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Abstract 

We show that, in the context of a specific simple model whose dy- 
namical algebra is a Lie superalgebra, the thermodynamic self-consistent 
fermionic diagonalization condition is equivalent to supersymmetry. 

In a recent paper [1] it was shown how the standard dynamical Lie algebraic 
approach to the solution of a many body problem can be extended to that 
of a dynamical superalgebra in the case of a many fermion system. 

Unlike the conventional Lie algebraic formalism, which depends on pair- 
ing to reduce the system to one consisting entirely of bosonic operators, 
the superalgebra formalism allows us to consider additionally interactions 

involving odd numbers of fermions. 
If we consider the general hamiltonian H of an interacting fermion sys- 

tem~ 

< iitvlkl > a!a~a,a~, (1) 

with 

{~,  ~k, } = 0; {~,  ~,} = ~k,k,; 
k = (k,~), -k =_ (-k,~),  
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(2) 
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then the standard Lie algebraic procedure is as follows [2]: 
Li) The pairing process linearises H to the form 

E"a!a' + (pairs of a's), (3) 

which is now an element of a Lie algebra L. 
Lii) The spectrum is obtained by means of a generalized Bogolubov 

transformation which is an automorphism ~ :/.: ~ - - / :  such that  

¢ ( H  ,ed) = c~lhl + . . .  + azhi, (4) 

where the set { h i , . . . ,  hi; r l , . . . ,  e,~_l} is a Cartan basis for the n-dimensional 
rank-/ Lie algebra L. 

Liii) The Cartan elements { h i , . . . ,  hi} represent observables which are 
conserved in the high temperature phase, but no longer conserved in some 
low temperature phase. 

Liv) The remaining basis elements {e l , . . . , e ,~- l}  represent order oper- 
ators whose expectations < ei > give the relevant order parameters. 

Lv) Coherent states [3] are obtained by the action of a unitary operator 
U which implements the automorphism ~; e.g. the coherent state given by 
I~ >= U-11w > corresponds to the cyclic vector Iw > which is the vacuum 
for the diagonalized H ~ed. 

Lvi) Finally we impose self-consistency by demanding that  the coeffi- 
cients in the reduced hamiltonian obtained by linearisation of the original 
hamiltonian are equal to the expectations of the relevant operators with 
respect to equilibrium states induced by the reduced hamiltonian. 

We can implement the linearization procedure Li)  as follows. We con- 
sider the identity 

A B = ( A -  < A > ) ( B -  < B >) 

+ < A > B + A < B > - < A > < B > ,  (5) 

where < • > is the expectation in some state. If the first term on the r.h.s. 
can be considered "small" in some sense, this linearizes to 

A B ~ < A > B + A < B > - < A > < B > .  (8) 

This approximation is well-defined when A and B commute; for example, 
in the mean field reduction of hamiltonian (1), where A = a t ia t iandB  = 
a_ja j .  In this case A and B are bosonic and their expectations are complex 
numbers. 

However we can also implement the linearisation procedure in the case 
when A and B anticommute.  Then A B  - - B A  requires that  ZgA = <  A > 
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and OB = <  B > be anticommuting numbers which anticommute as well 
with the operators A and B. 

An algebraic t reatment of the hamiltonian problem may be implemented 
using the following steps, analogous to L i ) . . .  Lvi): 

Si) The linearization procedure reduces H to: 

H "red = ~ieia!ai + ~ibiBi + ~ifiFi (7) 

where the Bi are products of even numbers of fermion operators. The coeffi- 
cients ~ are real numbers, the bi are complex c-numbers whereas the fis are 
anticommuting numbers. H r~d is now an element of a Lie superalgebra A. 
Thus A is an algebra over an extended field which contains anticommuting 
numbers in a natural way. 

Sii) The spectrum may be obtained by means of an automorphism 
of A Yg = exp(iAd Z) where Z belongs to A, such that  

1 

exp( Ad (S) 
i=1  

where the set { h l , . . . , h t ,  e~B), . . . ,e (S) ,e~F) , . . . ,e~ F)} is a Caftan basis for 
the Lie superalgebra. 

Siii) The Cartan elements { h l , . . . , h t }  again represent conserved ob- 
servables in the high temperature phase, which are not conserved in the low 
temperature phase. These are bosonic in nature. 

Siv) The remaining basis elements {e~ B) . e (B) e (F) (s F))  , . .  ~ r , 1 , . . . , e  rep- 
resent order operators, bosonic and fermionic, whose expectations give the 
relevant order parameters. 

Sv) Supercoherent states are obtained by the action of the unitary 
operator U which implements the automorphism ¢.  The existence of a 
unitary implementation of the automorphism is a consequence of A being 
an algebra over a field containing anti-commuting numbers; this enables one 
to consider the superalgebraic adjoint action of Z as a Lie algebraic one. 
Such supercoherent states generalise the supercoherent states of refs [4] and 
[5] in the same way as the generalised coherent states of ref [3] generalise 
the ordinary Glauber coherent states. 

Svi) Self-consistency is imposed as in Lie) above. For example the 
fermionic coefficients fi in Equation 7, which by the lineraization procedure 
can be written as fi = ~jcij < Fj >, will be determined by an equation of 
the form: 

fi = Ecij tr{ezP[-~Hr~d(f i)]Fj}/ tr lezP[-ZHred]} (9) 

Eq (9) is a self-consistency condition because the coefficients fi  are deter- 
mined in terms of H~d which itself depends on the f/~s. 



157 

We now illustrate the preceding steps Li) to Lvi) and Si) to Svi) by 
introducing a generalisation of the BCS model which includes umklapp pro- 
cesses. 

First, from the interaction part of the hamiltonian (1) we retain only the 
following terms 

(1) Cooper-pairing terms (BCS): 5~,,,1 . .  < i - i lV l j  - j > atatia_daj._ 

(2) gmklapp terms (V): 1 , gNij < i j lVI  - J - i > a~a_ia_j.  These terms 
are permitted in a crystal, where momentum need only be conserved modulo 
a wave vector of the reciprocal lattice L (the prime indicates this restriction 
on the summation). 

Then using the linearization procedure for commuting operators, our 
reduced hamiltonian is now of the form H I = ~3iH! 1), where 

H~')= ,k(4a~ + at~a_~) + (z~j_J_~ + ,~4~-~ + b.c.). (10) 

/Xk= 2 3 < k - k I V l j - j  >< a ja - j  >; (11) 

1~, 
~ = 2 ' < k j l v l -  j -  k > <  ~J~_j > (12) 

The dynamical Lie algebra for this BCS-U model is (~k(su(2) (~su(2))k. 

The spectrum (~/e~ + ]/XkJ2 ± J~kl) and the coherent states are obtained 
by means of a generalized Bogolubov transformation, as outlined above. 

We then extend the model by the inclusion of fermionic operators coming 
from the following umklapp terms: 

1Z '  a~a t iaiak; (i + k) E L, (3) ~ ~,k < i -  ~lVlki > _ 

1~, a!a_iak;( i  k) L. ( 4 )  ~ ~,k < i - i l v I k  - i > - 

Note that  the inclusion of momentum non-conserving terms in such models 
is standard, as for example in charge density wave (CDW) models [6] where 
terms such as a~ak+Q(Q ---- 2kF, kF denoting the Fermi wave vector) occur. 
Just as in the CDW case this breaking of translational invariance gives rise 
to an order parameter below the relevant Peierls transition temperature,  
so in our case the mean-field description of the new umklapp terms gives 
rise to an order parameter,  which, for processes (3) and (4) is described 
by an anticommuting number. In those latter processes, we employ the 
linearization procedure for anticommuting operators, so that  for example 

_ ata t ai a?a t al a! at i a i a k  ~ <  i - i  > a k  n L i - i  < a k  > 

where the fermion averages < • > are anticommuting t? numbers. 
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The reduced Hamiltonian obtained in this way has the form H(2) = 
~kH~ ~) with 

8 su(212) ( t3)  Hi 2)= F~=lbiBi + Ej=ofjFj e 

where we suppressed the k-dependence on the r.h.s. The operators Bi , i  = 
1 , . . . ,  6 are the generators of the (su(2) (~) su(2))k algebra introduced above: 

J?) = (J(~))* = 4 ~ L ~ , ~  ~)= - ~ ( 4 ~  + ~L~o-~ - 1); (14) 
- 2 

~2)  : (77) ) t  : 4a - , : ,  

2 
while the Fj,j : 1 , . . . ,  8 are the fermionic operators 

{.ak., a_k, at, af_k, nl¢ a_k, n_kak, af kn~, aln_k ), (15) 

where nk s afkak. The set B,, .... , Be; Fo, P1,..., Pe lncludlngFo _-- I) forms 
a basis for the superalgebra su(2{2)k. The coefficients bi, fi are elements of 
the extension ring C[0102,...] generated by the theta- terms. 
This model has been treated in ref [1], where the finite-temperature self- 
consistency equations (which are independent of 0 were written down. 

Within the context of the su(212 ) superalgebra, it was shown in ref [1] 
that the hamiltonian H0)  is supersymmetric; that is we may define a charge 
Q E/((~3k su(2]2)k) ( / d e n o t i n g  the fermionic sector) such that 

H(~) = {Q, Qt}, Q~ : 0, [H(~), Q] = 0. (16) 

This is only possible when the coefficients in (10) satisfy the following con- 
dition 

t~,kl ~ = IA~I  2 + e~ .  (17) 

We may now treat HO) (Eq 10) as an independently given hamiltonian by 
means of a self-consistent mean-field Fermi reduction, using the lineariza- 
tion scheme for anti-commuting operators on the interaction terms. This 
produces the following hamiltonian 

H~ : etc(nk + n-k)+ {A,~(< at  > a t  + a t  < a t  k >) 

+ ,.,k(< 4 > ,'-,~ + 4  < "-,. >) + h.~.} (is) 

Define 

o(-°)(k) = - ~ k  < ~k > +.~ < 4 >, 

(lO) 



159 

so that 

A~0(-°)(k) + ~ ° ) ( k )  (20) 
< ~k >= I~k[ 2 - [A~V 

(Of course we have similar equations for < a_t, >,  < a ~  > as well, and 
write, for generic anti-commuting variables O+(k) and 0_ (k), 

a(O+(k)) =_ O+(k)a+k;at(O±(k)) 

= ~ o ~ ( k ) =  [a(o~(k))it (21) 

With this notation the hamiltonian H ~  becomes 

H I  = ~ ( ~  + ~_~) + ~(d_°)(k)) + ~(d+°)(k)) + h.~., (22) 

which is an element of a solvable SLA Ak C su(212)k To diagonalize H i~, 
according to Sii) we consider the adjoint action exp(adiZ) of an element 
ZeA, where A = (~)k Aa, Z -- {~k Zk, and 

Zk = a(O+(k)) + a(O_(k)) + h.c. (23) 

The condition that exp(adi)(H F) - U(O)HFU-I(O) be free of non-diagonal 
terms is 

0~(k) = ~o(g)(~). (24) 

We now wish to set-up a self-consistant scheme as in Svi) above. We must 
therefore evaluate the thermodynamic averages of the fermion operators in 
the Gibbs ensemble determined by H F. We readily find that,  for example, 

~{e-~"~(o~)) = ~ o ~  (25) 
tr{e-eHF} 

< a(O+) >z= 

whereby 

< a~k > = - i y + ( k ) .  (2s) 

It is worth noticing that we obtain the same average by evaluating the 
expectation of the operators a(O±) in the supercoherent state [7] I~ >---- 
u-l(0)l•  >: 

u-~(o)l~ > = <  ~}~p(i~dZ)(O±)l~ > (2~) 
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thus, using eq.(24), < ak > -  --8(+°)(k)e~. We thus obtain four linear equa- 

tions homogeneous in e(+°)(k), 8(°)(k), 8(~)(k), ~0) k 0_ ( ) ,  leading to the deter- 
minant al condition 

= 2 + ( 2 8 )  

which is the same as eq. (17) for the hamiltonian H(1) to be supersymmetric. 
The fact that the conditions for Self-consistent fermionic diagonalization 

of H E and the supersymmetricity of H(1) coincide is somewhat puzzling. It 
is worth noting however that the common condition (17) is expressible solely 
in terms of the of the Casimir invariants of the Lie subalgebra su(2) ~) su(2) 
of su(212 ). 

This may indicate the possible generalization of the above result to more 
physically realistic models, such as those indicated in ref [7]. 
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