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Abstract

Non-perturbative Approaches to
Conformal Field Theory

Jinbeom Bae

School of Physics & Astronomy

The Graduate School

Seoul National University

The goal of this thesis is suggesting diverse method of analysing conformal field theory

which related to string theory/higher spin theory via AdS/CFT correspondence. In this the-

sis, we focus on two specific objects in conformal field theory : 4-point correlation function

in O(N) vector model and polygonal Wilson loop expectation value in 3D N = 6 supercon-

formal field theory.

The first part of this thesis devoted to non-perturbative analysis of conformal field the-

ory. Based on unitarity and crossing symmetry of 4-point correlation function, conformal

bootstrap program enables pick up UV and IR fixed point of O(N) symmetric theory for

2 < D < 4. We showed conformal bootstrap program can be successfully applied to specify

interacting fixed point even for the 5-dimensional O(N) symmetric theory.

The polygonal Wilson loop expectation value is intensively discussed in second part of

this thesis. We computed hexagonal two-loop Polygonal Wilson loop expectation value in

3D N = 6 superconformal field theory and showed structurewise similiarity with that of

N = 4 super Yang-Mills theory. Also, we focused on its universal behavior under collinear-

soft limit. Based on this observation, we constructed structure of polygonal Wilson loop for

arbitrary number of edges at two-loop order. At circular limit, the result agrees to circular

Wilson loop expectation value.

Keywords : String theory, Conformal Field Theory, Conformal Bootstrap, Polygonal Wil-

son loop, AdS/CFT

Student Number : 2008-20435
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Chapter 1

Intro - Symmetries in Relativistic Quantum

Physics

The discovery of standard model is one of the greatest triumph of theoretical physics

during the 20th century. Now we have a successful model for describing the phenomena

of electromagnetism, weak interaction and strong interaction based on relativistic quantum

field theory.

The most basic building block in QFT is a field, which expected to describe elementary

particles. In the group theoretical viewpoint, therefore field should lies on irreducible rep-

resentation of given spacetime symmetry. Typically we impose Lorentz group SO(3,1) as a

spacetime symmetry in relativistic quantum field theory. SO(3,1) is outranged from typical

Lie group, therefore it requires infinite dimensional object to have unitary irreducible rep-

resentation of Lorentz group. This is the reason of why we introduce infinite dimensional

object in field theory.

Combining with translation invariance, this Lorentz group is extends to Poincare group,

which is semi-product combination of Lorentz rotation and translation. Elementary particles

will thus be associated with unitary representations of the Poincare group. The infinitesimal

generators of Poincare group are translation(Pµ) and rotation(Mµν). There algebra is given

by

[Pµ,Pν] = 0, [Mµν,Pρ] = i(ηµρPν−ηνρPµ)

[Mµν,Mρσ] = i(ηµρMνσ−ηµσMνρ−ηνρMνσ +ηνσMµρ)

In unitary representation of Poincare group, Massive 1-particle states are labeled by mass

and spin. These quantum numbers are also realized by quadratic Casimir of Poincare group.

We can also make several assumptions of our field theory. First, we can introduce in-

ternal global symmetries, defining other conserved quantum numbers like isospin or electric

charge. The generator of these global symmetries are not correlated with Poincare symmetry.

That is, generator of such global symmetry obey Lie algebra by themselves

[Ri,R j] = f k
i jRk (1.1)
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and they are commute with other Poincare generator. Second, we assumes our theory is

invariant under CPT transformation.

Remarkable point of the above symmetries is that all the generators are Lorentz scalars

except Poincare generators. That is, given these symmetries, the most general group of in-

variance is always the direct product of the Poincare group with another internal symmetry

group. Coleman and Mandular suggested above no-go theorem, based on S-matrix defined

in larger than 1+1 dimension [1].

The Coleman-Mandula no-go theorem is bypassed by introducing fermionic conserved

charges, that is, introducing anti-commuting generators. Such an algebra is called by a

graded Lie algebra, or superalgebra. This graded Lie algebra is summarized by

[Qα,M
µν] = (σµν)

β
αQβ, [Qα,P

µ] = [Q̄α̇,Pµ] = 0

{Qα,Qβ}= 0, {Qα,Q̄β̇}= 2(σµ)αβ̇Pµ

[Qα,R] = Qα, [Q̄α̇,R] =−Q̄α̇ (1.2)

Therefore, supersymmetric quantum field theory do not conflict to no-go theorem.

By the way, we can consider a different kind of peculiar extension of Poincare group, often

called by conformal group. This system can be considered as extension of Poincare symme-

try by adding dilatation generator D and special conformal generator Kµ. There algebra is

given by,

[D,Pµ] = iPµ, [D,Kµ] =−iKµ

[Kµ,Pν] = 2i(ηµνD−Mµν), [Kµ,Mρσ] = i(ηµρKσ−ηµσKρ)

Manifestly, dilatation and special conformal generators are not commute with Poincare gen-

erators. Then how can we consider such kind of system? Is it not conflict to Coleman-

Mandular no-go theorem?

Actually, conformal field theory is outranged from Coleman-Mandular boundary. The def-

inition of LSZ reduction formalism is not clear in conformal field theory. In viewpoint of

Lehmann-Källen form, 1-particle state is not well-defined in conformal field theory since

every particles are massless. Therefore, traditional meaning of S-matrix is cubersome in

conformal field theory and it is not a strange Coleman-Mandular theorem is bypassed by

conformal theory.

Conformal symmetry is not directly visible in our life. We cannot imagine the scale invari-

ance appears in our life like momentum conservation or angular momentum conservation.

Neverthless, this theory often plays a key role in various places of theoretical physics. In this

section, we will summarize three main motivations of studying conformal field theory : First,
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second order phase transition. Second, Renormalization group flow. And Finally, AdS/CFT

correspondence.

1.1 The Conformal Group

Figure 1: Conformal transformation is angle preserving transformation.

Let gµν denote the metric of D-dimensional spacetime. Conformal transformation is de-

fined by angle-preserving transformation. The angle θ between two vectors x
µ
1,x

ν
2 is defined

by

cosθ =
gµνx

µ
1xν

2√
gµνx

µ
1xν

1

√
gµνx

µ
2xν

2

(1.3)

In the new coordinate system x′, the angle θ is preserved under following transformation of

metric.

gµν(x)→ g′µν(x
′) = Λ(x)gµν(x) (1.4)

Under infinitesimal transformation x′µ = xµ + εµ(x), the metric transformed by gµν→ gµν−
(∂µεν +∂νεµ). To preserve angle, we should impose

∂µεν +∂νεµ = f (x)gµν (1.5)

with suitable factor f (x). If we restrict ourselves on flat spacetime, we can replace gµν by

ηµν. Then, it is easy to check that the factor f (x) should satisfy

(D−1)∂2 f (x) = 0 (1.6)

for the case of spacetime dimension is larger than 2.1 This means that εµ is at most quadratic

in x. The most general solution of εµ is given by

εµ = aµ +bµνxν + cµνρxνxρ, cµνρ = cµρν (1.7)

1D = 2 is special case. Their appears infinitely many generators and they called by Virasoro algebra. They

do not discussed in this section since D > 2 CFT will be focused in this thesis.
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The solution is classified by following table.

Finite Transformation Infinitesimal Transformation Solutions

Pµ x
′µ = xµ +aµ −i∂µ εµ = const

Mµν x
′µ = Λ

µ
νxν i(xµ∂ν− xν∂µ) εµ = xνω[νµ]

D x
′µ = λxµ −ixµ∂µ εµ = λxµ

Kµ x
′µ = xµ−bµx2

1−2b·x+b2x2 −i(2xµxν∂ν− x2∂µ) εµ = 2(a · x)xµ− x2aµ

Table 1: When spacetime dimension is larger than 2, we can classify all possible transfor-

mations by 4-classes.

In summary, only translation(Pµ), rotation(Mµν), dilatation(D) and special conformal(Kµ)

are appear in higher dimesional conformal algebra.

We can repackage conformal generators in following way.

Jab ≡




0 D J−1,µ

−D 0 J0,µ

Jµ,−1 Jµ,0 Mµν




Each component of this matrix is identified with conformal generators.

J−1,µ =
1

2
(Pµ−Kµ), J0,µ =

1

2
(Pµ +Kµ)

J−1,0 = D, Jµν = Mµν (1.8)

Then, this matrix Jab satisfies following identity.

[Jab,Jcd ] = i(ηadJbc +ηbcJad−ηacJbd−ηbdJac) (1.9)

We can interpret this as D+ 2 dimensional rotation generator. Therefore, we can consider

conformal group as SO(D,2). Indeed, this simple structure allows embedding space formal-

ism which will be utilized later.

1.2 Phase Transition in condensed matter theory

Our quantum theory describes microscopic physics. Understanding macroscopic physics

from quantum microscopic theory is a nontrivial problem. To see how this works, we will

consider typical toy model in condensed matter theory. The most simple setup is spin-spin

correlated system with each spin located at lattice and has the discrete value of ±1. The
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Hamiltonian of this system is given by

H =−J
∑

n.n

sis j−h
∑

i

si (1.10)

From this Hamiltonian, we can compute various quantities like magnetization, heat capacity,

susceptibility, etc.

The most simple approache is mean field theory. It decompose spin field si by mean value

and small fluctuation. By ignoring quadratic fluctuation, it successfully describes phase tran-

sition of various quantities. However, the observed critical exponents and mean field theory

do not well agrees, this indicates break down of mean field theory at near critical regime.

From the Gaussian model computation, the Green function G(r) =
〈
sis j

〉
−
〈
si

〉〈
s j

〉
is

given by,

G(r) =





ξe
− r

ξ

(rξ)(D−1)/2 ξ≪ r

1
rD−2 ξ≫ r

(1.11)

Here, ξ is correlation length which defined by |T −TC|−ν. The result at ξ≪ r tells spin-spin

correlation of two far seperated spins are almost 0, as naturally expected.

The other limit is nontrivial. ξ≫ r corresponds to the limit of temperature approaches

to critical temperature. In other words, it describes near critical behavior of system. In this

limit, two point correlation function shows scaling behavior. This suggests that the scale-

invariant physics is more appropriate to describe near critical behavior of condensed matter

theory.

Later, we will back to the problem of finding critical exponents of D-dimensional φ4 the-

ory. The theoretical prediction of critical exponent of 3-dimensional IR physics(for instance,

3D Ising model) known to be well matched with experimental data. The typical example is

λ-point phase transition of heat capacity of Helium-4 measurement [2]. The observed critical

exponent is given by α = 1.5094(2), which is well captured by O(2) symmetric XY model

in 3-dimension.

1.3 Renormalization group flow

The idea of renormalization group flow provides the way of understanding macroscopic

physics from microscopic physics. Basically, it starts from given scale and consider scaling

x → x′ = bx(b > 1) by integrating out local degrees of freedom. The resulting effective

field theory expected to be describe macroscopic physics. In renormalization group flow

viewpoint, this picture corresponds to RG flow from UV fixed point to IR fixed point.
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For instance, let us consider deformation of 3-dimensional free field theory by quartic

deformation.

S =

∫
d3x

1

2
(∂µφ(x))2

︸ ︷︷ ︸
Free theory

+
λ

4!
φ(x)4

︸ ︷︷ ︸
Quartic deformation

(1.12)

Under scale transformation x→ x′ = bx (b > 1), we obtain effective coupling at new coor-

dinate system x′.

λ

∫
d3x

1

4!
φ(x)4 −→

( b

Λ

)∆
φ4−3

λ̃′

︸ ︷︷ ︸
λ′

∫
d3x

1

4!
φ(x)4 (1.13)

Here Λ is cutoff scale. At near free theory, ∆φ4 is given by engineering dimension 2. There-

fore, effective coupling λ′ shrinks as we taking high-energy limit Λ≫ b. Therefore, mi-

croscpic physics can be dealt with perturbation approache.

However, this not happens at macroscopic scale. An effective coupling at IR limit Λ≪ b

grows as scaling. This means we cannot utilize perturbative field theory for IR physics. This

kind of non-perturbativity will be cared by ε-expansion, or conformal bootstrap. We will

return to this issue at later section.

Generally, we can consider deformation near specific conformal field theory.

L = LCFT +
∑

i

λiOi (1.14)

Scaling dimension of them are [L ] = D, [Oi] = ∆i, [λi] = D−∆i. Note that ∆i is contains

anomalous dimension. If we consider deformation near free field theory, then this scaling

dimension agrees to engineering dimension.

Under scale x→ bx, effective coupling λ′i is given by
(

b
Λ

)∆Oi
−D

λ̃′i. Depending on behavior

under scaling, they are classified by 3-classes.

• When D > ∆Oi
, quantum correction(effective coupling) dominant at long-

distance area. This is called by relevant operator.

• When D < ∆Oi
, quantum correction(effective coupling) dominant at short-

distance area. This is called by irrelevant operator.

•When D = ∆Oi
, this is called by marginal operator.

φ4 operator corresponds to relevant at free theory. As scaling, this deformation eventually

will dominant. Eventually, we expect to obtain non-trivial theory where interaction is given

by quartic term. In this case, we call starting point free theory as UV fixed point while

resulting interaction theory as IR fixed point.
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As far as we considering asymptotically safety theory, any theory expected to have UV

complete description. In principle, we can analyze any field theory by deforming UV theory

by relevant operator. In this sense, we can say that UV conformal field theory is building

block of field theory. By the way, existence of IR fixed point is not gauranteed. Later, we

will see non-trivial IR Wilson-Fischer fixed point exist for the case of 3D φ4 theory. Scaling

dimension of φ4 operator is quiet large, ∆φ4 ∼ 3.84. This exceeds spacetime dimension,

therefore it is irrelevant operator at interacting theory. This means that even if we deform

φ4 theory by φ4 deformation, this ignorable after sufficiently scaling. Therefore, RG flow

inward directed to IR fixed point.

1.4 AdS/CFT correspondence

The distinguished property of QCD is asymptotic freedom, which allows perturbative ex-

pansion at large scale limit. Quark-antiquark pair potential behaves linearly, therefore quarks

are strongly interact to each other at short distance limit. To deal with hadronic interac-

tion(pion, nucleon, etc) at low energy area, more efficient method is required than perturba-

tive QCD.

In 1968, Veneziano suggested dual resonance model for pion elastic scattering amplitude

[3].

Aπ+π−→π+π− =
Γ[1−α(t)]Γ[1−α(s)]

Γ[1−α(s)−α(t)]
(1.15)

s, t are Mandelstam variables and α(t) is Regge trajectory, behaves linearly with respect to

t. This 4-point amplitude can be equivalently derived from 26-dimensional bosonic string

theory. This suggests intrinsical connection between QCD and string theory.

t’Hooft large Nc limit gauge theory analysis gave another intuition on connection between

gauge theory and string theory. Action of gluon and fermion matter that charged under ad-

joint representation of SU(Nc) is given by,

S =
1

g2
Y M

TrF2
µν +

1

g2
YM

Ψ /DΨ (1.16)

In this limit, 1
Nc

expansion was suggested with fixed t’Hooft coupling λ = g2
Y MNc. The Feyn-

man diagram of this theory consist of gluon propagator, fermion propagator and interac-

tion vertex that behaves 1
Nc
, 1

Nc
,Nc respectively. Therefore, for each Feynman diagram of E

gluon/fermion propagators, F gluon loops, B quark loop and V vertices are

NF−E+V−B
c = Nχ−B

c = N2−2g−B
c (1.17)
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Figure 2: Various planar and non-planar vacuum Feynman diagrams

At large Nc limit, only planar diagram contributes. The quantum correction of gauge the-

ory parametrized by double series with respect to Nc,λ.

∞∑

g=0

N2−2g−B

∞∑

i=0

ci,gλi =

∞∑

g=0

Zg(λ) (1.18)

This is precisely the topological expansion of string theory with respect to genus of world-

sheet. The string coupling gs corresponds to 1
Nc

, therefore large Nc limit is equivalent to small

gs limit. From this picture, open string is interpreted as ended on quark and antiquark.

Since string theory is now realized by quantum gravity, we can expect relation between

strongly coupled(λ≫ 1) gauge theory and weakly coupled(gs ≪ 1) string theory. The spe-

cific example of this relation is AdS/CFT correspondence, which states

AdS/CFT correspondence

The quantum physics of strongly correlated conformal theory related to the classical

dynamics of gravity in one higher dimension.

This correspondence can be understood two different view point for same physics. We

start from N-stack of D3 brane, which is one of the fundamental object in Type IIB super-

string theory in 10-dimension. This theory contains following bosonic degrees : a metric gµν,

a dilaton φ, Kalb-Ramond field Bµν and potentials C0,C2,C4.

First, we can consider this system as bulk with defect(N D3 brane) by DBI action. At

leading order of α′,

S∼ 1

gs

d4xTr(F2)+
1

α′4

∫
d10x
√

gRe−2φ + · · · (1.19)

In low energy α′ → 0 limit, interaction between D-brane and bulk is negligible. Since D3
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brane is half-BPS object, this theory is 16 supercharge preserving Yang-Mills theory. This is

called by N = 4 super Yang-Mills theory.

Second, the solution of extremal p-brane in supergravity could be utilized at α′→ 0 limit.

For the case of p = 3, we have

ds2 = H−
1
2 dxµdxµ +H

1
2 (dr2 + r2dΩ5)

eφ = gs ≡
g2

YM

4π

H = 1+
g2

YMNα′2

r4
= 1+

g2
YMN

α′2φ4
(1.20)

At r→ 0, this solution is approximated by

ds2 ∼ α′
[
R2 dφ2

φ2
+

φ2

R2
dx2 +R2dΩ5

]
, R2 = α′

√
g2

YMN (1.21)

This is corresponds to metric of AdS5×S5 with radius of Anti-de Sitter space is identified to

radius of 5-sphere.

The parameters of two theories are related by

4πgs = g2
YM,

R2

α′
=
√

g2
Y MN (1.22)

The supergravity approximation(gs → 0) is valid only if curvature of AdS space is suffi-

ciently larger than string scale. That is, R = α′
√

g2
YMN ≫

√
α′ = ls, or λ≫ 1. Therefore,

this counting supports duality between strongly coupled conformal gauge theory and weakly

coupled gravity.

1.5 Observables in conformal field theory

In this thesis, we will focus on specific two observables defined in conformal field the-

ory : 4-point correlation function of scalar operator and light-like polygonal Wilson loop

expectation value.

The polygonal Wilson loop defined on contour Cn parameterized by n-points x1,x2, · · ·xn

and each neighborhood vertex connected by light-like segment. The total degree of freedom

of polygonal Wilson loop can be counted by Poincare group or conformal group. In D-

dimensional spacetime, it is given by

D.O.F =

{
(D−1)n− D(D+1)

2
Number of Mandelstam variables

(D−1)n− (D+2)(D+1)
2

Number of Conformal cross ratio
(1.23)

9



Counting the number of conformal cross-ratios (anharmonic ratios) in n-point correla-

tion function is similar. Mathematically, counting the number of conformal cross-ratios

(anharmonic ratios) amounts to counting the dimension of moduli space of n-points in D-

dimensional space modulo conformal transformations. The conformal group SO(D+1,1) in

D-dimension has the dimension
(D+2)(D+1)

2
. So, one might naively suppose that the dimen-

sion of this moduli space is

dimM conf(n,RD) = nD− (D+2)(D+1)

2
. (1.24)

However, this is not quite correct except for sufficiently large n for a given D. We tabulate the

correct dimensions of the moduli space in Table 1. Fortuitously, for four-point correlation

functions, n = 4, the number of conformal cross-ratios is always 2 so long as the spacetime

dimension is greater than 1.

So far we introduced the motivation of studying conformal field theory. The remaining

part of this thesis is organized as follow. In section 2, we will focus on 4-point correlation

function in conformal field theory. By utilizing crossing symmetry and unitarity constraint,

we will rule out inconsistent theory. First we will see this conformal bootstrap method will

provide us information of critical exponents in interacting IR theory. And next, we will turn

to 5-dimensional O(N) symmetric theory and figure out nontrivial UV fixed point by this

bootstrap method. In section 3, we shortly introduce the story of gluon scattering amplitude

and polygonal Wilson loop expectation value in N = 4 SYM. In section 4, we will focus on

polygonal Wilson loop expectation value defined in 3D superconformal field theory, ABJM

theory. Starting from explicit computation of hexagonal Wilson loop expectation value, we

developed it to n-gon result by utilizing unresolved limit. Several consistent check were

provided. In section 5, we summarize the main contents of this thesis and stated future

direction.

10



d 2 pt 3 pt 4 pt 5 pt 6 pt n(> 6) pt

Pµ : 1 D : 1

1 Kµ : 1 Mµν : 0 n−3 = 1 n−3 = 2 n−3 = 3 n−3

n−2 = 0 n−3 = 0

Pµ : 2 D : 1

2 Kµ : 2 Mµν : 1 2n−6 = 2 2n−6 = 4 2n−6 = 6 2n−6

2n−4 = 0 2n−6 = 0

Pµ : 3 D : 1

3 Kµ : 3 Mµν : 2 Mµν : 1 3n−10 = 5 3n−10 = 8 3n−10

3n−6 = 0 3n−9 = 0 3n−10 = 2

Pµ : 4 D : 1

4 Kµ : 4 Mµν : 3 Mµν : 2 Mµν : 1 4n−15 = 9 4n−15

4n−8 = 0 4n−12 = 0 4n−14 = 2 4n−15 = 5

Pµ : 5 D : 1

5 Kµ : 5 Mµν : 4 Mµν : 3 Mµν : 2 Mµν : 1 5n−21

5n−10 = 0 5n−15 = 0 5n−18 = 2 5n−20 = 5 5n−21 = 9

Pµ : d D : 1

d Kµ : d Mµν : d−1 Mµν : d−2 Mµν : d−3 Mµν : d−4 nd−
dn−2d dn−3d dn−4d +2 dn−5d +5 dn−6d+9

(d+2)(d+1)
2

= 0 = 0 = 2 = 5 = 9

Table 2: Dimension of moduli space for various cases. For sufficient large n, we have com-

pact expression nd− (d+2)(d+1)
2

because of generators are fully used to fix the points. The

4-point correlation function has 2 degree of freedom when spacetime dimension larger than

2. Therefore, crossing symmetry constraint available even for the five-dimensional bootstrap.
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Chapter 2

Correlation function in conformal field theory

2.1 General structure of correlation function

Consider a conformal field theory in d-dimensional spacetime. The generators of the

SO(d + 1,1) Euclidean conformal algebra are Poincaré translation Pµ, rotation Mµν, dilata-

tion D, and special conformal translation Kµ. The correlation functions measure response of

the system as a function of separations to perturbations sourced by local operators, so they

should transform covariantly under the SO(d +1,1). The conformal algebra fixes the struc-

ture of 2-point and 3-point correlation functions completely. In turn, conformal field theories

are completely specified by 2- and 3-point correlation functions.

Denote local operators as OI , where I refers collectively to all quantum numbers of the

operator. Choosing the basis of local operators in orthonormal basis so that the 2-point cor-

relation functions read

〈OI(x)OJ(y)〉 =
δIJ

|x− y|2∆I
, (2.1)

where ∆I refer to the conformal scaling dimension of I-th operator, the 3-point correlation

functions

〈OI(x)OJ(y)OK(z)〉 =
CIJK

|x− y|∆I+∆J−∆K |y− z|∆J+∆K−∆I |z− x|∆K+∆I−∆J
(2.2)

are completely specified by the structure constants CIJK . Owing to the conformal invariance,

total set of these structure constants are encoded by the operator product expansions (OPE).

The OPE is most compactly expressible in radial quantization by ordering two operators at

two different radii (equivalently, conformal time). For instance, the OPE of two identical

scalar operators O reads [9]

O(x)×O(0) ∼
∑

∆,ℓ

C∆,ℓΦ∆,ℓ(x), (2.3)

where the structure constants C∆,ℓ are partial wave expansion coefficients and Φ∆,ℓ is the

partial wave amplitudes. The partial wave amplitudes includes the set of conformal primary

operators. The conformal invariance dictates that all multipole moments of the OPE are pri-

mary states and their conformal descendants. In conformal field theory, every operator prod-
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uct is organized by conformal primary operators and their descendants, which are labeled by

conformal dimension ∆ and spin ℓ.

The 4- or higher-point correlation functions are not fully fixed by the conformal invari-

ance. For instance, 4-point correlation function of local operators inserted at x1,x2,x3,x4

comes with two arbitrary degrees of freedom: the conformal cross-ratios (anharmonic ra-

tios)of operator insertion points defined by

u :=
x2

12x2
34

x2
13x2

24

and v :=
x2

14x2
23

x2
13x2

24

, (2.4)

where xi j ≡ xi− x j. For instance, for local operators of the same kind, O, the 4-point corre-

lation function takes the form

〈O(x1)O(x2)O(x3)O(x4)〉=
1

(x12)2∆(x34)2∆
F(u,v), (2.5)

Here, F(u,v) is a scalar function .

By construction, u,v are invariant under the conformal transformation. As such, the func-

tion F(u,v) has vanishing conformal weight, so further inputs are needed in order to con-

strain it. The conformal invariance allows to evaluate the multi-point correlation function by

a sequence of operator product expansion (OPE). For the 4-point correlation function, this

is reduced effectively to the OPE of two partial wave operators Φ∆,ℓ. This OPE gives rise to

the dependence on the square of the structure constant C∆,ℓ and to a nontrivial function that

depends on the conformal cross-ratios u,v. Therefore, the conformal partial wave expansion

of the scalar function F(u,v) takes the form

F(u,v) =
∑

∆,ℓ

C2
∆,ℓG∆,ℓ(u,v). (2.6)

The function G∆,ℓ(u,v) is referred as the conformal block. If the theory is unitary, the reflec-

tion positivity asserts that the partial-wave coefficient C∆,ℓ is real and hence C2
∆,ℓ is positive

definite.

We can get more information about the conformal block G∆,ℓ(u,v) from the underlying

conformal symmetry, and is derivable from quadratic Casimir of the SO(d,2) conformal

algebra [8]. If the spacetime dimension is even, the conformal block has a closed form ex-

pression in terms of hypergeometric functions [7, 8]. If the spacetime dimension is odd, it

is not known yet whether the conformal block is expressible in closed form. In numerical

bootstrap approach, we do not actually need to have such closed form expressions, since we

can evaluate the conformal block from its recursion relations [11].
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x1

xd

|r|2 = zz̄

~x1

~x2

~x3 ~x4

Figure 3: Position of four insertion points of the sclar operators in. Using conformal sym-

metry, we fix ~x1,~x3,~x4. This leaves two degrees of freedom for the insertion point ~x2 lying in

the (x1,xD)-subspace. The radial distance of ~x2 from origin is parametrized by z, z̄. Therefore

correlation function or conformal block is function of z, z̄.

2.2 Radial Representation of Conformal Block

Denote the four points the local operators are inserted as ~x1, ~x2, ~x3, ~x4. Utilizing the con-

formal invariance, we can fix location of three points ~x1, ~x3, ~x4 as in Figure 3. According to

the result of previous subsection, there ought to be 2 remaining degree of freedom in arbi-

trary dimensions. Fixing 3 points as in figure 3 is consistent with this. Specifically, in five

dimensions, we may conveniently put

~x1 = (0,0,0,0,0), ~x2 = (x1
2,0,0,0,x

5
2), ~x3 = (1,0,0,0,0), ~x4 = ∞ (2.7)

Length | ~x12|2 is (x1
2)

2 +(x5
2)

2 for Euclidean space and −(x1
2)

2 +(x5
2)

2 for Minkowski space.

Therefore, we introduce two variables so that this length equals to zz. In Euclidean space, the

new variables (z,z) are two complex variables related each other by complex conjugation.

In Minkowski space, the new variables (z,z) are two real-valued light-cone variables.

In terms of the new variables (z,z), the cross-ratios (2.4) are given by

u = zz and v = (1− z)(1− z). (2.8)

Being now a function of complex variables, the conformal block is in general a multi-valued

function over the z-plane. It can be seen from the closed-form expressions of the conformal
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block in d = 2,4:

G
(d=4)
∆,ℓ (z,z) =

(−1)ℓ

2ℓ
zz

z− z

[
k∆+ℓ(z)k∆−ℓ−2(z)− k∆+ℓ(z)k∆−ℓ−2(z)

]

G
(d=2)
∆,ℓ (z,z) =

(−1)ℓ

2ℓ

[
k∆+ℓ(z)k∆−ℓ(z)− k∆+ℓ(z)k∆−ℓ(z)

]
(2.9)

where kλ(y) is the rescaled hypergeometric function:

kλ(z) ≡ z
λ
2 2F1

[λ

2
,
λ

2
,λ;z

]
(2.10)

We recall that the hypergeometric function has a cut z ∈ [1,∞) along the real axis.

To avoid aforementioned branch cuts and render the conformal block single-valued, we

need to restrict z,z outside the cut along z ∈ [1,∞). This can be achieved by changing the

variables (z,z) to

ρ =
z

(1+
√

1− z)2
and ρ =

z

(1+
√

1− z)2
. (2.11)

We are working in Euclidean space, so (ρ,ρ) are complex conjugate each other. Under the

change of variable, the z-plane outside the branch cut along x∈ [1,∞) is mapped to the region

inside a unit circle.

For the region inside a unit circle, we further change the variables to radial and polar

variables:

r = |ρ| and η = cos(arg(ρ)), (0≤ r ≤ 1, −1≤ η≤+1). (2.12)

The conformal block is now a function of (r,η) in this bounded domain, so it can be ex-

panded in double power series. This expansion turns out to converge sufficiently fast [18]

and thus serve a useful basis for semi-definite programming. The power series takes the form

G∆,ℓ(r,η) =
∞∑

n=0

∑

j∈D(ℓ)

Bn, j(ℓ)r
∆+n Γ(2ν)Γ( j+1)

Γ(2ν+ j)
Cν

j (η) (2.13)

where ν = d
2
− 1, Cν

j (η) is the Gegenbauer polynomials, and the summation domain D is

given by

D(ℓ) : j =

{
0,2,4, · · · , ℓ+n (ℓ+n = 2Z)

1,3,5, · · · , ℓ+n (ℓ+n = 2Z+1)
(2.14)

The series coefficient Bn, j is determined by the differential equation for the Casimir operator
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of the conformal algebra. It turns out the first component in radial expansion is given by

B0, j(ℓ) = 4∆δ jℓ. (2.15)

Therefore, at leading order in radial expansion, the conformal block reads

G∆,ℓ(r,η) = (4r)∆ Γ(2ν)Γ(ℓ+1)

Γ(2ν+ ℓ)
Cν
ℓ (η)+O(r∆+1) (2.16)

We take the crossing symmetric point z = z̄ = 1
2
, which corresponds to r = 3− 2

√
2.

Higher order coefficients could be obtained similarly, but we do not need that information

here.

One can compute the conformal block more efficiently by utilizing the Zamolodchikov

recursive relation, as suggested in [6]. It is reduced to a set of recursive relation given by

h∆,ℓ(r,η)≡ r−∆G∆,ℓ(r,η)

h∆,ℓ(r,η) = h∞
ℓ (r,η)+

∑

i

cir
ni

∆−∆i

h∆i+ni,ℓi
(r,η) (2.17)

Here, the term h∞
ℓ (r,η) refers to a holomorphic function that specifies the ‘boundary con-

dition’ at ∆→ ∞. This term can be determined from the Sturm-Liouville problem of the

quadratic Casimir operator of the conformal group and equals to

h∞
ℓ (r,η) =

ℓ!

(2ν)ℓ

Cν
ℓ (η)

(1− r2)ν
√

(1+ r2)2−4r2η2
. (2.18)

Detailed information of poles and coefficients ci can be found in the original work [6].

2.3 Conformal Bootstrap Method

We are now at the stage of imposing the crossing symmetry and the unitarity. The confor-

mal 4-point correlation function of same scalar operators is invariant under permutation of

operator insertion points x1,x2,x3,x4. A nontrivial constraint follows from exchange of two

points, say, x1 and x3. Acting on (2.5), this leads to the condition

v∆F(u,v) = u∆F(v,u). (2.19)

In solving the crossing symmetry condition (2.19), the approach that has been practiced
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widely is to expand the scalar function F(u,v) as

F(u,v) = 1+

′∑

∆,ℓ

C2
∆,ℓ G∆,ℓ(u,v), (2.20)

where the identity operator is separated from all other operators: the summmation Σ
′

runs

over all primary operators of nonzero scaling dimensions ∆ ≥ ∆min > 0 for zero spin. For

spin ℓ, summation contains all primary operator over unitary bound. So, an input we specify

is the gap in the spectrum ∆min. We refer this specification as one-gap bootstrapping. The

crossing symmetry condition (2.19) is now recast as

v∆−u∆ =

′∑

∆,ℓ

C2
∆,ℓF (∆, ℓ,u,v)

F (∆, ℓ,u,v) := u∆G∆,ℓ(v,u)− v∆G∆,ℓ(u,v). (2.21)

The crossing sum rule (2.21) can be solved by Taylor expanding it around the symmetric

point u = v = 1/4. Changing the variables as (2.8), solving the sum rule (2.21) within ana-

lytic domain of z, z̄ amounts to solving the set of infinitely many unfolded equations at the

point z = z = 1/2:

F
m,n

0 (∆, ℓ,z, z̄) =

′∑

∆,ℓ

C2
∆,ℓF

m,n(∆, ℓ,z, z̄) (2.22)

where

F m,n(∆, ℓ,z, z̄)≡ ∂m
z ∂n

z̄ F (∆, ℓ,z, z̄)
∣∣∣
z= 1

2
,z̄= 1

2

, (2.23)

subject to boundary condition:

F0 := (1− z)∆(1− z̄)∆− (zz̄)∆. (2.24)

The set of unfolded equtions (2.22) can be solved by the linear programming [?]. Define

linear functional L[·] by

L[F m,n(∆, ℓ,z, z̄)] :=
∑

m,n

αm,n F m,n(∆, ℓ,z, z̄), (2.25)

where αm,n denotes a real coefficient. Taking this linear functional on both side of (2.22),

L[F m,n
0 (∆, ℓ,z, z̄)] =

′∑

∆,ℓ

C2
∆,ℓ

∑

m,n

αm,nL[F
m,n(∆, ℓ,z, z̄)]. (2.26)
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We need to solve (2.26) subject to the constraints that C2
∆,ℓ is positive and all ∆’s are above

unitarity bound of respective spin(l > 0). In practice, numerical method for solving (2.26)

requires truncation of summation up to suitable order. In our computation below, we have

done so by truncating the unfolded basis (m,n) up to m+n≡ k≤ 15 and the spin basis ℓ up

to ℓ≤ ℓmax = 20.

In solving the crossing symmetry condition, an approach widely used so far assumes a

single gap ∆min above the unitarity bound in scalar spectrum(l = 0). The sums over (∆, ℓ) in

(2.26) contain all continuous operators in scalar sector(ℓ = 0) but above ∆min and all contin-

uous operator in higher-spin sector(ℓ 6= 0). If there is set of αm,n that satisfy positiveness of

both side of (2.26) under assumption of spectrum with specific value of ∆min, it potentially

represents a conformal field theory consistent with unitarity and crossing symmetry. If not,

it may still represent a conformal field theory but it must be a non-unitary one. Numerically,

the unfolded conditions (2.26) was solved originally in linear programming [?] and later in

semi-definite programming [17].

2.3.1 ε-expansion

The IR physics of 3-dimensional φ4 theory is non-perturbative with resepct to effective

coupling λ′. Therefore, perturbative quantum field theory is cannot be applied for this theory.

The alternative way of analysis this physics suggested by Wilson, often called by D = 4− ε

expansion. It assumes computation in quantum field theory can be extended for non-integer

valued spacetime dimension D. In other words, even if our theories only well-defined on

integer-valued spacetime dimension D, extension of this parameter into real-value is succes-

fully working.

The leading order beta function of D = 4− ε-dimensional O(N) φ4 theory is given by

β(λ) =−ελ+(N +8)
λ2

8π2
(2.27)

We have two fixed point corresponds to λ = 0 and λ = 8π2

(N+8)ε. First one corredponds to

Gaussian fixed point, which is free-field theory that we already expected. The another one

is non-trivial fixed point called by Wilson-Fischer fixed point, corresponds to IR fixed point.

Figuring out this fixed point is not available via 3-dimensional quantum field theory, but

ε-expansion successfully converted non-perturbative problem into perturbative problem.

At Wilson-Fischer fixed point, the anomalous dimension of φ and φ2 operators are given
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by,

∆φ =
D

2
−1+ γφ = 1− ε

2
+

N +2

4(N +8)2
ε2 +O(ε3)

∆φ2 = D−2+ γφ2 = 2− 6

N +8
ε+O(ε2) (2.28)

From Callan-Symanzik equation, we can see that these quantities related to the value of

critical exponents, ∆φ =
1
2
+ η

2
and ∆φ2 = 3− 1

ν .

This critical exponent can be calculated by several way. One can continue higher-loop

Feynman diagram computation for anomalous dimension of φ and φ2 operators. This higher-

loop computation were done up to 7-loop. Since O(N) theory is Borel summable, inserting

ε = 1 will give convergent series after resummation procedure. Indeed, theoretical compu-

tation of critical exponents well fits to experimental data. Alternative approach for critical

exponent is Monte-Carlo simulation. The numerical value of both method agrees with high

accuracy.

2.3.2 Bootstrapping 3 dimensional critical theory

Although 3-dimensional Z2 or O(N) theory are strongly coupled at IR regime, we saw

ε expansion alternatively suggested the way of computing critical exponents. Fortunately,

this systems are Borel summable, therefore well-behaving convergent series emergent after

resummation even if for the large value of ε = 1.

The conformal bootstrap method independently provides equivalent numerical value for

critical exponents. By linear programming or semi-definite programming, the observed re-

sults are quiet remarkable.

We have two inputs in bootstrap. First one is conformal dimension of scalar operator σ,

which is Z2 odd field. Operator product expansion of this σ field expected to be

σ×σ∼ 1+ ε+ · · · (2.29)

Here ε field is Z2 even and lowest operator that first appears in σ×σ OPE. The second input

parameter is conformal dimension of ε field, ∆ε. Varying these two parameters and running

convex optimization result is expressed in above figure. The colored region means do not

viloates unitarity and crossing symmetry while white region violates unitarity and crossing

symmetry.

The remarkable point is kink appeared in upper boundary. We can read critical exponents

η and ν from coordinates of this kink. Suprisingly, this result very close to known numeri-

cal value of η and ν. By imposing only unitary and crossing symmetry, bootstrap program
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Figure 4: The result of 3D bootstrapping, obtained in [11]. The x-axis means conformal

dimension of external operator σ and y-axis means the lowest operator appearing in σ×σ
OPE. Colored region is consistent with unitarity and crossing symmetry. On its boundary, it

has special kink. Remarkably, this kink indicates 3D IR critical theory(Ising theory).

provides physical quantities independently from other methods. For comparison, following

table shows obtained value of critical exponents by various method.

Critical exponent ε expansion(1998) [12] Monte-Carlo(2010) [13] Bootstrap(2014) [14]

η 0.03650(500) 0.03627(10) 0.03631(3)

ν 0.63050(250) 0.63002(10) 0.62999(5)

Table 3: The three different method of computing critical exponents of Ising theory. Boot-

strap gives numerical value of critical exponent with high accuracy. Moreover, it is intrinsi-

cally non-perturbative method.

It is straightforward to impose global symmetry in bootstrap program. Especially, O(N)

global symmetry can be implied into here utilizing SO(N) representation can be splitted into

singlet, symmetric traceless and anti-symmetric part. The 3-dimensional O(N) bootstrap

result is summarized by following figure.

This is the result of singlet bound of O(N) symmetric CFT in 3-dimension for various

value of N. The cross in this figure indicates result of large N expansion result. Likewise Z2

symmetric case, there appears non-trivial kinks for various N results. For sufficiently large

N, the location of kink well agrees to cross point. This agreement breaks down when N is

small, since large N perturbation is no longer valid in this regime.
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Figure 5: The result of 3D bootstrapping with O(N) symmetry, obtained in [6]. The x-axis

means conformal dimension of external operator φ and y-axis means the lowest operator

appearing in φ×φ OPE in symmetric traceless sector. For diverse value of N, it has special

kink on its boundary. Again, this kink indicates critical O(N) theory. As N grows up, the

location of kink well-matched with large-N expansion.
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2.4 Non-trivial fixed point in 5 Dimension

The role of φ4 operator in 5-dimension is distinguished from 3-dimensioanl one. In 3-

dimensional case, deformation by this operator was relevant at Gaussian fixed point while

irrelevant at Wilson-Fischer fixed point. Therefore, effective coupling grows as scaling, IR

fixed point was hard to analyze by perturbation method.

The situation of 5-dimension is reversed. φ4 deformation at free theory is irrelevant, which

means Gaussian fixed point is now IR fixed point. Now existence of UV fixed point is non-

trivial, hard to approach by perturbative computation.

At this stage, ε-expansion can be revisited. Rather than D = 4− ε expansion, we can

consider D= 4+ε expansion. In this case, coupling constant λ at UV fixed point has negative

value. It causes instability, suggests UV fixed point is not stable fixed point.

Although ε-expansion do not works well in higher dimension, we have several signals on

existance of UV fixed point. First, we can utilize duality between O(N) symmetric conformal

field theory and higher spin theory defined on AdS4 background. By adjusting boundary

condition, higher spin theory provides two fixed points, which corresponds to Gaussian fixed

point and Wilson-Fischer fixed point of 3-dimensionl O(N) CFT. Likewise, we can extend

this game for arbitrary dimensional AdS background. For the case of AdS6 higher-spin, we

expect there should be two fixed point as before, which characterized by UV/IR fixed point

of 5-dimensional O(N) CFT.

Second, we can utilize large-N expansion. Regardless of spacetime dimension, this tech-

nique can be applied and do not suffers from instability due to negative ε. We will see how

this large-N expansion works and shows possibility of existance of UV fixed point in higher

dimensional conformal field theory.

2.4.1 Hubbard-Stratonovich transformation

To get around the difficulty and to find nontrivial ultraviolet fixed point of O(N) symmetry

in higher spacetime dimensions, an alternative approach based on Hubbard-Stratonovich

method was considered [4,5]. The theory, consisting of scalar fields φi,σ of O(N) vector and

scalar representations, is defined by the Lagrangian density:

L =
1

2
(∂mφi)2 +

1

2
(∂mσ)2 +

λ1

2
σφi2 +

λ2

3!
σ3 (i = 1,2, · · ·N). (2.30)

In six-dimensional spacetime, both λ1 and λ2 are marginal couplings. The fixed points are

classifiable by the associated O(N) symmetry. Two limiting situations are of interest. If the

φi field becomes heavy and decoupled, the theory is reduced to a system of O(0) symme-

try in which the σ scalar field dominates the dynamics with cubic self-interaction. At the
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fixed point, the coupling λ2 is driven to a purely imaginary value. Therefore, this theory

belongs to the universality class of the Lee-Yang edge singularity (which is a non-unitary

theory). Otherwise, the O(N) vector field φi couples to a system of the σ scalar field with

bosonic Yukawa-type interactions. Starting from the Gaussian fixed point, there would be

the renormalization group flows leading to non-trivial ultraviolet fixed point.

The perturbative computation of this system in 1/N and ε double expansion was per-

formed in [4,5]. Their result indicates that both situations of the fixed point is captured as N

is varied: fixed point values of the coupling constants λ1,λ2 are real-valued for sufficiently

large N, while complex-valued for sufficiently small N. The spacetime dimension is above

the Ginzburg criterion, so the flow between ultraviolet fixed point and the infrared fixed point

is reversed compared to the spacetime dimension less than four.

In five-dimensional spacetime, the scaling dimensions of φi and σ are computable pertur-

batively. They were computed up to third orders in 1/N-expansion [4, 24]. The result is

∆φ =
3

2
+

0.216152

N
− 4.342

N2
− 121.673

N3
+ · · ·

∆σ = 2+
10.3753

N
+

206.542

N2
+ · · · (2.31)

For sufficiently large N, we expect the critical theory to exist at (∆φ,∆σ) = (3
2
,2), distin-

guished from the free theory at (∆φ,∆σ) = (3
2
,3). However, the above perturbtive result

indicates that, for sufficiently small N, negative contribution of 1
N

corrections dominate. In

this case, ∆φ falls below the unitary bound 3/2 of five-dimensional scalar operator. This sug-

gests that, at sufficiently small N, the critical fixed point should be interpreted as describing

a non-unitary theory.

2.4.2 5-dimesional conformal bootstrap : one-parameter result

We performed the numerical bootstrap with one-gap approach. The result is shown in

Figure 6. The result indicates that, in sharp contrast to the numerical bootstrap results for

spacetime dimensions less than 4, the nontrivial ultraviolet fixed point predicted by large-N

and ε-expansions lies well below the upper boundary of the allowed region. Moreover, there

is no kink structure on the upper bounary. We thus conclude that the one-gap approach does

not render any specific information on nontrivial fixed point. Clearly, the one-gap approach

being incapable of pinning down the critical point precisely, a better approach is sought for.
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Result(UV fixed)

∆φ

∆
σ

Figure 6: The result of one-gap numerial boostrap for N = 500. The colored region is the val-

ues scaling dimensions consistent with the unitarity and crossing symmetry. The ultraviolet

fixed point predicted by the 1/N-expansion lies at an interior of the region.

Unit operator

Lowest operator

∆min

Unit operator

Next-Lowest operator

Lowest operator

∆gap

∆min

Figure 7: Low-lying spectrum of one-gap approach traditionally used for d < 4 versus two-

gap approach we propose in this work. Left figure illustrates typical one-gap setup in boot-

strap program. Right figure depicts our input of two-gap in the scalar operator spectrum.

Above the unit operator, we have an isolated scalar operator of conformal scaling dimension

∆min. All other operators of higher scaling dimension starts at ∆gap.
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2.4.3 5-dimesional conformal bootstrap : two-parameter result

To remedy the problem alluded above that the one-gap approach is not capable of locating

the ultraviolet critical point, the idea we put forward is to use two-gap approach. By this,

we mean that we assume that the lowest scalar operator (other than the identity operator)

has scaling dimension ∆min and that all other scalar operators start with scaling dimension at

least ∆gap. Our approach is most transparently depicted in Figure 7.

The idea is this: Compared to the one-gap bootstrapping, our two-gap bootstrapping ex-

pected to be carve out more space. This is because we are depleting primary operators in

the scalar sector whose conformal scaling dimension lies between ∆min and ∆gap. Suppose a

potential conformal fixed point has a scaling operator in the scalar sector spectrum between

∆min and ∆gap. The one-gap approach should capture this fixed point as a solution to the nu-

merical bootstrap. On the other hand, the two-gap approach would consider this fixed point

as an inconsistent theory. Therefore, we expect the two-gap approach constrains a putative

conformal field theory further. A similar idea was considered in three-dimensional bootstrap

program and there it also pointed to further restrictions for exploring ultraviolet and infrared

fixed points [11]. As we will see later, however, a sharp difference is that nontrivial fixed

points in spacetime dimensions less than four are already located by the one-gap approach,

while those in spacetime dimensions larger than four necessitates the two-gap approach at

the least.

More specifically, with the O(N) global symmetry at hand, the operator product of two

primary scalar fields φi in the fundamental representation of O(N) is schematically given

by [23]

φi×φ j ∼
∑

S

δi jO +
∑

T

O(i j)+
∑

A

O[i j], (2.32)

where the three terms in the right-hand side refer to the singlet, symmetric traceless, and

antisymmetric irreducible representation sectors, respectively. As for the spin ℓ, the singlet

and the symmetric traceless tensor sectors contain even spins only, while the antisymmetric

tensor sector contain odd spins only. Reflecting this structure, sum rule for this case reads

∑

S,∆,ℓ=even

c∆,ℓVS,∆,ℓ+
∑

T,∆,ℓ=even

c∆,ℓVT,∆,ℓ+
∑

A,∆,ℓ=odd

c∆,ℓVA,∆,ℓ = 0, (2.33)

where

VS,∆,ℓ =




0

F −∆,ℓ(u,v)

F +
∆,ℓ(u,v)


 , VT,∆,ℓ




F −∆,ℓ(u,v)

(1− 2
N
)F −∆,ℓ(u,v)

−(1+ 2
N
)F +

∆,ℓ(u,v)


 , VA,∆,ℓ =




−F −∆,ℓ(u,v)

F −∆,ℓ(u,v)

−F +
∆,ℓ(u,v)



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and

F ± ≡ v∆G∆,l(u,v)±u∆G∆,l(v,u). (2.34)

In our two-gap approach, we propose to introduce two parameters (∆min,∆gap) into the singlet

sector VS,∆,ℓ. For nonsinglet sectors VT,∆,ℓ and VA,∆,ℓ, we include all operators in so far as their

scaling dimensions are above the unitary bound.

For the numerical optimization, we converted this problem into semi-definite program-

ming [17]. We proceeded as follows. Firstly, using the radial approximation and the Zamolod-

chikov recursion relation (2.17), we expressed the function F m,n(∆, ℓ,z, z̄) as a sum over

conformal blocks, in which structure of this building block is given by Πi

(
1

∆−∆i

)
P

m,n
ℓ (∆).

This is because, successive iteration of recursion relation (2.17) generates product of 1
∆−∆i

,

which appears in (2.17). As Πi

(
1

∆−∆i

)
is positive-definite, it suffices to focus on the poly-

nomial P
m,n
ℓ (∆). Secondly, we parametrized scaling dimension of operators above ∆gap in

scalar sector by ∆ = ∆gap(1+α), α ∈ (0,∞]. This puts P
m,n
ℓ (∆ = ∆gap(1+α)) a polyno-

mial of α. Likewise, spin sector parametrized by ∆ = (l + d− 2)(1+α), α ∈ (0,∞]. This

parametrization means we consider all operators over unitary bound. Therefore, regardless

of spin, the function P
m,n
ℓ (∆) is essentially polynomial of α. This polynomial structure of

P
m,n
ℓ (α) enables to put the optimization into semi-definite programming.

Below, we provide the pseudocode for our optimization of (2.26):

Semi-Definite Programming: L

Minimize L[F m,n
0 (∆, l,z, z̄)]

subject to L(Pm,n(∆min))> 0;

~α = (1,α,α2, · · · ,αd)

L(Pm,n(∆0(1+α))) =~αT
Aℓ ~α+α(~αT

Bℓ ~α)

∆0 = ∆gap(1+α) if ℓ= 0

∆ℓ(1+α) else ℓ > 0

Aℓ � 0, Bℓ � 0;

given (N,∆gap,∆ℓ);

Run ℓ= 0

ℓ= ℓ+1

Stop ℓ= ℓmax (2.35)
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Figure 8: Result of two-gap approach for N = 500 and k = 15. Yellow-colored part is the al-

lowed region, consistent with the unitarity and the crossing symmetry of 4-point correlation

function. Compared to the one-gap approach result in Figure 2, the two-gap approach carves

out regions of low values above the unitarity bound. Its boundary features two cusps. The

ultraviolet nontrivial fixed point is located at its lower tip, while the infrared Gaussian fixed

point is located at its upper tip.

In the code, ∆ℓ is the unitary bound for spin-ℓ operators, given by (D− 2+ ℓ). In our

computation, we truncated the spins to ℓ ≤ ℓmax = 20. Also, Aℓ and Bℓ are matrices that

built from the polynomials Pm,n(α). In our computation, we calculated the numerical value

of Aℓ,Bℓ matrix entries by Mathematica. These matrix entries are the input parameters of

semi-definite programming. For numerical optimization of semi-definite programming with

respect to the parameters αm,n, we used the open source SDPA-GMP.

2.4.4 Bootstrap Results

We considered the O(N) global symmetric bootstrap, where the sum rule was decomposed

according to (2.34). We carried out the numerical bootstrapping with the proposed two-gap

approach in the scalar sector VS,∆,ℓ by semi-definite programming. We identified regions in

(∆φ,∆σ) space where the unitarity and the crossing symmetry conditions are satisfied. We

repeated the procedure with varying N,∆min,∆gap and addressed the following questions.
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Figure 9: Result for ∆gap = 8.0. Here we zoomed in around near lower tip. From leftmost,

each bound stands for N = 1000,N = 500,N = 300,N = 200,N = 100, respectively. The

star marks indicate location of perturbative 1
N

expansion result for each N. For sufficiently

large N, star mark location gradually approaches to boundary of allowed region.

• Does the two-gap approach constrain the theory space more than the one-gap ap-

proach? Is the two-gap approach enough to locate both the Gaussian and nontrivial

fixed points on its allowed region boundary?

• What is the range of validity of perturbative 1/N-expansions?

• How do locations of the fixed points move around as the theory parameters N,∆gap are

varied?

• At extreme values of N,∆gap, do fixed points appear or disappear? If so, what are

critical value Ncrit,∆crit
gap for onset of such behavior?

• From scaling consideration, we expect that bootstrapping for d > 4 and bootstrapping

for d < 4 are dual each other in that ultraviolet and infrared regimes are interchanged.

Do we find such ‘duality’ from the result?

We first explore whether the two-gap approach carves out regions that were allowed within

the one-gap approach. For the representative choice of N = 500, the result is shown in Figure

8.

We already presented physical reason why we expect the two-gap approach puts more

restrictive result than one-gap approach. Indeed, the two-gap approach result in Figure 8

further carves out the region allowed by the one-gap approach. In this result, we have set
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Figure 10: Result for ∆gap = 40.0. Here, we zoomed in near lower tip. From leftmost, each

bound presents N = 2000,N = 1000,N = 500, respectively. Each star mark is the location

of perturbative result from (2.31). The endpoint of tip agrees to star mark, identified as the

ultraviolet fixed point.

∆gap to 8.00 and k = 15. The result manifests two pronounced tips. The apex of upper tip

region indicates free theory. Surprisingly, end of lower tip is quiet close to perturbation result

(2.31).

Next, we bootstrapped with various N, fixing parameter ∆gap = 8.0 as before. To see

agreement of UV fixed point and shrapened end of tip, we zoomed in near low-tip area. The

result displayed in Figure 9. Each star mark is perturbation result from (2.31). Perturbative

result of 1
N

expansion for N = 100,200 lies outside of allowed region. Our result shows

bootstrap result and large-N expansion are comparable when N is larger than 300. Another

notable point here is appearance of kink at lower bound. For N = 100, kink do not appears

while other case shows sudden change of slope.

We also examined the impact of varying the parameter ∆gap at a fixed value of N. We

increased it to ∆gap = 40.0, which is much larger than the value we set in Figure 9. Since

we are now ruling out more theories than for ∆gap = 8.0, we expect the result carving more

space out. The result displayed in Figure 10 indeed demonstrate that our intuition is met.

The pattern of carving out is worth of nothing. Overall, the boundary curve of the allowed

region retains the shape of Σ. As the gap ∆gap is increased, the depletion mines out and

pushes the mid-part of the boundary curve (the part that takes >-shape) to the right. On ther

other hand, the outer boundaries – the upper boundary emanating from the upper tip and

lower boundary emanating from the lower tip - are little changed. We confirmed that this
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behavior persists even if ∆gap is increased up to 100.0.

We also checked validity of the 1/N-expansion. Even if the band gap is large, as in Figure

10 with ∆gap = 40.0, the ultraviolet nontrivial fixed point predicted by 1/N expansion (note

that this expansion comes with large coefficients) sits close to the tip of the allowed region.

This is the behavior we already observed for lower value of ∆gap, as in Figure 8 for ∆gap =

8.0.

From the proximity of the pertubative fixed point to the boundary of allowed region, we

also draw a conclusion that the 1/N-expansion becomes less reliable at larger band gap

∆gap. This can be gleaned from the data for N = 500. For ∆gap = 8.0, Figure 9 indicates

the perturbative fixed point was enclosed by the boundary curve. On the other hand, for

∆gap = 40.0, Figure 10 indicates the perturbative fixed point hits the boundary curve. Inferred

from Figure 9 to the trend of varying N, it is expected that the perturbative fixed point will

lies outside the allowed region for N less than 500.

We consider the large-N match in (∆φ,∆min)-space between the nontrivial fixed point pre-

dicted by large-N expansion and the tip of allowed Σ-region is a strong indication that the

two-gap approach is a useful method for locating nontrivial fixed point at any N.
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Chapter 3

Interlude : Scattering amplitude versus

Polygonal Wilson loop in N = 4 SYM

The N = 4 super Yang-Mills theory is maximally supersymmetric Yang-Mills theory

defined in 4-dimension. The structure of tree-level gluon scattering amplitude is same with

QCD since three-point interaction is identical. Therefore, we can utilize Parke-Taylor expres-

sion which developed in QCD. However, loop correction would be different with QCD. This

theory suffers from IR logarithmic divergence. To manage it, we should utilize dimensional

regularization. Since now spacetime dimension shifted 4 to 4− 2ε, the conformal symme-

try is broken. Therefore, Ward identity with respect to D or Kµ is violated. The conformal

anomaly governed by anomalous conformal Ward identity. Solution of this differential equa-

tion well matched with perturbtive computation. In this section, we will discuss remarkable

properties of gluon scattering amplitude defined in N = 4 SYM. The dual conformal sym-

metry, all-loop ansatz, conformal Ward identity and relation with polygonal Wilson loop will

be discussed.

3.1 Gluon Scattering Amplitude in N = 4 SYM

In this section, we will focus on gluon n-point amplitude defined in Yang-Mills Theory in

4-dimension. Since gluon field in this theory is massless, states are labeled by helicity, which

is given by ±1. The benifit of tree level amplitude in Yang-Mills theory is, the information

of gauge group is factorized due to identity of Lie algebra. The remained part often called

by color ordered amplitude. In summary, full amplitude is consist of non-cyclic permutation

of color ordered amplitude.

An = Tr[T a1 T a2 · · ·T an ]Ah1,h2,···hn
n (p1, p2, · · · , pn)+permutations (3.1)

Since we are considering SU(N) gauge theory, color indices ai runs from 1 to N2− 1.

A+++···+
n (p1, p2, · · · , pn) and A−++···+

n (p1, p2, · · · , pn) are vanished due to supersymmetry.

First nontrivial contribution in amplitude is called by Maximally Helicity Violation ampli-

tude(MHV), A++−···−
n (p1, p2, · · · , pn) or A−−+···+n (p1, p2, · · · , pn).

To compute tree-level amplitude, we should consider all possible diagrams in principle.

The complexity of computation is rapidly increase as growing particle number n. Up to
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n = 10, number of diagram is summarized in following table.

Number of external gluons 4 5 6 7 8 9 10

Number of diagrams 4 25 220 2485 34300 559405 10525900

It is almost impossible counting all these diagrams. Nevertheless, extremely remarkable

simplification occurs in N = 4 SYM. To explain it, let us recall the concept of twistor

formalism.

We define the momentum pαα̇ by,

pµ→ p̂αα̇ = pµσαα̇
µ =

(
p0 + p3 p1 + ip2

p1− ip2 p0− p3

)
(3.2)

It is easy to recognize that on-shell gluon momenta p2 = 0 corresponds to vanishment of

determinant p̂. Now, we introduce twisor λα and anti-twistor λ̃α̇ by

p̂αα̇ = λαλ̃α̇ (3.3)

The inner product of twistor is defined by

〈
i j
〉
≡ λα

i λ j,α,
[
i j
]
≡ λα̇

i λ̃ j,α̇,
〈
i j
]
≡ λα

i λ̃ j,α̇, (3.4)

By utilizing these definition, we can replace mometum dependence by twistor variables.

The n-point MHV gluon tree level amplitude has very simple structure in twistor variable

:

ATree
n (1−2−3+ · · ·n+) =

〈
12
〉4

〈
12
〉〈

23
〉
· · ·
〈
n1
〉δ(4)(

∑
pi) (3.5)

The loop correction is enters by scalar factor Mn, they are factorized from tree level ampli-

tude.

An = ATree
n ×Mn = ATree

n × (1+M
(1)
n +M

(2)
n + · · ·) (3.6)

Note that the information of helicity is completely imposed in tree level amplitude.

Bern, Smirnov and Dixon explicitly computed 4-point loop amplitude up to 3-loop. They

found that very remarkable recursive relation appears for loop amplitude. For instance, 2-

loop amplitude is related by 1-loop amplitude by

M
(2)
4 (ε) =

1

2

(
M

(1)
4 (ε)

)2

+ f (2)(ε)M
(1)
4 (2ε)+C(2)+O(ε) (3.7)

They found this kind of recursive relation still holds to 3-loop. Based on this observation,
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they made all-loop n-point ansatz on gluon scattering amplitude.

Mn ≡ 1+
∑

l=1

αlM
(l)
n = exp

[∑

l=1

αl
(

f (l)(ε)M
(1)
4 (lε)+C(l)+O(ε)

)]
(3.8)

For the case of 4-point amplitude, expression is simply summarized.

A4 = ATree(Adiv,s)
2(Adiv,t)

2exp
( f (λ)

8

(
Log

s

t

)2
+ const

)

Adiv,s = exp
(
− 1

8ε2
f (−2)

(λµ2ε

sε

)
− 1

4ε
g(−1)

(λµ2ε

sε

))
(3.9)

The function f (−2)
(λµ2ε

sε

)
is related to cusp anomalous dimension.

This BDS ansatz is consistent with dual conformal Ward identity. To describe dual con-

formal symmetry, let us first introduce dual coordinate from momentum pi.

pi ≡ xi+1− xi (3.10)

The dual conformal symmetry is generated by conformal generator based on dual coordi-

nate xi. This non-local symmetry is hidden symmetry of N = 4 SYM. In summary, N = 4

SYM theory has superconformal symmetry and dual conformal symmetry. Together, they

are called by Yangian symmetry. This dual conformal symmetry can be utilized for comput-

ing higher loop correction of scattering amplitude.

We can express loop integration with this dual variables. For instance, 1-loop box integra-

tion is reexpressed by

I
(1)
4 =

∫
d4q

q2(q− p1)2(q− p1− p2)2(q+ p4)2
=

∫
d4x5

x2
15x2

25x2
35x2

45

(3.11)

Here, internal momenta q is identified with x5− x1. By dual inversion, this 4-point 1-loop

amplitude behaves covariantly. Reflecting this, we can equivalently express above 1-loop

amplitude by

I
(1)
4 =

Φ(u,v)

x2
13x2

24

(3.12)

This structure is very parallel to 4-point correlation function defined in conformal field the-

ory. For the case of 3-loop amplitude, there are two class of amplitudes : Ladder diagram

and tennis court diagram. By utilizing dual conformal symmetry, indeed one can see these

two diagrams are equivalent. This way, dual conformal way makes loop computation more

easier.
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3.2 Polygonal Wilson loop expectation value in N = 4 SYM

The striking discovery in N = 4 SYM is that equivalent relation between gluon scatter-

ing amplitude and polygonal Wilson loop expectation value holds for out of Regge limit.

In other words, this theory is Regge exact. There are several benifit to considering polyg-

onal Wilson loop rather than scattering amplitude. First, number of diagrams appearing in

Wilson loop side is generally less than scattering amplitude. For large n, polygonal Wilson

loop computation is still doable while scattering amplitude is very hard to compute. Sec-

ond, dual conformal symmetry is realized in Wilson loop by conformal symmetry. This is

because, Wilson loop contour and location of cusp are realized by dual coordinate. If con-

tour is smooth, one get UV divergence as two point of contour approaches to each other.

However, this divergence correspond to power divergence, irrelevant to dimensional regu-

larization. Therefore, we need not worry about break down of conformal symmtery. When

contour has cusp, the divergent corresponds to logarithmic divergence. This should be reg-

ularized by dimensional regularization, eventually cause measure anomaly. This anomaly

realized by non-vanishing Ward identity for special conformal generator Kµ. This operator

is defined by

Kµ =
∑

i

[
xiµxi ·

∂

∂xi

− 1

2
x2

i

∂

∂x
µ
i

]
(3.13)

Operating on finite part of Wilson loop expectation valueFWL
n gives

KµFWL
n =

1

2
Γcusp(a)

∑

i

(2x
µ
i − x

µ
i−1− x

µ
i+1)Logx2

i−1,i+1 (3.14)

The solution of this differential equation is given by

F4 =
1

4
Γcusp(a)Log2

(x2
13

x2
24

)
+ const

F5 =−
1

8
Γcusp(a)

5∑

i=1

Log
(x2

i,i+2

x2
i,i+3

)
Log

(x2
i+1,i+3

x2
i+2,i+4

)
+ const

F6 =
1

4
Γcusp(a)

6∑

i=1

[
−Log

(x2
i,i+2

x2
i,i+3

)
Log

(x2
i+1,i+3

x2
i,i+3

)
+

1

4
Log2

( x2
i,i+3

x2
i+1,i+4

)

− 1

2
Li2

(
1−

x2
i,i+2x2

i+3,i+5

x2
i,i+3x2

i+2,i+5

)]
+ f (u1,u2,u3;a)+ const (3.15)
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These solution exactly corresponds to result of BDS ansatz. We have additional part f (u1,u2,u3;a)

that appears at F6. Indeed, BDS anstaz is known to be breaks down at 6-point amplitude. The

reason is simply figured out from this anomalous conformal Ward identity. From 6-point am-

plitude, we can define non-trivial three cross ratios u1,u2,u3. Since conformal cross ratio is

invatiant under conformal transformation, this differential equation cannot fix the structure

of f (u1,u2,u3;a). This function is called by remainder function.

The analytic structure of this remainder function of hexagon Wilson loop was obtained

in [35]. There, central tool was to utilize the special limit of the quasi-multi Regge kine-

matics(QMRK). It was found that the remainder function could be written with the uniform

transcendentality in terms of the Goncharov polylogarithms. The structure was very involved

but was reduced to a combination of classical polylogarithms of uniform transcendentality

of degree four [36]. These techniques were also utilized in subsequent works investigating

analytic structure of the remainder function up to three loop order [37, 38]. It was further

extended to analytic structure of the non-maximal helicity violating (nMHV) amplitudes at

two loop order with help of the symbols [39].
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Chapter 4

Polygonal Wilson loop in ABJM theory

We now turn to the ABJM theory and compare known results about scattering amplitudes

and lightlike Wilson loops with those of the N = 4 SYM theory. Given that both theories

are superconformal, one might anticipate from the AdS/CFT correspondence that the Wilson

loops / scattering amplitudes duality would hold equally and result in identical functional

structure, at least at strong coupling regime. This is not the case. In the ABJM theory, the

n-parton scattering amplitudes is definable only for even integers n = 4,6,8, · · · (since the

dynamical matter fields are in bifundamental representations), while the n-gon Wilson loops

exist for all integers n = 4,5,6, · · · . So, a possibility is that the duality holds only for even

integers n, while leaving Wilson loops of odd-sided polygons a class of its own. Secondly,

the open superstring in AdS4×CP
3 does not possess the fermionic T-duality. Absence of

fermionic T-duality symmetry implies no relation between scattering amplitudes and light-

like Wilson loops. This then rules out the duality relation between scattering amplitude and

Wilson loop in ABJM theory.

4.1 Main Results

Firstly, we obtained analytic result of the light-like hexagon Wilson loop at second-order

in ‘t Hooft coupling constant λ= (N/k). Regularizing the UV divergence by supersymmetric

dimensional reduction scheme with d = 3−2ε, the result reads

〈
W�[C6]

〉(2)
ABJM

= λ2

[
−1

2

6∑

i=1

(x2
i,i+2µ̃2)2ε

(2ε)2
+BDS

(2)
6 (x)+

(
9

2
Log2(2)+

π2

3

)]
. (4.1)

Here, xi (i = 1, · · · ,6) are hexagon vertex positions, and µ̃2 := 8πeγE µ2. The second term is

the UV-finite ”BDS” function 1 :

BDS
(2)
6 (x)=

1

2

6∑

i=1

[1

4
Log2(

x2
i,i+3

x2
i+1,i+4

)−Log(
x2

i,i+2

x2
i,i+3

)Log(
x2

i+1,i+3

x2
i,i+3

)− 1

2
Li2(1−

x2
i,i+2x2

i+3,i+5

x2
i,i+3x2

i+2,i+5

)
]
+

π2

2

(4.2)

1Hereafter, we shall adopt the terminology of corresponding quantities in the N = 4 SYM theory
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This function depends on the vertex positions the same way as the UV-finite, leading order

BDS function of the N = 4 SYM theory. All the finite parts in Eqs.(4.1, 4.2) exhibit the

property of the uniform transcendentality.

Secondly, we obtained the ABJM antenna function relevant for lightlike polygon Wilson

loops. Recall that, in the N = 4 SYM theory, the splitting function in the scattering ampli-

tudes is defined by the IR factorization associated with multiple collinear limit of massless

particles. Here, in ABJM theory, we dwell on special kinematic configuration and focus on

the limit of the Wilson loop contour. For reasons that will become clear later, we focus on a

sort of operator product expansion involving two collinear edges of fraction h1,h3 and one

soft edge of fraction h2 in between. This limit defines the triple antenna function: lightlike

n-gon Wilson loop is decomposable into a product of (n−2)-gon light-like Wilson loop and

this antenna function. At second order in ‘t Hooft coupling λ, the triple antenna function

consists of two parts: the pure Chern-Simons part and matter-dependent part. Our result is

[
Ant(2)[Cn]

Ant(0)[Cn]

]

CS

=
Log(2)

2ε

+
1

2
Log(2)Log(h1)+

1

2
Log(2)Log(h3)+

1

2
Log(2)Log(x2

24)+
1

2
Log(2)Log(x2

35)

− 7π2

24
+Log2(2) (4.3)

for the pure Chern-Simons part and

[
Ant(2)[Cn]

Ant(0)[Cn]

]

matter

=
1

4ε2
+

1

4ε
(Log(h1)+Log(h3)+Log(x2

24)+Log(x2
35))

+
1

2
Log(h1)Log(x2

24)+
1

2
Log(h3)Log(x2

35)+
1

2
Log(x2

35)Log(x2
24)

− 1

2
Log(h1)Log(h3)−

π2

6
(4.4)

for the matter-dependent part. The result demonstrates that splitting function also displays

the property of maximal transcendentality. Moreover, the result is independent of n, sug-

gesting that the triple antenna function holds universally for all n. The total triple antenna

function is strikingly similar to triple splitting function in the limit middle parton becomes

soft. We found, however, they are still subtly different.

Thirdly, combining the two results above, we obtained the simplest functional form of

lightlike polygon ABJM Wilson loop to the second-order in ‘t Hooft coupling. The requi-

site shape of lightlike polygon must be Euclidean and satisfy vanishing Gram determinant

condition.
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It turns out such kinematics requirements limit the lightlike polygon only to the one with

even number of cusps, marking a stark difference from the N = 4 SYM theory. Demanding

IR factorization of the Wilson loop with the universal antenna function, we obtained a ver-

sion of operator product expansion, leading to a linear recursion relation among the light-like

Wilson loops: 〈
W�[Cn]

〉
−→ Ant[Cn] ·

〈
W�[Cn−2]

〉
. (4.5)

Solving this recursion with the hexagon Wilson loop (4.1) as an input, we finally find that

〈
W�[Cn]

〉(2)
ABJM

= λ2

[
−1

2

n∑

i=1

(x2
i,i+2µ̃2)2ε

(2ε)2
+BDS

(2)
n (x)+Rem

(2)
n (u)

]
, (4.6)

where Remn(u) is the remainder function that depends on the Mandelstam invariants only

through conformal cross-ratios u’s. At two loops, the remainder function is independent of

u’s and reads

Rem
(2)
n (u) =

[
n

(
π2

12
+

3

4
Log2(2)

)
− π2

6

]
. (4.7)

Here, we extracted this analytic result by utilizing the PSLQ algorithm to the high precision

numerical integrations. As a nontrivial check, we derived the spacelike circular Wilson loop

expectation value from the n→ ∞ continuum limit and found perfect agreement with the

previous results.

4.2 Light-like Polygon Wilson loop in ABJM Theory

4.2.1 ABJM Theory

The ABJM theory describes (2+1)-dimensional supersymmetric matter interacting with

Chern-Simons gauge system. It has N = 6 superconformal symmetry (having 24 conserved

supercharges) and U(N)×U(N) gauge group with Chern-Simons levels +k,−k, respec-

tively. The gauge fields are denoted as Am(x) ∈ u(N) and Am(x) ∈ u(N). For foregoing con-

siderations, it suffices to note that the action includes the pure Chern-Simons density [25]

SCS =+
k

4π

∫
ddxεmnpTr

(
Am∂nAp +

2i

3
AmAnAp

)
(4.8)

SCS =− k

4π

∫
ddxεmnpTr

(
Am∂nAp +

2i

3
AmAnAp

)
. (4.9)

Here, the Chern-Simons density has levels +k and −k, respectively. Invariance of the action

under large gauge transformation puts k integer-valued. The action is invariant under the
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generalized parity that simultaneously reverts one spatial coordinates and exchanges the two

gauge fields. In this theory, the ABJM Wilson loop operator in the fundamental representa-

tion (�,1)⊕ (1,�) of the gauge group U(N)×U(N) is defined by [40]:

W�[C] :=
1

2

(
W�[C]+W�[C]

)
, (4.10)

where W�[C] and W�[C] refer to the Wilson loop of the fundamental representation of U(N)

and U(N) gauge groups, respectively.

The close contour C is a geometric datum of the Wilson loop operator. Hereafter, we

shall exclusively deal with Lorentzian contour Cn connecting n vertices x1,x2, · · · ,xn whose

adjacent points are lightlike-separated. The total set Cn with n = 4,5,6, · · · form lightlike

n-gons. Denote the distance vectors between a pair of vertices by

xi, j ≡ [xi− x j] i, j = 1, · · · ,n. (4.11)

Among them are the lightlike-separated edges xi+1,i. Denote a point on i-th edge by zi. In

parametrized form, it is

zi(τ) = xi + yiτ where yi ≡ xi+1,i, 0≤ τ≤ 1. (4.12)

We relegate notations for various Lorentz invariants of xi’s to Appendix A.

The lightlike n-gon Wilson loop operators for SU(N) and SU(N) gauge groups take the

form

W�[Cn] =
1

N
TrP exp

[
i

∮

Cn

dτAm(x(τ))ẋ
m(τ)

]
(4.13)

W�[Cn] =
1

N
TrP exp

[
i

∮

Cn

dτAm(x(τ))ẋ
m(τ)

]
. (4.14)

Both are 1/6-BPS operators preserving 4 supercharges. Under the generalized parity, the

two Wilson operators are interchanged each other. On the other hand, the ABJM Wilson

loop W�[C] is 1/2-BPS operator preserving 12 supercharges. By construction, it is invariant

under the generalized parity. The n vertices of Cn break all supersymmetries. This implies

that the expectation values of these Wilson loops receive quantum corrections. Analyzing

these corrections in the regime of infinite number of color N→∞ and weak ‘t Hooft coupling

λ = (N/k)≪ 1 is the main focus of this paper.
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4.2.2 Previous Results

Our goal is to compute the vacuum expectation value of the lightlike polygon Wilson loop.

In the planar limit, we evaluate it in perturbation theory of the ‘t Hooft coupling λ:

〈
W�[C]

〉
=

∞∑

ℓ=0

λℓ
〈
W�[C]

〉(ℓ)
(4.15)

and similarly for
〈
W�[C]

〉
and

〈
W�[C]

〉
. The Wilson loops

〈
W�[C]

〉
and

〈
W�[C]

〉
are 1/6-

BPS configurations and in general receive perturbative corrections to all orders in λ. On the

other hand, the ABJM Wilson loop
〈
W�[C]

〉
is 1/2-BPS configuration and receive perturba-

tive corrections only at even order of λ. This is an elementary consequence of the fact that

the ABJM Wilson loop is invariant under the generalized parity. Since the net effect of the

generalized parity is to flip k to −k, equivalently, λ to −λ, it follows immediately that

〈
W�[C]

〉ℓ=odd
=−

〈
W�[C]

〉ℓ=odd
(4.16)

Actually, the result is stronger at linear order in λ. At this order, kinematical considera-

tions indicate that
〈
W�[Cn]

〉(1)
and

〈
W�[Cn]

〉(1)
vanish separately. By the generalized parity

transformation, it also follows that

〈
W�[C]

〉ℓ=even
=
〈
W N [C]

〉ℓ=even
. (4.17)

We conclude that

〈
W�[C]

〉
=

∞∑

ℓ=0

λ2ℓ
〈
W�[C]

〉(2ℓ)
=

∞∑

ℓ=0

λ2ℓ
〈
W�[C]

〉(2ℓ)
. (4.18)

The leading-order correction arises at two-loop order O(λ2). The diagrams contributing

to this order are categorized to three groups [42]: matter-dependent diagrams, gauge boson

ladder diagrams, and gauge boson triple-vertex diagrams. The contribution of the matter di-

agrams is equivalent to one-loop contribution in the N = 4 SYM theory. This is because,

in the ABJM theory, the finite one-loop correction to the gauge boson propagator is pre-

cisely the same as the tree-level gauge boson propagator in the N = 4 SYM theory [?].

This means that differences between the ABJM theory and the N = 4 SYM originate from

ladder diagrams and triple-vertex diagrams. Both diagrams originate from gauge boson in-

teractions through the Chern-Simons parts. Computationally, these two contributions are the

most complicated.

The general structure of the two-loop corrections to the light-like Wilson loop expecta-
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tion value can be obtained by requiring the anomalous conformal Ward identities. For this

consideration, we can split the contributions to two parts: the matter contribution and the

Chern-Simons contribution.

As explained above, the matter contribution is structurally the same as the one-loop con-

tribution to the lightlike Wilson loops in N = 4 SYM theory. Therefore, it is useful to recall

how the anomalous conformal Ward identities determined the Wilson loop expectation value

in the (3+ 1)-dimensional SYM theory. There, the dilatation generator D and the special

conformal generator K were perturbatively modified by quantum corrections. The dilata-

tion symmetry is broken by the UV regularization and its Ward identity gets anomalous. To

O(λSYM), the (3+1)-dimensional SYM theory exhibits

D
〈
W [Cn]

〉∣∣∣
SYM

=−λSYM

[
∑ (x2

i−1,i+1µ2)ε

ε
+O(ε0)

]
. (4.19)

The O(ε0) term refers that this Ward identity is verified up to ε0-order. Using the elementary

relation

D

(
(x2

i, j)
ε
)
= 2ε(x2

i, j)
ε, (4.20)

we can find particular solution to the dilatational Ward identity as

〈
W [Cn]

〉∣∣∣
SYM

= λSYM

[
−1

2

∑ (x2
i−1,i+1µ2)ε

ε2
+O(ε0)

]
. (4.21)

Consideration of the special conformal generator K confirmes the result and further provides

information for the O(ε0) part, so-called the BDS function, BDSn. Homogeneous solution

to the conformal Ward identities is referred as the remainder function Remn. It depends only

on the conformal cross-ratios u of the n-sided polygon. Putting together and replacing λSYM

by λ2, we deduce that the matter contribution in the ABJM theory takes the form

〈
W�[Cn]

〉(2)∣∣∣
matter

=

[
−1

2

n∑

i=1

(−x2
i,i+2µ2)2ε

(2ε)2
+BDS

(2)
n (x)+Rem

(2)
n,SYM(u)+O(ε)

]
. (4.22)

The subscript in the remainder function refers to the fact that it was deduced from the one-

loop counterpart in the N = 4 SYM theory.

The pure Chern-Simons contribution is subject to the UV divergence. To regulate the

divergence while preserving the supersymmetry, we use the dimensional reduction scheme,

d = (3−2ε). The scheme also contributes anomalies to the conformal and special conformal
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Ward identities. The resulting anomalous Ward identities are [42]

D
〈
W [Cn]

〉∣∣∣
CS

=−Log(2)
( n∑

i=1

1
)
+O(ε)

K
m
〈
W [Cn]

〉∣∣∣
CS

=−2Log(2)
( n∑

i=1

xm
i

)
+O(ε) (4.23)

The full solution to these equations takes the form

〈
W�[Cn]

〉(2)∣∣∣
CS

=−Log(2)

2

n∑

i=1

(−x2
i,i+2µ2)2ε

2ε
+Rem

(2)
n,CS(u)+O(ε). (4.24)

For the tetragon Wilson loop, n= 4, the two-loop result was computed in [42]. The Chern-

Simons contribution in (4.24) is absorbable to the matter-dependent part by redefining the

UV regularization scale µ. Remarkably, the final result coincides with the one loop result

in N = 4 SYM theory. Explicitly, the matter-dependent contribution and the ladder plus

triple-vertex contribution take the form [68]

〈
W�[C4]

〉(2)∣∣∣
matter

=−(−x2
134πeγE µ2)2ε

(2ε)2
− (−x2

244πeγE µ2)2ε

(2ε)2
+

1

2
Log2

(x2
13

x2
24

)
+Rem

(2)
4 (u)

∣∣∣
matter

(4.25)

〈
W�[C4]

〉(2)∣∣∣
CS

=−Log(2)

2

4∑

i=1

(−xi,i+2πeγE µ2)2ε

2ε
+Rem

(2)
4 (u)

∣∣∣
CS

(4.26)

Hereafter, we denote Rem
(2)
n,matter(u) for the IR finite part of

〈
W�[Cn]

〉(2)
matter

modulo the BDS

finite part. Also, Rem
(2)
n,CS(u) is the IR finite part of

〈
W�[Cn]

〉(2)
CS

. For the tetragon Wilson

loop, n = 4, these numerical constants are given by

Rem
(2)
4 (u)

∣∣∣
matter

=
π2

4

Rem
(2)
4 (u)

∣∣∣
CS

=
5π2

12
−2Log2(2). (4.27)

Finally, the two contributions, (4.25) and (4.26), can be combined to the following compact

form for the ABJM theory

〈
W�[C4]

〉(2)
ABJM

=−(−x2
13µ̃2)2ε

(2ε)2
− (−x2

24µ̃2)2ε

(2ε)2
+

1

2
Log2

(
x2

13

x2
24

)
+Rem

(2)
4 (u)+O(ε).

(4.28)
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Here, µ̃ is the uniformizing UV regulator scale related to µ by

µ̃2 = 8πeγE µ2. (4.29)

The remainder function Rem
(2)
4 (u) is

Rem
(2)
4 (u) = Rem4(u)

∣∣∣
matter

+Rem4(u)
∣∣∣
CS

+5Log2(2)

= +3Log2(2)+
2π2

3
. (4.30)

The last term in the first line is from the uniformization (4.29) of the regulator scale. The

remainder function is independent of the conformal cross-ratios u’s, much the same way as

the one-loop result in the N = 4 SYM theory. Moreover, it displays the uniform transcen-

dentality property.

4.3 Hexagon Wilson Loops at Two Loops

Our goal in this paper is to obtain the remainder function Rem
(2)
n (u) in (4.24) for general

n≥ 6. For later convenience, we decompose the second-order corrections to the Wilson loop

expectation value as

〈
W�[Cn]

〉(2)
ABJM

=
[〈

W�[Cn]
〉(2)

matter
+
〈
W�[Cn]

〉(2)
ladder

+
〈
W�[Cn]

〉(2)
vertex

]
µ̃

=
[〈

W�[Cn]
〉(1)

N =4 SYM

]
BDS

+Rem
(2)
n (4.31)

In the second line, we related the functional form of the ABJM Wilson loop expectation

value to that of the N = 4 SYM Wilson loop expectation value. The BDS part is abelian, so

it must be that both are the same. The remainder function is theory specific. In ABJM theory,

Remn is related by

Rem
(2)
n := Rem

(2)
n

∣∣∣
matter

+Rem
(2)
n

∣∣∣
CS

+
5

4
nLog2(2) (4.32)

The last term constant originated from uniformizing the UV regulator scale as in (4.29). The

contribution Rem
(2)
n,CS is computationally most complicated.

Our first task is to compute Rem
(2)
n (u) for n = 6 analytically. For n > 6, we will determine

Rem
(2)
n (u) using recursion relations that we will derive in later from soft-collinear factoriza-

tion of the light-like Wilson loop and analytic result for n = 6 as an input.

It turns out the anomalous conformal Ward identities demand that the Wilson loop ex-
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Figure 11: The Feynman diagrams contributing to the light-like hexagon Wilson loop at

leading order are (a) ∼ (m) and cyclic permutations of the six edges. We classify them by

(a) ∼ (d) as triple-vertex contributions, (e) ∼ (j) as ladder contributions, and (k) ∼ (m) as

matter contributions.
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pectation value must take the form Eq.(4.31). Here, we want to determine the remainder

function Remn in Eq.(4.31). To this end, we evaluate all contributing Feynman diagrams to

two loop orders. We shall regularize the UV divergences in the dimensional regularization

d = (3−2ε) and adopt the dimensional reduction scheme DRED that treats the Levi-Civita

symbol εmnp as 3-dimensional tensor while all others as d-dimensional tensors.

In above Figure, we display the relevant diagrams. The complete list of the contributing

diagrams include them and their cyclic permutations with respect to the hexagon edges. For

foregoing discussions, we classify the diagrams in Figure 1 into three groups: triple-vertex

diagrams for (a)-(d), ladder diagrams for (e)-(j), and matter-dependent diagrams (k)-(m).

Computationally, we found that the triple-vertex diagrams the most complex. All of them

involve the gauge field propagator (∆mn)(x,y). We take the Landau gauge. In this gauge, the

tree-level gauge field propagator is parity-odd and is given in position space by

(∆mn)
(0)(x,y) =

λ

N
I⊗ I Zo

εmnp(x− y)p

[(x− y)2]
d
2

where Zo = π(2−d)/2Γ(d/2). (4.33)

4.3.1 Matter Contribution

For the diagrams (k)-(m) in Figure, it suffices to first consider the self-energy of the gauge

fields. At one-loop, the gauge field propagators receive corrections from vacuum polarization

of matter fields. The one-loop corrected self energy is equal to the tree-level gauge field

propagator in N = 4 SYM [40, 41] In position space, the one-loop corrected gauge field

propagator ∆
(1)
mn(x,y) is parity-even and takes the form

∆
(1)
mn(x,y) =−

λ2

N
I⊗ I Ze

gmn

((x− y)2)d−2
where Ze = π2−dΓ2

(
d/2−1

)
(4.34)

The matter contribution is computable parallel to the leading-order in the N = 4 SYM

theory, except replacing the propagator with ∆
(1)
mn(x,y) in (4.34):

〈
W�[Cn]

〉(2)
matter

=
1

λ2

1

N
TrP

∮
dxm

i

∮
dxn

j

(
i2∆

(1)
mn(zi,z j)

)

=
(
(4πeγE )2ε +

π2

2
ε2 +O(ε3)

) n∑

i> j=1

Ii j (4.35)

Here, Ii j is the integral of one gauge boson exchange between edges i, j along the contour

Cn:

Ii j(x) =

∫ 1

0

dτi

∫ 1

0

dτ j

yi · y j

[(zi− z j)2]d−2
(i, j = 1,2, · · · ,n) (4.36)
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It is straightforward to evaluate these integrals (4.36), as was done in [52]. Singular loci of

the denominator are where the UV divergences arise and they occur precisely at the cusps,

viz. when the gauge propagator connects two points on adjacent edges and approach toward

the cusp in between.

For the adjacent diagrams, the integration is straightforward. The leading UV divergence

is readily obtained as

Ii+1,i(x) =

∫
dτi

∫
dτi+1

yi · yi+1

[(zi+1− zi)2]d−2
=−1

2

(x2
i,i+2)

2ε

(2ε)2
. (4.37)

Non-adjacent diagrams are UV finite. Summing them over all possible distinct permutations,

we obtain the so-called the BDS function BDS
(2)
n :

BDS
(2)
n (x) ≡

n∑

i> j+1

Ii j(x) (4.38)

These integrals can be evaluated analytically, as was done in [52]:

Ii j(x) =
1

2

[
−Li2(1−as)−Li2(1−at)+Li2(1−aP2)+Li2(1−aQ2)

]
i j
. (4.39)

Here, the parameter a is given by [52]

a =
s+ t−P2−Q2

st−P2Q2
, where P2 = x2

i, j+1, Q2 = x2
i+1, j, s = x2

i, j, t = x2
i+1, j+1.

(4.40)

Combining this with Eq.(4.35), it follows that the matter contribution to the Wilson loop

expectation value is given by

〈
W�[Cn]

〉(2)
matter

=−1

2

n∑

i=1

(x2
i,i+24πeγE µ2)2ε

(2ε)2
+BDS

(2)
n (x)+Rem

(2)
n (u)

∣∣∣
matter

+O(ε). (4.41)

Here, the matter contribution to the remainder function is given by

Rem
(2)
n (u)

∣∣∣
matter

=− 1

16
nπ2. (4.42)

For the special case of n = 4, this result reproduces (4.25) and the remainder function (4.27).
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4.3.2 Gauge Boson Ladder diagram

The pure Chern-Simons term generates ladder diagrams and triple-vetex diagrams. The

ladder diagram contributes to the Wilson loop expectation value as

〈
W�[Cn]

〉(2)
ladder

=

(
Γ
(

d
2

)

π
d−2

2

)2 ∑

P (i, j,k,l)

Iladder(x) (4.43)

Here, P (i, j,k, l) refers to sum over path-ordered, pairwise connections among the four seg-

ments (i, j,k, l) and the Iladder integral is given by

I
{i, j,k,l}
ladder =

∫
dτi · · ·

∫
dτl

ε(yi,yl ,zi− zl)

[(zi− zl)2]
d
2

ε(y j,yk,z j− zk)

[(z j− zk)2]
d
2

, (4.44)

where the superscript {i, j,k, l} labels the edges that the gauge field is attached. For instance,

for the hexagon, the six configurations

{i, j,k, l} = {4,4,1,1},{5,4,1,1},{4,3,1,1},{5,3,1,1},{3,3,1,1},{5,4,2,1} (4.45)

and their cyclic permutations should be summed over . Importantly, these ladder diagrams

are all UV finite.

4.3.3 Triple-Vertex Diagram

The triple-vertex diagrams are reduced to tensor integrals involving the Levi-Civita tensor

εmnp. We deal with such tensor integrals by reducing them to scalar integrals via the relations

Imnp(x,y,z) =
∂

∂yn

∂

∂zp
Im(y− x,z− x), (4.46)

where Im(y− x,z− x) is given by

Im(a,b) =

∫
ddw

wm

|w|d|w− (y− x)|d|w− (z− x)|d . (4.47)

Contracting the Levi-Civitat tensors with the segment vectors of the polygon, one obtains

integrals in readily evaluatable forms.

Triple-vertex diagram contributes to the Wilson loop expectation value as

〈
W�[Cn]

〉(2)
vertex

=
i

2π

(Γ
(

d
2

)

π
d−2

2

)3 ∑

path-ordered

I
{i, j,k}
vertex (4.48)
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Here again, the superscript {i, j,k} labels the edges where the gauge field is attached. The

path ordering restricts i > j > k case only. In self-explaining notation, the integral takes the

form

I
{i, j,k}
vertex (x) =

∫

R2,1
ddw

[∫
· · ·
∫

dτidτ jdτkεabc ε(yi,a,w− zi)ε(y j,b,w− z j)ε(yk,b,w− zk)

[(w− zi)2]
d
2 [(w− z j)2]

d
2 [(w− zk)2]

d
2

]
.

(4.49)

In the case of hexagon, the four configurations

{i, j,k} = {3,2,1},{4,2,1},{4,3,1},{5,3,1} (4.50)

and their cyclic permutation generate all possible diagrams. Among them, divergence ap-

pears only through {3,2,1}-type configuration.

Note that the triple-vertex diagrams are UV-divergent. These divergences arise from con-

figurations whose three attached points of the gauge bosons approach a single segment. The

{3,2,1} diagram is an example of such configuration. After the Mellin-Barnes transforma-

tion, the integral I
{3,2,1}
vertex can be brought to a form that can be evaluated in part analytically

and in part numerically with high precision.

The result reads

I
{3,2,1}
vertex (x) =

iπ
d
2 Γ(d−1)

8Γ(d
2
)3

(
4πLog(2)

(x2
13µ2)2ε

ε
+4πLog(2)

(x2
24µ2)2ε

ε
+ I
{3,2,1}
finite

)
. (4.51)

Summing over all possible path-ordered triples (i, j,k), we find that

∑

P (i, j,k)

I
{i, j,k}
vertex (x) =

iπ
d
2 Γ(d−1)

8Γ(d
2
)3

(
8πLog(2)

n∑

i=1

(x2
i,i+2µ2)2ε

2ε
+ Ifinite

)
, (4.52)

The leading UV-divergence is 1
ε , in contrast to 1

ε2 leading UV-divergence in matter contribu-

tion.

4.3.4 Wilson Loop of the Pure Chern-Simons Theory

In pure Chern-Simons theory, the contribution
〈
W�[Cn]

〉(2)
CS

is obtained by combining
〈
W�[Cn]

〉(2)
ladder

and
〈
W�[Cn]

〉(2)
vertex

. To evaluate these expectation values, we carry out ten-

sor integral
∑

i> j>k>l Iladder
i, j,k,l and

∑
i> j>k Ivertex

i, j,k .
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The result is

〈
W�[Cn]

〉(2)
CS

=
〈
W�[Cn]

〉(2)
ladder

+
〈
W�[Cn]

〉(2)
vertex

=
(Γ
(

d
2

)

π
d−2

2

)2
n∑

i> j=1

I
i, j
ladder +

i

2π

(Γ
(

d
2

)

π
d−2

2

)3
n∑

i> j>k=1

I
i, j,k
vertex (4.53)

Inserting (4.52), we finally obtain

〈
W�[Cn]

〉(2)
CS

=−
(Γ(d−1)

2

π2−d

8

)(
4πLog(2)

n∑

i=1

(x2
i,i+2µ2)2ε

ε
+ Ifinite

vertex

)
+
(Γ
(

d
2

)

π
d−2

2

)2 ∑

i> j>k>l

I
i, j,k,l
ladder

=−
(Γ(d−1)

2

π2−d

8

)(
4π log(2)

n∑

i=1

(x2
i,i+2µ2)2ε

ε

)
+ ICS +O(ε)

=−Log(2)

2

n∑

i=1

(x2
i,i+2πeγE µ2)2ε

2ε
+Rem

(2)
n,CS(u)+O(ε) (4.54)

In second line, we used the fact that Ifinite
vertex and

∑
i> j>k>l I

i, j,k,l
ladder are finite quantity. For con-

venience, we defined here

ICS =− 1

16π
Ifinite
vertex +

1

4

∑

i> j>k>l

I
i, j,k,l
ladder. (4.55)

Explicit expansion of the last line in (4.54) yields relation between ICS and Remn,CS(u):

Rem
(2)
n,CS(u) = ICS +

n

2
Log(2). (4.56)

We will evaluate ICS numerically. Before proceeding, we will need to digress to general

consideration of free kinematic variables in light-like polygon, viz. the moduli space of

light-like polygon.
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4.4 Euclid, Mandelstam and Gram

The first step in evaluating the remainder function is to specify the geometry of lightlike

polygon. We shall call it the kinematics. In this section, we present general considerations

of the moduli space of a lightlike n-gon Cn.

4.4.1 Moduli Space of Lightlike Polygon

The contour Cn is specified by the set of points x1, · · · ,xn. They are lightlike separated

with adjacent neighbors, and can always be brought to

x1 + · · ·+ xn = 0. (4.57)

by translation invariance. Equivalently, Cn can be specified by the segment vectors y1, · · · ,yn.

They are all light-like (y2
i = 0), and trivially satisfy the closedness condition

y1 + · · ·+ yn = 0. (4.58)

The two are discrete, polygon counterpart of the statement that a smooth curve can be de-

scribed either by specifying position vectors of the curve or by specifying tangent vectors

of the curve. Either way, one finds that the moduli space M [Cn] of n-sided polygon Cn in

d-dimensional embedding space is given by

dimM [Cn] = (dn−n)−d− 1

2
d(d−1). (4.59)

The dimension of the moduli space (4.59) grows linearly with n, the number of x’s or y’s.

For instance, consider the n = 6 hexagon. We can specify 6 position vectors, x1, · · · ,x6 sub-

ject to (4.57). Out of 6× 3 = 18 components, light-like conditions x2
i,i+1 = 0 eliminates 6,

(4.57) eliminates 3 and so(2,1) Lorentz transformation eliminates 3. The remaining 6 inde-

pendent variables are the moduli of C6. Alternatively, we can also specify 6 segment vectors

y1, · · · ,y6 subject to (4.58). Out of 6×3 = 18 components, light-like conditions y2
i = 0 elim-

inate 6, (4.58) eliminates 3 and so(2,1) Lorentz transformation eliminates 3. The remaining

6 independent variables are the moduli of C6.

On the other hand, by the Poincaré invariance, the lightlike Wilson loops are not functions

of xi’s or yi’s themselves, but are functions of the Mandelstam invariants x2
i j , i, j = 1, · · · ,n.

They vanish for j = i, i±1, so the net number of nontrivial invariants is given by

dimM(Cn) =
1

2
n(n−3). (4.60)
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Alternative choice of the Mandelstam invariants are y2
i j. They range over i, j = 1, · · · ,(n−1)

because of the closedness condition (4.58). They also vanish for j = i. Altogether, the net

number of nontrivial invariants is given again by (4.60). Their number grows quadratically

with n, so would outgrow the dimension of n-gon moduli space (4.59). It must be that many

of the Mandelstam invariants are redundant.

The projection of the space of Mandelstam invariants to the space of polygon moduli is

achieved by the geometric condition that n vectors in d dimensional spacetime are necessar-

ily linearly dependent for n > d. To this end, consider the Gram matrix G, whose (i, j) entry

is given by yi · y j:

G≡MT ·M =




y1 · y1 y1 · y2 y1 · y3 · · · y1 · yn

y2 · y1 y2 · y2 y2 · y3 · · · y2 · yn

y3 · y1 y3 · y2 y3 · y3 · · · y3 · yn

...
...

...
. . .

...

yn · y1 yn · y2 yn · y3 · · · yn · yn




(4.61)

Here, M is (d× n) matrix whose entries are the segment vectors M = (ym
1 ,y

m
2 , · · · ,ym

n ). De-

terminant of G, called Gram determinant, is nothing but the square of the hypercube volume

spanned by the segment vectors:

DetG(i, j) = ||y1∧ y2∧ y3∧ ·· ·∧ yn||2. (4.62)

Because of the closedness condition (4.58), the Gram determinant vanishes identically. More-

over, d-dimensional spacetime accommodates at most d many linearly independent vec-

tors. Hence, in Gram matrix, determinant of any (d + 1)× (d + 1) sub-matrices ought to

vanish identically. There are (n− d− 1)(n− d)/2 many such choices, so these Gram sub-

determinant conditions project the space of Mandelstam variables down to the space of in-

dependent scalar invariants of dimension

dimΠGM(Cn) =
1

2
n(n−3)− 1

2
(n−d−1)(n−d) = (d−1)n− 1

2
d(d +1). (4.63)

This matches precisely with the dimension of the moduli space of n-sided lightlike polygon

(4.59).

4.4.2 Euclidean Configuration

In evaluating the lightlike polygon Wilson loop operator expectation value , the input data

of Cn are the vectors xi’s or yi’s of the polygon. On the other hand, the expectation value is
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Poincaré invariant, so it must depend on these vectors only through scalar products:

yi · y j =
1

2

[
x2

i, j+1 + x2
i+1, j− x2

i, j− x2
i+1, j+1

]
. (4.64)

This suggests it natural to take the Mandelstam variables as input parameters. This is what we

shall do for numerical computations. On the other hand, as we saw above, the Mandelstam

variables are not mutually independent and need to be further supplemented by the Gram

sub-determinant conditions.

A complication is that, typically, the Gram sub-determinant conditions are too involved

to solve explicitly. In evaluating the Feynman loop integrals, we shall employ the Mellin-

Barnes transformations. During the evaluation, we shall provisionally assume that the Man-

delstam variables are linearly independent until we perform the Mellin-Barnes transforma-

tions. We then evaluate the transformed expressions numerically, and at this stage we shall

impose the Gram sub-determnant conditions by taking special kinematics of Cn such that it

becomes consistent with these conditions.

We found numerically that Rem(u) yields physically meaningful values when Mandel-

stam variables are restricted by the Gram sub-determinant conditions and that, in solving the

anomalous conformal Ward identity, the remainder function Rem(u) is expressed in terms of

cross ratios only after the Gram sub-determinant conditions are imposed to the Mandelstam

variables.

Often, the Mellin-Barnes transformed integrals involve spurious poles. To avoid them, it

is necessary to impose all the Mandelstam variables to have the same sign. We shall call

this condition as “Euclidean condition”. It turns out that, for the segment vectors yi’s, the

condition is satisfied by making timelike components of adjacent edge vectors to have oppo-

site signs. As the segment vectors y’s are subject to the closedness condition, this condition

then implies that only even numbers of edges n = 2N are permissible. This purely kinemati-

cal consideration imposes that the polygons relevant for the lightlike ABJM Wilson loops 2

must be restricted to those with even numbers of the edge. Though lacking a general argu-

ment, we think that this is a general kinematic condition.

To illustrate this, consider the case of hexagon. A choice of the edge vectors y1, · · · ,y6

satisfying the Euclidean condition and the closedness condition y1 + · · ·+ y6 = 0 are

y1 = (−
√

a2 +b2,a,b) y2 = (+
√

c2 +d2,c,d) y3 = (−
√

e2 + f 2,e, f )

y4 = (+
√

g2 +h2,g,h) y5 = (−
√

p2 +q2, p,q) y6 = (+
√

r2 + s2,r,s)
(4.65)

First, we set the time-component of the edge vectors of alternating sign so that every Mandel-

2This restriction applies to any conformal field theories in three dimensions.
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stam variables are positive. Take for example the hexagon. Among 9 Mandelstam variables,

6 variables are inner product of consecutive segment vector, viz. 2yi · yi+1. Then,

x2
1,3 = 2y1 · y2 =±2

√
a2 +b2

√
c2 +d2±2ac±2bd. (4.66)

By triangle inequality, sign of this Mandelstam variable is determined by the first term.

To make it positive, we see that the edge vectors must be chosen to have consecutively

alternating signs of their time components.

Moreover, the Euclidean condition requires other 3 Mandelstam variables(x2
14 ,x

2
25,x

2
36)

should be also positive. This further constraints number of independent variables appearing

in (4.65). Nevertheless there are 9 possible combination of Mandelstam variables, arbitrarily

choice of them may cause inconsistency with Euclidean and closedness condition. Follwing

from counting (4.63), number of independent Mandelstam variables are given by 6, not 9.

Such kinematical restrictions bear the following geometric implications to the ‘triple-

collinear factorization’ we will study in the next section. Recall that, by construction, a

lightlike polygon is made of oriented edges which are all lightlike. When we take a polygon

and let two non-adjacent vertices xi,x j( j 6= i±1) become lightlike, we see we can decompose

the lightlike contour of the parent polygon as a sum of two lightlike contours of daughter

polygons. The absence of polygons with odd numbers of the edge also puts the constraint

that the factorization must involve even number of consecutive vertices. This condition is

also compatible with the requirement that the time component of edge vectors must be sign

alternating. We see that such factorization gives rise to a nonlinear recursion relations among

the lightlike Wilson loops.

4.4.3 Moduli Space of Conformal Lightlike Polygon

Up until now, in counting the moduli space of lightlike polygons, we only took into ac-

count the Poincaré symmetry of embedding spacetime. We now further endow the polygons

with conformal symmetry. Replacing the Poincaré symmetry so(d− 1,1) by the conformal

symmetry so(d,2), we see that the dimension of moduli space of conformal lightlike poly-

gons is modified to

dimMc[Cn] = (d−1)n− 1

2
(d +1)(d +2). (4.67)

On the other hand, we elaborated in the previous section that the geometry of lightlike poly-

gons is more conveniently described in terms of Mandelstam variables but these variables

are not mutually independent. The requisite projection of the Mandelstam variables is the

Gram condition. Below, we explain how this can be achieved.
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The dimension of parameter space of conformally invariant Mandelstam variables, viz.

the conformal cross-ratios

ui, j =
x2

i, j+1x2
i+1, j

x2
i, jx

2
i+1, j+1

, (4.68)

is given by

dimMc[Cn] =
1

2
n(n−1)−n−n =

1

2
n(n−5), (4.69)

x j
x j+1

xi

x2
i, j

xi+1

x2
i+1, j+1

x2
i, j+1

x2
i+1, j

x j
x j+1

xi

x2
i, j

xi+1

x2
i+1, j+1

x2
i, j+1

x2
i+1, j

(a) (b)

The counting is simple. To construct a cross-ratio, we need two distinct edges. There are

n(n− 1)/2 possible pairs of edges. However, the resulting cross-ratio vanishes if the two

edges chosen are nearest neighbors or next-nearest neighbors.

We are again in a situation that, in a given spacetime dimension, the dimension of the mod-

uli space of conformal cross-ratios (4.69) outgrows dimension of moduli space of conformal

lightlike polygon (4.67) we want to describe. The requisite projection to the conformal cross-

ratios is achieved by the Gram condition modulo conformal equivalence relations.

Let’s be more explicit. A conformal covariant vector xm in R
d−1,1 can be equivalently

described by projection of a vector XA = (X1,X0,X1, · · · ,Xd) in embedding Minkowski space

R
d,2 onto the lightlike hyperboloid:

ηABXAXB =−(X−1)
2− (X0)

2 +(X1)
2 + · · ·+(Xd)

2 = ηmnXmXn−2X+X− = 0. (4.70)

Choosing the lightcone coordinates X± = (X−1±Xd)/
√

2 are the lightcone coordinates, the

vector xm is projectively obtained by

xm =
Xm

X+
. (4.71)
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The action of the conformal group SO(d,2) to the vector xm is equivalent to the action of

linear transformations acting on XA lying on the lightlike hyperboloid (4.70). It is known

that the space of x-vectors is Rd−1,1 provided the SO(d,2) is gauge-fixed to X+ = 1. In this

gauge,

X2
i j =−2Xi ·X j = x2

i j. (4.72)

From this, it also follows that

Yi := (Xi+1 = Xi) = (yi,0,Y
−

i ) (i = 1, · · · ,n) (4.73)

are lightlike in R
d,2. We thus associated the conformal edge vectors yi’s of a conformal

lightlike polygon in the physical spacetime R
d−1,1 with the edge vectors Yi’s of a lightlike

polygon in the embedding space R
d,2. This then implies that the space of conformal cross-

ratios in R
d−1,1 is the same as the space of Mandelstam variables in R

d,2. Therefore, the

dimension of the moduli space of conformal cross-ratios is given by

dimMc(Cn) =
1

2
n(n−1)−n−n =

1

2
n(n−5). (4.74)

We subtracted n for choosing adjacent edge pairs, and n for choosing next-adjacent edge

pairs.

How do we match this moduli space to the moduli space of conformal lightlike polygons?

The idea is that the Gram sub-determinants of the vectors project the cross-ratios down to

the space of independent ones. The Gram determinant in the embedding space is now given

by

Gc = MT
c ·Mc =




Y1 ·Y1 Y1 ·Y2 · · · Y1 ·Yn

Y2 ·Y1 Y2 ·Y2 · · · Y2 ·Yn

...
...

. . .
...

Yn ·Y1 Yn ·Y2 · · · Yn ·Yn




(4.75)

Because of the closedness condition, the Gram determinant itself vanishes identically. Since

the embedding space Rd,2 accommodates at most (d+2) many linearly independent vectors,

Therefore, there are (n−(d+1))(n−(d+1)−1)/2 many Gram sub-determinant conditions.
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Therefore, the dimension of conformal cross-ratios is

dimΠGMc[Cn] =
1

2
n(n−5)− 1

2
(n−d−1)(n−d−2) = (d−1)n− 1

2
(d +1)(d +2).

(4.76)

This matches precisely the dimension of moduli space of conformal lightlike polygons

(4.67).

4.5 The Hexagon Remainder Function

In this section, we compute the remainder function Rem
(2)
6,CS, relevant for the hexagon

ABJM Wilson loop expectation value. We explained that this computation involves multi-

dimensional scalar integrals. In this section, we compute them.

We expect from the anomalous conformal Ward identity that the remainder function

Remn,CS depends only on the conformal cross-ratios. In setting up the computation, we can

readily verify this property of the remainder function by varying shapes, equivalently, Man-

delstam variables of the lightlike polygon. Not all the Mandelstam variables are independent

and, as we explained in section 4, it is necessary to impose the Gram sub-determinant con-

ditions. This condition turns out a stark difference from what were known for extracting the

remainder function in the four-dimensional N = 4 SYM. In section 5.5.1, we recall this

situation in detail.

For the computation of multi-dimensional integrals, we utilize public packages. The scalar

integrals we need to compute span up to 8-dimensional complex integrations. The traditional

MB package [53] turns out not powerful enough to render the result with requisite numerical

precisions. Instead, we utilize the package FIESTA2, [54]. In the following subsections,

we present details of the computation. In section 5.5.2, we present numerical computa-

tions performed using the FIESTA2 package. In section 5.5.3, for the special shapes of

the hexagon discussed in the previous section, we reduce our multi-dimensional integrals to

lower-dimensional integrals. The reduction facilitates to achieve high precision to the nu-

merical computations. In section 5.5.4, we utilize the PSLQ algorithm and infer analytic

expressions of the Rem6,CS from the numerical results.

4.5.1 Remainder Function in N = 4 Super Yang-Mills Theory

We explained that the Mandelstam variables are the Lorentz scalars convenient for speci-

fying the geometry of lightlike polygon, they need to be further projected down to the space

of conformal cross-ratios since they are not mutually independent. We alluded that such

projection is achieved by the Gram sub-determinant conditions. Therefore, in the numerical
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computation in this section of the hexagon remainder function, we shall cover the moduli

space of the lightlike hexagon by varying the Mandelstam invariants over the subspace that

the Gram sub-determinant conditions are satisfied.

While our prescription is the most natural steps to take, this was not what was practiced

when the hexagon remainder function was computed in the (3+1)-dimensional N = 4 SYM

theory. There, the anomalous conformal Ward identities also put the remainder function to

be a function of conformal cross-ratios. The lightlike Wilson loops were again specified by

Mandelstam invariants. Remarkably, it was observed that two sets of Mandelstam invari-

ants, one obeying the Gram sub-determinant conditions and another not, yielded an identical

result for the remainder function. In so far as the cross-ratios are the same, any choice of

the Mandelstam variable set is allowed regardless of solving the Gram sub-determinant con-

ditions. Indeed, this explains why lightlike Wilson loops with odd numbers of edges are

admissible configurations in the N = 4 SYM theory.

As the Mandelstam variables can be chosen freely thus they can be taken ‘unphysical’ val-

ues outside the moduli space of the hexagon, wide variety of kinematic limits become avail-

able in so far as evaluation of the remainder function is concerned. In the (3+1)-dimensional

N = 4 SYM theory, this freedom was maximally taken into advantage. A particularly useful

limit was the quasi multi-Regge kinematics (QMRK), since this kinematics enabled deter-

mination of the hexagon remainder function and understanding its analytic structure. For

(2+1)-dimensional ABJM theory, we concluded in section 4 that such kinematic limits are

not available and we should impose the Gram sub-determinant conditions throughout.

The Gram sub-determinant conditions essential for the ABJM theory bears further impact.

In the the (3+ 1)-dimensional N = 4 SYM theory, another useful kinematic limit was to

take the lightlike polygon to (1+1)-dimensional subspace. This limit brought in enormous

simplification and facilitated computation of the remainder function analytically tractable.

Unfortunately, for kinematical reasons again, this limit is also not available for (2 + 1)-

dimensional ABJM theory. This is because the (1+1)-dimensional kinematics cruially relies

on the Euclidean condition and the closedness of edge vectors. Take for instance the lightlike

hexagon and restrict it to the (1+ 1)-dimensional lightlike basis, (1,−1) and (1,1). The 6

edge vectors obeying the Euclidean condition are parametrized as

y1 = (a,−a), y2 = (b,b), y3 = (c,−c), y4 = (d,d), y5 = (e,−e), y6 = ( f , f ),

(4.77)

where a,b,c,d,e, f are restricted to be positive. To obey the closedness, both a+ b+ c+

d + e+ f = 0 and a− b+ c− d + e− f = 0 should be satisfied. We see that these condi-

tions cannot be met, since the positivity of a,b,c,d,e, f violates first equation. Therefore,
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(1+ 1)-dimensional lightlike condition, Euclidean condition and closedness are not mutu-

ally compatible.

4.5.2 Scalar Invariants and Gram Sub-Determinant Conditions

Here, we first study how the hexagon remainder function depends on the Mandelstam

variables and the Gram sub-determinant conditions. We shall find that the dependence in

the (2+1)-dimensional ABJM theory is very different from the dependence in the (3+1)-

dimensional N = 4 SYM theory.

We computed numerically both the triple-vertex diagrams and the ladder diagrams listed

in Figure 2. Adding them, we obtained the hexagon remainder function at two loops, Rem
(2)
6,CS

as a function of 9 Mandelstam variables of the hexagon.

x2
13 x2

24 x2
35 x2

46 x2
15 x2

26 x2
14 x2

25 x2
36 Rem

(2)
6,CS

A −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 −3.47537352

B −6.8764 −18.194 −21.887 −77.498 −48.781 −14.780 −24.467 −30.720 −3.3327 −3.47342610

C −4.8757 −11.282 −6.1981 −42.828 −19.339 −8.1903 −15.616 −10.007 −2.5719 −3.47622947

D −3.5979 −7.3282 −1.4275 −24.543 −7.9792 −4.5361 −10.424 −2.6875 −1.9989 −3.47688979

E −116.29 −4.0000 −116.29 −2.0350 −4.0000 −2.0350 −4.0000 −4.0000 −59.160 −3.48197748

F −4.0000 −2.3528 −9.0000 −1.0000 −1.3057 −1.0000 −1.0000 −2.2500 −3.6892 −3.47579959

G −4.0000 −1.0000 −8.8965 −4.4482 −1.0000 −2.0000 −1.0000 −1.0000 −5.5504 −3.47576202

H −1.2027 −2.5332 −2.0000 −3.0000 −6.2344 −13.512 −2.1782 −3.6253 −0.82827 −3.47561202

Table 4: Results of RCS,6 for eight configurations of hexagon’s Mandelstam variables. It

suggests that R
(2)
6,CS takes a constant value over wide ranges of the conformal cross-ratios.

In Table 1, we generated eight configurations (A)∼(H) of the 9 Mandelstam variables

x2
13, · · · ,x2

36, subject to the Gram sub-determinant conditions. Equivalently, these configura-

tions are generated by lightlike segment vectors y1, · · · ,y6 subject to the SO(3,2) conformal

invariance. The results indicates that the hexagon remainder function Rem
(2)
6,CS is a constant

number, independent of the Mandelstam variables and hence the conformal cross-ratios.

To test neessity of the Gram sub-determinant conditions, we chose a configuration, say

(D), and permuted subset of the 9 Mandelstam variables while keeping their conformal

cross-ratios fixed. Obviously, permuting the Mandelstam variables so violates the Gram sub-

determinant conditions. We computed the hexagon remainder function Rem
(2)
6,CS and the re-

sults are tabulated in Table 2.

In Table 2, we generated configurations (D1) and (D2) that have the same conformal ra-

tios as (D) but violates the Gram sub-determinant condition 3. We observe that the remain-

der function at (D),(D1),(D2) do not agree one another even though all three sets have one

3This is equivalent to saying that there is no suitable choice of xi’s or yi’s vectors which generate (D1) and

(D2) configurations.
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x2
13 x2

24 x2
35 x2

46 x2
15 x2

26 x2
14 x2

25 x2
36 Rem

(2)
6,CS

D1 −3.5979 −7.9792 −1.4274 −24.543 −7.3282 −4.5361 −10.424 −2.6875 −1.9989 −3.70845563

D2 −3.5979 −7.9792 −4.5361 −24.543 −7.3282 −14.780 −10.424 −2.6875 −1.9989 −3.99210938

Table 5: Through this configuration, we tried to examine whether Rem
(2)
6,CS maintain same

values for various configurations which has same conformal cross ratios. One of remarkable

observation on remainder function in N = 4 SYM was that it has equivalent values as long

as conformal cross ratios agree, even Gram determinant was not satisfied. However, this

result suggest such useful property is absent in ABJM theory.

and the same conformal cross-ratio. We thus conclude that, in stark contrast to the (3+ 1)-

dimensional N = 4 SYM theory, the lightlike hexagon Wilson loop expectation value in the

ABJM theory is consistent with the anomalous conformal Ward identity only if the Mandel-

stam variables were to satisfy the Gram sub-determinant conditions. Therefore, if two sets

of the hexagon Mandelstam variables satisfy the Gram sub-determinant conditions and yield

the same conformal cross-ratio, then their values of the remainder function should be the

same. In our numerical computations, we have confirmed this.

x2
13 x2

24 x2
35 x2

46 x2
15 x2

26 x2
14 x2

25 x2
36 Rem

(2)
6,CS

X −6.0000 −2.0000 −3.0000 −9.0000 −5.0000 −7.0000 −1.0000 −4.0000 −8.0000 −3.99713002

Y −1.0000 −5.0000 − 3
16

−27.000 −1.0000 −7.0000 −2.0000 −1.0000 −2.0000 −3.84236164

Z −1.0000 − 1
3

−1.0000 −1.0000 −2.0000 − 2
3

−1.0000 − 2
3

−1.0000 −3.41789832

Table 6: Three sets of ‘unphysical’ Mandelstam variables were chosen arbitrarily. They are

unphysical since they do not satisfy the Gram sub-determinant conditions. The values of the

remainder function RCS,6 do not agrees with the values in Table 1 for ‘physical’ Mandelstam

variables.

As another check, we considered randomly chosen configuration (X) and another config-

uration (Y) having the same conformal cross-ratios as (X). The two configurations yield dif-

ferent values for the remainder function. This affirms that configurations violating the Gram

sub-determinant condition do not obey the anomalous conformal Ward identitie since these

identities put the remainder function to a function only of conformal cross-ratios. As such,

we call them ’unphysical’ configurations. We also considered the configuration (Z) whose

cross-ratios all have value 1 and hence relevant for the (1+1)-dimensional configuration of

the hexagon. Result (Z), however, shows that it does not yield the physical result, because

the closedness, (1+ 1)-dimensional lightlikeness, and the Euclidean conditions cannot be

satisfied simultaneously.

Summarizing, we learned that although the polygon kinematics is most conveniently

described in terms of the Mandelstam invariants, they are subject to various restrictions

to correspond to physical configurations. Some of these restrictions are universal, inde-
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pendent of spacetime dimensions, while some other restrictions are specific to (2 + 1)-

dimensional spacetime. Unfortunately, the latter restrictions were stringent enough not to

allow the QMRK that played powerful role in understanding the analytic structure of the

Wilson loop expectation values in the (3+1)-dimensional N = 4 SYM theory.

To avoid such difficulty, we identified alternative special kinematics that satisfy the Gram

sub-determinant conditions and also permit continuous deformation within the moduli space

of the lightlike polygon. The idea is to take the deformation parameters to asymptotic limit

and reduce Mellin-Barnes integrals as simple as possible. We shall study these kinematic

limits in the next sections. For now, we present numerical result for several configurations

that turn out representative of 1- and 2-parameter subspaces.

x2
13 x2

24 x2
35 x2

46 x2
15 x2

26 x2
14 x2

25 x2
36 Rem

(2)
6,CS

J1 −100.00 −1.0000 −1.0000 − 1
100

−1.0000 −1.0000 −1.0000 −1.0000 −1.0000 −3.4857518

J2 −100.00 −2000.0 −100.00 −100.00 −5.0000 −100.00 −100.00 −100.00 −100.00 −3.4778556

Table 7: These configurations satisfy the Gram sub-determinant conditions. We checked

(J1) and (J2) could be generated from yi’s with suitable choice of components. Since we

want to take asymptotic limit while keeping the Gram sub-determinant conditions, some

special kinematics should be considered. These results provide numerical evidence that both

one-parameter family and two parameter family indeed gives satisfactory results for the

remainder function. See Table 1 for comparison.

The configuration (J1) belongs to 1-parameter group, while (J2) belongs to 2-parameter

group. We examined numerically the effect of changing these free parameters. As seen in

table 4, the remainder function Rem
(2)
6,CS takes a constant value over the ranges we changed

these parameters. The result hints that we can take certain asymptotic limits of these moduli

parameters and simplify the Mellin-Barnes transformation integrals.

4.5.3 Special Shapes and Asymptotic Limits

The strategy

Our goal is to compute the hexagon remainder function with high precision and infer from

it analytic result. In the previous subsection, we presented the remainder function computed

using the package FIESTA2. The numerical error is rather large, O(10−2). Here, we propose

an alternative strategy for computing the remainder function with better numerical precision

than FIESTA2. We begin with the Mellin-Barns transformation to our 2-loop integrals, for

which we used the Mathematica package MB. The problem of this transformation is that it

results in multi-dimensional scalar integrals, for which numerical precision is difficult to

attain. The idea is to lower the dimension of numerical integral maximally so that higher
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numerical precision can be achieved. The way we achieve this is as follows. Recall that

the dimension of numerical integral is closely related to the number of independent terms

inside the denominator ∆y in the two-loop integral involving the gauge boson triple-vertex

diagrams. By choosing judiciously a set of the Mandelstam variables that satisfy the Gram

sub-determinant conditions and that reduce the number of terms in ∆y, we can bring down

the dimension of numerical integrals and obtain the result with high numerical precisions.

Below, we explain how we performed high precision numerical computation for the gauge

boson triple-vertex diagrams.

Computational Details

Our strategy for the numerical computation is as follows. We apply the Mellin-Barnes

transformation to every loop integrals resulting from the gauge boson triple-vertex and

gauge boson ladder diagrams derived in section 3. We then take special limits of the poly-

gon shape deformed by one- or two-moduli parameters. The integrals are defined in the

complex domain. Utilizing the packages MB and MBresolve [55], we resolve singularity

structure of each complex integrals. We then apply the Barnes lemma to reduce the inte-

grals to lower-dimensional integrals. We made this procedure automatic using the package

barnesroutines [56]. Next, we apply the package MBasymptotics [59] to the cho-

sen moduli parameters and obtain simpler expressions for the integrals. We find that these

expressions are reducible to at most three-dimensional complex integrals. Finally, we evalu-

ate them using the MB package and obtain numerical result with high precision.

What special limits can we choose for the Mandelstam variables of the lightlike hexagon?

Subject to the Gram sub-determinant conditions, let’s consider the following two special

limits: the first one has 1-moduli parameter, while second one has 2-moduli parameters.

• one-parameter hexagon

x2
13 x2

24 x2
35 x2

46 x2
15 x2

26 x2
14 x2

25 x2
36

−ea −1 −1 −e−a −1 −1 −1 −1 −1

The moduli parameter a ranges over −∞ < a < +∞. We take the Euclidean configu-

ration, and this puts all the Mandelstam variables to negative definite values.

• two-parameter hexagon

x2
13 x2

24 x2
35 x2

46 x2
15 x2

26 x2
14 x2

25 x2
36

−eα −eα+β −eα −eα −eα−β −eα −eα −eα −eα

The moduli parameters α,β range over−∞ < α,β <+∞. Again, taking the Euclidean

configuration, all the Mandelstam variables are negative definite.
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We found that the hexagon remainder function Rem
(2)
6,CS remains constant-valued for a

wide range of the moduli parameters a,α,β. In the previous subsection, we already pre-

sented one such choice in the result for the configurations (J1) and (J2) in the previous

subsection. The result suggested that the hexagon remainder function Rem
(2)
6,CS is indeed a

constant up to two loops in the ABJM theory. We performed numerical computation for both

configurations and found that the two-parameter configuration yields the result with better

numerical precision. Hereafter, we will exclusively discuss the two-parameter configuration

results. The simplest integral is I321 in (F.11). Inserting the two-moduli parameter contour

to (F.11), we observe that the four-fold integration is reduced to three-fold integration. For

instance, the denominator is reduced to

∆y

∣∣∣
2-parameter

−→ eα · xx̄ys̄1s2 + eα−β · x̄ȳs̄2s3 + eα−β · xȳs1s3 + eα · xȳs̄1. (4.78)

By itself, five terms in the denominator ∆y are reduced to three terms, so the two-parameter

configuration does not appear to simplify the multi-dimensional integrals considerably. It

turned out the two-parameter configuration is more effective for other triple-vertex diagrams

involving higher-dimensional integrals. The most complicated integrals resulted from the

contribution I531. The Mellin-Barns transformation of this contribution yielded 8-dimensional

complex integrals. With the two-parameter special kinematics, we were able to reduce these

integrals to five-dimensional integrals. We could do even better. By taking the asymptotic

limits for α,β sequentially,

α→−∞ then β−→+∞. (4.79)

we were able to reduce the five-dimensional integrals down to at most three-dimensional

integrals.

Result

The high precision computation yielded

Rem
(2)
6,CS =−3.470168804.

(
0.000489814

)
. (4.80)

Utilized the PSLQ algorithm, we converted thi to an analytic expression. The result is

Rem
(2)
6,CS =−17

4
ζ(2)+3Log(2)+3Log2(2). (4.81)
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Numerical value of the right-hand side is −3.470169200670522, and this agrees to our nu-

merical result −3.47016880435048 within the O(10−6) precision.

The final result for the two-loop, lightlike hexagon ABJM Wilson loop expecation value

is obtained by combining the purely abelian, matter-dependent contribution (4.41) and the

pure Chern-Simons contribution (4.54) for n = 6. It takes the form:

〈
W�[C6]

〉(2)
ABJM

=−
[1

2
Log(2)

6∑

i=1

(x2
i,i+2πeγE µ2)2ε

2ε
+Rem

(2)
6,CS−3Log(2)

+
1

2

n∑

i=1

(x2
i,i+24πeγE µ2)2ε

(2ε)2
−BDS

(2)
6 +

3

8
π2
]

=−
[1

2

6∑

i=1

(x2
i,i+28πeγE µ2)2ε

(2ε)2
−BDS

(2)
6 +Rem

(2)
6,CS−3Log(2)+

3π2

8
− 15

2
Log2(2)

]

=−1

2

6∑

i=1

(x2
i,i+28πeγE µ̃2)2ε

(2ε)2
+BDS

(2)
6 +

(9

2
Log2(2)+

π2

3

)
, (4.82)

where the BDS contribution BDS
(2)
6 is already known. This is one of the main results of this

paper. Like the lightlike tetragon Wilson loop expectation value, the UV finite part in (4.82)

exhibits the uniform transcendentality.

While we have succeeded in obtaining two-loop analytic result for the hexagon Wilson

loop expectation value, we have yet no clue for the structure of the remainder function

Rem
(2)
n,CS for polygons of n ≥ 8. To crack down its structure, we will need to understand

further configurational structures of the lightlike polygon Wilson loop expectation value.

This is what we will undertake in the next section.

4.6 Lightlike Factorization and Antenna Function

Conformal field theories are subject to infrared divergences due to collinear and soft

bremsstrahlung partons. These divergences then allow universal factorization and scaling

behavior of physical processes. A class of such processes is the parton scattering ampli-

tudes in gauge theories. The universal factorization and scaling behavior allowed accurate

prediction at fixed order perturbation theory and resummation of dominant logarithms.

Our goal in this section is to demonstrate that universal factorization and scaling behavior

are also present in the lightlike polygon Wilson loops. We then introduce ‘universal antenna

function’ for a certain limit of the polygon shape, which we will utilize it in the next section

to solve for the ABJM Wilson loop expectation value for arbitrary n.
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4.6.1 Infrared Factorization in Gauge Theories

Let us recall the IR factorization in gauge theories and draw intuitions for what we may

expect for the lightlike Wilson loops. The color-ordered scattering amplitude in gauge the-

ories has the factorization property with respect to the IR divergence. First, consider the

collinear limit that lightlike momenta ki and ki+1 of two partons i and i+1 become parallel

and coalesce to a new lightlike momentum kP. Kinematically, this situation described by

ki −→ hkP and ki+1 −→ (1−h)kP, (0≤ h≤ 1) (4.83)

so the two collinear partons carry the fraction h,(1−h) of the momentum kP.

For the L-loop n-point scattering amplitude A
(L)
n (k1, · · · ,kn), the collinear limit exhibits

factorization [60]

A
(L)
n (k1, · · · ,kn)−→

∑

λ=±

L∑

ℓ=0

Split
(L−ℓ)
−λ (h;ki,λi;ki+1,λi+1)A

(ℓ)
n−1(kP,λ, · · ·kn)) (4.84)

Here λ labels the polarization state of the factorizing parton. In the summation, L, ℓ = 0

denote the tree-level amplitude. Helicity structure is fixed by the Poincaré invariance, so

both the scattering amplitudes and the splitting functions can be decomposed to their tree-

level counterparts times scalar functions summarizing loop corrections.

We define reduced scattering amplitudes M
(L)
n for the ratio of the L-loop scattering ampli-

tude to the tree-level scattering amplitude:

A
(L)
n (k1,λ1, · · · ,kn,λn) = A

(0)
n (k1,λ1, · · · ,knλn) ·M(L)

n (k1, · · · ,kn). (4.85)

Similarly, we define the reduced splitting functions R
(L)
s (ε,z,kP) for the ratio of the L-loop

splitting function to the tree-level splitting function

Split
(L)
−λ(h;ki,λi;ki+1,λi+1) = Split

(0)
−λ(h;ki,λi;ki+1,λi+1) ·R(L)

s (ε,h;kP), (4.86)

where we use the dimensional regularization for the IR divergences. In the collinear limit,

the tree-level scattering amplitudes are expected to factorize as follows:

A
(0)
n −→

∑

λ=±
Split

(0)
−λ(h;ki,λi;ki+1,λi+1)A

(0)
n−1(kP,λ). (4.87)

This is illustrated in next Figure.
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ki

ki+1

− −

ki

ki+1

+ +

Inserting the relation (4.84) to (4.87), we get

M
(L)
n −→

L∑

ℓ=0

R
(ℓ)
s M

(L−ℓ)
n−1 (4.88)

By definition, R
(0)
s = 1 and M

(0)
n = 1. The reduced amplitudes M

(L)
n at one- and two-loops

factorize to

M
(1)
n −→M

(1)
n−1 +R

(1)
s (4.89)

M
(2)
n −→M

(2)
n−1 +R

(1)
s M

(1)
n−1 +R

(2)
s . (4.90)

In the (3+ 1)-dimensional SYM theory, it is known that (4.89) and (4.90) are related each

other by the collinear relation [33]:

M
(2)
n (ε) =

1

2

(
M

(1)
n (ε)

)2
+ f (2)(ε)M

(1)
n (2ε)+C(2). (4.91)

Here, C(2) is a finite constant, equal to − 1
2
ζ2

2. Also, f (2)(ε) = −(ζ2 + ζ3ε + ζ4ε2 + · · ·).
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Substituting (4.89) to (4.91),

M
(2)
n (ε) =

1

2
(M

(1)
n−1(ε)+R

(1)
s (ε))2 + f (2)(ε)(M

(1)
n−1(2ε)+R

(1)
s (2ε))+C(2)

= M
(2)
n−1(ε)+R

(1)
s (ε)M

(1)
n−1 +

1

2
(R

(1)
s (ε))2 + f (2)(ε)R

(1)
s (2ε). (4.92)

In the second line, we utlized the above collinear relation for M
(2)
n−1. Comparing this with

(4.90), we obtain recursive relation for the splitting function:

R
(2)
s (ε) =

1

2
(R

(1)
s )2 + f (2)(ε)R

(1)
s (2ε)+O(ε). (4.93)

More generally, the scalar splitting function R
(ℓ)
s also follows from the BDS-like relation for

all higher ℓ > 1 loops. Indeed, for QCD and (3+ 1)-dimensional N = 4 SYM theory, the

scalar splitting function R
(1)
s was calculated explicitly and its universality was established

[?], [33].

Another source of the IR divergences in gauge theories is emission of the soft partons.

These divergences also provide another kind of factorization. More explicitly, in the limit

of one parton becomes soft, the scattering amplitudes exhibit an abelian factorization that it

becomes a product of an eikonal factor with a lower-point scattering amplitude. At tree-level,

when b-parton becomes soft, kb ≃ 0, the soft factorization is given by

A
(0)
n (k1, · · · ,ka,kb,kc, · · ·kn) −→ S(0)(ka,kb,kc)A

(0)
n−1(k1, · · · ,ka,kc, · · · ,kn) (4.94)

where S(0)(ka,kb,kc) denotes the tree-level eikonal factor,

S(0)(ka,kb,kc) =
−1√

2

[
ε±b · ka

ka · kb

− ε±b · kc

kb · kc

]
. (4.95)

The soft bremsstrahlung factorization has the feature that this eikonal factor does not depend

on the helicity of external particles. The soft factorization also holds at higher loops. For

example, at one loop, the scattering amplitude factorizes in the soft limit as

A
(1)
n (k1, · · · ,ka,kb,kc, · · · ,kn)

−→ S(0)(ka,kb,kc)A
(1)
n−1(k1, · · · ,ka,kc, · · · ,kn)+S(1)(ka,kb,kc)A

(0)
n−1(k1, · · · ,ka,kc, · · · ,kn).

(4.96)
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Here, S(1) is the one-loop eikonal function. In dimensional regularization, it reads [?]:

S(1)(ka,kb,kc) =−S(0)(ka,kb,kc)
1

(4π)2−ε

Γ(1+ ε)Γ2(1− ε)

Γ(1−2ε)

1

ε2

(
(−sac)µ

2

(−sab)(−sbc)

)ε
πε

sin(πε)
,

(4.97)

where sab = 2ka · kb, etc. So, the soft factorization behavior is analogous to that of the

collinear limit, just replacing the splitting function of the latter to the eikonal function.

The antenna function is a universal function introduced to describe in a unified manner all

leading infrared singularities of tree-level scattering amplitudes as the color-connected set of

momenta becomes collinear or soft. Consider, in color-order scattering amplitude, two hard

momenta ka,kb and one momentum kc in between. The unified factorization then takes the

form

A
(0)
n (k1, · · · ,ka,kc,kb, · · · ,kn) →

∑

λ

Ant(â, b̂← a,c,b)An−1(k1, · · · ,−kâ,−kb̂, · · · ,kn),

(4.98)

where the antenna function Ant contains information of the parton c:

• collinear splitting function for kc ·ka→ 0 and kc ·kb = finite (kâ =−(ka+kc),kb̂ =−kb)

• collinear splitting function for kc ·kb→ 0 and kc ·ka = finite (kâ =−ka,kb̂ =−(kc+kb))

• soft eikonal function for both kc · ka→ 0 and kc · kb→ 0 (kâ =−ka,kb̂ =−kb).

The momentua kâ,kb̂ are reconstructed from the original momenta via the reconstruction

function [57]. The antenna function can also be extended to higher loops in terms of parton

currents J that was used in the Berends-Giele recursion relations [58]. At L-loops,

Ant(L)(â, b̂← a,c, · · · ,m,b) =
L∑

ℓ=0

m∑

i=1

J(ℓ)(a,c, · · · , i; â)J(L−ℓ)(i+1, · · · ,m,b; b̂) (4.99)

Then, the factorization of the leading-color contribution to higher-loop scattering amplitudes

can be derived by matching to known purely collinear limit or purely soft bremsstrahlung

limit. This leads to

A
(L)
n (k1, · · · ,kn)−→

L∑

ℓ=0

∑

λ

Ant(ℓ)(â, b̂← a,1,b) ·A(L−ℓ)
n−1 (k1, · · · ,−kâ,−kb̂, · · · ,kn).

(4.100)

This can be generalized to multiple collinear singularities that involve simultaneous vanish-

ing of Mandelstam invariants in these collinear momenta and one of the two hard momenta
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a or b. We can also generalize this to multiple collinear-soft or purely multiple soft singu-

larities that arise from vanishing of additional Mandelstam invariants involving other hard

momenta as well.

Note that the leading singularities in the additional Mandelstam invariants are already

incorporated to the antenna function. Therefore, these singularities also capture the lead-

ing behavior in the multiple collinear-soft or multiple soft singularities. Indeed, the h→ 0

limit of the collinear splitting function must also describe the soft bremsstrahlung eikonal.

As such, (4.100) describes the leading singularity behavior of L-loop leading-color scatter-

ing amplitudes in all singular limits involving the color-connected singular set of momenta

k1, · · · ,km.

One can generalize the factorization to multi-parton kinematics. The next level of factor-

ization involves two unresolved parton kinematics. The factorization in doubly unresolved

limit is given at L loops by

A
(L)
n (k1, · · · ,kn)−→

L∑

ℓ=0

∑

λ

Ant(ℓ)(â, b̂← a,1,2,b) ·A(ℓ)
n−2(k1, · · · ,−kâ,−kb̂, · · · ,kn).

(4.101)

This antenna function have various channels, for instance, triple collinear, double collinear,

collinear soft and double soft. Among them, we will focus on the first case that sa1,s12, ta12

goes to 0.

Much the way the splitting function or the eikonal function are universal, we expect the

antenna function also have universal structures.

4.6.2 Lightlike Factorization of Wilson Loop

One expects that the lightlike polygon Wilson loops provides another class of processes

that exhibit IR divergences and factorizations thereof. Indeed shape or geometry of the light-

like contour Cn exhibits two types of move that can be viewed as the soft and the collinear

limits. The soft bremsstrahlung limit takes place when two adjacent vertex points coalesce.

The collinear limit takes place when two adjacent edges coalesce, equivalently, when three

consecutive vertices become lightlike arrayed.
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Figure 2 : Infrared singularities of lightlike polygon. There are two limits a contour Cn is

reduced to Cn−1. The left figure describes the soft bremsstrahlung limit. The vertex xi+1

coalesces to the adjacent vertex xi, equivalently, the edge vector yi approaches to 0. The

right figure describes the collinear limit. The vertex xi approaches the lightlike segment

connecting the vertices, xi−1 and xi+1, equivalently, two adjacent edge vectors yi−1 and yi

coalesce to a new lightlike vector. Although resulting topologies of are the same, the two

limits needs to be distinguished. By analyticity, this is possible only if the limits are singular.

The significance of these two processes is evident from geometric considerations among

the vertex points x1, · · · ,xn. Generically, two non-adjacent vertex points are not lightlike

separated. From either configurations, if we take succession of the above two processes for

either vertex vectors or edge vectors within a lightlike polygon, we see that two non-adjacent

cusp points of the polygon can be made lightlike separated. The limiting configuration is

a lightlike polygon split to two lightlike polygons. Hereafter, this kinematic limit will be

referred as lightlike factorization. The classification is purely geomeric, so it must hold for

observables defined for general quantum field theories of arbitrary spacetime dimensions.

In applying the above infrared factorizations of lightlike contour to ABJM Wilson loops,

there is one further issue to be considered. We have shown in the last section that the lightlike

ABJM Wilson loop cannot be defined on a polygon of odd numbers of edges since it does not

permit Euclidean configuration 4. Whereas infrared factorization of the (3+1)-dimensional

N = 4 SYM theory requires a single parton to fuse to other hard partons, infrared factor-

ization of the (2+ 1)-dimensional ABJM theory requires two partons to fuse to other hard

partons.

4Recall also that this parallels to the fact that the ABJM scattering amplitudes involve even number of partons,

though reasons are entirely different.
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Thus, in the ABJM theory, we need to define an antenna function for double parton emis-

sions. 5.

Intuitively, the above discussion makes it clear that the lightlike factorization is univer-

sal — the factorization should be independent of geometric details of spectator vertices or

edges in the rest of the polygon. In the ABJM theory, we explained in the previous section

that the Euclidean condition of the Mandelstam variables and the closedness condition of the

edge vectors restricted the contour to even number of vertices, equivalently, even number of

edges. Consistency with these conditions require that the infrared singularity must involve

odd numbers of consecutive edges fusing to a single edge and consecutive vertices pairing

up to dimerized configuration. Therefore, the basic building block of the lightlike factor-

ization of a polygon Wilson loop is the collinear-soft-collinear limit among 4 consecutive

vertices, equivalently, 3 consecutive edges. We shall introduce the ABJM antenna function

that describes in a unified way all leading singularities of such processes.

Incidentally, we do not consider the limit where three consecutive edges are purely collinear.

This is because the corresponding edge vectors in general violate the Euclidean condition.

We will further discuss this restriction below. We also do not consider the limit where two

consecutive edges are purely soft. Although kinematically permitted, this limit requires to

take several Mandelstam invariants to zero simultaneously. Numerically, such a limit is tech-

nically involved and difficult to handle. In this paper, we will not study this corner of the

moduli space and simply contend that the universal antenna function we derive below be

reduced to the correct double eikonal function of such processes once relevant factorization

is taken judicially.

Our next goal is to explicitly check the universality of the antenna function for the light-

like Wilson loop. By definition, the Wilson loop operator is color-ordered. Therefore, we

can describe its collinear factorization in a manner similar to the color-ordered scattering

amplitudes in QCD exhibits the factorization with respect to the collinear divergences [?].

So, take the collinear limit that three adjacent edge vectors yi,yi+1 and yi+2 become lightlike

parallel and coalesce to a new lightlike edge vector yP. This situation is described by what

we call ‘doubly unresolved limit’ of Cn→Cn−2:

yi→ (1−h1−h2)yP, yi+1→ h1yP, yi+2→ h2yP where y2
P = 0. (4.102)

5Antenna function was studied for scattering amplitudes in QCD and other gauge theories. We are adopting

the same terminology to lightlike Wilson loop expectation values. In (3+1)-dimensional N = 4 SYM theory, the

scattering amplitude - Wilson loop duality relates the universal splitting function for collinear limit in scattering

amplitudes to the universal factorization for lightlike limit of Wilson loop expectation values.
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In the doubly unresolved limit, we expect the lightlike polygon Wilson loop expectation

value at L-loop factorizes universally as

〈
W�[Cn]

〉(L) −→
L∑

ℓ=0

Ant(ℓ)(h1,h2;yi,yi+1,yi+2)
〈
W�[Cn−2]

〉(L−ℓ)
. (4.103)

We will abbreviate the antenna function that arises from factorization of the polygon Cn

Wilson loop as Ant[Cn]. In the kinematics Eq.(4.102), the antenna function is closely re-

lated to the Wilson loop expectation value for the collapsing tetragon made of the edges

yi,yi+1,yi+2,−yP. Our goal is to show that this antenna function is actually independent of

the number of edges n of the contour Cn and hence universal. Note that the tree-level factor-

ization for L, ℓ= 0:

〈
W�[Cn]

〉(0) −→ Ant(0)[Cn] ·
〈
W�[Cn−2]

〉(0)
(4.104)

is actually a trivial statement since, in our normalization, all the quantities involved are 1.

At two-loop order, the doubly-unresolved configuration leads to the factorization:

〈
W�[Cn]

〉(2) −→ Ant(2)[C4] ·
〈
W�[Cn−2]〉(0)+Ant(0)[C4] ·

〈
W�[Cn]

〉(2)

=
〈
W�[Cn−2]

〉(2)
+Ant(2)[C4]. (4.105)

The antenna function Ant[C4] is local in color-ordered contour geometry, so it is independent

of n and universal:

Ant(2)[C4] =
〈
W�[Cn]

〉(2)−
〈
W�[Cn−2]

〉(2)
for all n. (4.106)

4.7 Antenna Function for the ABJM Wilson Loops

Built upon the idea of the previous section, we now construct the antenna function for the

lightlike polygon Wilson loops in the ABJM theory. From (4.106), the antenna function is

obtained by subtracting
〈
W�[Cn−2]

〉(2)
from

〈
W�[Cn]

〉(2)
. At first sight, it appears impera-

tive to calculate
〈
W�[Cn−2]

〉(2)
and

〈
W�[Cn]

〉(2)
. This turns out not the case, as most of the

Feynman diagrams cancel each other. Eventually, only a small subset of Feynman diagrams

contributes to the antenna function. In fact, the number of these diagrams are fixed regardless

of n, which again is an indicative of the universality of the antenna function.
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4.7.1 Moduli Space of Lightlike Polygon Factorization

In section 2, we already learned that anomalous conformal Ward identity offers hints on

the analytic structure of the Wilson loop expectation value, separately for matter contribution

and gauge boson contribution. As such, we shall consider the factorization limit for each

contribution. In this subsection, we focus on lightlike factorization of matter contribution.

triple collinear and soft-collinear kinematics

As alluded above, we will need to deal with doubly-unresolved configuration involving

four consecutive vertices, say, x2,x3,x4,x5 on a polygon Cn. The lightlike factorization takes

place when x2 and x5 are lightlike separated. To reach this configuration, take two step. First,

take x2 and x5 lightlike seperated. This does not yet put the edge vectors y2,y3,y4 parallel,

nor the contour Cn factorized into two parts. Next, take x2
24 and x2

35 to 0. This gives the triple

collinear / soft collinear limit of the edge vectors y2,y3,y4. Upon taking these limits, the

upper tetragon flattened, reducing Cn to Cn−2. Note that this limit still leaves the vertices

x3 and x4 as unrestricted moduli parameters. A corner of this moduli space where the 3

Mandelstam variables x2
24,x

2
35,x

2
25 go to zero. There are two ways to approach this corner:

• triple-collinear limit

y2 ‖ y3 ‖ y4 (4.107)

• soft-collinear limit

y3 = 0, y2 ‖ y4 (4.108)

Figure 3 : There are two different special limits in doubly unresolved kinematics. Left figure

describes the triple collinear limit. Two cusps xi+1 and xi+2 approaches to a point on lightlike

segment connecting xi and xi+3. Right figure describes the soft-collinear limit. The cusps

xi+1, xi+2 come close each other and the segment vectors yi−1 and yi+1 became parallel.
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The triple-collinear limit is described by the contour geometry

y2 ≡ h1yC, y3 ≡ h2yC, y4 = h3yC where h1,h2,h3 ≥ 0, h1 +h2 +h3 = 1, y2
C = 0.

(4.109)

where the ’parton fraction’ h1,h2,h2 spans the local chart of the moduli space. Naively, the

dimension of this moduli space is [0,1]× [0,1]. The actual moduli space turns out [0,1], as

we now explain. The kinematics describes the limit that three consecutive segment vectors

are parallel one another. The corresponding Mandelstam invariants are

x2
13 = x2

14 = h1x2
15, x2

46 = x2
36 = h3x2

26 x2
24 = (1−h3)

2y2
C, x2

35 = (1−h1)
2y2

C, x2
25 = y2

C→ 0.

(4.110)

So we see that, as the three edge vectors y2,y3,y4 become parallel one another, the three

Mandelstam invariants x2
25,x

2
24,x

2
35 goes to 0. Their ratios are fixed with respect to the parton

fractions h1,h2,h3. We then recall that the Mandelstam invariants of physical configuration

must satisfy the Gram sub-determinant conditions. For the above triple-collinear configura-

tion, the Gram sub-determinant condition requires h2
2x2

15x2
26 = 0 and is solved by h2 → 0.

Therefore, for all n, we must set h2 = 0. This then leads to the moduli space of the triple-

collinear limit to be the domain of h1 =−h3, viz. [0,1].

The soft-collinear limit is described by the contour geometry

y2 ≡ h1yC, y3 ≡ yS, y4 = h3yC where h1,h3 ≥ 0, h1 +h3 = 1, y2
C = 0, yS ≃ 0.

(4.111)

The moduli space of this configuration is given by the domain of h1 = −h3, viz. [0,1]. This

can be checked straightforwardly. The contour geometry describes the limit that a diminish-

ing edge vector is squeezed between two collinear edge vectors. The corresponding Mandel-

stam invariants are

x2
13 = x2

14 = h1x2
15, x2

46 = x2
36 = h3x2

26, x2
24 = h1x2

25, x2
35 = h3x2

25, x2
25 = 2yC · yS

(4.112)

It is straightforward to check that this kinematics automatically satisfy the Gram sub-determinant

conditions provided y2
C = 0 and yS→ 0. The four Mandelstam invariants x2

13, x2
14, x2

46 and x2
36

coincides with the triple-collinear limit invariants if h2 is taken to 0. However, the ratios

among x2
25,x

2
24,x

2
35 are different from the triple-collinear limit, so should be considered sep-

arately.
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Factorization and Euclidean Condition

When computing the antenna function in perturbation theory, we need to impose two con-

ditions to the moduli parameters of the polygon Cn: the Gram sub-determinant condition and

the Euclidean condition. We identified that the Gram sub-determinant conditions is satisfied

by both the triple collinear geometry on the subspace h2 = 0 and the soft-collinear geometry.

What about the Euclidean condition? Here, we show that the soft-collinear geometry of the

polygon is uniquely singled out as the configuration that satisfy the Euclidean condition.

The triple collinear geometry is inconsistent with the Euclidean condition. To see this,

start from

y2 = h1yC, y3 = h2yC, y4 = h3yC with h1,h2,h3 ≥ 0, h1 +h2 +h3 = 1, y2
C = 0.

For a given lightlike vector yC, the time-component of the y2,y3,y4 vectors have the same

sign since h1,h2,h3 are all positive. On the other hand, the Euclidean condition requires al-

ternating sign flip of the time-component. As such, the triple-collinear geometry contradicts

this condition. We discard the triple collinear limit hereafter.

On the other hand, the soft-collinear geometry turns out to satisfy the Euclidean condition.

To illustrate this, take the hexagon and consider the following parametrization of the edge

vectors

y2 = h1(
√

2,1,1), y3 = a(−
√

2,1,1), y4 = h3(
√

2,1,1) (4.113)

We introduced a small parameter a ≃ 0 to render the vector y3 soft. Fusion of these three

edge vectors result in a new lightlike edge vector yC = (
√

2,1,1). The other edge vectors

y5,y6 and y1 are set to

y5 = (−
√

f 2 +g2, f ,g), y6 = (
√

r2 + s2,r,s), y1 = (−
√

b2 +d2,b,d), (4.114)

where g,r,s are free parameters while other three parameters b,d, f will be fixed by the

closedness condition. The Mandelstam variables x2
i j can then be read from these edge vectors

from the identities −2yi ·y j = x2
i+1, j + x2

i, j+1− x2
i, j− x2

i+1, j+1. This configuration satisfies the

Euclidean condition.
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4.7.2 Matter Contribution to Antenna Function

Let’s begin with the ABJM matter contribution to the antenna function. By (4.106), this

contribution to the antenna function is extracted from

Ant
(2)
matter[C4] =

〈
W̃�[Cn]

〉(2)
matter

−
〈
W̃�[Cn−2]

〉(2)
matter

. (4.115)

Here,
〈
W̃�[Cn]

〉(2)
matter

refers to Wilson loop expectation value for the polygon Cn of soft-

collinear geometry.

After the soft-collinear limit is taken, the reduced polygon Cn−2 consists of (n− 2) edge

vectors y1,yC,y4, · · ·yn. Again, the new set of Mandelstam invariants x2
i j are obtained by

inner product of these edge vectors. The Wilson loop expectation value
〈
W̃�[Cn−2]

〉(2)
matter

is

obtained by inserting this new Mandelstam invariants to
〈
W�[Cn−2]

〉(2)
matter

.

In case the three edge vectors y2, y3, y4 coalesce in the soft-collinear limit, we shall call

the vectors y1,y2,y3,y4,y5 as ‘relevant edges’. We can then classify the matter-dependent

2-loop diagrams according to the locations the one-loop gauge propagator is attached:

Group A : Neither end is attached to the relevant edges

Group B : One end is attached to the relevant edges while the other end is attached elsewhere

Group C : Both ends are attached to the relevant edges

We claim that Feynman diagrams belonging to Group A and Group B do not contribute to

the antenna function. In other words,

〈
W̃�[Cn]

〉(2)
matter

∣∣∣
Group A

=
〈
W̃�[Cn−2]

〉(2)
matter

∣∣∣
Group A

〈
W̃�[Cn]

〉(2)
matter

∣∣∣
Group B

=
〈
W̃�[Cn−2]

〉(2)
matter

∣∣∣
Group B

(4.116)

Nontrivial contributions to the antenna function stem entirely from 9 Feynman diagrams

belonging to the Group C.

We found that, for any n, there are always 9 types of diagram that contribute to the antenna

function:

Group C =
{

I21, I32, I43, I54, I31, I41, I52, I53, I42

}
(4.117)

In other words, all nontrivial contributions to the antenna function are from ‘local moves’

around the three edge vectors fusing one another. This features a heuristic and intuitive

explanation for the universality.
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Figure 12: Feynman diagrams in Group A and Group B. Upper diagrams belong to Group

A. (a) is equivalent to (b) when collinear limit taken. Second line diagrams belong to Group

B. (c)+(d)+(e) is equivalent to (f) after collinear limit. They are cancelled, therefore do not

contribute to Antenna function.

We calculated these 9 diagrams and computed the antenna function. From the known

analytic results of these diagrams, we took the soft-collinear limit and subtracted the relevant

Cn−2 diagrams. Up to O(ε0), we found the result as

Ant
(2)
matter =

1

4ε2
+

1

4ε

(
Logh1 +Logh3 +Log(x2

24 +Log(x2
35)
)

+
1

2
Logh1Log(x2

24)+
1

2
Logh3Log(x2

35)+
1

2
Log(x2

35)Log(x2
24)−

1

2
Logh1Logh3

− π2

6
. (4.118)

In obtaining this result, we used the Abel’s identity for the dilogarithms :

Li2(u)+Li2(v)−Li2(uv) = Li2

(u−uv

1−uv

)
+Li2

(v−uv

1−uv

)
− log

( 1−u

1−uv

)
log
( 1− v

1−uv

)

(4.119)

and the Landen’s identity:

Li2(x)+Li2(
1

x
) =

π2

3
− 1

2
Log2(x)− iπLog(x). (4.120)
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4.7.3 Chern-Simons Contribution to Antenna function

We now turn to the contribution of the pure Chern-Simons sector to the antenna function.

Again, we expect that

Ant
(2)
CS [C4] =

〈
W̃�[Cn]

〉(2)
CS
−
〈
W̃�[Cn−2]

〉(2)
CS

(4.121)

Here, the Wilson loops
〈
W̃�[Cn]

〉(2)
CS

and
〈
W̃�[Cn−2]

〉(2)
CS

are defined the same way as we

defined for the matter contributions.

As explained in the previous section, the pure Chern-Simons contribution consists of the

ladder diagrams and the triple-vertex diagrams. We found that the ladder diagrams does not

give rise to infrared divergences, so they do not contribute to the antenna function.

We thus focus on the triple-vertex diagrams. We can again classify the relevant Feynman

diagrams according to the combinatorics the triple gauge bosons are attached to the polygon

Cn. As for the matter contributions, we showed in the last subsection that only ‘local moves’

to the relevant edges contribute to the leading IR singularities. This turns out also the case

for the Chern-Simons part: the contribution is completely determined by the triple-vertex

diagrams whose gauge bosons are all attached to the relevant edges, y1,y2,y3,y4,y5.

There are also IR divergences arising from ‘semi-local moves’. For instance, I654 in C6 is

divergent. However, this divergence is cancelled by the diagram I65P in C4 and y2 ‖ y3 ‖ y4

when we compute the antenna function as the difference between the Wilson loop of Cn

and the Wilson loop of Cn−2. One readily notes that nontrivial contributions to the antenna

function come from (1) the process that is divergent in Cn but finite in Cn−2 and (2) the

process that is finite in Cn but divergent in Cn−2. These two processes are completely captured

by the local moves to the relevant edges.

Recall the pure Chern-Simons result of the lightlike Wilson loop expectation value for

hexagon and tetragon:

〈
W�[C6]

〉(2)
CS

=−
[Log(2)

2

∑6
i=1(x

2
i,i+2πeγE µ2)2ε

2ε
− 17

16
ζ2 +

3

4
Log2(2)

]

〈
W�[C4]

〉(2)
CS

=−
[Log(2)

2

∑4
i=1(x

2
i,i+2πeγE µ2)2ε

2ε
− 5

8
ζ2 +

1

2
Log2(2)

]
. (4.122)

Then,
〈
W̃�[C6]

〉(2)
CS

is obtained by taking the soft-collinear geometry (4.112) to
〈
W�[C6]

〉(2)
CS

.

For
〈
W̃�[C4]

〉(2)
CS

, we replace x2
13 and x2

24 in (4.122) by x2
15 and x2

26. The contribution to the
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antenna function is then obtained from the difference

Ant
(2)
CS [C6] =

〈
W̃�[C6]

〉(2)
CS
−
〈
W̃�[C4]

〉(2)
CS

=
[Log(2)

2ε
+

1

2
Log(2) Log(h1)+

1

2
Log(2) Log(h3)+

1

2
Log(2) Log(x2

24)

+
1

2
Log(2) Log(x2

35)+Ant(2)[C6]
∣∣∣
finite

]
. (4.123)

Here,

Ant(2)[C6]
∣∣∣
finite

=−7

4
ζ2 +Log2(2). (4.124)

It turned out we need to numerically evaluate the Chern-Simons contribution to the an-

tenna function. Hereafter, we shall explicitly compute the contribution from the soft-collinear

factorization of hexagon C6 and octagon C8 contours.

hexagon −→ tetragon

For computational simplicity, let’s first consider the soft-collinear factorization of hexagon

C6 to tetragon C4. We computed contribution of the Chern-Simions contribution to the an-

tenna function Ant
(2)
CS [C6]. Earlier, we alluded that the gauge boson ladder diagrams do not

contribute to the antenna function, though they do exhibit leading IR singularities. We can

classify the ladder diagrams into three groups:

Group A : {I3366, I6634, I6623, I6624, I4466, I6622}
Group B : {I5511}
Group C : all other diagrams

We found numerically that diagrams belonging to Group C vanishes in the soft-collinear

limit. We also checked numerically that the following identity holds:

〈
W̃�[Cn]

〉(2)
ladder

∣∣∣
A
−
〈
W̃�[Cn−2]

〉(2)
ladder

∣∣∣
A
= 0

〈
W̃�[Cn]

〉(2)
ladder

∣∣∣
B
−
〈
W̃�[Cn−2]

〉(2)
ladder

∣∣∣
B
= 0.

We conclude that the ladder diagrams do not contribute to the antenna function.

This brings us to the contribution of the triple-vertex diagrams. We found that only the

following 10 diagrams give rise to leading IR singularities and hence can contribute to the
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Figure 13: Examples of 2-loop Feynman diagrams that belong to the set TV . These diagrams

are “local” and hence yields nontrivial contribution to the antenna function. The red edge

denotes the segment vector yC resulting from taking the soft-collinear limit.
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antenna function:

TV = {I321, I432, I543, I421, I532, I431, I542, I521, I531, I541} (4.125)

We computed these diagrams numerically using the Mathematica package FIESTA. Fol-

lowing Table summarizes inputs and numerical results of the IR finite part of the antenna

function derived from the hexagon Wilson loop.

x2
13 x2

24 x2
35 x2

46 x2
15 x2

26 x2
14 x2

25 x2
36

〈
W
〉

finite
Antfinite

(1) -1.95797 -0.0005 -0.0005 -2.13973 -3.91357 -4.28024 -1.95511 -0.00100 -2.14001 -3.47673 -2.38762

(2) -5.02424 -0.00100 -0.00100 -5.09307 -10.048 -10.188 -5.02275 -0.00200 -5.09389 -3.47701 -2.38886

(3) -8.83791 -0.00100 -0.00100 -13.6207 -17.6764 -27.2428 -8.83749 -0.00200 -13.6211 -3.47126 -2.39603

(4) -11.4515 -0.00199 -0.00100 -5.23415 -22.9042 -10.4691 -11.4517 -0.00200 -5.23392 -3.4768 -2.39128

Table 8: Table : Numerical result for the IR finite part of the lightlike hexagon Wilson loop

expectation value and the antenna function. Notice that, for different configurations of the

Mandelstam invariants, the results suggest that the IR finite part of the antenna function

maintains a constant value.

There is an alternative method for calculating the antenna function. As in the two-parameter

configuration of the hexagon, we can reduce the number of terms in the denominator of the

Mellin-Barnes integrals by taking the soft-collinear configuration. Moreover, we take a hint

from the previous numerical results that the IR finite part of the antenna function is inde-

pendent of the polygon geometry. This allows us to take the asymptotic limits for 3 of the

Mandelstam invariants x2
25, x2

15, x2
26 and also for the the parton fractions h1→ 0,h3→ 1. Tak-

ing these limits, we succeeded in reducing to maximally 2-dimensional complex integrals.

Evaluating these integrals numerically, we find that

Ant
(2)
CS =

0.346574

ε
(4.126)

+
1

2
Log(2) Log(z1)+

1

2
Log(2) Log(z3)+

1

2
Log(2) Log(x2

24)+
1

2
Log(2) Log(x2

35)

−2.398181603.

This result fits to what we expect from (4.123). The numerical constant in (4.126) can be

identified with

−2.398181603 :=−7

4
ζ2 +Log2(2) =−2.398181603066195

within the precision of O(10−7). This result reassures our intuitive picture that only those

Feynman diagrams that are local move to the soft-collinear fusion contribute to the antenna

function.
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Figure 14: Elements of TV . Regardless of n, there are always 5 relevant segment vectors for

the soft-collinear kinematics. These 10 diagrams are expected to contribute to the leading IR

singularities and hence to the antenna function.

octagon −→ hexagon

To convince that the antenna function we derived is universal for all n, we also computed

the Chern-Simons part of the antenna function Ant
(2)
CS [C8] for the factorization of octagon C8

to hexagon C6. Again, the set of Feynman diagrams that contribute to the antenna function

comes only from the triple-vertex diagrams and consists of the 10 diagrams TV . This is

because there are 5 relevant edge vectors for the soft-collinear kinematics. In fact, upon

careful diagrammatic considerations, we confirmed that this argument holds for arbitrary n.

Fortuitously, the 7 Feynman diagrams {I321, I432, I543, I421, I532, I431, I542} for the oc-

tagon C8 are exactly the same as those for the hexagon C6. The remaining three diagrams

{I521, I541, I531} depend on the invariant y1 · y5. We also need to modify this invariant ac-

cording to the substitution

−2y1 · y5 = x2
25− x2

15− x2
26 (Hexagon) −→ −2y1 · y5 = x2

16 + x2
25− x2

15− x2
26 (Octagon),

(4.127)

from which we see that it generates an additional Mandelstam invariant x2
16.

Such change of the Mandelstam invariant is an exception for the hexagon to octagon and
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are not needed for the polygon with n≥ 8. That is, the sum of diagrams in the set TV yields

the same result for all n ≥ 8. Therefore, we expect the Chern-Simons contribution to the

antenna function is the same for all n ≥ 8. Of course, this is the feature we expect from the

universality of the antenna function.

To evaluate the 10 diagrams belonging to the set TV , we start with the soft-collinear

geometry of the octagon C8:

y2 ≡ h1yC, y3 ≡ yS, y4 = h3yC, h1,h3 ≥ 0, h1 +h3 = 1, y2
C = 0 yS ≃ 0.

In this limit, the Mandelstam invariants scale as

x2
13 = x2

14 = h1x2
15, x2

46 = x2
36 = h3x2

26, x2
24 = h1x2

25, x2
35 = h3x2

25, x2
25 = 2yC · yS

x2
47 = h3x2

27 +h1x2
57, x2

38 = h1x2
58 +h3x2

28, x2
37 = h1x2

57 +h3x2
27, x2

48 = h3x2
28 +h1x2

58.

(4.128)

Algorithmically, we can generate this configuration starting from the hexagon by adding

two edge vectors y7 and y8 and then imposing the Euclidean condition. The results of our

numerical computation are summarized in Table 6. The results suggest that the finite part

of the antenna function is independent of the choice of input Mandelstam invariants and

that its numerical value is consistent with the numerical value extracted from the hexagon

counterpart Ant
(2)
CS, finite.

From the numerical results based on the hexagon and octagon Wilson loops, we find that

the Chern-Simons contribution to the two-loop antenna function is given by

Ant
(2)
CS [Cn] =

Log(2)

2ε

+
1

2
Log(2) Log(z1)+

1

2
Log(2) Log(h3)+

1

2
Log(2) Log(x2

24)+
1

2
Log(2) Log(x2

35)

− 7

4
ζ(2)+Log2(2). (4.129)

4.7.4 ABJM Antenna Function

The two-loop antenna function of the ABJM theory is then obtained by adding the matter-

dependent contribution Ant
(2)
matter[Cn] and the pure Chern-Simons contribution Ant

(2)
CS [Cn] and
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{x2
13,x

2
24,x

2
35,x

2
46,x

2
57,x

2
68,x

2
17,x

2
28,x

2
14,x

2
25,x

2
36,x

2
47,x

2
58, AntCS[C8]finite

x2
16,x

2
27,x

2
38,x

2
15,x

2
26,x

2
37,x

2
48}

{-0.53645, -0.00010, -0.00010, -0.47705, -0.25192, -11.3322

(1) -2.27493, -7.89600, -0.53633, -0.00020, -0.47688, -0.53960, -0.87527, -2.39734

-2.00140, -0.82752, -4.38564, -1.07288, -0.95403, -0.53974, -4.38553 }
{-2.35947, -0.00020, -0.00020, -3.04945, -12.433, -4.83899

(2) -15.7136, -14.7954, -2.35936, -0.00040, -3.04955, -15.0670, -8.89897, -2.39495

-0.450812, -17.7019, -11.8471, -4.71903, -6.09920, -15.0677, -11.8471 }
{-1.25316, -0.00020, -0.00020, -2.83305, -25.2163, -5.38963

(3) -40.8014, -13.3704, -1.25260, -0.00040, -2.83315, -27.9871, -5.72270, -2.39414

-1.94647, -30.7599, -9.54667, -2.50596, -5.66640, -27.9889, -9.5462 }
{-2.04042, -0.00020, -0.00020, -2.85248, -25.2976, -0.636597,

(4) -47.2655, -8.46627, -2.04047, -0.00040, -2.85243, -28.1002, -2.39373, -2.39518

-0.349137, -30.9049, -5.42984, -4.08109,-5.70511, -28.1021, -5.42996 }
{-2.28437, -0.00010, -0.00010, -6.81235, -63.2938, -9.61232,

(5) -91.7177, -14.8614, -2.28411, -0.00020, -6.81221, -69.9258, -0.960108, -2.39859

-11.3101, -76.5589, -7.91075, -4.56858, -13.6247, -69.9268, -7.91066 }
{-0.654001, -0.00006, -0.00034, -5.93175, -30.7878, -3.90942,

(6) -60.0102, -8.71534, -0.653408, -0.00040, -5.93188, -36.6137, -0.131069, -2.38945

-7.86413, -37.6436, -7.42770, -4.35975, -6.97872, -36.6154, -7.42736 }

Table 9: Numerical result for the Chern-Simons contribution to the two-loop antenna func-

tion Ant
(2)
CS [C8]finite. In numerical computation, we took x2

25 ≃ 0 as a small quantity but not

exactly zero. As we decrease x2
25, we observed that Ant

(2)
CS [C8]finite approaches to -2.39818.

suitably rescaling the regulator energy scale. The result reads

Ant
(2)
ABJM

=
1

4ε2
+

1

4ε

(
Log(z1)+Log(z3)+Log(x2

24µ̂2)+Log(x2
35µ̂2)

)

+
1

2
Log(z1)Log(x2

24µ̂2)+
1

2
Log(h3)Log(x2

35µ̂2)+
1

2
Log(x2

35µ̂2)Log(x2
24µ̂2)− 1

2
Log(z1)Log(z3)

+
1

2
Log2(2)− 11

4
ζ(2). (4.130)

Here, µ̂2 = 2µ2 is the rescaled regularization scale. The result is independent of n, confirming

our intuition that the IR factorization is a local move and hence the antenna function should

be a universal quantity.

4.8 Recursion Relations and ABJM Wilson Loop Expeca-

tion Value

Having obtained the universal antenna function, in this section, we shall obtain the Wilson

loop expectation value for arbitrary polygon with n≥ 8. The strategy is to utilize the lightlike

factorization and derive recursion relations between Wilson loops for polygon contours Cn of
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different n. Let’s start with the Chern-Simons contribution. The two-loop antenna function

takes the form

Ant
(2)
CS [Cn] = Ant

(2)
CS [Cn]

∣∣∣
div

+Ant
(2)
CS[Cn]

∣∣∣
finite

(4.131)

Here, Ant
(2)
CS [Cn]

∣∣∣
div

and Ant
(2)
CS [Cn]

∣∣∣
finite

are IR divergent, respectively, IR finite parts:

Ant
(2)
CS [Cn]

∣∣∣
div

=
Log(2)

2ε
+

1

2
Log(2)

[
Log(h1)+Log(h3)+Log(x2

24)+Log(x2
35)
]

Ant
(2)
CS [Cn]

∣∣∣
finite

=−7

4
ζ(2)+Log2(2). (4.132)

In deriving the Wilson loop expectation value, we are primarily interested in the analytic

structure of the remainder function Rem
(2)
n,CS. Therefore, it suffices to concentrate on the finite

part, Ant
(2)
CS [Cn]

∣∣∣
finite

.

Intuitively, we can guess for the IR finite part of the remainder function, Rem
(2)
n,CS −

n
2
Log(2). As a first step, consider n= 8 octagon. Before imposing the Gram sub-determinant

conditions, there are twelve conformal cross-ratios for the octagon. The remainder function

for the octagon is a function of these cross-ratios:

Rem
(2)
8,CS = Rem

(2)
8,CS

(
u14,u25,u36,u47,u58,u16,u27,u38,u15,u26,u37,u48

)
(4.133)

In the soft-collinear limit, y2 ‖ y4 and y3 ∼ 0, these cross-ratios are restricted accordingly:

u14 = u25 = u36 = u38 = u37 = 1, u15 = 0

u47 =
1−u26

u48

, u27 =
1−u48

u26

. (4.134)

On the other hands, in the soft-collinear limit, the octagon C8 is reduced to the hexagon C6,

for which the following nine Mandelstam invariants are relevant:

x2
16, x2

15, x2
26, x2

17, x2
27, x2

28, x2
57, x2

58, x2
68. (4.135)

From these invariants, we can form the following three conformal cross-ratios:

u58 =
x2

15x2
68

x2
58x2

16

, u16 =
x2

17x2
26

x2
16x2

27

, u27u37u47 =
x2

28x2
57

x2
27x2

58

(4.136)
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Therefore, by the lightlike factorization, the finite part of the antenna function Ant
(2)
CS [C8]

∣∣∣
finite

must be reduced to

Rem
(2)
8,CS

(
1,1,1,(1−u26)/u48,u58,u16,(1−u48)/u26,1,0,u26,1,u48

)
−4Log(2)

= Rem
(2)
6,CS

(
u58,u16,u27u37u47

)
−3Log(2)+Ant

(2)
CS [C8]

∣∣∣
finite

= Rem
(2)
6,CS

(
u58,u16,u27u37u47

)
−3Log(2)− 7

4
ζ(2)+Log2(2)

=−6ζ(2)+4Log2(2). (4.137)

In the last expression, we used the numerical result that Rem
(2)
6,CS

(
u58,u16,u27u37u47

)
is a

constant, independent of the input values of the conformal cross-ratios.

With such restricted information, it is impossible to determine general structure of the

remainder function Rem
(2)
8,CS(u14,u25,u36, · · · ,u48) . However, for a given analytic structure

of the remainder function, its soft-collinear limit should be controlled by the universal an-

tenna function. This enables us to draw a conjecture that is consistent with the soft-collinear

geometry to be

Rem
(2)
8,CS =−6ζ(2)+4Log2(2)+4Log(2). (4.138)

In other words, our conjecture is that the remainder function is independent of the twelve

conformal cross-ratios. Moreover, utilizing numerical evidence that Rem
(2)
n,CS is constant-

valued for arbitrary n, we find that the remainder function obeys the recursion relation

Rem
(2)
n,CS−

n

2
Log(2) = Rem

(2)
n−2,CS−

n−2

2
Log(2)+Ant

(2)
CS [Cn]

∣∣∣
finite

. (4.139)

We can now iteratively solve this recursion relation along with our conjecture as the input:

Rem
(2)
n,CS−

n

2
Log(2) = Rem

(2)
n−2,CS−

n−2

2
Log(2)+Ant

(2)
CS [Cn]

∣∣∣
finite

= Rem
(2)
n−2,CS−

n−2

2
Log(2)− 7

4
ζ(2)+Log2(2)

= · · ·

= Rem
(2)
6,CS−3Log(2)+

n−6

2

(
− 7

4
ζ(2)+Log2(2)

)

=
[1

2
Log2(2)− 7π2

48

]
n+

π2

6
. (4.140)

Our conjecture is further supported by numerical estimation of Rem
(2)
n,CS for n= 8,10,12, · · · ,20

[50].
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Putting together, we now have the analytic result for the Chern-Simons contribution to the

lightlike polygon Wilson loop expectation value as

〈
W�[Cn]

〉(2)
CS

=−Log(2)

2

n∑

i=1

(x2
i,i+2πeγE µ2)2ε

2ε
+n

(
7π2

48
− 1

2
Log2(2)

)
− π2

6
. (4.141)

Combining with the matter contribution (4.42), we finally arrives at the central result of this

paper:

〈
W�[Cn]

〉(2)
ABJM

=−1

2

n∑

i=1

(x2
i,i+28πeγE µ2)2ε

(2ε)2
+BDS

(2)
n +n

(
π2

12
+

3

4
Log2(2)

)
− π2

6
.

(4.142)

4.9 Circular Wilson Loop

In this section, we shall study the n→ ∞ limit of our result. In Euclidean geometry, a

circle (more generally an ellipse) can be obtained from a polygon Cn by inscribing its cusps

to touch the circle and taking the continuum limit n→∞. In Lorentzian geometry, a spacelike

circle (more generally an ellipse) can be obtained from a lightlike polygon Cn by inscribing

its edges to cross the circle and taking the continuum limit n→ ∞. It should therefore be

possible to obtain the spacelike circular Wilson loop expectation value from the continuum

limit of the lightlike polygon Wilson loop expectation value. [31]

Evidently, the biggest differnce between spacelike circular Wilson loop and lightlike poly-

gon Wilson loop is the existence of cusps. Associated with these cusps are the UV diver-

gences. The divergent parts are essentially abelian and they get exponentiated and factor

out. The remaining finite part should then correspond to the spacelike circular Wilson loop

expectation value.

To obtain the circular Wilson loop, we shall set location of the n cusps [64] as

x2k = (2 sin
π

2n
, cos

(2k+1)π

n
, sin

(2k+1)π

n
), x2k+1 = (0, cos

2kπ

n
, sin

2kπ

n
)

(4.143)

This kinematics yields a polygon whose contour is sandwiched between two spacelike cir-
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cles. Mandelstam invariants of the polygon are given by

x2
2k,2 j =−4sin2 (k− j)π

n
(4.144)

x2
2k+1,2 j+1 = x2

2k,2 j (4.145)

x2
2k,2 j+1 = 4

(
sin2 π

2n
− sin2 (k− j− 1

2
)π

n

)
(4.146)

Evidently, the polygon satisfy Euclidean condition and the closedness condition. Also, (x2k+1−
x2k)

2 = 0 holds.

2sin π
2n

n→ ∞

t

x

y

t

x

y

Yet, as we mentioned in Section 3, this (1+ 1)-dimensional kinematics do not satisfy the

Gram sub-determinant conditions. While this is true for finite n, we now argue that the

conditions are met in the n→ ∞ limit.

First focus on the pure Chern-Simons contribution. As we calculated, our expectation is

〈
W�[Cn]

〉(2)
CS

=−Log(2)

2

n∑

i=1

(x2
i,i+2πeγE µ2)2ε

2ε
+n

(
7π2

48
− 1

2
Log2(2)

)
− π2

6
. (4.147)

when configuration saatisfies Gram sub-determinant conditions. Note that (k×k) Gram sub-

determinant conditions consist of k-th power of sin2 π
n
, because of all the Mandelstam invari-

ants (4.146) accompanied with the factor of sin2 π
n
. For finite n, we see that these invariants

do not satisfy the Gram sub-determinant conditions. Therefore, the structure (4.147) is not

valid for finite n. However, for large n, all the Gram sub-determinant goes to zero, therefore

Eq.(4.147) will be valid. Geometrically, distance between the two enveloping circles 2sin π
2n

goes to 0, and the polygon collapses to a spacelike circle. This explained in Figure 4.9.
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Dropping off the UV divergent parts,

〈
W�[Cn]

〉(2)
CS

∣∣∣
finite

= n

(
7π2

48
− 1

2
Log2(2)

)
− π2

6
. (4.148)

We note that the result is independent of the kinematics of Cn (the shape of the polygon). This

fits well with the expectation that the pure Chern-Simons theory is topological. The contin-

uum limit n→ ∞ gives rise to a linear divergence proportional to the perimeter n := 2πR/a

for a circle of radius R and short-distance measure a. It would be very interesting to under-

stand this from the viewpoint of polygon regularization of the topological link invariants.

For the matter-dependent part, the lightlike polygon Wilson loop expectation value was

〈
W�[Cn]

〉(2)
matter

= −1

2

n∑

i=1

1

(2ε)2
(x2

i,i+24πeγE µ2)2ε +BDS
(2)
n −

1

16
nπ2 +O(ε). (4.149)

Dropping off the UV divergent part,

〈
W�[Cn]

〉(2)
matter

∣∣∣
finite

=−Li2(1−as)−Li2(1−at)+Li2(1−aP2)+Li2(1−aQ2)− 1

16
nπ2.

(4.150)

We recall the parameters were defined by

a =
s+ t−P2−Q2

st−P2Q2
, P2 = x2

i, j+2, Q2 = x2
i+1, j, s = x2

i, j, t = x2
i+1, j+1. (4.151)

Unlike the pure Chern-Simons part, the matter-dependent part is sensitive to the kinematics

of Cn (the shape of the polygon) The next step is to consider a suitable kinematics so that the

lightlike polygon Cn asymptotes to the spacelike circle C. This regular polygon kinematics

is given in (4.144), (4.145) and (4.146). We took this kinematics to 〈W�[Cn]〉(2)matter

∣∣∣
finite

and

evaluated its value numerically with respect to n.

Geometric property of regular polygon implies x2
i, j = x2

i+1, j+1 = · · ·= x2
i−1, j−1. This leads,

Ii, j = Ii+1, j+1 = · · ·= Ii−1, j−1 (4.152)
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Also, let define F(n) and f (n) by

F(n) ≡
∑

i> j
i6= j+1

Ii, j =
∑

permutation
of j∗

n+ j∗−2∑

i= j∗+2

Ii, j= j∗

f (n) ≡
n+ j∗−2∑

i= j∗+2

Ii, j= j∗ (4.153)

Here j∗ is some fixed number. By definition, F(n) is related to
〈
W�[Cn]

〉(2)
matter
|finite. Also,

(4.152) gaurantees that F(n) = n f (n).

We make a fitting funtion for f (n) by f (n) = a
n2 +

b
n
+ c. As we seen in Figure (15), this

fitting function works well. Each coefficients a,b,c are estimated by

a =−21.1513(±0.005399), b = 9.85953(±0.001135), c =−0.573233(±2.458e−005)

(4.154)

Among them, value of b is closed to π2 = 9.869604401.

From this observation, we expect

〈
W�[Cn]

〉(2)
matter
|finite = F(n) =

a

n
+π2 + cn (4.155)

First term will be decays at n→ ∞ limit.

Eventually, we expect UV finite part of regular polygon Wilson loop expectation value at

large n limit by

〈
W�[C

regular
n ]

〉(2)
ABJM

|finite =
〈
W�Cregular

n ]
〉(2)

matter
|finite +

〈
W�[C

regular
n ]

〉(2)
CS
|finite

= ρn+
(
π2− π2

6

)
(4.156)

In n-independent constant, π2 came from above numerical fitting and −π2

6
inherited from

constant in
〈
W�[Cn]

〉(2)
CS
|finite. In [40], circular (space-like)Wilson loop expectation value in

ABJM theory calculated and result was given by,

〈
W�[©]

〉
ABJM

= 1+λ2
(
π2− π2

6

)
+ · · · (4.157)

Also, matrix model computation for 1
6

BPS Wilson loop result was [67],

〈
W�[©]

〉
ABJM

= 1+
5π2

6
λ2 +O(λ3) (4.158)
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Figure 15: Figure 7 Large n behavior of the lightlike regular polygon Wilson loop expecta-

tion value

Our result in large n limit (4.156) exibits same result.
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Chapter 5

Outro

The several nonperturbative approaches in conformal field theory was mainly focused in

this thesis. Especially, we considered two specific observables defined in conformal field

theory : 4-point correlation function and polygonal Wilson loop expectation value. Since

conformal symmetry is sufficiently powerful, part of structure of them can be fixed. For in-

stance, we discussed about conformal Casimir equation for correlation function and anoma-

lous conformal Ward identity for polygonal Wilson loop expectation value.

The conformal bootstrap method is intrinsically non-perturbative method. Already this

method succesfully obtained numerical value of critical exponent, without any perturbative

computation. Not only 3-dimensional IR fixed point, but also 5-dimensional UV fixed point

is also specified by conformal bootstrap.

One of the remarkable progress of recent is mixed correlation bootstrap. The semi-definite

program enables analyzing mixed 4-point correlation function. In this work, they assumed

only two fields σ and ε are relevant operators. When all possible mixed 4-point correlation

function which respects Z2 symmetry is considered, surprisingly allowed region localized

on isolated area near Ising theory. This may suggests that the only unitary theory which con-

sistent with crossing symmetry in 3-dimensional field theory is Ising class.

When we made a conjecture on structure of 2-loop Wilson loop expectation value for ar-

bitrary n, we utilized soft/collinear limit. To be consistent with Gram determinant constraint,

we observed only soft-collinear limit is available for Wilson loop defined in ABJM theory.

Recently, this kind of unresolved limit was highlighted again. Especially, soft behavior of

scattering amplitude defined in gravity or gauge theory is quiet interesting. The old Wein-

berg’s theorem or Low theorem predicted the universal factorization under soft limit. Stro-

minger et.al showed this universal behavior can be understood as Ward identity of new hid-

den symmetry, that is BMS supertranslation symmetry. Likewise, they also insisted that the

Low theorem can be interpreted by 2D Kac-Moody algebra. Also, higher-order correction

of soft theorem is obtained by utilizing BCFW recursion relation.

However, as we observed throughout polygonal Wilson loop, collinear kinematics also

shows universal factorization. In the case of gravity theory, it was already showed that

collinear divergence suitably canceled, and the only IR divergence contributes to inclusive
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amplitude is soft limt. But for the gauge theory, no such restrict exist and we can consider

both soft and collinear kinematics. Does collinear factorization also related to some hidden

symmetry? It would be interesting to investigate behavior of observables under specific kine-

matics.

The idea of renormalization group flow(RG flow) is often used in various theoretical

physics. Often they utilized to analyze theory at IR limit. For example, we can consider

N = (2,2) gauge linear sigma model defined in 2-dimension. The localization technique

enables computing partition function of this system, and the result is independent from cou-

pling constant. This means that we can use this partition function to extract some information

of IR limit. Indeed, this theory expected to be flow into non-linear sigma model at IR fixed

point. One of the non-trivial object in this limit is the Gromov-Witten invariant, which counts

instantons defined on world sheet. The partition function of GLSM can be utilized to extract

this Gromov-Witten invariant at least for genus 0 case.

So far we discussed only very specific case of RG flow. In this thesis, we mainly focused

special class of RG flow that has starting UV fixed point and ending IR fixed point. Mani-

festly this is not all the case. For the case of the QED, when we flow into IR area, the massive

electron fields are integrated out and only massless photons are remains. By the way, if we

considering pure Yang-Mills theory, it is known that is has massive spectrum(glueball) at IR

limit, due to dimensional transmutation. This kind of class often called by mass-gap theory.

These kind of non-trivial IR physics is not easy to understand since most of these physics

requires non-perturbative analysis. Moreover, the degree of freedom of IR physics is often

not well matched with DOF of UV physics. The typical example is QCD. In this theory, the

fundametal object is quark. However, confinement arose at IR limit and effective action of it

is decribed by meson field rather than quark itself. The another example is chiral symmetry

breaking G = SU(NF)L×SU(NF)R to H = SU(NF)D. As a result, one of the effective field

in IR limit is pion. This pion field can be understood as Goldstone boson of quotient group

G/H .

Therefore, in generic case, understanding IR physics is non-trivial problem. We don’t

know what is good degree of freedom, or what is interaction of them. For specific case like

IR theory is scale invariant or supersymmetric case(like Seiberg-Witten description) maybe

we can partially answer about IR physics. The lesson of these case study would guide us to

the way of understanding non-perturbative IR physics.
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Chapter A

Appendix A : Notation, Convention and

Feynman Rules

In this section, we present our notations for calculation.

• R1,2 metric:

gmn = diag(−,+,+) with m,n = 0,1,2

εµνρεαβγ =−det




δ
µ
α δ

µ

β δ
µ
γ

δν
α δν

β
δν

γ

δ
ρ
α δ

ρ
α δ

ρ
α


 (A.1)

• Gauge and global symmetries of ABJM theory

Gauge symmetry : U(N)×U(N)

Global symmetry : SU(4) (A.2)

We denote trace over U(N) and U(N) as Tr and Tr, respectively. We also denote generators

for U(N) and U(N) gauge groups by the same notation T a,(a = 0,1, · · · ,N2− 1). They are

Hermitian and normalized to

Tr(T aT b) =
1

2
δab (A.3)

• Chern-Simons part of ABJM action is :

SCS =
k

4π

∫
ddxεµνρTr

(
Aµ∂νAρ−

2i

3
AµAνAρ

)
(A.4)

SCS =−
k

4π

∫
ddxεµνρTr

(
Aµ∂νAρ−

2i

3
AµAνAρ

)
(A.5)

Sgauge fixing =
k

4π

∫
ddx
[1

ξ
Tr(∂µAµ)2 +Tr(∂µc∗Dµc)

]
(A.6)

Sgauge fixing =−
k

4π

∫
ddx
[1

ξ
Tr(∂µA

µ
)2 +Tr(∂µc∗Dµc)

]
(A.7)
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Here Aµ is in adjoint representation of U(N) while Aµ is in adjoint representation of U(N).

Sgauge fixing and Sgauge fixing are obtained by Fadeev-Popov method. c,c are pair of Fadeev-Popov

ghosts while star means their conjugate. In here, covariant derivative Dµc defined by ∂µc+

i[Aµ,c].

Note that (A.4) is invariant under below gauge transformation.

A→ gAg−1− i(∂µg)g−1 (A.8)

Here g(x) is element of gauge group. Under this transformation,

SCS→ SCS−
k

12π
g−1(∂µg)g−1(∂νg)g−1(∂ρg)+ i

k

4π
∂µ(g

−1(∂νg)Aρ) (A.9)

Second term is related to will-known winding number density. Winding number density is:

w(g) =
1

24π2
εµνρg−1(∂µg)g−1(∂νg)g−1(∂ρg) (A.10)

Hence second term in (A.9) is equivalent to −2πkw(g). For eiSCS , this part do not appeared

since w(g) has only integer numbers. Third term in (A.9) is just total derivative term, it will

be vanished with appropriate boundary condition.

•Wilson loop operator of supersymmetric theory defined in [65, 66]:

WN [C] =
1

N
TrP exp

[
i

∮

C

dτ
(

Amẋm(τ)+ |ẋ|MJ
I Y IY

†
J

)]
(A.11)

This operator is invariant under transformation (A.8). Also, under specific choice of matrix

MJ
I , (4.13) preserves 1

6
supersymmetry of N = 6 supersymmetry in ABJM theory. When

contour is given by time-like line, this fact was explicitly proved with transformation rules of

various field contents in ABJM theory. [40,41]. Since we concentrated on light-like contour,

matter contributed term(later term) in (A.11) would be dropped. Therefore, Wilson loop

operator of U(N) part (denoted by W N [C]) at light-like contour is given by,

W N [C] =
1

N
TrP exp

[
i

∮

C

dτ
(

Amẋm(τ)
)]

(A.12)

Hence, suitable Wilson loop operator of ABJM theory is defined by

WN [C] :=
1

2

(
WN [C]+W N [C]

)
(A.13)
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• Feynman rules for gauge field

We can read Feynman rules explicitly from ABJM action (A.4)-(A.7):

U(N) gauge propagator : ∆µν =
2π

k

(εµνρ pρ

p2
+ξ

pµpν

p4

)
(A.14)

U(N) gauge propagator : ∆µν =−
2π

k

(εµνρ pρ

p2
+ξ

pµ pν

p4

)
(A.15)

In this document, we choose Landau gauge i.e ξ = 0. A Feynman rules in position space

could be obtained by Fourier transformation. For convenience, we consider propagator be-

tween x and y.

∆µν(x,y) =
2π

k

∫
dd p

(2π)d

εµνρ pρ

p2
e−ip·(x−y) (A.16)

Due to BDS divergent part, we should expand up to ε2 order to obtain finite piece. This

requires formula of arbitrary dimension. For d-dimension there are d−1 angle variables in

spherical coordinate system. These can be integrated out first. After some calculation we

obtain,

∆µν(x,y) =
2π

k

1

(2π)d
εµνρ∂ρ|x− y|2−d

∫ ∞

0

dt t
d
2
−2 J d

2
−1(t) (A.17)

where Jν(t) is Bessel function and |x− y| = ((x− y)2)
1
2 . After doing integration over t and

differentiation over xρ, finally we obtain propagator in position space.

∆µν(x,y) =
Γ(d

2
)

k π( d
2
−1)

εµνρ(x− y)ρ

((x− y)2)
d
2

(A.18)

• Coordinates setting of light-like polygon

In this document, we used following notation.

x
µ
i j = x

µ
i − x

µ
j (A.19)

To parametrizing location on light-like polygon, we defined x
µ
i for indicate position of i-th

cusp point. Then,

z
µ
i = x

µ
i + τ p

µ
i where τ ∈ [0,1] (A.20)

above z
µ
i parametrize some point between x

µ
i and x

µ
i+1. From this parametrization, we can

convert vector integration
∫

dzµ to scalar parameter integration like
∫ 1

0
dτ pµ.

After some algebra we can relate momentum to Mandelstam variables by use above defi-

nitions.

2pi · p j = x2
i, j+1 + x2

i+1, j− x2
i, j− x2

i+1, j+1 (A.21)
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• Path ordering of Wilson loop operator

As we seen in Feynman rules for gauge field,
〈
AµAν

〉
and

〈
AνAµ

〉
will give a different sign

due to epsilon tensor. Hence, we need to define suitable definition of path ordering for correct

calculation. We choose path ordering as

P (Aµ(z(τ))Aν(z(τ
′))) =

〈
Aµ(z(τ))Aν(z(τ

′))
〉

for τ > τ′

P (Aµ(z(τ))Aν(z(τ
′))) =

〈
Aν(z(τ

′))Aµ(z(τ))
〉

for τ < τ′ (A.22)

τ,τ′ are parameters running from 0 to 1.

It is well known that Wilson loop operator along contour C is expanded as following.

WN [C] =
1

N
TrP

[
I+ i

∮

C

dxµAµ(x)−
∮

C

dxµ

∫ x

dyνAµ(x)Aν(y)

− i

∮

C

dxµ

∫ x

dyν

∫ y

dzρAµ(x)Aν(y)Aρ(z)

+

∮

C

dxµ

∫ x

dyν

∫ y

dzρ

∫ z

dwσAµ(x)Aν(y)Aρ(z)Aσ(w)+ · · ·
]

(A.23)
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Chapter B

Appendix B : Self energy of gauge field

One of important trick in Wilson loop calculation is treatment of matter contributed part.

This part could be considered as effectively one-loop propagator in N = 4 SYM theory. This

is cornerstone of similarity of Wilson loop at N = 4 SYM and ABJM theory. In here, we

briefly present calculation of self energy correction up to two loop order. To do this, we need

matter part of ABJM action.

• ABJM action for matter:

SABJM ⊃
∫

ddx
[1

2
Tr
(
−(DmY )†

I DmY I + iΨ†ID/ΨI

)
+

1

2
Tr
(
−DmY I(DmY )†

I + iΨID/Ψ†I
)

−VF−VB

]
(B.1)

Complexified Hermitian scalars and Majorana spinors in this action are(I = 1,2,3,4):

Y I = (X1 + iX5,X2 + iX6,X3− iX7,X4− iX8) : (N,N;4)

Y
†

I = (X1− iX5,X2− iX6,X3 + iX7,X4 + iX8) : (N,N;4)

ΨI = (ψ2 + iχ2,−ψ1− iχ1,ψ4− iχ4,−ψ3 + iχ3) : (N,N;4)

Ψ†I = (ψ2− iχ2,−ψ1 + iχ1,ψ4 + iχ4,−ψ3− iχ3) : (N,N;4) (B.2)

Here, covariant derivatives are defined as

DmY I = ∂mY I + iAmY I− iY IAm , DmY
†
I = ∂mY

†
I + iAmY

†
I − iY

†
I Am (B.3)

and similarly for fermions ΨI,Ψ
†I . VF and VB are interaction terms, it contains sextet bosonic

interaction and Yukawa interaction.
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• R1,2 Majorana spinor and Dirac matrices:

Ψ≡ two-component Majorana spinor

Ψα = εαβΨβ, Ψα = εαβΨβ where εαβ =−εαβ = iσ2

γm
α

β = (iσ2,σ3,σ1), (γm)αβ = (−I,σ1,−σ3) obeying γmγn = gmn
I2×2− εmnpγp.

Hence, Tr(γmγn) = 2gmn (B.4)

• Feynman rules for bosons, fermions and ghosts are explicitly readable from ABJM action:

boson propagator : DI
J(p) = δJ

I

−i

p2− iε

fermion propagator : SI
J(p) = δI

J

ip/

p2− iε

ghost propagator : K(p) =
−i

p2− iε
(B.5)

• Self energy correction came from Boson and Fermion

There are four possible interactions contributes to self energy correction of gauge field.

For convenience, we divided them into two groups. We consider correction came from boson

and fermion firstly. This one-loop level corrected gauge field propagator will be attached to

light-like polygon and this procedure yields two-loop order Wilson loop matter contributed

diagram. Hence,

i∆αβ =
εαµτkτ

k2
iΠµν

ενβκkκ

k2
(B.6)

Here, iΠµν = iΠb
µν + iΠ

f
µν is self correction of gauge field due to boson and fermion, respec-

tively.

Boson contribution is:

iΠb
µν = 4

∫
dd l

(2π)d

i

(k+ l)2
i(2l + k)µ

i

l2
i(2l + k)ν

= 4

∫
dd l

(2π)d

(2l + k)µ(2l + k)ν

l2(k+ l)2
(B.7)

110



Fermion contribution is:

iΠ
f
µν = (−1)FD4Tr

[∫ dd l

(2π)d
γν
6 l
l2

γµ

(6 k+ 6 l)
(k+ l)2

]
(B.8)

In both case, extra factor 4 came from 4 complex scalars/complex fundamental fermions cou-

pled to gauge field. Numerator can be simplified by applying (B.4). It gives Tr[γµγργνγσ] =

2gµρgνσ +2gρνgµσ−2gµνgρσ. Hence,

iΠ
f
µν =−8

∫
dd l

(2π)d

lµ(l + k)ν +(l+ k)νlµ−gµνl · (l + k)

l2(k+ l)2
(B.9)

and,

iΠb
µν + iΠ

f
µν =

∫
dd l

(2π)d

4kµkν +8gµνl · (l + k)

l2(k+ l)2
(B.10)

kµkν term will be vanished due to epsilon tensors in (B.6). After Wick rotation, this inte-

gration can be converted to Euclidean d dimensional integration. Then, we used Feynman

parameter and following formula for integration.

∫
dd l

(2π)d

(l
2
)a

(l
2
+D)b

=
Γ(b−a− 1

2
d)Γ(a+ d

2
)

(4π)
d
2 Γ(b)Γ(d

2
)

D−(b−a− d
2
) (B.11)

After all, we arrives to

iΠb
µν + iΠ

f
µν =−8igµν

1

(4π)
d
2

Γ
(

1− d

2

)Γ(d
2
)Γ(d

2
)

Γ(d)
(k2)(

d
2
−1) (B.12)

Return to (B.6), self energy corrected gauge field propagation becomes

i∆αβ =−8i
Γ(1− d

2
)

(4π)
d
2

(
Γ(d

2
)
)2

Γ(d−1)

1

(k2)3− d
2

(gαβk2− kαkβ) (B.13)

To apply our calculation on position space, we again use Fourier transformation procedure

to here like (A.16). Note that latter term of (B.13) which is double derivative after transfor-

mation do not did anything for our case. Hence it is enough that consider transformation of

first term in (B.13).

i∆αβ =
i

2πd

Γ(1− d
2
)Γ(d

2
)Γ(d

2
)

Γ(d−1)

Γ(d−2)

Γ(2− d
2
)

gαβ

(x2)d−2
(B.14)
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When we calculating matter diagram, we considered additional factor
(

2π
k

)2
to here.

• Self energy correction came from gauge field and ghost

Another possible self energy correction came from triple gauge field interaction and ghost

contributed interaction.

From triple gauge field interaction,

iΠgauge

νγ = 3×3

∫
dd l

(2π)d

2π

k

εαµqlq

l2

(
i

k

4π

2

3

)
εµνρ

2π

k

ερβr(l + k)r

(l + k)2

(
i

k

4π

2

3

)
εαβγ

=−
∫

dd l

(2π)d

lν(l+ k)γ +(l+ k)νlγ

l2(l + k)2
(B.15)

Two factor 3 are came from vertex interaction term.

From ghost contributed loop,

iΠghost

νγ = (−1)FD

∫
dd l

(2π)d

(l + k)νlγ +(l+ k)γlν

l2(l + k)2
(B.16)

Above two corrections exactly cancels each other.
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Chapter C

Appendix C : Mellin-Barnes transformation

The Mellin-Barnes transformation is frequently used tool for Feynman diagram calcula-

tion. Basic transformation rule is following:

1

(X +Y )λ
=

1

Γ(λ)

∫ i∞

−i∞

dz

2πi
Γ(−z)Γ(λ+ z)

Y z

X (λ+z)
(C.1)

It replaces power of summation to complex integration of array of Gamma functions. For

more complex structure, number of Mellin-Barnes parameter zi’s are increased. For example,

1

(X +Y +Z)λ
=

1

Γ(λ)

∫ i∞

−i∞

dz1

2πi

∫ i∞

−i∞

dz2

2πi
Γ(−z1)Γ(−z2)Γ(λ+ z1 + z2)

Zz1Y z2

X (λ+z1+z2)
(C.2)

and so on. The integral contour is chosen that poles from Gamma functions like Γ(· · ·+ z)

lie on left side of contour and poles from Gamma functions like Γ(· · ·−z) lie on right side of

contour. This Mellin-Barnes transformation has benefit not only numerical evaluation, but

also asymptotic expansion in various kinematics.

Some integrations could be exactly calculated by Barnes lemma. At least Barnes lemma

enable us to reduce our complex integration. The first Barnes lemma is:

∫ i∞

−i∞

dz

2πi
Γ(λ1+z)Γ(λ2+z)Γ(λ3−z)Γ(λ4−z)=

Γ(λ1 +λ3)Γ(λ1 +λ4)Γ(λ2 +λ3)Γ(λ2 +λ4)

Γ(λ1 +λ2 +λ3 +λ4)
(C.3)

And the second Barnes lemma is:

∫ i∞

−i∞

dz

2πi

Γ(λ1 + z)Γ(λ2 + z)Γ(λ3 + z)Γ(λ4− z)Γ(λ5− z)

Γ(λ1 +λ2 +λ3 +λ4 +λ5 + z)

=
Γ(λ1 +λ4)Γ(λ1 +λ5)Γ(λ2 +λ4)Γ(λ2 +λ5)Γ(λ3 +λ4)Γ(λ3 +λ5)

Γ(λ1 +λ2 +λ4 +λ5)Γ(λ1 +λ3 +λ4 +λ5)Γ(λ2 +λ3 +λ4 +λ5)
(C.4)

These procedure are automized by barnesroutines.
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Chapter D

Appendix D : Ladder Diagrams

⊚ I
{4,4,1,1}
Ladder

This diagram could be obtained by just inserting (4,4,1,1) to (i, j,k, l) in (4.44).

I
{4,4,1,1}
Ladder =

∫ τ j

0

dτi

∫ 1

0

dτ j

∫ τl

0

dτk

∫ 1

0

dτl

ε(p1, p4,z1− z4)

[(z1− z4)2]
d
2

ε(p1, p4,z1− z4)

[(z1− z4)2]
d
2

(D.1)

After little algebra, this becomes

I
{4,4,1,1}
Ladder =

1

4

∫ 1

0

dτi

∫ 1

0

dτ j

∫ 1

0

dτk

∫ 1

0

dτl

τlτ jN4411

(
∆
{4,4,1,1}
1

) d
2
(
∆
{4,4,1,1}
2

) d
2

(D.2)

where

N4411 = (x2
14− x2

15− x2
24 + x2

25)(−x2
15x2

24 + x2
14x2

25)

∆
{4,4,1,1}
1 = x2

14τ̄iτ̄l + x2
14τiτ̄ j τ̄l + x2

15τ̄iτl + x2
15τiτ̄ jτl + x2

24τiτ j τ̄l + x2
25τiτ jτl

∆
{4,4,1,1}
2 = x2

14τ̄kτ̄ j + x2
14τkτ̄l τ̄ j + x2

15τkτl τ̄ j + x2
24τ j τ̄k + x2

24τ jτkτ̄l + x2
25τ jτkτl (D.3)

⊚ I
{5,4,1,1}
Ladder

This diagram can be obtained by just inserting (5,4,1,1) to (i, j,k, l) in (4.44).

I
{5,4,1,1}
Ladder =

∫ τ j

0

dτi

∫ 1

0

dτ j

∫ 1

0

dτk

∫ 1

0

dτl

ε(p1, p5,z1− z5)

[(z1− z5)2]
d
2

ε(p1, p4,z1− z4)

[(z1− z4)2]
d
2

(D.4)

After little algebra, this becomes

I
{5,4,1,1}
Ladder =−1

8

∫ 1

0

dτi

∫ 1

0

dτ j

∫ 1

0

dτk

∫ 1

0

dτl

τ jN5411(
∆
{5,4,1,1}
1

)(
∆
{5,4,1,1}
2

) (D.5)
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where

N5411 = (x2
15)

2(x2
24 + x2

26− x2
46)− x2

15(x
2
24x2

25−2x2
24x2

26 + x2
25x2

26 + x2
14(x

2
25 + x2

26)−2x2
25x2

46)

+ x2
25(x

2
14(x

2
25− x2

26)− x2
25x2

46)

∆
{5,4,1,1}
1 = x2

15τ̄iτ̄l + x2
15τiτ̄ jτ̄l + x2

25τiτ jτ̄l + x2
26τiτ jτl

∆
{5,4,1,1}
2 = x2

14τ̄ jτ̄k + x2
15τ̄ jτk + x2

24τ jτ̄k + x2
25τ jτk (D.6)

⊚ I
{4,3,1,1}
Ladder

This diagram can be obtained by just inserting (4,3,1,1) to (i, j,k, l) in (4.44).

I
{4,3,1,1}
Ladder =

∫ τ j

0

dτi

∫ 1

0

dτ j

∫ 1

0

dτk

∫ 1

0

dτl

ε(p1, p4,z1− z4)

[(z1− z4)2]
d
2

ε(p1, p3,z1− z3)

[(z1− z3)2]
d
2

(D.7)

After little algebra, this becomes

I
{4,3,1,1}
Ladder =−1

8

∫ 1

0

dτi

∫ 1

0

dτ j

∫ 1

0

dτk

∫ 1

0

dτl

τ jN4311

(
∆
{4,3,1,1}
1

) d
2
(
∆
{4,3,1,1}
2

) d
2

(D.8)

where

N4311 = x2
13x2

24(−x2
14 +2x2

15 + x2
24)− x2

13(x
2
14 + x2

24)x
2
25

+(x2
14− x2

24)(−x2
15x2

24 + x2
14x2

25− x2
14x2

35 + x2
24x2

35)

∆
{4,3,1,1}
1 = x2

14τ̄iτ̄l + x2
14τiτ̄ jτ̄l + x2

15τ̄iτl + x2
15τiτ̄ jτl + x2

24τiτ jτ̄l + x2
25τiτ jτl

∆
{4,3,1,1}
2 = x2

13τ̄ jτ̄k + x2
14τ̄ jτk + x2

24τ jτk (D.9)

⊚ I
{5,3,1,1}
Ladder

This diagram can be obtained by just inserting (5,3,1,1) to (i, j,k, l) in (4.44).

I
{5,3,1,1}
Ladder =

∫ τ j

0

dτi

∫ 1

0

dτ j

∫ 1

0

dτk

∫ 1

0

dτl

ε(p1, p5,z1− z5)

[(z1− z5)2]
d
2

ε(p1, p3,z1− z3)

[(z1− z3)2]
d
2

(D.10)
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After little algebra, this becomes

− 1

8

∫ 1

0

dτi

∫ 1

0

dτ j

∫ 1

0

dτk

∫ 1

0

dτl

τ jN5311

(
∆
{5,3,1,1}
1

) d
2
(
∆
{5,3,1,1}
2

) d
2

(D.11)

where

N5311 = (x2
14− x2

24)(−x2
26x2

35 + x2
15(x

2
26− x2

36)+ x2
25x2

36)

− x2
13(−x2

24x2
25 + x2

24x2
26 + x2

15(x
2
24 + x2

26− x2
46)+ x2

25x2
46)

∆
{5,3,1,1}
1 = x2

15τ̄iτ̄l + x2
15τiτ̄ jτ̄l + x2

25τiτ jτ̄l + x2
26τiτ jτl

∆
{5,3,1,1}
2 = x2

13τ̄ j τ̄k + x2
14τ̄ jτk + x2

24τ jτk (D.12)

⊚ I
{3,3,1,1}
Ladder

This diagram can be obtained by just inserting (3,3,1,1) to (i, j,k, l) in (4.44).

I
{3,3,1,1}
Ladder =

∫ τ j

0

dτi

∫ 1

0

dτ j

∫ τl

0

dτk

∫ 1

0

dτl

ε(p1, p3,z1− z3)

[(z1− z3)2]
d
2

ε(p1, p3,z1− z3)

[(z1− z3)2]
d
2

(D.13)

After little algebra, this becomes

I
{3,3,1,1}
Ladder =

1

4

∫ 1

0

dτi

∫ 1

0

dτ j

∫ 1

0

dτk

∫ 1

0

dτl

τlτ jN3311

(
∆
{3,3,1,1}
1

) d
2
(
∆
{3,3,1,1}
2

) d
2

(D.14)

where

N3311 = x2
13x2

24(x
2
13− x2

14 + x2
24)

∆
{3,3,1,1}
1 = x2

13τ̄iτ̄l + x2
13τiτ̄ jτ̄l + x2

14τ̄iτl + x2
14τiτ̄ jτl + x2

24τiτ jτl

∆
{3,3,1,1}
2 = x2

13τ̄ jτ̄k + x2
13τ̄ jτkτ̄l + x2

14τ̄ jτkτl + x2
24τ jτkτl (D.15)

⊚ I
{5,4,2,1}
Ladder

This diagram can be obtained by just inserting (5,4,2,1) to (i, j,k, l) in (4.44).

I
{5,4,2,1}
Ladder =

∫ 1

0

dτi

∫ 1

0

dτ j

∫ 1

0

dτk

∫ 1

0

dτl

ε(p1, p5,z1− z5)

[(z1− z5)2]
d
2

ε(p2, p4,z2− z4)

[(z2− z4)2]
d
2

(D.16)

117



After little algebra, this becomes

− 1

8

∫ 1

0

dτi

∫ 1

0

dτ j

∫ 1

0

dτk

∫ 1

0

dτl

N5421

[x2
15τ̄iτ̄l + x2

25τiτ̄l + x2
26τiτl]

d
2 [x2

24τ̄ jτ̄k + x2
25τ̄ jτk + x2

35τ jτk]
d
2

(D.17)

where

N5421 =−x2
14(x

2
25)

2− x2
13(x

2
24− x2

25)(x
2
25− x2

26)+ x2
14x2

25x2
26 + x2

14x2
25x2

35 + x2
14x2

26x2
35

− x2
24x2

26x2
35−2x2

14x2
25x2

36 + x2
24x2

25x2
36− (x2

25)
2x2

36 +2x2
13x2

25x2
46 + x2

25(x
2
25− x2

35)x
2
46

+ x2
15(−x2

26x2
35 + x2

25x2
36 + x2

24(x
2
25− x2

26− x2
35 + x2

36)− x2
25x2

46 + x2
35x2

46) (D.18)

At last step in every ladder diagram, we converted to multi-dimensional integration with

domain [0,1]. This is because to use numerical multidimensional integral package and to

apply Mellin-Barnes transformation.
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Chapter E

Appendix E : Dimensional Redection Scheme

In Wilson loop calculation(3 dimension), there is an ambiguous issue on choice of scheme.

1 This problem originated from existence of epsilon tensor. We already know that (momen-

tum, position, etc) vector should be living in D = 3−2ε dimension to resolve UV divergence

appearing at cusp of Wilson loop. However, for epsilon tensor, it seems that there are two

possible choice.

εµνρεµστ = (δντδρσ−δνσδρτ)Γ(D−1) (D dimension case)

εµνρεµστ = (δντδρσ−δνσδρτ) (3 dimension case) (E.1)

Semenoff et al. showed in their paper that first choice do not consistent with gauge invari-

ance, that is Ward-Takahashi-Slavnov-Taylor identity. Hence, we should consider spinorial

object(including gamma function)and epsilon tensor living in exact 3 dimension while other

physical vectors living in D dimension. This scheme also works well on calculation of half-

BPS circular Wilson loop in ABJM theory, whose result matched to localization computa-

tion.

However, there appears another ambiguity in Wilson loop calculation. For instance, ex-

pression of vertex diagrams are consist of tensor integrals. Basic strategy for these tensor

integrals is taking derivatives on scalar integrals. During this derivative procedure, there ap-

pears η̃µν which perfectly isolated from epsilon tensor contraction. The problem is this :

ηµνη̃µν = 3? or ηµνη̃µν = 3−2ε?

Unfortunately, we cannot decide one of them from S-T identity calculation. Even if we

distinguish η̃µν to ηµν, two loop renormalization factor does not changed in pure Chern-

Simons part : it is still gives 1 as far as epsilon tensor lives in exact 3-dimension. Neverthless,

we want to argue that ηµνη̃µν = 3−2ε is more suitable choice.

We can decompose exact 3-dimensional metric ηµν. That is,

ηµν = η̂µν + ˆ̂ηµν (E.2)

1Recently, this was indicated in [68].
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where η̂µν is 3− 2ε dimensional object while ˆ̂ηµν is 2ε dimensional. In some sense, this is

kind of block diagonalization for continuous dimension. That is, we can consider ηµν pν as

following. 


η̂âb̂

ˆ̂η ˆ̂α
ˆ̂
β







pb̂

p
ˆ̂
b




Decomposed things are mutually orthogonal, contraction among themselves working like

following.

η̂µ̂ν̂η̂µ̂ν̂ = 3−2ε, ˆ̂η ˆ̂µ ˆ̂ν
ˆ̂η

ˆ̂µ ˆ̂ν = 2ε, η̂µ̂ν̂
ˆ̂η

ˆ̂µ ˆ̂ν = 0

η̂µ̂ν̂ pν̂ = pµ̂, ˆ̂η ˆ̂µ ˆ̂ν pν̂ = 0 (E.3)

From now on, our pµ means pµ̂ since there is no appearance of p
ˆ̂µ in our calculation.

When ηµν or η̂µ̂ν̂ acts on pν, we can consider them as equivalent object since ηµν pν =

(η̂µ̂ν̂ + ˆ̂η ˆ̂µ ˆ̂ν)pν = (η̂µ̂ν̂)pν. Similarly, ηµνη̂ν̂ρ̂ = (η̂µ̂ν̂ + ˆ̂η
ˆ̂µ ˆ̂ν)η̂ν̂ρ̂ = η̂

µ̂

ρ̂. However, ηµνηµν and

ηµνη̂µ̂ν̂ gives manifestly different number : 3 and 3−2ε respectively. For instance, let exam-

ine this to following term that appeared in I321.

εαβγεµνρη̂γ̂ρ̂ p1,α p2,β p3,µ p2,ν (E.4)

ηγρ will be appeared from contraction of epsilon tensor, and this will be contracted to η̂γ̂ρ̂.

This gives 3−2ε, not 3.
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Chapter F

Appendix F : Expressions for vertex diagrams

F.0.1 I
{3,2,1}
Vertex

To calculate this diagram, we insert {3,2,1} to (4.49). In this subsection, we used absolute

value notation for convenience. That is, |x− y| means
(
(x− y)2

) 1
2 .

I{3,2,1}vertex =

∫
dz

µ
3dzν

2dz
ρ
1εαβγεµασενβλεργτ

∫
ddw

(w− z3)
σ(w− z2)

λ(w− z1)
τ

|w− z3|d |w− z2|d |w− z1|d
(F.1)

This equals to

∫
ds3ds2ds1 p

µ
3 pν

2 p
ρ
1(−ενµλερστ + ενσλερµτ)

∫
ddw

(w− z32)
σ(w)λ(w− z12)

τ

|w− z32|d |w|d |w− z12|d
(F.2)

Here, we transformed w−z2 to w. After some algebra on numerator, we can obtain following

result.

I{3,2,1}vertex =

∫
dτ3dτ2dτ1

∫
ddw
−ε(p1, p2,w)ε(p3, p2,w)

|w|d |w− z32|d |w− z12|d
(F.3)

Here we use small trick. We can replace w by differential operator.

I{3,2,1}
vertex

=
1

(d−2)2

∫
dτ3dτ2dτ1

∫
ddw
−ε(p1, p2,∂z1

)ε(p3, p2,∂z3
)

|w|d |w− z12|d−2|w− z32|d−2
(F.4)

Introducing Feynman parameter β1,β2,β3 as standard way I
{3,2,1}
vertex is,

∫
d{τi,w,β j}

δ(
∑

βi−1)

(d−2)2

−ε(p1, p2,∂z1
)ε(p3, p2,∂z3

)(β1β2β3)
d−2

2
−1β2

[β1(w− z12)2 +β2w2 +β3(w− z32)2]
3d−4

2

Γ(3d
2
−2)

Γ(d
2
)Γ(d

2
−1)2

=

∫
d{τi, l,β j}

δ(
∑

βi−1)

(d−2)2

−ε(p1, p2,∂z1
)ε(p3, p2,∂z3

)(β1β2β3)
d
2−2β2

[l2 +∆]
3d−4

2

Γ(3d
2
−2)

Γ(d
2
)Γ(d

2
−1)2

=− iπ
d
2

(d−2)2

Γ(d−2)

Γ(d
2
)Γ(d

2
−1)2

∫
d{τi,β j}δ(

∑
βi−1)(β1β2β3)

d
2
−2β2

× ε(p1, p2,∂z1
)ε(p3, p2,∂z3

)∆2−d
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=− iπ
d
2 Γ(d−2)

4Γ(d
2
)3

∫
d{τi,β j}δ(

∑
βi−1)(β1β2β3)

d
2
−2β2ε(p1, p2,∂z1

)ε(p3, p2,∂z3
)∆2−d

(F.5)

Here is our notation on ∆, and βi,

∆ = β1β̄1z2
12 +β3β̄3z2

32−2β1β3z12 · z32

= τ̄1xys(τ̄3ȳ+ τ2x̄y)+ τ3yȳt(τ̄2x̄+ τ1x)+ τ̄1τ3uxyȳ (F.6)

β1 = xy β2 = (1− x)y β3 = (1− y) x2
13 = s x2

14 = u x2
24 = t (F.7)

To proceed calculation, we should know expression of differentiate operator on ∆.

∂

∂z
γ
1

∆2−d = (2−d)∆1−d[2β1β̄1z12,γ−2β1β3z32,γ]

∂

∂z
ρ
3

∂

∂z
γ
1

∆2−d = (2−d)(1−d)∆−d[2β3β̄3z32,ρ−2β1β3z12,ρ][2β1β̄1z12,γ−2β1β3z32,γ]

− (2−d)∆1−d2β1β3δ̂ργ (F.8)

Numerator could be simplified by suitable manipulation. Considering previous dimensional

reduction scheme carefully, the result is,

I{3,2,1}
vertex

=
iπ

d
2 Γ(d−2)

8Γ(d
2
)3

(2−d)

×
∫

dτ1,2,3dxdyy(xx̄y2ȳ)
d
2−2x̄y

[2(1−d)

∆d
(τ̄1τ3st(s−u+ t)x2y2ȳ2)− (d−2)

xyȳ

∆d−1
st
]

= κst

∫
dτ1,2,3dxdy(xx̄ȳ)

d
2
−1
[(d−2)

∆d−1
y

+
2(d−1)

∆d
y

xȳτ̄1τ3(s−u+ t)
]

(F.9)

where coefficient κ is given by

κ =
iπ

d
2 Γ(d−1)

8Γ(d
2
)3

(F.10)

and ∆y means divide ∆ by y. That is,

∆y = τ̄1xs(τ̄3ȳ+ τ2x̄y)+ τ3ȳt(τ̄2x̄+ τ1x)+ τ̄1τ3uxȳ (F.11)

To prevent spurious pole, we only consider the case of Mandelstam variables live on Eu-

clidean region. In other words, All Mandelstam variables considered as negative-definite.
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F.0.2 I
{4,2,1}
Vertex

We again inserted {4,2,1} into (4.49).

I{4,2,1}vertex =

∫
dz

µ
4dzν

2dz
ρ
1εαβγεµασενβλεργτ

∫
ddw

(w− z4)
σ(w− z2)

λ(w− z1)
τ

|w− z4|d |w− z2|d |w− z1|d
(F.12)

This becomes

∫
ds4ds2ds1 p

µ
4 pν

2 p
ρ
1(−ενµλερστ + ενσλερµτ)

∫
ddw

(w− z42)
σ(w)λ(w− z12)

τ

|w− z42|d |w|d |w− z12|d
(F.13)

Little algebra for I
{4,2,1}
vertex gives

− κ̃

∫
dβ1dβ2dβ3β

d
2
−1

1 β
d
2
−2

2 β
d
2
−2

3 δ(
∑

βi−1)∆−d

[
− ε(p4, p2,β2β3z12−β3β̄3z42)ε(p1, p2,β2β3z42−β2β̄2z12)

− ε(p4, p2,β2β3z12−β3β̄3z42)ε(p1, p3,β2β3z42−β2β̄2z12)

+ ε(p3, p2,β2β3z12−β3β̄3z42)ε(p1, p4,β2β3z42−β2β̄2z12)
]

− κ̃

∫
dβ1dβ2dβ3β

d
2
−1

1 β
d
2
−2

2 β
d
2
−1

3 δ(
∑

βi−1)∆−d

[
ε(p4, p2, p3)ε(p1, p2,β2β3z42−β2β̄2z12)

+ ε(p4, p2, p3)ε(p1, p3,β2β3z42−β2β̄2z12)

+ s4ε(p4, p2, p3)ε(p1, p4,β2β3z42−β2β̄2z12)
]

+
1

2(1−d)
κ̃

∫
dβ1dβ2dβ3(β1β2β3)

d
2−1δ(

∑
βi−1)∆1−d

[
(p4 · p2)(p1 · p2)− (p1 · p4)(p2 · p3)+ (p3 · p1)(p2 · p4)

]
(F.14)

where κ̃ is

κ̃ = iπ
d
2 (1−d)

Γ(d−1)

Γ(d
2
)3

(F.15)

Terms in (F.14) could be converted into a function of Mandelstam variables. There appears

long expression for this numerator piece. To eliminate delta function, we reparametrize βi

by two parameter x,y.

β1 = xy, β2 = x̄y, β3 = ȳ (F.16)
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Finally,

I{4,2,1}
vertex

= κ̃

∫
ds1,2,4

∫
dxdy(xx̄ȳ)

d
2
−1 1

∆d
y

FB,421(x
2
i, j)

+
1

2(1−d)
κ̃

∫
ds1,2,4

∫
dxdy(xx̄ȳ)

d
2
−1 (d−2)

∆d−1
y

FA,421(x
2
i, j) (F.17)

Here FA,421(x
2
i, j) and FB,421(x

2
i, j) are function of Mandelstam variables obtained from ex-

panding (F.14). Denominator ∆y obtained by dividing ∆ by y.

∆y = x2
13τ2xyτ̄1x̄+x2

14τ̄1τ̄4x̄ȳ+x2
15τ̄1τ4x̄ȳ+x2

24τ̄4ȳ(τ1x̄+ τ̄2x)+x2
25τ4ȳ(τ1x̄+ τ̄2x)+x2

35τ2τ4xȳ

(F.18)

This expression do not give 1
ε divergence. In other words, this diagrams contributes only to

IR finite part.
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F.0.3 I
{4,3,1}
Vertex

This evaluation is very parallel to previous vertex diagrams. We again inserted {4,3,1}
into (4.49).

I{4,3,1}vertex =

∫
dz

µ
4dzν

3dz
ρ
1εαβγεµασενβλεργτ

∫
ddw

(w− z4)
σ(w− z3)

λ(w− z1)
τ

|w− z4|d |w− z3|d |w− z1|d
(F.19)

Little algebra for I
{4,3,1}
vertex gives

− κ̃

∫
dβ1dβ2dβ3β

d
2
−2

1 β
d
2
−1

2 β
d
2
−2

3 δ(
∑

βi−1)∆−d

[
− ε(p3, p1,β1β3z43−β1β̄1z13)ε(p4, p2,β1β3z13−β3β̄3z43)

− ε(p3, p1,β1β3z43−β1β̄1z13)ε(p4, p3,β1β3z13−β3β̄3z43)

+ ε(p3, p2,β1β3z43−β1β̄1z13)ε(p4, p1,β1β3z13−β3β̄3z43)
]

− κ̃

∫
dβ1dβ2dβ3β

d
2
−1

1 β
d
2
−1

2 β
d
2
−2

3 δ(
∑

βi−1)∆−d

[
ε(p3, p1, p2)ε(p4, p2,β1β3z13−β3β̄3z43)

+ ε(p3, p1, p2)ε(p4, p3,β1β3z13−β3β̄3z43)

+ s̄1ε(p3, p1, p2)ε(p4, p1,β1β3z13−β3β̄3z43)
]

+
1

2(1−d)
κ̃

∫
dβ1dβ2dβ3(β1β2β3)

d
2
−1δ(

∑
βi−1)∆1−d

[
(p3 · p1)(p4 · p3)− (p1 · p4)(p2 · p3)+ (p3 · p1)(p2 · p4)

]

(F.20)

As before, κ̃ is defined by

κ̃ = iπ
d
2 (1−d)

Γ(d−1)

Γ(d
2
)3

(F.21)

In numerical works, we translated (F.20) as a function of Mandelstam variables. As before,

There appears long expression for this numerator piece. To eliminate delta function, we

reparametrize βi by two parameter x,y again.

β1 = xy, β2 = x̄y, β3 = ȳ (F.22)
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Finally,

I{4,3,1}
vertex

= κ̃

∫
ds1,3,4

∫
dxdy(xx̄ȳ)

d
2
−1 1

∆d
y

FB,431(x
2
i, j)

+
1

2(1−d)
κ̃

∫
ds1,3,4

∫
dxdy(xx̄ȳ)

d
2
−1 (d−2)

∆d−1
y

FA,431(x
2
i, j) (F.23)

Here FA,431(x
2
i, j) and FB,431(x

2
i, j) are function of Mandelstam variables obtained from ex-

panding (F.20). Denominator ∆y obtained by dividing ∆ by y.

∆y =−x2
13xx̄yτ̄1τ̄3−x2

14xτ̄1(x̄yτ3+ ȳτ̄4)−x2
15xȳτ̄1τ4−x2

24xτ1(x̄yτ3+ ȳτ̄4)−x2
25xȳτ1τ4−x2

35x̄ȳτ̄3τ4

(F.24)

In case of configuration satisfy Gram determinant constraint, we observed that numerical

value for I421 and I431 agrees. Unfortunately, it is hard to see directly from these expressions

due to its complexity.

F.0.4 I
{5,3,1}
Vertex

This part has most complex structure among whole diagrams. Start from (4.49),

I{5,3,1}
vertex

=

∫
dz

µ
5dzν

3dz
ρ
1εαβγεµασενβλεργτ

∫
ddw

(w− z5)
σ(w− z3)

λ(w− z1)
τ

|w− z5|d |w− z3|d |w− z1|d
(F.25)

After straightforward algebra, we got

I{5,3,1}vertex =4
(1−d)

2−d
τ

∫
[dβ3]

∫
dτ5,3,1

1

∆d
HB(x

2
i, j)+2

1

2−d
τ

∫
[dβ3]

∫
dτ5,3,1

1

∆d−1
HA(x

2
i, j)

+2
(1−d)

2−d
τ̃

∫
[dβ̃3]

∫
dτ5,3,1

1

∆d
HC(x

2
i, j) (F.26)

Here,

τ =−iπ
d
2

Γ(d−2)

Γ(3d
2
−2)

, τ̃ =−iπ
d
2

Γ(d−1)

Γ(3d
2
−1)

(F.27)

and

∫
[dβ3] =

∫ 1

0

dβ1dβ2dβ3(β1β2β3)
d
2
−2β2δ(

∑

i

βi−1)
Γ(3d

2
−2)

Γ(d
2
)Γ(d

2
−1)2

∫
[dβ̃3] =

∫ 1

0

dβ1dβ2dβ3(β1β2β3)
d
2
−2β1β2δ(

∑

i

βi−1)
Γ(3d

2
−1)

Γ(d
2
)2Γ(d

2
−1)

(F.28)
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and denominator ∆y is given by

∆y = x2
13xx̄yτ̄1τ̄3 + x2

14xx̄yτ̄1τ3 + x2
24xx̄yτ1τ3 + x2

15xȳτ̄1τ̄5 + x2
25xȳτ1τ̄5 + x2

26xȳτ1τ5

+ x2
35x̄ȳτ̄3τ̄5 + x2

36x̄ȳτ̄3τ5 + x2
46x̄ȳτ3τ5 (F.29)

again ∆y means divide ∆ by y.

HA(x
2
i, j), HB(x

2
i, j) and HC(x

2
i, j) are quiet complex functions of Mandelstam variables. We

can combine first and third term in (F.26),so finally got more compact following expression.

α1

∫ 1

0

dxdy

∫ 1

0

dτ5,3,1
1

∆d
y

(xx̄ȳ)
d
2
−1FB,531(x

2
i, j) (F.30)

where

α1 =−iπ
d
2 (1−d)

Γ(d−1)

Γ(d
2
)3

(F.31)

which gives a value of 16i at three dimension.

For second term in (F.26),

α1

2(1−d)

∫ 1

0

dxdy

∫ 1

0

dτ5,3,1(xx̄ȳ)
d
2
−1FA,531(x

2
i, j)

(d−2)

∆d−1
y

(F.32)

We do not explicitly write down function FA,i jk and FB,i jk here.
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Chapter G

Appendix G : Expressions for I521 and I541

For the splitting function(n > 6) we introduced new kind of vertex diagrams, I521 and I541.

Due to vanishment of x2
16 in hexagon, these diagrams could be obtained from permutating

I421 or I431 therein. However, these diagrams manifestly distinguished in case of octagon. We

summarized there expression in here. Even in generel n-gon setup, expression of I521 and I541

are same with here since inner product formula 2pi · p j = x2
i, j+1 + x2

i+1, j− x2
i, j− x2

i+1, j+1 un-

changed.

• Scalar integration I541

Start from

I{5,4,1}vertex =

∫
dz

µ
5dzν

4dz
ρ
1εαβγεµασενβλεργτ

∫
ddw

(w− z5)
σ(w− z4)

λ(w− z1)
τ

|w− z5|d |w− z4|d |w− z1|d
(G.1)

This expression equivalent to

I541 =
1

(d−2)2

∫
ddw

ε(p4, p5,∂z5
)ε(p1, p2,∂z1

)

|w|d|w− z54|d−2|w− z14|d−2

+
1

(d−2)2

∫
ddw

ε(p4, p5,∂z5
)ε(p1, p3,∂z1

)

|w|d |w− z54|d−2|w− z14|d−2

+
1

(d−2)2

∫
ddw

ε(p4, p5,∂z5
)ε(p1, p4,∂z1

)

|w|d |w− z54|d−2|w− z14|d−2
(G.2)

Feynman parameter β1,β2,β3 and ∆ are defined as

β1 = xy, β2 = xy, β3 = y
∫

[dβ3] =

∫ 1

0

dβ1dβ2dβ3(β1β2β3)
d
2
−2β1δ(

∑

i

βi−1)
Γ(3d

2
−2)

Γ(d
2
)Γ(d

2
−1)2

∆ =−2β2β3z14 · z54 +β2β2z2
14 +β3β3z2

54 (G.3)
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Then, I541 became

− τ̃

∫
dβ1dβ2dβ3β

d
2−1

1 β
d
2−2

2 β
d
2−2

3 δ(
∑

βi−1)∆−d

[
ε(p4, p5,β2β3z14−β3β̄3z54)ε(p1, p2,β2β3z54−β2β̄2z14)

+ ε(p4, p5,β2β3z14−β3β̄3z54)ε(p1, p3,β2β3z54−β2β̄2z14)

+ ε(p4, p5,β2β3z14−β3β̄3z54)ε(p1, p4,β2β3z54−β2β̄2z14)
]

+
1

2(1−d)
τ̃

∫
dβ1dβ2dβ3(β1β2β3)

d
2
−1δ(

∑
βi−1)∆1−d

[
(p4 · p1)(p5 · p2)− (p4 · p2)(p5 · p1)

+ (p4 · p1)(p5 · p3)− (p4 · p3)(p5 · p1)+ (p4 · p1)(p5 · p4)
]

(G.4)

where

τ̃ = iπ
d
2 (1−d)

Γ(d−1)

Γ(d
2
)3

(G.5)

• Scalar integration I521

Methodlogically, computation ways identical to that of I541. However, expression is more

complex. Here we just briefly summarize result. We do not written here explicit full ex-

pression of numerator as a function of Mandelstam variables. Obtaining this expression is

necessary procedure for calculation via FIESTA2, however they could be gained straighfor-

wardly from below expression. I521 is,

I421 =
1

(d−2)2

∫
ddw

ε(p2, p5,∂z5
)ε(p1, p2,∂z1

)

|w|d|w− z52|d−2|w− z12|d−2
+

1

(d−2)2

∫
ddw

ε(p2, p5,∂z5
)ε(p1, p3,∂z1

)

|w|d|w− z52|d−2|w− z12|d−2

+
1

(d−2)2

∫
ddw

ε(p2, p5,∂z5
)ε(p1, p4,∂z1

)

|w|d|w− z52|d−2|w− z12|d−2
− 1

(d−2)2

∫
ddw

ε(p2, p3,∂z5
)ε(p1, p5,∂z1

)

|w|d |w− z52|d−2|w− z12|d−2

− 1

(d−2)2

∫
ddw

ε(p2, p4,∂z5
)ε(p1, p5,∂z1

)

|w|d|w− z52|d−2|w− z12|d−2
− 1

d−2

∫
ddw

ε(p2, p5, p3)ε(p1, p2,∂z1
)

|w|d|w− z12|d−2|w− z52|d

− 1

d−2

∫
ddw

ε(p2, p5, p4)ε(p1, p2,∂z1
)

|w|d|w− z12|d−2|w− z52|d
− 1

d−2

∫
ddw

ε(p2, p5, p3)ε(p1, p3,∂z1
)

|w|d|w− z12|d−2|w− z52|d

(G.6)
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− 1

d−2

∫
ddw

ε(p2, p5, p4)ε(p1, p3,∂z1
)

|w|d |w− z12|d−2|w− z52|d
− 1

d−2

∫
ddw

ε(p2, p5, p3)ε(p1, p4,∂z1
)

|w|d|w− z12|d−2|w− z52|d

− 1

d−2

∫
ddw

ε(p2, p5, p4)ε(p1, p4,∂z1
)

|w|d |w− z12|d−2|w− z52|d
+

1

d−2

∫
ddw

s5ε(p2, p3, p5)ε(p1, p5,∂z1
)

|w|d |w− z12|d−2|w− z52|d

+
1

d−2

∫
ddw

s5ε(p2, p4, p5)ε(p1, p5,∂z1
)

|w|d |w− z12|d−2|w− z52|d
(G.7)

Note that latter 8 terms (proportional to 1
(d−2) ) are negligible in triple collinear limit since

epsilon tensor contains two of p2, p3, p4 that being parallel vectors in triple collinear limit.

Although we considered their contribution in computation, here we just wrote down expres-

sions for dominant part. β1,β2,β3 are defined as before, but ∆ is slightly different.

β1 = xy, β2 = xy, β3 = y
∫

[dβ3] =

∫ 1

0

dβ1dβ2dβ3(β1β2β3)
d
2
−2β1δ(

∑

i

βi−1)
Γ(3d

2
−2)

Γ(d
2
)Γ(d

2
−1)2

∆ =−2β2β3z12 · z52 +β2β2z2
12 +β3β3z2

52 (G.8)

The dominant 5-terms can be summarized as follow.

− τ̃

∫
dβ1dβ2dβ3β

d
2
−1

1 β
d
2
−2

2 β
d
2
−2

3 δ(
∑

βi−1)∆−d

[
ε(p2, p5,β2β3z12−β3β̄3z52)ε(p1, p2,β2β3z52−β2β̄2z12)

+ ε(p2, p5,β2β3z12−β3β̄3z52)ε(p1, p3,β2β3z52−β2β̄2z12)

+ ε(p2, p5,β2β3z12−β3β̄3z52)ε(p1, p4,β2β3z52−β2β̄2z12)

− ε(p2, p3,β2β3z12−β3β̄3z52)ε(p1, p5,β2β3z52−β2β̄2z12)

− ε(p2, p4,β2β3z12−β3β̄3z52)ε(p1, p5,β2β3z52−β2β̄2z12)
]

+
1

2(1−d)
τ̃

∫
dβ1dβ2dβ3(β1β2β3)

d
2
−1δ(

∑
βi−1)∆1−d

[
(p1 · p2)(p2 · p5)− (p2 · p3)(p5 · p1)

+ (p2 · p1)(p4 · p5)− (p2 · p4)(p5 · p1)+ (p2 · p5)(p3 · p1)

− (p2 · p1)(p5 · p4)+ (p2 · p5)(p1 · p4)
]

(G.9)

where

τ̃ = iπ
d
2 (1−d)

Γ(d−1)

Γ(d
2
)3

(G.10)
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Chapter H

Appendix H : Gram determinant constraint

for conformal cross ratio

We can always consider vector living in d + 2 dimension. For spacetime vector xµ(µ =

0,1, · · · ,d− 1), let denotes this d + 2 dimensional vector as XA = (X−1,X0,X1,X2, · · · ,Xd)(
XA = (Xµ,X+,X−) in lightcone coordinate

)
with metric ηAB = (−1,−1,1,1,1, · · · ) with

satisfies special constraints

−X2
−1−X2

0 +X2
1 +X2

2 + · · ·+X2
d = XµXµ−2X+X− = 0 (µ = 0,1,2, · · · ,d−1) (H.1)

For lightcone coordiates X+,X− these vectors are related to spacetime vector by following

relation.

xµ =
Xµ

X+
(H.2)

All possible group transformation of XA which remains restricts XAXA = 0 are equivalent to

conformal group trnasformation of spacetime vector xµ. It is easy to see metric in X space

and x space also related by −2XA
i X j,A = X+

i X+
j x2

i j. Let introduce n× n matrix Gn which

(i, j)th components are x2
i j. Then due to the metric relation, G is Gram matrix with d + 2

dimensional vectors X ,Y . In 3-dimensional case, determinant of G6 shoud be vanished since

X and Y are 5-dimensional vector. This gives one constraint ∆ = 0 on conformal cross ratio.

|G6|= Det




0 0 x2
13 x2

14 x2
15 0

0 0 0 x2
24 x2

25 x2
26

x2
13 0 0 0 x2

35 x2
36

x2
14 x2

24 0 0 0 x2
46

x2
15 x2

25 x2
35 0 0 0

0 x2
26 x2

36 x2
46 0 0




= (x2
14x2

25x2
36)∆

(H.3)

where

∆≡
(
(1−u2

1−u2
2−u2

3)
2−4u1u2u3

)
(H.4)

133



As we will see, our configurations are satisfy this condition so there are 2 independent cross

ratios for hexagon, which expected from conformal counting.
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초록

이논문에서는등각장론에서정의된다양한물리량들을통해섭동적혹은비섭동적인

등각장론의 성질을 규명한다. 첫째로, 5차원 등각장론에서 정의된 4점함수에 유니테리

성질및교차대칭성을통한제한조건을분석하여 UV고정점에해당하는등각장론이존

재함을 논의하였다. 다양한 차원에서 이 방법은 비섭동적인 상호작용하는 이론을 통해

규명할수있는임계지수를성공적으로유도해낼수있음이확인되었다.

둘째로, 초대칭을가지는 3차원 ABJM이론에서경로가첨점을 가지는경우에해당하

는 윌슨고리를 조사함으로써 해당 이론의 성질을 규명하고자 하였다. 특히, 윌슨고리의

특정한극한을조사함으로써 6각형윌슨고리의결과로부터 n각형윌슨고리의결과를얻

어낼 수 있는 방법을 제시한다. 이 결과는 n이 무한대로 가는 극한에서 초대칭 국소화를

통해얻어낸비섭동적인결과와잘일치한다는것이확인되었다.

주요어 : 끈이론,등각장론

학번 : 2008-20435
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