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Why Poincare Symmetry Is a Good Approximate Symmetry in
Particle Theory

Felix M. Lev

Independent Researcher, San Diego, CA 92101, USA; felixlev314@gmail.com

Abstract: As shown by Dyson in his famous paper “Missed Opportunities”, it follows, even

from purely mathematical considerations, that quantum Poincare symmetry is a special

degenerate case of quantum de Sitter symmetries. Thus, the usual explanation of why,

in particle physics, Poincare symmetry works with a very high accuracy is as follows. A

theory in de Sitter space becomes a theory in Minkowski space when the radius of de

Sitter space is very high. However, the answer to this question must be given only in

terms of quantum concepts, while de Sitter and Minkowski spaces are purely classical

concepts. Quantum Poincare symmetry is a good approximate symmetry if the eigenvalues

of the representation operators M4µ of the anti-de Sitter algebra are much greater than the

eigenvalues of the operators Mµν (µ, ν = 0, 1, 2, 3). We explicitly show that this is the case

in the Flato–Fronsdal approach, where elementary particles in standard theory are bound

states of two Dirac singletons.

Keywords: irreducible representations; de Sitter supersymmetry; Dirac supersingletons;

accuracy of Poincare symmetry

1. Problem Statement

In quantum field theory (QFT), relativistic (Poincare) symmetry is explained as follows.

The Poincare group is the group of motions of Minkowski space, and the quantum system

under consideration (which, in the general case, can consist of an arbitrary number of inter-

acting elementary particles) should be described by unitary representations of this group.

This implies (see, e.g., Section 1.3 in the textbook [1]) that the representation generators

should commute according to the commutation relations of the Poincare Lie algebra:

[Pµ, Pν] = 0, [Pµ, Mνρ] = −i(ηµρPν − ηµνPρ),

[Mµν, Mρσ] = −i(ηµρ Mνσ + ηνσ Mµρ − ηµσ Mνρ − ηνρ Mµσ) (1)

where µ, ν = 0, 1, 2, 3, ηµν = 0 if µ ̸= ν, η00 = −η11 = −η22 = −η33 = 1, and Pµ are the

four-momentum operators and Mµν are the Lorentz angular momentum operators. This

is in the spirit of the Erlangen Program proposed by Felix Klein in 1872. However, the

description (1) does not involve the Poincare group and Minkowski space at all.

As noted in [2], in quantum theory, background space is only a mathematical concept

because each physical quantity should be described by an operator, while there are no

operators for the coordinates of background space. This space is not used in relativistic

quantum theory for describing irreducible representations (IRs) for elementary particles.

According to the Heisenberg S-matrix program, transformations from the Poincare groups

are not used, because it is possible to describe only transitions of states from the infinite

past when t → −∞ to the distant future when t → +∞. Here, systems should be described
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only by observable physical quantities—momenta and angular momenta. So, symmetry at

the quantum level should be defined by commutation relations of the symmetry algebra rather than

by a background space and its group of motions (see, e.g., [2] for more details). In particular,

Equation (1) should be treated as the definition of Poincare symmetry at the quantum level.

The following is noted by Dyson in his famous paper “Missed Opportunities” [3]:

• (a) Quantum Poincare theory is more general than Galilei theory: the latter can be

obtained from the former by contraction c → ∞.

• (b) De Sitter (dS) and anti-de Sitter (AdS) quantum theories are more general than

Poincare theories: the latter can be obtained from the former by contraction R → ∞,

where R is a parameter with the dimension length.

• (c) At the same time, being semisimple, dS and AdS groups cannot be obtained from

more symmetric ones by contraction.

As noted above, quantum symmetry should be defined in terms of Lie algebras, and

in [2], the statements (a)–(c) have been reformulated in such terms. In addition, quantum

theory is more general than classical theory because the classical symmetry algebra can

be obtained from the quantum algebra by contraction h̄ → 0. As a consequence, the most

general description in terms of ten-dimensional Lie algebras should be defined in terms of

quantum dS or AdS symmetry.

The definition of these symmetries is described extensively in the literature (see,

e.g., [2,4]); the angular momentum operators Mab (a, b = 0, 1, 2, 3, 4, Mab = −Mba) should

satisfy the commutation relations:

[Mab, Mcd] = −i(ηac Mbd + ηbd Mac − ηad Mbc − ηbc Mad) (2)

Here, the tensor ηab is such that ηab = ηab, ηab = 0 if a ̸= b, η00 = −η11 = −η22 = −η33 = 1,

η44 = ∓1 for the dS and AdS symmetries, respectively, and this tensor is used to raise and

lower the indices of the operators Mab. Equation (2) demonstrates that quantum dS and

AdS theories do not involve the dimensional parameters (c, h̄, R), and this is a consequence

of the fact that (kg, m, s) are meaningful only at the macroscopic level. These expressions

define dS and AdS symmetries at the quantum level and they do not involve dS and AdS groups

and spaces [2].

The contraction from dS or AdS symmetry to Poincare symmetry is defined as follows:

if the momentum operators Pµ are defined as Pµ = M4µ/R (µ = 0, 1, 2, 3), and when R → ∞

M4µ → ∞ but the quantities Pµ are finite, then Equation (2) becomes Equation (1). As

a consequence, as shown in Section 1.3 of [2], dS and AdS symmetries are more general

(fundamental) than Poincare symmetry. Note that R has nothing to do with the radius of

dS or AdS spaces.

In the literature, this issue is discussed with numerous examples, but, as shown in

Section 1.3 of [2], with any desired accuracy, any result of Poincare symmetry can be

reproduced in dS or AdS symmetries with some choice of R, but when the limit R → ∞

has already been taken, Poincare symmetry cannot reproduce those results of dS and AdS

symmetries where it is important that R is finite and not infinitely large.

There is an analogy here with the fact that, since Galilei algebra can be obtained from

Poincare algebra by contraction, Poincare symmetry is more general (fundamental) than

Galilei symmetry. Namely, it can be shown [2] that any result of Galilei symmetry can be

reproduced in Poincare symmetry with some choice of c, but when the limit c → ∞ has

already been taken, Galilei symmetry cannot reproduce those results of Poincare symmetry

where it is important that c is finite and not infinitely large.

At the classical (non-quantum) level, the transition from dS or AdS symmetry to

Poincare symmetry is explained as follows. When the radius of dS or AdS space becomes
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infinitely large, the angular momentum M of a particle moving in this space also becomes

infinitely large. When dS or AdS space transforms into flat Minkowski space, the motion of

a particle in such space must be described by the momentum p = M/R, which is finite in

this limit.

One can raise the question of why Poincare symmetry works with great accuracy in

particle physics. At the classical level, the explanation is that we live in dS or AdS space

whose radius is very large. The cosmological data show that this is indeed the case, because

at the present stage of the universe, this radius is in the order of 1026 m [5]. However,

as noted above, the concept of background space is purely macroscopic and should not be

used in particle theory. Therefore, the question arises as to whether the answer can be given

within the framework of purely quantum theory, without involving classical concepts.

However, there is no such explanation in the literature at a purely quantum level.

As follows from the above definition of contraction from dS or AdS algebra to Poincare

algebra, Poincare symmetry works with a high accuracy, provided that such states play

a major role in which the eigenvalues of the operators M4µ are much greater than the

eigenvalues of the operators Mµν (µ, ν = 0,1,2,3). In this paper, we propose a scenario that

describes such a situation.

This paper is organized as follows. In Section 2, we explain why supersymmetric

AdS symmetry is more general (fundamental) than standard AdS symmetry. In Section 3,

we describe how the CPT transformation works at the quantum level. Then, in Section 4,

it is explicitly shown that there exist scenarios when Poincare symmetry works with a

high accuracy.

2. Supersymmetry

Since dS and AdS symmetries are more general than Poincare symmetry (see the

preceding section), it is natural to consider supersymmetric generalizations of dS and

AdS symmetries. Such generalizations exist in the AdS case but do not exist in the dS

one. As shown in [5], in standard quantum theory, dS symmetry is more general than

AdS symmetry, and this may be a reason why supersymmetry has not been discovered

yet. However, standard quantum theory is a special degenerate case of quantum theory

over a finite ring of characteristic p (FQT) in a formal limit p → ∞ [2], and in FQT, dS

and AdS symmetries are equivalent. For this reason, in what follows, we will consider

supersymmetric generalizations of AdS symmetry.

By analogy with representations of the Poincare superalgebra, representations of

the osp(1,4) superalgebra also are described by 14 operators: ten operators of the so(2,3)

algebra commute with each other as in Equation (2), anticommutators of the four fermionic

operators are linear combinations of the so(2,3) operators, and commutators of the fermionic

operators with the so(2,3) operators are linear combinations of the former. However,

a fundamental fact of the os(1,4) supersymmetry is that the osp(1,4) superalgebra can be

described exclusively in terms of the fermionic operators because the anticommutators of

four operators form ten independent linear combinations. Therefore, ten bosonic operators

can be expressed in terms of fermionic ones. This implies that (by analogy with the

treatment of the Dirac equation as a square root from the Klein–Gordon equation) the

osp(1,4) symmetry is an implementation of the idea that supersymmetry is the extraction

of the square root from the usual symmetry .

The fermionic operators (d′1, d′2, d′′1 , d′′2 ) of the osp(1,4) superalgebra satisfy the fol-

lowing relations. If (A, B, C) are any fermionic operators, [. . . , . . . ] is used to denote a

commutator and {. . . , . . . } to denote an anticommutator; then,

[A, {B, C}] = F(A, B)C + F(A, C)B (3)
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where the form F(A, B) is skew symmetric, F(d′j, d′′j ) = 1 (j = 1, 2) and the other indepen-

dent values of F(A, B) are equal to zero.

As shown in [2,6], the operators Mab in Equation (2) can be expressed through bilinear

combinations of the fermionic operators:

h1 = {d′1, d′′1 }, h2 = {d′2, d′′2 }, M04 = h1 + h2, M12 = Lz = h1 − h2

L+ = {d′2, d′′1 }, L− = {d′1, d′′2 }, M23 = Lx = L+ + L−

M31 = Ly = −i(L+ − L−), M14 = (d′′2 )
2 + (d′2)

2 − (d′′1 )
2 − (d′1)

2

M24 = i[(d′′1 )
2 + (d′′2 )

2 − (d′1)
2 − (d′2)

2]

M34 = {d′1, d′2}+ {d′′1 , d′′2 }, M30 = −i[{d′′1 , d′′2 } − {d′1, d′2}]

M10 = i[(d′′1 )
2 − (d′1)

2 − (d′′2 )
2 + (d′2)

2]

M20 = (d′′1 )
2 + (d′′2 )

2 + (d′1)
2 + (d′2)

2 (4)

where L = (Lx, Ly, Lz) is the standard operator of three-dimensional rotations.

To find the IRs, we require the existence of the vector e0 such that

d′je0 = d′2d′′1 e0 = 0, d′jd
′′
j e0 = qje0 (j = 1, 2) (5)

These conditions show that the Cartan subalgebra operators are {d′j, d′′j } (j = 1, 2).

The full representation space can be obtained by successively acting using the operators

d′j, d′′j on e0 and taking all possible linear combinations of such vectors. The theory of IRs

of the osp(1,4) algebra was developed by Heidenreich [6], and in [2], this theory has been

generalized to the case of FQT.

3. CPT Transformation in osp(1,4) Invariant Theory

In Poincare invariant particle theory, the CPT transformation is considered the most

general discrete spacetime transformation. Based on what was said in Section 1, at the

quantum level, this transformation should be considered not from the point of view of

Minkowski space, but at the operator level. We use θ to denote the operator corresponding

to the quantum CPT transformation. As Wigner noted [7], since the sign of energy must

remain positive under the θ transformation, the operator θ must be not unitary, but an-

tiunitary, that is, it can be represented as θ = βK, where β is a unitary operator, and K is

the complex conjugation operator. As shown by Schwinger [8], the problem of the sign

of energy can also be solved if, instead of the antiunitary transformation, the transpose

operation is used. In this paper, we use Wigner’s approach.

As shown in [7] (see also [1]), the operator θ transforms the operators in Equation (1)

as follows:

θPµθ−1 = Pµ, θMµνθ−1 = −Mµν (6)

The question arises of how to generalize these relationships to the case of dS and AdS theo-

ries, and, as noted in Section 1, this generalization should not involve dS and AdS spaces.

The issue of CPT transformation in such theories has been considered by many authors.

However, to the best of our knowledge, these authors considered the CPT transformation

only from the point of view of transformations of fields on the dS and AdS spaces and did

not consider a direct generalization of Equation (6). Moreover, as noted in Section 2, the su-

peralgebra osp(1,4) is a generalization of the algebra so(2,3) to the case of supersymmetry,

and Equation (6) has not been generalized to representations of this superalgebra.

For this purpose, it is necessary to define how the operator θ transforms the operators

(d′1, d′2, d′′1 , d′′2 ). We define such a transformation as follows:
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θd′1θ−1 = −id′2, θd′2θ−1 = id′1, θd′′1 θ−1 = id′′2 , θd′′2 θ−1 = −id′′1 (7)

It is easy to see that the second of these relations follows from the first, and the fourth

follows from the third, because the operator θ is antiunitary.

Now, based on Equations (4) and (7), we conclude that

θM4µθ−1 = M4µ, θMµνθ−1 = −Mµν, µ, ν = 0, 1, 2, 3 (8)

and this is a generalization of Equation (6) to the case of representations of the algebra

so(2,3) because, as noted in Section 1, when contracting representations of the algebra AdS

into representations of the Poincare algebra, the operators Mµν are not affected, and the

operators M4µ go into Pµ. This result is also natural from the observation that, as is easy to

see, Equation (2) is invariant under substitutions

M4µ → M4µ, Mµν → −Mµν, i → −i

That these substitutions involve i → −i follows from the fact that the operator θ is antiunitary.

4. Why Poincare Symmetry in Particle Theory Works with High Accuracy

As shown in the seminal paper by Flato and Fronsdal [9] (see also [10]), each massless

IR in standard AdS theory can be constructed from the tensor product of two singleton

IRs discovered by Dirac in his famous paper [11] titled “A Remarkable Representation of

the 3 + 2 de Sitter group”. In view of this result, various authors have argued that only

Dirac singletons can be true elementary particles. For the first time, this idea was discussed

in [12], and in [2,13–18], it was discussed from the point of view of quantum theory over

finite mathematics, AdS/CFT correspondence and supergravity. In this paper, we will

present only one of these arguments.

If m is the mass of a particle in relativistic quantum theory and µ is the mass of this

particle in AdS quantum theory, then, as follows from the definition of contraction from the

AdS algebra to the Poincare algebra, µ = mR. As explained in [5], R has nothing to do with

the radius of classical AdS space, R is fundamental to the same extent as c and h̄, and the

question of why the value of R is as it is does not arise. As already noted, at the present

stage of the universe, R is in the order of 1026 m. Therefore, even for elementary particles,

the AdS masses are very large. For example, the AdS mass of the electron is in the order of

1039, and this might be an indication that the electron is not a true elementary particle.

As noted in the literature, in standard theory, there are four types of singletons: Di,

Rac and their antiparticles. In the supersymmetric theory, Di and Rac are combined into

a supersingleton, and therefore, in this theory, there are only two types of singletons: the

supersingleton and its antiparticle. However, as shown in [2], in FQT, a particle and its

antiparticle are combined into one object, and therefore, in FQT, only the supersingle-

ton remains.

The IR describing the supersingleton is constructed as follows: in Equation (5), q1

and q2 are chosen to be equal q0 = 1/2 in standard theory over complex numbers and

q0 = (p + 1)/2 in FQT, where p is the characteristic of the ring and, in the latter case, p

is odd.

As shown in [2], the operators d′′1 and d′′2 commute in the space of the supersingleton

IR. The basis of this IR can be chosen to be e(j, k) = (d′′1 )
j(d′′2 )

ke0, where j, k = 0, 1, . . . ∞ in

standard theory and j, k = 0, 1, . . . p − 1 in FQT. Then, it can be shown [2] that

d′1e(j, k) =
1

2
je(j − 1, k), d′2e(j, k) =

1

2
ke(j, k − 1) (9)
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in standard theory, and 1/2 should be replaced by (p + 1)/2 in FQT.

Now, we can consider the problem posed in Section 1: why, in particle theory, are the

eigenvalues of the operators M4µ much greater than the eigenvalues of the operators Mµν

(µ, ν = 0,1,2,3)? As noted in Section 1, this problem must be solved exclusively within the

framework of quantum theory, without involving such classical concepts as Minkowski, dS

or AdS spaces.

We consider the case where a particle that is treated as elementary in the standard

theory is described by the tensor product of two singletons. As explained in [2], in standard

theory, it is believed that such singletons do not interact with each other, but in FQT, they

actually interact. The representation operators for the two-singleton system are the sums of

the corresponding single-singleton operators: Mab = M
(1)
ab + M

(2)
ab . This means that if Ψ1 is

the state of supersingleton 1, and Ψ2 is the state of supersingleton 2, then the operator Mab

acts on the tensor product of these supersingletons as follows:

Mab(Ψ1 × Ψ2) = (M
(1)
ab Ψ1 × Ψ2) + (Ψ1 × M

(2)
ab Ψ2) (10)

Let us first consider the case of neutral particles, which are considered elementary in

standard theory. They can be treated as singleton–antisingleton bound states. Let singleton

1 be considered a particle for which the AdS algebra representations are described by the

operators (2). The question arises as to what representations of the AdS algebra should

describe singleton 2, which is interpreted as the antiparticle for singleton 1. In standard

theory, the transition particle→antiparticle can be made in several ways, for example,

by transformations C, CP and CPT. Since C and CP symmetries are not exact symmetries

of nature, there are known cases when the operators C and CP, acting on physical states,

give states that do not exist in nature. However, since CPT symmetry is considered exact,

the CPT transformation applied to a state will necessarily give another state that exists in

nature. As noted in Section 3, at the quantum level, the CPT transformation is described by

the operator θ, which converts the representation operators according to Equation (8).

Therefore, it is natural to assume that M
(2)
ab = θM

(1)
ab θ−1. Then, if Ψ2 = θΨ1 and for

some value of µ, M
(1)
4µ Ψ1 = λ1Ψ1, then, as follows from Equation (8), M

(2)
4µ Ψ2 = λ1Ψ2

because λ1 is real. Therefore, as follows from Equation (10),

M4µ(Ψ1 × Ψ2) = 2λ1(Ψ1 × Ψ2) (11)

At the same time, if for some values of µ and ν, M
(1)
µν Ψ1 = λ2Ψ1, then, as follows from

Equation (8), M
(2)
µν Ψ2 = −λ2Ψ2, and therefore, as follows from Equation (10),

Mµν(Ψ1 × Ψ2) = 0 (12)

Now, we have a natural explanation of the fact that, for a system consisting of a super-

singleton and an antisupersingleton in a bound state, the eigenvalues of the operators M4µ

are much greater than the eigenvalues of the operators Mµν: as follows from Equations (8),

(11) and (12), the eigenvalues of operators M4µ for individual supersingletons are included

in the two-particle operators M4µ with the same signs, while the eigenvalues of the opera-

tors Mµν are included in the two-particle operators M4µ with different ones. Therefore, we

have a natural explanation of the fact that for a particle consisting of a supersingleton and

an antisupersingleton, Poincare symmetry works with high accuracy.

Let us now consider the case where supersingletons entering a bound state are not

antiparticles for each other. Then, the IR of the AdS algebra for each supersingleton in a

bound state is described by the operators satisfying the relations (2), and there is no need

to use the operator θ. Even when we work in FQT and consider states of supersingletons in
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which the quantum numbers j, k are much less than p, with great accuracy, we can apply

standard mathematics. We assume that, although the numbers j, k can be very large, they

are still much smaller than p. Therefore, in what follows, we consider Dirac supersingletons

only within the framework of standard mathematics.

We now treat (d′1, d′2, d′′1 , d′′2 ) as operators in the Hilbert space related by Hermitian

conjugation as (d′1)
∗ = d′′1 and (d′2)

∗ = d′′2 . Then, as follows from Equation (9), the norm

squared of e(j, k) equals

||e(j, k)||2 =
j!k!

2j+k
(13)

and the normalized basis vectors can be defined as

ẽ(j, k) = (
2j+k

j!k!
)1/2e(j, k) (14)

In particle scattering experiments, the four-momenta, angular-momenta, and spatial

coordinates of the initial and final particles are known with great accuracy. Therefore,

for each of these quantities, quantum mechanical uncertainties are much less than the mean

values. As shown in [2], for free particles, each operator Mab can be expressed in terms of

the four-momenta, angular-momenta, and position operators. Therefore, for each operator

Mab, the quantum mechanical uncertainties are also much less than the mean values. In the

literature on quantum mechanics (see, e.g., [19]), this situation is characterized such that

“The classical limit or correspondence limit is the ability of a physical theory to approximate

or “recover” classical mechanics when considered over special values of its parameters”.

For the motion of a particle, this means that its de Broglie wavelength changes little over

distances in the order of the size of this particle. In [20], this situation is characterized as a

condition for the applicability of semiclassical approximation. Therefore, free particles in

scattering experiments can be described with great accuracy in semiclassical approximation.

Let us now discuss the following question. Based on standard concepts, one might

think that singletons forming a particle, which is considered elementary in standard theory,

have spatial coordinates close to each other because the sizes of elementary particles are

considered small. As noted in Section 1, at the quantum level, one can talk about physical

quantities only from the point of view of operators describing these quantities. Therefore

the problem remains as to how to interpret the spatial coordinates of supersingletons that

are not observed in free states.

The same problem can be posed for baryons and mesons consisting of quarks, which

do not exist in free space, but in the literature, position operators for such quarks are not

discussed. The concept of spacial coordinates originates from macroscopic physics, and it

is not clear whether this concept still has a physical meaning for objects which do not exist

in free states.

However, the following can be noted. In scattering experiments, the coordinates of

initial and final particles are large because they are of the same order of magnitude as the

coordinates of macroscopic bodies. With good accuracy, we can assume that the coordinates

of singletons or quarks inside a bound state are approximately the same as the coordinates

of the entire bound state as a whole. The question is whether the relative coordinates of

singletons or quarks forming a bound state have physical meaning. As already noted,

the concept of spatial coordinates arose from macroscopic physics, and therefore, it is not

clear what physical meaning such small quantities as relative coordinates have. However,

if we believe that the bound state consists of free singletons, then their momenta, angular

momenta, and coordinates are known with good accuracy. Consequently, the operators Mab

for each singleton are known with good accuracy, and these operators can be considered in

semiclassical approximation.



Symmetry 2025, 17, 338 8 of 10

In this approximation, the supersingleton wave functions

∑
jk

c(j, k)ẽ(j, k)

are such that the coefficients c(j, k) are not equal to zero only at j ∈ (j1, j2), k ∈ (k1, k2), where

j2 − j1 ≪ j1, k2 − k1 ≪ k1, and the values of |c(j, k)| at such j, k are approximately the same. We

define the angular dependence of the coefficients as c(j, k) = |c(j, k)|exp[i(j+ k)χ+ i(j− k)ϕ]. Then,

taking into account Equations (4), (9) and (14) and the definition of the basis elements and the

coefficients c(j, k), direct calculation shows that, in semiclassical approximation, when the operators

Mab can be replaced by their mean numerical values,

Lx = 2(jk)1/2cos(2ϕ), Ly = −2(jk)1/2sin(2ϕ), Lz = j − k

M10 = jsin(2ϕ + 2χ) + ksin(2ϕ − 2χ), M04 = j + k + 1

M20 = jcos(2ϕ + 2χ) + kcos(2ϕ − 2χ)

M30 = 2(jk)1/2sin(2χ), M34 = 2(jk)1/2cos(2χ)

M14 = kcos(2ϕ − 2χ)− jcos(2ϕ + 2χ)

M24 = jsin(2ϕ + 2χ)− ksin(2ϕ − 2χ) (15)

As can be seen from these expressions, for a single supersingleton, there is no scenario when

the eigenvalues of the operators M4µ are much greater than the eigenvalues of the operators

Mµν (µ, ν = 0,1,2,3). This is an argument for why singletons cannot exist in free states.

The eigenvalues of the operators in Equation (15) satisfy the property that when one

applies the transformations

j ↔ k, χ → −χ, ϕ → ϕ + π/2 (16)

then all the eigenvalues of the operators M4µ do not change, while all the eigenvalues of

the operators Mµν change their sign.

As noted above, for a system of two free supersingletons, 1 and 2, the AdS superalgebra

representation is the tensor product of the representations for supersingletons 1 and 2,

and the representation operators are the sums of the corresponding operators: Mab =

M
(1)
ab + M

(2)
ab .

If the eigenvalues of M
(1)
ab are described by Equation (15) with the parameters

(j, k, χ, ϕ) = (j1, k1, χ1, ϕ1), and the eigenvalues of the operators M
(2)
ab are described by

Equation (15) with the parameters (j, k, χ, ϕ) = (j2, k2, χ2, ϕ2), then, as follows from the

remarks after Equation (16), if

j2 ≈ k1, k2 ≈ j1, χ2 ≈ −χ1, ϕ2 ≈ ϕ1 + π/2 (17)

then the eigenvalues of the operators M
(1)
4µ and M

(2)
4µ will be approximately equal for each

µ, while for each µ, ν, the eigenvalues of the operators M
(1)
µν and M

(2)
µν will approximately

differ by sign. Therefore, for the operators describing the tensor product, the eigenvalues of

the operators M4µ will be much greater than the eigenvalues of the operators Mµν, and this

guarantees that Poincare symmetry will be a good approximate symmetry.

5. Conclusions

As shown by Dyson [3], it follows, even from purely mathematical considerations, that

Poincare quantum symmetry is a special degenerate case of de Sitter quantum symmetries.

As shown by Flato and Fronsdal [9] (see also [10]), in standard AdS theory, each massless
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IR can be constructed from the tensor product of two singleton IRs discovered by Dirac in

his seminal paper [11]. As explained in Section 2, AdS theory based on supersymmetry is

more general (fundamental) than standard AdS theory.

Therefore, the question arises as to why, in particle physics, Poincare symmetry works

with a very high accuracy. The usual answer to this question is that a theory in de Sitter

space becomes a theory in Minkowski space when the radius of de Sitter space becomes

very large. However, de Sitter and Minkowski spaces are purely classical concepts, while

in quantum theory (and especially in particle theory), the answer to this question must be

given only in terms of quantum concepts.

As noted in Section 1, at the quantum level, Poincare symmetry is a good approximate

symmetry if the eigenvalues of the operators M4µ are much greater than the eigenvalues

of the operators Mµν (µ, ν = 0, 1, 2, 3). As shown in Section 4, for a single supersingleton,

there is no scenario when these conditions are met, but explicit mathematical solutions with

such properties exist when the following are true:

• A particle which in the standard theory is considered a neutral elementary particle con-

sists of a supersingleton and its antiparticle, and the result follows from Equations (8),

(11) and (12).

• A particle which, in standard theory, is considered elementary consists of two su-

persingletons satisfying the semiclassical approximation, and their states satisfy the

conditions (17).

The title of the present Special Issue is “The Benefits That Physics Derives from the

Concept of Symmetry”, and the present paper shows that this concept helps solve the

mathematical problem of why Poincare symmetry works with high accuracy in particle

theory. There are many examples in physics where a certain problem was solved purely

mathematically, but the physical meaning of the solution was understood only after some

time. As noted in Section 4, in the given problem, it is not clear yet whether it is possible to

physically interpret the relative position operators for singletons and quarks that are not

observed in free states.
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