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Abstract

The inert doublet model is a well-motivated extension of the Standard Model that contains a dark
matter candidate and modifies the dynamics of the electroweak symmetry breaking. In order to detail
its phenomenology, we perform a comprehensive study of cosmic phase transitions and gravitational
wave signals implied by the framework, accounting for the latest results of collider experiments. We
require the neutral inert scalar to constitute, at least, a subdominant part of the observed dark matter
abundance. While most of the phase transitions proceed through a single step, we identify regions of
the parameter space where the electroweak vacuum is reached after multiple phase transitions. The
resulting gravitational wave spectrum is generally dominated by single-step transitions and, in part of
the parameter space, falls within the reach of near-future gravitational wave detectors such as LISA or
BBO. We find that direct detection experiments efficiently probe the part of parameter space associated
with multi-step phase transitions, which remain unconstrained only in the Higgs resonance region.

1 Introduction

Although the discovery of the Higgs boson at the LHC 16, 2) brought to completion the search for

Standard Model (SM) particles, we are far from having a complete description of Nature. The cosmological

observations of the last thirty years, for instance, have revealed that the SM constituents explain only

a small share of the total energy budget of the Universe. In particular, the analysis of the microwave

radiation background shows that baryons constitute only about 15% of all matter 3). The remaining part

is accounted for by dark matter (DM), a substance of unknown nature which finds no description in the

SM. Presently, the leading direct detection experiments have not yet found clear signals of DM scattering

on nucleons or electrons, resulting in upper bounds on the direct detection cross sections 4, 7, 35).

Similarly, this far collider searches have not found any presence of DM particles in the produced states 1).
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This lack of signals gives encouragement to look for other avenues in the attempt to pinpoint the

possible physics beyond the SM. In the present paper we revisit the phenomenology of the Inert Doublet

Model (IDM) 23, 34, 10, 31), paying special attention to the reach of future gravitational-wave (GW)

experiments.

With the present paper, we intend to improve on existing analyses pertaining to cosmic phase

transitions (PT) within the IDM. To this purpose, we analyze the parameter space allowed by the latest

collider and DM searches in the attempt to map the available phase transition patterns, as well as the

GW signals they produce. Although most commonly the EW phase transitions occur in a single step

(O → h), we find regions of the parameter space where two-step (O → H → h or O → hH → h)

and even three-step (O → H → hH → h) transitions are realised. We pay particular attention to two-

and three-step processes that involve multiple first-order phase transitions, which have the potential to

generate a clear GW signature presenting multiple peaks in the spectrum.

2 The inert doublet model

2.1 Tree-level potential

The SM Higgs doublet H1 and the inert doublet H2 can be decomposed as

H1 =

(

G+

v+h+iG0

√
2

)

, H2 =

(

H+

H+iA√
2

)

, (1)

where h is the SM Higgs boson, 〈h〉 = v = 246.22 GeV is the electroweak (EW) vacuum expection value

(VEV) and G+ and G0 are Goldstone bosons. The inert doublet comprises a charged scalar field H±,

and two neutral scalars, H and A, with opposite CP-parities.

The tree-level potential of the model,

V = −m2
1|H1|2 −m2

2|H2|2 + λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2 + λ4|H†
1H2|2

+
λ5

2

[

(H†
1H2)

2 + h.c.
]

,
(2)

respects a discrete Z2 symmetry under which H2 is odd and all the SM fields are even. The symmetry

thus ensures the stability of the lightest component of the inert doublet and forbids new Yukawa couplings

between H2 and the SM fermions, hence the epithet inert.

The requirement that the tree-level potential be minimised at the EW vacuum leads to the following

parametrization

m2
1 =

m2
h

2
, m2

2 = −m2
H + λ345

v2

2
, λ1 =

m2
h

2v2
, λ3 = λ345 + 2

m2
H± −m2

H

v2
,

λ4 =
m2

H +m2
A − 2m2

H±

v2
, λ5 =

m2
H −m2

A

v2
, (3)

given in terms of the tree-level scalar mass matrix eigenvalues m2
h,m

2
H ,m2

A and m2
H± (mG0 = mG± = 0

at tree-level in the EW vacuum).

The inert doublet self-coupling λ2 does not affect DM phenomenology, but can influence the phase

structure of the potential by inducing new minima at non-zero temperature. With the parametrization in

eq. (3), the model is completely specified by the quantities λ2, λ345 ≡ λ3 + λ4 + λ5, and the masses mH ,

mH± , mA, which we use as input parameters in our analysis. The lightest neutral components of H2 is a

viable DM candidate. In our analysis, this role is assigned to H, in effect choosing λ5 < 0. Equivalently,
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A could be the DM candidate, related to our case through the substitutions λ345 ↔ λ̃345 = λ3 + λ4 − λ5

and mH ↔ mA.
1

For the treatment of the phase transitions in sec.4.1, we suppose that excursions in the field space

occur only in the (h,H) plane, while the remaining scalar degrees of freedom are prevented from acquiring

a VEV at any temperature. Therefore, the terms in the tree-level potential relevant for this analysis are

V0(h,H) = −m2
1

2
h2 +

λ1

4
h4 − m2

2

2
H2 +

λ2

4
H4 +

λ345

4
h2H2. (4)

2.2 Coleman-Weinberg correction to the potential

The tree-level potential in eq. (2) receives important radiative contributions sourced by the one-loop

n-point functions, resummed in the Coleman-Weinberg correction 19)

VCW(h,H) =
1

64π2

∑

i

nim
4
i

(

ln
m2

i

µ2
− Ci

)

, (5)

where i = W,Z, t, h,H,G0, A,G±, H± (as customary, we retain only the dominant fermion contribution

given by the top quark), mi are the eigenvalues of the field-dependent masses, µ is the renormalization

scale (which we set to µ = v) and Ci are constants peculiar to the renormalization scheme. The bosonic

and fermionic contributions are weighted by the coefficients ni given by nW = 6, nZ = 3, nt = −12,

nh = nH = nG0 = nA = 1 and nH± = nG± = 2 22). After using dimensional regularization with the

MS subtraction scheme, we have Ci =
3
2
for scalars, fermions and longitudinal vector bosons, as well as

Ci =
1
2
for transverse vector bosons.

Following previous analyses 18, 17, 25), we compensate possible radiative shifts of the EW VEV

and masses, and address the problematic Goldstone contributions with a set of counterterms specified in

VCT(h,H) = δm2
hh

2 + δm2
HH2 + δλ1h

4, (6)

2.3 Finite temperature effects

At finite temperature, thermal corrections result in a further contribution 24),

VT(h,H, T ) =
T 4

2π

[

∑

i

nB
i JB

(

m2
i

T 2

)

+
∑

i

nF
i JF

(

m2
i

T 2

)

]

, (7)

to the scalar potential. The two sums are over the boson and fermion degrees of freedom, respectively

and the corresponding thermal functions 6) are

JB/F(x) =

∞
∫

0

dtt2 ln
(

1∓ e−
√
t2+x

)

. (8)

A consistent treatment of thermal corrections also requires the resummation of the leading self-

energy daisy diagrams, which shifts the field-dependent masses

m2
i (T ) = m2

i + ciT
2, (9)

1In regard of this, notice that λ5 → −λ5 under the substitution mH ↔ mA and that the quartic
couplings determining the DM abundance via hHH or hAA interactions are, respectively, by λ345 and
λ̃345.
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by a thermal contribution quantified in the coefficients ci
28, 36, 14)

In our analysis we use the above thermal masses when computing the quantum and the finite-

temperature corrections to the tree-level potential. The full thermally-corrected effective potential is

thus

Veff(h,H, T ) = V0(h,H) + VCW(h,H, T ) + VCT(h,H) + VT(h,H, T ). (10)

3 Constraints

With the full expression of the scalar potential at hand, we briefly review the constraints applied in the

forthcoming analysis.

3.1 Theoretical constraints

A first requirement is the stability of the scalar potential, which guarantees that minima appear at finite

field values. For the IDM, the potential is bounded from below if the following conditions are satisfied:

λ1 > 0, λ3 + 2
√

λ1λ2 > 0, λ3 + λ4 − |λ5|+ 2
√

λ1λ2 > 0. (11)

A charge-breaking vacuum is avoided by λ4 − |λ5| < 0, which always holds if H± is heavier than

the DM candidate H 26).

Perturbative unitarity requires that the combinations of couplings ei from the eigenvalues of the

two-to-two scattering matrix be bounded: |ei| < 8π. From the full 22 × 22 S-matrix 8), we have 13)

e1,2 = λ3 ± λ4, e3,4 = λ3 ± λ5, e5,6 = λ3 + 2λ4 ± 3λ5, e7,8 = −λ1 − λ2 ±
√

(λ1 − λ2)2 + λ2
4,

e9,10 = −3λ1−3λ2±
√

9(λ1 − λ2)2 + (2λ3 + λ4)2, e11,12 = −λ1−λ2±
√

(λ1 − λ2)2 + λ2
5. The strongest

constraints are given by |λ2| < 4π/3 and |λ345| < 4π.

3.2 Experimental constraints

The decay widths of the Z and W bosons measured at LEP with high precision preclude decays of these

particles into the new states. Therefore, we require that the masses of the inert doublet components

satisfy 15)

mH +mH± > mW , mA +mH± > mW , mH +mA > mZ , 2mH± > mZ . (12)

LEP searches for new neutral final states further exclude a range of masses 33), thereby forcing

mH > 80 GeV, mA > 100 GeV or mA −mH < 8 GeV, (13)

in addition to

mH± > 70 GeV (14)

due to searches for charged scalar pair production 39).

Similarly, if mH < mh/2, the Higgs boson can decay into DM with a partial width of

Γh→HH =
λ2
345v

2

32πmh

√

1− 4m2
H

m2
h

(15)

which is constrained by measurements of the Higgs boson invisible width. The current values provided

by the ATLAS and CMS experiments 9, 30) on the invisible branching ratio BRinv = Γh→HH/(Γh→SM+

Γh→HH) are BRinv < 0.23− 0.36. In the following, we will use the conservative limit BRinv < 0.23.
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Collider analyses also provide constraints on the electroweak precision observables (EWPO), sen-

sitive to new radiative contributions in the electroweak sector. The EWPO are usually expressed via

the Peskin-Takeuchi parameters S, T and U 37, 38), determined through a joint fit of the precision

observables and SM predictions. The EWPO fit within the SM alone 32) gives the results presented in

tab. 1.

Parameter Result Correlation
S 0.06± 0.10 0.90 (T ), −0.57 (U)
T 0.11± 0.12 −0.82 (U)
U −0.02± 0.09

Table 1: Peskin-Takeuchi parameters 37, 38) as determined by the electroweak precision observables 32).

The IDM contributions to the S, T and U parameters, which add to the SM result, are given by 27)

In the IDM new EWPO contributions vanish in the limit of degenerate masses, so these observables

tend to discourage hierarchical mass spectra. For the purpose of constraining the IDM parameter space,

we require that the total values of S, T and U remain within the 95% joint confidence level.

Finally, the properties of our DM candidate are constrained by the latest Planck measurements,

which gives the corresponding relic density as Ωch
2 = 0.120± 0.001 3). In our analysis we impose the 3σ

upper bound indicated by the data, although we allow for the possibility that the inert doublet yield only

a subdominant DM component. For the computation of the relic abundance we rely on the micrOMEGAs

code 12).

4 Results

In our analysis, we scan the parameter space shown in tab. 2. We then use the CosmoTransitions

package 42) to obtain, for each point selected, the temperature-dependent phase structure of the scalar

potential and to assess the nature of the corresponding phase transitions.

Parameter Range
mH [10, 1000] GeV
mA [10, 1000] GeV
mH+ [10, 1000] GeV
λ2 [0, 4π

3
]

λ345 [−1.47, 4π]

Table 2: The parameter ranges used in our scan. We selected only configurations with mH < mA, since

H is our DM candidate. The lower bound on λ345 is imposed by the stability of the potential 13).

The obtained points are then selected according to the bounds discussed above.

4.1 Phase transition

The PT patterns found in our analysis are summarised in fig. 1, which schematically shows the sequences

of transitions that connect the high-temperature minimum of the IDM potential, O, to the EW vacuum

phase h. The red arrow indicates one-step PTs O → h, which directly connect the two minima. The blue

arrows characterise two-step PTs O → H → h, in which the EW vacuum is reached after a transient

phase, H, where only the inert doublet neutral component acquires a VEV. Similarly, the yellow arrows

denote two-step PT patterns O → Hh → h going through a different transient phase, Hh, in which
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Figure 1: Schematic representation of the possible phases and PT patterns supported by the IDM scalar
potential. The high-temperature minimum of the potential, where 〈h〉 = 〈H〉 = 0, is denoted with O.
The phase h is characterised by 〈h〉 6= 0 and 〈H〉 = 0, and includes the EW vacuum. The configuration
where 〈H〉 6= 0 but 〈h〉 = 0 is denoted with H, while a phase with 〈h〉, 〈H〉 6= 0 is indicated with Hh.
The arrows show the different PT sequences identified in our analysis.
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Figure 2: Projections of the IDM parameter space on the planes spanned by mH , mA and λ345. Each
panel shows the regions yielding a one-step PT O → h (light blue), a two-step PT O → H → h (dark
blue) and O → Hh → h (red), as well as a three-step PT O → H → Hh → h (orange). For all these
transitions, we require at least one FOPT. Points leading to DM overabundance are not shown.

both h and H acquire non-vanishing thermal VEVs. In our scan we have also identified three-step PTs

O → H → Hh → h as indicated by the green arrows.

The sequences of PTs involving at least one first-order phase-transition (FOPT) step are presented

in isolation in fig. 2. As we can see, most of the covered parameter space gives rise to one-step O → h,

whereas multi-step PTs only occur in a limited region roughly bounded by 0 . λ345 . 3, mH . 250 GeV

and mA,mH+ < 500 GeV, which we scan with greater accuracy. In particular, we find that three-step

PTs require λ345 . 1.5, while two-step PTs using a transient Hh phase are allowed only for λ345 . 0.8.

4.2 Direct detection

Before proceeding with the analysis of the resulting GW signal, we consider a further bound given by the

direct detection experiments, which probe the spin-independent cross section of DM on nuclei. To this

purpose, we show in fig. 3 the obtained spin-independent scattering cross section σSI as function of the
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Figure 3: Spin-independent direct-detection cross section as function of the DM mass for transition
patterns involving at least one FOPT. The colour code highlights the pattern type: one-step PT O → h
(light blue), two-step PT O → H → h (dark blue) and O → Hh → h (red), as well as a three-step PT

O → H → Hh → h (orange). The experimental bounds are taken from refs. 7, 35). Points leading to
DM overabundance are not shown.

DM mass, highlighting the different transition pattern identified. The analysis is presented for processes

involving at least one FOPT. Because we allow for DM under-abundances, the plot has been obtained by

re-scaling the cross section with the fraction ΩDM/ΩPlanck
DM , where ΩDM is the DM abundance produced by

the IDM and ΩPlanck
DM the value given by the latest Planck measurement 3). The indicated experimental

bounds use the 2018 release of the XENON1T data 7) and the 2021 PandaX-4T result 35).

As we can see, most of the multi-step PTs fall above of the considered exclusion bounds. These

processes may still occur near the Higgs resonance region (mH ≃ mh/2), where resonance effects allow

for the lower values of the λ345 coupling required by these solutions. Another region of interest is for

mH ∈ [120, 160] GeV, resulting in a signal borderline with the current exclusions for processes involving

at least one FOPT. Contrary to the Higgs resonance region, these solutions select only multi-step PTs

following the pattern O → H → h and yield underabundant DM.

4.3 Gravitational wave

The GW signals supported by the IDM parameter space are shown in fig. 4, where we depict the value

of the the peak of the power spectrum h2Ωpeak
GW and the associated frequency at this peak fpeak for each

point of scan performed.

The obtained GW signals are always dominated by the sound wave contribution. We also display

the sensitivity curves of near future GW detectors LISA 40, 5), BBO 20, 21) and DECIGO 41, 29).

LISA, in particular, will probe mostly one-step transitions O → h and part of the solutions using the
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Figure 4: GW signal h2Ωpeak
GW as a function of the frequency f for the considered parameter space. The

colour code indicates the PT pattern. Points leading to DM overabundance and excluded by Xenon1T
are not shown.

O → H → h pattern. Overall, we see that single-step PTs tend to produce stronger signals. Finally, no

points yielding a detectable GW signal by LISA, BBO or DECIGO, while satisfying Planck relic density

constraint were found.

5 Conclusion

With the present paper we intended to address a thorough study of the cosmic phase transitions as well

as the implied gravitational wave signals, with a comprehensive exploration of the phase structure and

possible transitions supported by the inert doublet model. In our work we took into account available

collider constraints, electroweak precision observables and theoretical bounds imposed by stability of the

potential and perturbativity. Furthermore, the latest results of dark matter experiments have been used

to investigate the properties of the neutral scalar component of the inert doublet, assumed to provide at

least a subdominant dark matter component.

Our study of the thermal evolution of the scalar potential has given a full characterization of the

possible phase transition patterns supported by the inert doublet model (see fig. 1). Although in most

of the parameter space the electroweak vacuum is reached through a single phase transition, our analysis

shows well-defined parameter regions where the electroweak vacuum is reached via a chain of consecutive

phase transitions. Both two-step and three-step phase transitions with different transient phases (where

only the inert doublet or both the doublets acquire a vacuum expectation value) are possible. Multi-step
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transitions can occur when the inert doublet components are not heavier than a few hundred GeV and

couplings have moderate values, as shown in fig. 2 for patterns involving at least one first-order step.

By cross-correlating the identified phase transition patterns with dark matter phenomenology, we

find that the inert doublet model can explain the observed relic abundance only in a part of its parameter

space where the electroweak vacuum is reached through single-step processes of either order. Although

multi-step phase transition patterns are associated with a significant dark matter underdensity, we see

that dark matter direct detection experiments are able to tightly constrain these solutions. Focusing

on patterns that involve at least one first-order phase transition, fig. 3 shows that the direct detection

bounds allow for multi-step phase transitions almost exclusively for dark matter masses close to half the

Higgs boson mass.

Finally, after applying the results of direct detection searches as a further constraint, we have in-

vestigated the gravitational wave spectra produced by different phase transition patterns. The results,

gathered in fig. 4, show that one-step processes dominate the signal. Future gravitational wave experi-

ments will probe a part of these solutions yielding a significant dark matter underdensity, implying that

the detection of a compatible signal would require another dark matter component. Whereas few points

with multiple first-order phase transitions fall above the sensitivity curves of the considered experiments,

we find that the generated gravitational signal is always strongly dominated by the transitions initi-

ated during the transient phase at intermediate temperature. Therefore, it is highly unlikely that such

transitions will induce a gravitational wave signal with two separate distinguishable peaks at different

frequencies.
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