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I briefly review modified theories of gravity, and in particular discuss massive theories of
gravity and current observational bounds placed on the graviton mass.

1 Introduction

1.1 Why modify gravity at large distances?

Why modify gravity at large distances? The principal motivation is cosmological. The main
driver for exploring modifications to general relativity are the intertwined dark energy and
cosmological constant problems, i.e. the theoretical attempts to reconcile the now compelling
picture that the universe is undergoing late time acceleration, together with our understanding
of gravity:

• Old Cosmological Constant Problem: Why is the Universe not accelerating at a rate
determined by the vacuum energy?

• New Cosmological Constant Problem: Assuming the above is solved, what gives rise
to the remaining vacuum energy or dark energy which leads to the acceleration we observe?

• Testing GR: Because it allows us to put better constraints on Einstein Gravity.

Gravity has only been tested over a special range of scales and curvatures1. Just as Weinberg
constructed his nonlinear version of quantum mechanics, to provide a means to test experimen-
tally the linearity of ordinary quantum mechanics 2, it is important to explore cosmological
alternatives to general relativity (and a cosmological constant), to better probe the possible
validity of this theory.

1.2 Guiding Principle

The central guiding principle to constructing modifications of general relativity is the theorem
that:



General Relativity (with a cosmological constant) is the unique local and Lorentz invariant
theory describing an interacting single massless spin two particle that couples to matter.

This theorem goes back to the work of Feynman, Weinberg, Deser, Wald and many others
3,5,4,6 and has been approached both from the perspective of the consistency of the equations
of motion, the consistency of the non-linear symmetries, and the existence of an S-matrix. Any
modification will thus give up one of these properties:

1. Locality,

2. Lorentz Invariance,

3. Massless,

4. Single Spin Two.

A corollary of this theorem is that any theory which preserves Lorentz invariance and locality
(1 and 2) leads to new degrees of freedom since we require either new states (4) or the spin 2 field
is massive (3), which by Lorentz invariance then has 3 new degrees of freedom. New gravitational
degrees of freedom that couple to matter are highly constrained by a variety of tests including:
fifth force constraints (e.g. solar system tests), equivalence principle tests, binary pulsar timing,
nucleosynthesis, cosmological moduli problems. We thus need some kind of screening mechanism
to hide extra degrees of freedom.

1.3 Screening Mechanisms

The different screening mechanisms that arise in theories of dark energy and modified gravity
can be understood in relatively simple terms as follows. Let us suppose for simplicity, that
the new degrees of freedom that arise are scalars. Let us denote one of these scalar fields
by φ, and take into account the fact that in a cosmological or astrophysical background it
may take on some time/space dependent background value φb. Accounting for fluctuations we
denote φ = φb + δφ. Similarly let us collectively denote the various components of the stress
energy tensor by ρ = ρb + δρ. The generic form of the equations of motion for perturbations is
schematically

Z(φb, ρb)

[
d2δφ

dt2
− c2s(φb, ρb)∇2δφ

]
+m2(φb, ρn)δφ = β(φb, ρb)GNewtonδρ . (1)

The static force between two point masses Ma, Mb will take the schematic forma

F ≈ MaMbG

r2
β2(φb, ρb)

Z(φb, ρb)c2s(φb, ρb)
exp (−m(φb, ρb)r) . (2)

Generically these fifth forces may be as strong as the ordinary Newtonian contribution unless
one or more of the following conditions are met:

1. The coupling is small, at least in the presence of matter β(φb, ρb)� 1. This is realised by
quintessence models (where β ≈ 0) or the symmetron mechanism 7 where this occurs in
the regions of dense environments.

2. The mass becomes large in the region of dense environments m(φb, ρb) � 1/rexp, as is
realised for example by the chameleon mechanism 8.

3. The kinetic term becomes large in dense environments Z(φb, ρb)� 1. This is known as the
Vainshtein mechanism 9 and is most famously realised in the context of massive theories
of gravity.

aAssuming an interaction Lint ∼ β(φb, ρb)GNewtonδφδρ



In what follows we shall focus on theories of massive gravity that incorporate the Vainshtein
screening mechanism. For a recent review of Vainshtein screening see Ref. 10. In brief this
mechanism works as follows. Associated with the graviton mass scale m, the Planck scale MPl

and mass of a source M , there is a characteristic length scale known as the Vainshtein radius
rV determined by

r3V =
1

MPlm2

M

MPl
. (3)

This is the scale at which the helicity-zero modes of the massive graviton, the would-be progen-
itors of fifth forces become strongly coupled. At distance r � rV the effective kinetic term for
fluctuations around the background takes the form

Z ∼
(
rV
r

)A
, (4)

with A a positive power such that Z � 1. This arises from the nonlinearities of the strong
coupling mechanism. This screening of the fifth forces means that the predictions of general
relativity are recovered with small corrections. Stated differently, this region is the one for
which the spacetime curvature R � m2 and so the mass term in massive gravity is negligible
relative to the Einstein-Hilbert term. At distances r � rV the mass term comes into play and
there are noticeable departures from general relativity, until eventually we reach r � 1/m at
which point the Yukawa suppression effect kicks in.

2 Massive Gravity

What does it mean to have massive gravity? To understand this we can think of the analogy
of how the W and Z bosons become massive in the standard model. There the electroweak
symmetry is broken by the vev of the Higgs field via

SU(2)× U(1)Y → U(1)EM , (5)

with the result that the W and Z bosons become massive. The would-be Goldstone mode
in the Higgs field becomes the Stückelberg field which gives the boson mass. For instance
in the simplified version of the Abelian Higgs model, the single complex Higgs field can be
parameterized as

Φ→ (v + ρ)eiπ , (6)

where v is the Higgs vev, ρ is the Higgs boson and π is the Stückelberg field (which in the global
limit is the Goldstone mode). Under the U(1) symmetry Aµ → Aµ + ∂µχ and π → π + χ.

In massive gravity, the symmetries are the direct product of a local diffeomorphism group
and an additional global Poincaré group. The breaking mechanism that gives rise to a mass is
the one that leaves behind the diagonal subgroup

Diff(M)× Poincare→ Poincarediagonal . (7)

Similarly in bigravity models, two copies of the local diffeomorphim group are broken down to
a single copy of the diffeomorphism group

Diff(M)×Diff(M)→ Diff(M)diagonal . (8)

Despite much blood, sweat and tears, an explicit Higgs mechanism for gravity is not known.
However, if such a mechanism exists, we do know how to write down the low energy effective
theory in the spontaneously broken phase. For an Abelian Higgs this corresponds to integrating
out the Higgs boson and working at energy scales lower that the mass of the Higgs boson ρ.



This will then be an effective theory for the Stückelberg field π coupled to the gauge field Aµ.

In massive gravity we follow the same procedure 11. Diffeomorphism invariance is sponta-
neously broken, but can be recovered with the introduction of 4 Stuckelberg fields φa. This
is achieved by replacing the Minkowski reference metric for the global Poincare symmetry ηab
with the spacetime tensor fµν = ηab∂µφ

a∂νφ
b. In this way the mass term can be constructed

out of scalar combinations of fµν and gµν in a way which respects diffeomorphism invariance.
The reference metric ηab can be viewed as the vev of a spin-2 Higgs (possibly composite) field
ηab = 〈Ôab〉. The additional 3 degrees of freedom in massive graviton are made manifest by the
decomposition

φa = xa +
1

mMPl
Aa +

1

Λ3
3

∂aπ , (9)

where Λ3
3 = m2MPl and scales introduced are inferred by canonical normalization. Aa caries

the 2 helicity-one degrees of freedom of the massive spin 2 field (there is an additional U(1)
symmetry Aµ → Aµ + ∂µψ, π → π −mψ which keeps it at 2), and π the helicity-zero. The full
form of Lorentz invariant massive gravity with the highest strong coupling scale possible Λ3 was
given in Ref 12. The precise form is

L =
1

2

√
−g

(
M2

PlR−m2
4∑

n=0

βnUn

)
+ LM , (10)

where the characteristic polynomials Un(K) are defined via

Det[1 + λK] =
4∑

n=0

λnUn(K) , (11)

and the matrix K is defined via K = 1−
√
g−1f which may be equivalently written as gµαfαν =

gµν − 2Kµ
ν +Kµ

αK
α
ν . The square root structure is determined entirely by the requirement that

the strong coupling scale is Λ3. A generic mass term, would give rise to an effective theory
whose cutoff is Λ5 = (m3MPl)

1/5.

3 Constraints on the Graviton Mass

Constraints on the graviton mass are summarized in Figure (1) and are discussed at length in
Ref. 13 b. They arise from probing three distinct physical consequences of the graviton having a
mass. These are as follows:

• Yukawa Suppression: Due to the mass, static weak field forces will be exponentially sup-
pressed at large distances V ∼ mMG

r → mMG
r e−mr.

• Modified Dispersion Relation: Gravitational waves now propagate with a dispersion rela-
tion of the form ω2 ≈ c2k2 +m2c2.

• Fifth forces/New degrees of freedom: Since generically massive gravity theories have addi-
tional degrees of freedom which couple to the stress-tensor, then they induces fifth forces
which as we have discussed in the previous section must be screened in some sense in dense
environments, to avoid immediate conflict with current observations.

bWe shall review various aspects of this discussion here, and we refer to Ref. 13 for a fairly exhaustive list of
references



Figure 1 – A summary of constraints on the graviton mass from de Rham, Deskins, Tolley and Zhou, 2017.

3.1 Fifth Forces/New degrees of freedom

Traditionally the strongest constraint on the mass of the graviton comes from lunar laser ranging
experiments which probe modifications in the earth-moon system. Despite only testing solar
system scales, the accuracy and length of time they can be performed significantly compensates
the otherwise negligible physical modification in the orbits due to fifth forces. For models whose
effective theory is described by a cubic Galileon, such as the Dvali-Gabadadze-Porratti model
then the constraint on the graviton mass implied by a modification of the Newtonian potential
δΦ is of order

mg < δΦ

(
rS
a3

)1/2

→ mg < 10−32eV . (12)

where a is the semi-major axis of the lunar orbit and rS the Schwarzschild radius of the earth.
For ‘hard-mass’ models of massive gravity, or those whose effective theory is described by a
quartic Galileon the constraint is slightly weaker

mg < δΦ3/4
(
rS
a3

)1/2

→ mg < 10−30eV . (13)

It should be noted that these are already remarkably strong constraints, and are far stronger
than the equivalent constraints on the mass of the photon 21.

Observations of binary pulsars provide a more direct probe of the possible existence of extra
degrees of freedom 14, 15 since the extra polarizations of the graviton imply additional modes of
gravitational waves. Consequently binary pulsars lose energy faster than in general relativity
and so the orbit slows down more rapidly. This gives a constraint of order mg < 10−27eV.



3.2 Yukawa Potential Bounds

In the weak field approximation, a graviton mass leads to a Yukawa potential in place of a
Newtonian potential. As such structures cannot be gravitationally stable at distances larger
than the Compton wavelength of the graviton. Given that the core of clusters being a typical
size of 1-10 Mpc are virialized, then we obtain a constraint mg < 10−29eV 16. Within the solar
system, we can check the force law by the validity of Kepler’s law a3/T 2 =constant, for Earth
and Mars. This gives a constraint mg < 10−23eV 17. In weak lensing, the power spectrum of
effective convergence gets corrected by a factor of k2/(k2 +m2

g), and so assuming ΛCDM we get
mg < 10−32eV 18.

3.3 Direct Detection of Gravitational Waves

Given the recent direct detection of gravitational waves by advanced LIGO 19, associated with
the merger of two binary black holes, we have a direct opportunity to put constraints on the
mass of the graviton from the modified dispersion relation for gravitational waves. This is
through observations of the waveform. During the merger process, the frequency of gravitational
waves increases sharply at the end (the so-called ‘chirp’). Taking the simplest assumption that
ω2 = c2k2+m2c2 then the gravitational waveform would be more squeezed in a theory of massive
gravity than in GR. This is because the speed of near luminal gravitational waves increases with
frequency as

vg
c
≈ 1− 1

2

(
c

Λgf

)2

(14)

and so the later emitted parts of the waveform would travel faster, causing the overall waveform
to bunch up 20. If ∆te is the emitted signal duration and ∆to the observed duration, then
accounting for any possible redshifting, the effective time difference due to any possible squeezing
of the signal is

∆t = ∆to −∆te(1 + z) . (15)

This effect places a constraint on the graviton mass in the form

mg < 4× 10−22eV

(
f∆t

f

100Hz

200Mpc

D

)1/2

, (16)

where D is the luminosity distance of the source. The phase distortion f∆t can be measured
up to 1/ρ, where ρ is the signal to noise ratio. For the gravitational wave detection GW150914
we have D ∼ 400Mpc, f ∼ 100Hz and ρ ∼ 23 implying mg < 10−22eV. For LISA we could in
principle have ρ ∼ 103, D ∼ 3Gpc and f ∼ 10−3Hz which could put a constraint mg < 10−26eV.

While the above constraint on the graviton mass was discussed already after the first direct
detection of gravitational waves 19, this is far from the end of the story of what can be learned
about massive gravity from strong gravity physics and gravitational waves. We known in realistic
nonlinear theories of massive gravity, such as that discussed above, the graviton mass actually
depends on the environment, for instance it can depend on the distance to the black holes, via
the background metric. The graviton mass is also likely to vary non-adiabatically during the
merger, creating additional non-adiabatic effects in the waveform. The effects of the additional
scalar and vector gravitational modes has not been taken into account, and in certain stages of
the merger the scalar radiation could feasibly dominate the effect of the tensors. The black hole
or neutron star solutions may themselves be modified, which will lead to different quasi-normal
modes modifying the final ring-down stages. The Vainshtein suppression may not be active in the
merger region and this would need to be dealt with by a proper numerical simulation accounting
for the additional degrees of freedom. For instance it is expected that the PN expansion almost
certainly doesn’t working in the Vainshtein region. Given all these extra effects that have not



yet been taken into account, it is not unreasonable to conjecture that the current advanced
LIGO constraints on massive gravity theories are already much stronger than those quoted in
the literature so far.

4 Summary

Realistic, nonlinear, diffeomorphism invariant effective field theories of modified gravity do exist
and can be tested. Many models designed to modify late time cosmology can also be constrained
by solar system, astrophysical (e.g. pulsars), strong gravity physics, gravitational waves. The
various different screening mechanisms that arise in these theories play a crucial role in their
theoretical and observational viability.

Nonlinear theories of massive gravity are examples which will lead to many physical effects
different from general relativity, and these theories arise whenever diffeomorphism invariance is
spontaneously broken. Constraints on the graviton mass arise from probing essentially three
different distinct physical consequences of the existence of a graviton mass, (1) Yukawa sup-
pression, (2) dispersion relation and (3) fifth forces. Looking to the future, strong gravity and
gravitational wave physics will place strong constraints on these theories. For example, current
constraints on the graviton mass from advanced Ligo need to be improved to better understand
the nonlinear dynamics of the helicity-0 mode (Vainshtein effect), and the properties of the black
holes and neturon stars in massive gravity (be it Lorentz invariant or Lorentz violating), how
the binary merger is modified, and how the quasi-normal modes are modified.
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