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Sommaire

L’un des défis les plus passionnants auquel nous sommes confrontés aujourd’hui est la
perspective de la construction d’un ordinateur quantique de grande échelle. L’information
quantique est fragile et les implémentations de circuits quantiques sont imparfaites et su-
jettes aux erreurs. Pour réaliser un tel ordinateur, nous devons construire des circuits quan-
tiques tolérants aux fautes capables d’opérer dans le monde réel. Comme il sera expliqué
plus loin, les circuits quantiques tolérant aux fautes nécessitent plus de ressources que leurs
équivalents idéaux, sans bruit.

De manière générale, le but de mes recherches est de minimiser les ressources nécessaires
à la construction d’un circuit quantique fiable. Les codes de correction d’erreur quantiques
protègent l’information des erreurs en l’encodant de manière redondante dans plusieurs
qubits. Bien que la redondance requière un plus grand nombre de qubits, ces qubits supplé-
mentaires jouent un rôle de protection: cette redondance sert de garantie. Si certains qubits
sont endommagés en raison d’un circuit défectueux, nous pourrons toujours récupérer
l’informations.

Préparer et maintenir des qubits pendant des durées suffisamment longues pour effectuer
un calcul s’est révélé être une tâche expérimentale difficile. Il existe un écart important
entre le nombre de qubits que nous pouvons contrôler en laboratoire et le nombre requis
pour implementer des algorithmes dans lesquels les ordinateurs quantiques ont le dessus
sur ceux classiques. Par conséquent, si nous voulons contourner ce problème et réaliser des
circuits quantiques à tolérance aux fautes, nous devons rendre nos constructions aussi ef-
ficaces que possible. Nous devons minimiser le surcoût, défini comme le nombre de qubits
physiques nécessaires pour construire un qubit logique. Dans un article important, Gottes-
man a montré que, si certains types de codes de correction d’erreur quantique existaient,
cela pourrait alors conduire à la construction de circuits quantiques tolérants aux fautes
avec un surcoût favorable. Ces codes sont appelés codes éparses.

La proposition de Gottesman décrivait des techniques pour exécuter des opérations logiques
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sur des codes éparses quantiques arbitraires. Cette proposition était limitée à certains
égards, car elle ne permettait d’exécuter qu’un nombre constant de portes logiques par
unité de temps. Dans cette thèse, nous travaillons avec une classe spécifique de codes
éparses quantiques appelés codes de produits d’hypergraphes. Nous montrons comment
effectuer des opérations sur ces codes en utilisant une technique appelée déformation du
code. Notre technique généralise les codages basés sur les défauts topologiques dans les
codes de surface aux codes de produits d’hypergraphes. Nous généralisons la notion de
perforation et montrons qu’elle peut être exprimée naturellement dans les codes de pro-
duits d’hypergraphes. Comme cela sera expliqué en détail, les défauts de perforation ont
eux-mêmes une portée limitée. Pour réaliser une classe de portes plus large, nous intro-
duisons un nouveau défaut appelé trou de ver basé sur les perforations. À titre d’exemple,
nous illustrons le fonctionnement de ce défaut dans le contexte du code de surface.

Ce défaut a quelques caractéristiques clés. Premièrement, il préserve la propriété éparses
du code au cours de la déformation, contrairement à une approche naïve qui ne garantie
pas cette propriété. Deuxièmement, il généralise de manière simple les codes de produits
d’hypergraphes. Il s’agit du premier cadre suffisamment riche pour décrire les portes
tolérantes aux fautes de cette classe de codes. Enfin, nous contournons une limitation
de l’approche de Gottesman qui ne permettait d’effectuer qu’un certain nombre de portes
logiques à un moment donné. Notre proposition permet d’opérer sur tous les qubits en-
codés à tout moment.



Summary

One of the most exciting challenges that faces us today is the prospect of building a scal-
able quantum computer. Implementations of quantum circuits are imperfect and prone to
error. In order to realize a scalable quantum computer, we need to construct fault-tolerant
quantum circuits capable of working in the real world. As will be explained further below,
fault-tolerant quantum circuits require more resources than their ideal, noise-free counter-
parts.

Broadly, the aim of my research is to minimize the resources required to construct a reli-
able quantum circuit. Quantum error correcting codes protect information from errors by
encoding our information redundantly into qubits. Although the number of qubits that
we require increases, this redundancy serves as a buffer – in the event that some qubits are
damaged because of a faulty circuit, we will still be able to recover our information.

Preparing and maintaining qubits for durations long enough to perform a computation has
proved to be a challenging experimental task. There is a large gap between the number of
qubits we can control in the lab and the number required to implement algorithms where
quantum computers have the upper hand over classical ones. Therefore, if we want to
circumvent this bottleneck, we need to make fault-tolerant quantum circuits as efficient as
possible. To be precise, we need to minimize the overhead, defined as the number of physical
qubits required to construct a logical qubit. In an important paper, Gottesman showed that
if certain kinds of quantum error correcting codes were to exist, then this could lead to
constructions of fault-tolerant quantum circuits with favorable overhead. These codes are
called quantum Low-Density Parity-Check (LDPC) codes.

Gottesman’s proposal described techniques to perform gates on generic quantum LDPC
codes. This proposal limited the number of logical gates that could be performed at any
given time. In this thesis, we work with a specific class of quantum LDPC codes called
hypergraph product codes. We demonstrate how to perform gates on these codes using a
technique called code deformation. Our technique generalizes defect-based encodings in
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the surface code to hypergraph product codes. We generalize puncture defects and show
that they can be expressed naturally in hypergraph product codes. As will be explained in
detail, puncture defects are themselves limited in scope; they only permit a limited set of
gates. To perform a larger class of gates, we introduce a novel defect called a wormhole that
is based on punctures. As an example, we illustrate how this defect works in the context of
the surface code.

This defect has a few key features. First, it preserves the LDPC property of the code over
the course of code deformation. At the outset, this property was not guaranteed. Second, it
generalizes in a straightforward way to hypergraph product codes. This is the first frame-
work that is rich enough to describe fault-tolerant gates on this class of codes. Finally, we
circumvent a limitation in Gottesman’s approach which only allowed a limited number of
logical gates at any given time. Our proposal allows to access the entire code block at any
given time.
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Introduction

The last decade has witnessed tremendous progress in quantum computation. Quantum
computers may be capable of solving certain kinds of problems faster than their classical
counterparts. However, we are still far from these applications as constructing a quantum
computer is an enormously difficult problem. Quantum information is plagued by noise
which impedes our ability to prepare and coherently maintain quantum bits (qubits). The
domain of quantum error correction and fault tolerance emerged as a response to this prob-
lem and forms a pillar of research in quantum computation.

The article [1] presents the accuracy of one- and two-qubit gates in some devices (see table 1
in [1]). Even with the smallest error rate of 0.01% reported in table 1, a quantum algorithm
containing more than 10, 000 logical gates would very likely contain an error. More gener-
ally, if the probability of failure of a circuit component is a constant, we are certain to fail as
we build larger and larger circuits. Each architecture comes with its own set of advantages
and disadvantages. The physical incarnation of the error mechanisms will depend on the
experimental system in question. At this early stage, it is difficult to bet on one approach.
For this reason, our discussion will abstract away the specifics of particular architectures.
Although the actual values will change, errors are not something that will entirely be re-
moved from our systems. It is highly unlikely that we will ever be able to engineer systems
to the degree of precision required to run long quantum algorithms on raw qubits. This is
disheartening because it seems to imply that quantum computation is impossible.

Quantum error correction is a software method used to construct arbitrarily accurate vir-
tual qubits from underlying faulty physical qubits. In addition to error correction, a quan-
tum computer must also manipulate the encoded information, and these logical operations
must be executed in a way that avoids error propagation. The threshold theorem guarantees
that as long as the probability that a circuit component fails is below some threshold, we
can increase the length of the circuit arbitrarily [2, 3, 4, 5, 6]. At the heart of the threshold
theorem are objects called error correcting codes. Error correcting codes are ways of storing

1



2

information redundantly and we shall review them in chapter 2. This redundancy serves
as a buffer – in the event that some physical qubits are corrupted, we can still retrieve the
information. Once information is encoded in an error correcting code, we cannot point to
any one region and ask if the information resides there. Rather, information is stored in
non-local degrees of freedom in such a way that no local read-out can discern the encoded
information. By the same token, local errors cannot damage stored information. However
making systems robust comes at a cost of increasing the number of qubits we have to con-
trol.

Optimizing the storage capacity of quantum error correcting codes is one way to minimize
the qubits we need to perform quantum computation. The other concern is the number
of extra qubits we need to perform measurements. In addition to the qubits required for
storage, we also need extra qubits, i.e. an ancillary system, for performing measurements.
Quantum error correcting codes necessitate performing joint measurements on sets of data
qubits. Based on the outcome of these measurements, we can deduce the error and thereby
perform error correction. The size of this ancilla system could grow considerably based on
the technique that we use. These trade-offs will depend on the quantum error correcting
code we choose.

Not all quantum error correcting codes are created equal. Some codes offer better protec-
tion than others for fixed cost (as measured by figures of merit we shall discuss later). They
also permit simple measurement protocols.

Raussendorf and collaborators [7, 8, 9] discovered a fault-tolerant scheme that is naturally
defined by local interactions in a two-dimensional geometry and has a relatively large error
threshold. In this scheme, logical qubits are encoded in Kitaev’s surface code [10, 11] and
some logical gates can be implemented by topologically protected operations. Another ad-
vantage of the surface code is that performing joint measurements on the data qubits can
be done using only a constant number of ancilla qubits. This topological architecture has
been the object of intense theoretical studies and is now being pursued by major experimen-
tal groups and corporations worldwide (see for example [12, 13] and references contained
therein). We shall cover these properties in chapter 3. Experimental demonstrations of fault
tolerance will certainly be a milestone experiment in the next few years. The success of the
surface code architecture can on the one hand largely be attributed to its simplicity and rel-
atively good performance, but on the other hand this architecture has benefited from over
a decade of theoretical development and optimization. In fact, this single architecture has
probably received far more theoretical inputs than all other coding schemes combined, so
it should not come as a surprise that it has caught the attention of experimentalists.
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It is unclear that the surface code will be the architecture we choose to use in the long
run. The article [14] shows resource estimates for implementing Shor’s algorithm using the
surface code (see table 1 in [14]). We can see that even with optimistic assumptions, it will
take anywhere between a million and hundred million physical qubits to run the algorithm
in a year. When we struggle to control tens of qubits today, these numbers do not appear
to be in the realm of the attainable. However we could also interpret these numbers to
mean that the surface code is perhaps not the best architecture suited for scalable quantum
computation. What class of codes can replace the surface code while maintaining some or
all of the features that make it appealing? Does there exist another local code capable of
storing more logical qubits and simultaneously able to protect qubits just as well?

Unfortunately, all quantum error correcting codes that can be laid out on a table top with
only nearest neighbor connections are limited by construction. Results like [15, 16] place
severe restrictions on local quantum error correcting codes. If we wish to increase the ca-
pacity of quantum error correcting codes, something has to give.

Motivated by this state of affairs, this thesis will emphasize one particular alternative to
the surface code, namely quantum Low-Density Parity-Check (LDPC) codes. Although
we will discuss the surface code to help build intuition for LDPC codes, this thesis is not
a review of the surface code. For a review of quantum error correction from a different
perspective, see [17]. The main similarity between the surface code and LDPC codes is
that error correction requires only joint measurement on a sparse set of qubits, hence the
name. This is an important feature because the experimental complexity of performing
multi-qubit measurements generally scales with the number of involved qubits, so it is
desirable to keep that number low. In addition to this sparsity constraint, the measurements
in the surface code only involve qubits which are geometrically near each other, and this
restriction is dropped in more general LDPC codes.

The upshot of this relaxation is a lower encoding overhead: much fewer physical qubits are
needed to encode a given number of logical qubits to some desired logical accuracy. This is a
very desirable feature, but it comes at the cost of using non-local multi-qubit measurements.
While this is experimentally very challenging, an in-depth study of the benefits of LDPC
codes is needed before deciding if they are worth the additional experimental efforts. This
thesis is a step in that direction.

Once quantum information has been encoded in an error correcting code, we need to find
ways of manipulating this information to perform computation. These operations must be
performed such that in the event of an error on one qubit, the operations do not spread
the error to other qubits. Such an avalanche of errors would be disastrous as the quantum
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error correcting code can only buffer against a limited number of errors. Thus we seek to
perform gate operations in a fault-tolerant manner. We could approach this in many ways.
For instance, one way to do so would be to directly perform the unitary gate on the error
correcting code. If these gates can be implemented in a short duration, it minimizes the
amount of time available for potential errors to propagate to many qubits. Whether or not
such gates exist depends on the quantum error correcting code, and symmetries it may
possess. We shall say more about such codes in chapter 2.

Rather than take this approach, we shall use a framework called code deformation. Code
deformation involves modifying the code gradually and this transformation eventually re-
turns to the code that we started with. The aim is for this sequence of gradual transfor-
mations to have a non-trivial logical effect on the code. We present the first framework to
perform fault-tolerant gates on quantum LDPC codes. We shall focus on a particular class
of quantum codes called hypergraph product codes [18]. Discovered by Tillich and Zé-
mor in 2009, this class of codes offer an easy way to produce quantum LDPC codes using
classical ones. As we use code deformation to perform gates, we run into a non-trivial prob-
lem. It is unclear whether the codes that we encounter over the course of code deformation
will also be LDPC. It is already a difficult problem to construct quantum LDPC codes, and
finding a set of adiabatically connected quantum LDPC codes is challenging at the outset.
However the defect-based techniques that are described in chapter 5 demonstrate that this
is indeed possible.

Outline of the thesis: We begin by introducing some fundamental ideas in classical error
correction in chapter 1. We then overview quantum error correction in chapter 1. These
chapters lay out some of the motivation and key ideas in this thesis. We then proceed to
describe the surface code in chapter 3. We use the surface code to introduce wormhole
defects, and illustrate how these defects work. Some of the material in this chapter appears
in [19]. We extend this to hypergraph product codes in the following chapters. We review
the definition of the hypergraph product code in 4. Finally in chapter 5 we describe the
framework to perform gates on hypergraph product codes. The material described in this
chapter appears in [20]. The articles [19] and [20] are the main contributions to this thesis.

There are other articles that I have contributed to over the course of my doctorate studies
that pertain to different aspects of quantum error correction and fault tolerance. These
articles will be summarized in the appropriate section and will be highlighted as author
contributions.



Chapter 1

Classical Error Correction

The theory of classical error correction is the backbone of the theory of quantum error
correction. Kick started by Richard Hamming [21], classical error correction studies how
to reliably transmit information across unreliable transmission. In contrast to the work by
Shannon [22], Hamming’s work is less about existence proofs and more about concrete,
achievable codes. It has a wide array of applications, from satellite communications [23] to
WiFi.

We begin by introducing the basics of error correcting codes, and some salient ideas that
carry over to the quantum realm. With an eye towards covering some recent develop-
ments in quantum error correction, we review relevant material on expander codes. We
then briefly discuss decoding strategies for LDPC codes and introduce the famous Sipser-
Spielman decoder [24]. The interested reader is pointed to the textbook by Richardson and
Urbanke [25] for more details.

1.1 Classical error correction

Assume that Alice wished to transmit a bit, either 0 or 1 to Bob. They can only communicate
with each other via a noisy channel N which flips bits with probability p. For instance,
perhaps they store their information in the spin degree of freedom of an atom which could
spontaneously flip. Thus if Alice sends Bob a bit x = 0 it is possible with probability p that
Bob receives a y = 1.

A simple way to overcome this problem is to send the information thrice – Alice instead
sends Bob 000 if she wishes to send 0 and 111 if she wishes to send 1. If a single bit was

5
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flipped, then Bob can still recover the information by informed guessing. To deduce the
message, Bob will simply take a majority vote.

This is the simplest example of a linear code, i.e. the space of codewords can be expressed as
a linear subspace. All spaces that we shall deal with for the rest of this chapter are defined
over the field F2. This field has only two elements {0, 1} and is equipped with addition
operation modulo 2 (1 + 1 = 0 (mod 2)). We shall use Fn

2 and Fm×n
2 to denote a vector

space of n elements and the space of n×m matrices over F2 respectively.

Linear codes can be expressed in terms of a generator matrix, which in this case is G :=
(1, 1, 1)t ∈ F1×3

2 . If Alice wished to send the message m ∈ F2, then she transmits x = Gm.
Bob receives some potentially corrupted word y ∈ F3

2. In other words, for some vector
e ∈ F3

2, Bob receives the word y := x + e when Alice transmits x. To recover the transmitted
word, Bob will check successive bits of y to see if they have the same value. If two successive
bits do not have the same value, then Bob has detected an error. He can attempt to undo it
but which of the two bits that he’s checked are erroneous?

This checking process is represented using a parity check matrix H which in this case, is
defined as

H =

⎛⎜⎝1 1 0

0 1 1

⎞⎟⎠ .

The parity check matrix obeys HG = 0 (mod 2). Each row of the parity check matrix H
shall be referred to as a check. The first row of H corresponds to the first check to see if the
first two bits are the same, and the second row corresponds to the check to see if the last
two bits are the same.

The relation between the rank of H and the number of codewords in the codespace is a
matter of simple linear algebra. Suppose the codespace carried k bits. Then the parity
check matrix has to have n− k independent rows. In general, it could have m ≥ n− k rows
as some of the rows could be redundant.

Bob computes the error syndrome s = H y, which would be all 0 in the absence of errors.
Suppose a codeword x is affected by an error e, i.e. we receive the message y = x + e. The
corresponding syndrome is s = H y = H x + H e = H e. Hence the syndrome provides
direct information about the error e.

Suppose y has been affected by a single error, i.e. e has exactly one 1. It can easily be seen
that a flip of the first bit would produce the syndrome H(1, 0, 0)t = (1, 0)t, a flip of the
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second bit would produce H(0, 1, 0)t = (1, 1)t, while a flip of the last bit would produce
H(0, 0, 1)t = (0, 1)t. Since these are unique, the syndrome can diagnose each single-bit
error, which Bob can correct by flipping the same bit again. This technique has its limits.
Indeed, if the first two bits are flipped, the syndrome will be the same as if the third bit
had been flipped, H(1, 1, 0)t = H(0, 0, 1)t. Bob is therefore not able to discriminate these
two cases, leading to a failure to recover the transmitted information. This reduces the
probability of error from p to O(p2).

The weight of a string u ∈ Fn
2 is the number of non-zero elements that appears in u. The

distance d of the code is the minimum weight of an element u in the codespace. This rep-
resents the minimum number of bits that need to be flipped in order to jump from one
codeword in the space to another. Thus if d single-bit errors were to accumulate, we could
have a logical error. A linear code over n physical bits carrying k logical bits and distance d
is denoted [n, k, d].

If we wished to make communication more robust, it would be natural to generalize this
model. By repeating the bit we wish to transmit n times, we can increase the probability
that Bob correctly decodes the message. To leading order, the probability of error will fall as
O(pn/2) and eventually this can be as low as desired. However, there is a danger in letting
the repetition code serve as the basis for our intuition. In particular, we are still only able
to encode 1 bit regardless of how many bits we transmit. Can we do better? Can we pack
more than 1 message into a block of n bits?

In a landmark paper in 1948, Claude Shannon answered this very question [22]. The rate is
a figure of merit for the ‘packing efficiency’, defined as the ratio of the number of message
bits k we can transmit in a given block of n physical bits. The rate of the repetition code
is vanishing – it encodes 1 bit into n bits. To state his result informally, Shannon proved
that we can transmit information at a constant rate, while at the same time achieving error-
free communication. In other words, there is a ‘wholesale’ effect that comes into play. The
more physical bits we transmit, the more messages we can pack into this block, and the
more reliable the transmission becomes.

In general a classical error correcting code is parameterized as an [n, k, d] code: n is the
number of bits, k is the number of encoded bits, and d is the minimum distance, defined
as the minimum number of bits that need to be flipped to map one codeword to another
codeword. It follows from this definition that a code of minimum distance d can correct up
to d−1

2 bit flip errors. The repetition code above is a [3, 1, 3] code. A good code is one for
which k and d scale proportionally to n. In other words, this facilitates a ‘wholesale effect’ –
the more the physical bits we use, the more logical bits we can encode. The cost of encoding
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a logical bit thus becomes constant. At the same time, the number of errors this code can
handle also increases.

1.2 Expander codes

We have seen that when given a parity check matrix H and a transmitted codeword x, the
received word y can differ from transmitted codeword by some error e, i.e., y = x + e. The
error syndrome s = H y = H(x + e) = H e (recall that H x = 0 for all codewords) gives us
partial information about the error. But since e is a string of n bits and s contains only n− k
bits, it is not sufficient to uniquely determine the error e. Thus, decoding entails guessing the
error e given the syndrome s. It can formally be expressed as a Bayesian inference problem,
but this problem is generally too hard to solve exactly [26] and therefore some constraints
on the H must be imposed and/or approximations must be made.

The theme of modern coding theory is to find a good decoding algorithm first and then
work backwards to design a code that optimizes performance under this decoding algo-
rithm. Thus, much like the wand picking the wizard in Harry Potter, it is the decoding al-
gorithm that has chosen the code rather than the other way around. These trends have been
very successful and have resulted in efficient, capacity-achieving classical codes [27, 28, 29].
These are not mere theoretical curiosities. The website www.ldpc-decoder.com has com-
piled a list of the myriad uses of LDPC codes such as in the 802.11n WiFi standard. Polar
codes will be used in parts of 5G communications [30].

In a random parity check matrix, a check could be connected to up to O(n) bits on average. If
we noticed that the i-th check was dissatisfied, we learn that at least one of the bits involved
in this check has an error, but this provides very little information about any particular
bit being flipped. In fact, the probability that any given bit in the support of the check is
affected falls exponentially as the size of the check increases (The support of a check is the
set of bits that the check acts on). On the other hand if we limited the number of bits in
the support of a check to grow very slowly or even remain constant, then we can gain a lot
more information about the location of the error. An LDPC code refers to a code family
where each check only involves a constant number of bits as a function of n, the block size.

LDPC codes are designed for a set of graph-based algorithms which fall under the broad
umbrella of so-called belief propagation algorithms. Although the exact rules could vary,
belief propagation refers to a whole host of algorithms which involve nodes on a graph
passing messages to their neighbors. The Sipser-Spielman decoder we shall discuss here is

www.ldpc-decoder.com


9

a version of a decoding algorithm where the nodes pass bits to each other. In general, they
could pass real values, or even probability distributions.

We can represent a code C by its factor graph, also called Tanner graph. The factor graph G
is a bipartite graph meaning that it has two sets of nodes V and C. Let G = (V ∪ C, E) be a
bipartite graph, then the edges are E ⊆ V × C. The sets V = {1, ..., n} and C = {1, ..., m}
correspond to the bits and checks in the code. Every bit in the error correcting code is
assigned a node v ∈ V, also known as a variable node, and every check in the code is
associated to a node in c ∈ C, also known as a check node. All edges in the graph are
between a node v ∈ V and a node in c ∈ C – never between two nodes in V or two nodes in
C. We draw an edge between check node c and the variable node v if v is in the support of
c. Equivalently, if the code has parity check matrix H, its factor graph has an edge between
c and v if and only if H[c, v] = 1.

As an example, consider the factor graph of the [3, 1, 3] repetition code above. We choose

1 2 3

a b

Figure 1.1 Factor graph of the repetition code.

to denote variable nodes by blue circular nodes and check nodes by green square nodes.
Furthermore variable nodes have been indexed using numbers whereas checks have been
indexed using lower-case letters. Given a word x ∈ Fn

2 , we shall associate the bit xv with
the variable node v ∈ V.

In this section we shall explore codes that are linked to graphs called expander graphs.
Intuitively, an expander graph is one for which any small portion of the graph seems to be
growing very quickly. If you were to stand on this set of nodes and look out, you’d find that
the set of nodes connected to small portion of the graph is bigger than that portion itself.
There is a joke that there are as many definitions of expanders as there are people that use
them [25]. The definition we use here, as well the exposition of expander codes mirror that
of Prof. Madhu Sudan [31].

We begin by defining the neighborhood of a graph – given a subset of nodes S, the neigh-
borhood refers to all the nodes that are connected to S. The following definitions apply to a
bipartite graph G = (V ∪ C, E) such that |V| = n and |C| = m. The set of edges E ⊆ V × C
is a subset of V × C. Thus edges are of the form (u, c) where u ∈ V and c ∈ C with the left
part representing the bits, and the right part representing the checks.

For ease of exposition, we shall assume that the graph is bi-regular: all the variable nodes



10

have degree ∆V and all the check nodes have degree ∆C. The degree refers to the number
of edges emanating from a given node.

Definition 1 (Neighborhood). For S ⊆ V ∪ C, the neighborhood Γ(S) is the set

Γ(S) = {a| ∃b ∈ S : (a, b) or (b, a) ∈ E} .

An expander graph is one for which the size of the neighborhood of S is bigger than the
size of S.

Definition 2 (Expander). Let γ, δ be some constants. G is a (γ, δ)-expander if for S ⊆ V,

|S| ≤ δn =⇒ |Γ(S)| ≥ γ|S| .

The notation |S| here refers to the size of the set S. A good expander is one with large
γ. Notice that there is a directionality to this expansion. Expanding from C to V is easy
because there are more nodes in V. It is not all that surprising if a small set of nodes in C is
connected to more nodes in V. On the other hand, expanding into C is non-trivial because
there are fewer nodes and we risk overlap. From the point of view of an error correcting
code, the expansion property lower bounds the number of check nodes that will detect an
error pattern S. The larger γ, the more checks that detect the error, which in turn makes it
more likely for us to flag the error. Contrast this with the repetition code where regardless
of how large a connected error is, only two checks ever see it. This expansion is conditional
on the parameter δ – we are guaranteed expansion only if we consider a set of size less than
some fraction δ of vertices in V. We shall that this parameter is intimately related to the
distance of codes defined on this graph.

Of course, the risk with this intuition is that we could be over-counting – some vertices in
S may have common neighbors in Γ(S). Recall that the arithmetic of a check is performed
mod 2. If a check is connected to an even number of erroneous bits, then it will not be UN-
SAT. It is thus informative to know the number of unique neighbors in the neighborhood.

Definition 3 (Unique neighborhood). For S ⊆ V, the unique neighborhood Γ+(S) ⊆ C is

Γ+(S) = {c ∈ C| ∃ unique u ∈ S : (u, c) ∈ E} .

Since each check only counts the parity of its neighborhood, an error could potentially go
undetected if the error touches each check an even number of times. The unique neighbor-
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hood guarantees that since the check is only connected to a single element of S, it cannot
be ‘turned off’ by another error within S.

A unique expander is then naturally defined as follows.

Definition 4 (Unique expander). G is a (γ̃, δ)-unique expander if for S ⊆ V,

|S| ≤ δn =⇒ |Γ+(S)| ≥ γ̃|S| .

The key property of expander graphs is that if G is a good expander, then it is also a good
unique expander.

Lemma 5. Assume γ > ∆V/2. If G is a (γ, δ)-expander, then G is a (2γ − ∆V , δ)-unique ex-
pander.

Proof. Consider the subgraph of G induced by S, Γ(S) and the edges that run between these
sets. Partition the space Γ(S) into Γ+(S) the set of unique neighbors and T := Γ(S) \ Γ+(S),
the set of non-unique neighbors.

S

Γ+(S)

T

Figure 1.2 A representation of the set S ⊆ V and its neighborhood.

Note that we must have

(
|Γ+(S)|+ |T|

)
= Γ(S) ≥ γ|S| . (1.1)

On the other hand we can count the number of edges leaving both S and Γ(S) to conclude
that

(|Γ+(S)|+ 2|T|) ≤ ∆V |S| . (1.2)

Subtracting eq. (1.2) from twice eq. (1.1) yields the desired bound.
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This lemma is at the heart of this analysis. It is important because it implies that the distance
of the code is lower bounded.

Lemma 6. Let G be a (γ, δ)-expander such that γ ≥ ∆V/2. Then the distance of the associated
code C(G) is δn.

Proof. The distance of a code is the weight of the smallest codeword. Codewords by defi-
nition will not be detected by any checks. Let e be an error such that its support is S ⊆ V.
Therefore at least one check will flag the pattern corresponding to |S|.

Expander graphs are interesting because they have a deceptively simple decoding algo-
rithm called flip [24].

For the rest of the analysis we will require that γ ≥ 3∆V/4. Let x be the transmitted code-
word and y be the received word. A check node c is said to be unsatisfied (or UNSAT) if
the syndrome sc

sc := ∑
v∈Γ(c)

xv = 1 (mod 2) ,

and satisfied (or SAT) otherwise. Equivalently, we shall say that the c-th syndrome bit is 1.

The decoding algorithm flip is shown in algorithm 1. The first few lines of the algorithm

Algorithm 1 flip

Input: Received word yFn
2 , syndrome s(e) ∈ Fm

2 .
Output: w ∈ Fn

2

w := y ▷ Update w iteratively
F = ∅ ▷ Flippable vertices
for u ∈ V do ▷ Setup phase: update variable nodes

If u has more UNSAT than SAT neighbors, add it to F
end for
while ∃u ∈ F do ▷ Flip while flippable vertices exist

flip wu
Update Γ(u), and decide whether they are UNSAT
Update Γ(Γ(u)) and decide whether they are in F

end while
Return w

are the setup phase. We shall iteratively maintain the word w until we arrive at the answer.
If the algorithm terminates with no UNSAT checks, then we return w as the transmitted
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codeword. The precomputation to obtain the syndrome is linear time. Indeed, there are
m = O(n) check nodes and each has constant degree, so we can compute the syndrome
vector s(e) in linear time.

The setup cost is linear time. There are n variable nodes and we can decide whether each
node ought to be added toF in constant time as it only has a constant number of neighbors.

Next, we study the main part of the algorithm within the while loop. Each step of the while
loop is rather simple and takes constant time. How long does the while loop run? The
number of unsatisfied checks is decreasing monotonically at each step. This immediately
lets us prove the following claims.

Claim 7. Let G = (V ∪C, E) be a bipartite graph with |V| = n and |C| = m be a (γ, δ)-expander
graph. Let the total number of errors be ne, i.e. if y = x + e, then ne = wt (e). If we decode using
flip, then

1. the decoding time is less than m.

2. the decoding time is less than ∆Vne.

Proof. We shall prove each claim in turn.

1. This is evident because the number of unsatisfied checks is monotonically decreasing.
Since there are at most m checks, the algorithm will take time at most m.

2. If there are ne errors, then the number of unsatisfied checks is at most ∆Vne. As above,
we make use of the fact that the number of unsatisfied checks is monotonically de-
creasing to arrive at the claim.

When does the flip algorithm return to the right codeword?

Claim 8. Let G = (V ∪C, E) be a bipartite graph with |V| = n and |C| = m be a (γ, δ)-expander
graph such that γ ≥ 3∆V/4. Let the total number of errors be ne, i.e. if y = x+ e, then ne = wt (e).
If ne < δn/(∆V + 1), then the decoding algorithm is guaranteed to succeed.

Proof. At each step of the algorithm, only a single bit is flipped. The weight of the error
e is initially ne. Since the algorithm is guaranteed to conclude before ∆Vne steps, then the
weight of the error can at most become (∆V + 1)ne.
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For the sake of contradiction, suppose that the algorithm has reached its last step. There
are still uncorrected errors, but flip finds no more variable nodes to flip. In other words,
there exist no variable nodes u such that they are connected to more UNSAT checks than
SAT checks. However, since the weight of the error set is now at most (∆V + 1)ne < δn, we
can invoke the unique expander property. Therefore, if we let S denote the support of the
error e, then it follows from lemma 5 that

|Γ+(S)| ≥ (2γ− ∆V)|S|

≥ (∆V/2) |S| .

The second inequality follows from the assumption that γ ≥ 3∆V/4. Since the neighbor-
hood of S contains at most ∆V |S| elements, this means that there exists at least one variable
node in S that has more unsatisfied neighbors than satisfied neighbors. Therefore this can-
not be the penultimate step as there is at least one more variable node to flip.

This shows that the decoding algorithm terminates, and terminates on a codeword. How
do we know that this is the right codeword? By assumption, the total number of errors
on the word never exceeds (∆V + 1)ne < δn. However, since the distance of the code is
δn, we could not have mapped to the wrong codeword. In other words, if the algorithm
had mapped us to some other word x′ ∈ C, then we would have h(x, x′) ≥ δn. This is
impossible.

The flip algorithm takes as input a corrupted codeword y and returns the codeword x that
was most likely transmitted. We have assumed that computing the syndrome in the setup
phase of the algorithm could be done perfectly. When we consider the quantum equivalent,
we shall see that we cannot directly peek at the quantum state, and our measurements
might be imperfect. We will need to perform error correction in a fault-tolerant manner to
ensure that we can overcome this. Although we will not cover the quantum proof because
it is complicated, we offer a simpler, classical analogy.

In the face of syndrome errors, it will turn out that we cannot perform perfect error cor-
rection. Rather, we will hope to merely reduce the number of failures on the code based
on the number of errors on the syndromes. Buried within Spielman’s construction for effi-
cient encoders [32] based on expander graphs is a proof that there exist good error-reduction
codes (see lecture 18 of Prof. Sudan’s lectures). This construction merely uses flip again,
showing that this simple algorithm suffices to reduce the error. In this generalized setting,
flip will accept as input both the corrupted codeword, as well as the corrupt syndrome
and output the best possible word.
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The construction begins with a n bit codeword x ∈ Fn
2 . After transmission, we receive y :=

x+ e, for some error e ∈ Fn
2 . Let S = {v|yv ̸= xv} ⊆ V be the set of indices corresponding to

error locations. Similarly, let f ∈ Fm
2 be the error on syndromes, i.e. the incorrect syndrome

s′(y) is defined as s′(y) = s(y) + f for. Let E ⊆ C be the subset of check nodes whose
syndromes are inferred incorrectly, i.e.

E =
{

c
⏐⏐⏐ fc = 1

}
.

In other words, these could correspond to either check nodes that are supposed to detect
an error but do not, or check nodes that detect a phantom error.

We shall show the following result.

Lemma 9. Let G = (V ∪ C, E) be a (∆, 2∆) bi-regular (γ, δ)-expander. Suppose ∆ > 8 and
γ > 7

8 ∆. Upon transmission of x, let the received word be y := x + e and the syndrome be s′(y) =
s(y) + f . If the total number of errors is nt ≤ δn/(∆ + 1), then flip(y, s′) outputs a word w such
that the Hamming weight of w− x is upper bounded by 8|E|/∆.

Proof. Recall that the current state of the flip algorithm is labeled w ∈ Fn
2 . Its syndromes

corresponding to the c-th constraint is denoted sc(w) is said to be correct or SAT if

sc(w) = ∑
u∈Γ(c)

wu (mod 2) .

The idea here shall be that rather than iterate till all checks are SAT, we merely iterate till
every message bit is adjacent to more SAT constraints than UNSAT.

Let nt < δn/(∆ + 1) be the total number of errors in both the codeword and the syndrome.
The initial number of UNSAT constraints ≤ ∆nt so the algorithm terminates in (at most)
∆nt iterations.

Over the course of the algorithm, each iteration flips at most one bit. Since the total number
of iterations is upper bounded, the total number of message errors is upperbounded by
(∆ + 1)nt < δn.

Note that Γ+(S) \ E ⊆ UNSAT ⊆ Γ(S) ∪ E. The first containment follows because the
unique neighborhood of S will ideally detect the error pattern e. However, because the
syndromes could have errors, it is only Γ+(S) \ E that is guaranteed to be UNSAT. In other
words, this is the set of checks that ought to detect an error, but do not.
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The second containment follows because the set of UNSAT checks either correctly flags a
real error in S or is detecting a phantom error and therefore in E.

This implies the following inequality: |UNSAT ∩Γ(S)| ≥ (2γ− ∆)|S| − 2|E|. This follows
because for two sets A, B, we have the identity |A∩ B| = |A|+ |B| − |A∪ B|. Applying this
above, we have

|UNSAT∩ Γ(S)| = |UNSAT|+ |Γ(S)| − |UNSAT∪ Γ(S)|

= |UNSAT|+ |Γ(S)| − |Γ(S) ∪ E|

≥ |Γ+(S) \ E| − |E|

≥ (2γ− ∆)|S| − 2|E| .

This set is what we ultimately care about because it is the set that will determine if flip
will terminate; if

|UNSAT∩ Γ(S)|
|S| >

∆
2

then we are not done, as this means that at least one element of S has more than ∆/2 un-
satisfied neighbors. Equivalently, if the algorithm has stopped, then

2γ− ∆− 2
|E|
|S| ≤

∆
2

2
|E|
|S| ≥ 2γ− 3∆

2
≥ ∆

4

|S| ≤ 8
∆
|E| .

The second chain of inequalities follows because γ ≥ 7∆/8. Thus if ∆ > 8, we are guaran-
teed that the number of residual errors on the codeword is upper bounded.

1.3 Chapter summary

In this chapter, we reviewed the basic definitions of classical error correcting codes over
the binary alphabet. We defined the central characteristics of a linear code – the number
of bits n, the number of encoded bits k and the distance d. The distance was defined as the
minimum number of bits that had to undergo an error for us to jump from one codeword in
the codespace to another. We understood that codes could be defined using the parity check
matrix. The parity check matrix checks that each codeword obeys certain linear constraints.
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We proceeded to discuss an important class of classical codes called expander codes. We
reviewed the definition of a bipartite graph G and how to associate a code to a graph. We
noted that if the graph G is an expander graph, then many useful properties follow. Firstly,
the distance of the associated code immediately follows from the expansion property. Fur-
thermore, expansion also implies that the associated code possesses a simple decoding
algorithm. This algorithm is called flip and simply flips bits to minimize the weight of the
syndrome. We showed that this simple algorithm does indeed work if the graph G is a good
expander. Finally we concluded by discussing how flip is fault tolerant. In other words,
even if some of the syndrome bits are corrupted, flip succeeds in reducing the number of
errors.



Chapter 2

Quantum Error Correction

How do we construct a quantum computer if circuit components are not perfect? As the
size of the circuit increases, so does the likelihood of an error. The threshold theorem, one
of the crown jewels of the theory of quantum computation, guarantees that we can in fact
execute quantum computations of arbitrary length.

The key idea behind fault tolerance is to use quantum error correcting codes. Quantum error
correcting codes serve as a buffer against noise – so long as too many errors do not accu-
mulate, we can still recover the quantum information they encode. Error correcting codes
thus permit us to simulate the circuit that we want to implement using another circuit that
is more robust. This can then be repeated - we can encode the simulation in a simulation
and reduce the error further until the desired level of robustness is achieved. The process
is called concatenation and is the ingredient behind the first proofs of fault tolerance.

At present, we believe that concatenation by itself will not suffice to build a quantum com-
puter as the number of times we can reasonably concatenate a code is limited. Most efforts
are focused on the surface code architecture, which in its simplest form does not involve
concatenation. Another important difference is that the stabilizer generators of both surface
codes and LDPC codes which we shall study later act on a constant-bounded number of
qubits. These are much smaller than the number of errors t that the codes can correct. This
contrasts with concatenated codes where each stabilizer acts on O(n) ≳ t qubits, so extra
care must be taken when measuring a stabilizer in order not to create an uncorrectable er-
ror in the process. Surface codes and LDPC codes thus have simpler syndrome extraction
circuits. For a complete review of the fundamentals, see [33].

In this chapter we shall lay the foundation for what follows. We start by defining quantum
error correcting codes and describing necessary and sufficient conditions for a quantum
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code to be effective. Over the course of the chapter, we shall discuss guidelines for code
construction. These guidelines, sometimes known as no-go results, are fundamental lim-
its to quantum error correcting codes. We shall then overview techniques to manipulate
encoded information and what we require to attain a universal gate set.

2.1 Quantum error correction

A quantum error correcting code is a way of storing quantum information redundantly.
Broadly, a quantum error correcting code C is a subspace of n-qubit states with some im-
portant properties. Namely, these n qubits could be subject to some quantum noise channel
E . A good code will allow us to recover the information stored in C by undoing the effect
of the noise channel E .

At first glance, quantum error correction appears to be a wholly different enterprise than
its classical counterpart. Quantum states could exist in coherent superpositions and mea-
surement could potentially collapse the state. Further complicating the matter, errors on a
qubit could be continuous rotations and therefore a continous set of errors against which
to defend. However, the miracle of quantum error correction guarantees that it is possible
to address these issues. We discuss each of them in turn.

Stabilizer group: A code C is 2k-dimensional if it maps a k-qubit state |x⟩, where x ∈ {0, 1}k

is some k bit string, to an n-qubit state |x⟩ for some n > k. Such a code space is spanned
by vectors {|x⟩}x∈{0,1}k , where |x⟩ denotes the encoded version of the k qubit state |x⟩.
Each codeword |x⟩ is itself the superposition of several computational basis states. We first
address how to construct such states such that it facilitates measurement of the code space
without collapsing the superposition. Codes shall be defined as the common eigenspace
of a set S of commuting Pauli operators on n qubits.

C(S) = {|ψ⟩ | |ψ⟩ ∈ C2n
, S |ψ⟩ = |ψ⟩ ∀S ∈ S} . (2.1)

The set S is referred to as the stabilizer group and the generators of this group are called
the stabilizer generators. Although the state ψ is in superposition, the stabilizer conditions
stipulate that the code state can be measured without collapsing the state because it is an
eigenstate of the stabilizer operator. In other words, the operators in S do not form a com-
plete set of observables, so specifying their eigenvalue leaves some degenerate subspace
where information can be stored. Equivalently, the code space C can be specified by n− k
independent stabilizer generators {Si}n−k

i=1 .
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If the codewords of C are corrupted due to some noise channel E , when can we recover the
encoded quantum information? The fundamental theorem of quantum error correction
due to Knill and Laflamme [34] states the conditions under which a quantum channel can
be error-corrected by a specific code C.

Theorem 10 (Knill-Laflamme). Let E be a noisy channel whose Kraus operators are {Ei}m
i=1, i.e.

the action of E on an n-qubit density matrix ρ is described as

E(ρ) = ∑
i

EiρE†
i .

The code C is robust against the noise channel E if and only if

⟨x| E†
i Ej |y⟩ = cijδxy , (2.2)

where C = cij is some matrix.

The Knill-Laflamme condition helps us understand how we can correct against a very large
class of (potentially continuous) errors. A key feature of eq. 2.2 is that the constants cij do
not depend on the codewords. A set of errors that obeys the Knill-Laflamme condition
forms a linearly closed vector space, in the sense that if the set {Ei} obeys 2.2, then so does
the set {Fj} where each operator Fj is a linear combination of the operators {Ei}. Since the
Pauli operators form an operator basis, any error Ei can be decomposed as a linear combi-
nation of Pauli operators. We can therefore construct codes that correct a large number of
Pauli errors, and by linearity this will extend to any error that is a linear combination of the
correctable Pauli errors.

Of course, the quantum error correcting code is limited and cannot correct against all Pauli
errors. One useful way of classifying correctable Pauli errors is by their weights, defined as
the number of qubits on which the Pauli operator acts non-trivially. The minimum weight
of an error E such that the Knill-Laflamme condition is violated represents the distance d of
the code C. It represents the minimum number of qubits that need to be affected to map
one codeword to another. It follows that the Knill-Laflamme condition 2.2 will hold for
any set of errors of weight bounded by d−1

2 . By linearity, 2.2 will also hold for any set of
Kraus operators that are linear combinations of Pauli operators of weight bounded by d−1

2 .
Henceforth we focus on Pauli errors.

How to perform quantum error correction: Suppose a code state |ψ⟩ ∈ C, undergoes a
Pauli error E, |ψ⟩ → |ψ′⟩ = E |ψ⟩. Error correction proceeds by measuring a set of stabilizer
generators {Si}n−k

i=1 on the state |ψ′⟩. In the absence of errors, each of these measurements
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returns the outcome+1 by definition of the code space C. In the presence of errors however,
we get

Si
⏐⏐ψ′⟩ = SiE |ψ⟩ =

⎧⎪⎨⎪⎩
ESi |ψ⟩ = E |ψ⟩ = |ψ⟩′ if ESi = SiE

−ESi |ψ⟩ = −E |ψ⟩ = − |ψ⟩′ if ESi = −SiE.

⎫⎪⎬⎪⎭ := si(E)
⏐⏐ψ′⟩ .

(2.3)

These are the only two possibilities since Pauli operators either commute or anti-commute.
In either case, the measurement outcome reveals the error syndrome bit si(E) which en-
codes the commutation relation of the stabilizer generator Si and the error E that afflicted
the system. The collection of all measurement outcomes (s1, s2, . . . sn−k) is called the error
syndrome, and is used to determine the error E that occurred. The syndrome does not
uniquely identify the error, so given an a priori distribution on the possible errors p(E),
statistical inference is used to identify the most likely error. The algorithm that takes as
input an error syndrome and returns an error guess is called a decoder. Note that multiple
errors could have the same syndrome. We say that errors E and E′ are degenerate if for
some stabilizer element S ∈ S ,

EE′ = S . (2.4)

Henceforth, such a code shall be called an Jn, k, dK code. In other words, it uses n physi-
cal qubits to encode k logical qubits and is capable of protecting the encoded information
against (d− 1)/2 errors.

Logical operators: The logical operators L of a stabilizer code map codewords of the code
C to other codewords of the code C. Thus the logical operators map the codespace to itself,
although their action on any individual codeword may be non-trivial. All the operators
L ∈ L obey LS = SL, i.e. they commute with the codespace. Logical operators thus
correspond to undetectable operators – if the code is afflicted by an error corresponding to
L ∈ L, we cannot detect it. Thus the distance d of the quantum error correcting code C can
also be defined as the minimum weight of the logical operators in L. In what follows, this
set may sometimes also be represented asN (S) or the normalizer of the stabilizer group. We
focus on the logical X and Z operators of this space. Linear combinations and products of
these operators generate the entire logical space, and clearly commute with the stabilizers.

For simplicity, suppose the code only carried a single logical qubit, then there is only one
pair of logical X and Z operators. Denoted by X and Z, their action on the codespace can
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be described as follows. Let
⏐⏐0⟩ denote the encoded logical |0⟩ and

⏐⏐1⟩ denote the encoded
logical |1⟩. Then we have

X
⏐⏐0⟩ =

⏐⏐1⟩ Z
⏐⏐0⟩ = +

⏐⏐0⟩
X
⏐⏐1⟩ =

⏐⏐0⟩ Z
⏐⏐1⟩ = −

⏐⏐1⟩ .

These logical operators obey the anti-commutation relations XZ = −ZX.

In general, if the code carries k logical qubits, then the logical operators of the code can be
described using 2k logical operators or equivalently, k pairs of Xi and Zi operators, where
the subscript i indicates which logical qubit the operators correspond to. Each pair Xi and
Zi obeys the corresponding anti-commutation relations.

2.2 CSS codes

CSS codes are a template to form quantum codes from classical codes that obey certain
constraints [35, 36]. They are composed of two binary linear codes CZ = [n, k1, d1] and CX =

[n, k2, d2] such that C⊥Z ⊆ CX ⇔ C⊥X ⊆ CZ. The space C⊥X and C⊥Z refer to the spaces of vectors
that are orthogonal to all vectors in CX and CZ respectively. The resulting quantum code
only contains stabilizers whose elements are all X or all Z. The constraints help guarantee
that the resulting stabilizers commute. Suppose the parity check matrices of the codes CX

and CZ are HX and HZ respectively. Let GX and GZ be the generator matrices for these
spaces respectively.

To construct the code, we

1. map the ith row of HZ to Z stabilizer generator SZ
i by mapping 1’s to Z and 0’s to

identity; and

2. map the jth row of HX to X stabilizer generator SX
j by mapping 1’s to X and 0’s to

identity.

This is depicted in fig. (2.1) where the red regions map to the stabilizer generators.

For e, f ∈ Fn
2 , let X(e) = ⊗jXej and Z( f ) = ⊗jZ f j . Then

Z( f ) |w⟩ = (−1)⟨ f ,w⟩ |w⟩
X(e) |w⟩ = |w⊕ e⟩ .
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HZ

GX

n− k1
k2

HX

GZ

n− k2

k1

Figure 2.1 Quantum codes via the CSS construction. Two parity check matrices and codes
are shown. Red regions map to stabilizer generators.

The notation ⟨ f , w⟩ = ∑i fiwi denotes the inner product between the strings f and w. With
this correspondence between the space of vectors over Fn

2 and Pauli operators, it is easy to
verify when two Pauli operators corresponding to X(e) and Z( f ) commute. We have the
condition [X(e), Z( f )] = 0 if and only if ⟨e, f ⟩ = 0 (mod 2).

The codewords correspond to cosets of CZ/C⊥X and hence the code dimension is k :=
dim

(
CZ/C⊥X

)
= dim

(
CX/C⊥Z

)
.

The distance of a CSS code is then expressed as d = min{dX, dZ} where

dX = min
e∈CZ\C⊥X

wt (e) dZ = min
f∈CX\C⊥Z

wt ( f ) .

This corresponds to the minimum weight of an undetectable error of X and Z type respec-
tively.

Guidelines for code construction # 1: BPT bound

We have so far not discussed the geometry of our quantum error correcting code. It would
be convenient if we could lay out our qubits in 2 dimensions, i.e. on a table top. Fur-
thermore, it would be nice if we did not need to engineer too many connections – if each
stabilizer was only connected to a handful of qubits. Finally, we might want to minimize
‘wire crossings’, i.e. such that all the qubits in the support of a stabilizer are right next to
it. Unfortunately, such codes are highly restrictive.

The BPT bound, named after its discoverers Bravyi, Poulin and Terhal, states that the sur-
face code captures everything we need to know about local codes (up to constant factors).
They proved that any Jn, k, dK code in 2 dimensions defined by local stabilizer generators
obeys the following bound:

kd2 ≤ O(n) .
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Ignoring constants, this bound is saturated by letting d = O(
√

n). In the next chapter, we
shall discuss one such code, called the surface code, which saturates this bound. If we want
to get more bang for our buck, we might need to give up the constraint of locality.

2.3 Universal gate sets

A fault-tolerant computational scheme must be realized with a discrete set of universal
gates. While physical gates can be tuned continuously, logical gates must belong to a dis-
crete set to be correctable. Suppose for instance that the logical gate Rx(θ) := e−iθσx was
permitted for any real value of θ in some fault-tolerant scheme. If some small error in the
execution of the gate yielded the transformation Rx(θ + ϵ) instead, this would be indistin-
guishable from an ideal circuit implementing a different logical gate, so this physical error
would be promoted to an uncorrectable logical error.

Each gate in this discrete set can be corrected to any desired accuracy given an appropriate
error-correcting code. If the gate set is universal, then any logical gate belonging to a con-
tinuum can be approximated by a suitable sequence of gates from the discrete universal set.
This is called gate synthesis.

The most common path to universality is formed of the CNOT, the Hadamard H and phase
S :=

√
σz = Rx(

π
4 ) which together generate the Clifford group. This is a finite maximal

subgroup of the unitary group on n qubits. The Clifford group is the automorphism group
of the Pauli group and its elements are completely characterized by their action on the
generators of the Pauli group, i.e. on X and Z. For instance, the action of the Clifford
group generators are

HXH† = Z CNOT(XI)CNOT† = XX

HZH† = X CNOT(IX)CNOT† = IX

PXP† = iXZ CNOT(ZI)CNOT† = ZI

PZP† = Z CNOT(IZ)CNOT† = ZZ

(2.5)

It is not universal and in fact Clifford circuits acting on computational basis state inputs
and Pauli measurements can be efficiently simulated classically [37, 38]. The fact that it is
maximal means that adding any gate to this set produces a universal set of generators.
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Common choices for this last gate are T :=
√

S = Rz(
π
8 ), the Toffoli gate control-control-

not, or the controlled-S gate. These all belong to the third level of the Clifford hierarchy,
which means that for any Pauli operator P and any one of these third-level gate U, the
combination UPU† is a Clifford gate. This will be important for state injection. In the case
of T, efficient compilation algorithms are known [39] that take as input an arbitrary single-
qubit gate U, and output a sequence of T and H of length 3 log( 1

ϵ ) that synthesize U to
accuracy ϵ.

2.4 Transversal gates

One of our main concerns when designing a fault-tolerant scheme is error propagation. If
a qubit has suffered an error and is then involved in a two-qubit gate, then after the gate
both qubits are potentially erroneous. If this occurred in a distance d = 3 code, then the

|φ⟩

|ϕ⟩
|ψ⟩

Figure 2.2 The state φ contains an error (indicated in red). After φ and ϕ interact via a 2-
qubit gate, the resulting 2-qubit state ψ also potentially contains a 2-qubit error
(indicated in red).

two-qubit gate has promoted a single-qubit correctable error to a two-qubit uncorrectable
error.

One way to avoid this problem is to never couple two qubits from the same code block.
Transversal gates acting on single logical qubit are thus tensor products of single-qubit gates⨂n

j=1 Uj. Transversal gates involving logical qubits from two distinct code blocks are tensor
products of two-qubit gates

⨂n
k=1 Uj1k ,j2k

where the first qubit of a pair (j1k , j2k) belongs to the
first code block and the second qubit belongs to the second code block, and each qubit
appears in a single pair. While such a two-qubit transversal gate can transform a single-
qubit error in a two-qubit error, these two errors will belong to different code blocks, so
they will be correctable by the respective code on which they act.

Note that this definition of transversality was motivated by distance 3 codes which can
correct at most one error. It ensures that all weight-one errors remain correctable, so if
the physical error rate is ϵ, the effective logical error rate will be O(ϵ2). For a code with a
larger minimum distance, we could demand that a generalized transversal gate increases
the weight of an error by at most some constant a. Then, because the code can correct all
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errors of weight at most d−1
2 , the logical error rate of such a generalized transversal gate

would be O(ϵ d−a−1
2 ).

We also add that all considerations of transversal gates have either involved codes with a
single logical qubit, or when the code contains k qubits, that the transversal gate has the
same action on all qubits.

Guidelines for code construction # 2: transversal logicals are not universal.

Transversal gates are ideal in a fault-tolerant setting because they prevent errors from spread-
ing. The goal would be to perform a universal set of gates fault-tolerantly using only
transversal gates. Unfortunately, this is untenable due to a result by [40, 41]. Performing
only transversal gates, we cannot achieve universality.

This result does not hold if we can perform measurements and adaptively perform gates.
Since we have to do so for performing quantum error correction, this is not an unreasonable
assumption. [42, 43].

Guidelines for code construction # 3: short-depth circuits are restricted.

Transversal gates may not be the only way to achieve fault tolerance. Perhaps one can re-
strict the spread of errors using only circuits of short-depth. If we considered the ‘light
cone’ around any input to the circuit, then it does not spread very far before the circuit
terminates. In this way, even if an error occurred it would not be able to grow to the point
it creates a logical error.

Unfortunately, short-depth circuits are also restrictive [16, 44]. If we consider their action on
2-dimensional local codes, it turns out that these gates can only perform gates in the Clifford
group. If we want to find a universal gate set, we need to find alternative techniques.

2.5 State injection

There exist a number of quantum error correction schemes that can realize Clifford oper-
ations, either transversally or through some other fault-tolerant method. If we can only
perform Clifford gates and Pauli measurements, then we can achieve universality using
state injection. Here we demonstrate single-qubit teleportation [45]; see also the paper by
Gottesman and Chuang [46]. Let |A⟩ = T |+⟩ =

(
|0⟩+ eiπ/4 |1⟩

)
/
√

2. The following cir-
cuit takes as input state |A⟩ and otherwise uses only Clifford operations to implement the
T gate on any state |ψ⟩.
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|ψ⟩ T =
|ψ⟩

|A⟩ ↖H

SaT |ψ⟩

a

Figure 2.3 Performing the gate T by injecting |A⟩. The measurement is performed in the
computational basis.

Thus under the action of the CNOT gate, the state ψ evolves as follows:

|ψ⟩ |A⟩ CNOT−−−→ T |ψ⟩ |+⟩+ ST |ψ⟩ |−⟩ .

Upon performing an X measurement, we either obtain the state T |ψ⟩ if the outcome is +;
this is the desired output state. On the other hand, we obtain ST |ψ⟩ if the outcome is −.
However, this is not a problem because the S gate is part of the Clifford group, and therefore
can be undone easily.

2.5.1 Magic state distillation

The magic state |A⟩ combined to Clifford group transformations complete a universal set.
As we just described, using a noisy input state |A⟩ will result in a noisy output T |ψ⟩, so
we need a high-fidelity magic state. Preparing a high-fidelity magic state |A⟩ may be pos-
sible in some qubit architectures. However, recall that the Clifford operations are acting on
encoded quantum information, so we also need the magic state to be encoded in an error
correcting code. In order to produce sufficiently reliable encoded magic states, we use a
sub-routine called magic state distillation.

The basic idea of magic state distillation is the following. There exist Clifford circuits that
take as input several low-fidelity magic states and output a smaller number of higher fi-
delity ones. There are several methods to achieve this (see for example [47, 48, 49, 50, 51,
52]), for instance using a quantum error-correcting code that admits a transversal T gate
that are realized using state injection. This distillation procedure is realized on encoded
data, and since it only requires Clifford operations, it requires a coding scheme with fault-
tolerant Clifford. The only remaining difficulty is to prepare some initial encoded magic
states |A⟩. This will be done in a faulty manner, e.g. by preparing an unencoded magic
state and then gradually encoding it, or again by teleporting an unencoded state in a code.
Either way, we obtain low-fidelity magic states, which can then be distilled using protected
Clifford circuits.

Bravyi and Haah [53] introduced a framework called tri-orthogonality to describe quantum
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error correcting codes that possess certain symmetries. These symmetries imply that if a
transversal T gate were applied on the physical qubits of the quantum error correcting code,
then it would act as the logical transversal T on all the encoded logical qubits.

Author contributions: Working within this framework, I have studied the process of magic
state distillation together with Dr. Jean-Pierre Tillich of Inria, Paris. Here I shall provide a
brief summary of my results.

As explained above, magic state distillation requires quantum error correcting codes that
supports T gates. In [54], we presented a scheme for magic state distillation using punc-
tured polar codes. This is a systematic construction of a family of tri-orthogonal codes
based on polar codes. Our results build on some recent work by Bardet et al. [55] who dis-
covered that polar codes can be described algebraically as decreasing monomial codes. The
advantage of this framework is that it allows us to cast the conditions of tri-orthogonality
in a purely algebraic manner. This considerably simplifies the process of proving that these
codes possess the desired symmetries. Using this powerful framework, we construct tri-
orthogonal quantum codes that can be used to distill magic states for the T gate. We pro-
pose slightly tweaking the work of Bravyi and Haah, and use a decoder to decode the quan-
tum code at the end of the process. This is in contrast to the original proposal which re-
quires that we project on to the codespace of the code. An advantage of these codes is that
they permit the use of the successive cancellation decoder whose time complexity scales as
O(N log(N)). We supplement this with numerical simulations for the erasure channel and
dephasing channel.

An alternative to performing decoding is to concatenate the code and thereby obtain a code
family. The overhead of magic state distillation is defined as the ratio of the number of
input to the number of output states. In this scenario, to achieve a target error rate of ϵ, the
overhead scales asymptotically as O (logγ (1/ϵ)) [53]. Bravyi and Haah conjectured that γ

is lower bounded by 1 [53], implying a bound on the efficiency of magic state distillation. In
a breakthrough article, Hastings and Haah [56] recently demonstrated this conjecture to be
false by explicitly constructing schemes with sub-logarithmic overhead. Using large Reed-
Muller codes, they show that γ ≈ 0.6779 is achievable. This raises the question of whether
γ is bounded away from 0. In an article published in Physical Review Letters, we answered
this question in the affirmative by showing γ can be arbitrarily close to 0 for quantum error
correcting codes comprised of qudits (d-dimensional quantum systems) [57]. The intuition
stems from classical coding theory where tri-orthogonality is well studied [58]. This work
builds on work by Dr. Shawn X. Cui, Dr. Daniel Gottesman and myself [59] that classify
gates on d-dimensional quantum systems.
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Although state injection leads to an efficient universal gate set in principle, state distillation
requires very large overheads and so they are still an active area of research. Schemes that
circumvent magic state distillation are also still being developed [43, 42, 60, 61].

2.6 Chapter Summary

In this chapter, we reviewed some fundamental ideas of the theory of quantum error cor-
rection. We began by defining a code using a stabilizer group. By measuring operators in
the stabilizer, we do not collapse codewords that may be in superposition. An error correct-
ing code can be used to transmit information across a noisy channel if and only if it satisfies
the Knill-Laflamme conditions. Intuitively, the conditions state that if errors do not map
codewords to each other, then we can undo the action of the error. This also implied that
if we can correct a certain class of errors, we can correct a linear combination of that class.
In turn this implies that it suffices to deal with Pauli errors. We defined the distance of
the code as the minimum weight of an error that is undetectable. These parameters could
be used to refer to a stabilizer code as an Jn, k, dK code. At this juncture, we saw the first
guideline for code construction. The Bravyi-Poulin-Terhal bound places strong restrictions
on 2-dimensional codes.

With this groundwork, we proceeded to discuss how to perform gates on quantum error
correcting codes. The trick is to be able to do so without decoding the code and thereby leav-
ing quantum information vulnerable. We introduced the Clifford gates as the set of gates
generated by the CNOT, Hadamard and phase gates. We discussed transversal gates and
how this architecture limits the spread of errors in an error correcting code. We then saw
some more guidelines for code construction which restricted local quantum error correct-
ing codes. The Bravyi-Koenig bound placed restrictions on the kinds of gates that be per-
formed with short-depth circuits on 2-dimensional codes. The Eastin-Knill bound stated
that transversal gates alone are insufficient to achieve a universal gate set.

We concluded by discussing state injection. Using non-stabilizer resource states and the
primitive of teleportation, we were able to perform the T gate. Together with Clifford gates
and Pauli measurements, we can in principle achieve universal quantum computation. T
gates are however noisy and require some pre-processing before they can be injected into
the quantum circuit. This then led us to discuss magic state distillation, and how to use
quantum error correcting codes to prepare high-fidelity resource states.

Thus equipped we are ready to discuss a specific quantum error correcting code in the next
chapter – the surface code.



Chapter 3

The Surface Code

The surface code is arguably the most studied quantum error correcting code. From the
theorist’s perspective, it plays a central role in the theory of quantum error correction and
topological order. As we shall see, its stabilizer is composed entirely of local terms of low
weight and yet, the state of the system cannot be discerned by local measurements alone.
Featuring simple interconnectivity between qubits and a simple syndrome extraction cir-
cuit, it is an ideal candidate for implementations. In addition, numerical simulations indi-
cate that it performs well under noise. For this reason, it is a blueprint for the architecture
of some quantum computers.

The surface code however is not without its faults. In some sense, it is a quantum version
of the repetition code, a statement which we shall make formal in this chapter. The conse-
quence of this is that it can only encode 1 qubit regardless of the number of physical qubits
used to construct it. Given that the number of qubits we can coherently control is a major
bottleneck for scalable quantum computation, this is troublesome. Quantum LDPC codes
attempt to overcome the shortcomings of the surface code while preserving the features
that make it appealing. We shall study these generalizations in chapter 4, but present the
surface code first as it forms the basis for our intuition for many of these generalizations.

We begin by demonstrating how the surface code emerges from the repetition code. This
is not the traditional way of describing the surface code, nor is it the most intuitive or ped-
agogical. We choose this approach as it sets the stage for the generalization to quantum
LDPC codes in the next chapter. We shall then proceed to discuss how to decode the sur-
face code efficiently. We shall then study how qubits are encoded in defects of the surface
code. We introduce a defect called a wormhole that aid in processing encoded information
and allow us to perform Clifford gates on the qubits they encode. Wormhole defects are
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created by performing entangling measurements between two (potentially) separated sec-
tors of a lattice. If we visualize the motion of excitations on the surface of the code, then
a particle that enters via one mouth of the wormhole emerges via the other. In this sense,
the geometry that these excitations witness is a direct consequence of the entanglement,
and is whence these defects get their name. Together with state-injection and magic states
(see chapter 2) we can obtain a universal set of gates. The following chapter on quantum
LDPC code will follow exactly the same structure and will borrow many of the ideas and
intuitions that we present here.

Author contributions: Some of the material presented in this chapter appears in [19] and
[20]. Specifically, section 3.3 discusses how to express defects on the surface code as a graph
product. This was introduced in [20]. The subsection 3.3 on wormhole defects contains
material presented in [19].

3.1 Definition

The surface code [11] is a quantum error correcting code defined on a square lattice. The
lattice serves to define a stabilizer group S , and the code space is the joint +1-eigenspace
of this stabilizer S .

The elements of the code can be defined using two (classical) repetition codes. For illustra-
tion, we begin with the smallest repetition code of length 3, a [3, 1, 3] repetition code. The
surface code generated using two copies of the repetition code [3, 1, 3] is shown in fig. 3.1(a)
below. The two repetition codes are labeled C1 and C2 respectively and have associated fac-
tor graphs G1 and G2 respectively. The factor graph G1 of code C1 runs vertically on the left
of the diagram and the factor graph G2 of code C2 runs horizontally on the bottom of the
diagram. As before, variable nodes are denoted by blue circles and indexed by numerals
whereas check nodes are denoted by green squares and indexed by capital letters.
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(b)

Figure 3.1 (a) The surface code that results from a product of two [3, 1, 3] repetition codes.
Nodes from C1 are inside. Nodes from C2 are outside. (b) Lattice-free representa-
tion of the code.

In what follows, we shall use a lattice-free representation, where we discard the grid for vi-
sual simplicity. The lattice-free representation will be useful for conceptual clarity without
getting lost in the elements of the grid. This is shown in fig. 3.1(b), and we shall return to
this representation shortly.

How do we obtain a quantum error correcting code from these two classical codes? The
qubits of the resulting quantum code are obtained as products of two variable nodes or two
check nodes.

VV : × → CC : × →

Thus two nodes of the same type yield a qubit. To distinguish them, we call these qubits
variable-variable or VV qubits and check-check or CC qubits respectively. Similarly, two
nodes of opposite types yield stabilizers of X or Z stabilizer generators. We have chosen a
convention where a variable times a check represents an X stabilizer and a check times a
variable represents a Z stabilizer.

X : × → Z : × →

The connectivity between the qubits and the stabilizers is inherited from the classical codes.
For instance consider the action of X stabilizer generators on qubits of VV type as in fig.
3.2(a). These inherit the connectivity of the underlying graph G2. In other words, for each
variable node in G1, we consider its product with G2. Similarly, the action of the X stabilizers
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on qubits of CC type, depicted in fig. 3.2(b), is inherited from the graph G1. For each check
node in G2, we consider its product with G1. Together these generate the set of X stabilizers.
In a similar manner, we can obtain the Z stabilizer generators.

(a)

3

2

1

a

b

1 2 3a b

(b)

3

2

1

b

a

1 2 3a b

Figure 3.2 Breaking down the X stabilizer. We see the action of X stabilizer generators on
VV qubits on the left and CC qubits on the right. Filled nodes represent nodes
involved in the stabilizer generator, and are set against a backdrop of transparent
nodes representing the rest of the nodes in the factor graph that are not involved.

By overlaying these diagrams, we obtain fig. (3.1). In other words, this graph product is ob-
tained by copying the Tanner graphG1 on every vertical column of the lattice and the Tanner
graph G2 on every horizontal line of the lattice. To ensure that these operators constitute a
code, we see that any pair of X and Z stabilizer generators commute. This is because they
either do not meet at all, or if they do, they meet exactly twice. For example consider the
subgraph defined by the variable node 2 and its neighbor B in both graphs G1 and G2.

2

b
× 2 b →

As can be seen from this diagram, every adjacent pair is forced to meet at two qubits and
therefore they commute.

Notice that the variable nodes on the boundary of the classical codes are different from
those in the interior since they are only connected to one check node and not two. Since the
quantum code inherits connectivity from the classical code, this implies that all stabilizer
generators are not created equal. As illustrated in fig. 3.3, those on the boundary are only
connected to 3 qubits, and are different from stabilizers in the bulk which are all connected
to 4 qubits.

On the top and bottom boundaries, the X stabilizers are broken whereas on the left and
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Figure 3.3 Stabilizers of the surface code: (a) Z stabilizer generator in the bulk. (b) Instance
of broken Z stabilizer generator in the boundary. (c) X stabilizer generator in the
bulk. (d) Instance of broken X stabilizer generator in the boundary.

right boundaries, the Z stabilizers are broken. These boundaries are labeled rough and
smooth respectively.

Stabilizers on the boundaries are interesting because of how they detect errors. Each qubit
in the bulk is flanked by two Z stabilizers generators and two X stabilizer generators. There-
fore if it is afflicted by an X or Z error respectively, there are two stabilizers on either side
that detect it. On the other hand, since qubits on the boundary are only adjacent to a single
stabilizer, an error there is potentially only detected by a single stabilizer depending on the
type of error.

The fact that we have created copies of codes C1 and C2 also implies a neat structure for
the logical operators. Recall that the codeword of the repetition code [3, 1, 3] is the string
(1, 1, 1) ∈ F3

2. These have been circled in red in fig. 3.4 below on the factor graphs G1

and G2. Each of these strings corresponds to a logical operator on the quantum code. The
X logical operator, shown in fig. 3.4(a), is obtained from the codeword of C2. Similarly,
the Z logical operator, shown in fig. 3.4(b), is obtained from the codeword of C1. Note
that the two logical operators meet on the VV qubit (2, 2) and therefore anti-commute as
desired. Single-qubit X operators have been depicted as white circles whereas single-qubit
Z operators have depicted in black circles. This notation carries over to the lattice-free
representation shown in fig. 3.4(c).

If a bit-flip error affecting ℓ consecutive bits occurs in a repetition code, it will only be
detected by the parity-checks at its endpoints in the bulk, and will be undetected on the
boundary. The syndromes associated to endpoints of error segments are called domain
walls in physics. Similarly, we can see that the syndrome associated to an error string on
the surface code will reside on the ends of the string. Moreover, an X type error string
leaves no syndrome on a smooth boundary while a Z type error string leaves no syndrome
on a rough boundary.

In the lattice-free representation, the crosses on either end of the string represent the syn-
dromes that detect the error chain. These objects can themselves be regarded as defects on
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the surface. We can move the defects by extending the error chain in any direction we de-
sire. Furthermore, we can eliminate a pair of these defects by bringing them together and
fusing them. We shall return to this idea of moving defects when we discuss implementing
Clifford gates.

(a)

3

2

1

a

b

1 2 3a b

(b)

3

2

1

b

a

1 2 3a b

(c)

.

Figure 3.4 Logical operators of the surface code. (a) shows how the logical Z operator
emerges from the codeword of C2. (b) shows how the logical X operator emerges
from the codeword of C1. (c) shows both logical operators in the lattice-free repre-
sentation.

(a) (b) (c)

Figure 3.5 (a) Strings of errors can be detected by the syndromes on either end of the string.
(b) Contractible loops of X operators. Their action is trivial because they can be
expressed as products of X stabilizer generators. (c) Strings equivalent to the X
logical operator.

3.2 Decoding the surface code

The surface code possesses an efficient decoding algorithm called matching. As was pointed
out earlier, any error chain on the surface code always creates pairs of syndromes, one on
either end of the chain, or the chain can end on a boundary without leaving any trace.
When we perform a measurement of the stabilizers, the generators corresponding to the
ends of error chains will be unsatisfied.
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Let us first consider the action of a local decoder to demonstrate the innovation of matching
using a simple example. What we mean by a local decoder is one that makes a recommen-
dation for each qubit individually: has this qubit suffered a X, Y, Z error or no error at all?
Consider the X stabilizer generators in fig. 3.6. If the two of them are unsatisfied, there are
two possible errors that are likely. Both of these corresponds to half a Z stabilizer generator
shown in the center of the diagram. The first is the error chain indicated using a solid red
line, and the other is the error chain indicated via the dashed red line (there are other errors
that are possible with the same syndrome but they have a higher weight and are thus less
likely). By symmetry, it is clear that a local decoder will not be able to decide between these
two error chains and will get stuck.

The way out of this conundrum is to realize that in this case, we can pick either chain.
Suppose the actual error is really the solid red line; if the decoder picks this line, and undoes
the errors along it, then we have undone the error. On the other hand if the decoder picks
the dashed red line, we have in effect applied the entire cycle corresponding to the product
of the solid and dashed lines. This is a Z stabilizer generator. Recalling eq. 2.1 which stated
that if S ∈ S is a stabilizer, and |ψ⟩ is in the codespace, then S |ψ⟩ = |ψ⟩. Thus applying
the stabilizer will also undo the error.

Figure 3.6 Half a stabilizer confounds a local decoder. Two distinct X stabilizers on either
side of a Z stabilizer that flag an error. The error could be half the Z stabilizer; the
red paths (one dashed and one solid) mark potential errors that are equally likely.

With this intuition, Edmond’s maximum matching algorithm, or simply matching is an
algorithm that can be used to address decoding in general. It accepts as input a set of
vertices and the distance between all pairs and attempts to come up with a matching such
that the total length of the paths between pairs is minimized. As a simple way to decode,
we can perform the X and Z decoding separately.

In order to perform decoding we feed to the matching algorithm the X or Z syndromes
on the surface code, together with their distances to each other and the boundaries of the
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code. To be precise, for every pair of stabilizer generators S1 and S2, the distance d(S1, S2)

between them is defined as the minimum number of qubits we need to traverse in order to
get from one to the other. We then need to feed to the matching algorithm the quantity 2L−
d(S1, S2) since the algorithm maximizes the total path length, and we desire the minimum
for decoding. The complexity of the matching algorithm scales as O(a3) when there are
a defects and so the algorithm is efficient. We shall not cover the details of the algorithm
here. Fig. 3.7(a) shows two syndromes and 3.7(b) shows the output of the minimum weight
matching decoder.

What are the limits of the matching algorithm? There exist problematic physical errors
which could lead to a logical error. Consider an error chain that starts from a smooth
boundary and stretches more than half-way across the lattice as in fig. 3.7(c). The shortest
path in this case in this case is to match to the opposite boundary which in turn will create
a logical error. Thus in the worst case scenario, an error whose weight is half the length of
the lattice could lead to a logical error.

(a) (b) (c)

Figure 3.7 Illustrating minimum weight matching. (a) shows two syndromes marked by
black crosses. (b) shows the error that matching deduces. Even if this is not the
actual error, the product of the real error and the actual error is a stabilizer and
therefore returns to the correct codeword. (c) shows a syndrome that could lead
to a logical error. The actual error is marked using white circles but matching will
deduce that the error is equivalent to the path of red circles. The product of the
actual error and the deduced error is a logical operator.

The state of the art decoding algorithms for decoding the surface code currently are tensor
network inspired [62]. There exist algorithms that deal better with more general types of
noise [63] and function in linear time [64, 65]. The renormalization group (RG) decoder is
another approach to decoding the surface code that can decode in log time [66]. There are
also parallelized algorithms that can work faster [67]. There exist sophisticated decoders
which take into account that there may be correlations between X and Z errors on the
surface code [68], but this simple decoding procedure ignores such correlations. Recently
Delfosse and Nickerson [69] also came up with an almost linear time decoder for topological
codes that also applies to the surface code.
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3.3 Defects on the surface code

How do we manipulate encoded information? Rather than use transversal gates to process
the logical qubits of the surface code, we shall find it convenient to encode information in
punctures. Punctures are defects on the surface code that are created by carving out a por-
tion of our code [8]. What this means is that the qubits in the interior of the puncture will no
longer be measured and the stabilizers incident to these qubits will be turned off. This is re-
alized by measuring single-qubit Pauli operators within the interior of the puncture which
serves to project the qubits in a product state uncorrelated to the rest of the lattice. Since the
stabilizer is defined by a set of commuting Pauli operators, stabilizers that anti-commute
with this measurement can no longer be a part of the code, and are thus discarded. The sta-
bilizers within the puncture that do not anti-commute with the measurement will become
redundant. On the other hand, stabilizers on the boundary will be broken, i.e. they will
lose their support within the interior of the puncture. Punctures are classified based on
how these boundary stabilizers are broken. Much like the boundaries of the surface code
itself, punctures come in two varieties: smooth and rough punctures.

Z (or X) stabilizers do not straddle the boundary of a smooth (or rough) puncture; they are
broken cleanly. On the other hand, the X (or Z) stabilizer generators on the boundary of a
smooth (or rough) puncture will be broken. Rectangular punctures are the building blocks
for punctures of other shapes. These in turn can be constructed using the graph product
of two segments of the factor graphs of the repetition codes. To make these ideas concrete,
we deal with an example below.

These punctures will carry logical qubits and thus the absence of a patch of the surface
code can itself be treated as an entity. By moving these patches around the surface, we can
perform non-trivial operations on the associated qubits.

Smooth punctures: A smooth puncture is created by measuring X on the support of a
set of X stabilizer generators. By this we mean that each qubit in the specified support is
measured individually. How do we specify the set of X stabilizers? A smooth puncture is
chosen by two sub-graphs such that the product does not contain any Z stabilizers of weight
3. In other words, no Z stabilizer generators are broken by the puncture. This requires the
following ingredients:

1. a sub-graph G ′1 ⊆ G1 such that the starting and ending points are both variable nodes.

2. a sub-graph G ′2 ⊆ G2 such that the starting and ending points are both check nodes.
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With these ingredients, we can use the following recipe to form the puncture.

1. For every variable node in G ′2, form a product with G ′1.

2. For every check node in G ′1, form a product with G ′2.

3. Overlay these two graph products.

The qubits that are removed are within the interior of the puncture. The boundary qubits
are not removed.

Fig. 3.8(a) illustrates these ideas using two [5, 1, 5] repetition codes. The ingredients are:

1. The sub-graph G ′1 is the segment between variable nodes 2 and 4.

2. The sub-graph G ′2 is the segment between check nodes b and d.

These are combined using the recipe above. Notice that no Z stabilizer generators are bro-
ken across the puncture.

In creating this smooth puncture, we create a logical qubit. The logical operators are shown
in fig. 3.8(b). The logical Z operator is a loop of Z operators that encircles the puncture. The
loop of X operators encircling a smooth puncture is still part of the stabilizer. The conjugate
is a chain of X operators that runs between the boundary of the smooth puncture and the
smooth boundary of the lattice.

This chain operator need not terminate on the boundary of the lattice; it could also ter-
minate on the smooth boundary of another smooth puncture. In this way, two smooth
punctures can be used to encode a single logical qubit.

Rough punctures: A rough puncture is created by measuring Z on the support of a set of Z
stabilizer generators. Again, we mean that each qubit in the specified support is measured
individually. A rough puncture is chosen by two sub-graphs such that the product does not
contain any X stabilizers of weight 3. No X stabilizer generators are broken by the puncture.
This requires the following ingredients:

1. a sub-graph G ′1 ⊆ G1 such that the starting and ending points are both check nodes.

2. a sub-graph G ′2 ⊆ G2 such that the starting and ending points are both variable nodes.
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Figure 3.8 Smooth puncture created by G ′1 and G ′2.

This is the opposite of the constraints on smooth punctures and in this sense the punctures
are dual to each other. With these ingredients, the construction proceeds as above.

With these ingredients, we can use the following recipe to form the puncture.

1. For every check node in G ′2, form a product with G ′1.

2. For every variable node in G ′1, form a product with G ′2.

3. Overlay these two graph products.

Fig. 3.9(a) illustrates these ideas using two [5, 1, 5] repetition codes. The ingredients are:

1. The sub-graph G ′1 is the segment between check nodes a and c.

2. The sub-graph G ′2 is the segment between variable nodes 2 and 4.

These are combined using the recipe above. Notice that no X stabilizer generators are bro-
ken across the puncture.

In creating this rough puncture, we create a logical qubit. The logical operators are shown
in fig. 3.9(b). The logical X operator is a loop of X operators that encircles the puncture. The
loop of Z operators encircling a rough puncture is still part of the stabilizer. The conjugate
is a chain of Z operators that runs between the rough boundary of the puncture and the
rough boundary of the lattice.
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This chain operator could also terminate on the boundary of another rough puncture. Thus
two rough punctures could be used to encode a single logical qubit.
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(b)

Figure 3.9 Rough puncture created by G ′1 and G ′2.

Movement: Encoding qubits in punctures is useful because it permits us to manipulate the
encoded information by deforming the code. Code deformation refers to a process which
can be broken down into a series of elementary steps. Each elementary step changes the
error-correcting code that supports the logical qubit. To ensure that we still remain in the
codespace, the initial and final codes must be the same. When the entire process is com-
plete, the logical qubits undergo a logical transformation. Each step modifies the code by a
little, so that induced local errors remain local. These local errors can be corrected and this
way, we do not induce a logical error.

Visually, each elementary step can be represented as punctures moving across the lattice.
Assume that we encode two logical qubits, each in a pair of punctures as shown in fig. 3.10.
The two smooth punctures encode one logical qubit and the two rough punctures encode
another logical qubit.

What does it mean for a puncture to move? If we imagine sliding the sub-graphs G ′1 or G ′2
that define either smooth puncture, then the puncture on the surface code moves either ver-
tically or horizontally. By performing the measurements dictated by the new sub-graphs,
we can extend or shrink the puncture as desired. In doing so, the loop type logical operator
recenters itself around the puncture. The chain type operator on the other hand leaves a
trail behind as the puncture moves.

This property can be used to perform two-qubit gates on logical qubits encoded in smooth
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Figure 3.10 Encoding a logical qubit in a pair of smooth or rough punctures.

and rough punctures and the operation is called braiding. Braiding qubits encoded in
smooth and rough punctures performs the CNOT gate between them. As depicted in fig.
3.11, this can be proved by looking at the transformation of the associated logical operators.

Figure 3.11 Braiding two logical qubits encoded in pairs of rough and smooth punctures re-
spectively. We recognize the transformation XI → XX, IX → IX, ZI → ZI, and
IZ → ZZ that define a CNOT from eq. 2.5.

Wormholes: If the code deformation remains within the family of stabilizer codes, the
entire sequence is described by Clifford operations (Pauli measurements), and so it can
only induce logical Clifford group transformations. Moreover, graph product codes and
their punctures described here are CSS codes, meaning that their stabilizer generators are
either all Z or all X. If the code deformation remains within the CSS family, the resulting
logical gates cannot interchange X and Z type logical operators. Thus, code deformation
within the graph product formalism cannot achieve the full Clifford group.

There exists several ways to perform all gates in the Clifford group on the surface code.
Some involve modifying the code or techniques such as lattice surgery [70, 71, 72, 73]. With
an eye towards generalizations to fault-tolerant gates on LDPC codes, we shall present one
method here. The key idea behind the technique we present is to break the CSS nature of
the code. Following [74, 75, 76, 77, 78], this has been a useful trick to obtain the rest of the
Clifford group.

Recall that we created a puncture by measuring single-qubit Pauli operators. These mea-
surements anti-commuted with the existing stabilizers, forcing us to replace them. Instead
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we shall modify our measurements to two-qubit operators obtained as tensor products of
one X and one Z. In turn, these anti-commute with both X and Z stabilizers. To remedy
this anti-commutation, we can replace the pair of anti-commuting operators by their prod-
uct. In the figure below are one Z stabilizer and X stabilizer (plus their supports). We select
one qubit in each of their supports; these are connected via the blue line. We perform an en-
tangled measurement on them – we measure X on the support of the Z stabilizer and Z on
the support of the X stabilizer. This pair of stabilizers is replaced by its product, indicated
by the red line connecting the two check nodes.

We now use this idea to create a defect called a wormhole. We measure two-body operators
along the boundaries of punctures which in turn results in the entangled stabilizers shown
in fig. 3.12. This creates two entangled punctures that are spatially separated that we refer
to as the mouths of the wormhole.

Each hybrid stabilizer is a product of one plaquette and one vertex generator and thus the
weight of the resulting stabilizers is independent of the size of the punctures and the size
of the underlying surface code. These new hybrid stabilizers have weight 8; this can be re-
duced by spreading the weight among some of the local checks adjacent to these stabilizers
using CNOT gates.

Figure 3.12 Creating a wormhole by measuring two-body Pauli operators along the boundary
of a puncture. The dashed-red lines indicate stabilizers that have been paired.
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A simplified version of this figure is presented in the lattice-free version in fig. 3.13. The
two white circles represent the mouths of the wormhole. The wire mesh underneath the
lattice represents the entanglement between these two patches. The mesh is merely a visual
aid and does not represent an extension of the lattice.

Figure 3.13 Side-view of lattice free representation of the wormhole.

Why are hybrid stabilizers useful? A puncture that enters the mouth of a wormhole is
teleported from one region of the surface code to another. Furthermore, a rough puncture
is transformed to a smooth puncture and vice versa. The mouths of a wormhole are capable
of absorbing and emanating both smooth and rough punctures. From a topological point
of view, the rough and smooth mouths are indistinguishable. For this reason, we drop the
color of the mouths and without loss of generality, depict both mouths in white.

In this way, wormholes can transform information encoded in punctures, but they can also
encode two logical qubits. The wormhole is an eigenstate of some set of stabilizers shown
in fig. 3.14 (a) and (b). The first stabilizer shown in fig. 3.14(a) is merely the product of all
the hybrid stabilizers obtained above. The second stabilizer shown in fig. 3.14(b) is merely
the product of the entangling measurements. The stabilizers associated with the wormhole
are thus non-local, with one loop around each mouth. As depicted in the two left panels
of fig. 3.14, one element of this pair is a string of X operators whereas the other is a string
of Z operators.

Figure 3.14 (c) represents the logical Z operator as a loop of physical Z operators that en-
circle one mouth and the conjugate logical X operator is a pair of strings, one of X type
and another of Z type that run to the mouths. We assume that the strings terminate at a
‘sink’ wormhole elsewhere on the lattice. The logical operators of the second logical qubit
are shown at fig. 3.14 (d) and are obtained by swapping the two mouths of the wormhole.
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Figure 3.14 Stabilizer and logical generators of the wormhole. (a), (b) represent the stabilizer
generators of the wormhole. (c), (d) represent the logical operators of each logical
qubit. The logical Z is a loop of Z operators encircling the mouth of a wormhole.
The logical X is comprised of two strings that runs between the two mouths of
the wormholes, one string of Z operators and another string of X operators.

3.4 Clifford gates

To perform single-qubit Clifford gates, we shall use the assistance of an ancilla qubit. This
ancilla qubit will always be a wormhole. We begin with two lemmas which summarize
what measurements we require to perform Clifford gates on a qubit of interest. These re-
sults apply in general, even outside of logical qubits encoded in the surface code.

Suppose we have two qubits, labelled 1 and a, denoting the qubit of interest and the ancilla
respectively. The first lemma summarizes what exactly is needed in order to perform single-
qubit Clifford gates on qubit 1.

Lemma 11. Let A and B be two (distinct) non-trivial single-qubit Pauli operators. Let P and Q be
two Pauli operators, not necessarily distinct. The two-qubit measurements A1Pa and B1Qa, together
with all single-qubit Pauli measurements on qubit a are sufficient to generate the single-qubit Clifford
group on qubit 1.

Proof. A logical Clifford operation will proceed in three steps. Without loss of generality,
let P = Q = A and consider the measurement of A1Pa.

1. Initialize qubit a by preparing it in the B basis.

2. Next, perform a joint measurement A1Pa(= A1Aa) of qubits 1 and a.

3. Finally, measure qubit a in the basis C( ̸= A ̸= B).
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The following flowchart tracks the transformation of the generators of the associated stabi-
lizer and normalizer groups, S and N .

S = {Ba} → {A1Aa} → {Ca}

N = {B1, C1} → {B1Ba, C1Ba} → {C1Ca, B1Ca} .

We have used the fact that Pauli operators are cyclic, i.e. the product of any two distinct
operators yields the third (up to a phase). Up to stabilizer, the result of this transformation
is to map B to C and vice-versa. The result follows.

To perform two-qubit Clifford gates, we can perform controlled operations that do not re-
quire Y states. This is illustrated by the circuit in fig. 3.15 below.

|ψ⟩

|ϕ⟩
=

|ψ⟩
|0⟩
|ϕ⟩

ZX
ZZ

H ↖

Figure 3.15 A measurement-based circuit to perform controlled-Z. We introduce an ancilla
prepared in the |0⟩ state. The double-boxes indicate a non-destructive projective
measurement. The labels PQ on these measurements indicate that the projection
is performed along the +1 and −1 eigenstates of the 2-qubit Pauli operator PQ.
Finally, we perform a Hadamard and destructively measure the ancilla qubit in
the computational basis.

We now need to demonstrate how to perform the desired Pauli measurements on the worm-
hole and logical qubit.

3.4.1 Measurements

One might imagine that we can perform fault-tolerant gates on wormholes by moving
the mouths around one another akin to braiding. However, this will require a forbidding
amount of non-local connectivity. Every qubit might need to be connected to every other
qubit in case we decide to move the mouth of the wormhole to that location.

Instead, we shall use a qubit encoded in either a pair of smooth or rough punctures. This
qubit, referred to as the needle, can be used to stitch logical operators of interest as we
shall demonstrate. It will therefore not require any more long-range connectivity beyond
what is required to initialize the wormholes. We can classify logical operators of the needle
based on whether they can be measured fault tolerantly. Note that the needle operators X
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and Z can be measured fault tolerantly. If we need to measure the string-like operator
that runs between punctures for instance, we could make the punctures larger and bring
them closer together. Alternatively to measure the loop-type operator, we can move the
punctures apart, make them small and measure the boundary. The X and Z operators will
thus be referred to as needle-measurable operators. On the other hand, Y is not needle-
measurable. This is because it will require both shrinking the punctures and bringing them
closer together.

The needle will then be used to facilitate measurements on the ancilla wormholes. There
are different ways to perform the desired joint-operations on the needle and qubits en-
coded in the wormhole. Braiding the needle around one mouth of a wormhole results in
the controlled-Z operation between the needle and an encoded qubit. The evolution of
the logical X of the puncture is shown in fig. 3.16. Since the wormhole is traversable, a

Figure 3.16 The braiding operation: Braiding the needle around the wormhole results in a
controlled-Z operation between the needle and encoded qubit.

puncture can enter one mouth of the wormhole and emerge via the other. We call this op-
eration stitching. Stitching results in the controlled-X operation between the needle and the
encoded qubit. The evolution of the logical X of the puncture is shown in fig. 3.17.

We shall say that an operator Q is traceable if there exists a way to map a needle-measurable
operator P to P⊗Q. We can then measure Q by measuring the needle-measurable operator
P. We now explain how this procedure will work.

Let A denote a logical qubit, or sets of logical qubits whose state we wish to measure. This
could refer to a set of logicals on the wormhole, or an embedded logical, or some combi-
nation thereof. A logical operator QA on system A is said to be traceable if there exists a
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Figure 3.17 The stitching operation: Passing the puncture through the mouth of the worm-
hole results in the controlled-X between the needle and encoded qubit. Between
panels (c) and (d), the rough puncture goes through the sink wormhole far away,
is transformed and then returns to its initial position.

needle-measurable operator Pa and a unitary operation U that maps Pa to QAPa, i.e.

U†PaU = QAPa .

Such operations will be used to measure traceable operators QA in order to effect measure-
ments of logical operators in lemma 36.

We now outline why this is a useful operation. Suppose the ancilla is prepared in a +1-
eigenstate of Pa labelled ϕa, and let ψA be the state of system A. Let U be the unitary op-
eration that maps Pa to QAPa. Suppose we perform the operation corresponding to U, and
proceed to measure Pa. If the measurement outcome is labelled m ∈ {0, 1}, the state after
the measurement is described as

(1 + (−1)mPa)U(|ψ⟩A ⊗ |ϕ⟩a) ,

up to normalization. We may now apply U† to obtain the state (up to normalization)

(1 + (−1)mU†PaU) |ψ⟩A ⊗ |ϕ⟩a
=(1 + (−1)mQAPa) |ψ⟩A ⊗ |ϕ⟩a .

We may now discard the system a, leaving us with the system A. The measurement out-
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Figure 3.18 The Y operator of a wormhole is not traceable.

come m can itself be described as

m = Tr
(

U(ψA ⊗ ϕa)U†Pa

)
= Tr

(
(ψA ⊗ ϕa)U†PaU

)
= Tr (ψAQA) .

In effect, we have performed a measurement of QA on system A using an ancillary sys-
tem a. So long as there exists an effective way to prepare the needle in an eigenstate ϕa of
the needle-measurable operator Pa, and a traceable operation U, then we can perform the
desired measurements on system A.

Unfortunately, logical Y operators are not traceable as the Y operator crosses itself. This
is shown in fig. 3.18. Recall that we needed to perform a fault-tolerant measurement of
an operator P in order to measure a traceable operator Q. Furthermore note that a single-
qubit Y operator corresponding to a wormhole (in the standard basis we have defined) is
not needle-measurable. Looking at fig. 3.18, we see that the X string that enters the mouth
of the wormhole crosses a Z string that encircles the mouth, as it should to yield the correct
anti-commutation relations. However this implies that if we consider the logical Y operator
obtained as a product of the X and Z operators, it crosses itself at this point of overlap. What
this means is that the operator in panel (d) of fig. 3.18 is the product Y ⊗ Y. Since Y on
the wormhole is not measurable, we cannot perform the single-qubit Y measurement in a
fault-tolerant way.

This is the final ingredient required to perform logical single-qubit Clifford gates as stip-
ulated by lemma 11. The lack of a Y measurement is therefore problematic but can be
remedied by noting that although a Y operator cannot be measured, the operator Y ⊗ Y
can indeed be measured. This is shown in lemma 12 below. Provided a resource state of an
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ancilla qubit a prepared in the Y basis, suppose we wanted to measure Y on a qubit, labeled
qubit 1. We can measure Y1 ⊗Ya since a product of Y operators traceable.

Lemma 12. Let the ancilla be comprised of two qubits labelled a and b such that one of its stabilizer
generators is IaYb. It is possible to apply the measurement Ya Ib on qubit a without affecting the state
of the generator IaYb.

Proof. Let a and b refer to the qubits encoded in a wormhole. However, the product YaYb

is traceable as shown in fig. 3.19. This is because the operator does not intersect itself.

Figure 3.19 The product YaYb does not cross itself and is therefore traceable.

This can be used to measure Ya Ib by initializing the wormhole in a state such that IaYb is
a stabilizer generator. We can then measure YaYb, which up to action of an element of the
stabilizer, is equivalent to Ya Ib. The generator IaYb commutes with the measurement and
is therefore unaffected. It can therefore be used for the next gate as well and in this sense,
the gate is catalytic.

3.4.2 Resource state preparation

We have outlined what it takes to perform Clifford gates on qubits encoded in wormholes.
This requires the resource state of an ancilla qubit prepared in the Y basis. We only need
to do this once, and then for the rest of the computation this Y state can serve as a catalyst.

To obtain a universal gate set, we also require a T gate which we can obtain via state injec-
tion.

Both these resource states, the Y and the T, can be prepared using non-fault-tolerant tech-
niques. For instance, suppose we use two rough punctures to encode a qubit in the |+⟩
state. We could bring the punctures close together such that the Z operator is very short,
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say just one unit. The physical T gate on this qubit is then the logical T gate. This process
is not fault-tolerant because the Z operator is short and therefore the logical qubit is vul-
nerable to dephasing errors. To obtain reliable Y states we can bring two punctures close
together, and shrink the size of the puncture to measure the logical Y operator. This too is
non-fault-tolerant, but it only needs to be done once. These resource states can be distilled
to obtain high-fidelity states. The T states are consumed during the computation and the
Y states are used catalytically. We shall expand on this discussion in chapter 5.

3.5 Chapter summary

In this chapter, we introduced the surface code. We began by defining its stabilizer genera-
tors, and found that they were all local in 2 dimensions. In other words, the stabilizers of the
surface code can be laid out on a table top. We pointed out that the surface code could be
expressed as the product of two repetition codes. We discussed some fundamental proper-
ties of the surface code, and understood its logical operators. Next we highlighted that the
surface code has an efficient decoder – the minimum weight perfect matching algorithm.
This decoder was able to overcome the shortcomings of a local decoder, i.e. one that made
decisions for each qubit individually.

We then proceed to discuss defects on the surface code. These are modifications to the
surface code that allow us to encode qubits, but in addition also perform logical opera-
tions on these qubits. A puncture defect is defined by specifying a region where we stop
measuring stabilizers. The advantage of these defect based encodings is that they facili-
tate the CNOT gate on qubits encoded in smooth and rough punctures respectively. These
punctures were themselves expressed as emerging from a graph product. It was shown
that they were graph product of sub-codes of the repetition code. If we enforce certain
boundary constraints on these sub-codes, then the resulting defects on the surface code
also inherit certain properties. This let us classify punctures into two types – smooth and
rough. Smooth punctures were those punctures where Z stabilizers are not broken across
the boundary; X stabilizers on the other could be broken. On the other hand, a rough punc-
ture is one where X stabilizers are not broken across the boundary; Z stabilizers could be
broken.

In order to perform all Clifford gates on qubits encoded in defects, we generalized these
defects. It was noted that braiding punctures alone led to operations which mapped X op-
erators to X operators and Z operators to Z operators. This alone is insufficient to generate
the entire Clifford group. Using two-qubit measurements, we were able to create defects
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that are entangled across two spatially separated sectors of the lattice. Wormhole defects
are also capable of storing qubits. Furthermore, using ancilla-assisted techniques, we were
able to perform all Clifford gates on qubits encoded in these qubits. This required the use
of two resource states. First, we used logical Y resource states that functioned as catalysts.
Using these states we could perform all gates in the Clifford group. This scheme then con-
sumed T states to achieve universality.

In the next chapter, we shall study generalizations of the surface code that could overcome
the restrictions of working with a local code in 2 dimensions.



Chapter 4

Hypergraph Product Codes

The overhead is a figure of merit that represents the number of qubits we require to simu-
late a system. These simulations are characterized by a tug-of-war between the size of the
circuit and the accuracy of the result. Larger problem instances require larger circuits and
therefore larger error correcting codes; this however creates more opportunities for errors
to accumulate. To compensate for this increased error accumulation, we must lower the
logical fault rate. By choosing our quantum error correcting code appropriately, we can
increase the code size n logarithmically with the size of the logical circuit and still find
that the global logical error rate decreases exponentially in the code size n. One drawback
of topological codes is their ability to store logical qubits. Indeed, each logical qubit in a
topological code is encoded in a distinct block of size n. The number of physical qubits
required to simulate a single logical qubit therefore increases with the size of the quantum
computer. It is imperative to explore alternative quantum error correcting codes. This is a
tall order because the surface code has many features that make it favorable. It is difficult
to come up with something simpler and that works better; something has to give.

In contrast, quantum low density parity check (LDPC) codes [79, 6] are generalizations of
topological codes that overcome this increasing encoding overhead. LDPC codes refer to
families of codes where all qubits (data qubits and ancilla qubits for readout) are only con-
nected to a constant number of other qubits. This constant is independent of the block size
and thus simplifies the process of syndrome extraction. In [6], Gottesman proposed a con-
struction that combines techniques for efficient syndrome extraction with ideas to perform
logical gates on block codes. The result was a conditional statement: if ‘good’ quantum
LDPC codes exist, the number of physical qubits required to simulate a logical qubit be-
comes a constant, independent of the size of the quantum computer.

53
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The difference between LDPC codes and topological codes is that the connectivity need no
longer be spatially local. By sacrificing locality, these codes overcome one of the shortcom-
ings of the surface code and this permits a ‘wholesale effect’. Increasing the size n of the
code lets us encode k qubits, where k can increase with n. We can find codes for which the
logical error probability decreases exponentially with n with a fixed k/n ratio. This is to be
contrasted with topological codes that also achieve an exponential error suppression with
n, but with k = 1 and hence vanishing encoding rate 1/n.

Good LDPC codes are elusive. It is hard to enforce the commutation relations between
stabilizers of a quantum code while simultaneously maintaining low connectivity. Topo-
logical codes use topology to achieve this, but there are strong constraints on the number
of logical qubits they can simulate and how effectively they can do so [80, 15]. These con-
straints are a consequence of locality. Although no doubt simpler to engineer, locality is not
a fundamental constraint. There exist techniques that permit qubits that are not adjacent
to share entanglement in various architectures [81, 82, 83, 84]. This motivates theoretical
investigations of LDPC codes that are not constrained by locality. Only with a complete
understanding of the potential benefits of LDPC codes will we be able to decide if they are
worth the extra experimental effort.

One of the leading candidates for LDPC codes are the so-called hypergraph product codes
which eschew topology, and instead engineer commutation relations using algebraic/ graph-
theoretic techniques [18]. The hypergraph product is itself not a code family, but rather a
technique to construct quantum codes from classical codes. If we input two classical codes
to the hypergraph product machinery, the resulting quantum code inherits properties of
the classical codes. Importantly, if the classical code families are LDPC then the quantum
code families will also be LDPC. Furthermore, if the classical code families have a code size
k scaling linearly in the block size n, then so does the code size of the quantum code family.
With regards to distance, the hypergraph product code construction yields quantum codes
with distance scaling as the square-root of the block size. Up to constants, this is the same
functional dependence between the distance and the block size as the surface code (but it
applies to all the logical qubits). So in short, quantum LDPC code achieve the same error
suppression as topological codes, but do so at a constant encoding rate. Since the incep-
tion of hypergraph product codes, there have been variants such as [85] and related classes
of codes called homological product codes [86, 87]. We shall not cover these codes in this
thesis.

Do these codes perform well in realistic scenarios? Do there exist efficient techniques to
decode the hypergraph product code? Can they perform well when the syndrome mea-
surements are imperfect? In this chapter, we will answer these questions in the affirmative.
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These results demonstrate that hypergraph product codes are efficient fault-tolerant quan-
tum memories.

4.1 Background and notation

4.1.1 Classical and quantum codes

We begin by reviewing some ideas that were introduced in chapter 1, and also introducing
some new notation.

Classical codes: Recall that a classical code C = [n, k, d] ⊆ Fn
2 over n bits is the (right-

)kernel of a matrix H ∈ Fm×n
2 , known as its parity check matrix. The code dimension k is the

dimension of the kernel, dim (ker (H)), and d is the minimum Hamming distance between
a pair of vectors in C. In general, we could have redundant checks and so m ≥ n− k. We
let rs (H) denote the row-span of the matrix H and Ht be the transpose of H. Each row of
H encodes a parity constraint that we refer to as a check and we label c ∈ C. Likewise we
label the columns of H by variable indices v ∈ V. Let 1V , 1C denote the identity on FV

2 and
FC

2 respectively. For u, v ∈ Fn
2 , we let ⟨u, v⟩ = ∑n

i=1 uivi denote the inner product between
them. Finally, for an element u ∈ FV

2 , we let supp {u} denote the set of locations where
u has non-trivial support. This naturally extends to other spaces. The image im (A) of a
matrix A ∈ Fm×n

2 is the column-span of A in Fm
2 .

An LDPC code is a code family {Cn}n such that the number of bits in the support of a
check is upper bounded by a constant as a function of the block size n, as are the number
of checks a bit is connected to [25]. In other words, the number of non-zero elements in
each row and column of the parity-check matrix is bounded by a constant with respect to
the block-size n. The factor graph G(C) of a code C lets us infer properties of the code C
from the properties of the graph. The graph G(C) = (V ∪ C, E) is a bipartite graph, where
V = [n] and C = [m]. We draw an edge e = (v, c) between check node c ∈ C and variable
node v ∈ V if and only if Hcv = 1. Given a subset P ⊆ V ∪ C, the neighborhood of P is
denoted Γ(P) and is defined as

Γ(P) = {q|(q, p) or (p, q) ∈ E for p ∈ P} .

Quantum codes: Let P = {±1} × {±i} × {I, X, Y, Z} denote the Pauli group and Pn =

P⊗n denote the n-fold tensor product of the Pauli group. Recall from chapter 2 that a
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quantum error correcting code is specified by a group S ⊆ Pn. The set of logical operators
is then defined as N (S) \ S , where N (S) denotes the normalizer of the stabilizer group.

Just like the individual rows of the classical parity check matrix generate a linear space
of constraints, we can choose a generating set of checks for the stabilizer group S . Much
like its classical counterpart, the factor graph GQ can be used to represent the stabilizer
generator and provides a visual representation of Q. The only difference is that the edges
could carry labels of Pauli elements X, Y or Z, indicating the action of a check on a qubit.

4.1.2 The hypergraph product code

The hypergraph product code is a way to construct a quantum code Q given two classical
codes C1 and C2. As an example, the surface code was obtained as the product of two repeti-
tion codes. This can naturally be extended to families of classical codes. If the two classical
code families are LDPC, then so is the resulting quantum code family. The resulting code
is a CSS code [35, 36], i.e. the stabilizer generators are either products of only X operators
or only Z operators. For simplicity, we shall consider the graph product of a code C with
itself.

Graph-theoretic description: Let G = (V ∪ C, E) be a bipartite graph. Let Q denote the
quantum code obtained from the hypergraph product of G with itself. The factor graph GQ
of Q is denoted as GQ = G × G. Its nodes are partitioned as follows:

1. qubits V ×V ∪ C× C;

2. X stabilizers V × C;

3. Z stabilizers C×V.

This representation highlights that this construction yields two kinds of qubits – those
emerging from the product of two variable nodes (VV nodes) and those emerging from
the product of two check nodes (CC nodes). We draw an edge between (a1, a2) and (b1, b2)

in V ∪ C×V ∪ C if either (a1, b1) ∈ E and a2 = b2 or if (a2, b2) ∈ E and a1 = b1.

Algebraic description: Let H ∈ Fm×n
2 define the codes C = [n, k, d] and C̃ = [m, k̃, d̃] as

C = ker (H) C̃ = ker
(
Ht) . (4.1)
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The X and Z stabilizers of the code are specified via their symplectic representation [88].
The parity check matrices of the quantum code are denoted HX and HZ respectively, where

HX =
(
1V ⊗H |Ht⊗1C

)
HZ =

(
H⊗1V |1C ⊗Ht) . (4.2)

In this expression, VV nodes are in the left partition while CC nodes are in the right par-
tition. Let dmin = min{d, d̃} denote the minimum of the distance of the two codes. The
hypergraph product Q is a Jn2 + m2, k2 + k̃2, dminK quantum code. The reason why dmin is
hamstrung by the distance of the underlying classical codes is shown below in lemma 14.

Lemma 13. The code Q defined by the parity check matrices HX and HZ is a valid code.

Proof. To ensure this is a valid code, we need to ensure that stabilizers commute. There-
fore we need to verify that the inner product between any pair of X and Z stabilizers is 0,
i.e. HX Ht

Z = 0 (mod 2). This inner product follows from the design of the parity check
matrices. Indeed, we have

HX Ht
Z = Ht⊗H+Ht⊗H = 0 (mod 2) .

Ensuring that the stabilizers commute thus becomes a trivial task because of the way the
code is designed. Constructing such codes is a difficult task because of a fundamental
conflict. It is challenging to define quantum error correcting codes that simultaneously
maintain the weight of stabilizers while at the same time ensuring that they commute.
Demonstrating that good LDPC codes exist in classical coding theory is a much simpler
task [89]. There have been several constructions that have attempted to design quantum
LDPC codes in the past (for examples, see [90, 91, 92] for constructions based on Cayley
graphs). These attempts had shortcomings in terms of achievable code parameters; in par-
ticular, these codes have growing distance, but scale poorly as a function of the block size.
There also exist codes that are based on hyperbolic geometry [93, 94, 95, 96, 97]. Although
hyperbolic codes achieve a linear scaling of k with the block size, they are still fundemen-
tally constrained [98].

The hypergraph product was the first class of codes with finite rate and distance growing
as the square-root of the block size. We shall refer to the logical operators of the quantum
code Q as the embedded logical operators to distinguish them from the logical operators
that we introduce later by creating defects. The embedded logical operators of the code are
described as follows.
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Lemma 14. (Embedded logical operators)

1. the X logical operators of Q are spanned by

(ker (H)⊗ (Fn
2 / rs (H)) |0m2) ∪

(
0n2 |

(
Fm

2 / rs
(
Ht))⊗ ker

(
Ht))

2. the Z logical operators of Q are spanned by

((Fn
2 / rs (H))⊗ ker (H) |0m2) ∪

(
0n2 | ker

(
Ht)⊗ (

Fm
2 / rs

(
Ht)))

Proof. The style of the proof follows arguments presented in lemma 17 of [18]. We first show
that the spaces above are contained in the set of logical operators, and then use counting
arguments to show that this must be the entire space of logical operators.

We deal with the X type logical operators and note that the Z logical operators follow using
a similar argument. Let α be an X logical operator, i.e.

α ∈ (ker (H)⊗ (Fn
2 / rs (H)) |0m2) ∪

(
0n2 |

(
Fm

2 / rs
(
Ht))⊗ ker

(
Ht)) .

This object clearly commutes with the Z stabilizers.

For the sake of contradiction, assume that α is in fact in the span of the X stabilizers, i.e. that
there exists a non-trivial vector a ∈ FV×C

2 such that a HX = α. Without loss of generality,
let us assume that the VV portion of α is non-trivial and let π(α) be the projection of α on
to the VV type qubits.

It follows that

a(1V ⊗H) = π(α) . (4.3)

For u, v ∈ V, we can index the elements of π(α) as π(α)[u, v]. Furthermore, for fixed u ∈ V,
we let π(α)[u, ∗] denote the vector over FV

2 obtained by fixing the first component of π(α).

Similarly, we can index the elements of a as a[v, c] for v ∈ V and c ∈ C and let a[v, ∗] denote
the vector over FC

2 . Eq. 4.3 implies that there exists some index u ∈ V such that

bu H = βu ,

where bu := a[u, ∗] and βu := π(α)[u, ∗]. However, this is a contradiction since βu ∈
FV

2 / rs (H) and lies outside the row-span of H.
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The row rank of H is n− k and so the number of cosets in Fn
2 / rs (H) is n− (n− k) = k.

Therefore the number of elements in ker (H)⊗ Fn
2 / rs (H) is k2. Similarly, the number of

cosets Fm
2 / rs

(
Ht) is m− (m− k̃) = k̃. Therefore the number of elements in Fm

2 / rs
(
Ht)⊗

ker
(
Ht) is k̃2. On counting the operators, we see that there are indeed k2 vectors of VV type

and k̃2 vectors of CC type, thus adding up to the correct number of logical operators.

4.2 The small-set-flip algorithm

The flip algorithm introduced in chapter 1 is a linear time decoding algorithm for classical
codes. Unfortunately the algorithm is not guaranteed to work when naively generalized to
the quantum realm. There exist constant weight errors where the algorithm gets stuck.
It will be instructive to study this further to motivate the quantum decoding algorithm
small-set-flip.

V

V

C

C

(c1, v2)

Figure 4.1 Schematic for hypergraph product of two classical codes. We have indicated the
neighborhood of the Z stabilizer (c1, v2) on V×V and C×C. Half of the neighbor-
hoods have been marked to indicate the location of the Z error. The X stabilizers
that detect this error are in V × C. Stabilizers that are connected to one error are
shaded, meaning these will have non-trivial syndromes. The rest will be connected
to two errors and thus will have trivial syndromes.

Consider the Z stabilizer (c1, v2) as shown in the schematic of the hypergraph product. Its
neighborhood is Γ(c1)× {v2} and {c1} × Γ(v2). Suppose we had a Z error that was half of
each of the neighborhoods. Let EV ∈ Γ(c1) and EC ∈ Γ(v2) be the sets that are afflicted by
Z. We let E c

V := Γ(c1) \ EV and E c
C := Γ(v2) \ EC denote the complements of the error sets

within the neighborhoods of c1 and v2 respectively.
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The set of unsatisfied X checks is therefore given by the sets

(EV × E c
C) ∪ (E c

V × EC) .

Consider a variable node u1 ∈ EV . If we find that it is connected to more unsatisfied than
satisfied checks, this means that |E c

C| ≥ |EC|. Therefore if |E c
C| = |EC|, then the algorithm

will get stuck. Likewise if |E c
V | = |EV |, the algorithm will get stuck.

Thus there exists a constant weight error pattern that could confound flip. This is expected
since flip is a local decoder, and it is stuck when it encounters degenerate errors [99]. We
recall from eq. 2.4 that two errors E and E′ are degenerate when there exists a stabilizer
element S ∈ S such that

EE′ = S .

Of course, the particular error pattern is contrived and is unlikely to occur in practice. How-
ever it is a symptom of degeneracy and could potentially derail our decoding algorithm.
Degeneracy means that a Z error contained within the support of a Z check can be cor-
rected either using the same error, or by applying Z errors on all the other qubits in the
support of the Z check. In the case that the original error covers half of the support of a
Z check, these two alternative will be equally likely. The local flip algorithm is unable to
decide between the two alternatives so it gets stuck.

This motivates a simple modification – rather than flip individual qubits, flip a subset of
qubits within the support of a Z stabilizer such that the syndrome is reduced. In this case
we can flip EV × {v2} and {c1} × EC and this will fix the error. This algorithm is called
small-set-flip.

Let us now formally state the result of Leverrier, Tillich and Zémor [100]. Suppose G =

(V ∪ C, E) is (∆V , ∆C)-biregular bipartite graph. In other words, all its variable nodes have
degree ∆V and all its check nodes have degree ∆C. We denote |V| = n and |C| = m such
that n ≥ m, ∆V ≤ ∆C.

One key difference between the Sipser-Spielman requirements for decoding, in addition
to the decoder, is that the expansion requirements for the underlying Tanner graphs are
stronger. Recall that the flip algorithm relied on the Tanner graph being expander graphs,
i.e. if we considered the neighborhood of a set of variable nodes, then it appears as if
its neighborhood is growing very fast. We require that the graphs be bipartite expanders,
a property that we now define. We stick to common notation that refer to these objects
as left- and right-expanders. Before proceeding to definitions, we recall that for a graph
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G = (V ∪ C, E), the edges E = V × C. The variable nodes are on the left of this partition,
and check nodes on the right. Thus if the variable nodes are expanding, the graph is said
to be left-expanding. On the other hand if the check nodes are expanding, the graph is said
to be right-expanding.

Definition 15. Directional expansion can be defined as follows:

1. (γV , δV) left-expanding if ∀S ⊆ V

|S| ≤ δVn =⇒ |Γ(S)| ≥ γV |S| .

2. (γC, δC) right-expanding if ∀T ⊆ C

|T| ≤ δCm =⇒ |Γ(T)| ≥ γC|T| .

3. If the graph is both left- and right-expanding, then we say it is a (γV , δV , γC, δC)-expander.

Why is the story here more complicated? We want to port the intuition from the classical
algorithm to the quantum algorithm: If a set of qubits is afflicted by an error, we want as
many checks as possible to flag this error. In the hypergraph product, both variable and
check nodes from the classical Tanner graphs are promoted to qubit type nodes. Therefore
unless the check nodes also obey an expansion property, this cannot happen.

Theorem 16. Let G = (V ∪ C, E) be a (∆V , ∆C)-biregular (γV , δV , γC, δC)-expander. Assume
γV ≥ 5∆V/6 and γC ≥ 5∆C/6. Letting ∆V , ∆C be fixed and allowing n, m to grow, there exists a
decoding algorithm for the associated quantum code Q that runs in time O(n2 + m2) and corrects
errors of weight up to O(min(n, m)).

The algorithm is presented in algorithm 2 below.

Readers interested in perusing the original paper by Leverrier, Tillich and Zémor will find
it handy to have the following expander dictionary to translate between the notation we
use here and the original. γLTZ and δLTZ are what they refer to as γ and δ.

Expander dictionary: δLTZ = 1− γ/∆ and γLTZ = δ.

Building on this result, the authors of [101] were able to show that the hypergraph prod-
uct codes equipped with the small-set-flip algorithm exhibited threshold behavior. In
other words, if the probability of physical error was below some threshold value, then the
decoder gets better with increasing block size. They first show this for adverserial noise
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Algorithm 2 Input: syndrome vector s ∈ FV×C
2

s0 ← s, syndrome at initial time
e← ∅, deduced error
while |si| ̸= 0 do

si = si−1 + σX(ei)
ei = ArgMax: (|si−1| − |si|)/|ei|
Subject to:
• supp {ei} ⊆ (Γ(c)× v) ∪ (c× Γ(v)), for any c ∈ C, v ∈ V.
• |si| < |si−1|
if such an ei does not exist then

output failure
else

eded ← eded ∆ ei,
end if

end while
Output eded

models and for errors of weight up to square-root of the block-size. They then show that
with high probability, the small-set-flip decoder corrects a constant fraction of random er-
rors in the case of perfect syndrome measurements. Analytical lower bounds for the thresh-
old were also added but these are difficult to obtain, and rather poor for practice.

Author contributions: The following summarizes some results of numerical simulations
done together with Antoine Grospellier.

A better way to ascertain the performance of these codes is numerical simulation. The
simulation was performed using a simple noise model as shown in [102]. The qubits are
assumed to have been afflicted by independent bit and phase flip errors. For simplicity, we
assume that both occur with the same probability p. The logical error rate of these codes
versus the strength of the noise is shown below in fig. 4.2.

Since this is a CSS code, the X and Z parts could be decoded separately. The quantum
code is formed as a product of the classical code with itself and is labeled by n and m,
the number of variable and check nodes respectively. The resulting quantum code is a
Jn2 + m2, n2 − m2K code. In particular, the classical code used to construct the code has
degrees 5 and 6, meaning the variable nodes all have degree 5 and the check nodes all have
degree 6. The code was chosen to have as low a degree as possible because the complexity
of decoding increasing exponentially in the degree of the code. On the other hand, this
means that the rate of the code albeit a constant is not very high, and is roughly 0.016.

The toric code is a code closely related to the surface code (and actually came before the
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Figure 4.2 Results of simulation of (5, 6)-codes, i.e. this figure shows the logical error rate
versus physical error rate of hypergraph product codes formed as the product of
biregular graphs with degrees 5 and 6.

surface code). Comparing the toric code and the hypergraph product code is not straight-
forward because at the outset it is not obvious which parameters to fix. In [102], the authors
compared the logical error rate for the hypergraph product and k/2 copies of the toric code
for a toric code of the same rate as the hypergraph product code. They showed that by the
time the code carried about 500 logical qubits, the hypergraph product code was able to
perform better than the surface code.

Recently, Fawzi et al. [103] showed that in the presence of syndrome noise, the small-set-flip
decoder leaves a number of residual qubit errors on the state after decoding. The number
of errors is proportional to the number of syndrome errors. This is reminiscent Spielman’s
result for classical codes (See chapter 1). These results require even stronger expansion
constraints than that required by [100].

How do we construct such graphs? At present, we do not know of any deterministic ways
to construct graphs with such large expansion factors. Random constructions of graphs
are known to yield graphs with the desired expansion. However, the problem with these
constructions is that these are only asymptotic guarantees and may require large block sizes
and large degrees before the expansion ‘kicks in’. These expansion factors have become
increasingly challenging the more we ask of the code. Recall that in the classical case, Sipser
and Spielman required an expansion of γ ≥ 3/4∆V . The small-set-flip required an
expansion of γ ≥ 5/6∆ (both for V and C) to show that the decoder can correct errors
of weight proportional to the distance. The next iteration by Fawzi et al. [101] required
γ ≥ 7/8∆ (for both V and C) to guarantee that the small-set-flip decoder could correct
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a constant fraction of errors on average. Finally, small-set-flip requires an expansion
factor of γ ≥ 15/16∆ (for both V and C) to guarantee that the decoder is fault tolerant. We
add that these are requirements to prove theorems; in the real world, simulations indicate
that we may be able to get away with less.

What can we expect in the future? Inspired by developments in classical coding theory,
we can probably bet that variants of the flip decoder may not be the ultimate decoding
algorithm. The classical flip algorithm, as well its quantum counterpart, only become
effective for very large block lengths. For modern applications such as WiFi, we use vari-
ants of iterative decoding algorithms in the classical realm. Recently Pantaleev et al. have
demonstrated some remarkable results [104] for belief propagation on small codes. This
may point the way to improving decoders in the future.

4.3 Chapter summary

In this chapter, we introduced the hypergraph product code family discovered by Tillich
and Zémor. We demonstrated that this is a generalization of the technique illustrated in
chapter 3 used to construct the surface code from two repetition codes. We illustrated that
the commutation relations between the X and Z stabilizers follow immediately from the
definition of the code. We then proceeded to discuss the flip algorithm to decode hy-
pergraph product codes and why it fails. We discussed how the small-set-flip decoder
of Leverrier, Tillich and Zémor overcomes this problem. We then reviewed some recent
developments in the decoding of hypergraph product codes. We highlighted the work of
Fawzi et al. [101], [103] where it was shown that the small-set-flip decoder could be used
together with quantum expander codes to achieve fault-tolerant quantum computation. Fi-
nally we supplemented this with some numerical results by Grospellier and Krishna [102]
to show that these codes have reasonable thresholds.

This is strong evidence that the hypergraph product codes can be used as quantum mem-
ories. We are now ready to understand how to use these codes to manipulate encoded
information.



Chapter 5

Defects on Hypergraph Product Codes

As explained in chapter 3, defect-based encodings are one way to encode information in
the surface code. In this chapter, we describe the first techniques to perform Clifford gates
fault tolerantly on hypergraph product codes by generalizing defect-based techniques. Our
method is an instance of code deformation, a general framework to perform gates on quan-
tum codes. Continuing in the spirit of the hypergraph product construction, we express
defects on the surface code as purely algebraic and graph-theoretic concepts. Importantly,
the code remains LDPC over the course of code deformation. Code deformation entails
modifying the hypergraph product code sequentially. Although we end at the same code
we started with, the interim codes will involve modifications which we shall describe in
detail below. Fault tolerance follows because the modifications we make at each step as we
transition from one code in the sequence to the next are local (in a graph-theoretic sense).
The generalized defects are capable of encoding several logical qubits. If we choose to use
a subset of these qubits to encode information, then the rest can be considered as gauge
qubits. A gauge qubit is a virtual qubit in which we choose not to encode any information.
We discuss constraints on code deformation that keeps the spaces of logical and gauge
qubits separate. To conclude, we show that we can achieve a universal gate set on the logi-
cal qubits via state injection.

We emphasize at this point that we are not providing a technique to compile a Clifford gate
of interest. We provide a framework within which it is possible to realize Clifford gates via
code deformation. These Clifford gates can then be composed to generate a larger group
of transformations. We show that the framework is sufficiently rich to realize all different
types of generating gates, but depending on the code, this may or may not encompass the
entire space of Clifford operators. We will return to this discussion later.
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This approach can be contrasted to Gottesman’s work which entails partitioning logical
qubits into blocks of LDPC codes. Each block is of ‘intermediate’ size and a computation
with k logical qubits requires blocks whose size scales as O(k/ poly log(k)). Gates are then
performed by state injection using ancilla states. This was described in chapter 2. The
size of these blocks limits the number of gates that can be implemented at any given time.
Furthermore, the savings of LDPC codes become compelling only as we increase the block
size. Partitioning the logical qubits into blocks implies that it will take longer for this effect
to manifest. In contrast, we propose performing quantum computation on a single block.
Our proposal does not limit the number of qubits that can be processed at any given time
to a constant. On the other hand, the time required to perform a gate could scale so it is
unclear whether these gates will be faster.

The material in this chapter appears in [20].

5.1 Punctures

A puncture is a defect on the hypergraph product created by removing both qubits and sta-
bilizers belonging to some (small) portion of the code. This shall be effected by measuring
single-qubit Pauli operators within the interior of the puncture. This is similar to creating
a puncture on the surface code [105].

5.1.1 Definition

We begin this section with some notation. Let S ⊆ V denote a connected subset of variable
nodes, i.e. for every u ∈ S, there exists at least one check node c such that c is connected
to another variable node v ∈ S. N = Γ(S) ⊆ C is its neighborhood and A = Γ−1(S) is its
ancestor as shown in fig. 5.1(a).

N = {c ∈ C : ∃u ∈ S such that (u, c) ∈ E} A = {c ∈ C : ∀u ∈ Γ(c), u ∈ S}.

For any set V ′ ⊆ V, we let 1V′ denote the projector on V ′ over FV
2 . We also write HV′ = H 1V′

for the restriction of the parity check matrix to V ′.

Similarly, let T ⊆ C denote a connected subset of check nodes. M = Γ(T) ⊆ V is its
neighborhood and B = Γ−1(T) is its inverse neighborhood as shown in fig. 5.1(b).

M = {v ∈ V : ∃c ∈ T such that (v, c) ∈ E} B = {v ∈ V : ∀c ∈ Γ(v), c ∈ T}.
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For any set C′ ⊆ C, we let 1C′ denote the projector on C′ over FC
2 . We also write HC′ = 1C′ H

for the restriction of the parity check matrix to C′.

Note that by definition, A ⊆ N, and B ⊆ M.

(a)

N

AS

V
C

(b)

M

B T

V
C

Figure 5.1 Schematic of factor graphs. (a) Denotes the subgraph induced by S. N is its neigh-
borhood and A is its ancestor. (b) Denotes the subgraph induced by T. M is its
neighborhood and B is its ancestor.

At this juncture, we make some observations that will be useful later.

Γ(A) ⊆ S =⇒ Γ(Sc) ⊆ Ac Γ(B) ⊆ T =⇒ Γ(Tc) ⊆ Bc

Ac = Nc ∪ (N \ A) Bc = Mc ∪ (M \ B) .

To create a puncture on the quantum code, we will stop measuring certain stabilizers, and
modify others when carving out a portion of the interior. The punctures will be classified
by how stabilizers are modified.

Definition 17 (Smooth puncture). Let S ⊆ V and T ⊆ C be connected sets of variable and check
nodes. Let N, A and M, B denote induced sets as defined above. A smooth puncture is defined by
the stabilizers H′X and H′Z where

H′X =
(
1B ⊗HS |Ht

T ⊗1A
)

H′Z =
(
HT ⊗1S|1T ⊗Ht

S
)

.

Note that this is not exactly the graph product of the two subgraphs selected by T and
S. This is verified by noting that it is missing elements from M× S. Rather it follows the
hypergraph product construction on the interior nodes of both graphs. For simplicity, we
abuse notation and refer to this as the graph product T × S.

The defining trait of a smooth puncture is that Z stabilizers are not broken across its bound-
ary. We refer to the schematic in fig. 5.2(a) below. Such stabilizers would have to be of the
form (c, v) for some check c ∈ C and v ∈ V where either the check node c or the vari-
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able node v are in the boundary of T or S respectively. This does not exist by construction –
check nodes in T are contained entirely within the puncture, as are variable nodes in S. The
internal qubits of a smooth puncture are the nodes B × S ∪ T × A and will be measured
in the Z basis to create the puncture. The qubits on the boundary of a smooth puncture
correspond to the sets

(M \ B)× S ∪ T × (N \ A) .

The X stabilizers on the boundary of a smooth puncture correspond to the sets

(M \ B)× N ∪M× (N \ A) .

Their support on the interior of the puncture, B × S ∪ T × A, is removed. Therefore X
stabilizers on the boundary of a smooth puncture are broken.

T × S

B× A

(M\B)×A B×
(N
\A

)

T × A

B× S

T

BM

S
A
N

(M\B)×S

T×
(N
\A

)

(a)

S× T

A× B

(N\A)×B A
×
(M
\B

)

S× B

A× T

S

AN

T
B
M

(N\A)×T

S×
(M
\B

)

(b)

Figure 5.2 Schematic for a puncture on a hypergraph product code. The subgraphs selected
by T and S are flattened and placed below and to the left. Their product is rep-
resented using four quadrants. The qubits are in the North-West and South-East
quadrants. The Z stabilizers are in the South-West quadrant. The X stabilizers
are in the North-East quadrant. (a) Smooth puncture defined by T and S. The Z
stabilizers T × S are completely within the puncture and are thus not broken. (b)
Rough puncture defined by S and T. The X stabilizers S× T are completely within
the puncture and are thus not broken.

In a similar manner, a rough puncture can be created by interchanging the roles of T and
S on the graphs. It is formally defined as follows.

Definition 18 (Rough puncture). Let S ⊆ V and T ⊆ C be connected sets of variable and check
nodes. Let N, A and M, B denote induced sets as defined above. A rough puncture is defined by the
stabilizers H′X and H′Z where

H′X =
(
1S ⊗HT |Ht

S⊗1T
)

H′Z =
(
HS⊗1B|1A ⊗Ht

T
)

.
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Abusing notation, this can be thought of as a graph product S× T.

The defining trait of a rough puncture is that X stabilizers are not broken across the bound-
ary. We refer to the schematic in fig. 5.2 (b) for the following discussion. Such stabilizers
would have to be of the form (v, c) for some check c ∈ C and v ∈ V where either the check
node c or the variable node v are in the boundary of S or T respectively. For the same
reasons as before, such nodes do not exist. The internal qubits of a rough puncture are the
nodes S× B∪ A× T and will be measured in the X basis to create the puncture. The qubits
on the boundary of a rough puncture correspond to the sets

S× (M \ B) ∪ (N \ A)× T .

The Z stabilizers on the boundary of a rough puncture correspond to the sets

N × (M \ B) ∪ (N \ A)×M .

Their support on the interior of the puncture, S× B∪ A× T is removed. Hence Z stabilizers
on the boundary of a rough puncture are broken.

To deform Q, we remove the edges that are contained in a puncture. Algebraically, it is
described by HX +H′X and HZ +H′Z. This code is itself not a hypergraph product code but
is clearly LDPC. We are merely puncturing an LDPC code; by removing edges, we cannot
increase the weight of checks.

We first show that the code defined this way obeys the desired commutation relations.
Before doing so, it is useful to note the following identity:

HB = H 1B = 1T H 1B HA = 1A H = 1A H 1S . (5.1)

This follows from the fact that the neighborhoods of sets B and A are completely contained
within the sets T and S by definition.

Lemma 19. The punctured code forms a valid stabilizer code.

Proof. Consider a smooth puncture created by two subsets T ⊆ C and S ⊆ V. The case of
a rough puncture follows similarly. The punctured code has stabilizers

HX +H′X HZ +H′Z .
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We already know that HX Ht
Z = 0 (mod 2). We need to check the other relations.

HX(H′Z)
t = (1V ⊗H |Ht⊗1C)

[
(HT ⊗1S|1T ⊗Ht

S)
]t

= Ht
T ⊗HS +Ht

T ⊗HS = 0 (mod 2)

H′X(HZ)
t = (1B ⊗HS |Ht

T ⊗1A)
[
(H⊗1V |1C ⊗Ht)

]t

= Ht
B⊗HS +Ht

T ⊗HA

H′X(H
′
Z)

t = (1B ⊗HS |Ht
T ⊗1A)

[
(HT ⊗1S|1T ⊗Ht

S)
]t

= Ht
B⊗HS +Ht

T ⊗HA .

In the last line, we have used the identity in eq. 5.1. Inspecting the last two equations, we
find that each term appears twice. Therefore the sum of all the terms in these two equations
is 0 mod 2 as desired.

For convenience, we have summarized this section in table 5.1.

Smooth puncture Rough puncture

H′X
(
1B ⊗HS |Ht

T ⊗1A
) (

1S ⊗HT |Ht
S⊗1T

)
H′Z

(
HT ⊗1S|1T ⊗Ht

S
) (

HS⊗1B|1A ⊗Ht
T
)

Internal qubits (B× S) ∪ (T × A) (S× B) ∪ (A× T)

Boundary qubits (M \ B)× S ∪ T × (N \ A) S× (M \ B) ∪ (N \ A)× T

Boundary X stabilizers (M \ B)× N ∪M× (N \ A) ∅

Boundary Z stabilizers ∅ N × (M \ B) ∪ (N \ A)×M

Table 5.1 Summary of properties of punctures. We assume that S ⊆ V and T ⊆ C are (con-
nected) subsets of variable and check nodes. S induces the sets N and A, its neigh-
borhood and ancestor, and similarly T induces the sets M and B.

5.1.2 Logical Pauli operators for punctures

Mirroring the surface code, punctured hypergraph product codes support two types of
logical operators - loop-type operators that exist only on the boundary of the puncture and
chain-type operators that are supported on the boundary of the puncture and also extend
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into the rest of the code. For the rest of this section, we let T ⊆ C and S ⊆ V be some
connected subsets. The sets M ⊆ V, N ⊆ C are the respective neighborhoods, and B ⊆ V,
A ⊆ C are the respective ancestors. We shall derive the form of the logical operators for a
smooth puncture defined as above. The logical operators of a rough puncture will follow
by exchanging the roles of S and T.

Before proceeding, we impose certain constraints on how S and T are chosen. These con-
straints apply to smooth and rough punctures both. The constraints stipulate that certain
subcodes associated with S and T are correctable, i.e. if these portions of the code were
erased then we do not lose any codewords of the underlying code in this process.

Definition 20 (Correctability). A puncture defined by T ⊆ C and S ⊆ V is correctable if and
only if:

1. ker (HS) = ker
(
Ht

T
)
= ∅.

2. ker
(
Ht

A
)
= ker (HB) = ∅.

This definition will help establish that creating a puncture will not affect the embedded
logical operators. We begin by considering the embedded Z logical operators.

Lemma 21. There are no embedded Z logical operators supported within the interior of the puncture.

Proof. The proof idea is to show that if an embedded Z logical operator were completely
contained within the puncture, it violates definition 20, part 1. This will entail projecting
down to the level of the classical code until we arrive at a contradiction.

Let α ∈ LZ be a logical Z operator , i.e. as given by lemma 14

α ∈ (Fn
2 / rs (H)⊗ ker (H) |0m2) ∪ (0n2 | ker

(
Ht)⊗Fm

2 / rs
(
Ht)) . (5.2)

For the sake of contradiction, let α be supported entirely within the interior of the puncture,
i.e. only on B× S ∪ T × A.

Without loss of generality, suppose the VV part of α is non-trivial. Let π(α) denote the
projection of α onto the VV qubits. Let us index the elements of π(α) using variable nodes
u, v ∈ V as π(α)[u, v]. Furthermore, let π(α)[u, ∗] denote the vector obtained by fixing the
first component to u. Since π(α) is non-trivial and supported on B× S, there must exist at
least one u ∈ B such that the vector βu := π(α)[u, ∗] is non-trivial.
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Furthermore, it also implies that βu is supported only on S. However, this in turn implies
that there exists a non-trivial element in ker (HS), i.e. that HS βu = 0.

This violates definition 20, part 1. Therefore there cannot be any logical Z operators com-
pletely contained within the interior.

Next, we proceed to show that there are no embedded X logical operators within the punc-
ture.

Lemma 22. There are no embedded logical X operators within the interior of the puncture.

Proof. The proof idea is to show that if a logical X operator were contained entirely within
the puncture, it violates definition 20, part 2.

Let α ∈ LX be a logical X operator, i.e. as given by lemma 14

α ∈ (ker (H)⊗Fn
2 / rs (H) |0m2) ∪ (0n2 |Fm

2 / rs
(
Ht)⊗ ker

(
Ht)) .

For the sake of contradiction, let α be supported entirely within the interior of the puncture,
i.e. only on B× S ∪ T × A.

Without loss of generality, let us assume that the VV part of α is non-trivial. Let π(α) denote
the projection of α onto the VV qubits. Let us index the elements of π(α) using variable
nodes u, v ∈ V. It follows that π(α) is supported entirely on B× S.

Let π(α)[∗, v] denote the vector obtained by fixing the second component to v. Since π(α)

is non-trivial, there must exist at least one v ∈ S such that the vector βv := π(α)[∗, v] ∈
ker (H).

By assumption, since α is supported entirely on the interior, βv is supported only on B.
However this in turn implies that there exists a non-trivial element in ker (HB).

This violates definition 20, part 2. Therefore the puncture cannot contain any logical X
operators.

We will later argue that these conditions can be used together with the cleaning lemma [80]
to guarantee that the embedded logical operators of the quantum code are unaffected by
the puncture.

We will eventually show that certain operators are orthogonal to the stabilizers HX +H′X
and HZ +H′Z. Under certain conditions, some of these operators will not lie in the span of
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the stabilizers themselves. To this end, we now state and prove two lemmas that will be
useful for proving this claim.

We assume that the classical codes obey certain independence relations.

Definition 23. A puncture is defined by T ⊆ C and S ⊆ V obeys independence relations if and
only if:

1. rs (HTc) ∩ rs (HT) = rs
(
Ht

Sc

)
∩ rs

(
Ht

S
)
= ∅.

2. ker (HTc) ∩ ker (HT) = ker
(
Ht

Sc

)
∩ ker

(
Ht

S
)
= ∅.

Remark: we clarify the meaning of condition 2. Of course, if g ∈ ker (H), then g ∈
ker (HTc) as well as ker (HT). We disregard these operators – ker (HTc) and ker (HT) refer
to ker (HTc) \ker (H) and ker (HT) \ker (H) respectively. Likewise, ker

(
Ht

Sc

)
and ker

(
Ht

S
)

refer to ker
(
Ht

Sc

)
\ ker

(
Ht) and ker

(
Ht

S
)
\ ker

(
Ht) respectively.

The next lemma will be useful in showing that operators in the row-space of H′Z are not
in the span of the Z stabilizers HZ +H′Z, i.e. they are not redundant. These operators will
later be used to construct logical operators.

Lemma 24. The stabilizers HZ +H′Z outside the puncture are independent of the stabilizers H′Z
within the puncture, i.e.

rs
(
HZ +H′Z

)
∩ rs

(
H′Z

)
= ∅ .

Proof. Let α ∈ rs
(
H′Z

)
such that it is supported entirely on (M \ B)× S ∪ T× (N \ A). For

the sake of contradiction, suppose there exists a vector a ∈ FC×V
2 such that

a(HZ +H′Z) = α . (5.3)

Without loss of generality, assume that the VV portion of α is non-trivial. Let π(α) denote
the projection of α onto its VV part. For u, v ∈ V, we can index the elements of π(α) as
π(α)[u, v]. Specifically, let π(α)[u, S] denote the restriction of π(α) to elements u, v such
that v ∈ S. Note that for any fixed v ∈ V, we have π(α)[∗, v] ∈ rs (HT).

We can then write eq. 5.5 as

a(HTc ⊗1S) = π(α)[∗, S] . (5.4)

Let v ∈ S such that π(α)[∗, v] is non-trivial. This implies that rs (HTc) ∩ rs (HT) ̸= ∅,
violating definition 23, part 1. Therefore the two sets are independent.
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Lemma 25. Let α ∈ Fn2+m2

2 such that supp {α} ∩ (M \ B)× S ∪ T × (N \ A) ̸= ∅ and it lies
in one of the two following sets:

1.
(
ker (HTc)⊗FS

2 / rs (HA) |0m2

)
;

2.
(
0n2 |FT

2 / rs
(
Ht

B
)
⊗ ker

(
Ht

Sc

))
.

Then α does not lie in the row-span of HX +H′X.

Proof. We shall focus on the first object,
(
ker (HTc)⊗FS

2 / rs (HA) |0m2

)
, and note the other

follows identically.

Let α ∈ (ker (HTc)⊗FS
2 / rs (HA) |0m2) such that it has non-trivial support on (M \ B)× S.

For the sake of contradiction, suppose it is in the row-span of HX +H′X. There exists a
vector a ∈ FV×C

2 such that

a(HX +H′X) = α . (5.5)

Let π(α) denote the projection of α onto its VV part. For u, v ∈ V, we can index the elements
of π(α) as π(α)[u, v]. Similarly, we can index a as a[v, c] for v ∈ V and c ∈ C.

First, consider the VV part of eq. 5.5, expressed as

a(1V ⊗H+1B ⊗HS) = π(α) . (5.6)

Since π(α) is non-trivial, there exists at least one c ∈ N \ A such that a[∗, c] ∈ ker (HTc).
This can be seen as follows. The set S is only connected to the set N; indeed N is the neigh-
borhood of S. Furthermore, for all u ∈ Bc, we have π(α)[u, ∗] ∈ FS

2 / rs (HA). Therefore we
may assume that c ̸∈ A which implies c ∈ N \ A.

This assumption however contradicts the CC part of eq. 5.5, expressed as

a(Ht⊗1C + Ht
T ⊗1A) = 0 . (5.7)

Indeed, projecting the LHS on to C× Ac, i.e. multiply from the right by 1C ⊗ 1Ac , we get

a(Ht⊗1Ac) = a(Ht
T ⊗1Ac) ̸= 0 . (5.8)

This is because by definition 23, part 2 we have assumed that ker (HT)∩ ker (HTc) = ∅.
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Logical operators: With these conditions, we can study the logical Z operators that emerge
by creating a puncture. These operators can be classified in terms of the (classical) codespaces
associated with HA and Ht

B.

Theorem 26. Let G̃B and GA be the generator matrices for the codespaces defined by Ht
B and HA

respectively, i.e. the rows of G̃B and GA span ker
(
Ht

B
)

and ker (HA) respectively. The logical Z
operators are spanned by

(G̃
t
B ⊗Gt

A)H′Z .

Proof. We begin from first principles. The stabilizers are given by HX +H′X and the single-
qubit operators in the interior of the puncture are described by the matrix INT = (1B ⊗ 1S|1T ⊗ 1A).
The logical operators are defined as ker

(
HX +H′X + INT

)
/ rs

(
HZ +H′Z

)
.

Part 1: ker
(
HX +H′X + INT

)
Suppose α ∈ Fn2+m2

2 such that α ∈ ker
(
HX +H′X + INT

)
. We can assume that α is not

supported in the interior, and consider the kernel of HX +H′X instead of HX +H′X + INT.
We use lemma 21 together with the cleaning lemma [80] to note that the embedded logicals
are unaffected by the puncture. Any other Z type operator that is supported in the interior
will anti-commute with the single-qubit X measurements used to generate the puncture
and therefore will be removed.

The operator α must therefore lie in the kernel of HX outside the puncture. This contains
the embedded logical operators and products of old stabilizers that were not in the interior.
We shall only focus on the latter here in order to obtain the new logical operators.

The stabilizers in the interior are spanned by H′Z. Those operators in rs
(
H′Z

)
but not sup-

ported in the interior are thus what we seek. The interior of the puncture corresponds to
B× S ∪ T × A. Let a ∈ FC×V

2 such that supp {a} ⊆ T × S. We want the projection of a H′Z
to vanish in the interior, i.e.

a H′Z 1B×S∪T×A = 0 (5.9)

a(HB⊗1S|1T ⊗Ht
A) = 0 . (5.10)

Inspecting the VV and CC parts of this equation separately, we find that we must have

at ∈ ker
(
Ht

B
)
⊗ ker (HA) . (5.11)
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Equivalently, the space we desire is spanned by

(G̃
t
B ⊗GA)H′Z . (5.12)

Part 2: rs
(
HZ +H′Z

)
We refer to lemma 24 which states that the span of the stabilizers from within the puncture
are independent of those outside the puncture. Therefore the space defined by eq. 5.12 is
not in the span of the Z stabilizers.

Logical X operators

We now discuss the logical X operators associated to a smooth puncture.

The next lemma will help show that certain X operators are not in the span of the stabilizer
HX +H′X. These operators will then be used to construct logical X operators. These are
comprised of codewords of the classical codes that are complementary to the subgraphs
chosen by S and T. In other words, they will involve the terms ker (HTc) and ker

(
Ht

Sc

)
.

In the proof that follows, we shall make certain claims on these spaces. Note that since the
neighborhood the set B is contained in the set T, it implies that the neighborhood of Tc is
contained within Bc. Similarly, the neighborhood of Sc is contained within Ac. Therefore
when studying ker (HTc) and ker

(
Ht

Sc

)
, we shall assume that their support is contained in

Bc and Ac respectively.

These operators can be classified in terms of the (classical) codespaces associated with HTc

and Ht
Sc .

Theorem 27. Let OZ be the Z operators defined by

OZ = (HM⊗1S|1T ⊗Ht
N) ,

and let ΩX = ker (HZ +OZ) denote the X type operators in its kernel.

The logical X operators are described by[
(ker (HTc)⊗ (FS

2 / rs (HA))|0m2) ∪ (0n2 |(FT
2 / rs

(
Ht

B
)
)⊗ ker

(
Ht

Sc

)
)
]

/ΩX . (5.13)

Before proceeding to the proof, we make the following observations and highlight impor-
tant features of this claim. At first glance, the logical operators appear to break into two
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types, the VV type logicals defined by ker (HTc) and the CC type operators defined by
ker

(
Ht

Sc

)
. Thus the logical X operators are defined by the code spaces that are left over

after the portions corresponding to T and S have been carved out.

The set HZ +OZ represents Z stabilizers outside the puncture. Vectors in the kernel of
HZ +OZ are unaffected by the addition of the puncture, and in that sense represent some
invariant space. The space ΩX thus contains X stabilizers and logicals whose support does
not overlap with the puncture. To help this object seem less alien, let us return to the surface
code and consider an example.

Consider a smooth puncture defined on a surface code with only smooth boundaries. This
could define a logical qubit with the X string running from the boundary of the smooth
puncture to one of the boundaries of the lattice. Depending on the arrangement, this logical
operator could be supported only on CC qubits or only VV qubits as shown in fig. 5.3.
However, these two objects are equivalent up to stabilizer. This equivalence is captured by

(a) (b) (c)

(d)

Figure 5.3 Panels (a) and (b) feature a smooth puncture defined on a lattice with only smooth
boundaries. The strings of X operators defined only on VV qubits (as in panel (a))
or only on CC qubits (as in panel (b)) are equivalent. Panels (c) and (d) feature a
lattice with smooth and rough boundaries, with a smooth punctured carved out
from the inside. The logical X shown running from the smooth puncture to the
boundary in panels (c) and (d) are equivalent up to an embedded logical X.

ΩX.

Furthermore, consider a lattice with two smooth and rough boundaries as shown in panels
(c) and (d) of fig. 5.3. The two representations of the logical X operator shown running
from the smooth puncture to the boundary are equivalent up to an embedded logical X
operator, and X stabilizers. This equivalence is also captured by ΩX.

With these comments, we proceed to the proof of theorem 27.
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Proof. We start from first principles. Recall that we defined the matrix INT = (1B ⊗ 1S|1T ⊗ 1A).
The logicals are defined as

ker
(
HZ +H′Z

)
/ rs

(
HX +H′X + INT

)
.

Part 1: ker
(
HZ +H′Z

)
We would like to understand the structure of vectors α ∈ ker

(
HZ +H′Z

)
. We shall assume

that α is not supported on the interior of the puncture B × S ∪ T × A. If α is supported
within the interior, it can be removed using the single-qubit operators described by INT.
As shown by lemma 22, the embedded logical X operators are unaffected by the puncture.

We shall argue that α ought to have a certain structure using a proxy. Let us define a ∈ FC×V
2

as

a = HZ α = H′Z α . (5.14)

The only occasion when a is non-trivial is when α is supported on the boundary. If not, α

is either a stabilizer or logical belonging to the code that is unaffected by the puncture. We
shall mod out by this set, and this will correspond to ΩX.

The VV and CC portions of eq. 5.14 stipulate that

1. a ⊆ im
(
HT 1M\B

)
∩ im (H 1Bc)⊗FS

2 ;

2. a ⊆ FT
2 ⊗ im

(
Ht

S 1N\A
)
∩ im (H 1Ac)

respectively.

Equivalently, this means that

α ∈ (ker (HTc)⊗FS
2 |0m2) ∪ (0n2 |FT

2 ⊗ ker
(
Ht

Sc

)
) . (5.15)

Part 2: rs
(
HX +H′X + INT

)
Since the operators we are interested in only lie outside the puncture by assumption, we
may ignore INT and need only concern ourselves with rs

(
HX +H′X

)
. Let g ∈ ker (HTc)

and x ∈ rs (HA) such that a HA = x. Its product g⊗ x is clearly in ker (HTc)⊗ rs (HA) and
therefore in the kernel of HZ +H′Z. We shall show that this vector lies in the span of the X
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stabilizers as well. Indeed, it can be expressed as

(g⊗ a)
(
HX +H′X

)
= g⊗ x .

In a similar manner, we can show that any vector in rs
(
Ht

B
)
⊗ ker

(
Ht

Sc

)
is in the row span

of HX +H′X.

As was already shown in lemma 24, any vector α ∈ Fn2+m2

2 that is in the row span of

1. (ker (HTc)⊗FS
2 / rs (HA) |0m2)

2. (0n2 |FT
2 / rs

(
Ht

B
)
⊗ ker

(
Ht

Sc

)
)

do not lie in the row span of the stabilizer HX +H′X.

This completes the proof.

5.2 Wormholes

We have now established how to construct punctures by carving out portions of the hy-
pergraph product code. On the surface code, punctures facilitate CNOT gates on encoded
qubits via braiding, but it is limited. This process maps physical (and logical) X operators
to X operators and Z operators to Z operators. In other words, it is a CSS-preserving op-
eration. To complete even just the Clifford group, we require operations that can map X
operators to Z operators on both the physical and logical levels. In particular, we need ways
to perform logical single-qubit Clifford operations. On a 2-dimensional code, twist defects
[106, 75, 76, 77] can be used to encode qubits, and also perform single-qubit Clifford gates
on these qubits.

Twist defects however rely on symmetries of 2-dimensional codes that do not naturally
extend to general LDPC codes. For instance, an error chain on the surface code has two
frustrated stabilizers on either end regardless of the length of the chain. LDPC codes how-
ever do not possess these properties. For instance, expander codes have the property that
the number of frustrated stabilizers grows with the size of the error. For these reasons, we
have to look for other ways of generalizing twist defects.

In the previous chapter, we introduced a defect called a wormhole that addresses this issue.
Rather than rely on line-like defects, it builds upon and generalizes puncture defects. Since
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we already know how to construct punctures on the hypergraph product code, it is natural
to extend them to wormholes.

The key idea is to entangle stabilizers along the boundaries of punctures. Doing so yields
hybrid stabilizers whose weight does not scale with the size of the puncture. As we shall
see, these stabilizers are created by measuring two-qubit Pauli operators. These measure-
ments locally break the CSS nature of the code and serve as a resource to complete the
Clifford group.

Let G = (V ∪ C, E) be a bipartite graph corresponding to a classical code C. Consider a
hypergraph product of a graph G with itself. As before, let S ⊆ V and T ⊆ C be con-
nected subsets of variable nodes and check nodes respectively. Furthermore the induced
subgraphs do not overlap, i.e. they obey N ∩ T = M ∩ S = ∅. These sets must be cor-
rectable, i.e., they obey conditions specified in definition 20.

The wormhole is created by entangling the stabilizers along the boundaries of two punc-
tures. This alters the structure of the code along the boundaries, and we must ensure that
these enlarged regions remain correctable. Hence, we need to strengthen the notion of
correctability to include the neighborhoods that define the punctures.

Definition 28 (Extended correctability). In addition to obeying definitions 20 and 23, wormholes
will also need to obey

1. ker
(
HS

)
= ker

(
Ht

T

)
= ∅.

2. rs
(
HTc

)
∩ rs (HtT) = rs

(
HSc

)
∩ rs

(
HS

)
= ∅.

3. ker
(
HTc

)
∩ ker (HtT) = ker

(
HSc

)
∩ ker

(
HS

)
= ∅.

This will be necessary because the stabilizers on the boundary of the puncture will be re-
moved to form hybrid stabilizers. To argue that the logical operators that emerge have
certain properties, we shall use the above extended correctability condition. Equivalently
these can be thought of as the conditions for a puncture defined using the sets S := M and
T := N.

With these constraints established, we can associate a smooth puncture to the product T× S
and a rough puncture to the product S × T. These punctures will be used to construct a
wormhole in the following sections.
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5.2.1 Measurements and hybrid stabilizers

Within the interior of the punctures, we perform the same measurements as we did to ini-
tialize a puncture – single-qubit X measurements within the smooth puncture and single-
qubit Z measurements within the rough puncture. We then perform two-qubit measure-
ments along the boundaries of the two punctures. This yields hybrid stabilizers.

For what follows, it will be helpful to use the schematic for the smooth and rough puncture
shown in fig. 5.4. Recall that the boundaries of punctures are described as follows:

1. Smooth puncture: T × (N \ A) ∪ (M \ B)× S.

2. Rough puncture: (N \ A)× T ∪ S× (M \ B).

For any VV qubit (u, u′) or CC qubit (c, c′), we shall let P(u, u′) or P(c, c′) denote the single-
qubit Pauli operator P on that qubit.

T × S

B× A

(M\B)×A B×
(N
\A

)

T × A

B× S

T

BM

S
A
N

(M\B)×S

T×
(N
\A

)

S× T

A× B

(N\A)×B

A
×
(M
\B

)

S× B

A× T

S

A N

T
B
M

(N\A)×T

S×
(M
\B

)

Figure 5.4 Schematic for a wormhole on hypergraph product codes. Smooth puncture on the
left and a rough puncture on the right.

The hybrid stabilizers are generated by the following measurements along these bound-
aries.

1. CC qubits: for every c ∈ N \ A, c′ ∈ T, measure X(c, c′)⊗ Z(c′, c); we denote this as

(N \ A)× T ↔ T × (N \ A) .

2. VV qubits: for every u ∈ S, u′ ∈ M \ B, measure X(u, u′)⊗ Z(u′, u); we denote this
as

S× (M \ B)↔ (M \ B)× S .
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These two-qubit measurements do not commute with the stabilizers located on the bound-
ary of the puncture. The next proposition will provide an appropriate choice of hybrid
stabilizers that commute with the measurements. Suppose P and Q are some sets of vari-
able and check nodes respectively, sets of the form P × Q will refer to X stabilizers and
Q × P to Z stabilizers. We shall write P × Q ↔ Q × P to denote the hybrid stabilizer
formed by pairing stabilizers in a natural way. In other words, for p ∈ P and q ∈ Q, we let
P×Q↔ Q× P denote the hybrid stabilizers acting as X on the support of (p, q) and Z on
the support of (q, p). As a matter of convention, the operators with X support are always
denoted on the left, and those with Z support on the right.

The set of proposed hybrid stabilizers contain stabilizers that are adjacent to the puncture
minus those in the interior. In other words, this is the set of stabilizers that live on the
boundary of the punctures.

Proposition 29. Upon performing the measurements listed above, the new hybrid stabilizers are
associated with

(M× N) \ (B× A)↔ (N ×M) \ (A× B) ,

where the double-arrow denotes the one-to-one pairing between the two sets as described above. This
choice of hybrid stabilizers resolves the commutation relations.

Proof. Since we begin with a puncture, certain stabilizers have already been removed from
our code. These correspond to the stabilizers B× A of X type and A× B of Z type from
the interior of respective punctures. We remove these stabilizers from a larger set corre-
sponding to M× N and N ×M respectively. With the interior carved out, this leaves only
the boundary of the two punctures.

Next, consider two nodes c, v such that c ∈ N and v ∈ M. The Z stabilizer (c, v) will anti-
commute with the X measurements if either c ∈ N \ A or v ∈ M \ B. By symmetry, any X
measurement on the support of the Z stabilizer (c, v) will also act as Z on the support of
the X stabilizer (v, c). The two individual stabilizers are frustrated, but this can be resolved
by pairing them.

This produces the desired hybrid stabilizers.

The weight of the hybrid stabilizers is thus independent of the size of the code. For this
reason, this construction guarantees that we still have an LDPC code.
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Thus when creating a wormhole, we begin as before by carving out certain portions of the
code. Then, we perform two-qubit measurements along the boundaries of these punctures.
We remove X and Z stabilizers from the code either because they lie within a puncture, or
they anti-commute with a two-qubit measurement and are replaced by a hybrid stabilizer.

The code thus has the following X, Z and hybrid (denoted h) stabilizers:

X : (V × C) \ [(S× T) ∪ (M× N)]

Z : (C×V) \ [(T × S) ∪ (N ×M)]

h : (M× N) \ (B× A)↔ (N ×M) \ (A× B)

(N \ A)× T ↔ T × (N \ A)

S× (M \ B)↔ (M \ B)× S .

We conclude by reiterating the origin of these objects. Note that there are two punctures
that are used to create the wormhole, one smooth and one rough. The set of all X stabiliz-
ers corresponds to V × C, but we subtract those stabilizers in these punctures. This corre-
sponds to S× T from the rough puncture and M× N from the smooth puncture and the
hybrid stabilizers. Similarly, the set of all Z stabilizers corresponds corresponds to C× V,
but we subtract the stabilizers T× S from the smooth puncture and N×M from the rough
puncture and the hybrid stabilizers. The hybrid stabilizers are created using the bound-
aries of these sets and are stated in proposition 29. The last two lines of hybrid stabilizers
correspond to the two-qubit measurements used to generate the wormhole. We remind the
reader that in this notation, operators with X support are to the left of the arrow, and those
with Z support are to the right of the arrow.

Before presenting the logical operators, we make some remarks. The measurements that
we make along the boundary of existing punctures defined by T × S and S × T clearly
modify the punctures. In effect, the existing stabilizers on the boundary of these stabilizers
have also been modified. This modification can also be expressed as follows. Sitting atop
the smooth puncture defined by T× S is a rough puncture defined by S× T where S := M
and T := N. Likewise the rough puncture S × T lies beneath another smooth puncture
T × S. Introducing this second set of punctures is merely a matter of convenience, and
simplifies the derivation of the logical operators. We shall find that we have two types of
logical operators. The first type is associated to the smooth puncture T× S, and the second
to the smooth puncture T × S.
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5.2.2 Logical Pauli operators for wormholes

When we create a wormhole from two punctures, there are two ways in which stabilizers
are updated. First, there are stabilizers within the puncture that are jettisoned because
they anti-commute with the single-qubit measurements. Second, there are stabilizers on
the boundary of the puncture that are replaced by hybrid stabilizers. This results in two
sets of logical operators for the wormhole as we shall see below. As in the case of punctures,
there are two varieties of logical operators: loop-type operators and chain-type operators.
These logical operators are inherited from the underlying punctures.

The first set of logical operators can be described as the logical operators corresponding to
the punctures S× T and T × S. Given the symmetry of the construction, there is a one-to-
one correspondence between the loop-type logical X operators around the rough puncture
S× T and the loop-type logical Z operators around the smooth puncture T × S.

Lemma 30. The logical Z operators correspond to loop-type operators around one of the punctures.
They come in two sets which are described as follows.

• Type 1: The first set of logical Z operators correspond to the smooth puncture T × S. These
operators were defined in theorem 26.

• Type 2: The second set of logical Z operators corresponding to the smooth puncture N ×M.
These operators can be obtained by using theorem 26 with T := N and S := M.

Proof. To show that these objects are no longer part of the stabilizer group but commute
with the X and Z stabilizers, we point to the proof of theorem 26. The development is
similar save for the new stabilizers, the new two-qubit operators that were measured along
the boundaries of the two punctures.

Type 1: Note that the measurements surrounding the smooth puncture are of Z type and
will therefore commute with the loop-type logical Z operators of type 1. Furthermore, these
logical operators are defined only along the boundary of the puncture T× S. A product of
the two-qubit stabilizers is necessarily defined on both punctures, as X on the puncture T×
S and Z on the puncture S× T. Therefore this implies that the proposed logical operators
of type 1 cannot be in the span of the stabilizers.

Type 2: The logical operators of type 2 are defined on (Γ(N) \ S)×M ∪ N × (Γ(M) \ T).
Thus they do not interact with the two-qubit measurements. For the same reason, they
cannot be expressed as a product of the two-qubit measurement operators. By definition
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28, these objects do not affect the embedded logical operators, and are themselves not in
the span of the Z stabilizer.

Logical operators of types 1 and 2 are themselves independent of each other. First, note
that they are supported on two disjoint portions of the hypergraph product code. We have
already shown in the proof of theorem 26 that under definitions 20, the loop-type logical
operators are not products of stabilizers outside the puncture. We have extended these con-
ditions in 28, which in turn guarantee that one set of loop-type operators are independent
of the other.

Before proceeding to the conjugate logical operators, it will be useful to highlight a symme-
try of this construction. For logical Z operators, we chose the vector of Z operators around
the puncture T × S for type 1 and N × M for type 2. Equivalently we could have chosen
the vector of X operators around the puncture S× T for type 1 or M× N for type 2. The
next lemma states that these two choices are equivalent.

Lemma 31. Every logical loop-type operator for a wormhole has two equivalent representations: an
X type loop around one puncture or a Z type loop around the other.

Proof. We shall deal with each type in turn.

Type 1:

Consider loop-type logical X operators that emerge from the puncture S× T. These logical
operators are supported on (N \ A)× T ∪ S× (M \ B). Each qubit on this boundary has a
unique partner on the other boundary T × (N \ A) ∪ (M \ B)× S. By symmetry, there is
a one-to-one correspondence between the loop-type logical X operators on S× T and the
loop-type logical Z operators on T × S. These can be mapped to one another because of
the two-qubit measurements.

Type 2:

Let G̃S, GT be the matrices whose rows span ker
(
Ht

S
)

and ker (HT) respectively.

Let g ∈ G̃
t
S and f ∈ Gt

T be any two rows of G̃
t
S and Gt

T respectively. By the considerations
above and theorem 26, we can define αZ as a loop-type operator around T × S, where

αZ := (g⊗ f )(HN ⊗1M|1N ⊗Ht
M) .
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Similarly, αX can be defined as a loop-type operator around S× T, where

αX := ( f ⊗ g)(1M ⊗HN |Ht
M⊗1N)

is also a logical operator.

To show that these are in the span of the stabilizers, note that the hybrid stabilizers are
given by

(HN ⊗1M|1N ⊗Ht
M)Z + (HA⊗1B|1A ⊗Ht

B)Z ↔ (1M ⊗HN |Ht
M⊗1N)X + (1B ⊗HA |Ht

B⊗1A)X .

Thus the operator

(g⊗ f )(HN ⊗1M|1N ⊗Ht
M)Z ↔ ( f ⊗ g)(1M ⊗HN |Ht

M⊗1N)X

maps the loop-type logical Z operator to the loop-type logical X operator.

Since this is true for arbitrary f and g, any operator in the space can be mapped between
one puncture and the other.

The logical X operators for the wormhole are constructed from the logical operators of the
corresponding punctures. The form of these operators are given in theorem 27.

Lemma 32. For every loop-type logical Z operator LZ around T × S and the unique loop-type
logical X operator LX on S× T corresponding to LZ, let the conjugate chain-type operators be QX

and QZ respectively. The product QXQZ is the conjugate logical operator to the operator LZ.

Proof. Following the proof of theorem 27, the logical chain-type operators evidently com-
mute with the X and Z stabilizers and are not spanned by them.

From the symmetry of the construction, any overlap with the two-qubit measurement oper-
ators always occurs in pairs if at all. Therefore these operators commute with the two-qubit
stabilizers.

Furthermore since the two-qubit measurement operators are only supported on the bound-
ary, it cannot span the logical chain-type operators. Since the chain-type operators anti-
commute with the logical loop-type operators, it cannot be expressed as a product of sta-
bilizers alone.
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5.3 Code deformation

Having described how to create defects, we can now proceed to discuss how to use them.
Logical transformations will be effected using a technique called code deformation (see for
instance [75, 107, 108, 105]). The core idea behind this technique is to perform a sequence of
T − 1 elementary transformations of a code C =: C(1), obtaining codes C(2), ..., C(T−1), C(T)

in the process.

C(1)
C(2)

C(3). . .

C(T−1)

Each elementary transformation is comprised of measurements of Pauli operators. As
shown in the schematic, the overall result is to leave the codespace globally unchanged,
i.e. C(1) = C(T) = C, but the logical operators of the code may, and hopefully will, undergo
a non-trivial transformation. Since this transformation maps all Pauli operators to Pauli
operators, the resulting operation must be a logical Clifford operation.

We begin by reviewing code deformation to highlight some useful properties. Rather than
focus right away on hypergraph product codes, we step back and study code deformation as
it applies to general quantum codes. Our intent is to track the transformation of the logical
operators. As we shall see below, these steps are organized such that the transformations
are ‘small’ with respect to the logical operators we are interested in. Therefore this process
is fault-tolerant.

5.3.1 Non-mixing

For all t ∈ {1, ..., T}, the quantum error correcting code C(t) is defined on n qubits for some
fixed n. At step t, C(t) is the eigenspace of the stabilizer group S (t).

The logical operators of the code are denoted L(t). These are the objects that we wish to
track as we transform the code. Let Z := S (t) ∩ S (t+1) be the operators that are common to
both S (t) and S (t+1).

The following lemma states that when we transition from C(t) to C(t+1), the logical opera-
tors that need to be updated are either removed entirely or mapped by multiplying by a
stabilizer element.
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Lemma 33. If a logical operator L ∈ L(t) anti-commutes with the measurement of S(t+1) ∈
S (t+1)/Z , then either

1. L is moved to the space of errors; or

2. there exists a unique S′ ∈ S (t) \ Z such that L ↦→ LS′.

Proof. Consider any element S ∈ S (t+1) \ Z . One of two things can happen to S as we
transition from step t to t + 1:

1. S can commute with all of S (t) \ Z , i.e. S ∈ L(t).

2. S can anti-commute with some element S′ ∈ S (t) \ Z . If there are any other elements
S0 that anti-commuted with S, we map S0 → S0S′. We can therefore choose S′ as a
representative element.

In turn, this leads to two possibilities for the logical operators L(t). Suppose we have an
operator L ∈ L(t) that anti-commutes with an element S ∈ S (t+1) \ Z . We then update the
logical as follows:

1. If S is an operator in L(t), then we remove the operator L from the logical operators.
It must now be an error.

2. If there exists an element S′ ∈ S (t) \ Z such that S anti-commutes with S′, then L ↦→
LS′.

This proves the claim.

As we just saw, the operators in L(t) that are in the span of S (t+1) \ S (t) will be removed
from the stabilizer group.

In addition, the sets S (t) andL(t) can also exchange operators. The operators in S (t) \ S (t+1)

that commute with all of S (t+1) will be transformed into logical operators. For instance,
this happens when we create a new logical qubit in the surface code by forming a puncture.
Recall that stabilizer generators and errors can be partitioned into pairs such that a stabilizer
generator S and error E only anti-commute with each other, and commute with all other
operators. When a stabilizer S is transformed into a logical operator, the conjugate errors E
becomes the unique conjugate error. Note that this construction breaks down if we have an
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overcomplete set of generators. For instance this happens when we have a smooth puncture
on a lattice with only rough boundaries. The string of X from the smooth boundary of
the puncture cannot be terminated on the boundary. Thus creating a smooth puncture on
a lattice with only rough boundaries cannot be used to store a qubit (because there are
redundant checks).

This analysis proves that logical operators transform linearly as summarized by the follow-
ing lemma.

Lemma 34. For t ∈ {1, ..., T}, let L(t) denote the set of logical operators of the code C(t). Let
L(t) ∈ Fk×n

2 be the generator matrix for this space and S(t) ∈ F
(n−k)×n
2 be the matrix whose rows

span the stabilizers. There exists a matrix Q(t) such that we can write the logical operators L(t) as

L(t+1) = Q(t)

⎛⎜⎝L(t)

S(t)

⎞⎟⎠ (5.16)

As we proceed with code deformation, we will encounter problems unique to codes that
carry several logical qubits. We define below the notions of non-mixing and small trans-
formations as guidelines for studying such transformations.

First, there may potentially be several ways of updating the logical operators. This is be-
cause there is no preferred basis for us to express the logical operators in the intermediary
steps. Equivalently, the matrix Q(t) is not unique as there could be several different ways of
expressing the logical operators over the course of code deformation. However, the global
transformation Q = Q(T)Q(T−1) . . . Q(2)Q(1) generated by the entire sequence of code de-
formation is unique if we choose the same logical operator basis for C(1) = C(T).

For t ∈ {1, ..., T}, let L(t) denote the set of logical operators of the code C(t). Let

⟨L(t)
j ⟩j := ⟨L(t)

g ⟩g × ⟨L(t)
b ⟩b

be a partition of the set of logical operators L(t) into good and bad operators. These sets are
defined such that the operators in the set g all have weight above some threshold, whereas
those in b have weight below this threshold. Furthermore, assume that ⟨L(t)

g ⟩ contains k′ <
k independent operators. The set of qubits defined by {L(t)

b }b shall be considered as gauge
qubits [109]. As mentioned in the introduction to this chapter, a gauge qubit is a logical
qubit in which we choose not to store information. Thus some of the associated logical
operators can instead be cast as gauge operators. We wish to avoid the space of gauge
qubits interacting with our logical qubits and to this end, define the non-mixing condition.
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Definition 35 (Non-mixing). We say that code deformation is non-mixing with respect to the
partition if there exists a direct-sum decomposition

Q(t) = Q(t)
g ⊕Q(t)

b ,

where matrices Q(t)
g , Q(t)

b only act on the spaces ⟨L(t)
g ⟩g, ⟨L(t)

b ⟩b respectively. Each elementary step
in code deformation is small with respect to Q(t)

g if Q(t)
g is rank k′ over the good partition.

By guaranteeing that an operation is non-mixing with respect to this partition, we can show
that the gauge qubits do not affect the logical qubits. The constraint on the rank will guar-
antee that none of the good logical operators are mapped to either the stabilizers or gauge
operators over the course of code deformation.

The non-mixing condition is important because we cannot guarantee that the number of
logical operators will remain a constant over the course of code deformation. In general,
hypergraph product codes need not be translation invariant like the toric code; even if we
maintain a puncture of a fixed radius, the number of logical operators created by this punc-
ture could change as it moves. If we move a puncture by enlarging it and then shrinking it,
this could also change the number of logical operators supported by the puncture. How-
ever the two conditions on the high-weight operators regulate their transformation.

To illustrate, we consider encoding logical qubits on the surface in a slightly unusual way.
Consider the pair of punctures on the surface code shown in fig. 5.5. This pair shall be

Z

A

X

Figure 5.5 A pair of punctures used to encode a single logical qubit on the surface code.

treated as a single entity that encodes a logical qubit. The logical Z operator is the loop
encircling the pair, denoted Z. The logical X operator is a string of Xs running from the
boundary of a puncture to the boundary of the lattice, denoted X. The operator A running
between punctures is a low-weight string of Xs and this logical operator is a potential li-
ability. We therefore treat it as a gauge qubit. When encoding information, we only store
logical information using the qubit defined by Z and X. So long as we do not braid using A
or drag another defect between these two punctures, this troublesome chain will not cause
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a problem. In this way the operation will be non-mixing because the operator A will never
be entangled with other qubits of interest.

5.3.2 Code deformation on the hypergraph product code

We now return to hypergraph product codes, and in this section shall discuss how to per-
form Clifford gates with the help of an ancilla. Recall lemma 11 which we restate here for
convenience.

Lemma 36. Let A and B be distinct, non-trivial single-qubit Pauli operators. Let S and T be
two Pauli operators, not necessarily distinct. The two-qubit measurements A1Sa and B1Ta, together
with all single-qubit Pauli measurements on qubit a are sufficient to generate the single-qubit Clifford
group on qubit 1.

First, we point out that regardless of whether the qubit 1 is an embedded logical qubit, or
merely another wormhole, the ancilla qubit(s) shall be encoded in a wormhole. Second,
we will require these wormholes to encode Y resource states. For reasons that will become
clear shortly, we will find it difficult to perform single-qubit Y measurements on the logical
level. If however we are provided ancilla qubits that are prepared in the Y state, we may
use these objects catalytically to perform a Y measurement. This is necessary, at least as per
lemma 36, to complete the Clifford group.

In addition to these single-qubit gates, we also require entangling gates between multiple
logical qubits. The circuit shown in fig. 5.6 shows how this too can be accomplished on
the logical level with the help of an ancilla and Pauli measurements. This completes the

|ψ⟩

|ϕ⟩
=

|ψ⟩
|0⟩
|ϕ⟩

ZX
ZZ

H ↖

Figure 5.6 A measurement-based circuit to perform controlled-Z. We introduce an ancilla
prepared in the |0⟩ state. The double-boxes indicate a non-destructive projective
measurement. The labels PQ on these measurements indicate that the projection
is performed along the +1 and −1 eigenstates of the 2-qubit Pauli operator PQ.
Finally, we perform a Hadamard and destructively measure the ancilla qubit in
the computational basis.

requirements to perform Clifford gates. In the next subsection, we shall study how exactly
to perform these measurements.



92

5.3.3 Measurements and traceability

The measurements of Pauli operators described above will have to be performed on the
logical operator and the ancilla qubit encoded in a wormhole. In addition, we use a regular
puncture based qubit to perform the measurement. This puncture shall be referred to as a
needle.

We are interested in logical operators of the needle that can be measured fault tolerantly.
In turn these operators will be used to measure the logical Pauli operators of a wormhole
or even an embedded logical qubit. For instance, suppose we have a smooth puncture that
has high weight X and Z operators. The loop-type operator can be measured by shrinking
the size of the puncture while simultaneously maintaining the size of the chain-type con-
jugate logical operator. This would of course make the logical qubit susceptible to logical
Z error. However this will not affect the measurement outcome so long as the logical X op-
erator remains high weight. Similarly, the chain-type logical X operator can be measured
fault tolerantly by shrinking its size while maintaining the size of the loop-type Z logical
operator. Unfortunately, the logical Y operator of a puncture cannot be measured fault tol-
erantly as this would require that we minimize both the size of the chain-type operator as
well as that of the loop-type operator. The logical qubit would then become unprotected,
and the measurement outcome error prone. The impossibility to fault-tolerantly measure
Y operators will cause some problems as we shall see below.

Let w denote a logical qubit, or sets of logical qubits whose state we wish to measure. This
could refer to a set of logicals on the wormhole, or an embedded logical, or some com-
bination thereof. Let Pp refer to a logical operator of the puncture that is fault tolerantly
measurable. A logical operator Qw on system w is said to be traceable if there is a unitary
operation U implementable by code deformation such that

U†PpU = QwPp .

Such operations will be used to measure traceable operators Qw in order to effect mea-
surements of logical operators in lemma 36. The operator Qw shall be measured using the
standard ancilla-assisted way: we shall prepare the ancilla in an eigenstate of Pp, applying
the unitary U and then measure the operator Pp.

If Qw is either X or Z, then we need to find an operator Pp and an operation U such that

U†PpU → QwPp .
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On the other hand, if Qw = Y, then the situation is complicated for reasons we will discuss
shortly. In such a case, we shall assume that we are given access to an another system b
prepared in a Y state. The aim is to perform the operation

U†PpU → YwYbPp ,

which would not have been possible without the system b. If we now use this operation to
perform a YwYb measurement, then we can do so without affecting the state of system b. In
this way, the system b serves as a catalyst and can be used for the next Y measurement on
w. In the next subsection, we shall discuss how to obtain such a resource states to serve as
catalysts.

We remark that this completes the requirements to perform Clifford gates on the system w.
We now make some comments about traceability.

We begin by noting that the advantage of the wormhole in this process is that it permits
both the X and Z type logical operators associated to a defect to be traced. We provided
an example in chapter 3; whether or not a logical operator is traceable on a specific code is
a code-dependent question. The other advantage of a wormhole is that it permits the use
of a Y resource state whose role is catalytic in the implementation of CSS breaking opera-
tions. Without the wormhole, the Y resource states would be consumed by CSS breaking
operations and we would therefore require a constant supply of these states.

In the case of the surface code, the new wormhole defects that we have introduced make
it possible to trace both the X and Z type logicals associated to a wormhole (see chapter
3). Suppose that Pp above is the logical X operator of a smooth puncture. As it traces
the support of a logical Y = iXZ operator, it will encounter the location when the X and Z
logical operators cross. As shown in fig. 5.7, the trailing chain-type X operator is mapped to
the logical Y operator and this has the effect of breaking the original protocol. So instead of
mapping Xp to YwXp as desired, we are mapping it to YwYp. Completing the protocol would
require measuring Yp, but this cannot be done because it is not fault tolerantly measurable.

Not all is lost however; we may find that products of logical Y operators are traceable. As
an example, this was demonstrated in the case of the surface code with wormhole defects,
so the framework we describe is sufficiently rich to enable the complete Clifford group in
principle.

We would like to highlight that we are not providing a constructive approach to compil-
ing specific logical operators. Compiling the operation required to trace operators not only
depends on the code, but also on the representation of the logical we are interested in per-
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(a) (b)

Figure 5.7 A puncture crossing its own path. The puncture first leaves a trail of Zs, and passes
through a wormhole. Upon crossing Z, the logical X is mapped to XZ. This oper-
ator is no longer guaranteed to be needle-measurable.

forming. The process described merely provides a framework within which to search for
such an operation. For instance, given a specific code, we could search for non-trivial Clif-
ford operators that we can perform using brute force. Once a set of Clifford operations has
been found, these can be used as a basis to compose Clifford gates of interest using standard
compiling tools.

We consider an example, perhaps perverse, to illustrate that simply having a wormhole
and a puncture is insufficient to generate all Clifford gates. Suppose we have two copies of
the toric code that are disconnected from each other. If we were to initialize a wormhole
and a needle on one of the two codes, then clearly this is insufficient to perform all gates
fault tolerantly on all logical qubits. This is because there is clearly no way for the needle
to move to the second code. This suggests that in general, the ability to perform all gates
may be closely tied to graph connectivity. We will return to this idea in section 5.3.5.

5.3.4 Resource states

Clifford gates by themselves only generate a finite group [88]. Furthermore, the techniques
that we have discussed above only map Pauli operators to Pauli operators. Therefore they
can at best generate logical Clifford operations.

As is well known, it is sufficient to add any gate that is not already in the Clifford group
to achieve a universal gate set. One such non-Clifford gate is the T gate, defined as T =

eiπZ/8. We assume that we have access to physical T gates and wish to construct a logical T
gate. The technique presented here will mean that this logical T gate is not inherently fault
tolerant. In turn the T gate will be noisy and therefore need to be distilled [110].

By its definition, the logical T = eiπZ/8 gate can be executed on the support of the logical
Z operator. Suppose we have a logical qubit encoded in a smooth puncture prepared in
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the |+⟩ state. The logical Z operator is a loop-type operator that is supported only on the
boundary of the puncture. We can inject the T gate on to the code by performing an explicit
circuit on this boundary. One might hope that the stabilizers and logicals on the boundary
obey some symmetry such as tri-orthogonality [53]. In that case, the circuit to inject the T
gate could be made fault tolerant as we would merely require transversal physical T gates
in order to implement the logical T gate. However we do not assume that the puncture
obeys these symmetries, and thus the circuit to perform the T is not fault tolerant. Thus we
would want to minimize the size of the circuit to minimize the number of faulty locations.
To this end, we may shrink the puncture i.e. reduce the size of the boundary that supports
the logical qubit. Upon performing the T circuit, we increase the size of the puncture again
to make it resistant to logical Z type errors. While doing so of course, the logical qubit is
still subject to logical Z errors and is thus subject to dephasing errors. The end result is a
noisy version of the T state defined as |A⟩ = T |+⟩.

Once we have several such logical qubits carrying potentially noisy T states, we can perform
state distillation on the hypergraph product code. This process was described in chapter
2. State distillation is a technique that uses several noisy T states and produces fewer, but
higher fidelity copies of the T state. These higher fidelity copies can then be used in the
computation if they are sufficiently reliable. State distillation only requires Clifford gates
and Pauli measurements, and these are operations we already have the ingredients to per-
form.

To perform a logical T on an embedded logical qubit, we can use the T gate and a single-
qubit teleportation circuit [45].

In addition to using resource states to inject the T gate, we also require resource states that
are prepared in the Y basis as was discussed in the previous section. However since these
resource states are used catalytically, they can be prepared once before the beginning of
the computation. To prepare these states, we follow a procedure similar to the preparation
of a T state. We shall perform the circuit required to prepare a puncture qubit in a logical
Y state. We note that the circuit to prepare the Y state will have to be performed on the
support of both the X and Z logical operators. To minimize the size of this circuit, we
therefore reduce the size of both the loop-type and the chain-type logical operators. This
circuit will likely not be fault tolerant; after performing the circuit we will have to increase
the size of the loop-type and chain-type logical operators. During this period the logical
qubit supported on the puncture may be subject to depolarizing noise.

Once we have prepared several such logical qubits, we will have access to several noisy Y
resource states. To purify theme, we will have to perform distillation. Of course, there may
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be more optimal ways to prepare these states, but this is sufficient to generate the desired
resource states.

5.3.5 Point-like punctures

Before we conclude, we consider a scheme that involves the movement of point-like punc-
tures. This deviates slightly from the framework that we have discussed above, and since
the punctures are point-like, the setup is not fault tolerant. However, we feel that it still
may help understand movement in these codes.

When discussing the surface code, traceability is relatively simple. We can move a rough
puncture around a smooth puncture and thereby perform a non-trivial Clifford operation.
Whether or not such an operation is possible is dictated by topology; a rough puncture can
trace any closed loop of Z operators. The situation is not so simple in the case of hypergraph
product codes.

In this subsection, we discuss when logical operators are traceable using a point-like punc-
ture to serve as the needle. Of course, using a point-like puncture is not fault tolerant as
the loop-type logical operators are low-weight and therefore error prone. This discussion
will however shed light on when something non-trivial is possible. It also illustrates that
we can generalize braiding to graph-theoretic concepts. This could also be of independent
interest, for example in condensed matter physics.

We shall show that in the case of point-like punctures, traceability can be cast as walks on a
graph. Thus whether or not a logical operator is traceable boils down to verifying whether
a certain path on a graph exists. This shows that it may be possible to efficiently verify
when an operator is traceable.

Consider a point-like puncture, i.e. one created by removing a single stabilizer generator.
For the sake of illustration, this puncture is smooth. Code deformation entails that there
exist a series of steps such that the point-like puncture corresponds to Tj× Sj for j = 1, ..., N.

Let Tj = {cj}, Sj = {vj} be singleton sets and let Tj × Sj be the associated point-like punc-
ture. The logical Z operator α that emerges is then just the support of the Z stabilizer (cj, vj)

i.e. αj := Γ(cj)× vj ∪ cj × Γ(vj). Let the conjugate logical operator be β j. Let us study how
these objects transform as we transition from step j to step j + 1.

Moving a single step: Suppose we consider moving this puncture by changing Tj →
Tj+1 = {cj+1}, where cj and cj+1 share a bit uj in their common neighborhood as shown in
fig. 5.8.
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c
u c′

c1

c2

v

Figure 5.8 A point-like puncture centered at c, v. The check c′ is connected to c via the variable
node u.

In the growth phase, we would measure X on the qubit (u, vj). This anti-commutes with all
the Z stabilizers that are incident to (u, vj), i.e. (c1, vj), (c2, vj) and (cj+1, vj). The logical Z
operator αj (corresponding to (cj, vj)) also anti-commutes with this operation. These objects
are updated per the stabilizer update rule. We multiply the operators (c1, vj), (c2, vj) and
αj by (cj+1, vj). The stabilizer (cj+1, vj) is itself removed from the stabilizer group.

In the contraction phase, we measure the stabilizer (cj, vj), returning it to the stabilizer
group. This anti-commutes with the measurement X(u, vj). This also anti-commutes with
the logical operator β j. To resolve this anti-commutation relation, we map β j → β j+1 :=
β jX(u, v). We then discard X(u, v) from the stabilizer group.

Thus the logical operator β j has grown by a single qubit. However, we have not yet returned
to the code space. The logical operator β j+1 still anti-commutes with the operators (c1, vj)

and (c2, vj). These objects have still not been returned to the stabilizer group. We highlight
this matter because it is this issue that does not allow us to fit the movement of a point-like
puncture into the framework described in the previous sections.

There are two concerns associated with these frustrated stabilizers:

1. Will they return to the stabilizer group?

2. Will the weight of these objects grow or remain upper bounded by some constant?

First, since the path we traverse corresponds to a logical, it must commute with all the
stabilizers. Thus at some point during the course of the point-like puncture moving, it
will commute with each stabilizer that it frustrated. Exactly when these operators will be
returned to the stabilizer group will depend on the path being traversed.

Secondly, the weight of these stabilizers is always guaranteed to be upper bounded by a
constant. In fact, these frustrated operators are always pairwise products of the puncture
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at step j and themselves. For instance, consider the example above where we transitioned by
one step, from j to j + 1. In the very next step, suppose the next point to be removed corre-
sponds to the stabilizer (cj+2, vj). The stabilizer (cj+1, vj) is returned to the stabilizer group.
Therefore the frustrated stabilizers (c1, vj) and (c2, vj) are now multiplied by (cj+2, vj). This
will continue until we measure another qubit in the support of (c1, vj) and (c2, vj), at which
point they will return to the stabilizer group.

For a point-like puncture, this analysis shows that the logical can grow one qubit at a time.
With this insight, we can cast the problem of whether or not a logical is traceable as a graph
problem. In this problem, we first consider a logical operator, say Q, that has no Y operators
in its support. We use this operator to define a graph GQ as follows. The stabilizers that
are adjacent to the qubits become the vertices of GQ and the qubits in the support of Q
become the edges of GQ. If there exists a sequence of stabilizers that we can puncture, each
connected by a single qubit then this path becomes traceable.

In particular, this can be cast as Eulerian cycle [111]. Eulerian cycle is an efficient algorithm
that can be stated as follows:

Algorithm 3 Eulerian cycle
1: Input: Graph G = (V, E).
2: Output: A path on the graph such that every edge is traversed exactly once if it exists.

It is well known that an Eulerian cycle exists only when the degree of each vertex in the
graph is even. Thus given a graph with n vertices, the existence of an Eulerian cycle can
be verified efficiently. This example shows that braiding may generalize to a purely graph-
theoretic concept. Moreover, there may exist an efficient algorithm to answer when a logical
is traceable.

5.4 Chapter summary

In this chapter, we began by understanding how to generalize puncture-based defects on
the surface code to general hypergraph product codes. A puncture can be expressed as the
graph product of two subgraphs that comprise the hypergraph product code. There are two
types of punctures - rough and smooth - that can be classified according to their boundary.
Smooth punctures do not break Z stabilizers across the boundary, whereas rough punc-
tures do not break X stabilizers across the boundary. Creating a puncture only removes
edges from the graph, and therefore the quantum code remains LDPC.
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We then proceeded to discuss the structure of the logical operators of the code. Wormholes
help break the CSS-nature of the code. In turn this is used as a resource to map X operators
to Z operators during code deformation. We derived the explicit form of the loop-type and
chain-type logical operators that emerge when we create a puncture. These were subject
to correctability constraints 20. Having introduced puncture-based defects, we went on to
discuss how to generalize wormhole defects. These defects build on the idea of puncture-
based defects and are created by performing two-qubit measurements along the boundary.
It was shown that these defects could also be expressed algebraically, i.e. the stabilizers
could be expressed in terms of elements of the graph product code. Wormhole defects
result in hybrid stabilizers that emerge as a product of one X and one Z stabilizer. This
is independent of the size of the code. Therefore the code remains LDPC even after the
creation of a wormhole defect.

Finally, we discussed code deformation on the hypergraph product codes. The objective
is to gradually transform the code such that local errors are mapped to local errors. In
this way, the process is fault tolerant. We began by noting that defects could carry several
logical qubits. To ensure that the resulting process did not introduce logical errors on qubits
of interest, we introduced the non-mixing condition. This condition stipulated that logical
qubits and gauge qubits on the puncture would not be allowed to mix.

We then discussed the ingredients needed to perform all Clifford gates using wormhole
defects. This discussion highlighted the need for resource states to perform Clifford gates.
Namely, we need Y type resource states in order to perform CSS-breaking operations. For-
tunately, these states are not consumed, but rather are used catalytically. Finally, to perform
a universal gate set, we require the T gate and we discussed techniques to perform state in-
jection. Together this completes the requirements for a universal gate set. We wrapped
up this chapter by studying point-like punctures. It was shown that we could understand
when a logical operator was traceable using an efficient algorithm called Eulerian cycle.
This showed that braiding can be cast as a graph-theoretic concept.



Conclusion

It is still unclear what architecture we ought to use in the long term to construct quantum
circuits. It is therefore imperative to explore all the possibilities, and understand the trade-
offs involved in choosing one quantum error correcting code over another. In this thesis, we
have focused on hypergraph product codes, a class of quantum Low-Density Parity-Check
(LDPC) codes. Specifically, we provided a general framework to implement Clifford gates
on this class of codes.

This framework is based on code deformation, and generalizes defect based encoding from
topological codes. Wormholes are created using two-body measurements along the bound-
aries of punctures. These defects are a unified representation of both puncture and twist
type defects. The stabilizers within the interior of the mouths of the wormholes have been
removed from the code much like in the case of punctures. By entangling the boundaries
of these punctures, we see interesting physics when we consider the movement of anyons
on the surface of the lattice. Wormholes are capable of encoding a logical qubit and we can
perform all gates in the Clifford group using topologically non-trivial operations.

These defects ensure that the code remains LDPC at each step of code deformation. In
contrast to a previous scheme suggested by Gottesman, these operations are defined on
a single block. The generalized punctures that we obtain are capable of encoding several
logical qubits. We discussed a framework that is rich enough to permit all Clifford gates
on encoded qubits. Whether a particular code permits these gates is a code dependent
question. Finally, we discussed the movement of point-like charges on these graphs. These
defects serve to illustrate that something non-trivial can be accomplished on hypergraph
product codes. Furthermore they demonstrate how braiding can be generalized to a purely
graph-theoretic notion.

Of course, this is merely a proof of concept, and there is a lot of work to be done in the future.
In no particular order, we discuss some issues that need to be addressed; this is by no means
a complete list. Using point-like punctures helps us understand that traceability in certain
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instances is connected to Eulerian cycle. As punctures become larger however, it is unclear
how this algorithm will generalize. Furthermore, we would like efficient algorithms that
can verify whether a given representation of a logical is traceable.

On a practical note, it would also be interesting to understand experimental implementa-
tions. The difficulty in implementing ideas discussed in this thesis concerns establishing
long-range connectivity with high fidelity. This is not an easy task and depends on the ar-
chitecture in question. However exploring this avenue is imperative as local architectures
have severe limitations. We could first consider architectures that can support a limited
amount of non-locality. This is possibly simpler than demanding all-to-all connectivity.
There have been promising developments in this direction on superconducting qubit ar-
chitectures [82, 83, 84]. This research could point the way towards implementations of
wormhole defects. Next we could consider general quantum LDPC codes which require
a high degree of non-locality. For NV centers and ion traps, this appears to be possible at
least in theory. Indeed proposals such as that laid out by Nickerson et al. [81] indicate that
we may be able to share entanglement between two arbitrary points on a grid of qubits.
This proposal builds on a scheme for entangling photons due to Barrett and Kok [112]. The
drawback with this approach appears to be the difficulty in photon detection. According
to estimates by [14], our efficiency for photon detection needs to improve by several orders
of magnitude before such a scheme becomes practical. Addressing these difficulties will
help understand whether or not it is practical for us to implement quantum LDPC codes.

We believe that addressing these questions will be intimately connected to the specific code
we wish to use. It is of course important to consider specific classes of codes to understand
which Clifford gates we can generate using this process. At this juncture however, this
seems premature as there is as yet no consensus as to which hypergraph product codes offer
the best performance. We would like to consider codes that have a small block size, but can
still protect logical qubits up to some desired degree of accuracy. As the theory progresses,
this will likely be informed by decoding algorithms, but perhaps the ability to perform
Clifford gates could also factor into this choice. The punctures may exhibit symmetries
that do not require state distillation to prepare resource states. Since these codes are no
longer local, it is unclear what sorts of gates can be implemented transversally, and which
cannot.

Addressing these questions will help establish the role of hypergraph product codes in
quantum computation.
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