments de percolation pour montrer que Ki est un petit
groupe avec grande probabilité [48, 74, 58].
Afin de résumer les arguments ci-dessus, donnons une esquisse de la preuve de [38]. On
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applique le décodeur small-set-flip sur une erreur générée par un bruit stochastique local.
Soit K une composante connexe du support d’exécution U dans le graphe d’adjacence.
La propriété de localité assure que la façon dont le décodeur agit sur K ne dépend pas
du fait qu’il y ait des erreurs ou non en dehors de K. En particulier, l’erreur résiduelle
sur les qubits de K est égale à l’erreur résiduelle que nous obtiendrions en utilisant le
décodeur small-set-flip sans erreur initiale à l’extérieur de K. En utilisant des arguments
venant de la théorie de la percolation, l’ensemble K satisfait

∣∣K∣∣ = O(
√
N) avec

grande probabilité et donc les erreurs initiales qui appartiennent à K sont corrigées par
le décodeur small-set-flip. Ceci est valable pour chaque composante connexe K de U
donc l’erreur globale est corrigée.

La théorie de la percolation est un domaine à part entière de la théorie des probabilités
[48]. Dans ce travail, nous sommes intéressés par le cas particulier de la percolation
de sites avec un bruit stochastique local sur un graphe fini de degré borné. Soit V
l’ensemble des sommets d’un graphe fini G dont le degré maximum est dG (les sommets
sont appelés “sites” dans un contexte de percolation) et choisissons un sous-ensemble
aléatoire de sommets E ⊆ V . Alors la question centrale en théorie de la percolation est
de comprendre comment se comporte la taille des composantes connexes de E. Dans
le cas des codes correcteurs, le graphe G est le graphe d’adjacence et l’ensemble E
représente le support de l’erreur. Habituellement pour la percolation, la loi de probabilité
sur E est un modèle iid (chaque site est dans E avec probabilité p indépendamment des
autres sites) mais dans ce travail, on s’intéresse au cas plus général d’un modèle de bruit
stochastique local. Par définition, un modèle de bruit a la propriété stochastique locale
quand l’ensemble aléatoire E satisfait eq. (1.4) pour tout S ⊆ V . En suivant ref. [66],
on peut étendre des résultats utiles de percolation à ce cas.

Une autre différence majeure avec les résultats standards de percolation est que
nous réalisons un processus généralisé que nous appelons α-percolation. Au lieu de
s’intéresser à la taille maximale des sous-ensembles connectés de E, le but de l’α-
percolation est de regarder les α-sous-ensembles connectés. Un α-sous-ensemble est
un ensemble X ⊆ V tel qu’au moins α|X| éléments de X appartiennent à E. Par
exemple, un 1-sous-ensemble est simplement un sous-ensemble et la 1-percolation est
la percolation dans le sens habituel. S’intéresser aux α-sous-ensembles est pertinent car
le support d’exécution du décodeur small-set-flip est un α-sous-ensemble de l’erreur
initiale pour un certain α ∈ (0, 1]. Le principal théorème (qui a déjà été prouvé dans
ref. [66] pour le cas particulier α = 1/2) établit qu’avec grande probabilité, tout α-sous-
ensemble connecté de E a pour taille O(

√
|V|). Si on revient sur la discussion à propos

des décodeurs locaux, l’ensemble K (défini comme étant n’importe quel sous-ensemble
du support d’exécution) est un α-sous-ensemble de E et donc l’égalité

∣∣K∣∣ = O(
√
N)

est vraie.
Pour un bruit iid et α = 1, il est connu qu’avec grande probabilité, si p < 1/(dG−1)

alors les composantes connexes de E ont pour taille O
(

log(|V|)
)
. À l’inverse, si

p > 1/(dG − 1), il existe une unique composante dont la taille est linéaire appelée
“composante géante” [58]. Dans ce travail, nous renforçons ce résultat pour n’importe
quel bruit stochastique local et α ∈ (0, 1] arbitraire. Plus précisément, nous déterminons
un réel non-nul pth = pth(α) tel que si p < pth, alors la probabilité qu’il existe
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un α-sous-ensemble de E de taille au dessus de t ∈ N est au plus Θ(|V|βαt) où
β = p/pth < 1. Une valeur seuil détermine en général une transition de phase entre le
régime où E a de petites composantes connexes et le régime où E a une composante
géante unique. Toutefois pour la correction d’erreurs, la préoccupation est d’être en
dessous du seuil et donc pth est appelé un seuil même s’il s’agit seulement d’une borne
inférieure sur le seuil de percolation. En particulier, la valeur pth que nous obtenons
n’est pas optimale puisque pth(1) < 1/(dG − 1). Il serait intéressant de trouver le
véritable seuil pour α < 1 et d’étendre les autres résultats venant de la théorie de la
percolation sur graphes finis [58].

Une des hypothèses délicates pour appliquer le schéma de tolérance aux fautes de
Gottesman est de montrer que les codes expanseurs quantiques permettent de gérer
des erreurs sur le syndrome. Formellement dans ce modèle d’erreurs, un ensemble de
bits D est aléatoirement choisi suivant un modèle de bruit stochastique local et l’entrée
de l’algorithme small-set-flip est le syndrome où les bits de D ont été flippés. Cette
hypothèse est nécessaire dans le contexte du calcul quantique tolérant aux fautes, parce
que les bits du syndrome sont produits par une mesure quantique effectuée à l’aide de
composants physiques bruités. Toutefois à cause la propriété LDPC, il n’est pas possible
que le décodeur corrige entièrement les qubits lorsque le syndrome est bruité. À la place,
nous montrons que l’erreur résiduelle est équivalente à une erreur stochastique locale
avec un paramètre sous contrôle.

De manière similaire au cas où le syndrome est parfait, la première étape de l’analyse
est de considérer des erreurs adverses dont le poids est en dessous de la distance minimale.
Dans ce cas, nous montrons que le poids de l’erreur résiduelle est bornée supérieurement
par une fonction linéaire en |D|. La stratégie de preuve consiste à retourner au cas où la
mesure du syndrome est non bruité et de montrer que l’algorithme small-set-flip peut
flipper plusieurs petits ensembles à chaque tour. Comme nous en discuterons plus tard,
cette propriété implique également que le décodeur peut être parallélisé dans le cas d’un
syndrome bruité ou non bruité. Finalement, afin de traiter des erreurs stochastiques
locales, nous appliquerons un processus d’α-percolation sur le graphe d’adjacence du
syndrome pour réduire le problème au cas d’erreurs adverses. Le graphe d’adjacence du
syndrome est le graphe de Tanner de CX avec des arrêtes additionnelles entre les qubits
reliés dans le graphe d’adjacence [46].

De plus, notre analyse montre que l’algorithme de small-set-flip a la propriété d’être
single-shot. Un code quantique est dit single-shot quand un unique tour de mesures
bruitées du syndrome est suffisant pour que le décodeur ait un seuil. Par comparaison, le
code torique n’est pas single-shot, ce qui signifie que le syndrome doit être mesuré Θ(D)
fois afin d’obtenir suffisamment d’information pour corriger l’erreur. Cette propriété est
très avantageuse dans le contexte de la tolérance aux fautes où de nombreuses étapes de
corrections d’erreurs sont nécessaires.

La correction d’erreurs single-shot a été introduite par Hector Bombin dans [12].
Plusieurs familles de codes ont cette propriété: les codes couleurs de jauge en dimension
trois [12], le code torique en dimension quatre [32] et les codes hyperboliques de
dimension quatre [55]. Une théorie de la correction d’erreurs single-shot a été proposée
dans ref. [21] où le principe est de corriger les erreurs de syndrome avant de corriger
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les erreurs sur les qubits. Par [21] et les résultats de cette thèse, la propriété single-
shot semble étroitement liée à la propriété de robustesse. Informellement, un code est
robuste si en dessous de la distance minimale, le poids du syndrome peut être borné
inférieurement par une fonction linéaire du poids de l’erreur.

Dans ref. [37], nous avons également montré que l’algorithme de small-set-flip peut
être parallélisé pour fonctionner en profondeur constante. Lorsque le syndrome est
bruité, si le nombre de tours est choisi suffisamment grand (mais constant) alors l’erreur
résiduelle sera équivalente à une erreur stochastique locale avec petit paramètre. D’autre
part, lorsque le syndrome est parfait, un nombre fixé de tours n’est pas suffisant pour
corriger entièrement l’erreur. En revanche, lancer l’algorithme avec un nombre de tours
logarithmique en la taille du syndrome corrigera l’erreur avec grande probabilité.

Dans ref. [49], nous avons fait des simulations pour étudier comment le décodeur
small-set-flip se comporte en pratique. Pour simplifier, nous nous sommes concentrés
sur l’algorithme séquentiel avec des mesures de syndromes parfaites. Les résultats
numériques que nous avons obtenus sont prometteurs. Par exemple, la valeur du seuil
que nous avons obtenu est largement au dessus de la borne inférieure assurée par les
arguments théoriques. Le seuil est d’environ 4.5% pour une famille de codes produits
d’hypergraphes avec rendement 1/61 et d’environ 2% pour un rendement 1/5.

1.8 Conclusion
Dans cette thèse, nous montrons que les codes expanseurs quantiques et le décodeur
small-set-flip peuvent être utilisés dans la construction de ref. [46] pour réaliser du calcul
quantique tolérant aux fautes avec coût constant en espace. Le décodeur small-set-flip
peut être parallélisé pour fonctionner en temps constant et, par conséquent, chaque
site du circuit tolérant aux fautes obtenu nécessite d’utiliser un circuit classique avec
profondeur constante. Par comparaison, il n’est pas connu si la complexité temporelle
nécessaire pour décoder les autres familles de codes est constante. Ainsi, pour ces
autres familles de codes, chaque étape du circuit tolérant aux fautes contient un circuit
classique dont la profondeur augmente avec le nombres de qubits.

Comme travail futur, il serait intéressant d’essayer de réduire le coût en temps de
la construction présentée dans ref. [46]. En particulier, le coût en temps est large si le
circuit initial est parallèle parce qu’il doit être transformé en un circuit séquentiel pour
que la construction fonctionne.
Pour les codes expanseurs quantiques et plus généralement les codes produits d’hypergraphes,
il est essentiel de trouver des décodeurs plus rapides avec de meilleures performances.
Par exemple, en utilisant des décodeurs basés sur le small-set-flip ou le décodeur itératif
(voir [85]). De plus, les simulations de ref. [49] nécessitent des codes avec une large
taille de bloc et il serait intéressant d’étudier comment les codes produits d’hypergraphes
modifiés de ref. [65, 78] se comportent en pratique. Finalement, des simulations
numériques pour le décodage small-set-flip parallèle et pour le cas d’un syndrome bruité
seraient intéressantes également.
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Quantum computers are physical objects taking advantage of the laws of quantum
physics to perform some computational tasks faster than the best classical algorithms.
For instance, Shor showed in ref. [97] how this technology would provide an exponen-
tial speedup for the integer factorization problem compared to the existing classical
algorithms. Many further examples can be found in [25] such as Grover’s algorithm
leading to a quadratic speedup for unstructured search [50] or the HHL algorithm for
solving linear systems [53]. On a practical point of view, one of the short-term targets is
to reach the quantum supremacy by building a quantum device which would perform a
specific task faster than the current super-computers [11, 54, 13]. In short, a quantum
circuit uses quantum gates acting on quantum states which store quantum information
whose basic unit is called a qubit (abbreviation for quantum bit).

Today, several architectures compete with each other such as quantum circuits based
on superconductors or trapped ions, but despite many efforts and interesting progress,
quantum computers are still in the experimental stage [60, 4, 75, 31, 114, 23, 33].
The main problem is that a quantum system is unavoidably subjected to noise and
decoherence. Thus, quantum states are fragile and an active protection is required to store
and process quantum information. Quantum supremacy could be achieved with noisy
intermediate-scale quantum technology where the goal is to build devices with small
enough noise to perform a non trivial computation out of reach for classical computers
[87]. However, this strategy is not sustainable for time-consuming computations and
contrarily to the case of classical hardwares, there is no hope to remove entirely the
physical noise affecting quantum circuits. Hopefully, given a quantum circuit C, it is
possible to design another circuit C′ called a fault-tolerant circuit, which executes the
same computation than C and works even though its basic components are noisy.

To formalize the idea of noise, a quantum circuit is split into elementary steps called
locations that represent the spots where an error could occur. For example, a gate
location represents a point in the circuit where a gate is applied and a wait location
refers to a qubit waiting while some gates are applied on other locations. Since the
components we use for building the circuit are noisy, some of the locations are faulty
meaning that the action of this location is not the expected one. The simplest noise model

21
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is the iid error model (independent and identically distributed) where the locations are
faulty with some probability p independently. The fundamental result in fault-tolerant
quantum computation is called the threshold theorem and has been proven by Aharonov
and Ben-Or in ref. [1]. They showed that if the locations are subjected to an iid error
model with parameter p < pth (pth is a universal constant called the threshold), then for
any quantum circuit C and for any target probability ε > 0, there exists a fault-tolerant
circuit simulating C and failing with probability at most ε. Beyond the iid error model,
this PhD thesis is interested in the more general local stochastic error model [44, 46].
In addition, we would like to point out that fault-tolerance is also possible with other
error models [1, 2, 105].

There are two natural ways to measure the efficiency of a fault-tolerant protocol,
namely the time overhead and the space overhead. Let C be a quantum circuit and
let C′ be the corresponding fault-tolerant circuit. We assume that C (resp. C′) has |C|
locations (resp. |C′| locations), uses m qubits (resp. m′ qubits) and requires t time steps
to run (resp. t′ time steps to run). Then, the time overhead is defined to be the ratio t′/t
and the space overhead to be m′/m. For instance, with the usual threshold theorem of
ref. [1], the time and space overheads are polylogarithmic in |C|:

|C′|
|C| = polylog

(
|C|
ε

)
,

t′

t
= polylog

(
|C|
ε

)
,

m′

m
= polylog

(
|C|
ε

)
. (2.1)

The main motivation of this PhD is ref. [46] where constant space overhead is
proven to be achievable using well chosen quantum error correcting codes. Starting
with a k-qubit state, the idea of quantum error correction is to encode it within n > k
qubits, adding some redundancy in such a way that an error on a small number of qubits
is not harmful to recover the initial state. The procedure used to recover the initial state
is called decoder and the time consumption of this classical algorithm is a bottleneck.
Indeed, for each location of C, the fault-tolerant circuit provided by [46] requires to
run the decoder. In this PhD thesis, we consider the so-called quantum expander codes
showing that the associated small-set-flip decoder can be parallelized to run in constant
time. Following ref. [46], we get a fault-tolerant protocol with constant space overhead.
In addition, each time step of the resulting quantum circuit requires to run a constant
depth classical circuit (this is a reasonable assumption if classical computation is fast
enough).

The goal of this introduction is to describe and explain our result. Among other
things, we will need to give some terminology from classical error correction and discuss
about the concepts of hypergraph product codes and classical expander codes.

2.1 Classical error correction
The field of computer science which studies error correction is called Coding Theory and
starts with Claude Shannon’s work in 1948 [94]. Shannon showed that a transmission
task can be decomposed into two steps: source coding and channel coding. Source
coding is used for data compression [111, 26], however we do not discuss it in this PhD
thesis. Instead, we focus on the channel coding step where error correcting codes are
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used. In [94], Shannon defined the notion of capacity which is the maximum rate at
which information can be transmitted reliably through a given noisy channel. He also
proved that the capacity of any channel is attained by random error correcting codes
which, unfortunately, cannot be implemented efficiently. At the same time as these
breakthrough results were published, Richard Hamming introduced the first practical
class of error correcting codes now called the Hamming code [52].

Figure 2.1: Shannon’s diagram for communication [94].

Error correcting codes are often presented with the communication scenario where
two protagonists, generally called Alice and Bob, would like to communicate. Classical
information is represented as a sequence of bits (0 and 1) and hence a message of k
bits is a binary vector s ∈ Fk2 = {0, 1}k (s stands for source message). Alice and
Bob are far apart and the only communication channel they have access to is noisy,
meaning that some of the bits that Alice sends to Bob are corrupted by the channel.
When Alice sends a message x ∈ Fn2 through the noisy channel, Bob gets as output
another message y ∈ Fn2 accordingly to a given probability distribution depending on x.
Two important channel models are the binary erasure channel and the binary symmetric
channel. Both of them take as input a single bit. For the binary erasure channel with
parameter p ∈ [0, 1], the bit that Alice sends is correctly transmitted with probability
1− p and is erased with probability p. When Bob receives 0 or 1 he knows that the bit is
correct and when the bit is erased, he receives the symbol ’?’. For the binary symmetric
channel, each transmitted bit is flipped (0 7→ 1 and 1 7→ 0) with probability p and is
correct with probability 1− p. With a single use of these channels, Alice can send one
bit to Bob but she can also use it n ∈ N times in a row to send n bits. In that case, we
assume that the n uses of the channel are independent in term of probabilities.
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Figure 2.2: the binary erasure channel.
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Figure 2.3: the binary symmetric channel.

In what follows we will be mainly interested in the case of the binary symmetric
channel. Alice’s goal is to send an arbitrary message s ∈ Fk2 to Bob in such a way that
he can recover s with good probability. Obviously, since any message s ∈ Fk2 could be
sent, there is no way for Bob to correct a single bit-flip under the assumption that Alice
sends s directly through the channel. Instead, she can send x ∈ Fn2 an encoded version
of s chosen in such a way that Bob can recover s even though the channel flipped a few
bits of x. In particular, the bits of x must contain some redundancy and thus n > k must
hold. An error correcting code C ⊆ Fn2 satisfies

∣∣C∣∣ =
∣∣Fk2∣∣ = 2k and is defined as the

set of possible bit-strings x, called the codewords, that Alice can send to Bob.
An error correcting code C is said to be an [n, k] linear code when the set of

codewords is a k dimensional subspace of Fn2 . From now on, the codes we consider are
linear. The minimal distance of a code is the minimum weight of a non-zero codeword.
When the minimal distance d is known, the code is said to be an [n, k, d] linear code.
The bits of s are called the logical bits, the bits of x are called the physical bits and the
number of physical bits n is called the block length.

Alice Bob

s ∈ Fk2
Ex: s = 0

Encoding
Step

Noisy
Channel

Decoding
Algorithm

ŝ ∈ Fk2
ŝ : a guess for s

Inverse of
Encoding

Step

x ∈ Fn2
Ex: x = 000

y ∈ Fn2
y = x⊕ error
Ex: y = 100

x̂ ∈ C
x̂ : a guess for x
Ex: majority vote

Figure 2.4: classical communication with error correcting codes.
For instance, Alice sends the bit s ∈ F2 three times to Bob who can recover it using a

majority vote (this is called the 3-bit repetition code).

Figure 2.4 presents the protocol based on error correcting codes used by Alice and
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Bob to communicate with a noisy channel:

• Alice encodes the message s into a codeword x and sends x to Bob through the
noisy channel.

• Bob gets y as output of the channel and tries to infer the codeword x that Alice
sent, its guess is denoted by x̂.

• Bob decodes x̂ to a message ŝ by applying the inverse of the function Alice
applied during the encoding step.

The above protocol is a success when s = ŝ and a failure when s 6= ŝ. In this PhD thesis,
we are interested in linear codes, for which the first and the third step can be done easily
using linear algebra. Thus, we will mainly focus on the second step, called the error
correction step or the decoding step, where Bob infers x̂ from y using an algorithm
called decoding algorithm or decoder. One of the main goals in coding theory is to find
families of error correcting codes with large ratio k/n and which admit an efficient time
decoder with low failure probability.

One breakthrough result of ref. [94] is the possibility to use a noisy channel to
transmit information reliably at constant rate. Instead of using a single error correcting
code, consider a family of codes C1, C2, . . . where Ci encodes ki logical bits with ni
physical bits. When the ratio ki/ni converges and ni goes to infinity, the limit r ∈ [0, 1]
is called the asymptotic rate of the family. In addition, the threshold of Ci is the
maximum real number p ∈ [0, 1] such that the probability of failure vanishes as i goes to
infinity when using a binary symmetric channel with parameter p. We say that Ci allows
for reliable transmission over the binary symmetric channel when the parameter p is
below the threshold of the code family. A binary symmetric channel with fixed parameter
p ∈ (0, 1) cannot transmit information at rate arbitrarily close to 1. Indeed there is
a limit called the capacity of the channel which is an upper bound on the asymptotic
rate of any family of code allowing for reliable transmission. The notion of capacity
was introduced by Shannon in [94] and is equal to CBEC(p) := 1 − p for the binary
erasure channel and to CBSC(p) := 1− h2(p) for the binary symmetric channel where
h2(p) := −p log2(p)− (1− p) log2(1− p) is the binary entropy function.

In his thesis of 1962 [42], Robert Gallager introduced the class of LDPC codes
(Low Density Parity Check codes) and suggested to decode them with an algorithm
called belief propagation decoder (also called iterative decoder or message passing
algorithm or probabilistic decoder). However at this point, computers were not powerful
enough to implement the belief propagation decoder and thus LDPC codes were not of
practical interest. In the late 90’s, there has been a renewed interest in LDPC codes with
the papers [70, 71, 73, 72]. Nowadays they are intensively used in the communication
networks [91, 95].
In order to define LDPC codes, we need to explain the concepts of parity check matrices
and Tanner graphs. Let C be a linear code and H be a binary matrix such that C =
ker(H). Then H is said to be a parity check matrix for C. A Tanner graph G for C is a
bipartite graph built from H in the following way: the left vertices of G represent the
columns of H , the right vertices represent the rows of H and two vertices are linked if
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and only if the corresponding entry in H is equal to 1 [104]. By definition, a family of
codes is LDPC if and only if the degrees in the Tanner graphs are upper bounded by a
uniform constant.

In the early 90’s, the turbo codes of Berrou, Glavieux and Thitimajshima [9] made
the scientific community aware that some error correcting codes with high success
probability and whose rate approaches channel capacity can be implemented in practice.
The turbo codes use as building blocks the family of convolutional codes [59] introduced
by Elias in [36]. A convolutional code encodes a bit-stream into another bit-stream.
In this PhD thesis we are interested in block codes such as LDPC codes which, by
opposition to a convolutional code, encode a block of bits into a larger block of bits (a
block is a bit-string of fixed length).

For simplicity, the classical codes we will use are regular LDPC codes as defined by
Gallager in his thesis [42]. By definition, a regular code is such that the left vertices of the
Tanner graph have degree dV and the right vertices have degree dC where dV , dC ∈ N
are fixed integers. Note however, that the performance of regular LDPC codes is not
as good as the performance of other families of LDPC codes. For example, ref. [83]
shows that no family of regular codes achieves the capacity of the binary erasure channel.
It has also been demonstrated that irregular LDPC codes lead to better thresholds
[72, 73, 71, 70] and better finite-length performance [90, 110, 113, 115]. More generally,
many families of codes have been introduced with the objective to increase the success
probability and to speed up the encoding and decoding steps. See for example the
concatenated codes [40], the algebraic Reed-Solomon codes [103, 64, 89] and more
recently the spatially-coupled LDPC codes [39], the polar codes [3] and the irregular
LDPC codes based on protographs [106]. In addition, there exist many algorithmic
techniques for optimizing LDPC codes [24, 93, 57, 107].

For more details about classical error correction, see [111, 92, 59].

2.2 Quantum information

This section introduces the fundamental concepts of quantum information theory we
will need to explain our results. See [82] for more details about quantum information
and quantum computation.

A pure state on n qubits |ψ〉 ∈ C2n (“ket psi”) is mathematically defined by a
complex vector normalized for the Euclidean norm with 2n entries. It is convenient
to see |ψ〉 as an element of

(
C2)⊗n where all along this manuscript, ⊗ is the tensor

product (or Kronecker product). The row vector 〈ψ| := |ψ〉† (“bra psi”) is defined to be
the transpose conjugate of |ψ〉. For i ∈ J0; 2n − 1K, the state |i〉 is the column vector
whose only non-zero entry is a 1 at ith position.

Dynamics of pure quantum states is split into two kinds of operations: unitary
evolution and measurements. A unitary evolution has the form U : |ψ〉 7→ U |ψ〉 where
U is any complex unitary matrix of dimension 2n × 2n. Among the unitary matrices,



2.2. Quantum information 27

the Pauli group is of particular interest. It is defined by:

Pn :=
{
αP : α ∈

{
1,−1, i,−i

}
and P ∈

{
1, X, Y, Z

}⊗n}
where X is called the bit-flip and Z is called the phase-flip:

X :=
(

0 1
1 0

)
, Y := iXZ =

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
.

For a Pauli error P ∈ Pn, the weight of P denoted by |P | is defined to be the number of
qubits on which P acts non trivially. Formally, if we write P = αP1 ⊗ . . .⊗ Pn where
α ∈ {1,−1, i,−i} is a global phase and P1, . . . , Pn ∈ {1, X, Y, Z} are one-qubit Pauli
matrices, then |P | is defined by:

|P | := #
{
i ∈ J1;nK : Pi 6= 1

}
.

A matrix Π is said to be an orthogonal projector when Π2 = Π and Π = Π†
where Π† is the Hermitian adjoint of Π (the Hermitian adjoint is the transpose conjugate
matrix).
In general, the measurement of a pure state |ψ〉 ∈ C2n outputs a classical bit b ∈ F2 and
modifies |ψ〉 (we say that |ψ〉 collapses to another quantum state). For error correction,
we are interested in projective measurements defined with two orthogonal projectors
Π0,Π1. These projectors must be of size 2n × 2n and must satisfy Π0 + Π1 = 1 where
1 is the identity matrix.

• With probability 〈ψ|Π0 |ψ〉: the measurement output is b = 0 and the state

collapses to
Π0 |ψ〉√
〈ψ|Π0 |ψ〉

.

• With probability 〈ψ|Π1 |ψ〉: the measurement output is b = 1 and the state

collapses to
Π1 |ψ〉√
〈ψ|Π1 |ψ〉

.

In particular, the Pauli measurement associated to a Pauli operator P ∈ Pn is the
projective measurement defined with Π0 := (1+ P )/2 (the orthogonal projector onto
the +1 eigenspace of P ) and Π1 := (1− P )/2 (the orthogonal projector onto the −1
eigenspace of P ).

In general, a quantum system S is not isolated in the sense that it interacts with other
systems called environment. In that case, the state of S is not necessarily a pure state
but can always be seen as a probabilistic mixture of pure states. A density matrix is a
convenient way to represent such a mixture as a 2n × 2n positive semi-definite operator
with complex coefficients and trace 1. For example, the density matrix associated
to a pure state |ψ〉 is |ψ〉 〈ψ| where 〈ψ| = |ψ〉† as previously. More generally, let
|ψ1〉 , . . . , |ψm〉 be pure states and let p1, . . . , pm ∈ [0, 1] be probabilities such that
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p1 + . . .+ pm = 1. Then, the density matrix of a system where each state |ψi〉 has been
prepared with probability pi is:

ρ =
m∑
i=1

pi |ψi〉 〈ψi| . (2.2)

During the interaction of a quantum system S with an environment E, the number
of qubits in S can change. Indeed, some of the qubits of S can be discarded and some
qubits of E can be added to S. Formally, any valid evolution of an n-qubit system to an
n′-qubit system is represented by a CPTP map E (completely positive trace preserving
map) sometimes called a quantum channel or a quantum operation. A CPTP map is
defined by a set of 2n′ × 2n complex matrices Ek called Kraus operators and satisfying∑
k E
†
kEk = 1. E is then equal to:

E : ρ 7→
K∑
k=1

EkρE
†
k.

For instance, a unitary evolution U is represented by the single Kraus operator E1 = U
where n = n′.

As stated above, the measurement of a Pauli operator P ∈ Pn on a pure state |ψ〉 is
the projective measurement associated to Π0 := (1+ P )/2 and Π1 := (1− P )/2. Let
M be the CPTP map representing this measurement and let:

p0 := 〈ψ|Π0 |ψ〉 , |ψ0〉 := Π0 |ψ〉√
〈ψ|Π0 |ψ〉

,

p1 := 〈ψ|Π1 |ψ〉 , |ψ1〉 := Π1 |ψ〉√
〈ψ|Π1 |ψ〉

.

ThenM is equivalent to prepare the state |ψ0〉 with probability p0 and the state |ψ1〉
with probability p1. Using eq. (2.2), we have:

M : |ψ〉 〈ψ| 7→ |0〉 〈0| ⊗Π0 |ψ〉 〈ψ|Π0 + |1〉 〈1| ⊗Π1 |ψ〉 〈ψ|Π1.

Note that for simplicity, the classical outcome of the measurement b ∈ {0, 1} is stored
as a qubit. More generally, for any density matrix ρ we have:

M : ρ 7→ |0〉 〈0| ⊗Π0ρΠ0 + |1〉 〈1| ⊗Π1ρΠ1. (2.3)

The Kraus operators ofM are E0 = |0〉 ⊗Π0 and E1 = |1〉 ⊗Π1 with n′ = n+ 1.

2.3 Quantum error correction
In Section 2.1, we used the communication scenario presented in Figure 2.4 to introduce
classical error correcting codes. Similarly, a quantum error correcting code can be used
in a protocol where Alice wishes to send a quantum state |ϕ〉 with K qubits through a
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noisy quantum channel to Bob. The basic idea is the same as in the classical setting:
she starts by encoding |ϕ〉 redundantly in a state |ψ〉 with N qubits, then she sends |ψ〉
through the noisy channel and finally Bob applies a quantum operation to correct the
received mixed state ρ. The communication is a success when the state |ϕ̂〉 that Bob
gets at the end is equal to |ϕ〉. In this protocol, each state |ϕ〉 is mapped to its encoded
version |ψ〉 called a code state. The set of code states denoted by Q is called the code
space or a quantum error correcting code. By definition, the encoding is a linear map
from

(
C2)⊗K to

(
C2)⊗N and thus the set Q is a 2K-dimensional linear subspace of(

C2)⊗N . The integer K is called the number of logical qubits and the integer N is
called the number of physical qubits.

Alice Bob

|ϕ〉 ∈
(
C2)⊗K Encoding

Step

Quantum
Noisy

Channel

Decoding
Algorithm

|ϕ̂〉 ∈
(
C2)⊗K

|ϕ̂〉 : a guess for |ϕ〉

Inverse of
Encoding

Step

|ψ〉 ∈ Q ⊆
(
C2)⊗N

N > K

Mixed state ρ
on N qubits

|ψ̂〉 ∈ Q
|ψ̂〉 : a guess for |ψ〉

Figure 2.5: communication scenario for quantum error correcting codes.

In this work, we are interested in quantum channels satisfying the local stochastic
property with parameter p ∈ [0, 1]. A noise model is local stochastic when the probability
for a given set of qubits S to be in the support of the error decays exponentially in |S|.
Formally, let VQ be the set of qubits and let E be a quantum channel. Then:

• E has the stochastic property if E can be described by the following two steps
process:

– In the first step, a random set E ⊆ VQ called the support of the error is
randomly chosen.

– In the second step, a quantum channel EE is applied on the qubits. Here, for
each F ⊆ VQ, EF is a CPTP map acting on the qubits of F .

• E is local stochastic with parameter p ∈ [0, 1] if it has the stochastic property and
the probability distribution of E satisfies for any S ⊆ VQ:

P
[
S ⊆ E

]
≤ p|S|. (2.4)

In other words, a local stochastic noise E is such that:

E : ρ 7→
∑
F⊆VQ

P
[
E = F

]
EF (ρ),



30 Chapter 2. Introduction (English)

where the support E ⊆ VQ is randomly chosen with eq. (2.4) holding for any S ⊆ VQ.
For instance, the channel applying independent and identically distributed bit-flip and

phase-flip errors has the local stochastic property. Another example is the depolarizing
channel which applies the channel D defined below on each qubit independently:

D : ρ 7→ (1− p)ρ+ p

3

(
XρX + Y ρY + ZρZ

)
.

The depolarizing channel for n qubits is equal to D⊗n and is local stochastic with
parameter p/3.

When we will talk about the success probability (or the probability for the error to
be corrected) for a local stochastic error model, we refer to the probability on E for the
communication to be a success:

P
[
Success

]
=
∑
F⊆VQ

P
[
E = F

]
P
[
|ϕ̂〉 = |ϕ〉

∣∣∣ E = F
]
.

Note that when the decoding algorithm is deterministic, we have P
[
|ϕ̂〉 = |ϕ〉

∣∣∣ E =

F
]
∈ {0, 1}.
In the classical case, we focused on the bit-flip error model which is quite realistic.

However, in the quantum setting the set of possible errors is infinite: any unitary or
even any CPTP map could potentially happen on the quantum state we try to protect.
Surprisingly, it is sufficient to correct the finite set of Pauli errors, to be able to correct
general errors (see for example [8] or [82]). For instance, if a given error correcting
procedure is able to correct any Pauli error acting on the qubits of F ⊆ VQ, then the
same procedure corrects an arbitrary CPTP map acting on F . As a consequence, for a
local stochastic error model, we can assume without loss of generality that the CPTP
maps EF are Pauli channels (i.e. apply Pauli errors on the qubits of F ).

In the ’90s, the question to know whether quantum error correction was possible
was discussed until Shor [96] and Steane [102] proved it is indeed feasible. Just after
these seminal works, the theory of quantum error correction was developed, for example
in [63, 20, 101, 43]. In particular in [43], Gottesman introduced the mathematical tools
used to define and to study a wide variety of quantum codes called stabilizer codes. A
stabilizer code Q on N physical qubits is defined from a finite set of commuting Pauli
operators g1, . . . , gM ∈ PN . These operators are called stabilizer generators and Q is
defined in the following way:

Q :=
{
|ψ〉 ∈

(
C

2)⊗N : g1 |ψ〉 = . . . = gM |ψ〉 = |ψ〉
}
.

The code Q is said to be an [[N ;K]] stabilizer code where K is the number of logical
qubits.

In this thesis, we focus on a particular class of stabilizer codes called CSS LDPC
codes. The terminology “CSS” stands for Calderbank, Shor and Steane who introduced
the CSS construction in 1996 [20, 102]. A CSS code is constructed from two classical
codes CX and CZ with C⊥Z ⊆ CX . The code CX is used to correct bit-flip errors and CZ
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is used to correct phase-flip errors. The first step of the error correction procedure is to
measure the stabilizer generators. The output of the measurement is a bit-string called
syndrome. From a practical perspective, if we want to be able to measure the stabilizer
generators, it is important that each one involves a small number of qubits and each
qubit is involved in a small number of operators. These properties hold when the two
classical codes used to construct the CSS code are LDPC and in that case the code is
said to be a CSS LDPC code.

The minimal distance of a stabilizer code is the minimal weight of a Pauli error which
maps a code state to another orthogonal code state. This quantity is a good indication of
the performance of the code and it not known whether CSS LDPC codes with minimal
distance D = Θ(N) exist. Without the LDPC constraint, this question was resolved
in the affirmative when the CSS codes were introduced [20, 102]. For LDPC codes,
the best known minimal distance is D = Θ(

√
N 4
√

log(N)) for a family of codes with
K = 1 logical qubit whose construction is based on an 4-dimensional manifold [41].
With the additional constraint of constant rate K = Θ(N), the best known minimal
distance is D = Θ(

√
N) and is achieved by the hypergraph product codes of Tillich and

Zémor [108]. When the minimal distance D of an [[N ;K]] stabilizer code is known, the
code is said to be an [[N ;K;D]] stabilizer code.

A decoder or decoding algorithm for a stabilizer code is a classical algorithm taking
the syndrome as input and outputting a Pauli error. The algorithm succeeds when
applying this Pauli on the quantum state received by Bob turns it back to the original
code state Alice sent through the noisy channel. For CSS codes, the goal of the decoder
is to correct the two initial classical codes taking into account the degeneracy of the CSS
code. The terminology “degeneracy” refers to the property that there exist equivalent
errors, i.e. different Pauli operators which act in the same way on the code states.
For instance, a stabilizer generator of a code maps any code state to itself. Thus, it
is equivalent to the identity and to the other stabilizer generators. By contrast in the
classical setting, two errors act in the same way on the codewords if and only if they are
equal. Because of the degeneracy, the decoder for a quantum code may have corrected
the error even though it did not find the error that physically happened on the initial state.
This is crucial for CSS LDPC codes since the classical codes used in the construction
must contain constant weight codewords. Thus, CSS LDPC codes are highly degenerate.
An example of a decoder with good performance is the minimum weight decoder. It
returns a minimum weight Pauli error whose syndrome is equal to the input syndrome.
A threshold for a family of quantum codes is a non-zero probability pth ∈ (0, 1] such
that the error generated by a local stochastic channel with parameter p < pth is corrected
with probability going to 1 in the limit of large block length.

Among CSS LDPC codes, the toric code introduced by Kitaev is the most famous
one and has been widely studied [61, 62, 30, 86, 28, 68]. The toric code of parameter
L ∈ N∗ is defined using a tessellation of a 2-dimensional torus leading to a [[2L2, 2, L]]
stabilizer CSS LDPC code. The toric code has many advantages. For example, its
minimal distance D = Θ(

√
N) is large and its stabilizer generators involve only nearest

neighbor interactions. This is convenient for implementation since a 2-dimensional
torus can be embedded in our 3 dimensional Euclidean space. Thus, a real device
implementing the toric code would require only interactions between qubits close to
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each other in space. In addition, the performance of the toric code is really good even for
small block size and the minimum weight decoder can be implemented in polynomial
time with the minimum weight perfect matching algorithm of Edmonds [30, 34].

Beyond the toric code, any tessellation of a manifold defines a CSS LDPC code
called a topological code. This principle allows to use powerful arguments from topology
to study such codes and to design decoders. See for example the surface code [15],
the 2-dimensional hyperbolic codes [16], the semi-hyperbolic codes [17] and the 4-
dimensional hyperbolic codes [51, 69, 55]. There exist two results which put strong
constraints on the trade-off between the parameters N , K and D of a 2-dimensional
topological code [14, 27]. The first one states that KD2 = O(N) and holds for any
topological code constructed from a 2-dimensional Euclidean manifold [14]. The second
bound isKD2 = O(N log2(N)) and holds even if the underlying space is not Euclidean
[27]. Thereby, the advantage of using topological codes constructed from 4-dimensional
spaces is to go beyond these two no-go results. In particular, the parameters K = Θ(N)
and D = Ω(N0.2) are achieved for 4-dimensional hyperbolic codes [51, 69]. Note
however that there is no way to embed an hyperbolic code or a 4-dimensional code into
the real world keeping nearest neighbors interactions.

Another generalization of the toric code is the hypergraph product code introduced by
Tillich and Zémor in [108] and described in Section 4.2. This combinatorial construction
has the advantage to build quantum codes from good classical ones. Thus, some
arguments from classical coding theory can be imported to study them. If the initial
classical codes are LDPC, have constant rate and have linear minimal distances then
the resulting hypergraph product code is also LDPC, has constant rate and its minimal
distance grows like the square root of the block length. This asymptotic scaling of the
parameters is one of the best among the known constructions of quantum codes. The
main object of interest in this PhD thesis described in Section 2.5 is a particular family
of hypergraph product codes called the quantum expander codes [67]. Compared to
general hypergraph product codes, the quantum expander codes have the advantage to
come up with an efficient decoder called the small-set-flip decoder.

In Figure 2.6, we provide examples of CSS LDPC codes. The columns “Dimension”
and “Minimal distance” contain the parameters K and D of the codes. By definition
of the minimal distance, any error of weight up to b(D − 1)/2c is corrected by the
minimum weight decoder which runs in exponential time in general. However, the
known polynomial time decoder do not necessarily correct all the errors of weight up to
a fraction of the minimal distance. Hence, we report in the column “Maximum weight
of adversarial errors corrected with an efficient decoder” the best known value of T such
that any error of weight up to T is corrected by a polynomial time decoding algorithm.
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Dimension Minimal distance
Maximum weight of

adversarial errors corrected
with an efficient decoder

Toric code [62] 2 Θ(
√
N) Θ(

√
N)

From a 4D manifold [41] 1 Θ(
√
N 4
√

log(N)) No efficient decoder

Hyperbolic 2D [41] Θ(N) Θ(logN) Θ(logN)
Hyperbolic 4D [51, 55, 69] Θ(N) Ω(N0.2),O(N0.3) Θ(logN)

Hypergraph product codes [108] Θ(N) Θ(
√
N) No efficient decoder

Quantum expander codes [67] Θ(N) Θ(
√
N) Θ(

√
N)

Figure 2.6: some examples of CSS LDPC codes.

2.4 Hypergraph product codes

It is still an open question to know whether LDPC CSS codes with constant rate and
linear minimal distance exist. A naive approach would be to build a CSS code from
two LDPC codes CX and CZ with good minimal distances. Unluckily, if CZ is LDPC
then the vector space C⊥Z contains constant weight elements and the required inclusion
C⊥Z ⊆ CX implies that the minimal distance of CX is constant. Accordingly, good LDPC
classical codes cannot be used directly to build a good LDPC CSS code.

The hypergraph product construction builds a CSS codeQ starting from two classical
codes C1 and C2 without any extra condition such as C⊥2 ⊆ C1. More precisely, two
classical codes CX and CZ are constructed from C1 and C2 and then the hypergraph
product code is the CSS code associated to CX and CZ . It is particularly interesting
for the LDPC case because if C1 and C2 are constant rate LDPC codes then so is Q. In
addition, when C1 and C2 have linear minimal distances, the hypergraph product has
minimal distance equal to D = Θ(

√
N) where N is the number of physical qubits.

Thanks to these favorable parameters, it is expected that hypergraph product codes
perform well for quantum error correction and fault-tolerant quantum computation.

A natural idea for decoding hypergraph product codes is to bring the decoders of
classical codes. Unfortunately, this strategy does not work in general. For example,
the belief propagation decoder is intensively used in the classical setting but does not
perform well for hypergraph product codes [86, 78]. Hopefully, it can be improved
using neural networks [68] or an ordered statistics decoding post-processing [85]. Ref.
[85] shows that hypergraph product codes have really good performance in practice: for
a depolarizing channel with physical error rate below 10%, a well chosen hypergraph
product code with 28 logical qubits performs better than the minimum weight decoding
of a surface code with 1 logical qubit (see Figure 3 of [85]).

2.5 Quantum expander codes

In 1996, Sipser and Spielman introduced the concept of expander graphs and defined
a classical expander code as being a code whose Tanner graph is an expander [98].
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The expansion property is really convenient to show some properties of the code. For
example, the minimal distance of a classical expander code is linear in the block length.
For this PhD thesis, we are especially interested in the manner in which sufficient
expansion implies that any error of weight up to a fraction of the minimal distance is
corrected by a decoder called the bit-flip algorithm. The bit-flip algorithm is one of the
simplest decoders it is possible to design and this is why it is convenient for a theoretical
analysis. Nevertheless, numerical simulations show that the belief propagation decoder
is the best known decoder for classical LDPC codes and widely outperforms the bit-
flip algorithm. In addition, the belief propagation decoder can also be analyzed with
expansion based arguments [19].

Finding the expansion parameters of a graph is a co-NP-hard problem [10] and con-
structing expander graphs is not straightforward. In this work, we rely on a probabilistic
construction called the configuration model allowing to build with high probability
a code with any desired expansion parameter and any desired rate [98, 10, 80]. The
first deterministic construction of expander graphs is based on algebraic arguments by
Margulis [77] and was latter improved by Barg and Zémor [5, 7, 6]. It is also possible to
construct good expander graphs with the zig-zag product method [22]. See [56] for a
survey on expander graphs.

By definition, a quantum expander code is a [[Θ(n2),Θ(n2),Θ(n)]] stabilizer code
defined as the hypergraph product of a classical [n,Θ(n),Θ(n)] expander code with
itself [67]. Ref. [67] also introduced the small-set-flip decoder and proved that any error
of weight up to a fraction of the minimal distance is corrected. The main motivation
for studying these codes is the result of Daniel Gottesman showing that fault-tolerant
quantum computation with constant space overhead is possible [46]. As discussed at the
beginning of this chapter, this result is subjected to the conjecture that quantum codes
with suitable properties exist. Thanks to [67], it is already known that quantum expander
codes satisfy many of these properties: they are LDPC, they have constant rate and a
good minimal distance. The main result of my PhD is to show that quantum expander
codes satisfy also the other desired properties and thus can be used to implement
Gottesman’s fault-tolerant scheme.

Remember from the hypergraph product construction that a quantum expander code
is a CSS code associated to two classical codes CX and CZ constructed from the initial
classical expander code. It turns out that up to a permutation on the bits, the code CX is
equal to CZ . Thus, as it is usual for CSS codes, it is sufficient to describe and analyze the
decoder for bit-flip errors only. Under this hypothesis, the error support determines the
error on the qubits and thus we will often assume that an “error” and an “error support”
are the same objects. The small-set-flip decoder is a hard decoding algorithm. This
means that its execution is divided into several rounds and at each round, the qubits
belonging to some set F are flipped. The set F is called a small-set and we denote by F
the ensemble of all the possible small-sets that can be flipped. The implementation of
the small-set-flip algorithm is quite simple: at each round, a small-set F ∈ F is selected
in such a way that the syndrome weight decreases sufficiently when the qubits of F are
flipped (the syndrome weight is the number of syndrome bits equal to 1).
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2.6 Fault-tolerant quantum computation
The goal of fault-tolerant quantum computation is to design circuits which are robust
against noise [44]. A circuit C is described by wires (containing quantum states) and
elementary operations such as state preparations, measurements or unitary gates. We
often assume that C has a classical output r ∈ Fm2 . During the last step, all the quantum
wires are measured and r is equal to the measurement output on which is applied a
classical post-processing. In this PhD thesis, a state preparation creates a |0〉 state, a
measurement corresponds to the measurement of a Z-Pauli matrix and the unitary gates
belong to the finite gate set G :=

{
X,Z,H, S, T, CX

}
where:

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
, H = 1√

2

(
1 1
1 −1

)
,

S =
(
e−iπ/4 0

0 eiπ/4

)
, T =

(
e−iπ/8 0

0 eiπ/8

)
, CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Note that G is not minimal since Z = S2 = T 4 and X = H ◦ Z ◦H . However, it is
universal in the sense that any unitary can be approximated with gates belonging to G.
Formally, for all η > 0 and for all unitary U , there exists a unitary V constructed from
the gates of G such that:∥∥(U − V ) |ψ〉

∥∥ ≤ η for any pure state |ψ〉.

In addition, the Solovay-Kitaev theorem [61] asserts that any circuit made of m
controlled-not gates and arbitrary single qubit gates can be approximated withO

(
m log2(m/η)

)
gates of G.

A location is a point of the circuit where an error can occur. For example, each state
preparation, each measurement and each unitary gate is a location. The noise model we
will use is the local stochastic error model with parameter p ∈ [0, 1]. Let L be the set of
locations of an arbitrary circuit C, then the error is represented by a random variable
F ⊆ L called the set of faulty locations. F satisfies for all R ⊆ L:

P
[
R ⊆ F

]
≤ p|R|.

Once F has been chosen, a location of L \ F behaves normally but a faulty location
l ∈ F is replaced by an arbitrary CPTP map with the same input and output spaces than
l. Let r be the output that C would yield in the noiseless case F = ∅. Then, the aim of
fault-tolerant quantum computation is, given a parameter ε > 0, to design a circuit C′
whose output is r with probability at least 1− ε when the locations are subjected to a
local stochastic noise.

In ref. [1], the fault-tolerant circuit C′ is built using code concatenation. The idea
is to define a function Φ mapping a circuit C to another circuit Φ(C) which is more
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robust against noise. Then, the circuit C′ is defined by C′ = Φk(C) for a well chosen
k ∈ N. In Φ(C), each wire of C is encoded intoN wires using an [[N, 1]] stabilizer code
and error correction is regularly performed on the wires of Φ(C). In this fault-tolerant
protocol, the qubits are encoded one by one leading to polylogarithmic space and time
overheads as stated in eq. (2.1).

In ref. [46] where fault-tolerance with constant space overhead is achieved, the
wires of C are divided into blocks of K ∈ N wires and each block is encoded using
an [[N,K]] stabilizer code Q. Contrarily to the case of code concatenation, the block
length of Q depends on the number of wires in C and Q is chosen among a family of
constant rate LDPC codes. In this PhD thesis, we show that quantum expander codes
can be used in this construction to correct the errors appearing in the resulting circuit C′.

2.7 Summary of contributions

The authors of ref. [67] studied how the small-set-flip decoder corrects a quantum
expander code in the case where the error is adversarial. The drawback of this setting
is that the minimal distance of the code is a fundamental limit on the error weight that
any algorithm can correct. When the error is generated with a quantum noisy channel
(for example with the depolarizing channel) the error weight is generally linear in the
block size N . This is way above the best known minimal distance Θ

(√
N 4
√

log(N)
)

for LDPC quantum codes [41]. Despite this upper bound on the minimal distance, it
is well known that some quantum LDPC codes have a threshold and thus successfully
correct a depolarizing noise (see [30, 17] for numerical simulations and [30, 66] for
theoretical arguments). In this PhD thesis, we show that the small-set-flip decoder has a
threshold for any noise model satisfying the local stochastic property that we defined
and discussed in Section 2.3.

Kovalev and Pryadko already proved the existence of a threshold when a local
stochastic noise is corrected with the minimum weight decoder [66]. As explained
below, we showed in ref. [38] that similar techniques can be used for the small-set-flip
decoder. We denote by VQ the set of qubits and by GX the Tanner graph of CX . We will
say that a set of qubits is a small ensemble when any adversarial error whose support
is included in this ensemble is corrected by the decoder. For instance for quantum
expander codes, a “small ensemble” is a set of qubits K ⊆ VQ with size O(

√
N). Here,

we use the word “ensemble” as a synonym of “set” to avoid a mix-up between “small
ensemble” and “small-set”. In addition, for a given initial error E ⊆ VQ, two sets of
qubits K1,K2 are said to be independent when the behavior of the decoder on the error
K1 ∩E does not depend on the error K2 ∩E. In ref. [66], the qubits are decomposed
into small independent ensembles so that the decoder corrects the error included in each
ensemble and thus corrects the entire error as well.
In order to decompose the qubits into small independent ensembles, we will say that
a decoder is local when two sets of qubits are independent as soon as the intersection
of their neighborhoods in GX is empty (as a reminder, the neighborhood of a set of
qubits in GX is a set of check-nodes). For example, the small-set-flip decoder and the
minimum weight decoder are local. We define the adjacency graph of the code to be the
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graph with vertex set VQ and such that two qubits are linked if and only if they share
a check-node in GX . In particular, if two sets K1,K2 ⊆ VQ are not adjacent in the
adjacency graph, then no check-node can be adjacent to both K1 and K2 in GX , and
thus K1 and K2 are independent.
When we run a decoder, we call residual error the physical error remaining on the
qubits after applying the correction the decoder guessed. We also define the execution
support to be the set of all qubits belonging to the error support at some point of the
algorithm. For instance with the small-set-flip decoder, the execution support contains
the qubits of the initial error together with the qubits of all the small-sets which have
been flipped by the algorithm. Then, we can decompose the qubits into independent
ensembles K1,K2, . . . by defining Ki to be the connected components of the execution
support in the adjacency graph. Finally, we will use percolation arguments to show that
Ki is a small ensemble with high probability [48, 74, 58].
To summarize the arguments above, we give a sketch of the proof of [38]: we run the
small-set-flip decoder on an error generated with a local stochastic noise. Let K be a
connected component of the execution support U in the adjacency graph. Then, the
locality property ensures that the way the decoder acts on K does not depend on whether
or not there are errors outside K. In particular, the residual error on the qubits of K is
equal to the residual error we would get by running the small-set-flip decoder without
initial error outside K. Using arguments from percolation theory, the set K satisfies∣∣K∣∣ = O(

√
N) with high probability and thus the initial errors belonging to K are

corrected by the small-set-flip decoder. This is true for each connected component K of
U thus the entire error is corrected.

Percolation theory by itself is a whole field of probability theory [48]. However, in
this work we are interested in the special case of site percolation with local stochastic
noise on a finite graph with bounded degree. Let V be the set of vertices of a finite graph
G with maximum degree dG (the vertices are called “sites” in the context of percolation)
and choose a random subset of the vertices E ⊆ V . Then, the central question in
percolation theory is to understand what is the size of the connected components of E.
For error correcting codes, the graph G is the adjacency graph and the set E represents
the support of the error. Usually for percolation, the probabilistic law on E is an iid
error model (each site is in E with probability p independently from the other sites) but
in this work we deal with the more general local stochastic error model. By definition, a
noise model has the local stochastic property when the random set E satisfies eq. (2.4)
for all S ⊆ V . Hence, following ref. [66], we extend some useful percolation results to
this case.

The other significant difference with the results from standard percolation is that we
perform a generalized process that we call α-percolation. Instead of being interested in
the maximum size of the connected subsets of E, the aim of α-percolation is to look
at the connected α-subsets where an α-subset is a set X ⊆ V such that at least α|X|
elements of X belong to E. For instance, a 1-subset is simply a subset and 1-percolation
is percolation in the usual sense. Looking at α-subsets is relevant because the execution
support of the small-set-flip decoder is an α-subset of the initial error for some α ∈ (0, 1].
The main theorem (already proved in the particular case α = 1/2 in ref. [66]) states that
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with high probability, any connected α-subset of E has size O(
√
|V|). If we go back to

the discussion about local decoders, the set K (defined to be any connected subset of
the execution support) is an α-subset of E and thus

∣∣K∣∣ = O(
√
N) must hold.

For an iid noise and α = 1, it is well known that with high probability, if p <
1/(dG − 1) then the connected components of E have size O

(
log(|V|)

)
. On the other

hand, if p > 1/(dG − 1), there is a unique component whose size is linear (called “giant
component”) [58]. In this work, we extend this result to any local stochastic noise and
arbitrary α ∈ (0, 1]. More precisely, we determine a non-zero value pth = pth(α) such
that if p < pth, then the probability for the existence of a connected α-subset for E
with size above t ∈ N is at most Θ(|V|βαt) where β = p/pth < 1. A threshold value
usually identifies a phase transition between the regime where E has small connected
components and the regime where E has a unique giant component. However for error
correction, the concern is to be below threshold and thus pth is said to be a threshold
even though it is only a lower bound on the percolation threshold. In particular, the
value pth we get is not tight for an iid noise since pth(1) < 1/(dG − 1). It could be
interesting to find the actual threshold for α < 1 and to extend the other results from
percolation on finite graphs [58].

A challenging assumption to apply Gottesman’s fault-tolerant scheme is to show that
the quantum expander codes are not defeated when the syndrome measurement is noisy.
Formally in this error model, a set of syndrome bits D is randomly chosen according
to a local stochastic noise and the input of the small-set-flip algorithm is the syndrome
where the bits of D have been flipped. This hypothesis is necessary in the context
of fault-tolerant quantum computation, because the syndrome bits are produced by a
quantum measurement performed with physical noisy components. However because of
the LDPC property, we cannot hope for the decoder to correct entirely the error on the
qubits when the syndrome is noisy. Instead, we show that the residual error is equivalent
to a local stochastic error with controlled parameter.

Similarly to the case where the syndrome measurement is perfect, the first step of
the analysis is to consider adversarial errors whose weight is below the minimal distance.
In that case, the weight of the residual error is shown to be upper bounded by a linear
function of |D|. The proof strategy is to go back to the case of noiseless syndrome and
to show that the small-set-flip algorithm can flip many small-sets in each round. As we
discuss later, this property also implies that the decoder can be parallelized for noiseless
and noisy syndrome measurements. Finally, to deal with local stochastic errors, we will
apply an α-percolation process to the syndrome adjacency graph to reduce the problem
to the case of adversarial errors. The syndrome adjacency graph is the Tanner graph of
CX with additional edges between the qubits linked in the adjacency graph [46].

In addition, our analysis shows that the small-set-flip algorithm has the single-shot
property. A quantum code is said to be single-shot when one round of noisy syndrome
measurement is sufficient for the decoder to have a threshold. By contrast, the toric
code and other 2-dimensional quantum codes are not single-shot. This means that the
syndrome has to be measured Θ(D) times to get enough information to correct the
error. This property is really favorable in the context of fault-tolerance where many error
correction steps have to be performed.
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Single-shot error correction was introduced by Hector Bombin in [12] and various
code families have been shown to be single-shot: the three-dimensional gauge color
codes [12], the four-dimensional toric code [32] and the four-dimensional hyperbolic
codes [55]. A theory of single-shot error correction has been proposed in ref. [21] where
the main idea was to correct the syndrome errors before trying to correct the qubit errors.
Taking into account [21] and Lemma 4.21 reported in this manuscript, the single-shot
property seems closely related to the soundness property. Informally, a code is sound if
below minimal distance, the syndrome weight can be lower bounded by a linear function
of the error weight.

In ref. [37] we have also shown that the small-set-flip algorithm can be parallelized
to run in constant depth. When the syndrome is noisy, if the number of rounds is chosen
to be big enough (but constant) then the residual error will be equivalent to a local
stochastic error with a small parameter. On the other hand, when the syndrome is perfect,
a fixed number of rounds will not be sufficient to correct entirely the error. However,
running the algorithm with a number of steps logarithmic in the syndrome weight will
correct the error with high probability.

In ref. [49], we have done some simulations to study how the small-set-flip decoder
performs in practice. For simplicity, we have restricted our attention to the sequential
algorithm and perfect syndrome measurements. The numerical results we get are
promising. For instance, the value we derived for the threshold is way above the lower
bound provided by theoretical arguments. The threshold value is near 4.5% for a family
of hypergraph product codes with rate 1/61 and near 2% for rate 1/5.
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Chapter 3

Classical error correction

The goal of this chapter is to provide the notions of classical coding we did not introduced
in Section 2.1. Section 3.1 summarizes standard terminology and definitions. Section 3.2
is a detailed study of classical expander codes, many of the ideas of this section will be
used in Chapter 4 for quantum expander codes.

3.1 Background

As stated in Section 2.1, a classical message on n bits is represented with a binary vector
of Fn2 . The group operation on F2 = {0, 1} is the addition modulo 2 denoted by ⊕ and
defined by:

0⊕ 0 = 1⊕ 1 = 0, 0⊕ 1 = 1⊕ 0 = 1.

The metric on Fn2 used for error correcting codes is called the Hamming distance:

Definition 3.1 (Hamming weight and Hamming distance). The Hamming weight of a
binary vector e ∈ Fn2 is the number of 1s in e:

|e| := #
{
i ∈ J1;nK : ei = 1

}
.

The Hamming distance between e1 ∈ Fn2 and e2 ∈ Fn2 is equal to
∣∣e1 ⊕ e2

∣∣, it is the
number of indices where the bits of e1 and e2 are different.

For example, when Alice sends a bit-string x ∈ Fn2 to Bob through the binary
symmetric channel, the probability he gets some message y ∈ Fn2 is equal to:

P
[
Bob gets y

∣∣ Alice sent x
]

= p|x⊕y|(1− p)n−|x⊕y|.

The binary vector e := x⊕ y is called the error. When the ith bit of x is flipped by the
channel, we have ei = 1 and ei = 0 otherwise.

41
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By definition, the set of codewords of an [n, k, d]-linear error correcting code C is a
k dimensional linear subspace of Fn2 . The integer k is called the number of logical bits,
n is called the number of physical bits and d is the minimal distance defined by:

d := min
{
|c| : c ∈ C, c 6= 0n

}
.

Representing a linear code can be done using either a generator matrix or a parity
check matrix.
A generator matrixG is an n×k binary matrix whose columns span the set of codewords
of C, in particular the rank of G is equal to k the dimension of C. In the communication
protocol of Figure 2.4, Alice encodes a message s ∈ Fk2 into a codeword x ∈ Fn2 , then
she sends x through the noisy channel to Bob who gets y ∈ Fn2 as channel output, he
corrects y to x̂ ∈ Fn2 with the decoding algorithm and finally he computes ŝ ∈ Fk2 the
message whose corresponding codeword is x̂. With the generator matrix G, Alice can
perform efficiently the encoding step using the formula x = Gs and Bob can deduce ŝ
from x̂ using a Gaussian elimination on the linear system x̂ = Gŝ.
A parity check matrix for C is any binary matrix H with n columns satisfying C =
ker(H). In particular, each column of G belongs to the kernel of H thus HG = 0.
Moreover, the rank of H is n− k thus m ≥ n− k with equality when H is full rank.
The rows of H span C⊥ the orthogonal space of C defined by

C⊥ :=
{
d ∈ Fn2 : dT c = 0 for all c ∈ C

}
where dT is the transpose vector of d. The rows of H can also be seen as linear
constraints on the bits of c ∈ C called parity check equations as illustrated in Figure 3.1
with the Hamming code.

H =

1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 0 1 1 1



x ∈ C ⇔


x1 ⊕ x2 ⊕ x3 ⊕ x5 = 0
x2 ⊕ x3 ⊕ x4 ⊕ x6 = 0
x3 ⊕ x5 ⊕ x6 ⊕ x7 = 0

Figure 3.1: parity check matrix, parity check equations and factor graph for the [7, 3, 3]
Hamming code.

The columns of the parity check matrix are the 7 possible non-zero strings with 3 bits.

For our purpose, there is a convenient way to represent a parity check matrix H with
n columns and m rows using a bipartite graph called the factor graph or the Tanner
graph of the code (see Figure 3.1 for an example). Let G be a bipartite graph whose left
set of vertices V satisfies

∣∣V ∣∣ = n and whose right set of vertices C satisfies
∣∣C∣∣ = m.
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In this context, an element v ∈ V is called a bit-node or simply a bit and will represent
a column of H (i.e. a physical bit of the code). Similarly, an element c ∈ C is called a
check-node or simply a check and will represent a row ofH (i.e. a parity check equation).
The graph G is said to be the Tanner graph of H (or a Tanner graph for the associated
code) when the edges in G correspond to the 1 in H: if Hi,j = 1 then the ith bit-node
and the jth check-node are connected and if Hi,j = 0 then their are not connected.

The bit-string σ(y) := Hy ∈ Fm2 is called the syndrome of y or the syndrome of
the error, for example y ∈ C holds if and only if σ(y) = (0, . . . , 0). The terminology
“syndrome of the error” is justified by the fact that when Alice sends a codeword x to
Bob who receives y, the syndrome of y does not depend on x but exclusively depends
on the error e = x ⊕ y that happened on the channel. Indeed, for all x ∈ C, Hx = 0
holds and:

σ(y) = Hy ⊕Hx = σ(e).

As shown in Figure 2.4, the error correction step is done with an algorithm which
infers some x̂ from the output of the channel y. In this PhD thesis we use the syndrome
decoding strategy where the decoder takes as input the syndrome σ(y) = σ(e) ∈ Fm2 ,
returns ê ∈ Fn2 a guessed for the error and finally sets x̂ = y ⊕ ê. Syndrome decoding
is particularly relevant for quantum error correction since we do not have a direct access
to the value of a quantum state.
For example, on the input σ ∈ Fm2 , the minimum weight decoder returns:

ê := arg min
e∈Fn2 :σ(e)=σ

|e|. (3.1)

Notation 3.2. It will be convenient to see an error pattern e ∈ Fn2 as a subset of J1;nK
denoted by an upper letter:

E :=
{
i ∈ J1;nK : ei = 1

}
.

Similarly, an error is often seen as a subset of the bit-nodes and the syndrome is often
seen as a subset of the check-nodes: E ⊆ V and σ ⊆ C.
When a bit-string is seen as a subset, the bit-wise addition ⊕ is replaced by the sym-
metric difference of sets and the Hamming weight defined in Definition 3.1 becomes the
cardinality.

On a Tanner graph, the syndrome is the set of check-nodes incident to an odd number
of faulty bits, see Figure 3.2 for some examples on the Hamming code. A check-node
is said to be unsatisfied when it belongs to the syndrome and is said to be satisfied
otherwise.
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Figure 3.2: examples of errors and the associated syndrome for the Hamming code.
The faulty bits and the unsatisfied checks are in red.

When we will talk about the degree of a physical bit or the degree of a check, we
refer to the degree of the corresponding node in the Tanner graph. The degree of a bit is
the number of parity check equations in which it appears and the degree of a check is
the number of bits in the corresponding parity check equation.

In this PhD thesis, we are interested in the notion of low-density parity check (LDPC)
codes. A linear code is (l, r)-LDPC when the bit-nodes in the Tanner graph have degree
at most l and the check-nodes have degree at most r. A family of linear codes C1, C2, . . .
is said to be LPDC when there exist two integers l, r ∈ N such that each code of the
family is (l, r)-LDPC. For a family of LDPC codes, the parity check matrices are sparse
because the weight of the columns of the matrices is upper bounded by l and the weight
of the rows of the matrices is upper bounded by r.
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3.2 Classical expander codes

Remember that the syndrome decoding task consists in finding the bit errors which
have led to a given set of unsatisfied check-nodes. By definition, the neighborhood of
any unsatisfied check-node must contain at least one bit in the error. It would be very
convenient if, on the one hand, all the bits in the error have a neighborhood containing
a majority of unsatisfied check-nodes and, on the other hand, the neighborhood of all
the bits not in the error was mainly composed of satisfied check-nodes. Under these
two assumptions, the error would be corrected by flipping all the bits adjacent to a
majority of unsatisfied check-nodes. Actually, we cannot hope these two properties
to hold for any adversarial error but classical expander codes are defined so that the
bits mostly satisfy these properties. In order to avoid a situation where many satisfied
check-nodes are in the neighborhood of a bit in the error, the expansion property ensures
that there are few check-nodes adjacent to two bits in the error. Equivalently, the number
of check-nodes in the neighborhood of the error must be large.

An expander code can be decoded with the bit-flip algorithm which, while it is
possible to do so, finds and flips a bit such that this flip decreases the syndrome weight.
The bit-flip algorithm is sequential in the sense that a single bit is flipped at each round
of the procedure. It is also possible to design a parallel version of the algorithm where
at each round, all the bits having a majority of unsatisfied neighbors are flipped. Even
though the sequential algorithm has better performance than the parallel version, it is
also way slower since it runs essentially in linear time compared to logarithmic time
when parallelized, see for example the table in [98]. In this chapter, we focus on the
sequential bit-flip algorithm trying to highlight the ideas that can be reused for the
analysis of the small-set-flip decoder for quantum expander codes (see Section 4.3). In
particular, we introduce some concepts and show some properties that are not essential
for classical expander codes but will be useful in the quantum setting. Note that the
constants reported in the statements of this chapter can be improved with the arguments
of [18].

3.2.1 Definition

All along this PhD thesis, we fix a Tanner graph G whose set of bit-nodes is V , whose
set of check-nodes is C and we denote by Γ the neighborhood in G. In addition,
G is supposed to be a regular graph: the bit-nodes have degree dV and the check-
nodes have degree dC . Note that for any E ⊆ V :

∣∣Γ(E)
∣∣ ≤ dV

∣∣E∣∣ and for any
D ⊆ C :

∣∣Γ(D)
∣∣ ≤ dC

∣∣D∣∣. An expander graph is such that for any set E or D
sufficiently small, the neighborhood is large in the sense that the previous upper bounds
are nearly reached.

Definition 3.3 (Expander graph [98]). Let G be a regular Tanner graph with V the set
of bit-nodes and C the set of check-nodes. The left degree of G is denoted by dV and
its right degree is denoted by dC . We say that G is an expander graph with parameter
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δ > 0 if there exists γ > 0 such that:

∀E ⊆ V :
∣∣E∣∣ ≤ γ∣∣V ∣∣⇒ ∣∣Γ(E)

∣∣ ≥ (1− δ)dV
∣∣E∣∣,

∀D ⊆ C :
∣∣D∣∣ ≤ γ∣∣C∣∣⇒ ∣∣Γ(D)

∣∣ ≥ (1− δ)dC
∣∣D∣∣.

When we want to specify the value of γ, we say that a graph is a (γ, δ)-expander graph.
A classical expander code with parameters γ, δ > 0 is a code associated to a (γ, δ)-
expander Tanner graph.
A code family is a classical expander code family with parameter δ > 0 when there exists
γ > 0 (γ independent of the code) such that each code of the family is a (γ, δ)-expander
code.

Following [67] we could distinguish between the notions of left expansion and right
expansion.
G is a left expander graph with parameter δV > 0 if there exists γV > 0 such that:

∀E ⊆ V :
∣∣E∣∣ ≤ γV ∣∣V ∣∣⇒ ∣∣Γ(E)

∣∣ ≥ (1− δV )dV
∣∣E∣∣. (3.2)

G is a right expander graph with parameter δC > 0 if there exists γC > 0 such that:

∀D ⊆ C :
∣∣D∣∣ ≤ γC∣∣C∣∣⇒ ∣∣Γ(D)

∣∣ ≥ (1− δC)dC
∣∣D∣∣ (3.3)

For simplicity, we consider graphs with both right and left expansion where γ = γV =
γC and δ = δV = δC . Note that the left expansion property is sufficient for the analysis
done in Section 3.2 for classical expander codes but we will need left and right expansion
for quantum expander codes.

3.2.2 Analysis of classical expander codes

In [98], Sipser and Spielman showed that an expander code with parameter δ < 1/2 has
a linear minimum distance and if δ < 1/4 then any error of weight up to a fraction of
the minimal distance is corrected by a decoder called the bit-flip algorithm.

In this section, we establish useful properties of expander graphs and deduce a lower
bound on the minimal distance.

Notation 3.4. Let G be a bipartite expander graph with parameters γ, δ > 0, with left
degree dV and right degree dC . Let V be the set of bit-nodes and let C be the set of
check-nodes. The graph G is interpreted as a Tanner graph and we denote by C the
corresponding classical error correcting code.
For E ⊆ V , let Γu(E) ⊆ Γ(E) be the set of unique neighbors of E:

Γu(E) :=
{
c ∈ C : there exists a unique e ∈ E such that c ∈ Γ(e)

}
and let Γm(E) be the set of multiple neighbors of E:

Γm(E) := Γ(E) \ Γu(E) =
{
c ∈ C : ∃e 6= e′ ∈ E, c ∈ Γ(e) ∩ Γ(e′)

}
.



3.2. Classical expander codes 47

The key property of bipartite expander graphs is that the size of Γu(E) is large and
the size of Γm(E) is small (see Lemma 3.5).

Lemma 3.5. We use Notation 3.4. If E ⊆ V is such that
∣∣E∣∣ ≤ γ∣∣V ∣∣ then:∣∣Γu(E)

∣∣ ≥ dV ∣∣E∣∣(1− 2δ) and
∣∣Γm(E)

∣∣ ≤ dV ∣∣E∣∣δ.
Proof. First of all, we have:∣∣Γ(E)

∣∣ =
∣∣Γu(E)

∣∣+
∣∣Γm(E)

∣∣. (3.4)

Moreover, dV
∣∣E∣∣ =

∑
e∈E

∣∣Γ(e)
∣∣. On the right hand side of the latter equality, the

elements of Γu(E) are counted once and the element of Γm(E) are counted at least
twice. Thus:

dV
∣∣E∣∣ ≥ ∣∣Γu(E)

∣∣+ 2
∣∣Γm(E)

∣∣. (3.5)

Subtracting eq. (3.4) from eq. (3.5) and using the expansion property Γ(E) ≥ (1 −
δ)dV

∣∣E∣∣ from Definition 3.3, we get:∣∣Γm(E)
∣∣ ≤ dV ∣∣E∣∣− ∣∣Γ(E)

∣∣ ≤ dV (1− 1 + δ)
∣∣E∣∣ = dV

∣∣E∣∣δ. (3.6)

By eq. (3.4), eq. (3.6) and the expansion property:∣∣Γu(E)
∣∣ =

∣∣Γ(E)
∣∣− ∣∣Γm(E)

∣∣ ≥ ∣∣Γ(E)
∣∣− dV ∣∣E∣∣δ ≥ (1− 2δ)dV

∣∣E∣∣.
By Lemma 3.5 and the following argument, the minimal distance of an expander

code with δ < 1/2 is linear in the block length
∣∣V ∣∣. Indeed, if an error E ⊆ V satisfies

0 <
∣∣E∣∣ ≤ γ∣∣V ∣∣ then σ(E) 6= ∅ because Γu(E) ⊆ σ(E) and thus:∣∣σ(E)

∣∣ ≥ ∣∣Γu(E)
∣∣ ≥ dV δ(1− 2δ) > 0.

Hence we get d(C) > γ
∣∣V ∣∣ since the minimal distance d(C) is the minimal weight of a

non-zero error with empty syndrome. Actually, the more careful analysis of Lemma 3.6
provides a better lower bound on the minimal distance of C.

Lemma 3.6. We use Notation 3.4. If δ < 1/2 then:

d(C) ≥ 2(1− δ)bγ
∣∣V ∣∣c.

Proof. We show that for any E ⊆ V with 0 <
∣∣E∣∣ < 2(1 − δ)

⌊
γ
∣∣V ∣∣⌋, we have

σ(E) 6= ∅.
First, using Γu(E) ⊆ σ(E) and Lemma 3.5, we know that in the particular case where∣∣E∣∣ ≤ γ∣∣V ∣∣: ∣∣σ(E)

∣∣ ≥ ∣∣Γu(E)
∣∣ ≥ dV ∣∣E∣∣(1− 2δ) 6= 0 (3.7)
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and thus σ(E) 6= ∅.
In the other case where γ

∣∣V ∣∣ < ∣∣E∣∣ < 2(1− δ)
⌊
γ
∣∣V ∣∣⌋, we choose E1, E2 ⊆ E such

thatE = E1∪E2, E1∩E2 = ∅ and
∣∣E1
∣∣ =

⌊
γ
∣∣V ∣∣⌋. We have σ(E) = σ(E1)⊕σ(E2)

thus
∣∣σ(E)

∣∣ ≥ ∣∣σ(E1)
∣∣ − ∣∣σ(E2)

∣∣ and showing
∣∣σ(E1)

∣∣ > ∣∣σ(E2)
∣∣ is sufficient to

conclude that σ(E) 6= ∅. Similarly to eq. (3.7), we have:

∣∣σ(E1)
∣∣ ≥ dV (1− 2δ)

∣∣E1
∣∣ = dV (1− 2δ)

⌊
γ
∣∣V ∣∣⌋

and:∣∣σ(E2)
∣∣ ≤ dV ∣∣E2

∣∣ because G has left degree dV ,

= dV (
∣∣E∣∣− ∣∣E1

∣∣)
< dV (1− 2δ)

⌊
γ
∣∣V ∣∣⌋ because

∣∣E∣∣ < 2(1− δ)
⌊
γ
∣∣V ∣∣⌋ and

∣∣E1
∣∣ =

⌊
γ
∣∣V ∣∣⌋.

Hence
∣∣σ(E1)

∣∣ > ∣∣σ(E2)
∣∣ which concludes the proof.

3.2.3 Bit-flip algorithm

In this section we show that expander codes can be decoded using the bit-flip algorithm.
The definition of expander graphs (Definition 3.3) implies that for an error E sufficiently
small

∣∣E∣∣ ≤ γ
∣∣V ∣∣, the bits e ∈ V whose neighborhood Γ(e) is mainly composed of

unsatisfied checks are generally in the error. The bit-flip algorithm takes advantage of
this remark by flipping the bits whose neighborhood contains more unsatisfied check-
nodes than satisfied ones. When we pay attention to the syndrome, the bit-flip algorithm
flips a bit when this leads to a decrease in the syndrome weight and it iterates this process
while such a bit exists.

The bit-flip algorithm was introduced by Gallager in [42] and the analysis for the
expander codes was done by Sipser and Spielman in [98]. In Algorithm 1 we present
a slight generalization of the bit-flip where a bit is flipped when this decreases the
syndrome weight by at least B ∈ N∗ units. This parameter B is not really necessary
(for example [42] and [98] set B = 1) but we allow for B being arbitrary because our
objective is to extend the ideas of the analysis to the quantum case where taking B 6= 1
is relevant.

It is great for understanding the algorithm to think about the physical error on the
bits as shown in Figure 3.3. Indeed, let Ei be the set of bits in error at round number
i of the while loop. Of course, the decoder does not have access to Ei but we make it
appear on the comments of Algorithm 1 for clarity. The variables used by the algorithm
are σi = σ(Ei) and Êi = E ⊕ Ei. Let f be the number of rounds in the while loop
then the output of the algorithm Ê = Êf represents a guess for the error E. Hence, the
procedure is a success when Ê = E, i.e. when the physical error at the end is empty:
Ef = ∅.
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Figure 3.3: schematic representation of the sets E, Ei and Êi used in the bit-flip algorithm
(Algorithm 1).

Algorithm 1 : the bit-flip algorithm with parameter B ∈ N∗

Input: a syndrome σ ⊆ C. // σ = σ(E) for some E ⊆ V
Output: a guess for the error Ê ⊆ V .

Ê0 = ∅ ; σ0 = σ ; i = 0 // E0 = E, σ0 = σ(E0)
while

[
∃ei ∈ V :

∣∣σi ⊕ Γ(ei)
∣∣ ≤ ∣∣σi∣∣−B] do

Pick such a ei arbitrarily. //
∣∣σ(Ei ⊕ {ei})

∣∣ ≤ ∣∣σ(Ei)
∣∣−B

Êi+1 = Êi ⊕ {ei} // Ei+1 = Ei ⊕ {ei}
σi+1 = σi ⊕ Γ(ei) // σi+1 = σ(Ei+1)
i = i+ 1

end while
return Êi

For simplicity we will say that we run Algorithm 1 on an input E ⊆ V when we run
it on the input σ(E). In addition, we say that Algorithm 1 corrects the error E when its
output Ê is equal to E.

Theorem 3.7. Let B ∈ N∗. We use Notation 3.4 assuming δ <
1
4

(
1− B − 1

dV

)
.

Any error E ⊆ V with
∣∣E∣∣ ≤ γ∣∣V ∣∣ (1 + dV

B

)−1
is corrected by Algorithm 1.
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The proof of Theorem 3.7 has two main steps that we describe below in Lemma 3.9
and Lemma 3.10.
The first part of the analysis is independent of the fact that we consider an expander
code and uses the notion of execution support defined in Notation 3.8.

Notation 3.8. We run Algorithm 1 with parameter B ∈ N∗ on the input error E ⊆ V
and we denote by f the number of rounds of this execution. The execution support
U ⊆ V is defined to be the set:

U := E ∪ {e0, . . . , ef−1}.

The execution support contains all the bits which are in error at some point during the
execution of the algorithm. Lemma 3.9 below shows that

∣∣U ∣∣ = O(
∣∣E∣∣).

Lemma 3.9. Using Notation 3.4 and Notation 3.8, we have:

∣∣U ∣∣ ≤ ∣∣E∣∣ (1 + dV
B

)
.

Proof. Let σi ⊆ C be the variables from the body of Algorithm 1, we have:

∣∣σ0
∣∣ ≥ ∣∣σ0

∣∣− ∣∣σf ∣∣ =
f−1∑
i=0

∣∣σi∣∣− ∣∣σi+1
∣∣ ≥ Bf.

But
∣∣σ0
∣∣ ≤ dV ∣∣E∣∣ because the bit-nodes have degree dV thus:

∣∣U ∣∣ ≤ ∣∣E∣∣+ f ≤
∣∣E∣∣+

∣∣σ0
∣∣

B
≤
∣∣E∣∣ (1 + dV

B

)
.

Lemma 3.9 does not assume the code to be an expander but this hypothesis will
be used in Lemma 3.10 below. Using the notations of Figure 3.3, while the set of
physical errors Ei is not empty, we do not wish the decoder to stop at round i. If |Ei|
is sufficiently small, the bit-flip will indeed not stop because, as stated in Lemma 3.10
where Ei is called F , there is at least one bit satisfying the while loop condition.

Lemma 3.10. We use Notation 3.4 assuming δ <
1
4 .

Let F ⊆ V be an error with 0 <
∣∣F ∣∣ ≤ γ∣∣V ∣∣ then there exists e ∈ F such that flipping

the bit e decreases the syndrome weight by at least dV (1− 4δ):∣∣σ(F \ {e})
∣∣ ≤ ∣∣σ(F )

∣∣− dV (1− 4δ).

Proof. Using Lemma 3.5 applied for E = F :∣∣Γu(F )
∣∣ ≥ dV ∣∣F ∣∣(1− 2δ). (3.8)
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Hence the mean value of
∣∣Γu(F ) ∩ Γ(e)

∣∣ over e ∈ F is lower bounded in the following
way:

1∣∣F ∣∣ ∑
e∈F

∣∣∣Γu(F ) ∩ Γ(e)
∣∣∣ ≥ 1∣∣F ∣∣

∣∣∣∣∣Γu(F ) ∩
⋃
e∈F

Γ(e)

∣∣∣∣∣ =
∣∣Γu(F )

∣∣∣∣F ∣∣ ≥ dV (1− 2δ).

Thus there exists at least one bit e ∈ F with
∣∣Γu(F )∩Γ(e)

∣∣ ≥ dV (1−2δ). We conclude
that:∣∣σ(F \ {e})

∣∣ =
∣∣σ(F )⊕ Γ(e)

∣∣
=
∣∣σ(F )

∣∣+
∣∣Γ(e)

∣∣− 2
∣∣σ(F ) ∩ Γ(e)

∣∣
≤
∣∣σ(F )

∣∣+
∣∣Γ(e)

∣∣− 2
∣∣Γu(F ) ∩ Γ(e)

∣∣ because Γu(F ) ⊆ σ(F ),

≤
∣∣σ(F )

∣∣+ dV − 2dV (1− 2δ)
=
∣∣σ(F )

∣∣− dV (1− 4δ).

We are now ready to prove Theorem 3.7 using Lemma 3.9 and Lemma 3.10.

Proof of Theorem 3.7. We run Algorithm 1 on the input E and denote by Ê the output.
In this proof we set F := E ⊕ Ê to be the physical error on the bits after applying the
correction Ê. Note that F = Ef where f is the number of rounds in the while loop and
Ei is defined as in Figure 3.3. By the contraposition of Lemma 3.10, showing items (i)
and (ii) below is sufficient to prove

∣∣F ∣∣ = 0 and Theorem 3.7.

(i)
∣∣F ∣∣ ≤ γ∣∣V ∣∣.

(ii) ∀e ∈ F :
∣∣σ(F \ {e})

∣∣ > ∣∣σ(F )
∣∣− dV (1− 4δ).

Let’s show items (i) and (ii).
By definition of the execution support U defined in Notation 3.8, we have F ⊆ U . Using

Lemma 3.9 and the hypothesis
∣∣E∣∣ ≤ γ∣∣V ∣∣ (1 + dV

B

)−1
, we get item (i):

∣∣F ∣∣ ≤ ∣∣U ∣∣ ≤ ∣∣E∣∣ (1 + dV
B

)
≤ γ

∣∣V ∣∣.
For item (ii), we remark that Algorithm 1 stopped because the while loop condition was
not satisfied at round i = f for σi = σ(F ):

∀e ∈ V :
∣∣σ(F )⊕ Γ(e)

∣∣ > ∣∣σ(F )
∣∣−B.

We are dealing with integers and thus:

∀e ∈ V :
∣∣σ(F )⊕ Γ(e)

∣∣ ≥ ∣∣σ(F )
∣∣−B + 1

>
∣∣σ(F )

∣∣− dV (1− 4δ) because δ <
1
4

(
1− B − 1

dV

)
.
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Finally, item (ii) holds because for e ∈ F :

σ(F )⊕ Γ(e) = σ(F ⊕ {e}) = σ(F \ {e}).

3.2.4 Existence of expander graphs

The goal of this section is to discuss the existence and the construction of expander
graphs, we do not give the proofs which can be found in ref. [92]. Note that the
expansion property is equivalent to both left expansion and right expansion as defined in
eqs. (3.2) and (3.3). Ref. [92] is only interested in the left expansion property but their
results also hold for right expansion by exchanging the bit-nodes and the check-nodes.

In this PhD thesis, we rely on a probabilistic construction called configuration model
which produces a bipartite graph having the expansion property with high probability.
For any desired rate r ∈ [0, 1) and any desired expansion parameter δ > 0, this con-
struction shows the existence of regular LDPC code families with expansion parameter
δ and asymptotic rate r (the asymptotic rate is the limit of the rates when the number
of bits goes to infinity). Explicit constructions of expander graphs are possible but are
more complicated thus we focus on the configuration model [77, 5, 7, 6, 22].

Figure 3.4: configuration model with n = 16, m = 8, dV = 2 and dC = 4.

The first constraint one needs to know when trying to build a family of expander
codes with the LDPC property is given in Lemma 3.11 below.

Lemma 3.11. Let G be a bipartite graph with left degree dV , right degree dC and
expansion parameter δ then:

δ > max
(

1
dV

,
1
dC

)
.

Proof. The proof is presented in ref. [92] Problem 8.2.
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Since the bipartite graphs represent error correcting codes, the inequality dV ≤ dC
generally holds. By Lemma 3.11, in order to build a Tanner graph with target parameter
δ > 0, the left degree must satisfy dV > 1/δ. For instance, the hypothesis δ < 1/4 of
Lemma 3.10 requires dV ≥ 5.

The configuration model presented below allows to construct expander graphs with
high probability as soon as the constraint of Lemma 3.11 holds. The goal is to build a
regular Tanner graph with n ∈ N bit-nodes, m ∈ N check-nodes, left-degree dV ∈ N
and right degree dC ∈ N where ndV = mdC . Note that ndV = mdC is required
since both integers ndV and mdC are equal to the number of edges in the graph. The
configuration model proceed in the following way (see Figure 3.4 for a graphical
representation):

1. Build n bit-nodes and m check-nodes.

2. Create dV sockets per bit-node called left-half-edges and create dC sockets per
check-node called right-half-edges.

3. Pick a random permutation σ of J1;ndV K = J1;mdCK.

4. For each i ∈ J1;ndV K, create an edge between the ith left-half-edge and the
σ(i)th right-half-edge (by convention, an edge is created only once).

A graph constructed with the configuration model is not always a good expander
since any permutation σ can be picked. However, as stated in Lemma 3.12, if the
necessary condition δ > 1/dV of Lemma 3.11 holds then the resulting graph is an
expander of parameter δ with high probability.

Lemma 3.12. Let δ > 1/dV and let G be a bipartite graph chosen at random with the
configuration model as described above, then there exists γ > 0 such that:

P
[
G is an expander graph with parameters (γ, δ)

]
≥ 1−O

(
n−β

)
where β = dV δ − 1 > 0.

Proof. The proof is presented in ref. [92] Theorem 8.7.

For a regular LDPC code C with n bit-nodes and m check-nodes, we call design
rate the real number 1−m/n = 1− dV /dC . The code C has dimension at most n−m
and rate at most equal to the design rate with equalities if and only if the parity check
equations are independent from each other. If the left degree dV is even then each bit
appears dV times in the parity check equations, thus they cannot be independent since
their binary sum is equal to zero. Lemma 3.13 below asserts that with high probability,
there is no other dependency between the parity check equations.

Lemma 3.13. With high probability, the rate of a random code constructed with the
configuration model as described above is equal to:

1− dV
dC

if dV is odd

1− dV
dC

+ 1
n

if dV is even.
(3.9)
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Proof. The proof is presented in ref. [92] Lemma 3.27.

To summarize this section, we apply the previous results for the construction of a
code family Ci with any desired expansion parameter and any minimum asymptotic rate.
Let δ > 0 and r ∈ [0, 1), we define:

dV :=
⌈

1
δ

⌉
+ 1, dC :=

⌈
dV

1− r

⌉
.

By Lemmas 3.12 and 3.13, there exists γ > 0 such that for n sufficiently large, there
exist codes with expansion parameters (γ, δ) and rate as in eq. (3.9). Hence, for i ∈ N∗
sufficiently large, there exists a code Ci with ni = idC bit-nodes, mi = idV check-
nodes, left degree dV , right degree dC , expansion parameters (γ, δ) and rate as in
eq. (3.9). The code family we get has asymptotic rate 1− dV /dC ≥ r and expansion
parameter δ.



Chapter 4

Quantum error correction

4.1 Background

In this section, we pursue the presentation of quantum error correcting codes we started
in Section 2.3.

4.1.1 Definition of stabilizer codes

In full generality, a quantum error correcting code Q can be defined as an arbitrary 2K

dimensional linear subspace of the Hilbert space
(
C2)⊗N . However in this work, we

are interested in the class of stabilizer codes that we define below [43].
For a stabilizer codeQ, the code states are defined using a group S ⊆ ±{1, X, Y, Z}⊗N ⊆

PN of Pauli operators called the stabilizer group or simply the stabilizer of the code.
By definition, the code states are eigenstates with eigenvalue +1 for each operator in S:

Q :=
{
|ψ〉 : s |ψ〉 = |ψ〉 ,∀s ∈ S

}
. (4.1)

In order to prevent the degenerate case Q = {0}, we require the group S to be abelian
and to satisfy −1 /∈ S.

One advantage of stabilizer codes is the possibility to provide a compact representa-
tion: it is sufficient to write down a generating set of S to describe Q. The elements of
this generating set are called the stabilizer generators or simply the generators of the
code and are the counter-part of the parity check equations of classical linear codes.
For example, the quantum code called “the 5-qubit code” is stabilized by S = 〈g1, g2, g3, g4〉
where:

g1 = X ⊗ Z ⊗ Z ⊗ X ⊗ 1

g2 = 1 ⊗ X ⊗ Z ⊗ Z ⊗ X
g3 = X ⊗ 1 ⊗ X ⊗ Z ⊗ Z
g4 = Z ⊗ X ⊗ 1 ⊗ X ⊗ Z

(4.2)

55
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The dimension of the 5-qubits code is equal to 2 and an orthonormal basis of the code
space is given by the states |0L〉 and |1L〉 defined by:

|0L〉 = 1
4[|00000〉+ |10010〉+ |01001〉+ |10100〉+ |01010〉 − |11011〉 − |00110〉 − |11000〉

,
− |11101〉 − |00011〉 − |11110〉 − |01111〉 − |10001〉 − |01100〉 − |10111〉+ |00101〉]

|1L〉 = X⊗5 |0L〉

= 1
4[|11111〉+ |01101〉+ |10110〉+ |01011〉+ |10101〉 − |00100〉 − |11001〉 − |00111〉

.
− |00010〉 − |11100〉 − |00001〉 − |10000〉 − |01110〉 − |10011〉 − |01000〉+ |11010〉]

In particular, we can check that |0L〉 and |1L〉 are +1 eigenstates for g1, g2, g3 and g4
and form an orthonormal family.
The fact that the dimension of the 5-qubits code is equal to 2 is a consequence of
Proposition 4.5: an N -qubit stabilizer code defined with M independent generators has
dimension 2K where K = N −M is called the number of logical qubits. A code with
N physical qubits and k logical qubits is said to be an [[N,K]] stabilizer code or simply
an [[N,K]] code, for example the 5-qubit code is a [[5, 1]] stabilizer code.

4.1.2 Parity check matrices and the symplectic representa-
tion of Pauli operators

Let Q be an [[N,K]] code defined by M ∈ N stabilizer generators. These generators
can be represented with a binary matrix H of size M × 2N called the parity check
matrix of the code where, by definition, each row is the symplectic representation of one
stabilizer generator as defined in Notation 4.1.

Notation 4.1 (Sympleptic representation of Pauli operators). Let P = α
⊗N

i=1 Pi ∈ PN
be a Pauli operator on N qubits where α ∈ {1,−1, i,−i} and Pi ∈ {1, X, Y, Z}⊗N .
The symplectic representation of P denoted by r(P ) ∈ F2N

2 is the concatenation of the
two bit-strings x ∈ FN2 and z ∈ FN2 defined by:

xi = 0 and zi = 0 if Pi = 1,

xi = 1 and zi = 0 if Pi = X,

xi = 1 and zi = 1 if Pi = Y,

xi = 0 and zi = 1 if Pi = Z.

For instance, the four generators of the 5-qubit code shown in eq. (4.2) lead to the
following parity check matrix:
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
1 0 0 1 0 0 1 1 0 0
0 1 0 0 1 0 0 1 1 0
1 0 1 0 0 0 0 0 1 1
0 1 0 1 0 1 0 0 0 1

 .

When we define a stabilizer code with its parity check matrix, we implicitly state that
the stabilizer generators belong to {1, X, Y, Z}⊗N . Since, the symplectic representation
is a bijection from {1, X, Y, Z}⊗N to F2N

2 , each parity check matrix represents a
unique stabilizer code. Note that the generators belong to {1, X, Y, Z}⊗N but the whole
stabilizer group is included in±{1, X, Y, Z}⊗N and not necessarily in {1, X, Y, Z}⊗N .
The symplectic representation is not bijective fromPN toF2N

2 : each r ∈ F2N
2 represents

four matrices P , −P , iP and −iP . This ambiguity is not problematic because we will
use the symplectic representation when the global phase in front of P is not relevant,
for example when P is an error applied on a quantum state or when we wish to know
whether P commutes with another Pauli operator.

Notation 4.2. Let P1, P2 ∈ PN be two Pauli matrices. We denote by c(P1, P2) ∈ F2
the bit defined by:

c(P1, P2) = 0 if P1 and P2 commute,

c(P1, P2) = 1 if P1 and P2 anti-commute.

Here the letter c stands for “commute”.

In Notation 4.2, we emphasize the useful fact that two Pauli matrices either commute
or anti-commute. Let x ∈ FN2 and z ∈ FN2 be two row vectors such that r(P2) is the
concatenation of x and z, then c(P1, P2) is equal to the inner product r(P1) · rT where
r is the concatenation of z and x. In mathematics, the function c is called a symplectic
form.

The symplectic representation is a surjective group homomorphism:

r(P1P2) = r(P1)⊕ r(P2).

A family of stabilizer codes is said to be LDPC when there exist two integers
l, r ∈ N such that the weight of the columns of the parity check matrices is upper
bounded by l and the weight of their rows is upper bounded by r. LDPC codes are
particularly advantageous for implementations because the measurement of a generator
with weight r is done with a quantum measurement on r particles, thus r must be as
small as possible.

4.1.3 Decoding algorithm

In this section, we discuss the way Pauli errors are corrected for stabilizer codes and in
Section 4.1.4 we will address the case where the error is any CPTP map. Informally,
a CPTP map can be written as a linear combination of Pauli errors. Section 4.1.4
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formalizes this idea to show that an error correcting procedure which corrects any Pauli
error acting on T ∈ N qubits corrects an arbitrary CPTP map acting on these qubits.
Hence, as it is usual in quantum error correction, this manuscript will mostly focus on
the case where the error is Pauli.

By the definition of a stabilizer code given in eq. (4.1), a code state |ψ〉 ∈ Q is an
eigenvector with eigenvalue +1 for the stabilizer generators. In particular, when we
measure one of the generators on the state |ψ〉, we get +1 with probability 1. On the
other hand, when we measure the generators g1, . . . , gM on U |ψ〉 where U is some
unitary representing an error, we get some sequence of eigenvalues in {−1,+1}M .
These M eigenvalues are generally reported as a sequence of bits called the syndrome
σ ∈ FM2 , where a +1 eigenvalue is represented by the bit 0 and a −1 eigenvalue is
represented by the bit 1. The syndrome contains information about the error applied on
the code state and the goal of the error correction procedure is to infer the error from the
syndrome.

When U is a general unitary, the quantum state U |ψ〉 is not necessarily an eigenvec-
tor of the generators, thus the value of the syndrome is not deterministic and the state
collapses during the measurements. Nevertheless, in this section we focus on the case
where U is a Pauli matrix. In this particular case, the state U |ψ〉 is indeed an eigenvector
of the generators, see eq. (4.3).

Let P ∈ {1, X, Y, Z}⊗N ⊆ PN be a Pauli error, let g ∈
{
g1, . . . , gM

}
be a

generator and let |ψ〉 ∈ Q be a code state then P |ψ〉 is either a +1 or a −1 eigenstate
of g:

If gP = Pg then g
(
P |ψ〉

)
= P

(
g |ψ〉

)
= P |ψ〉 .

If gP = −Pg then g
(
P |ψ〉

)
= −P

(
g |ψ〉

)
= −P |ψ〉 .

(4.3)

When we measure the generators g1, . . . , gM on the state |ψ̃〉 := P |ψ〉, the syndrome
we get is called the syndrome of the error P (or the syndrome of the state |ψ̃〉), it is
denoted by σ(P ) ∈ FM2 or σ

(
|ψ̃〉
)

and its ith bit is equal to:

σ(P )i :=
{

0 if Pgi = giP ,

1 if Pgi = −giP .
equivalently σ

(
|ψ̃〉
)
i

:=
{

0 if gi |ψ̃〉 = |ψ̃〉,

1 if gi |ψ̃〉 = − |ψ̃〉.
(4.4)

We emphasize that the syndrome of |ψ̃〉 depends on P but does not depend on the initial
code state |ψ〉. Let ρ be a density matrix then measuring the operator P corresponds to
the CPTP map of eq. (2.3) implemented with the circuit on the left part of Figure 4.1.
The circuit on the left part of Figure 4.1 uses the Hadamard gate H and the controlled-P
gate C-P defined by:

H :


|0〉 7→ 1√

2

(
|0〉+ |1〉

)
|1〉 7→ 1√

2

(
|0〉 − |1〉

) C-P :
{
|0〉 ⊗ |ψ〉 7→ |0〉 ⊗ |ψ〉
|1〉 ⊗ |ψ〉 7→ |1〉 ⊗

(
P |ψ〉

)
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Figure 4.1: the circuit to measure a Pauli matrix P (on the left) and the circuit to measure the
generator g1 = X ⊗ Z ⊗ Z ⊗X ⊗ 1 of the 5-qubit code (on the right).

The circuit proceeds in the following way:

• An ancilla qubit is prepared in the state |0〉.
• The Hadamard gate H is applied on the ancilla qubit.

• The controlled-P gate is applied.

• The Hadamard gate is applied on the ancilla qubit.

• The ancilla qubit is measured in the Z-basis (i.e. we perform the Pauli measure-
ment associated to the Pauli matrix Z).

A decoding algorithm or decoder is a classical algorithm that takes as input a
syndrome σ ∈ FM2 and tries to guess the error P . Once the decoder has provided its
output P̂ ∈ {1, X, Y, Z}⊗N , the correction P̂ = P̂ † is applied on the quantum state
with the hope that P̂ |ψ̃〉 = |ψ〉 holds.

In the classical setting, a decoder succeeds when it identifies exactly the error, i.e.
when P = P̂ . However, for a stabilizer code the success condition is relaxed: suppose
we start from a code state |ψ〉 ∈ Q, that the error P ∈ PN yields |ψ̃〉 := P |ψ〉
and that the decoder outputs P̂ = sP where s ∈ S is in the stabilizer group. Under
these assumptions, when we apply the correction P̂ to |ψ̃〉, we end up with the state
P̂ |ψ̃〉 = s |ψ〉 = |ψ〉. In this example, the decoder did not find the error but it was
sufficient to correct the state. We say that two Pauli errors P1, P2 ∈ PN are equivalent
when they are equal up to a multiplication by a matrix of the stabilizer group S, or
equivalently when P1P2 ∈ S. In that case, P1 and P2 act in the same way on the code
states:

∀ |ψ〉 ∈ Q : P1 |ψ〉 = P2 |ψ〉 .

We say that a stabilizer code is degenerate to mention the existence of two different
Pauli errors which are equivalent.

If two Pauli errors P1 and P2 are equivalent then the syndrome of P1 is equal to
the syndrome of P2 since these syndromes are both equal to the syndrome of |ψ̃〉 =
P1 |ψ〉 = P2 |ψ〉. However, the contraposition is false: there exist errors with the
same syndrome but non equivalent. In fact, two Pauli errors P1 and P2 have the same
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syndrome if and only if they satisfy P1P
†
2 ∈ N where N = N (Q) is called the

normalizer group (or simply the normalizer) of the code defined by:

N :=
{
P ∈ PN : σ(P ) = 0M

}
.

In mathematics, for a group G, the normalizer of a subgroup S ⊆ G is the subgroup
N ⊆ G containing the elements g ∈ G which commute with all s ∈ S. Using eq. (4.4),
a Pauli matrix is indeed in N if and only if it commutes with each stabilizer generators
g1, . . . , gM . In addition, since g1, . . . , gM generate the stabilizer group S , a Pauli matrix
is in N if and only if it commutes with each element of S:

N =
{
P ∈ PN : ∀s ∈ S, Ps = sP

}
, N =

{
P ∈ PN : ∀i ∈ J1;mK, Pgi = giP

}
.

Another interesting property is that the normalizer group fixes the code space and
the stabilizer group fixes the code states:

∀n ∈ N : nQ = Q,
∀s ∈ S,∀ |ψ〉 ∈ Q : s |ψ〉 = |ψ〉 .

For the 5-qubit code defined in eq. (4.2), the normalizer group is equal to:

N = 〈S, XL, ZL〉 where XL := X⊗5 and ZL := Z⊗5.

The operators XL and ZL satisfy:

XL |0L〉 = |1L〉 , XL |1L〉 = |0L〉 , ZL |0L〉 = |0L〉 , ZL |1L〉 = − |1L〉 ,

where |0L〉 and |1L〉 are the logical states of the 5-qubit code defined below eq. (4.2).
The effect of the matrices XL and ZL on the logical states is similar to the effect of the
usual Pauli matrices X and Z on the computational basis |0〉, |1〉 thus they are called
logical Pauli operators of the code. In fact, we can talk about other logical operations
such as a logical Hadamard or a logical controlled-not or a logical measurement. The
logical operations allow us to process the information contained in the code states
while keeping the protection of the error correcting code. This is essential to perform
fault-tolerant quantum computation (see Chapter 6).

The minimal distance of an [[N ;K]] stabilizer code is the minimum weight of an
error in N \ S.

D := min
{∣∣P ∣∣ : P ∈ N \ S

}
. (4.5)

This definition is meaningful because N is the set of undetectable Pauli errors and S
is the set of Pauli errors which leave the code states invariant. Thus D is the minimum
weight of an undetectable error which does not act trivially on the code space. When the
minimal distance is specified, we say that the code is an [[N,K,D]] stabilizer code.
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To conclude this section, we provide the example of the minimum weight decoder,
which, given a syndrome σ, returns a minimum weight error among the errors with
syndrome σ:

P̂ := arg min
P∈PN :σ(P )=σ

∣∣P ∣∣. (4.6)

This decoder have the advantage to perform well, but in general it cannot be imple-
mented efficiently. A major exception is the polynomial time implementation for the
2-dimensional topological codes [30, 16, 17].

In this PhD thesis, we are interested in the hypergraph product codes, see Section 4.2,
and for this specific code family we do not know how to implement the minimum weight
decoding efficiently. In Section 4.3.1, we define the family of quantum expander codes
which is a particular case of hypergraph product and can be decoded with the efficient
small-set-flip decoder.

4.1.4 Error correction of non Pauli errors
In Section 4.1.3, we discussed the way Pauli errors can be corrected with stabilizer
codes. In fact, the error correction procedure we used in that case also works for more
general errors.

Proposition 4.3 (Theorem 10.2 of [82]). Let Q be an [[N,K]] stabilizer code such
that any Pauli error of weight at most T ∈ N is corrected by a given error correction
procedure EC:

∀ |ψ〉 ∈ Q,∀P ∈ PN with
∣∣P ∣∣ ≤ T : EC

(
P |ψ〉

)
= |ψ〉 .

If we consider a CPTP map with Kraus operators {E1, . . . , EK} such that Ek acts on
at most T qubits (the operators Ek may act on different qubits but each one acts on at
most T qubits) then this CPTP map is corrected by EC:

∀ |ψ〉 ∈ Q : EC
(

K∑
k=1

Ek |ψ〉 〈ψ|E†k

)
= |ψ〉 〈ψ| .

The full proof of Proposition 4.3 can be found in Theorem 10.2 of [82]. Here,
we focus on the particular case where the error correction procedure EC is the one
described in Section 4.1.3 and we will only prove the case where the error is a unitary
matrix acting on the first T qubits. Up to technical details, our proof can be generalized
to the case where the error is a CPTP map with each Kraus operator acting on T qubits.
However, our arguments are a bit different from the one used in [82] for the case where
EC is not supposed to be the procedure described in Section 4.1.3.

Let g1, . . . , gM be the stabilizer generators of Q. The error correction procedure
presented in Section 4.1.3 proceeds in three steps:

(i) Measure the stabilizer generators to get a syndrome σ ∈ FM2 .

(ii) Use a decoder to guess a Pauli correction Ê ∈ PN .
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(iii) Apply the correction Ê to the quantum state.

We denote byM the quantum operation corresponding to item (i) and by C the quantum
operation corresponding to items (ii) and (iii). M takes as input a quantum register
on N qubits and its output is composed of one classical register with M bits and one
quantum register with N qubits. C takes as input a classical register on M bits and a
quantum register on N qubits and its output is a quantum register on N qubits.
In order to measure one bit of the syndrome in the operationM, we need to measure a
generator which is a Pauli matrix P ∈ {1, X, Y, Z}⊗N . This measurement can be done
with the circuit presented in the left part of Figure 4.1. This circuit maps an arbitrary
density matrix ρ to:

|0〉 〈0| ⊗
(
Π0ρΠ†0

)
+ |1〉 〈1| ⊗

(
Π1ρΠ†1

)
where Π0 = 1

2 (1 + P ) is the orthogonal projector onto the +1 eigenspace of P and
Π1 = 1

2 (1−P ) is the orthogonal projector onto the−1 eigenspace of P . More generally,
when we measure the generators g1, . . . , gM with M copies of the circuit presented in
Figure 4.1, the syndrome σ ∈ FM2 is stored in a classical register and a projection Πσ is
applied on the quantum register:

ρ 7→
∑
σ∈FM2

|σ〉 〈σ| ⊗
(
ΠσρΠ†σ

)
where Πσ := 1

2M
M∏
i=1

(
1+ (−1)σigi

)
.

The matrix Πσ is an orthogonal projector onto the states with syndrome σ (for a proof of
this point, see the proof of Proposition 4.5). We can check that for all |ψ〉 ∈ Q, σ ∈ FM2
and P ∈ {1, X, Y, Z}⊗N :

ΠσP = PΠσ⊕σ(P )

Πσ |ψ〉 = 0 if σ 6= 0M

Πσ |ψ〉 = |ψ〉 if σ = 0M .
(4.7)

Thus:

ΠσP |ψ〉 = P |ψ〉 if σ(P ) = σ

ΠσP |ψ〉 = 0 if σ(P ) 6= σ.
(4.8)

As a summary, the operationsM and C satisfy:

M : ρ 7→
∑
σ∈FM2

|σ〉 〈σ| ⊗
(
ΠσρΠ†σ

)
, (4.9)

C : |σ〉 〈σ| ⊗ ρ 7→ P̂σρP̂
†
σ (4.10)

where P̂σ ∈ {1, X, Y, Z}⊗N is the Pauli matrix computed by the decoder on input σ.
We are now ready to show that if C ◦M corrects any Pauli error acting on the first

T ∈ N qubits then C ◦M also corrects an arbitrary unitary acting on the first T qubits.



4.1. Background 63

We denote by PN,T := {1, X, Y, Z}⊗T ⊗ 1⊗N−T the set of Pauli matrices acting on
the first T qubits.
We assume that these Pauli errors are corrected by the error correction procedure, i.e.
for all P ∈ PN,T and for all |ψ〉 ∈ Q:

C ◦M
[
P |ψ〉 〈ψ|P †

]
= |ψ〉 〈ψ| .

For simplicity, we replace the density matrices with pure states:

C ◦M
[
P |ψ〉

]
= |ψ〉 . (4.11)

First, eq. (4.11) implies that two Pauli errors with the same syndrome act in the same
way on the code states, i.e. for all P1, P2 ∈ PN,T :

σ(P1) = σ(P2)⇒ ∀ |ψ〉 ∈ Q : P1 |ψ〉 = P2 |ψ〉 . (4.12)

Indeed, let σ = σ(P1) = σ(P2) then using eqs. (4.8) to (4.11):

P̂σP1 |ψ〉 = C ◦M
[
P1 |ψ〉

]
= |ψ〉 = C ◦M

[
P2 |ψ〉

]
= P̂σP2 |ψ〉 .

Hence we have P1 |ψ〉 = P2 |ψ〉 because P̂σ is invertible.
When we deal with general errors, the key observation is that the operators Πσ

collapse arbitrary errors onto Pauli errors. For instance, let ρ = U |ψ〉 〈ψ|U† where
U = U0 ⊗ 1⊗N−T and U0 is a unitary complex matrix of size 2T × 2T acting on the
first T qubits. The family {1, X, Y, Z}⊗T is a basis for the linear space of complex
matrices thus we can write U as:

U =
∑

P∈PN,T

αPP where αP ∈ C.

As a consequence, the state ρ can be written as:

ρ =
∑

P1,P2∈PN,T

αP1α
∗
P2
P1 |ψ〉 〈ψ|P †2 (4.13)

We have:

M[ρ] =
∑
σ∈FM2

|σ〉 〈σ| ⊗

 ∑
P1,P2∈PN,T

αP1α
∗
P2

ΠσP1 |ψ〉 〈ψ|P †2 Π†σ

 by eqs. (4.9)
and (4.13)

=
∑
σ∈FM2

|σ〉 〈σ| ⊗

 ∑
P1,P2∈PN,T :
σ=σ(P1)=σ(P2)

αP1α
∗
P2
P1 |ψ〉 〈ψ|P †2

 by eq. (4.8)

=
∑
σ∈FM2

βσ |σ〉 〈σ| ⊗
[
Pσ |ψ〉 〈ψ|P †σ

]
by eq. (4.12)
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where Pσ ∈ PN,T is chosen such that σ(Pσ) = σ and:

βσ =
∑

P1,P2∈PN,T :
σ=σ(P1)=σ(P2)

αP1α
∗
P2

Note that Pσ is undefined when
{
P ∈ PN,T : σ(P ) = σ

}
is empty. However in that

case, βσ = 0 thus we can set Pσ arbitrarily, for example Pσ = 0.
By hypothesis, Pσ ∈ PN,T is corrected by C ◦M and thus we have:

C ◦M(ρ) =

 ∑
σ∈FM2

βσ

 |ψ〉 〈ψ| .
The CPTP map C ◦M is trace preserving thus:

C ◦M(ρ) = |ψ〉 〈ψ| .

The conclusion is that C ◦M corrects the error U .

4.1.5 Dimension of a stabilizer code
The goal of this section is to prove the formula for the dimension of a stabilizer code
given in Proposition 4.5. Let g1, . . . , gM ∈ PN be commuting Pauli operators. We
define a stabilizer group S = 〈g1, . . . , gM 〉 and Q the corresponding quantum code
as in eq. (4.1). First, since we have assumed −1 /∈ S to avoid the degenerate case
Q = {0}, we must have gi ∈ ±{1, X, Y, Z}⊗N to ensure g2

i 6= −1. Second, if one of
the generators is equal to the product of other generators then we can freely remove it
without changing S. Hence we assume that the generators are independent:

∀v ∈ FM2 :
M∏
i=1

gvii = 1⇒ v = 0M . (4.14)

As a summary, without loss of generality we assume that the stabilizer generators
g1, . . . , gM belong to ±{1, X, Y, Z}⊗N , are independent in the sense of eq. (4.14) and
satisfy:

g2
i = 1, gi = g†i . (4.15)

The first step to compute the dimension of a stabilizer code is to understand how Q
is modified when gi is replaced by −gi. Let σ ∈ FM2 be a syndrome. Then the set of
quantum states with syndrome σ is the code space of the quantum code whose stabilizer
generators are (−1)σ1g1, . . . , (−1)σM gM :

Qσ :=
{
|ψ〉 : (−1)σigi |ψ〉 = |ψ〉 , i = 1, . . . ,M

}
. (4.16)

For example we have Q = Qσ when σ = 0M . The stabilizer code Qσ does depend on
σ but all these codes are similar because, as shown in Lemma 4.4, they are equal up to a
multiplication by a Pauli matrix.
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Lemma 4.4. Let g1, . . . , gM ∈ PN be independent, i.e. satisfying eq. (4.14), and
commuting Pauli matrices such that −1 /∈ 〈g1, . . . , gM 〉. Let σ, σ′ ∈ FM2 be two
syndromes and let Qσ,Qσ′ as defined in eq. (4.16). Then:

Qσ′ = PQσ where P ∈ PN .

Proof. First, using the independence of the generators, we show that the parity check
matrix H of Q is full rank. For that, we show that HT is injective using the symplectic
representation r defined in Notation 4.1. Let v ∈ FM2 be such that HT v = 02N then:

r(1) = 02N = HT v =
M⊕
i=1

vir(gi) = r

(
M∏
i=1

gvii

)
.

The homomorphism r is not injective but nonetheless
∏M
i=1 g

vi
i = λ1 where λ ∈

{1,−1, i,−i} and we get λ = 1 using the hypothesis−1 /∈ 〈g1, . . . , gM 〉. By eq. (4.14),
we conclude that v = 0M and thus H is full rank.

Since H is full rank, there exist x, z ∈ FN2 such that He = σ ⊕ σ′ where e =
(z, x) ∈ F2N

2 is the concatenation of z and x. We define the Pauli matrix P promised
by Lemma 4.4 to be such that r(P ) = (x, z).
For i ∈ J1,MK, the ith bit of He is equal to the inner product r(gi) · eT and thus we
have c(gi, P ) = r(gi) · eT = σi ⊕ σ′i where c(gi, P ) defined in Notation 4.2 satisfies:

giP = (−1)c(gi,P )Pgi.

By the definition ofQσ andQσ′ , we have PQσ ⊆ Qσ′ and P †Qσ′ = PQσ′ ⊆ Qσ .

We conclude this section with Proposition 4.5 which states that the dimension of a
stabilizer code is 2N−M where M is the number of independent generators.

Proposition 4.5. Let g1, . . . , gM ∈ PN be independent,i.e. satisfying eq. (4.14), and
commuting Pauli matrices such that −1 /∈ 〈g1, . . . , gM 〉.
The associated quantum codeQ has K := N −M logical qubits and the physical space(
C2)⊗N is equal to the following orthogonal direct sum (⊕ is the orthogonal direct

sum of linear spaces): (
C

2)⊗N =
⊕
σ∈FM2

Qσ.

Proof. For σ ∈ FM2 , we define Πσ by:

Πσ := 1
2M

M∏
i=1

(
1+ (−1)σigi

)
.

With eq. (4.15) and the definition of Πσ above, we have:

ΠσΠσ = Πσ Π†σ = Πσ Im(Πσ) = Qσ.
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Hence Πσ is the orthogonal projector onto Qσ . Similarly, for any i ∈ J1,MK:(
1+ gi

)(
1− gi

)
=
(
1− gi

)(
1+ gi

)
= 0.

Thus for σ 6= σ′, we get ΠσΠσ′ = 0 and the two subspacesQσ andQσ′ are orthogonal.
Finally, as stated in Proposition 4.5, we have

(
C2)⊗N =

⊕
σQσ because:

∑
σ∈FM2

Πσ = 1
2M

M∏
i=1

∑
σi∈F2

(
1+ (−1)σigi

)
= 1

and thus for all |ψ〉 ∈
(
C2)⊗N , |ψ〉 =

∑
σ Πσ |ψ〉.

For the dimension ofQ, we already know that 2N = dim
((
C2)⊗N) =

∑
σ dim(Qσ).

By Lemma 4.4, the dimension of Qσ does not depend on σ and thus dim(Q) =
2N−M .

4.1.6 CSS codes
In 1996, a broad class of quantum codes called the Calderbank-Shor-Steane codes, or
CSS codes for short, was introduced independently by Calderbank and Shor in [20], and
by Steane in [102]. Even though the CSS codes were defined before the stabilizer codes,
it is convenient to use the stabilizer formalism to describe them.
A CSS code is a stabilizer code where each stabilizer generator is either a product of
X-Pauli matrices or a product of Z-Pauli matrices:

gi ∈ {1, X}⊗N for i = 1, . . . ,MZ ,

gi+MZ
∈ {1, Z}⊗N for i = 1, . . . ,MX .

The generators equal to a product of X-Pauli matrices are called the X-type generators
and those equal to a product of Z-Pauli matrices are called the Z-type generators.
Let CX and CZ be two classical codes satisfying C⊥Z ⊆ CX (or equivalently C⊥X ⊆ CZ)
then we can define a CSS code denoted by CSS(CX , CZ) in the following manner.
Let HX be a parity check matrix for CX with size MX × N and let HZ be a parity
check matrix for CZ with size MZ ×N . Then CSS(CX , CZ) is the stabilizer code with
M = MX +MZ generators given by the following parity check matrix:

H =
(
HZ 0
0 HX

)
. (4.17)

When we talk about CSS codes in this PhD thesis, the subscript X is used to indicate
that the code CX corrects the X-Pauli errors and the subscript Z is used to indicate
that CZ corrects the Z-Pauli errors. Hence the generators associated to CX are Z-type
generators and the generators associated to CZ are X-type generators. Some authors
take the converse convention.
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One nice feature of CSS codes is the possibility to handle them with the formalism
of classical error correcting codes. Since the generators of a CSS code commute and are
either X-type or Z-type generators, the stabilizer group S is included in S0 where:

S0 :=
{
gXgZ : gX ∈ {1, X}⊗N , gZ ∈ {1, Z}⊗N

}
. (4.18)

The symplectic representation defined in Notation 4.1 restricted to S0 is a bijection
r : S0 → F2N

2 . Hence for all P ∈ S0 and for all v ∈ FM2 , we have the equivalence:

P =
M∏
i=1

gvii ⇔ r(P ) =
M⊕
i=1

vir(gi). (4.19)

As a consequence, the elements of the stabilizer group can be seen as binary vectors
and CSS codes are described with linear algebra. For example, a product of X-type
generators has symplectic representation (e, 0N ) where e ∈ C⊥Z :

C⊥Z × {0N} =
{
r(s) : s ∈ S ∩ {1, X}⊗N

}
. (4.20)

As discussed in Section 4.1.1 and Proposition 4.5, defining a stabilizer code with
commuting generators and −1 /∈ 〈g1, . . . , gM 〉 is necessary and sufficient to avoid the
degenerate case Q = {0}. For a CSS code, the condition that the generators commute
is equivalent to HXH

T
Z = 0 and is ensured by the requirement C⊥Z ⊆ CX . The other

condition −1 /∈ 〈g1, . . . , gM 〉 always holds for a CSS code because −1 /∈ S0.
When the Z-type generators of a CSS code are measured, we get the first part of the

syndrome σX ∈ FMX
2 which gives information about the X-type errors on the state.

Similarly, the Z-type errors are detected with the syndrome σZ ∈ FMZ
2 obtained when

we measure the X-type generators. The entire syndrome σ ∈ FM2 is the concatenation
of these two bit-strings σ = (σX , σZ). In this PhD thesis, we focus on CSS codes and
we correct X-type and Z-type errors independently. Therefore we need two decoders:
the first one takes as input the syndrome σX and uses the code CX to infer an X-type
correction P̂ ∈ {1, X}⊗N often seen as a bit-string êX ∈ FN2 , and the second decoder
proceeds in the same way for Z-type errors. Note that if a decoder corrects both X
and Z errors on some qubit then the error Y = iXZ is also corrected. Thereby, the
decoding problem for CSS codes is close to the one for classical codes and thus we will
often use the terminology from classical error correction in the quantum setting. For
example, the Z-type generators will be sometimes called the check-nodes. Note that for
many error models such as the depolarizing channel, the correlations between X and Z
errors can be used to improve the decoders [29, 81, 88].

Nonetheless, since some CSS codes are degenerate, they cannot be corrected in
the same way as classical codes. The degeneracy of a stabilizer code implies that it
is sufficient to correct the error up to an element of the stabilizer group, for example
the X-type error can be corrected up to a product of X-type generators. Let eX ∈ FN2
be an X-type error and let êX ∈ FN2 be the correction that returns the decoder. Using
the bijection given in eq. (4.20) between product of X-type generators and the vector
space C⊥Z , the decoder succeeds in correcting the X-error if and only if eX ⊕ êX ∈ C⊥Z .
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Taking into account the degeneracy is particularly important for LDPC codes since the
vector space C⊥Z contains constant weight elements.

For a stabilizer code, remember from Section 4.1.3 that the minimal distance is the
minimal weight of an element in N \ S, where N \ S is the set of a Pauli errors with
an empty syndrome acting non-trivially on the code state. For a CSS code, there is
always an X-type error or a Z-type error in N \ S with weight equal to the minimal
distance. We define DX to be the minimal weight of an X-type error in N \ S. Using
the terminology of classical error correction, DX is the minimal weight of a codeword
in CX which does not belong to C⊥Z . The minimal distance for Z-type errors is defined
in a similar manner:

DX := min
{∣∣eX ∣∣ : eX ∈ CX \ C⊥Z

}
, DZ := min

{∣∣eZ∣∣ : eZ ∈ CZ \ C⊥X
}
.

Note that DX and DZ are not the minimal distances of the codes CX and CZ . Finally,
the minimal distance of CSS(CX , CZ) is equal to:

D = min(DX , DZ). (4.21)

The classical codes CX and CZ can be represented by their Tanner graphs which
must have the same number of bit-nodes. The Tanner graph for the code CSS(CX , CZ)
has three types of nodes: the bits-nodes, the check-nodes of CX (which represent the
Z-type generators) and the check-nodes of CZ (which represent the X-type generators).
A bit-node and an Z-type generator (resp. X-type generator) are connected if and only
if they are connected in the Tanner graph of CX (resp. CZ). For example when both
CX and CZ are equal to the [7, 3, 3] Hamming code defined in Figure 3.1, we get a CSS
code called the 7-qubit code or the Steane code whose parity check matrix is given in
Figure 4.2 and whose factor graph is given in Figure 4.3.


1 1 1 0 1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 1 0 0
0 0 0 0 0 0 0 0 1 1 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 1 1


Figure 4.2: Parity check matrix for the 7-qubit code.

The CSS codes we are interested in are the quantum expander codes which can be
decoded with the small-set-flip decoder (see Section 4.3.1). In that case, the Tanner
graphs of CX and CZ are isomorphic and thus the correction of X-errors is similar to the
correction of Z-errors. In particular, the decoding algorithm is the same for both types
of errors and we will describe it only for X-errors. An X-type error can be seen either
as a classical error eX ∈ FN2 or as a subset of the qubits EX ⊆ VQ where VQ is the set
of qubits. For quantum expander codes, it is convenient to use the representation EX
and to see the syndrome as a subset σX ⊆ CX where CX is the set of Z-type generators.
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Figure 4.3: Factor graph for the 7-qubit code.

To summarize, the small-set-flip decoder is a classical algorithm which takes as input a
syndrome σ ⊆ CX and returns a subset of the qubits Ê ⊆ VQ.

Proposition 4.6 provides the formula to compute the dimension of a CSS code from
the dimension of the underlying classical codes.

Proposition 4.6. Let CX be a classical [N, kX ] code and CZ be an [N, kZ ] code with
C⊥Z ⊆ CX .
The quantum code CSS(CX , CZ) is an [[N,K]] stabilizer code where K = kX + kZ −
N .

Proof. We would like to use Proposition 4.5 but the generators g1, . . . , gM are not
necessarily independent. A consequence of eq. (4.20) is that the number of independent
generators in g1, . . . , gM is equal to the number of independent rows in the parity check
matrix H . By the rank nullity theorem, the parity check matrix HZ has M ′Z = N − kZ
independent rows and the parity check matrix HX has M ′X = N − kX independent
rows. Thus the number of independent rows in H is equal to M ′ = M ′X + M ′Z =
2N − kX − kZ .
By Proposition 4.5: K = N −M ′ = kX + kZ −N .

In [20] and [102], the CSS codes were introduced by giving an explicit orthogonal
basis for the code space. For x ∈ CX , we define:

|x⊕ C⊥Z 〉 := 1√
C⊥Z

∑
y∈C⊥Z

|x⊕ y〉 .

Lemma 4.7. The set
{
|x+ C⊥Z 〉 : x ∈ CX

}
is an orthogonal basis for the code space

of CSS(CX , CZ).

Proof. Let Q be the quantum code spanned by the states |x⊕ C⊥Z 〉:

Q := span
{
|x⊕ C⊥Z 〉 : x ∈ CX

}
.

The strategy to show the equalityCSS(CX , CZ) = Q is to prove thatQ ⊆ CSS(CX , CZ)
and then that these two vector spaces have both dimension equal to N − kX − kZ .
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The statementQ ⊆ CSS(CX , CZ) means that the states |x⊕ C⊥Z 〉 are +1 eigenstates
for the generators of CSS(CX , CZ) specified by the parity check matrix of eq. (4.17).
Let h ∈ FN2 be a row of HZ then the corresponding X-type generator is

g =
N⊗
i=1

Xhi

and:

g |x⊕ C⊥Z 〉 =
∑
y∈C⊥Z

g |x⊕ y〉 =
∑
y∈C⊥Z

|x⊕ y ⊕ h〉 =
∑
y′∈C⊥Z

g |x⊕ y′〉 = |x⊕ C⊥Z 〉 .

Note that in the previous equalities and in what follows, we omit the global phase

1/
√
C⊥Z of the definition of |x⊕ C⊥Z 〉.

Let h ∈ FN2 be a row of HX then the corresponding Z-type generator is:

g =
N⊗
i=1

Zhi

and:

g |x⊕ C⊥Z 〉 =
∑
y∈C⊥Z

g |x⊕ y〉 =
∑
y∈C⊥Z

(−1)(x⊕y)·h |x⊕ y〉 =
∑
y∈C⊥Z

|x⊕ y〉 = |x⊕ C⊥Z 〉 .

Hence Q ⊆ CSS(CX , CZ) holds.
In order to compute the dimension of Q, we show that

{
|x⊕ C⊥Z 〉 : x ∈ CX

}
is an

orthonormal basis of Q. Let x, x′ ∈ CX , we distinguish between two cases:

• If x⊕ x′ ∈ C⊥Z then |x⊕ C⊥Z 〉 = |x′ ⊕ C⊥Z 〉 because:

|x⊕ C⊥Z 〉 =
∑
y∈C⊥Z

|x⊕ y〉 =
∑
y′∈C⊥Z

|x⊕ y′ ⊕ x⊕ x′〉

=
∑
y′∈C⊥Z

|x′ ⊕ y′〉 = |x′ ⊕ C⊥Z 〉 .

• If x ⊕ x′ /∈ C⊥Z then for any y, y′ ∈ C⊥Z : x ⊕ y ⊕ x′ ⊕ y′ /∈ C⊥Z . In particular
x⊕y 6= x′⊕y′ and thus the vectors |x⊕ y〉 and |x′ ⊕ y′〉 are orthogonal. Finally,
the states |x⊕ C⊥Z 〉 and |x′ ⊕ C⊥Z 〉 are orthogonal since the two sums that define
them are orthogonal term by term.

The dimension of Q is equal to:

dim(Q) = #
{
|x⊕ C⊥Z 〉 : x ∈ CX

}
=
∣∣CX ∣∣∣∣C⊥Z ∣∣ = 2kX

2N−kZ = 2kX+kZ−N .

Using Proposition 4.6, we conclude thatQ and CSS(CX , CZ) have the same dimen-
sion and thus they are equal.
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4.2 Hypergraph product codes

The hypergraph product construction introduced by Tillich and Zémor in ref. [108] is a
generic way to build a quantum code Q from two classical codes C1 and C2. Let G1, G2
be the Tanner graphs of C1, C2 then the associated hypergraph product is a CSS code
whose Tanner graph is equal to the so-called Cartesian product of G1 and G2. This
construction provides quantum LDPC codes with constant rate and a minimal distance
proportional to the square root of the block length. For instance, when C1 and C2 are both
equal to the same [n,Θ(n),Θ(n)] LDPC code, Q is an [[N,Θ(N),Θ(

√
N)]] LDPC

CSS code where N = Θ(n2).
As shown in Figure 2.6, the asymptotic scaling for the hypergraph product code

parameters is good by comparison to the other known families of LDPC codes. The
technical idea to compute the dimension and the minimal distance of an hypergraph
product code is to rely on two notions from classical coding called transpose code and
classical product code.
Let C be a classical code with parity check matrix H . Then, by definition, the transpose
code of C denoted by CT has parity check matrix HT . In other words, the Tanner
graph of CT is equal to the Tanner graph of C where the bit-nodes are interpreted as
check-nodes and vice-versa.
Classical product codes have been introduced by Elias in ref. [35]. Given C1 an
[n1, k1, d1] code and C2 an [n2, k2, d2] code, the associated product code is an [n1n2, k1k2, d1d2]
that we denote by C. Informally, the physical bits of C are organized accordingly to
an n1 × n2 rectangle and a bit-string c ∈ Fn1×n2

2 is a codeword of C if and only if
each column of c is a codeword of C1 and each row of c is a codeword of C2. For
completeness, we provide a quick survey on classical product codes in Chapter 7.
Finally, the hypergraph product associated to C1 and C2 is the CSS code built from CX ,
CZ where CTX is the classical product of C1, CT2 and CTZ is the classical product of CT1 ,
C2.

The organization of this section is the following: Section 4.2.1 defines the hypergraph
product construction and Section 4.2.2 is a review on their main properties.

4.2.1 Definition of hypergraph product codes

Let C1 be an [n1, k1, d1] classical code with parity check matrix H1 ∈ Fm1×n1
2 and

let C2 be an [n2, k2, d2] classical code with parity check matrix H2 ∈ Fm2×n2
2 . The

hypergraph product of C1, C2 denoted by Q is defined to be the CSS code associated to
the classical codes CX , CZ described by the following parity check matrices:

HX =
(
1n1 ⊗H2, H

T
1 ⊗ 1m2

)
, HZ =

(
H1 ⊗ 1n2 ,1m1 ⊗HT

2
)
, (4.22)

where 1n is the n× n identity matrix. Note that HX is an MX ×N matrix and HZ is
an MZ ×N matrix where:

N := n1n2 +m1m2, MX := n1m2, MZ := m1n2.
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Figure 4.4: Tanner graph of an hypergraph product code.

Figure 4.5: Tanner graph of CX (on the left) and Tanner graph of CZ (on the right).
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Furthermore, it is straightforward to check that the orthogonality property HXH
T
Z = 0

holds:

HXH
T
Z =

(
1n1 ⊗H2, H

T
1 ⊗ 1m2

)
·

(
HT

1 ⊗ 1n2

1m1 ⊗H2

)
= (1n1 ⊗H2) ·

(
HT

1 ⊗ 1n2

)
+
(
HT

1 ⊗ 1m2

)
· (1m1 ⊗H2)

= HT
1 ⊗H2 +HT

1 ⊗H2

= 0.

The Tanner graph GQ of an hypergraph product code is equal to the Cartesian
product of the classical Tanner graphs as represented in Figure 4.4. Formally, let V1
(resp. V2) be the set of bit-nodes of C1 (resp. C2), let C1 (resp. C2) be its set of check-
nodes and let G1 (resp. G2) be its Tanner graph. Then, the graph GQ is the Cartesian
product of G1 and G2 defined in the following way:

– The qubits are indexed by the set VQ := (V1 × V2)] (C1 ×C2) (] is the disjoint
union).

– The X-type generators are indexed by the set CZ := C1 × V2.

– The Z-type generators are indexed by the set CX := V1 × C2.

– Two nodes u1, u2 ∈ VQ ] CX ] CZ are connected in GQ in two cases. Either
the first components of u1 and u2 are equal and their second components are
connected in G2; or their second components are equal and their first components
are connected in G1.

The qubits belonging to V1 × V2 are called the VV-type qubits and the qubits
belonging to C1 × C2 are called the CC-type qubits. The incidence relation of GQ
defined above can be split in four cases:

– A VV-type qubit q ∈ V1 × V2 is in the support of an X-type generator (c1, v2) ∈
C1 × V2 if and only if q = (v1, v2) where v1 is connected to c1 in G1.

– A VV-type qubit q ∈ V1 × V2 is in the support of a Z-type generator (v1, c2) ∈
V1 × C2 if and only if q = (v1, v2) where v2 is connected to c2 in G2.

– A CC-type qubit q ∈ C1 ×C2 is in the support of an X-type generator (c1, v2) ∈
C1 × V2 if and only if q = (c1, c2) where c2 is connected to v2 in G2.

– A CC-type qubit q ∈ C1 × C2 is in the support of a Z-type generator (v1, c2) ∈
V1 × C2 if and only if q = (c1, c2) where c1 is connected to v1 in G1.

In Figure 4.4 where GQ is depicted, each column is a copy of G1 and each row
is a copy of G2. In particular, there is no edge between a qubit and a generator if
they are not in the same row or in the same column. Therefore in GQ, there are∣∣V2
∣∣+
∣∣C2
∣∣ = n2 +m2 copies of G1 and

∣∣V1
∣∣+
∣∣C1
∣∣ = n1 +m1 copies of G2.

The Tanner graph of the classical code CX used to correct X-type errors is the
sub-graph of GQ induced by the set of VV-type qubits, the set of CC-type qubits and
the set of Z-type generators (see the left part of Figure 4.5). Similarly, the qubits and
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the X-type generators induce the Tanner graph of CZ used to correct Z-type errors (see
the right part of Figure 4.5).

Remark 4.8. If the initial codes C1 and C2 have the LDPC property then the resulting
hypergraph product code Q is also LDPC.

Proof. In this proof, a matrix A is said to be (r, c)-LDPC when each row has weight
upper bounded by r and each column has weight upper bounded by c. If a matrix A is
(r, c)-LDPC then the tensor product A⊗ 1 is also (r, c)-LDPC. By eq. (4.22), if C1, C2
are LDPC then CX , CZ and Q are also LDPC.

In Section 4.3, we will assume that the Tanner graph G1 (resp. G2) of C1 (resp. C2)
is regular with left degree dV1 (resp. dV2 ) and right degree dC1 (resp. dC2 ). In that case,
the VV-type qubits have degree dV1 + dV2 , the CC-type qubits have degree dC1 + dC2 ,
the X-type generators have degree dC1 + dV2 and the Z-type generators have degree
dV1 + dC2 .

4.2.2 Parameters of an hypergraph product code

The goal of this section is to prove Theorem 4.9 below where the dimension and the
minimal distance of an hypergraph product code are computed.
Let C be a classical error correcting code with parity check matrix H . Then the trans-
posed code CT is defined to be the classical code whose parity check matrix is HT . The
code CT has the same Tanner graph as C where the bit-nodes and the check-nodes have
been switched. In particular in Theorem 4.9, m1 is the number of check-nodes of C1
and m2 is the number of check-nodes of C2.
In the degenerate case where a code C = {0N} is trivial, Theorem 4.9 uses the conven-
tion that C is an [n, 0, d] code with d = +∞.

Theorem 4.9 ([108]). Let C1 and C2 be two classical error correcting codes and let n1,
k1, d1, n2, k2, d2, m1, kT1 , dT1 , m2, kT2 , dT2 ∈ N be such that:

C1 is an [n1, k1, d1] code,
CT1 is an [m1, k

T
1 , d

T
1 ] code,

C2 is an [n2, k2, d2] code,
CT2 is an [m2, k

T
2 , d

T
2 ] code.

Then Q the hypergraph product of C1 and C2 is an [[N,K,D]] stabilizer code where:

(i) N = n1n2 +m1m2, (ii) K = k1k2 + kT1 k
T
2 , (iii) D = min(DX , DZ),

(iv) DX ≥ min(dT1 , d2), (v) DZ ≥ min(d1, d
T
2 ).

The integers DX and DZ are the minimal distances associated to X-type and Z-type
errors and moreover:

(vi) If k1 6= 0 and k2 6= 0 then DX ≤ d2 and DZ ≤ d1.

(vii) If kT1 6= 0 and kT2 6= 0 then DX ≤ dT1 and DZ ≤ dT2 .
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(viii) Otherwise K = 0 and Q is trivial.

We split the proof of Theorem 4.9 into three parts: the proof of item (ii), the proof of
item (iv) and the proof of item (vi). Item (i) is a direct consequence of the hypergraph
product definition, item (iii) has already been proven in eq. (4.21), the proof of item (v)
is similar to the proof of item (iv), the proof of item (vii) is similar to the proof of
item (vi) and item (viii) is a consequence of item (ii).

Oftentimes, the parity check matrices of C1 and C2 are full rank with n1 < m1 and
n2 < m2. In that case, the codes CT1 and CT2 are reduced to the all-zero codeword and:

k1 = n1 −m1, k2 = n2 −m2, kT1 = kT2 = 0, dT1 = dT2 = +∞.

Moreover in the next sections, we will only consider the hypergraph product of a code C
with itself. If C is an [n, k, d] code with m < n check-nodes and full rank parity check
matrix then Theorem 4.9 becomes:

N = n2 +m2 = n2 + (n− k)2, K = k2, D = DX = DZ = d.

When C defines a family of classical codes with rate r = k/n and linear minimal
distance d = Θ(n), the corresponding hypergraph product is a family of CSS codes
with rate rQ where:

N = Θ(n2), 1
rQ

=
(

1
r

)2
+
(

1
r
− 1
)2

, D = Θ
(√

N
)
.

An interesting example where the parity check matrices are not full rank is given in
Example 4.10 below.

Example 4.10 (Toric code). The toric code of length L ∈ N∗ can be defined as the
hypergraph product of an L-bit repetition code C with itself. By definition, the L-bit
repetition code C = CT is an [L, 1, L] linear code whose Tanner graph is a cycle of
length 2L with L bit-nodes and L check-nodes. By Theorem 4.9, the toric code is a
[[2L2, 2, L]] stabilizer code.

We now prove the statements of Theorem 4.9.

Proof of Theorem 4.9 (ii). First, we show using linear algebra that computing K is
equivalent to computing kTX and kTZ the dimensions of CTX and CTZ . Let C be an [n, k]
classical error correcting code (later we will take C ∈ {C1, C2, CX , CZ}) with m check-
nodes and with parity check matrix H . The rank–nullity theorem asserts that:

k = n− rank(H) and kT = m− rank(HT ).

Since rank(H) = rank(HT ), we have k = n−m+ kT and for C ∈ {C1, C2, CX , CZ}
we get:

k1 = n1 −m1 + kT1 , kX = n1n2 +m1m2 − n1m2 + kTX ,

k2 = n2 −m2 + kT2 , kZ = n1n2 +m1m2 −m1n2 + kTZ .
(4.23)
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By Proposition 4.6, we have K = kX + kZ − n1n2 −m1m2 and thus computing kTX
and kTZ is sufficient to compute K.

The integer kTX is the dimension of the code CTX whose Tanner graph is given in the
left part of Figure 4.5 where the Z-type generators are interpreted as bits and the qubits
are interpreted as check-nodes. In fact CTX = C1 ⊗ CT2 is a classical product code as
defined in Section 7.2. By Proposition 7.2:

kTX = k1k
T
2 , and similarly kTZ = kT1 k2. (4.24)

Finally, using eqs. (4.23) and (4.24) we get:

K = kX + kZ − n1n2 −m1m2

= n1n2 +m1m2 − n1m2 + kTX −m1n2 + kTZ

= n1n2 +m1m2 − n1m2 + k1k
T
2 −m1n2 + kT1 k2

= n1n2 +m1m2 − n1m2 + (n1 −m1 + kT1 )kT2 −m1n2 + kT1 (n2 −m2 + kT2 )
= (n1 −m1 + kT1 )(n2 −m2 + kT2 ) + kT1 k

T
2

= k1k2 + kT1 k
T
2 .

Surprisingly, the formula for the dimension of an hypergraph product code given in
Theorem 4.9 (ii) can be used to determine its minimal distance.

Proof of Theorem 4.9 (iv). As discussed in Section 4.1.6, DX is the minimal weight
of an X-type Pauli error outside the stabilizer group with an empty syndrome. To
prove DX ≥ min(dT1 , d2), we show that if an X-type error E ⊆ VQ satisfies

∣∣E∣∣ <
min(dT1 , d2) and has an empty syndrome then E is equal to a product of generators.
In order to write E as a product of generators, we are going to construct Q′ another
hypergraph product code with zero logical qubit and whose Tanner graph is a sub-graph
of the Tanner graph of Q. The way Q′ is constructed ensures that the error E has also
an empty syndrome with respect to Q′. Finally, since Q′ has zero logical qubit, any
error with an empty syndrome is a product of generators.

In this proof, we denote by G1 and G2 the Tanner graphs of C1 and C2. We will
also define a classical code C′1 (resp. C′2) by its Tanner graph G′1 (resp. G′2) which is a
sub-graph of G1 (resp. G2). The hypergraph product of C1 and C2 (resp. C′1 and C′2) is
denoted by Q (resp. Q′) and its Tanner graph by GQ (resp. GQ′ ).

Let E ⊆ VQ = V1×V2 ]C1×C2 be an X-type error seen as a subset of the qubits
with σ(E) = ∅ and

∣∣E∣∣ < min(dT1 , d2). As illustrated in Figure 4.6, we define the set
V ′2 ⊆ V2 to be the projection of E ∩ (V1 × V2) onto its second coordinate and C ′1 ⊆ C1
to be the projection of E ∩ (C1 × C2) onto its first coordinate:

V ′2 :=
{
v2 ∈ V2 : ∃v1 ∈ V1, (v1, v2) ∈ E

}
,

C ′1 :=
{
c1 ∈ C1 : ∃c2 ∈ C2, (c1, c2) ∈ E

}
.
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Figure 4.6: Tanner graph ofQ′.

Let G′1 be the sub-graph of G1 induced by V1 ] C ′1 and let G′2 be the sub-graph of G2
induced by V ′2 ] C2. Then the Tanner graph GQ′ is a sub-graph of GQ.

In a nutshell, the error E is equal to a product of X-type generators because its
syndrome is empty for Q′ which has zero logical qubit. We provide more details below:
Firstly, some of the Z-type generators have fewer neighbors in GQ′ than in GQ. How-
ever, for any X-type error E′ ⊆ V1 × V ′2 ] C ′1 × C2 included in the qubits of Q′, the
syndrome of E′ does not depend on whether we are talking aboutQ orQ′. In particular,
the error E has an empty syndrome for both codes.
Secondly, any error E2 ⊆ V ′2 included in the bits-nodes of C′2 has the same syndrome
for C2 and for C′2. In particular,

∣∣E2
∣∣ ≤ ∣∣V ′2 ∣∣ ≤ ∣∣E∣∣ < d2 thus E2 cannot have an empty

syndrome except if E2 = ∅. Hence the only codeword of C′2 is the all zero bit-string
and thus the dimension of C′2 is zero. Similarly, the dimension of CT1 is zero and using
Theorem 4.9 (ii) we conclude that Q′ has zero logical qubit. Since the error E has an
empty syndrome for Q′, it can be written as a product of X-type generators.
Thirdly, an X-type generator appearing in GQ′ has the same neighborhood in GQ and
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in GQ′ . In particular, E is a product of X-type generator for Q′ thus it is a product of
X-type generator for Q.

Finally, the proof of item (vi) lies in finding a non trivial X-type error with empty
syndrome and weight below d2 under the assumptions k1, k2 6= 0.

Proof of Theorem 4.9 (vi). To prove the inequality DX ≤ d2, we show that if k1 6= 0
and k2 6= 0 then there exists an X-type error E ⊆ VQ of weight d2 with an empty
syndrome and which cannot be written as a product ofX-type generators. The inequality
DZ ≤ d1 could be proven in the same way.

We emphasize that below, we use C⊥1 the dual space of C1 not to be confused with
CT1 . First, the inequality k1 6= 0 implies dim(C⊥1 ) = n− k1 < n and thus there exists at
least one binary vector e1 /∈ C⊥1 with Hamming weight equal to 1. Second, the inequality
k2 6= 0 implies that there exists a codeword e2 ∈ C2 whose support E2 ⊆ V2 satisfies
E2 6= ∅.
Let v1 ∈ V1 be the unique element in the support of e1, let v2 ∈ E2 and let E :=
{v1}×E2. To conclude the proof, we show that E is not a product of X-type generators
and has an empty syndrome.

If the errorE was equal to a product ofX-type generators then the error {v1}×{v2}
would be equal to a product of X-type generators belonging to C1 × {v2}. The X-type
generators in C1 × {v2} belong to the red column of Figure 4.7 which is a copy of
the Tanner graph of C1. Hence e1 /∈ C⊥1 implies that E cannot be a product of X-type
generators.

The syndrome of E is included in the Z-type generators of {v1} × C2. These
generators are represented by the blue row in Figure 4.7 which is a copy of the Tanner
graph of C2 and thus the statement e2 ∈ C2 implies that E has an empty syndrome for
the hypergraph product code.
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Figure 4.7: Example of a non trivial error E with empty syndrome.

4.3 Quantum expander codes

Given C1, C2, two classical expander codes as defined in Section 3.2, the hypergraph
product of C1 and C2 is called a quantum expander code [67]. For simplicity in this
manuscript, we focus on the particular case C = C1 = C2 where C is an [n,Θ(n),Θ(n)]
expander code with a regular Tanner graph (see Section 3.2.4 for the existence of such
codes). By Remark 4.8 and Theorem 4.9, the resulting quantum code is LDPC (but not
regular) with parameters [[N,Θ(N),Θ(

√
N)]] where N = Θ(n2).

The main advantage of a quantum expander code compared to other families of
hypergraph product codes is the possibility to analyze the performance of the small-set-
flip decoder [67]. The small-set-flip decoder is similar to the bit-flip algorithm discussed
in Section 3.2.3: the execution is divided into several rounds where the algorithm tries
to reduce the syndrome weight. In the classical setting, a single bit is flipped at each
round, but in the quantum case, a set of several qubits F has to be flipped if we wish
to ensure the syndrome weight to decrease. When the small-set-flip decoder is used to
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correct X-type errors, the check-nodes are represented by the Z-type generators and the
set F is selected among all possible subsets of an X-type generator support. A subset of
an X-type generator support is called a small-set and the set of small-sets is denoted by
F . As a summary, at each round, the small-set-flip algorithm decreases the syndrome
weight by flipping a set of qubits F ∈ F .

This section is a review on the results of ref. [67], in particular the small-set-flip
algorithm is shown to correct any adversarial error with weight up to a fraction of the
minimal distance. This section is organized as follows: in Section 4.3.1 we define
the quantum expander codes and the small-set-flip decoder, and in Section 4.3.3 we
analyze their behavior against adversarial errors. In Chapter 5, we will rely on the results
presented in this section to show that quantum expander codes have a threshold for any
local stochastic error model as defined in Section 2.3.

4.3.1 Definition

Figure 4.8: constant weight error on which the bit-flip decoder is blocked. The qubits in red
represent the error and the Z-type generators in red represent the unsatisfied

check-nodes.

Definition 4.11 (Quantum expander code [67]). A quantum expander code is the hyper-
graph product of a classical expander code with itself.
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In what follows, we describe the error correction procedure forX-type errors. In fact, for
the hypergraph product of a code with itself, the Tanner graph of CX and CZ presented
in Figure 4.5 are equal up to a permutation on the qubits. Hence, X-type errors and
Z-type errors are corrected in the same way and without loss of generality, we deal with
X-type errors only.
All along this section we use the notations defined below.

Notation 4.12. Let G be the Tanner graph of a classical expander code, let V be the
set of bit-nodes, let C be the set of check-nodes and let Γ be the neighborhood in G. We
assume that G has left degree dV , right degree dC and is a (γ, δ)-expander graph with
γ > 0 and δ < 1/8. We denote by Q the associated quantum expander code, by VQ
the set of qubits, by CX the set of Z-type stabilizer generators, by CZ the set of X-type
stabilizer generators and by N the number of physical qubits:

VQ := V 2 ] C2, CX := V × C, CZ := C × V, N :=
∣∣VQ∣∣.

For an X-type error E ⊆ VQ, the syndrome of E is denoted σX(E) ⊆ CX .
In addition we define the following positive constants:

r := dV
dC

=
∣∣C∣∣∣∣V ∣∣ , γ0 = r2

√
1 + r2

γ, β0 := 1− 8δ, α0 := rβ0

4 + 2rβ0
.

When a quantum expander code is decoded with the bit-flip algorithm used in the
classical case, there exist constant weight errors which are not corrected. Figure 4.8
provides an example where the error is made of three VV-type qubits and two CC-type
qubits in the support of an X-type generator g = (c, v) ∈ CX . In this example, the error
weight is 5, the syndrome weight is 12, the Tanner graph of the initial classical code has
left degree dV = 4 and right degree dC = 6, and the X-type generators have degree 10.
The bit-flip decoder fails in correcting this error since no bit-flip decreases the syndrome
weight. In particular, we can check that the syndrome weight is not modified when a
single qubit belonging to the support of g is flipped.

For the example shown in Figure 4.8, the small-set-flip decoder proposed by ref.
[67] flips the five red qubits in one round. More generally, the decoding strategy is to
decrease the syndrome weight by flipping a set of qubits called a small-set. By definition,
a set F ⊆ VQ is a small-set if and only if it is included in the support of an X-type
generator, i.e. if and only if F ∈ F0 where:

F0 :=
{
F ⊆ ΓZ(g) : g ∈ CZ

}
. (4.25)

Given a syndrome σ ⊆ CX and a small-set F ∈ F0, we denote by ∆(σ, F ) the
diminution of the syndrome weight when F is flipped:

∆(σ, F ) :=
∣∣σ∣∣− ∣∣σ ⊕ σX(F )

∣∣. (4.26)

In the original paper [67], at each round, the small-set-flip algorithm flips a set of
qubits F chosen to be the small-set F ∈ F0 maximizing ∆(σ, F )/

∣∣F ∣∣. In order to
simplify the proofs in this manuscript, the selected setF is an arbitraryF ∈ F0 satisfying
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∣∣σX(F )
∣∣ ≥ dV

2
∣∣F ∣∣ and ∆(σ, F ) ≥ β0

∣∣σX(F )
∣∣ (β0 is defined in Notation 4.12). Our

condition is more convenient for the case where the syndrome is noisy but the algorithm
of [67] and many other variants can be analyzed in the same way. Let:

F :=
{
F ∈ F0 :

∣∣σX(F )
∣∣ ≥ dV

2
∣∣F ∣∣} . (4.27)

We are now ready to define the small-set-flip decoder (Algorithm 2).

Algorithm 2 : the small-set-flip decoder.

Input: the syndrome σ ⊆ CX . // σ = σ(E) for some E ⊆ VQ
Output: a guess for the error Ê ⊆ VQ.

Ê0 = ∅ ; σ0 = σ ; i = 0 // E0 = E, σ0 = σ(E0)
while ∃Fi ∈ F : ∆(σi, Fi) ≥ β0

∣∣σX(Fi)
∣∣ do

Pick such an Fi arbitrarily. //
∣∣σX(Ei)

∣∣− ∣∣σX(Ei ⊕ Fi)
∣∣ ≥ β0

∣∣σX(Fi)
∣∣

Êi+1 = Êi ⊕ Fi // Ei+1 = Ei ⊕ Fi
σi+1 = σi ⊕ σX(Fi) // σi+1 = σ(Ei+1)
i = i+ 1

end while
return Êi

Similarly to the bit-flip algorithm (Algorithm 1) it is insightful to think about the
set Ei := E ⊕ Êi which represents the physical errors at each round of the algorithm
(see Figure 3.3 for a graphical representation of E, Ei and Êi). The comments of
Algorithm 2 mention the set Ei and its relationship with the variables of the algorithm.

4.3.2 Weighted cardinality, reduced weight and reduced set
Before analyzing Algorithm 2, we introduce in Definition 4.13 below three convenient
tools: the weighted cardinality, the reduced weight and the concept of reduced set.

Definition 4.13. We use Notation 4.12. Let E ⊆ VQ = V 2 ] C2 be an error set.
The weighted cardinality

∥∥E∥∥ is defined by:

∥∥E∥∥ :=
∣∣E ∩ V 2

∣∣
dC

+
∣∣E ∩ C2

∣∣
dV

.

The reduced weight of E denoted by
∣∣E∣∣R is defined to be the minimum weight of an

error equivalent to E: ∣∣E∣∣R := min
E′∈C⊥Z

∣∣E + E′
∣∣.

A set E ⊆ VQ is said to be reduced when |E| is minimal over the errors equivalent to E:

E is reduced ⇔
∣∣E∣∣ =

∣∣E∣∣R.
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Similarly, a set E ⊆ VQ is said to be ‖ ‖-reduced when
∥∥E∥∥ is minimal over the errors

equivalent to E:

E is ‖ ‖-reduced ⇔
∥∥E∥∥ = min

E′∈C⊥Z

∥∥E + E′
∥∥.

As shown in Lemma 4.14 below, the weighted cardinality ‖ · ‖ shares a couple of
properties with the usual the cardinality | · |.

Lemma 4.14. We use Notation 4.12. Let E,E1, E2 ⊆ VQ then:

(i)
∥∥E∥∥ ≥ 0, (ii)

∥∥E∥∥ = 0⇔ E = ∅,
(iii) E1 ⊆ E2 ⇒

∥∥E1
∥∥ ≤ ∥∥E2

∥∥, (iv) dV
∥∥E∥∥ ≤ ∣∣E∣∣ ≤ dC∥∥E∥∥,

(v)
∣∣σX(E)

∣∣ ≤ dV dC∥∥E∥∥, (vi)
∥∥E1 ∪ E2

∥∥ ≤ ∥∥E1
∥∥+

∥∥E2
∥∥,

(vii)
∥∥E1 ] E2

∥∥ =
∥∥E1

∥∥+
∥∥E2

∥∥,
(viii)

∥∥E1 ⊕ E2
∥∥ =

∥∥E1
∥∥+

∥∥E2
∥∥− 2

∥∥E1 ∩ E2
∥∥.

Proof. For the usual cardinality, we already have:∣∣E∣∣ ≥ 0,
∣∣E∣∣ = 0⇔ E = ∅,

E1 ⊆ E2 ⇒
∣∣E1
∣∣ ≤ ∣∣E2

∣∣, ∣∣E1 ∪ E2
∣∣ ≤ ∣∣E1

∣∣+
∣∣E2
∣∣,∣∣E1 ] E2

∣∣ =
∣∣E1
∣∣+
∣∣E2
∣∣, ∣∣E1 ⊕ E2

∣∣ =
∣∣E1
∣∣+
∣∣E2
∣∣− 2

∣∣E1 ∩ E2
∣∣.

It is a direct consequence to show items (i), (ii), (iii), (vi), (vii), (viii) where | · | is
replaced by ‖ · ‖.
The inequality dV ≤ dC implies item (iv).
Finally, by linearity, it is sufficient to show item (v) in the two particular cases E ⊆ V 2

and E ⊆ C2. For example when E ⊆ V 2:∣∣σX(E)
∣∣ =

∣∣∣⊕
e∈E

σX
(
{e}
)∣∣∣ ≤∑

e∈E

∣∣∣σX({e})∣∣∣ = dV
∣∣E∣∣ = dV dC

∥∥E∥∥.

In addition, all along this manuscript we will use the handy property of Lemma 4.15
below.

Lemma 4.15. We use Notation 4.12.
Let E1 ⊆ E2 ⊆ VQ be two errors. If E2 is ‖ ‖-reduced (resp. reduced) then E1 is
‖ ‖-reduced (resp. reduced).

Proof. Let’s prove that
∥∥E1

∥∥ ≤ ∥∥E1 ⊕ E
∥∥ holds for any E ∈ C⊥Z . By Lemma 4.14

(viii):∥∥E1 ⊕ E
∥∥− ∥∥E1

∥∥ =
∥∥E1

∥∥+
∥∥E∥∥− 2

∥∥E1 ∩ E
∥∥− ∥∥E1

∥∥ =
∥∥E∥∥− 2

∥∥E1 ∩ E
∥∥.
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Similarly: ∥∥E2 ⊕ E
∥∥− ∥∥E2

∥∥ =
∥∥E∥∥− 2

∥∥E2 ∩ E
∥∥,

and by Lemma 4.14 (iii): ∥∥E1 ∩ E
∥∥ ≤ ∥∥E2 ∩ E

∥∥.
Since E2 is ‖ ‖-reduced, for all E ∈ C⊥Z :

0 ≤
∥∥E2 ⊕ E

∥∥− ∥∥E2
∥∥ =

∥∥E∥∥− 2
∥∥E2 ∩ E

∥∥
≤
∥∥E∥∥− 2

∥∥E1 ∩ E
∥∥ =

∥∥E1 ⊕ E
∥∥− ∥∥E1

∥∥.
Hence E1 is ‖ ‖-reduced.
The same proof also works when replacing ‖ · ‖ with | · |.

4.3.3 Errors in the adversarial setting [67]

Figure 4.9: schematic representation of a critical generator (c1, v2).

In this section, we show in Proposition 4.16 that any error with weight up to Θ(
√
N) is

corrected by Algorithm 2. For simplicity, we assume that the expansion parameter δ of
Notation 4.12 satisfies δ < 1/8, but as stated in Theorem 2 of ref. [67], the result still
hold under the weaker hypothesis δ < 1/6.



4.3. Quantum expander codes 85

Proposition 4.16 (Lemma 10 of [67]). We use Notation 4.12.
Let E ⊆ VQ be an error satisfying

∣∣E∣∣ ≤ 2α0γ0
√
N . Then E is corrected by the

small-set-flip algorithm. In other words, if we run Algorithm 2 on input σX(E) then the
output Ê is equivalent to E.

The proof of Proposition 4.16 is given at the end of this section which is organized in
such a manner that we will be able to reuse the intermediate results in Chapter 5.

We start with a quick proof sketch for Proposition 4.16. Assume Algorithm 2 runs
on input σX(E) where E ⊆ VQ is an error and

∣∣E∣∣ = O(
√
N). For each round i,

let Ei := E ⊕ Êi be the physical error on the qubits as defined in the comments of
Algorithm 2.
First, we show that

∣∣Ei∣∣ = O(
√
N) holds for all i. We already know that

∣∣E0
∣∣ =

∣∣E∣∣ =
O(
√
N) and by the LDPC property, the weight of the initial syndrome σ0 = σX(E0)

satisfies |σ0| = O(
∣∣E0
∣∣) = O(

√
N). At each round of the algorithm, a small-set Fi is

flipped and the syndrome weight decreases. In other words, the weight of the physical
error changes by the quantity |Ei+1| − |Ei| ≤ |Fi| = O(1) and the syndrome weight
decrease at least by one. Finally:

|Ei| = |E0|+O(|σ0|) = O(
√
N).

By definition, the error is corrected if the algorithm stops when the physical error Ei is
trivial (equivalent to the empty error). By contraposition, to prove Proposition 4.16, it
is sufficient to show the following assertion: if the physical error Ei is not trivial and
satisfies |Ei| = O(

√
N) then the algorithm does not stop at round i.

In fact, showing the last statement is the main difficulty in the proof of Proposi-
tion 4.16. The solution proposed by the authors of ref. [67] is to use the notion of critical
generator defined in Definition 4.17 below. In a nutshell, if an X-type generator is
critical then flipping the appropriate small-set in its support will decrease the syndrome
weight.

The definition of critical generator is a bit technical thus we provide a schematic
representation in Figure 4.9. The idea is to rely on the observation that, for an hypergraph
product code, the support of any X-type generator (c1, v2) ∈ C × V has the following
shape:

– The VV-type qubits in the support of (c1, v2) are the elements of Γ(c1)× {v2}.
– The CC-type qubits in the support of (c1, v2) are the elements of {c1} × Γ(v2).

– The Z-type generators connected to the support of (c1, v2) are the elements of
Γ(c1)× Γ(v2).

The latter point means that the rectangle Γ(c1) × Γ(v1) in the Tanner graph of
Figure 4.9 represents the set of check-nodes affected by at least one qubit of the support
of (c1, v2). Informally, (c1, v2) is a critical generator when:

– The VV-type qubits in Γ(c1)×{v1} can be partitioned using three sets Γ1,Γ1, Γ̃1 ⊆
V (see item (1) in Definition 4.17).
In what follows, we say “a qubit of Γ1” (resp. Γ1, resp. Γ̃1) to talk about the
qubits of Γ1 × {v1} (resp. Γ1 × {v1}, resp. Γ̃1 × {v1}).
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– The CC-type qubits in {c1}×Γ(v1) can be partitioned using three sets Γ2,Γ2, Γ̃2 ⊆
C (see item (2) in Definition 4.17).
In what follows, we say “a qubit of Γ2” (resp. Γ2, resp. Γ̃2) to talk about the
qubits of {c1} × Γ2 (resp. {c1} × Γ2, resp. {c1} × Γ̃2).

– The qubits of Γ1 and Γ2 are in the error (see items (3) and (4) in Definition 4.17)

– The qubits of Γ1 and Γ2 are not in the error (see items (5) and (6) in Defini-
tion 4.17).

– The qubits of Γ̃1 and Γ̃2 can be either in the error or outside the error but there
are few such qubits (see items (8) and (9) in Definition 4.17).

– For any qubit q of Γ1, Γ1, Γ2 or Γ2 and for any check-node c connected to q, if a
qubit q′ 6= q is in the support of c then q′ is not in the error (see items (10) to (17)
in Definition 4.17).

As shown in the proof of Lemma 4.19 below, when a critical generator exists, the
while loop condition of Algorithm 2 is satisfied by the small-set whose elements are the
qubits of Γ1 and Γ2. As a consequence, showing the existence of a critical generator is
sufficient to prove that the algorithm does not stop.

Definition 4.17 (Critical generator, Definition 6 of [67]). We use Notation 4.12.
A critical generator for an error E ⊆ VQ is an X-type generator (c1, v2) ∈ CZ such
that there exist Γ1,Γ1, Γ̃1 ⊆ V and Γ2,Γ2, Γ̃2 ⊆ C with:

(1) Γ(c1) = Γ1 ] Γ1 ] Γ̃1, (2) Γ(v2) = Γ2 ] Γ2 ] Γ̃2,

(3) Γ1 × {v2} ⊆ E, (4) {c1} × Γ2 ⊆ E,
(5) Γ1 × {v2} ⊆ V 2 \ E, (6) {c1} × Γ2 ⊆ C2 \ E,

(7)
∣∣Γ1
∣∣+
∣∣Γ2
∣∣ 6= 0, (8)

∣∣Γ̃1
∣∣ ≤ 2δdC , (9)

∣∣Γ̃2
∣∣ ≤ 2δdV ,

and for all v1 ∈ Γ1, v1 ∈ Γ1, c2 ∈ Γ2 and c2 ∈ Γ2:

(10) E ∩
[
{v1} × Γ(c2)

]
=
{

(v1, v2)
}

(11) E ∩
[
Γ(v1)× {c2}

]
=
{

(c1, c2)
}

(12) E ∩
[
{v1} × Γ(c2)

]
= ∅ (13) E ∩

[
Γ(v1)× {c2}

]
=
{

(c1, c2)
}

(14) E ∩
[
{v1} × Γ(c2)

]
=
{

(v1, v2)
}

(15) E ∩
[
Γ(v1)× {c2}

]
= ∅

(16) E ∩
[
{v1} × Γ(c2)

]
= ∅ (17) E ∩

[
Γ(v1)× {c2}

]
= ∅

Using expansion based arguments, we can show the existence of critical generators
for errors of weight O(

√
N).

Lemma 4.18 (Lemma 7 of [67]). We use Notation 4.12.
Let E ⊆ VQ be an error with 0 <

∣∣E∣∣ ≤ γ∣∣C∣∣ then there exists a critical generator for
E.
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Proof. We denote by EV := E ∩ V 2 the error on the VV-type qubits and by EC :=
E∩C2 the error on the CC-type qubits. In this proof, we find a critical generator (c1, v2)
in the case where EV 6= ∅. If EV = ∅ then EC 6= ∅ and the proof works in the same
way exchanging the roles of V and C. Hence we assume EV 6= ∅ and we denote by
E1
V , E

2
V ⊆ V and E1

C , E
2
C ⊆ C the projections of EV and EC on their first and second

coordinates:

E1
V :=

{
v1 ∈ V : ∃v2 ∈ V, (v1, v2) ∈ EV

}
,

E2
V :=

{
v2 ∈ V : ∃v1 ∈ V, (v1, v2) ∈ EV

}
,

E1
C :=

{
c1 ∈ C : ∃c2 ∈ C, (c1, c2) ∈ EC

}
,

E2
C :=

{
c2 ∈ C : ∃c1 ∈ C, (c1, c2) ∈ EC

}
.

Since 0 <
∣∣EV ∣∣ ≤ ∣∣E∣∣ ≤ γ

∣∣C∣∣ ≤ γ
∣∣V ∣∣, we also have 0 <

∣∣E2
V

∣∣ ≤ γ
∣∣V ∣∣. By

Lemma 3.5: ∣∣Γu(E2
V )
∣∣ ≥ dV ∣∣E2

V

∣∣(1− 2δ), (4.28)

where the notation Γu is defined in Notation 3.4 and refers to Γ the neighborhood in
the initial expander graph. Hence the mean value of

∣∣Γu(E2
V ) ∩ Γ(v2)

∣∣ over v2 ∈ E2
V

satisfies:

1∣∣E2
V

∣∣ ∑
v2∈E2

V

∣∣∣Γu(E2
V ) ∩ Γ(v2)

∣∣∣ ≥ 1∣∣E2
V

∣∣
∣∣∣∣∣∣Γu(E2

V ) ∩
⋃

v2∈E2
V

Γ(v2)

∣∣∣∣∣∣
=
∣∣Γu(E2

V )
∣∣∣∣E2

V

∣∣
≥ dV (1− 2δ).

Thus there exists at least one vertex v2 ∈ E2
V with

∣∣Γu(E2
V ) ∩ Γ(v2)

∣∣ ≥ dV (1 − 2δ).
We define the set A1 ⊆ C by:

A1 := Γu(E2
V ) ∩ Γ(v2).

• In the case where A1∩E2
C = ∅, we take an arbitrary v0 ∈ V such that (v0, v2) ∈

EV (v0 exists because v2 ∈ E2
V ) and we pick an arbitrary c1 ∈ Γ(v0). The two

elements c1 and v2 define the critical generator (c1, v2) and we set:

Γ1 :=
{
v1 ∈ Γ(c1) : (v1, v2) ∈ EV

}
Γ1 := Γ(c1) \ Γ1

Γ̃1 = ∅ Γ2 = ∅

Γ2 := A1 Γ̃2 := Γ(v2) \ Γ2

It remains to show that these sets satisfy the properties of Definition 4.17.
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• In the second case where A1 ∩ E2
C 6= ∅, we define A2 ⊆ C by:

A2 :=
{
c2 ∈ C : ∃c1 ∈ A1, (c1, c2) ∈ EC

}
.

We have 0 <
∣∣A2
∣∣ ≤ ∣∣E2

C

∣∣ ≤ γ
∣∣C∣∣ and the same argument as the one used

below eq. (4.28) ensures that there exists c1 ∈ A2 such that
∣∣Γu(A2) ∩ Γ(c1)

∣∣ ≥
dC(1− 2δ). We define A3 := Γu(A2) ∩ Γ(c1) and:

Γ1 := E1
V ∩A3 Γ1 := (V \ E1

V ) ∩A3 Γ̃1 := Γ(c1) \A3

Γ2 := E2
C ∩A1 Γ2 := (C \ E2

C) ∩A1 Γ̃2 := Γ(v2) \A1

Lemma 4.18 establishes the existence of a critical generator when the error is small
enough. The next step provided by Lemma 4.19 is to use this critical generator to
construct a small-set F such that flipping F decreases the syndrome weight.

Lemma 4.19 (Lemma 8 of [67]). We use Notation 4.12.
Let ER ⊆ VQ be a ‖ ‖-reduced error such that 0 <

∥∥ER
∥∥ ≤ γ0

√
N/dV , then there

exists a small-set F ∈ F with F ⊆ ER and:

(i)
∣∣σX(F )

∣∣ ≥ 1
2dV dC

∥∥F∥∥, (ii) ∆(σX(ER), F ) ≥
∣∣σX(F )

∣∣− 4δdV dC
∥∥F∥∥.

Proof. We have:∣∣ER
∣∣ ≤ dC∥∥ER

∥∥ ≤ γ0
√
N/r = γ

r√
1 + r2

√
N = γ

r√
1 + r2

√∣∣V ∣∣2 +
∣∣C∣∣2 = γ

∣∣C∣∣.
By Lemma 4.18 there exists a critical generator (c1, v2) ∈ CZ for ER and the associated
sets Γ1,Γ1, Γ̃1,Γ2,Γ2, Γ̃2 defined in Definition 4.17. Let F :=

(
Γ1 ×{v2}

)
]
(
{c1}×

Γ2
)
. Then F ⊆ ER.

For this proof, we extend the notation ‖ · ‖ of Definition 4.13 to any set A1 ⊆ V and to
any set A2 ⊆ C by the formulas:∥∥A1

∥∥ :=
∣∣A1
∣∣

dC
,

∥∥A2
∥∥ :=

∣∣A2
∣∣

dV
.

We have:

σX(F ) =
[
Γ1 ×

(
Γ(v2) \ Γ2

)]
]
[(

Γ(c1) \ Γ1

)
× Γ(c1)

]
=
[
Γ1 ×

(
Γ2 ] Γ̃2

)]
]
[(

Γ1 ] Γ̃1

)
× Γ(c1)

]
.

Thus: ∣∣σX(F )
∣∣ =

∣∣Γ1
∣∣(∣∣Γ2

∣∣+
∣∣Γ̃2
∣∣)+

∣∣Γ2
∣∣(∣∣Γ1

∣∣+
∣∣Γ̃1
∣∣)

= dV dC

[∥∥Γ1
∥∥(∥∥Γ2

∥∥+
∥∥Γ̃2

∥∥)+
∥∥Γ2

∥∥(∥∥Γ1
∥∥+

∥∥Γ̃1
∥∥)]

= dV dC

[∥∥Γ1
∥∥(1−

∥∥Γ2
∥∥)+

∥∥Γ2
∥∥(1−

∥∥Γ1
∥∥)].
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But
∥∥F∥∥ =

∥∥Γ1
∥∥+

∥∥Γ2
∥∥, thus:∣∣σX(F )

∣∣
dV dC

∥∥F∥∥ = 1−
2
∥∥Γ1

∥∥∥∥Γ2
∥∥∥∥Γ1

∥∥+
∥∥Γ2

∥∥ . (4.29)

Note that 0 <
∥∥Γ1

∥∥+
∥∥Γ2

∥∥ because 0 <
∣∣Γ1
∣∣+
∣∣Γ2
∣∣.

Let S :=
(
Γ(c1)×{v2}

)
]
(
{c1}×Γ(v2)

)
be the support of the generator (c1, v2) and

let F ′ := S \ F . The sets F and F ′ are equivalent and F is ‖ ‖-reduced since it is a
subset of the ‖ ‖-reduced set ER (see Lemma 4.15) hence the following two properties
hold: ∥∥F∥∥ ≤ ∥∥F ′∥∥, ∥∥F∥∥+

∥∥F ′∥∥ =
∥∥S∥∥ = 2.

As a consequence: ∥∥F∥∥ ≤ 1,
∥∥Γ1

∥∥ ≤ 1−
∥∥Γ2

∥∥.
A function analysis shows that

∥∥Γ1
∥∥ 7→ ∥∥Γ1

∥∥∥∥Γ2
∥∥∥∥Γ1

∥∥+
∥∥Γ2

∥∥ is non-decreasing and thus:

∥∥Γ1
∥∥∥∥Γ2

∥∥∥∥Γ1
∥∥+

∥∥Γ2
∥∥ ≤ (1−

∥∥Γ2
∥∥)∥∥Γ2

∥∥ ≤ 1
4 .

Lemma 4.19 (i) is a consequence of the latter upper bound and eq. (4.29). We also have
F ∈ F by Lemma 4.14 (iv):

∣∣σX(F )
∣∣ ≥ 1

2dV dC
∥∥F∥∥ ≥ dV

2
∣∣F ∣∣.

For Lemma 4.19 (ii), we lower bound ∆
(
σX(ER), F

)
using the inequalities

∥∥Γ̃1
∥∥ ≤ 2δ

and
∥∥Γ̃2

∥∥ ≤ 2δ:

∆
(
σX(ER), F

)
≥
∣∣Γ1
∣∣∣∣Γ2

∣∣+
∣∣Γ2
∣∣∣∣Γ1

∣∣− ∣∣Γ1
∣∣∣∣Γ̃2

∣∣− ∣∣Γ2
∣∣∣∣Γ̃1

∣∣
=
∣∣σX(F )

∣∣− 2dV dC
(∥∥Γ1

∥∥∥∥Γ̃2
∥∥+

∥∥Γ2
∥∥∥∥Γ̃1

∥∥)
≥
∣∣σX(F )

∣∣− 4δdV dC
(∥∥Γ1

∥∥+
∥∥Γ2

∥∥)
=
∣∣σX(F )

∣∣− 4δdV dC
∥∥F∥∥.

By Lemma 4.19, for an error ER ⊆ VQ satisfying the right hypothesis, there exists a
small-set F ⊆ ER such that flipping F decreases the syndrome weight. When we apply
Lemma 4.19 iteratively, we can write ER as a disjoint union of small-sets as shown in
Lemma 4.20 below.
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Lemma 4.20. We use Notation 4.12.
Let ER ⊆ VQ be a ‖ ‖-reduced error such that

∥∥ER
∥∥ ≤ γ0

√
N/dV . Then there exists

an integer f ′ ∈ N and small-sets F0, . . . , Ff ′−1 ∈ F such that:

(i) ER =
f ′−1⊎
i=0

Fi, (ii)
∣∣σX(ER)

∣∣ ≥ f ′−1∑
i=0

∣∣σX(Fi)
∣∣− f ′−1∑

i=0
4δdV dC

∥∥Fi∥∥.
In addition we have:

(iii)
∣∣σX(ER)

∣∣ ≥ β0dV dC
2

∥∥ER
∥∥.

Proof. We use an induction to define the small-sets F0, . . . , Ff ′−1 ∈ F as well as some
‖ ‖-reduced sets E0, . . . , Ef ′ ⊆ VQ with

∥∥Ei∥∥ ≤ γ0
√
N/dV .

Let E0 := ER. By hypothesis, E0 is ‖ ‖-reduced and
∥∥E0

∥∥ ≤ γ0
√
N/dV .

Assume by the induction hypothesis that the ‖ ‖-reduced set Ei has already been
defined and satisfies

∥∥Ei∥∥ ≤ γ0
√
N/dV . Lemma 4.19 applied to Ei provides the

desired small-set Fi ⊆ Ei and we define Ei+1 := Ei ⊕ Fi = Ei \ Fi. The set Ei+1
is ‖ ‖-reduced as a subset of the ‖ ‖-reduced set Ei (see Lemma 4.15) and satisfies∥∥Ei+1

∥∥ ≤ ∥∥Ei∥∥ ≤ γ0
√
N/dV .

Let f ′ ∈ N be the number of rounds after which Lemma 4.19 cannot be applied anymore.
The setEf ′ is also ‖ ‖-reduced and satisfies

∥∥Ef ′∥∥ ≤ γ0
√
N/dV . Hence we necessarily

have
∥∥Ef ′∥∥ = 0 and thus item (i) holds. Item (ii) holds by Lemma 4.19 (ii):

∣∣σX(ER)
∣∣ =

∣∣σX(E0)
∣∣ =

f ′−1∑
i=0

∆(σX(Ei), Fi) ≥
f ′−1∑
i=0

∣∣σX(Fi)
∣∣− f ′−1∑

i=0
4δdV dC

∥∥Fi∥∥.
Finally, when we combine items (i) and (ii) with Lemma 4.19 (i) we get item (iii):

∣∣σX(ER)
∣∣ ≥ f ′−1∑

i=0

∣∣σX(Fi)
∣∣− f ′−1∑

i=0
4δdV dC

∥∥Fi∥∥ ≥ β0dV dC
2

f ′−1∑
i=0

∥∥Fi∥∥
= β0dV dC

2
∥∥ER

∥∥.
Item (iii) of Lemma 4.20 asserts that the syndrome weight of a small ‖ ‖-reduced

error ER can be lower bounded by a linear function of
∥∥ER

∥∥. This property is called
soundness and, as stated in Lemma 4.21, a similar lower bound can be derived using the
usual cardinality | · | instead of ‖ · ‖.

Lemma 4.21 (Soundness, Corollary 9 of [67]). We use Notation 4.12 and | · |R from
Definition 4.13.
If E ⊆ VQ satisfies

∣∣E∣∣R ≤ γ0
√
N then:

∣∣σX(E)
∣∣ ≥ β0dV

2
∣∣E∣∣R.
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Proof. Let E1 be a reduced error equivalent to E and let E2 be a ‖ ‖-reduced error
equivalent to E then:∥∥E2

∥∥ ≤ ∥∥E1
∥∥ ≤ 1

dV

∣∣E1
∣∣ = 1

dV

∣∣E∣∣R ≤ γ0

dV

√
N.

We can conclude using Lemma 4.20 (iii):∣∣σX(E)
∣∣ =

∣∣σX(E2)
∣∣ ≥ β0dV dC

2
∥∥E2

∥∥ ≥ β0dV
2
∣∣E2
∣∣ ≥ β0dV

2
∣∣E1
∣∣ = β0dV

2
∣∣E∣∣R.

To conclude this section, we prove Proposition 4.16.

Proof of Proposition 4.16. We run the small-set-flip algorithm (Algorithm 2) on input
E, we denote by Ê ⊆ VQ the output of the algorithm, by f ∈ N the number of rounds
and we use the notations σi and Fi from the body of Algorithm 2.
We also define U := E ∪ F0 ∪ . . . ∪ Ff−1 called the execution support. This set will be
a key notion when we will deal with stochastic noise in Section 5.1. Informally, a qubit
is an element of U ⊆ VQ if and only if there is an error on that qubit at some point of
the algorithm.
Each Fi belongs to the set F :=

{
F ∈ F0 :

∣∣σX(F )
∣∣ ≥ dV

2
∣∣F ∣∣} thus we have:

∣∣σi∣∣− ∣∣σi+1
∣∣ = ∆(σi, Fi) ≥ β0

∣∣σX(Fi)
∣∣ ≥ β0dV

2
∣∣Fi∣∣.

Hence we can lower bound the weight of the initial syndrome by:

∣∣σX(E)
∣∣ =

∣∣σ0
∣∣ ≥ ∣∣σ0

∣∣− ∣∣σf ∣∣ =
f−1∑
i=0

∣∣σi∣∣− ∣∣σi+1
∣∣ ≥ β0dV

2

f−1∑
i=0

∣∣Fi∣∣.
But

∣∣σX(E)
∣∣ ≤ dC∣∣E∣∣ thus

∑
i

∣∣Fi∣∣ ≤ 2
β0r

∣∣E∣∣ and the size of the execution support is
upper bounded linearly with the size of the initial error:

|U | ≤
∣∣E∣∣+

f−1∑
i=0

∣∣Fi∣∣ ≤ 1
2α0

∣∣E∣∣.
Let ER be a ‖ ‖-reduced error equivalent to E ⊕ Ê then:

∥∥ER
∥∥ ≤ ∥∥E ⊕ Ê∥∥ ≤ 1

dV

∣∣E ⊕ Ê∣∣ ≤ 1
dV

∣∣U ∣∣ ≤ 1
2dV α0

∣∣E∣∣ ≤ γ0
√
N

dV
.

To show Proposition 4.16, it is sufficient to prove thatER = ∅. Suppose by contradiction
that

∥∥ER
∥∥ 6= 0 then all the hypotheses of Lemma 4.19 hold and thus there exists F ∈ F

such that:

∆
(
σX(ER), F

)
≥
∣∣σX(F )

∣∣− 4δdV dC
∥∥F∥∥ ≥ β0

∣∣σX(F )
∣∣.
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In other words, the while loop condition of the small-set-flip algorithm (Algorithm 2) is
satisfied for σi = σX(ER). But since Ê is the output of the algorithm, the while loop
condition is not satisfied for σi = σX(E ⊕ Ê) = σX(ER) and we get a contradiction.



Chapter 5

Small-set-flip algorithm with
noisy syndrome
measurements

In this chapter are presented the results we get during this PhD concerning the decod-
ing of quantum expander codes with the small-set-flip algorithm. These results are
summarized by the following points:

• Analysis of the decoder when the error on the qubits is generated with a local
stochastic noise model.

• Analysis of the decoder when the syndrome measurements are noisy.

• Showing that the decoder has the single-shot property.

• Parallelization of the decoder.

• Numerical simulations of the decoder.

We start this introduction with a discussion about local stochastic error models. We
use the small-set-flip algorithm to correct a quantum expander code with block-length
N subjected to bit-flip errors. In Section 4.3, we have already reported the results of
ref. [67] where any adversarial error with weight O(

√
N) is shown to be corrected.

However, in a practical situation such as fault-tolerant quantum computation (where
the goal is to build quantum circuits working even if their basic components are noisy),
a natural hypothesis is to assume that each qubit has a non-zero probability to be in
the error support. For such an error model, the results of Section 4.3 are not sufficient
because a typical error has linear weight.

One of the noise models we could think about is the iid error model, where each qubit
belongs to the error support with some probability pphys ∈ (0, 1] independently from
the other qubits. However, the independence assumption is not suitable for fault-tolerant
quantum computation. For instance, a controlled-not gate acts on two qubits and, when
this gate is noisy, it will probably create a correlated error on the qubits (here we are
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talking about correlation in the probability distribution of the support, not about quantum
correlations). On the other hand, we cannot ask a family of quantum codes to correct an
error with arbitrary correlations. Take as an example the noise model where the error
is empty with probability 1 − pphys and a logical error occurs with probability pphys.
Even though each qubit belongs to the error support with probability at most pphys, no
code family can correct the resulting error with high probability.

In this manuscript, the only constraint we ask for a noise model to be valid is to
satisfy the local stochastic property defined below. In addition, we will also assume that
the small-set-flip decoder takes as input a noisy syndrome. This hypothesis is necessary
in the context of fault-tolerant quantum computation because the circuit used to measure
the stabilizer generators is noisy. Let VQ be the set of physical qubits and let CX be
the set of check-nodes, then the error is described by two random sets E ⊆ VQ and
D ⊆ CX . The set E contains the qubits affected by an X-Pauli error and D is the set of
faulty syndrome bits. A noise model is local stochastic with parameter (pphys, psynd)
when for all S ⊆ VQ and for all T ⊆ CX :

P
[
S ⊆ E and T ⊆ D

]
≤ p|S|physp

|T |
synd. (5.1)

Informally, eq. (5.1) means that the probability for an error pattern to be in the error
support decreases exponentially with its size.

Let E ⊆ VQ and D ⊆ CX be generated with a local stochastic error model with
parameter (pphys, psynd) and let σX(E) be the syndrome of E. The small-set-flip
algorithm takes as input the observed syndrome σX(E) ⊕ D and outputs some set
Ê ⊆ VQ on which X-Pauli matrices are applied to try to correct E. The set E ⊕ Ê is
called the residual error and represents the qubits on which a physical error remains after
correction. We will show the existence of a threshold p0 > 0 such that if pphys < p0
and psynd < p0 then the residual error is described by a local stochastic noise with
controlled parameter. In addition, the correction is performed with a single round of
syndrome measurement, this feature is called single-shot error correction [12].

We will also explain how the small-set-flip decoder can be parallelized. On the
one hand, if the syndrome measurement is perfect, running the parallel algorithm for
a logarithmic number of rounds is sufficient to correct entirely the error with high
probability (i.e. the residual error is equivalent to the empty error with high probability).
On the other hand, if the syndrome measurement is noisy then, with high probability,
running the parallel algorithm for a constant number of rounds leads to a residual error
described by a local stochastic error model with small parameter.

When we compute numerical lower bounds on the threshold p0 by theoretical
arguments, the value we get is not reasonable (∼ 10−58). Hence, in order to get an
idea on the real value of p0, we have performed some simulations for the sequential
algorithm with perfect syndrome measurements. Our results yield a threshold of 4.5%
for a family of quantum expander codes with rate 1/61 and 2% for a family with rate
20%.

As a conclusion, using ref. [46], our results allow to design fault-tolerant protocols
with constant space overhead as described in Chapter 6. For more details and a technical
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discussion about the content of this introduction, see Section 2.7. This chapter is orga-
nized as follows: Section 5.1 analyses the sequential small-set-flip decoder, Section 5.2
analyses the parallel version and Section 5.3 summarizes the numerical simulations.

5.1 Sequential decoding

The goal of this section is to show the following: when a local stochastic error is corrected
by the small-set-flip algorithm with noisy syndrome measurements, the residual error
E ⊕ Ê is equivalent to a local stochastic error Els. By the definition given in eq. (5.1),
Els is local stochastic if for all S ⊆ VQ, we can upper bound the probability of the event
{S ⊆ Els} with a quantity exponentially small in |S|. By assumption, for all T ⊆ CX ,
we already have a similar upper bound on the probability for the event {T ⊆ D} to
happen. As shown in this section, for all S ⊆ VQ, the hypothesis S ⊆ E ⊕ Ê implies
the existence of a large set T ⊆ D. More precisely, we will find a set of qubits W that
we will call a witness and the set T will be the check-nodes of D whose support contains
a qubit of W . Finally, P[S ⊆ Els] is upper bounded by the probability for a witness to
exist and, since the corresponding set T is large and satisfies T ⊆ D, we will show that
this probability is exponentially small.

Before looking at local stochastic noise, the first part of the analysis deals with
adversarial errors whose weight is below the minimal distance. In that case, the size of
the residual error is shown to be upper bounded by a linear function of |D|. The proof
for local stochastic noise will rely on this result and on arguments from percolation
theory.

From now on, the small-set-flip decoder presented in Section 4.3 (Algorithm 2) will
not be used anymore, it is replaced by Algorithm 3 below. The only difference between
these two algorithms is the while loop condition where the constant β0 = 1 − 8δ is
replaced by β1 = 1/2− 8δ < β0 (the real number δ is the expansion parameter of the
classical Tanner graph). In particular, since β1 > 0 is required for the analysis of this
chapter to work, δ must satisfy δ < 1/16 whereas δ < 1/8 was sufficient in the case
of noiseless syndrome measurement. We also change the notation σ to σ̃ to remind the
reader that σ̃ represents a faulty syndrome.

At each round of Algorithm 3, an element of F is flipped where F is the small-set
ensemble as defined in eq. (4.27):

F :=
{
F ⊆ ΓZ(g) : g ∈ CZ and

∣∣σX(F )
∣∣ ≥ dV

2
∣∣F ∣∣} .

In addition, for all σ̃ ⊆ CX and F ∈ F , the quantity ∆(σ̃, F ) used in Algorithm 3 has
been defined in eq. (4.26) by:

∆(σ̃, F ) :=
∣∣σ̃∣∣− ∣∣σ̃ ⊕ σX(F )

∣∣.
When the observed syndrome is σ̃ and the small-set F is flipped, the syndrome weight
decreases by ∆(σ̃, F ) units.
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Algorithm 3 : the small-set-flip decoder for noisy syndrome measurements.

Input: the observed syndrome σ̃ ⊆ CX . // σ̃ = σ(E)⊕D for some E ⊆ VQ, D ⊆ CX
Output: a guess for the error Ê ⊆ VQ.

Ê0 = ∅ ; σ̃0 = σ̃ ; i = 0
while ∃Fi ∈ F : ∆(σ̃i, Fi) ≥ β1

∣∣σX(Fi)
∣∣ do

Pick such an Fi arbitrarily.
Êi+1 = Êi ⊕ Fi
σ̃i+1 = σ̃i ⊕ σX(Fi)
i = i+ 1

end while
return Êi

This section is organized as follows: we focus on adversarial errors with weight
below the minimal distance in Section 5.1.2 and we analyze the local stochastic error
model in Section 5.1.3.

5.1.1 Notations
All the statements presented in Section 5.1 will use the notations given below.

The error correcting code. LetG be a (γ, δ)-expander graph with γ > 0 and δ < 1/16
seen as a Tanner graph. We denote by V its set of bit-nodes, by C its set of check-nodes,
by dV its left degree, by dC its right degree and by Q the associated quantum expander
code. Let VQ be the set of qubits, let CX be the set of Z-type stabilizer generators,
let CZ be the set of Z-type stabilizer generators and let N :=

∣∣VQ∣∣ be the number of
physical qubits of Q.
We also use the notations ‖ · ‖ and | · |R from Definition 4.13.

The decoder. We run Algorithm 3 with the observed syndrome σ̃ := σX(E) ⊕D as
input where E ⊆ V represents the error on the qubits and D ⊆ CX represents the error
on the syndrome bits.

For simplicity, we say that the input of the decoder is (E,D) instead of σ(E)⊕D.
We denote by Ê its output, by f the number of rounds and by F0, . . . , Ff−1 the small-
sets flipped by Algorithm 3. We will also use the following variables from the body of
Algorithm 3:

Êi := F0 ⊕ . . .⊕ Fi−1, σ̃i := σX
(
E ⊕ Êi

)
⊕D.

The set U := E ∪ F0 ∪ . . . ∪ Ff−1 is called the execution support and E ⊕ Ê is called
the residual error.

Useful constants. We define the following positive constants:

r := dV /dC , γ0 = r2
√

1 + r2
γ, β0 := 1− 8δ, β1 := 1− 16δ

2 ,
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c0 := 4
dV β1

, c1 := β1

β0(1− β1) , c2 := 2
1− β1

, α0 := rβ0

4 + 2rβ0
,

α1 := rβ1

4 + 2rβ1
, c3 := 1

2α1
, c4 := 1

2α1
− 1, dG := dC(dC + 2dV − 2).

The syndrome adjacency graph. The notion of syndrome adjacency graph will be
used in Section 5.1.3. We will perform a percolation process on its vertices to study the
typical shape of a random error.
We define G called the syndrome adjacency graph of the code in the following way: G
is equal to the Tanner graph of CX (see the left part of Figure 4.5) with additional edges
between the qubits which share an X-type or a Z-type generator. In other words, the
set of vertices of G is indexed by V := V ∪ CX , a Z-type generator is incident to the
qubits in its support and two qubits are linked when they are both in the support of the
same generator. We denote by ΓQ the neighborhood in the Tanner graph of Q, by ΓX
the neighborhood in the Tanner graph of CX , by ΓG the neighborhood in the graph G
and we point out that the degree of G is upper bounded by the integer dG defined above.

5.1.2 Errors below minimal distance

The first step in the analysis of Algorithm 3 is to address the case where the error has
weight O(

√
N). In Section 4.3.3, we assumed perfect syndrome measurement and

in this section, we tackle the case where the syndrome is noisy. The main result is
Corollary 5.4 where we show that the residual error E ⊕ Ê satisfies |E ⊕ Ê|R ≤ c0|D|
where | · |R is the reduced weight of Definition 4.13. In other words, the residual error is
equivalent to an error E′ satisfying |E′| ≤ c0|D|.

Let Ei := E ⊕ Êi be the physical error on the qubits at round i. In what follows, a
small-set is said to be valid for Algorithm 2 (resp. Algorithm 3) when it satisfies the
while loop condition of Algorithm 2 (resp. Algorithm 3). Hence, a small-set F ∈ F
is valid if and only if the difference between |σX(Ei)| and |σX(Ei ⊕ F )| is at least
β0|σX(F )| (resp. β1|σX(F )|). In Section 4.3.3 where we wanted to show that the
residual is trivial (i.e. equivalent to an empty error), the critical point was to prove
that Algorithm 2 does not stop as long as Ei is not trivial. It is indeed the case by
Lemma 4.19: if Ei is not trivial then a valid small-set for Algorithm 2 exists. Similarly
here, we will show that the condition |Ei|R > c0|D| implies the existence of a valid
small-set for Algorithm 3. When |Ei|R > c0|D|, the set Ei is not trivial and we have a
valid small-set F for Algorithm 2, but unfortunately, since the check-nodes adjacent to F
could be affected by the syndrome error, F is not guaranteed to be valid for Algorithm 3
as well.

The solution is to strengthen the statement of Lemma 4.19: we decompose the error
as a disjoint union of small-sets F0, . . . , Ff ′−1 (as we did in Lemma 4.20) and we show
that several small-sets among F0, . . . , Ff ′−1 are valid for Algorithm 3. The technical
idea is to compute the average of

∣∣σ̃ ∩ σX(Fi)
∣∣ over the Fi to give a lower bound on

the number of Fi which are valid for Algorithm 3. Finally we get Lemma 5.1 below:
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there exists a set of small-sets F∗ ⊆ F which are valid for Algorithm 3. More precisely,
the small-sets belonging to F∗ are valid for Algorithm 3 by item (i), these small-sets
do not intersect by item (ii) and item (iii) provides a lower bound on the size of F∗.
Note that if c1

∣∣σX(E)
∣∣ < c2

∣∣D∣∣ then the lemma is pointless since F∗ could be empty,
but otherwise the lower bound of item (iii) is non-trivial. As a summary, Lemma 5.1
improves Lemma 4.19 in two ways: firstly, it can be applied even if the syndrome is
noisy and secondly, it provides many valid small-sets instead of a single one. This
second point will be useful to parallelize the algorithm in Section 5.2.

Lemma 5.1. We use the notations of Section 5.1.1.
If
∣∣E∣∣ ≤ γ0

√
N then there exists F∗ ⊆ F such that:

(i) ∆(σ̃, F ) ≥ β1
∣∣σX(F )

∣∣ for all F ∈ F∗,

(ii) F ∩ F ′ = ∅ for all F, F ′ ∈ F∗ with F 6= F ′,

(iii)
∑
F∈F∗

∣∣σX(F )
∣∣ ≥ c1∣∣σX(E)

∣∣− c2∣∣D∣∣.
Proof. Let ER be the ‖ ‖-reduced error equivalent to E then:

∥∥ER
∥∥ ≤ ∥∥E∥∥ ≤ 1

dV

∣∣E∣∣ ≤ γ0

dV

√
N.

Applying Lemma 4.20 to ER provides some small-sets F0, . . . , Ff ′−1.
Let us start by providing an overview of how we will proceed in this proof. By
Lemma 4.20 (i) we have:

σX(E) = σX(ER) =
f ′−1⊕
i=0

σX(Fi)

and a union bound yields

∣∣σX(E)
∣∣ ≤ f ′−1∑

i=0

∣∣σX(Fi)
∣∣.

In fact, we will prove in eq. (5.2) below that that this upper bound is nearly tight:∣∣σX(E)
∣∣ ≥ β0

∑f ′−1
i=0

∣∣σX(Fi)
∣∣ where β0 defined in Section 5.1.1 is arbitrarily close

to 1 when δ is small. Intuitively, this means that the intersection of the sets σX(Fi) is
small and thus

∣∣σX(E) ∩ σX(Fi)
∣∣ is generally large. This is still true if the size of the

syndrome error D is small, i.e., it holds that
∣∣σ̃ ∩ σX(Fi)

∣∣ is generally large. Hence, we
will obtain Lemma 5.1 by computing the average of the quantity

∣∣σ̃ ∩ σX(Fi)
∣∣ over the
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sets Fi. We now provide the details:

∣∣σX(E)
∣∣ =

∣∣σX(ER)
∣∣ ≥ f ′−1∑

i=0

∣∣σX(Fi)
∣∣− f ′−1∑

i=0
4δdV dC

∥∥Fi∥∥ by Lemma 4.20 (ii),

=
f ′−1∑
i=0

∣∣σX(Fi)
∣∣− 4δdV dC

∥∥ER
∥∥ by Lemma 4.20 (i),

≥
f ′−1∑
i=0

∣∣σX(Fi)
∣∣− 8δ

β0

∣∣σX(E)
∣∣ by Lemma 4.20 (iii).

Hence we have:

∣∣σX(E)
∣∣ ≥ (1 + 8δ

β0

)−1 f ′−1∑
i=0

∣∣σX(Fi)
∣∣ = β0

f ′−1∑
i=0

∣∣σX(Fi)
∣∣. (5.2)

The relation between ∆(σ̃, F ) and
∣∣σ̃ ∩ σX(F )

∣∣ is given by:

∆(σ̃, F ) =
∣∣σ̃∣∣− ∣∣σ̃ ⊕ σX(F )

∣∣ = 2
∣∣σ̃ ∩ σX(F )

∣∣− ∣∣σX(F )
∣∣ (5.3)

where we have used the equality
∣∣A1 ⊕A2

∣∣ =
∣∣A1
∣∣+
∣∣A2
∣∣− 2

∣∣A1 ∩A2
∣∣.

We define the set F∗ promised in Lemma 5.1 by:

F∗ :=
{
F ∈ {F0, . . . , Ff ′−1} : ∆(σ̃, F ) ≥ β1

∣∣σX(F )
∣∣}.

Lemma 5.1 (i) holds by definition of F∗. Lemma 5.1 (ii) holds because the property
ER =

⊎
i Fi from Lemma 4.20 (i) implies that the sets Fi are disjoint. Moreover by

eq. (5.3), when F ∈ {F0, . . . , Ff ′−1} \ F∗:∣∣σ̃ ∩ σX(F )
∣∣ ≤ 1 + β1

2
∣∣σX(F )

∣∣. (5.4)

On the one hand, eqs. (5.2) and (5.4) give an upper bound on the sum S :=
∑f ′−1
i=0

∣∣σ̃ ∩
σX(Fi)

∣∣:
S =

∑
Fi∈F∗

∣∣σ̃ ∩ σX(Fi)
∣∣+

∑
Fi /∈F∗

∣∣σ̃ ∩ σX(Fi)
∣∣

≤
∑
Fi∈F∗

∣∣σX(Fi)
∣∣+ 1 + β1

2
∑
Fi /∈F∗

∣∣σX(Fi)
∣∣ by eq. (5.4),

= 1− β1

2
∑
Fi∈F∗

∣∣σX(Fi)
∣∣+ 1 + β1

2

f ′−1∑
i=0

∣∣σX(Fi)
∣∣

≤ 1− β1

2
∑
Fi∈F∗

∣∣σX(Fi)
∣∣+ 1 + β1

2β0

∣∣σX(E)
∣∣ by eq. (5.2).
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On the other hand, the propertyER =
⊎
i Fi from Lemma 4.20 (i) implies that σX(E) =

σX(ER) =
⊕f ′−1

i=0 σX(Fi) and thus S is lower bounded by:

S ≥
∣∣σ̃ ∩ σX(E)

∣∣
=
∣∣(σX(E)⊕D) ∩ σX(E)

∣∣
=
∣∣σX(E)⊕ (D ∩ σX(E))

∣∣
=
∣∣σX(E)

∣∣− ∣∣D ∩ σX(E)
∣∣

≥
∣∣σX(E)

∣∣− ∣∣D∣∣.
Combining both inequalities we get Lemma 5.1 (iii).

The main statement of this section is presented in Proposition 5.2 and asserts that the
weight of the residual error after correction is upper bounded linearly in the syndrome
error weight. In Corollary 5.4, we will give another formulation of Proposition 5.2 where
the hypothesis

∣∣U ∣∣ = O(
√
N) is replaced by the more natural one

∣∣E∣∣, ∣∣D∣∣ = O(
√
N).

Proposition 5.2. We use the notations of Section 5.1.1.
Suppose that E ⊕ Ê is reduced with

∣∣U ∣∣ ≤ γ0
√
N then:∣∣E ⊕ Ê∣∣ ≤ c0∣∣D∣∣.

Proof. With the notations of Section 5.1.1, the value of the syndrome at the end of the
algorithm is σ̃f = σX(E ⊕ Ê)⊕D. Lemma 5.1 applied when the input of Algorithm 3
is (E ⊕ Ê,D) provides a set F∗ and since the while loop condition is not satisfied for
σ̃f , the set F∗ must be empty. By Lemma 5.1 (iii):

c1
∣∣σX(E ⊕ Ê)

∣∣ ≤ c2∣∣D∣∣.
By Lemma 4.21:∣∣E ⊕ Ê∣∣ ≤ 2

β0dV

∣∣σX(E ⊕ Ê)
∣∣ ≤ 2c2

c1β0dV

∣∣D∣∣ = c0
∣∣D∣∣.

As shown in Lemma 5.3 below, the hypothesis of Proposition 5.2
∣∣U ∣∣ = O(

√
N)

holds as soon as the initial errors E and D are sufficiently small. More precisely, the
size of the execution support U is a linear function of

∣∣E∣∣ and
∣∣D∣∣.

Lemma 5.3. We use the notations of Section 5.1.1 then:∣∣U ∣∣ ≤ c3∣∣E∣∣+ c4
∣∣D∣∣.

Proof. The sets σ̃i and Fi defined in Section 5.1.1 satisfy:∣∣σ̃i∣∣− ∣∣σ̃i+1
∣∣ ≥ β1

∣∣σX(Fi)
∣∣ ≥ β1dV

2
∣∣Fi∣∣.
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Thus we can lower bound the weight of σ̃0 = σX(E)⊕D by:

∣∣σX(E)⊕D
∣∣ ≥ ∣∣σ̃0

∣∣− ∣∣σ̃f ∣∣ =
f−1∑
i=0

∣∣σ̃i∣∣− ∣∣σ̃i+1
∣∣ ≥ β1dV

2

f−1∑
i=0

∣∣Fi∣∣.
But |σX(E) ⊕D| ≤ dC |E| + |D| ≤ dC

(
|E| + |D|

)
thus

∑
i |Fi| ≤

2
β1r

(
|E| + |D|

)
and:

∣∣U ∣∣+
∣∣D∣∣ ≤ ∣∣E∣∣+

∣∣D∣∣+
f−1∑
i=0

∣∣Fi∣∣ ≤ ∣∣E∣∣+
∣∣D∣∣

2α1
.

Hence: ∣∣U ∣∣ ≤ 1
2α1

∣∣E∣∣+
(

1
2α1
− 1
) ∣∣D∣∣ = c3

∣∣E∣∣+ c4
∣∣D∣∣.

Combining Proposition 5.2 and Lemma 5.3, we get Corollary 5.4.

Corollary 5.4. We use the notations of Section 5.1.1.
If c3

∣∣E∣∣+ c4
∣∣D∣∣ ≤ γ0

√
N then the reduced weight of the residual error satisfies:∣∣E ⊕ Ê∣∣R ≤ c0∣∣D∣∣.

Proof. Let E′ be a reduced error equivalent to E ⊕ Ê then:∣∣E′∣∣ ≤ ∣∣E ⊕ Ê∣∣ ≤ ∣∣U ∣∣ ≤ c3∣∣E∣∣+ c4
∣∣D∣∣ ≤ γ0

√
N

where the third inequality holds by Lemma 5.3. The syndromes of the errors E′ and
E ⊕ Ê are equal thus no flip is done by Algorithm 3 on the input (E′, D). Hence, there
is a valid execution of Algorithm 3 on the input (E′, D) with output ∅, support E′ and
residual error E′. Applying Proposition 5.2 to the latter execution we get:∣∣E ⊕ Ê∣∣R =

∣∣E′∣∣ ≤ c0∣∣D∣∣.

5.1.3 Random errors with linear size

The upper bound given by Corollary 5.4 can be applied for any error with weight
O
(√
N
)
, but in this work we are interested in random errors whose typical weight is

Θ(n). The only assumption we do on the error is that it is generated by a noise model
satisfying the local stochastic condition of Definition 5.5 (see the introduction of this
chapter for a discussion about the local stochastic property).
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Definition 5.5 (Local stochastic error model). We use the notations of Section 5.1.1.
A random error E ⊆ VQ, D ⊆ CX is local stochastic with parameter (pphys, psynd)
when for all S ⊆ VQ and for all T ⊆ CX :

P
[
S ⊆ E and T ⊆ D

]
≤ p|S|physp

|T |
synd.

In the particular case where we do not mind about the error on the syndrome bits, a
random error E ⊆ VQ is local stochastic with parameter pphys when for all S ⊆ VQ:

P
[
S ⊆ E

]
≤ p|S|phys.

a) Statement of the main theorem

The main theorem of this section is Theorem 5.6 below: if the initial errors E and D
satisfy the local stochastic property with parameters sufficiently small, then there exists
a local stochastic error Els ⊆ VQ such that Els and the residual error are equivalent with
high probability. In other words, the residual error on the qubits can be described by a
local stochastic noise, and this description is valid except for an event whose probability
vanishes in the limit of large block-length (this event corresponds to a decoding failure).

Theorem 5.6. We use the notations of Section 5.1.1.
There exists a non-zero constant p0 > 0 such that the following holds. Suppose the error
(E,D) satisfies a local stochastic noise model with parameter (pphys, psynd) where
pphys < p0 and psynd < p0. If we run Algorithm 3 on the input (E,D) then there
exists a random variable Els ⊆ VQ with a local stochastic distribution with parameter
pls := p

1/(2c0)
synd such that:

P
[
Els and E ⊕ Ê are not equivalent

]
≤ e−Θ(

√
N).

The proof of Theorem 5.6 is given at the end of this section.
It is worthwhile to rewrite Theorem 5.6 with the additional assumption that the syndrome
measurement is perfect (psynd = 0 and D = ∅). In that case, a local stochastic error
whose parameter is below threshold is corrected by the small-set-flip decoder with high
probability:

Corollary 5.7. We use the notations of Section 5.1.1.
There exists a non-zero constant p0 > 0 such that the following holds. Suppose D = ∅
and E satisfies a local stochastic noise model with parameter pphys < p0 then:

P
[
Algorithm 3 corrects E

]
≥ 1− e−Θ(

√
N).

Proof. When we apply Theorem 5.6 with psynd = 0, we get pls = 0 and Els = ∅.
Hence, with probability 1 − e−Θ(

√
N), E ⊕ Ê is equivalent to ∅, i.e. Algorithm 3

corrects E.
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When a quantum expander code Q is used in the context of fault-tolerance, the goal
is to process the information encoded in Q by applying logical quantum gates on the
qubits. Each logical operation adds a local stochastic error on the qubits, thus a round of
error correction is performed after each logical gate. The concern in this discussion is to
understand how evolves the error on the qubits: we would like to use Theorem 5.6 to
show that the logical state encoded with Q is preserved after applying T ∈ N logical
gates. A simplified error model for this framework is the following:

• At the beginning, there is no error on the qubits: A0 := ∅.

• Repeat for t = 0, . . . , T − 1:

– An error (Et, Dt) is generated accordingly to a local stochastic noise model
with parameter (pE , pD).

– The error Et is added to the error on the qubits:

Bt := At ⊕ Et.

– We run Algorithm 3 on the input (Bt, Dt) and apply the output Êt to the
qubits:

At+1 := Bt ⊕ Êt.

Roughly speaking, Et comes from the noise in the circuit used to implement the tth

logical gate and Dt comes from the noise in the circuit used to measure the syndrome
bits for the tth error correction procedure. In fault-tolerant quantum computation, Êt is
applied with a circuit made of noisy physical gates, but for simplicity here, we assume
that Êt is applied without fault.

This procedure is a success when the logical state is preserved throughout the T
rounds. In practice, we can determine whether the logical state has been preserved
by checking if running the decoder without syndrome error turns the state back to the
expected state. As a summary, if we run Algorithm 3 on the input (AT ,∅) and apply
the output ÊT to the qubits:

AT+1 := AT ⊕ ÊT ,

then the above procedure is a success if and only if AT+1 is trivial (equivalent to the
empty error). As shown in Claim 5.8 below, AT+1 is indeed trivial with probability
1− (T + 1)e−Θ(

√
N). In particular, if the number of logical gates T is polynomial in N

then the procedure fails with vanishing probability.

Claim 5.8. Let p0 be the threshold of Theorem 5.6 and Corollary 5.7, and let pD and
pE be such that:

pD <
(p0

2

)2c0
and pE <

p0

2 .

Then the above procedure fails with probability at most (T + 1)e−Θ(
√
N).
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Proof. In this proof, we say that an error A is local stochastic with parameter p and
failure probability p′ if there exists an error A′ with local stochastic parameter p such
that:

P
[
A′ and A are not equivalent

]
≤ p′.

With this terminology, Theorem 5.6 asserts that the residual error E ⊕ Ê is local
stochastic with parameter pls and failure probability e−Θ(

√
N).

When t = 0, the error A′0 = E0 is local stochastic with parameter pE < p0 and
failure probability 0. By Theorem 5.6, the residual error A1 = A′0 ⊕ Ê0 is local
stochastic with parameter p1/(2c0)

D and failure probability e−Θ(
√
N).

When t = 1, the error A′1 = A1⊕E1 is local stochastic with parameter p0/2+pE < p0

and failure probability e−Θ(
√
N). By Theorem 5.6, the residual error A2 = A′1 ⊕ Ê1 is

local stochastic with parameter p1/(2c0)
D and failure probability 2e−Θ(

√
N).

More generally, an induction on t ∈ J1, T K shows that the error Et is local stochastic
with parameter p1/(2c0)

D and failure probability te−Θ(
√
N).

In particular for t = T , the error AT is local stochastic with parameter p1/(2c0)
D and

failure probability Te−Θ(
√
N). By Corollary 5.7, the residual error AT+1 = AT ⊕ ÊT

is non trivial with probability at most (T + 1)e−Θ(
√
N). Since the procedure is a success

when AT+1 is non trivial, we get Claim 5.8.

b) Proof ideas and useful definitions

Let’s turn our attention to the proof of Theorem 5.6 which is inspired from the arguments
of [66] and [46]. Before providing the formal statements, we describe the main ideas of
the proof. When a random error (E,D) is generated with a local stochastic error model,
percolation arguments will allow us with high probability to decompose E and D as
disjoint unions of small error sets, each of which has size O(

√
N):

E = ]KEK , D = ]KDK . (5.5)

As we explain in more details later, the index K ⊆ VQ of eq. (5.5) goes through the
connected components of U in the syndrome adjacency graph G. Let ÊK be the output
of Algorithm 3 on the input (EK , DK). Because

∣∣EK∣∣, ∣∣DK

∣∣ = O(
√
N), Corollary 5.4

states that after correction, the residual error EK ⊕ ÊK is equivalent to E′K satisfying∣∣E′K∣∣ = O
(∣∣DK

∣∣). Moreover, Algorithm 3 is local in the sense that two errors far away
in the factor graph of the code will not interact during the decoding procedure. The
consequence for the error E is that each error set EK is corrected independently from
the other ones and thus the residual error E ⊕ Ê is equal to the disjoint union:

E ⊕ Ê = ]KE′K .

Finally, since D has been chosen with a local stochastic noise, the upper bounds∣∣E′K∣∣ = O
(∣∣DK

∣∣) imply that there is an error equivalent to E ⊕ Ê with a local
stochastic distribution.
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The locality property for the small-set-flip algorithm is formalized in Lemma 5.9
where ΓQ denotes the neighborhood in the Tanner graph of the quantum expander code.
In this lemma, the sets EK and DK we talked about above are equal to EK = E ∩K
and DK = D ∩ ΓX(K).

Lemma 5.9 (Locality of Algorithm 3 [38]). We use the notations of Section 5.1.1.
For any set K ⊆ U with ΓQ(K) ∩ ΓQ(U \ K) = ∅, there is a valid execution of
Algorithm 3 on the input

(
E ∩ K,D ∩ ΓX(K)

)
whose output is Ê ∩ K and whose

support is U ∩K.

The locality property is important to understand this section, however the proof of
Lemma 5.9 is less useful and that’s why we report it later in Section 5.1.4.

Lemma 5.9 formalizes the idea that the small-set-flip algorithm handles the errors in
the setK independently from the errors outsideK. In fact, if ΓQ(K)∩ΓQ(U \K) = ∅
holds then the support of a check-node cannot contain simultaneously a qubit of K and
a qubit of U \K. Moreover, to know whether the small-set-flip algorithm can flip a
given small-set F ⊆ K, the only required information is the value of the check-nodes
belonging to ΓQ(K). As a consequence, the error on the qubits of U \K does not affect
the decisions of the decoder regarding the qubits of K. In particular, the behavior of the
algorithm in K would have been the same if there were no error at all on the qubits of
U \K, and this is the statement of Lemma 5.9.

In Section 5.1.1, we have defined the syndrome adjacency graph G where two qubits
are connected if and only if they are in the support of the same stabilizer generator.
As shown in the proof of Corollary 5.10 below, for all set K ⊆ U , the hypothesis
ΓQ(K) ∩ ΓQ(U \K) = ∅ of Lemma 5.9 is equivalent to K ∩ ΓG(U \K) = ∅ where
ΓG is the neighborhood in G. Consequently, if K is a connected component of U in G
then the hypotheses of Lemma 5.9 are satisfied for K. To summarize, each connected
component of U in the syndrome adjacency graph is corrected by the small-set-flip
algorithm independently from the other connected components, see Figure 5.1 for a
schematic representation.

Figure 5.1: schematic representation of the error support in the syndrome adjacency graph.
The small-set-flip decoder corrects the connected components of U independently.

In Corollary 5.10 below, we restate the locality property using the graph G instead
of the Tanner graph.
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Corollary 5.10. We use the notations of Section 5.1.1.
For any set K ⊆ U with K ∩ ΓG(U \K) = ∅, there is a valid execution of Algorithm 3
on the input

(
E ∩K,D∩ΓX(K)

)
whose output is Ê ∩K and whose support is U ∩K.

Proof. By Lemma 5.9, it is sufficient to prove that the statement K ∩ ΓG(U \K) = ∅
implies ΓQ(K) ∩ ΓQ(U \K) = ∅. We show it by contraposition.
If ΓQ(K) ∩ ΓQ(U \ K) 6= ∅ then there is a generator g ∈ CX ] CZ such that
g ∈ ΓQ(K) and g ∈ ΓQ(U \K). Thus there are two qubits q1 ∈ K and q2 ∈ U \K
belonging to the support of g. Let q3 be another qubit in the support of g with q3 6= q1
and q3 6= q2, then by the definition of the syndrome adjacency graph we have q3 ∈
ΓQ(K) ∩ ΓQ(U \K).

Using the execution support U = E ∪ F0 ∪ . . . ∪ Ff−1, the error decomposition
required in eq. (5.5) is done in the following way: each connected component K
of U in G provides the error sets EK := K ∩ E and DK := D ∩ ΓX(K). By
Corollary 5.10, running Algorithm 3 on the input (EK , DK) leads to the residual error
E′K = (E ⊕ Ê) ∩K and we will prove that the execution support K is small enough
to apply Proposition 5.2. The key point is to remark that a fraction 2α1 of the vertices
in X := K ∪ DK ⊆ V belong to E ∪ D (see Lemma 5.3). We will say that X is a
2α1-subset of E ∪D (see Definition 5.11) and percolation arguments (see Lemma 5.18)
will show that with high probability, any connected α-subset of a random error E ∪D
must be small enough to apply Proposition 5.2.

Definition 5.11 (α-subset and MaxConnα). We use the notations of Section 5.1.1.
Let α ∈ (0; 1] and let X,Y ⊆ V . X is said to be an α-subset of Y if

∣∣X ∩ Y ∣∣ ≥ α∣∣X∣∣.
We also define the integer MaxConnα(Y ) by:

MaxConnα(Y ) = max
{∣∣X∣∣ : X is connected in G and is an α-subset of Y

}
.

As stated in Corollary 5.12 below, Lemma 5.3 implies that U ∪D is a 2α1-subset of
E ∪D.

Corollary 5.12. We use the notations of Section 5.1.1.
The set U ∪D is a 2α1-subset of E ∪D.

Proof. By Lemma 5.3:∣∣U ∣∣+
∣∣D∣∣ ≤ c3∣∣E∣∣+ (c4 + 1)

∣∣D∣∣ = 1
2α1

∣∣E ∪D∣∣ = 1
2α1

∣∣(U ∪D) ∩ (E ∪D)
∣∣.

thus U ∪D is a 2α1-subset of E ∪D.

If we go back to Theorem 5.6, the error Els will be defined to be reduced and
equivalent to E ⊕ Ê, and the local stochastic property for Els will be a consequence of
the local stochastic property for D. More precisely, we already know for all T ⊆ CX :

P
[
T ⊆ D

]
≤ p|T |synd (5.6)
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and we want to show for all S ⊆ VQ:

P
[
S ⊆ Els

]
≤ p|S|ls .

Given a set S ⊆ Els, we will find a large set T ⊆ D to upper bound P
[
S ⊆ Els

]
using eq. (5.6). Informally, the set T contains the faulty check-nodes which prevent the
small-set-flip algorithm from correcting the qubits of S. Formally, T = D ∩ ΓX(W )
where W ⊆ VQ is called a witness as defined in Definition 5.14. Let S ⊆ Els, then a
witness for S is a set W ⊆ VQ satisfying S ⊆W with

∣∣D ∩ ΓX(W )
∣∣ = Ω

(∣∣W ∣∣) and
such that S intersects every connected component of W in G. Finally, the main difficulty
in the proof of Theorem 5.6 is to show the existence of a witness W for all S ⊆ Els. Up
to technical details, W will be the union of the connected components of the execution
support which intersect S.

Definition 5.13 ([46]). We use the notations of Section 5.1.1.
For S ⊆ VQ, we defineM(S) to be the set of all subsets W ⊆ VQ with S ⊆ W such
that any connected component W ′ of W in G satisfies W ′ ∩ S 6= ∅.

Lemma 2 of [46] provides an upper bound on the number of sets W ∈M(S) of a given
size:

#
{
W ∈M(S) :

∣∣W ∣∣ = t
}
≤ (ed)t

ed|S|
. (5.7)

Definition 5.14 (Witness). We use the notations of Section 5.1.1.
W ⊆ VQ is said to be a witness for S ⊆ VQ if W ∈ M(S) and

∣∣D ∩ ΓX(W )
∣∣ ≥∣∣W ∣∣/c0.

c) Formal proof

Besides Theorem 5.6, there are three main statements in this section:

• Lemma 5.15 shows how to find a witness for any S ⊆ E ⊕ Ê under the assump-
tions that E ⊕ Ê is reduced and

∣∣E ⊕ Ê∣∣ ≤ γ0
√
N .

• Lemma 5.17 shows how to find a witness for any S ⊆ E⊕Ê under the assumption
MaxConnα1(E) ≤ γ0

√
N .

• Lemma 5.18 shows that MaxConnα1(E) ≤ γ0
√
N holds with high probability

when E and D are local stochastic.

Finally, we will conclude the section with the proof of Theorem 5.6 where the existence
of witnesses is used to establish the local stochastic property for the residual error.

Lemma 5.15. We use the notations of Section 5.1.1.
If the residual error E ⊕ Ê is reduced and

∣∣E ⊕ Ê∣∣ ≤ γ0
√
N then for all S ⊆ E ⊕ Ê,

there is a witness W for S with the additional constraint W ⊆ E ⊕ Ê.
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Proof. Let W be the union of all the connected components of E ⊕ Ê in G that contain
at least one element of S. The properties W ∈ M(S) and W ⊆ E ⊕ Ê clearly hold
and it remains to prove

∣∣W ∣∣ ≤ c0∣∣D ∩ ΓX(W )
∣∣.

By locality (Corollary 5.10 applied with K = W ), no flip is done by Algorithm 3 on the
input (W,D ∩ ΓX(W )). Moreover, the error W is reduced as a subset of the reduced
error E ⊕ Ê (Lemma 4.15) and satisfies

∣∣W ∣∣ ≤ γ0
√
N . As a summary, there is a valid

execution of Algorithm 3 on the input (W,D ∩ ΓX(W )) with output ∅ leading to the
residual error W . Proposition 5.2 applied for this execution provides:∣∣W ∣∣ ≤ c0∣∣D ∩ ΓX(W )

∣∣.
Now, our goal is to prove Lemma 5.17 which is quite similar to Lemma 5.15 where

the hypothesis
∣∣E ⊕ Ê∣∣ ≤ γ0

√
N is replaced by MaxConnα1(E ∪D) ≤ γ0

√
N . There

is a small technical difficulty for that: contrarily to the hypothesis of Lemma 5.15, the
residual error is not reduced in general and thus we need to combine Lemma 5.15 with
Lemma 5.16 below.

Lemma 5.16. We use the notations of Section 5.1.1.
Let Y,X1, X2 ⊆ V with

∣∣X2
∣∣ ≤ ∣∣X1

∣∣. If X1 is an α-subset of Y then X1 ∪X2 is an
α
2 -subset of Y .

Proof. By assumption
∣∣X1

∣∣ ≤ 1
α

∣∣X1 ∩ Y
∣∣ thus:

∣∣X1 ∪X2
∣∣ ≤ 2

∣∣X1
∣∣ ≤ 2

α

∣∣X1 ∩ Y
∣∣ ≤ 2

α

∣∣(X1 ∪X2) ∩ Y
∣∣.

Lemma 5.17. We use the notations of Section 5.1.1.
If MaxConnα1(E ∪ D) ≤ γ0

√
N then there is a reduced error Els equivalent to the

residual error E ⊕ Ê such that there is a witness for all S ⊆ Els.

Proof. We define Els as one of the minimal weight errors whose syndrome is the same
as the syndrome of E ⊕ Ê. The first step is to show that Els and E ⊕ Ê are equivalent.
Let K be a connected component of U ∪ Els in G, let EK := E ∩K and let DK :=
D ∩ ΓX(K). By locality (Corollary 5.10), there is a valid execution of Algorithm 3 on
the input (EK , DK) whose output is ÊK := Ê∩K and whose support is UK := U ∩K.
Hence, the set UK ∪ DK is a 2α1-subset of EK ∪ DK (Corollary 5.12) and the set
K ∪ DK is an α1-subset of EK ∪ DK (Lemma 5.16). Finally, the set K ∪ DK is
an α1-subset of E ∪ D and from the hypothesis MaxConnα1(E ∪ D) ≤ γ0

√
N , we

conclude that
∣∣K∣∣ ≤ γ0

√
N . In particular, (E ⊕ Ê) ∩K and Els ∩K have the same

syndrome and the weight of (E ⊕ Ê ⊕ Els) ∩K is smaller than the minimal distance,
thus Els ∩ K is equivalent to (E ⊕ Ê) ∩ K. Since this is true for all K then Els is
equivalent to E ⊕ Ê.

Let S ⊆ Els, let E′ = Els ⊕ Ê and let E′K := E′ ∩K. Keeping the same notations
than above, we will prove that for each K, there is a witness WK for SK := S ∩K
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with the additional constraint WK ⊆ Els ∩K.
The errors E and E′ have the same syndrome thus the behavior of Algorithm 3 is
the same on input (E,D) and on input (E′, D). Hence, there is a valid execution of
Algorithm 3 on input (E′, D) whose output is Ê and whose support is E′ ∪ F0 ∪ . . . ∪
Ff−1. By locality (Corollary 5.10), there is also a valid execution of Algorithm 3 on
input (E′K , DK) whose output is ÊK and whose support is (E′ ∪F0 ∪ . . .∪Ff−1)∩K.
The residual error of the latter execution is (E′ ⊕ Ê) ∩K = Els ∩K which is reduced
and is of weight smaller than γ0

√
N . By Lemma 5.15, there is a witness WK for SK

with WK ⊆ Els ∩K.
Finally, W =

⊎
KWK is a witness for S.

The last ingredient before proving Theorem 5.6 is provided by Lemma 5.18 below:
the condition MaxConnα1(E ∪ D) ≤ γ0

√
N needed in Lemma 5.17 is verified with

high probability for local stochastic errors.

Lemma 5.18 (α-percolation, [38]). We use the notations of Section 5.1.1.
Let α ∈ (0, 1] then there exists a threshold pth = pth(α) > 0 such that for any t ∈ N∗,
for any pphys < pth and for any psynd < pth the following holds. If an error (E,D) is
chosen according to a local stochastic noise with parameter (pphys, psynd) then:

P
[
MaxConnα(E ∪D) ≥ t

]
≤ C

∣∣V∣∣ (max(pphys, psynd)
pth

)αt
,

where C = C(p, α) is independent of t.

Lemma 5.18 is a particular case of Theorem 5.24 where the graph G is the syndrome
adjacency graph. The proof of Theorem 5.24 is the purpose of Section 5.1.5.
We conclude this section with the proof of Theorem 5.6.

Proof of Theorem 5.6. Let pth > 0 as defined in Lemma 5.18. The constant p0 > 0 is
defined to be a positive number such that:

p0 ≤ pth, 2dCc0p0 < 1/2, ed2dCp1/c0
0 ≤ 1/2, 4 · 2dCp1/(2c0)

0 ≤ 1. (5.8)

Let pphys < p0 and psynd < p0. We assume that the pair (E,D) satisfies a local
stochastic noise model with parameter (pphys, psynd) and we run Algorithm 3 on the
input (E,D). We define the random error Els promised by Theorem 5.6 in the following
way:{

If MaxConnα1(E ∪D) > γ0
√
N then Els = ∅.

If MaxConnα1(E ∪D) ≤ γ0
√
N then Els is the error promised by Lemma 5.17.

Lemma 5.17 ensures that if MaxConnα1(E ∪ D) ≤ γ0
√
N then Els is equivalent to

E ⊕ Ê thus by Lemma 5.18:

P
[
Els and E ⊕ Ê are not equivalent

]
≤ P

[
MaxConnα1(E ∪D) > γ0

√
N
]

≤ C
∣∣V∣∣ (max(pphys, psynd)

pth

)α1γ0
√
N
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We have
∣∣V∣∣ = Θ(N) and max(pphys, psynd) < pth hence as stated in Theorem 5.6:

P
[
Els and E ⊕ Ê are not equivalent

]
= e−Θ(

√
N).

It remains to show that Els is local stochastic with parameter pls = p
1/(2c0)
synd . For any

S ⊆ VQ, if S ⊆ Els then Els 6= ∅ and thus MaxConnα1(E ∪D) ≤ γ0
√
N . In addition

by Lemma 5.17, if MaxConnα1(E ∪D) ≤ γ0
√
N then there is a witness W for any S.

Hence we have:

P
[
S ⊆ Els

]
= P

[
S ⊆ Els and MaxConnα1(E ∪D) ≤ γ0

√
N
]

≤ P
[
There exists a witness W for S

]
.

To conclude, we upper bound the probability that a witness exists.
For a fixed W ⊆ VQ, if W is a witness for S then there is a set T ⊆ ΓX(W ) satisfying∣∣W ∣∣ ≤ c0

∣∣T ∣∣ and T ⊆ D. Thus the probability that W is a witness for S is upper
bounded by:

P
[
W is a witness for S

]
≤

∑
T⊆ΓX(W ):
|W |≤c0|T |

P
[
T ⊆ D

]
≤

∑
T⊆ΓX(W ):
|W |≤c0|T |

p
|T |
synd.

Since the cardinality of ΓX(W ) is upper bounded by dC |W |, we have:

P
[
W is a witness for S

]
≤

∑
t≥|W |/c0

2dC |W |ptsynd

≤
∑

t≥|W |/c0

(
2dCc0psynd

)t
.

Equation (5.8) ensures 2dCc0psynd < 1/2 thus:

P
[
W is a witness for S

]
≤ 2

(
2dCp1/c0

synd

)|W |
.

Combining the previous inequalities we get:

P
[
S ⊆ Els

]
≤ P

[
There exists a witness W for S

]
≤

∑
W∈M(S)
|W |≥|S|

P
[
W is a witness for S

]

≤ 2
∑

W∈M(S)
|W |≥|S|

(
2dCp1/c0

synd

)|W |

≤ 2
ed|S|

∑
w≥|S|

(
ed2dCp1/c0

synd

)w
by eq. (5.7).
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Equation (5.8) ensures ed2dCp1/c0
synd ≤ 1/2 and 4

ee2
dCp

1/(2c0)
synd ≤ 1 thus:

P
[
S ⊆ Els

]
≤ 4
e

(
e2dCp1/c0

synd

)|S|
≤
(
p

1/(2c0)
synd

)|S|
.

5.1.4 Locality of the small-set-flip algorithm
The goal of this section is to prove the locality property of Lemma 5.9.
We start with Lemma 5.19 below showing that if ΓQ(K) ∩ ΓQ(U \ K) = ∅ then
the syndrome of an error contained in K is independent of the qubits outside K. The
variable A of this lemma will be set later to be either A = E or A = Fi.

Lemma 5.19. We use the notations of Section 5.1.1.
Let K ⊆ VQ be such that ΓQ(K) ∩ ΓQ(U \K) = ∅. Then for all A ⊆ U :

σX(A ∩K) = σX(A) ∩ ΓX(K).

Proof. Let K := VQ \K be the complement of K in VQ. We decompose σX(A) ∩
ΓX(K) using the partition A = (A ∩K) ] (A ∩K):

σX(A) ∩ ΓX(K) =
(
σX(A ∩K)⊕ σX(A ∩K)

)
∩ ΓX(K)

=
(
σX(A ∩K) ∩ ΓX(K)

)
⊕
(
σX(A ∩K) ∩ ΓX(K)

)
.

On the one hand, we have σX(A ∩K) ⊆ ΓX(K) thus:

σX(A ∩K) ∩ ΓX(K) = σX(A ∩K).

On the other hand, we have σX(A ∩K) ⊆ ΓX(A ∩K) ⊆ ΓQ(A ∩K) and ΓX(K) ⊆
ΓQ(K) thus:

σX(A ∩K) ∩ ΓX(K) ⊆ ΓQ(A ∩K) ∩ ΓQ(K)
⊆ ΓQ(U ∩K) ∩ ΓQ(K) because A ⊆ U ,
= ΓQ(U \K) ∩ ΓQ(K)
= ∅.

Combining the three equalities, we get Lemma 5.19.

In Lemma 5.20 below, we compare the way flipping a small-set F ∈ F affects a
given syndrome σ̃ and the way it affects the same syndrome restricted to the check-nodes
which touch K.

Lemma 5.20. We use the notations of Section 5.1.1.
Let σ̃ ⊆ CX and let K ⊆ VQ then for all F ∈ F:

(i) ∆(σ̃ ∩ ΓX(K), F ) ≤ ∆(σ̃, F ),
(ii) If F ⊆ K then ∆(σ̃ ∩ ΓX(K), F ) = ∆(σ̃, F ).
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Proof. We rewrite ∆(σ̃, F ) in the following way:

∆(σ̃, F ) =
∣∣σ̃∣∣− ∣∣σ̃ ⊕ σX(F )

∣∣
=
∣∣σ̃∣∣− (∣∣σ̃∣∣+

∣∣σX(F )
∣∣− 2

∣∣σ̃ ∩ σX(F )
∣∣)

= 2
∣∣σ̃ ∩ σX(F )

∣∣− ∣∣σX(F )
∣∣.

The proof of item (i) is straightforward using the latter equality:

∆(σ̃ ∩ ΓX(K), F ) = 2
∣∣σ̃ ∩ ΓX(K) ∩ σX(F )

∣∣− ∣∣σX(F )
∣∣

≤ 2
∣∣σ̃ ∩ σX(F )

∣∣− ∣∣σX(F )
∣∣

= ∆(σ̃, F ).

Under the assumption F ⊆ K of item (ii), we have ΓX(K) ∩ σX(F ) = σX(F ) hence
the inequality above is an equality and thus item (ii) holds.

We are now ready to prove Lemma 5.9.

Proof of Lemma 5.9. Let:

E′ := E ∩K, D′ := D ∩ ΓX(K), Ê′ := Ê ∩K.

Lemma 5.9 asserts that there is a valid execution of Algorithm 3 with input (E′, D′),
output Ê′ and supportK. Hence we would like to find some small-sets F ′0, . . . , F

′
f ′−1 ∈

F such that if we define{
σ̃′0 := σX

(
E′
)
⊕D′,

σ̃′j+1 := σ̃′j ⊕ σX
(
F ′j
)

for j ∈ J0; f ′ − 1K.
(5.9)

then we have the following four properties:

(i) Ê′ = F ′0 ⊕ . . .⊕ F ′f ′−1,

(ii) K = E′ ∪ F ′0 ∪ . . . ∪ F ′f ′−1,

(iii) ∀j ∈ J0; f ′ − 1K : ∆(σ̃′j , F ′j) ≥ β1
∣∣σX(F ′j)

∣∣,
(iv) ∀F ∈ F : ∆(σ̃′f ′ , F ) < β1

∣∣σX(F )
∣∣.

For any i ∈ J0; fK, the set Fi is a subset of the support of an X-type generator
g ∈ CZ . If we assume by contradiction that Fi * K and Fi ∩K 6= ∅ then we have
g ∈ ΓQ(Fi \K) ⊆ ΓQ(U \K) and g ∈ ΓQ(Fi ∩K). This contradicts the hypothesis
ΓQ(K) ∩ ΓQ(U \K) = ∅ and thus we must have either Fi ⊆ K or Fi ∩K = ∅.
Let i0 < . . . < if ′−1 ∈ J0; f − 1K be the steps of the algorithm such that Fik ⊆ K and
let us prove that the sets F ′0 = Fi0 , . . . , F

′
f ′ = Fif′−1 are appropriate. By definition we

have:

Fi ∩K = Fi if i ∈ {i0, . . . , if ′−1},
Fi ∩K = ∅ if i /∈ {i0, . . . , if ′−1}.

(5.10)
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Using the previous statements we can easily prove item (i):

Ê′ = Ê ∩K =
(
f−1⊕
i=0

Fi

)
∩K =

f−1⊕
i=0

(
Fi ∩K

)
=
f ′−1⊕
j=0

F ′j .

Item (ii) is proved in the same manner:

K = U ∩K =
(
E ∪

f−1⋃
i=0

Fi

)
∩K =

(
E ∩K

)
∪
f−1⋃
i=0

(
Fi ∩K

)
= E′ ∪

f ′−1⋃
j=0

F ′j .

Before proving items (iii) and (iv), we need to show that the sets σ̃′j defined by eq. (5.9)
satisfy eq. (5.11) below:

σ̃′j = σ̃ij ∩ ΓX(K) for j ∈ J0; f ′ − 1K,

σ̃′f ′ = σ̃f ∩ ΓX(K).
(5.11)

For i ∈ J0; fK, let σ̃′′i := σ̃i ∩ ΓX(K) then we have:

σ̃′′0 = σ̃0 ∩ ΓX(K)

=
(
σX(E)⊕D

)
∩ ΓX(K)

=
(
σX(E) ∩ ΓX(K)

)
⊕D′ by distributivity,

= σX(E′)⊕D′ by Lemma 5.19 applied with W = E.

Similarly, for i ∈ J0; f − 1K:

σ̃′′i+1 = σ̃i+1 ∩ ΓX(K)

=
(
σ̃i ⊕ σX(Fi)

)
∩ ΓX(K)

= σ̃′′i ⊕
(
σX(Fi) ∩ ΓX(K)

)
by distributivity,

= σ̃′′i ⊕ σX(Fi ∩K) by Lemma 5.19 applied with W = Fi.

Using eq. (5.10), the sets σ̃′′i satisfy:
σ̃′′0 = σX(E′)⊕D′,
σ̃′′i+1 = σ̃′′i ⊕ σX(Fi) if i ∈ {i0, . . . , if ′−1},
σ̃′′i+1 = σ̃′′i if i /∈ {i0, . . . , if ′−1}.

(5.12)

When we compare eq. (5.9) and eq. (5.12), an induction yields:

σ′0 = σ̃′′0 = . . . = σ̃′′i0 ,

σ′j+1 = σ̃′′ij+1 = . . . = σ̃′′ij+1
for j ∈ J0; f ′ − 2K,

σ′f ′ = σ̃′′if′−1+1 = . . . = σ̃′′f .
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Hence eq. (5.11) hold.
We are now ready to prove items (iii) and (iv). By hypothesis, we have a valid

execution of Algorithm 3 with input (E,D), output Ê and support U , thus:

∀i ∈ J0; f − 1K : ∆(σ̃i, Fi) ≥ β1
∣∣σX(Fi)

∣∣, (5.13)

∀F ∈ F : ∆(σ̃f , F ) < β1
∣∣σX(F )

∣∣. (5.14)

Hence item (iii) holds because for all j ∈ J0; f ′ − 1K:

∆(σ̃′j , F ′j) = ∆(σ̃ij ∩ ΓX(K), F ′j) by eq. (5.11),

= ∆(σ̃ij , F ′j) by Lemma 5.20 (ii),

≥ β1
∣∣σX(F ′j)

∣∣ by eq. (5.13).

For item (iv), let F ∈ F then:

∆(σ̃′f ′ , F ) = ∆(σ̃f ∩ ΓX(K), F ) by eq. (5.11),

≤ ∆(σ̃f , F ) by Lemma 5.20 (i),

< β1
∣∣σX(F )

∣∣ by eq. (5.14).

5.1.5 Percolation
The aim of this section is to prove Theorem 5.24 where a percolation process is per-
formed on a graph G with degree upper bounded by dG ≥ 3. In the particular case
where G is the syndrome adjacency graph, Theorem 5.24 turns into Lemma 5.18 that
we have used in the main text. Let V be the set of vertices of G. Then a percolation
process picks a random set Y ⊆ V and the question we are interested in is to compute
the probability that Y contains a large connected α-subset in the sense of Definition 5.11.
We assume that Y follows a local stochastic model, see Definition 5.5 that we rewrite in
Definition 5.21 below.

Definition 5.21 (Local stochastic noise model). Let V be a set of nodes and p ∈ [0; 1].
A random variable Y ⊆ V follows a local stochastic model with parameter p if and only
if for all S ⊆ V:

P
[
S ⊆ Y

]
≤ p|S|.

In this section we use the following upper bound holding for all integers n, k ∈ N:(
n

k

)
≤ 2nh(k/n), (5.15)

where h(x) := −x log2(x)− (1− x) log2(1− x) is the binary entropy function.
The first part of this section is dedicated to derive an upper bound on the number of

connected sets of a degree bounded graph as stated in Lemma 5.22 and Corollary 5.23.
The proof of Lemma 5.22 uses the Raney numbers [84] and follows the proof of [109].
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Lemma 5.22 ([84, 109]). Let G be a graph with degree upper bounded by dG ≥ 3 and
let V be the set of vertices.
For any integer s ≥ 1, the number of connected sets of G with size s satisfies:

∣∣Cs(G)
∣∣ ≤ ∣∣V∣∣ dG

s
(
s(dG − 2) + 2

)(s(dG − 1)
s− 1

)
.

Proof. The main tool for this proof is the set T (s) of labeled rooted trees with maximum
degree dG and size s. An element of T (s) is a directed tree (a directed graph without
cycle) with s vertices and a particular vertex called the root such that the edges are
directed from the root to the leaves of the tree. Note that the in-degree is 0 for the root
and 1 for the other vertices and, in addition, we require the out-degree to be at most
dG for the root and at most dG − 1 for the other vertices. Finally, the trees are labeled
meaning that for each vertex v, the directed edges whose tail is v are injectively labeled
with labels in J1; dGK if v is the root and with labels in J1; dG − 1K if v is not the root.
By [84], we have:

∣∣T (s)
∣∣ = R(dG − 1, s− 1, dG) := dG

s(dG − 2) + 2

(
s(dG − 1)
s− 1

)
.

where R(a, b, c) are the Raney numbers.
From the graph G, we construct the oriented graph G0 where each non-oriented edge

has been replaced by two opposite oriented edges. Similarly than for the trees, we fix
some labeling of G0: the directed edges whose tail is some node v are injectively labeled
with labels in J1; dGK.

Let v ∈ V and let Cs(v) be the set of connected sets X ∈ Cs(G) such that v ∈ X .
Let X ∈ Cs(v) then there is at least one spanning tree T0 of X in G0. From T0, we get
a labeled rooted tree T ∈ T (s) by fixing v as the root and using the labels in G0. We
need to make a comment at this point: the labeling for T is not exactly the same as the
one for T0 as we explain below. The difficulty is that the labels in T are in J1; dG − 1K
(for edges whose tail is not the root) whereas the label dG is allowed in T0. Let v1 be a
vertex in T0 which is not the root, let v0 be the father of v1 and let i be the label in T0 of
the oriented edge from v1 to v0. If j is the label in T0 of another edge whose tail is v1
then this edge in T has label j if j < i and j − 1 if j > i.

Once a vertex v ∈ V has been fixed, the above procedure builds at least one labeled
rooted tree from a given X ∈ Cs(v) and conversely, any T ∈ T (s) can be obtained
from at most one connected set X ∈ Cs(v). Hence

∣∣Cs(v)
∣∣ ≤ ∣∣T (s)

∣∣. In the sum∑
v∈V

∣∣Cs(v)
∣∣, each connected set of G is counted s times. Therefore:

∣∣Cs(G)
∣∣ = 1

s

∑
v∈V

∣∣Cs(v)
∣∣ ≤ ∣∣V∣∣ dG

s
(
s(dG − 2) + 2

)(s(dG − 1)
s− 1

)
.
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Corollary 5.23. Let G be a graph with degree upper bounded by dG ≥ 3 and let V be
the set of vertices of G.
For any integer s ≥ 1, the number of connected sets of G with size s satisfies:∣∣Cs(G)

∣∣ ≤ ∣∣V∣∣Ks

where K = K(dG) := (dG − 1)
(

1 + 1
dG − 2

)dG−2
.

Proof. From Lemma 5.22, we have:∣∣Cs(G)
∣∣ ≤ ∣∣V∣∣ dG

s
(
s(dG − 2) + 2

)(s(dG − 1)
s− 1

)

=
∣∣V∣∣ dG(

s(dG − 2) + 1
)(
s(dG − 2) + 2

)(s(dG − 1)
s

)

≤
∣∣V∣∣(s(dG − 1)

s

)
since s ≥ 1 and dG ≥ 2,

≤
∣∣V∣∣2s(dG−1)h(1/(dG−1)) by eq. (5.15),

=
∣∣V∣∣((dG − 1)

(
1 + 1

dG − 2

)dG−2
)s

.

Theorem 5.24 (α-percolation). Let G be a graph with degree upper bounded by dG ≥ 3
and let V be the set of vertices of G. Let α ∈ (0, 1], let t ≥ 1 be an integer and let pth
be defined by:

pth =

 2−h(α)(
dG − 1

)(
1 + 1

dG−2

)dG−2


1
α

,

where h(α) = −α log2 α− (1− α) log2(1− α) is the binary entropy function. Then,
for any random variable Y ⊆ V satisfying the local stochastic noise property of
Definition 5.21 with parameter p < pth, we have

P
[
MaxConnα(Y ) ≥ t

]
≤ C

∣∣V∣∣ ( p

pth

)αt
where 1/C = (1− 2h(α)/αp)

(
1−

(
p
pth

)α)
.

Proof. Let Cs(G) be the set of connected sets of vertices of size s in G. Applying a
union bound, we obtain

P
[
MaxConnα(Y ) ≥ t

]
= P

[
∃s ≥ t, ∃X ∈ Cs(G) :

∣∣X ∩ Y ∣∣ ≥ α∣∣X∣∣]
≤
∑
s≥t

∑
X∈Cs(G)

P
[∣∣X ∩ Y ∣∣ ≥ α∣∣X∣∣].
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Let us first consider the quantity P
[∣∣X ∩ Y ∣∣ ≥ α∣∣X∣∣] for a set X ∈ Cs(G):

P
[∣∣X ∩ Y ∣∣ ≥ α∣∣X∣∣] ≤ ∑

m≥αs

∑
X′⊆X:∣∣X′∣∣=m

P
[
X ∩ Y = X ′

]

≤
∑
m≥αs

∑
X′⊆X:∣∣X′∣∣=m

P
[
X ′ ⊆ Y

]

≤
∑
m≥αs

∑
X′⊆X:∣∣X′∣∣=m

pm

≤
∑
m≥αs

(
s

m

)
pm .

Using eq. (5.15):

P
[∣∣X ∩ Y ∣∣ ≥ α∣∣X∣∣] ≤ ∑

m≥αs

(
2
s
mh
(
m
s

)
p

)m
.

Since (x 7→ h(x)/x) is non increasing on [α, 1]:

P
[∣∣X ∩ Y ∣∣ ≥ α∣∣X∣∣] ≤ ∑

m≥αs

(
2h(α)/αp

)m
≤ (2h(α)/αp)αs

1− 2h(α)/αp
.

Let K :=
(
dG − 2

)(
1 + 1

dG−2

)dG−2
as defined in Corollary 5.23 then:

P
[
MaxConnα(Y ) ≥ t

]
≤
∑
s≥t

∑
X∈Cs(G)

P
[∣∣X ∩ Y ∣∣ ≥ α∣∣X∣∣]

≤ 1
1− 2h(α)/αp

∑
s≥t

∣∣Cs(G)
∣∣2h(α)spαs by the union bound,

≤
∣∣V∣∣

1− 2h(α)/αp

∑
s≥t

(
K2h(α)pα

)s
by Corollary 5.23,

≤
∣∣V∣∣

1− 2h(α)/αp

(K2h(α)pα)t

1−K2h(α)pα
.

Observing that pth =
( 1
K2h(α)

)1/α
, we obtain the desired result.
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5.2 Parallel decoding
In this chapter, we introduce a parallel implementation for the small-set-flip algorithm
where many small-sets are flipped in each round (Algorithm 4). Unlike the sequential
decoder presented in Section 5.1, Algorithm 4 stops after a fixed number of rounds
f ∈ N even though there still exists some small-sets that decrease the final syndrome
weight when flipped.
In Section 5.2.4, f is set to be a constant integer independent of the initial syndrome
weight and hence the decoder runs in constant time. This is particularly relevant in
the context of fault-tolerant quantum computation where we do not want to give time
for the errors to accumulate. The drawback is that the residual error satisfies the local
stochastic condition with a constant parameter independent of the initial local stochastic
parameters. In particular when the syndrome measurement is perfect, the errors on the
qubits are not entirely corrected.
In Section 5.2.5, the integer f is set to be logarithmic in the initial syndrome weight.
In that case, the residual error has local stochastic parameter pls := pcsynd where c is a
constant and psynd is the local stochastic parameter of the syndrome error. In particular,
for perfect syndrome measurements where psynd = 0, we have pls = 0 and thus there is
no residual error on the qubits after correction.

5.2.1 Notations
In Section 5.2, we keep the notations of Section 5.1.1 running Algorithm 4 defined
below instead of Algorithm 3. In particular, (E,D) is the input of Algorithm 4, Ê its
output and U = E ∪ F0 ∪ . . . ∪ Ff−1 its execution support. We also use the notation
CkZ defined in Lemma 5.25 and define the additional positive constants:

χ :=
(
dC(dV − 1) + 1

)(
dV (dC − 1) + 1

)
, η := 1− β1c1

dV dCχ(dV + dC) < 1,

c5 := 1− η + β1c2
dV dCχ(dV + dC) , c6 := c5

1− η .

For Section 5.2.4, we fix a parameter c > 1 and define:

f0 = f0(c) := χ


log
(

8c
β0dV

)
− log (η)

 , c7 = c7(c) := 2
β0dV

(
1 + ηf0/χ + c6

)
,

c8 = c8(c) :=
(

4cc7c3 + c4

)−1
, c9 = c9(c) :=

(
c3 + c4

4cc7

)−1
.

For Section 5.2.5 we define:

f1 : s 7→ χ


log
(

2s
β0dV

)
− log(η)

+ 1, c′0 :=
⌈

2
(
1 + c6

)
β0dV

⌉
.
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5.2.2 Definition of the decoder

The sequential small-set-flip algorithm (Algorithm 3) flips one small-set per step. It
is possible to parallelize this procedure by flipping many small-sets belonging to the
support of different X-type generators and such that their syndromes do not intersect.
For that, we introduce in Lemma 5.25 a coloring of the X-type generators represented
by the sets CkZ : if g1 and g2 have the same color then σX(F1) ∩ σX(F2) = ∅ for any
F1 ⊆ ΓZ(g1) and F2 ⊆ ΓZ(g2).

Lemma 5.25. We use the notations of Section 5.1.1.
There is a partition CZ =

⊎χ
k=1 C

k
Z for the X-type generators such that for all k ∈

J1;χK and all g1, g2 ∈ CkZ , we have:

ΓX
(

ΓZ(g1)
)
∩ ΓX

(
ΓZ(g2)

)
= ∅.

Proof. Let G0 be a graph with vertex set CZ where g1, g2 ∈ CZ are connected if and
only if ΓX(ΓZ(g1)) ∩ ΓX(ΓZ(g2)) 6= ∅. In other words the incidence relation Γ0 is
defined for all g ∈ CZ to be:

Γ0(g) = ΓZ(ΓX(ΓX(ΓZ(g)))).

The sets C1
Z , . . . , C

χ
Z are defined as a coloring of the graph G0. The degree of G0 is

χ− 1 thus its chromatic number is upper bounded by χ.

Lemma 5.25 leads to Algorithm 4 below which is a parallelized version of Algo-
rithm 3. It is important to note a difference with Algorithm 3 though: instead of running
until no flips reduce the syndrome weight, Algorithm 4 runs for a fixed number of steps
f and may have some final steps that do not reduce the syndrome weight.
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Algorithm 4 : the parallel small-set-flip decoder for noisy syndrome measurements
with f = f(|σ̃|) steps.

Input: the observed syndrome σ̃ ⊆ CX . // σ̃ = σ(E)⊕D for some E ⊆ VQ, D ⊆ CX
Output: a guess for the error Ê ⊆ VQ.

Ê0 = ∅ ; σ̃0 = σ̃
for i ∈ J0; f − 1K do // f = f(|σ̃|) is a parameter of the algorithm

k = i mod χ // Current color
in parallel for g ∈ CkZ do

if Fg :=
{
F ∈ F : F ⊆ ΓZ(g),∆(σ̃i, F ) ≥ β1

∣∣σX(F )
∣∣} 6= ∅ then

Pick Fg ∈ Fg arbitrarily
else

Fg = ∅
end if

end parallel for

Fi =
⊕
g∈CkZ

Fg

Êi+1 = Êi ⊕ Fi
σ̃i+1 = σ̃i ⊕ σX(Fi) // σ̃i+1 = σX(E ⊕ Êi+1)⊕D

end for
return Êi

Remark 5.26. Assume we establish a list of all the small-sets that are flipped by
Algorithm 4 on some input, then Algorithm 3 could flip these small-sets in the same
order. As a consequence, if we define U = E ∪ F0 ∪ . . . ∪ Ff−1 the execution support
of Algorithm 4 then Corollary 5.12 implies that the set U ∪D is a 2α1-subset of E ∪D
and Lemma 5.3 provides: ∣∣U ∣∣ ≤ c3∣∣E∣∣+ c4

∣∣D∣∣.
We will use Algorithm 4 in two cases: when the number of steps f is a fixed constant

and when f grows logarithmically with the size of the input syndrome.

5.2.3 Analysis of the parallel decoder
In this section we show two useful properties we will use later in Section 5.2.4 and
Section 5.2.5: Algorithm 4 is local (Lemma 5.27) and the weight of the observed
syndrome decreases rapidly (Lemma 5.28 and Lemma 5.29).

Lemma 5.27 (Locality for Algorithm 4). We use the notations of Section 5.2.1.
For any K ⊆ U with K ∩ ΓG(U \K) = ∅, there is a valid execution of Algorithm 4 on
the input (E ∩K,D ∩ ΓX(K)) whose output is Ê ∩K and whose support is U ∩K.

Proof. The proof of Lemma 5.27 follows the same scheme than the proof of Lemma 5.9
presented in Section 5.1.4.
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Lemma 5.28. We use the notations of Section 5.2.1. If we assume
∣∣U ∣∣ ≤ γ0

√
N then:

∣∣σ̃χ∣∣ ≤ η∣∣σ̃0
∣∣+ c5

∣∣D∣∣.
Proof. Our strategy is to find a step i ∈ J0;χ − 1K where the weight of the observed
syndrome decreases a lot. Using Lemma 5.1, we are already able to build many small-
sets (the elements of F∗) which would decrease

∣∣σ̃0
∣∣, but we have to face two difficulties

to prove that the syndrome decreasing stated in Lemma 5.28 holds.
The first difficulty is that two flips F, F ′ ∈ F∗ can be subsets of the same generator
g ∈ CZ and thus the decoder cannot flip both in one step. However, if for each generator
g ∈ CZ we pick some F ∗g ∈ F∗ then the number of F ∗g which are not empty is a fraction
of
∣∣F∗∣∣. Thus, using the set {F ∗g : g ∈ CZ} instead of F∗ will tackle the first difficulty.

Let i ∈ J0;χ − 1K be the step at which the small-set corresponding to some X-type
generator g is flipped. The second difficulty is that even though flipping F ∗g decreases
the weight of σ̃0, there is no guarantee that this flip decreases the weight of σ̃i as well.
Indeed, we could have ∆(σ̃i, F ∗g ) 6= ∆(σ̃0, F

∗
g ) due to the fact that we have flipped

another small-set F in one of the prior steps. However, by the LDPC property, each flip
F affects at most a constant number of F ∗g and as a consequence, either we flip many
small-sets before flipping a given color k ∈ J0;χ− 1K or the majority of the flips with
the color k are done.
Finally, if we identify k ∈ J0;χ−1K the most represented color in F∗ and i ∈ J0;χ−1K
the step where the decoder flips the generators with color k, then the weight of the
observed syndrome will decrease a lot either before step i or at step i.

Here is the formal proof of the statement. We have
∣∣E∣∣ ≤ ∣∣U ∣∣ ≤ γ0

√
N thus

Lemma 5.1 provides a set F∗ ⊆ F . For all X-type generator g ∈ CZ , we define:

Fg :=
{
F ∈ F : F ⊆ ΓZ(g),∆(σ̃0, F ) ≥ β1

∣∣σX(F )
∣∣}, F∗g := F∗ ∩ Fg.

In addition, we define a set F ∗g ∈ F∗g in the following manner:


If F∗g 6= ∅ then F ∗g := arg max

F∈F∗g

∣∣σX(F )
∣∣,

If F∗g = ∅ then F ∗g := ∅.

By Lemma 5.1 (ii), the small-sets in F∗g are disjoint thus:

∣∣F∗g ∣∣ ≤ ∣∣ΓZ(g)
∣∣ = dV + dC .

Hence: ∑
F∈F∗g

∣∣σX(F )
∣∣ ≤ ∣∣σX(F ∗g )

∣∣∣∣F∗g ∣∣ ≤ ∣∣σX(F ∗g )
∣∣(dV + dC

)
. (5.16)
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The average value of
∑
g∈CkZ

∣∣σX(F ∗g )
∣∣ over k ∈ J0;χ− 1K satisfies:

1
χ

χ−1∑
k=0

∑
g∈CkZ

∣∣σX(F ∗g )
∣∣ = 1

χ

∑
g∈CZ

∣∣σX(F ∗g )
∣∣

≥ 1
χ(dV + dC)

∑
g∈CZ

∑
F∈F∗g

∣∣σX(F )
∣∣ by eq. (5.16),

= 1
χ(dV + dC)

∑
F∈F∗

∣∣σX(F )
∣∣

≥
c1
∣∣σX(E)

∣∣− c2∣∣D∣∣
χ(dV + dC) by Lemma 5.1 (iii).

Thus there exists a color k ∈ J0;χ− 1K such that the set F0 := {F ∗g : g ∈ CkZ} satisfies:

∑
F∈F0

∣∣σX(F )
∣∣ ≥ c1

∣∣σX(E)
∣∣− c2∣∣D∣∣

χ(dV + dC) . (5.17)

Let i be the integer in J1;χK such that i− 1 is a step of the algorithm where we flip the
color k. In other words, k = (i− 1) mod χ.
We define F1 ⊆ F the set of all flips done during the steps 0, . . . , i− 2 and F2 ⊆ Fk
the set of all flips done at step i − 1. By the coloring property of Lemma 5.25, we
have σX(F ) ∩ σX(F ′) = ∅ for all F, F ′ ∈ F0, thus for all F ′′ ∈ F1, each check-node
of σX(F ′′) is in the syndrome of at most one element of F0. In other words, for a
given syndrome σ̃ and for F ′′ ∈ F1, the number of F ∈ F0 such that ∆(σ̃, F ) 6=
∆(σ̃ ⊕ σX(F ′′), F ) is at most

∣∣σX(F ′′)
∣∣ (as a reminder, F ∗g ∈ F∗g ). As a consequence:∣∣F2

∣∣ ≥ ∣∣F0
∣∣− ∑

F∈F1

∣∣σX(F )
∣∣. (5.18)

Moreover: ∣∣σ̃0
∣∣− ∣∣σ̃i−1

∣∣ ≥ ∑
F∈F1

β1
∣∣σX(F )

∣∣, (5.19)

and ∣∣σ̃i−1
∣∣− ∣∣σ̃i∣∣ ≥ ∑

F∈F2

β1
∣∣σX(F )

∣∣ ≥ β1
∣∣F2
∣∣. (5.20)

Combining eqs. (5.18) to (5.20) we get:

∑
F∈F0

∣∣σX(F )
∣∣ ≤ dV dC∣∣F0

∣∣ ≤ dV dC (∣∣F2
∣∣+

∑
F∈F1

∣∣σX(F )
∣∣) ≤ dV dC

β1

(∣∣σ̃0
∣∣− ∣∣σ̃i∣∣).
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By eq. (5.17): ∣∣σ̃0
∣∣− ∣∣σ̃i∣∣ ≥ β1

dV dC

∑
F∈F0

∣∣σX(F )
∣∣

≥
β1

(
c1
∣∣σX(E)

∣∣− c2∣∣D∣∣)
dV dCχ(dV + dC)

= (1− η)
∣∣σX(E)

∣∣− (c5 − 1 + η)
∣∣D∣∣.

Thus:∣∣σ̃χ∣∣ ≤ ∣∣σ̃i∣∣ ≤ ∣∣σ̃0
∣∣− (1− η)

∣∣σX(E)
∣∣+ (c5 − 1 + η)

∣∣D∣∣ ≤ η∣∣σ̃0
∣∣+ c5

∣∣D∣∣.
When we apply Lemma 5.28 several times, we get Lemma 5.29 below: the weight

of the observed syndrome decreases exponentially fast as a function of f .

Lemma 5.29. We use the notations of Section 5.2.1 assuming
∣∣U ∣∣ ≤ γ0

√
N then:∣∣σ̃f ∣∣ ≤ ηf/χ∣∣σ̃0

∣∣+ c6
∣∣D∣∣.

Proof. By Lemma 5.28, for all i:∣∣σ̃(i+1)χ
∣∣ ≤ η∣∣σ̃iχ∣∣+ c5

∣∣D∣∣.
By an induction on i:

∣∣σ̃iχ∣∣ ≤ ηi∣∣σ̃0
∣∣+
(
c5

i−1∑
k=0

ηk

)∣∣D∣∣.
Hence we can upper bound

∣∣σf ∣∣ by:∣∣σf ∣∣ ≤ ηf/χ∣∣σ0
∣∣+ c6

∣∣D∣∣.
5.2.4 Constant time decoding
In this section, we fix f = f0 where f0 is defined in Section 5.2.1. As stated in
Theorem 5.30 below, if the initial error is local stochastic with parameter sufficiently
small then the residual error is also local stochastic with high probability.

Theorem 5.30. We use the notations of Section 5.1.1.
There exist two non-zero constants p1, p2 > 0 such that the following holds. Suppose the
pair (E,D) satisfies a local stochastic noise model with parameter (pphys, psynd) where
pphys < p1 and psynd < p2. If we run Algorithm 4 with f0 steps on the input (E,D),
then there exists a random variable Els ⊆ VQ with a local stochastic distribution with
parameter pls = pc1 and such that:

P
[
Els and E ⊕ Ê are not equivalent

]
≤ e−Θ(

√
N).
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Note that the constant integer f0 depends on the parameter c > 1 appearing in the
value of pls in Theorem 5.30. When c increases, the local stochastic parameter pls of the
residual error gets better but the number of steps f0 grows. On the other hand, when c is
chosen close to 1, pls gets worse but the number of steps drops.

The proof of Theorem 5.30 proceeds in the same way as the proof of Theorem 5.6.
Indeed, it is sufficient to find a reduced error Els equivalent to E ⊕ Ê and such that
for all S ⊆ Els there is a p-witness for S in the sense of Definition 5.32 (the “p” in
p-witness stands for parallel).
We start by establishing the existence of p-witnesses under the assumptions that the
residual error E ⊕ Ê is reduced with weight smaller than γ0

√
N . This will be done

in Lemma 5.33 below but we first show that the weight of the residual error is upper
bounded by a linear function of the initial error weight (Lemma 5.31).

Lemma 5.31. We use the notations of Section 5.2.1 running Algorithm 4 with f0 steps.
Suppose

∣∣U ∣∣ ≤ γ0
√
N and E ⊕ Ê is reduced then

∣∣E ⊕ Ê∣∣ ≤ 1
4c
∣∣E∣∣+ c7

∣∣D∣∣.
Proof. The error E ⊕ Ê is reduced and satisfies

∣∣E ⊕ Ê∣∣ ≤ ∣∣U ∣∣ ≤ γ0
√
N , hence:

∣∣E ⊕ Ê∣∣ ≤ 2
β0dV

∣∣σX(E ⊕ Ê)
∣∣ by Lemma 4.21,

≤ 2
β0dV

(∣∣σ̃f0

∣∣+
∣∣D∣∣)

≤ 2
β0dV

(
ηf0/χ

∣∣σ̃0
∣∣+ (1 + c6)

∣∣D∣∣) by Lemma 5.29,

≤ 2
β0dV

(
ηf0/χ

∣∣σX(E)
∣∣+
(
1 + ηf0/χ + c6

)∣∣D∣∣)
≤ 1

4c
∣∣σX(E)

∣∣+ c7
∣∣D∣∣.

The definition of p-witness (Definition 5.32) is a bit different from the definition of
witness we gave for the sequential algorithm (Definition 5.14).

Definition 5.32 (p-witness). We use the notations of Section 5.2.1.
We say that W ⊆ V is a p-witness for S ⊆ V if W ∈M(S) and:∣∣W ∣∣ ≤ c3∣∣E ∩W ∣∣+ c4

∣∣D ∩ ΓX(W )
∣∣,∣∣S∣∣ ≤ 1

4c
∣∣E ∩W ∣∣+ c7

∣∣D ∩ ΓX(W )
∣∣.

It remains to show the existence of p-witnesses for the residual error as stated in
Lemma 5.33 and Lemma 5.34.



5.2. Parallel decoding 125

Lemma 5.33. We use the notations of Section 5.2.1 running Algorithm 4 with f0 steps.
Suppose

∣∣U ∣∣ +
∣∣D∣∣ ≤ γ0

√
N and the residual error E ⊕ Ê is reduced then for all

S ⊆ E ⊕ Ê, there is a p-witness W for S with W ⊆ U .

Proof. Let W be the union of the connected components of U in G which contains at
least one element of S. We have W ∩ ΓG(U \W ) = ∅. Thus using Lemma 5.27 with
K = W , there is a valid execution of Algorithm 4 on input (E ∩W,D∩ΓX(W )), with
output Ê ∩W and support U ∩W = W . We have

∣∣W ∣∣ ≤ γ0
√
N and the residual error

(E ⊕ Ê) ∩W is reduced as a subset of the reduced error E ⊕ Ê (see Lemma 4.15).
Hence we can apply Lemma 5.31:

∣∣S∣∣ ≤ ∣∣(E ⊕ Ê) ∩W
∣∣ ≤ 1

4c
∣∣E ∩W ∣∣+ c7

∣∣D ∩ ΓX(W )
∣∣.

By Remark 5.26: ∣∣W ∣∣ ≤ c3∣∣E ∩W ∣∣+ c4
∣∣D ∩ ΓX(W )

∣∣.

Lemma 5.34. We use the notations of Section 5.2.1 running Algorithm 4 with f0 steps.
If MaxConnα1(E ∪ D) ≤ γ0

√
N then there is a reduced error Els equivalent to the

residual error E ⊕ Ê such that for all S ⊆ Els there is a p-witness for S.

Proof. The proof is identical to the proof of Lemma 5.17 using Lemma 5.27 instead of
Corollary 5.10 and Lemma 5.33 instead of Lemma 5.15.

Finally, we can prove Theorem 5.30.

Proof of Theorem 5.30. Let pth > 0 as defined in Lemma 5.18. We define p1, p2 > 0
to be some positive numbers such that:

p1 ≤ pth, p2 ≤ pth, 2dC/c8p2 ≤ 1/2, 21/c9p
1/2
1 ≤ 1/2,

2dCedpc8
2 ≤ 1/2, 2edpc9/2

1 ≤ 1/2, 4
e

2dCepc8
2 ≤ pc1/2,

4
e

2epc9/2
1 ≤ 1/2.

(5.21)

Let pphys < p2 and psynd < p2, we assume that the pair (E,D) satisfies a local
stochastic noise model with parameter (pphys, psynd) and we run Algorithm 3 on the
input (E,D). We define the random error Els promised by Theorem 5.30 in the
following way:{

If MaxConnα1(E ∪D) > γ0
√
N then Els = ∅.

If MaxConnα1(E ∪D) ≤ γ0
√
N then Els is the error promised by Lemma 5.34.
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Lemma 5.34 ensures that if MaxConnα1(E ∪ D) ≤ γ0
√
N then Els is equivalent to

E ⊕ Ê thus by Lemma 5.18:

P
[
Els and E ⊕ Ê are not equivalent

]
≤ P

[
MaxConnα1(E ∪D) > γ0

√
N
]

≤ C
∣∣V∣∣ (max(pphys, psynd)

pth

)α1γ0
√
N

We have
∣∣V∣∣ = Θ(N) and max(pphys, psynd) < pth hence as stated in Theorem 5.30:

P
[
Els and E ⊕ Ê are not equivalent

]
= e−Θ(

√
N).

It remains to show that Els is local stochastic with parameter pls = pc1. We know by
Lemma 5.34 that provided MaxConnα1(E ∪D) ≤ γ0

√
N , there is a p-witness W for

any S ⊆ Els thus for all S ⊆ VQ:

P
[
S ⊆ Els

]
= P

[
S ⊆ Els and MaxConnα1(E ∪D) ≤ γ0

√
N
]

≤ P
[
There exists a p-witness W for S

]
. (5.22)

To conclude, we upper bound the probability that a p-witness exists.
For a fixed W ⊆ V , we distinguish between two cases:∣∣E ∩W ∣∣ ≤ 4cc7

∣∣D ∩ ΓX(W )
∣∣, (5.23)∣∣E ∩W ∣∣ ≥ 4cc7

∣∣D ∩ ΓX(W )
∣∣. (5.24)

Let us upper bound the probability that W is a p-witness for S in the case where
eq. (5.23) holds. By Definition 5.32:∣∣W ∣∣ ≤ c3∣∣E ∩W ∣∣+ c4

∣∣D ∩ ΓX(W )
∣∣ ≤ ∣∣D ∩ ΓX(W )

∣∣/c8.
In particular, the set T := D ∩ ΓX(W ) satisfies T ⊆ ΓX(W ),

∣∣W ∣∣ ≤ ∣∣T ∣∣/c8 and
T ⊆ D. Thus:

P
[
W is a p-witness for S and eq. (5.23) holds

]
≤ P

[
∃T ⊆ ΓX(W ) :

∣∣W ∣∣ ≤ ∣∣T ∣∣/c8, T ⊆ D]
≤

∑
T⊆ΓX(W ):
|T |≥c8|W |

p
|T |
synd

≤
∑

t≥c8|W |

2dC |W |ptsynd

≤
∑

t≥c8|W |

(
2dC/c8psynd

)t
.
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By eq. (5.21), we have 2dC/c8psynd ≤ 1/2 thus:

P
[
W is a p-witness for S and eq. (5.23) holds

]
≤ 2

(
2dCpc8

synd

)|W |
. (5.25)

In the second case where W is a p-witness for S and eq. (5.24) holds, we have:∣∣S∣∣ ≤ ( 1
4c + 1

4c

) ∣∣E ∩W ∣∣ ≤ ∣∣E ∩W ∣∣2c

and ∣∣W ∣∣ ≤ ∣∣E ∩W ∣∣/c9.
Thus the set T := E ∩W satisfies T ⊆W ,

∣∣S∣∣ ≤ ∣∣T ∣∣/2c, ∣∣W ∣∣ ≤ ∣∣T ∣∣/c9 and T ⊆ E.
Thus:

P
[
W is a p-witness for Sandeq. (5.24)holds

]
≤ P

[
∃T ⊆W :

∣∣S∣∣ ≤ ∣∣T ∣∣/2c, ∣∣W ∣∣ ≤ ∣∣T ∣∣/c9, T ⊆ E]
≤

∑
T⊆W :

|T |≥c9|W |,
|T |≥2c|S|

(
p
|T |/2
phys

)2

≤ pc|S|phys

∑
T⊆W :
|T |≥c9|W |

p
|T |/2
phys

≤ pc|S|phys

∑
t≥c9|W |

2|W |pt/2phys

≤ pc|S|phys

∑
t≥c9|W |

(
21/c9p

1/2
phys

)t
.

By eq. (5.21), we have 21/c9p
1/2
phys ≤ 1/2 thus:

P
[
W is a p-witness for S and eq. (5.24) holds

]
≤ 2pc|S|phys

(
2pc9/2

phys

)|W |
. (5.26)

Thus:

P
[
S ⊆ Els

]
≤ P

[
There exists a p-witness W for S

]
by eq. (5.22),

≤
∑

W∈M(S)

P
[
W is a p-witness for S

]
≤

∑
W∈M(S)

P
[
W is a p-witness for S and eq. (5.23) holds

]
+ P

[
W is a p-witness for S and eq. (5.24) holds

]
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By eqs. (5.25) and (5.26):

P
[
S ⊆ Els

]
≤ 2

∑
W∈M(S)

[(
2dCpc8

synd

)|W |
+ p

c|S|
phys

(
2pc9/2

phys

)|W |]
≤ 2
ed|S|

∑
w≥|S|

[(
2dCedpc8

synd

)w
+ p

c|S|
phys

(
2edpc9/2

phys

)w]
by eq. (5.7).

By eq. (5.21), we have 2dCedpc8
synd ≤ 1/2 and 2edpc9/2

phys ≤ 1/2 thus:

P
[
S ⊆ Els

]
≤ 4
e

(
2dCepc8

synd

)|S|
+ 4
e
p
c|S|
phys

(
2epc9/2

phys

)|S|
.

By eq. (5.21), we have 4
e2dCepc8

synd ≤ pc1/2 and 4
e2epc9/2

phys ≤ 1/2 thus:

P
[
S ⊆ Els

]
≤ p

c|S|
1
2 + p

c|S|
1
2 = p

c|S|
1 .

5.2.5 Logarithmic time decoding
In this section, we run Algorithm 4 with f1(|σ̃|) steps where the function f1 is defined in
Section 5.2.1. The main benefit of this implementation compared to Section 5.2.4 is the
following: the smaller psynd is, the smaller the local stochastic parameter of the residual
error is. In particular, if the measurement is perfect (D = ∅ and psynd = 0) then the
error on the qubits is entirely corrected and this will be important for performing the
gate teleportation technique in Chapter 6.

Lemma 5.35. We use the notations of Section 5.2.1 running Algorithm 4 with f =
f1(|σ̃|) steps.
Suppose that E ⊕ Ê is reduced with

∣∣U ∣∣ ≤ γ0
√
N then:∣∣E ⊕ Ê∣∣ ≤ c′0∣∣D∣∣.

Proof. The error E ⊕ Ê is reduced and satisfies
∣∣E ⊕ Ê∣∣ ≤ ∣∣U ∣∣ ≤ γ0

√
N hence:∣∣E ⊕ Ê∣∣ ≤ 2

β0dV

∣∣σX(E ⊕ Ê)
∣∣ by Lemma 4.21,

≤ 2
β0dV

(∣∣σ̃f ∣∣+
∣∣D∣∣)

≤ 2
β0dV

(
ηf/χ

∣∣σ̃0
∣∣+ (1 + c6)

∣∣D∣∣) by Lemma 5.29,

< 1 + 2(1 + c6)
β0dV

∣∣D∣∣ Because f = f1(|σ̃0|),

≤ 1 + c′0
∣∣D∣∣.

We have
∣∣E⊕Ê∣∣ < 1+c′0

∣∣D∣∣ and all the values are integers thus Lemma 5.35 holds.
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Lemma 5.35 is the same statement as Proposition 5.2 except that c0 is replaced by
c′0 and Algorithm 3 is replaced by Algorithm 4. Hence, if we rewrite the lemmas and
the proofs of Section 5.1 replacing c0 by c′0 then we end up with Theorem 5.36 below.

Theorem 5.36. We use the notations of Section 5.2.1 running Algorithm 4 with f =
f1(|σ̃|) steps.
There exists a non-zero constant p3 > 0 such that the following holds. Suppose the error
(E,D) satisfies a local stochastic noise model with parameter (pphys, psynd) where
pphys < p3 and psynd < p3. If we run Algorithm 3 with f = f1

(
|σX(E)⊕D|

)
steps on

the input (E,D) then there exists a random variable Els ⊆ VQ with a local stochastic
distribution with parameter pls := p

1/(2c′0)
synd and such that:

P
[
Els and E ⊕ Ê are not equivalent

]
≤ e−Θ(

√
N).

Proof. We rewrite the statements and the proofs of Section 5.1 replacing c0 by c′0 and
Algorithm 3 by Algorithm 4. In more details:

– Proposition 5.2 is replaced by Lemma 5.35.

– Lemma 5.3 and Corollary 5.12 are replaced by Remark 5.26.

– Corollary 5.10 is replaced by Lemma 5.27.

– c0 is replaced by c′0 in the definition of witness (Definition 5.14).

– Lemma 5.15 and Lemma 5.17 are proved in the same way.

– The proof of Theorem 5.36 is the same as the proof of Theorem 5.6.

An interesting consequence of Theorem 5.36 is the case where the syndrome is
noiseless (see Corollary 5.37 below).

Corollary 5.37. We use the notations of Section 5.2.1.
There exists a non-zero constant p3 > 0 such that the following holds. Suppose D = ∅
and E satisfies a local stochastic noise model with parameter pphys < p3 then if we run
Algorithm 4 with f1(|σX(E)|) steps:

P
[
E is corrected

]
≥ 1− e−Θ(

√
N).

Proof. Similar to the proof of Corollary 5.7.
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5.3 Numerical simulations for the small-set-flip al-
gorithm

The results we have presented in Sections 5.1 and 5.2 are interesting from a theoretical
perspective but are not of practical interest: as shown in Section 5.3.1 below, the lower
bound we get on the threshold is small (< 10−58) and the proofs hold when the weights
of the stabilizer generators are large (≥ 35). In Section 5.3.2, we present simulation
results showing that the real threshold value is near 4.5% for codes with rate 1/61 and
stabilizer weight 11, and near 2% for codes with rate 1/5 and stabilizer weight 15.

5.3.1 Theoretical lower bound on the threshold

In Section 5.1.1, we assumed that the expansion parameter δ of the initial classical
expander code satisfies δ < 1/16, which requires left degree dV ≥ 17 (by Lemma 3.11)
and right degree dC ≥ dV + 1 (to get a code family with non-zero rate). The stabilizer
generators of the resulting quantum expander code have weight dV + dC ≥ 35, the
VV-type qubits have weight 2dV ≥ 34 and the CC-type qubits have weight 2dC ≥ 36.
Moreover, the thresholds given by Theorems 5.6, 5.30 and 5.36 are very low since they
are smaller than pth defined in Theorem 5.24:

pth =

 2−h(α1)(
dG − 1

)(
1 + 1

dG−2

)dG−2


1
α1

,

with:

r := dV /dC , dG := dC(dC + 2dV − 2), β1 := 1− 16δ
2 , α1 := rβ1

4 + 2rβ1
.

By Lemma 3.11, we have δ > 1/dV thus:

β1 < β∗1 := 1− 16/dV
2 , α1 < α∗1 := rβ∗1

4 + 2rβ∗1
,

pth < p∗th :=

 1(
dG − 1

)(
1 + 1

dG−2

)dG−2


1
α∗1

.

For instance, if we set dC = dV + 1 then the maximum of the function dV 7→ p∗th is
reached for dV = 66 where p∗th ≈ 10−58. This value is not physically reasonable, but
the numerical simulations of Section 5.3.2 show that the real threshold is much better
than the lower bound pth.
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5.3.2 Results

Algorithm 5 : the small-set-flip decoder of ref. [67].

Input: the syndrome σ ⊆ CX . // σ = σ(E) for some E ⊆ VQ
Output: a guess for the error Ê ⊆ VQ.

Ê0 = ∅ ; σ0 = σ ; i = 0
while ∃F ∈ F0 : ∆(σi, F ) > 0 do

Fi := arg max
F∈F0

∆(σi, F )
|F |

Êi+1 = Êi ⊕ Fi
σi+1 = σi ⊕ σX(Fi)
i = i+ 1

end while
return Êi

The simulations presented in this section have been done using the sequential small-
set-flip algorithm of ref. [67] (Algorithm 5) with a perfect syndrome measurement and
an iid bit-flip error model (each qubit is flipped with probability p independently). In
Algorithm 5, VQ is the set of qubits, CX is the set of check-nodes, F0 is the set of
small-sets as defined in eq. (4.25) and ∆ is the function defined in eq. (4.26):

F0 :=
{
F ⊆ VQ: F is included in the support of an X-type generator

}
,

∆(σ, F ) :=
∣∣σ∣∣− ∣∣σ ⊕ σX(F )

∣∣.
At each round, Algorithm 5 selects the small-set F ∈ F0 which maximizes

∆(σi, F )
|F |

and flips the qubits of F .
The classical codes used in the hypergraph product construction are regular LDPC

codes generated with the configuration model and the switching method as described
in Section 5.3.3 [79]. For short, we will say that a code family has degrees (dV , dC)
or is a (dV , dC) family to indicate that the left degree of the classical Tanner graph is
dV and the right degree is dC . The first hypergraph product family we consider has
rate 1/61 ∼ 1.6% and is constructed from classical codes with rate 1/6 and degrees
(5, 6) (see Figure 5.2). The second family has rate 1/5 = 20% and is constructed from
classical codes with rate 1/2 and degrees (5, 10) (see Figure 5.3).

For a given error probability p ∈ [0, 1] called physical error rate, we have used
Monte Carlo simulations to estimate the block error rate, which is the probability of
failure when the small-set flip algorithm corrects an error where each qubit is flipped
with probability p independently. Hence, the block error rate is the success rate of the
following protocol:

– Each qubit is flipped with probability p independently.
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– Algorithm 5 is used to correct the error.

– If the residual error on the qubits is equivalent to an empty error then the protocol
is a success.

The block error rate as a function of the physical error rate is plotted in Figure 5.2
for the (5, 6) family and in Figure 5.3 for the (5, 10) family. The usual way to determine
numerically the threshold is to identify the pseudo-threshold defined to be the physical
error rate where the curves of Figures 5.2 and 5.3 cross. Using Figure 5.4, the pseudo-
threshold is near 4.5% for the (5, 6) family. Similarly, our numerical results show
that the pseudo-threshold is near 2% for the (5, 10) family. Unfortunately, near the
pseudo-threshold, the block error rate is close to 1 meaning that these families cannot be
used at physical error rate close to the threshold.

For the (5, 6) family, we plot in Figure 5.5 the block error rate as a function of
√
K

where K the number of logical qubits. Using the results of Theorem 5.6, we expect to
have p ∼ ae−b

√
K but we have not been able to fit the curves in that way.

In Figures 5.6 and 5.7, we show how evolves the small-set-flip performance depend-
ing on the degrees of the classical codes. When dV = 4, the results are not satisfying
since increasing the block length of the codes does not clearly increase the success
rate, see Figure 5.6. When dV = 6, we get codes with smaller rate and the decoder
performance is quite similar than for dV = 5, see Figure 5.7.

As a conclusion, the lower bound on the threshold presented in Section 5.3.1 is very
pessimistic since the small-set-flip decoder can be used at decent error rates (Figure 5.2
and Figure 5.3). Moreover, the (5, 6) family seems to be optimal for the small-set-flip
algorithm since this decoder does not work for a (4, 5) family (Figure 5.6) and has a
worse performance for a (6, 7) family (Figure 5.7).

5.3.3 Code generation

The configuration model described in Section 3.2.4 builds regular Tanner graphs,
however it is known that other techniques provide codes with better performance
[57, 76, 100]. In this work, we rely on the switching method introduced by McKay and
Brendan in ref. [79] to increase the girth of the Tanner graph (the girth is the length of
the smallest cycle) [112]. We say that two edges (v1, c1) and (v2, c2) of a Tanner graph
are switched when they are removed and replaced by (v1, c2) and (v2, c1) (note that this
transformation does not change the node degrees and preserves the bipartite property).
To generate our codes, we have built an initial Tanner graph using the configuration
model and we have switched well chosen edges to increase the girth of the graph. As
shown in Figure 5.2 and Figure 5.8, an [[N,K]] stabilizer code generated with the
switching method has similar performance than a [[4N, 4K]] stabilizer code generated
directly with the configuration model. Except for the codes of Figure 5.8, the classical
Tanner graphs have been created with the switching method as described below.

Let n be the number of bit-nodes of a classical Tanner graph G and let v be a bit-
node, then we define lv ∈ {2, 4, 8, . . . , n} to be the size of the smallest cycle containing
v (lv is even since the graph is bipartite) and mv ∈ N∗ to be the number of cycles with
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size lv which contain v. For instance, lv = 2 if and only if v belongs to a double edge
in G. For l ∈ {2, 4, 8, . . . , n} and m ∈ N∗, we define s1(l,m) to be the number of
bit-nodes v such that lv = l and mv = m:

s1(l,m) = #
{
v ∈ VQ : lv = l and mv = m

}
.

For a given l ∈ {2, 4, 8, . . . , n}, we define s2(l) to be the tuple:

s2(l) =
(
s1(l,M), s1(l,M − 1), s1(l,M − 2), . . . , s1(l, 0)

)
where M := max

{
m : s1(l,m) 6= 0

}
. Finally, we define the score associated to a

Tanner graph G by the tuple:

sG =
(
s2(2), s2(4), s2(6), . . . , s2(n)

)
.

Two scores are compared using the lexicographic order on tuples.
The classical codes used in the simulations have been generated in the following

way:

• Create a Tanner graph using the configuration model (keeping the double edges
when they exist).

• Repeat many times:

– Pick two edges randomly and switch them if the score of the Tanner graph
decreases.

As a remark, we have used the score sG because it leads to the best codes we have been
able to produce, but there is no theoretical guarantee that this is the optimal quantity to
consider.
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5.3.4 Plots

For all plots, the error bars represent the 99% confidence intervals (≈ 2.58 standard
deviation).
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Figure 5.2: simulation results for the (5, 6) family.
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Figure 5.3: simulation results for the (5, 10) family.
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Figure 5.4: simulation results for the (5, 6) family.
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Figure 5.5: simulation results for the (5, 6) family.
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Figure 5.6: simulation results for the (4, 5) family.
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Figure 5.7: simulation results for the (6, 7) family.
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Figure 5.8: simulation results for a (5, 6) family generated without the switching method.
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Chapter 6

Fault-tolerant quantum
computation

In fault-tolerant quantum computation, the objective is to perform quantum computations
with circuits built from noisy gates. The threshold theorem asserts this is indeed possible
if the noise on the gates is below a constant threshold value: given an arbitrary circuit C,
there exists an equivalent circuit C′ such that the output of C′ is not modified by a small
number of faulty gates [1]. The circuit C′ is divided into error correction cycles where an
[[N,K]] stabilizer code Q is used to remove the errors, and simulation cycles where the
information encoded intoQ is processed with logical gates. Formally, let U be a unitary
on K qubits, then the associated logical unitary UL satisfies for all |ϕ〉 ∈

(
C2)⊗K :

ULE
(
|ϕ〉
)

= E
(
U |ϕ〉

)
where E

(
|ϕ〉
)
∈
(
C2)⊗N is the code state associated to |ϕ〉 and E

(
U |ϕ〉

)
∈
(
C2)⊗N

is the code state associated to U |ϕ〉 ∈
(
C2)⊗K . A circuit used to implement a logical

gate is said to be fault-tolerant if the error resulting from a faulty location hits a
small number of qubits. Finally, the circuit C′ is built in the following way: the
qubits of C are encoded using the code Q, each gate U of C is replaced by a fault-
tolerant implementation of UL and the errors are regularly corrected using the decoding
algorithm.

In ref. [1], the code Q used to prove the threshold theorem is a concatenated
code. By definition, given an [[N0, 1]] code Q0 and an integer k ∈ N, the associated
concatenated code is an [[Nk

0 , 1]] code where each qubit is encoded k times in Q0. The
space overhead is defined to be the ratio between the number of qubits in C′ and C;
for instance, with fault-tolerance based on concatenated codes, the space overhead is
polylogarithmic in the size of C. In this chapter, we present the protocol of ref. [46]
where constant space overhead is reached using quantum expander codes (in fact, other
families of constant rate LDPC stabilizer codes could be used). The implementation of
the logical gates for quantum expander codes is done with the gate teleportation trick of
ref. [47] where the required ancilla states are prepared using concatenated codes.

139
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In Section 6.1 we provide a formal definition of a circuit and describe the noise
model we will use. In Section 6.2 we present the threshold theorem using concatenated
codes and in Section 6.3 we explain the protocol of ref. [46].

6.1 Background
A quantum circuit C defines a discrete time computation on classical bits and quantum
states. In this model a bit is called a classical wire, a qubit is called a quantum wire
and we will talk about registers to refer to a set of wires. For each time step t ∈ J1;T K,
some of the quantum wires are said to be inactive, the other one are said to be active
which informally means that they are used for the computation. The state of the circuit
at time step t is given by the value of the bits stored in the classical wires and by the
quantum state stored in the active quantum wires. The time step t is also described by a
collection of locations applied on wires: some of the inactive wires are associated with a
state preparation location and each active wire is associated with either a wait location,
a gate location or a measurement location.

If a state preparation location is applied on an inactive wire, then the wire is initialized
as a |0〉 state and becomes active at time step t+ 1; otherwise it stays inactive. A wait
location does nothing on the wire it acts on, this type of location will be used to model
memory errors in noisy circuits. Gate locations represent unitary transformations applied
to the quantum state and we will use six types of gate locations associated with the
bit-flip gate X , the phase-flip gate Z, the Hadamard gate H , the controlled-not gate
C-X (in that case, the location acts on two active wires), the S gate and the T gate:

X :
{
|0〉 7→ |1〉
|1〉 7→ |0〉

Z :
{
|0〉 7→ |0〉
|1〉 7→ − |1〉

H :


|0〉 7→ 1√

2

(
|0〉+ |1〉

)
|1〉 7→ 1√

2

(
|0〉 − |1〉

)

S :
{
|0〉 7→ e−iπ/4 |0〉
|1〉 7→ eiπ/4 |1〉

T :
{
|0〉 7→ e−iπ/8 |0〉
|1〉 7→ eiπ/8 |1〉

C-X :


|00〉 7→ |00〉
|01〉 7→ |01〉
|10〉 7→ |11〉
|11〉 7→ |10〉

When a measurement location is applied on an active wire, a Z-type measurement is
performed on the corresponding qubit, the measurement result is stored in a classical
wire and the quantum wire becomes inactive at time step t+ 1. Since the classical wires
are not subjected to noise, it is not necessary to use the location formalism to describe
their evolution; instead we will explain with words the algorithm we apply on them.

The output of the circuit is given by the value of the classical bits and by the quantum
state stored in the active wires at time step t = T . We will assume that all the quantum
wires are inactive at time step t = 1 and we will say that the circuit has classical output
when all the quantum wires are inactive at the final time step.
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A circuit will often be represented graphically, see the examples given in Figure 6.1.
An active quantum wire is represented by a line, a quantum register (multiple active
quantum wires) is represented by a thick line and a classical wire is represented by a
double line. In Figure 6.1, the controlled-Z gate is defined to be C-Z := (1 ⊗H) ◦
C-X ◦ (1⊗H) and the bit-flip acting on a classical wire maps 0 to 1 and 1 to 0.

Figure 6.1: representation of a unitary U , a controlled-not gate, a controlled-Z gate, a
measurement and a bit-flip.

The error models for circuits are the local stochastic error model and the local
stochastic Pauli error model as defined below [44].

Definition 6.1 (Stochastic error model, local stochastic error model and local stochastic
Pauli error model for circuits). Let L be the set of locations of a circuit, then a stochastic
noise model on L picks a random set of faulty locations F ⊆ L and chooses a CPTP
map for each faulty location. The CPTP map associated to a location l ∈ F represents
an error applied before or after l:

• A preparation location prepares the wire in the |0〉 state. When the location is in
F , the CPTP map representing the error is applied on the wire once the |0〉 has
been prepared.

• A measurement location measures the wire in the Z-basis and stores the mea-
surement result in a classical wire. When the location is in F , the CPTP map
representing the error is applied on the quantum wire before the measurement is
performed.

• A gate location applies a unitary gate on the wire. When the location is in F , it
applies the CPTP map representing the error after the unitary. Note that the CPTP
map acts on two qubits when the gate is a controlled-not gate and it acts on one
qubit otherwise.

• A wait location does not modify the quantum state of the circuit. When the
location is in F , it applies the CPTP map representing the error on the wire.

A local stochastic error model on L with parameter ploc ∈ [0, 1] is a stochastic noise
model such that the random set of faulty locations F satisfies for all T ⊆ L:

P
[
T ⊆ F

]
≤ p|T |loc .

A local stochastic error model on L is Pauli when the errors applied on the faulty
locations are Pauli matrices.
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In the previous chapter, we already used the local stochastic error model in an
another context to talk about the error applied on a set of qubits and bits. This error
model will be used in this chapter as well, thus we recall the definition below.

Definition 6.2 (Stochastic error model, local stochastic error model and local stochastic
Pauli error model for a set of wires). Let V be a set of quantum wires and let C be a set
of classical wires, then a stochastic noise model on V and C produces an error in the
following way:

• A random set of faulty qubits E ⊆ V is picked and a CPTP map EE is applied
on the qubits belonging to E. The error EE can be any channel which maps |E|
qubits to |E| qubits.

• A random set of faulty bits D ⊆ C is picked and the bits belonging to D are
flipped.

A local stochastic error model on V and C with parameter pwire ∈ [0, 1] is a stochastic
noise model such that the sets E and D satisfy for all S ⊆ V and T ⊆ C:

P
[
S ⊆ E, T ⊆ D

]
≤ p|S|+|T |wire .

A local stochastic error model on V and C is Pauli when the error applied on the faulty
qubits are Pauli matrices.

6.2 Fault-tolerance with poly-logarithmic overhead

The most famous result in fault-tolerant quantum computation is the threshold theorem
of Aharonov and Ben-Or published in ref. [1]. We quickly present it in Theorem 6.3,
see [1, 45] for more details. Informally, if we are able to build gates whose noise is
below a threshold pth > 0 (which is a universal constant), then for any circuit D, the
threshold theorem provides a circuit D′ with the same output as D but working even
with noisy gates.

In Section 6.3, the result of this section will be used as a black-box to prepare
the ancilla quantum states needed to perform fault-tolerant quantum computation with
constant space overhead.

Theorem 6.3 (Threshold theorem, [1]). There exists a threshold pth > 0 such that the
following holds. Let ploc < pth, let δ > 0 and let D be a circuit with classical output,
with m qubits, with T time steps and |D| locations.
Then there exists another circuit D′ such that D′ has the same output as D and fails with
probability at most δ when its locations are subjected to a local stochastic noise model
with parameter ploc. In addition, D′ has m′ qubits, T ′ time steps and |D′| locations
where:

m′ = m polylog
(
|D|
δ

)
, T ′ = T polylog

(
|D|
δ

)
, |D′| = |D| polylog

(
|D|
δ

)
.
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Proof sketch. The circuit D′ is constructed from D using usual fault-tolerant techniques
based on concatenated codes, see [1] or [45] for a complete description of the procedure.
For example, using the [[7, 1]] Steane code, we define below a transformation Φ0 on
circuits such that Φ0(D) is more robust than D when the gates are noisy. The circuit D′
promised by Theorem 6.3 will be defined as D′ := Φk0(D) for a well chosen k.

In Φ0(D), each qubit of the circuit D is replaced by 7 qubits whose state is the
encoded version of the original one-qubit state, and each location of D is replaced by
the corresponding fault-tolerant gadget followed by a fault-tolerant error correction
cycle. The 7-qubit code is particularly pleasant because the gadget corresponding to the
Clifford gates are transversal:

XL = X⊗7, ZL = Z⊗7, HL = H⊗7, SL =
(
ZS
)⊗7

, CL
X = (CX)⊗7.

In Φ0(D), a single error somewhere in a gadget will be corrected by the next error
correction cycle. Hence, when the output of the circuit is wrong, two faulty locations
happened in the same gadget, an event whose probability is upper bounded by c1 p2

loc |D|
where c1 is a constant. The number of gates and the probability of failure for D, Φ(D)
and Φk(D) are summarized in Figure 6.2 where c0 and c1 are two universal constants.
The second and third columns in this table show that the number of qubits and the
number of gates grow exponentially with k. The fourth column provides the probability
for the circuit to have a wrong output when the circuit is subjected to a local stochastic
noise with parameter ploc. If ploc < pth := 1/c1, then this probability decreases as a
double exponential in k.

Circuit #Qubits #Gates P[wrong output]

D m |D| ≤ ploc |D|

Φ0(D) 7m ≤ c0 |D| ≤ c1 p2
loc |D|

Φk0(D) 7km ≤ ck0 |D| ≤ (c1 ploc)2k

c1
|D|

Figure 6.2

For a target probability δ > 0, we define D′ := Φk0(D) where k = Θ
(

log log |D|
δ

)
is

such that:

(c1 ploc)2k

c1
|D| ≤ δ.

Finally, the circuit D′ fulfills the requirements of Theorem 6.3.

Theorem 6.3 holds when the output of the circuit D is classical, but in this work,
the fault-tolerant protocol based on concatenated codes will be used to create ancilla
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quantum states. Let D be a circuit whose output is a quantum state |ψ〉. When D is
subjected to a local stochastic noise, there is a non zero probability that the last location
of D is faulty, thus we cannot hope to get |ψ〉 with high probability. Instead, we can
build a fault-tolerant circuit D′ such that when D′ is subjected to a local stochastic
noise, the output is |ψ〉 on which has been applied a local stochastic error in the sense of
Definition 6.2.

Theorem 6.4. There exists a threshold pth > 0 such that the following holds. Let
ploc < pth, let δ > 0 and let D be a circuit with m qubits, with T time steps and |D|
locations. We assume that the output of D is a quantum state |ψ〉.
Then there exists another circuit D′ whose output is |ψ〉 and such that when D′ is
subjected to a local stochastic noise model with parameter ploc, there exists N a local
stochastic noise on the qubits of |ψ〉 with parameter pwire = c ploc such that:

P
[
output of D′ is not N

(
|ψ〉
)]
≤ δ.

In addition, D′ has m′ qubits, T ′ time steps and |D′| locations where:

m′ = m polylog
(
|D|
δ

)
, T ′ = T polylog

(
|D|
δ

)
, |D′| = |D| polylog

(
|D|
δ

)
.

Proof sketch. Let m0 be the number of qubits of |ψ〉 and let Φ0 be the function defined
in the proof of Theorem 6.3. The output of Φk0(D) is |ψ〉 encoded in the concatenated
code, thus we need to decode the output of Φk0(D) in a fault-tolerant manner. We fix E−1

some decoding circuit for the Steane code and we denote by Φ(D) the circuit Φ0(D)
followed by m0 copies of E−1, one per block of the Steane code. In particular, the
output of Φ(D) is an m0-qubit state. Note that when the circuit Φ2(D) is created, the
transformation Φ0 is also applied to the m0 decoding circuits contained in Φ(D). In
other words, the circuit Φk(D) is the circuit Φk0(D) followed by k layers of decoding:
the first layer uses the circuit Φk−1

0 (E−1), the second layer uses Φk−2
0 (E−1) and the last

layer uses E−1.

For a given δ > 0, we choose again k = Θ
(

log log |D|
δ

)
so that the probability

that Φk0(D) fails is upper bounded by δ. The output of the circuit is equal to N0(|ψ〉)
where N0 represents the physical noise on the qubits. The local stochastic noise N
promised in Theorem 6.4 is defined to be N0 except when Φk0(D) fails:

• If the circuit Φk0(D) does not fail, the noise N is equal to N0.

• If the circuit Φk0(D) fails then N applies the identity on the qubits.
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6.3 Fault-tolerance with constant space overhead
In this section, we describe the protocol of ref. [46] in the particular case where quantum
expander codes are used. Given any circuit C with n qubits and size |C| = poly(n),
the fault-tolerant circuit provided by [46] uses Θ(n) qubits and fails with vanishing
probability when n goes to infinity. Contrarily to Theorem 6.3 where a single circuit
was considered, we are interested here in the asymptotic behavior for a family of circuits.
The main theorem of ref. [46] is very general and could be used with other constant
rate LDPC stabilizer codes such as the 4-dimensional hyperbolic code of ref. [51].
However, for adversarial errors with weight up to a fraction of the minimal distance,
the known algorithms to decode a 4-dimensional hyperbolic code run in exponential
time. Hence, applying ref. [46] with 4-dimensional hyperbolic codes is possible only if
classical computation is instantaneous, indeed it would require to run an exponential time
classical circuit between some time steps of the fault-tolerant circuit. By contrast, for
quantum expander codes, we do not require that classical computation is instantaneous
since the small-set-flip decoder runs in constant depth. If we set aside the constant
time requirement, there exists an efficient decoder for 4-dimensional hyperbolic codes
but this algorithm corrects adversarial errors up to logarithmic weight [55]. As a
consequence, for a local stochastic noise, the probability of correction failure decreases
as the inverse of a polynomial in the block-length. Hence, when we deal with a circuit
of size |C| = poly(n), the threshold depends on the polynomial rather than being a
universal constant. Similarly, we could use 2-dimensional hyperbolic codes, but their
minimal distance is logarithmic and thus we cannot start from any polynomial size
circuit keeping a threshold which is a universal constant.

Theorem 6.5 (Fault-tolerant quantum computation with constant space overhead [46]).
For any asymptotic space overhead α > 1, there exists a threshold pth > 0 such that
the following holds. Let ploc < pth and let C be a circuit with classical output, with n
qubits, with T time steps and |C| locations where |C| = poly(n).
Then there exists another circuit C′ such that C′ has the same output as C and fails with
vanishing probability for large n when subjected to a local stochastic noise model with
parameter ploc. In addition, C′ has n′ qubits where:

n′ = αn+ o(n).

6.3.1 Description of the protocol

The protocol of ref. [46] requires to start from a sequential circuit (a circuit is said to be
sequential when at each time step, all but one location are wait locations). In fact, there
exists a sequential circuit equivalent to C with n qubits and at most n|C| = poly(n)
locations. Hence, without loss of generality, C is assumed to be sequential.

To construct the circuit C′, we consider a family of quantum expander codes with
rateR := 2/(1+α) and choose the smaller code in this family with parameters [[N,K]]
where N ≥

√
n . For simplicity, we assume that K divides n and we split the qubits

of C into n/K blocks of size K. In C′, each block of C is replaced by a block of N
qubits (called data qubits) and each location is replaced by a simulation cycle followed
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by an error correction cycle. During a simulation cycle, the location of C is simulated
in C′ using the protocols described in this section. During the error correction cycle, the
n/K blocks are corrected in parallel: for each block, the syndrome is measured and the
correction inferred by the small-set-flip algorithm is applied on the qubits.

As explained in this section, the number of data qubits in C′ is n/R, the number of
ancilla qubits for the syndrome measurements is (N −K)n/K = n(1/R− 1) and the
number of ancilla qubits for the simulation cycles is o(n). Hence, the space overhead of
this protocol is asymptotically equal to 1/R+ 1/R− 1 = α.

Since the performance of quantum expander codes increases with their size, taking
codes with bigger block length would be an advantage for error correction. However,
we take N = Θ(

√
n) for convenience in the proofs but N = n/polylog(n) would lead

to constant space overhead as well.

a) Error correction cycle

Figure 6.3: Circuit for performing error correction. The Pauli gate P depends on the bit-strings
eX and eZ .

The error correction is performed with the usual circuit presented in Figure 6.3
where the thick line represents one block of the quantum expander code. There are three
main steps in this circuit:

1. The stabilizer generators are measured, for example using the circuit presented in
Figure 4.1 (these measurements can be done in a non fault-tolerant way because
the generators have constant weight). The measurement result for the Z-type
generators is denoted σX ∈ FMX

2 and the measurement result for the X-type
generators is denoted σZ ∈ FMZ

2 .

2. The small-set-flip decoder is used twice:

• Once on the input σX . The output denoted by eX ∈ FN2 represents an
X-type correction.

• Once on the input σZ . The output denoted by eZ ∈ FN2 represents a Z-type
correction.
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Here, it is important to use a constant time decoder since the data qubits are
waiting while the decoder is running. If the amount of time for the decoder to run
was depending on N , there would be a non-constant number of wait locations
between the syndrome measurement and the gate P , leading to a failure with
high probability for large N . Hence, the small-set-flip decoder used here is the
constant time parallel version analyzed in Section 5.2.4.

3. The Pauli correction P is applied on the data block where:

P = P (eX , eZ) :=

 ∏
i∈supp(eX)

Xi

 ∏
i∈supp(eZ)

Zi

 .

All along this section, Xi (resp. Zi) is theX Pauli matrix (Z Pauli matrix) applied
on the ith qubit of the register.

b) Simulation of state preparation

During the simulation of a state preparation location, the goal is to prepare the state |ψ〉
defined to be the logical |0〉⊗K encoded in the quantum expander code. There exists a
circuit D which creates |ψ〉 using m = Θ(N) qubits and |D| = O(N2) locations (D is
not necessarily fault-tolerant) [43]. Let δ = 1/T 2 = 1/poly(n), we apply Theorem 6.4
to D and the resulting circuit D′ is used to perform the state preparation in C′. The
number of qubits in D′ is:

m′ = m polylog
(
|D|
δ

)
= m polylog

(
poly(m) poly(n)

)
= m polylog(n)

= Θ
(
N polylog(n)

)
.

Hence, since N = Θ(
√
n), the number of extra qubits needed here is m′ = o(n).

c) Simulation of measurement

Figure 6.4: circuit for measurement.

To simulate a measurement, we use the circuit of Figure 6.4:

1. Measure the physical qubits on the Z-basis. The output is z ∈ FN2 where for
i ∈ J1;NK, the bit zi is the measurement result for the Pauli operator Zi.
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2. The classical processing step computes a bit-string zL ∈ FK2 where for k ∈
J1;KK:

– The bit zL
k represents the output of a noiseless measurement of the logical

Pauli operator ZL
k .

We already have access to z ∈ FN2 , where for i ∈ J1;NK:

– The bit zi represents the output of a noisy measurement of the physical Pauli
operator Zi.

To compute zL from z, we will define as an intermediate step the bit-string
z′ ∈ FN2 such that for i ∈ J1;NK:

– The bit z′i represents the output of a noiseless measurement of the physical
Pauli operator Zi.

On the one hand, since ZL
k is equal to a product of Zi, the bit zL

k is a sum of
z′i. On the other hand, z is a noisy version of z′, thus the small-set-flip decoder
corrects z to z′ with high probability.

Formally, there are three steps to compute zL:

2.1 Let g1, . . . , gMX
be the Z-type generators of the quantum expander code.

We compute the syndrome σ ∈ FMX
2 where for all j ∈ J1;MXK:

σj :=
⊕

i∈supp(gj)

zi.

2.2 We run the small-set-flip algorithm on input σ and denote by Ê ∈ FN2 the
decoder output. The bit-string z′ is defined by:

z′ := z ⊕ Ê.

In order to get the right value for z′, we need to correct entirely the error on
z. In addition, the syndrome σ has not been measured with noisy gates, thus
the bits of σ are not subjected to noise. Hence, the small-set-flip algorithm
used here is the logarithmic time decoder described in Section 5.2.5 and
analyzed in Corollary 5.37.

2.3 We compute zL ∈ FK2 , where for all k ∈ J1;KK:

zL
k :=

⊕
i∈supp(ZL

k )

z′i.

As a conclusion, the bit-string zL has been computed and the time complexity of
the overall procedure is logarithmic in N . Pending the procedure completion, the other
active wires in the circuit C′ are corrected with the constant time small-set-flip algorithm.
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Figure 6.5: gate teleportation circuit. R1, R2 and R3 are the name of three quantum registers.
The Pauli gate P depends on the value of xL and zL.

d) Simulation of gate

When the location in C is a gate location, the goal of the simulation cycle is to apply the
corresponding logical gate in C′.

To apply a logical gate U in C′, we use the teleportation circuit presented in Fig-
ure 6.5. At the beginning, the register R1 contains the data qubits and registers R2 and
R3 contain an ancilla state |ΨU 〉 defined by:

|ΨU 〉 :=
(
1R2 ⊗ UR3

)
E⊗2

[(
|00〉R2,R3

+ |11〉R2,R3

)⊗K]
,

where E is the encoding map associated to the quantum expander code. In other words,
the state |ΨU 〉 matches the following description:

– K EPR pairs are shared between R2 and R3.

– R2 and R3 are both encoded in the quantum expander code.

– The unitary U is applied on R3.

There exists a circuit D which creates |ΨU 〉 using m = Θ(N) qubits and |D| =
O(N2) locations (D is not necessarily fault-tolerant). In C′, the state |ΨU 〉 is prepared
with the fault-tolerant circuit D′ we get when we apply Theorem 6.4 to D with δ =
1/T 2 = 1/poly(n). The number of qubits in D′ is:

m′ = m polylog
(
|D|
δ

)
= m polylog

(
poly(m) poly(n)

)
= m polylog(n)

= Θ
(
N polylog(n)

)
.

Hence, since N = Θ(
√
n), the number of extra qubits needed here is m′ = o(n).

Once the ancilla state |ΨU 〉 has been created, the circuit of Figure 6.5 is done in the
following way:

1. Perform a physical Bell measurement on registers R1 and R2, the outputs are
denoted x, z ∈ FN2 . In more details, for i ∈ J1;NK, xi is the bit we get when the
Pauli operator Xi,R1 ⊗Xi,R2 is measured and zi is the bit we get when the Pauli
operator Zi,R1 ⊗ Zi,R2 is measured.
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2. The classical processing step computes a bit-string xL ∈ FK2 using x ∈ FN2 and a
bit-string zL ∈ FK2 using z ∈ FN2 . Similarly to the procedure used for simulating
a measurement, we define x′ ∈ FN2 and z′ ∈ FN2 such that for all i ∈ J1;NK and
k ∈ J1;KK:

– The bit xi is the output of a noisy measurement of Xi,R1 ⊗Xi,R2 .
– The bit x′i is the output of a noiseless measurement of Xi,R1 ⊗Xi,R2 .
– The bit xL

k is the output of a noiseless measurement of XL
k,R1
⊗XL

k,R2
.

– The bit zi is the output of a noisy measurement of Zi,R1 ⊗ Zi,R2 .
– The bit z′i is the output of a noiseless measurement of Zi,R1 ⊗ Zi,R2 .
– The bit zL

k is the output of a noiseless measurement of ZL
k,R1
⊗ ZL

k,R2
.

As described in more details for the case of a measurement simulation, we correct
x (resp. z) using the logarithmic time small-set-flip algorithm of Section 5.2.5 to
get x′ (resp. z′). The bit-strings xL and zL are defined for all k ∈ J1;KK by:

xL
k :=

⊕
i∈supp(XL

k )

x′i, zL
k :=

⊕
i∈supp(ZL

k )

z′i.

Since we use the small-set-flip algorithm of Section 5.2.5, the time complexity of
the classical processing is logarithmic in N .

3. While the classical processing is running, the state in register R3 is continuously
corrected with the constant time small-set-flip decoder of Section 5.2.4.

4. Apply UPU† on register R3 where:

P = P (xL, zL) :=

 ∏
k∈supp(zL)

XL
k

 ∏
k∈supp(xL)

ZL
k

 .

When the gate U is a logical Clifford, the unitary UPU† is a logical Pauli which
can be applied transversally. More generally, when U is in the ith level of the
Clifford hierarchy, UPU† belongs to the (i− 1)th level of the Clifford hierarchy.

The procedure described above is called gate teleportation [47] and can be used to
apply a universal logical gate set on C′:

• A logical Pauli is applied in C′ with a circuit made of transversal Pauli gates.

• A logical Hadamard, a logical controlled-not or a logical S gate is applied with
the gate teleportation protocol. In that case, the gate U is a logical Clifford gate
and thus UPU† is a logical Pauli that we apply transversally. For a controlled-not
gate between two different code blocks, more registers are involved but a similar
procedure works.

• A logical T gate is also implemented with gate teleportation. In that case, the
unitary UPU† is a logical Clifford and is applied with a second gate teleportation
protocol.
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6.3.2 Behavior against local stochastic Pauli noise
In this section, we show that if the locations of the circuit C′ are subjected to a local
stochastic Pauli noise, then the classical output of C′ is the expected output with high
probability. When a circuit is run with Pauli errors applied on a set of faulty locations,
we will say that we have run a faulty realization of the circuit.

As we explain below, a faulty realization of C′ is equivalent to running C′ without
faulty locations but where Pauli errors are applied on the data qubits after the simulation
cycles, and where some measurement results are flipped before being used. Similarly, let
D1 be one of the circuits presented in Section 6.3 (Figure 6.3 or Figure 6.4 or Figure 6.5),
then applying Pauli errors at faulty locations is equivalent to flipping some classical bits
after the measurements, and to applying Pauli errors on the data qubits at the end of D1.
For instance, in the circuit of Figure 4.1 used to measure a Pauli operator, the Hadamard
gates and the controlled-P gate are invertible Clifford operations. Hence, a faulty
realization of this circuit is equivalent to the circuit presented in Figure 6.6. In addition,
as shown in Figure 6.7, an X or Y gate followed by a measurement is equivalent to
a measurement followed by a bit-flip, and a Z gate followed by a measurement is
equivalent to a measurement. By the same arguments:

– A faulty realization of the error correction circuit of Figure 6.3 is equivalent to
the circuit of Figure 6.8.

– A faulty realization of the measurement circuit of Figure 6.4 is equivalent to the
circuit of Figure 6.9.

– A faulty realization of the gate teleportation circuit of Figure 6.5 is equivalent to
the circuit of Figure 6.10.

Let D1 be one of the circuits presented in Section 6.3 (Figure 6.3 or Figure 6.4 or
Figure 6.5) and let D2 be the equivalent circuit defined above (Figure 6.8 or Figure 6.9 or
Figure 6.10). Using the previous points, running D1 with a local stochastic Pauli noise on
the locations is equivalent to run D2 where the boxes “Some bits are flipped” represent
a local stochastic noise on the classical bits and the boxes “Pauli gates” represent a
local stochastic Pauli noise on the data qubits. Let ploc be the parameter for the local
stochastic noise on the locations of D1, let pwire be the parameter for the local stochastic
noise on the data qubits and bits of D2, and let p4 := min(p1, p2, p3) where p1, p2 and
p3 are the thresholds for the quantum expander codes as defined in Theorem 5.30 and
Theorem 5.36. For this analysis to work, the inequality pwire < p4/3 is required, thus
we show below that pwire can be made as small as desired by lowering ploc.

An error on a data qubit q at the end of D2 is necessarily the consequence of an
error on a location which is above q in the circuit (i.e. a location which is linked to q
by wires). Let L be the set of locations in D1 and let V be the set of data qubits at the
end of D2. For a given set S ⊂ V , we denote by A(S) ⊆ L the set of locations which
are above at least one qubit of S. We have |A(S)| ≤ c1|S| where c1 is a constant and
each location is above at most c2 data qubits. Given a set of faulty locations F ⊆ L, the
corresponding set of faulty data qubits E ⊆ V satisfies:

E ⊆
{
q ∈ V : F ∩A(q) 6= ∅

}
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Thus for all S ⊆ V :

P
[
S ⊆ E

]
≤ P

[
∃R ⊆ A(S) : |R| ≥ |S|/c2, R ⊆ F

]
≤

∑
r≥|S|/c2

 ∑
R⊆A(S):|R|=r

P
[
R ⊆ F

]
≤

∑
r≥|S|/c2

(
|A(S)|
r

)
prloc

≤ 2c1|S|
∑

r≥|S|/c2

prloc

≤ K2c1|S|p
|S|/c2
loc .

For ploc sufficiently small, we have P[S ⊆ E] ≤ (p4/4)|S| and thus F is local
stochastic with parameter pwire < p4/4.

Let t ∈ J1;T K be a time step of the initial circuit C and let |ψt〉 be the state of the
circuit C′ after the tth error correction cycle under the hypothesis that the locations are
not faulty. We are going to build Pt a local stochastic noise on the qubits of |ψt〉 with
parameter p4/2 such that when the locations of C′ are subjected to a local stochastic
noise with parameter ploc, the state after the tth error correction cycle is Pt |ψt〉 with
high probability.

To analyze the error correction cycles described in Figure 6.3 and Figure 6.8, we
use Theorem 5.30 about the constant time small-set-flip algorithm. If ploc is sufficiently
small, then the error on the data qubits and the syndrome bits are local stochastic with
parameter sufficiently small to apply Theorem 5.30. In this theorem, c is chosen such
that pls < p4/4, then there is a small probability for this circuit to fail and otherwise
the data qubits at the end are subjected to a local stochastic noise with parameter p4/2.
Formally:

(1) Let |ψ〉 be a code state of the quantum expander code. We run the error correction
circuit D1 of Figure 6.3 with the following hypothesis:

– The input of the circuit is P1 |ψ〉 where P1 is a local stochastic Pauli noise
with parameter < p4.

– The locations of D1 are subjected to a local stochastic Pauli noise with
parameter ploc.

Then there exists P a local stochastic Pauli noise with parameter < p4/2 such
that:

P
[

The output of D1 is P |ψ〉
]
≥ 1− 1

eΘ(
√
N)
.

When circuit C′ simulates a measurement with Figure 6.4, the small-set-flip algo-
rithm with logarithmic time is used. If ploc is sufficiently small, the error on the bits
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after the transversal measurement are local stochastic with parameter sufficiently small
to apply Corollary 5.37. Hence the classical output of the circuit is the right one with
high probability:

(2) Let |ψ〉 be a code state of the quantum expander code. We run the measurement
circuit D1 of Figure 6.4 with the following hypothesis:

– The input of the circuit is P1 |ψ〉 where P1 is a local stochastic Pauli noise
with parameter < p4/2.

– The locations of D1 are subjected to a local stochastic Pauli noise with
parameter ploc.

Then:

P
[

D1 has the right output
]
≥ 1− 1

eΘ(
√
N)
.

Finally, when the gate teleportation protocol of Figure 6.5 is performed in C′, we
use Theorem 5.30 and Corollary 5.37 for the small-set-flip decoder:

(3) Let |ψ〉 be a code state of the quantum expander code and let U be a logical gate.
We apply U with the gate teleportation circuit D1 of Figure 6.5 with the following
hypothesis:

– The data qubits at the entrance of D1 are in the state P1 |ψ〉 where P1 is a
local stochastic Pauli noise with parameter < p4/2.

– The ancilla state is prepared in the state P2 |ΨU 〉 where P2 is a local stochas-
tic Pauli noise with parameter < p4/4.

– The locations of D1 are subjected to a local stochastic Pauli noise with
parameter ploc.

Then there exists P a local stochastic Pauli noise with parameter < p4 such that:

P
[

The output of D1 is PU |ψ〉
]
≥ 1− polylog(N)

eΘ(
√
N)

.

We are now ready to conclude. We run the entire circuit C′ with the following
hypothesis:

– The locations of D1 are subjected to a local stochastic Pauli noise with parameter
ploc.

– The ancilla qubits for gate teleportations are prepared in the state P1 |ΨU 〉 where
P1 is a local stochastic Pauli noise with parameter < p4/4.

– The state preparation cycles prepare the state P2 |ψ〉 where |ψ〉 is the logical zero
state and P2 is a local stochastic Pauli noise with parameter < p4.
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Let |ψt〉 be the state of the circuit C′ after the tth error correction cycle when there
is no faulty location. Using the properties (1), (2) and (3) above, we can perform an
induction on t to show the existence of a Pauli error Pt with local stochastic parameter
< p4/2 such that:

P
[
After the tth error correction cycle, the state is Pt |ψt〉

]
≥ 1− t poly(N)

eΘ(
√
N)

.

After the final measurement:

P
[
The output of C′ is right

]
≥ 1− T poly(N)

eΘ(
√
N)

= 1− o(1).

Figure 6.6: this circuit is equivalent to a faulty realization of Figure 4.1.

Figure 6.7: two equivalent circuits.

Figure 6.8: this circuit is equivalent to a faulty realization of Figure 6.3.
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Figure 6.9: this circuit is equivalent to a faulty realization of Figure 6.4.

Figure 6.10: this circuit is equivalent to a faulty realization of Figure 6.5.

6.3.3 Behavior against local stochastic noise
We are now ready to give a proof sketch for Theorem 6.5. As described in Section 6.3.1,
we use the fault-tolerant protocol with concatenated codes as a black-box for state
preparation (the goal is to prepare either a logical zero or an ancilla state for gate
teleportation). This protocol fails with probability at most 1/T 2 and is used at most T
times, thus the states are successfully prepared with probability 1−o(1). By Theorem 6.4,
when a state preparation does not fail, the noise on the prepared state is local stochastic
with parameter c ploc. In what follows, we assume that ploc is sufficient small to ensure
c ploc < p4/4. Hence, similarly to the hypotheses in Section 6.3.2, the qubits of the
prepared states are subjected to a local stochastic noise with parameter < p4/4.

We assume that the locations of the circuit C′ are subjected to a noise N with local
stochastic parameter ploc. Let L be the set of locations and let L be the power set of L,
then the support of the location error is a set F ∈ L. We say that F ∈ L is problematic
when we can make C′ fail by applying Pauli errors on the locations of F . Let L∗ ⊆ L
be the set of error supports which are not problematic. We define a Pauli noise P with
local stochastic parameter ploc in the following way:

– The set of faulty locations F is chosen with the same probability distribution as
N .

– If F /∈ L∗, then P applies the problematic Pauli error associated to F .

– If F ∈ L∗, then P applies an arbitrary Pauli on the faulty locations (for example
the identity).

The local stochastic Pauli noise P has parameter ploc. By Section 6.3.2, when the
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locations are subjected to P , the circuit C′ has the right output with probability at least
1− o(1) thus:

P
[
F ∈ L∗

]
≥ 1− o(1).

We purify the circuit C′ and use the noise N on the locations. If the error support
satisfies F ∈ L∗, then we can write the error applied by N as a sum of Pauli errors
whose support are included in F . By definition of L∗, each term of the sum is not
problematic for C′, thus the circuit C′ has the right output by linearity. As a conclusion,
when the circuit C′ is subjected to a local stochastic noise with parameter ploc, the
output is the right one with probability 1− o(1).



Chapter 7

Deferred proofs

The goal of this chapter is to compute the dimension of the classical product code that
we used in Section 4.2 to compute the dimension of hypergraph product codes. In
Section 7.1 we introduce the systematic form for classical codes and use it in Section 7.2
to compute the dimension of classical product codes.

7.1 Systematic form
In this section, we define the concept of systematic form which is a standard notion in
classical error correction and will be used for the analysis of the classical product code.
The terminology “systematic form” can be applied either to a code, to a generator matrix
or to a parity check matrix .

LetMa,b(F2) be the set of a × b binary matrices. A linear code is in systematic
form if there exists A ∈Mn−k,k(F2) such that the generator matrix G ∈Mn,k(F2) is
equal to the block matrix:

G =
(
1k

A

)
(7.1)

where 1k ∈Mk,k(F2) is the identity matrix. As illustrated in Figure 7.1, the first bits
of a codeword x = Gs are equal to the bits of s.

Figure 7.1: codeword of an [n, k] systematic code.

Thereby, the codeword associated to s is the concatenation of s (the logical bits) and
As (the parity bits).

157
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Furthermore, let H ∈ Mn−k,n(F2) be the following parity check matrix defined by
block:

H =
(
A 1n−k

)
. (7.2)

We have

HG = A⊕A = 0

thus span(G) ⊆ ker(H). Moreover, by the rank-nullity theorem dim(kerH) = k =
dim(span(G)) thus span(G) = ker(H) and the codes defined by H and G are equal.
A generator matrix which has the form of eq. (7.1) and a parity check matrix which has
the form of eq. (7.2) are said to be in systematic form.

The main property presented in this section is Proposition 7.1: up to permutation on
the bits, any error correcting code admits a parity check matrix in systematic form.

Proposition 7.1. Let H ∈Mm,n(F2) be a matrix with rank n− k then there exists an
invertible matrix Q ∈Mm,m(F2), a permutation matrix P ∈Mn,n(F2) and a matrix
A ∈Mn−k,k(F2) such that:

QHP =
(
A 1n−k

0m−n+k,n

)
.

Before giving the proof of Proposition 7.1, we remark that:

• If C is the code with parity check matrix H then the block matrix (A 1n−k) is a
parity check matrix for the code C′ = {P−1x : x ∈ C} where the bits have been
permuted.

• Similarly, for any generator matrix G ∈ Mn,k(F2), there exists an invertible
matrix Q ∈ Mk,k(F2), a permutation matrix P ∈ Mn,n(F2) and a matrix
A ∈Mn−k,k(F2) such that:

PGQ =
(
1k

A

)

and PGQ is a generator matrix for C′ = {P−1x : x ∈ C}.

Proof. First, we remark that kerH = kerQH holds for any invertible matrix Q ∈
Mm,m(F2), i.e. we can apply invertible operations on the rows of H without changing
the corresponding error correcting code. Moreover, in the statement of Proposition 7.1,
H is multiplied on the right by the permutation matrix P , meaning that we allow the
operation consisting in permuting the columns of H .
Indeed, we show that using three invertible operations on H , we can turn it into the form
promised in Proposition 7.1. The three operations are the following:

– Permuting the rows of the matrix.
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– Permuting the columns of the matrix.

– Replacing row number i by the sum of row number i and row number j 6= i.

Using these three operations, we perform a Gaussian elimination on the matrix H in
order to turn it into the desired form. First, up to a permutation on the columns of the
matrix, it is equivalent to show that H can be turned into the matrix:(

1n−k A

0m−n+k,n

)
.

The idea is to transform the columns of H one by one starting from the first one.
Formally, we show by induction on l ∈ J0;n − kK that using the three operations we
can turn H into the following form:

Hl =
(
1l Al

0m−l,l Bl

)

where Al ∈Ml,n−l(F2) and Bl ∈Mm−l,n−l(F2).
The initialization of the induction for l = 0 is done with B0 = H and the other matrices
being empty.
For the induction step, the rank of H and the rank of Hl are equal to n− k thus, while
l < n− k, there is a 1 somewhere in the matrix Bl. We put this 1 in the first entry of
Bl using a permutation on the rows and the columns. In order to get the matrix Hl+1,
we keep the 1 at position (l + 1, l + 1) and delete all the other 1 in column l + 1 by
replacing for each i 6= l + 1 the row i by the sum of row i and row l + 1.
Finally, when l = n − k, because the matrices H and Hl have rank n − k, we have
Bl = 0m−l,n−l and we get Proposition 7.1.

7.2 Definition of classical product code
In this section we define a class of codes obtained by taking the product of two codes.
Note that given two classical error correcting codes, two kinds of product appear in this
PhD thesis: “the product code” which is a classical code and the “hypergraph product
code” which is a quantum code. The product code construction is used to determine
the parameters of the hypergraph product codes. For more details about the classical
product code, see [35, 99].

Let C1 be an [n1, k1, d1] code and let C2 be an [n2, k2, d2] code then the product
code C1 ⊗ C2 is the code whose parity check matrix H is defined by:

H =
(
1n1 ⊗H2

H1 ⊗ 1n2

)
Note that the block-length of C1 ⊗ C2 is the number of columns of H and is equal to
n1n2. In the case of a product code, it is relevant to represent a set of n1n2 bits as a
binary matrix with n1 rows and n2 columns. With this representation in mind, a matrix
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c ∈Mn1,n2(F2) is a codeword of C1 ⊗ C2 if and only if each row of c is a codeword of
C2 and each column of c is a codeword of C1 (see Figure 7.2).

Figure 7.2: schematic representation of a product code.

Proposition 7.2. The dimension of C1 ⊗ C2 is equal to k1k2.

Proof. We reduce the general problem to the particular case where H1 and H2 are in
systematic form (see Section 7.1).

By Proposition 7.1, there exist two invertible matrices Q1 ∈ Mm1,m1(F2), Q2 ∈
Mm2,m2(F2), two permutation matrices P1 ∈ Mn1,n1(F2), P2 ∈ Mn2,n2(F2) and
two matrices A1 ∈Mn1−k1,k1(F2), A2 ∈Mn2−k2,k2(F2) such that:

Q1H1P1 = H ′1 :=
(
A1 1n1−k1

0m1−n1+k1,n1

)
and Q2H2P2 = H ′2 :=

(
A2 1n2−k2

0m2−n2+k2,n2

)
(7.3)

let H be the parity check matrix of C1 ⊗ C2, let C′1, C′2 be the codes with party checks
matrices H ′1, H ′2 and let H ′ be the parity check matrix of C′1 ⊗ C′2:

H =
(
1n1 ⊗H2

H1 ⊗ 1n2

)
H ′ =

(
1n1 ⊗H ′2
H ′1 ⊗ 1n2

)
then using the product of block matrices, we can check that H ′ = QHP where Q is an
invertible matrix and P is a permutation matrix defined as the block matrices:

Q =
(
P−1

1 ⊗Q2 0n1m2,m1n2

0m1n2,n1m2 Q1 ⊗ P−1
2

)
and P = P1 ⊗ P2.

In particular, we have:

dim(C′1) = dim(C1) = k1 because ker(H ′1) = P−1
1 kerH1,

dim(C′2) = dim(C2) = k2 because ker(H ′2) = P−1
2 kerH2,

dim(C1 ⊗ C2) = dim(C′1 ⊗ C′2) because ker(H ′) = P−1 kerH.
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Hence, we have reduced the problem to the case where H ′1 and H ′2 are in systematic
form and it remains to show dim(C′1 ⊗ C′2) = k1k2.
The matrix H ′ is not necessarily in systematic form but we can anyway show that if we
fix a set of k1k2 logical bits as shown in Figure 7.3 then there is a unique possibility for
the parity bits. Formally, for any s ∈ Mk1,k2(F2), there exists a unique x ∈ C′1 ⊗ C′2
such that s is the upper left part of x.

Figure 7.3: product code when the parity check matrices are in systematic form.

Using eq. (7.3), for any x1 ∈ Fn1
2 and x2 ∈ Fn2

2 , we have:

x1 ∈ C′1 ⇔ ∀i ∈ J1;n1 − k1K : x1(i+ k1) =
k1∑
l=1

H ′1(i, l)x1(l),

x2 ∈ C′2 ⇔ ∀j ∈ J1;n2 − k2K : x2(j + k2) =
k2∑
l=1

H ′2(j, l)x2(l).

If we fix some s ∈ Mk1,k2(F2) and try to find x ∈ C′1 ⊗ C′2 whose upper left part is
equal to s then the only possible choice is to use the following formulas:{

∀i ∈ J1; k1K
∀j ∈ J1; k2K

x(i, j) = s(i, j),{
∀i ∈ J1; k1 − n1K
∀j ∈ J1; k2K

x(i+ k1, j) =
k1∑
l=1

H ′1(i, l)s(l, j),{
∀i ∈ J1; k1K
∀j ∈ J1;n2 − k2K

x(i, j + k2) =
k2∑
l=1

H ′2(j, l)s(i, l),{
∀i ∈ J1;n1 − k1K
∀j ∈ J1;n2 − k2K

x(i+ k1, j + k2) =
k1∑
l1=1

k2∑
l2=1

H ′1(i, l1)H ′2(j, l2)s(l1, l2).

Informally, the parity bits of the lower left part are uniquely determined by the column
conditions and the parity bits of the upper right part are uniquely determined by the row
conditions. Moreover, the parity bits of the lower right part can be determined either
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using the row condition on the parity bits of the lower left part or by using the column
condition on the parity bits of the upper right part. Note that both methods give the same
result.
The conclusion is that x is uniquely determined by s and thus C′1 ⊗ C′2 has dimension
k1k2.

Remark 7.3. LetG1 andG2 be the generator matrices of C1 and C2 thenH(G1⊗G2) =
0 and the equality between dimensions show that G1 ⊗ G2 is a generator matrix for
C1 ⊗ C2. Moreover, as shown in [99], the minimal distance of C1 ⊗ C2 is equal to d1d2
but we do not use this fact in this manuscript.



Chapter 8

Conclusion

In this work, we showed that quantum expander codes and the small-set-flip decoder can
be used in the construction of ref. [46] to achieve fault-tolerant quantum computation
with constant space overhead. The small-set-flip decoder can be parallelized to run in
constant time and, as a consequence, each location of the resulting fault-tolerant circuit
needs to run a constant depth classical circuit. By comparison, the time complexity for
decoding other family of codes is not known to be constant leading to a fault-tolerant
circuit where each time step requires to run a classical circuit whose depth grows with
the number of qubits.

As a future work, it would be interesting to try to reduce the time overhead of the
construction presented in ref. [46]. In particular, the time overhead is large if the initial
circuit is parallel since it has to be turned into a sequential circuit for the construction to
work.
For quantum expander codes and other hypergraph product codes, it is crucial to find
decoders with better performance and lower time consumption; for example with de-
coders based on the small-set-flip algorithm or the belief propagation decoder (see [85]).
Furthermore, the simulations of ref. [49] require codes with large block-length and it
would be interesting to study how the modified hypergraph product codes of ref. [65, 78]
perform in practice. Finally, numerical studies for the parallel small-set-flip decoder and
for the case of noisy syndrome measurements would be insightful as well.

163
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