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Abstract

We show that, in the context of a specific simple model whose dy-
namical algebra is a Lie superalgebra, the thermodynamic self-consistent
fermionic diagonalization condition is equivalent to superaymmetry.

In a recent paper [1] it was shown how the standard dynamical Lie algebraic
approach to the solution of a many body problem can be extended to that
of a dynamical superalgebra in the case of a many fermion system.

Unlike the conventional Lie algebraic formalism, which depends on pair-
ing to reduce the system to one consisting entirely of bosonic operators,
the superalgebra formalism allows us to consider additionally interactions
involving odd numbers of fermions.

If we consider the general hamiltonian H of an interacting fermion sys-

tem,

1 ..
H= Eqazai + 5 z < if{V]kl > aga;azak, (1)
: sk
with
{ak,ap} =0; {ak,a};,} = O k15
k= k), —k=(-k,{), (2)
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then the standard Lie algebraic procedure is as follows [2]:
Li) The pairing process linearises H to the form

Hred = Z eia:fa,,; + Z (pairs of a’s), (3)

which is now an element of a Lie algebra L.
Lii) The spectrum is obtained by means of a generalized Bogolubov
transformation which is an automorphism ® : £ «— £ such that

@(H'ed) = alhl + ...+a1h¢, (4)
where the set {h1,...,A1;71,...,€n—1} is a Cartan basis for the n-dimensional
rank-{ Lie algebra L.

Liii) The Cartan elements {h,,..., hi} represent observables which are

conserved in the high temperature phase, but no longer conserved in some
low temperature phase.

Liv) The remaining basis elements {ey,...,e,_;} represent order oper-
ators whose expectations < e; > give the relevant order parameters.

Lv) Coherent states [3] are obtained by the action of a unitary operator
U which implements the automorphism &; e.g. the coherent state given by
| >= Ul w > corresponds to the cyclic vector |w > which is the vacuum
for the diagonalized H™*¢,

Lvi) Finally we impose self-consistency by demanding that the coeffi-
cients in the reduced hamiltonian obtained by linearisation of the original
hamiltonian are equal to the expectations of the relevant operators with
respect to equilibrium states induced by the reduced hamiltonian.

We can implement the linearization procedure Li) as follows. We con-
sider the identity

AB = (A- < A>)(B- < B>)
+<A>B+A<B>-<A><B>, (5)

where < o > is the expectation in some state. If the first term on the r.h.s.
can be considered “small” in some sense, this linearizes to

AB~<A>B+A<B>-<A><B>. (6)

This approximation is well-defined when A and B commute; for example,
in the mean field reduction of hamiltonian (1), where A = afa! andB =
@_ja;. In this case A and B are bosonic and their expectations are complex
humbers.

However we can also implement the linearisation procedure in the case
when A and B anticommute. Then AB = —BA requires that 94 =< 4 >
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and ¥ =< B > be anticommuting numbers which anticommute as well
with the operators 4 and B.

An algebraic treatment of the hamiltonian problem may be implemented
using the following steps, analogous to Li)...Lvi):

Si) The linearization procedure reduces H to:

Hred — Eie,;afa,' + Z:b;B; + /i F; (7)

where the B; are products of even numbers of fermion operators. The coeffi-
cients ¢; are real numbers, the b; are complex c-numbers whereas the f;s are
anticommuting numbers. H"*® is now an element of a Lie superalgebra A.
Thus A is an algebra over an extended field which contains anticommuting
numbers in a natural way.

Sii) The spectrum may be obtained by means of an automorphism
T of A ¥ =exp(iAd Z) where Z belongs to A, such that

{
exp(iAd Z)H™) = oih; (8)

f=1

where the set {hy,.. .,h,,egB), . .,eﬁB), egF), . ‘,eSF)} is a Cartan basis for
the Lie superalgebra.

Siii) The Cartan elements {hi,..., A} again represent conserved ob-
servables in the high temperature phase, which are not conserved in the low
temperature phase. These are bosonic in nature.

Siv) The remaining basis elements {e(lB), . .,e(rB),egp), .. .,eS,F)} rep-
resent order operators, bosonic and fermionic, whose expectations give the
relevant order parameters.

Sv) Supercoherent states are obtained by the action of the unitary
operator U which implements the automorphism ®. The existence of a
unitary implementation of the automorphism is a consequence of A being
an algebra over a field containing anti-commuting numbers; this enables one
to consider the superalgebraic adjoint action of Z as a Lie algebraic one.
Such supercoherent states generalise the supercoherent states of refs [4] and
[5] in the same way as the generalised coherent states of ref [3] generalise
the ordinary Glauber coherent states.

Svi) Self-consistency is imposed as in Liv) above. For example the
fermionic coefficients f; in Equation 7, which by the lineraization procedure
can be written as f; = L;c;; < F; >, will be determined by an equation of
the form:

fi = Teijtr{exp[-FH™(f:)|F;}/tr{eap|-BH™*"]} (9)

Eq (9) is a self-consistency condition because the coefficients f; are deter-
mined in terms of H,.q4 which itself depends on the f!s.
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We now illustrate the preceding steps Li) to Lvi) and Si) to Svi) by
introducing a generalisation of the BCS model which includes umklapp pro-
cesses.

First, from the interaction part of the hamiltonian (1) we retain only the
following terms

(1) Cooper-pairing terms (BCS): 1%, ; <i—i|V]j~j > alal ja_ja;.

(2) Umklapp terms (U): 1E4 < df|V|—j —i > ala_;a_;. These terms
are permitted in a crystal, where momentum need only be conserved modulo
a wave vector of the reciprocal lattice I (the prime indicates this restriction
on the summation).

Then using the linearization procedure for commuting operators, our

reduced hamiltonian is now of the form H! = L, H i(l), where
H,El} = ek(aiak + a.tka_k) + (Akaikaik + u;ca};a_k + h.c.). (10)
Ay = %zj <k—kV])j—j>< qa_; >; (11)
v, = %2; <kjlV]-j -k ><ala_; > (12)

The dynamical Lie algebra for this BCS-U model is @ (su(2) B su(2))x.
The spectrum (y/e + |Ag|? & |vx]) and the coherent states are obtained

by means of a generalized Bogolubov transformation, as outlined above.
We then extend the model by the inclusion of fermionic operators coming
from the following umklapp terms:

-t

1 .. . .

(3) 522”‘ <i-i|V]ki > alal ja;ak;(i+ k) € L,
1

(4) B <i-iVik-i> ala_;ar; (i— k) € L.

Note that the inclusion of momentum non-conserving terms in such models
is standard, as for example in charge density wave (CDW) models [6] where
terms such as a}cak.}_Q(Q = 2kp, kp denoting the Fermi wave vector) occur.
Just as in the CDW case this breaking of translational invariance gives rise
to an order parameter below the relevant Peierls transition temperature,
80 in our case the mean-field description of the new umklapp terms gives
rise to an order parameter, which, for processes (3) and (4) is described
by an anticommuting number. In those latter processes, we employ the
linearization procedure for anticommuting operators, so that for example
a}‘az‘k a0 &< afaiiai > ap + a{fa'.Jr a; < ap >

-1 1 1Y —q

where the fermion averages < - > are anticommuting  numbers.
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The reduced Hamiltonian obtained in this way has the form H(?) =
e H® with
H® = 58 ,6:B: + T30 f; F; € su(22) (13)

where we suppressed the k-dependence on the r.h.s. The operators B,,t =
1,...,6 are the generators of the (su(2) € su(2)) algebra introduced above:

1
19 = (1N = afal,, T = S (afar + ol ya_i - 1); (14)
T = (T8 = afey,

k 1
7(3 )= 5(“;2% —al,ak).

while the F;,j = 1,...,8 are the fermionic operators
{a,a s, af,a’ 4, e ack,n_kar, el ne, aln_i}, (15)

where n; = a;’cak. The set By, ..., Bs; Fo, F1,..., Fg includingFy = I) forms
a basis for the superalgebra su(2|2);. The coefficients b;, f; are elements of
the extension ring C[6,6,, .. .| generated by the theta- terms.
This model has been treated in ref [1], where the finite-temperature self-
consistency equations (which are independent of # were written down.
Within the context of the su(2|2) superalgebra, it was shown in ref [1]
that the hamiltonian H(1) is supersymmetric; that is we may define a charge
Q € f(Dy su(2]2)k) (f denoting the fermionic sector) such that

H(l) = {Qr Qf}: Q2 =0, [H(l),Q] =0 (16)
This is only possible when the coefficients in (10) satisfy the following con-
dition

el? = |0+ € - (17)

We may now treat H(1) (Eq 10) as an independently given hamiltonian by
means of a self-consistent mean-field Fermi reduction, using the lineariza-
tion scheme for anti-commuting operators on the interaction terms. This
produces the following hamiltonian

HEY = e(ne+n_p) + {&k(< al > al, +af <al, >)

+u(<al >ar+al <ag>)+he} (18)
Define

0 k) = B, < ap >+ < al >,

00k) =R, <a_p>+pr<al > (19)
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so that

Akg(_o)(k) + Vka(_?)(k)

< ap >=
w2 — | Axl?

(20)

(Of course we have similar equations for < a_j >, < a.‘t_,c > as well, and

write, for generic anti-commuting variables 8, (k) and 6_(k),

a(81(k)) = 01 (k)asr; al(84(k))
= al 8. (k) = [a(0(k))]f (21)

With this notation the hamiltonian HF becomes
HF = ex(nk + n_i) + a(60(k)) + a(6(k)) + h.c., (22)

which is an element of a solvable SLA A; C su(2|2) To diagonalize HY,
according to Sit) we consider the adjoint action exp(adiZ) of an element
ZeA,where A = @ Ak, Z = @y, Zk, and

Zr = a(04.(k)) + a(8-(k)) + h.c. (23)
The condition that exp(adi)(HF) = U(8)HFU~1(0) be free of non-diagonal
terms is

04(k) = Z0L(b) (24)

We now wish to set-up a self-consistant scheme as in Svi) above. We must
therefore evaluate the thermodynamic averages of the fermion operators in
the Gibbs ensemble determined by HF. We readily find that, for example,

tr{e=PH  o(0.)}
tr{e-PHT}

< a(0y) >p= =10.04 (25)

whereby
< agr >= —i0,(k). (26)

It is worth noticing that we obtain the same average by evaluating the
expectation of the operators a(f.) in the supercoherent state [7] | >=

U-1(0)|w >:

< Qa(0+]9 >=< w|U(f)a(b+)
U1(0)|w >=< wlezp(iadZ)(04)|lw > (27)
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thus, using eq.(24), < ax >= —agf)(k)ek. We thus obtain four linear equa-

tions homogeneous in HS?)(R:), 0(_0)(16), 5(:_))(1(;), ?)'(,?)(k), leading to the deter-
minantal condition

lvrl? = |O? + €, (28)

which is the same as eq. (17) for the hamiltonian H(1) to be supersymmetric.

The fact that the conditions for self-consistent fermionic diagonalization
of HF and the supersymmetricity of H(1) coincide is somewhat puzzling. It
is worth noting however that the common condition (17) is expressible solely
in terms of the of the Casimir invariants of the Lie subalgebra su(2) @ su(2)
of su(2|2).

This may indicate the possible generalization of the above result to more
physically realistic models, such as those indicated in ref [7].
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