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Abstract

A test of the gravitational inverse-square law at short distance

Ted S. Cook

Chair of the Supervisory Committee:

Professor Eric G. Adelberger
Department of Physics

Proposed theories that unify gravity and quantum mechanics often require Newton’s grav-

itational inverse-square law to fail below some length scale. Additionally, some theorists

have proposed the discovery of Dark Energy may imply altered gravitational dynamics at

short length scales. These facts motivated our previous and continued efforts to test gravity

at the smallest achievable distances.

This dissertation describes an improved test of gravity using a torsion pendulum and

attractor designed with 120-fold azimuthal symmetry. We tested the inverse-square law at

separations down to 60 µm and have excluded gravity-strength Yukawa interactions with

length scale λ > 42 µm at the 95% confidence level. However, our data preferred the inclu-

sion of a Yukawa potential at longer length scales, in a region of parameter space previously

excluded by experiment, indicating some yet unresolved systematic issues. This dissertation

provides a complete description of the experiment and gives guidance for improved future

measurement.
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1

Chapter 1

INTRODUCTION

Gravity stands alone among the known forces in having no quantum description. For

decades, theoretical physicists have been proposing new quantum theories of gravity in the

hope of unifying gravity with the rest of standard model physics. As recently as the late

1990s, modifications to gravity that would unify physics were generally assumed to occur

near the Planck length scale (10−35 m), beyond the reach of any experiment yet devised.

Then in 1998, developments in string theory prompted theorists to suggest gravity may

behave quite differently at scales much larger than Planck. In fact, mechanisms may exist

for gravity to behave differently at scales as large as a millimeter that would not have been

detected by any experiment yet performed. This revelation prompted the Eöt-Wash Group

here at the University of Washington to do a test the inverse-square law of gravity (ISL) at

length scales below 1 mm.

The work presented here is the Eöt-Wash Group’s latest achievement in testing the ISL

at short length scales.

1.1 Theoretical Motivations

1.1.1 Large Extra Dimensions

The 1998 paper that started this recent interest in testing the ISL argued the extra spa-

tial dimensions of String- and M-theory, which were traditionally assumed to be highly

compactified loops with characteristic scale near the Planck length, were in fact free to

be arbitrarily large, limited only by known ISL constraints [2]. This proposal raised two

exciting prospects. First, these large extra dimensions provided an elegant mechanism for

explaining why the force of gravity is so weak in comparison to the other forces: it is diluted
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into higher-dimensional space. Second, it provided the potential for an experimental result

that could verify String theory (or at least elements of it), a popular theory which has long

been derided for making no testable predictions.

As only the force of gravity is free to probe these extra dimensions (all other forces

are confined to the 3-brane that makes up our conventional 3-dimensional universe), their

presence, though possibly macroscopic in scale, would be hidden from everyday experience.

If we measured gravity at length scales these extra dimensions occupy, the force would

morph from an inverse-square law (indicative of 3-spatial dimensions) to an inverse-cube,

or high order, law, depending on the number of dimensions encountered.

1.1.2 Cosmological Constant

The cosmological constant (or dark energy) that appears to be pushing the universe apart

is not understood except in its phenomenological impact. It has been measured through red-

shift observations of Type 1a supernovae, and the cosmic microwave background anisotropies,

to have a characteristic length scale of ∼ 80 µm. Because the phenomenon appears (anti)

gravitational in effect, this length may indicate a new fundamental length scale of gravity [3].

If this is the case, probing the ISL below this scale should reveal a change in gravitational

physics.

1.1.3 Fat Gravitons

R. Sundrum further proposed a mechanism that explains why the observed cosmological

constant is as small as it is [4](quantum vacuum calculations suggest it should be as much

as 120 orders of magnitude larger). Rather than being essentially point-like, gravitons

may be in fact fuzzy, or fat. This fuzziness prevents them from mediating forces at length

scales smaller than their size, and provides an integration limit to the quantum vacuum

calculations that bring them in line with observation. This theory predicts that gravity

would become weaker below the dark energy length scale.
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1.1.4 Chameleons and Other Exotic Particles

A peculiar class of particles that exhibit short-ranged interactions are known as chameleons

[5]. These particles have a mass and coupling strength that scales with the density of their

local environment. Short-ranged gravity experiments, which by design place high density

regions in close proximity to each other, are well suited for detecting these particles.

There are also a wide range of proposed particles (dilaton, radion, moduli), mostly

arising from various String theories, that would mediate new forces over short distances.

Any of these are potentially detectable as deviations of the ISL.

1.2 A Brief History of ISL Tests

1.2.1 Yukawa Parameterization

The standard parameterization of non-Newtonian physics uses the Yukawa potential. The

Newtonian potential of a point mass, whose gradient gives rise to the ISL, is

VN = −Gm

r
. (1.1)

The Yukawa potential is expressed in terms of the Newtonian potential

VY = VN αe−r/λ , (1.2)

and introduces new physics with a strength α relative to VN that “turns on” for separations

r less than the characteristic length scale λ. Experiments searching for ISL deviations

compare their data against calculations from the combined potential

V = VN + VY

= VN

(

1 + αe−r/λ
)

, (1.3)

with α as a free fit paramter for a given choice of λ. Figure 1.1 shows experimental limits

placed on the (λ, |α|) parameter space for Yukawa deviations across a wide range of length

scales.
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Figure 1.1: 95% exclusions on α for various ranges of λ. The most precise verification of

the ISL comes from lunar laser ranging near λ = 108 m, which precisely studies the orbit
of the moon around the earth and sun. Limits from the experiment described in this thesis

come at the far left of this plot, in the λ = 10−5 to 10−4 m range.
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Figure 1.2: Illustrations of previous Eöt-Wash balances. LEFT: The 10-fold symmetric
pendulum and attractor of Hoyle[1]. Gravitationally induced oscillations of the pendulum

were monitored with the autocollimator. RIGHT: The 21-fold symmetric pendulum and
attractor of Kapner[6]. This experiment introduced a continuous calibration mechanism
and more sophisticated leveling adjustment.

1.2.2 Eöt-Wash Experiments

The Eöt-Wash Group has so far published two experimental tests of the ISL that used torsion

pendulums to measure gravitationally induced twists [1][6]. As illustrated in Figure 1.2,

these experiments employed horizontal planar disks – a rotating attractor and a suspended

detector ring on the pendulum – with holes removed in a rotationally periodic pattern.

If the holes were not present, the gravitational force between the disks would merely pull

normal to the near surfaces and cause no twist. The m-fold symmetric holes allow gravity to

apply a torque on the pendulum’s detector ring, so a full rotation of the attractor induced m

oscillations of the pendulum. The gravitational interaction can be mathematically modeled

simply as cylinders with negative mass. The planar geometries allowed for small attractor-

pendulum separations which probed gravity at short distance.

Some key elements of these experiments were

• Suspension fiber : These were made of tungsten which provided high oscillation quality

factors, Q ≈ 3000, and high breaking strengths. They were about 80 cm in length,
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and 20 µm in diameter. The torsional spring constant of the fiber, κ, set the twist-to-

torque scale.

• Autocollimator : This monitored the pendulum’s twist by bouncing a laser beam off

the pendulum’s mirror and detecting it on a split photo-diode.

• Electrostatic screen : A thin beryllium-copper foil, 10 µm thick, was stretched between

the attractor and pendulum to shield electrostatic communication between them.

Without this shield, patch charges on the surfaces of the pendulum and attractor

would have overwhelmed the experiments.

These two experiments hold the distinction of placing the shortest constraints on |α| ≤ 1,

confirming the ISL to 200 µm and 56 µm, respectively. Their 95% exclusion constraints on

α and λ are shown if Figure 1.3.

1.3 Fourier-Bessel Experiment

This thesis describes the Fourier-Bessel experiment (so named for our torque solution which

had angular-Fourier and radial-Bessel functions (Chapter 2)) which had a goal of testing

the ISL to below 50 µm.

1.3.1 Design

The pendulum was designed to be smaller and lighter than previous measurements, while

using denser active materials. The design of the experiment departed from our earlier

measurements in four key ways:

• The removed masses were pie-shaped slots.

• The rotational symmetry was considerably greater.

• There was a single, un-cancelled, attractor disk.

• There were two pattern symmetries.

Slots

The hole geometry of our previous experiments was dictated largely by engineering consid-

erations: round holes are easy to make and easy to measure. But the hole geometry was
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Figure 1.3: Previous short-ranged ISL constraints. The Eöt-Wash 2004 line was from [1],
and the Eöt-Wash 2006 line came from [6].
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Figure 1.4: Slot pattern used for both the Fourier-Bessel pendulum and attractor. The
interior slots have 120-fold symmetry and are sensitive to new short-ranged physics. The

exterior slots have 18-fold symmetry and are insensitive to new short-ranged physics, pro-
viding a systematic check to our measurements. The patterns were cut from 0.05 mm thick

tungsten foils.

not ideal for measuring short-ranged physics.

The torque on the pendulum from a rotating attractor goes like the derivative of the

interaction energy, U , with respect to φ, the rotation angle of the attractor (Equation 2.5).

For a fixed separation distance, s, between the attractor and pendulum that is small relative

to the dimension of the holes, and for a short-ranged Ũ(r) that “turns on” for r ≤ s, the

interaction energy is essentially proportional to the overlap area, A, of material in the

pendulum and attractor. The short-ranged torque, T̃ , is then

T̃ (φ) ∝ ∂A

∂φ
. (1.4)

In other words, to maximize the torque sensitivity of the experiment to short-ranged inter-

actions, we wanted to maximize the change in overlap area for a given change in attractor

angle. The pie-shaped slots of the Fourier-Bessel experiment (Figure 1.4) are clearly favored

over cylindrical holes for this reason.
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High Symmetry

Equation 1.4 similarly leads to the observation that T̃ ∝ m, where m is the rotational

symmetry number. If half the area in the pattern is comprised of equally spaced slots, then

the angle to transition from total overlap to no overlap is π/m. E.g. a pattern with 10 slots

is twice as sensitive to short-ranged torques as a pattern with 5 slots.

The Fourier-Bessel experiment employed a 120-fold symmetric pattern to take advantage

of this fact. The choice of 120 came primarily from engineering considerations, limited by

the minimum slot width we were capable of machining. Additionally, the choice of 120

allowed for analyzing our data in cuts equal to 60◦ of attractor rotation.

Single Attractor

Our previous measurements employed two-part attractors. The plate closest to the pen-

dulum provided short-ranged interactions, and the plate farther from the pendulum, with

hole pattern rotated out of phase, provided long-ranged gravity cancellation to prevent sig-

nal amplitudes overwhelming the detector. The addition of the bottom plate, which was

necessitated by the large thicknesses of the pendulum and top attractor plate (≥ 1 mm),

complicated both construction and analysis of the experiments.

The Fourier-Bessel experiment used a pendulum and attractor both cut from 0.05 mm

thick tungsten foils. The thickness was chosen to coincide with our goal of testing the ISL

below 50 µm. Thicker foils would have added unwanted long-ranged gravitational signal

without appreciably increasing our sensitivity to physics below 50 µm. The thinness of the

foils kept the signal sizes at manageable levels and removed the need for a second attractor

to provide cancellation.

The thinness of the foils also meant that, unlike previous measurements, the pendulum

and attractor were not self-supporting. Therefore, the foils were glued to flat Pyrex disks

that provided structural stability. Unfortunately, the gluing requirement introduced perhaps

as many complications to the construction and analysis of the experiment (Chapter 5) as

forgoing a second attractor avoided.
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Two Patterns

The pendulum and attractor foils additionally had an 18-fold slot pattern. This provided

a second, simultaneous torque measurement that shared in common with the 120-fold pat-

tern many of the same physical parameters (density, xyz-location, etc.), but had a vastly

decreased sensitivity to short-ranged physics due to its lower symmetry. This provided a

systematic check for the experiment. If the experiment were to uncover new short-ranged

physics, we would expect it to appear only in the 120ω signal. It also served simply as a

sanity check. Given that this experiment was quite different from our previous efforts in

terms of geometry and construction, being able to accurately measure and fit a signal that

we knew should not experience any new physics would build confidence in our methods.

18 was chosen as the symmetry number to be as different from 120 as possible, while

maintaining divisibility by six for data-cutting, but without being a sub-harmonic of 120 to

avoid signal pollution.

1.3.2 Data Sets

As of the writing of this thesis, we have taken three complete sets of data with the Fourier-

Bessel setup – termed W1, W2, and W3. We experienced numerous setbacks as we em-

barked on the W1 data set, but we made many needed changes to critical apparatus and

achieved incremental improvements in sets W2 and W3. The third set of data achieved

much improved statistical errors (Figure 7.2), had the most complete collection of relevant

environmental sensor data, and was followed by a thorough systematics investigation. For

these reasons, this thesis refers almost exclusively to the data, procedures, analysis, etc. of

the W3 data set. Additionally, because of the improved error bars of W3, and various gaps

in information for W1 and W2, only W3 was used to place new limits on the ISL.
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Chapter 2

CALCULATION OF THE PREDICTED NEWTONIAN AND

YUKAWA TORQUES

This chapter describes the derivation of the analytic Fourier-Bessel solution for calcu-

lating torques when the attractor and pendulum are co-axial, the numerical solutions for

calculating torques when the pendulum is off-center, and the development of empirical off-

center functions.

The on-center Fourier-Bessel solution described below was used with the full pendulum

and attractor models (Chapter 5) to calculate look-up tables of expected torques given a

set of adjustable parameters (Section 5.3).

The empirical off-center functions (Section 2.3) calculated the relative impact of mov-

ing the pendulum off-center, and were built from off-center calculations (Section 2.2) that

used simplified versions of the pendulum and attractor models. This method of off-center

calculation kept the first-order scaling effects of the adjustable parameters (torque tables),

without complicating the off-center calculations with parameters whose effect would be at

most second-order to the relative shape.

2.1 On-Center Fourier Bessel Solution

This derivation of the torque solution was originally suggested by George Bertsch, applied

by Blayne Heckel and subsequently typed up in [7]. I will briefly reproduce the highlights

of that work as it applies to this experiment.

Both Newtonian and Yukawa potentials are special solutions of the modified Helmholtz

equation,

(

∇2 − µ2
)

V (~r) = −ρ(~r) (2.1)

which, for a potential that vanishes at infinity and is finite near the origin, has a Green’s
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function solution

G(~r, ~r ′) =
e−µ|~r−~r ′ |
|~r − ~r ′| , (2.2)

where G(~r, ~r ′) satisfies the equation

(

∇2 − µ2
)

G(~r, ~r ′) = −4π δ(~r − ~r ′). (2.3)

The Newtonian solution corresponds to µ = 0 and the Yukawa solution to µ = 1/λ.

We can calculate the energy U of the attractor-pendulum system by integrating the

Green’s functions over the density functions of the attractor and pendulum

U(φ) = −G

∫

d3r ρpen(~r)

∫

d3r ′ ρatt(~r
′, φ) G(~r, ~r ′) . (2.4)

The energy is a function of the attractor rotation angle φ and we can calculate the torque

by taking the derivative,

T (φ) = −∂U(φ)

∂φ
. (2.5)

To solve Equation 2.4, we start out by rewriting Equation 2.3 explicitly in cylindrical

coordinates
(

1

r

∂

∂r
r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
− µ2

)

G(~r, ~r ′) = 4π
1

r
δ(r − r′) δ(θ − θ′) δ(z − z′) . (2.6)

Knowing that the solution must be zero far away and finite near the origin, we can use the

identities,

δ(θ − θ′) =
1

2π

∞
∑

m=−∞

eim(θ−θ′) , (2.7)

δ(z − z′) = −
[

∂2

∂z2
− k2 − µ2

]

e−
√

k2+µ2(z>−z<)

2
√

k2 + µ2
, (2.8)

and
1

r
δ(r − r′) =

∫ ∞

0

dk k Jm(kr) Jm(kr′) , (2.9)

along with Bessel’s differential equation,
(

x
∂

∂x
x

∂

∂x
+ k2x2 − m2

)

Jm(kx) = 0, (2.10)

to show that

G(~r, ~r ′) =

∞
∑

m=−∞

eim(θ−θ′)

∫ ∞

0

dk k Jm(kr) Jm(kr′)
e−

√
k2+µ2(z>−z<)

√

k2 + µ2
. (2.11)
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Throughout this chapter unprimed coordinates ~r refer to the pendulum, and primed coordi-

nates ~r ′ refer to the attractor. Since the z-axis points vertically upward and the pendulum

is above the attractor, z> = z and z< = z′. Our expression for the energy (Equation 2.4)

now becomes

Um(φ) = − G

4π

∫ ∞

0
dk

k
√

k2 + µ2
Im(k) I

′

m(k, φ) , (2.12)

where we have separated pendulum and attractor coordinates into

Im(k) ≡
∫

d3r ρpen(~r) e−imθ Jm(kr) e+
√

k2+µ2z (2.13)

I
′

m(k, φ) ≡
∫

d3r′ ρatt(~r
′) e+im(θ′−φ) Jm(kr′) e−

√
k2+µ2z′ . (2.14)

To calculate these integrals we must choose the general form of the density functions ρpen

and ρatt. If we choose them to be N -fold rotationally symmetric about the z-axis sets of

annulur sectors (wedges), then Equations 2.13 and 2.14 become analytically solvable. Let

r1 and r2 be the wedge inner and outer radii, h the z-offset of the wedge’s vertical center, t

the vertical half thickness, β the half angle in θ subtended by a wedge, and θ0 the offset in

θ of one of the wedges. With H representing the Heaviside step function, and

Ψ(~r) ≡ [H(r − r1)− H(r − r2)] [H(z − h + t) − H(z − h − t)] ×
N
∑

n=1

[

H

(

θ − θ0 −
2πn

N
+ β

)

− H

(

θ − θ0 −
2πn

N
− β

)]

, (2.15)

the density functions take the general form ρ =
∑

ρjΨj, where each j is a single layer of

wedges with independently defined r1, r2, h, t, β, and θ0. Equations 2.13 and 2.14 can be

analytically integrated, giving

Im(k) =
∑

j

2Nρj

mγ
sin(mβj)e

−imθ0j sinh(tjγ)e+hjγ R(1)
m (r1j, r2j, k) (2.16)

I
′

m(k, φ) =
∑

j

2Nρj

mγ
sin(mβj)e

+im(θ0j−φ) sinh(tjγ)e−hjγ R(1)
m (r1j, r2j, k) , (2.17)

where γ ≡
√

k2 + µ2 and

R(1)
m (r1, r2, k) =

2m

k

∞
∑

i=0

m + 2i + 1

(m + 2i)(m + 2i + 2)
(r2Jm+2i+1(kr2) − r1Jm+2i+1(kr1)) . (2.18)
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These solutions are zero unless m = Nl. Therefore, the torque amplitude at the lth harmonic

of the signal frequency is

TNl = − ∂UNl(φ)

∂φ

∣

∣

∣

∣

φ0

= NlUNl(φ0) , (2.19)

where φ0 is the attractor angle that maximizes the energy.

The Fourier-Bessel solution gives a nearly analytic solution for calculating torque am-

plitudes at particular signal frequencies of the attractor rotation. An infinite sum (Equa-

tion 2.18) and an integral over an infinite range (Equation 2.12) must be numerically evalu-

ated. The calculation requires a priori knowledge of φ0 when defining the mass distribution

models, which is trivial for most geometries and corresponds to the pendulum and attractor

being anti-aligned rotationally (or aligned, which merely introduces a negative sign).

The infinite sum of Equation 2.18 converges very quickly, so choosing a finite limit

does not impact the accuracy of the Fourier-Bessel calculation. The infinite k integral of

Equation 2.12 does not converge so quickly, however, so choosing an appropriate integration

limit is necessary. Figure 2.1 plots the integrands for the 18ω and 120ω models and shows

the error associated with truncating the integrals at various kmax < ∞.

2.2 Off-Center Calculation

Moving the pendulum in the xy-plane breaks the cylindrical symmetry of the Fourier-Bessel

solution and requires an alternate method for calculating the torques. We calculated the

off-center torques with two very different integration methods as a way to check our work.

Both methods used Monte Carlo integration, meaning the solutions statistically ap-

proached stable values through random sampling of the integration variables. Each solution

point was normally distributed about the unknown exact solution with an error bar indi-

cating the calculation precision. Even though Monte Carlo integration is the most efficient

method when integrating many variables [8], it can be an enormously time consuming calcu-

lation. To decrease error bars by a factor of n, the calculation time increases by n2. For this

reason, the integrations described below were performed on the Athena computer cluster,

taking full advantage of its highly parallel architecture.
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Figure 2.1: Numerical integrals of the on-center Newtonian Fourier-Bessel calculations.
TOP: 18ω and 120ω FB integrands for s = 0.050 mm. The functions turn on very sharply

for small k, but trail off slowly at large k. All 18ω calculations were integrated from
k = 1 to 200 and all 120ω calculations were integrated from k = 30 to 300. BOTTOM: The

relative error associated with different choices of kmax. Larger values of kmax increased the
calculation time, so values were chosen that provided adequate precision.



16

2.2.1 Cartesian Monte Carlo Integration

The simplest approach was to go back to the Cartesian form of the Green’s function solution,

Equation 2.2, and do a point by point integration of Equation 2.4. This method involves

choosing a random point in the pendulum volume (x, y, z) and another in the attractor

volume (x′, y′, z′). The energy is calculated between the two points for the attractor in-

phase (φ0) and out-of-phase (φ0 + π/N ), and the difference in energies is an estimate of

the torque contribution of those points. This is repeated until both volumes have been

adequately sampled. This procedure gives the total torque on the pendulum, but we are

interested in the torque at particular harmonic frequencies. To extract the amplitude of

a particular harmonic, the calculation must be repeated multiple times with a changing

attractor phase in order to map the torque function and Fourier decompose it. The entire

algorithm is repeated and averaged until the solution converges to the desired precision.

2.2.2 Fourier-Bessel Monte Carlo Integration

The other method is to retain as much of the on-axis Fourier-Bessel solution as possible

and numerically integrate only those integrals that are no longer analytic. Moving the

pendulum in the xy-plane breaks the r and θ analytic solutions of Equation 2.16, but the

solution for z remains valid. The attractor by definition remains on-axis, so Equation 2.17

also remains valid. The calculation involves random sampling a single (r, θ) point in the

pendulum volume then performing the k integral of Equation 2.12. This is repeated until

the full pendulum volume is adequately sampled and the solution converges to the desired

precision.

2.2.3 Comparison of Monte Carlo Methods

The CMC method had 6 Monte Carlo degrees of freedom and the need for Fourier decom-

position. The FBMC method was much more efficient because it had only 2 Monte Carlo

degrees of freedom (plus the k integral), and it gave the harmonic solutions directly. The

FBMC converged about 18 times faster than the CMC for 120ω calculations, and upwards of

70 times faster for 18ω calculations. Figure 2.2 demonstrates that both methods gave statis-
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tically equivalent torque solutions, providing confidence that we did not have programming

errors.

2.3 Off-center Empirical Functions

The FBMC was used to develop empirical functions, Rm(rp, s, λ), that described the relative

change in torque for rp > 0 for m = 18 and m = 120. This was done to provide smooth fitting

functions that were not randomly stepping around due to the scatter in the calculated points.

For instance, occasionally an off-center calculation near rp = 0 had an unphysical value

greater than the on-center calculation (though within errors). Additionally, the uncertainty

of the empirical functions benefited from the ensemble uncertainty (roughly σ/
√

N , where

σ is the precision goal and N is the total number of calculations), whereas a simple linear

interpolation between points would have had an uncertainty scaled only by the two nearest

neighbors.

We calculated off-center torques for 15 points in rp (from 0 - 0.28 mm), at 20 values

of s (from 0.04 - 1 mm), and 38 values of λ (from 0.005 - 10 mm) plus Newton (λ = ∞).

Newtonian torques were calculated with a fixed absolute precision goal for all values of s,

which was chosen to be roughly equivalent to a pendulum twist amplitude of 0.5 nrad.

Yukawa torques were calculated with a relative precision goal equal to 0.5% of the on-center

value.

We constructed the following empirical functions based solely on their ability to fit the

normalized calculations with no theoretical underpinning.

Rm(rp, s, λ) = c1 + (1 − c1) cos(rp fm(s, λ)) (2.20)

fm(s, λ) = c2 + c3 e(c4 ym(s,λ)) (2.21)

ym(s, λ) =







s Newton (λ = ∞)

bm(λ) + mm(λ)s Yukawa
(2.22)

bm(λ) = c5 e(c6λ) (2.23)

mm(λ) = 1 − e(c7λ) (2.24)

Values of the cn coefficients for the m = 18 and m = 120 calculations are listed in Table 2.1.



18

Table 2.1: Coefficients for the empirical off-center torque functions, for s and λ in mm. We

did not need to model the 18ω c5 − c7 coefficients as the signal was effectively insensitive to
Yukawa torques.

coefficient m = 18 m = 120 coefficient m = 18 m = 120

c1 0.5 0.367392 c5 0 -0.203585

c2 0.942844 4.92841 c6 -1 -5.69768

c3 0.24823 0.886262 c7 -∞ -7.55179

c4 -3.78842 -1.0726

The c1 coefficients were chosen to have reasonable values, and all other cn were the result

of least-squares fitting. Alternative functions, or even just other cn values, may provide a

better fit to the calculations, but this formulation does an adequate job representing the

calculated values.

Figures 2.3 and 2.4 show the Newtonian fits for R120(rp, s,∞) and f120(s,∞). Fig-

ures 2.5, 2.6, and 2.7 show the Yukawa fits for y120(s, λ), b120(λ), and m120(λ). Figure 2.8

shows the calculated curves for 120ω λ = 5 µm, 120ω λ = ∞, and 18ω.
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Figure 2.2: Comparison of 120ω Fourier-Bessel and Cartesian Monte Carlo Newtonian inte-

grations for s = 0.040 mm. All points have been normalized by the on-center FB calculation.
As noted on the plot, the FBMC achieved error bars half the size of the CMC in consid-

erably shorter time. The apparent downward bias of the CMC solution is likely due to an
insufficient number of points in the torque vs φ mapping for the Fourier decomposition.
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Figure 2.3: Off-center empirical function: R120(rp, s,∞). Four of the 20 s values calculated
are shown. c1 was assigned a constant value and f was the free fit parameter for each

value of s. Relative error bars increase for larger s because we used an absolute precision
requirement for Newtonian calculations.
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Figure 2.4: Off-center empirical function: f120(s,∞). The points represent all the best-fit

values of f from fitting Equation 2.20 at different values of s. For this fit, c2, c3, and c4

were free fit parameters.
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Figure 2.5: Off-center empirical function: y120(s, λ). With c2, c3, and c4 fixed by Newtonian
data (Figure 2.4), y in Equation 2.21 was a free fit parameter for each value of (s, λ), and

those fits are the points plotted here. Four of the 38 λ values calculated are shown. b and
m are free fit parameters for each value of λ.
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Figure 2.6: Off-center empirical function: b120(λ). The best-fit b values from Equation 2.22
are plotted for each λ calculated. While the values appear to favor a slight positive offset

at long λ, the fitting function was chosen to have b = 0 at λ = ∞ for consistency with the
Newtonian version of y(s, λ).
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Figure 2.7: Off-center empirical function: m120(λ). The best-fit m values from Equation 2.22
are plotted for each λ calculated. While the values appear to favor a slight offset from 1 at

long λ, the fitting function was chosen to have m = 1 at λ = ∞ for consistency with the
Newtonian version of y(s, λ).
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Figure 2.8: Off-center empirical function: calculated curves for s = 0.050 mm.
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Chapter 3

APPARATUS UPGRADES

Much of the experimental infrastructure was already in place to perform our measure-

ments as this project was a continuation of similar previous work. However, in addition to

designing and building a new attractor-pendulum pair, many improvements were made to

the supporting experimental systems. Nearly everything sitting below the torsion fiber (pen-

dulum body, pendulum, electrostatic screen, attractor, bearing assembly, attractor drive,

calibration turntable) was re-engineered. This chapter discusses the building of our pendu-

lum and attractor and other essential improvements made to the apparatus.

Figure 3.1 gives an overview of the whole apparatus.

3.1 Pendulum and Attractor

The active masses of both the pendulum and attractor were made from 50 µm thick tungsten

foils. The 18-fold and 120-fold slots were removed from the foils using an electric discharge

mill (EDM). The foils were then glued, using Dow Integral E100 adhesive film, to 3 mm

thick Pyrex glass substrates to provide structural support. Finally, the inner and outer radii

of the foils were cut with the EDM.

3.1.1 Material Selection

Tungsten was chosen as the active mass because it has high density, is non-magnetic, and

it was not cost-prohibitive to obtain flat foils. Other materials considered were Rhenium

(could not source foils that met flatness requirement) and Platinum (cost-prohibitive).

Pyrex was chosen as the support substrate because it has low density (to minimize

passive weight), high strength, high flatness, and has a coefficient of thermal expansion

(CTE) that is close to, but less than, Tungsten. We also considered titanium, but found

its higher CTE to be problematic when gluing it to tungsten. Because our gluing process
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Figure 3.1: Photograph of apparatus. The pendulum hangs approximately at the height
of the calibration balls from a 0.8 m long fiber attached to the fiber positioning stages

(known as “phi-top”). The vacuum flange with attractor motor attaches at the bottom of
the vacuum can, which is obscured in this picture by the calibration turntable.
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required heating, the titanium-glue-tungsten bond created bulges in the tungsten as the

pieces cooled. The Pyrex-glue-tungsten bond, on the other hand, kept the tungsten taut

when cooled. A drawback of Pyrex, however, is that as an insulator it cannot be cut by

the EDM. This prevented cutting the final inner and outer radii cleanly and led to the

unintended consequence of an 18-fold rim-protrusion (Section 5.1.5).

Dow Integral E100 adhesive film was chosen because it provided a uniform thickness of

glue, demonstrated good adhesion between tungsten and Pyrex, and bonded at a relatively

low temperature compared to similar glues. We also considered various liquid two-part

epoxies, but found them to be difficult to handle with unreliable adhesion. A drawback of

Dow Integral E100 is that it has no known solvent, so we could not easily remove unwanted

glue or separate the pieces if desired.

3.1.2 Machining

The pendulum and attractor tungsten foils were loaded in a jig and machined simultaneously.

The process for cutting the slots was

1. Pre-cut foils with clocking holes for alignment in jig

2. Clean and weigh foils

3. Cut 18-fold slots

4. Clean and weigh foils

5. Cut 120-fold slots

6. Clean and weigh foils

The jig was made of two 1 mm thick molybdenum plates with the wedge patterns pre-cut

a fraction of a millimeter larger than the final requirement. One jig plate had two clocking

pins that ensured consistent alignment of corresponding clocking holes in the tungsten foils

and other jig plate.

By using a molybdenum jig and EDM to cut the foils, the attractor and pendulum never

came in contact with steel tools that could have magnetically contaminated the pieces (the

clocking pins, though steel, only contacted the foils in regions that were eventually cut off).
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After the foils were glued onto the Pyrex, the pieces were returned to the EDM to trim

excess material from the inner and outer radii.

3.1.3 Gluing

The data sheet for Integral E100 adhesive suggests bonding with both heat and pressure.

The stated activation temperature of the glue is 102◦ C.

We built a spring-loaded press to provide pressure while gluing (Figure 3.2). It had a

removable centering pin to concentrically align the tungsten foil and the Pyrex disk. The

bottom pressing surface was lapped flat and hard anodized. A 0.002” thick Teflon sheet

was placed on the bottom pressing surface to avoid gluing the pieces to the press. A 1/16”

thick Teflon pad was placed between the Pyrex and top pressing surface to prevent pressure

points cracking the Pyrex.

We used a Cascade TEK TV0-1 vacuum oven with digital controller to precisely control

the temperature and timing of bonding. We did all gluing under rough vacuum pressure

(≈ 10−2 torr) to prevent air bubbles being trapped in the glue. Our baking cycle for bonding

the pieces was

1. Turned on oven with set temperature of 90◦ C.

2. When temperature reached 90◦ C, started 20 minute timer.

3. After 20 minutes, changed set temperature to 130◦ C.

4. When temperature reached 102◦ C, started 45 minute timer.

5. After 45 minutes, turned off oven.

A feature of the glue was that it did not “cure” (chemically change after heating), but

could be heated and cooled multiple times. Our gluing process was

1. Bead blasted one side of the Pyrex to provide textured bonding surface.

2. Applied glue to Pyrex by assembling press with all pieces excluding the tungsten foil.

3. Baked the press in the oven.

4. After press was cool, removed Pyrex and trimmed excess glue from inner and outer

radii with razor blade.
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Figure 3.2: Schematic of glue press cross section. Six spring-loaded bolts applied pressure to

the stack. The vertical scale of the glue, tungsten, and Teflon pieces have been exaggerated
for clarity.
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5. Reassembled press with all pieces including tungsten foil.

6. Baked the press again.

This process was repeated for the pendulum and attractor. Despite our efforts to ensure

the repeatability of the process, we observed some differences in the outcome of the pieces.

One tungsten-Pyrex pair exhibited much less cratering than the other (cratering and other

glue anomalies are discussed in Section 5.1), so we chose it to be the pendulum to make

pendulum-screen capacitance calculations less complicated.

3.1.4 Gold Coating

The assembled attractor and pendulum pieces were gold coated using an electron-beam

evaporator. The pieces were rotated a few inches above the evaporator crucible while under

high vacuum (1×10−6 torr). We put down adhesion layers of titanium ≈ 500 Å thick, and

gold layers ≈ 1000 Å thick. This was repeated in different configurations until all sides were

well coated.

3.2 Pendulum Body

The body of the pendulum consisted of a titanium post, a mirror cube, aluminum calibration

balls, and a “top hat” leveling mechanism (Figure 3.3).

The post was made of titanium to be light weight and have a similar CTE as the Pyrex

disk. The post and Pyrex were glued together with four small beads of conducting epoxy.

The holes in the post provided pumping channels to the interior volume and were configured

to partially cancel the q44 gravitational moment of the mirror cube.

The mirror cube, made by Red Optronics in Mountain View, CA, was 0.5” per side with

a 0.25” bore hole through the vertical center. It was made of BK7 glass, which has a CTE

closely matched to titanium. Each gold coated face of the mirror was electrically connected

to the titanium post with a small bead of conducting epoxy.

The 0.25” diameter aluminum calibration balls sat on an aluminum tray. The tray

had six positioning holes, instead of just the required three, so it would not gravitationally

contribute to the calibration torque (calibration is discussed in Section 6.4). The tray was
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Figure 3.3: LEFT: Render of pendulum and attractor. RIGHT: Photograph of the pendu-
lum above the drumhead electrostatic screen.
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fastened to the titanium post via a threaded titanium extension passing through the bore

hole of the mirror cube and a brass securing nut.

The “top hat” leveling mechanism consisted of an aluminum post that received the

fiber screw, a beryllium-copper wave washer, and four titanium machine screws. The wave

washer allowed arbitrary adjustment of the screws which translated the fiber connection

point relative to the center of mass of the pendulum, causing a change in the overall tilt.

We used this adjustment to ensure the bottom of the pendulum was perpendicular to the

twist axis of the fiber (Section 6.1.4). Similar to the holes in the titanium post, the four

titanium machine screws were configured to partially cancel the q44 gravitational moment

of the mirror cube.

3.3 Drumhead Electrostatic Screen

We designed the electrostatic screen to provide a direct line of sight to the bottom of the

pendulum, which made dust detection and removal far easier (Section 6.2). The screen is

visible below the pendulum in Figure 3.3.

The 0.0005” thick beryllium-copper screen was mounted on an octagonal aluminum rim

and stretched over an aluminum drum with four tensioning bolts. The aluminum drum had

clearance for the attractor to turn inside it. The screen could be removed and replaced

without changing the position adjustment of the drum, which was useful when aligning the

attractor and screen.

3.4 Bearing Assembly

The bearing assembly provided smooth rotation of the attractor, precise angle information

via an optical encoder, kinematic adjustment of the attractor alignment, and isolated elec-

trical contact to the attractor for capacitance measurements. Figure 3.4 shows a schematic

of the bearing assembly.

The rotating elements of the attractor were all built from non-magnetic materials. The

clutch nut, shaft, encoder scale hub, flywheel, and cup were all made of pure grade 2

titanium. The slip ring electrical contact was copper, the encoder scale was glass, the



34

�����

������	�
�	���
���

���������

�	�������	
�������

�	����
���

�	��
����

�	�����	

���

���������
�	���
���

���	�
�������

����
��
��������


�������

Figure 3.4: Schematic of bearing assembly. A section of the housing has been removed for
illustrative purposes.
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bearing balls and races were zirconium dioxide (ZrO2) ceramic, the adjustment screws were

silicon bronze 655, and the adjustment springs were beryllium-copper.

The angle encoder was a MicroE Systems Mercury 3000V high vacuum rotary encoder

that provided 221 pulses per revolution, plus a once-per-revolution index pulse. The encoder

scale was marked on a glass disk and mounted on the rotating shaft. The scale was optically

tracked by a stationary read-head mounted a few millimeters below.

The kinematic attractor mount, that provided centering and tip-tilt adjustment of the

cup and attractor, is discussed in Section 6.1.2.

The slip ring electrical contact had a spring loaded copper pin with polished head rid-

ing on a rotating polished copper bushing. A lubricant of Apiezon AP100 vacuum grease

doped with graphite lessened the friction and improved the contact fidelity. It enabled

measurement of the attractor-screen capacitance while the attractor was turning.

3.5 Attractor Rotation

The attractor was turned by a 480000 steps-per-revolution geared stepper motor located

outside the vacuum. The stepping pulses were dictated by a control loop that synchronized

angle encoder readings from the bearing assembly with clock pulses from a function gener-

ator. This method of stepping achieved angle error 100× smaller than stepping the motor

directly with clock pulses (Figure 3.5).

The stepper motor was mounted on a 6” vacuum flange and coupled to a ferrofluidic

rotary feedthrough that provided nearly frictionless rotation (Figure 3.6). A coupling bel-

lows was secured to the vacuum side drive shaft and engaged the clutch nut on the bearing

assembly with a tapered collet when the flange was in place.

We kept the stepper motor at a constant temperature using a water-cooled peltier device.

The motor settled at a temperature several degrees above ambient while the motor was

running, but our data protocol required taking data with the motor off a couple hours each

day (Section 6.3.1), so the peltier prevented temperature fluctuations of the apparatus.
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Figure 3.5: Attractor rotation angle error when driven directly by clock pulses (no feedback),

and when pulses were in feedback to readings from the angle encoder.

3.6 Calibration Turn Table

The calibration turntable rotated three brass balls outside the vacuum vessel to provide a

known gravitational torque on three smaller balls on the pendulum. The turntable could

be translated in xyz to match movements of the pendulum, maintaining a constant relative

position between the calibration balls.

We mounted the turntable to the cyclotron magnet with supports similar to those sup-

porting the vacuum vessel. This decoupled the turntable from the floor of the thermal box,

which was not designed to be mechanically stable. (These supports required moving the

air circulation system – a fan and radiator that thermally coupled the air to the circulating

water system – outside the main thermal box volume.)

We also motorized the turntable’s xyz-positioning to eliminate opening of the thermal

box each time we moved the pendulum. A Danaher Motion XYR-6060 table with 4” × 4”

of travel provided xy-translation of the turntable. Three chain-and-sprocket driven lead

screws provided z-translation of the turntable. All axes were stepper motor driven and
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Figure 3.6: Attractor drive vacuum flange. The flange mounted at the bottom of the
vacuum can, directly below the bearing assembly. The data port provided connections to

multiple in-vaccumm temperature sensors and to the attractor and screen for capacitance
measurements.
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position changes were monitored at 0.01 mm precision with Mitutoyo linear scales.

Cabling to run the attractor systems (encoder, peltier, water cooling, temperature sen-

sors) all passed through the center of the turntable’s bearing when the turntable was in

place. As discussed in Section 6.4, this introduced problems as the space was very confined

and the turntable was removed for the majority of short-range data taking.
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Chapter 4

PENDULUM AND ATTRACTOR CHARACTERIZATION

The following sections detail our measurements of the key physical parameters describing

the pendulum and attractor. The use of these measurements to build accurate models is

discussed in Chapter 5.

4.1 Thickness

The thicknesses of the tungsten foils were determined prior to making any cuts in the

material. The foils were cleaned, then a grid was drawn with non-permanent marker in

the center regions of the 10cm × 10cm foils. Thickness measurements were taken in each

grid square using a Mitutoyo sheet metal micrometer (model 389-711-30) that had a digital

readout to 1 µm. Figure 4.1 shows the thickness measurements for each foil. After the

measurement, the grid markings were washed off.

Average thickness measurements of 54.5± 1.1 µm and 54.4± 0.8 µm were found for the

pendulum and attractor, respectively.

4.2 Total Removed Mass

The foils were weighed three times before gluing them to the Pyrex disks: 1) after clocking

holes had been cut but before any slots were removed, 2) after the 18-fold slots were removed,

and 3) after the 120-fold slots were removed. All measurements were taken with a Sartorius

LA310S balance with digital readout to 0.1 milligrams.

For each weighing, the foils were repeatedly cleaned until all measurable amounts of

dirt were removed and the measurement stabilized to within the readout of the scale. Our

typical cleaning procedure was to soak the foils in an ultrasonic bath with a detergent

(20% solution of potassium hydroxide or MERI-SUDS) or solvent (acetone) for 30 minutes,

followed by a rinse with de-ionized water.
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Figure 4.1: (dimensions not to scale) Thickness measurements of the pendulum foil (left)
and attractor foil (right). The corner measurements were not used to determine the average

thicknesses as the center is the area out of which the final foils were cut.

These measurements were complicated, however, by unintentional corrosion of exposed

areas that occurred during the EDM’ing of the slots. The corrosion was likely due to

either the deionized cooling water directly attacking the tungsten, or, if the cooling water

had acquired electrolytes, galvanic corrosion of the tungsten which was in direct electrical

contact with the more noble molybdenum jig.

The areas exhibiting corrosion were the 120-fold slot regions of both foils and two small

circles on the pendulum foil where an extra set of clocking holes had been removed from the

jig. The corrosion in the 120-fold regions made the 2nd weighing an unreliable determiner

of the 18-fold removed masses, but would not effect the reliability of the 3rd weighing for

determining the total removed masses. The corrosion in the clocking circles, however, would

have an effect on the 3rd weighing of the pendulum foil that would require correction.

After our 2nd weighing, the foils were placed in the jig and allowed to sit in the cooling

water stream over night (≈16hrs), then the foils were weighed again. The pendulum foil

lost an additional 0.0057 grams and the attractor foil lost 0.0050 grams. Using the 120-fold

area of 565.5 mm2 and the clocking circles area of 98.8 mm2, we determined the pendulum

foil corrosion rate was 5.4×10−7 g/hr/mm2, with the attractor foil in good agreement at
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5.5×10−7 g/hr/mm2. We estimate the foils spent a total of 24 hrs in the EDM, so the mass

of all slots removed from the pendulum foil was corrected by 0.0015 g to account for the

clocking circle corrosion. Table 4.1 summarizes the mass measurements.

Although we did not observe significant corrosion on the attractor foil outside the 120-

fold area, there may have yet been corrosion not accounted for, so we placed an uncertainty

on our measurement of 0.0005 g. We estimate the uncertainty in our corrosion calculation

for the pendulum foil to be as large as 50%, so we have conservatively chosen an uncertainty

of 0.001 g for that measurement.

Table 4.1: Mass of foils at each stage of manufacture. The total removed slot mass of
the pendulum foil has been corrected down by 0.0015 g to account for observed corrosion

elsewhere on the foil. All units are in grams.

weighing pendulum foil attractor foil

1st clocking holes cut 3.4372 3.7551

2nd 18-fold slots cut 3.2356 3.5541

corrosion test 3.2299 3.5491

3rd 120-fold slots cut 2.6531 2.9704

mass of removed slots 0.7826± 0.001 0.7847± 0.0005

4.3 Slot Dimensions

We inspected the tungsten foils with an OGP SmartScope to verify slot dimensions before

gluing them to the Pyrex substrates. The SmartScope provided precise xy-data along all

edges of the slot patterns.

As a check against systematic bias in the SmartScope, we repeated our inspections with

the foils flipped over and rotated by 90◦. The flip with rotation resulted in an equivalent

layout of the wedge pattern, which meant we did not have to reprogram the inspection

routines. This check revealed no significant artifacts inherent in the SmartScope. The plots

in the following sections show four sets of data corresponding to the two inspections of the

two foils.
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Figure 4.2: SmartScope data used for slot dimensions (1 of 4 inspections shown). Ra-
dius data (left) determined concentricity and radii values. Spoke data (right) determined

subtended angles. Slot outlines are included as a visual aid.

We estimate the effect on the torque signals of some of the resolved manufacturing defects

in the following sections. The effects are compared to the cumulative statistical sensitivity

of the experiment, which is calculated to have a lower limit of 0.01/
√

60 ≈ 1×10−3, where

0.01 is the smallest noise-to-signal ratio per day encountered in the W3 data set and 60 is

roughly the number of days we took data.

4.3.1 Concentricities

The slot patterns were designed to be perfectly concentric. We checked the actual concen-

tricity by analyzing xy-data of edges along the four slot radii (Figure 4.2).

Circles were fit to each set of radii data with the radius and xy-center as free parameters.

The xy-center fits (Figure 4.3) show that the 120-fold radii were non-concentric by 0.36±0.25

µm, the 18-fold radii were non-concentric by 0.9± 0.1 µm, and on average the 18-fold slots

and 120-fold slots were non-concentric by 7.9± 0.2 µm.

Non-concentricity implies that the slot patterns don’t remain aligned as the attractor

rotates. This effects the torque amplitudes similar to an attractor centering misalignment

(Equation 6.4). Adding these effects to the measured attractor runout (Section 6.1.2) of
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Figure 4.3: xy-centers of all slot radii. 120-fold centers are grouped at the bottom right

corner, with the outer radius defined as the origin. 18-fold centers are grouped in the top
left corner. Flipped-rotated data have been corrected.

ra = 10 µm, and assuming a centered pendulum, gives a relative torque correction of

1×10−4 for the 120ω and 7×10−5 for the 18ω. These are roughly ten times smaller than

the cumulative statistical sensitivity of the experiment.

4.3.2 Radii

Figure 4.4 shows the radius data of all inspections as a function polar angle, and Table 4.2

lists the best-fit radii and their statistical uncertainty.

The slot patterns were designed with all slots of a given symmetry having the exact same

inner and out radius. As seen in all panels of Figure 4.4, there is resolved structure in the

radius measurements as a function of polar angle. The structure is on the order of 15 µm

peak-to-peak for the 120-fold slots, and 5 µm peak-to-peak for the 18-fold. The structures

appear similar in amplitude and phase between inner and outer radii, indicating that the

length of the slots is well preserved while the placement of them with respect to the center

is meandering.
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(a) Inner wedge inner radius (b) Outer wedge inner radius

(c) Inner wedge outer radius (d) Outer wedge outer radius

Figure 4.4: Radii measurements as a function of polar angle. Data have been corrected for
flipped-rotated inspections.

The result of these slot placement defects, similar to the concentricity defects, is pat-

tern misalignment as the attractor turns, which affects the torques similar to an attractor

centering misalignment. Adding 7.5 µm and 2.5 µm to ra = 10 µm, with rp = 0, in Equa-

tion 6.4, gives a relative effect of 2×10−3 for the 120ω and 2×10−5 for the 18ω. The effect

on the 120ω may be near the cumulative statistical sensitivity of the experiment, but can

be accommodated by the multiplicative systematic factor in the fit to data (Section 7.2.8).
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Table 4.2: Average slot radii. Units are in mm.

radius design measured

120 IR 13 13.0016 ± 0.0002

120 OR 23 23.0008 ± 0.0002

18 IR 23.5 23.5000 ± 0.0001

18 OR 26 26.0004 ± 0.0001

4.3.3 Subtended Angles

The slot patterns were designed to have all slots subtend an angle exactly half of the repeated

symmetry angle. We collected three points along each radial edge (spoke) of the slots to

check these angles (Figure 4.2).

We subtracted the average of the two 120-fold best-fit xy-centers from all 120-fold spoke

data for each inspection, and similarly for the 18-fold data. Then we fit each spoke with a

line that passed through the origin. The polar angle for each spoke was determined as the

arctangent of the best-fit slope. The subtended angle of a slot was the difference in polar

angle of that slot’s spokes. Figure 4.5 shows the subtended angles of the slots for the 18-fold

and 120-fold slots as a function of the polar angle.

The average subtended angle of the 120-fold slots was 1.5001±0.0004 deg, with an RMS

deviation from nominal of 0.008 deg. The average subtended angle of the 18-fold slots was

9.9983± 0.0009 deg, with an RMS deviation from nominal of 0.007 deg.

As derived in Section 2.1, the torque is proportional to sin2(mβ), where β = π/(2m) rad

is the nominally designed subtended half-angle. Because this is an even function for devia-

tions from nominal, it is the RMS deviation from nominal (not the average values, which are

essentially nominal) that is pertinent to the torque. This gives a 3×10−4 relative correction

for the 120ω torque, and a 5×10−6 relative correction for the 18ω torque. Both are well

below the cumulative statistical sensitivity of the experiment.
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4.4 Surface Roughness

The EDM did not make perfectly smooth cuts through the tungsten, but left a rough surface

with peaks and valleys. The SmartScope finds the edges as defined by the peaks but cannot

see the valleys, therefore the edge measurements did not measure the true (gravitationally

defined) edges of the slots. We analyzed a sample of tungsten foil with an atomic-force

microscope (Veeco Dimension 3100 AFM at the Nanotechnology User Facility on campus),

measuring RMS surface variations of 0.25 µm for the EDM’d surface and 0.015 µm for

the broad surface (Figure 4.6). These values compare to 2.2 µm and 1.2 µm RMS for the

molybdenum pieces used in [6].

We should note that there was visible roll chatter on the broad surface of the tungsten

foils, but we were unsuccessful in measuring the structure of this chatter. The SmartScope

had inadequate resolution to resolve the structure and the AFM had too small a scan area.

It is possible our thickness measurements were overestimated due to the roll chatter by

roughly two times the SmartScope laser probe resolution of ≈ 0.5 µm.

4.5 Glue Density

The data sheet for Dow Integral E100 adhesive claims a yield of 42.6 m2/kg/25µm, which

translates to a density of 0.939 g/cm3. This number is presumed to indicate the density

of the pre-bonded glue, however the density may change after bonding due to mass loss of

volatiles during heating. The final density of the bonded glue is of interest.

We cut a small square of the glue (approximately 2cm x 2cm) that weighed 0.0178 ±
0.0001 g. This square was glued to a flat piece of glass using the same press and baking

routine used to assemble the pendulum and attractor (Section 3.1.3).

The volume of the bonded glue was measured with the SmartScope. The glue had an

average thickness of 0.003666± 0.000001 cm, as measured with the laser sensor collecting

data on a 0.2 mm grid. The glue had an area of 5.179 ± 0.002 cm2, as measured with

optically collected perimeter data at 10 µm spacing, and assuming an xy-uncertainty of 1

µm for each point.

These values give an un-bonded density of 0.939 ± 0.005 g/cm3, confirming nicely the
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value provided in the data sheet. Weighing the glass with bonded glue gave a mass 0.0006±
0.0001 g less than the sum of the un-bonded glue and glass masses, resulting in a bonded

glue density of 0.935± 0.007 g/cm3.

4.6 Final IR and OR

We measured the contours of the final inner and outer radii using the SmartScope, after the

foils were glued to the Pyrex substrates and the excess tungsten foil was removed with the

EDM. The best-fit radii values (Table 4.3) were important for determining the overall area

used in the capacitance models.

The contours of the outer radii revealed 18-fold structure (Figure 4.7) that was significant

to the gravitational modeling and is discussed in detail in Chapter 5.

Table 4.3: Final foil radii of the pendulum and attractor. Units are in mm.

radius measured

pendulum IR 12.0963 ± 0.0001

pendulum OR 26.6024 ± 0.0005

attractor IR 12.1232 ± 0.0007

attractor OR 26.6237 ± 0.0008

4.7 Surface Contours

We collected detailed surface-height maps of the final pendulum and attractor pieces using

the laser attachment of the SmartScope (Figure 4.7). These scans were taken with the

pendulum mounted to the pendulum body and the attractor mounted on the bearing cup

so that any influence to the macroscopic shapes due of the mounting would be accounted

for in the maps. These maps largely dictated the gravitational and capacitance models and

are fully discussed in Chapter 5.
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Figure 4.5: The subtended angle of slots as a function of polar angle. Data have been
corrected for flipped-rotated inspections.
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Figure 4.6: Surface roughness of a tungsten foil sample as measured with an AFM. LEFT:
measurement of EDM’d surface. Scan area covers nearly the full thickness of the foil. The

scan indicates RMS variation of 0.25 µm. RIGHT: measurement of the broad surface of the
foil. The scan indicates RMS variation of 0.015 µm.

Figure 4.7: SmartScope data of the pendulum. LEFT: Laser scan of tungsten-glue surface.

Lighter colors are farther from the laser sensor. Laser data was collected on a 0.1× 0.1 mm
grid, and ∼175000 points are represented. RIGHT: Optical scan of outside rim. Blue data
are aligned with 18-fold tungsten and red data aligned with 18-fold slots. The roughly

2-fold oscillation of the data was caused by trimming half the outer rim with the EDM,
re-clamping the piece, then completing the trim.
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Chapter 5

GRAVITY AND CAPACITANCE MODELS

Detailed geometrical models of the attractor and pendulum were needed to interpret

our twist data. A mass-distribution model (gravity model) was needed to calculate the

Newtonian and Yukawa torques. A surface-geometry model (capacitance model) was needed

to translate capacitance measurements into separation values zp and za.

Both models were based on data collected with the Optical Gaging Products SmartScope

Zip Lite 250 measuring microscope with DRS-500 laser sensor. The laser sensor provided

detailed, non-contact surface maps of the pieces, and the optical microscope provided precise

edge-location data.

The SmartScope data revealed a number of anomalies which arose from gluing the

tungsten foils to the Pyrex substrates. The gluing process required heating the parts above

102◦ C, the temperature at which the adhesive film was activated, and this led to the

following unintended consequences,

Dishing: Both the pendulum and attractor were dished such that the 18-fold patterns

were closer to each other than the 120-fold patterns. This dishing was a result of the

different thermal expansions of the tungsten and Pyrex (4.5 and 3.3 µm/(m K)) and

the resulting stress in the glued pieces after they cooled.

Glue-fill: Heated glue flowed into the slots of removed tungsten, partially filling them.

Craters: The glue did not fill to an even height in all locations, leaving craters in the

middle of all 18-fold slots and most of the 120-fold slots on the attractor.

Rim-protrusion: Glue pressed out from beneath the 18-fold tungsten (but not from the

18-fold slots) when the foils were glued to the glass substrates. This glue interfered

with the EDM machine as it cut the final outer radius and produced parasitic 18-fold
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mass distributions of both tungsten and glue on the outer rims. No similar protrusions

at 120-fold symmetry were observed on the inner rims.

Figure 4.7 shows an example of the data collected with the SmartScope and clearly

illustrates the crater and rim anomalies.

In the following sections we discuss the details of how we built our gravity and capac-

itance models from the SmartScope data, and how those models were used to inform our

analysis of twist data.

5.1 Gravity model geometry

Our gravitational models were constructed of annular sectors (wedges) which could be used

in the Fourier-Bessel calculation (Section 2.1). Thanks to the symmetric design, we needed

to model only a single “unit cell” which was repeated 18 or 120 times. We used wedges of

varying size, location, and density to approximate the average mass distributions indicated

by the SmartScope data. Figure 5.1 illustrates how the 18-fold and 120-fold gravity models

were built from a collection of wedges. Figure 5.2 illustrates the relationship of the pendulum

models to the attractor models as well as to the copper electrostatic screen.

Each individual wedge was described by z-height (defined as distance from wedge bottom

surface to zp for the pendulum, and wedge top surface to za for the attractor), inner radius

ir, outer radius or, subtended angle β, positional angle φ0, thickness t, and density ρ.

We began with the nominal models, then made adjustments and additions to accommo-

date the glue-anomalies.

5.1.1 Nominal geometries

The pendulum and attractor were designed to be identical, with co-planar patterns of 18-fold

and 120-fold slots of empty vacuum.

The basis for the nominal 18-fold pattern, repeated every 20◦, was a single wedge of

tungsten with ir = 23.5 mm, or = 26 mm, β = 10◦, and t = 54.5 µm.

The basis for the nominal 120-fold pattern, repeated every 3◦, was a single wedge of

tungsten with ir = 13 mm, or = 23 mm, β = 1.5◦, and t = 54.5 µm.
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Figure 5.1: 3D diagram of the attractor gravitational models. This diagram illustrates how
the dishing, glue-fill, craters, and rim-protrusion anomalies were modeled with wedges. The

pendulum model has a few minor differences, most notably the absence of craters in the
120-fold glue-fill. The z-dimension, radial size of the rim-protrusion, and amount of dishing

have been exaggerated.

5.1.2 Dishing anomaly

To account for dishing, we divided the 120-fold basis wedge of the pendulum (attractor)

radially into 5 (4) equally spaced wedges that had varying z-heights relative to zp (za). The

18-fold basis remained a single wedge with the bottom (top) surface set to z = 0, creating

the reference surface by which we define zp (za) for the pendulum (attractor). The amount

of dishing is seen in Figure 5.3, which shows surface data vs. radius with gravity models

overlaid.

The amount of pendulum dishing in set W1 was significantly greater than in later sets,

as we were able to reduce the dishing before taking the W2 data. We took advantage of the

thermal expansion of titanium (8.6 µm/(m K)) to partially reverse the dishing by gluing

the Pyrex-tungsten assembly to the titanium pendulum body at an elevated temperature

(∼40◦ C). After cooling, the titanium provided a tension on the Pyrex that cancelled (at

least partially) the tension from the tungsten.



53

s

tp

ta

za

zp

copper screen

pendulum

attractor

120-fold
18-fold

Tungsten

Glue

Crater

Cap Surface

15 20 25
-0.10

-0.05

0.00

0.05

0.10

radius HmmL

z
-

h
e

ig
h

t
Hm

m
L

Figure 5.2: Cross-sections of the gravity and capacitance models. Slicing the gravity model
through all tungsten reveals the blue surface in the 18 and 120-fold regions, as well as the

blue and red rim-protrusion on the outer radii (the red lines extend beyond the plot region).
Slicing the gravity model through the slots reveals surfaces of glue shown with red hatching

and regions of craters shown with yellow hatching. The surfaces of the capacitance model
are indicated by green, dash-dotted curves that similarly correspond to tungsten, glue, and

crater regions. Additional surfaces of the capacitance model are beyond the plot region.
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Figure 5.3: All laser scan data for the pendulum and attractor are plotted vs. radius. The

blue data represent the surface height of tungsten, red data the surface height of glue in
the non-crater regions, and yellow data the surface height of the crater regions. The gravity

model surfaces are indicated with blue, red, and yellow solid lines. The capacitance model
surfaces are indicated with green dash-dotted lines.
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There remains uncertainty, however, as to how constant the dishing was. It is unknown

if the dishing changed significantly under vacuum (though we don’t have reason to suspect

it did), and it is feasible the stresses in the glue relaxed over time, allowing the dishing to

lessen. We were unable to collect reliable surface data before and after a data set to check

this stability.

5.1.3 Glue-fill anomaly

Glue-fill was modeled with positive-density glue (p-glue) wedges added in the slot regions.

The p-glue wedges had β = 10◦ (1.5◦) and were offset in φ0 by 10◦ (1.5◦) from the tungsten

wedges of the 18-fold (120-fold) models. The 120-fold p-glue wedges were divided radially

similar to the 120-fold tungsten wedges. The z-location of a p-glue wedge was the average

of all slot surface-data exclusive of points in the crater region.

5.1.4 Crater anomalies

Craters were modeled with negative-density glue (n-glue) wedges that effectively subtracted

volume from the p-glue. The z-location of an n-glue wedge was the same as the associated

p-glue wedge, and the thickness was determined by surface-data in the crater region. The

120-fold crater region was defined as the central 0.5◦ expanse of the attractor slot, divided

into radial sections similar to the p-glue. The 18-fold crater regions were assigned ad hoc

as single wedges and were of different sizes and locations for the pendulum and attractor.

The glue-fill and craters of all models are illustrated in the color map data of Figure 5.4.

5.1.5 Rim-protrusion anomaly

The tungsten protrusion was modeled with multiple wedges that approximated the shape

seen in the outer radius edge data (Figure 5.5). The models had 2 (3) wedges located at

z = 0 and centered in angle on the nominal 18-fold tungsten for the pendulum (attractor).

The glue protrusion was studied by taking laser scans of the walls of the Pyrex. We

found that the glue filled a region about 0.1 mm thick between the foil surface and the

chamfered edge of the Pyrex, and that the squeezed out glue traveled up the wall of the
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Figure 5.4: 18-fold (top) and 120-fold (bottom) laser scan data and gravity models for the
pendulum (left) and attractor (right). For the gravity models, the tungsten boundaries are

indicated by blue lines, positive-density glue boundaries by red lines, and negative-density
glue boundaries by yellow lines. Color maps, indicating z-height, are not normalized across

all figures. See Figure 5.3 for comparitive z-height information.

Pyrex for approximately 0.2 mm. We also determined the total volume of glue contributing

to the 18ω signal. The 18-fold pattern of the glue was both in the chamfer region and

along the Pyrex wall, so we modeled the glue as two simple wedges, 0.1 and 0.2 mm thick,

β = 10◦, with the appropriate radii to match the volume as determined by our scans. It

was not necessary to make a more elaborate model because of the low density of the glue

and because it was relatively far away from the rest of the model.

5.2 Effects of modeling on torque calculations

The desired accuracy of the torque calculations dictated the level of complexity required in

the gravitational models. As mentioned in Section 4.3, the cumulative statistical certainty

of the W3 data set was about 1%, so we set an accuracy goal for the gravitational models

of 0.05% to ensure that modeling uncertainties were negligible.

We compensated for dishing by dividing the 120-fold wedges into 5(4) radial sections

for the pendulum (attractor). The top panel of Figure 5.6 indicates that this number of

sections was adequate to meet our accuracy goal, as the variation in the calculation by

further refining the model was much less than 0.05%. This analysis used the W1 surface

data, which showed the greatest dishing of any set and was therefore most sensitive to this

sort of modeling perturbation.
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Figure 5.5: Edge location data of tungsten outer rims and rim-protrusion models for the
pendulum (left) and attractor (right).

Similarly, the rim-protrusion models indicated refining the number of wedges beyond

those chosen in the models resulted in corrections to the torque calculations of much less

than 0.05%.

An 18-fold model with glue-fill that didn’t include (i.e. averaged over) craters gave a

≈7.34% correction to the nominal, no glue-fill 18ω torques (approximate amount is because

it depends on s, not because it was not well calculated). Adding craters, as described

above, corrected that model by ≈0.47%, which was a 15× smaller correction. Any further

refinement of the crater model would likely yield another 15× reduction in effect, and it

would be a < 0.05% correction. We believe, therefore, that our models for the glue-fill and

craters were adequate to meet our accuracy goal.

The cumulative effect of all corrections to the nominal model is shown in the bottom

panel of Figure 5.6.

5.3 Gravitational torque tables

The purpose of the gravity model was to generate accurate look-up tables listing expected

18ω and 120ω torques for a given set of parameter values. A separate table was calculated

for each value of the Yukawa range λ with which we wished to fit the twist data. (λ = ∞
is Newtonian gravity.)
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Figure 5.6: Modeling effects on torque for gravity model. TOP: The 120ω Newtonian torque
calculation converges as more radial sections are used to model dishing. At around 4 or

5 sections it levels off. The data are plotted relative to the nominal torque. BOTTOM:
The cumulative effect of the anomaly modeling on the 18ω and 120ω torques. The glue-fill
and dishing both lower the 120ω torque amplitude. Glue-fill also lowers the 18ω torque

amplitude, while craters and the rim-protrusion mitigate the effect.
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Parameters that defined the torque model fell into three categories:

1. Static parameters were constrained so well by independent measurements that they

did not need to be adjusted in the model when fitting the data. (e.g. wedge radii and

surface contour)

2. Analytic parameters had measured uncertainties large enough that varying them

within errors had a significant effect on the expected torque, and the effect could

be calculated analytically. (e.g. foil masses)

3. Table parameters also had significant uncertainties, but adjusting their value required

the full Fourier-Bessel calculation to determine the effect on the torque.

The adjustable table parameters were pendulum thickness tp, attractor thickness ta,

glue density relative to that of tungsten ρ̂g, and an over-cut parameter ε, which accounted

for surface roughness along all EDM cuts. We calculated the torque tables with high-low

bounds for these parameters, chosen to safely encompass their independently measured

values (Chapter 4). The [low, high] values used were [51.5, 57.5] µm for both tp and ta,

[0.0463, 0.0523] for the unit-less ρ̂g, and [0, 3] µm for ε.

Each table had calculated torques at 100 values of s (logarithmically spaced from 20 µm

to 5 mm) for all permutations of the high-low parameters. (100×24×(two signal frequencies) =

3200 calculated torques per λ value.) The large number of s values accommodated spline

interpolation of torques that varied exponentially, while the high-low values accommodated

multi-linear interpolation of torques that varied (essentially) linearly.

A simplified version of the gravity model (without dishing, craters, or rim-protrusion,

but including average glue-fill) was also used in the off-center calculations discussed in

Section 2.2.

5.3.1 Over-cut parameter

Of the four high-low adjustable parameters, the over-cut parameter was the least trivial to

implement.

As discussed in Section 4.4, the over-cut parameter accounts for surface roughness along

the edges of EDM cuts. Gravitationally, the average of the peaks and valleys is what
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determines the edge location.

For the 42-hole ISL experiment of [6], we found that accounting for this phenomenon

with a 4.4 µm correction to the hole diameters greatly improved the quality of fit. We have

therefore included this effect as a parameter of our torque tables, despite this experiment

having much smaller roughness values.

Over-cut corrections were applied only to those surfaces in the model that were EDM’d

(most n-glue wedges and the glue protrusion required no correction). The parameter ε

was a positive value that represented shifting the edge location to enlarge the slots. The

wedge geometry does not accommodate this type of correction to the straight walls of the

wedge, but the average effect can be approximated by a change in β. The various surface

corrections were

ir = ir − ε (tungsten & glue & rim-tungsten) (5.1)

or = or + ε (tungsten & glue) (5.2)

or = or − ε (rim-tungsten) (5.3)

β = −2 arctan

(

2 ε

ir + or

)

180

π
(tungsten & rim-tungsten) (5.4)

β = +2 arctan

(

2 ε

ir + or

)

180

π
(glue) (5.5)

The corrections to the radii have an O(ε) effect on the calculated torques, while the correc-

tions to β have an effect on the torque of O(ε2) when β nominally equals half the symmetry

angle. This means the over-cut correction’s net affect is to increase signal sizes due to

radially-longer wedges.

5.4 Capacitance model geometries

The capacitance models needed to accurately represent the surface details of the pendulum

and attractor, particularly for surfaces in close proximity to the copper shield. However, they

also needed to respect the limitations of our finite element software, COMSOL Multiphysics,

which meant simplifying the details where prudent. In this section we will discuss the

physical geometries of the models and how we implemented them in COMSOL.
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5.4.1 Physical capacitance models

The pendulum and attractor were modeled independently because the copper shield isolated

their electrostatic environments. The models relied on design drawings for most dimensions,

and on SmartScope data for the surfaces closest to the copper screen.

Pendulum model

The elements of the pendulum model were the shield, gold can, fiber, and pendulum. The

model truncated at the top of the gold can’s chimney, as any additional capacitance from

the fiber and shroud would be independent of zp, contributing only to an offset.

To simplify the model, many surfaces were assumed to have cylindrical symmetry. The

non-cylindrical aspects that were modified or ignored were: the 8-fold symmetry of the

shield stretcher, the “cuckoo hole” in the gold can, the 6-fold holes of the calibration sphere

holder, the mirror cube, and the 4-fold ventilation holes on the side of the pendulum body.

All these surface modifications were reasonably assumed to have little if any effect on the

shape of the calculated capacitance function, Cp(zp).

To account for dishing, the exposed surface of the tungsten was modeled by azimuthally

sweeping a smooth curve. To construct this curve, all tungsten (r, z) laser data (∼50000

points) were averaged down to a dozen or so points that served as anchors for a spline

interpolation. The end points of the curve were at radii determined from optical edge scans,

with z values extrapolated from the laser data.

Similarly, the glue-fill surface of the 120-fold slots was modeled by azimuthally sweeping

a spline-interpolated curve based on averages of data in the glue regions. Plots of all the

curves used for capacitance model surfaces are shown in Figure 5.3.

The glue-fill and crater surfaces of the 18-fold slots were modeled as in the gravity

models, with flat surfaces at the average bulk-glue height and the average crater height.

We did not specifically address the rim-protrusion anomaly in the capacitance model.

The shape of the rim was inconsequential so long as the total area was properly counted

with the choice of outer radius.
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Attractor model

The elements of the attractor model were the shield, attractor, and cup supporting the

attractor. The model truncated just above the flywheel of the bearing assembly.

All elements of this model, besides the top surface of the attractor, respected cylindrical

symmetry in actuality and required no approximations. The top surface of the attractor

was modeled analogous to the bottom surface of the pendulum described above, but with

the inclusion of the 120-fold craters treated in a similar manner to the glue-fill.

5.4.2 COMSOL capacitance models

Our COMSOL models were not simply full-3D re-creations of the physical capacitance

models. Instead, we found that separating each model into sub-models and taking full

advantage of symmetries achieved improved accuracy and fewer compiling errors. This

was due to significantly higher mesh densities that more accurately sampled the solution

volume, and less complex geometries that did not test the limits of the (often finicky)

meshing algorithms.

Our models took advantage of three types of symmetry: cylindrical symmetry modeled

in 2D, repeated rotational symmetry modeled in 3D but with limited angular scope, and

reflection symmetry that cut the angular scope of the rotational symmetry in half. Thus,

our physical models that had 3-fold, 18-fold, and 120-fold features had sub-models with

angular extent of 60◦, 10◦, and 1.5◦, respectively.

Pendulum sub-models

The pendulum and its environment were modeled with 4 quasi-independent sub-models

(Figure 5.7).

A 2D axial-symmetric sub-model modeled the entire pendulum environment minus the

details of the glue surfaces and calibration spheres. It had artificial interior boundaries (r1,

r2, r3, and z1) from which the solution was extrapolated to corresponding surfaces on the

3D models. It was also used to integrate capacitance in the volumes not addressed by the

3D sub-models. Most significantly, it solved near the inner and outer radius edges where
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Figure 5.7: Pendulum COMSOL model. LEFT: the 2D axial-symmetric sub-model with

potential solution for zp = 3 mm. The boundaries r1, r2, r3, and z1 provide boundary
conditions to the corresponding surfaces of the 3D models. RIGHT TOP: A 60◦ section
including half a calibration sphere models the upper half of the pendulum. The ~n · ~E = 0

boundary condition applies to the side walls and chimney top. RIGHT MIDDLE: the 18-fold
sub-model with representative mesh. Points are purposely concentrated near edges where

field lines are most divergent. RIGHT BOTTOM: the 120-fold sub-model with surface
colors representing energy density for zp = 0.03 mm. The darker region beneath the glue

has less energy density and therefore contribute less to the capacitance.
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electric field lines were most divergent. Because this model was 2D, it could be meshed at

extremely high densities yet solved with relatively little computing overhead.

The top portion of the pendulum (everything above the z1 boundary) had its own sub-

model to properly account for the three calibration spheres. While this portion of the model

makes a negligible contribution to the capacitance when zp is very small, at large zp the

proximity of the pendulum to the top of the can contributes more significantly to the total

capacitance.

The 120 and 18-fold sub-models modeled the remaining volumes between r1 and r2, and

r2 and r3, respectively, including the glue regions.

Boundaries r1, r2, and r3 were placed at radii far from the slot radii (distance from slot

� slot depth) so that their use as boundary conditions in the slotted models would not

artificially coerce the fields. For similar reasons, the z1 boundary was placed well below the

calibration sphere height.

Attractor models

Three quasi-independent sub-models modeled the attractor and its environment: a 2D axial-

symmetric sub-model (Figure 5.8), a 120-fold 3D sub-model, and an 18-fold 3D sub-model.

As with the pendulum models, the 2D sub-model provides boundary condition solutions at

r1, r2, and r3 for use in the 3D sub-models.

5.5 Determining zp and za

The COMSOL models were used to generate the capacitance functions Cp(zp) and Ca(za).

These functions, along with a few modeling parameters, were then used to fit “z-scan” data

(Section 5.5.2) to produce capacitance functions C̄p(zp) and C̄a(za) representing the true

response of our system. The C̄ functions were then inverted to create functions Zp(C̄p) and

Za(C̄a) to provide zp and za values given measured capacitances. All these functions are

discussed in greater detail in the following sections.
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Figure 5.8: Attractor 2D axial-symmetric COMSOL sub-model with potential solution for
za = 0.014 mm. The left edge of the model is the rotation axis. The attractor model also

had 18 and 120-fold sub-models (not shown) that were similar to the pendulum sub-models
shown in Figure 5.7

5.5.1 Capacitance from COMSOL

To calculate capacitance from our COMSOL models, we used the electrostatic energy iden-

tity

U =
1

2
CV 2. (5.6)

In our models, we chose V = 1 by setting boundary conditions on the pendulum and at-

tractor at +1 volt and setting the screen and contiguous surfaces at ground. COMSOL

explicitly solved the models for the electric potential, but COMSOL also provided the solu-

tion as components of the vector electric field, ~E, at each mesh point. The total energy, U ,

was calculated by integrating the energy density, ε0 ~E2/2, over all model volumes. Therefore,

Cp = ε0

(

2π

∫

S2D

r ~E2 + 240

∫

V120

~E2 + 36

∫

V18

~E2 + 6

∫

Vtop

~E2

)

(5.7)

for the pendulum, and Ca had a similar expression without the Vtop term. Adjusting zp or

za effected both the ~E solutions as well as the integration volumes. Figure 5.9 shows the

contribution of each sub-model to Cp(zp).
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Figure 5.9: Sub-model contributions to the pendulum capacitance calculation.

5.5.2 Fitting z-scans

The COMSOL functions were used to fit z-scan data and provide an empirical model of our

system. We collected z-scan data by physically adjusting zp or za and recording both the ca-

pacitance and an independently measured z-height. The zp adjustment was performed with

the motorized phi-top assembly, with position information provided by the z-micrometer on

the phi-top stage. The za adjustment was performed by hand, loosening the three spring-

loaded, screen-leveling screws by the same amount (±2 µm, roughly) for each measurement,

while the attractor assembly was mounted on the SmartScope. The SmartScope laser pro-

vided position information for the change in height of each individual leveling screw, as well

as the overall change in za.

We fit the z-scan data with the function

C̄(z) = a1 + a2C(z − a3) +
1

2
C′′(z − a3)a

2
4, (5.8)
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where a1 accounts for stray capacitance in the system, a2 accounts for gain error in the capac-

itance meter, a3 accounts for the arbitrary origin of the independent z-height measurement,

and a4 accounts for RMS z-averaging in the measurement resulting from pendulum bounce

and non-parallelism of the screen with the pendulum or attractor surfaces. Since C was

calculated at discrete z-heights in COMSOL, a spline interpolation of C was used to create

C̄. The fitting procedure minimized χ2 using solution-dependent data uncertainties of

σi(z) =

√

σi
c
2 +

(

σz
dC̄(z)

dz

)2

, (5.9)

where σi
c is the uncertainty in the capacitance measurement of the ith data, and σz is the

uncertainty in z-height measurements. Figure 5.10 shows z-scan data for the pendulum

with best-fit C̄p(zp).

5.5.3 Z(C̄) functions

C̄(z) provided the expected physical capacitance reading for a given z-position as measured

by the z-micrometer or SmartScope laser of the pendulum or attractor. The endgame of

the capacitance models, however, was to translate the physical capacitance readings into z-

heights relative to the screen surface. To create the function Zp(C̄p) we spline-interpolated

the array of points
{

C̄p(zp + a3), zp

}

, where the zp’s were the same values used in the

COMSOL models to create Cp(zp). Note that Zp(C̄p) is actually independent of a3, the

arbitrary zero height of the z-micrometer, as would be expected. The Za(C̄a) function was

built in the same manner.

The pendulum z-heights of all data runs, and the set-distance of the attractor, were

determined with these functions. Additionally, all plots within this thesis that display data

vs. zp or za have used these functions to convert the physical capacitance data.
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C̄p(zp) fit parameters

stray (a1) 2.1± 0.003 pF

gain (a2) 1.012± 0.0001

z0 (a3) 20.5± 0.1 µm

RMS bounce/tilt (a4) 6.2± 0.5 µm

χ2/DOF 38.7/40

Figure 5.10: Fit of pendulum z-scan data with C̄p(zp). The σi(zp) uncertainties (Equa-

tion 5.9) blow up at small zp due to σz = 0.5 µm for the digital micrometer which reads to
1 µm. The data and fit function have been shifted by a3 in order to plot vs. zp.
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Chapter 6

EXPERIMENTAL METHODS

This chapter details the procedures used to align the apparatus, clear dust from the

critical regions, and collect data.

6.1 Alignments

The pendulum and attractor needed to be aligned (Figure 6.1) to achieve maximal sensi-

tivity to new physics and reduce modeling complexity. Many of our alignment techniques

evolved from previous generations of this experiment. The most important innovations were

acquisition of the SmartScope system which provided new methods for measuring compo-

nent alignments, and the development of spring-loaded attractor and screen mounts that

greatly improved adjustment precision.

6.1.1 Estimated Impact of Misalignments

When aligning parts, it is useful to know what impact misalignments will have on the

experiment so one can judge when things are “aligned enough”. The following is the general

framework we used for calculating these estimates.

Consider the Taylor series expansion of f(x + δ) around the point x:

f(x + δ) = f(x) + δf ′(x) +
1

2
δ2f ′′(x) + O(δ3). (6.1)

The average of δ-sized excursions in either direction about x is

f̄(x, δ) =
1

2
(f(x + δ) + f(x − δ))

= f(x) +
1

2
δ2f ′′(x) + O(δ4). (6.2)

If f (the numerical model) is a linear function, or effectively linear over the range x ± δ,

then f̄ (the lab measurement) is well approximated by f . But if f is highly nonlinear and
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Figure 6.1: Alignment schematic of the pendulum, attractor, electrostatic screen, and ap-
paratus. The attractor and screen were aligned to the axis of rotation, the pendulum was

aligned to the twist axis, and the whole apparatus was aligned to bring the screen parallel
with the pendulum. In most cases we measured alignment angles θx = Ψx −π/2. All align-

ments, once made, were fixed except for zp and rp, which were adjustable with phi-top. The
torque signals were insensitive to misalignment of the pendulum’s center (small triangle)
with the twist axis.

f ′′ is large, f̄ can differ significantly from f for even modest values of δ. With regards to

this experiment, f represents the gravity and capacitance models, both of which were highly

non-linear.

For time-varying oscillations δ is easily interpreted as the RMS oscillation amplitude,

assuming the oscillation period is short with respect to the measurement time. For the

purpose of angle alignments, δ may also represent spatial variance from tilts, provided the

geometry is symmetric about an arbitrary tilt axis.

6.1.2 Attractor Alignment

The attractor had to be aligned so that the top plane was perpendicular to the axis of

rotation, and the wedge pattern was centered on the axis. To achieve this, we developed a

kinematic adjustment system that allowed us to tune the tip-tilt degrees of freedom inde-

pendent of the centering degrees of freedom (Figure 6.2). These alignments were performed
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Figure 6.2: Picture of the attractor’s kinematic adjustment. Two horizontal screws provided
centering adjustment of the cup, and three vertical screws provided tip-tilt adjustment. Ad-

ditional dummy screws maintained a six-fold symmetry to prevent gravitational interaction
with the three calibration spheres on the pendulum. Compression springs located between

the cup and flywheel held the cup horizontally against the centering adjustment screws,
and compression springs on the three dummy vertical screws pulled the cup down onto the
three tip-tilt adjustment screws.

with the attractor assembly securely mounted to the SmartScope.

Center on axis of rotation

We defined the center of the attractor by the outside radius of the 120-fold pattern. The

SmartScope optics were aligned such that the tangent of a single 120-fold outside edge in

the field of view was parallel to the x-axis. The y-location was measured for these edges as

the bearing was rotated by hand, and centered alignment was achieved by minimizing the

1ω component of the runout (Figure 6.3 top). We found it feasible to tune the attractor
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center to within 10 µm of the rotation axis.

A centering misalignment of the attractor, ~ra(φ), along with ~rp, the corresponding offset

of the pendulum, creates a time-dependent r-offset vector ~r(φ) = ~rp − ~ra(φ) due to the

attractor’s rotation. These offsets modulate the torque amplitudes but their phases are

unaffected. We can define maximum and minimum offset quantities r+ = rp + ra and

r− = |rp−ra|, whose mean represents the average offset and whose difference represents the

peak-to-peak modulation amplitude. Using Equation 6.2, the time-average of the torque

amplitudes can be expressed as

N̄m(~r(φ)) = Nm

(

r+ + r−
2

)

+
1

2

(

r+ − r−

2
√

2

)2

N ′′
m

(

r+ + r−
2

)

, (6.3)

where Nm(r) is the torque as a function of r-offset for the signal with m symmetry. This

expression can be tidied up by defining r> as the greater value of rp and ra and r< as the

lesser value of rp and ra, so that

N̄m(~r(t)) = Nm (r>) +
r2
<

4
N ′′

m (r>) . (6.4)

Figure 6.4 shows the relative impact attractor misalignments have on the torque.

Perpendicular to axis of rotation

Height measurements of the top surface were taken near the outside rim. The SmartScope

laser probe was stationary as the attractor bearing was rotated by hand, and perpendicular

alignment was achieved by minimizing the 1ω component (Figure 6.3 middle). The inter-

pretation of this leveling data assumes the absence of “rumble”. Coherent vertical motion

of the attractor at 1ω would be degenerate with surface tilt when measured with the fixed

laser. We checked for this effect by averaging surface height data taken with the laser at

two positions on opposite sides of the attractor. We found our bearing assembly to have

negligible 1ω rumble (Figure 6.3 bottom).

The consequence of an attractor leveling misalignment can be estimated by the torque

expression

N̄ = N (s̄) +
1

2
a2

s(θa)N
′′(s̄), (6.5)
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Figure 6.3: Attractor alignment to axis of rotation for W3 data set. The attractor was
rotated by hand two full revolutions, collecting data every 30◦ (as judged by eye with the

aid of screws located every 60◦). Square points are from first rotation, triangle points from
second. TOP: final centering of the 120-fold pattern to the rotation axis. Middle: final

leveling of the top attractor surface, with intentional slope to accommodate an upward
poking protrusion on the outer rim near 25◦. BOTTOM: data for this plot were taken with

the laser at two opposite positions near the attractor outer rim and the plotted points are
their average. The small 1ω signal indicates leveling data was truly measuring the tip-tilt

angle and not coherent z-motion of the attractor.
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Figure 6.4: Relative impact of attractor misalignment on the time-averaged 120ω torque
amplitude. Attractor misalignments of ra = 0, 10, 20, and 30 µm are shown. When rp

becomes less than ra the effect on the torque amplitude transitions from 2nd order to 1st

order.

where N (s) is the torque as a function of separation and as(θa) is the RMS height of the

area contributing to the torque signal with respect to the average separation distance s̄.

This definition of as assumes patches of equal area contribute equally to the torque. If the

change in height due to tilt θa is given by r sin(θa) sin(φ), where φ is the azimuthal angle,

then

a2
s(θa) =

1

π (or2 − ir2)

∫ 2π

0

∫ or

ir
(r sin(θa) sin(φ))2 r dr dφ

=
1

4

(

or2 + ir2
)

sin2(θa). (6.6)

Plugging in the appropriate radii gives 18as = 17.5 sin(θa) mm and 120as = 13.2 sin(θa) mm.

The final attractor adjustment was set intentionally non-perpendicular to accommodate

an anomalous ≈ 10 µm protrusion sticking up on the outer rim. To put the attractor as

close to the screen as possible (on average), the attractor was tilted to bring the protrusion

away from the screen and roughly even with the opposite side. The 5 µm of tilt measured

near the outside rim corresponds to θa = 200 µrad and scales the torque by 1.00015 for the

120ω signal at the closest separations, which is a modification well below the cumulative

statistical certainty. The modification is even less for the 18ω signal.
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This tilt also modifies the interpretation of capacitance measurement used to determine

za, as discussed in Section 5.5.2.

6.1.3 Electrostatic Screen Alignment

The electrostatic screen also needed to be perpendicular to the axis of rotation and as close

to the attractor as possible without making contact. In previous versions of this experiment,

we manipulated the bearing assembly mounts to bring the attractor into alignment with

the fixed screen, which was a difficult and tedious procedure. We simplified this process

and improved precision by performing the final adjustments to the screen itself. To do this,

we added spring washers between the screen stretcher and the mounting tube it sits on and

adjusted the three fastening screws.

We attempted to set the screen utilizing the precision of the SmartScope, but found the

alignment changed considerably after mounting the assembly in the apparatus. Securing the

base plate of the assembly to the “spider” structure warped it slightly, moving the attractor

away from the screen by a few microns. Additionally, temperature changes from the lab

environment to the vacuum environment revealed thermal expansion differences between the

attractor and screen mounts. We addressed these issues by performing all final adjustments

with the assembly mounted in the spider (with vacuum can removed), and by replacing the

screen’s aluminum mounting tube with one made of G10 epoxy laminate which had a CTE

similar to the titanium components of the attractor mount.

Our tool for measuring the screen alignment was capacitance. With a rotating attractor,

observing a 1ω attractor-screen capacitance modulation indicated screen-tilt. This sensi-

tivity was thanks to the 200 µrad leveling misalignment of the attractor to the rotation

axis. Using Equations 6.6 and 6.2, we calculated the capacitance modulation amplitude as

a function of screen tilt

C̃(θs) =
1

2

(

C̄(θa + θs) − C̄(θa − θs)
)

. (6.7)

We were able to bring the screen within 20 µrad of normal to the axis of rotation. We

set the overall attractor-screen separation near za = 17 µm, but the gap slowly shrank by
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Figure 6.5: Attractor-screen capacitance data collected periodically during the W3 data set
as a check of alignment stability is plotted in units of µm of za. A za-drift of nearly 2 µm
was observed over the two month collection period. With a conversion factor of 200 µrad of

tilt per micron of modulation amplitude at these separations, the 1ω modulations indicate
screen misalignments of θs = 10 ± 2 µrad in the pre W3 trace, and θs = 20 ± 2 µrad in the

other two.

almost 2 µm over the course of the data set. Figure 6.5 shows the capacitance data used

for these alignments interpreted in units of µm of za.

6.1.4 Pendulum Alignment

We aligned the bottom surface of the pendulum to be perpendicular to the twist axis of the

fiber. Our procedure for this alignment was unchanged from the previous experiment[9].

We achieved pendulum misalignment of θp < 100 µrad. Because the attractor is aligned

to the pendulum regardless the pendulum’s angle (discussed below), these misalignments

only affect the moment arm of the torques acting on the pendulum, scaling the 18ω and

120ω signals by 1/2 (1 + cos(θp)) = 1 − 2.5×10−9. The effect of our measured pendulum
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misalignment was completely negligible.

6.1.5 Apparatus Alignment

We brought the screen into parallel alignment with the pendulum by adjusting the tilt of

the vacuum vessel. This procedure was also unchanged from the previous experiment.

While setting the apparatus alignment can be done with precision of θv ≈ 10 µrad,

a relevant question is whether the apparatus retains that alignment over the course of

data collection (Figure 6.6). Such operations as installing the calibration table (W1) and

changing the apparatus temperature (W2) produced gross shifts in the apparent tilt of the

apparatus. Despite these events, the total divergence from the set points was θv < 100

µrad.

Unfortunately, we neglected to align the apparatus before data set W3. Limits on θv can

be extrapolated, however, from the capacitance model fit to z-scan data of the pendulum

(Section 5.5.2). If the bounce-tilt fit parameter of 6.2± 0.5 µm is interpreted purely as tilt

misalignment between the pendulum and screen, then Equation 6.6 sets θv < 450 µrads.

The tilt misalignment was likely considerably less than this limit since pendulum bounce was

surely nonzero. The effect of this tilt on the gravitational signals is analogous to attractor

tilt, discussed above.

Of greater concern than a static θv misalignment is a changing tilt. The primary effect

of a changing tilt is to translate the attractor relative to the pendulum due to the ≈ 1 m

length of the pendulum and fiber. If the pendulum was initially centered over the attractor,

but a tilt change of 50 µrads moved the attractor by 50 µm, the 120ω signal would be

systematically decreased by 2% (see the solid line of Figure 6.4). The observed tilt drift of

the W3 data set, ≈ 20 µrads, may have decreased the 120ω signal by as much as 0.5%, a

significant effect.

A portion of the tilt signal may have been due to temperature response of the AGI

sensors themselves and not actual apparatus tilt. Fine temperature control of the AGI

environment would remove this ambiguity in future measurements.
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Figure 6.6: Apparatus tilt as monitored with a two-axis Applied Geomechanics, Inc. (AGI)
tilt sensor for data runs in sets W1, W2, and W3. The set points represent the determined

proper tilt from the apparatus leveling procedure, θv is measured as deviation from these
lines. In data set W1, the gross offset of AGI 1 data from its set point resulted from

installing the calibration table after the leveling procedure was done. Midway through data
set W2, the temperature of the apparatus was changed and only AGI 2 was re-leveled. The

leveling procedure was accidentally neglected for data set W3 so there are no set points
shown.
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6.1.6 Alignment Summary

The goal of the total alignment procedure was to achieve attractor-pendulum parallelism

with the attractor well centered on its axis of rotation and as close to the electrostatic screen

as possible. With a total angular misalignment < 450 µrad and attractor runout < 11 µm,

the effect of misalignments was a < 0.15% deviation from the ideally aligned model for

the 120ω signal, which was well below the cumulative statistical certainty of the data set.

The angular misalignments had much greater impact on the interpretation of capacitance

measurements, and were accounted for in the capacitance models.

6.2 Dust Removal

Small particles between the pendulum and screen or attractor and screen could prevent at-

taining the desired attractor-pendulum separation distance, as well as produce electrostatic

noise. Debris located between the attractor and screen, that dragged along either of the

surfaces, could have more dire consequences by increasing noise or creating false signals.

We developed several techniques to detect and remove dust from those critical regions.

6.2.1 Pendulum-side dust

Detecting dust between the pendulum and screen was relatively simple. As the pendulum

was lowered toward the screen, any contact with dust typically kicked the pendulum off the

detector. Checking the vertical position where this occurred required replacing the vacuum

can to prevent wind on the pendulum, but did not require pulling vacuum which was a great

time saver. We had a goal of reaching zp ≤ 25 µm (C̄p ≥ 600 pF) without being kicked.

Dust was removed by placing the pendulum at zp ≈ 100 µm and sweeping a single

0.003” diameter tungsten fiber, about 4” in length, through the gap. Shining a bright light

from behind the pendulum helped make large pieces of dust easily visible. Lowering the

pendulum and inducing a large twist helped identify smaller particles; raising the pendulum

again let them be swept out. We checked for dust with the pendulum-kick method after no

dust could be identified visually.
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6.2.2 Attractor-side dust and attractor-screen touching

Identifying dust between the attractor and screen was more difficult. Larger particles pro-

duced upward dimples in the screen that were easily visible by eye. Some smaller pieces of

dust (or possibly part of the attractor coming into contact with the screen) could be seen

by rotating the attractor and noticing a distortion in the screen reflections. Both of these

techniques were applied with the attractor on the bench. Two further checks were made

once the attractor was installed. The first was to look for glitches in the attractor-screen

capacitance as the attractor rotated. This was a clear sign of attractor-screen touching, but

not necessarily a sensitive test for dust. The final check was to look for a 1ω modulation of

the pendulum-screen capacitance, which was indicative of something pushing on the screen.

Dust was cleaned away by removing the screen from the screen stretcher and swabbing

both the attractor and screen with an alcohol soaked, lint free wipe.

6.3 Data Collection

After all alignments were complete, three types of data were collected. Data runs pro-

vided short-range gravitational data. Those runs were always followed by sweep runs which

provided nonlinear corrections to the angle measurements and the free torsion period, τ0.

Calibration runs provided the twist-to-torque conversion scale.

In contrast to [9] and the W1 data set, data sets W2 and W3 did not employ a full-

time calibration signal. Instead, calibration data were collected as a separate series of runs,

and the calibration turntable was removed for the data and sweep runs. This was done

because the various hookups (water cooling lines, encoder and vacuum sensor data cable,

etc.) required to run the attractor impeded the turntable’s range of motion and persistently

rubbed on the rotating table, creating an undesirable mechanical coupling of the turntable

to the vacuum system.

6.3.1 Science data collection

After alignments and dusting were complete, we performed a few other procedures before

beginning data collection:
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1. Baked the fiber (≈ 50◦ C) to remove drift in θ0.

2. Closed thermal enclosure and turned on water and air circulation systems. It typically

took 2-3 days for the apparatus to reach thermal equilibrium.

3. Roughly centered pendulum to attractor. We used half-day runs stepping in x and y

to search for the peak in the gravitational torques. When the initial alignment was

far off (rp ≥ 1 mm, or so), the 18ω signal was more useful as the 120ω quickly lost

strength.

4. Rechecked minimum achievable zp and looked for evidence of attractor touching the

screen. Centering the pendulum may have moved it over a piece of dust and thermal

expansion movement as the system equilibrated may have moved the attractor (or

dust on the attractor) into contact with the screen.

5. Re-leveled the apparatus. Temperature change may have tilted the apparatus slightly.

(This step was neglected for the W2 and W3 data sets.)

6. Performed z-scan to determine Zp(C̄) function (Section 5.5.3).

With the system properly prepared, the science runs repeated the following procedure:

1. Moved pendulum to desired (x, y, z) coordinate.

2. Centered the pendulum’s angle on the detector and minimized its free torsion ampli-

tude.

3. Started attractor turning. The attractor period was set at 78τ0 (where τ0 ≈ 300 sec

was the free torsion period). The multiplier 78 was chosen because it was not an

integer harmonic or sub-harmonic of the 18ω and 120ω signals, it was divisible by 6

which provided an integer number of pendulum periods per 60◦ sub-cut, and it placed

the 120ω signal near the minimum of the torque noise spectrum (Figure 7.1).

4. Took data run. Data run lengths ranged from 14-54 hrs., with an average length

of 23 hrs. Close-in runs that were maintaining a small free-amplitude (typically on

weekends) were allowed to run longer than the usual 1 day. Runs were stopped short

if the free-amplitude became too large.

5. Stopped attractor turning.



82

6. Set pendulum free-amplitude to cover the full extent of the detector covered in the

data run, but not by too large a margin (factor of 2 at most).

7. Took sweep run. Sweep run lengths were at a minimum 6τ0. Close-in runs, which had

poor noise performance, required longer sweep runs to get an accurate measure of τ0

and reasonable nonlinearity coefficients.

Table 6.1 lists all data runs of the W3 data set with their pendulum positions and

measured in-phase (γ) and out-of-phase (β) torque components of the 18ω and 120ω signals.
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Table 6.1: Pendulum positions and measured torques of the W3 data set. The position units are in mm and torque units are in fNm. A

value in parentheses is the uncertainty for the value to the immediate left. The zp values have been adjusted based on calendar date to

account for z-drift of the attractor. The torque data have been rotated to place the signal primarily in the γ component. These adjustments

are discussed in Section 8.2.

Run Name x-mic y-mic zp β120 γ120 β18 γ18

run3935 -0.069 -0.44 0.0796 (0.0001) -0.0033 (0.0093) 0.3744 (0.0057) -0.0062 (0.0098) 0.5012 (0.0097)

run3941 -0.168 -0.44 0.0789 (0.0001) -0.006 (0.0118) 0.5117 (0.0066) 0.015 (0.0208) 0.487 (0.02)

run3943 -0.219 -0.439 0.0787 (0.0001) 0.0148 (0.0128) 0.5377 (0.0076) -0.0138 (0.0159) 0.502 (0.0158)

run3945 -0.298 -0.439 0.0787 (0.0001) 0.0017 (0.0143) 0.5324 (0.0085) -0.0092 (0.0131) 0.5035 (0.0148)

run3947 -0.376 -0.44 0.0785 (0.0001) 0.0099 (0.0219) 0.4724 (0.01) 0.0104 (0.01) 0.4754 (0.01)

run3949 -0.452 -0.44 0.078 (0.0002) 0.0024 (0.0136) 0.3684 (0.0124) 0.0127 (0.0167) 0.479 (0.0147)

run3951 -0.25 -0.438 0.079 (0.0001) -0.0053 (0.0143) 0.5525 (0.0083) 0.0064 (0.0087) 0.4938 (0.0094)

run3953 -0.25 -0.419 0.0787 (0.0001) -0.0052 (0.0146) 0.5722 (0.0081) 0.0005 (0.0114) 0.4706 (0.0117)

run3955 -0.25 -0.518 0.0789 (0.0001) 0.0152 (0.0132) 0.4338 (0.024) -0.0264 (0.0219) 0.4676 (0.0221)

run3957 -0.25 -0.6 0.0789 (0.0001) 0.0172 (0.0168) 0.2022 (0.0356) 0.0334 (0.05) 0.3503 (0.0545)

run3959 -0.25 -0.331 0.0782 (0.0001) -0.0022 (0.0111) 0.5894 (0.011) -0.0218 (0.0145) 0.4799 (0.0152)

run3961 -0.25 -0.23 0.078 (0.0002) 0.0073 (0.0113) 0.4929 (0.0136) -0.0137 (0.0119) 0.4766 (0.0124)

run3963 -0.25 -0.13 0.0778 (0.0001) -0.0126 (0.0153) 0.2858 (0.0199) 0.0193 (0.02) 0.4901 (0.021)

run3965 -0.251 -0.364 0.0366 (0.0002) -0.0159 (0.0312) 0.7652 (0.0232) -0.002 (0.0549) 0.4662 (0.0533)

run3969 -0.251 -0.364 0.035 (0.0001) -0.0052 (0.0246) 0.7412 (0.0196) -0.0205 (0.0284) 0.5201 (0.0285)

run3971 -0.251 -0.364 0.0336 (0.0001) 0.0386 (0.0315) 0.7768 (0.0148) -0.0176 (0.0362) 0.4842 (0.0362)

run3973 -0.251 -0.364 0.0328 (0.0001) -0.0375 (0.0258) 0.8152 (0.0225) 0.0087 (0.0564) 0.5018 (0.0565)

continued on following page
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Table 6.1 continued

Run Name x-mic y-mic zp β120 γ120 β18 γ18

run3975 -0.251 -0.364 0.0492 (0.0001) 0.0074 (0.0155) 0.6975 (0.0102) -0.0059 (0.0256) 0.4694 (0.0304)

run3978 -0.251 -0.364 1.9775 (0.0054) 0.0043 (0.0031) -0.0064 (0.002) -0.0069 (0.0053) 0.088 (0.005)

run3980 -0.251 -0.364 0.1971 (0.0002) 0.0072 (0.0071) 0.2752 (0.0042) -0.0065 (0.0066) 0.4295 (0.0066)

run3982 -0.251 -0.364 0.0418 (0.0001) -0.0166 (0.018) 0.7224 (0.0123) 0.0429 (0.0278) 0.5405 (0.0277)

run3985 -0.251 -0.364 0.0343 (0.0001) -0.0161 (0.0215) 0.7663 (0.0169) -0.0137 (0.0265) 0.5271 (0.0251)

run3987 -0.251 -0.364 0.0341 (0.0001) -0.0266 (0.0216) 0.7746 (0.0175) 0.0429 (0.027) 0.54 (0.0303)

run3988 -0.251 -0.364 0.0595 (0.0001) -0.0051 (0.0168) 0.6587 (0.0105) 0.0161 (0.0152) 0.5174 (0.0157)

run3992 -0.251 -0.364 0.0869 (0.0001) -0.0029 (0.0149) 0.559 (0.0096) -0.0029 (0.0098) 0.4847 (0.0096)

run3994 -0.25 -0.364 0.1315 (0.0001) 0.0117 (0.0082) 0.4202 (0.0076) 0.0126 (0.0074) 0.4792 (0.0081)

run3996 -0.251 -0.364 0.1836 (0.0002) 0.0071 (0.0069) 0.3157 (0.0053) -0.0005 (0.0069) 0.4603 (0.0071)

run3998 -0.251 -0.364 0.054 (0.0001) 0.0031 (0.0166) 0.6911 (0.0106) -0.0198 (0.0152) 0.5263 (0.0176)

run4001 -0.251 -0.364 0.0335 (0.0001) 0.0275 (0.0256) 0.778 (0.0174) 0.0271 (0.0329) 0.5004 (0.031)

run4006 -0.251 -0.364 0.0385 (0.0001) -0.0418 (0.0251) 0.7664 (0.025) -0.1269 (0.098) 0.5564 (0.097)

run4008 -0.251 -0.364 0.4551 (0.0004) 0.0009 (0.0028) 0.0557 (0.0026) 0.0036 (0.0061) 0.3283 (0.0066)

run4010 -0.251 -0.364 0.2787 (0.0003) 0.0097 (0.0059) 0.17 (0.0041) 0.0115 (0.0069) 0.4121 (0.0076)

run4012 -0.251 -0.364 0.9815 (0.0014) -0.001 (0.0032) 0.0027 (0.0029) 0.0168 (0.007) 0.2137 (0.0071)

run4014 -0.251 -0.364 0.0419 (0.0002) 0.0013 (0.0197) 0.7562 (0.0122) -0.0356 (0.0236) 0.5064 (0.0252)

run4015 -0.251 -0.364 0.0417 (0.0001) -0.0165 (0.0342) 0.7443 (0.0242) 0.0173 (0.0374) 0.4951 (0.037)

run4016 -0.251 -0.364 0.0417 (0.0001) -0.0167 (0.0258) 0.7641 (0.0189) -0.0056 (0.0236) 0.4926 (0.0231)

run4018 -0.251 -0.364 0.1041 (0.0002) 0.0036 (0.0114) 0.4976 (0.0063) -0.0004 (0.0077) 0.4777 (0.0084)

run4021 -0.251 -0.364 0.0708 (0.0001) 0.0045 (0.0174) 0.6157 (0.011) -0.0112 (0.0138) 0.5127 (0.0135)

continued on following page
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Table 6.1 continued

Run Name x-mic y-mic zp β120 γ120 β18 γ18

run4025 -0.251 -0.364 0.3798 (0.0003) 0.0023 (0.0029) 0.0892 (0.0032) 0.0038 (0.0067) 0.3694 (0.0071)

run4027 -0.251 -0.364 0.7134 (0.0008) -0.0003 (0.0032) 0.0173 (0.0029) 0.0039 (0.0049) 0.2691 (0.0053)

run4029 -0.251 -0.364 0.0333 (0.0001) 0.0103 (0.0261) 0.7753 (0.0164) -0.0252 (0.0247) 0.5199 (0.0245)

run4030 -0.251 -0.364 0.0334 (0.0001) 0.0147 (0.0268) 0.7865 (0.0167) 0.0053 (0.0275) 0.5183 (0.0238)

run4033 -0.251 -0.364 0.0322 (0.0001) -0.0059 (0.0199) 0.7736 (0.0129) 0.0664 (0.0454) 0.5303 (0.0387)

run4035 -0.251 -0.364 0.034 (0.0002) 0.0023 (0.0292) 0.781 (0.0249) -0.0648 (0.0415) 0.556 (0.0444)

run4037 -0.251 -0.364 0.1559 (0.0001) 0.0029 (0.0084) 0.3579 (0.0056) -0.0114 (0.0092) 0.4488 (0.0084)

run4039 -0.251 -0.364 0.0444 (0.0002) 0.0191 (0.0175) 0.7337 (0.0131) -0.0409 (0.0266) 0.5315 (0.0284)

run4041 -0.251 -0.364 0.0422 (0.0007) -0.0043 (0.0254) 0.7474 (0.0145) -0.0109 (0.029) 0.5623 (0.0291)

run4043 -0.251 -0.364 0.0362 (0.0001) 0.007 (0.0243) 0.7771 (0.0169) -0.1151 (0.0926) 0.4862 (0.0893)

run4044 -0.251 -0.364 0.0362 (0.0002) -0.0161 (0.0183) 0.7623 (0.0163) -0.0796 (0.079) 0.6337 (0.0831)

run4047 -0.251 -0.364 0.0394 (0.0003) -0.0082 (0.0193) 0.7729 (0.0122) -0.0743 (0.0477) 0.5465 (0.0509)

run4049 -0.251 -0.364 0.0393 (0.0003) -0.01 (0.0172) 0.7504 (0.0127) -0.0206 (0.0279) 0.5003 (0.028)

run4051 -0.251 -0.364 0.035 (0.0002) -0.0146 (0.0162) 0.7544 (0.0163) -0.0458 (0.0398) 0.5801 (0.0413)

run4053 -0.251 -0.364 0.0339 (0.0003) 0.0043 (0.0174) 0.8008 (0.0168) -0.0269 (0.0487) 0.5108 (0.0483)

run4055 -0.251 -0.364 0.0336 (0.0002) -0.0277 (0.0186) 0.7545 (0.0189) -0.0865 (0.0674) 0.6283 (0.0699)

run4057 -0.251 -0.364 0.0333 (0.0003) 0.0104 (0.0292) 0.7814 (0.0264) 0.3902 (0.1779) 0.7542 (0.1934)
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6.3.2 Calibration data collection

1. Removed all attractor connections from vacuum can and installed calibration turntable.

2. Moved pendulum far from screen where noise performance was good (zp ≈ 2 mm).

3. Started calibration turntable rotating. The turntable period was set at 2.5τ0 to place

the 3ωcal signal near the 120ω frequency (a speed of 2τ0 would have set it closer to

the 120ω frequency, but the turntable was not capable of running at that speed).

4. Roughly centered the table on the pendulum in xy. An additional 2 spheres were

placed on the turntable to aid with centering (discussed in Section 6.4.1).

5. Moved xy-centered calibration turntable in z.

6. Took full day data run.

7. Repeated steps 5-6 to adequately map torque function Ncal(z).

8. Took sweep run. Only one sweep run was necessary as the pendulum never moved.

Table 6.2 lists all calibration runs with their turntables positions and measured 3ωcal

and 4ωcal twist amplitudes. Analysis of the calibration data is found in Section 6.4.



8
7

Table 6.2: Turntable positions and measured twists of the calibration data set. The position units are in mm and twist units are in µrad.

A value in parentheses is the uncertainty for the value to the immediate left. Runs 4069-4074 were used only for centering.

Run Name x-cal y-cal z-cal β3 γ3 β4 γ4

run4069 0 0 0 -0.0095 (0.0016) 0.0109 (0.0015)

run4070 1.97 0 0 0.0079 (0.0012) 0.0131 (0.0013)

run4071 -2 0 0 -0.0206 (0.0009) 0.0117 (0.0011)

run4072 0 1.98 0 -0.01 (0.0011) 0.0287 (0.001)

run4073 0 1.01 0 -0.0037 (0.0012) 0.0192 (0.0012)

run4074 0 -1.98 0 -0.0045 (0.0009) -0.0035 (0.0009)

run4075 0.48 -1.5 0 0.9489 (0.0012) -0.5422 (0.001) 0.0005 (0.0012) -0.0003 (0.0009)

run4076 0.48 -1.5 -5 0.9953 (0.0011) -0.5402 (0.0009) -0.0002 (0.001) 0.0013 (0.0012)

run4077 0.48 -1.5 -10 1.0262 (0.001) -0.5565 (0.0009) -0.0008 (0.0011) 0.0023 (0.001)

run4078 0.48 -1.5 -20 1.0711 (0.0014) -0.5605 (0.0013) 0 (0.001) -0.0002 (0.001)

run4079 0.48 -1.5 -30 1.0684 (0.0008) -0.5826 (0.0009) 0.0004 (0.0008) -0.0003 (0.001)

run4080 0.48 -1.5 -40 1.0469 (0.0011) -0.5593 (0.001) -0.0003 (0.0015) -0.0004 (0.0015)

run4081 0.48 -1.5 -50 0.9927 (0.0011) -0.5268 (0.001) 0.0009 (0.001) -0.0025 (0.001)

run4082 0.48 -1.5 -55 0.9445 (0.0012) -0.531 (0.0013) 0.0003 (0.0013) 0.0006 (0.001)

run4083 0.48 -1.5 -27 1.0635 (0.001) -0.5934 (0.0009) 0.0012 (0.0011) 0.0008 (0.0008)
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6.4 Torque Scale Calibration

The torsional spring constant, κ, defines the conversion of twist amplitude to torque ampli-

tude

N = κθ , (6.8)

and also relates the free-torsion period of the pendulum to its moment of inertia

κ =
(2π)2 Ip

τ2
0

. (6.9)

In addition to describing the intrinsic properties of the torsion fiber, κ also encompasses

restoring forces on the pendulum due to local electrostatic, magnetic, or gravitational po-

tential wells. The potential wells are known to vary with pendulum location (both in z and

xy), so the value of κ, and hence τ0, can change from run to run.

Our experiment was designed to have a continuous calibration signal to account for these

changes in κ. With this method of calibration, the torque signal for each run is determined

by

N i
ω = θi

ω

Ncal

θi
cal

, (6.10)

where Ncal is the calculated calibration torque and θi
ω and θi

cal are the measured signal

and calibration twist amplitudes of the ith data run. Problems arose during data set W1,

however, when the many cables running to the bottom of the vacuum can interfered with

the operation of the calibration turntable, making measurements unreliable. Therefore, we

chose to change our calibration method for data sets W2 and W3. We collected a stand-alone

calibration data set where all systems running the attractor were unplugged and no longer

an interference. From this data we extracted a measurement of the pendulum’s moment of

inertia about the twist axis, Ip, with which to calibrate our short-range twist data. With

this method of calibration, the torque signal for each run is

N i
ω = θi

ω

(2π)2 Ip

τ i2
0

, (6.11)

where τ i
0 is extracted from the sweep run immediately after the data run. Because the fiber

attachment and pendulum level were unchanged between sets W2, W3, and the calibration

set, we believe it is reasonable to assume Ip remained constant for all these sets.



89

6.4.1 Calibration Data

The calibration signal came from three 2.5” diameter brass balls on a rotating turntable

outside the vacuum can gravitationally pulling on three 0.25” diameter aluminum balls

located near the top of the pendulum. This interaction created a 3ωcal twist signal on

the pendulum that we measured at various zcal heights of the turntable, while leaving the

pendulum stationary (Figure 6.8). The procedure we used for centering the turntable on

the pendulum is discussed in the next section.

The calibration torques were not the only data constraining our determination of Ip.

Similar to our strategy with fitting the short-range data, the adjustable parameters that

fit the calibration torques were independently measured, when possible, and served as data

points (Table 6.3). An additional data point we used was the free-torsion period of the

pendulum with and without balls. The period of the pendulum with balls was τ0 = 301.65±
0.12 sec., and removing the balls resulted in a period of τ̃0 = 295.40± 0.02 sec.

Calibration Centering

We centered the turntable on the pendulum in the same manner described in [9]. Two

additional 2” diameter brass balls were placed on the turntable and the Q44 gravitational

moment of the balls coupled to the q44 moment of the off-center pendulum balls. This

interaction scaled linearly with the xy-offset of the pendulum, vanishing when the pendulum

balls were centered on the rotation axis of the turntable, and was a much more sensitive

measure of center than monitoring the change in the 3ωcal signal. Figure 6.7 shows the

measured 4ωcal signals for the centering runs as well as the calibration runs that were

nominally on-center.

The average 4ωcal amplitude of all calibration runs taken after centering was 0.31 ±
0.35 nrad. This would correspond to a centering misalignment of 35 ± 40 µm given the

observed change in twist amplitude per change in xy-offset of 8.7 nrad/mm. However, the

pendulum body also had a q44 moment (that was small by design, though nonzero) that

when coupled to the Q44 of the brass balls should account for ≈ 1.7 nrad of twist. The

systematic test with pendulum balls removed (Section 7.2.1) provided a direct measure of the
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Figure 6.7: Data showing the centering of the calibration turntable on the pendulum using

the 4ωcal torque signal. The dashed lines indicate the axes of torque variation as xcal or ycal

were modulated by up to ±2 mm. The calibration runs were all taken with the turntable

at a fixed (xcal, ycal) location. The green dot indicates the average value of all calibration
runs.
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4ωcal signal attributable to the pendulum body and was in agreement with the calculation

at 1.3 ± 0.8 nrad. Using these measured values leads to an overall centering misalignment

of 150± 70 µm.

As mentioned, the 3ωcal signal is fairly insensitive to xy-offsets. A 220 µm misalignment

only produces a 3×10−6 relative change to the calibration signal. The noise-to-signal of the

most resolved calibration run was 7×10−4, so the centering misalignment was negligible.

6.4.2 Calibration Model

The calibration model provided the expected twist of the pendulum at 3ωcal as well as

the expected change in the free-torsion period from removing the pendulum’s balls. Both

calculations treated the balls as perfect spheres. The adjustable parameters of the model

were

• r1, r2 : The average distance from the pendulum’s twist axis for the pendulum balls

(r1) and for the turntable balls (r2).

• m1, m2 : The average mass of a single ball for the pendulum balls (m1) and for the

turntable balls (m2).

• τ0 : The free-torsion period of the pendulum with balls.

• z0 : The z-height in turntable indicator units where the centers of the turntable balls

and pendulum balls are co-planar.

• θ0 : Systematic parameter accounting for extraneous turntable-to-pendulum gravita-

tional couplings at 3ω (Section 7.2.1).

• Îp : The moment of inertia of the pendulum about its twist axis, calculated from the

design drawings and measured masses of all parts. Adjusting this parameter accounts

for dimensional variations from machining and misalignments during construction.
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The 3ω twist amplitude as a function of the adjustable parameters was

θ3(zcal) =
N3(zcal)

κ
+ θ0

=
m1 m2 τ2

0

Ip (2π)2
N̂3(r1, r2, zcal − z0) + θ0 (6.12)

Ip = Îp − Ib(m̂1, r̂1) + Ib(m1, r1) (6.13)

Ib(m, r) = 3m(r2 +
2

5
R2) , (6.14)

where N̂3(r1, r2, z) is the predicted torque for co-axial pendulum and turntable point-mass

arrays of unit mass. Ip adjusts with r1 and m1 by subtracting the pre-calculated moment

of the balls from the pre-calculated moment of the pendulum and adding back the moment

of the balls with the adjustable values. R is the spherical radius of the pendulum balls.

The free-torsion period of the pendulum with the balls removed was calculated as

τ̃0 = τ0

√

Ĩp

Ip
(6.15)

Ĩp = Îp − Ib(m̂1, r̂1) . (6.16)

This assumes κ remained constant when removing the spheres from the pendulum (the

change of stress on the fiber likely effected κ by some very small amount).

6.4.3 Calibration Fit

The calibration model fit the calibration data, the independently measured adjustable pa-

rameter values, and the ball-less pendulum period very well. Figure 6.8 and Table 6.3 show

the results of the fit. From this fit, the true value for the moment of inertia of the pendulum

about the twist axis was determined to be Ip = 73.39 ± 0.32 g cm2. We used this central

value, along with the τ i
0 measurements from each sweep run, to convert the data run twist

measurements into torque units. The error bar was folded into the multiplicative systematic

error budget for both the 18ω and 120ω signals (Section 7.2.8).

6.5 Run Analysis

Each data run recorded a digital time series of the difference and sum outputs, ∆ and Σ,

of the autocollimator. To extract the driving torques, the raw data was passed through the
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Table 6.3: Measured and fitted values of calibration parameters. All measured values helped
constrain the fits (unless noted). The parameters of the upper box were adjustable in the

fit, and the parameters in the lower box were calculated using fitted values of the adjustable
parameters.

Parameter Measured Fitted Units

r1 1.651 ± 0.0025 1.651 ± .0024 cm

r2 15.24 ± 0.006 15.240 ± .005 cm

3 × m1 1.0852 ± 0.0002 1.0852 ± 0.0002 g

3 × m2 3410.535 ± 0.005 3410.55 ± 0.005 g

τ0 301.65 ± 0.12 301.63 ± 0.02 sec

z0 -2.693 ± 0.008 cm

θ0 0 ± 0.0016 0.0003 ± 0.0016 µrad

Îp 72.702 * 73.386 ± 0.315 g cm2

τ̃0 295.40 ± 0.02 295.40 ± 0.07 sec

Ip 73.386 ± 0.324 g cm2

* calculated value – does not constrain parameter
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Figure 6.8: Fitted 3ωcal calibration data.
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following analysis pipeline:

1. Created linearized θ(t) from O
(

(∆/Σ)4
)

polynomial provided by sweep run

2. Removed free torsion oscillations with 4pt filter, θ̂4(t)

3. Cut data into 60◦ sections of attractor rotation

4. Fit 60◦ θ̂4(t) cuts with 18ω and 120ω harmonic amplitudes and a linear background

5. Removed cuts whose χ2 fit residuals were anomalously large with respect to the dis-

tribution of the remaining cuts

6. Averaged harmonic amplitudes of remaining cuts, inferring uncertainties from scatter

in fits

7. Scaled average harmonic amplitudes by attenuation factors that accounted for pen-

dulum inertia, torsion filter response, and electronic time constants

8. Converted harmonic amplitudes to torque by multiplying them by κ = Ip(2π/τ0)
2

Many of these steps have been well discussed in previous publications [10][9]. The

following sections discuss the aspects of this analysis that were new to this measurement.

6.5.1 Nonlinear Corrections

Following each data run was a sweep run that used the assumed linearity of the pendulum’s

un-driven oscillations to correct nonlinearities in the autocollimator. The nonlinearities were

accounted for by defining θ(t) with an O
(

(∆/Σ)4
)

polynomial. Determining the coefficients,

ci, that linearize θ was discussed in [9].

While fitting the sweep runs removed nonlinearity, the fitting procedure did not constrain

the ci coefficients to respect the angle calibration of the autocollimator. For data with a

continuous torque calibration signal, this sloppiness in angle calibration was inconsequential

as it effected data and calibration signals equally. However, the torque calibration was not

continuously present for data set W3 (as well as W2), so it was important to ensure a

(nominally) consistent angle calibration for all data and calibration runs. This was done

by rescaling the ci coefficients such that the (∆/Σ)1 coefficient (c0 in the language of [9])

remained a consistent value.
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This procedure did not completely remove angle calibration uncertainty as the variable

ci coefficients (i > 0) necessarily changed the effective angle calibrations at some level.

These changes may, or may not, have reflected actual changes in the calibration of the

optics (curvature of the pendulum’s mirror could possibly change the angle calibration for

different zp heights). To gauge the possible effect these uncertainties might have had on

our data, the rescaled ci coefficients for all W3 data were applied to idealized, perfectly

sinusoidal fake data, which had a driving torque and free-torsion amplitudes equal to those

observed in the W3 data. These data were then fit to see the error in the deduced driving

torque created by the nonlinearities. The fits were statistically consistent with the known

driving torque and had a standard deviation of ≈ 0.1%. This was comparable to the

uncertainty in the free-torsion periods (≈ 300 ± 0.1 sec) used to convert angle to torque

(Section 6.4). Moreover, the fit errors did not exhibit any correlation with zp. Therefore,

the lack of continuous calibration, and the associated uncertainty in angle calibration, was

not a significant contributor to the overall experimental uncertainty.

6.5.2 Torsion Filter

We filtered θ(t) with an ω0-notch filter to lessen the impact of free-torsion amplitude changes

on the fit quality. The filtering translated a shift in free-torsion amplitude to a noise spike

at a given time. In other words, a non-filtered noise event diverted all points from the best

fit curve, while a filtered noise event diverted only a few points from the best fit curve.

Filtering also lessened the impact of a drifting equilibrium position, θ0(t), on the fit

quality. Drift, modeled with high order polynomial terms, was not necessarily orthogonal

to the harmonic torques and could therefore pollute the harmonic fits. The original Eöt-

Wash short-range experiment [10] used the 2pt filter which did not suppress drift. We have

since developed filters that do (Figure 6.9). The 5pt filter, used for the 2006 Eöt-Wash

experiment [6], aggressively suppressed drift by effectively taking the second derivative of

θ0(t). With this filter, the first nonzero polynomial term of the filtered data was proportional

to the 2nd order term in the non-filtered data, and so on. The 4pt filter, utilized in this

work, suppressed drift like the first derivative of θ0(t) and was better suited for simultaneous
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analysis of the 18ω and 120ω signals (discussed in detail below).

The definition of the 5pt filter and the response of twist amplitudes was

θ̂5(t) =
1

2

(

θ(t) + θ(t +
τ0

3
) + θ(t − τ0

3
)− 3

2

(

θ(t +
τ0

4
) + θ(t − τ0

4
)
)

)

(6.17)

R̂5(ω) =
1

2

(

1 + 2 cos(ω
2τ0

6
) − 3 cos(ω

τ0

4
)

)

. (6.18)

The definition of the 4pt filter and the response of twist amplitudes was

θ̂4(t) = θ(t +
τ0

8
) − θ(t − τ0

8
) + θ(t − 3τ0

8
) − θ(t +

3τ0

8
) (6.19)

R̂4(ω) = −2

(

sin(ω
τ0

8
)− sin(ω

3τ0

8
)

)

. (6.20)

6.5.3 5pt vs 4pt filter

The 5pt and 4pt filters gave significantly different results for the size of the 18ω error bars

and for the magnitude of the 120ω amplitudes. To determine which filter was providing

more accurate results, we developed a dynamic computer model of the pendulum’s twist

with which we could fake data and study our analysis pipeline. The model calculated

the pendulum’s response, according to the equation of motion for an internally damped

harmonic oscillator, to sinusoidal driving torques, 1/f noise, and polynomial drift applied to

the equilibrium position at each time step. We simulated 200 noisy data runs with a fixed

driving amplitude and looked at the statistics of the final harmonic amplitudes after running

these data through the analysis pipeline. As Figure 6.10 illustrates, our model faithfully

reproduced both trends observed in the data and showed that the 4pt, 120ω amplitudes

were too small and the 5pt, 18ω error bars were too large.

The 4pt suppression of the 120ω amplitudes is understood by our choice of data point

spacing. We collected 60 data points per free-torsion oscillation. This spacing is commen-

surate with the 5pt filter which samples points at τ0/3 and τ0/4 (and is why that spacing

was originally chosen), but is not commensurate with the 4pt filter samples at τ0/8 and

3τ0/8. The suppressed 4pt, 120ω amplitudes are the result of estimation error from the lin-

ear interpolation between sample points. This suppression goes away when commensurate
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Figure 6.9: Response of notch filters. TOP: Behavior of the 2pt, 4pt, and 5pt filters as a

function of signal frequency. By design, all filters remove ω0 from θ(t). BOTTOM: A 60◦

cut of raw data (blue) filtered with the 2pt (green) and 4pt (red) notch filters. The 4pt
filter, which has a notch at ωs = 0, behaves like a single derivative on drifts, e.g. the average

offset from 0 µrad in the 4pt filtered data is proportional to linear drift in the raw data.
The ratio of the 120ω to 18ω signals is 5 times larger for the 4pt filter than the 2pt filter.
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Figure 6.10: Comparison of 4pt and 5pt filters in simulated and real data. TOP: Statistical
summary of 200 simulated data runs analyzed with the 5pt and 4pt filters. The red error

bars are proportional to the average error extracted from a single run; ideally they should
equal the black error bars which represent actual scatter of the data runs. For the 5pt,

18ω data, the error bars extracted from single runs were clearly too large (χ2/DOF = 0.6).
Also, the 4pt, 120ω amplitudes were clearly too small. BOTTOM: The W3 data set exhibits

the same relations, with the ratio of 18ω 5pt to 4pt error bars > 1 (left), and the ratio of
120ω 4pt to 5pt amplitudes < 1 (right).



100

points are chosen for the 4pt filter (e.g. 64 samples per τ0) or a higher order interpolation

method is used to filter the data.

The increased 18ω error bars of the 5pt filter are less well understood. They are thought

to be related to the 18ω frequency being well below ω0 and the high degree of drift suppres-

sion present in that filter.

Because the observed problem with the 4pt filter is better understood, we chose to

analyze all data with the 4pt filter and correct the 120ω suppression by scaling the 120ω

model by γ120 = 0.997. (Implementing a higher-order interpolation in the filter would have

fixed this problem without scaling, but this has not yet been incorporated into our analysis

software.)
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Chapter 7

STATISTICAL AND SYSTEMATIC UNCERTAINTIES

7.1 Understanding Statistical Noise

The fluctuation-dissipation theorem states that any mechanism that dissipates energy from

a system also introduces noise to the system. The two common descriptions of dissipative

noise relevant to torsion balances are internal damping and velocity damping[11]. We also

identified a noise contribution for this experiment that arose from the combination of seismic

pendulum excitations and the electrostatic patch-fields.

7.1.1 Internal Damping

When considering frictional losses within a twisting torsion fiber the equation of motion is

IΘ̈ + κ(1 +
i

Q
)Θ = 0 , (7.1)

giving rise to a power spectral density (thermal noise limit) that looks like

Θ2(ω) =

(

4kbT

κQω

)

[

1

(1− ω2/ω2
0)2 + 1

Q2

]

, (7.2)

where I is the rotational inertia of the pendulum, κ is the torsional spring constant, Q is the

quality factor of the fiber, kb is Boltzmann’s constant, T is the absolute temperature, and

ω0 is the free-resonant frequency of the pendulum. The quantity in parentheses represents

the torque power spectrum, and the expression in brackets represents the inertial response

of the pendulum. Measured noise spectra when the pendulum-screen separation, zp, is large

are consistent with Equation 7.2, though they are also consistent with a velocity damped

description (Equation 7.4).
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Figure 7.1: Noise spectrum of near and far data runs. TOP: Power spectral density of
twist angle. Curves for velocity damped thermal limits with Qs of 200 and 4000 are shown.

The apparent 1/f2 background was likely due to temperature drifts of the apparatus and
autocollimator noise. Dashed curves are the quadrature sum of the thermal and 1/f2

lines. BOTTOM: Torque amplitude spectral density, which is the data from upper plot
divided by the inertial response of the pendulum. We attempted to place the 120ω signal
near the torque noise minimum while maintaining good separation from the free torsion

frequency. The zp = 0.04 mm spectrum indicates we could have run the attractor faster at
close separations to improve the noise performance of the 18ω signal without sacrificing the

performance of the 120ω signal.
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7.1.2 Velocity Damping

Velocity damping, from either residual gas or eddy currents, has an equation of motion

IΘ̈ +
Iω0

Q
Θ̇ + κΘ = 0 (7.3)

and a power spectral density

Θ2(ω) =

(

4kbT

κQω0

)





1

(1− ω2/ω2
0)2 + (ω/ω0

Q )2



 . (7.4)

A significant difference between Equations 7.4 and 7.2 is that the torque noise for velocity

damping (square root of term in parentheses) is white, whereas the torque noise for internal

damping is pink (1/
√

ω). Figure 7.1 shows the noise spectra of a near and a far data run.

Either internal or velocity damping could reasonably describe the noise floor of the far run,

but the near run clearly has a white noise floor which is the signature of velocity damping.

We have long observed that the statistical error bars grow in magnitude as zp gets

small. Figure 7.2 plots the amplitude error bars for all runs in data sets W1, W2, and W3.

This increase in noise is likely due to a combination of residual gas trapped between the

pendulum and foil (a phenomenon known as squeeze film damping[12]), eddy currents due

to free charges on the pendulum or foil, and the seismic patch-field interaction discussed

below.

7.1.3 Seismic Patch-field Noise

It has been our assumption that the increase in noise at short separations is in part related

to electrostatic patch-fields on the gold-plated pendulum and gold-plated beryllium-copper

screen. Keeping our capacitance meter on while collecting data has led to a better under-

standing of these patch-field interactions.

The patch-fields are present on the screen and pendulum surfaces presumably due to

randomized crystal alignment of the gold coatings, surface flaws (scratches, dents, burrs),

and contaminations (dust, residues). The interplay of these patch fields has a potential

energy minimum that is likely not aligned with the equilibrium angle Θ0 of the pendulum,

so that as zp gets small and the interaction force increases, the effective equilibrium angle
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Figure 7.2: Observed amplitude error bars from data sets W1, W2, and W3.
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changes. The gradient of this Θ0(zp) function couples the slight z-translations of the non-

torsional modes of the pendulum (swing, wobble, bounce) into the torsion mode. According

to Equation 6.2, random seismic excitations of the non-torsional modes will result in kicks

to Θ0 such that

δΘ0 =
1

2
a2

zΘ0
′′(zp), (7.5)

where az is the effective amplitude in the z-direction of the excited pendulum. Figure 7.3

illustrates this with excitations of the pendulum’s non-torsional modes (as observed by

fluctuations in zp) clearly correlated in time to kicks of Θ. That nearly all Θ-kicks in the

2-pt. filter data are in the same direction (downward in plot) and are roughly proportional

in size to the corresponding zp spike is evidence of noise described by Equation 7.5.

The normalized run errors also exhibit this correlation. Figure 7.4 maps Θ0(zp) as

observed post W3 data collection and compares the functional shape to Θ noise in the W3

data set. The characteristic exponential length scale of Θ0(zp) (about 17µm, which is also

the length scale of Θ0
′′(zp)) is consistent with length scales observed in the errors of both

the 120ω and 18ω data.

The value of Θ0
′′(zp) at a given zp can vary greatly as a function of xy-position, even

changing sign (Figures 7.3 and 7.4 exhibit opposite signs of Θ0
′′(zp)). After opening the

vacuum vessel, changes in screen alignment and shifting dust will also change the patch-

field topography. Measuring the gradient Θ0
′(zp) (which is proportional to Θ0

′′(zp) when

Θ0(zp) is a simple exponential) by moving the pendulum a small step in zp and observing

the change in Θ0 becomes a quick yet powerful tool to predict the noise performance of

the pendulum. It was fortuitous that a local minimum of this gradient was found near the

pendulum-attractor center alignment for W3. This may explain why the noise performance

of W3 was much improved over W1 and W2. We did not make detailed studies of Θ0(zp)

before W3, so we have no hard data for comparison.

7.2 False Signals

Spurious twist signals can potentially mimic or hide new short-range physics. There are

several possible categories for such torques: gravitational, magnetic, electrostatic, thermal,
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Figure 7.3: Correlations between seismically induced pendulum excitations and Θ noise are

observed. Some spikes in the filtered data clearly correspond to spikes in the pendulum-
screen separation data, and a quiet period at night is observed in all data. The 2-pt. filter

data represent Θ0(t) and have been offset from the raw Θ data for clarity. The 4-pt. filter
data are proportional to dΘ0/dt. The zp data were collected at 0.2 Hz (with sub-sampling

near 5 Hz), while the excitation modes of the pendulum fall in the 1-10 Hz band. The
attractor was not turning for this data.
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Figure 7.4: The equilibrium position of the pendulum after the W3 data set (top), and
the normalized W3 120ω (middle) and 18ω (bottom) run errors as a function of zp. Θ0

data have been corrected for tilt feed-through, so changes here are due to patch-field effects.
The run errors have been scaled by the square root of the number of cuts in the run to

account for varying run lengths. The errors at both frequencies are proportional to Θ0
′′(zp)

at the smallest values of zp, though there appears to be another noise source dominating

at intermediate lengths of the 120ω data. All centering runs were removed from run errors,
and three clear outliers were removed from the 18ω data.
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seismic and mechanical. Each of these are discussed in the following sections.

We exaggerated (when possible) by a factor fe each identified systematic effect. The

general framework for estimating the spurious effects was

~as ± ~σs =
1

fe
(~ae ± ~σe), (7.6)

where ~as is our estimate of the spurious twist in the normal data, and ~ae is the twist

contribution of the exaggerated systematic. We calculate the effective uncertainty as

σ̂ = |~as|+ |~σs|. (7.7)

If σ̂ is of the order of the statistical uncertainty (≈ 1 nrad at 120ω and ≈ 2 nrad at 18ω),

then ~as is subtracted from all data points while |~σs| contributes to the systematic error

budget. Otherwise σ̂ simply adds in quadrature to the systematic error budget.

Section 7.2.8 discusses how the systematic errors are incorporated into the data-fitting.

7.2.1 Gravitational Systematics

Gravitational systematics are unintended interactions of mass distributions at or near the

signal frequencies. The rim-protrusion anomaly (Section 5.1.5) is one such systematic; its

contribution proved so significant that it had to be incorporated into the 18ω torque model.

Our exploration of other possible gravitational couplings is discussed below.

Calibration

All torque measurements were calibrated by the measured 3ωcal interaction between 3 brass

balls on a calibration turntable outside the vacuum and 3 aluminum balls near the top

of the pendulum. If the pendulum had any residual mass distribution other than the

aluminum balls that could couple to the 3 brass spheres, then the calibration could be in

error. Similarly, if the calibration turntable had any residual mass distribution other than

the brass spheres that could induce a 3ωcal torque on the pendulum, the calibration could

be in error.

We took data in two configurations to check for a systematic calibration error: pendulum

without spheres but turntable with (|~as1| = 2.92± 0.97 nrad), and pendulum with spheres
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but turntable without (|~as2| = 1.54 ± 1.12 nrad). Because these systematics were not

exaggerated (fe = 1) and are comparable to the statistical noise of the calibration runs,

calibration twists ~θi are corrected such that

~θi
true = ~θi

meas −~as1 −~as2, (7.8)

with vector notation indicating that both magnitude and phase were accounted for.

Coupling to other symmetries

Azimuthally periodic mass distributions can have non-vanishing harmonic components at n

times the azimuthal symmetry number. Could the 6-fold symmetric leveling and centering

mechanisms on the attractor (or 6-fold symmetric hole pattern of the pendulum’s calibration

tray) also contribute a gravitational torque at 18ω (n = 3) and 120ω (n = 20)? Or perhaps

the pendulum’s dominant 4-fold symmetry couple to the 120ω (n = 30) signal? The n = 3

coupling to 18ω is expected to be the largest (signals vanish exponentially as n increases),

and a rough calculation indicates a torque contribution at the 1×10−10 fNm level, or σ̂18 =

3×10−8 nrad. These effects were therefore negligible.

7.2.2 Magnetic Systematics

A magnetic interaction could torque the pendulum at the signal frequencies through 1) a

rotating field sourced somewhere on the attractor, and 2) interaction with a static field

sourced either on the pendulum or external to the experiment.

Rotating field

We studied the possibility of a rotating magnetic systematic by measuring the pendulum’s

response to an exaggerated 1ω field sourced on the attractor. We placed a magnetized washer

in the center hole of the attractor, creating a field of 11,400 µGauss at 1ω (with just 270

µGauss at 2ω), as measured with a giant magnetoresistance (GMR) probe approximately

1mm above the attractor and just inside the outer radius of the 120-fold wedges.

The GMR probe was then removed, the vacuum vessel replaced, and the pendulum

placed approximately 1mm above the attractor. Turning the attractor with a 1200 sec
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period, we observed pendulum twist of 24 ± 6 nrad at 1ω and 35 ± 5 nrad at 2ω. We

interpret both signals as arising primarily from the 1ω component of the field, with the

1ω twist resulting from a ferromagnetic coupling of the pendulum to the field, and the

2ω twist from a paramagnetic coupling of the pendulum to the square of the field. With

these values we deduce coupling constants Cferro = 0.003 nrad/µGauss and Cpara =3×10−7

nrad/µGauss2.

We then removed the washer and measured the nominal field of the attractor without

exaggeration. The probe was placed in the same location as before. We took magnetic field

readings for several rotations of the attractor. Fitting the data, we found fluctuations of

0.4± 0.2, 0.2 ± 0.2, 0.1± 0.1, and 0.1± 0.1 µGauss at 9ω, 18ω, 60ω, and 120ω.

The uncertainty in the science data due to this systematic is calculated as

σ̂h ≤ (Bh + dBh) Cferro + (Bh/2 + dBh/2)
2 Cpara, (7.9)

where B ± dB is the GMR probe measurement of the non-exaggerated field and h is the

harmonic of the attractor frequency. We find σ̂18 ≤ 0.0012 nrad and σ̂120 ≤ 0.0006 nrad.

External static field

A static field will induce a magnetic moment proportional to a material’s magnetic suscep-

tibility, χ. Tungsten is nominally non-magnetic, with χ = 6.8 × 10−5. Nonetheless, if the

tungsten plates or any components on the attractor and pendulum become magnetized by

a constant external field, the magnetic interaction may alter the 120ω and 18ω signals.

To check for this systematic, an external field was applied using a pair of Helmholtz

coils. The coils were 64 cm in diameter, separated by 32 cm, with 150 turns each, driven at

1 Amp, producing an additional field at the pendulum-attractor of approximately 4 Gauss.

The residual field with the coils off was measured to be < 1 Gauss. Measurements were

taken with the field in two perpendicular horizontal directions and with two polarizations

in the vertical direction as well as with the field off. Table 7.1 summarizes the results of

these measurements.

The exaggeration factor for these systematics is

fe =
Bon

Boff
fs, (7.10)
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Table 7.1: Summary of the external magnetic field systematics. The Bon

measurements are the average of up and down for vertical, and the quadra-
ture sum of 0◦ and 90◦ for horizontal. All units are nrad (right 4 columns).

direction harmonic Bon Boff ae ± σe σ̂

vert 120 193.65 ± 2.9 193.24 ± 2.4 0.41 ± 3.77 0.021

18 160.93 ± 2.2 164.01 ± 2.9 -3.08 ± 3.64 0.034

horiz 120 182.64 ± 3.3 179.81 ± 4.4 2.83 ± 5.51 0.017

18 151.02 ± 6.8 155.28 ± 3.7 -4.26 ± 7.73 0.024

where fs is the shielding factor of the mu-metal shield on the vacuum can, which was

removed for these tests. Because the mu-metal shield is a cylinder with no end caps, fs

is different for the vertical and horizontal tests. Using the GMR probe, we determined

fs ≈ 125 in the horizontal direction, and fs ≈ 50 in the vertical direction. Therefore, we

had fe ≈ 500 and fe ≈ 200 in the horizontal and vertical directions.

As Table 7.1 indicates, the systematic contribution of an external magnetic field is

σ̂ < 0.04 nrad.

7.2.3 Electrostatic Systematics

Although the pendulum was inside a nearly hermetic, grounded Faraday shield, electrostatic

cross-talk between the attractor and pendulum is still possible. The worry lies in the

elasticity of the beryllium-copper screen separating the attractor from the pendulum. If

there is a potential difference V between the attractor and screen, it will exert a force F on

the screen

F =
1

2

∂C

∂z
V 2 → F ∝ 1

z2
V 2, (7.11)

where C is the capacitance. Any movement of the screen will alter the local patch-field

potential wells at the pendulum and likely cause a torque. Modulation of the screen at or

near the 120ω or 18ω signal frequencies could directly interfere with the science signals.
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Table 7.2: We investigated the attractor-screen contact potential

systematic by applying an additional potential Vas and observing
the change in signals a120 and a18. The average of Vas = ±3V

signals are used to determine asys, with amplification factor fe =
1100. All units are are in nrad.

Signal Vas = 3V Vas = −3V Vas = 0V asys σ̂

a120 219 ± 5 214 ± 2 217 ± 3 -0.5 ± 3 0.003

a18 170 ± 6 168 ± 8 173 ± 7 -3 ± 8 0.010

Although science data were typically collected with the attractor and screen shorted to

one another through BNC cables and grounded through the capacitance meter, multiple

dissimilar metal junctions and the long cable lengths can easily produce a contact potential

difference. We measured this potential difference by adding a bias voltage to the cap-meter

and observed the change in capacitance, and therefore za, due to the added force pulling

down on the screen (Figure 7.5). We then reversed the cap-meter’s leads to provide the

reverse bias scenario (the cap-meter does not accept negative bias voltages). The bias

voltage of minimum screen deflection corresponded to a contact potential of −50± 20 mV.

For the purposes of the systematic test, the conservative value of Vc = −50− 2× 20 = −90

mV was used.

To exaggerate the contact potential while taking data, we used two AAA batteries (±3V)

with one side connected to screen and ground, and the other connected to the attractor

through a 1 megohm resistor. The exaggeration factor for this test is

fe = Mean

[

(

3 ± 0.09

0.09

)2
]

= 1100.

We set the pendulum to a relatively close separation of zp = 50µm (but not closer to

achieve better error bars) to ensure sensitivity to screen movement. Table 7.2 details the

signal amplitudes observed.

We placed systematic limits by assuming that the induced torque on the pendulum
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Figure 7.5: The attractor-screen contact potential is measured by applying a bias voltage

and observing the deflection of the screen. The data were fitted with the function ∆za(Vb) =
Z1 +Z2(Vb−Vc)

2 +Z3(Vb−Vc)
4, where Vc is the contact potential. The error bars represent

the statistical uncertainty of each measurement, but the scatter of the residuals indicates
these error bars are undersized. The best fit gives Vc = −50 ± 20 mV, weighting all data

equally.
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varied linearly with the applied force on the screen. This test found a negligible systematic

error of σ̂ = 0.003 nrad at 120ω, and σ̂ = 0.010 nrad at 18ω.

7.2.4 Temperature Systematics

We considered two thermal effects that could introduce apparent twist signals by changing

the equilibrium angle of the torsion fiber, or by deflections of the optical system components.

The first was fluctuation of the air temperature inside the thermal enclosure. The air

temperature was regulated with a recirculating water bath coupled to a heat exchanger (car

radiator) and circulation fans. The temperature of the water bath was locked in feedback

to a sensor inside the enclosure. The air temperature couples to the entire apparatus, and

the temperature sensor mounted on the autocollimator was used as a proxy for the system’s

response to changes in air temperature. The second effect investigated was temperature

fluctuations of the attractor stepper motor. The motor’s temperature was held constant

with a Peltier element. The stepper motor coupled directly to the attractor bearing through

a shaft, and the in-vacuum temperature sensor located on the attractor-bearing mounting

plate was used as a proxy for the system’s response to changes in motor temperature.

In looking for a coherent systematic effect, we are only concerned with observed tem-

perature variations that occurred at the signal frequencies in phase with the attractor.

Averaging over all science data we observed autocollimator sensor fluctuations of 3.3± 1.5

µK at 120ω and 4.3± 3.3 µK at 18ω, and plate sensor fluctuation of 0.2± 0.2 µK at 120ω

and 1.0± 1.1 µK at 18ω.

We exaggerated the effects of temperature fluctuations by separately driving the air

and motor temperatures sinusoidally at 0.005 Hz, near the typical frequency of the 18ω

signal. (The heat capacity of the apparatus made it difficult to modulate temperatures

at higher frequencies.) We modulated the air temperature by varying the recirculated

water temp by ±1◦ K, which produced a fluctuation in the autocollimator sensor of 16.2

mK (fe = 16200/(4.3 + 3.3) ≈ 2000) and induced an apparent twist of 205 ± 3 nrad on

the pendulum. The air-temperature systematic contribution is therefore σ̂ = 0.10 nrad.

Modulating the motor temp by ±3.5◦ K produced a 140 µK fluctuation in the plate sensor
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(fe = 140/(1.0+ 1.1) ≈ 65) and induced an apparent twist of 12± 2 nrad of the pendulum.

The motor systematic contribution is therefore σ̂ = 0.22 nrad. The magnitude of these

systematics at the 120ω frequency will necessarily be smaller due to the thermal inertia of

the system, so the values described here are conservative upper bounds on the 120ω signal.

7.2.5 Modulated zp Systematic

A modulation of zp, with amplitude ζm, will couple with the patch-field induced Θ0(zp)

(Section 7.1.3) and create a spurious twist

Θm(zp) = ζm Θ0
′(zp), (7.12)

where m denotes the harmonic frequency. The driving of ζm could be thermal in nature

(the thermal tests discussed above were performed at large zp to avoid coupling to Θ0(zp)),

or conceivably an alternate mechanism. Regardless, the effect would be evident in the

capacitance data collected during our science runs.

Fitting capacitance data from the W3 data set for harmonics at our signal frequencies,

and converting to units of zp, show average amplitudes ζ18 = 0.22 ± 0.17 nm and ζ120 =

0.33 ± 0.17 nm for runs with zp < 0.1 mm. Working from the best fit function found in

Figure 7.4, the Θ0 gradient takes the form

Θ0
′(zp) = − 240

0.017
exp(

−zp

0.017
) (7.13)

and has units of µrads/mm. We estimate the largest contribution of this systematic effect

(at the smallest value of zp achieved, 0.033 mm) to be σ̂18 = 0.8 nrad and σ̂120 = 1.0 nrad.

7.2.6 Seismic Systematic

The capacitance modulations observed in the previous section could alternatively be inter-

preted as modulations in seismic activity, rather than literal modulations of zp. Because

the capacitance is nonlinear and the bounce frequency of the pendulum (∼ 8 Hz) is fast

compared to the integration time of the cap meter, a change in bounce amplitude offsets

the capacitance reading similar to a change in zp.
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The capacitance model, C(zp), when corrected to account for a bounce amplitude β, has

the form

C̄(zp, β) = C(zp) +
1

2
β2 C′′(zp) . (7.14)

If that bounce amplitude is sinusoidally modulated by δβm, where m refers to the signal

frequency harmonic, the measured capacitance has a modulation amplitude

C̃m(zp) = C̄(zp, β + δβm)− C̄(zp, β)

= (β δβm +
1

2
δβ2

m) C′′(zp) (7.15)

Similarly, the twist amplitude induced in the pendulum from bounce amplitude modulation,

given the Θ0(zp) function of Section 7.1.3, has the form

Θ̃m(zp) = (β δβm +
1

2
δβ2

m) Θ′′
0(zp) . (7.16)

Combining Equations 7.15 and 7.16 provides the twist modulation without requiring any

direct measurement of the bounce amplitude or its modulation:

Θ̃m(zp) =
C̃m(zp)

C′′(zp)
Θ′′

0(zp) . (7.17)

If we assume β and δβm were effectively constant (i.e. the seismic drivers responsible

for these terms did not appreciably change from run to run – especially with respect to

zp), then the ratio Rm = C̃m(zp)/C′′(zp) is constant. We averaged Rm for all runs with

zp < 0.1 mm to determine R18 = (4.5±4.5)×10−9 mm2 and R120 = (8.8±4.4)×10−9 mm2.

We estimate the largest contribution of this systematic effect (at the smallest value of zp

achieved, 0.033 mm) to be σ̂18 = 1.1 nrad and σ̂120 = 1.6 nrad, just slightly greater than

the zp-modulation interpretation of the capacitance data. This effect is not negligible.

7.2.7 Mechanical Systematics

Attractor-Screen Contact

The attractor touching the screen (either directly or by dragging dust caught between the

two) can create spurious torques on the pendulum, likely by disturbing the patch-field

potentials.
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We investigated this effect by intentionally setting the screen alignment so the attractor

made significant contact with the screen for about half the rotation. We found that the

touching amplified the 18ω signal while it left the 120ω signal relatively unchanged (Fig-

ure 7.6). It is probable that the 18ω pattern on the attractor rim is responsible for amplifying

the 18ω signal, as it could modulate the screen at that frequency while in contact.

As seen in the uppermost plot of Figure 7.6, attractor-screen touching can also create a

1ω signal in the pendulum-screen capacitance. Looking at the pendulum-screen capacitance

data for all of W2, we see a zp modulation of 14.1 ± 0.4 nm at 1ω (vector average over

entire data set), which is 2.5 times larger than observed during W3 (11 times smaller than

observed in this test), confirming touching was likely. Additionally, upon disassembly of the

apparatus after the W2 data set, we observed a small piece of debris near an 18-fold wedge

on the attractor that was likely making contact with the screen during data collection. This

test in conjunction with the observed debris strongly implies the anomalies observed in the

18ω signal in the W2 data set may have been a result of attractor-screen touching.

The W1 data set also seems to have spurious 18ω signal. While we do not have

pendulum-screen capacitance data and no touching or debris was directly observed, the

additional signal measured in that set could also have been a result of attractor-screen

contact.

Attractor Friction

As the attractor turns, spurious torques on the apparatus could be produced by friction in

the bearing. This could twist the “spider” framework that holds a mirror in the autocolli-

mator optical path and introduce false signal. To check for this systematic, the attractor

disk was removed from the bearing assembly, and the assembly rotated at the normal speed.

Without the attractor disk in place the pendulum should feel no gravitational torque, but

any movement of the mirror should be unchanged.

To obtain a statistical error comparable to our other systematics we ran this measure-

ment for about 15 days. Figure 7.7 shows the best fit for 18ω and 120ω signals in each run.

We found resolved signals of 1.7± 0.5 and 1.0± 0.2 nrads at the 18ω and 120ω frequencies.
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Figure 7.6: The attractor was set to touch the screen for about half a rotation. The

capacitance drop-out noise (top) indicates the times of contact (electrical contact to the
screen changes the capacitance circuit), and physical displacement of the screen is also seen

in the upper limit modulation at 1ω. The touching clearly affects the pendulum oscillations
(middle) and amplifies the 18ω signal much more than the 120ω (bottom).
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These values are comparable in magnitude to the daily error bars of our science data and

were therefore subtracted from the data.

A Fourier analysis of the data collected for this systematic revealed broad peaks at 12ω,

48ω, and 144ω (the 12ω and 144ω peaks responsible for contaminating the 18ω and 120ω

signals). During the systematic test we saw 1.9±0.3 nrads at 144ω, and during all of W3 we

saw 3.6± 0.3 nrads at 144ω, indicating this effect was indeed present during science data.

7.2.8 Systematic Error Accounting

Most systematic effects we investigated can be segregated into those whose magnitude should

vary with pendulum height, and those that are independent of pendulum height.

The zp dependent effects have a variety of functional forms, most of which we do not

accurately know, so treating each one independently in the data-fitting routine is not prac-

tical (the seismic systematic is an exception, see below). Instead, we treat these effects as

though they simply scale with gravity. We determine each systematic’s error contribution,

σ̄, by normalizing σ̂ to the measured signal amplitude in the science data, A, at the zp the

test was performed,

σ̄ =
σ̂

A(zp)
. (7.18)

These errors are then quadrature-summed and used to constrain the parameters that freely

scale the gravitational models in the fit. All multiplicative systematic effects are listed in

Table 7.3. Overall, we have about 0.04% scaling uncertainty in the 18ω and 120ω signals.

We incorporate the zp independent effects into the data-fitting model as additional torque

vectors (one for 120ω and one for 18ω) whose magnitudes are free to vary within the

determined error budget and whose phases are unconstrained. The systematic effects that

do not vary with zp are listed in Table 7.4. We find an additive uncertainty of 0.6 and 0.3

nrad (.002 and .001 fNm) for the 18ω and 120ω signals .

The calibration systematic (Section 7.2.1) is treated as an additional effect (z-independent)

in the calibration fit, which extrapolates the calibration constant. The calibration constant

uncertainty, though, is synonymous with a multiplicative error and is included in the mul-

tiplicative systematic error budget.
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Figure 7.7: Apparent torque on pendulum with attractor disk removed. The dotted ellipses

represent the best fit for each run and the solid ellipse is the cumulative average.
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Table 7.3: Summary of multiplicative systematic uncertainties for 120ω and 18ω

signals. A is the gravitational amplitude for the separation at which the systematic
test was performed and σ̄ is the ratio of σ̂ to A. σ̂ and A are in nrad while σ̄ is

unit-less.

Systematic effect σ̂18 σ̂120 A18 A120 σ̄18×104 σ̄120×104

Gravitational Calibration∗ – – – – 3.3 3.3

Rotating Magnetic Field† 0.0012 0.0006 149 160 0.08 0.03

Static Magnetic Field

Vertical 0.034 0.021 154 195 2.2 1.1

Horizontal 0.024 0.017 152 182 1.6 0.9

Attractor Bias Voltage 0.010 0.003 157 220 0.6 0.1

Total 4.3 3.6

∗ value extrapolated from model-fit to calibration data

†
zp not well defined for this test, zp = 0.1 mm used

Table 7.4: Summary of additive system-
atic errors for 120ω and 18ω signals. All

units are nrad.

Systematic effect σ̂18 σ̂120

Temperature Fluctuations

Air∗ 0.10

Motor∗ 0.22

Mechanical: Friction 0.5 0.2

Total 0.6 0.3

∗ Upper limit calculated for both frequencies
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The seismic systematic (Section 7.2.6) is the one zp dependent systematic that has an

explicit functional form (Equation 7.17), which makes it trivial to include in the fitting

model. Accounting for a seismic systematic, then, the torque model is

N = Ngrav + αNyuk + κ
1

2
δβ2Θ′′(zp), (7.19)

where δβ is a fit parameter. While we analyzed the systematic separately for 18ω and 120ω,

we chose to treat them the same in the model as neither was well resolved and it is unknown

how robust Θ′(zp) was during the W3 data set. Therefore we used az = 0± 0.6 nm.
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Chapter 8

FITTING AND RESULTS

We tested gravity by comparing our measured torques, Nm(~xi)±δNm(~xi) at frequencies

mω, to our model, Ñm(~xi, ~p), where ~xi = (xi, yi, zi) is the pendulum position for the

ith data run and ~p is an array of adjustable fit parameters. Most of the adjustable fit

parameters ~p (listed in Table 8.1) were treated as both free parameters and independent

data points. In this way the fit minimizes χ2 by adjusting their values, but if it attempts

adjusting them outside their measured error bars it pays for it with added contributions to

χ2. Additionally, we accounted for uncertainties in the measured pendulum heights, δzi, by

multiplying them by the slope of the torque function and adding that value in quadrature

with the measured torque error bars,

δN̄m =

√

√

√

√(δNm(~xi))
2 +

(

δzi
dÑm(~xi, ~p)

dz|z=zi

)2

. (8.1)

8.1 Fitting Functions and Fit Parameters

Our fitting function addressed Newtonian gravity, Yukawa-type new physics, and measured

systematics by taking the form

Ñm(~xi, ~p) = γm

[

Ñ grav
m (~xi, ~p) + αÑyuk

m (~xi, ~p, λ)
]

+ Ñ add
m + Ñ seis

m (~xi, ~p) . (8.2)

γm, Ñ add
m , and Ñ seis

m accounted for multiplicative, additive, and seismic systematics, respec-

tively. The Newtonian torque function was

Ñ grav
m (~xi, ~p) = G

mpma

tptaβpβa
Tm(φm + πi) Rm(ri, ra, si) ×

[

Ñm(si, tp, ta, ρ̂g, ε) +
1

2
[am(θpa)]

2 d2Ñm(si, tp, ta, ρ̂g, ε)

ds2
i

]

, (8.3)

where βp and βa are the total areas of removed mass from the pendulum and attractor,

ri =
√

(xi − x0)2 + (yi − y0)2, and si = zi−z0, with ~x0 = (x0, y0, z0) as the location of the
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attractor. Tm(φ) is a rotation operator that rotates the components of the torque function

by mφ. Rm(ri, ra, si) is the relative torque response for ri 6= 0 (Section 2.3), taking into

account the centering misalignment of the attractor, ra (Section 6.1.2). Ñm(si, tp, ta, ρg, ε)

is the Fourier-Bessel solution returned from the torque tables (Section 5.3), and the am(θpa)

term accounts for angle misalignment between the pendulum and attractor (Section 6.1.6).

The Yukawa torque function was identical to Equation 8.3, but with the R and Ñ functions

also accepting the Yukawa range, λ, as a parameter.

Our adjustable fit parameters were defined as

• mp, ma : The total missing mass from both the 120-fold and 18-fold slots for the

pendulum and attractor respectively.

• tp, ta : The average thicknesses of the pendulum and attractor foils respectively.

• ρg : The glue density. The torque tables used the relative glue density, ρ̂g ≡
ρg

√

(tptaβpβa)/(mpma) because they were were calculated with a tungsten density of

ρW = 1.

• ra : The centering misalignment of the attractor relative to its axis of rotation.

• θpa : The angle misalignment between the pendulum and attractor.

• ε : The overcut parameter which accounts for roughness of tungsten surfaces cut by

the EDM. In addition to being an adjustable parameter of the torque tables, ε also

effects the calculation of the slot areas βp and βa.

• x0, y0, z0 : The location of the attractor in terms of pendulum coordinates. (x0, y0)

locates the axis of rotation, and z0 ≡ −(za+ts) locates the top surface of the attractor,

where ts is the thickness of the electrostatic screen.

• φ18, φ120 : Arbitrary rotations of the calculations to fit signals in both torque

components. The torque data were rotated to nominally place the signals in a single

component for the purposes of plotting.

• πi : Each run has a phase uncertainty associated with the average scatter of phi-refs

and the average scatter of equilibrium positions on the detector.

• γ18, γ120 : Multiplicative systematic factors that account for systematic uncertainties

that change with pendulum height.
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• (N add
18 , φadd

18 ), (N add
120 , φadd

120 ) : Torque amplitude and phase of systematic uncertainties

that are independent of pendulum height.

• (Aseis
18 , φseis

18 ), (Aseis
120, φseis

120) : zp modulation amplitude and phase of the seismic

systematic.

• λseis : Length scale of the seismic systematic.

8.2 Final Data Set Analysis

Section 6.5 discussed the analysis pipeline for a single run. The ensemble of the data set

received further analysis and manipulation before being fit.

8.2.1 Data Rotation

The measured torque components had a phase relative to the once-per-turn phi-ref mark

(which defined zero phase angle) that was arbitrarily set when the attractor was mounted

to the bearing. To make plotting and interpretation easier, the data were rotated to place

the signal primarily in one in-phase component, with the out-of-phase component nominally

measuring zero. A single angle rotated all 120ω data, and a different angle rotated all 18ω

data. We did not attempt to constrain the 120ω phase relative to the 18ω phase, though in

theory we could have.

These rotations had an effect the quality of fit to data as they mixed the in-phase and

out-of-phase error bars; the errors of the two components could start off different sizes but

a rotation of 45◦, for instance, gives both components the same size error bar. This mixing

did not have a significant effect, however, on the limits set by the Yukawa fit.

8.2.2 Phase Uncertainty

Each data run had an adjustable phase parameter, πi. We surveyed the scatter of average

phi-refs per run and the scatter of average pendulum equilibrium position per run to set

limits for these parameters. The W3 data set had phi-ref scatter of 1.1 milli-deg and

equilibrium angle scatter of 0.8 milli-deg. The πi parameters were all set to 0 ± 1.5 milli-

deg.
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8.2.3 za Drift

In Figure 6.5, the attractor is seen to drift toward the screen over the course of the W3

data set. This drift was linear with time and corresponded to a 28 nm per day decrease in

pendulum-attractor separation. This drift was applied to the data as a modification of the

pendulum height, zi, for each run.

8.3 Results of Newtonian Fit

Our fit to the W3 data set using the Newtonian torque function (α = 0) gave a minimized

χ2 = 234.2 with ν = 216 degrees of freedom (DOF). If the Newtonian model truly described

the data, the probability that a larger χ2 would occur by chance is Q(χ2, ν) = 0.19. These

data consisted of 55 data runs with two measured components for both the 120ω and

18ω torques (220 DOF). There were 75 constrained fit parameters (net 0 DOF) and 4

unconstrained fit parameters (-4 DOF). Table 8.1 lists our measured and fitted parameter

values for this fit.

Figures 8.1 and 8.2 show the best fit to the in-phase components of centered and off-

center runs, respectively. Though not shown in the plots, the out-of-phase components and

18ω off-center data were also included in the fit of the data.

Table 8.1: The measured and fitted parameter values for the Newtonian fit. The Nσ col-

umn is the fitted central value divided by the measured uncertainty. A fitted parameter

uncertainty that is less than the measured uncertainty indicates the torque data provided

a tighter constraint to that parameter.

Parameter Measured Fitted Units Nσ

mp 0.7826 ± 0.001 0.7836 ± 0.0010 g 1.02

ma 0.7847 ± 0.0005 0.7850 ± 0.0005 g 0.51

tp 0.0545 ± 0.00105 0.0542 ± 0.0010 mm 0.26

ta 0.0544 ± 0.00075 0.0542 ± 0.0007 mm 0.30

ρg 0.935 ± 0.007 0.933 ± 0.007 g/cm3 0.34

continued on following page
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Table 8.1 continued

Parameter Measured Fitted Units Nσ

ra 0.0095 ± 0.005 0.0106 ± 0.005 mm 0.21

θpa 0.0001 ± 0.00045 0.00008 ± 0.00045 rad 0.04

ε 0.00025 ± 0.0002 0.00027 ± 0.0002 mm 0.10

x0 N/A -0.2529 ± 0.0026 mm -

y0 N/A -0.3622 ± 0.0032 mm -

z0 -0.0293 ± 0.0015 -0.0303 ± 0.0007 mm 0.67

φ18 N/A 0.014 ± 0.014 deg -

φ120 N/A 0.0005 ± 0.0019 deg -

γ18 1.00000 ± 0.00043 1.00018 ± 0.00043 - 0.42

γ120 0.99700 ± 0.00036 0.99698 ± 0.00036 - 0.07

N add
18 0.0017 ± 0.0005 0.0019 ± 0.0005 fNm 0.43

φadd
18 -4.4 ± 0.9 -3.41 ± 0.89 deg 1.10

N add
120 0.001 ± 0.0002 0.0010 ± 0.0002 fNm 0.16

φadd
120 -2.04 ± 0.11 -2.03 ± 0.11 deg 0.06

Aseis
18 0.26 ± 0.26 0.42 ± 0.26 nm 0.62

φseis
18 7 ± 3 7.7 ± 2.9 deg 0.25

Aseis
120 0.52 ± 0.26 0.66 ± 0.25 nm 0.55

φseis
120 -2.37 ± 0.23 -2.46 ± 0.22 deg 0.40

λseis 0.017 ± 0.001 0.017 ± 0.001 mm 0.17

8.4 Results of Yukawa Fitting

The data favored inclusion of a Yukawa model to the fit. The best fit model was λ =

10 mm (the largest value tested), with α = 0.021± 0.005, χ2 = 219.0 (ν = 215 DOF), and

Q(χ2, ν) = 0.41. These (λ, |α|) values fall in a region previously excluded by experiment so

are unlikely to be indicative of new physics. That the best fit λ is at long range suggests a
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Figure 8.1: Newtonian fit of centered data. Runs at the closest separations have been
consolidated merely for plotting purposes by averaging (inversely weighted by the square of

error bars) data with s values < 2µm of each other. From the left, the consolidated points
represent the average of (11,5,2,2,5,1...) runs. These plots do not show centering runs or

out-of-phase components.
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Figure 8.2: Newtonian fit of 120ω off-center data. Centering runs were taken at s = 0.110
mm. The variation in error bar sizes was due to spatially varying patch-field potentials.
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systematic error in the torque calibration or possibly an error in a parameter measurement.

For instance, reducing the measured thicknesses of the tungsten foils by 1 µm (see comment

on foil thicknesses in Section 4.4) changes the λ = 10 mm fit from 4.1σ resolved α to 3.5σ.

To a lesser degree, the data also favored the addition of a short-ranged Yukawa, with a

local minimum of χ2 = 229.0 at λ = 0.070 mm with α = −0.13 ± 0.06 (Q(χ2, ν) = 0.24).

Table 8.2 lists the results of Yukawa fits for all λ models tested.

Figure 8.5 shows the 120ω centered data fit with both Newtonian and λ = 0.070 mm

Yukawa models. To see which data most influenced the fits, Figure 8.4 plots the residuals

of the fits in terms of their contribution to χ2, and shows how their contributions changed

between the Newtonian and Yukawa fits. Interestingly, one run near s = 0.2 mm (a relatively

far-away run) experienced the greatest shift in χ2 contribution, indicating it had a strong

influence on the Yukawa fit. Particularly in the Newtonian fit, the run clearly appears to

be an outlier relative to the nearby runs. Removing this single run from the data results in

a Newtonian χ2/ν = 1.02, and a λ = 0.070 mm fit of α = −0.093± 0.065 (< 2σ resolved).

It also changed the λ = 10 mm fit to α = 0.018 ± 0.005. There were no abnormalities in

any of the data channels for this run, or any other feature we could determine to indicate

why it was an outlier, so we have left the run in the data set.

This data provides new 95% exclusion limits on α between λ = 6 µm and λ = 80 µm

(Figure 8.6). The ISL can now be said to hold down to 42 µm (α = 1 limit).

Because α is resolved at > 2σ for some values of λ, this data also provides 95% inclusion

limits (Figure 8.7). The long-range Yukawa fits are resolved at 4.1σ, and conventionally a

4σ measurement is the minimum resolution for discovery. However, because these values are

in previously excluded parameter space it is premature to conclude a positive measurement

of new physics.
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Table 8.2: Fitting results from Yukawa fitting, showing best-fit α and its uncertainty; the

68% and 95% confidence limits on |α|; and the χ2 and Q from the best fit.

λ (mm) αbf ± σ |α68| |α95| χ2 Q

0.005 -1.50×107 ± 8.20×106 1.92×107 2.88×107 231.0 0.22

0.01 -2360 ± 1220 2930 4370 230.7 0.22

0.015 -79.9 ± 40.9 99.1 147.3 230.5 0.22

0.02 -12.5 ± 6.3 15.5 22.9 230.3 0.23

0.025 -3.86 ± 1.90 4.75 6.99 230.0 0.23

0.03 -1.70 ± 0.822 2.09 3.05 229.8 0.23

0.035 -0.929 ± 0.442 1.14 1.66 229.6 0.24

0.04 -0.584 ± 0.274 0.712 1.03 229.5 0.24

0.045 -0.404 ± 0.188 0.492 0.712 229.3 0.24

0.05 -0.299 ± 0.138 0.363 0.526 229.2 0.24

0.055 -0.233 ± 0.107 0.283 0.409 229.1 0.24

0.06 -0.188 ± 0.086 0.229 0.330 229.1 0.24

0.065 -0.157 ± 0.072 0.191 0.276 229.0 0.24

0.07 -0.134 ± 0.062 0.163 0.235 229.0 0.24

0.075 -0.116 ± 0.054 0.142 0.205 229.1 0.24

0.08 -0.103 ± 0.048 0.125 0.181 229.1 0.24

0.09 -0.0826 ± 0.0394 0.101 0.147 229.2 0.24

0.095 -0.0751 ± 0.0363 0.0921 0.1348 229.3 0.24

0.1 -0.0687 ± 0.0337 0.0845 0.1242 229.4 0.24

0.125 -0.0472 ± 0.0256 0.0592 0.0894 230.1 0.23

0.15 -0.0344 ± 0.0214 0.0444 0.0696 230.9 0.22

0.175 -0.0255 ± 0.0189 0.0344 0.0566 231.7 0.21

0.2 -0.0188 ± 0.0172 0.0270 0.0470 232.5 0.20

0.25 -0.00798 ± 0.01513 0.0172 0.0334 233.7 0.18

continued on following page
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Table 8.2 continued

λ (mm) αbf ± σ |α68| |α95| χ2 Q

0.5 0.0182 ± 0.0112 0.0234 0.0366 232.6 0.19

1 0.0261 ± 0.00779 0.0298 0.0389 224.7 0.31

1.5 0.0244 ± 0.0065 0.0274 0.0350 221.6 0.36

2 0.0231 ± 0.0059 0.0258 0.0327 220.5 0.38

2.5 0.0223 ± 0.0056 0.0249 0.0315 219.9 0.39

3 0.0218 ± 0.0054 0.0243 0.0307 219.6 0.40

3.5 0.0215 ± 0.0053 0.0240 0.0302 219.4 0.40

4.5 0.0211 ± 0.0052 0.0236 0.0297 219.2 0.41

5 0.0210 ± 0.0052 0.0234 0.0295 219.1 0.41

5.5 0.0209 ± 0.0051 0.0233 0.0294 219.1 0.41

6 0.0209 ± 0.0051 0.0233 0.0293 219.1 0.41

7 0.0208 ± 0.0051 0.0232 0.0291 219.0 0.41

10 0.0207 ± 0.0050 0.0230 0.0289 219.0 0.41

8.5 Limiting the fit

The error bars on α are due in part to the scatter in the torque data, and in part to the

error bars of the fit parameters. To separate these effects, we locked the fit parameters

at their best fit values for a given Yukawa potential and re-fit the data with α as the sole

adjustable parameter. By doing this the error bar on α is determined purely by the scatter

in the torque data.

For the λ = 0.070 mm potential, the torque-data-only fit gave δα = 0.024, compared

to the combined fit with δα = 0.062 (as expected, the central value for α was the same

in both fits). This indicates a little over half of the overall uncertainty in α results from

the uncertainty in our determination of fit parameters. The covariance matrix of the full

parameter fit indicates α is most strongly correlated to z0, with a covariance of -0.74. The
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Figure 8.3: Newtonian and Yukawa fits of 120ω centered data. The λ = 0.070 mm Yukawa

potential is the most resolved at short ranges, with α = −0.13 ± 0.6. The Yukawa data
points are shifted left because the best fit z0 changed by ≈ 2 µm.
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Figure 8.4: 120ω centered data contributions to χ2 for Newtonian and Yukawa (λ =

0.070 mm) fits. TOP: The magnitude of each point is the contribution to χ2 of the data run;
the sign matches the sign of the residual, i.e. + sign means points lie above the curve on the

torque plot. BOTTOM: The change in χ2 contribution from Yukawa fitting vs. Newtonian
fitting. A negative value indicates the Yukawa fit did a better job fitting that point than the

Newtonian fit. The most significant runs driving the Yukawa fit were the two consolidated
points at closest separations (16 runs total) and the single run near s = 0.2 mm. ∆|χ2|
from 120ω off-center runs were all < | ± 0.1|, and 18ω runs were all < | ± 1.0|.
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Figure 8.5: Newtonian and Yukawa fits of 18ω centered data. The Newtonian and Yukawa

fits are nearly indistinguishable, except for the Yukawa data points shifted left because the
best fit z0 changed by ≈ 2 µm.
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Figure 8.6: 95% Exclusion of Yukawa (λ, α) from the W3 data set. The solid line labeled

“Eöt-Wash 2012” represents limits set by this work. The dotted line represents the sensi-
tivity of the experiment, S(λ) ≡ 2σα, and indicates the limits we could have set if the data

did not favor Yukawa contributions.
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Figure 8.7: 95% (solid) and 68% (dashed) inclusion of Yukawa (λ, |α|) from the W3 data

set. The inclusion region has been excluded by previous experiment which likely indicates
a systematic error in our measurement at long length scales.
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next most significant correlations are with φseis
120 (-0.25), tp (0.18), and ta (0.11).

Similarly, for the λ = 10 mm potential roughly half the uncertainty in α comes from

the torque data (δα = 0.0024) and half from the fit parameters (total δα = 0.0050). The

strongest parameter correlations are with z0 (-0.60), mp (-0.26), φadd
18 (-0.21), tp (0.20), ta

(0.15), and ma (-0.13).

Placing better restrictions on these measured values should have a noticeable impact on

future α limits.
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Chapter 9

CONSIDERATIONS FOR FUTURE MEASUREMENTS

With the experience gained from this measurement, we have identified many areas for

improvement in our apparatus design, data collection protocols, and data analysis.

9.1 Apparatus Improvements

• Flat Surfaces for Pendulum and Attractor

We are developing a new gluing procedure to achieve flat surfaces, absent of craters,

bulges, or dishing. This will greatly reduce modeling complexity and, we believe,

improve noise performance at small separations.

• Round Outside Edges

The final inner and outer radii of the tungsten foils will be cut round before gluing

them to the Pyrex substrates to avoid repeating the 18-fold rim-protrusion issue.

• Thicker Foils

To gain sensitivity at longer λ, the pendulum and attractor may utilize 100 µm thick

foils instead of the current 50 µm thickness. Placing better limits in the theoretical

dark energy regime (≈ 80 µm, which also happens to be where our non-Newtonian

signals are most resolved) would favor this change.

• In-vacuum Screen Adjustment

Being able to adjust the attractor-screen separation after the vacuum system is closed

will allow us to achieve the smallest possible values for za, as well as more robustly

verify the absence of dust and attractor-screen touching. Three motor driven actu-
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ators will manipulate the screen height at three points, providing full tip-tilt and za

adjustment.

• Stiffen Vacuum Can and Optics

The vacuum can and spider are being replaced with versions considerably larger in

radius. This will provide much improved stiffness and hopefully eliminate the observed

mechanical systematics.

• New Torsion Fiber

The current experiment did not take full advantage of the lightweight design of the

pendulum. Using a thinner torsion fiber than the 20 µm one currently used will

improve the thermal signal-to-noise ratio. This will increase the free-torsion period,

however, and may make the measurement more susceptible to low frequency noise

sources.

• Modify Calibration Turn Table

The bearing of the calibration table will be redesigned with a much larger aperture

for passing cables to the bottom flange of the vacuum can. This will allow a return

to the preferred method of run calibration.

• Motorized Tilt Control

Motorized control of the apparatus tilt would make leveling procedures less invasive

(they currently require opening the thermal box which introduces possible thermal

drifts), and possibly allow for tilt corrections that ensure pendulum-attractor align-

ment remains constant.

• AGI Sensor Thermal Stability

Implementation of tilt corrections would require a more thermally stable AGI sensor

to ensure observed changes in tilt were real and not thermal artifacts. An insulated
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box around the AGI and a peltier device with air-cooled heatsink would likely be

sufficient.

9.2 Data Collection Improvements

• Foil thicknesses

The resolved yukawa signals shifted considerably with the average thickness of the

tungsten foils changing by merely 1 µm. The foils appear to the eye to have a surface

modulation at the ≈ 1 mm lateral scale, but we were unable to resolve the vertical

structure (thought to be at the 0.5 µm scale) with the AFM (scan area too small)

or the SmartScope (resolution inadequate). Measuring this structure may have a

significant impact for the interpretation of the next experiment.

• Full-time attractor-screen capacitance monitoring

We found that monitoring the pendulum-screen capacitance full-time provided highly

valuable data, leading to deeper understanding of our noise issues. It would be sim-

ilarly valuable, particularly with the addition of dynamic attractor positioning, to

monitor the attractor-screen capacitance with an independent LCR meter.

• Multiple z-scans

The interpretation of capacitance data to determine zp is a key feature of the ex-

periment, but we have traditionally based this model wholly on a single collection of

z-scan data. Given that the bounce of the pendulum is a necessary fit parameter in

this model, and we know the bounce amplitude has day-night variation, a single z-scan

seems inadequate. Taking z-scans under various conditions (day, night, weekend), and

periodically through the course of a data set would provide more confidence in the

accuracy of zp determination.

• Tilt monitoring
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Monitoring AGI levels and making necessary adjustments periodically will prevent

long timescale temperature drifts of the apparatus from altering the pendulum’s xy-

alignment to the attractor.

• Continuous Calibration

A continuous calibration signal removes ambiguity in the non-linearity correction pro-

cedure.

• Increased attractor rotation

Particularly at close separations, noise spectra (Figure 7.1) indicate increased attractor

speed would bring the 18ω signal to a lower noise floor without adversely effecting the

120ω noise.

9.3 Analysis Improvements

• Higher-order filtering

Using 3rd-order interpolation, instead of linear interpolation, in the torsion filter will

reduce contamination of fitted twist amplitudes due to data spacing that is incom-

mensurate with the filter spacing. It should also provide improved performance when

the true torsion period significantly differs from the value used to set data timing.

• Rotate runs before fitting twists

The current method of data rotation mixes the error bars of the two orthogonal signal

components which should be uncorrelated (Sec. 8.2.1). A preferred method would be

to offset the interpreted location of phi-ref by the desired angle and re-fit the runs.

This would allow for all the signal to appear in a single component without artificially

convolving the error bars. Choosing a single angle that achieves this rotation for both

the 120ω and 18ω signals would allow further constraints during fitting and may help

reveal systematic errors.

• Dynamic Zp(C) fitting
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The fit parameter most sensitive to different Yukawa models is z0. zp and z0 are

determined by fits to capacitance models that have their own set of free parameters

and it is unknown how those parameter may correlate with α. It would be preferable to

fit z-scan data and gravitational data simultaneously so any correlations are properly

accounted.
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Appendix 1

LIST OF RESOURCES

A.1 Personal contact info

Feel free to contact me with any questions regarding this thesis at:

tedcook@gmail.com

(206) 550-9372 (cell)

A.2 Computer programs and files

Table A.1: Computer resource locations

Fitting program \\kepler2\c\EWSR\code\fitting

Fourier Bessel Monte Carlo 120ω \\kepler2\c\EWSR\code\fbmc

Fourier Bessel Monte Carlo 18ω \\kepler2\c\EWSR\code\fbmc18

Cartesian Monte Carlo 120ω \\kepler2\c\EWSR\code\wmc

Cartesian Monte Carlo 18ω \\kepler2\c\EWSR\code\wmc18

Program to build torque tables \\kepler2\c\EWSR\code\WedgeModel

Spreadsheet of all data sets \\kepler2\c\EWSR\fitdata\Wedge_All.xls

Pendulum body design \\kepler2\c\tpc\wc

COMSOL models \\cavendish\Users\TedC\Comsol

Solidworks models and renderings \\cavendish\Users\TedC\Documents

Autocad drawings \\kepler2\C\Ted\ShortRange\Drawings

SmartScope data \\smartscope\Partrtn\ted_cook

Miscellaneous files and analysis \\kepler2\c\Ted\ShortRange

This thesis \\kepler2\c\Ted\ShortRange\Thesis
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A.3 Hardware suppliers

Table A.2: Hardware suppliers

Mirror cubes and Pyrex disks www.redoptronics.com

Tungsten foils www.alfa.com

BeCu foils Micro-Tek Associates Inc., Diamond Bar, CA

Ceramic ball bearings www.vxb.com

Rotary encoder system www.microesys.com

SmartScope service www.roscoprecisionmachinery.com

Integral E100 adhesive film www.dow.com
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