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Abstract The unique experimental connection to the QCD
energy–momentum tensor offered by generalised parton dis-
tributions has been strongly highlighted in the past few years
with attempts to extract the pressure and shear forces dis-
tributions within the nucleon. If, in principle, this can be
performed in a model independent way from experimen-
tal data, in practice, the current limited precision and kine-
matic coverage make such an extraction very challenging.
Moreover, the limitation to a leading-order description in the
strong coupling of the data has provided only an indirect and
weakly sensitive access to gluon degrees of freedom, solely
through their mixing to quarks via evolution. In this paper
we address this issue by providing a next-to-leading order
formalism allowing a reanalysis of global fits with genuine
gluonic degrees of freedom. In addition, we provide an esti-
mate of the reduction in uncertainty that could stem from the
extended kinematic range relevant for the future Electron Ion
Collider. Finally, we stress the connection between the anal-
ysis of the dispersion relation in terms of generalised parton
distributions and the deconvolution problem.

1 Introduction

More than a century after its discovery by Rutherford
[1], the proton is still at the core of an intense research
activity. Among other aspects, its mechanical properties,
described through the quantum-chromodynamics (QCD)
energy–momentum tensor (EMT), have attracted a signifi-
cant attention in the last decade yielding many theoretical
(see for instance [2–4]), phenomenological (for instance [5–
7]), lattice (as in [8–10]) and continuum studies (see e.g.
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[11,12]). For a recent review, see [13]. The reason for this
interest is that the macroscopic properties of the proton such
as its mass or its spin are expected to be emergent phenomena
from the microscopic interaction between quarks and gluons.
The computation of the quark and gluon contributions to the
macroscopic properties of the proton, and the comparison
with the experimental extraction of these contributions has
become one of the main objectives of modern hadron physics.

The connection to experimental data is certainly one of
the main factors explaining the recent interest for the EMT.
Indeed, it was shown almost three decades ago [14] that one
can build an indirect experimental access to the EMT via
generalised parton distributions (GPDs) [14–18]. The latter
enter the description of deep exclusive processes according
to QCD factorisation theorems [19,20]. One can for instance
highlight deeply virtual Compton scattering (DVCS) [16],
timelike Compton scattering (TCS) [21], deep virtual meson
production (DVMP) [22], multiparticle production [23–25]
or single diffractive hard exclusive processes [26–28]. How-
ever, the main source of experimental information remains
today DVCS which was measured in several facilities in the
last two decades (see e.g. [29–36] and which is currently the
core of an intense experimental program at the Thomas Jef-
ferson Laboratory in the USA and at COMPASS at CERN.

This experimental effort has triggered an important theo-
retical interest for DVCS, which is today the deep exclusive
process with the clearest theoretical framework. Higher order
corrections up to next-to-next to leading order (NNLO) have
been derived [37]. Higher-twist kinematic corrections are
also available [38]. However, despite its mature theoretical
description, DVCS does not allow to extract unambiguously
GPDs. The reason is to be found in the so-called deconvolu-
tion problem [39,40], that is the ill-definedness of the inverse
problem relating DVCS form factors to GPDs, embodied by
the notion of shadow GPDs. One form factor of the EMT
has been particularly studied since it can be accessed from a
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dispersive analysis of DVCS [41] without requiring the full
extraction of the GPDs. Indeed, this form factor only depends
on the Polyakov–Weiss D-term [42], accessible directly from
the real and imaginary parts of the Compton Form Factors.
However, this extraction is also plagued by shadow D-term
contributions, hinted at in [7] and presented in greater detail
here.

In this paper, we assess the feasibility of extracting from
DVCS data independently genuine quarks and gluon contri-
butions to the pressure and shear forces inside the proton,
taking into account shadow D-terms and evolution. After
introducing our notations and conventions in Sect. 2, we pro-
pose in Sect. 3 a new derivation of the dispersion relations of
DVCS amplitudes at any order of perturbation theory. This
presentation highlights that dispersion relations can provide
more information than solely the canonical one concerning
the D-term. We present the issue of the deconvolution prob-
lem and introduce the notion of shadow D-terms in Sect. 4.
Then, we apply our formalism on an existing global fit in
Sect. 5 and present the results of the first next-to-leading
order extraction. In Sect. 6, we investigate more closely the
impact of shadow D-term on a kinematic range relevant at
future facilities, in view of the future electron-ion collider
(EIC).

2 EMT experimental access through GPDs

The proton matrix element of the local gauge-invariant QCD
energy–momentum tensor (EMT) operator can be param-
eterised in terms of five gravitational form factors (GFFs)
Aa(t), Ba(t),Ca(t), C̄a(t) and Da(t) [43,44] where t = Δ2

with Δ = p′ − p the four-momentum transfer to the proton
(see Ref. [7]):

〈
p′, s′∣∣Tμν

a (0)|p, s〉

= ū(p′, s′)
{
PμPν

M
Aa(t) + MημνC̄a(t)

+ ΔμΔν − ημνΔ2

M
Ca(t) + P [μiσν]ρΔρ

4M
Da(t)

+ P{μiσν}ρΔρ

4M
[Aa(t) + Ba(t)]

}
u(p, s). (1)

The label a denotes either the quark flavour (a = q) or the
gluon (a = g) contribution to the EMT. These GFFs allow
to define various distributions of so-called mechanical prop-
erties of the proton, like distributions of pressure and shear
stress induced by the nucleon’s partonic structure [2,3,45].
Some of these GFFs are accessible thanks to their remark-
able relation to generalised parton distributions (GPDs) intro-

duced in [14–18], such as [46]:

ˆ 1

−1
dx x1−pa Ha(x, ξ, t) = Aa(t) + 4ξ2Ca(t), (2)

ˆ 1

−1
dx x1−pa Ea(x, ξ, t) = Ba(t) − 4ξ2Ca(t), (3)

where pq = 0, pg = 1 and Ha(x, ξ, t) and Ea(x, ξ, t) are
leading-twist chiral-even GPDs depending on x, the aver-
age longitudinal light-front momentum fraction of the active
parton and ξ, the skewness variable describing the trans-
fer of longitudinal light-front momentum to the system. We
use the conventions of [46] where the skewness is defined
as ξ = −Δ+/2P+ = (p+ − p′+)/(p+ + p′+). Then ξ is
bound in [−1, 1]. The link between GFFs and GPDs offers a
unique opportunity for an experimental access to the mechan-
ical properties of hadron matter, thanks to the sensitivity to
GPDs of a wide class of exclusive experimental channels.
We also highlight that the specific polynomial ξ dependence
of the Mellin moments of Eqs. (2) and (3) is in fact a general
property called polynomiality [47,48] and is generalised to
higher moments as:

ˆ 1

−1
dx xm−pa Ha(x, ξ, t) =

[m
2

]
∑

j=0

Aa
m;2 j (t)(2ξ)2 j

+ mod(2,m)(2ξ)m+1Ca
m(t),

(4)

ˆ 1

−1
dx xm−pa Ea(x, ξ, t) =

[m
2

]
∑

j=0

Ba
m;2 j (t)(2ξ)2 j

− mod(2,m)(2ξ)m+1Ca
m(t),

(5)

where [. . . ] is the floor function and mod(2,m) is 0 for m
even and 1 for m odd. The polynomiality property is equiva-
lent to the so-called double distribution formalism introduced
independently in [15,18] (see also [49,50] for a modern pic-
ture of the connection between the two). The double distri-
butions Fa and Ka are connected to the GPDs through:

Ha(x, ξ, t) =
ˆ

Ω

dβdα

[
β pa Fa(β, α, t)

+ ξ1+pa Da(α, t)δ(β)

]
× δ(x − β − αξ),

(6)

Ea(x, ξ, t) =
ˆ

Ω

dβdα

[
β pa K a(β, α, t)

− ξ1+pa Da(α, t)δ(β)

]
× δ(x − β − αξ),

(7)
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with Ω = {(α, β)||α| + |β| ≤ 1} and where Da is the so-
called Polyakov–Weiss D-term whose first Mellin moments
yields the GFF Ca(t) in Eq. (2):

Ca(t) = 1

4

ˆ 1

−1
dα α1−pa Da(α, t). (8)

However, the unambiguous model-independent extraction
of GPDs from one of the most promising current chan-
nels, namely deeply virtual Compton scattering (DVCS), has
already been demonstrated to be practically unfeasible in
Ref. [39]. The reason is to be found in the relation between
the DVCS amplitude, parametrised with Compton Form fac-
tors (H, E, . . .) and GPDs:

Ha(ξ, t, Q2) =
ˆ 1

−1

dx

ξ
T a

(
x

ξ
,
Q2

μ2 , αs

)
Ha(x, ξ, t, μ2)

ξ pa
,

(9)

where T a is the DVCS coefficient function. The convolution
reveals itself not to be numerically invertible on any rele-
vant range in Q2, the virtuality of the photon mediating the
interaction between the lepton beam and the proton target in
DVCS, yielding out of control uncertainties. This situation
can partly be tamed by exploiting the theoretical constraints
applied on GPDs [40] (see also [51] for a exhaustive list of
these properties), but theoretical uncertainties remain signif-
icant.

In this context, the GFF Ca(t) has attracted a specific
interest since it does not require a full extraction of GPDs,
but is instead sensitive to the D-term only. The latter can
be probed more specifically in a dispersive formalism of
DVCS [41,52,53]. A careful analysis of the world DVCS
data using this dispersive formalism at leading order (LO)
was performed in Ref. [7] using realistic uncertainties on
DVCS form factors coming from a neural network analysis
[54]. The dependence on Q2 was taken into account through
the use of evolution equations for the scale dependence of
the D-term, but the LO approach did not take into account
any direct gluon contribution to the subtraction constant. It
is our objective in this paper to propose a full next-to-leading
order (NLO) treatment, whose relevance becomes stringent
with the lever arm in Q2 promised by future collider experi-
ments, in particular those to be conducted in the electron-ion
collider (EIC) [55,56], Chinese electron-ion collider (EicC)
[57,58] or large hadron-electron collider (LHeC) [59].

3 DVCS dispersion relations beyond leading order

In this section, we provide a brief summary of the state-of-
the-art regarding DVCS dispersion relations and provide an
alternative proof beyond leading order. We also generalise

the dispersion relation for an arbitrary number of subtrac-
tions, allowing a new way to connect moments of GPDs
with experimental data. Note however that we focus only
on s and u channel dispersion relations, constraining the x
and ξ dependence of GPDs. t-channel dispersion relations
have been used in [60,61], and are beyond the scope of this
paper. In [62], dispersion relations for a spin-0 particle were
verified in an analytical calculation of the D-term at one-loop
order in Φ4 theory.

3.1 State of the art and dispersion relations at LO and NLO

Dispersion relations at Born order were first derived in
Refs. [41,52]. The authors took advantage of the explicit
leading-order expression of the CFF in terms of GPDs to
derive the dispersion relations. In a nutshell, at LO, the con-
nection between GPDs and CFFs are given by:

�Hq(ξ)
LO= e2

q

 1

−1
Hq(x, ξ)

[
1

ξ − x
− 1

ξ + x

]
dx, (10)

�Hq(ξ)
LO= πe2

q

[
Hq(ξ, ξ) − Hq(−ξ, ξ)

]
, (11)

where
ffl

indicates that the integrals are regularised through
the Cauchy principal value prescription. Using the dispersion
relation relating the real and imaginary part of the Compton
Form Factor:

�Hq(ξ) = 1

π

 1

0
dx�Hq(x)

[
1

ξ − x
− 1

ξ + x

]
+ Sq(ξ)

(12)

one introduces Sq , the so-called subtraction constant asso-
ciated with a flavour q. Combining Eqs. (10), (11) and (12),
one gets the following expression for the subtraction constant
at LO:

Sq(ξ)
LO= e2

q

 1

−1

Hq(x, ξ) − Hq(x, x)

ξ − x
dx

− e2
q

 1

−1

Hq(−x, ξ) − Hq(−x, x)

ξ − x
dx

LO= 2e2
q

ˆ 1

0
[Hq(x, ξ) − Hq(x, x)]

×
[

1

ξ − x
− 1

ξ + x

]
dx . (13)

Expanding Hq(x, ξ) as a Taylor series around x = ξ, and
using the polynomiality condition (4) or equivalently the
DD representation (6), one recovers the well-known leading-
order relation between the subtraction constant and the D-
term:

Sq(t)
LO= 2e2

q

ˆ 1

−1
dz

Dq(z, t)

1 − z
. (14)
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Fig. 1 Diagram for the abstract
2-particle process considered

DVCS dispersion relations beyond the Born order were
considered in Ref. [53] whose analysis is based on the dis-
persion relation of Eq. (12). Then, introducing GPDs through
the leading-twist all-order factorisation theorem (Eq. (9)) as
well as the polynomiality property, they derive the general
form of the subtraction constant as:

Sq = 2

π

 ∞

1
dω �T q(ω,

Q2

μ2 , αs)

ˆ 1

−1
dα

Dq(α, t, μ2)

ω − α
.

(15)

To the best of our knowledge, this is the sole study on the
topic of dispersion relations beyond Born order until now.

This integral generalises the expression of the subtraction
constant at higher order in perturbation theory, at the price
of introducing a second integration variable, to be integrated
to infinity. In the following, we present another approach to
generalise dispersion relations at higher orders, allowing us
to write the subtraction constant as a single integral over the
D-term.

3.2 Analytic properties of the Compton Form Factors

In order to derive an alternative expression to the DVCS dis-
persion relation at higher-pQCD order, we need to recall the
analytic properties of the CFF, which are a special case of the
2-particle scattering amplitude (see Fig. 1). These types of
amplitudes are fully characterised by the three Mandelstam
variables s, t and u defined as:

s = (p + q)2 = (p′ + q ′)2 (16)

t = (p′ − p)2 = (q ′ − q)2 (17)

u = (p′ − q)2 = (p − q ′)2 (18)

such that s + t + u = p2 + q2 + q ′2 + p′2. In the follow-
ing, we will assume working at fixed t and fixed q2 for a
real outgoing photon, such that the amplitude can be fully
described by either s or u. To distinguish between the two,
we will write Fs(s) and Fu(u) respectively. From that point,
several postulates allow us to define an analytic continuation
to the complex plane. We briefly give them here but more
details can be found in Ref. [63].

1. Causality allows us to extend the physical amplitude to
the upper-half complex plane P+

s , such that:

Fs(s) = lim
ε→0

Fs(s + iε). (19)

2. The Schwartz reflection principle allows us to extend the
upper plane analytic continuation to the lower one follow-
ing:

Fs(s
∗) = F∗

s (s), (20)

and provided that Fs is real on at least a segment of the
real axis. It immediately follows:

lim
ε→0

Re (Fs(s + iε)) = lim
ε→0

Re (Fs(s − iε)) , (21)

lim
ε→0

Im (Fs(s + iε)) = − lim
ε→0

Im (Fs(s − iε)) , (22)

and thus, F is discontinuous on the real axis if the imag-
inary part doesn’t vanish.

3. The imaginary part of the amplitude can be computed
from the optical theorem, and corresponds to the sum of all
possible on-shell intermediate states. Single stable states
are responsible for poles on the real axis, while multi-
particle stable states trigger cuts. Importantly, if s, t and
u are all space-like, then no on-shell intermediate state is
allowed and the amplitude is real and continuous on the
real axis.

Until now we have discussed the analytic continuation in the
complex plane of Fs(s), but the same procedure could be
applied to Fu(u). The two variables are connected through:

s + u = 2p2 + q2 − t = Σ (23)

and therefore, Fs(s) and Fu(u) are expected to be related by
the crossing symmetry and thus by analytical continuation.
However, in the case of CFFs, because one of the outgoing
particles is massless (a real photon), to the best of our knowl-
edge, there is no formal proof showing how to connect Fs(s)
and Fu(u). We therefore stick to the standard assumption
stating that the analytic continuations of amplitudes Fs(s)
andFu(u) on their respective physical upper half-planes con-
nect through a real interval between the two thresholds, as
highlighted on Fig. 2).

In the specific case of DVCS, we are able to easily identify
such an interval. Indeed, since q2 is negative and much larger
in absolute value than the hadron mass and t, Σ is negative.
We can thus identify an interval between (s = 0, u = Σ)

and (s = Σ, u = 0) where both Fs(s) and Fu(u) are real,
allowing us to define the analytic continuation between the
amplitudes. We also highlight that in the case Σ > 0, the
crossing structure is more complicated as the connection has

123



Eur. Phys. J. C           (2025) 85:105 Page 5 of 22   105 

Fig. 2 Representation of half-planes P+
s and P+

u aligned according to
the crossing condition. Singularities for the u and s channel can appear
only on the highlighted intervals

to be done through the respective cuts of the amplitudes. This
situation is expected to arise in the case of Time-like Compton
Scattering (TCS) where the hard scale is provided by a deeply
timelike outgoing virtual photon. We do not consider this case
in the present analysis.

The last step to characterise the properties of the CFF is to
describe their singularity structure in the Bjorken limit.1 We
recall that in this limit, all masses, thresholds, and |t | are very
small compared to Q2 = −q2. Let us introduce the variable
ν (differing by a factor 2 compared to the one of [53])

ν = s − u

Σ

Bj≈ u − s

Q2

Bj≈ 1

ξ
, (24)

such that for ν = 1, (s = Σ, u = 0) and for ν = −1,

(s = 0, u = Σ). Consequently, the CFF F(ν) is real and
continuous for ν ∈] − 1; 1[, and analytic for the entire com-
plex plane but ν ∈] − ∞,−1] ∪ [1,∞[= P. This structure
is simple and illustrated on Fig. 3. The direct and crucial
consequence is that for any |ν| < 1, one can write the CFFs
as:

F(ν) =
∞∑

j=0

f jν
j (25)

or in terms of the variable ξ, for |ξ | > 1:

F(ξ) =
∞∑

j=0

f j
1

ξ j
. (26)

1 We neglect here power corrections in t/Q2. A first discussion of their
impact on dispersion relations was presented in [64], as a modification
of physical thresholds compared to the DIS case. In our proof, the most
important impact appears in Eq. (23). Indeed, if Q2 is too small, Σ may
not be negative, and our sufficient condition guaranteeing the absence of
singularity on a segment of the real axis disappears. In this case, arising
for the nucleon at Q2 � 2 GeV2, one will need to perform a deeper
analysis of the singularity to guarantee the applicability of dispersion
relations.

Fig. 3 Analytic structure of the amplitude in the ν-plane

Fig. 4 The range of the argument inside function T

Note that because of the Schwartz principle, the f j are all
real and uniquely define the analytic continuation in the com-
plex plane. This generalises the proof provided of analyticity
provided in Ref. [52] which was based on a Taylor expansion
of the LO DVCS kernel in the unphysical region |ξ | > 1.

3.3 All order dispersion relation with arbitrary subtraction

The analyticity of the CFFs of Eq. (26) is a major result,
and our next goal is to connect the f j coefficients with the
associated GPDs. To derive these relations, we first go back
to Eq. (9), where the factorisation theorem is applied to write
the CFF as a convolution of coefficient function T and a GPD
H. The ξ dependance in these formula can be simplified by
using the Double Distribution representation of GPDs. Thus
introducing Eq. (6) into (9), one obtains:

Hq = 1

ξ

ˆ
Ω

T q
(

α + β

ξ

)
Fq(β, α) dβdα + h0, (27)

where we define:

h0 =
ˆ 1

−1
T q(ω)Dq(ω) dω. (28)

Note that we have assumed that the Radon transform and the
convolution over x can be interchanged. From Eq. (27), one

123



  105 Page 6 of 22 Eur. Phys. J. C           (2025) 85:105 

sees that the analytic properties ofH are a direct consequence
of the analytic properties of T . And in fact these properties
are the same, since both H and T describe the scattering of
two particles. T (z) is analytic for |z| < 1 and in our case for
|ξ | > 1:

−1 < α −
∣∣∣∣
β

ξ

∣∣∣∣ ≤ α + β

ξ
≤ α +

∣∣∣∣
β

ξ

∣∣∣∣ < 1, (29)

as the support of the DD is limited to {(α, β)||α| + |β| ≤
1}. Consequently, for every value of α in the DD support,
T (α + β/ξ) is analytic in the unphysical region (see Fig. 4),
and thus Taylor expanded around α into:

T

(
α + β

ξ

)
=

∞∑

n=0

1

n!
∂nT

(∂α)n
(α)

(
β

ξ

)n

, for |ξ | > 1.

(30)

Injecting Eq. (30) into (27), we can compute the coefficients
introduced in Eq. (26) in terms of moments of the DD f and
derivatives of the coefficient function T :

H(ξ) =
∞∑

j=0

h j
1

ξ j
for |ξ | > 1, (31)

h0 =
ˆ 1

−1
T q(ω)Dq(ω) dω (32)

h j+1 = 1

j !
ˆ 1

−1
dα

∂ j T

(∂α) j
(α)

ˆ 1−|α|

−1+|α|
β j Fq(β, α) dβ. (33)

This completes our first goal, but these results are restricted
to the unphysical region. One needs to use the dispersion
relation to derive relations between these coefficients in the
physical region. To do this, we define the following In inte-
grals in the complex plane:

In(ξ) =
˛

ΓR

H(ξ ′)
ξ ′ − ξ

(
ξ ′

ξ

)n

dξ ′

=
∑

j

h j

˛
ξ ′− j

ξ ′ − ξ

(
ξ ′

ξ

)n

dξ ′, (34)

where the contour ΓR is illustrated on Fig. 5 and chosen such
that the CFF is analytic all along. Note that in Eq. (34), ξ ′
is in the unphysical region, allowing us to expand the CFF
H, but ξ can be safely chosen in the physical region. Indeed,
taking ξ ∈ [−1, 1], one gets:

˛
ΓR

ξ ′−k

ξ ′ − ξ
dξ ′ =

{
0 if k > 0

2iπξ−k if k ≤ 0
, (35)

as in the case k > 0, the contributions of the two poles exactly
compensate each other. We deduce:

In(ξ) = 2π i
n∑

j=0

h j
1

ξ j
, (36)

showing that the In truncate Eq. (31) to order n.

The next step is to connect In with the value of the CFF
within the physical region. To do so, we can deform the con-
tour integration from ΓR to Γ ′ such that:

In(ξ) =
ˆ 1

−1

H(ξ ′ − iε)

ξ ′ − ξ − iε

(
ξ ′

ξ

)n

dξ ′

−
ˆ 1

−1

H(ξ ′ + iε)

ξ ′ − ξ + iε

(
ξ ′

ξ

)n

dξ ′

=
 1

−1

H(ξ ′ − iε)

ξ ′ − ξ

(
ξ ′

ξ

)n

dξ ′

+ iπH(ξ − iε) −
 1

−1

H(ξ ′ + iε)

ξ ′ − ξ

(
ξ ′

ξ

)n

dξ ′

+ iπH(ξ + iε) (37)

where we used the Sokhotski–Plemelj formula. The Schwartz
reflexion principle in Eq. (20) allows us to rewrite the formula
in terms real and imaginary parts of the CFF such that:

In(ξ) = 2iπ�H(ξ) + 2i
 1

−1

�H(ξ ′)
ξ ′ − ξ

(
ξ ′

ξ

)n

dξ ′ (38)

after safely taking the limit ε → 0+. An additional subtlety
comes from the fact that �[H] is defined as the limit coming
from the upper half-plane (see Eq. (19)) using Mandelstam
variables, and thus ν. Since ξ = 1/ν, we have:

�H = lim
ε→0+ H(ν + iε) = lim

ε→0+ H(ξ − iε), (39)

triggering a plus sign in front of integral.
One should realise that the result in Eq. (38) is conditioned

to the behaviour of H within the integration contour, and in
particular for ξ → 0. Indeed the contour deformation of
Eq. (37) can be performed only if the integrand remain inte-
grable on the contour, especially for ξ → 0 (or equivalently
ν → ∞). We expect the CFF to present a Regge behaviour
in ξ−α for ξ → 0. Then expressions (37) and (38) for In are
only valid for n > α − 1.

Combining Eqs. (36) and (38) we can deduce the general
expression for the n-times subtracted dispersion relation at
any order of perturbation theory:

�H(ξ) + 1

π

 1

−1

�H(ξ ′)
ξ ′ − ξ

(
ξ ′

ξ

)n

dξ ′ =
n∑

j=0

h j
1

ξ j
, (40)

123
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Fig. 5 The contours used in the proof of dispersion relations. In red,
the singularities and branch cuts

with h j being given in Eqs. (32) and (33). It is easy to verify
that h0 is in fact the subtraction constant Sq we introduced
in Eq. (12).

3.4 New expression for the subtraction constant and
consistency with previous results

Equation (40) is the key result of this section allowing us to
connect the real and imaginary parts of the CFF to the D-
term and the Double Distribution. Yet, it can be simplified
using the symmetries of DVCS and GPDs. Importantly, the
CFFs are ξ even and thus H(ξ) = H(−ξ). When combining
this parity argument with the Schwarz reflection principle
H(ξ∗) = H∗(ξ) we obtain the following constraint:

H(−ξ∗) = H∗(ξ). (41)

From this we deduce that the real part of the CFF must be
even in ξ, while the imaginary one must be odd along the
real axis, i.e. as a function of the real part of ξ. This restricts
our expansion in Eq. (31) to

H(ξ) =
∞∑

jeven

h j
1

ξ j
. (42)

As a consequence, restricting ourselves to ξ ∈]0, 1[, the dis-
persion relation (40) can be simplified into:

n∑

j even

h jξ
− j = �H(ξ)

− 1

π

 1

0
�H(x)

(
x

ξ

)n [
1

ξ − x
− (−1)n

1

ξ + x

]
dx

(43)

= �H(ξ) − 2

π

 1

0

(
x

ξ

)n x�H(x)

(ξ − x)(ξ + x)
dx (44)

where k = 2[ n2 ] is the largest even number inferior or equal to
n. n = 0 and n = 1 are therefore equal, and exactly identical
to the usual formula in Eq. (12). For phenomenological CFFs,
for which x�H(x) is integrable, this expression converges.
Note that the terminology can be misleading. S is usually
called the subtraction constant, while we show here that it is
actually extracted from an unsubtracted dispersion relation.

On top of Eq. (28) for the quarks contribution, the above
discussion can be generalised to the gluons contribution with:

Sg =
ˆ 1

−1
T g(ω)Dg(ω)dω. (45)

Because of the Schwartz principle, h0 (and in fact all the h j )

is real, which means that only the real part of T q,g contribute
to Eqs. (28) and (45). We are thus left with the following
results:

Sa =
ˆ 1

−1
�T a(ω)Da(ω)dω. (46)

Equation (46) can be recovered from the results presented
in Ref. [53] and recalled in (15). There, the subtraction con-
stant is expressed as a double convolution involving the
D-term and the imaginary part of the perturbative kernel.
Reshuffling the expression using the odd-parity of the D-
term:

Sq = 2

π

ˆ ∞

1
dω�T q(ω)

ˆ 1

−1
dα

Dq(α)

ω − α

=
ˆ 1

−1
dαDq(α)

1

π

ˆ ∞

1
dω�T q(ω)

[
1

ω − α
− 1

ω + α

]

(47)

and injecting now the dispersion relation of the hard scatter-
ing kernel obtained in [53]:

�T q(ν) = 1

π

ˆ ∞

1
dω�T q(ω)

[
1

ω − ν
− 1

ω + ν

]
, (48)

we recover our Eq. (46).

3.5 Higher subtractions and connection with the DDs

An unexpected result of this new derivation of the higher-
order connection between the subtraction constant and the
D-term, is that the dispersion relation formalism allows us
to connect the Mellin moments of the Double Distribution
with higher-order subtraction constants. Indeed, going back
to Eqs. (31)–(33), one realises that we have only exploited
the connection provided by Eq. (32). It is possible to isolate
the h j for j 
= 0 by subtracting two consecutive terms in
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Eq. (43) (we recall that ξ ∈]0, 1[):

hnξ
−n = 1

π

 1

0

�H(ξ ′)
ξ ′ − ξ

(
ξ ′

ξ

)n−1 (
ξ ′

ξ
− 1

)
dξ ′

+ (−1)n

π

ˆ 1

0

�H(ξ ′)
ξ ′ + ξ

(
ξ ′

ξ

)n−1 (
ξ ′

ξ
+ 1

)
dξ ′.

(49)

After simplification, this can be simply written for j ≥ 1 as:

h2 j = 2

π

ˆ 1

0
�H(ξ ′)

(
ξ ′)2 j−1 dξ ′. (50)

Reinjecting Eq. (33), we get for � odd:

2

π

ˆ 1

0
�H(ξ ′)

(
ξ ′)� dξ ′

= 1

�!
ˆ 1

−1
dα

∂�T

(∂α)�
(α)

ˆ 1−|α|

−1+|α|
dββ� f q(β, α). (51)

Rewording this equation, we note that the �th Mellin moment
of the imaginary part of the CFF is connected with the β-
moment of the Double Distribution, convoluted then with
the derivative of the hard scattering kernel. This equation
highlights well the deconvolution problem of GPDs and DDs
from DVCS data [39]. Indeed, while two indices are required
to independently deconvolute the (α, β) dependence of the
DDs, only a single index, �, appears here. The impact of such
relation on the characterisation of shadow GPDs is left for
future work.

Finally, let us mention that the fact of implementing dis-
persion relation at the level of the CFF directly may have
a significant impact already at the level of CFF extraction
(see figure 2 of [65] for an illustration of the impact of
the one-subtracted dispersion relation for DVCS). Assess-
ing the impact of higher-subtracted dispersion relations on
CFF extraction is also left for future studies.

4 Extraction of the pressure distribution on collider
kinematics: an inverse problem

If we limit ourselves to the lowest subtraction, which only
involves the D-term, we have demonstrated that the CFFs
give us in principle access to the subtraction constant:

Sa(t, Q2) =
ˆ 1

−1
dω �T a

(
ω,

Q2

μ2 , αs

)
Da(ω, t, μ2).

(52)

We will elaborate on the challenges related to the character-
ization of Sa from experimental data in the next section. For
now, we are interested in the fact that the GFF Ca(t, μ2),

which is related to the pressure distribution in the proton,
writes as another integral of the D-term, Eq. (8) which we
recall with its full variable dependence:

Ca(t, μ
2) = 1

4

ˆ 1

−1
dα α1−pa Da(α, t, μ2). (53)

An obvious question is whether the knowledge of the sub-
traction constant Sa(t, Q2) allows an unambiguous extrac-
tion of the GFF Ca(t, μ2). This question is very similar to
that known as the deconvolution problem [39], which aims
at determining whether the measurement of CFFs – i.e. the
convolution of the perturbative coefficient function to the full
GPD – allows the unambiguous reconstruction of the GPD.
In fact, the problem at hand in this paper is exactly the restric-
tion of the general deconvolution problem to the D-term.

As we have already hinted at, the root of the deconvolu-
tion problem is that DVCS experimental data offers one less
kinematic variable compared to the parton distributions we
want to extract. CFFs are functions of (ξ, t, Q2), whereas
GPDs are functions of (x, ξ, t, μ2); the subtraction constant
is a function of (t, Q2) whereas the D-term of (α, t, μ2).

One might argue that the GFF Ca which we are funda-
mentally interested in, is just a function of (t, μ2) – so a
similar kinematic dependence as the subtraction constant
Sa(t, Q2). However, one cannot write a straightforward rela-
tion between the subtraction constant Sa(t, Q2) and the GFF
Ca(t, μ2) which does not involve in practice the extraction
of the D-term Da(α, t, μ2).

There is however a theoretical solution to the missing vari-
able problem. At a given order in perturbation theory, the
scale dependence of Da(α, t, μ2) is given by renormalization
group equations, removing in principle one degree of free-
dom. In practice, evolution equations entangle the (α, μ2)

dependence of the D-term (and the (x, ξ, μ2) dependence
of GPDs). However, although this solves the issue on paper,
in practice, effect of QCD evolution are rather weak on the
range of Q2 accessible to exclusive processes. Reference [39]
offered an explicit construction of very different GPDs (with
vanishing D-terms) such that their CFFs would be indis-
cernible to experimental data. These shadow GPDs repre-
sent an illustration of particularly badly constrained objects
to DVCS in any foreseeable data. Solutions to this issue
involve, on the one hand, the introduction of more theoret-
ical constraints to reduce the functional space accessible to
GPDs [40], and on the other hand an ambitious program of
global fits on a variety of exclusive processes. In particular,
processes which do not show an exacerbated sensitivity to a
pole x = ξ as DVCS, TCS or DVMP, but rather to a pole
where x and ξ are entangled to an external kinematic vari-
able are very desirable, like DDVCS [66–68] or two-to-three
exclusive processes [24–28,69–71].

In a similar fashion to the study of the deconvolution prob-
lem led in Ref. [39], there exist shadow D-terms, which bring
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barely any contribution to the subtraction constant over cur-
rent ranges in Q2 and are therefore extremely hard to discern
in the data. Reference [7] gave a hint at such shadow D-term
when it highlighted a tremendous increase of uncertainty as
soon as the parametrization of the D-term was made slightly
more flexible. In practice, it is common to parametrize the
D-term through an expansion in Gegenbauer moments due
to their friendly LO evolution properties:

Dq(α, t, μ2) = (1 − α2)
∑

odd n

dqn (t, μ2)C (3/2)
n (α), (54)

Dg(α, t, μ2) = 3

2
(1 − α2)2

∑

odd n

dgn (t, μ2)C (5/2)
n−1 (α). (55)

As Gegenbauer polynomials form a complete orthogonal
family, this representation is fairly general – but comes with
the drawback that fixed-order truncations are usually oscil-
lating functions. We refer to Ref. [7] for an account of the
LO scale dependence of dan (t, μ2). In this representation, the
LO subtraction constant reads as:

S(t, Q2)
LO= 4

∑

q

e2
q

∑

odd n

dqn (t, μ2), (56)

where we will use conventionally in the following μ2 ≡ Q2.

On the other hand, the GFF Ca(t, μ2) reads:

Ca(t, μ
2) = 1

5
da1 (t, μ2). (57)

The problem of relating the subtraction constant to the pres-
sure inside the proton turns into the question of extracting da1
from the sum of all dan at LO (and more complicated infinite
linear combinations of the dan at higher order). A simple solu-
tion to the ill-definedness of this extraction is to assume that
only a finite number of coefficients dan actually contribute to
the subtraction constant. In fact, the study of [5] used only
n = 1, and evaluated the systematic uncertainty caused by
such a rigid modelling of the D-term by inputs from the chi-
ral quark soliton model [72,73]. In [7], effects of a truncation
at n = 1 and n = 3 were compared. It was observed that the
– already large – uncertainty on d1 inflated by a factor 20
when d3 was allowed to be non-zero. In fact, the reason is
fairly simple to understand. Since evolution effects are rela-
tively small on the narrow range in Q2 available to the current
precise DVCS data, d1(t, μ2) and d3(t, μ2) do not exhibit a
significantly different behavior in μ2. Therefore, parasitic
contributions such that

dq1 (t, μ2) ≈ −dq3 (t, μ2) (58)

amount to almost no contribution to the LO subtraction con-
stant of Eq. (56), and are virtually unconstrained. An object
which brings exactly no contribution to the subtraction con-
stant at a given scale μ2

0 will be called a shadow D-term, and

we have already highlighted a very simple example at LO:

dq1 (μ2
0) = λ; dq3 (μ2

0) = −λ, (59)

or equivalently

Dq
S,LO(α, μ2

0) = λ(1 − α2)[C (3/2)
1 (α) − C (3/2)

3 (α)]. (60)

The space of shadow D-terms at a fixed scale is a vector
space (it is the kernel, or null-space of the integral transform
and there exist shadow D-terms of arbitrary size). Under
evolution to another scale μ2 
= μ2

0, the contribution of a
shadow D-term to the subtraction constant becomes non-
zero. Indeed, (59) can only be true at one scale, since the μ2

dependence of both sides of the equation are ruled by differ-
ent anomalous dimensions. Therefore, the range in scales on
which DVCS is measured precisely directly constrains the
maximal size of shadow D-terms, and the uncertainty of the
deconvolution procedure.

To give a simple approximate example, if there were no
mixing between quarks and gluons, the evolution of dqn would
be entirely dictated by the anomalous dimension γn following

dqn (μ2) = Γ
qq
n (μ2, μ2

0)d
q
n (μ2

0),

where Γ
qq
n (μ2, μ2

0) =
(

αs(μ
2)

αs(μ
2
0)

)2γn/β0

, (61)

where β0 is the first coefficient in the β function of αs . Using
γ1 = 16/9, γ3 = 157/45 and β0 = 11 − 2n f /3 = 9, we
find that the contribution to the subtraction constant of the
simple shadow D-term of Eq. (59) is:

Sq
S (Q2) = 8

3
(Γ

qq
1 (Q2, μ2

0)d
q
1 (μ2

0) + Γ
qq

3 (Q2, μ2
0)d

q
3 (μ2

0)),

(62)

≈ 8

3
λ

[(
αs(Q2)

αs(μ
2
0)

)0.395

−
(

αs(Q2)

αs(μ
2
0)

)0.775 ]
. (63)

This gives of course 0 if Q2 = μ2
0 by definition of the shadow

D-term. Linearizing the previous relation yields this approx-
imate contribution of the shadow D-term to the subtraction
constant:

Sq
S (Q2) ≈ λ

[
1 − αs(Q2)

αs(μ
2
0)

]
. (64)

If the experimental uncertainty of the subtraction constant
is characterized by a quantity ΔS, and the measurement
have been performed on a range in scales of [Q2

min, Q
2
max ],

our approximate approach tells that the shadow D-term of
Eq. (59) will be typically bring a dispersion:

σS,d1q ≈ σS,d3q
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≈ 3

8

ΔS

Γ
qq

1 (Q2
max , Q

2
min) − Γ

qq
3 (Q2

max , Q
2
min)

(65)

≈ ΔS
(

1 − αs(Q2
max )

αs(Q2
min)

) . (66)

The approximate form of the last line should only be used for
scales close to the charm mass, as it is derived with the anoma-
lous dimensions of n f = 3. Equation (65) is general on the
other hand, provided the true evolution operator is used. Of
course, there exist many more ways to model the shadow
D-term if the parametrization in terms of dn is made more
flexible than solely dq1 and dq3 , in particular if explicit gluons
contributions are included. The simple Eq. (66) represents a
typical estimate of the uncertainty of the deconvolution pro-
cedure within the parametric space which we have chosen.
Despite the simplifying assumptions that we have made, this
result captures the essence of the propagation of uncertainty:
first a dependence on the experimental uncertainty of the data
through ΔS, and then a characterization of how different the
evolution of the different parameters is with respect to the
scale.

Formally, since the fit of the dan coefficients is linear, it
is straightforward to write the exact solution of the fit. In
particular, the covariance matrix of dq1 and dq3 that we are
interested in for this simple example writes:
(

σ 2
d1q cov[dq1 , dq3 ]

cov[dq1 , dq3 ] σ 2
d3q

)

= (CTΩ−1C)−1, (67)

where Ω is the covariance matrix of the fitted dataset and C
is the so-called design matrix which contains the values of
the fitted functions at the fitted kinematics, here:

C = 8

3

⎛

⎜⎜
⎝

Γ
qq

1 (Q2
1, μ

2
0) Γ

qq
3 (Q2

1, μ
2
0)

Γ
qq

1 (Q2
2, μ

2
0) Γ

qq
3 (Q2

2, μ
2
0)

...

⎞

⎟⎟
⎠ . (68)

One can draw a parallel between this exact general formula
and the approximate shadow D-term uncertainty that we have
derived in Eq. (66). If there were only two measurements in
Q2, one at Q2

min and one at Q2
max , we chose to evaluate

μ2
0 = Q2

min, and the experimental dataset was uncorrelated
with standard deviation ΔS, we would find:

σd1q = 3

8
ΔS

√
1 + [Γ qq

3 (Q2
max , Q

2
min)]2

Γ
qq

1 (Q2
max , Q

2
min) − Γ

qq
3 (Q2

max , Q
2
min)

(69)

σd3q = 3

8
ΔS

√
1 + [Γ qq

1 (Q2
max , Q

2
min)]2

Γ
qq

1 (Q2
max , Q

2
min) − Γ

qq
3 (Q2

max , Q
2
min)

.

(70)

Using that Γ qq(Q2
max , Q

2
min) < 1, we find a very simi-

lar estimate to the one we have derived using the notion of
shadow D-term, without needing the concept at all. Shadow
D-terms are after all merely an attempt at simplifying, or
making more intuitive, the analysis of the inverse linear prob-
lem by identifying obvious directions that are dominant in
the uncertainty propagation. It is truly useful when it comes
to making broad predictions based on general characteristics
of the data without going through the process of generat-
ing pseudo-data and fitting them. We show such exercise to
broadly evaluate the plausible impact of the EIC in the last
section of this paper, where we will construct NLO shadow
D-terms and treat the evolution equations properly.

Let us note in passing that, with the same assumptions that
were used to derive Eqs. (69)–(70), we find:

corr[dq1 , dq3 ] = −1 − Γ
qq

1 Γ
qq

3√
(1 + [Γ qq

1 ]2)(1 + [Γ qq
3 ]2)

, (71)

where we have omitted the argument (Q2
max , Q

2
min). If evolu-

tion is very weak, Γ qq
1 ≈ Γ

qq
3 ≈ 1, which gives as expected

corr[dq1 , dq3 ] ≈ −1, with σd1q ≈ σd3q ≈ +∞.

5 Results on current experimental data

We now conduct a re-analysis of the LO extraction of the GFF
Ca(t) of Ref. [7] using the NLO DVCS coefficient function,
and putting to use the understanding of the deconvolution
uncertainty stemming from shadow D-terms. A neural net-
work analysis of the global DVCS dataset was conducted in
2019 [54], leveraging 30 observables over 2500 kinematic
configurations acquired during 17 years of measurements.
The real and imaginary parts of the four leading-twist CFFs
were modelled independently. The result of the fit was 100
sets of CFFs which represent a sample of the functional dis-
tribution of the CFFs2.

The computation of the subtraction constant from Eq. (12)
requires the evaluation of the imaginary part of the CFF on
the full range of ξ ∈]0, 1[. Since the skewness ξ is related to
the plus component of the four-momentum transfer Δ, it is
bound kinematically by the value of t according to:

|ξ | ≤
√−t

√
−t + 4M2

p

(72)

where Mp is the proton mass. It means that part of the integral
must be evaluated over a domain where the CFF is contin-
ued analytically and where experimental measurements are

2 Note that in this dataset, the Q2 ≥ 2 GeV2 sufficient condition for
a simple applicability of the proof above is not always met (Σ < 0).
Nevertheless, we assume that the dispersion relation can still be applied,
the proof for positive Σ remaining an open question.
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Fig. 6 Subtraction constant as a function of ξ at a given value of (t, Q2)

obtained from the dispersion relation applied to a neural network extrac-
tion of H from the world DVCS dataset in 2019. We show a subset of
50 replicas and the uncertainty computed using the ordinary sample
standard deviation and the MAD robust estimator

impossible. This does not represent a theoretical issue per
se. For instance, the Double Distribution can be character-
ized from a limited range in ξ as highlighted in [74], and then
used to construct the CFF in the range where it is not mea-
sured. Likewise, the extraction of GPDs on the lattice, which
is performed in Euclidean space using a space-like defini-
tion of the kinematic variables gives access to any ξ at any t
[75]. Yet, in the context of an analysis based on experimental
data, the severe kinematic limitation on the information on
the CFFs represents a challenge. The flexibility of the neural
network parametrization attempts to introduce as little bias
as possible in the analytic continuation of the CFFs outside
of their experimental determination.

From the 100 sets of CFFs stemming from the neural net-
work analysis, we compute 100 samples of the functional
distribution of the subtraction constant which we will call
replicas in the following. The result at one kinematic point
(t, Q2) as a function of ξ is presented in Fig. 6. We present
the result using both the traditional sample standard deviation
estimate:

σsample = 1√
N − 1

√√√√
N∑

i=1

(Xi − mean(X))2 (73)

and using the outlier robust estimate of the standard deviation
known as mean absolute deviation (MAD):

σMAD(X) = λ med

(
|X − med(X)|

)
, (74)

med stands for the median, and λ = 1/Φ−1(3/4) = 1.4826
where Φ(x) is the standard normal cumulative distribution
function. This constant rescaling allows the MAD operator
to coincide with the standard deviation in infinite statistics
under the assumption that the distribution is Gaussian. The
large difference between the two estimates in Fig. 6 highlights

Fig. 7 Strength of the signal of the subtraction constant (robust esti-
mates), expressed in number of standard deviations from 0. We use the
most precise value of ξ for each kinematic (t, Q2), excluding ξ > 0.5
(see text). Only the best kinematics allow a characterization at 1σ from 0

the important contamination by outliers, that we elaborate on
in the next paragraph.

Since the real and imaginary parts of the CFFs have been
modelled independently without enforcing the connection
between them induced by the polynomiality of GPDs, there
is in principle no expectation that the subtraction constant
will end up independent of ξ. However, the result is indeed
globally compatible with a constant. We exclude from the
analysis the subtraction constant for ξ > 0.5, as there seems
to be a slight systematic downward shift of the subtraction
constant at large ξ. This may stem from the fact that ImH(ξ)

is not constrained to go to 0 as ξ → 1, leading to slightly
less behaved subtraction constant integrals in this limit. At
the value of (t, Q2) presented in Fig. 6 – one of the most
precise since it corresponds to a region well explored by the
JLab 6 GeV data – the subtraction constant is still only one
standard deviation away from 0 evaluated using outlier robust
statistics. We present in Fig. 7 the strength of the signal of the
subtraction constant on the kinematic domain. The fact that
neural network analyses of the DVCS dataset available before
the JLab 12 GeV upgrade lead to subtraction constants which
are compatible with 0 was also established in Ref. [6]. This
results to a large extent from the poor constraints on the real
part of the CFF H within the current experimental dataset.
This highlights the interest of a better determination of this
quantity, achievable for instance by measuring unpolarised
beam charge asymmetry observables with a positron beam
at JLab [76,77].

5.1 Treatment of outliers

As we have already noticed, our data suffers from noticeable
outliers. Therefore, instead of the sample means, variances
and covariances, we should use outlier robust estimates. In
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all this analysis, we will use the sample median instead of the
sample mean and the MAD instead of the sample standard
deviation.

There exists a considerable literature devoted to the ques-
tion of a robust estimate of the covariance/correlation matrix
(see among the most popular suggestions [78–80]). We will
use in this paper the straightforward generalization of the
MAD estimator for the correlation, which we have not seen
used before in the existing literature:

r̃ ≡
med

(
(X − med(X))(Y − med(Y ))

)

√

med

(
(X − med(X))2

)
med

(
(Y − med(Y ))2

) .

(75)

A comparison of this estimator to the many others presented
in the literature would divert us from the physics purpose
of this paper, and is conducted in a separate more statisti-
cally focused paper [81]. We stick therefore to a succinct
presentation. In effect, this estimator does not directly relate
to the correlation r ≡ corr[X,Y ] = cov[X,Y ]/(σXσY ): just
like a factor λ was necessary to relate the MAD estimator to
the standard deviation for a normal distribution, some proce-
dure is needed to match (75) to r = corr[X,Y ]. It is likely
that there exist no closed-form matching formula in the case
of a bivariate normal distribution. However as presented in
[81] and demonstrated empirically in Fig. 8, the following
approximation is accurate beyond the per mille level and
fully satisfactory considering the precision of this study:

r/̃r = 1 − 0.5635 ln |r |. (76)

Isolating properly the correlation coefficient yields:

r = 0.5635 r̃ W

(
10.47

|̃r |
)

(77)

where W is the Lambert-W function, defined as the inverse
function of f (W ) = WeW .

One should note that this definition does not guarantee
that the resulting covariance/correlation matrix is positive
definite. Only in the limit of infinite statistics of a true Gaus-
sian distribution do we formally expect that this property is
fulfilled. This may however not be as much of a drawback that
it appears at first sight. The maximal size of negative eigen-
values in the spectrum provides a clear physical evidence of
the magnitude of poorly estimated correlations. Instead of
using the inverse of the covariance matrix to compute the
χ2, one could therefore use a singular value decomposition
(SVD) with a threshold on the singular values larger than the
absolute value of the negative eigenvalues.

To demonstrate practically the interest of our outlier
resilient covariance matrix estimate, we deliberately create
an outlier-ridden distribution, made of a mixture of a nar-

Fig. 8 Empirical measurements of r/̃r from extensive samplings of
correlated normal distributions, and their fit by the functional form of
Eq. (76)

Fig. 9 We generate a high-statistics sample with 10% of outliers. The
median based estimators are less contaminated by the outliers than the
ordinary sample estimators

row normal distribution, and a fraction of samples from a
wider normal distribution. The result is depicted in Fig. 9
and shows that our robust estimators are less affected by the
outliers. Note that in general, our robust estimators have a
larger dispersion than the sample ones (in statistical terms,
they are less efficient). In the example presented here, the
dispersion of our robust operators is typically 20–30% larger
than the sample ones. But although the sample operators are
less dispersed, their expectation is further from the value of
interest in presence of strong outliers.

5.2 A model of the D-term

As we have already noted, our data-driven neural network
extraction of the subtraction constant is largely unconstrained
as |t | and Q2 increase. We have stressed in Sect. 4 that the
scale dependence is instrumental to perform a model inde-
pendent extraction of the D-term or the C(t) GFF from the
experimental data. To proceed forward and obtain sensible
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results at large |t |, we are forced to use a model of D-term.
We choose the following usual strategy:

– The scale dependence of the D-term is given by the LO
renormalization group equation resummed at leading-
logarithmic accuracy. We use the LO running of αs

with αs(M2
Z ) = 0.118 and threshold crossing at mc =

1.27 GeV and mb = 4.18 GeV.
– We truncate the Gegenbauer expansion (55) to either n =

1 or n = 3, which allows us to probe a part of the shadow
D-term uncertainty as we have explained in the previous
section.

– We assume an equal contribution of the light quarks
dun = ddn = dsn = dudsn and a purely radiatively gen-
erated charm contribution, that is dcn(μ

2 = m2
c) = 0.

– We enforce a factorized t-dependence under the form of
a tripole Ansatz:

Da(t) = Da(t = 0)

(
1 − t

M2

)−3

, (78)

where M = 0.8 GeV. The lack of distinctive t-
dependence in the CFF extraction makes this fully con-
strained Ansatz satisfactory.

Our model is therefore entirely defined by the coefficients
dudsn (t = 0, μ2

0) and dgn (t = 0, μ2
0) at a conventionally fixed

scale μ0 = 2 GeV. We want to obtain the distribution of
those parameters so that

ˆ 1

−1
dω T a(ω, αs(Q

2))Σab(Q2, μ2
0) ⊗ Db(ω, t, μ2

0) (79)

approximates as much as possible the distribution of the
100 replicas S(ξ, t, Q2).Σab(Q2, μ2

0) represent the leading-
logarithmic evolution operator of the D-term. Implicit sum-
mation on the repeated indices is subtended.

The problem presents itself as finding the best fit of a tar-
get function by a parametrized function. A simple way to
proceed is to sample the target function and perform a least-
squares fit. However, the answer may depend on the choice
of kinematics where the sample is performed. In order to per-
form a correlated fit, we need to select much fewer kinematic
values than the number of replicas which are available. With
100 replicas, we will use Nkin kinematics selected because
they represent the strongest signal of the subtraction con-
stant. Precisely, we decompose the (ξ, t, Q2) phase-space in
a regular grid with a logarithmic spacing in ξ characterized
by a multiplicative factor of 1.5, a uniform spacing in t char-
acterized by a pace of 0.1 GeV2, and a logarithmic spacing
in Q2 (multiplicative factor of 1.35). Then we select the Nkin

kinematics where the ratio of the median of the replicas by
the MAD is the largest. This prevents from overfitting our

model on a region where the neural network is left largely
unconstrained.

Let’s call (ξi , ti , Q2
i ) the set of kinematics we have just

described, on which the replicas of S(ξ, t, Q2) are sampled.
Once this choice is fixed, several options present themselves
to determine the best parameters.

1. The most natural option is to determine the distribution of
our free parameters so as to minimize the correlated least
squares:

∑

i,i ′
(model(ξi , ti , Q

2
i ) − S̄(ξi , ti , Q

2
i )) × cov−1[S]i,i ′

× (model(ξi ′ , ti ′ , Q
2
i ′) − S̄(ξi ′ , ti ′ , Q

2
i ′)). (80)

S̄ is the sample median of the dataset and cov[S] the
robust covariance matrix. Since the fit is linear, the best-fit
parameters are normally distributed and we do not need
to use individual replicas.

2. If we used an uncorrelated least-squares fit (only the diag-
onal terms of the covariance matrix), then we would not be
limited in the number of kinematics where to perform the
fit. However, neglecting outright the statistical informa-
tion of correlation of the target function seems unjustified.

3. The LO study in Ref. [7] used an hybrid approach: for
each replica S j (ξ, t, Q2) where 1 ≤ j ≤ 100 labels the
replica, the best-fit value was found with an uncorrelated
least squares:

∑

i

(model(ξi , ti , Q2
i ) − S j (ξi , ti , Q2

i ))
2

(ΔS(ξi , ti , Q2
i ))

2
(81)

where ΔS(ξi , ti , Q2
i ) is the outlier robust standard devi-

ation computed from the 100 replicas. The result is then
made of the distribution of the best-fit value over each
replica. This strategy can in principle be applied to an
arbitrary number of kinematics, and yet encompasses part
of the correlated information through the use of the distri-
bution of replicas. In the absence of outliers distorting the
distribution, if we used cov−1[S] instead of 1/(ΔS)2 in
Eq. (81), we would find exactly the first method, while if
we used S̄ instead of the individual S j replicas, we would
recover exactly the second method.

To appreciate the difference between the three methods
independently from the question of the outlier suppression,
we construct in Fig. 10 a fictitious normal distribution of
replicas (grey curves), sample it on some kinematics (blue
points), and apply the different methods in the absence of
outliers. The correlated fit (top plot) exhibits a smaller vari-
ance than the uncorrelated one (middle plot) as a reflection
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Fig. 10 Fit by a constant function of a functional distribution repre-
sented by the grey replicas. The fit is performed on the sampled kine-
matics represented by the blue points using (1) a fully correlated fit,
(2) a fully uncorrelated fit and (3) the hybrid method of uncorrelated fit
replica-by-replica

of the fact that the grey replicas exhibit a long-distance anti-
correlation: the replicas that go down at small x tend to go
up at large x and vice-versa. This has the effect of pinning
down the best constant more precisely than when this infor-
mation is simply neglected. The hybrid method (bottom plot)
exhibits a significantly larger uncertainty than the other two.
In the following, we will present results using the correlated

Fig. 11 Comparison of the spectrum of eigenvalues of the covariance
matrix for Nkin = 20 on the subtraction constant dataset on which this
study is performed. We compare the sample covariance to our robust
estimator. The dotted line represents the largest negative eigenvalue in
the spectrum of the robust estimate

method. It is clear that the most reliable strategy would be
to perform a full refit of the experimental data – which is
outside of the scope of this study which only aims at giving
a qualitative understanding of the effect of switching from a
LO to a NLO analysis.

Finally, to stress once again the importance of our robust
estimate of the covariance, we plot in Fig. 11 a comparison
between the spectrum of eigenvalues of the sample covari-
ance matrix versus our robust estimate with Nkin = 20 on
the subtraction constant dataset. The difference between the
largest eigenvalues is mainly driven by the fact that σMAD is
smaller than the sample standard deviation which is inflated
by outliers. The eigenvalues of the robust estimator then
decrease more slowly than the sample one, which means that
they will produce an increased stability in a χ2 fit. Six eigen-
values of the robust estimator are negative. The dotted line
represents the largest of them in absolute value, and repre-
sents a physical criterion to discard smaller eigenvalues as
unreliable. In the end, at most 7 eigenvalues of the covariance
matrix are reliably estimated.

The fits presented in the following section are stable when
Nkin varies in the interval 10 to 30. Below, we under-sample
the phase-space available to the study, resulting in larger
uncertainties. Above, the quality of inference of the covari-
ance matrix decreases sharply since Nkin becomes fairly
large compared to the 100 replicas. When we use the unre-
liable sample covariance estimator, we do not find such an
extended region of stability. We will show all results of the fits
for Nkin = 20 and the robust estimators. Nkin = 20 corre-
sponds to probing the subtraction constant in the region: ξ ∈
[0.1, 0.4], −t ∈ [0.2, 0.4] GeV2 and Q2 ∈ [1, 2.5] GeV2,

which corresponds to the bulk of the most constraining
dataset, JLab 6 GeV.
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5.3 Results of the fits at LO

5.3.1 LO radiative gluons and n = 1

At first, we consider only terms with n = 1 in the Gegenbauer
expansion of Eq. (55). Furthermore, we assume a radiative
gluon generation, that is that dg1 (t = 0, μ2

g) = 0 for some

low-lying scale μ2
g. Therefore, duds1 (t = 0, μ2

0) is really the
only free parameter. Using μg = 300 MeV, we obtain the
LO result:

duds1 (t = 0, 2 GeV2) = −0.6 ± 1.1

dg1 (t = 0, 2 GeV2) = −0.8 ± 1.5

dc1(t = 0, 2 GeV2) = −0.003 ± 0.005

(LO n = 1 radiative gluons). (82)

In spite of the different fitting methodology compared to
Ref. [7], the results are very similar: there was determined
duds1 = −0.5±1.2 and dg1 = −0.6±1.6. It was also noticed
in Ref. [7] that the threshold μg were gluons are introduced
has barely any impact on the fitted value of duds1 . For instance,
if we use μg = 1 GeV, we still obtain duds1 (t = 0, 2 GeV2) =
−0.6 ± 1.1, while on the other hand, dg1 = −0.1 ± 0.2.

In order to understand this interesting observation, we
need to remind ourselves that at LO, there is no direct con-
tribution of the gluons to the subtraction constant. The only
contribution is indirect, through the radiation of quarks by
gluons in the perturbative evolution. On the range of Q2 rel-
evant for this analysis, that is Q2 ∈ [1, 2.5] GeV2, the evo-
lution operator resummed to leading logarithmic accuracy
reads:

⎛

⎜
⎝
duds1 (2.5 GeV2)

dg1 (2.5 GeV2)

dc1(2.5 GeV2)

⎞

⎟
⎠ =

⎛

⎝
0.92 0.015
0.23 0.95

0.001 0.007

⎞

⎠
(
duds1 (1 GeV2)

dg1 (1 GeV2)

)

.

(83)

We label the coefficients of the evolution matrix from μ2
0 to

μ2 as:
⎛

⎜
⎝

Γ
qq

1 (μ2, μ2
0) Γ

qg
1 (μ2, μ2

0)

Γ
gq

1 (μ2, μ2
0) Γ

gg
1 (μ2, μ2

0)

Γ
cq

1 (μ2, μ2
0) Γ

cg
1 (μ2, μ2

0)

⎞

⎟
⎠ . (84)

Notice how small Γ
qg

1 , the radiation of light quarks by glu-
ons, is in the range of scales covered by the bulk of the exper-
imental data. This means that gluon contribution to the sub-
traction constant at LO is heavily suppressed. Introducing
the gluon radiation threshold, we obtain that:

duds1 (μ2) = [Γ qq
1 (μ2, μ2

0) + Γ
qg

1 (μ2, μ2
0)Γ

gq
1 (μ2

0, μ
2
g)

/Γ
qq

1 (μ2
0, μ

2
g)] × duds1 (μ2

0). (85)

The maximal effect of gluons on the fit of duds1 is obtained
when μ2

0 and μ2 are taken at the extreme values covered
reliably by the experimental data, so here 1 and 2.5 GeV2.

We find therefore that the features of the fitted data in
the interval [1, 2.5] GeV2 that can be imputable to glu-
ons are typically of the order of Γ

qg
1 (2.5, 1)/Γ

qq
1 (2.5, 1) ×

Γ
gq

1 (1, 0.09)/Γ
qq

1 (1, 0.09) = 0.015/0.92 × 1.21 = 2% of
the contribution imputable to duds1 . If μg increases, the glu-
onic contribution decreases even more, but that is in any case
completely imperceptible. In other words, in a LO analysis,
radiative gluons might as well be equivalent to no gluons
at all. Although this means that the quark contribution to
the GFF

∑
q Cq(t) is quite independent of the choice of

radiative threshold, it clearly means that the overall GFF
C(t) = ∑

q Cq(t) + Cg(t) is extremely unreliable.

5.3.2 LO radiative gluons and n = 3

Still using a radiative gluon generation with μg = 300 MeV,
we now allow both duds1 (t = 0, 2 GeV2) and duds3 (t =
0, 2 GeV2) to be fitted. At LO, we find:

duds1 (t = 0, 2 GeV2) = −2.1 ± 26.6

duds3 (t = 0, 2 GeV2) = 1.5 ± 26.5

dg1 (t = 0, 2 GeV2) = −2.9 ± 37

dg3 (t = 0, 2 GeV2) = 0.2 ± 4.1

(LO n = 3 radiative gluons) (86)

d1 and d3 are anti-correlated in excess of 99% as identi-
fied in Ref. [7] before. One observes that, within uncertainty,
duds1 ≈ −duds3 . In other words, the uncertainty in the extrac-
tion is almost entirely stemming from contamination of LO
shadow D-terms. We have derived in Sect. 4 an approximate
estimator of the uncertainty linked precisely to this shadow
D-term duds1 ≈ −duds3 with a simplified evolution kernel.
We found that (66):

σd1q ≈ σd3q ≈ ΔS
(

1 − αs (Q2
max )

αs (Q2
min)

) (87)

ΔS can be obtained by noting that the fit with d1 alone reads
S = 8/3 × duds1 , and therefore ΔS ≈ 8/3 × 1.1. This is
probably an underestimation, since it takes the uncertainty
of the simplest fit as a measure of the uncertainty of the
full quantity. Then using Q2

max = 2.5 GeV2 and Q2
min =

1 GeV2, we find

σd1q ≈ σd3q ≈ 16, (88)
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to compare with the value of 26.5 that our fit produced.
Besides the likely underestimation of ΔS, the main draw-
back of this approximation is the reduction of the infor-
mation contained in the scale dependence to a sole interval
[Q2

min, Q
2
max ] where we assume that the data is uncorrelated

and uniformly constraining. Then, the result is of course sen-
sitive to the choice of this interval. For instance, simply rais-
ing Q2

min to 1.4 GeV2 [and therefore reducing the range in
scales where we believe the data to be truly constraining]
would produce an estimate of σd1q ≈ σd3q ≈ 25.5, very
similar to the one truly observed. The approximate evolu-
tion used to derive our estimate (66) only represents a minor
imprecision owing to the negligible effect of radiative gluons
and the fact that our scales are close to the charm mass.

5.3.3 LO unconstrained gluons and n = 1

This time, we allow dg1 (t = 0, μ2
0) to also be a free parameter.

We find at LO:

duds1 (t = 0, 2 GeV2) = −0.6 ± 1.1

dg1 (t = 0, 2 GeV2) = −11 ± 132

dc1 (t = 0, 2 GeV2) = −0.04 ± 0.47

(LO n = 1 unconstrained gluons). (89)

There again, the results are in good agreement with the
results of Ref. [7]. Two interesting features are noticeable:
the extraction of duds1 has been left unchanged by the addi-
tion of unconstrained gluons, and the uncertainty of the gluon
term has increased by a factor 90 compared to the radiative
gluons. This factor of 90 can be understood as being related
to Σqq(2.5, 1)/Σgq(2.5, 1) = 0.92/0.015 ≈ 60, the fac-
tor by which dg1 (1 GeV2) must be larger than duds1 (1 GeV2)

so that both terms contribute with the same order of mag-
nitude to the fitting of the data. As for the reason why duds1
is unchanged by unconstrained gluons at LO, it comes from
the fact that the fitted distributions of duds1 and dg1 are largely
uncorrelated (correlation coefficient of −0.10). As we have
stressed before, the large similarity of Γ

qq
1 and Γ

qq
3 is the

root of the very large correlation between dq1 and dq3 . On the
other hand, Γ

qq
1 and Γ

qg
1 present very different functional

forms, and result therefore in far less correlated fits as can be
observed on Fig. 12.

5.4 Results of the fits at NLO

At NLO, for μ2 = Q2 and with a truncation up to Gegen-
bauer moments of order n = 3, the subtraction constant
reads:

S =
∑

q

e2
q S

q + Sg, (90)

Fig. 12 Comparison of the functional form of the operators Γ
qq

1 , Γ
qq

3 ,

αsΓ
gg

1 and Γ
qg

1 as a function of the scale. The essence of the deconvo-
lution problem is that, when the fitted functional forms are too similar
to one another, the associated parameters are extremely difficult to dif-
ferentiate and inflate considerably the uncertainty

Sq
NLO= dq1

(
4 − 4

9

αsCF

4π

)
+ dq3

(
4 + 14759

450

αsCF

4π

)
,

(91)

Sg
NLO=

∑
q e

2
qαsTF

4π

(
−172

9
dg1 − 3317

150
dg3

)
, (92)

whereCF = 4/3 and TF = 1/2. We use the LO running of αs

from APFEL [82,83], which remains continuous at the heavy
quark mass thresholds. However, a naive implementation of
the gluon coefficient function is discontinuous at threshold
due to the factor

∑
q e

2
q . This makes no practical numerical

difference for radiative gluons fits, but becomes important
for the fit results with unconstrained gluons. The appropriate
course of action would be to include heavy quark mass effects
in the coefficient function, but this extends beyond the scope
of this paper. To avoid spurious effects, we will therefore
consider for the rest of the paper that the factor

∑
q e

2
q in the

gluonic contribution to the subtraction constant is fixed to
10/9, the value it assumes naively if n f = 4.

5.4.1 NLO radiative gluons and n = 1

With a threshold of radiative gluon generation at 300 MeV,
we find:

duds1 (t = 0, 2 GeV2) = −0.7 ± 1.3

dg1 (t = 0, 2 GeV2) = −0.9 ± 1.8

dc1(t = 0, 2 GeV2) = −0.003 ± 0.006

(NLO n = 1 radiative gluons). (93)

The results are almost identical to the LO results of the same
fit. There again, changing the threshold for gluon production
is only a little effect on duds1 , although larger than at LO.
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With a threshold μ2
g = 1 GeV2, we find duds1 = −0.6 ± 1.1

and dg1 = −0.1 ± 0.2.

To understand the similarity between the LO and NLO fit
in the case where only duds1 is fitted, we observe that αs is at
most αs,max = 0.35 in the fitted range. Then the NLO quark
term reads (91):

∑

q

e2
q

(
4 − 4

9

αs,maxCF

4π

)
≈ 3.98

∑

q

e2
q ≈ 2.65, (94)

where we neglected the charm contribution to the subtraction
constant, and for gluons (92):

−172

9

∑
q e

2
qαs,maxTF

4π
≈ −0.30, (95)

which is of the order of 10% of the quark contribution. Due
to its negative sign, it causes a slight increase in the fitted
value of duds1 compared to the situation at LO when the gluon
threshold is small enough. Let us note that although gluons
still play a minor role in the extraction, it is a much bigger
one than at LO where we estimated it to 2% because of the
smallness of Γ

qg
1 .

5.4.2 NLO radiative gluons and n = 3

Still with a radiative gluon threshold at μg = 300 MeV, and
allowing duds1 and duds3 to be fitted, we obtain:

duds1 (t = 0, 2 GeV2) = −1.7 ± 21

duds3 (t = 0, 2 GeV2) = 0.7 ± 15

dg1 (t = 0, 2 GeV2) = −2 ± 30

dg3 (t = 0, 2 GeV2) = 0.1 ± 2.3

(NLO n = 3 radiative gluons). (96)

The general uncertainty is of the same order of magnitude as
the one obtained at LO and the anti-correlation still in excess
of 99%. However, whereas at LO, we had duds1 ≈ −duds3 ,

the situation has changed a bit. Since the subtraction constant
has been modified at NLO, it does not admit exactly the same
shadow D-terms. Indeed, the duds3 term in (91) gives with
αs(2 GeV2) ≈ 0.3:

∑

q

e2
q

(
4 + 14759

450

αsCF

4π

)
≈ 3.36. (97)

An NLO shadow D-term must now also cancel the contri-
bution stemming from the gluons, which we can no longer
ignore even in the radiative approximation. Using the refer-
ence scale of 2 GeV2 and the explicit relation between dgn
and dudsn offered by the radiation threshold, the gluonic con-

tribution of n = 1 reads:

−172

9

∑
q e

2
qαsTF

4π

Γ
gq

1 (2, 0.09)

Γ
qq

1 (2, 0.09)
duds1 ≈ −0.36duds1 , (98)

whereas for n = 3:

3317

150

∑
q e

2
qαsTF

4π

Γ
gq

3 (2, 0.09)

Γ
qq

3 (2, 0.09)
duds3 ≈ 0.05duds3 . (99)

We note in passing that the effect of gluons at NLO on duds3
is much smaller than on duds1 . Finally, the NLO subtraction
constant at 2 GeV2 reads approximately as:

S(2 GeV2)
NLO= (2.65 − 0.36)duds1 + (3.36 + 0.05)duds3 ,

(100)

to compare with the LO:

S
LO= 2.65duds1 + 2.65duds3 . (101)

An expectation of NLO shadow D-term with radiative gluons
at a 300 MeV threshold is therefore:

duds1 ≈ −3.36 + 0.05

2.65 − 0.36
duds3 ≈ −1.5duds3 . (102)

Using the observed value of σd3q = 15, this would predict
σd1q ≈ 22.5, which is close to the true value of 21. The esti-
mator is made somewhat more complicated than at LO by
the necessary inclusion of the gluon term and αs . It provides
however reliable results, demonstrating that the interpreta-
tion of the uncertainty in terms of a simple shadow D-term
is a valuable tool.

5.4.3 NLO unconstrained gluons and n = 1

If we now allow the dg1 term to be freely fitted alongside duds1 ,

we find:

duds1 (t = 0, 2 GeV2) = −1.1 ± 7.7

dg1 (t = 0, 2 GeV2) = −6 ± 78

dc1 (t = 0, 2 GeV2) = −0.02 ± 0.27

(NLO n = 1 unconstrained gluons).
(103)

One will notice that the uncertainty on duds1 has increased
by a large factor compared to the case where dg1 was not a
free parameter. This indicates very large correlation between
duds1 and dg1 at NLO, and the impact of an underlying shadow
D-term.

The reason why a shadow D-term produces a large effect
at NLO in the joint fit ofduds1 anddg1 whereas it was not visible
at LO is that gluons now contribute to the subtraction constant
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in their own right, mostly through αs(Q2)Γ
gg

1 (Q2, μ2
0). At

LO they could only contribute through the radiation term
Γ

qg
1 (Q2, μ2

0). But Γ
gg

1 is a diagonal term in the evolution
matrix, whose functional dependence is very similar to that
of Γ

qq
1 , and fundamentally different of the off-diagonal term

Γ
qg

1 . The operators can be compared on Fig. 12 where it will
be apparent that the impact of the shadow D-term related to
dg1 at NLO remains smaller than that of duds3 . Therefore σd1q

remains less affected by the inclusion of a free NLO dq1 than
by a LO or NLO duds3 .

6 An EIC perspective

In Sect. 4, we derived a simple estimate of the uncertainty of
dq1 and dq3 when they are fitted jointly in a LO framework
with simplified evolution over a range [Q2

min, Q
2
max ]. As we

studied NLO fits in Sect. 5, we extended the concept and
started to consider the case of explicit gluonic degrees of
freedom. Let us give here final general expressions and apply
them on a kinematic range relevant for the EIC.

We assume that the contribution of heavy quarks remains
always negligible in the subtraction constant and that the
contribution of all three light flavors is the same dudsn . In the
absence of appropriate heavy quark mass effects in the gluon
coefficient function, we fix ne = ∑

q e
2
q = 10/9. Then, at a

given value of t, we remind that the subtraction constant at
NLO truncated to the Gegenbauer moments n = 3 reads:

S
NLO= 2

3
duds1

(
4 − 4

9

αsCF

4π

)
− 172

9

neαsTF
4π

dg1

+ 2

3
duds3

(
4 + 14759

450

αsCF

4π

)
− 3317

150

neαsTF
4π

dg3 (104)

where S, dan and αs have all an implicit dependence on Q2.

First let us study the impact of EIC kinematics on the free
extraction of a gluon contribution with n = 1 only. Following
the reasoning of Sect. 4, we cancel the subtraction constant
at some reference scale:

0 = a(μ2
0)d

uds
1 (μ2

0) + b(μ2
0)d

g
1 (μ2

0), (105)

where the coefficientsa andb are read straightforwardly from
the first line of Eq. (104). We choose μ2

0 = m2
c, which will

also serve as the Q2
min of our data. Then at any scale, we

have:

S(Q2) = a(Q2)(Γ
qq

1 (Q2, μ2
0)d

uds
1 (μ2

0)

+ Γ
qg

1 (Q2, μ2
0)d

g
1 (μ2

0))

+ b(Q2)(Γ
gq

1 (Q2, μ2
0)d

uds
1 (μ2

0)

+ Γ
gg

1 (Q2, μ2
0)d

g
1 (μ2

0)). (106)

Fig. 13 Evolution of the uncertainty of duds1 and d1
g when the latter is a

free parameter depending on the range of Q2 available for the extraction
of CFFs. The red star denotes approximately the current situation

Assuming that a quantity ΔS represents the typical exper-
imental uncertainty on the subtraction constant for Q2 ∈
[μ2

0, Q
2
max ] where Q2

max is the largest scale where the sub-
traction constant is extracted reliably, we find:

σd1q(μ
2
0) = ΔS ×

∣∣∣∣a(Q2
max )Γ

qq
1 − a(Q2

max )a(μ2
0)

b(μ2
0)

Γ
qg

1

+ b(Q2
max )Γ

gq
1 − a(μ2

0)b(Q
2
max )

b(μ2
0)

Γ
gg

1

∣∣∣∣

−1

,

(107)

where all the Γn operators have an implicit argument
(Q2

max , μ
2
0). Straightforwardly,

σd1g(μ
2
0) =

∣∣∣∣∣
a(μ2

0)

b(μ2
0)

∣∣∣∣∣
σd1q(μ

2
0). (108)

We depict in Fig. 13 the value of this estimate of the precision
using ΔS = 3, that is considering that the current precision
on the subtraction constant is extended to a much larger range
in Q2. The current estimated precision with the CFF extrac-
tion used in this study is depicted by the red star. One observes
that constraining the CFFs up to Q2 = 20 Gev2 could reduce
the uncertainty by a factor 3 to 4. Let us notice also that our
estimator predicts very accurately that σd1g ≈ 10σd1q , a
relation that one can observe to be accurately verified in our
actual fit as well.

Now we study the impact of EIC kinematics on the extrac-
tion of both duds1 and duds3 . We will assume that the gluon
part of the shadow D-term is 0 at the reference scale. Then:

0 = a(μ2
0)d

uds
1 (μ2

0) + c(μ2
0)d

uds
3 (μ2

0), (109)
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Fig. 14 Evolution of the uncertainty of duds1 and duds3 depending on
the range of Q2 available for the extraction of CFFs, considering only
the role of shadow D-terms with no explicit gluon contribution. The
red and green stars denote approximately the current situation obtained
when fitting with radiative gluons

and

S(Q2) = [a(Q2)Γ
qq

1 (Q2, μ2
0) + b(Q2)Γ

gq
1 (Q2, μ2

0)]
× duds1 (μ2

0) + [c(Q2)Γ
qq

3 (Q2, μ2
0)

+ d(Q2)Γ
gq

3 (Q2, μ2
0)]

× duds3 (μ2
0). (110)

Combining the two expressions gives the estimator:

σd1q (μ2
0) = ΔS ×

∣∣∣∣a(Q2
max )Γ

qq
1 + b(Q2

max )Γ
gq

1

− c(Q2
max )a(μ2

0)

c(μ2
0)

Γ
qq
3 − d(Q2

max )a(μ2
0)

c(μ2
0)

Γ
gq

3

∣∣∣∣
−1

.

(111)

We produce the corresponding plot in Fig. 14. Constraining
the CFFs up to Q2 = 20 GeV2 would now result in a decrease
of uncertainty by a factor 2 to 3. We remind that we have only
considered here shadow D-terms with no explicit gluon con-
tribution, which corresponds to the uncertainty of the fits we
have performed earlier with radiative gluons. Adding free-
dom of explicit gluon contributions would result in yet a
far larger increase of uncertainty, combining the effect of
Figs. 13 and 14.

However, let us stress that our estimator is only focus-
ing on the impact of the measured range of scales Q2. The
EIC will also bring precious high-quality data in regions
in ξ which are poorly constrained so far, which will likely
decrease the value of ΔS. More work to estimate this impact
remains to be done.

7 Conclusion

We have provided a re-derivation of dispersion relations for
DVCS at all order in perturbation theory. Our presentation
highlights that dispersion relations contain far more infor-
mation than the commonly acknowledged restriction to the
D-term. In fact, Eq. (43) along with Eq. (31) give a very syn-
thetic picture of the information that can possibly be extracted
from an arbitrary knowledge of CFFs at a given scale. We
have then stressed that the scale dependence of measurements
is crucial to mitigate the issues related to the deconvolution
problem. An intuitive presentation in terms of shadow D-
terms allows to construct simple estimates of the impact on
the uncertainty of the range in scales on which DVCS is
measured.

Using those tools, we have re-considered the dispersion
relation global analysis of Ref. [7]. We have proposed a new
statistical method aiming at giving a sounder account of cor-
related fits in the presence of outliers. Our re-analysis of the
LO D-term gives however very similar results to the previ-
ous publication. We extend the analysis to NLO. We find that
the NLO results are generally fairly similar to the LO. The
major modification comes when an explicit gluon D-term is
allowed to be freely fitted on the data. Then we find at NLO
a very large correlation between the fitted quarks and glu-
ons that does not exist at LO. We provide an explanation for
this fact, linked to the similarity of scale dependence of the
evolution operators.

Using the simple formalism of shadow D-terms, we finally
establish generic estimates of the reduction of uncertainty
that one could expect from the range of scales probed at
an EIC. We find that extending the region of measurements
with a similar statistical accuracy as current best measure-
ments to 20 GeV2 could bring a reduction of uncertainty in
the deconvolution problem by a factor 2 to 5 depending on the
quantity of interest. One should however keep in mind that
the EIC will additionally reduce the statistical uncertainty
on the subtraction constant, by measuring CFFs at values of
Bjorken-x where they are poorly constrained so far. There-
fore, the potential EIC impact on our experimental knowl-
edge of d1 could be larger and remains to be fully estimated.
In the mean-time, we expect the knowledge of the pressure
and shear forces within the nucleon to be mostly driven by
lattice-QCD calculations.
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