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Notacoes e Convencoes

Notacoes e Convencoes

Convencoes
e Os indices do espago-tempo 4D e 5D : y,---=0,--- ;3 e, 3,... =0,...,4
e Os indices espaciais em 3D e 4D sao : a,b,...=1,....3em,n,---=1,--- 4.

e Os grupos de de Sitter e anti-de Sitter SO(n, N —n) serdo denotados de maneira

compacta como: (A)dSy.

e Os indices e as correspondentes métricas serao denotadas por:

(A)dSy: M,N,---=0,---,5, nyy=diag(—1,1,1,1,1,s), (1)
(A)dS,: A, B,---=0,---,4, nap=diag(—1,1,1,1,s), (2)
onde s assume os valores =1 para dS ou AdS, respectivamente. Os indices de Lorentz
SO(1,3) 4D serao denotados por (I,J--- = 0,---,3), (4,j--- = 1,2,3) a métrica

correspondente sendo 1y = diag(—1,1,1,1). Essas métricas e suas inversas permitem

abaixar e subir os varios indices do grupo.

e Os respectivos simbolos de Levi-Civita sao definidos como
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€o12345 1= 1

EMNPQRS =
EABCDE5 ‘= €ABCDE
€o1234 1= 1
€ABCDE —
EIJKL4 ‘= EIJKL
€o123 1= 1
EIJKL =
E0ijk = Eijk

para o espaco interno, ou seja, do grupo de simetria, e

01234 .__
Laprde € =1
€,pra4 = ghvpo
o 60123 =1
Nz
g()abc — gabc

para o espacgos-tempo 5D e 4D.

Base da algebra de Lie

Uma base para algebra de Lie (a)dsg do grupo (A)dSg pode ser dada por 15
matrizes Mpg = —Mgp:

(Mpo)" x := —(6pvg — npndQ™)
satisfazendo as relagoes de comutagao de (a)dsg
(Myn, Mpgl = —nmoMyp — anpMyg + nvupMyg + voMap- (3)

Pode-se decompor essa base de acordo com representacoes do grupo de Lorentz 5D

SO(1,4) como
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onde o parametro [ positivo é introduzido relacionando-se com a constante cosmologica

s
A~ 2 (s = 155) de uma teoria de gravitacdo em 5D. Dessa forma, as relagoes de

comutagao leem-se

[Map,Mcp] = —NapMpe — fipeMap + NacMpp + spMac,
[Map, Pc] = flacPs —NpcPa, (4)
[Pa, Pg] = AMyp,

com 7flap = diag(—1,1,1,1,1). Os dez geradores M,p sao os geradores do grupo de
Lorentz 5D, e juntos com os 5 geradores Py, geram o grupo (A)dSg para o espago-tempo

5D. Os geradores M p podem ser representados por matrizes 5 x 5
(Mcp)?* B == — (047D — Tlesdp)
A primeira linha das relagbes de comutacao acima, a saber
[Map, Mcp| = —napMpc — nseMap +nacMpp + nepMac (5)

mas dessa vez com a métrica nap = diag(—1, 1,1, 1, s), nos fornece as regras de comu-
tagao da algebra de Lie de (A)dSs. Sua decomposigao de acordo com as representagoes

do grupo de Lorentz 4D sao

Analogamente introduzimos um parametro positivo para dimensionalizar corretamente
o gerador P [ associado a constante cosmolégica em uma teoria de gravitacao em 4D.

Assim

(Mry, Mgr] = —nieMyx —nseMin +nig My + 05 Mik
(Mrs, Px] = nixkP;—nsxPr,
[P[, PJ] = AMygp.
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Além disso, estaremos interessados na decomposigao completa de (A)dSg de acordo

com as representagoes do grupo de Lorentz SO(1, 3)

1 1

My, Pr:=-Mis, QIZZZMMa R = Mys,

Dimensoes

l

Nt Myrx — sk M + ik My + 1Mk
Nk Py — sk Pr,
k@ — nixQr,

0,
S
2
1
l_anJRa

sQr, [QnRl=—-Pr.

1
MIJ7 [QlaQJ] :l_QMIJ7

(6)

As dimensoes dos campos e dos parametros da teoria e dos geradores do grupo,

dados em unidade de massa, sao:

ds Wi el | | |A| My | Py

dim

-1 1 /0|=-1/2 0 |1




Resumo

NEVES, Bruno Carvalho, D. Sc., Universidade Federal de Vigosa, setembro de 2016.
Um modelo de gravitagao tipo-topolégico em um espago-tempo 4D. Ori-
entador: Olivier Piguet. Coorientadores: Daniel Heber Theodoro Franco e Oswaldo
Monteiro Del Cima.

Nesse trabalho consideramos um modelo para gravitagao em um espago-tempo qua-
dridimensional, originalmente proposto por Chamseddine, que pode ser obtido por
uma redugao dimensional e truncagao de uma teoria de Chern-Simons pentadimen-
sional. Sua origem topologica, torna-o um candidato interessante para uma quanti-
zacao mais facil, por exemplo, na abordagem da quantizacao de lacos. O presente
trabalho é dedicado a analise classica das propriedades do modelo. Solugoes cosmolo-
gicas, bem como solugoes de onda, foram encontradas e comparadas com as solugoes

correspondentes da relatividade geral de Einstein com constante cosmolégica.
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Abstract

NEVES, Bruno Carvalho, D. Sc., Universidade Federal de Vicosa, September, 2016.
A topological-like model for gravity in 4D space-time. Adviser: Olivier
Piguet. Co-advisers: Daniel Heber Theodoro Franco and Oswaldo Monteiro Del
Cima.

In this work we consider a model for gravity in 4-dimensional space-time originally
proposed by Chamseddine, which may be derived by dimensional reduction and
truncation from a 5-dimensional Chern-Simons theory. Its topological origin makes
it an interesting candidate for an easier quantization, e.g. in the Loop Quantization
framework. The present work is dedicated to a classical analysis of the model’s
properties. Cosmological solutions as well as wave solutions are found and compared
with the corresponding solutions of Einstein’s General Relativity with cosmological

constant.
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Introducao e Motivacao

Usualmente apresenta-se a relatividade geral (RG) como uma teoria métrica,
onde o campo dinamico da teoria é codificado exclusivamente na métrica do espago-
tempo. Essa descri¢ao é conhecida como formalismo de segunda-ordem. Contudo, ela
pode ser reformulada como uma teoria dindmica de conexoes no chamado formalismo
de primeira-ordem. Essa formulagao coloca a relatividade geral mais proxima as te-
orias de gauge que descrevem as demais interacoes da Natureza. No entanto, com
uma diferenca sutil na sua dindmica. Em particular, enquanto a dindmica das teorias
de gauge do Modelo Padrao exigem uma geometria de fundo fixa, a saber espaco de
Minkowski, a interacao gravitacional é fundamentalmente diferente. A grande licdo da
relatividade geral é que os graus de liberdade do campo gravitacional sao codificados
na geometria do espago-tempo. O espago-tempo é completamente dindmico: a nogao
de um fundo fixo sobre o qual as “coisas acontecem” perde o sentido. O campo gravita-
cional define a geometria sobre a qual seus graus de liberdade bem como dos campos de
matéria propagam-se. Consequentemente, essa perda da noc¢ao familiar de um espago-
tempo como uma espécie de “palco” onde a dindmica dos demais campos se desdobra
¢ conhecida como uma teoria independente de fundo (background independence).

A gravitagao, como descrita pela RG de Einstein, nao é uma teoria de campos
em um fundo curvo, mais do que isso, aquilo que chamamos de espaco-tempo é uma
entidade fisica dinamica. Uma consequéncia imediata é que um quanta do campo gra-
vitacional nao pode estar no espaco-tempo: eles devem construir o espago-tempo. Com
efeito, existem propostas para detegao de um comportamento anémalo na propagagao
da luz, em um espago-tempo que emerge de uma teoria de gravitacao quantica de la-

cos (LQG) [1, B0}, B31], devido a sua estrutura tipo-polimero ou granular, que deveria
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produzir modificagoes nas equagoes de Maxwell [58]. Essa é uma tarefa necessaria
se desejamos compreender a estrutura do espago-tempo em escalas proximas ao com-
primento de Planck [p ~ 10723 cm. Além disso, h& a esperanca de que uma teoria
quantica da gravitacao iré curar as singularidades da teoria no nivel classico, tais como
Big Bang e Buracos-Negros. Por outro lado, a auséncia de uma nogao preferencial
de tempo implica que a hamiltoniana da teoria seja uma combinacao linear de vincu-
los |75, O8]. Consequentemente, as equagoes de movimento de Hamilton nao podem
mais ser interpretadas como uma evolugao temporal, pelo contréario, correspondem a
um “movimento” ao longo das érbitas de gauge da RG. Nessa perspectiva, a nogao
de espago-tempo torna-se secundaria e a interpretacao dinamica da teoria parece ser
problemética.

A independéncia de fundo da teoria implica que a sua formulac¢ao candnica traz
a tona o grupo de difeomorfismos como parte do grupo de gauge da RG. A LQG é
construida como uma formula¢ao de quantizagao candnica do espago de fase da RG
em termos das conexbes tipo Yang-Mills de SU(2), o que nos introduz um grupo de
simetria extra na formulgao via a representagao de lagos [1I, B0, I1I]. A presenga de
simetrias de gauge nos leva, naturalmente, a existéncia de relagoes entre as variaveis do
espaco de fase - definidas em uma superficie tipo-espaco - conhecidas como vinculos.
Esses vinculos, por sua vez, definiem uma algebra através dos paréntes de Poisson, e
sao caracterizados como sendo os geradores infinitesimais das transformagoes de gauge.
Existem trés tipo de vinculos locais nessa formulacao: G* - chamado de vinculo de Gauss
- geradores das transformagoes de gauge de SU(2), trés vinculos locais V, - vinculos
vetoriais associados aos geradores dos difeomorfismos espaciais, e finalmente o vinculo
escalar S relacionado as simetrias de gauge remanescentes.

A quantizacao canoénica de sistemas com simetrias de gauge é conhecida como
programa de Dirac-Bergmann [51, 03]. Esse algoritimo aplicado & quantizacao da
RG na representagao de holonomias é conhecido como LQG. Portanto, seguindo esse
programa, devemos identificar todos os vinculos associados as variaveis do espaco de
fase e promové-los a operadores auto-adjuntos que irao atuar sobre o espaco de Hilbert,

satisfazendo as relagoes de comutacao e, finalmente, resolvé-los. A dificuldade em
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se realizar esse programa tem trazido problemas de cunho matematico tanto quanto
de interpretacao fisica. Esse desafio levou a novas ideias de se abordar o problema
tais como a formulagao dos spin-foams [13], que foi construida como uma alternativa
para superar os problemas dinamicos da LQG bem como da definicao de quantidades
observaveis. Portanto, na tentativa de se contornar essas dificuldades, repensa-se o
problema através da perspectiva de uma quantizagao via integral de caminho.

Por outro lado, essas dificuldades sao evitadas em teorias de cunho topolégico.
Na série de trabalhos [70] [71] [72], estudou-se a quantizagao de lagos em teorias topo-
logicas em dimensoes mais baixas. O interesse em tais modelos reside no fato de eles
compartilharem a propriedade de ser independente de fundo como na RG em 4D e pode-
rem, em certos casos, representarem teorias de gravitagao com resultados interessantes
[45]. Além disso, é sabido que em teorias topologicas genéricas [79] o difeomofismo
temporal nao é independente dos difeomorfismos espaciais e das demais simetrias de
gauge. Em outras palavras, o difeomorfismo temporal pode ser escrito em termos dos
difeomorfismos espaciais e das transformacoes de gauge internas, o que facilita muito a
aplicacao das técnicas de quantizacao via lacos pois nesse caso o vinculo hamiltoniano
ou escalar é consequéncia dos demais.

Em nosso trabalho, propomos a investigacao de problemas mais atuais da gravi-
tagdo. A RG em um espago-tempo 3-dimensional com ou sem constante cosmologica,
na auséncia de matéria, pode ser descrita como uma teoria de Chern-Simons tendo
como grupo de calibre, ou seja, como simetria local o grupo de Poincaré ou (anti-)
de Sitter. Essa teoria de cunho topologico, isto é, sem uma estrutura métrica dada a
priori, mostrou-se ser ausente de graus de liberdade locais. No entanto, M. Banados e
seus colaboradores [79] mostraram que as teorias de Chern-Simons em dimensoes mais
altas, mesmo sendo construidas via o mesmo padrao topolégico que em 2 + 1 dimen-
soes, possuem, em geral, graus de liberdades locais nao-nulos. Apresentamos como
motivagao do trabalho um modelo, devido a Chamseddine [9, 10], de gravitagao em 4
dimensoes obtida de uma teoria de Chern-Simons em 5 dimensdes, via o processo de
Kaluza-Klein de redugao dimensional, tendo como grupo de calibre o grupo de (A)dS

SO(1,5) ou SO(2,4). Mais especificamente, a proposta do presente trabalho é investi-
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gar a dindmica do modelo de Chamseddine e comparar suas solugoes com as solugoes
da teoria de Einstein convencionais.

O presente trabalho comega no Capitulo 1 com uma breve revisao sobre o for-
malismo de Einstein-Cartan bem como elementos do célculo exterior. No Capitulo 2
fazemos a derivagao do modelo de Chamseddine em 4D - cuja invariancia de gauge é
a de de Sitter SO(1,4) ou anti-de Sitter SO(2,3) - de uma teoria de Chern-Simons em
5D, sob o grupo de simetria local SO(1,5) ou SO(2,4), via uma redugao dimensional e
truncacao de alguns campos. Mostramos que a teoria, através de uma boa escolha de
fixacao de gauge, se reduz a uma teoria de gravitacao com torcao interagindo com um
campo escalar tipo-dilaton. Mostramos que as equacoes de campo da teoria de Cham-
seddine sao solugoes especiais da teoria de Chern-Simons completa reduzida a 4D. As
aproximacoes lineares sao estudadas no Capitulo 3, o que nos leva ao limite newtoniano
e a presenca de solugoes de ondas gravitacionais. Além disso, fizemos um estudo sobre
as solugoes cosmologicas da teoria e sua comparagao com o modelo ACDM. Conclusoes
e Perspectivas sao apresentadas no Capitulo 4. Trés apéndices apresentando alguns de-
talhes operacionais foram anexados. Esse trabalho rendeu a publicacao de um artigo

[69] que é de acesso aberto ao publico.



Capitulo 1

Formalismo de Einstein-Cartan

1.1 O Formalismo de Gauge da Gravitacao

A relatividade geral é, antes de tudo, uma teoria que descreve com grande acui-
dade a gravitacao. Desde sua génese, por volta do ano de 1915, ela vem sendo testada e
corroborada por intimeros experimentos terrestres bem como observagoes astrondmicas
[35]. Em 1916, um ano apdés a formulagao das equagoes de campo da relatividade geral,
Einstein previu que no limite de linearizacao de suas equacoes, essas apresentavam solu-
¢oes que previam a existéncia de ondas gravitacionais. Um século apos essas predigoes
de Einstein, a equipe do LIGO (Laser Interferometer Gravitational-Wave Observatory)
anunciou a primeira detec¢ao direta de ondas gravitacionais [25] 26]. Mais uma vez
os experimentos corroboram que, de fato, a descricao da gravitagao einsteiniana nos
concede um esquadrinhamento preciso da natureza. Lev Landau considerou, acredito
que com muita razao, a relatividade geral como: “the most beautiful of the scientific
theories”. Entretanto, a relatividade geral é muito mais do que isso. Ela é uma modifi-
cagao na nossa compreensao da natureza do espago-tempo cujo conteiido ainda possui
consequéncias insondadas. Essa se¢ao nao tem a pretensao de uma introducao a relati-
vidade, muito menos uma descri¢ao exaustiva de toda amplitude da teoria. Para isso,
convido ao leitor aos livros textos classicos de referéncia [19, 20} 34] 85] 98] 106]. Com
efeito, darei apenas uma curta apresentacao do formalismo em sua versao mais mo-
derna, enfatizando as caracteristicas fundamentais, bem como o verdadeiro contetido

fisico por tras do fendmeno gravitacional que é sua invaridncia de gauge.



1. O Formalismo de Einstein-Cartan

A relatividade geral é usualmente apresentada como uma teoria métrica, onde
o campo dindmico da teoria é codificado exclusivamente na métrica do espago-tempo.
Essa descrigao é conhecida como formalismo de segunda-ordem. Contudo, ela pode
ser reformulada como uma teoria dindmica de conexoes no chamado formalismo de
primeira-ordem. Essa formulacao coloca a relatividade geral mais proxima as teorias
de gauge que descrevem as demais interacoes da Natureza, no entanto, com uma dife-
renca sutil na sua dindmica. Em particular, enquanto a dindmica das teorias de gauge
do Modelo Padrao exigem uma geometria de fundo fixa, a saber espaco de Minkowski,
a interacao gravitacional é fundamentalmente diferente. A grande licao da relatividade
geral é que os graus de liberdade do campo gravitacional sao codificados na geometria
do espago-tempo. O espago-tempo é completamente dindmico: a nocao de um fundo
fixo sobre o qual as “coisas acontecem” perde o sentido. O campo gravitacional define
a geometria sobre a qual seus graus de liberdade bem como dos campos de matéria
propagam-se. A relatividade geral nao é uma teoria de campos em um fundo curvo,
mais do que isso, aquilo que chamamos de espaco-tempo é uma entidade fisica dina-
mica. Uma consequéncia imediata ¢ que um quanta do campo gravitacional nao pode
estar no espaco-tempo: eles devem construir o espago-tempo. Essa perda da nocao
familiar de um espago-tempo como uma espécie de “palco” onde a dindmica dos demais
campos se desdobra é conhecida como uma teoria independente de fundo (background
independence).

A fim de identificar a invaridncia de gauge associada a interagao gravitacional,
isto é, a possibilidade de escrever as equagoes de Einstein num formalismo tipo Yang-
Mills, tendo o grupo de Lorentz (ndo compacto) como grupo de simetria local |81, 110,
112], precisamos fazer algumas consideragdes sobre um principio bésico da relatividade
geral, a saber, principio da equivaléncia.

Pouco tempo depois da sua descoberta da relatividade especial, Einstein ob-
servou, em seus famosos experimentos mentais, que o efeito da gravitacao pode ser
neutralizado. Portanto, ele percebeu que um observador que estivesse em queda livre
nao seria capaz de sentir seu proprio peso. Em outras palavras, em um elevador em

queda livre, o efeito da gravitacao pode ser eliminado. No entanto, esse “truque” é
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muito restrito, ou seja, funciona apenas localmente: o laboratério ou o elevador tem
de ser pequeno o suficiente e o tempo do experimento curto o suficiente para que ne-
nhuma inomogeneidade do campo gravitacional seja percebida. Sob tais condigoes,
experimentos realizados em queda livre sao indistinguiveis daqueles realizados na au-
séncia de gravitagao. Naturalmente, as leis da fisica estarao sob o regime de validade do
espaco de Minkowski. Portanto, isso significa que, em uma vizinhanca local, o espaco-
tempo possui invariancia de Lorentz. Em cada ponto do espaco-tempo, podemos obter
um referencial cujo movimento é inercial. Para que essa invarianica seja manifestada,
¢é necessario fazermos uma transformacao de coordenadas apropriada a um sistema
de referéncia inercial particular. Denotemos por X! as coordenadas locais definidas
pelo referencial inercial e seja x = z* as coordenadas arbitrarias nao necessariamente

inerciais. As coordenadas X! podem ser expressadas como funcoes
X' = X'(z)

das coordenadas arbitrarias x. Nas coordenadas x, a nao linearidade do movimento é
interpretada como o efeito de um campo gravitacional. Portanto, gravitagao é a infor-
macao codificada na mudanga de coordenadas que nos leva de um sistema arbitrario
a um inercial. Essa informacao estda contida na funcao que relaciona os sistemas de
coordenadas X (z). Mas como discutido acima, apenas valores dessas funcoes em uma
vizinhanc¢a pequena o suficiente é relevante, pois se nos afastarmos muito dessa regiao,
o sistema local de referéncia inercial ird mudar. Podemos fazer uma expansao em Tay-
lor, se consideramos que a origem x = 0 seja associada ao evento a ser analisado, e que
X1(z = 0) = 0; a tnica contribui¢io que devemos guardar seria em primeira ordem.

Dai,
oxTt

X! =
oxH

a, (1.1)
=0

define como podemos passar de um conjunto de coordenadas arbitrarias para um iner-
I

cial. A quantidade o nada mais é que o jacobiano dessa transformacao em
x
=0

particular que guarda em si a informacao do campo gravitacional presente na regiao.

Definimos o a quantidade
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ox!

oxk | ._,

e,(xr=0)

como VierbeinE] ou tetrada, responsavel por nos informar sobre a presenca local do
campo gravitacional. Naturalmente essa construgao nao se restringe ao nosso ponto
em particular e pode ser concebida em cada ponto z. E, portanto, a quantidade

ox!
ei(:c) ~ Ogn

(1.2)

¢ o campo gravitacional no ponto .
O campo gravitacional eﬁ(x) é, portanto, representado pela matriz jacobiana

da transformacao de coordenadas de z para as coordenadas localmente inerciais X.

1

,.(7) nos informa que sendo espago-tempo uma variedade

De maneira mais precisa, e
diferenciavel M, em cada ponto r € M existe um espago tangente T,, que é uma
boa aproximagao de M nas vizinhancas de x. Esse espago tangente é um sistema
de referéncia local e inercial, ou seja, em queda livre como indicado pelo principio
da equivaléncia. O fato de medig¢oes poderem ser feitas independentes da escolha do
referencial e poderem ser traduzidas a um referencial inercial, significa que existe um
isomorfismo entre tensores em M e tensores em 7., de maneira que esses sao definidos
em T, representado através de um mapeamento linear chamado de wvierbein, que de
fato faz uma troca de base em T,.

Podemos definir a separacao entre coordenadas de dois pontos infinitesimal-

mente proximos em M. Sua correspondéncia com a separacao no referencial em queda

livre sera

dX! = ei(x)da:“.

Como o espaco tangente é um espago de Minkowski local, consequéncia do principio da
equivaléncia, ele possui naturalmente uma métrica ny; = diag(—1,1,1,1) que define a

métrica em M através do isomorfismo (campo gravitacional) e/,(x). De fato, o elemento

! Vierbein é uma palavra do alemao que é a conjuncdo de vier que sigifica quatro com bein que é
traduzido como perna, logo vierbein igual a quatro pernas.
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de linha
d82 = ’I][JdXIdXJ
- mJei(a:)eZ(:c)dx“dx”
G (x)datdz”
onde
e,ﬂ(m)mﬁi(ﬂf) = guu<$)7 (13)

I

.(z) e a métrica do espaco tangente local

¢ a métrica em M, induzida pelo vierbein e

Nry-
Essa relagao nos mostra que dado ei(x) podemos derivar a métrica do espago-

tempo e, portanto, todas as propriedades da métrica g,,(z) estao codificadas no vier-

1

() como a “raiz quadrada” da métrica. Se sabemos

bein. Muitas vezes pensa-se em €

ey, (x) podemos facilmente calcular g,,(z). Portanto, podemos considerar e

1

() como

sendo o verdadeiro campo fundamental da teoria capaz de revelar a verdadeira sime-
tria da relatividade geral, invariancia de Lorentz local, e a métrica como um campo
secundario. A reciproca, no entanto, nao é verdadeira: dada uma métrica g, (x), existe
uma infinidade de escolhas possiveis de eﬁ(:c) que reproduzem a mesma métrica. Essa
perda da unicidade na definicao do wvierbein, dada uma métrica a priori, é facilmente
verificada. O fato de irmos da descricao g, +— ei(a:) estamos ganhando uma simetria
extra, pois podemos fazer “rotagoes” de Lorentz sobre essa nova base de modo que a
métrica nao consiga perceber essa simetria local. Em outras palavras, é possivel fazer
transformacgoes de Lorentz sobre o vierbein de maneira a serem indetectéveis do ponto
de vista da variedade M. Sob uma transformacao de Lorentz, o vierbein transforma-se

como

ei(w) — eg(x) = Ag(x)ei(x) (1.4)

onde a matriz A(z) € SO(1,3). Pela defini¢do do grupo de Lorentz SO(1, 3), a trans-

formagao A(x) deixa a métrica do espago tangente invariante,

A§(?71JA£ =TKL,
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de maneira mais compacta temos
ATnA = .

A métrica g, claramente nao percebe as transformacoes de simetria feitas em T;,. Isso

significa, em particular, que existem mais componentes independentes, ou melhor, mais

1

graus de liberdade em e,

() do que em g,,,. De fato o vierbein possui 16 componentes
independentes enquanto a métrica, por ser simétrica, apenas 10. A pergunta que
nos fazemos é: se as descrigoes sao equivalentes como é possivel haver mais graus de
liberdade nos wierbein? A resposta reside justamente, no contetdo de gauge que se
revela através das transformacoes de Lorentz locais. Temos exatamente, 6 possiveis
transformagoes de Lorentz independentes (3 rotagdes e 3 boosts) que nos conecta a
essa simetria local associada ao wvierbein. Assim, a observacao de Einstein de que o
principio de equivaléncia é uma caracteristica central na relatividade geral, implica que
as transformagoes de SO(1, 3) aparecem como a verdadeira simetria de gauge local da
gravitagao.

Naturalmente, uma mudanga de base ou de coordenadas deve ser inversivel.

Assim, deve existir uma matriz ¢/, de modo que

Iom _ sl Iv _ su
ey =10y e =70

Vimos que o campo gravitacional ei(x) age como uma espécie de projetor, isto
é, via essa mudanca particular de coordenadas podemos trazer todos os campos da
variedade a um espago tangente local. Em outras palavras, existe uma cole¢ao de espa-
gos tangentes que a cada ponto da variedade M definem a agao do grupo de simetria
local (Lorentz, SO(1, 3)), e matematicamente isso nos leva a uma estrutura de fibrados
[28, 87, 110]. Portanto, os campos de gauge do espago-tempo serdo representagoes
locais do grupo interno. De fato, o grupo de Lorentz restrito, isto é, proprio e ortdch-
rono [12, [52] ((AO 0)22 1e A% > 1), isto é, conexo com a identidade, ¢ um grupo de

Lie continuo com 6 parametros, e uma transformacao geral pode ser representada pela

10
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exponencial dos geradores da algebra so(1,3), como segue
A = 3% M1s

A matriz w!’ = —w’! ¢ anti-simétrica e contém 6 parametros reais, enquanto os gera-

dores M;; = —M; satisfazem a élgebra de Lie do grupo SO(1, 3):

(Mg, Mir) = (—=8) (nix Myr — nuxMip +nyxMip — nikMyr). (1.5)

Sabemos das teorias de gauge[43| que para levarmos um grupo de simetria global
ao nivel local, devemos introduzir uma derivagao covariante, construida com os campos
de gauge associados a simetria. Portanto, se ¢ € irrep(G) e, ¢ — ¢ = @y
vemos imediatamente que a derivada parcial nao é mais covariante devido ao parametro

a = ax),
(amp)/ = a;ﬁp/ = au(em@)
= i0,ep + €0,

A covariancia sob transformacoes locais pode ser recuperada através da introdugao
de uma conexao de gauge, de maneira a obtermos uma derivada que seja, de fato,
covariante. No caso mais simples de uma teoria abeliana, como a eletrodinamica, o

potencial vetor A, faz esse papel. Assim,
D, =8, +igA,, (1.6)

onde g seria a carga (gerador) associado a simetria, na eletrodinamica, seria a carga
elétrica e. Nos casos nao-abelianos [53), 60, 96], como veremos em particular no SO(1, 3),
essa carga serd obtida através dos geradores, produzindo o que se chama de algebra de

Lie valorada

(D”go),: e D,p. (1.7)

11
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Dessa forma A,, deve se transformar como

/ 1o’ —i i) ,—io
A, =e"Ase (0" %)e™",

0
g
ou de forma mais compacta, considerando U := e*®
T _
A =UAU — E(auU)U L (1.8)
Portanto, no caso de Lorentz local, os parametros passam a depender das coordenadas
do espago-tempo wy; = wys(x). Precisamos associar aos geradores do grupo, campos
de gauge w,, onde

1

w,u - EWZLJMIJ (19)

representando as componentes da chamada conexao de Lorenz, ou conexao de spin, e

introduzindo a derivada covariante, definida por:
i
D, =9, — éw[;’MU. (1.10)

Naturalmente, para que a derivada covariante se transforme como o proprio campo sob

SO(1,3) local, a conexao de spin deve obedecer a seguinte lei de transformagao:
w, = Aw, A1 —iA(0,A7) (1.11)

Um exemplo de aplicagao desse conceito de derivada covariante associa-se com a
tentativa de introdugao de matéria fermionica na gravitagao. A representacao espinorial
ird nos permitir acoplar fémions de Dirac com o campo gravitacional. Com efeito, seja
Yy € (%, 0) & (0, %) (o, B,..,=1,2,3,4), onde os geradores assumem a seguinte forma:

i

MIJ
4

v, 7).

Nesse caso, 1) € um campo com quatro componentes complexas, transformando-

se como um espinor da representacao (%, 0) @ (0, %) do grupo de Lorentz, e 7 sdo as

12
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matrizes de Dirac 4 x 4 satisfazendo a chamada &lgebra de Clifford [54] 8],

{,YI’,YJ} _ 277]J14><4-

Com nossa convencao de assinatura de métrica temos em particular,

A forma explicita das matrizes de Dirac depende da escolha da sua representacgao.
Para o propésito do nosso exemplo de aplicagao nao seré necessario abordarmos esse
contexto. Segue que a derivada covariante D, para um espinor de Dirac assume a

forma:

1
D,uqu)oc = a,uﬂvboc - gwij[’ﬂu’}q]aﬁzﬁﬂ' (112)

Nesse ponto vale a pena notarmos que essa simples introducao dos férmions de
Dirac na gravitacao, via o formalismo de primeira ordem, nao se processa na formulagao
métrica usual einsteiniana da relatividade geral. Pois o grupo de simetria é o grupo
de difeomorfismos e ndo possui representacao finita e/ou espinorial. De fato, o grupo
GL(4,R) de simetria da relatividade geral nao apresenta representacao espinorial [116].
Portanto, a formulagao do campo gravitacional como uma métrica pseudo-riemanniana
nao pode estar fundamentalmente correta [30} 31], justamente pelo fato de nao permitir
acoplamento fermionico, e os férmions existem no universo. Assim, precisamos do
formalismo do vierbein para acoplar a dindmica de férmions regida pela equagao de
Dirac

(ihy'0r — me)h = 0.

Consideremos agora a aplicacao da derivada covariante a um campo vetorial

Al(z) € (3,1). Nesse caso, os geradores sio da forma

(MIJ)K L= —i(nL5 —nsof).

13
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Implicando que a derivada covariante assuma a forma
DAl = 9,AT - Luld (My))< LAt
o - o 9k 1J L
= (‘LAI + w/{ JAJ, wi J = _CL)HJI7
e assim por diante. Sabendo em qual representacao do grupo local o campo se situa

podemos construir a derivada covariante. Para obtermos a derivada covariante de um

vetor covariante A;, podemos partir de consideracoes do produto escalar A; X', e
Dy(A X"y = X"D,Ar + A0, X" + w) ;X7).

Portanto, lembrando que a derivada covariante de um escalar sob o grupo é a propria

derivagao parcial sem termos de conexao, segue-se que
D#A[ = QLA[ — w;{ [AJ. (113)

E assim sucessivamente para tensores de rank arbitrério.

Seguindo as nossas convencoes de regra de diferenciagao covariante, vemos que a
acao da conexao de spin segue um padrao especifico nos indices de Lorentz dos campos,
e deve possuir o sinal positivo quando agir sobre vetores contravariantes, e um sinal
negativo para os covariantes. Para indices mistos, temos

D"y =9, T" j+wl kT j—w ;T k. (1.14)

Assim, vemos a analogia com a derivada covariante V,, = 0, + I',, para vetores da

variedade M, utilizada no formalismo métrico da relativiade geral [21], 22} [44], 97 [108].

1.2 Metricidade, Torcao e Curvatura

Vimos na se¢ao anterior que o formalismo de vierbein nos possibilita escrever to-
das as quantidades geométricas da variedade M no espaco tangente 7,. Em outras pa-

lavras, os vierbein nos fornecem uma transformagcao de coordenadas especifica, baseada

14
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no principio da equivaléncia, onde as quantidades da variedade podem ser projetadas
ponto a ponto no espaco tangente. Além do mais, para as quantidades projetadas pode-
mos introduzir o conceito de uma derivada covariante, justamente pelo fato da simetria
ser local, baseada na conexao de Lorentz que seja capaz de preservar a invariancia local
do espago tangente de Minkowski. Todo esse formalismo mostra-se consistente com a
covariancia sob difeomorfismos associada a variedade (pseudo)riemanniana.

A pergunta que se segue é: seria possivel conectar ou estabeler uma corres-
pondéncia entre os formalismo de primeira e segunda ordem? Em particular, entre
as derivadas de Lorentz e de Riemann, entre a conexdo de Christoffel (I'ff| e a cone-
xao de spin (w). Sendo possivel essa correspondéncia, assim como I' pode ser escrito
em termos da métrica g, e g como uma fungao do vierbein e, poderiamos esperar a
existéncia de uma relagao precisa que nos dé a conexao de spin como uma fungao do
vierbein w(e). Portanto, a pergunta que também iremos respoder é: haveria, de fato,
alguma vantagem na descrigao do formalismo de primeira ordem? Existe algum ga-
nho de informacao na descricao de gauge da relativade geral, ou sao completamente
equivalentes?

Para comegarmos a responder essas perguntas, notemos que o vierbein eﬁ carrega
tanto indice de grupo local quanto de variedade. Logo, ele deve sentir uma variacao
tanto do fibrado [87, 110] tangente de M, T' (M) = U,(p, T,,(M)), quanto do fibrado
de Lorentz F' = (M, SO(1,3)). Com efeito, podemos definir uma derivada covariante
para objetos com ambos os indices, tais como o vierbein,

D,el = d,el + wﬁ sel — le,ef). (1.15)

Assim como a conexao de Levi-Civita I'(g) ¢ compativel com a métrica (metricidade),

isto é, V,9,, = 0, iremos demandar que w, seja compativel com o vierbein, isto é,

2Em geral, tanto a métrica g quanto a conexdo afim I' sdo necessarias para descricio completa
da geometria do espago-tempo. Se g e I' sao quantidades completamente independentes entao temos
uma variedade equipada com uma estrutura geométrica e afim. Por outro lado, se I' for determinada
completamente por g, implica que a métrica, por si s6, é capaz de dar uma descrigao completa e
suficiente da geometria da variedade. De fato, Einstein em sua formulagao da gravitacao faz uso da
variedade assumindo que esta contendo apenas uma estrutura métrica, isto €, ele assume a conexao
de Levi-Civita conhecida como o simbolo de Christoffel: I}, = %g“/g (Ougvp + 0v98, — 089uv)-

15
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D,el = 0. Isso implica que

I g I I g I
ey +wi geyy =T(, €0 Opey +wp gey =17, e, =0, (1.16)

onde separamos os indices do espago-tempo em sua combinacao simétrica e anti-
simétrica, e usamos o fato de que a conex@o de Levi-Civita I'(g) nao possui parte
anti-simétrica. Dessas equacoes vemos imediatamente a existéncia da seguinte relagao

entre a conexao de spin e a conexao de Levi-Civita,
I _ 1 v
wu' g =e, Ve (1.17)

Naturalmente, podemos generalizar o caso para uma relagao entre a conexao
de spin e uma conexao que nao seja necessariamente de Levi-Civita. Da condicao de
metricidade para o vierbein e, usando-os para projetar indices entre o epaco tangente
e os indices da variedade, temos para a parte anti-simétrica, segundo

I J
ey +wi " ey — Ty =0, (1.18)

V]

onde T! . =17 ]eI

(] ] Co° E interessante notar que a presenca da parte anti-simétrica na

conexao I' nao é necessariamente excluida pela condicao de metricidade, e podemos
calcular w levando em consideracao contribuicoes nao-nulas da parte anti-simétrica de
I’ chamadas de Torgao [84], [94]. Assim, podemos obter a conexao de spin mais geral
que seja compativel com a condi¢ao de metricidade do veirbein.

Para facilitar as contas iremos projetar todos os indices da relagao acima no

espaco tangente (contraindo-os com o uso do vierbein €/e%): obtemos

1
ngK+§(wJ1K—wKIJ)—TIJK:(), (1.19)

onde

el g = (8Mell, — 8Vel€)e’}e§( =¢ K] (1.20)

sao chamados de coeficientes de rotagao de Ricci. Escrevendo a relagao acima com suas

16
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permutacoes ciclicas dos indices I, J, K, temos:

Srox + §(WJ[K —wkry) — Tk = 0,
KT+ §(WIKJ —wrk) —Tikr = 0,
Errg+ §(WKJI —wykr) —Tkry = 0.

Somando as duas primeiras equagoes e subtraindo a terceira, e usando as propriedades

de simetria w;jx = —wy[sK), encontramos a seguinte relagao para a conexao de spin

wrgk = (Erox +E&xr — Exrr) + (Trrs — Trox — Tokr)- (1.21)

Finalmente, podemos colocar o resultado acima na forma usualmente conhecida, su-
bindo os indices J e K, e projetando o indice I na variedade: chega-se assim a seguinte
forma

w,* =w,’"+C, ", (1.22)

onde

o = el (e kT =€ k) (1.23)

¢ a chamada conexao de Levi-Civita (conexao com tor¢ao nula), e
CV=—ef (T +T k" —T" ) (1.24)

é o tensor de contorcao que é formado por essa combinacao dos termos da torcao.

Enfim, das equagoes ([1.18H1.24)) segue a seguinte expressao para a torsao:
T, = Duel, — Dyel.. (1.25)

A fim de completarmos nossa pequena apresentacao desse formalismo geomé-
trico baseado no vierbein bem como nas conexoes de gauge, ainda precisamos de uma
expressao para a curvatura. Depois de escrevermos o tensor de Riemann em termos
dessas novas variaveis dinamicas seremos capazes de expressar as equagoes de Einstein

usando essa nova abordagem. Veremos pelo principio da a¢ao que os dois formalismos
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se equivalem, porém, somos capazes de mostrar que a condi¢ao de tor¢ao nula nao é
uma necessidade a priori, mas um resultado das equagoes de movimento. Através do
formalismo de primeira ordem fomos capazes de descortinar e trazer a tona a verda-
deira invariancia por tras da gravitacao, a saber, a gravitacao é uma teoria de gauge
sob o grupo de Lorentz local como vimos}

Todavia, existe uma diferenga de suma importancia entre a relatividade geral e
as teorias de gauge convencionais, devido ao fato de que a acao de Einstein-Hilbert é
linear, ao invés de quadratica, no campo de Yang-Mills, isto é, na curvatura. A razao
fisica para esse fato é que no caso da gravitacao, a conexao de gauge apresente-se como
uma fun¢dao de outro campo, a saber, o vierbein - que é de fato a variavel dindmica
fundamental. Entretanto, isso nao exclui a possibilidade de considerar modelos de

gravitagdo contendo poténcias mais altas na curvatura |8 [64] [102].

1.3 Elementos do Calculo Exterior

Essa secao nao contém nenhuma nocao fisica a mais, mas tem o proposito de
reescrever em uma linguagem mais moderna os resultados anteriores. Essa é a lingua-
gem do formalismo das formas diferenciais ou célculo exterior. Com esse formalismo
poderemos reescrever as equagoes anteriores de uma maneira mais compacta, onde os
indices tensorias do espago-tempo estarao “escondidos”, de maneira precisa, nas pro-
prias variaveis dinamicas. Portanto, as formas diferenciais sao objetos extremamente
préticos, primeiro porque essa notagao nos permite escrever quantidades tensoriais
de maneira independente da escolha particular de coordenadas, segundo, todo o for-
malismo matematico, tais como a ideia de derivagao, covariancia, etc., torna-se bem
simples com o uso do céalculo exterior. A ideia dessa secao esté longe de fornecer uma
introducao rigorosa ou exaurir o conteudo desse assunto. Todavia, serdA uma segao
pedagogica e com a finalidade pratica e instrumental do assunto. Para uma busca de

verticalidade e precisao matematica do assunto o leitor podera consultar as referéncias

3Alguns grupos de pesquisa nao concordam que o grupo de simetria local da gravitacio seja Lo-
rentz. Assumem como grupo local o grupo de Poincaré o que leva a novos insights interpetativos.
Nessa formulagao, o papel da Torcao torna-se ainda mais relevante, como é o caso da abordagem do
Teleparalelismo|[63), [82]
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[23, 24, 29] 4T, 68, 83, 89l 10T, 117].
Uma p-forma é definida como uma quantidade tensorial com a propriedade de
ser completamente anti-simétrica, o que reduz drésticamente as possiveis construgoes

desses objetos. Uma p-forma escreve-se, num sistema de coordenadas z*, como

1
T,= =T

p p| Hi---Hp

dz' N dx"* NN dxtr,

onde T,

ity = Tlpy..p,) denota um campo tensorial covariante completamente anti-
simétrico de rank p < D, onde D é a dimensao da variedade considerada DM =
D. Com efeito, o requerimento de ser completamente anti-simétrica vincula o rank
das formas com a dimensao da variedade. Consequentemente, o rank méaximo que
podemos obter para uma p-forma sera sempre menor ou igual a dimensao da variedade

considerada. T, = 0 sempre que p > D, e A denota o produto exterior tal que

dx? N dx¥ = (d:v“ R dx¥ —dx¥ ® dx“).

N | =

Os objetos dz* e seus produtos exteriores formam uma base para as formas. Isto é bem

simples de se ver, pois os diferenciais dx* transformam-se como vetores contravariantes:

un

—dx”.
ox” v

dzt — dz'V =

Denota-se o conjunto de todas as p-formas por AP, que é um espaco vetorial, ou
seja, se T}, e F}, sao p-formas, entao T, + F}, e aF},, a € R também o sao. Novamente,

se p > D, entao AP ird conter apenas o elemento nulo:
AP ={0}, p>D.
Para vermos isso, seja F}, uma p-forma, logo F' é caracterizado por suas componentes

F

H1---fop )

mas se p > D, dois dos indices devem sempre coincidir (pois cada indice p; pode

assumir valores apenas até a dimensao da variedade 1,..., D), dai segue que F),, ,, se
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anula. Portanto, no caso de p-formas, nao podemos contruir uma infinidade de familia
de tensores, isto €, nosso espacgo vetorial ird possuir dimensao

D D!
dimA? = -
<p) p(D —p)!

Devemos notar que AP e AP~ possuem a mesma dimensdo, ou seja, uma p-forma
possui 0 mesmo nimero de componentes independentes que uma (D — p)-forma, ou
seja, dim A? = dim AP~P. Essa propriedade estabelece o conceito de dualidade entre
esses dois espacos, um isomorfismo que é obtido através da operagao Hodge*, muitas

vezes chamado de operacao de dualidade.
AP s APTP,

A operagao de dualidade * transforma uma p-forma em uma (D — p)-forma e sua agao

¢ definida por:

T,

Pl fhp

p m Hp Ept1-- D drH*Pt A LA dZL'MD, (126)

onde

1o b v UpV,
9 =dg ...gtrr

P 3
Hp+1---HD Vi..-VpHp+1---D

guw € 0 tensor métrico e g = det(g,,). Em uma variedade curva com métrica g, temos

€123..D = V/ | ’

Em geral tomamos o valor absoluto do determinante da métrica \/m € Nao apenas
\/—g, pois dependendo da dimensao e da assinatura da métrica esta podera produzir um
determinante negativo. Em outras palavras, dependendo do niimero de componentes
D — 1 tipo-espago (par ou impar) teremos g > 0 ou g < 0. Podemos normalizar o
simbolo de Levi-Civita a unidade (conven¢ao), isto é, 123, p = 1 mas devemos tomar

cuidado com seu correspondente covariante. Lembrando que levantamos e abaixamos
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os indices via métria ou sua inversa assim,

Mi---UD __ ,M1V1 KDVD
& =g ...g gyl._.VD7

fazendo-se uso da formula de Caley para o determinante

e P =g len.p
Uma propriedade interessante sobre a operacao de dualidade é que em geral o

dual do dual de uma p-forma, nao necessariamente, retorna o valor original da p-forma

1
CT) = S D= i 4 A A da

= <_1)p(D*p)(_1)D*116u1...,upT

| Vi---Vp H1-.-Hp

dx” N ...\ dxtr

_ (_1)p(D—p)+D—1T.

O fator (—1)P~! vem das regras de produto de tensores completamente anti-simétricos,

em D — 1 dimensbes espaciais (e com as nossas convengoes),
D—1,_12..D—1 D—1
€12.p-1=(=1)"""ge =(-1) :
As leis do produto tornam-se, em geral,

51/1...Vpup+1...upgul..'uD = <_1)D71(D _p)'(slljllzip?

onde 4, }” é determinante dos deltas de Kronecker. O fator (=1)P(P=P) por outro
lado, vem dos rearranjamentos de p indices de T' com D — p indices do seu dual (esse
rearranjamento é necessario para que os indices de € possam se encaixar com a definigao
das regras de produto definidas acima.) Para uma prova dessas proposigoes vide [24]
100].

Assim, se considerarmos o espaco euclidiano 3-dimensional, podemos construir
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as seguintes formas
V=Vdz", T)= §(TZ —Tji)dz' A\ da? (1.27)

que sao uma l-forma e uma 2-forma respectivamente. A proxima quantidade comple-

tamente anti-simétrica possivel de se construir em um espaco 3-dimensional seria uma

3-forma
Ws = Wijpda® A da? A da*, (1.28)
onde
Wijk = Wi = %(Vvuk + Wik + Whiij — Wiy — Wi — lek)
Com a propriedade de anti-simetria na ordem do produto dz’ A dz’ A do* = —dx? A

dx® A da? = da* A dat A da?.

Vejamos um exemplo sobre a dualidade no espaco euclidiano 3-dimensional.
Nesse caso, uma 2-forma guarda o mesmo contetido de informacao de uma 1-forma.
Portanto, seja v; uma 1-forma (com ¢ = 1,2,3), o dual serd *v; := V;; = g;,v;. Em

termos matriciais lé-se, considerando 153 = 1:

0 V3 —7V2
Vo = (Vij>3><3 = —v3| 0 U1
V2 —U1 0

assim, vemos que a 2-forma que é o dual de um vetor possui o mesmo contetdo de
informacao que um vetor em 3D. Poderiamos tomar o dual de V;;, onde vemos que

nesse caso particulas de espago euclidiano retornamos ao vetor original

Vij = €ijkUk
Emij‘/ij = Emij€ijkVk
EmijVij = 20miUk
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portanto,

1
Vi = §5ijkvjk-

De modo geral o produto exterior de duas formas p e g segue a regra
T, NT, = (=1)P"T, NT,, (1.29)

que é uma (p + ¢)-forma, com p + ¢ indices completamente anti-simétricos. Para
vermos como esse conceito de produto exterior generaliza a ideia de produto vetorial
do calculo vetorial usual, vamos novamente conseiderar o espaco euclidiano 3D. Seja,

u e v 1-formas, tal que

vAu = vdzt A ujda:j

1 ; .

vAu = E(Uiuj — vju;)dx’ A da?

1 L ; .

= §€ijk(v X U)kddi A dx’

matricialmente, vemos
0 (U x7), —(uxuv),
Wo=vAu=Wiylsxz= | —(d@ x ), 0 (U x U)g
(U xv), —(Ux0), 0

Com efeito, a defini¢ao de “produto vetorial” em dimensoes mais altas é na verdade o
produto exterior de duas 1-formas e todo o calculo vetorial em 3D pode ser recuperado
através desse formalismo exterior. Assim, em D = 3 uma 3-forma é o dual de uma
0-forma portanto, podemos construir uma 3-forma através do produto de 3 1-formas,

digamos u, v e w:

ul(vAw) = wdx' A §(vjwk — vpw;)da? A da®
1 R j k
= ééjklui(v x W) dx' A dx? A dz

como estamos em 3D, a base dx’ A dx’/ A dz* é uma 3-forma que é na verdade uma
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combinacao do elemento dz! A dz? A dx®. Assim, da? A dz? A da® = ekdzt A da? A da?,
onde o termo dx! Adx? Adz? é chamado de elemento de volume e denotado simplesmente

por d®z. Substituindo essa condicao para a base 3-forma, temos:

1 ..
uN(vAw) = §<€”ké?jkzui(17 x W) d*x

= i (7 x W)dz,

onde usamos o fato de que e = 24;.
Podemos definir, ainda, uma operagao de derivacao exterior, que eleva o rank

da forma em uma unidade, da seguinte forma.

Definicao 1.3.1 Seja T, uma p-forma, a derivada exterior de T, € uma (p+1)-forma,

denotada por dT,, definida num sistema de coordenadas x* por

1
dl, = —09,7, da” Ndx"™ NN datr. (1.30)

p| vEL .y

A derivada exterior satisfazendo as propriedades do chamado Lema de Poincaré, isto

é, a aplicagao sucessiva da derivada exterior é nula
d*T, =0, VT, (1.31)

e obedecendo a regra de Leibniz do calculo exterior
dT,NT,) =dI, NT,+ (—1)PT, ANdT,. (1.32)

Essa definicao de derivacao exterior possibilita a generalizacao dos operadores
gradiente e rotacional para quaisquer dimensoes. Para vermos que de fato essa de-
finicao abarca o calculo vetorial usual, consideremos novamente o espaco euclidiano

3-dimensional. Seja v = v;dz’ uma 1-forma, a derivada exterior de v sera

dv = 0jvidz’ Nda' = iT[ji]dx] A dx’
1 ) .
i(ﬁjvi — @vj)dxj A dz’

1 I
= §eijk(v X U)gdx’ A da?,
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que contém toda a informacao sobre o rotacional de um vetor em 3D. Portanto, se
desejamos calcular o rotacional de uma 1-forma em dimensoes mais altas este sera
dado pela derivada exterior. Dessa forma, construimos um operador diferencial d :
AP — AP que leva uma p-forma a uma (p + 1)-forma.

Outra quantidade importante no calculo exterior é o conceito de produto interior

que é uma operagao de contracao. Dessa forma, temos a seguinte

Definicao 1.3.2 O produto interior de uma p-forma w € AP com o vetor V € T,
denotado por iyw € um mapeamento iy : AP — AP~ de maneira que, em um sistema

de coordenadas x*, tem a propriedade

lyw = VY Wopy. iy dxt® A N dat?, (1.33)

Se aplicarmos o produto interior duas vezes em uma 2-forma, obtemos um escalar

1
iUivT = éTuyiU’ivde‘u/\dl'V
1 v v
= Tw(UMVY UV,

onde igiydzt A dx” = UFVY — UYVH. A derivada de Lie £ (vide Apéndice 1) ao longo

de um vetor &, nesse formalismo, 1é-se
Le =ied + dig. (1.34)

Uma vez que temos o mapa de dualidade * a nossa disposi¢ao, podemos cons-
truir um novo operador diferencial que, a exemplo de d, ird generalizar o conceito de

divergéncia.

Definicao 1.3.3 Considere uma p-forma T}, em D dimensoes, a coderivada ou codife-

rencial de T,, denotada por 61,, é uma (p — 1)-forma definida por

0T = g(—1)PPP) L dx T, (1.35)
onde g denota o determinante da métrica. Dessa forma, nosso operador § : AP —
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AP~L ou seja, a acao da coderivata em uma p-forma atua como uma espécie de contracao
que reduz o rank da forma em uma unidade. Esse operador é linear por construcao,
pois é composto de mapas lineares * e d. Observe que d possui uma propriedade em

comum com a derivada exterior d:

8% =0.

ou seja, a composi¢ao de dois d leva a zero. Novamente, como exemplo de aplicagao

no espaco euclidiano 3D, consideremos uma 1-forma u = u;dz* e calculemos

du = *d(*u).

Primeiro que a operacao de dualidade de u

*U = §€mmuida¢m A dz",

e tomando-se a derivada exterior de *u,

1 .
d(*xu) = Eamm(ﬁjui)dm’] Adx™ A dx"
1

= §£mmsjm”(8jui)d:vl N d{L‘2 N dZE?’
= (V-@)da' Ada® A da®

1 , .
lembrando que dzt Adz? Ada® = yeijkdxz Adx? Adx®, vemos que d(xu) é uma 3-forma

em D = 3, portanto o dual serd uma 0-forma. Donde obtemos,
ou=x(dxu)=V-a
Finalmente, podemos introduzir o operador Laplaciano, que é definido por
A= —(dd + dd) = —{d, d}. (1.36)

Temos que A: AP — AP é um mapa de p-formas em p-formas. Seguindo os mesmos

passos calculados anteriormente para o espago euclidiano 3-dimensional é bem direto
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mostrar que a agao de A sobre uma 1-forma wu é:
Au=—(dé+ dd)u = V?u,

que é o Laplaciano usual do calculo vetorial. Se considerarmos uma variedade pseudo-
riemanniana, entao as consideracoes acima continuam valendo, exceto que, nesse caso,
—{d, d} representa o operador d’Alembertiano (O := ¢"’0,0,). Temos ainda duas
defini¢oes importantissimas que diz respeito a diferenciabilidade de formas que sao os

conceitos de forma exata e fechada. Assim, temos a seguinte:

Defini¢ao 1.3.4 a) Uma forma diferencial F' é fechada se sua derivada exterior se
anula, isto é, dF' = 0.
b) Uma forma diferencial F' é exata se puder ser escrita como a derivada exterior de

uma forma A, isto é, F = dA.

Com essas definigoes podemos enunciar o seguinte

Lema 1.3.5 Toda forma fechada, dF = 0, pode ser escrita localmente como uma
forma exata, F = dA.

Naturalmente, podemos escrever o formalismo da eletrodindmica através dessa
nova roupagem geométrica e independente de coordenadas. Temos que o field strength

F,, da eletrodinamica é dado pelo “rotacional” do 4-potencial A, ou seja,

F=0,A, —9,A, A, =(,A).

v4lp,
F,,, ¢ uma matriz anti-simétrica 4 X 4 que acomoda os campos elétricos e magnéticos

0 —E, —E, —E.
E, 0 B. -B,
E, =B, 0 B,
E. B, —-B, 0

Portanto, F},,, ¢ uma 2-forma que pode ser representada sob a base de formas como:
1 i y
F = §Fm,dx A dx”.
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O campo de gauge A, é representado por uma 1-forma de maneira que
A=A, dx! = &dt — Aydr — Aydy — A.dz.

Contudo, podemos reescrever as equagoes de Maxwell de uma forma que seja inde-
pendente do sistema de coordenadas, ou seja, podemos geometrizar a eletrodinamica

com

F =dA.

Dessa maneira, a eletrodinamica pode ser descrita em quaisquer sistemas de coordena-
das o que facilita e muito quando se pretende acoplar com a geometria como no caso
da RG. Além disso, podemos ver facilmente que sob uma transformagao de gauge em
A, ou seja, A - A + dy, F ¢ invariante.
Além do mais, dF é uma identidade pois segundo o lemma de Poincaré d? = 0,
logo
dF =0

¢ uma identidade de Bianchi, e mostra que F' é uma forma fechada. Em componentes
num sistema de coordenadas 1é-se

0.Fu +0,F, + 0,F,, = 0.

Para finalizar esse exemplo sobre o campo eletromagnético, deveriamos tentar

dar uma interpretacao geométrica da equagao de Maxwell com fontes, a saber
0, F" = j¥.

Como ela esté associada a divergéncia de F', deveriamos olhar para a coderivada 6 F.
Pelas defini¢oes de coderivagao vemos que sua aplicacao a uma 2-forma devera produzir
uma 1-forma. Consequentemente, se a 4-corrente se escreve como uma 1-forma j =
Judx?, a equagao de Maxwell lé-se

O0F = 3.
A lei de conservacao da carga ¢ automaticamente recuperada lembrando-se que 62 = 0,
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portanto

0=24j.

1.3.1 Integracao de Formas Diferenciais

Além dos conceitos de derivagao, podemos integrar formas diferenciais. Esses
objetos ja sao candidatos naturais para integragao por serem, por construcao, objetos
expandidos na base dos diferenciais. Além disso, para a formulagao variacional é ne-
cessario termos uma nocao basica de como podemos integrar formas e quais formas sao
passiveis de integracao. A integracao é, a grosso modo, a operagao inversa da derivada
exterior. Para integrarmos em uma variedade M de dimensao D é necessario introdu-
zir uma medida de integracao ou um elemento de volume. Uma D-forma diferencial,
naturalmente, ¢ um objeto que possui as propriedades necessarias. Iremos assumir
todas as condicoes basicas para uma variedade e sua consequente integrabilidade tais
como: compacidade, orientabilidade etc. Para uma abordagem matematicamente mais
precisa vide [24] [68, 1T5].

Seja M uma variedade diferencial D-dimensional, orientada e compacta. Dese-

/ F FeAP
M

Seja © = (2!,..2P) € U, onde U é a imagem do mapeamento de uma regiao da

jamos definir integrais

variedade em R, ou seja U C R, um sistema de coordenadas local. Se F' = f(z)dz* A

.. AdzP, defini-se

/ /f Dydz' A .. A daxP /f (1.37)

onde o lado direito de ¢ a integral de Riemann-Lebesgue, com o elemento de
volume dPx = dx' A ... A daP.

Essa definicao faz sentido, desde que F' possua propriedades de transfoma-
¢ao corretas. Em outras palavras se consideramos um outro sistema de coordenadas
(y*, ...,yP) a D-forma com suas propriedades de anti-simetria produza o determinante

do Jacobiano da mudanga de coordenadas. Com efeito, se F' = g(y)dy' A ... A dy®,
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temos A
/ gdyl/\.../\dyD:/90¢det(a—y.)daﬁl/\.../\dajD,
o(U) v Oz’

onde ¢ denota a mudanga de coordenadas. Por outro lado, temos que

oy’

f(z', ..., 2P) = (g o ¢)(a?, ...,xD)det(axj

). (1.38)

Por exemplo, em duas dimensoes considerando a fungao f(z) como sendo a unidade

temos

ox

oyJ

i

dzt A\ dx? = det(

)dyl A dy?.

Em geral, para uma D-forma qualquer obtemos (1.38]) para o elemento de volume

a1 D _ s 4 D
F=dx N.. Ndx —det(ayy)dy AL Ndy”,

que é a propriedade de transformacao correta para o elemento de volume.
Uma conexao importante entre uma informacao local de uma determinada quan-
tidade em uma variedade M com a respectiva informagao global sob a borda da vari-

edade OM ¢ obtida através do teorema de Stokes

Teorema 1.3.6 Seja M uma variedade compacta e orientada de dimensao D e com
uma borda OM; F € AP~1 é uma (D — 1)-forma, entio

/M dF = /W F. (1.39)

A prova completa desse teorema pode ser encontrada em [68], 90]. O teorema de
Stokes para formas diferenciais generaliza, de forma mais compacta, todos os teoremas
de integracao do calculo vetorial usual. Vejamos um exemplo de aplicagao, vamos
considerar o caso bidimensional, ou seja, dim M = 2, onde a variedade pode ser

definida como

M = {(z1,20), 27 + 25 <1}, OM = {(z1,22),2] + 25 = 1}.
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e seja A nossa 1-forma

A = Ajdz' + Ayda® = Ada?,

a derivada exterior de A assume a forma

) ) 1 ) )
dA = aindl’] VAN dx' = 5(8114] - a]AZ)dl’l VAN dx?

1 . A .
= §8ijkBkdl‘Z ANdx! = B - dZ,

onde o rotacional By = €,;0;A,, ou ainda B=Vx ff, estd multiplicando escalarmente
um elemento de area orientado dX ou em componentes d¥J;, = §€kijdxz/\d3ﬂ . Portanto,

recuperamos o teorema de Stokes na notagao familiar do calculo vetorial

/dA:/ (6”{).@2/ /f-df:/ A
M a:f+xg<1 a:fﬁ—x%:l oM

Fisicamente, A pode ser o potencial vetor e Bo campo magnético. A integral do fluxo
do campo magnético através de um disco de raio unitario é igual a integral do potencial
vetor ao longo da borda, no caso, o circulo de raio unitario.

Finalizando, temos a regra de integracao por partes. Vimos anteriormente a
generalizacao da regra de Leibniz . Sejam F' e G uma p e uma ¢g-forma res-
pectivamente. Considere {2 um dominio regular orientado de dimensao (p + ¢ — 1).

Assim,

/Qd(F/\G):/QdF/\G—F(—l)p/ FAdG. (1.40)

Q

Note que podemos usar o teorema de Stokes do lado esquerdo da equagao (|1.40)), de

maneira que

/ F/\G:/dF/\G+(—1)p/F/\dG.
o0 Q Q

Com efeito, somos levados ao seguinte

Teorema 1.3.7 (Integragao por partes de formas diferenciais)

/ dF NG = FANG—- (—1)?/ FAdG. (1.41)
Q oN Q
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Essa é, naturalmente, uma generalizacao direta da regra de integragao por partes usual:

b b d
—/ f(x)ﬁdx

Em vérias aplica¢oes somos capazes de eliminar o termo de superficie, seja por-

/a L g(wyr = fla)o(e)

que Q nao tenha borda, isto ¢ 9Q = (), ou porque desejamos que um dos campos

dindmicos, no caso uma das formas diferenciais, se anulem na superficie.

1.4 Relatividade Geral no Formalismo de Einstein-

Cartan

Feito essas observagoes de cunho estritamente matematico, voltemo-nos para
suas aplicagoes no caso da RG. Podemos observar que tanto o vierbein quanto a conexao
de spin, que sdo as variaveis dinamicas dessa nova descrigao geométricall9l 20], 47],

podem ser colocadas sobre a forma de 1-formas
el = eidx“, w! = wi‘]dx“. (1.42)

O efeito de usarmos 1-formas locais nao é acidental, ou seja, vemos que todas as
propriedades geométricas da variedade podem ser expressas através dessas formas, seus
produtos exteriores e suas derivadas exteriores. Como e! e w!” nao carregam indices de
coordenadas (1, v, etc.), eles se transformam sob difeomorfismos em M. Assim, seja &

uma campo vetorial de componentes em um dado sistema de coorenadas £*, a variacao

de uma forma w sob difeomorfismos é dada por
(5diﬂ‘w = £§w, £§w = (Z{d + dig)w.

onde £L¢ ¢ a derivada de Lie na diregao do vetor {. A grosso modo, difeomorfismo ¢ uma
transformacao que de certa forma arrasta suavemente todos os campos dinamicos de
uma regiao da variedade para outra. Assim, a descrigdo da geometria usando apenas
essas formas, seus produtos e suas derivadas exteriores sao naturalmente independentes

de coordenadas.
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Utilizando o formalismo das formas diferenciais vemos que deixamos manifes-

1

tada apenas a simetria de gauge da teoria, isto é, e’ é considerado como um vetor sob

Lorentz local, cujas componentes sao 1-fomas. A pergunta que surge naturalmente é:

seria a derivada exterior de um vetor também um vetor sob Lorentz? Sabemos que
do! = Blds® A da” = (8,01 — O,01)da* A da”
v—uvym/\x—a(uvy— LU, )dat A\ dz”,

e que

vl — T = A ().

Entao, dv! —— (dv') = d(A! jv7) = dAT jv7 + A! jdv’. Novamente, vemos que
essa ¢ uma lei de transformacao nao-homogénea, isto é, dv! nao se transforma como
um vetor de Lorentz, pois nosso grupo de simetria ¢é local. Para tanto, introduzimos a

conexao 1-forma w!’ e definimos a derivada covariante exterior de Lorentz:
Dv! = dv" +w' ;A7 (1.43)
Demandamos que De! se transforme como um vetor de Lorentz, ou seja,
De! — (De!) = A ;De’,
o que esta assegurado pela lei de transformagao de potenciais de gauge nao-abelianos
wr— w = AwA™t — (dA)AT

A acgao da derivada covariante exterior nas diversas representacoes do grupo de simetria

segue as regras de aplicacao em indices covariantes e contravariantes

DUI:dUI—f-wIJ/\’UJ, DVIJ:dVIJ—I—wIK/\VKJ—wKJ/\V]K.

Definicao 1.4.1 A Torcao 2-forma € a derivada exterior covariante do vierbein
T = Del = 277 deh A da? 1.44
=De’ =3 adxt A dz. (1.44)
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Poderimos ser levados a pensar em um Lema de Poincaré para derivada covariante
exterior, ja que esta é construida através da derivada covariante. Assim, e se aplicarmos
a derivada covariante exterior na Torcao 2-forma, DT?? O que vemos é que, apesar a
derivada covariante satisfazer o Lema de Poincaré d?> = 0 nao implica que D? = 0. Por

exemplo, sobre um vetor V teriamos: D?V! = R! ; AV, onde
RY = dw" +w' g AW (1.45)

é a curvatura 2-forma de Yang-Mills que no caso gravitacional em questao coincide com

a curvatura de Riemann. Com efeito, a acao de D sob a Torc¢ao 2-forma
DT' = R'g Aef. (1.46)

Como a derivada covariante exterior age de maneira covariante e, como e* é um tensor
sob Lorentz, a quantidade dw! x 4+ w! ; A w’  deve ser um tensor sob Lorentz. Essa

grandeza é justamente a curvatura 2-forma
1
R = dw" + W' g A = §RUWd3:“/\dx”. (1.47)

Em resumo, temos e/, T! = Del e DT' = R! ; Ae’. E bem simples de mostrar que a
derivada covariante exterior satisfaz a mesma regra de Leibniz que a derivada exterior

d,

D(T, AT,) = DT, AT, + (—1)*T, A DT,

De maneira analoga poderiamos nos perguntar se poderiamos obter alguma nova
quantidade geométrica ao aplicarmos mais uma vez a derivada covariante exterior, isto
¢,

DZTI:DRIJ/\GJ—FRIJ/\TJ.

O tnico termo que teria a capacidade de produzir alguma quantidade tensorial nova
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seria DR! ;, no entanto, vemos que

DRIJ = d(deJ+wIK/\wKJ)+wIKA(dwKJ+wKL/\wLJ)+

—wKJ/\(deK—i-wIL/\wLK).

Usando-se das propriedades de anti-simetria de w!/ = —w”’’ e do produto exterior entre
formas, segue-se que

DR =o. (1.48)

Essas equacoes DR = 0 e DT!T = R' ; A e’ sao, na verdade, identidades. Elas sao
chamadas de identidades de Bianchi. Portanto, o conjunto {e’, w’’, T?, R'/} forma
um conjunto de formas diferenciais fechadas sob o produto exterior A e sob a derivada
exterior d. Em outras palavras, eles formam um conjunto completo para a descri¢ao
da geometria diferencial.

A pergunta que se faz é: seria possivel escrever a relatividade geral nesse forma-
lismo? A resposta ¢ afirmativa e nao somente isso, o formalismo das formas diferenciais
nos levam a uma abordagem muito mais elegante e concisa onde a independéncia das
coordenadas, ou melhor, as simetrias da teoria tornam-se manifestas. Portanto, preci-

samos de uma lagrangiana

5= /M 3oL, 0,0),

e o fato das formas serem objetos completamente antisimétricos simplifica muito a cons-
trucao de uma agao. Portanto, o grau da forma que necessitamos para a lagrangiana
estd intimamente ligado a dimensao da variedade considerada. A lagrangiana em 4D
deve ser uma 4-forma, que pode ser integrada facilmente no espago-tempo 4D. Além
disso, nossa agao deve possuir invariancia de Lorentz. Os ingredientess fundamentais de
que dispomos para a construcdo da teoria sdo: {e’, w'’, TT, R n;;, &tUKL}. Com
efeito, devemos tentar selecionar, dentre os elementos desse conjunto, possiveis 4-formas

SO(1, 3)-invariantes que possam ter uma interpretacdo dindmica precisa. Existem al-

Yonde €75k & o tensor de Levi-Civita completamente anti-simétrico com a condi¢ao de normali-
zagéo €0123 = 1.
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1. O Formalismo de Einstein-Cartan

gumas possibilidades

T NTy,
R' AR’

eryxnel Nel A REL (1.49)
€]JKL€I Ael Nef A eL,

5IJKLRIJ A RKL

Dessas possibilidades de 4-formas para construgao de uma lagrangiana para
a gravitacao, trés dessas sao componentes de uma familia especifica de lagrangianas

chamadas de familia Lovelock em 4D [40)] e sao denotadas por
LU = €[JKLGI A GJ N eK VAN BL, L1 = EIJKL€I A €J VAN RKL, L2 = EIJKLRIJ VAN RKL.

Na verdade, Lovelock fornece as possiveis extensoes naturais da acao de Einstein-
Hilbert, para quaisquer dimensao, que nao envolve tor¢ao e produz equagoes de campo
de segunda ordem para a métrica. Portanto, a acao pode ser expandida em uma série

cujos elementos sao os integrantes das familias de Lovelock,

n=[D/2]
L= > o,
p=0
com

L,=¢4 . ap B N ... NR™P720 N 2000 N N e (1.50)

~-
p vezes D—2pvezes

Uma excelente referéncia sobre as categorizagoes das familias de Lovelock estd em
[T, 27, [61]. Além disso, a determinacao dos coeficientes a,, pode ser achada em [80].
Lembrando que a acao de Einstein-Hilbert, que é linear nos termos de curvatura,

¢ da forma
Sen Z/ d'z/=gR,
M

onde R ¢é o escalar de curvatura que é a contragao do tensor de Ricci com a métrica

36



1. O Formalismo de Einstein-Cartan

R = g, R". Vamos tomar L; e abrir em componentes

I J KL
L1 = EJJKILE Nel NR s

1
= §5UKLRU Weffegda:“ A dzx” A dxP N dx?,

1
= §8UKL5WWR” Wefeﬁdxo Adzt A dx? A da?

o termo dz® Adx! Adx® Adz? é o elemento de volume em 4D denotado simplesmente por
d*z. Usando-se do vierbein para colocar os indices de Lorentz da curvatura 2-forma na

variedade, obtemos

_ vpoo K _L _I_J pkA 4
L, = 551”@8“” €, e e R d .

Lembrando ainda da férmula de Caley para o determinante de uma matriz,

I _J K _L
€]JKL6H6/\6p €, = 6,4)\podet(6),

o elemento da familia de Lovelock torna-se

1
L, = 565,\,306“”’”}%“ w d*xdete

1
= (30K — 048R, d'adete

1
- §(R‘“’ w — R ) d e

Usando-se das propriedades de anti-simetria do tensor de curvatura de Riemann,
R, = —R"" ,,, e denotando por e = y/—g o determinante do VierbeinE], L, assume
a seguinte forma:

Ly = d*z/—gR. (1.51)

Portanto, o termo L, da familia de Lovelock reproduz a lagrangiana de Einstein-Hilbert
da relatividade geral. Analogamente, o termo Lg é proporcional ao elemento de volume,

ou seja, Ly = 4!\/—gd*z e portanto ¢ um candidato a um termo que representaria a

ﬁ em fungao do determinante da métrica g,, é obtido de maneira

bem direta ao tomarmos o determinante det(eﬁnuei) = det(gu) = det(ei) =g

50 determinante do vierbein e
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1. O Formalismo de Einstein-Cartan

inser¢ao da constante cosmologica (A) na relatividade geral. Lembrando, que a acdo

que nos leva as equacoes de Einstein com constante cosmologica é da forma

5= /M diay/=g(R — 2A).

Para L, encontramos que

vpo I J K L pa § 4
Ly, = ZauKLa“ P €036, es R BWR7 pod’ T

L chvpo pa
a 155,8:6}% R o/ —gd .

onde §7;7% & um determinante de uma matriz 4 x 4 formada pelos deltas de Kronecker(

EaprseP? = 04455), de modo que depois de alguma manipulagdo algébrica obtemos

Ly = (R* = 4R"™R,, + R"" R0 ) d'z/—g. (1.52)

Essa densidade é conhecida como Gauss-Bonnet e representa um invariante topolégico
em D = 4 que de certa forma esta associado a diferengas na topologia da variedade.
Gauss-Bonnet nao produz nenhuma diferenca classicamente mas pode ter importancia

em uma teoria quantica. Ainda considerando L, podemos nos perguntar o que uma

1 1

variacdo nos vierbein e/ —— ¢! = e! 4 de! poderia produzir em L,? Naturalmente,

0.Lo = 0 pois é funcao apenas das curvaturas, por outro lado, uma variagdo na conexao
wl — W = Wl + 6w’ poderia produzir alguma variacao na densidade L,? Como
a curvatura 2-forma ¢é definida R = dw!’ I Awk7 | dond iaga

por =dw" + w' g Aw™’, donde uma variagao na

conexao ird produzir uma variagao na curvatura

SRY = dsw! +w! g AW + wl g A S,

= D(sw').
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Introduzindo em & Lo:

5_[/2 = 28[JKLRIJ VAN 5RKL
= QEIJKLRIJ A DéwiL
= D(2€[JKLRIJ A (SO.)KL)

= dS.

Onde definimos € := 2e751 R A wEE que é um escalar de SO(1, 3) e fizemos uso da
identidade de Bianchi (DR!/ = 0). Assim, vemos que L, nao produz nenhuma equagao
de campo, pois sua variagdo 6L, se resume em uma derivada total df). Portanto,
adicionar Lo produz apenas uma mudanca nas condi¢oes de contorno.

De acordo com o principio variacional junto com a abordagem desenvolvida por
Palatini, a acao que descreve os fendmenos gravitacionais parte do principio de que
tanto a conexao de spin quanto o vierbein sao campos independentes. Considerando
por simplicidade uma variedade espago-temporal de dimensao D = 4, na auséncia
de matéria e sem constante cosmologica, a acao de Einstein-Hilbert pode ser reescrita
fazendo-se uso das formas diferenciais na agao proposta por Palatini. Notemos, primei-
ramente, que a agao gravitacional que corresponde a integral da densidade de escalar
de curvatura ao longo de uma regiao espago-temporal - pode ser escrita como uma

integral de uma 4-forma como se segue:

1 A
Spalatini[w, €] = —51JKL/ el Nel ANREE — —el Aed Nef A el (1.53)
2K My 12
8¢ ) o ..
onde K = ——, G ¢ a constante gravitacional de Newton e A a constante cosmologica.
c

Como nesse formalismo temos dois campos independentes, a principio, é de se esperar

alguma contribuicao a mais nas equacoes de movimento. Com efeito, fazendo-se as
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1. O Formalismo de Einstein-Cartan

variagoes funcionais obtemos as seguintes equagée:ﬂ de movimento:

05 A
g :O . E[JKL(RKL/\€J— ge‘]/\eK/\eL) :O (154)
05

Sool7 =0 : 5[JKLTK/\6L =0 (155)

onde a equacgao (|1.54)) sao as equagoes de campo de Einstein e implicam que a
torcao, na auséncia de férmions, anula-se via equagao de movimento.

Podiamos nos perguntar quais outros termos satisfazendo as exigéncias de in-
variancia sob Lorentz local e que seja uma 4-forma poderiam ser adicionadosa a ac¢ao
de Palatini. De fato, a menos de termos de superficie, como no caso de Gauss-Bonnet,
existe essencialmente um tnico termo que poderia ser adicionado, a saber o termo de
Holst. Portanto, a acao de Palatini com a modificagao de Holst 1é-se

1
S[w7 e]Holst = SPalatini + — / GI A\ 6J A R[J.
QH/Y My

As equagbes de movimento dessa acao, com a modificagao de Holst, ficam inalteradas
e, consequentemente, reproduzem no nivel classico as mesmas equagoes de campo da
relatividade geral, ou seja, o segundo termo nao produz efeito sobre as equacoes de
movimento. O que acontece é que a variagao em relacao a conexao produz novamente
a condicao de tor¢ao nula. A constante de acoplamento v é chamada de parametro
de Barbero-Immirzi. Para aplicagoes na gravitacao quantica o parametro - assume
um papel importante e nao pode ser zero. O termo de Holst possui um papel em
analogia com as teorias de Yang-Mills, onde podemos adicionar um termo topoléogico a
acao que nao modifica as equagoes classicas de movimento pois o integrando pode ser
reexpresso como uma derivada total. No caso presente, mesmo a modificagao de Holst

nao sendo de origem topologica, devido a primeira identidade de Bianchi ele se anula

1
iRU wdz? Adz? = dw!! +
wk AwET e TT = de! +w§ Nel = De!. Temos ainda que a variacido da acdo em relacdo a conexao de
spin tera contribui¢do apenas no termo de curvatura, isto ¢, S RY’ = dow!’ +wk AdwE +wi AWK =
Déw!’. De modo que, via uma integracao por partes, chega-se a Eq. (1.55)

6Lembrando das defini¢ces de Curvatura e Tor¢io 2-forma: R/ =
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1. O Formalismo de Einstein-Cartan

identicamente:

08 1
(5_]::0 = —€J/\R[J:0.
e Ky

Na auséncia de torcao a tltima expressao ¢ precisamente a identidade de Bianchi.
Consequentemente, o parametro v é de certa forma anélogo ao conhecido parametro

fqep na Cromodinamica Quantica [14] [33] 591 [65)].
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Capitulo 2

Modelo de Gravitacao tipo-Topologico
em 4D

2.1 Extensao do Grupo de Lorentz

Vimos que a série de Lovelock, que ¢ a extensao mais geral para dimensoes mais
altas da relatividade geral, produz equacoes de campo de segunda-ordem na métrica
com tor¢ao nula. Em D = 4 ela contém a densidade de lagrangiana que descreve as
equacgoes de campo da relatividade geral, a saber Einstein-Hilbert. Embora seja bem
similar em estrutura e contetido da teoria usual, a teoria de Lovelock possui caracte-
risticas singulares. Além da constante de Newton (G) e da constante cosmologica (A),
a acdo possul uma colegdo de parametros dimensionais e arbitrarios («,) que torna
a anélise das propriedades fisicas da teoria muito complexa. Nesse formalismo, a di-

17 nao possui

mensdo candnica do vierbein é [ef] = [°, enquanto a conexao de spin w
dimensao, isto é, [wI J | = I*, como se espera de um verdadeiro campo de gauge. Isso
é um reflexo do fato de que a gravitagao einsteineana é naturalmente uma teoria de
gauge para o grupo de Lorentz, onde el assume o papel do campo gravitacional, ou
b )
seja, um campo vetorial sob Lorentz e nao uma conexao. A pergunta que poderiamos
fazer é: sera que seria possivel acomodar e/ e w!’ como componentes de uma tnica
conexao? A resposta a essa pergunta acabou sendo na afirmativa, porém, com um

prego a se pagar: devemos estender o grupo de simetria de gauge 38|, [105].

Portanto, sendo A a conexao de Yang-Mills, que toma valores na algebra de Lie
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2. Chern-Simons 5D e o modelo tipo-topologico

de um grupo GG
1
A= 5AABMAB (2.1)

e, os geradores satisfazendo as relagoes

[Map, Mcp] = nesMap — ncaMpp +npsMca — npaMes,
a construcao da curvatura de Yang-Mills é dada por

F = dA+ANA

— %dAABMAB + %[AABMAB, AP Mep)
1
= §(dAAB + AN o NAYP) Mg

1
= §FABMABa

onde FAP = dAAB + A4 o A ACP ¢ a curvatura 2-forma associada ao grupo de simetria
G.

As transformacoes de gauge infinitesimais podem ser escritas como
0.A = De,

onde De = de + [A, €], e € € um parametro infinitesimal que é uma zero-forma local
valorado na algebra de Lie

€= §6ABMAB.

A fim de incluirmos o vierbein nessa abordagem de Yang-Mills necessitamos de
um grupo G que seja uma extensao do grupo de Lorentz, ou seja,
1

A ; §wUMU + GIP[. (22)

Uma transformagao de gauge infinitesimal sob a conexao 1é-se dw = De, no entanto,

I

sob o vierbein terfamos de! = €’ je/. Para unificarmos essas duas transformacoes em

uma tnica, iremos precisar de termos na algebra que déem conta dessa transformagao
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2. Chern-Simons 5D e o modelo tipo-topologico

da componente vetorial da conexao estendida, assim

[Mry, Px] = nxsPr — nxaPs (2.3)

para que em uma algebra estendida a variacdo da conexdo que compde {w!’, e’} seja
equivalente as transformacoes individuais, ou seja, iremos alargar o grupo de simetria

de tal forma a garantir que
A =De = ow!? =De’ edel =€ e,

no entanto, iremos ganhar uma simetria nova associada a “translagoes” como veremos
a seguir.

As escolhas mais simples para uma algebra estendida estao contidas em uma
imersao da algebra de Lie do grupo de Lorentz em um grupo maior. Naturalmente,
tais escolhas sao associadas a Poincaré que acrescenta translacoes espaco-temporais
ISO(1,3). No caso da presenga de uma constante cosmologica A # 0, espago-tempo
plano nao é mais solucao das equacoes de Einstein, assim é possivel estender o grupo
de Lorentz ao grupo — de tipo minkowskiano — de de Sitter ou anti-de Sitter, para
A > 0 ou A < 0, respectivamente. As transformacoes de gauge serao aquelas que
deixam invariantes a métrica nyny = diag(—1,1,1,1,1,s), no caso 5D, onde M, N, ... =
0,...,5 e s assume os valores + 1. As assinaturas (—1,1,1,1,1,1) e (—=1,1,1,1,1, 1),
correspondem, respectivamente, ao grupo minkowskiano de de Sitter SO(1,5) e anti-de
Sitter SO(2,4) para espago-tempo 5D. Esses grupos serdo denotados de maneira mais
compacta por (A)dSe.

Uma base para a algebra de Lie (a)dsg de AdSg é dada pelos geradores My;y =
— My que sao, de fato, matrizes 6 X 6 assumindo a forma (MMN)PQ = —5]1\'}771\;@ +

d8nug, obedecendo a relagio de comutagao

(Mun, Mpol = nupMng — nuoMnp — nnpMug + nvoMup. (2.4)

Os campos dinémico da teoria sao componentes de uma conexao A = A,dx®, valo-

!Campos e formas no espaco-tempo penta-dimensional M serdo escritos com um “chapéu”, indices
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2. Chern-Simons 5D e o modelo tipo-topologico

radas na algebra de Lie (a)dss. Em respeito a base (M), a conexao lé-se

A~ 1. 1.
A = EAMNMMN = §A24Ndl'aMMN,

cuja transformagao de gauge é da forma
SAMN — DMN — gAMN 4 M [ PN _ jN  PM

Portanto, a nossa conexa@o associada ao grupo (A)dSg produz a curvatura de
Yang-Mills FMN = qAMN 4 (A2)MN  Consequentemente, se desejamos acomodar
tanto o fiinfbein quanto a conexdo de spin em uma tnica conexao A, podemos fazer a
seguinte identificagao dos geradores My, com os geradores de Lorentz 5-dimensional

M ap e os geradores de “translagoes” P4, com A, B, ... =0, ..., 4:

1
Muap = Myp, Pa= YMAL%,

onde [ > 0 ¢ um parametro com dimensao de comprimento no sistema de unidades

onde ¢ = h = 1. Com efeito, nossa conexao desacopla-se da seguinte forma

N AAB = 4B conexdo de spin
A = 1
A jéA, fiinfbein

As relagoes de comutagao assumem a forma explicita como se segue

(Mag,Mcp] = —ifapMpe — fisgeMap + NacMpp + 1spMac
(Mag, Pc] = flacPp —fpcPa, (2.5)
s
[Pa, Pl = —=Maygp,

l?

com 745 = diag(—1,1,1,1,1). Os dez geradores M 4p geram o grupo de Lorentz 5D, e

junto com os 5 geradores P4, geram o grupo AdSg para o espaco-tempo 5D. Com essa

do espaco-tempo sao denotados por «, 3,... =0, ..., 4.
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identificacao dos geradores a curvatura de Yang-Mills assume a seguinte forma:

. 1 1 1.1 1 1 1
F::§wﬁ%mw+7ﬁﬁu+ibWWMw+7&Rm?ﬁWmm+7§Rﬂ
1, 1 1.
= ﬂﬁw+ﬁﬁAﬁﬂhB+ﬂﬂ&. (2.6)

onde RAB .= doAB + 04 o A WPB ¢ a curvatura de Riemann 2-forma em 5D e T4 =
Dé? = dé+w4 gAéP é a torcao 2-forma que é a derivada covariante em 5D do fiinfbein.
Note que, a tor¢ao T4 aparece como uma componente desse novo field strength obtido
pela algebra (a)dSg. Temos ainda como separar as variagoes de gauge da conexao AMN

em suas componentes de Lorentz,

SAAB = 5078 = DB,

(56ABAMN = . 1 1
AN = —geA = — A geP
[ [
mais “translagoes”
SAAB — §0AB — _;(EASéB _ éA€B5>7

Soas AMN = ]
A = 564 = [De™

Portanto, com esse novo grupo de simetria de gauge obtemos uma defini¢ao para

a conexao donde uma teoria de puro gauge podera ser definida através de uma acao cuja
nova conexao contém os campos dindmicos da gravitagao. Poderiamos nos perguntar:
o que aconteceria com a agao de Lovelock em 5D se exigirmos que ela seja invariante
sob essa simetria estendida? A resposta a essa pergunta nos levara, na verdade, a
agao de Chern-Simons em 5D como veremos a seguir. Lembrando que a familia de
Lovelock é a generalizacao natural da acao de Einstein-Hilbert que produz equacoes
de campo sem derivadas superiores. Naturalmente, a acao é Lorentz invariante, ou
seja, 0.48SLovelock = 0. Entretanto, ao exigirmos que ela seja invariante também pelas

“translagoes” iremos poder fixar as contantes de expansao da série de Lovelock, isto é,

n=[D/2]

SLovelock = ’1/ Z Oépr, (27)
M p=0

46



2. Chern-Simons 5D e o modelo tipo-topologico

onde [D/2] denota o menor inteiro da divisao e

L,=¢a4 . ap RN ... NR™P7I020 N ®2000 NN e

VvV TV
pvezes D—2pvezes

Os coeficientes a, sao constantes arbitrarias de dimensao
] = [1777P),

e k ¢ uma constante com unidade da agao.

Variando a acdao de Lovelock em respeito ao viellbein e? produz equacoes de
campo, que sao mais complicadas que as equagoes de campo de Einstein-Hilbert, en-
volvendo poténcias mais altas da curvatura. Essas equagoes de campo, entretanto, sao
ainda de segunda-ordem na métrica. A variacao com respeito a conexao de spin w?? é
identicamente nula devido a hipotese de tor¢ao nula. As densidades de Lovelock, foram
primeiramente estudas no formalismo métrico usual [40], a acdo de Lovelock é cons-
truida sob os mesmo requerimentos que Einstein-Hilbert: covariancia sob o grupo de
difeomorfismos e equacoes de campo de segunda-ordem na métrica. Na linguagem das
formas diferenciais, é obtida via o requerimento que a densidade de lagrangiano
seja invariante sob o grupo de simetria de Lorentz local, isto ¢, que a lagrangiana seja
um D-forma, construida inteiramente dos campos fundamentais: viellbein e e conexao
de spin w e suas derivadas exteriores.

Essa demanda, contundo, nao possibilita a restricao dos valores dos coeficientes
a,. A fim de obtermos esses coeficientes iremos considerar uma imersao do grupo de
Lorentz SO(1, D — 1) em um grupo maior. A extensao minima para SO(1, D — 1) seria
os grupos de (anti)-de Sitter SO(2, D — 1). Em dimensoes fmpares é possivel construir
uma lagrangiana invariante sob o grupo (A)dS, de modo que, através da exigéncia
de invariancia da acao sob esse grupo maior pode-se fixar os parametros de Lovelock
a,. A lagrangiana obtida através desse requerimento ¢é a lagrangiana de Chern-Simons
associada com a densidade de Euler [61] para uma dimensao acima de D. Vamos

mostrar que Lovelock em 5D sob o grupo de simetria AdSg nos fornecera uma teoria
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de Chern-Simons em 5D. A acao de Lovelock 5-dimensional assume a seguinte forma
Stovelock = mABCDE/ (aQRAB ARCP N EP 4 0y RAB N C N el N eP
Ms
+aget AeP AT AP A éE), (2.8)
as dimensoes dos parametros sao:
o] = [(17°, [aa] =177, o] =[] 7"
Portanto, a variacao da acao 6,455 produziréﬂ:

5eSLovelock — KREABCDE / (2&25RAB A\ RCD VAN éE + OéQRAB VAN éCD A (SéE +
Ms
+a 0RAB N € N eP A eF 4 3a,RAB N eC N eP A SEE +

+5a0e N eB A EC AP A 5éE)

Donde, fazendo-se uso das simetrias do Levi-Civita e substituindo as variagoes sob

“translagoes”, obtemos:

SeSLovelock = KE ABCDE / <5a0éA A eB NS A (D) — 6sare®eP A el A eP A DéF +
Ms
+3a1 RAB N 69 NP A DeP® — 4s0,ePEBROP A DEE +

+ayRAP A REP A DéE).
Fazendo-se uma integracao por partes e usando a identidade de Bianchi DRAB =,

0eSLovelock = KEABCDE / (—20c — 6sag)ed AP A e A DePet +
Ms

+ (=6 — 43042)}?’43 A eC A DePefd, (2.9)

Assim, exigindo-se que a acao de Lovelock seja invariante sob essa variagao, isto é

2Lembrando que a variacao da curvatura 2-forma é: §RAB = DA
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! -, .
0eSLovelock = 0, as constantes «,, serao vinculadas da seguinte forma:

—20ag — 6sa; = 0, —6saq — 48%as = 0
2s 1
= a1 = —ﬁag, Qg = @052 (210)

Com efeito, a agdo de Lovelock em 5D com um grupo de gauge (A)dSg, lé-se:

QoK - - . 25 4 A R R
SLovelock = TgABCDE / <RAB A RCP A eF — ﬁRAB AeC A eEP AP +
Ms

1
+@éA/\éB/\éc/\éDAéE), (2.11)

onde ai; é uma constante adimensional que pode ser absorvida na constante x. Essa é
justamente a a¢do de Chern-Simons em 5D sob o grupo de (A)dSg. De fato, podemos
notar que Lovelock em dimensoes impares D = 2n + 1, fazendo-se essa extensao da
algebra, sempre nos produzird como resultado uma teoria de Chern-Simons [80]. A
acao de Chern-Simons em 5D para uma conexao A = %AMN My;n tomando valores

numa algebra de Lie (a)dsg ¢ da forma

1 . . . . . .
SCS;, :ﬂgMNPQRS / (AMN/\dAPQ/\dARS—i—gdAMN/\(A2)PQ/\dARS—I—
Ms
+§AMN A (A%)PQ A (A?)RS). (2.12)

Cujas equacoes de campo obtidas pela variacao da conexao A sdo da forma

1 ~ A ~ N ~
ZeMNPQRSFPQ ANFRS =0, onde [FQ=dAP? + (AP, (2.13)

com FMN — qAMN L AN , A APN ¢ o curvatura de Yang-Mills.

Da mesma maneira que podemos interpretar a teoria de Chern-Simons em 3D
para um grupo de gauge pseudo-ortogonal SO(1,3) ou SO(2,2) como uma teoria de
gravitacao com constante cosmologica [45], podemos fazer o mesmo com Chern-Simons
em 5D identificando os geradores com Lorentz mais “translagoes” e as componentes da
conexdo A com a conexao de spin em 5D e o fiinfbein. Com efeito, a acao de Chern-

Simons, ap6s uma integracao por partes e supondo O M5 = () ou que os campos vao a
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2. Chern-Simons 5D e o modelo tipo-topologico

zero na borda, assume a seguinte forma:

1 A S 28
ScssD = o;€ABCDE RAB A RED A eF — ZZRAB A 6€ A 6D A 6F 4
81 Ms 3[2
1
+@éAAéB/\éC/\éD/\éE>. (2.14)

Podemos identificar no segundo e o terceiro termos as densidades de Einstein-
Hilbert e constante cosmologica para a gravitagao em 5D, respectivamente. A novidade
da agao de Chern-Simons é justamente a presenca do primeiro termo, que é da forma
]%5/\]%5; como vimos esse termo nao entra com uma constante de acoplamento abitréria,
pelo contrario, ele vem acopanhado de um niimero racional que é fixado via a exigéncia
da teoria de Lovelock ser invariante sob AdSg, embora a agao esteja escrita em forma
manifestamente Lorentz invariante SO(1,4).

Finalmente, vemos que uma teoria de Lovelock em dimensao impar D = 2n +
1 cuja acdo é invariante sob o grupo de simetria local SO(2n — 2,2) ou SO(2n —
1,1) (n = 0,1,2,...) representa, de fato, uma teoria de Chern-Simons que pode ser
interpretada como uma teoria de gravitagao com constante cosmologica. De fato, existe
um procedimento em dimensao impar que implementado possibilita a obtencao de todos
os coeficientes da familia de Lovelock de forma geral [61]. Esse procedimento produz

diretamente uma densidade de lagrangiano (2n + 1)-dimensinal
A)dS n
Lénl—l = ZQPL; +17
p=0

onde L, sao os elementos da série de Lovelock. Nesse caso particular de Lovelock em

dimens@o fmpar sob (A)dS, todos os coeficientes «,, sao fixados e assumem os valores

a, = I{% (Z) (2.15)

onde k & uma constante arbitraria adimensional. Portanto, o que veremos a seguir

dados por

¢ como essa teoria de Chern-Simons em 5D nos leva ao modelo de Chamseddine em

4D via uma reducao dimensional mais truncacao. Nosso objetivo sera mostrar que, de
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2. Chern-Simons 5D e o modelo tipo-topologico

fato, recupera-se o modelo tipo-topologico de Chamseddine [9] e que as equagoes de

campo deste sao solucoes da teoria de Chern-Simons completa sem truncacao.

2.2 0O modelo de Chamseddine

A relatividade geral é uma teoria invariante de fundo (“background invariant”),
o que significa que nao existe estrutura geométrica dada a priori a variedade espago-
temporal onde a teoria é definida: a métrica pertence aos campos dindmicos. Uma
outra classe de teorias que sao independentes de fundo sao as teorias topologicas [37]
tais como as teorias de Chern—SimonsE]. De maneira extraordinaria [45], a gravitagao
em um espago-tempo 3-dimensional pode ser escrita como uma teoria de Chern-Simons
cujos grupos de gauge locais sao Poincaré ISO(1,2), mas também para SO(1,3) ou
SO(2,2) se existir uma constante cosmologica positiva ou negativa respectivamente. Da
mesma forma, podemos descrever teorias de Chern-Simons em dimensoes mais altas,
na verdade apenas em dimensées impares[61]. Uma diferenga essencial entre gravitagao
em 3D e em dimensoes maiores que trés é que aquela nao possui graus de liberdade
local enquanto esta possui. O mesmo acontece com as teorias de Chern-Simons em 3D
e em dimensoes mais altas. Portanto, a primeira teoria de Chern-Simons que possui
graus de liberdade locaias é a em 5D, como vimos na se¢ao anterior.

Como estamos interessados em gravitagao em 4D, a pergunta natural que po-
demos nos fazer é: poderiamos encontrar uma teoria de cunho topolégico similar em
um espago-tempo 4-dimensional? Um resposta a essa pergunta foi dada por Cham-
seddine [9]: uma teoria que além de conter os campos associados a gravitagao deve
trazer consigo um campo escalar tipo-dilaton|76]. Pode-se obté-la de uma teoria de
Chern-Simons em 5D através de uma reducao dimensional e truncacao de algumas
componentes dos campos fundamentais. Como iremos ver, o conjunto de solucoes do
modelo de Chamseddine ¢ um subconjunto das solugoes da teoria completa, a saber

Chern-Simons 5D reduzida a 4D. De maneira mais precisa, a proposta do presente

3Podemos mencionar também as teorias BF como exemplo de teoria topolégica. No entanto, a
menos que alguns vinculos sejam aplicados & teoria, elas podem enderecar graus de liberdade locais
em espago-tempo de quaisquer dimensoes, para mais detalhes vide [67, [72] e as referéncias contidas.
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2. Chern-Simons 5D e o modelo tipo-topologico

trabalho sera investigar a dindmica desse modelo e seus aspectos no nivel classico e
compara-las com as da teoria padrao de Einstein.

Portanto, a partir de agora iremos fazer uma redugao dimensional da acao ([2.14)
de 5D para 4D. Com efeito, iremos fazer algumas decomposigoes do grupo (A)dSg em
termos das representagoes do grupo de Lorentz em 4D SO(1,3). As componentes da
conexao serao decompostas como w48 = {&!/ oM = %IA)] }eet ={el, é*}. Devemos
notar que, via a definicao €7 x4 1= €7yx1 € utilizando-se das propriedades de anti-

simetria do Levi-Civita bem como das quantidades em ([2.14) a acao lé-se:

1 A a ~ A A A
Sos, = grrme [P0 B A RS 0 A R AR+
5
2 > ~
—3—;(3é4/\é1Aé“’AR{§f+2é1AéJAéK/\R(L;§> +
Loyl x A K A AL
+l—46 Ne NeTNe Ne, (2.16)
onde
~ . 1. . ) 1 .
1J _ plJ I A7 4 I
R(5)—R _l_2b /\b7 R(S)_il)b7
com

RY =do" + & g Aot
Juntando-se os termos em destaque em ([2.16)) a ac@o assume a seguinte forma

1 . 1 - A R 1 - .
Scss = §€IJKL / et N <RU — l—Q(bI AbT 4+ sél A é‘])> A (RKL _ Z_Q(bK ADE 1 6B A éL)) n
Ms

4s

3l3é1 A Db AR A eE,

4 o 4 o
+7é1/\DbJ/\RKL—l—3é1/\DbJ/\bK/\bL—

note que o termo em destaque pode ser integrado por partes, usando
Db AV A AT =3Db AV ABE A + b ABE ABY A DE

Considerando que a integral de uma derivada total vai a zero na borda da

variedade OM5, a agdo assume a forma
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2. Chern-Simons 5D e o modelo tipo-topologico

1 ~ 1 o o A 1A ~
Scs, = geuKL/ et A (R” — l—z(bf A b7 4 sé! /\éJ)) A (RKL — l—2(bK A bE s /\éL)> +
Ms
2 - - 2 - ~ 2 - - 2s
“pel A b KL _ 2 pK AL\ _ 2Dl a o7 [ REL _ 255K p oL ) 91
—i—l e Nb /\(R 3126 Ab i b'ne'( R 32 Aeé (2.17)

Podemos notar que os campos é! e b assumem um papel simétrico na acgao ,
de modo que em principio poderiamos usar quaisquer um dos dois ou mesmo uma
combinagao linear de ¢é e b para definir a forma do vierbein em 4D. Contudo, uma
diferenca qualitativa entre essas duas quantidades ird manifestar-se apos uma truncacao
conveniente. A teoria 4-dimensional é obtida através de uma reducao dimensional tipo
Kaluza-Klein onde os campos “tipo-matéria’ sao codificados na dimensao extra, ou
seja, na 5* dimensao. Portanto, assumiremos que uma dimensao espacial representara
uma dimensao “microscopica’ e compacta. Com efeito, faremos um desacoplamento das
coordenadas do espaco-tempo em D = 5 nas coordenadas de D = 4 do espago-tempo

", 11 =0,...,3 e a quinta coordenada y := x*. Desse modo os campos separam-se,

el = eidm“ + eidx,

VY { I

b = budx“ + by dx,

et = edat + eydy, (2.18)

o = wi"dm“ + wi"dx.
O desacoplamento das componentes da curvatura de Yang-Mills 1éem-se
AMN _ pMN MN
FU5 =F"0 + F 7 dx (2.19)

onde

1
MN __ MN v MN _ pMN
FYN = SENdat Ndat, FYY = FiNde.

Naturalmente, devemos separar as componentes de cada uma dessas formas em termos
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2. Chern-Simons 5D e o modelo tipo-topologico

de suas componentes de Lorentz SO(1, 3),

FMN — (FIJ F4I FSI F45)

MN __ 1J 41 51 45
FMN = (FM FM FSTFS),

Consequentemente, as componentes da curvatura assumem a seguinte forma apos as

separagoes feitas em ([2.18]) e (2.19)

FlJ — R]J_l%bl/\bJ_l%eI/\eJ7

FI* = %Dbf—l%ele‘l,

Fh = %De“r llgbl/\e4,

F% = %de“—%bf/\ef, (2.20)
Fl = R+ 112(b>f< AT = b AB) + l%(ei Nel —el Nel),

F* = %(Db{chwiJ/\bJ)Jrl%( IAet—el Aey),

FP’ = %(Dei +w,ynel) - 112(b§< Aet = b Ae),

FP = %dei + ll?(bi ANel —b'Nel),

onde R’ representa a curvatura 2-forma associada a conexao de Lorentz w!’/. As

equagoes de campo ([2.13]) s@o separadas nos seguintes conjuntos de equagoes

E]JKL(F45/\FKL—2FK4/\FL5) =0

€[JKLFJ5/\FKL = 0,
E[JKLFJ4/\FKL = 0, (221)
€[JKLFIJ/\FKL = 0,

que sao 4-formas e as demais equagoes correspondendo a 3-formas, ou seja, as compo-
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2. Chern-Simons 5D e o modelo tipo-topologico

nentes y

errp(FP NFRE 4 PP AFRL KA NP5 —2PR4 A FE) = 0,
ekt (FP NFEY+ FPAFSY) = 0, (2.22)
e (FJ* NFRY+ FIAANFER) = 0,

€[JKLFIJ/\F>€(L = O,

com as componentes da curvatura dadas por (2.21)). A teoria, mesmo com esse desa-
coplamento continua sendo invariante sob as transformagoes completas de (A)dSg, que
agora podem ser identificadas em termos das quantidades 4D:

1 ~ ~
5&)1J — DGIJ+ ;(EISéJ —EJSéI) 4 7(EIALbJ —€J4b1),

d¢" = IDe® 4 &le; T+ b e — efe™,
ob! = ID + 07,1 — sé’e + sére’?, (2.23)

gt = 1de®™® — brel® 4 é,e™.

2.2.1 Fixacao de Gauge e a Acao de Chamseddine
A agao (2.17) e as equagoes de movimento obtidas (2.21) e (2.22) podem ser

simplificadas via uma fixagao parcial de gauge que consiste de oito condigoes
I _ I _ _
by=0, e =0, I=0,.,3 (2.24)

que fixa as simetrias de gauge geradas por M5 = [Py e My, = I, respectivamente,
como poder ser visto pelas leis de transformacao (2.23)) para as componentes x de b’

e e!, onde assumimos que o campo e;‘( # 0. Essa fixacao reduz a simetria de gauge

ao grupo SO(1,3) x (A)dSs, onde SO(1,3) é o grupo de Lorentz 4D e (A)dS,; =
U(1) se s > 0 (teoria com constante cosmolégica positiva) ou o grupo de dilatagao se
s < 0 (teoria com constante cosmologica negativa). Naturalmente (2.24]) é apenas uma

fixagao de gauge: a teoria continua sendo uma teoria com simetria de gauge sobre o

(A)dSg completo.
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2. Chern-Simons 5D e o modelo tipo-topologico

A teoria em 4D pode ser obtida através de uma compactificacdo ou reducao
dimensional tipo Kaluza-Klein, onde os campos de matéria sao codificados nas com-
ponentes pentadimensionais dos campos dinamicos. A abordagem do processo de re-
ducao dimensional proposto por Kaluza-Klein é obtida baseada na hipotese de que a
variedade 5-dimensional adimita um decomposigao topolégica com a seguinte estrutura
Ms = My ® S;. S1 é um espaco topoldgico unidimensional e compacto e “microsco-
pico”, topologicamente equivalente a um circulo de raio r. e, portanto, parametrizado
pela coordenada z* = y tal que 0 < y < 277.. Com efeito, quaisquer campos definidos

em M5 sao periddicos em y, e podem ser expandidos como uma série de Fourier como
o0
flay=">_ f™(@)e™", ¥campof,
n=-—00

onde todas as componentes de Fourier satisfazem a condigao de realidade, ou seja,
(f™ (@) = fC ().

Uma vez que a dependéncia na coordenada x seja conhecida, a redu¢ao dimensi-
onal é obtida inserindo os campos com suas respectivas expansoes em modos de Fourier
na agao e integrando sobre a quinta coordenada. O resultado serd uma agao efetiva
em 4D envolvendo todos o modos de Fourier e suas interagoes com essa expansao em
série infinita, a qual, pelo menos no regime perturbativo e espago-tempo plano, sao
caracterizadas por um pardmetro de massa que cresce com n, isto é, m,, = n/r.. Esse
valor da massa para um regime de baixa-energia pode ser facilmente observado através
de uma expansao dos campos dindmicos sob o vacuo de Minkowski, ou seja, se consi-
deramos que os campos possam ser expandidos como f(z) = f (x) + h(z), onde f (x) é
o valor do campo no vacuo considerado e h(z) a flutuagdo em relagao ao background
em questao. Obtemos que as flutuagdes em relagao ao vacuo h(x) satisfazem a equagao

de d’Alembert em 5D,
@~V — ) =0,

e suas componentes de Fourier, levando em consideracao a condi¢ao de periodicidade,

assumem a forma de onda plana, isto é, h ~ exp(—ik,z* +iny/r.). Naturalmente, eles
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2. Chern-Simons 5D e o modelo tipo-topologico

satisfazem a relagao de dispersao

2 2 n’
—w'+k +ﬁ:0’ (2.25)

C

2

tipica de modos massivos com m? = n?/r?.

Como estamos assumindo que 7. é pequeno o suficiente, de maneira que nao seja
possivel esquadrinhar experimentalmente no regime de energia disponivel hoje, segue
que os modos massivos com n # 0 devem ser muito pesados. Portanto, no regime de
baixa-energia podemos nos limitar, pelo menos em primeira aproximagao, a apenas os

setores de modo zero da expansao dos campos, que significa dizer que todos os campos

sejam constantes em Y. Isso significa que
Oy f(z) =0, Vcampo f. (2.26)

O modelo de Chamseddine ¢ obtido [9] por uma truncacdo que consiste em tomar

alguns campos a zero:
el =0, w’/=0 =0 10 =0 (2.27)

Note que a primeira condicao é, de fato, nada mais que uma condi¢ao de fixacao
de gauge, a segunda de . As outras trés truncacoes quebram aparentemente a
simetria (A)dSg em SO(1,3). Contudo, Chamseddine mostrou que através de uma
reordenacao dos campos remanecentes em novos multipletos permite mostrar que a te-
oria residual esconde uma simetria de gauge (A)dSs. Para vermos isso, ndo deveriamos
aplicar direto a primeira das condigoes de fixacao de gauge ([2.24) mas reordenando os

campos em multipletos de (A)dSs:

1

AAB — {AIJ’AALI} — {wIJ’ 761}, (2.28)
A I ;741 . I 4

o4 = {0, 01} = {0l L} (2.29)

Usando essas defini¢goes junto com as condigoes de truncagao (|2.27)), a agao ([2.17))
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2. Chern-Simons 5D e o modelo tipo-topologico

reduz-se a expressao invariante sob (A)dSs

S(4D) —

ool

/ €ABCDE(I)AFBC A IFDE, (230)
My

onde o campo ®4 é um multipleto na representacao adjunta do grupo de simetria e
uma zero-forma, ou seja, um escalar sob difeomorfismos. Note que nenhum parametro
é necessario em frente a agao, pois qualquer parametro poderia ser absorvido em uma

redefinicao do campo escalar ®*. A curvature de (A)dSs
FAP = dA*P + A% A ACB, (2.31)
Em termos das componentes de SO(1,3) lé-se

1
IFIJ — RIJ o l_261 /\BJ, (RIJ — deJ+wIK /\wKJ)

1
F = iDeI, (De! = de’ +w'y Ae?).

As transformacgoes de gauge infinitesimais de (A)dS; que deixam a acao de

Chamseddine invariante podem ser escritas como

6AAB = dEAB —+ AAC ECB — ABC GCA, (5@A - EA Bq)By (232)

onde €18 = —eB4 ¢ o parametro infinitesimal da transformacdo. As equacoes de

movimento que se seguem de ([2.30)) via a varia¢do em rela¢do a conexao A e ao campo

escalar ® sao

§SUP) 1
(S(}T = ggABCDE]FBC VAN ]FDE = 0, (233)
§SUP) 1
W = §EABCDE]D(I>C N IFDE = 0, (234)

onde D é a derivada covariante em respeito a conexao A que age da seguinte forma:
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2. Chern-Simons 5D e o modelo tipo-topologico

D =d+ [A, ] Portanto, a atuacio nas componentes de ®4

1
Do’ = DOT + ?@461, D' = do' — ¢,

As equagdes de movimento em termos das componentes SO(1, 3), assumem a forma

5S
del
5S

owl’
5S
5P+
5S
5!

S

lQeK/\eL) =0

1
_ﬂgleL(Dq)J + §6J(I>4)(RKL —

1 1 y 1
SEIIKL ((d@4 - 761@[ Y(REE — l%eK Aek) + 7(D<I>K + ?eKCI)‘l)DeL) =0,

1 S s

§5[JKL(RIJ — l—QeI Ael)(REE — l—26K Ael) =0, (2.35)
1

—&T[JKLD@J(RKL — EGK AN eL) =0.

2l [?

Podemos introduzir matéria adicionando a agao (2.30) um termo S,, o qual

iremos supor que admita invariancia sob o grupo de gauge do modelo, a saber (A)dSs,

e independente do campo escalar ®*. A invariancia sob (A)dSs; da acdo completa,

S =S8 +S,[e,w (2.36)

pode ser expressada através de uma “identidade de Ward” local, que pode ser obtida

ao considerarmos uma agao S = S[p], onde ¢ sdo campos em geral, que possui uma

invariancia sob certo grupo de transformagoes, isto é, dp = €(z)P(p) = 0S[p] = 0,

onde P(y) é uma func¢do dos campos. Portanto, a identidade de Ward surge quando

exigimos a invariancia da agao sob a variagao dos campos dinamicos

onde

6S[y)

= 0.
o

4S = /dw e(z)dp(x)

No nosso caso os campos dinamicos sao a conexdo A4? e o campo escalar ®4,

SAAP =DeAB, 504 = A P,
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Com efeito, a variagao da acao

6S[A, ®] = / dzelAPl(z) ( — %ID 55&3 +dp gA): 0, Ve'P(z);

onde fizemos uma integragao por partes no termo com derivada exterior, e lembrando
da antisimetria do parametro ¢4? devemos antisimetrizar o termo de variacao de .

Dessa forma, a identidade de Ward assume a forma

08 05 08
WABS = —Dm + (I)AW - (I)BW = 0.

Estaremos interessados particularmente na identidade de Ward associada & invariancia

sob os geradores My:
— —sd' - =0. (2.37)

Podemos observar que essa identidade é assegura separadamente para ambas as agoes

S4P ¢ S,.. Definindo as seguintes quantidades

0Sm 0Sh,

= 56[? 7}J = 5&)]‘]’

Tr:

Podemos reescrever (2.37) como

1, 1 ,084P 654P 654P
76 Ty +IDT; = —76 E — 1D Sl + IW
55«4D
—s5P* SaT (2.38)

onde a tltima igualdade expressa a invariancia de S™P). Essa identidade nos leva a

uma equagao de continuidade geral
2 7
76 Jr;+ D7 =0. (239)

A 3-forma T; esta relacionada com as componentes do tensor energia-momento 7 ;
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na base de vierbein por

1
T = aeNjKLTN el Nef A et (2.40)

Podemos notar que 7;; = 0 se a agao da matéria for independente da conexao de spin
w (2.39)) é interpretada entdo como equagao de continuidade para energia e momento

(DT; =0 <= V,T} = 0 no formalismo métrico usual da relatividade geral.)

2.2.2 Acessibilidade e fixacao de gauge

O modelo de Chamseddine ([2.30)), estudado na se¢ao anterior, é invariante sob as
transformagoes de gauge (2.32). Portanto, podemos ver a possibilidade de uma fixagao
parcial de gauge dada por quatro condigoes que nos permitem levar a zero quatro das

componentes do campo escalar &4, ou seja,
ol =0, I=0,..,3. (2.41)

Essa fixagao deixa a invriancia local de Lorentz explicita. Contudo, devemos analisar
se essa transformacao, que tem o papel de fixacao parcial de gauge, é acessivel. Em
analogia com a eletrodinamica onde o campo de gauge é o 4-potencial A* temos que,
se 0, A" # 0, é possivel encontrar uma transformagao de gauge tal que a 4-divergéncia
do novo potencial A seja nula, ou seja, 9,A™ = 0. Portanto, sabendo que o potencial
A* se transforma como

At — AP = AP 4 0Max),

a transformacao de gauge é acessivel contanto que
0,0'a=0 <& Oa=0.

No nosso caso, temos uma conexao A que se transforma segundo um elemento g do
grupo de simetria como

A= g 'Ag+ g dA.
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A atuacao de uma transformagao finita sob o campo ®
o' = g,

onde podemos dividir a matriz elemento do grupo em blocos

IJ) 14

(g 4x4‘g

g:
41

g ‘ g44

Além disso,

(MI4)CD = —(51077413 - 540771D) = (PI)CD-

A fim de entendermos como construir uma transformacao finita iremos comegar com a

matriz P;—g, assim

= (Py)° p = —(6§n4p — 6 nop)

Dessa forma, Py possui apenas os elementos C, D = 0,4 e a matriz possui a

forma

(POQ)CD = (PO)CK(PO)KD
= (500774K - 5407701() (65(774D - 51{(770D)

= —5500770D - 05407741)

= (—05)Qo

onde podemos ver que )y é um tipo de matriz “identidade” que contém apenas 1 e 0

na diagonal o que garante que todas as poténcias de () reproduzem seu valor inicial,

isto é, Q" = Q.
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)
o
I
o o o o =

o o o o o
o o o o o
o o o o o

0
0
0
0
1

Por conseguinte, as poténcias pares de F, sao
2n n
By" = (=0s)"Qo, (2.42)
analogamente, as poténcias impares sao

(Po)*™ ™! = RoFg"

= (—09)"P. (2.43)
Seguindo a mesma metodologia feita acima iremos obter a [-ésima matriz P
(P p=(P)° k(P p

Donde,
(P b = =n116§nap — $07 1o (2.44)

lembrando que para cada [ o elemento n;; assume apenas os valores 1 ou —1, ou
segundo as nossas notagoes ¢ = +1. Dessa forma, podemos definir para cada matriz

@1 tal como no caso )y onde suas poténcias retornam o valor original, ou seja,

P} = (—nus)Qr.

Portanto, as poténcias pares da [-ésima matriz P seguem a férmula recursiva

(P> = (=nus)"Qr sm > 1, (2.45)
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e, as poténcias impares

(Pr)*"™ = (=n11s)" Pr. (2.46)
Finalmente, temos que a transformacao assume a seguinte forma

© \k pk
AP A" Py

gr=e¢€ = il
k=0
o AZEHL(— 77118 kPI = 77115 Qr
=1

Devemos analisar dois casos, o primeiro ao considerarmos 7;;$ = 1 o que ird produzir

uma funcgao oscilatéria nos parametros
gr =1 +sin AP + (cos A — 1)Q. (2.47)

Nesse caso, nao temos nenhum problema ou vinculo nos parametros da transformagao
quando aplicada sobre o campo (®!), porque as fungoes nio assumem nenhum ponto
singular em seu dominio de definigao. Em outras palavras, nao teremos problemas em
definir tan A como sera mostrado nos célculos a seguir. O segundo caso, é obtido ao

considerarmos n;;s = —1 o que nos leva a fungoes hiperbdlicas nos parametros
gr = 1 4+ sinh APy + (cosh A — 1)Q;. (2.48)

Contudo, a transformacao finita sobre o campo ®4, gerada pelo elemento do
grupo g, ¢ dada por
(gI)A B@B — (D/A

Assim, quando A = I temos
" = cosh A®' — ssinh A\d? (2.49)

. - !
Finalmente, exigiremos que as componentes desse novo campo ®/ = 0, donde obtemos
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a seguinte condi¢ao sobre o parametro

1

)
tanh A = v ;| tanh A |[< 1. (2.50)

Analogamente, no caso oscilatorio, a tnica diferenca é que nao necessitamos de vincular
o dominio de definicao do parametro de transformagao como no caso hiperbdlico, ou
seja,
I
tan A = s%. (2.51)
Em conclusao, vemos que de fato a fixacao parcial de gauge é acessivel logo as condigoes

(2.41)) sao garantidas contanto que ([2.50)) ou (2.51)) sejam respeitadas.

A aca@o completa, incluindo a matéria, se reduz depois dessa fixacao

- 1

S = —/ €[JKL<D4FIJ/\]FKL+Sm
8 Jm,
1

S S
= g/ €[JKL(I)4(RIJ — l_261 A €J> N (RKL — l_2€K VAN €L> + Sm, (252)
My

onde a acdo de matéria S, ¢ supostamente independente de ®* e assumiremos sua
independéncia da conexao de spin daqui em diante. As equacoes de campo que sao

derivadas da acdo acimal] sdo

65 1
9 S deypn(e) ARKE = SeT A e A k) + T =0,
de 21 [
S 1 4 pKL 5 K o Ly, 25z4 K L
m = §€[JKL (dq) (R — l—2€ Ne ) + Z_Q(I) e™ A De = O, (253)
6S 1
W = gé]JKL(RIJ - 1%61 A eJ) A (RKL - Z%GK A BL) = 0,
onde a Torcao 2-forma é definida por T := Del e T; é a energia-momento 3-forma
@.10).

Observe que ao compararmos a primeira das Eqs. (2.53) com as equagbes pa-

4A qual estamos adicionando a acdo da matéria S,, que por hipdétese deve obedecer a mesma
invariancia de gauge do modelo de Chamseddine puro, a saber (A)dSs.
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droes de Einstein com constante cosmologica no formalismo de primeira ordem,

A
EIJKL (GJ/\RKL— gGJ/\BK/\GL): —87TG7}, (254)

T! = De! =0,

P 3s -
nos leva a identificacao do fator A com a constante cosmolbgica,

A 3s

e definir a funcao

Glz) = M%é‘*(w) (2.56)

como sendo o “parametro” de Newton, que é inversamente proporcional ao campo

escalar ®*. Dessa forma, as equacoes de campo (2.53) assumem a forma

A
€IJKL (e‘] A RKF — geJ Aef A €L> = —8nG(x)T;,

EIIKL (dG(l’) (R*F — %eK A eL)—Z%G(x)eK A D€L> =0, (2.57)

A A
EIJKL (R” - 561 A 6J> (RKL — geK N €L> =0,

onde devemos notar a dependéncia em z do parametro de Newton G(z).

Podemos notar que a teoria é claramente singular quando A = 0 pois esse
valor corresponderia um s nulo na métrica de (A)dSs; que naturalmente tornar-se-ia
singular. A primeira das equagoes de campo possuem a forma das equacgoes de
campo de Einstein usuais no formalismo de primeira ordem. Contudo, nosso parametro
de acoplamento de Newton G(z) é uma fungiao dependente do campo ®*. A segunda
equacao determina a torcao 77 em termos dos campos dinamicos construtores da teoria
whl el e G.

Na auséncia de matéria uma solugao natural de vacuo ¢é a de curvatura constante
e livre de torcao que ¢ a solucdo do espaco de (anti-)de Sitter: R/ = éel Nel. A

ultima equagao, que claramente admite a solu¢ao de curvatura constante de (anti-)de
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Sitter, é também compativel como solucdes nao triviais, como veremos. E interessante
notar que a condicao de fixagao de gauge é equivalente a primeira das fixagoes
de gauge em ([2.24)).

Na teoria de Einstein a equagao de continuidade do tensor de energia-momento

lé-se, no formalismo de primeira-ordem,

DT; =0 (2.58)

17 6 a 3-forma

onde D é a derivada covariante exterior em respeito a conexao de spin w
T; esté relacionanda ao tensor de energia-momento . A equagao de continuidade
acima segue das equacoes de Einstein e da identidade de Bianchi DR = 0.
Como vimos anteriormente, temos que a equagao de continuidade ainda se mantém no
nosso caso como uma consequéncia da invariancia sob (A)dSs e da identidade e

com a hipotese de que a acao da matéria ¢ independente do campo escalar ® e também

da conexao de spin w.
Podemos ainda notar a identidade de Ward (2.37)) aplicando-se a condigao de

fixacao de gauge ® = 0. Com efeito, levando em consideracao que a acao da matéria

I

S dependa apenas do vierbein e, isso nos leva a identidade

A, 68 A, 88
D=z m 1\ 3 Y5

Y

®I=0

onde S é a acdo completa apos a fixacao de gauge (2.52)), e S é a acdo completa antes
da fixagao (2.36)). Como D7T; = 0, a identidade acima nos mostra que a equagao

08

o7 =0 (2.59)

®1=0

¢ valida “on-shell”, isto é, se as equagdes de movimento (2.53) da teoria com fixacao
de gauge sao satisfeitas. Em outras palavras, isso é equivalente as equacgoes da teoria
sem fixacao obtida através da variacdo da acao em funcio de ®, avaliadas em ®! = 0.

De fato, essa identidade “ on-shell” em (2.59)) pode ser obtida através da identidade de
Ward (2.37) ao tomar ®' = 0.

Para finalizar essa segao poderiamos nos perguntar se as equagoes de movimento
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obtidas através da truncacao da teoria, a saber as equagoes do modelo de Chamseddine
e , junto com as condig¢oes de truncacao e as condicoes sobre a
dependéncia na coordenada x , sao também solucoes das equacoes de movimento
da teoria completa de Chern-Simons sob (A)dSg. De fato, as equagdes da teoria

de Chern-Simons completa em 5D reduzida a quatro dimensoes sao dadas por ([2.21]),

(2.21) e (2.22). Apos a imposicao das condigoes de truncagao (2.27) junto com a
restrigao ([2.26)) e renomeando ([2.28)), (2.29)), as componentes da curvatura assumem a

forma
FIJ:RIJ—Z%BI/\GJ, FI4:O, FI5:%D€I, F45:O,
1 s
IJ __ 14 __ 1
i =0, Fl* = —2D0' - 3
1

1
45 4 1
B = 2dot = erdl.

e'®t FP =0 (2.60)

Inserindo as expressoes (2.60) nas oito equagoes (2.21)) e (2.22]), obtemos equagoes tri-

viais 0 = 0, e quatro equagoes nao triviais que sao identicas aquelas obtidas através da
acao do modelo de Chamseddine, equacao . Concluimos que o conjunto de solu-
¢oes das equagdes de movimento de (A)dSs é um subconjunto particular das solugdes
da teoria (A)dSg de Chern-Simons completa. E interessante notar que as quatro equa-
¢oOes nao triviais sao derivadas da agao de Chern-Simons através da variacao dos quatro
campos “destinados” & truncagao. Se tivessimos feito algum outro tipo de truncagao
nas equagoes de campo, obterfamos mais equacgoes independentes do que obtem-se da

acao truncada diretamente como fora feito.

2.3 Formalismo de Dirac-Bergmann

Considere um sistema mecanico usual com nimero de graus de liberdade finitos,
descritos por uma lagrangiana que ¢ funcao das coordenadas generalizadas ¢’ e das
velocidades generalizadas ¢! (I =1,..,N) e N € N, isto é, L = L(q, ), e a acao que

descreve o sistema dinamico dada pelo funcional Sq,q] := [dtL(q,¢). O principio
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variacional nos leva as equacoes de movimento de Euler-Lagrange,

d (0L oL
— =)=, =12 ... N 2.61
dt(é?qf) dq!’ T (2:61)

onde definimos a matriz hessiana Mj; por:

L\ oL O°L
(aqlan)q IJ((LQ)C] aq[ aq[anq Qf(q7Q) ( 6 )

Em geral, esta matriz hessiana Mj;, construida através das derivadas segundas da
lagrangiana em relacao as velocidades generalizadas, é invertivel o que permite resolver
as aceleragoes, ¢/ = (M~Y17Q;. Consequentemente, dadas a posi¢io e velocidade
iniciais, pode-se sempre determinar univocamente a trajetoria dinamica, no espaco de
configuragao, em cada instante. Por outro lado, se a matriz M;; nao for invertivel
entdo, se 1 < r < N denota o rank de M, havera (N — r) vetores independentes u!,
(m = 1,...(N — 1)), satisfazendo a equagao de auto-valor Mu = 0 e, portanto, nao
podemos resolver para todas as aceleracoes univocamente. Naturalmente, as equagoes
de movimento nao sao univocamente determinadas e obtemos (N — r) relagoes entre
as 2N variaveis ¢, ¢. Portanto, podemos dividir as teorias em dois casos associados ao
determinante dessa matriz

0?L

M:det'w

# (0, nao singular

=0, singular

a importancia que reside nessa classificacao esté ligada ao processo de passagem para
o formalismo hamiltoniano, que tem implicagoes diretas nos métodos de quantizacao
canodnica [39, 511, 93] 113]. De fato, com a finalidade de transitarmos para o formalismo
citado, devemos introduzir os momentos canonicamente conjugados as coordenadas
generalizadas ¢/ como

oL

T i— 8_ql (263)

Assim, as velocidades generalizadas ¢! deveriam ser invertidas em termos de funcoes
de q e m, isto é,

q" =v'(q, ).
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Contudo, a invertibilidade s6 se processa de maneira natural no caso de teorias nao-
singulares. Esse é a grosso modo a essencia do teorema da func¢ao implicita, que nao
serao abordados nessa se¢ao de revisao. Sendo este o caso, define-se a hamiltoniana

canodnica como uma transformacao de Legendre

HC(Q? 7T) = Zﬂ'lq.l - L(Q? q)7 (264)

e considerando-se, sua variacao funcional,

§H = ¢'om + (7?1 — 8_L) g 9L

5 (2.65)

Pela definicao (2.63]), o termo do meio é cancelado e a hamiltoniana s6 envolve variagoes
dos g e 7 e nao envolve variacio das velocidades ¢'. O espaco 2N-dimensional de todos
os pares 77, q' ¢ chamado de espaco de fase. A dinamica do sistema é estabelecidade
pelas equacoes de Hamilton,

,_oH . oH

q = 87'[-[, T = _8_q[ (266)

Portanto, nos sistemas dindmicos nao-singulares assume-se sempre duas hipote-
ses: (1) as variagoes 677, 6¢' sdo completamente independentes e (2) a hamiltoniana é
uma funcdo exclusivamente de 77, ¢’. Contudo, essas duas hipéteses falham nos casos
singulares. De fato, note que a variagao da hamiltoniana, sendo dada em termos dos
momenta e das posigoes, é dependente da valoracao desta na subvariedade definida por
T = g—é. Com efeito, se exigimos que as variacoes das variaveis candnicas respeitem

também essas condi¢oes, devemos ter

omr = M4’ + O°L 5q”’ (2.67)
I - 1J q aq[an q Y °
0?L
I _ I J
U, 0Ty = O—{—umaq,lanéq : (2.68)

que mostra imediatamente que as variacoes 677, 6g’ ndo sao completamente indepen-

dentes. Com efeito, nao podemos obter univocamente, no caso singular, as equagoes de
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movimento de Hamilton. As variagdes nao sendo independentes, ou seja, a impossibili-
dade de eliminarmos todas as velocidades generalizadas em termos de 7; e ¢', introduz
relagoes entre as variaveis do espago de fase, isto é, ¢,,,(¢,7) =0 (m =1,.., M < N)
chamadas de vinculos pm’mdrioﬂ. Portanto, a hamiltoniana definida por , cha-
mada de hamiltoniana canénica He, produziria a mesma dindmica da hamiltoniana

canodnica acrescida de uma combinacao linear dos ¢’s
Hr =He 4+ M\pm, (m=1,2...M < N), (2.69)

onde as quantidades \,, sao coeficientes arbitrarios dos ¢’s e dos 7’s, conhecidos por
multiplicadores de Lagrange. A teoria fisica nao é capaz de distinguir entre Hs e Hp
pois a hamiltoniana nao é mais univocamente determinada.

Vimos acima que a variacao da hamiltoniana Hs é dada por

: oL
0H = qI(STI'] — <a_ql) .

Essa equagao é assegurada para quaisquer variagoes de ¢ e p que sao sujeitas a condi-
¢ao dos vinculos priméarios a serem preservados. Como vimos, a variacao dos ¢’s e w's
nao sao independetes pois sao restritas pelos vinculos e devem ser sujeitas a preserva-

cao destes. Desse modo, aplicando-se os métodos de variacao levando-se em conta os

vinculos primarios (2.69) obtemos as seguintes equagoes de movimento

I aHC 8¢m

= A 2.
4 871'[ + (97'('] ( 70)
7 o _aHC . a¢m

L= oq! " oql

Temos, desse modo, as equagoes de movimento de Hamilton, descrevendo como as
variaveis ¢ e m evoluem no tempo, no entanto, essas equacoes envolvem coeficientes
indeterminados A,,,.

E conveniente introduzir um formalismo, que faremos uso recorrente, que nos

permite escrever essas equagcoes de maneira mais compacta, conhecido como o forma-

®Devido ao fato de ¢(q, ) ser zero, pela propria defini¢do de momento, usualmente chamamos esses
tipos de vinculos de vinculos primaérios.
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lismo dos parenteses de Poisson. E uma operagao entre duas func¢oes no espacgo de fase,

C(m,q) e B(m,q), definida por

oCc 0B 0C 0B

CBf=——7 — ——. 2.71
{ ’ } 8q1 87r1 87'('1 aql ( )
Em termos dos parenteses de Poisson temos que

{QIJTJ}: 5}]7 (2-72)

os parénteses de Poisson possuem certas propriedades que seguem imediatamente de

sua definicao que sao, antisimetria:
(. B)- ~{B.C},

linearidade

{01 + Oy, B}Z 01{02,B}+02{C1, B},
temos ainda a regra do produto ou de Leibniz

{0102, B}: Cl{CQ,B}+{C1,B}CQ.

Finalmente, existe uma relacao, conhecida como identidade de Jacobi, conectando trés

variaveis dinamicas
{017 {027 O3}}+{02a {037 Ol}}+{037 {Cl) 02}}: 0.

As equacoes de Hamilton, ou melhor, a evolugao dindmica de uma variavel C

no espaco de fase é dada por
C=—¢ +=—x,. (2.73)
T

Substituindo-se as variagoes de ¢ e m dadas por (2.70]), encontramos que ([2.73)) assume
a forma

C ={C, Ho}+ {C, o }. (2.74)
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Consequentemente, as equagoes (2.66) podem ser reescritas como

¢' ={q" He} + \n{d' 6m}. 71 ={mr, He} + Mnf{mr. 6} (2.75)

Temos que ter alguns cuidados ao trabalharmos com sistemas nao-singulares. Como
estamos interessados na dinamica, que é dada pelos colchétes de Poisson, ao trabalhar
com vinculos nao podemos utilizé-los antes de resolvermos os colchétes. Caso contrario
obterfamos um resultado contraditorio. Para nos lembrar dessa regra no formalismo
de Dirac-Bergmann, escrevemos os vinculos com um sinal de “igualdade fraca” ~. Por
definicao, os M vinculos sao fungoes independentes entre si. A subvariedade definida
por ¢,, ~ 0 é chamada de superficie dos vinculos possuindo dimensao 2N — M em

relacao ao espaco de fase. Assim, os vinculos primarios sao escritos como
Gm =0, (m=1,.,M). (2.76)

Devemos fazer uso de (2.76) como igualdade estrita somente depois de termos calcu-
lados todos os parénteses de Poisson. Sujeita a essa regra, a evolugao de uma variavel

dinamica, dada pela hamiltoniana total (2.69)), assume a seguinte forma mais concisa
C ~{C, Hr} (2.77)

Agora, devemos analisar as consequéncias dessas equacoes de movimento. Natural-
mente, teremos algumas condi¢oes de consisténcia, pois temos as quantidades ¢,, que
devem ser zero a todo instante. Temos de garantir que as trajetérias no espaco de fase,
que estejam sobre a superficie de vinculos em um dado instante inicial, permanecam
sobre esta na evolucao do sistema. Podemos aplicar as equagoes de movimento ([2.74))
ou tomando a varidvel dinamica C' sendo um dos vinculos primérios da teoria
. Contudo, sabemos que ¢ devera ser zero por consisténcia e, portanto, obtemos

algumas condicoes de consisténcia.

¢(g,m) = 0. (2.78)
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Finalmente, algumas condi¢oes podem acontecer através de ([2.78 um tipo de equagao
reduz-se a 0 = 0. De outro modo, podemos obter apenas algumas restrigoes sobre os
multiplicadores de Lagrange \,,.

O primeiro tipo de equagao nao precisamos nos preocupar pois a imposicao de
consiténcia se processa identicamente. No entanto, o segundo tipo que produz novas
relacoes entre as varidveis canonicas, significa que temos novos vinculos sobre as varia-
veis ¢, ™ dados por (2.78]). Esses novos vinculos advindos da imposi¢ao de consisténcia
da evolucao dinamica sao chamados de vinculos secunddrios. Eles diferem dos vincu-
los primarios pois esses sao consequéncias diretas de que definem os momenta,
enquanto para os vinculos secundarios, devemos usar as equagoes de movimento.

Havendo a existéncia de vinculos secundarios na nossa teoria devemos impor,
novamente, as condi¢oes de consisténcia, ou seja, o vinculo secundério produzido deve

ser estavel e, portanto, exigimos que ¢ ~ 0. Assim, obtemos uma nova equagao

{¢, He }+Am{ 9, om}= 0. (2.79)

Essa equagao deve ser tratada no mesmo pé de igualdade que as demais, isto ¢, devemos
notar qual dos trés tipos descritos ela ird produzir. Se obtemos mais uma relagao entre
as varidveis canonicas isso indica a prese¢a de mais um vinculo secundario, logo o pro-
cesso deve ser realizado mais uma vez devido ao novo vinculo gerado. Devemos aplicar
esse algoritmo de condicoes de consisténcia até nao produzirmos mais relagoes entre
as variaveis canonicas, e no final termos obtido um conjunto de vinculo secundérios do
tipo (2.78)) mais um certo ntimero de condi¢oes sobre os coeficientes .

Os vinculos secundarios serao tratados no mesmo pé de igualdade que os vinculos
primarios, veremos mais adiante o porqué dessa consideracao. Com efeito, é conveniente
redefinir o conjunto dos vinculos primérios e secundarios como sendo rotulados por um

indice seguindo a notagao
Oop~0, k=M+1,... M+ K, (2.80)

onde K é o niimero total de vinculos secundarios. Como eles sao escritos como igualda-
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des fracas implica que eles também representam equagoes que nao devemos usar antes
de calcularmos o paréntese de Poisson. Portanto, todos os vinculos, ou seja, o niimero
completo de vinculos priméarios e secundérios podem ser escritos de uma maneira mais

compacta como

¢;~0, j=1,..M+K:=J (2.81)

Finalmente, precisamos compreender quais sao os tipos de restricoes que o ter-
ceiro tipo de condicao, associada a estabilidade, produzira sobre os multiplicadores de
Lagrange. Lembrando que na hamiltoniana total sO entra, em principio, os vin-
culos primarios, ou seja (m = 1,..., M). Com efeito, ao analisarmos a estabilidade dos
vinculos ¢;, onde (j =1, ..., J) e como J > M, o sistema de equagdes que produziremos

serd, em geral, mais que completo. De fato,
{¢;, Ho}+ {0, om}= 0, m=1,...M,j=1,...J =M+K, (2.82)

nos proporciona condigoes sobre os A’s, pois nesse caso elas nao se reduzem a equa-
¢oes de vinculos, contudo, obtemos um conjunto completo de equagoes lineares nao-
homogéneas para A,,. Uma maneira de fixar os A\’s é buscar por solu¢oes que nos dé

A’s como funcao dos ¢’s e dos 7’s, digamos
Am = U (g, ). (2.83)

Entretanto, essa solugao nao é tnica, pois se temos uma solugao particular podemos
adicionar a ela uma combinagao linear das solugoes (V,,(¢q,7)) associada a parte ho-
mogénea de (|2.82)):

Vm{qu, qﬁm}% 0, (2.84)

o que nos produzira a solucao geral da equagao inomogénea. Desejamos a solugao mais
geral para e, portanto, devemos considerar todas as solugoes independentes de
, a qual denotaremos por V,,,, a =1, ..., A. Logo, a solu¢cao mais geral de ([2.82))
assume a forma

Am = Upy + VaVam, (2.85)
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em termos dos coeficientes v, que sao completamente arbitrarios.

Substituindo esse expressao para os A’s na hamiltoniana total obtemos
Hyr = He + U@ + Vo Vam Pm.-
Podemos reescrever a equagao acima como
Hp = H + 40, (2.86)

onde H := He + Ut € dg = Vam®m. Assim, vemos que mesmo apds aplicarmos
toda a anélise de consisténcia da teoria ainda ficamos com coeficientes completamente
arbitrarios v. Essa é uma diferenca crucial das formulacoes hamiltonianas nos casos
regulares. Isto é, temos funcoes arbitrarias do tempo na solucao das equagoes de
movimento dados as condigoes iniciais.

Obviamente que isso ¢ um sinal da presenca de algum tipo de simetria na teoria.
Efetivamente, muitas vezes em sistemas fisicos usamos mais variaveis que o necessa-
rio para sua descricao. Constroi-se modelos sem sequer saber, a priori, quais sao os
verdadeiros graus de liberdade. Um exemplo nitido é a eletrodindmica. O campo ele-
tromagnético no vacuo possui apenas dois graus de liberdade associados as polarizacoes
da onda eletromagnética. No entanto, nés usualmente descrevemos a teoria em termos
do vetor potencial A* = (A, ff) o qual possui quatro componentes, ou em termos do
tensor F),,, que guarda a informacao dos campos eletromagnéticos.

A relatividade geral possui também dois graus de liberdade, no entanto, sua
descrigao ¢ feita através do tensor métrico g,, que possui dez componentes ou via o
vierbein, no formalismo de primeira ordem, eﬁ que possui 16 componentes. Natural-
mente, existem relacoes entre as varidveis chamadas de vinculos. Os vinculos, como
vimos acima, sao equacoes envolvendo as varidveis do espago de fase que devem ser
asseguradas a cada instante da evolucao do sistema {¢, H} ~ 0. A fim de compreen-
der melhor essas relagoes devemos inserir uma nova classificagao dos vinculos que nos

permitira relaciona-los com os geradores infinitesimais de alguma simetria.

Definigao 2.3.1 Uma varidvel dindmica A(q,m), € chamada de primeira-classe caso
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0s seus parénteses de Poisson com todos os vinculos ¢’s sejam nulos:
{A,0;} =0, 1,..,J (2.87)
Caso contrdrio, A(q,m) € chamada de sequnda-classe.

Com efeito, se A é de primeira-classe, segue que {A, ¢;} deve ser alguma com-
binacao linear dos ¢’s, pois eles sao as tnicas entidades, no presente formalismo, que

sao, por definicao, fracamente zero. Portanto, temos

{A, ¢} = cipdr. (2.88)

Além disso, um resultado interessante que pode ser demonstrado facilmente é: se temos
duas variaveis dinamicas A(q,m) e B(q,7) de primeira-classe, entdo o paréntese de
Poisson dessas duas quantidades, ou seja, {A, B}, é também de primeira-classe.

De uma forma matricial, podemos obter essas classificacoes dos vinculos de
primeira e segunda-classe, que em muitos casos pode mostrar-se mais pratica. Dessa
forma, podemos ainda perder a distin¢ao entre vinculos primérios e secundérios e ver
que essa distingao nao é tao importante. De fato, considerando em a soma de

todos os vinculos primérios e secundarios temos a equacao para os \’s

Se 0s A sao ou nao pardmetros completamente arbitrarios dependera crucialmente das

propriedades de invertibilidade da matriz antisimétrica

Niji={di, ¢, } (2.90)

Naturalmente, se (2.90) ¢ invertivel’, podemos resolver (2.89), o que nos daria

uma solugao tinica para todos os A, e assim uma hamiltoniana tinica e consequentemente
uma evolucao temporal univocamente determinada. Contudo, suponha que a matriz

nao seja invertivel. Consequentemente, haveréd alguns autovetores nulos. Como somos

6Lembrando que apenas matrizes antisimétricas de dimensao par sdo invertiveis devido a necessi-
dade do determinante ser diferente de zero como condi¢ao de invertibilidade.
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livre para fazer mudancas de base sob transformacoes lineares nos vinculos, podemos
assumir que exista um subconjunto dos vinculos ¢,, a = 1, ..., A,cujos parénteses de

Poisson com todos os demais vinculos se anulam fracamente, isto é,

{¢pa, 0} = 0. (2.91)

Nesse caso, uma parte s6 dos A em ¢ determinada, os A\, @ = 1, ..., A permane-
cendo arbitrarios. E portanto, os vinculos ¢, tendo parénteses de Poisson fracamente
zero com todos os vinculos, sao os vinculos de primeira-classe. Por outro lado, se
denotarmos os demais vinculos por ¢,,, m = 1,...,J — A, sao chamados de sequnda-
classd |78, ©3].

Finalmente, vamos tentar dar uma compreensao fisica sobre esses conceitos de
vinculos de primeira-classe. Considere um sistema dinamico, descrito por um variavel
A(g, ) que evolui de um dado estado inicial. Assumindo que no instante ¢ = 0 nossa
variavel dindmica assume o valor Ay. Dai, seu valor apés um intervalo de tempo

infinitesimal 0t seréd, apds uma expansao em Taylor
A(5t) = Ao + Adt.

Por outro lado, A ¢ dada através do paréntese de Poisson com a hamiltoniana ([2.86|),

ou seja,

A = Ay+{A Hp}dt,

:~%+&6Aﬁhw&A%0-

Os coeficientes v sao completamente arbitrarios e, portanto, para um valor distinto de

v teremos um A diferente no mesmo instante de tempo dt, cuja diferenca funcional é

"Dessa forma, vemos que o rank da matriz A,,,, igual a J — A, nos informa sobre o ntimero de
vinculos de segunda-classe. Consequentemente, o rank, nesse contexto, serd sempre uma quantidade
par.
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dada por

SA = §t(ve — ) 1A, b}, (2.92)

= c{A du}, €a:=0t(vy — Vy). (2.93)

As variagoes das varidveis dindmicas do nossso sistema, dadas por , devem des-
crever o mesmo estado fisico. Essa mudanga nas variaveis hamiltonianas consiste em
aplicar uma transformacao que se processa no espacgo das variaveis dinamicas e, nao ne-
cessariamente no espaco de fase, capaz de mudar as variaveis sem alterar o estado fisico
do sistema. Esse tipo de transformacao é conhecido como transformacgoes de gauge cuja
funcao geradora é dada por €,¢,. Portanto, chegamos a conclusao que os vinculos de
primeira-classe, tem o seguinte significado: sao geradores de transformacoes de gauge
que alteram as variaveis dindmicas sem alterarem o estado fisico do sistema.

Além disso, podemos fazer a contagem dos graus de liberdade da teoria, pois a
presenca de vinculos reduz a dimenséao do espaco de fase (I'tyse). De fato, o niimero de

graus de liberdade é dado por

N = (dimlpee — 2 x F = §), (2.94)

N | —

onde F' representa o nimero de vinculos de primeira classe e S o nimero de vinculos
de segunda classe. A contagem dos graus de liberdade ¢é feita segundo (2.94)) pois
cada vinculo implica em uma condigao sobre as coordenadas do espago de fase. Com
efeito, a presenca dos vinculos produz uma subvariedade, digamos ¥ C I'gg, onde a
dindmica do sistema deve ser avaliada. Entretando, os vinculos de primeira-classe além
de proporcionarem a condicao citada, eles somam mais um grau de liberdade associado
a invariacia de gauge. Em outras palavras, os estados fisicos nao sao representados
por pontos pertencentes a superficie Y, mas sao representados por 6rbitas em X, isto
é, trajetorias que conectam pontos da subvariedade através dos vinculos de primeira-
classe. Dessa forma, os vinculos de primeira-classe produzem uma classe de equivaléncia
entre pontos da subvariedade. Os pontos das classes de equivaléncia estabelecem as

orbitas de gauge ao longo das quais podemos modificar as varidveis dindmicas sem
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alterar o estado fisico do sistema. Consequentemente, temos de contabilizar esse fato
e por isso o fator 2F para vinculos de primeira-classe. Os vinculos de segunda-classe
sao apenas condigoes entre as variaveis do espago de fase e nada tem a ver com alguma
simetria, dessa forma a contabiliza-se apenas uma vez cada S.

Como exemplo vamos considerar a aplicagao do algoritimo de Dirac-Bergmann

no caso da eletrodindmica de Maxwell livre, definida pela acao

S[A(z)] = / dt / d%( — iFWFW>:: / d*zL(A,,0,A,). (2.95)

Através do principio da minima acao obtemos as equacoes de Maxwell no vacuo ex-
pressas em fungao de A,. Esse ¢ um exemplo de um sistema de campos, ou seja, a
dinamica esté associada com infinitos graus de liberdade, A, (¢, Z). Portanto, derivadas

da lagrangiana serao denotadas por %, lembrando:

6 A, (z)

80, A, (x)
6 A, (y)

_ svgd _
= 0,0%(z —y), AL

= 010,0°(x — y). (2.96)

A fim de passarmos para descrigao hamiltoniana devemos obter o momento candnica-
mente conjugado a A, (t,z) que é obtido por uma generalizagao de (2.63)) para o caso

continud
OL(z)
b= = FHO(y). (2.97)
58014#(3/)
Naturalmente, 7° = 0 ¢ um vinculo primario da teoria, devido a propriedade de an-
tisimetria de F'*, por outro lado, 7° = F© = 9yA; — 0;A¢ = —Wﬂ. Isso nos permite
expressar as “velocidades” 0pA; = —m; + 0;Ag que é necessario para obtermos a forma

hamiltoniana. Note que, ndao podemos inverter para dyAg o que caracteriza a teoria

de Maxwell como uma teoria singular, det W = 0. Assim, a hamiltoniana canoénica é

8Como todas as relacoes, parénteses de Poisson, etc., estdo a tempo fixo 20 = ¢, s6 as coordenadas
expaciais r estarao explicitas.

9 Aqui estamos usando a notacio de indices covariantes e contra-variantes levando em consideracéo
a métrica n,, = diag(l, —1,—-1,—1). Portanto, A* = (A9 A) e A, =AY = (A°, —A).
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escrita como,

1
HC' = (W“aoAM + ZFMVFW/)

2 4

/d?’x
3 7 1 20 1 1%
= d’x T (—7'('1' + aon) + —EoF + = ijF J
1 - . o
/ dx 5(E2 + B?) + E'9; Ay (2.98)

1 = . .
= /d3x§(E2+B2)—A0V-E,

onde fizemos uma integracao por partes na tultima equacao. O primeiro termo estéa
claramente associado a densidade de energia armazenada nos campos EeB , lembrando
que ™ = FO = i ¢ que B = 5% Fy),. Portanto, as variaveis canonicas sao A4;(x) e
E'(x), um para para cada ponto do espago. Os parénteses de Poissson dessas variaveis

canodnicas sao dados por

{Au(x)v 7TV(y)}ggozy(): 5553(x - y)'

Além disso, o colchéte de Poisson associado a duas fungoes F e G no espago de fase

(A,, ) assume a forma

_ ([ OF 6G §G F\
{F<x)7G(y)}x0:yO - (514“ (571'“ - 514“ 571_#) ( - y)

Utilizando-se das equagoes de Hamilton podemos encontrar as equacoes de mo-

vimento para 7°, notando a presenca do termo A, em obtemos

70 ={r" Hol=V - E = ¢y (2.99)

No entanto, o vinculo primério 7% deve ser preservado em todo instante. Consequen-
temente, sua evolugao temporal devera anular-se também para consisténcia da teoria.

Donde resulta o vinculo secundario

$o =V -E =~ 0, (2.100)
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que é a lei de Gauss no vacuo. Esse vinculo implica que a variavel canonica E° nao
pode assumir quaisquer valores, mas apenas os valores cuja sua divergéncia seja nula
a todo instante. Como a condicao de estabilidade produz um vinculo secun-
dério, o algoritmo de Dirac-Bergmann exige que analisemos a consisténcia desse novo
vinculo, ou seja, devemos calcular a evolugao dinamica desse vinculo e exigir que seja
nulo. O algoritimo continua até que tenhamos obtido uma evolucao identicamente zero
caracterizando a condig¢ao de consisténcia. No caso eletromagnético o processo termina
ja na segunda etapa da analise da estabilidade, pois claramente vemos que ¢y ~ 0.
Naturalmente, sabendo que os vinculos de primeira-classe sao geradores de simetrias,
como discutido anteriormente, iremos fazer uso dessa estrutura. No entanto, devemos
ser caltelosos pois como estamos trabalhando com um teoria de campos, as expressoes
sao locais ou mehor sao fungoes dos pontos o que nos leva a ideia de distribuigao. A
fim de evitarmos complicagoes como derivacoes de distribui¢oes como podem ser vistas

em ([2.96)) ¢ bom introduzir a ideia de vinculos “ponderados” (smeared). Por exemplo,

Gi(n) = /d?’xn(x)wo, Go(a) = /d?’:voz(x)a,-Ei (2.101)

onde n e a é uma funcgao suave e arbitraria das coordenadas do espago x, de maneira
que a integral seja bem definida. O vinculo ponderado é agora um nimero o que
torna os calculos bem mais diretos e melhor definidos. Considerando o paréntese de
Poisson dos vinculos com a hamiltoniana, chega-se, com um pouco de algebra,
a conclusao de que sao nulos, o que nos mostra que as o6rbitas geradas pelos vinculos
deixa a teoria invariante. E de suma importancia explorarmos o que essas orbitas tem

as nos dizer. Para tanto, temos

(@it w4={ [ @y o f=o.

{Ql(n)7Ao}={/d?’yn(y)WO,Ao(%)}: —1,
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{Ga(a), B} = —{ /d3y8iaE",Ei}: 0,
_{ / d3xﬁia(y)Ei,Aj(y)}: / dProia{ F(z), A;(y)}

= /d3a:8ia5;53(x —y) = d;a,

—~—
Q
Do

2

o

—
I

assim, ao longo das orbitas geradas por G; e G, os campos eletromagnéticos permanecem
invariantes enquanto o potencial vetor A e Ay mudam por o gradiente de uma funcao
e por uma funcao arbitraria 7, respectivamente. Sabemos da teoria de Maxwell que
o potencial vetor é definido a menos do gradiente de uma fungao, caracterizando a
invariancia de gauge da eletrodindmica. Vemos que essa mesma estrutura emerge na
analise canonica como uma consequéncia da presencga dos vinculos G; e G,. Nesse
contexto, a lei de Gauss é chamada de gerador das transformagoes de gauge espaciais.

Verifica-se de maneira imediata que

{G1,G:}~ 0, (2.102)

implicando que a teoria de Maxwell apresenta, nesse contexto, apenas vinculos de
primeira-classe.

Os graus de liberdade da teoria sao obtidos segundo ([2.94]). Temos que o espaco
de fase da eletrodindmica possui dimensao D = 8, temos dois vinculos de primeira-
classe o que implica que o espaco de fase reduzido, ou seja, o espago de fase fisico, onde

se processam os verdadeiros graus de liberdade, sera
1

Deve ficar claro que o topico de estudos sobre a analise de sistemas vinculados é muito
mais profundo do que estd sendo abordado nesssa se¢ao de maneira pragmaética e o

leitor é convidado a consultar os textos classicos para maiores detalhes [78, [93].
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2.4 Analise Canénica do Modelo de Chamseddine

A fim de estudarmos o contetido dindmico da teoria de Chamseddine descrita
na Sec¢ao 2.2, bem como identificar os graus de liberdade, iremos aplicar a analise
hamiltoniana & la Dirac |16, B9, 48], 51l 78, O3] que nos possibilitara identificar os
vinculos da teoria e suas clasificagoes. Para realizarmos uma anélise hamiltoniana
iremos assumir que a variedade espago-temporal M, admite topologia R x ¥, onde X

¢ uma superficie 3-dimensional tipo-espacgo, e iremos decompor a conexao 1-forma em
AP dat = AMPdt + AP dz®,  (a=1,2,3). (2.103)
Consequentemente, a agao decompde-se da seguinte forma
S = / / dtd*x (z;B(cp, A)ALE + AP K (D, A)) (2.104)
RJY
onde defimos as quantidades
%5 = capcpre™FP®F  Kup = capcppe™Fy D, . (2.105)
Podemos notar ainda que, via o uso da identidade de Bianchi
DpF o = "D, F e =0,
pode-se reescrever o termo K 4p como uma derivada total de [95, isto €,
Kap =D,l%p.

A agao ¢ de primeira ordem nas derivadas temporais consequentemente
nos leva a uma matriz hessiana de determinante nulo na passagem da lagrangiana para
hamiltoniana, ou seja, uma teoria singular como vimos na se¢ao anterior. Com efeito,
nao podemos inverter todos os momentos canonicamente conjugados a0s campos
dindmicos, o que caracteriza a presencga de vinculos. Em outras palavras, os momentos

candnicos nao sao todos independentes das velocidades. Nesse caso, existem certas
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relagoes (vinculos) que conectam as variaveis de momento com os campos dindmicos
e, naturalmente, produz uma dindmica que nao ¢ univocamente determinada pelas
equacoes de movimento. Para tanto, devemos fazer uso do mecanismo construido por
Dirac e Bergmannﬂ para tratar nosso modelo. Nessa secao de analise de vinculos
do modelo de Chamseddine, estaremos seguindo de perto a discussao desenvolvida na
secao anterior.

Como a agao ¢ linear na derivada temporal de A7'Z e ndo contém derivada tem-

poral do campo escalar 4, calculando os momentos conjugados, obtemos os vinculos

primérioﬂ:

oap = Hhp—lip~0,
ps = % =~0, (2.106)
Puap = Myp=0.
1
ja —_ abcq)AFDE
BC 4HEABCDE5 be >

onde I1%, I1% e IT% ; sdo os momentos canonicamente conjugados a A4E &4 e AAB

respectivamente.
oL

= ——= =0
PCT so,APC T
a . oL 1 abc A DE
BC W = EgABC’DEE QF,.

oL

My :=——==0

A0

0Para um tratamento mais aprofundado do tema uma outra 6tima referéncia é o livro de Kurt
Sundermeyer: Constrained Dynamics.

AB
"Usaremos Lop = 648 = (6468 — 01568), para TAE = —TBA,
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que sao os vinculos primérios do modelo. Os parénteses de Poisson canoénicos sao:

{A7P(2). ep(y)} = 6258° (@ —y),
{AZP(2), e ()} = dadepd’ (@ —y),

{2%(2). Tp(y)} = 050°(x —y),
onde §45 = (6465 — 64658). A hamiltoniana canénica é

Ho = /d?’x(piqi—ﬁ)
5
1

1 .
= / Br(z4 A — L) = / d*rAPD, 1%
2 2 2 Js

Consequentemente, obtemos a hamiltoniana total acrescentando-se a Ho os vinculos

primarios
Hr = He+ / Ny
>
1 1 1
= / Er(GA7 Dalpe + A bpo + SN Do + A da).
2
Da anélise de estabilidade de ¢l temos

éfsc(f) = {¢th($)aHT}

= —D,lgr = —Kpc =0,
o que resulta no vinculo secundéario Kpc. E interessante substituir o vinculo Kpz¢ por
KBC — GBC = DaH%C + (HB(I)C — ch)B),

Essa substituicao é possivel pois as superficies geradas no espago de fase por ambos sao
equivalentes. O algoritmo de Dirac-Bergmann, posto aqui, nos leva a {Gpc, Hr} =~ 0
como é facil de verificar. Assim podemos ver que a hamiltoniana total Hy é completa-

mente vinculada, isto €, ela é composta exclusivamente de vinculos e pode ser escrita
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como

1 1 1
Hy = / d3x(§AtBCGBC + §A?C¢t30 + §AaBC¢GBC + Moa). (2.107)
>

onde

bo = e =0,

Opc = pe—l5e =0, (2.108)
o4 = Il =0,

Gpe = Dallhe + (pde — Hedy).

Escrevendo-os na forma “ponderada” temos

0= [E @) al =g [En @)
Q) = [ =M e0ala) oue) =y [ =€ ()Gan(2)

Portanto, a hamiltoniana total assume a forma
Hr = ¢a(§) + b1(e) + d2(n) + ¢3(0). (2.109)

A redefinigao do vinculo Ko por Gpe foi conveniente pois estes sao os geradores das

transformacoes de gauge, como podemos ver abaixo,

SALP = {A;;‘B, / eCDGCD} = —D,e?
)

54 = {@A,/GBCGBC} = ¢ pd¥ (2.110)
)

Segue das defini¢oes acima que G4 é um vinculo de primeira-classe, ou seja,
os parénteses de Poisson com todos os demais vinculos ou sao fracamente zero ou uma

combinacao linear de outros vinculos. A algebra completa dos colchétes de Poisson dos
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demais vinculos 3

{qbl (E)a gboc (5)}
{¢a(€), 94(&)}

(a=1,2,3,4)

B2 [e, 1" P duap = du([e, €]),

Q
[=

Q

2
N | —
<"

{04(e), 93(6) } S2eP 4 ps3p = /d3 zle, )% dsp = ¢3([e, €]),

1

e ({¢4<e>, 5165 — L pepne ™ {64(0), @AF{@E}@?C)

{64(6), 62(6)} »

Q

Q

N = DN =
\\

1
d*z ([67 &) PG — EMBODEgabC(—[E» O AEIFLE + [e, RIS

O GIPRRE) ) = 5 [ 2l 6P + o)
~ dalle.8]),
{o3(e), 93(§)} =~ 0,
[03( 62O} = o / 02 e apcppe™ e AEBOFDE,
1

Q

3 abc _AB +CD E
dZ&TABCDEéT €. fb ]D)C(I) .

{02, 02O} ~ —1-

2.4.1 Estabilidade e Graus de Liberdade

Vimos que os vinculos G4p s@o de primeira-classe. A fim de investigarmos a
natureza dos vinculos ¢% 5 € ¢4, devemos considerar a matriz ,5(x, y) formada pelos
paréntes de Poisson desses vinculos, onde «, § denotam os indices (A, B, a), que surgem
na analise da estabilidade. Devemos ter cuidado pois 2,3 ¢, de fato uma matriz infinita,
de modo que devemos analisé-la localmente. Como a hamiltoniana total é uma soma

de vinculos

Hy = M¢a, (a=(A,B,a),(AB),etc),
onde subentende-se a convencao de De Witt, ou seja, XY, =Y [ P2 X*(Z)Y, ().

A evolugao dinamica dos vinculos

éa = {¢a7 HT}

= QN =0, onde Qup={da, 05} (2.111)

2Definindo: [e,&]4 = epe?
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Sendo €(x,y) uma matriz infinita, para podermos extrair informac¢ao do seu rank

devemos defini-la de modo mais preciso, isto é,

Qa,@(x7y) = wa5(53(w - y)

Nesse caso, passamos a informagao da estrutura matricial para a matriz finita w,g e
assim podemos definir o rank de €2 localmente. Seja r = rank(w), podemos dividir a

matriz w e o vetor A\ da seguinte forma

A= |
Va
e
w =
ondei=1,..,r,a=r+1, .., Ae, onde dimP = rank(w), P sendo invertivel, ou seja,

detP # 0. Consequentemente, a dimensao de P nos informara sobre os vinculos de

segunda-classe, isto é, ¢;(i = 1,...,7) sao os vinculos de segunda-classe. Dessa forma,

(2.111]) produz as seguintes equagoes

Pu+ Qv =0; —Q'n+Rv =0

Resolvendo em componentes para g obtemos

i = —(P7'Q), "va; (Q'PT'Q+ R)v =0, (2.112)

=0
onde Q*P~1Q + R = 0 segue, naturalmente, pois como os ju’s sao arbitrarios e sendo
escritos como funcao dos v’s. Com efeito, temos que os v, sao também completamente
arbitrarios e, de fato, serao associados a simetria de gauge assim como vimos na descri-
¢ao do algoritmo de Dirac-Bergmann. Dessa forma, a hamiltoniana total tera fungoes

completamente arbitrarias e assume a forma
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Hr = v,¢" — (P7'Q), "va¢’

=10"; ¢t i=¢"— ¢ (PT'Q), ",

onde a redefinicao ¢ — ¢ é, de fato, uma mudanca de base. Os ¢ sao os vinculos de
primeira-classe, isto é,

{q&a,([sb} ~0, {¢¢} ~ 0 (2.113)

Demonstracao:

{600} = {or—o'(PQ),%0" - 6 (P1Q),"}
= {00} {00 (P7Q),"} — {6'(PTQ), " 0"} +
oo, 0 (P}
= {0%¢"} —{e" ¢} (P7'Q),"— {¢".¢"} (PT1Q)," +
+{¢" ¢’} (P7'Q),"(PT'Q),"
= RO (@)7(PQ)," - @U(PTQ),+ PU(PTQ) M (PQ),

= B (QPTQ)" - (QPTQ)" - (PE1Q) (PTQ),".
1

a _ ab _ ba _ ab
— Rb_(QtP IQ) _(QtP IQ) +(QtP IQ) )
Lembrando que, Q'P~'Q + R = 0, obtemos o primeiro resultado de (2.113)). A
demonstracao do segundo resultado segue de maneira analoga
{60.0'} ~ {o" =/ (PQ)j" 0}
Qai - (Ple)j ani

Q

~ —QutPI(PTQ);"

0 0.

Q

A natureza dos vinculos ¢, é determinada pela equagao de autovalor (2.111)).
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2. Chern-Simons 5D e o modelo tipo-topologico

Como vimos acima, segue-se que algumas combinacoes lineares de ¢, sao de primeira-
classe, portanto, a matriz nao é invertivel na superficie gerada pelos vinculos no espago
de fase. Entretanto, existe uma submatriz de dimensao igual ao rank de €) invertivel,
logo nem todos os ¢'s sdo de primeira-classe. Em outras palavras, a determinacao do
rank de 2 nos dard a quantidade exata de vinculos de segunda-classe e consequen-
temente os de primeira. De fato, estamos interessados nas solugoes nao-triviais de
(2.111]), ou seja, sera que existe solu¢oes nao-triviais para A ? Se formos capazes de en-
contrar \ estaremos encontrando os multiplicadores de Lagrange de modo a satisfazer
a condicao de estabilidade dos vinculos e teremos uma ideia do nimero de vinculos de
primeira-classe. Aplicando os resultados obtidos acima no caso do modelo de Cham-
seddine, podemos obter os autovetores nulos (modo-0) ;\5 de €2, 3 associados a equacao

de autovalor. Lembrando que

b b b E
Q%p,cp = {05, bnt = —2eapcppe® DD,

bepDE
?43,0 = 1{9%p, ¢c} = capcppe™ Ty,

Qap = {¢a, 05} =0.

Portanto, a equagao de autovalor (2.111]) assume a seguinte forma

Q.5 Q?éle,CD Qs r AP
a,B)\,B = b ‘g = 0.
—Qep, B 0 A
Naturalmente, temos o seguinte conjunto de equagoes
—Qlp )G = eapcppe™FRlAGH ~ 0, (2.114)
Q%5 oA + Qg p NG = eapoppe™ (2X(CZ£DC<I>E + IFbCCDS\g)) ~ 0. (2.115)

— FCD

W, com | =1,2,3. Substituindo em

Temos que ([2.114)) adimite trés solugoes 5\(01)2
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2. Chern-Simons 5D e o modelo tipo-topologico

2.115)), obtemos que 5\5) = D;®F que &, de fato, uma consequéncia da identidade

eapoppe™ (QFleDDC<I>E + IFbCCDDICI)E) = 0K ap ~ 0. (2.116)

Consequentemente, a matriz 2, de dimensao 35, possui no minimo trés autove-

FCD

tores nulos: 5\(1)5 = ( la >

D;®F ) que correspondem a vinculos de primeira classe. Que

sao dados explicitamente por
H, = ¢"zF42 + D, @44, (2.117)

0s quais sao responsaveis por gerar os difeomorfismos espaciais “melhorados” (improved)
que iremos definir a seguir. A acao do nosso modelo, além da invaridncia de gauge
associada ao grupo de simetria local, admite invariancia sob difeomorfismos em relagao

a um parametro n*: 6,AM" = £,AP e 6,04 = £,4, que pode ser representada por:

SpA = d,dA + d(i,A)
= i,F —i,A% +d(i,A)

= ,F + 5(inA)A-

Portanto, define-se os difeomorfismos melhorados como diferindo dos difeomorfismo
por uma transformacao de gauge com parametro € := i,A, ou seja,
OALNP =nFl, 6,94 =D, 0" (2.118)

vy o

Verificamos que (2.117) é o gerador dos difeomorfismos espaciais melhorados
SAAE = {A;;‘B, / anb} = n"FB, (2.119)
)
504 = {@A, / anb} = 0’ Dy®*. (2.120)
)

Assim, os vinculos de primeira-classe deveriam ser apenas G p = 0 e H, = 0, se a

teoria fosse genérica[TT] como veremos adiante, implicando que o vinculo associado ao
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2. Chern-Simons 5D e o modelo tipo-topologico

gerador dos difeomorfismos temporais nao é independente, ou seja, é consequéncia dos
demais vinculos. Se fosse esse o caso, o vinculo escalar hamiltoniano seria evitado e uma
quantizagao via lagos seria mais simples e seguiria os passos dos trabalhos |70, [T} [72].
Podemos verificar esse fato explicitamente escrevendo a atuacao dos difeomorfismos

temporais com a seguinte parametrizacao: n = (n°, 0, 0, 0)

on8" = n"Fl + Du(" A7)

5,04 = "D, @4 — " AL p@P. (2.121)

Os modos-0 de €2 : (Fbe , Daq)A) = j\a, e as equagoes de movimento

1 x
iﬁsz(éD FthD + QZBaC (I)C = 07

1 x
5 Goo Tt =0 (2.122)

isto é, a validade é assegurada on-shell. Portanto,

(FGP, D,®C) = modo — 0 := W, = £V,

tc

5y (AP, @) = n°&2V, = b (AP, @), (2.123)

que ¢ um difeomorfismo melhorado com o paramtero dado por & = (0, n°¢*). Contudo,
para nos certificarmos do ntiimero de vinculos de primeira-classe é fundamental que

calculemos o rank da matriz €.

2.4.2 Teorias Genéricas e Contagem dos Graus de Liberdade

Iremos agora analisar o conceito de teoria genérica em modelos tipo-topologicos
e fazer a contagem dos graus de liberdade propagados pelo modelo. O conceito de
generalidade (genericallity) foi introduzido em [77] e é de grande relevancia para a

quantizagao na representacao de lagos de teorias (tipo-) topologicas. Na série de traba-

93



2. Chern-Simons 5D e o modelo tipo-topologico

Thos 70, [71], [72], estudou-se a quantizagao de lagos em teorias topologicas em dimensdes
mais baixas. Portanto, no nosso caso, temos de analisar se o0 modelo de Chamseddine
é compativel com a seguinte

Definicao 2.4.1 Dizemos que a teoria € genérica, quando ela satisfaz a sequinte con-

dicdo: as transformacoes de gauge e os difeomorfismos espaciais formam wuma base

para todos os vinculos de primeira-classe da teoria.

Essa é uma generalizagao da definigao original dada em [77]. Além disso, se a teoria é
genérica, com n sendo a dimensao da base dos vinculos de primeira-classe, entao existem
n solugoes nao-triviais da equacao , digamos N (I =1,...,n). Isso implica que
a matriz {2 de dimensao N tenha rank maximo (rns) compativel com a definigao de
generalidade acima. Em outras palavras, o numero de vinculos de segunda-classe (rank
(w) =71) sera

rank(w) = N — n := rpax, (2.124)

que sera nossa definicao de rank méximo.

O significado fisico dessa condicao algébrica que define o conceito de generali-
dade é bem objetivo. Essas condic¢oes, simplesmente expressam que as transformagoes
de gauge e os difeomorfismos melhorados sao independentes e que nao
existem outros vinculos de primeira-classe entre os ¢’s além de G4 ¢ H,. Essa condi-
¢ao é importante para a proposta de quantizagao na representacao de lagos pois garante
que a invariancia sob os difeomorfismos temporais nao é independente daquela sob os
difeomorfismos espaciais e das demais simetrias de gauge. Em outras palavras, os di-
feomorfismos temporais podem ser escritos em termos dos difeomorfismos espaciais e
das transformagoes de gauge internas, o que facilita muito a aplicagao das técnicas de
quantizagao via lagos pois nesse caso o vinculo hamiltoniano ou escalar é consequéncia

dos demais. Com efeito, algumas perguntas surgem naturalmente:

e Sera que o modelo de Chamseddine caracteriza-se pela condi¢ao de generalidade?

e Qual o rank(w) e o ntimero de graus de liberdade que sido propagados pelo modelo?

Portanto, podemos calcular facilmente qual seria o rank méaximo de w, lem-

brando que o rank dessa matriz nos fornece o numero de vinculos de segunda-classe.
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2. Chern-Simons 5D e o modelo tipo-topologico

Assim, como a matriz w possui dimensao 35 e, s6 temos 3 vinculos de primeira classe
associados a H,, o rank maximo seria

Thmax = 30 — 3 = rank(w)} = 32.

max

Para que nosso modelo seja genérico deveriamos encontrar o rank(w) = rp.x = 32.
Contudo, calculamos o rank dessa matriz, via um programa feito no Mathematica,
donde obtemos

rank(w) = 26 < rmax.

Consequentemente, nao temos um modelo genérico, o que significa que existem mais
vinculos de primeira-classe que os G 2g e H, que ainda nao fomos capazes de identificar.
Na verdade, é possivel saber o ntimero de vinculos de primeira-classe # Fy que ainda
estao faltando: o niimero total de vinculos é n = 55, o rank r = 26 e G 25 e H, somam
F = 23 logo:

#Fo=(n—7)— F =6,

ou seja, ainda existem 6 vinculos de primeira-classe que precisam ser identificados e
analisados.

Portanto, precisamos diagonalizar a matriz w em blocos de maneira a identificar
uma submatriz, digamos w; de dimensao 26 que comporte, de fato, todos os vinculos
de segunda-classe. Em outras palavras, devemos ser capazes de separar por completo
os vinculos de primeira e segunda-classe. Além disso, precisamos buscar por uma
interpretacao fisica do que poderia ser essas novas simetrias associadas aos vinculos de
primeira-classe que ainda nao identificamos. Essa é uma tarefa ardua que necessita
ser feita a fim de se buscar uma possivel quantizagao de lagos do modelo. Embora no
trabalho [104] uma anélise canonica tenha sido feita, levando-se em consideragao o caso
genérico, nao foi calculado explicitamente o valor do rank que é capaz de demonstrar
a nao-generalidade do modelo de Chamseddine.

Finalmente, a contagem dos graus de liberdade da teoria é feita ao computarmos

a dimensao do espago de fase reduzido. Para tanto, temos que o ntmero total de
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vinculos do modelo é n = 55, distribuidos como se segue:

g — 10 %5 — 30

da—5  Gap— 10.

O espago de fase (T') é formado pelas variaveis dinamicas (A7, ®*) e seus momentos
canonicamente conjugados. Levando-se em conta as simetrias da conexao, verifica-se
que a dimensao do espaco de fase ¢ N = 90. O numero de vinculos de segunda-classe S
= r, naturalmente, o nimero de vinculos de primeira-classe sera F = n — r. Portanto,
a dimensao do espaco de fase reduzido que nos daré informacao sobre a contagem dos

graus de liberdade é dado por ([2.94)) e assim:

N = -(N=-r—-2(n-r))

10,

N3 N =

como r = 26, segue que N = 3. Dessa forma, a andlise canonica nos mostra que o
numero de graus de liberdade da teoria é 3: isso corresponde aos dois graus de liberdade
propagados pelo campo gravitacional mais um correspondendo ao campo escalar tipo

dilaton ®* - o parametro de acoplamento de Newton G(x).
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Capitulo 3

Consequéncias Fisicas do Modelo

3.1 Aproximacao Linear e Ondas Gravitacionais

A fim de investigar o limite newtoniano do modelo de Chamseddine ou ainda
olhar para a presenca de solugoes tipo ondas gravitacionais no vacuo, realiza-se uma
linearizacao do modelo, de maneira que dividiremos as variaveis dinamicas do modelo

won

entre as variaveis de fundo, que serao marcadas com um superescrito “””, e as variaveis
de perturbacao. A tarefa consiste em fazer perturbacoes em torno desse fundo fixo.
Em principio, podemos considerar qualquer tipo de espaco curvo como sendo o fundo.

Contudo, os campos deverao ser descritos da seguinte forma

W’ =0 a7, =+ h, G=G+¢, (3.1)

onde w, € e G sdo a conexao, o vierbein e o campo escalar (func¢ao de Newton), respec-
tivamente, descrevendo o fundo. A menos de termos de ordens mais altas que um na

perturbacdo, a curvatura R = dw + w? e a torcao T7 = Del assumem a forma

RY =RY 4+ Dd"”, T'=T+Dh+d ;n¢é,
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3. Aproximacgao Linear e Solugoes Cosmolégicas

onde D é a derivada covariante correspondendo a conexao de fundo w. Dessa forma,

aplicando esse divisao nos campos, F!’ torna-se

. A . A A
F7 = RM — géf Aé’ + Dal’ — géf A7 — ghl Aé’ (3.2)
fuI:dO pertu;,bagéo

Além disso, o fundo considerado aqui é um espaco-tempo de curvatura constante, de

de Sitter, solucao da equagao

P/ =RV - 2 ne =0,

w| =

o A
Entao: FY = F!/ = Da!’/ — gél Ah? — —=hl A é7(+ordens > 1) e a agdo do modelo
lé-se

Spert = /5IJKL FINFELG + Smatiria: (3.3)

Iremos assumir que a ordem zero do parametro de Newton G 6 uma constante diferente
de zero denotada por GGy e interpretada como a constante de Newton no momento
presente, que tem uma dindmica ao longo evolugao césmica.

Fazendo-se a variacao da agao arespeito de h!, a’’/ e ¢, obtemos as equacdes

de movimento em primeira ordem

EIJKLéK/\.FIJ = —87TG07}, (34)

E[JKLGQéK VAN <ﬁhl + CLI JéJ) = O,

0 =0
Note que a terceira equagao é trivial na primeira ordem. A tor¢ao em ordem zero é
nula: 7' = 0, pois nosso vacuo ¢ o espago-tempo de de Sitter cuja torcao é, de fato,
nula. A primeira equagao de movimento nos mostra que a energia-momentum 3-forma

Tr deve ser considerada como primeira ordem. Além disso, a segunda equacao nos

mostra que a tor¢ao ¢ nula também em primeira ordem:
Dhf +a" jAéT =0.
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Consequentemente, ficamos com as primeiras equagoes de campo (|3.4), onde a pertur-
bacao da conexao em primeira ordem a’’ deveré ser resolvida em termos das perturba-
¢oes do vierbein hi e suas derivadas de acordo com a condicao de torcao nula. Dessa
forma, vemos que o modelo de Chamseddine, no limite linear, tendo como fundo fixo o
espago-tempo de de Sitter, assume o mesmo contetdo fisico e dindmico que as equagoes
de Einstein da relatividade geral com constante cosmologica.

Podemos mostrar que o contetdo da equagao ¢ 0 mesmo que o do regime
linear da acao de Palatini com constante cosmologica. Em outras palavras, pode-
mos partir da acao de Palatini com constante cosmologica, que abarca o contetido de
Einstein mais constante cosmologica, fazer uma linearizagao e mostrar que obtemos as

mesmas equagoes de movimento. Assim,
A J ke DN kL
S =k €]JKL(€ ANe’ AR —Ee ANe’ ANet Ne )—i—Smatéria,
introduzindo e/ = & + h! e w!’ = &'’ + a!’ na acdo, obtemos
S U AL T AN )
S = kK 8[JKL(€ ANel AR —ge ANe Ne ANe )—I—
+/~:/sIJKL(éIAéJ/\baKL+éI/\hJAbaKLJrQhI/\éJA}?KLJr
2 T T N K A iDL 2o x0T A oK n 1L
—SA NG ARE AR = SN ET N AR ) + Smateria-

Como estamos considerando perturbagoes em torno do fundo de Sitter (A > 0)

o A
a curvatura de Riemann 2-forma ¢ dada R/ = gél A é7 e a acao lé-se
Spert = H/&[JKL(éI A\ éJ A ZO)CIKL -+ éI N hJ A\ ZO)CLKL -+
2 f T K AL
—§Ae A €&" AR ADY) + Shateria- (3.5)

Através da variagao da agao (3.5)) em relagdo ao vierbein perturbado (8.Sper/6h*)

obtemos as seguintes equacoes de movimento.

o A
€]JKLéJ VAN (D(IKL — g(éK VAN hL — éL VAN ]’LK)> = —87TG7}7 (36)
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que sao as mesmas equacoes de movimento obtidas no regime linear de Chamseddine
descritos na equagao . Uma primeira implicagao é que a teoria admite um limite
newtoniano assim como as equacgoes de Einstein. Uma segunda implicagao é a existén-
cia de solucao de ondas gravitacionais mesmo com constante cosmolégica. Com efeito,
como no regime linear o modelo de Chamseddine coincide com Einstein com constante
cosmologica, podemos nos basear nos resultados descritos de maneira extensa nos tra-
balhos feitos em [, 55, 56], onde estd mostrado que, além da solucao de curvatura
constante, existe, de fato, propagacao de solugoes tipo ondas. Nos referimos aos artigo

deles para mais detalhes e no Apéndice 3 da tese.

3.2 Solucoes Cosmolégicas

Existem dois aspectos na cosmologia hoje que a torna mais encantadora do que
nunca. Primeiro, existe uma quantidade enorme de dados e observagoes acuradas |80,
92] abrangendo um espectro das varias escalas de aplicabilidade das leis da Natureza.
O outro aspecto da cosmologia moderna, que a distingue das tentativas anteriores
de se compreender o universo, ¢ o fato de termos desenvolvido um arcaboucgo teérico
que concorda quantitativamente, de maneira espetacular, com os dados. Essas duas
caracteristicas formam a base para o entusiasmo despendido na Cosmologia Moderna.
Temos uma teoria que faz predigoes e estas podem ser testadas.

A partir da formulagao einsteiniana da gravitacao, uma das consequéncias ime-
diatas das licoes conceituais trazidas é a de que o espaco-tempo, ao contrario do que se
imaginavam, é uma entidade dindmica e “flexivel”. O espago-tempo ganha o status de
um campo dindmico capaz de se curvar e de interagir na presenca de matéria-energia.
A gravitacao seria interpretada como a capacidade “elastica” do espacgo-tempo, e sua
dinadmica regidas pelas equacoes de campo da relatividade geral.

Na década de 1920, o matematico russo Alexander Friedmann (Para uma bela
introdugao aos desenvolvimentos de Friedmann consulte [57]) e o padre e astronomo
belga Lemaitre analisaram, independentemente, as implicacoes das equagoes de Eins-

tein ao universo como um todo e obtiveram algo que revolucionou e trouxe grande
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precisao a nova era das ciéncias cosmoldgicas. Assim como a gravitacao da Terra opera
sobre uma pedra, lancada para o alto que, ou estaréd sempre subindo, ou estaré des-
cendo, mas nunca parada (exceto no exato momento em que ela alcanga sua altura
maxima), Friedmann e Lemaitre perceberam que o mesmo acontece com a matéria e
radiagao espalhadas por todo o universo. Com efeito, teriamos que o tecido do espacgo
ou tem de estar se expandindo ou se contraindo mas nao pode estar parado e inerte.
Eles obtiveram equagoes que governariam a evolugao do universo a partir das equagoes
de Einstein que nao se diferenciam muito do movimento de uma pedra sendo lancada
para cima.

Apresento aqui uma situagao fisica bem heuristica e ilustrativa [31] que nos leva
a ter uma intuigao fisica por tras da descrigao da cosmlogica de Friedmann. O modelo
¢ bem simples e realistico. No contexto da fisica newtoniana, consideremos um uni-
verso formado por uma distribuigao esférica de galaxias. Assumindo que essas galéxias
distribuem-se de maneira uniforme no espaco e mantém-se uniformimente distribui-
das no decorrer do tempo. Seja p(t) a densidade, tempo-dependente, de galaxias no
universo e que elas se atraem gravitacionalmente. Seja O o centro dessa distribuicao
e O' uma galaxia, digamos a nossa, a uma distancia r(t) do centro. Como ja é bem
conhecido, pelo teorema das cascas de Newton e a lei de Gauss, a forga gravitacional
em O’ devido as galaxias fora da esfera de raio r(¢) ¢ nula. A forga gravitacional no
interior dessa superficie esférica, segundo o teorema, é a mesma que se considerassemos

toda a massa concentrada no centro O. Com efeito, a forga gravitacional percebida em

O é

T T i), (3.7)

Considerando que a densidade permanece espacialmente constante, ou seja, toda a
varia¢do temporal é incorporada no nosso fator de escala r(t), isto é, ela se escala
uniformemente com 3. Assim, p(t) = por~3(t), onde py ¢ uma constante associada
a densidade quando r(t) = 1, ou seja, o fator de escala r(t) é normalizado de maneira

que, no tempo presente, tenhamos por definigdo r(t) = 1. Naturalmente, temos
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dr 1
= —— po— 3.8

que representa o correspondente newtoniano das equagoes cosmoldgicas de Friedmann
[109]. O mais interessante que sdo as mesmas equagoes obtidas considerando-se a
relatividade geral no caso de curvatura espacial nula.

Essa “plasticidade” do espago-tempo nos fornece as chaves para a interpretacao
da descoberta de Hubble [73]. Em vez da interpretagao antropocéntrica do movimento
centrifugo das galéxias através de uma versao cosmica da explosao, a relatividade geral
nos fornece um novo paradigma, durante bilhoes de anos o espaco esta se expandindo.
Nesse processo de expansao, ele leva as galdxias a separar-se cada vez mais umas
das outras. Portanto, a origem do movimento de recessao das galdxias nao é uma
explosao que aconteceu num certo lugar no espaco, como muitos indoutos acreditam,
ao contrario, deriva-se da expansao do proprio espago.

Se o universo esté se expandindo, obviamente que ele era menor no passado
(Mais precisamente, as galdxias eram mais proximas umas das outras e o Universo era
mais denso e consequentemente mais quente). Usando as equagoes da Relatividade
Geral, e algumas hipdteses sobre os tipos de matéria que compoe o Universo, é possivel
rebobinar o filme césmico para reconstruirmos o passado histérico do cosmos. Even-
tualmente - algo em torno de 14 bilhdes de anos atras, de acordo com nossas melhores
estimativas- podemos atingir um momento de densidade infinita e consequentemente
de curvatura infinita. Essa singularidade ¢ popularmente conhecida como Big Bang.

O modelo ACDM (Lambda-Cold Dark Matter), o qual é hoje o chamado modelo
padrao da cosmologia, assume que a evolucao dindmica do universo seja regida pelas
equagoes do modelo cosmoldgico de Friedmann-Robertson-Walker-Lemaitre (FRWL),
também conhecido como a cosmologia do Big Bang. Os ingredientes fundamentais

nesse modelo sdo:

e Simetria. Espago-tempo é descrito como uma variedade diferenciavel sem torc¢ao

que localmente apresenta simetria sob o grupo de Lorentz SO(1, 3).

e Dindmica. Através do principio variacional, aplicado & acao de Einstein-Hilbert
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com constante cosmologica,

1
167G

SEH[g] = /M d4$ \% —Q(R - 2A) + Smatériaw

chega-se as equacgoes e campo de Einstein,

1 §Smatéria
R/“, — §R — Agwj = 87TGT/“,, T/“, = W (39)

e Principio Cosmolégico. A métrica do espaco-tempo é solugao do sistema de
equacoes de Einstein e este é por hipotese globalmente hz’perbo’licaﬂ Além disso,
o espaco-tempo quando observado em escalas acima de 100 Mpcﬂ admite uma
estrutura de folheagoes em superficies 3-dimensionais, do tipo-espago, que sao

supostamente homogéneas e isotropicas.

Assume-se também que a matéria é descrita como um fluido perfeito de densidade p(t)
e pressao p(t).
Com essas hipoteses sobre a evolugao do universo as equagoes ([3.9)) reduzem-se

as equacoes de Friedmann mais gerais

8 A k
g = I8 F
5P T3 &

2H + 3H?> = —8nGp,

(3.10)

onde a é o fator de escala, H = a/a é o parametro de Hubble e, £ = 1,0, —1 nos
informa sobre a geometria espacial para universo fechado ( k& = 1, curvatura espacial
positiva), espacialmente plano (k = 0), e universo aberto ( k = —1, curvatura espacial
negativa), respectivamente. A métrica é a métrica de FRWL dada por

dr?

2 _ 2 2

+ 72d6* + r? sin? 0dy?], (3.11)

IEssa hipotese de um espaco-tempo globalmente hiperbélico nos possibilita a descricio da RG
como um problema de Cauchy, ou seja, um problema de valor inicial[I14].

2A unidade de medida tradicionalmente utilizada em astronomia é o parsec (pc), cuja definicio
estd associada a distdncia de uma estrela que possui um paralaxe de um arco de segundo para uma
linha de base igual a distancia entre a Terra e o Sol (chamada de AU, unidade astrondmica). Assim
1 pc = (1" em radianos) ' x AU = 3.1 x 106 m = 3.26 anos-luz.
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As duas equagoes de Friedmann (3.10)) combinadas, no caso de um fluido perfeito, pode

ser substituida pela equacao de continuidade

d d

7 (00’) +p-(a®) = 0. (3.12)

A fim de se comparar a magnitude dos trés termos do lado direito da equacao

(3.10) podemos dividir toda a equacao pelo parametro de Hubble ao quadrado e definir

8tGp A k
= = — Q = = 1
meT g2 AT g R a2H?' (3.13)
tal que
Qm + Q4 + Q. = 1. (314)

Evidéncias observacionais da radiac¢ao cosmica de fundo (CMB) [86] apontam para um
universo com geometria espacial plana, ou seja, k = 0, o que implica €, + €25 ~ 1. Po-
derfamos também levar em consideragao o fator da radiagao §2agiacao que nos primordios
da evolugao cosmica (na era cosmolodgica chamada de radiation-dominated in ultra-hot

matter) era dominante no universo. Dessa forma, a matéria-energia era basicamente
1

composta de radiacao, devido as altas temperaturas, e se escalava com pradiacio ~ —-
a

Contudo, sua contribuigdo no tempo presente é negligenciavel (adiagao(to) ~ 0 e, de

acordo com o modelo ACDM,

Qm - Qbariénica + Qmatéria escura (315)

e as observagoes nos indicam que, atualmente,

Qbariénica ~ 00227i00006,

Q) ~ 0.74+0.03. (3.16)

Portanto, 2, representando a “energia escura” é basicamente 30 vezes maior que a
matéria escura observada. Esses sao os fatos observados [49] 92].

O desafio tem sido trazer um contetdo tedrico que possa abarcar e interpretar,
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de maneira matematicamente precisa, essas observagoes e esses novos efeitos. O modelo
ACDM que é amplamente aceito pela comunidade cientifica, exibe uma tentativa de se
explicar esses efeitos considerando o universo com geometria espacial plana e contendo
apenas dois componentes que competem na evolu¢ao cosmica: matéria (barionica e
escura) como definidas em sem pressao e a constante cosmologica que atribui
a energia escura a responsabilidade pela expansao acelerada do universo. Modelos
alternativos tem sido propostos que levam em conta modifica¢oes da agao de Einstein-
Hilbert substituindo-a por alguma densidade escalar que seja uma func¢ao arbitraria
da curvatura e da torgao e/ou apenas levando-se em considera¢ao apenas poténcias do

escalar de curvatura nos chamados modelos f(R)FJ8, 102].

3.2.1 Homogeneidade e isotropia

A fim de explorar o contetdo fisico do modelo de Chamseddine, buscaremos
nessa se¢ao por solugoes cosmologicas para comparéa-las com os resultados do modelo
ACDM [92] descrito na sub-segdo precedente. Estaremos analisando as solugoes das
equacgoes de campo considerando-se que o espaco-tempo possa ser folheado atra-
vés de uma familia de superficies 3-dimensionais do tipo espago, seguindo os requisitos
do Principio Cosmolégico que foram especificados na se¢ao anterior. A métrica que des-
creve a cosmologia do Big Bang é a métrica de Friedmann-Robertson-Walker-Lamaitre

(FRWL), dada por

dr?

2 2 2

+ r2d6? + r? sin® 9d902],

dependendo do fator de escala a(t) e do parametro de curvatura espacial k = 0, +1. As

coordenadas do espago-tempo sao a coordenada temporal ¢ e a parte espacial descritas

3Esses modelos f(R) tem sido estudados e trazem, de certa forma, graus de liberdade novos em
relagdo a RG usual. De fato, leva-se toda a discussao das observagoes e hipoteses de existéncia de
matéria e energia escura a uma reformulacao da dinamica do espago-tempo. Entretanto, um problema
sério enfrentado é sua incapacidade, até o momento, de obter um principio preciso através do qual
essa funcao f(R) possa ser obtida. Esse é um desafio muito complexo pois existe uma infinidade
de pardmetros arbitrarios que poderiam produzir a mesma dindmica. Com efeito, a escolha desses
pardmetros que é feita nos modelos f(R) a fim de “fitar” com os dados observacionais, e ndo sua
predicao tedrica, parece ser algo pouco razoavel.
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3. Aproximacgao Linear e Solugoes Cosmolégicas

em coordenadas esféricas 7,60, . A métrica de FRWL admite seis isometrias geradas
por seis vetores de Killing associados com as trés invarinancias sob translagoes espaciais

§(a) € trés rotagoes |4y tais que
§a) = V1 = kr20,, &) = a0y — 130, (3.17)

Assumiremos que a tor¢ao e o campo escalar (o parametro de Newton ) possuem as
mesmas isometrias geradas que a métrica, isto é, £T7, =0 e £G = 0, onde £ denota
a derivada de Lie correspondendo aos seis vetores |3.17. Essas condi¢oes implicam que
G = G(t) e apos resolver as equagoes diferenciais da derivada de Lie, chega-se que as

componentes nao nulas da torgdo como definida em ({1.44)) sao

. 2f(t)a(?)

o 2 /1 2

Ty = 2f(t)a(t)r"V1 — kr?sinf, T V1 —kr2sinf’
e, _2f(t)a(t) sme’ T, =Tt %, = h(t)

VI k?

onde f(t) e h(t) sdo fungodes arbitrarias do tempo a serem determinadas pelas equagoes
de movimento. Trabalhando no formalismo de primeira-ordem, podemos escolher uma

parametrizacio diagonal’] para o vierbein]

t)
e = dt, et = Al dr,
Vi—h?

e = a(t)rdb, e* = a(t)rsinfdyp

Nessa base os elementos da tor¢ao 2-forma T = %eéT dxt Ndz” podem ser calculados.

A componente T ¢ dada por

1
T° = éegTﬁydx“ ANdz” =0,

4Essa parametrizacio é sempre possivel, via uma fixacdo de gauge, desde que a métrica seja diago-
nal. Caso a métrica nao seja diagonal é possivel ao menos transformar a matriz dos vierbein em uma
matriz triangular.

5Lembrando que a torcao T,fu ¢ a 2-forma definida por T! = De!, cujas componentes estao relaci-
onadas através do inverso do vierbein T}, = e?Tiy.
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pois todas as componentes Tﬁy sao nulas. As componentes espaciais serao

1
T' = §eiT,:ldxk A da
t t
= \/%Tftdr A dt + \/%T&Od& A d(p

= h(t)e' AN+ f(t)e* Né’.
Analogamente, as demais componentes sao
T? =h(t)e* Ae® — f(t)e ne®, T? =h(t)e* Ae + fF(t)e' Ae?,
de maneira mais compacta temos
T° =0, T'=h(t)e ne’+ %f(t)aj-kej NeFD ik =1,2,3. (3.18)

Da equacao T = C! ; A e’ que relaciona a torcao com a contorcao, podemos obter a

contor¢ao 1-forma

1
TI = C] A GJ = §TI JKGJ A GK = —CI JKGJ N BK
TI JKGJ = (CI KJ — CI JK>€J (319)
Dai, somando-se e subtraindo-se as permutagoes ciclicas dos indices da equagao (3.19)),
encontra-se a expressao explicita da contor¢ao como fungao dos elementos da torcao

1

Cugy = 3 <T1JK — Tk — TKIJ) e. (3.20)

As componentes nao nulas da tor¢gao em termos dos indices I, J, K do espago tangente
sao

Tz =T, Tso1 =T

Tos =T), T110 = Tozo = T30 = h(1), (3.21)

TY?
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dessa forma, é bem simples mostrar que as componentes da contor¢ao leem-se
CY = h(t)e', C9 = —f(t)ele (3.22)

Lembrando que a conexao de spin w é decomposta em sua parte livre de tor¢ao mais
contorgao como vimos em (|1.22)). Segundo (|1.20]) temos que as componentes nao nulas

de &7k serao

a V1 —kr? cot 6
&101 = a2 = Ea03 = H(t) = pe §o12 = 8313 = ————, 303 = ’

ar ar

com efeito, as componentes da conexao livre de tor¢ao como definido em ({1.23) nao

nulas serao

= ——¢", W = — 3.

Dessa forma a conexao de spin que gera essa torcao lé-se

. . 1/1_]{;2
WO = (H—f—h)@l, w2 = r 62—f€3,

ar
V1—kr? cotd
S — & — fe?, i & — fel,
ar ar

onde H := a(t)/a(t) é o parametro de Hubble. A curvatura de Riemann ¢ dada por

RY = [(H + h) + H(H + h)|e® A e’ + f(H + h)ee AeF,

R = [(H +h)* + — = f2le' A&+ (f + Hf)e%e" N e,
Consequentemente,

. . A . .
F* =[(H +h)+ H(H + h) — g]eo Ne'+ f(H + h)ene’ Aek,

F”:[(H"‘h)z"‘%_f2—g]el/\ej—F(f—i—Hf)a”kek/\eo.
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3.2.2 Equacoes de campo

Assumiremos que a matéria constitui-se de um fluido perfeito de densidade py,
e pressao pn, com o tensor de energia-momento 77 ; = diag(—pm, Pms P, Pm)- Substi-
tuindo nas equacoes de campo 1} com dG = Ge°, obtemos um sistema de equacdes

diferenciais

k A 4r@G

Ut 5= =5 =P, (3.23)
U2+£—f2—A+2(U+HU) = —47G pp, (3.24)
N U? + % — - %) + %cb‘% =0, (3.25)
F(O'U + %@4) — 0, (3.26)
U4 P O HU - D) —afU(f D =0, (3.27)

onde U := H + h e G = G(t) é o parametro de acoplamento de Newton.

3.2.3 Equacoes de continuidade

Uma primeira equacao de continuidade para a energia e pressao segue natu-
ralmente da equacao de continuidade para o tensor de energia-momento (2.39) que

resume-se em D7; = 0. Calculando as componentes da energia-momento 3-forma, de

(2.40)), obtemos

m (¢ - m .
To /)T() ke Nel Ne T, = _%gi]’keo Ael A ek,
consequentemente,
m(t)ad(t)r?sin
To = —pmelAeer3:—p (H)a’(t)r” sin dr N do N\ dp
1 — kr?
T = —pmeo/\€2/\e3 = pmoz2(t)r2 sinfdt A\ df A dep,
2(t)rsind
To = —pme® AeSAel = —py - (1)T ;n dt A dy A dr,
— kr?

a’(t)r
——~_dt Ndr N dO.
V1 —kr?

Tz = —pue® Ae Ae? = —pp,
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A equagao DTy = 0 produz a equagao de continuidade da densidade-pressao-torgao
Pm + 3H (pm + pm) + 3hpm = 0. (3.28)

As equagoes DT; = 0 para i = 1,2, 3 sao trivialmente satisfeitas, sendo da forma 0 = 0.
Note a dependéncia nas fungoes da tor¢ao na equagao (3.28]). Contudo, para ma-
téria sem pressao (cold matter), ou seja, poeira, essa equagao de continuidade assume

a forma usual[109]:

d
7 (pma3> =0, se, pm=0. (3.29)

Uma segunda equacao de continuidade pode ser encontrada da seguinte forma: Notando
que ao substituirmos U = H + h nas equagdes (3.23||3.24)) nos leva a uma equagao de

Friedmann sem constante cosmologica usual:

871G .
H? = %pm, O + 3H? = —87CGopios, (3.30)

onde Gy ¢é a constante de Newton, avaliada no tempo presente de G(t), € piot, Prot SAO

as densidade e pressao “totais”,

G
Prot = g(pm+pk+pT+pA),
0

G
Dot = g(pm+pk+pT+pA),
0
com
3k 3 A
= —— = —(f*—2Hh -1 = —
po=gmm pr=galf ) =
o= pr= @b AHR R~ ), py=—pa.
3’ 87G 7

pr € pr sao interpretadas como as contribuicoes da torcao a densidade e pressao piot
e Prot- Como consequéncia das equagoes tipo Friedmann (3.30)), a densidade total e

pressao satisfazem a equacao de continuidade

Prot + 3H (prot + Prot) = 0.
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3.2.4 Poeiracom A>0e k=0

Ness@o segao apresentamos as solugoes gerais das equagoes (13.23))-(3.27))

considerando-se o caso de matéria na auséncia de pressao (poeira), com p,, = 0, con-
siderando uma constante cosmologica positiva e uma geometria espacial plana, como

nos indica os resultados experimentais [86], 92]. Da equagao segue que

. A
ou f(t)=0, ou GU — gG’ = 0. (3.31)
Verificamos que a primeira condi¢ao nos leva a solucao trivial do espaco de de Sitter
com constante cosmologica A, com o vierbein ou a métrica sendo definidas pelo fator
de escala a(t) = V3t
Dessa forma, assumimos a fungao f(¢) como sendo diferente de zero. As equa-

¢oes a serem resolvidas sao (3.23)-(3.25), (3.27) e a segunda de (3.31]), junto com o

parametro de Hubble definido em termos do fator de escala a(t). A solugao geral é
dada pelas seguintes expressoes obtidas pelo uso do programa Mathematica[l18], onde

a coordenada temporal foi redefinida por

o [utor de escala:

ol
wN

a(t) = Cy(3e™ + C3e7) ® (cosh(r — C1))°. (3.32)
e Pardmetro de torgao f(t):
flt) = g ((—962T — 3C5 + (6€’™ — 2C3)) tanh(r — Cy) +
+(3€* + C) tanh®*(1 — 1)) / (3¢” + 03)) %. (3.33)
e Pardmetro de torgao h(t):
ht) = A (—=3e* + C3 + (3¢*™ + C3) tanh(1 — C))) | (3.34)

3 9627— + 303
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e Pardametro de Hubble H(t) = a/a:

H(t) = \/gtanh(T — Cy) — h(t). (3.35)
e Parametro de Newton G(t) = —3/(87wAP(t)):

G(t) = Cysinh(r — CY). (3.36)
e Densidade de matéria py(t):
o = o ({0 +00)* = (0 - ) (3.37)

As quatro constantes de integracao Cy, Cy, C3, Cy e a constante cosmologica A devem

ser determinadas por cinco condigoes fisicas, as quais escolhemos sendo:

a(0) = 0: hipotese do Big Bang,

a(ty) = 1:ty=idade atual do universo,
H(ty) = Hy: valor atual do parametro de Hubble, (3.38)
G(to) = G : valor atual do parametro de Newton,

Pm = po: valor atual da densidade de matéria,

com os dados experimentais e observacionais [92] dados por

to = 13.8x10%anos (1Gy = 10%anos),
Hy, = 0.0693Gy ",
po = 2.664 x 107" Kgm™3,

Gy = 6.674x 107" m*s2Kg .

Para uma comparacao com os resultados do modelo padrao ACDM, necessitamos da
formula do fator de escala a(t), em um universo dominado por matéria escura fria
(poeira) da densidade relativa [92] ©Q,, = 0.309. Para comparacao, negligenciando a

contribuigao da radiacdo, temos o fator de escala normalizado de ACDM ¢ [109]

. (sinh(%Homt) )
sseon() = ( =)
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A Figura 3.1 mostra a evolugao temporal do fator de escala a, do parametro de Hubble
H, do parametro de desaceleracao ¢ := —aa/(aa*), da densidade de massa py,, e do
parametro de Newton normalizado G/Gy. Cada uma das quantidades foi comparada
com seu correspondente no modelo ACDM . Com excessao da desaceleragao ¢, as demais
quantidades apresentam um desvio bem pequeno. O parametro de Newton que tem de
ser igual ao valor atual da constante de acoplamento de Newton Gy no tempo presente,
mostra-se com uma ligeira diminui¢ao no passado da evolucao césmica, aumentando
cerca de 85% desde seu valor nos primordios do Big Bang. A desaceleracao ¢ difere
notavelmente do modelo padrao da cosmolbgica, no entanto, o tempo de transicao
entre as eras de aceleracao e desaceleragao é praticamente coincidente. O valor atual
de q(ty) = —0.25 &, contudo, apenas a metade do valor previsto por ACDM.

A evolugao temporal dos parametros da tor¢ao h e f, bem como das densidades
relativas (), 25 e Q)r para matéria, constante cosmolégica e torgao, respectivamente,
sao mostradas na Figura 3.2(a-b).

Observa-se da figura 3.2(c) que o fim do dominio da era de matéria fria, ocorreu
t ~ 10.2 Gy para ACDM, e t ~ 8.5 Gy para o nosso modelo. Dominio da matéria sendo
definido, no nosso caso, como o dominio de €2,,, sobre a soma 25 + 27. Finalmente, os

valores atuais das densidades relativas do nosso modelo sao:
e O, (tg) = 0.308,
o (O)(tg) = 0.289,
o Or(ty) = 0.403

Esses valores devem ser colocados em comparagio com os valores do modelo ACDMJ|
que sd@o Qu(to) = 0.308 e Q4 (tg) = 0.692: observamos que no nosso modelo a torgao

contribui junto com a constante cosmolodgica para a aceleragao. Finalmente, como

6Nao foi levado em conta em nossos célculos as atualizacSes feitas nesse ano para a nova deter-
minacao de Hy. Em junho de 2016 foi reportado pela NASA, através do WMAP[I5], uma série de
medidas mais acuradas para o valor atual da constante de Hubble. A melhor estimativa obtida foi:
Hy = 73.24+£1.74 Km s~! Mpc~!. Esse valor produz uma taxa de expansao do universo maior do
que era previsto pelo ACDM.
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Figura 3.1: (a) Fator de escala normalizado a(t); (b) Pardmetro de Hubble H(t); (c) Paré-
metro de desaceleragao q(t); (d) densidade de matéria escura (fria) pm(t); (e) Pardametro de

acolplamento gravitacional tempo-dependente G(t); Linhas sdlidas: predigdes do nosso modelo;
linhas tracejadas: resultados padroes de ACDM .

uma questao de analise de consisténcia, verificamos que nossa solucao das equagoes de

campo, de fato, satisfazem a equacdo de continuidade (|3.29))

Além disso, fizemos uma busca por outras solugoes, pois como a tor¢ao pode
contribuir para a aceleragao, poderia-se esperar solugoes que apresentem uma acele-
racao positiva mesmo considerando-se o caso de constante cosmoldgica negativa. Isso

ocorre, por exemplo, para a classe de modelos investigadas em [18]. No nosso caso, che-
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ft), h(t)
05k

04F A

0.3F
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am(t), QA®+QT()

Figura 3.2: (a) Parametro da tor¢ao f(t) (linha sélida) e h(t) (linha tracejada); (b) Densi-
dades relativas Q,,(t) (linha sdlida), Qa(t) (linha tracejada) e Qp(t) (linha pontilhada); (c)
Qn(t) (linha solida) e Qp(t) + Qp(t) (linha tracejada-pontilhada); resultados de ACDM sao
mostrados para Q, (linha tracejada) e Q5 (linha pontilhada).

camos que nao hé solucao com A < 0 e aceleragao positiva que seja capaz de satisfazer
as condigoes de contorno representadas pelos valores atuais da densidade de matéria e
dos parametros de Hubble e Newton. Outro tipo de classe de solu¢oes que envolvem
ricochete (bounce) que houve em algum tempo no passado existe, mas nenhum deles

sao compativeis nem de longe com as condig¢oes de contorno fisicas.
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Vimos, com grandes detalhes, como a reducao dimensional e a truncacao de um
teoria de Chern-Simons em 5D considerando-se como grupo de gauge o (A)dSg nos
leva ao modelo de Chamseddine em 4D. O modelo de Chamseddine envolve um campo
escalar de tipo-dilaton o qual interpretamos como sendo o parametro de acoplamento
gravitacional de Newton que, como vimos pelas nossas predigoes, estaria variando
ao longo da evolucao cosmica. Exploramos as solugoes das equagoes de campo, de
modo que: mostramos que, no limite linear do modelo, existe a presenca de ondas
gravitacionais, assim como as previstas pela RG padrao e detectadas esse ano [25] 20],
e da existéncia de um limite newtoniano. O parametro de Newton é considerado

constante em ordem zero, contudo, permanece indeterminado em primeira ordem.

As solugoes de ondas gravitacionais corroboram os resultados obtidos pela ané-

lise candnica do modelo, onde obtivemos os graus de liberdade propagados: dois para
43 Ay 2 : : A

o “graviton” e um associado ao campo escalar, ou seja, o pardmetro de Newton. Explo-

ramos as solucoes cosmologicas do tipo FRWL, onde obtemos solugoes obedecendo a

condicgoes de contorno fisicas, a saber, os valores atuais dos parametros fisicos: parame-

tros de Newton e Hubble e a densidade de matéria fria. Mostrando um comportamento

que se assemelha bem, pelo menos qualitativamente, ao modelo padrao da cosmologia

ACDM.

A constante cosmologica das nossas solugoes deve ser positiva, contudo, com
um valor menor do que o reportado no modelo ACDM pois, no nosso modelo, a torgao
contribui de maneira expressiva para a aceleracao atual do universo. Um modelo
similar mas bem diferente em estrutura foi estudado em [I8]. A maior diferenga, é que

a agao possui o campo escalar apenas como um fator suplementar a parte quadratica da
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curvatura de Riemann. No nosso caso, o campo escalar estd completamente conectado

com toda a densidade de lagrangiana.

Apesar ter termos obtido bons resultados da analise classica no ambito cosmolo-
gico em [69], os desafios atualmente tem sido o estudo e a compreensao fisica da anélise
canonica do modelo de Chamseddine, que mostrou-se ser nao genérico o que dificultou
a quantizagao via lagos. O estudo da teoria complera de Chern-Simons em 5D estéa
em progresso, o que nos permitird explorar um dominio de solugdes muito maior. Em-
bora a contagem dos graus de liberdade de Chern-Simons em D = 5 tenha sido feita
em [79, [91], possuindo 13 graus de liberdade, a separacdo dos vinculos de primeira
e segunda classe ainda nao foi feita. Portanto, um dos objetivos gerais para futuros
trabalhos é separar esses vinculos de primeira e segunda classe e buscar pela quanti-
zacao do modelo. Além disso, em paralelo, tem sido feito um estudo aprofundado das
solucoes do modelo com simetria esférica e a procura de solugoes tipo-Schwarzschild
tanto da teoria completa de Chern-Simons em 5D quanto o correspondente modelo em
4D, bem como identificar os efeitos, na escala de compactificagao da dimensao extra,

considerando modos de Kaluza-Klein além do modo zero.
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Esse apéndice tem a finalidade pedagogico-instrumental no sentido de fornecer
as ferramentas matemaéticas necessérias para os calculos apresentados na tese. Trata-
remos principalmente de ideias e conceitos sobre geometria diferencial que sao larga-
mente utilizadas na gravitagao bem como em teoria geral de campos. As referéncias
classicas|23], 24] 28] 68, 83, 110] podem ser consultadas para algum detalhe de rigor

matemaéatico.

Definicoes e Aplicacoes

Seja C' : I C R — M uma curva sobre a variedade M cujos vetores tangentes,

& = P\ sao descritos em termos da base de coordenadas {@L}, como

0 _dx“ 0
Ozt d\ Oxn

§=¢&" (A.1)

onde A\ é o parametro que descreve a curva sobre a variedade. Com efeito, o vetor
tangente nos informa sobre a evolugao cinemética sobre a curva definida na variedade,
em outras palavras, £ nos d4 uma informacgao sobre a velocidade ao longo dessa curva,
m
suposta regular, isto ¢, % # 0 em todo seu dominio. Quando estamos lhe dando com
variedades nao euclidianas a pergunta que automaticamente fazemos é: como comparar
vetores em pontos distintos na variedade? Se desejamos obter conceitos como os de
uma derivada direcional necessitamos, em principio, comparar vetores e de certa forma
encontrar algum mecanismo que faga o transporte de vetores para compara-los em um

mesmo ponto. O que geralmente se faz é trazer uma estrutura afim para variedade

introduzindo o conceito de conexao e derivagao que se comporte de maneira covariante
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sob transformagoes gerais de coordenadas (difeomorfismos).

Uma alternativa ao conceito de derivada covariante reside na ideia de uma trans-
formagao ativa dos pontos da curva (Lie dragging) levando a comparagao dos vetores
no ponto desejado. Esse conceito nos leva a definicao da derivada de Lie que esta
intimamente relacionada, como veremos, com a variagao funcional dos campos sobre
difeomorfismos. Assim, consideremos um vetor v* avaliado no ponto x. Desejamos
comparar esse vetor porém em um ponto z’, infinitesimalmente proximo, de maneira
que

ah — 2t = ot + M (x) (A.2)

exigindo que sobre a transformagao (A.2) o vetor exiba covariancia, isto &,

VH =2+ &) = gzlf v”(z), (A.3)
donde obtemos,
Or™ iy ,em. (A4)
oxv
Introduzindo em , segue que
V(x4 &) = v (x) + 9,7 (x) (A.5)

fazendo-se uma expansdo em Taylor no lado esquerdo da Eq. (A.5) e, guardando
informagao apenas em primeira ordem, temos que v'*(x +¢) ~ v*(x) + 0,0, como
£ ja é infinitesimal, multiplicado por v"#, ja é de primeira ordem dai, podemos tomar,

nesse termo, v'* ~ v*, pois qualquer variagao ja produziria termos de segunda ordem.

() + ot = vt (x) + 9,8M" (x)
VM (x) — ot (x) = 98" — £V, 0"
s = ([ea])
onde,
(£Lev)" = 9,6"" — £ 9,0, (A.6)

119



Apéndice 1: Derivada de Lie

é o que chamamos da componente p da derivada de Lie de um vetor contravariante
na direcao do vetor £&. Portanto, vemos que a variacao funcional de um vetor sobre
difeomorfimos nos leva a definicao de uma nova maneira de computar diferencas, sem a
necessidade de recorrer a uma conexao. Um dos aspectos interessantes da derivada de
Lie é que sua a¢do em um vetor preserva seu rank e é dada pelo comutador (colchétes

de Lie) entre o vetor e a diregao desejada. Explicitamente, temos

Lev = [5, U}
= [€40,,00,]
= &o’o, —v"0,£"0,

= (£70,0" —v"9,€") 0, (A.7)

[ J/

~
componentes da derivada de Lie

A generalizacao para tensores de rank maiores é imediata devido a regra de Leibniz
que toda derivada deve satisfazer. E dessa forma se tivermos um tensor, digamos de

rank 2, 7% = u®v”, segue que
LT0 = €19, T — THPY, £~ — T9,¢P. (A.8)

A fim de obtermos a forma de atuacao da derivada de Lie em vetores covariantes
bem como em formas diferenciais, podemos fazer o uso da aplicagao da derivada em
um campo escalar ¢, isto ¢, sendo que £Lep = &#0,p. Para tanto, basta tomarmos

esse campo escalar como sendo ¢ = v*w, e, fazendo-se uso da regra de Leibniz mais
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uma vez temos

Lep = (LevM)wu + 0" (£ewy)
= (£00" —0"0,8"w, + v (Lewy)
£0,(vtw,) = 00w, — 00, M, + V" £ew,
0,080, + VD, = €Dy — 07O,y + 0 L,

v (Lewy) = (€ 0wy + wu0E”)

portanto, a derivada de Lie de uma 1-forma, por exemplo, bem como de vetores cova-

riantes, 1é-se como

Lew, = £ 0w, + w,0,87, (A.9)

e dessa forma podemos identificar como, por exemplo, a métrica do espaco-tempo muda
funcionalmente quando fazemos uma transformacao de difeomorfismos. Além do mais,
estamos de posse de uma maneira de caracterizar simetrias no espaco-tempo. Como
as transformacoes de difeomorfismos sao transformacoes quaisquer das coordenadas,
automaticamente ja englobam transformacoes lineares tais como: rotagoes, translacoes,
boosts, etc. Com efeito, podemos fazer uma investigagao criteriosa das simetrias do

espago-tempo através dessa ferramenta.

Simetrias

A busca por simetrias faz parte da espinha dorsal de toda teoria fisica moderna.
Dessa forma, um principio de simetria, ou seja, um conjunto de transformagoes que
deixa invariante certas quantidades tem guiado de maneira precisa, bem como trazendo
a tona predigoes dantes impensadas, na busca pela compreensao da Natureza. A fisica
de particulas, bem como a construcao dos intmeros aceleradores de particulas como
o grande colisor de hadrons (LHC), tem por base um principio de simetria que alinha
teoria-experimento. A deteccao em 2012, pela colaboracao ATLAS e CMS no CERN,
da particula que apresenta as propriedades demandas pelo boson de Higgs, necesséria

no mecanismo de geracao de massa das particulas [46, 95] (rendendo o prémio Nobel
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de 2013 par os fisicos F. Englert e P. Higgs por suas contribui¢oes teoéricas), é um
dos maiores exemplos do poder que reside nesse conceito. Nas escalas cosmicas a
aplicabilidade desse ferramental é extremamente relevante. Os modelos de cosmologia
moderna sao profundamente alicercados em simetrias. O universo, quando observado
em escalas acima de 100 Mpd|é¢ homogéneo e isotrépico. E o espaco-tempo satisfazendo
esse principio cosmologico é descrito pela métrica de Friedmann-Lemaitre-Robertson-
Walker (FRLW) nas coordenadas em co-movimento (o referencial de repouso cosmico).

De fato, a pergunta que se faz é uma via de mao dupla: dada uma métrica
do espaco-tempo desejamos saber quais saos as possiveis diregoes de isometria. De
outra forma, é possivel que nosso interesse agora seja obter a métrica de maneira a
satisfazer certas condigoes de simetria dadas a priori. A derivada de Lie é justamente
a ferramenta matemaética que nos possibilita responder tais perguntas. Assim, para

encontrarmos simetrias de uma métrica é equivalente a condigao

£egap = E'0ugap + 9up0al” + gandpé" = 0. (A.10)

assim, da Eq. 0 que nos interessara & encontrar o campo de vetores de Killing
que nos darao informacoes sobre as direcoes de isometria da métrica. Para tanto,
consideremos um conjunto de curvas congruentes, de modo que os vetores tangentes as
curvas formem um campo vetorial. Suponha ainda que escolhamos A como parametro
de evolugao de modo que A seja uma das coordenadas do espago-tempo, por exemplo

g
A = x% Dai, como o vetor tangente é dado por & = —— e, nesse caso, estamos

d\
escolhendo uma coordenada em particular para o parametro de evolucao da curva, ou
seja, uma tunica direcao fixa. Portanto, as componentes de £* sao constantes

n "
_ 0 (A.11)

p_ 4 O
§ d\ oz @

por exemplo, se a curva ¢é tipo-tempo, logo escolhemos A = ¢ e obtemos o chamado

vetor de Killing dado por " = (1,0,0,0). Para tal escolha, 03§* = 0 e a derivada de

"A unidade de medida tradicionalmente utilizada em astronomia ¢ o parsec (pc), cuja defini¢io
estd associada a uma estrela que possui um paralaxe de um arco de segundo para uma linha de base
igual a metade da distancia entre a Terra e o Sol (chamada de AU, unidade astronémica). Assim pc
= (1" em radianos)™* x AU = 3.1 x 10'® m = 3.26 anos-luz.
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Lie da métrica é apenas,

Legap = '0ugap
dxt 6ga3 o 8ga5
d\ Oz O\’

isso significa que se a derivada de Lie se anula, a métrica é independente da coordenada
A. Com efeito, a métrica nao apresenta variagao ao longo da congruéncia de curvas

geradas por e temos entao uma simetria do espaco-tempo associada ao vetor de

d

d\’
Killing. Quaisquer dire¢oes nas quais a métrica permanece invariante sao chamadas
de isometrias. De fato, podemos encontrar equacoes diferenciais que descrevam essas
direcoes de simetria do espago-tempo. Tomando a derivada de Lie £¢g = 0, de (A.10)),

temos

§"019as + 9up0al" + gondp” =0, (A.12)

observando que os termos em deriva do parametro (g,30,£") podem ser reescritos como

uma derivada total, isto €, g,30," = 0a(9.88") — 0ngus€", que podemos introduzir

na Eq. ,
0= &"0u90p + 0a(9u8E") — 0agus€" + 05(gaps") — Opgaut" (A.13)

Lembrando que a acao da métrica sobre um vetor contravariante o transforma em um

vetor covariante, ou seja, g,3" = {3 e selecionando os termos em derivadas da métrica

a Eq. (A.13) torna-se

0 = —&" (0agps + 939an — 0pgap) +0als + Osta. (A.14)

(. J/

O termo em destaque em ([A.14]) é claramente identificado com a conexao de Levi-Civita
F(O‘W) que é amplamente utilizada na RG usual no formalismo métrico (formalismo de 2*

ordem)[19, 21] 22], 84, 97, [106], onde a parte anti-simétrica, isto é, a Tor¢ao (Fﬁw] =0)eé

tomada por hipétese como sendo zero. Além disso, a derivada covariante agindo em um
. 1

vetor A, é da forma: V,A, = 0,4, — F;}VA)\, com F/);V = QgM (a“gaﬁa,,gm — &xgu,,)

= 29,\51“;\“, = ((‘ngl, + 0,98 — 8ggw,). Dai a Equagao |D assume a seguinte
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forma

0= —%MQM,\F;\@ + 80456 + aﬁfaa

ou ainda, como g, = &), segue que

Oals — Tagén + 96a — T'3,60 = 0,

Finalmente, obtemos a chamada Equagao de Killing
Vags + Vg€a =0, (A.15)

dada uma métrica (g, ), podemos perguntar por todas as solu¢oes da Equagao (A.15)

cuja resposta nos dara as dire¢oes de simetria do espago-tempo.

Simetrias do Espaco de Minkowski

Iremos agora aplicar esses conceitos desenvolvidos sobre derivacao de Lie, e suas
consequentes conexoes com as simetrias espaco-temporais, ao caso particular de uma
métrica de cunho hiperbdlica, isto ¢, com um padrao de medi¢gao nao necessariamente
positivo-definido. Em outras palavras, estaremos considerando o padrao de medicao
introduzido pela propagacao da luz, a saber, espaco da relatividade restrita, cujo ele-

mento de linha é

ds* = —c*dt* + di”. (A.16)

Assim estaremos considerando um espaco-tempo plano no qual a métrica 7,,,

em coordenadas cartesianas,
N = diag(—1,1,1,1) (A.17)

e a conexao de Christoffel se anula, isto ¢, T, = 0. Naturalmente, as derivadas
covariantes que constituem as equacgoes de Killing sao levadas a derivagoes parciais

planas.
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5o + Oals = 0 (A.18)

aplicando uma nova derivagao a equagao (|A.18]), obtemos
010880 + 0,065 = 0. (A.19)

Agora, premutando ciclicamente os indices da equagao ((A.19)),

0u0ska + 0,0085 = 0, (A.20)
000, + 0,05E, = 0, (A.21)
050a& + 050,8a = 0. (A.22)

Somando-se as equagoes ((A.21)) e (A.22) e subtraindo ({A.22)), supondo, por sim-

plicidade, que as componentes de £ sao de classe C* ou apresentem diferenciabilidade

o suficiente, para evitarmos maiores dificuldades, segue que

a,uaagﬁ = 07 (A23)

ou seja, a segunda derivada de g se anula. Isso significa que £g tem de ser uma fungao

linear das coordenadas. Portanto, a forma mais geral que {g assume pode ser lida como
o = o + Xapr”. (A.24)
Substituindo na equacao (A.18)), obtem-se
0 = Yag+ Xga, (A.25)

de modo que a, fica completamente arbitrario enquanto ¥,z deve ser uma matriz anti-
simétrica. Temos, portanto, dez campos vetoriais independentes, cada um assumindo
a forma dada pela equacao (A.24]) para cada escolha independente das constantes a,, e

Sop = —Sga.
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A escolha mais simples dentre os 10 campos vetoriais seria assumir apenas uma
das constantes a, diferente de zero. Tomando-se ¥,3 = 0 e uma das componentes

(digamos, n, com n = 0,1,2,3) de a, obtemos quatro campos vetoriais constantes,

Representando vetores unitarios de cada uma das direcoes das coordenadas espago-
temporais. Agora, se colocarmos essas contantes a zero a, = 0 e escolhendo, a titulo
pedagdgico, apenas um dos seis X,3), iremos obter ou rotagoes espaciais ou boosts de
Lorentz. Com efeito, iremos mostrar que na verdade esses vetores de Killing corres-
pondem aos elementos da algebra do grupo de Lorentz, ou seja, sao os geradores das

transformagoes do grupo SO(1, 3).

Por exemplo, com Y9 = —3i15 = 1 e todos os demais zeros, o campo de Killing
sera
£ = §%0q (A.26)
= (no‘ﬁme“)&l (A.27)
= 20y, — y0,. (A.28)

Esse é o gerador das rotagdes no plano-zy ou em torno do eixo z. Analogamente, para
Y3 € Y31 que esta associado aos geradores de rotacao em torno do eixo x e y, respec-
tivamente. Juntos eles formam os geradores do subgrupo especial e ortogonal SO(3)
C SO(1,3). Por outro lado, se os indices nao nulos forem associados & componente

temporal teremos, nesse caso, um boost. Para Y19 = —Yy; = 1 temos

§ = 20, + 10, (A.29)

esse ¢ o gerador de um boost de Lorentz. Para vermos isso de maneira mais clara,
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vamos exponenciarﬁ o gerador com algum parametro a ser interpretado,

A = HMavo.) (A.30)
= Z%(xatﬂax) : (A.31)
n=0 :

O resultado da agao da transformagao A sobre as coordenadas 1é-se

t'" = (cosh \)t + (sinh \)z,
¥ = (sinh A\)t + (cosh M)z,
y =Y

z = Z.

Note que podemos colocar a funcao cosh A em evidéncia

t" = cosh A(t 4+ tanh A\x),

¥’ = cosh A(z + tanh \t),

lembrando que cosh A > 1 e que | tanh A |< 1. Como pela relatividade especial v/c < 1
poderimos identificar a tangente hiperbdlica como um parametro que mede a razao
entre as velocidades relativa dos referenciais e a velocidade da luz. Assim, defina
tanh A := g = —v/c.

Por outro lado, temos da relagdo cosh? A — sinh? A = 1 que

1
cosh? \(1 —tanh®\) =1, = coshA = ——

Vi-p

Finalmente, vemos que através das equacgoes de Killing somos capazes de recuperar

(A.32)

um boost de Lorentz com velocidade v na dire¢ao da coordenada x, bem como todo o

8Estamos assumindo aqui que estamos trabalhando com grupos de Lie continuos e conexos com a
identidade que podem ser descritos, a grosso modo, como a exponencial da algebra (Grupo = e#l&ebra),
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conjunto de transformacoes de SO(1, 3). Podendo ser reescrito na forma mais familiar

o = ~(ct— Br), (A.33)
¥ = Al — o), (A.34)
y =y, (A.35)
J = = (A.36)

Portanto, encontramos exatamente as 10 isometrias do espaco de Minkowski.
Esse é o maximo de solugoes independentes das equagoes de Killing. No caso de um
espago-tempo estacionario e esfericamente simétrico (Schwarzchild) temos um campo
vetorial de Killing tipo-tempo e outros 3 campos de Killing associados a rotacoes es-

paciais.

Simetria Esférica

Vamos agora dar uma nogao sobre o significado de um espago-tempo estacionério
e esfericamente simétrico. Ser estacionario implica a existéncia de um campo vetorial
de Killing tipo-tempo. Esfericamente simétrico requer a existéncia de um conjunto
completo de vetores de Killing que sejam geradores das rotagoes espaciais.

Se desejamos trabalhar em um espaco-tempo estacionario via a existéncia de
um vetor de Killing tipo-tempo, podemos escolher a coordenada temporal para ser o

parametro A = t, e as condic¢oes de simetria implicam que

£§ga5 = 5”8Mgag + gugaaﬁ“ + gwﬁgf“ =0. (A37)

Contudo, com z° =t = ), as componentes de ¢ sao constantes, de modo que 9,&* = 0.

Portanto,

0=E8"0u9ap = O(gas) =0, (A.38)

e temos um sistema de coordenadas cuja métrica é independente da coordenada tem-
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poral.

Para a simetria esférica, sabemos que temos de ter 3 campos vetoriais de Killing
que juntos geram o grupo de rotagoes espaciais, a saber, SO(3). Podemos tomar
duas das coordenadas, mas elas nao irao apresentar relagoes de comutacao triviais, de
maneira que a métrica nao pode ser independente das duas coordenadas ao mesmo

tempo. Tomando a forma, ja familiar, em coordenadas Cartesianas

& = Y0, — 20, (A.39)
& = 20y — y0,. (A.41)

Nossa tarefa agora seréa reescrever os vetores de Killing em coordenadas esféricas. Ou

seja, devemos fazer uma mudanca de coordenadas assumindo que

v 2 =" (x) 2 ={r,y 2z}, 2"={r0 ¢}
Lembrando que

x=rsinfcos¢ y=rsinfsing (A.42)

z=rcosl r=+/22+y?+ 22 (A.43)

a ideia bésica serd transformar as derivagoes cartesianas pelas coordenadas curvilineas,

ou seja, sendo ' = x'(x'), podemos fazer uso da regra da cadeia

oz _,
-9, (A.44)

0;

onde estamos fazendo uso da convencao de soma de Einstein, isto é, indices repetidos
indicam soma. De (A.44), vemos que precisamos calcular os elementos da matriz

Jacobiana que conecta as mudancas de coordenadas.
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or  Or Or

/i oxr Oy 0z

(aw) —| @ o oo

ort ox Oy 0z

9 9¢ 0¢

dr Oy 0Oz

Por exemplo,

o _wo 00 0
dr  Oxdr 0x00 Ox0d

Assim, sendo que r = /22 + y2 + 22 temos

or B 2x
0r  24/a2 +y2 + 22

analogamente fazendo-se as derivagoes em relagao a y e a z, tem-se

& = sin f sin ¢,

dy

= % = sin 6 cos ¢, (A.45)
or
35, — o 6. (A.46)

Agora passemos ao célculo dos elementos 96/0x". Temos que z = r cos 6, por-

z

tanto segue-se, naturalmente, que cost =

implicita temos

\/$2+y2+22'

Fazendo uma derivacao

00 0
%%(cos 6)

00

= sinf—

or’

Substituindo-se os valores de z e x em suas respectivas representagoes em coor-

denadas esféricas

r% cos 0 sin 6 cos ¢

3
@
ox

Analogamente para 00/0y, temos

90  cosfsin¢

By~
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Finalmente, a variagao em relagao a coordenada z precisa de um pouco mais de

cautela
0 < ) .00
— = —sinf—
0z N + y + 22 0z
52
= —sgin 9@

Novamente, fazendo-se as substitui¢oes chega-se

1 B r? cos® 0 _ 060
r r3 a n 0z
1 — cos?d 00
— = —sinf—
r 0z
0 1
% = sin 6. (A.49)

Finalmente as componentes d¢/0x'. Essas componentes exigem um pouco
mais de atencao e cuidado. Nesse caso iremos escolher para derivagao implicita

x = rsinf cos ¢.

0 x o, .
£<\/m) = %(smecosw (A.50)

lembrando que tanto ¢ quanto 6 sao fungoes das coordenadas antigas, contribuindo

para a derivacao

0 T L 0o 0
%( ) = axcos¢cos9+—sm(9 (cos @). (A.51)

Va2 +y? 4 22 0p

substituindo os valores funcionais de = e de 96/0x , obtemos
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1 —sin? 6 cos® ¢ cos?fcos’¢p . . 0¢
= — sin f# sin p—
r r ox
_ 2 in2 2
1 — cos” ¢(sin” 6 + cos” 0) — sindsin qzﬁ%
r ox
.2
sin” ¢ = —sinfsin¢p—
r Ox
0¢p 1sing
— = —— . A.52
ox r sin 6 ( )
Analogamente, obtemos os demais elementos da matriz jacobiana
dp  1coso [9J0)
- _Z —Z =0. A53
Oy  rsinf’ 0z ( )

Assim, a matriz jaconiana com os valores dos elementos de transformacao para coor-

denadas esféricas assume a seguinte forma

sin 6 sin 6 cos ¢ cos
J = (02"/02") = fcosfcosd Lcosfsing —isind
1 1
" rsing SIII¢ Tsin@cosgb 0

Portanto, os vetores de Killing, em coordenadas esféricas, sao agora naturalmente re-
escritos. Consideremos o vetor de Killing responséavel por ser o gerador das rotagoes

no plano-yz ou em torno do eixo dos x

& =y0, — 20,.

Fazendo-se uma expansao das derivadas em termos das correspondentes coordenadas

esféricas chega-se

9 5ol _Lgngd
a: Ve T M e
0 . ., 0 1 ., 0 1 0
5’_y = sm@sm(ba—i—;cosesmqﬁ%—l—Tsinecos 8_<b
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& = —sin @dy — cot 0 cos Pp0,. (A.54)

Dai, os demais vetores de Killing seguem de maneira analoga e assumem a seguinte

forma

§& = —cost0y+ cotdsinpdy (A.55)

& = 0y (A.56)

Ou ainda, podemos escrever os campos vetoriais na forma

& = (0,0, —sin ¢, — cot 6 cos ¢) (A.57)
& = (0,0, —cos ¢, cotfsin @) (A.58)
& = (0,0,0,1) (A.59)

além disso, esse vetores satisfazem a algebra de Lie

[51752] = —§3, [52753] = —§1, [fsafl] = —52

ou de maneira mais compacta

[&';fj] = —¢€ijkk;
onde ¢;;, € o tensor de Levi-Civita completamente anti-simétrico invariante sob o grupo
SO(3) definido por

.
0, se dois dos indices forem iguais,

Eijk = § 1, se 1, j, k forem uma permutacao par de 1, 2, 3,

—1, set,j, k forem uma permutagao impar de 1, 2, 3.
\
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O papel da Torcao

Nosso objetivo agora sera mostrar que os contetidos das Eqgs. (1.54)) e ((1.55)) repro-

duzem as equacoes de Einstein da Relatividade Geral usual. De fato, considerando-se

a Eq. (1.54) em componentes, temos

K 1J
SUKLep eMPIR pr = 0, (Bl)
N——

observando que o termo em destaque podemos fazer uso da Formula de Caley para o
determinante de uma matriz, isto é,

1.7

6#Vpgdet€ = ngKLe,ueu

efeﬁ, (B.2)

desejamos, na verdade, uma maneira de relacionar o tensor totalmente anti-simétrico
- simbolo de Levi-Civita com apenas um dos vierbein como destacado na Eq. (B.1]).

Para tanto, iremos utilizar dos inversos dos vierbeins para isolarmos a relacao desejada

em (B.2).

_ I J K _L\ i v o
(gyymdete = EIJKLE,E,€, eg)eAeBeC (B.3)
n v o _ Kl ¢J L
ehepeteuwpodete = erjrre, 040500 (B.4)
ehehelewpdete = ¢ ek (B.5)
ACBCCCpvpo - ABKCCt) .

ou ainda, podemos escrever de maneira equivalente

5[JKL€£( = eSeler eappdete (B.6)
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inserindo em (B.1]) obtemos
efeler easme™ P R, =0, (B.7)

como os epsilons sao completamente anti-simétricos, podemos colocar o indice p a
frente em ambos sem que se altere o sinal, pois estamos fazendo permutagoes pares, e
lembrando que

paine7 = B350 (B.8)

a equacao (B.8) nada mais é que o determinante de uma matriz 3 x 3 formada por
deltas de Kronecker, ou seja,
Epapre™T = ORO[OS + 04,0505 + 525E6K — h050% — 05,0505 — 5Z5’56§ (B.9)

Assim, de em (B.7)) temos

_ w v _opl v o puplJ o u v plJ uw o v plJ
0 = ejejer R, +efefef R, +efeiel RY , —efeje  RY ,, +

o v plJ v B o pl]
—efeief R, —ejell et RY . (B.10)

Dai, aplicando as propriedades do vierbein ficamos com

eSR+€efR" ,, + € R",, —e R" , — e R, —e’R™,, =0, (B.11)

pelas propriedades de anti-simetria do tensor de curvatura de Riemann, temos que
Ryu)pe) € da definicao do tensor de Ricci: contragao entre o primeiro e o terceiro

indice, R*? ,, = R;. Obtem-se

1
e Ry, — 56%R =0 (B.12)
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vemos que o indice L esta livre, daf podemos multiplicar toda a Eq. (B.12)) por X de
modo que

1
R) — J0]R =0, (B.13)

Finalmente, lembrando que R = ¢°*R,, e 07 = ¢"?g,.,, obtemos as equacoes de

Einstein no vacuo como desejavamos

1
RMV — §guuR = 0. (B14)

A fim de que a agao de Palatini reproduza os resultados da Relatividade Geral
usual, Einstein-Hilbert, devemos ainda trabalhar a segunda equagao de movimento e
verificar que seu contetiddo nos mostra, pela dinamica das equagoes, que a torgao é
identicamente nula. Assim, nosso objetivo serda mostrar que a Eq. =T, =
0, ou seja, vamos obter via equacoes de movimento que a parte anti-simétrica da
conexao I'* (], na auséncia de férmions, é de fato a conexao usual de Levi-Civita usada
arbitrariamente por Einstein que deliberadamente assume a tor¢ao nula. Portanto, uma
das grandes vantagens de se usar o formalismo de Palatini é justamente a capacidade
de mostrarmos, sem imposicao a priori, de que a tor¢ao é zero como subproduto das
equagoes de movimento mostrando assim a equivalénciaﬂ entre o formalismo de primeira
e segunda ordem da RG.

Escrevendo a Eq. em componentes

€[JKL€£EMVPUTK py = 0 (B15)
analogamente, fazendo-se uso da férmula de Caley
e aneSelen TR L, = 0. (B.16)

Fazendo-se uso novamente do determinante (B.9) e desenvolvendo os termos,

obtem-se:

90Obviamente se introduzirmos matéria fermiénica espinorial automaticamente, pela presenca da
interagao gravitacional, ganhamos uma derivada covariante com um termo linearmente proporcional
a conexao de spin[85]. Logo, em presenga de férmions inevitavelmente trazemos a tor¢do como um
componente da teoria.
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G%TK IJ + GzTK KI —I— G?TK JK — BZTK IK — G?TK KJ — G%TK JI — 0, (B]_?)
como TH ;; = —T¥ ;;, podemos reescrever os termos da Eq.(B.17) como
G%TK 17+ GZTK KI+ G?TK JK — 0. (BIS)

multiplicando toda a Eq.(B.18) por el, segue-se que
TF kg +T" k=6, T" ;=0 (B.19)

lembrando que §7 representa o traco da matriz identidade 144 , logo concluimos que o
traco da Torcao é identicamente nulo, ou seja, TX x; = 0. E substituido esse resultado

na Eq.(B.18)), sendo o vierbein diferente de zero,
G%TK[JZO:TK]JZO. (BQO)

Portanto, mostrando que as componentes da tor¢ao sao todas nulas nos leva
a conexao usual de Levi-Civita da RG. Dessa forma, vemos que o formalismo de Pa-
latini onde assumimos tanto a conexao (estrutura afim) quanto o vierbein (estrutura
geométrica) como campos independentes; as equagoes de movimento, na auséncia de

férmions, reduzem-se exatamente as equacoes de campo de Einstein.

Torcao e curvatura no mesmo pé de igauldade

Na descricao de Einstein da gravitacao toda dinamica é estabelecida através do
tensor métrico. Einstein utiliza-se da conexao de Levi-Civita [84], 07, O8] que tem por
base a hipotese de que a parte anti-simétrica desta é identicamente nula. Em outras
palavras, para relatividade geral, no formalismo de segunda ordem, assume-se que a
torcao é nula. A condicao de Tor¢ao nula pode ser justificada de uma maneira mais
precisa quando estamos no formalismo de primeira ordem [85] 87, 100]. Se a estrutura
17)

métrica vierbein (e!) e a estrutura afim (conexdo de Lorentz w!”) sao considerados
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como campos dinamicos independentes, como proposto por Palatini [, 31], 94]. Con-
sequentemente, fazendo-se as variagoes na agao, segue-se que em quatro-dimensoes e
na auséncia de matéria fermibnica, as equagoes de campo ainda assim nos levam a
condicao de torcao nula. Portanto, 77 = 0 nao ¢ uma restricdo necessaria da teoria
mas uma consequéncia das equagoes de movimento.

Se nao assumirmos 77 = 0 a priori, particulas fermionicas irdo poder revelar a
presenca de torcao pois elas se acoplam naturalmente a 77. Com efeito, terfamos traje-
torias distintas das geodésicas de matéria nao-fermidnica. Naturalmente, a trajetetoria
de um elétron iria diferir das geodésicas de um foéton pois, este nao se acoplaria a tor-
¢ao enquanto aquele traria & tona essa nova estrutura do espago-tempo. Esses efeitos,
obviamente, podem nao ser muito significantes para atual acuidade experimental, ou
mesmo serem muito dificeis de se mensurar ou comparar trajetorias de particulas com
difentes spins a fim de se separar os efeitos da curvatura e da torcao em uma dada
regiao do espago-tempo.

No entanto, um outro aspecto que daria um novo status de relevancia para a
torcao ¢ sua capacidade de agir no mesmo pé de igualdade geométrico que a curvatura
para o espago-tempo. De fato, nosso modelo é uma tentativa de analisar esses efeitos,
considerando-se uma modificacao da acao usual da relatividade geral. A possibilidade
da torcao como variavel dindmica pode ter consequéncias cosmologicas muito impor-
tantes. A fim de examinarmos esses efeitos, vale a pena notar como a tor¢ao contribui
para a curvatura do espago-tempo.

No formalismo de primeira ordem da gravitacao, os campos fundamentais como
jé& mencionado, sdo o vierbein (¢’ = el,dz") e a conexao de spin (w'’ = w!’dz*). Essas
duas 1-formas correspondem a diferentes aspectos da geometria, a saber, estrutura
métrica e estrutura afim, respectivamente. Com efeito, sao consideradas como campos
dinamicos independentes (veja por exemplo as referéncias [17, [18], 61, [62], [103]). Nesse

formalismo, a agao de Einstein-Hilbert com constante cosmolégica 1é-se
v AN K n L
Serle,w| = 51JKL(R —Ee Ae )/\e Ae”.
M

Variando em relacao ao vierbein e a conexao, obtem-se as equacoes de campo de Eins-
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tein bem como a condicao de tor¢ao nula
v ANy K I A
SIJKL(R —56 Ne ) Ne :0, SIJKLT Ae’ =0. (B21)

Em geral, a conexao de spin pode ser separada em uma parte sem torcao mais a

contorcao, w!’ = &I’ +C1 onde

0=de +wk Ne! = d}f(# = el (V,.e9), (B.22)

e a contor¢ao é proporcional a torgao,
T'=Ctne’. (B.23)

Em V é a derivada covariante em rela¢do a conexao de Christoffel [I00]. Dessa
forma, a curvatura 2-forma, R/ = dw!’ + wk A w®7 separa-se na forma usual livre
de tor¢ao da geometria riemanniana, e a parte remanescente que é dependentende da
torgao,

RY = R + DC" 4+ ¢k nCK, (B.24)

Onde, RY = di? + &f A W%’ ¢ a curvatura de Riemann e D ¢ a derivada covariante
exterior para a conexao livre de torcao w!’. Portanto, se a torcao for diferente de zero,
vemos que os termos remanescentes poderiam contribuir para as equagoes de campo

no mesmo pé de igualdade que o vierbein para curvatura R!”7.
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Em 1916, um ano apoés a formulacgao final das equagoes da relatividade geral,
Albert Einstein mostrou que suas equacoes faziam predi¢oes da existéncia de ondas
gravitacionais. Ele encontrou que no regime de linearizacao das suas equacoes de
campo elas apresentam solugoes de onda: ondulacoes transversais do proprio tecido
do espago que se propagam na velocidade da luz. Einstein percebeu que a amplitude
dessas ondas seria extremamente pequena e de dificil deteccao.

Duas estrelas de néutron orbitando ao redor uma da outra devem perder energia
devido & emissao de ondas gravitacionais [I07]. Essas ondas, assim como as ondas
eletromagnéticas, sao portadoras de energia e momento. O processo de linearizagao
das equacoes de Einstein gera, no famoso calibre de De Donder, equagoes de onda
para a geometria do espago-tempo|85]. Seria como imaginar um lago sendo o espago-
tempo e, ao soltarmos uma pedra sobre este, vemos ondas que se propagam a partir da
fonte emissora. Do mesmo modo, em alguns eventos gravitacionais, como por exemplo a
explosao de uma Supernova, é de se esperar pelas equagoes que haja ondas de geometria,
ou seja, flutuagoes geométricas em torno de um fundo fixo que se tem a priori.

No mesmo ano, um brilhante astronomo e fisico alemao, Karl Schwazschild, en-
quanto servia na Russsia na primeira guerra mundial, encontrou solugoes exatas para
as equagoes de Einstein. Ele escreveu um trabalho fundamental que conseguia, pela
primeira vez, resolver de maneira exata as equagoes da relatividade geral, para o caso
particular de simetria esférica. Sua solugao deu origem a uma predi¢ao sem preceden-
tes na ciéncia. O espaco-tempo tendo essa plasticidade e capacidade de se curvar na
presenca de matéria-energia, seria possivel concentrar tanta matéria-energia em uma

regiao do espago-tempo, que a curvatura, interpretada campo gravitacional, seja tao
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intensa que nem mesmo a luz conseguiria escapar. Essa solucao foi entendida, mais
tarde, através de contribuicoes importantantissimas do fisico indiano Subrahmanyan
Chandrasekhar [6], como a descri¢ao dos chamados buracos negros. Desde entao, ex-
perimentos a fim de se detectar ondas gravitacionais tem sido propostos e uma das
possigveis fontes para a propagacao dessas ondas seria um caso onde dois buracos
negros que giram em torno um do outro se fundem. KEsse processo de fusao de dois
buracos negros seria capaz de gerar ondas gravitacionais. E exatamente 100 anos de-
pois dessas predigoes, dantes impenséveis, o observatorio LIGO (Laser Interferometer
Gravitational- Wave Observatory) anunciou, a detec¢do mais surpreendente de todos os
tempos na ciéncia |25, 26]. Um século apoés as predigoes fundamentais de Einstein e
Schwarzschild foi reportado a primeira detecgao direta de ondas gravitacionais, advin-
das de um sistema binario de buracos negros fundindo em um tnico. Essas observagoes
proporcionam um acesso singular [66], em toda historia do desenvolvimento cientifico,
as propriedades fundamentais do espacgo-tempo no regime de campo gravitacional in-
tenso e alta velocidade, e confirmando as predi¢des da relatividade geral. A cada vez,

a Relatividade Geral tem triunfado em seus testes [35, [36].

Ondas Gravitacionais sobre Espaco-Tempo de de Sitter

Vimos que o formalismo de Palatini para a relativvidade geral, sem matéria
fermionica, reproduz os mesmos resultados dinamicos que o formalismo de segunda-
ordemm. A busca por solugoes tipo-onda reduz-se a uma anéalise de perturbacoes
em torno de um vacuo com curvatura constante, a saber de Sitter, no formalismo
métrico. Com efeito, separando a métrica do espago-tempo como g,, = G + huw,
com | hy,, |< 1 segue, naturalmente, que as quantidades perturbadas em primeira

ordem, denotadas com um 1 sobrescrito, leem-se

1, : o
ret pr = 59 ﬁ(vuhﬁv + Viohus — Vﬂhm/)' (C.1)

10A tinica diferenca sendo que a torcao nula, no formalismo Einstein-Cartan, é consequéncia das
equacoes de movimento.
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Nesse caso, abaixar e subir os indices e o calculo de derivadas covariantes sao
feitas usando-se a métrica de fundo §,,. A expressao para curvatura pode ser obtida
da equacao(C.1)), em primeira ordem, notando que termos tipo I'* sdo negligenciaveis

no calculo da ordem requerida.
RW ., = 5(vuvyhg +V,V.he =V, V°h, — V,V,h
~V,Veh + V,Veh,,). (C.2)

. ..o
Fazendo-se uma contracao do tensor de curvatura, obtemos o tensor de Ricci, R((l,.z =

R apr, qUE nesse caso assume a seguinte forma

RW —

(67,9

(V Vit + V,Voht =V, VP, — V Vo hb). (C.3)

| —

Sendo nossa regiao de interesse longe o suficiente da fonte emissora, ou seja,
T,, = 0, i.e., estamos considerando a dinamica das perturbacoes na regiao livre de
matéria-energia. Portanto, a equagao R,. = 0 devera ser assegurada em todas as
ordens. Demanda-se que }Oﬁa,{ = 0, tem-se que a métrica do fundo deve ser solucao das
equagoes de Einstein na regiao livre de matéria-energia. A proxima ordem, RY =0
nos fornece as equagoes de movimento obedecidas pelas perturbacoes no regime que

estamos interessados
V. Vbl + NV, Vohtt =V, VP he, — V Vo hit = 0, (C.4)

Desejamos reescrever as equagoes ((C.4)) em uma forma tipo-onda em um fundo com
curvatura diferente de zero. Denotaremos o trago da métrica hf; por h, e a métrica
de trago-reverso é definida como h,, = h,, — 1/2g,,h. Além disso, sabemos que sob

uma transformacao de difeomorfismos infinitesimal,

at — at + &M,
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a perturbagao da métrica varia funcionalmente como
huu — h,ul/ + ﬁugu + %Vgua (C5)

usando dessa liberdade de gauge podemos impor, contanto que seja acessivel, a condi¢ao

de divergéncia nula dessa métrica de trago-reverso,
I 1 1 va L
V. (hE — Eéyh) =V, ,h" =0, (C.6)
essa € a generaliza¢do do conhecido gauge de de Donder [7, [42], T08]. Lembrando que
[V, VT g = R T 5+ R s T 5, (C.7)

uma vez que essas condigdes sao impostas, podemos manipular (C.4) fazendo uso das

relagoes dadas em ((C.7)), e finalmente obtemos
My, + 2Rapsh™ = 0, (C.8)

onde J = V,V?, éooperador de D’Alembert covariante. As equag?os |D descrevem
a propagacao de uma onda gravitacional em uma regiao livre de matéria em um vacuo

com curvatura diferente de zero. No caso especial de interesse, esse vacuo seria o fundo

5 A
de de Sitter, ou seja, R a5, = g(éugéal, — Guwap)- As equagoes de onda assumem a
seguinte formaE
o - 2A - .
Ohy, + ?(hw + guh) = 0. (C.9)

HTembrando que a métrica de trago—reversoﬁm, possui o inverso do trago de hy,,. Para ver isso,
basta verificar que : hy, = hyy —1/2¢h — h = " hy,, = —h.
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