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Abstract

An extensive study on ambitwistors models is presented. We construct the free am-
bitwistor string field theory action for the bosonic string, heterotic string, and both GSO
sectors of the Type II string. These actions contain higher derivative terms, implying
non-unitary states. We also re-examine the bosonic chiral string in the sectorized inter-
pretation, computing its spectrum, Kkinetic action, and 3-point amplitude. As expected,
the bosonic ambitwistor string is recovered in the tensionless limit. Finally, we consider
an extension of the bosonic model with current algebras. In this case, we compute the ef-
fective action and show that it is essentially the same as the action of the mass-deformed
(DF)? theory found by Johansson and Nohle.

Key Words: Super Strings, Twistors, Ambitwistors, String Field theory .
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IFT-UNESP

Resumo

E apresentado um extenso estudo sobre modelos de ambitwistors. Nos construimos
a acao livre da teoria de campo de cordas do ambitwistor para a corda bosonica, corda
heterdtica e ambos setores GSO da corda tipo II. As agdes contém termos de derivadas
mais altas, implicando em estados nao unitarios. Também reexaminamos a corda quiral
bosonica na interpretagao setorizada, computando seu espectro, acao cinética e ampli-
tude de 3 pontos. Como esperado, a corda bosonica de ambitwistor é recuperada no
limite sem tensao. Finalmente, consideramos uma extensao do modelo bosénico com
algebras de correntes. Nesse caso, calculamos a acao efetiva e mostramos que é essen-
cialmente a mesma acao da teoria de massa-deformada (DF)? encontrada por Johansson
e Nohle.

Palavras-chave: Super Cordas, Twistors, Ambitwistors, Teoria de campos de cor-
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Chapter 1
Introduction

The search for compact formulas of scattering amplitudes can be traced back to Parke
and Taylor [1] in 1986 where they conjectured a simple expression for the maximal
helicity violating (MHV) scattering amplitude for n number of particles at tree-level.
Adopting this approach, the 10,000 terms required to calculate the 5-gluon tree scatter-
ing reduces to a single term. One step towards a better understanding of this formula
was achieved in 2004 by Witten [2] and separately by Berkovits [3] with a new type of
string theory in d = 4 based on twistor worldsheet variables. Both models were shown
to be equivalent and provided a simple way to derive the MHV tree-level amplitude for
N = 4 super-Yang Mills.

The idea to describe amplitudes using twistor variables drastically changed how peo-
ple think about scattering amplitudes and the quest for alternative methods to describe
and compute amplitudes became an extremely active area of research. In 2013 the field
received a lot of attention by a series of remarkable papers [4-7] by Cachazo-He-Yuan
(CHY), where a compact formula for massless tree-level S-matrix in any dimension for
spin-0, 1, 2 was obtained. The n—point amplitude is given by an integral over the moduli

space of the Riemann sphere with n-punctures:

Anllwen) = [ i g (k - P(za>) «To{bmemz)) (L)

where kf, e, are the external momenta and polarization vectors for the particle n.

This elegant formula contains a lot of ingredients. The most important one, is the

delta function which has the property to completely localize all integrals by imposing
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the scattering equations:

n

ko - Ky
ko - P(zq) = Z R 0 where Pp(z)= Z
ba b=1

b
km
zZ— 2p

(1.2)

These equations relate kinematic invariants (k, - k) of n massless particles to marked

points (z,) in a 2-sphere.

One has to eliminate 3 delta’s to remove the redundancy of the scattering equations,
since only n — 3 are independent. So the amplitude result is just a sum over solutions of
the scattering equations, which is amazing because the CHY formula (1.1) transforms
the problem of computing Feynman diagrams into an algebraic one ( finding solutions to
the scattering equations). Even though the S-Matrix is just a sum of algebraic equations,
it is important to note that it is not trivial to solve analytically for higher number of

particles. The total number of solutions for generic kinematics is (n — 3)!.

The second crucial element is the integrand Z,(k, €, z) responsible to accommodate
different theories. A systematic procedure to obtain integrands is yet unknown, but the
space of possibilities is restricted by the properties that an amplitude must satisfy, such
as multilinearity in polarization vectors, SL(2,C) invariance, mass dimension, gauge
invariance, and more. With all these constraints Cachazo et al, were able to postulate

Zn(k, €, z) for the Bi-adjoint scalar, Yang-Mills, gravity and others.

Because of the similarities with the string amplitude, a natural question was if these
amplitudes (1.1) could be described by a worldsheet model. The answer came in the
same year where Mason and Skinner created the so-called the ambitwistor string [8],
followed by Berkovits’ supersymmetric version using pure spinor formalism [9]. The
CHY formulae were later generalized to different theories [10, 11] and, again, different

ambitwistor strings were proposed as their underlying worldsheet model [12].

By construction, ambitwistor strings are two-dimensional chiral theories that contain
no dimensionful parameter. As we’ll see in 2 the bosonic gauge fixed action takes the
form :

Sp = % /dZZ (PrndX™ + bdc + bIé), (1.3)

where X, is the target space coordinates, b, c are the reparametrization ghosts, and I~), c
are the ghosts associated to the null contraint P? = 0. At first, they were considered as
an infinite tension limit of ordinary string theory, a belief motivated in part by the fact
that the spectrum and tree-level amplitude of type II GSO(+) sector are identical to
that of the corresponding supergravity. However, for the bosonic and heterotic models,
this is not true, since the kinetic term contains higher-derivative terms which imply a

non-unitary spectrum. Also the tree-level amplitude for the bosonic string has higher
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momentum dependence. The n—particle scattering amplitude prescription given by

Mason and Skinner with 3 fixed vertex operators and n — 3 integrated vertex is
n —
.An = <0151V10252V20353V:3 H/dQZz(s(k‘l . P(Zl))Vﬁ (1.4)
i=4

Since all the fields are holomorphic the delta function §(k - P) is needed to insure the
integrated vertex operator is well defined in the Riemann surface. When the X,,, depen-
dence in the vertex operator is only in the exponent e*X* the delta function imposes
the scattering equations. This can be seen by integrating X in the correlation function
(1.4) , the zero-modes of X gives the usual conservation of momentum d-function, the

non-zero modes impose

n

0P, (2, 2) = 2772'2 ki 6%(2 — z;) at genus one Pp,(z) =
j=1 b=1

Ky,

zZ—2p

(1.5)

Now the ambitwistor scattering amplitude has a similar form to the CHY expression, the
delta function imposes the scattering equations, the ¢ ghosts take care of the SL(2,C)
invariance. The ghost ¢ associated to the null constraint P? = 0 removes the redundancy

of the scattering equations and the vertex operators represent different integrants Z,.

However the vertex operator for the bosonic and heterotic models contain 09X, in
the vertex operator, as was shown by Berkovits and me in [13], so the X path integral
becomes hard to compute. Since these theories have higher derivatives, it is expected to
be difficult to define and compute scattering amplitudes. It’s important to remark that
part of the spectrum in the heterotic model gives the correct equations of motion and am-
plitude for super Yang-Mills. This is similar to the d = 4 twistor string whose spectrum

includes super Yang-Mills and a higher derivative theory(conformal supergravity)[14].

In hindsight, the higher derivatives should have been expected since the three-point
amplitudes in ambitwistor strings (except for the Type II string) were computed [8]
to have higher powers of momenta compared to the usual massless theories. And since
there are no dimensionful constants like o’ in ambitwistor strings, the higher momentum
dependence in the cubic term of the string field theory action implies higher momentum
dependence in the quadratic kinetic term. These non-unitary states were first found by
Berkovits and me in [13], where we have constructed the most general vertex operator.
In contrast, the vertex operators in [8] were assumed to contain only P,, dependence
and to be independent of 0.X,,, where X,, and P,, are the spacetime variable and its
conjugate momentum. Based on the usual definition of BPZ conjugate [15] we found
the kinetic term consistent with the non-unitary states. This definition differs from

a previous construction [16] where the BPZ conjugate, was chosen unconventionally to
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give a kinetic term with the standard unitary massless spectrum. In a subsequent paper,
[17] the Ramond sector for the heterotic model was investigated. Previously only the
NS-sector received the proper attention. With this in mind H.Flores and I constructed
the vertex operator for the fermionic spectrum and computed the susy transformation.
Also, the kinetic term was built and despite the non-unitary states in the model, the

free action is invariant under the susy transformations.

A new interpretation of the ambitwistor was proposed by Siegel [18] called chiral
string, where he introduced a new gauge fixing (HSZ gauge - first investigated in [19])
and also a new boundary condition for X,,. In this prescription, he obtained the same
results of Mason and Skinner. In [20] the authors found an alternative method to
compute amplitudes for the chiral string model. The boundary condition for X,, is
the same as in [18], but the amplitudes are computed in the conformal gauge. In this
approach, it was noted that the spectrum of these chiral strings contains a finite number
of massive states, depending on the amount of spacetime supersymmetry. For the type
II case, for instance, the physical spectrum is independent of the string tension; and two

spin-2 states with mass-squared +1, —1 were found in the Bosonic model.

In this context, the so-called sectorized string model [21] plays an important role. It
was introduced as an alternative pure spinor analog of ambitwistor strings [9], motivated
by some inconsistencies in its heterotic version and difficulties in coupling it to the N' = 2
supergravity background [22]. As such, it was supposed to be a theory for massless
particles only. Nevertheless, it was later shown [23] that the the heterotic sectorized
model contains the N' = 1 supergravity states together with a single massive multiplet
with the same quantum numbers as the first massive level of the (conventional) open
superstring. This is possible thanks to a dimensionful parameter whose existence had
been overlooked since the chiral worldsheet action has no parameters. Moreover, when
this parameter is taken to zero, corresponding to a tensionless limit, one recovers the

heterotic ambitwistor string.

Following these ideas, together with T.Azevedo, R.Jusinskas, in [24] we analyze the
bosonic incarnation of the sectorized model above and show how the theory can be
interpreted in terms of two sectors after a particular gauge-fixing is performed. As in
the heterotic case, the two sectors emulate the left- and right-moving sectors of the
usual string theory, but all worldsheet fields are holomorphic. Using methods similar to
the ones used in [13], we found the same physical spectrum as in the alternative Chiral
String [20]. Also in [25] one of the massive spin-2 states was determined to be ghost
via a 4-point amplitude analysis based on a “twisted” Kawai—Lewellen—Tye formula.

This fact is manifest in the quadratic action we constructed from the vertex operator.
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And a careful analysis confirmed that in the tensionless limit, these extra massive states

become auxiliary fields which then leads to the higher derivative theory found in [13].

Finally, we consider an extension of the bosonic model by including current algebras,
which provide a worldsheet derivation of the so-called (DF)? + YM theory found by
Johansson and Nohle [26]. In particular, the scalar field transforming in some real
representation of the gauge group, whose inclusion might seem somewhat contrived in the
original construction, appears naturally in the sectorized-string formulation. Theories
whose Lagrangians include a (DF)2-type kinetic term were first introduced as a way
of obtaining conformal (super)gravity amplitudes (R? gravity, in general) from color-
kinematics duality [27], and were shown to admit CHY /ambitwistor representations in
[28]. Like R? gravity, such theories contain “ghost” states which render them non-

unitary.

This thesis will present the three projects accomplished throughout my Ph.D. in
chronological order. First, in chapter 2 we analyze the free ambitwistor string field
theory action for the bosonic, heterotic, and both GSO sectors of the type II string.
And show that these models — except type II GSO(+) — contain non-unitary states.
In chapter 3 we continue our analysis of the heterotic string, by constructing the action
for the fermionic states, we demonstrate that this model is invariant under A’ = 1 susy.
Then in chapter 4, we study the bosonic sectorized model, in which the tensionless limit
recovers the bosonic ambitwistor model as expected. Next, we show the extension of the
model to include current algebras result in the (DF)? + Y M theory. Finally chapter 5

summarizes the thesis results and discuss some open problems and perspectives.



Chapter 2

Field theory actions for
ambitwistor string and

superstring

2.1 Outline

In section 2.2 we start with a review of the bosonic ambitwistor model and use the
standard BRST method to compute the spectrum. Then we proceed to construct the
kinetic action in terms of gauge-invariant objects and show that the model contains
higher derivative terms, which implies non-unitary states. This clarifies the unexpected
Ag ~ (momenta)® behavior in the three-point amplitude found by Mason and Skinner
[8]. Since the theory does not contain a dimensionful parameter the higher derivative in
the kinetic term solves this inconsistency. And in sections 2.3 and 2.4, we repeat this
procedure for the Neveu-Schwarz states in Type II for both GSO sectors and heterotic
ambitwistor string field theory actions. The spectrum for the GSO(+4) Neveu-Schwarz
sector is the expected supergravity states, however, the spectrum for the GSO(—) sector
contains unusual non-unitary states. These non-unitary states are also present in the

heterotic model.

2.2 Bosonic ambitwistor string

We first describe the bosonic ambitwistor string. Subsection 2.2.1 defines the model

and our notation, subsection 2.2.2 computes the spectrum via BRST cohomology, and
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subsection 2.2.3 constructs the kinetic string field theory action. The same steps will be

later described in sections 2.3 and 2.4 for the Type II and heterotic ambitwistor strings.

2.2.1 Review and notation

The gauge-fixed worldsheet action[8] is

1 _ _ ~_
Sp= 5 /dzz (PndX™ + bdc + bIE), (2.1)
s

where all matter and ghost fields are left-moving bosons and fermions on the worldsheet.
(P, X™) are the matter fields of conformal weight (1,0), (b, c) are the Faddeev-Popov
ghosts for reparametrization symmetry of conformal weight (2, —1), and (b, ¢) are the
Faddeev-Popov ghosts for the null geodesic constraint, P? = 0, and carry conformal
weight (2, —1). The action (2.1) is invariant under the BRST transformation generated
by

d 1
Q= fz <CTM + Ty, + bede + 26P2> (2.2)

21

where

™ = —P,0X™, Tj, = &b~ 2b0¢, (2.3)

and one uses the free field OPE’s,

(2.4)

Notice that the X X OPE is regular, so e?*¥X does not acquire an anomalous dimension.
Furthermore, there are no dimensionful parameters such as o’ in the theory. So the
physical spectrum defined by the BRST cohomology is not expected to contain massive
states. This will be confirmed below, however, we will show that the spectrum contains

both unitary and non-unitary massless states.

Physical closed string states should have ghost number 2 where the ghost number is

defined as
dz

Ny, = — ﬂ{ o (be + bé), (2.5)
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such that b, b have ghost number —1 and ¢, ¢ have ghost number 1. In order to compute
the ghost number 2 cohomology, Mason and Skinner [8] considered only homogeneous

polynomials in P so that their expression for the spin-2 unintegrated vertex operator is

V(2) = c(2)&(2) P (2) Po(2)g™me* X (2). (2.6)

BRST closedness implies

E™gmn =0 and k% =0, (2.7)

while BRST exactness gives

5™ = kMXY and K™\, = 0. (2.8)

Equations (2.7) and (2.8) are the usual conditions satisfied by the graviton field in
linearized gravity where ¢,,, and A are the target space metric and infinitesimal dif-
feomorphism generator. So it is tempting to say that the vertex (2.6) describes the
graviton. However, this would present a paradox since the three-point scattering ampli-

tude computed using (2.6) is [8]

(V(=0)V(22)V (28)) = 6% (D k) (g5°kHRL) (95 k2 K2) (9T k3D, (2.9)

Since (2.9) behaves like k% instead of the k? behavior of general relativity and since there
are no dimensionful parameters in the theory, one would expect the kinetic term for g,
should also behave like k5. This suggests that the equation of motion for ¢, should be
something like [(13g™" = 0 instead of the (g, = 0 equation implied by (2.7).

In this paper, we aim to clarify this issue. Mason and Skinner constructed the vertex
operator using only polynomials in P. However, from the string theory perspective,
nothing prevents us from considering vertex operators involving 0X. By considering the

most general vertex operator with ghost number two, we will find that the equation of

motion for g,,, behaves like k5.
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2.2.2 Bosonic spectrum

The most general vertex operator with ghost number two that is annihilated by by and

LO iSl

V(2) =cé®y + c0c¥ + 02ceS™ 4 cd%eS0) 4 02¢eSP + déer
) (2.11)
+ 82228 + becdEs® + beoeasV |

where

dy = PPP"GY) + 0X™OX"G2) + OX TP Hypp + 2 X™ AL + 9P AR)
Uy =PmAD £ ax™mA® | Ty =PmAB) £ oxm AW, (2.12)

The symmetric fields with two indices are represented by G%%,Ggg%,Gg{%; the anti-

symmetric 2-form by Bp, = Bpyy); the 1-forms by A%), e ,AT(S); and the scalars by

S .., 80 These fields have arbitrary dependence on X, e.g., Gﬁ}lil = G%L(X)

The target space fields have gauge symmetry 0V = QA, where A has ghost number
one and also satisfies bpA = LogA = 0. The most general gauge parameter A takes the

form

A =cP"AY + coX™AD +ePmAWY + 20X™MAL) + 9EAO) 4 beeAD + cheA®.
(2.13)

The vertex (2.11) can be simplified by removing fields that are pure gauge. Whenever
the gauge transformation of a field does not involve spacetime derivatives of the gauge
parameter, we can eliminate this field without producing gauge-fixing ghosts. By a suit-
able choice of gauge parameters, it is easy to show that the fields S(2), S §(), A%), Aﬁﬁ)

can be eliminated from the vertex operator (2.11).

!Since Lo is identically zero, the usual constraints that Lo — Lo and by — by annihilate the off-shell
closed string vertex operator are replaced by the constraints that Lo and by annihilate the off-shell vertex
operator. By Lo and by we mean the zero-modes of the b-ghost and stress-energy tensor:

bo :%%zb(z) and Lo :%ﬁzT(z) (2.10)

21
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Cohomology: Now that we have the most general vertex operator we can calculate
the cohomology. The BRST-closedness condition QV = 0 gives the following auxiliary

equations

AB) — _gma(l)  4(6) — —lé)”H AB) — A0 A& = _g g1)
n 2 mn» ) m )

GY) = %DG%L - %@na’”%;w 2G2) = +%DG£221 + D SW, (2.14)

S0 = %anamcz(l) S6G) — _%amg + gsm,

mn?

together with the equations of motion

O™ 4+ 49m9m G =0,
OBom + 000" Binp — 030 Bpy =0,

2.15
(PGE), — 20, 0°GL) + 40mn SY) + 160,80, =0, (2.15)
The gauge transformations given by 6V = QA for the propagating fields are
sah Ly am L. A
(mn) 2 (n'tm) 677mn ,
(2.16)

1
M L2ig. A0
650 = 0@ - AW).

Although the gauge transformation for the field G%L does not correspond to the linear

diffeomorphism of the graviton, we will perform in the next subsection a field redefinition
to obtain the usual transformation. However, it is unclear how to interpret this vertex

operator as a deformation around the background.

2.2.3 Ambitwistor kinetic term

The standard kinetic term S[0] = $(¥|(co — &)QY¥) for the closed bosonic string was
introduced in [15] using the string field defined by the state-operator mapping: |¥) =
V(0)|0) where |0) is the SL(2, C) vacuum and |¥) is constrained to satisfy (Lo— Lo)|¥) =
(bo—bo)|¥) = 0. For the ambitwistor string, we will have a similar kinetic term; however,
since all the fields are holomorphic, we discard the antiholomorphic zero-modes Lg and
bo.
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Therefore, we propose for the ambitwistor string kinetic term

SIW] = 3 (W]coQW) = (o V(0)|9eQV (0)) (2.17)

where |¥) is constrained to satisfy

Lo|¥) = bo|T) = 0. (2.18)

The bra state of the string field (V| is defined by the usual BPZ conjugate, (¥| =
(0|1 o V(0) where I(z) = 1/z. For a primary field of conformal weight h the conformal

transformation I acts as

Iog(y) = (9,1)"6(1/y). (2.19)

The variation of S[¥] implies ¢pQ|¥) = 0. The condition by|¥) = 0 turns this
into the linearized equations of motion Q|¥) = 0. The action S[V] is invariant under
|0¥) = Q|A), where A has ghost number one and is annihilated by Ly and by. The proof
of gauge invariance and the derivation of the field equations follows exactly as in [15],
so it will not be reproduced here. A similar string field theory action was previously
proposed in [16], but their construction did not allow insertions of 90X in the vertex
operator and they modified the usual definition of the BPZ inner product to get a

massless unitary spectrum.

Let us focus on computing the action for the ambitwistor string vertex operator
(2.11). The action can be calculated in two different — but equivalent — ways: using
creation and annihilation operator algebra or vertex correlation functions. We will work

with the latter.

The gauge parameter (2.13) can set 5@ 54 56) A1) AR to zero without produc-
ing ghosts, so the vertex operator (2.11) simplifies to
V(2) =ci®y + ceW) + c82cS®) + déely + 8%ccS® + bedcesSV (2.20)
where

®y = PP G 4+ 0X™mOX"GP) + 0X™ P Hypp,

(2.21)
U =PmA®) 4 9xmAO) 1= PmAB) L oxm AW,
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One can verify that the auxiliary field equations of (2.14) imply that

T(2)V(0) ~ 4 z 4 [—ce(H™ + 65N+  273[cde(—0m A%, —250))] +
+ 273 [ce(=2P™(0"GL,, + AD)) — OX (0" Hyp + 249)))] +
+273[E0E(+0m AB) 4 256) — 35M)] 4 2~19V(0)

~z A —ce(H + 650N + 271V (0).

(2.22)

So after applying the auxiliary field equations of (2.14), T' has no double or cubic poles
with V', which implies that I o V(z) = V(I(2)) and the string action (2.17) becomes
the two point function (V(1(0))0cQV (0)). We stress that applying the auxiliary field
equations before computing the kinetic term is a trick to simplify the computation. One

could have done the calculation in full detail and obtained the same answer.

Using the vacuum normalization (9%c0ccd?¢Oéc) = 4, the string action becomes

S=— / d*x [—%;Gm”(l)D?’G%L + iarcm“l)m?apag; + 4G, 8,,5M +
. (2.23)
+GrHos® — 5 B"" (OB + 0m0” Bup) |

The equations of motion agree with (2.15) and the gauge transformations are those
given by (2.16). Note that the kinetic action for G4 involves 6 derivatives, so the
inconsistency between the momentum dependence of the 3-point amplitude (2.9) and

the momentum dependence of the kinetic term is resolved.

To write the kinetic action in terms of gauge invariant objects, it is convenient to

perform a field redefinition since the gauge transformation for G%}L is not quite the

transformation of the graviton. A convenient field redefinition is

1 1
omn = G = Gt =450 — ém%gg, (2.24)
to obtain the gauge transformations of linearized gravity
1

The action (2.23) written in terms of gauge invariant objects becomes
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1 1 1
S =— / d**x [2RmnDRmn = JROR 4R = o H™ Hypy | (2.26)

where we have defined the linearized Ricci tensor and 3-form field strength

2Ryn = OO Ry + 000 hugy — Dy — OO 8,
(2.27)
Hypinp = OmBup + On By + Op B

One can simplify further by shifting ¢ to ¢t + R /4 so the term ROR drops out of the

action.

2.3 Type 1I ambitwistor

In this section we will describe the Type II ambitwistor string for both GSO Neveu-
Schwarz sectors. The spectrum for the GSO(+) Neveu-Schwarz sector will be the usual
bosonic massless Type II supergravity states, however, the spectrum for the GSO(—)
Neveu-Schwarz sector will have some unusual non-unitary states. Although only the
GSO(+) sector is supersymmetric, the GSO(—) sector is expected to appear as inter-
mediate states before summing over spin structures using the RNS formalism. So by
analyzing the contribution of individual spin structures to the one-loop partition func-
tion of the Type II ambitwistor superstring, one should be able to verify this unusual

spectrum for the GSO(—) sector.

2.3.1 Review and notation
For the Type II action we add two fermionic holomorphic worldsheet variables 1, 19,
both with conformal weight 1/2. We also introduce two pairs of bosonic Faddev-Popov

ghosts: (B81,71) and (52,72). The (’s have conformal weight 3/2 while the ~’s have

conformal weight —1/2. The action for this system is

1 ~ L _ ~ ~ _
Sur = o / A2z (PpdX™ + bdc + bOG + 110 + oy + 101 + Badya).  (2.28)

The new field variables have the OPE’s



Field theory actions for ambitwistor string and superstring 14

i ()5 (w) ~ for i,j=1,2, (2.29)

in addition to the ones obtained in (2.4). The action (2.28) also presents BRST symmetry
generated by

1
Q= j{ cTM+c =t gy, + gy, +bcdc+ 26P2+’}/1P Y1 +72P -1y —2b—~2b),

(2.30)
where
M m 1 1 ~a7 Iax
™ = —PmaX — *1/11 . 81/11 — *¢2 . 81112, TI;” = ¢ob — 2b80,
2 2 ‘ 2.31)
1 3 (2.
Tpiyi = =508 — 5 Pi0i -

The nilpotency of the BRST charge imposes the critical spacetime dimension d = 10. In
order to write the vertex operator in the picture (—1, —1) we bosonize the ghosts (53;,7;)
by introducing a set of fermions (;,&;) with conformal weight (1,0) together with a
chiral boson ¢;. This new system is described by the free field OPE’s

61(2)65(w) ~ iy In(z — w),  mi(2)E;(w) ~ —25—, (2.32)

Z—w

and the change of variables is

ﬁz‘ = 67%8& y Vi = 77i6+¢i. (233)

The BRST charge (2.30) in terms of bosonized variables (1, £, ¢) is written by replacing

1
Thiyi = —500i09i — 0%¢; — ni0¢;  and A7 = nOme >, (2.34)

for each pair (5;,7;). The ghost number charge (2.57) is modified to accommodate the
(B,7) system as

dz ~_
Ngh = — % Tm(bc + b + 51771 + 52772) (235)
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In addition to the ghost number charge we define the picture number:

NP,L- = % dz (fznz 8(251)7 (2'36)

such that 8 and « have picture zero and ghost number —1 and 1 respectively.

2.3.2 Type II spectrum

There are two sectors for Neveu-Schwarz states in superstring theory which contain
either GSO parity 4+ or GSO parity —. The vertex operator considered by Mason and
Skinner [8] is in the GSO(+) sector. The field content found in [8] is a spin-2 G,
a scalar G and a 2-form B,,, which agrees with the bosonic fields of d = 10 N=2
supergravity. However, the ambitwistor superstring also has a GSO(—) sector that has

not yet been fully investigated.

In order to distinguish the two sectors, we introduce the operator (—)P%" where the
parity of ¢ and e®! is defined to be odd, the parity of 1), and e?? is defined to be even,
and the parity of all other variables (P, X™, b, c, b, ¢, &, n;) is defined to be even. One
can easily verify that (—)P*¥ commutes with the BRST charge of (2.30).

Although the superstring is only spacetime supersymmetric after truncating out the
GSO(—) sector, it will be interesting to compute the spectrum for both sectors. The
most general Neveu-Schwarz vertex operator in the picture (—1, —1) with ghost number

two and which is annihilated by by and Lg is

V(z) = ?e92(ce®y + cdeSWY 4 c9eS0) 4 dpre e ?2ccs ) +
+e P dgpe P2 ccS®) + 8516_2¢1e_¢2 (ccderpy - AB) + céderpy - AN+

(2.37)
+e P19 202 (ccocyy - A 5) 4 ccoc)s - 6)) + n18§26_2¢2 ceS™ 1
+0&1e2 1772668( ),
with
® =P AW +0X - AP 4+ BLLUTYT + BOWE W + Hon 795, 2.38)

Hmn = Gmn + an-

where the fields are represented by six scalars S, six 1-forms A,,, one symmetric two-
form Gy, and three antisymmetric 2-forms B,,,,. Note that the vertex operator (2.37)
is defined in the small Hilbert space, i.e does not contain the zero mode of §;. Using the

definition of the operator (—)P*"¥ the fields can be separated into
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GSO(+) : Hyn = Grn + B, AW A®) g4 g0)

m

2.39
GSO() s AD, AD, A, A, B, B, 5,5, 59,50, )

Cohomology: Asin the bosonic case, the fields in (2.37) have gauge transformations
0V = QA, where the gauge field A is in the small Hilbert space and satisfies LoA = bgA =
0. So the gauge field with ghost number one is

A = 0c1e™ 2192 (1) - AN 4 by - AP 4 07227 P (hy - AB) + py - AW+
+ e e 22 (cA® + AD) + 8¢ e 2910806292 ccoeA®) +
+ 8260616739 ?2cc0eA®) + 52¢,060e 3921 ccdEA ),
(2.40)

which can be used to gauge away (A%), S, 52 §0G)). After using QV = 0 to eliminate
the auxiliary fields in the vertex operator (2.37) whose equations of motion do not
involve derivatives, the remaining equations of motion and gauge transformations for

both sectors are

o GSO(+):

Field equations Gauge transformations
1 1
4) _ _ (2) (3)
OGmn — 8(m8pGn)p + GnamS( ) = 0, 0Gmn = +§a(mAn) + §a(mAn) 5
1 1
P M _ 4) — — 42 2 _* (3)
PO Gy, —OSY =0, 0Byn = +28[mAn] 28[mAn] ,
OB + 9 0° By, = 0, §SW =9.A®) £ 5. A,

o GSO(-):
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Field equations Gauge transformations
8pBI—;L = O’ 5B1—7~:Ln = 07
0B, — 6[,181’37;}]3 =0, 514;3) — 49,,A® — 8,0 AW,

where in the GSO(—) sector we defined B, = B + B?). The field content in the
GSO(+) sector is the expected one from superstring theory and has a graviton G,
coupled to a scalar S@, and an antisymmetric 2-form B,,,. On the other hand, the
spectrum in the GSO(—) sector is unusual and includes two antisymmetric 2-forms and
a 1-form. One of the antisymmetric 2-forms has the usual gauge transformation but the

other one is gauge invariant.

2.3.3 Ambitwistor kinetic term

The construction of the quadratic action for the superstring is similar to the bosonic
construction of section 2.2.3. In addition to the constraints Lo|¥) = bg|¥) = 0, the
string field at ghost-number 2 is also constrained to be in the (—1,—1) picture in the
small Hilbert space. The string field |¥) is given by the vertex operator (2.37) introduced

in the previous section. We have

S10] = S (WleoQIW) = 3 (T 0 V(0)]0cQV (0)) (2.41)

where I oV (z) is the conformal transformation (2.19). The vertex operator (2.37), after
eliminating gauge fields and auxiliary fields, is a primary field with conformal weight

Zero, i.e,

T(2)V(0) ~ 2710V (0),

thus the conformal transformation I o V(z) = V(271) acts as (2.19). So the calcula-
tion for the action becomes an ordinary two point function with vacuum normalization
(cOcO?cc0E0*Ee2P1e292) = 4. After some algebra, the actions for the GSO(+) Neveu-

Schwarz sectors are
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1
2 ) + SB(PIC, — 5DS<4))+

1 10 mn 1 1
St = —2/d x [G (30Cmn = 50md"G
mny 1 1 »

(2.42)

- 1 10 mn(1 1 (1) 2)
o = _2/d . [B W@BL) — 00" B,) + O A+

(2.43)
+Bm"(2)(DB7%)L _ a[napB@) + 8[nA(2)) '

m]p m|

The GSO(+) sector has the standard Type II spectrum — graviton, Kalb-Ramond,
and dilaton. In order to make the field content more clear, rewrite the action (2.42) in

terms of gauge invariant objects by redefining the fields

Grn = hnn,  R=—0h + 0" h, ¢ = S@ + 17,

(2.44)
Hmnp = am-Bnp + aanm + 8p-anv
such that the gauge transformations are
1 1

with A\, = A,(ﬁ,) + AS}L) and w,, = A%) — Ag). The action for the GSO(+) sector written

in term of these gauge covariant objects is

1 1 1
St = -5 / dz {hm”ZDhmn + (OPhpp)? — 5O, + hp0P 0™ hym + ¢
(2.46)

1 1
_§¢D¢ + EHmanmnp

which agrees with the action found by[16].

On the other hand, the action (2.43) for the GSO(—) sector is unusual. In terms of
B, = B, + B the action (2.43) is
1 1

S — _1 /dlox[Hman 4 7H+man+

2 3! mnp 3! mnp + B+ mnan] (247)

where F,, = (9[mA£f]) and Hnimp = O[mBi[p]. So B,,, has the standard kinetic term for
an antisymmetric two-form, but B}, couples to F" and does not have the usual gauge

invariance of an antisymmetric two-form.
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2.4 Heterotic ambitwistor string

2.4.1 Review and notation

The worldsheet action for the heterotic model is similar to the Type II, but the two
worldsheet fermions (1)1, 9) are replaced by one worldsheet fermion 1 together with a

new current action Sy

Sher = 2i / 422 (P dX™ + bdc + 5OG + v + BF7) + Sy (2.48)
™

The particular form of the current action S is irrelevant, except that it should allow
the vertex operator to be written using a current algebra J* which has conformal weight

one and satisfies the OPE

5ab fab
C JC
(z —w)? R

J(z2) I (w) ~ (w), (2.49)

where f2° are the structure constants of the algebra. The action (3.1) has BRST sym-
metry generated by

1 -
Q= ]{dz(cTM + bedc + Ty, + clpy + Ty + §EP2 +~P -1 —~%b), (2.50)

with
M 1 o aias 1 3
T =-P. 8X - 51/1 . 81,[)7 Tl;é = Cab — 2b80, T57 = —§8ﬁ’y — §ﬁ3’y,

being the stress energy tensor for the matter and ghost fields. The new feature compared
to the Type II ambitwistor, after removing the variables (12,72, 82), is the stress energy

tensor T'; associated with the current action S; with

c 2T (w oT;(w
Ty Ty (w) ~ 2(z —Jw)4 (2 j(w))g (z i(w§7

where cy is the central charge. Nilpotency of the BRST charge implies 41 — ¢y — %D =0,

so the critical spacetime dimension is D = 10 for ¢; = 16.
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2.4.2 Heterotic spectrum

Although the Yang-Mills vertex operator of [8] for the heterotic ambitwistor string has
the expected behavior for Yang-Mills scattering amplitudes, the graviton vertex operator
proposed by Mason and Skinner (2.1) for the heterotic model has similar issues as in
the bosonic model. The three-point graviton scattering amplitude behaves like k* as
opposed to the expected k? behavior of general relativity. After allowing X in the
construction of the vertex operator, we will find that the equation of motion for the
symmetric 2-form A, is

Dzhmn+"':07

which is consistent with the momentum behavior of the three-point amplitude. Another
unexpected feature of the heterotic ambitwistor string is that the spectrum contains a

three-form which is not present in the massless sector of the usual heterotic superstring.

The most general vertex operator in picture (—1) in the small Hilbert space that is

annihilated by by and Ly with ghost number 2 is:

V(z) :e_¢(cé<l>3/2 + c0eAP - ap + 0ec AW - ) + Ope ¢ (ccA®) - )+
+ 0¢e™2? (0 + 0%cccS™) + n(cSM + &S + ge 2% (8%cceS )+ (2.51)
+ 0€dpe=220cccS®) + 9%ce2¢(cceS ),

where

Byp = H) P 4 HEOX ™" + Corpmptd ™" P + J*) - A® + 05 - A®),

. , , (2.52)
U, =P-A®) £ 9x - A® 4 jega 4 BE ymyn HY =GO + BO

The target space fields are described by six abelian scalars S, one non-abelian scalar C'%,
six abelian 1-forms A,,, one non-abelian 1-form A¢ , two symmetric 2-forms G, three

antisymmetric 2-forms B,,,, and a 3-form Cippp.

Cohomology: The gauge invariance §V = QA can be used to gauge away S(2), §1), Agé)

Ag{), B%q)l where the gauge parameter in picture (—1) with ghost number 1 is

A = e ?(eAOy™ + eAD ™) + 0ce™2%(céd1 + cEA?)) + 82ce20ccA®) +

(2.53)
+ 9%¢0ce30cecAI0 Y™ + Edpe 20 ceAD),

with &1 = P - A® +9X - A@ 4 gmynAL) 1 jape),
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After using QV = 0 to fix all auxiliary fields whose equations do not contain deriva-

tives, the remaining dynamical fields are G%ZL, G:@), B;r%%, A2 and Cpypp. The equations

of motions together with its gauge transformations for these remaining fields are

D2G( ) + [O- 8( 8PG(1) _ inmnmarasG(l) _ lanamarasG(l)—’_
np 10 rs 5 rs
1 o 1 ) (2.54)
_%nmnDGr B EanamGr :07
DA%, — 0 (0P A%) =0,
Gy + 8[1’ By =0, (2.55)
a Cmnp :0,
with gauge transformations
o _ 1 ,
5G(mn) = —23( Apy + nmn8 A, A=A L AG)
3G = %Da A,
SB = Oy (2.56)

5Cmnp = 07
6A% = —8, A",

2.4.3 Ambitwistor kinetic term

The kinetic term follows exactly the Type II construction of section 2.3.3, so we shall not
review it here. The vertex operator (3.53) transforms as a primary field with conformal
weight zero after using the equation of motion for the auxiliary fields. Finally, the

quadratic term takes the form

/dl[) |: l)mnDQG(l) D(aTG(l)m")(angl)) - éDGm(l)ﬁmanG%%—F

1
£ raman (1) \2 L w(2) m(l) man~v(1)y (2)ymn qp
5(8 0" GO + G (~OGHD = 200" G — 6B oyt

1 1
+60mnp(_§|:|cmnp + Za[parcmn}r) + 2A“m(DA?n — 8m(8 . Aa)):| y

(2.57)
where 9,Clnpr = 20yConnr + 20mClpr + 20, Coprr

To write the action (2.57) in terms of gauge invariant objects, we redefine the fields
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1
“OmAny, Ot =0.

(1)
¢ 2
(2.58)

mn

1 . 1
= hmn - annhg7 Gr(2) =t— Z[]hg = (5hmn = -

Using the field strengths for the gauge and 2-form fields together with the linearized

Riemann tensor

Rabcd = 8bachfzzd + aaadhbc - 8(;Lachbd - abadhac;
o, = 0 AL — 0,A%, (2.59)
Hmnp == apBT(TQW)1 + amB(Q) + 8nB(2)

np pm>

the action (2.57) takes the form

1 6 1 1
S=-1 / dx [mRman” + g Bmnpa B 4 £t R — 20" oy

(2.60)

1
—3C™"P <|:|Cmnp - 28[parcmn]r> + FamnF#m:| :

Although the heterotic ambitwistor action correctly describes Yang-Mills, it also has
a symmetric two-form field h,,, whose kinetic action is neither Einstein nor conformal
gravity. In addition, it contains an antisymmetric 2-form B,(,%QL and antisymmetric 3-
form C)y,yp with unusual couplings. It is interesting to note, however, that the heterotic
ambitwistor string was used in [28] to reproduce M HV amplitudes for conformal gravity

in D =4.



Chapter 3

On the Spectrum and Spacetime
Supersymmetry of Heterotic

Ambitwistor String

3.1 Outline

In section 3.2 we decided to review again the ambitwistor model so the chapter is self-
contained, it can be skipped on a first reading. We start in section 3.3, where we use
the standard BRST method to compute the equations of motion of the Ramond sector
for the heterotic system. These represent the fermionic degrees of freedom of the the-
ory, and our analysis shows that they also follow non-unitary equations of motion. We
write a gauge-invariant version of the theory in terms of Fronsdal fields [29]. The kinetic
term of the fermionic ambitwistor string field theory action is also computed in section
3.4. It is expressed in terms of gauge-invariant objects and resembles Fronsdal’s free
action despite having more derivatives. Finally, in section 3.5 we write the supersym-
metry transformations of the system. Then we prove the invariance of the action under

supersymmetry transformations.

3.2 Ambitwistor Action and Ramond Sector.

We first review the ambitwistor model. Its main purpose is to set the basic definitions

and notation. The heterotic ambitwistor model is defined by the free action

. i i -
S=5 /sz <pm8xm + P OY™ + bdc + bOE + BDy + 5j> (3.1)
T

23
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where p;, is a worldsheet holomorphic one-form and 2™ is an holomorphic coordinate
function. The b and ¢ fields together with § and ~ are the Faddeev-Popov ghosts of
superconformal worldsheet symmetry. Particular to the heterotic model, we have the
current action Sj; its specific form is irrelevant for us, we only require the existence of a

current j% with conformal weight 1 that satisfies the OPE

6 Feh(w)
W)

; (3.2)

being £ the structure constants of the Lie algebra in question. The Ambitwistor model
differs from the superstring due to the presence of the b and ¢ ghosts related to the gauge
symmetries of the light-cone constrain: p? = 0. These ghosts have conformal weights 2

and —1 respectively and both are worldsheet fermions.

Our Majorana spinors 9" will be rewritten in the complex linear combinations:

+i 2i—1 ;12
=7 3.3
v = s 0 F i) (3.3)
for i =1,...,5 that are subsequently bosonized to
P (2) = exp < + ¢>i(2)> Cie; (3.4)
with ¢’s satisfying
¢i(2)pj (W) ~ + 05 In(z — w) (3.5)

The (3, ) system is bosonized with extra fermions (£, 7)[30], both primaries of conformal

weight 0 and 1 respectively:
8= 856_¢6066 and = 176¢66€6. (3.6)

This choice follows the conventions of [31] and [32] where we have introduced the cocycles

Ce;

7

and cq,. During the computation of cohomology, cocycle factors are important and
must be taken into account. The definition of cocycles depends on the way we order
the different ¢;. For us the chiral bosons corresponding to 9" are ordered from 1 to 5
while the boson coming from the 87 system is labeled as 6. A review of how to operate
with cocycles can be found in [31] and a brief explanation is written in appendix A. The
sixth boson has OPE:

¢6(2)P6(w) ~ —In(z —w) (3.7)
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while (&,7n) form a free system:

1
(z —w)

§(z)n(w) ~ (3.8)

The symmetries of this action are encoded in the following BRST charge:

Q=45

provided

1 -
C(Tmatter + Tz + Ty + TJ-> + bede + §ép2 + D™y, — b (3.9)

5
1 s
Tomatter = —Pm0™ + 3 > 0¢i0¢i, Ty, = cdb— 200¢, (3.10a)
=1

1
Ty = — 5006005 — 8°06 — 10¢, and 4* = ndne%. (3.10b)

These are all the stress-energy tensors for (2™, py,, ¥™), (8, 7) and (13, ¢). We only require

for the stress tensor of the current sector, T}, that the following OPE is satisfied:

i 2Tj(w) | 9Tj(w)
2(z —w)* (z—w)2+(z—w)'

(3.11)

Then, provided the central charge of the current system is 16, it is possible to show that

Q? = 0 when the spacetime is 10-dimensional.

3.3 Cohomology.

In this section, we compute the ghost number 2 BRST cohomology of the Ambitwistor
string for states in the Ramond sector. The cohomology of the Neveu-Schwarz sector

has already been computed in section 2.4 [13].

We start by writing the most general vertex operator and the most general gauge
parameter. Once all equations of motion and gauge transformations are obtained, we

solve the algebraic gauge conditions to obtain a set of independent field equations.

3.3.1 Vertex operators.

States are defined by picture number —1/2 and ghost number 2 BRST cohomology. We

define ghost and picture numbers by the expressions:
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dz ~_ dz
NghOSt = — \% % (bc + bc + 577) and Npicture == % % <§'I] - 8(256) . (312)

Vertex Operator. The most general ghost number 2 and picture number —1/2

vertex operator that is annihilated by by is given by the sum,

Ve=V,+V_, (3.13)

where V. and V_ are the GSO(+) and GSO(—) combinations. The GSO(+) vertex

operator is given by:

V= cnSO‘e‘WgAa + EnSae¢/2Ba 1+ cES%e /292 C, g + CéSde_¢/2meg”+ (3.14)
+ céSde_‘z’ﬂjaEgé + 6855d6_¢/2Fd + céSdﬁe_d)/?Gd—i—
+ e (PS) e PHT + ccBOES e 32, + c0eS e 2T, (3.15)

while V_ is obtained from V. by changing the chirality of our spinors. Notice that the
vertices ™" S% and S have not been written. In bosonized form, these combinations

are related to ¢3S via field redefinitions[31]; there is no need to worry about them.

Gauge vertex. As for the gauge transformations, we parametrize them by ghost

number 1 and picture number —1/2 vertex operators:

A = cS%P/2)\, + 6S%%6/2, + 05855a6_3¢6/2,ua. (3.16)

Both expressions (3.13) and (3.16) constitute the basic field content of BRST cohomol-
ogy.

3.3.2 Equations of motion and gauge symmetries.

For clarity we consider only the GSO(+) sector. The GSO(—) is obtained by replacing
chiral indices for anti-chiral and vice-versa. We present the equations of motion organized
by ghost number as they were obtained from the OPE of () and V.. We also write the

worldsheet operator that multiplies the resulting equation of motion.
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e For (2¢,1¢) multiplying (S%e%6/2céd%c):

1 3 9
+ 0D +Fg — ~Gg — —(I™)H,5 =0 (3.17)
2 8 4 @
e For (Oc, 1¢) multiplying (S%e3%6/2¢non):
)
+J4— —(I"™)25,,Bs =0 3.18
™08, .19
e For (1c,0¢) multiplying (S%e3%/2cnon):
¢ 8
— —T™.0nAg — Gy +F45 =0 3.19
SO0, (3.19)

e For (1¢,2¢)

— multiplying (S%e=%/2c¢0ép,,):

1 ]
— 0D + CY — "Fy — —(I"™) 15 = 0 3.20
: SO (3.20)
— multiplying (S%~%6/2¢¢0%¢):
1
_ iamcmd ~Ji=0 (3.21)
— multiplying (S%e~%6/2ccdédz™):
1
~ 50Cma = Onda = 0 (3.22)
— multiplying (S%e~%6/2cédéd )
LIS TGOS SIS TS ) (3.23)
4 « 92 a \/5 a¥Ymip — .

— multiplying (ccoéy™ (1 S)%):

1 i i ; 1 ;
+ ZOH” — ——=0p Iy + ————= ()2 (@) s + ——(T)23 5 =0 3.24
2 4v2 8><9\/§( )a(P1); g1 Tm)ats (3.24)
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e For 1c, 1c

— multiplying (S“e®/2cndé):

1 1 ;
— -0A, + By + 21, — —=(1")50,,F; = 2
;0Aq +Ba + Z5(T")a0nFy =0 (3.25)
— multiplying (S®e®/2céndz™):
7: .
— OmBa + —=(I)%9,C._ =0 3.26
\/5( )aOnC, (3.26)
— multiplying (S®e?s/2cénp,,):
— " Ay + —([)20,D7 + —T™PG; — —H” — —Hg, (™) (™))% =0
ot SO LI IG, — T — —H, (M)
(3.27)
— multiplying (S“e®/2cé0n):
Byt 3L, = (T™PC, — —(T™P0,G, g H (3.28)
i .
+— (@™ .0, Hpp = 0
SO,
— multiplying (S®e?s/2céndes):
B+ T4 2 (™PC . — L (™E0nG s + ST H ot (3.29)
92 (64 @ \/5 a~mf \/5 a®¥mg \/5 am .
i n 3 Mm\T
+E(F )g(r )BanHTm =0

— multiplying (necy™ ($S)%e?s/2):
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: i |1 1 ]
ZamGB - (Fm)a(ﬁG%] = [Co'zm - m(rm)a@')f +

1 1 ]
[ — (M")28,,Ha, — (T™)28,Hg,, + §(Fm)§8”Hgn T

(3.30)

i a _L 1 BB (TP T _
+2c(Cn)3Ba ﬁlgxg<rm>d<r>5<r )50, =0

These 14 equations of motion are all invariant under the following 10 gauge transforma-

tions:

Z’ .
Y mm\B .
A, = +\/§(F JaOmAg + 24 (3.31a)
,[: .
_ mBy L.
oI, = %D,ua (3.31c)
1 ; i i ;
SHT = ——(I"™)Pw; + —=0mpta — ————= )2 (D) ; 3.31d
o« = 55T aws 13 0mHe = 9\/5( )o (D) g (3.31d)
6Cmd = OnmWa (3.316)
i
SDT = A — — (T2 3.31f
a 7 (I ahs (3.31f)
SE4 =0 (3.31g)
oF; = —%D/\d + Wwg (331h)
0
5Gy = wi — 7% (T™) O i (3.31i)
1
0Js = —50ws (3.31j)

We determined the basic content of ghost number 2 BRST cohomology; all equations
of motion have been written between (3.17) and (3.30). This set is highly redundant,
and the next step is to use (3.31) to stablish the independent field equations.

3.3.3 Gauge-fixing and independent equations of motion.

In order to find the independent set of equations of motion, we begin by fixing algebraic

gauge conditions and solving auxiliary field equations. Let us gauge-fix A and F to zero
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using the parameters p and w, that is, we choose p = —A and w = —F so that the

residual gauge parameters p/ and w’ must satisfy:

/ Z 3
Ho + ﬁ(mﬁamxg =0, (3.32)

and

;1
ws — 507 = 0. (3.33)

After this gauge fixing, the following auxiliary field conditions can be imposed:

GI =0, (3.34a)
B, = —21,, (3.34b)
I Da, (3.34c)

1

1
Jo=--00,D7 — Da. 3.34d
1 NG (41) (3.34d)
H™ — laﬂDm _ i(pmp @)BDﬂ (3.34e)
S T '

At this point it is already clear that there only remains two independent fields given by
D' and I,. Moreover, the only remaining gauge parameter is A\. We leave the gluino
field E% out of the discussion since its equation of motion is already the Dirac equation

and it has no gauge transformations.

Finally, the following set of 3 equations,

ﬂa Ia_D<4$aDB (T )aanDB> (3.35a)

20, D' + (Tl 20" DY = 0 (3.35h)
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PoEL =0 (3.35¢)
with the corresponding gauge transformations:

1

2™ KLY (3.36a)

m 3 m
5Da218 )\d— B

7

-5

5L, = a0 (3.36b)

defines the spectrum of the theory.

Gauge-invariant description. Consider the following field redefinitions:

1
dj =Dy ~ (™), (3:37a)
14 1
i, = +—1I, + -0D, 3.37b
L+ OB (3:37h)

such that our gauge transformations are mapped to

ddy = 0m\s and di, =0. (3.38)

The gauge-invariant object is then naturally defined as:

Frne = Ondna — Ondima (3.39)

which allows us to write the equations of motion in the following form:

Omia = OF ma (3.40a)

and

(F)a =0 (3.40D)
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where

Fro = (T™)Fng = (Pd, — Opd)w.- (3.41)

In the formulation of free higher-spin theories F,, is called Fronsdal tensor[29], it is the

analog of the Ricci curvature in spin 2 formulation.

This section started with the most general ghost number 2 picture —1/2 vertex
operator. Then we obtained all equations of motion from the BRST method together
with all gauge transformations parametrized by ghost number 1 picture —1/2 vertex
operators. By fixing some of this gauge freedom, we have found a independent set of
equations of motion that can be parametrized by Fronsdal fields. The next natural step

is to write the spacetime action that gives the dynamics of this system.

3.4 Action

The kinetic term of the ambitwistor string field theory was defined in [13]:

S[V] = (I o V32 (0) 9 QV 2 (0)), (3.42)

where V~1/2 is the vertex operator (3.13) introduced in the previous section, an element
of the small Hilbert space that is also constrained to satisfy LoV = bgV’ = 0. The RNS
string has one additional feature: the picture number. It is necessary to saturate the
background charge of supermoduli space to —2, and that is why we need a string field
with picture —1/2, V-2 together with a string field with picture —3/2, V32 We

define picture raising, Z, and picture lowering, Y, by the following expressions:

Z = cOE 4 e%5pp™ — O(e2Ponb) — 2% anb, (3.43)
Y (z) = édge 2%, (3.44)
so that we can obtain V=3/2 from V—1/2 via

V() = }[ &Y(w)v—m(z). (3.45)
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Using the auxiliary gauge-fixing conditions imposed on the previous section, we obtain

VI = (3.46)

+ E0ES% e 3P/2 B, — ccOEOE S e 6/295 ™ C g, — cCOCOES e %6/ 2p, DT

— cCOEOES e O9/2JORS — cEOEOE Y (P S) e TP ZHT — %caaeaga%a?gsae*%/ﬁa
(3.47)

The composition oV ~3/2 is the BPZ conjugate of the picture —3/2 field with I = —1/2.
We should be careful when computing the conformal transformation I o V~3/2 because

V~1/2 is not primary. From the OPE with the stress-energy tensor

T(Z)V—1/2(0) ~ 2 3G0—06/25 (;&an‘ +Fy — ng — ZHO‘> 4. (3.48)

we obtain a cubic pole contribution that changes the finite conformal transformation to

1 I"(2)

IoV = |V(I(z))+ IZBIE #(I(z))] : (3.49)

where # is cubic pole coefficient. Even after the auxiliary conditions are imposed we

still have non-primary contributions that must be taken into account.

To calculate the free action, we fix the normalization (cOcd?cé0é0?ce=2%¢) = 4, then

the correlation function (3.42) gives the following gauge-invariant action:

Sp=— /dl% Bdmam <Fma - ;(’ym)agFﬁ> + %(F)“ia - %Tr <E$E>] . (3.50)

In this expression we used the symmetric gamma matrices (’ygnﬁ, ’yﬁ‘lﬁ ) defined in appendix
A. When using these symmetric matrices, the charge conjugation is used to eliminate
all dotted indices; different chiralities are just represented by upper and lower indices,
i.e. (CO4dT =d™m).

We have written a non-unitary action that gives the equations of motion obtained in

(3.40). It closely resembles the gauge-invariant formulation of spin 3/2, the difference
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being the presence of more derivatives. Let us proceed and study the supersymmetry of

this non-unitary system.

3.5 Supersymmetry.

Let us define the supersymmetry generator as

21

Q;Y? = = j{dz Sqe~ /2 (3.51)

Notice that it carries picture, which means that supersymmetry algebra only closes

on-shell. We need the picture 1/2 supersymmetric charge:

Q= }’{dz [fipmwm)agsﬁe%/? by Sac?. (3.52)
™

to obtain {Qq L Z,Q[lg/ 2} = 2fyo%pm. In practice, supersymmetry transformations are
written up to equations of motion. One also needs to choose a GSO sector to have well-
defined supersymmetry transformations, otherwise there will be branch cuts. Given the

generator (3.51), we need use the GSO(+) vertex operator.

3.5.1 Supersymmetry transformations of NS and R sectors.

The Neveu-Schwarz vertex operator in picture —1 was written in [13]:

Vys =

€_¢665 <G(1) +B(1) ) pm¢n + (G(2) + B(2) )81,7711/)71 + Cmnpwm¢nwp +ja,¢mA$/L
(mn) [mn] (mn) [mn]

+ e_‘%céﬁwmA?(f;) + 8¢66_¢666A$2)wm + 0te 2% 9%cecS™ + ncS(l) + 0€e2%5 92 cceS?)

f. (3.53)

where ... depends only on the previous fields. In [13], the fields (B%)17 AS{), AW s 5(2)
of (3.53) were gauged to zero. If we choose to keep this gauge, we must observe that
in general supersymmetry does not preserve a given gauge condition. Therefore when

calculating supersymmetry transformations, we have to choose the gauge parameter A:
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5<V]\751' = |:CQ_1/2’ VR_1/2:| + |:QBRST7A_1:| ) (354)

which is a vertex operator of ghost number 1 and picture —1, to ensure that 54(37(717)1, A,(f;), AW
s s (2)) all give zero. In the transformations below, the contributions of H are due to

the gauge-fixing of these auxiliary fields:

3¢G3), = 2(C¥(mDa)) (3.55)
0.GG) = %(C’Y(ncm)) - %8(nCHm) (3.56)
8¢ B = —4(¢ynComy) — %(CO[mHn}) (3.57)
0¢Crmnp = %%(C%Dn]) — 24(¢YppHimy) + 6(CymnpHL) (3.58)

and using the field redefinitions of [13]:

1 1
P = G annhf, t = thm +G7™? and B®? =B, (3.59)

we arrive at

S¢hamn = 2Cy(mdy) (3.60)
St = (i (3.61)
3¢Cranp = =3(CrtpmnFy)) = 3(CYmFny) (3.62)
¢ Brmn = —20(CYmdn)) — ((Vmai) + é(Cvmnapr) (3.63)
O Ay, = %(C%E“)- (3.64)

The term ((ymn0pFP) is zero if we use the equation of motion F =0, and so could not
have been obtained from the supersymmetry generator (3.51). This term was added by

hand in order to make the action invariant under supersymmetry.

For the Ramond sector the same can be done if we use instead the picture +1/2

supersymmetry generator (3.52):
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1
5Cd?n = +(’Yrs<>aashm7‘ - Q(Van)aCmnp + g(’)/mnpsg)cnps (365)
. mn, 1 mn
O¢cia = Q(C(ﬂ)at — (v pC)aHmnp + g('Y pC)aDCmnp (3.66)
1
B = P ()7 (3.67

At this point, we have obtain the supersymmetry transformations of both NS and
R system for the independent fields of the theory in equations (3.60) to (3.59). Let us

proceed and check that indeed the total GSO(+) action is supersymmetric invariant.

3.5.2 Supersymmetry invariance of the action.

The action that describes the Neveu-Schwarz sector is

1 1 1

mn | p— 1 T
—C pHmnp + §C p <DCmnp — 58[],8 Cmn]r)] (3.68)

where H,,y), is the field strength for B,,, and R,,, is the Ricci tensor. This expression
is equivalent to the action written in equation (4.13) of [13] if we shift ¢ by ¢ — ¢ + R2.

The equations of motion derived from (3.68) are !

ORpmn —O0mOnt =0, R=0, OCnnp — Hpnp =0,
0"Cnp =0, and 0, F™" =0. (3.69)

Now, the Ramond sector is described by equation (3.50):

Sp = —/dl% Bdmam <Fma - ;(%)aﬁ}?ﬁ) + %(F)O‘ia - %Tr (E@E)] . (3.70)

'Notice that we use the fact

1 1
(6hmn)O (Rmn — inmnR) = hpmn0 (Rmn - inmnR> + total derivative
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from which we obtain the following set of equations of motion — (3.40):
Omia =0OFne, F' =0 and id,zE*" =0. (3.71)

From now on, we leave the Yang-Mills system out of the discussion because its super-

symmetry transformations and action are already standard. For later use, let us write

the supersymmetry transformation for all field strengths:

5CRmn = (C@(an)) + (C’y(mapFn)p)
] 1
5CHmnp = 3D(C7[anp]) - 3(C7[mn8p]1> + §(C7[mn8p]a€F€)

2
5§Fgrm = _Q(VTSC)aRmrsn =+ 4('7rpC)aa[nCm]rp - g(a[nﬁym]rpsC)aCrps

1
(SCFma = +2(7nC)aRmn o 2(’7lan)a8lCmnp + g(’YlmnpsC)aales

+ 4(')’nC)aapCmnp - ('Ympsoaancnps
SF° = 2¢°R — 6(+"P¢)P0™ Chrpm

3.5.3 Supersymmetry for (h,,,t,1i,d)

Let us consider the system:

1 1
S — _/dl%: <2hm"D <Rmn — znmnR> —tR

1 1 5\ 1
7dma|:| Fma -5 mja o a.a
+gamen( 2<w>ﬂr)+2<w>1)
such that the

Sng variation s given by

5¢ (—tR) = —C%ig R — 2tC*0,F?,

1 1 1
O¢ [th”D <Rmn — 2nmnR>] =2(¢y™d™)O (Rmn — 277mnR>

(3.72a)

(3.72D)

(3.72¢)

(3.72d)
(3.72e)

(3.73)
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and the

Sk variation is given by

o deﬂ <Fma - ;(Wm)aﬁFB>> = 2d™0] ((C’Y”)aRmn - ;(@m)aR>

1
= ~2(6y"d™)0 (R = 1)

O¢ ((F)aia> = (“Riq + (F)*Pop(’t

= (iR + 20 (8,FP)t + 0(...)

where we have used (3.72) and (PF¢) = 2(¢9,FP). It is clear that the sum of all terms

cancels and invariance of this system is stablished.

3.5.4 Supersymmetry for (H,,,, Crunp, A5, 1a)

It remains for consideration the following system:

mn 1 mmn 1 s
S—— / 410 < — O™ Hyy + 5O <DC’mnp — 500 cmn]r)

+dmD (Fma - ;wm)mB) + §<F>aia> (3.74)

In order to check supersymmetric invariance we have to gather all independent combi-

nation of gamma matrices (v, """, 4P AMNPP ~AMNPAT) - So consider the

Sng variation:

5((_Cmanmnp) =+3 [(C'thnFtp) + (<7anp)] H™® — 3(C7anp)DCmnp

1
= 3(Cymnd) 9pC™"™ = S (CYmnFpFP)0pC™™ + 0.
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1 1
5 [20"””’ <Dcmnp - Qa&,a’"cmn]rﬂ = = 3 [(CrmnF") + (CrmFnp)] OC™

[(CYmn@"Fp) + (Crm0n¥)] 0,0 + (...

DN | =

+
and the

Sk variation:

1 o omn 1 o mn
§F (v pOaHmnp“‘gF (v pOaDCmnp

1. n m .
o¢ <2F1) = -3(y pC)ﬁﬁ Crpmig —
= +3(¢7"™1) 0P Crump+

1
- |:6(C7mnptsFts)DCmnp - (<7tmnFtp)DCmnp - (C’Yanp)DCmnp:|

1
+ |:2(€7mnpt8Fts)Hmnp - 3(C7tmnFtp)Hmnp - 3(Cvanp)Hmnp:|

1 1
s (50 (F2 - S0maE”) ) -
= (=267 g + 3 )™ ) O (P2 = 50 )
= +2(F, """ ) OC np — A(F™ AP OC np+

1 mnps n_ psm
- g(Flm’}ll P C)Dcnps - (Fm Vp C)Dcnps"’_

1
- l:G(CanptsFts)DCmnp - (C’thnFtp)DCmnp - (C’Yanp)DCmnp]

Recall that the v"™P4" is symmetric and ™" is antisymmetric under the spinor indices.

Gathering all independent terms we confirm the system is supersymmetric.



Chapter 4

Bosonic sectorized strings and the
(DF)? theory

4.1 Outline

This chapter is organized as follows. In section 4.2, we introduce the sectorized descrip-
tion of the bosonic chiral string, having the Polyakov action in first-order form as our
starting point. We then investigate the physical spectrum of the model and analyze
its tensionless limit. The kinetic part of its effective action and some results on the
tree-level three-point amplitudes are also presented. In section 4.3, the bosonic model
is extended with the inclusion of current algebras, and the effective field theory inferred
from the three-point functions is shown to agree with the (DF)? + YM + ¢ theory of
Johansson and Nohle. The Appendix B includes further details on the CFT of current

algebras that are relevant for this work.

4.2 The bosonic sectorized string

In this section we will rederive some known results for chiral bosonic strings using the

sectorized description, including its physical spectrum and tensionless limit analysis.

4.2.1 The Polyakov action in first-order form

The Polyakov action is given by

Sp = ;—/deU\/g{gij&Xmanm}, (4.1)

40
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where 7 > 0 is the string tension, g;; is the worldsheet metric (with inverse g¥/) and
g = det(g;j), with ¢,j denoting the usual worldsheet coordinates 7 and o. Spacetime

indices m, n, ... are raised and lowered with the (mostly plus) Minkowski metric 7.

In the first order formulation, one can define a classically equivalent action, given by

Sp = / drdo{Prn0-X™ — frey Py + T 0o Xm)(P™ 4+ T, X™)

— e (P — TOsXm)(P™ — T, X™)}, (4.2)

where e+ denote the Weyl invariant Lagrange multipliers related to the worldsheet metric

as
TO

1 g

4 = —————F —. 4.3
g‘r‘r\/jg gTT ( )

Although not manifestly, the action Sp is invariant under worldsheet reparametriza-
tions, generated by
Hy = (P, £ T0,X0)(P™ £ T0,X™). (4.4)

The corresponding gauge transformations are given by

SX™ = Lep (P4 TOX™) + 2 (P™ — T X™), (4.5a)
6Pn = Zo,[ci(P™+T0:X™) —co(P™—TOX™)),
dey = Orcy +cidseq — e ey, (4.5b)
be. = Orc. —c_Ope_ +e_Ogc_, (4.5¢)

where cy and c_ are local parameters.

4.2.2 The sectorized interpretation

The quantization of the action (4.2) is straightforward, and the usual conformal gauge
is obtained when we choose e = 1. We want to discuss, instead, a particular case of

the one-parameter () family of gauges introduced in [18], which can be cast as

ey =1, e- = (4.6)

For 5 = 0, the conformal gauge is recovered. We are interested in the singular gauge
B8 — 00, leading to a chiral worldsheet action. In this limit, ex = £1. This singular

gauge was proposed in the context of doubled-coordinate field theory in [19]. After a
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Wick rotation of the worldsheet coordinate 7, the gauge-fixed action can be written as

S— 2i / P PrdX™ + by des +b_de_ Y, (4.7)
™

where the gauge parameters ci have been promoted to anticommuting ghosts with
corresponding antighosts by. All fields in S are holomorphic and the string tension T

is now hidden.

A few comments about the gauge fixing (4.6) are in order. For any finite 3, a
redefinition of the worldsheet coordinates can always bring the gauge fixed action to the
conformal gauge. This is hardly surprising, since the physical model should be gauge
independent. This was noted by Siegel in [18], but his construction of the chiral string
involved another crucial ingredient related to a change in the boundary conditions of
the action. At any rate, adopting the singular gauge (8 — o0) is useful since then the

delta functions realizing the scattering equations become explicit.

It was later noticed that the boundary condition leading to Siegel’s new propagator
for the target space coordinates could in fact be described by the usual string theory
in the conformal gauge (5 = 0), albeit with a different choice of vacuum [33]. In the
ambitwistor context, this alternative vacuum was investigated in [34] (and further in
[35]) and also arises naturally from the quantization of the action (4.7). As it turns out,
this seems to be the only consistent vacuum in the singular gauge § — co. It might
look like a contradiction, but the key idea here is precisely that this is a singular gauge
which effectively leads to a degenerate worldsheet metric. In other words, the action
(4.7) is completely oblivious to the usual conformal gauge in string theory because this

gauge choice is not invertible (hence, singular).

In spite of being chiral, the model can be interpreted in terms of two sectors, namely
the “4” and the “—”, which partially emulate the left and right movers of the usual
bosonic string. Each sector has its own characteristic energy-momentum tensor given
by

1
T+ = —H_PntPjnm”—Qb+8c++c+8b+, (48&)
1
T = —P P n™ —2b_0c_ _0b_ 4.
A im b b_dc_+c_0b_, (4.8b)

with
P =P, +T0X,. (4.9)
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The sectorization is manifest in the BRST charge Q:

Q = QT+Q,
Qf = ]{{ciTi—biciaci}.

—~

4.10)

—~

4.11)

Nilpotency of @) requires the number of spacetime dimensions to be d = 26.

Note that the complete energy-momentum tensor is given by

T = T, +T-
= —P,0X™ —bdc — d(bc) — bdE — A(b), (4.12)

and it is BRST exact, since {Q, (b4 +6_)} =T In fact, if we define

c=g(cp +c), 5~E g (e —cy), (4.13)
b= (by +0b_), b=T(b- —by),
the action (4.7) becomes
S = % / d*2{ P, 0X™ 4 bdc + bOE}, (4.14)
while the BRST charge is rewritten as
Q= f {eT = bede + LaP™ Py, + Z2HOX™OX,, — 2008)}, (4.15)

and the familiar Virasoro structure emerges. The tensionless limit of () is now very clear:
it is precisely the BRST operator introduced by Mason and Skinner for the bosonic

ambitwistor string [8].

We will see, however, that the sectorized description is more advantageous in the
cohomology analysis, for it leads to a natural splitting of the vertex operators in the

different mass levels.

4.2.3 Physical spectrum

The BRST cohomology at ghost number zero is given by the identity operator. At ghost
number one, the cohomology contains only the zero-momentum states mapped to the

operators ¢y Pt and ¢_P,,.

Physical states will be defined as elements of the BRST cohomology with ghost
number two and annihilated by the zero mode of b. The latter follows from the usual

off-shell condition (by —bg) = 0 on physical states, but adapted to the chiral model. The
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most general vertex operator with conformal weight zero satisfying these conditions can

be written as
V=W+Vi+V_, (4.16)

where

Vo = cie PP G™ + T (ci0%cy +c_0*_)D +T(ci0*cy —c_9*_)E

e P9y — 0 ) AT + c_ Py, (Ocy — de_)A™, (4.17)
Vi = cyc PIPITH™ 4+ c_Pl(dcy —0c_ )BT + cpc_ 0P CT

+Tc e, FT +bycic (9 — dc )G, (4.18)
V. = c¢ye_P, P H™ +c, P, (0cy —dc_)B™ — cpc_0P,C™

+Tcyd*c_F~ +b_cyc_(dcy — Oc_)G™. (4.19)

Here, G™", HI"™™ AT, BT, C7', D, E, F* and G* are the X dependent fields. This
splitting of the terms appearing in the vertex operator is motivated by their mass-level,

as will become clear shortly.

In order to determine the physical degrees of freedom, we will analyze each of the ver-
tices in (4.16) separately. For 1}, the equations of motion imposed by BRST closedness

are given by

AT = 38,G™ — 30™(D — E), OD = 0, (AT + A™),
A™ = 19,G"™ — 10™(D + E), OF = 0 (A7 — A™), (4.20)
OG™™ = 20m A + 20" A,

These equations become more transparent if we rewrite them in terms of the fields

g = G+ G, (4.21a)
o= L@ -G, (4.21b)
¢ = LG9y, —TD, (4.21c)
gn = AT+ A" — 20™D, (4.21d)
o= AT - A" — 19TE, (4.21e)
such that ¢ and ™ have algebraic solutions, cf. (4.20),
9" = g™ = npd" g + 2™, (4.22a)

b= 9,b™, (4.22b)
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and

Og™™ — 8,0" g™ — 0,0™ g™ + 09" g" — 29™9"¢ = 0, (4.23a)
06 = 0, (4.23b)
p(PH™™ + OB 4 G = 0. (4.23¢)

The gauge transformations, with parameters A™ and w™, are simply
8¢p=0, dgmm=9mxn)  gymn = glmynl, (4.24)

It is now easy to identify the field content of the massless sector described by the ver-
tex Vy: ¢ corresponds to the dilaton, ™" is the Kalb-Ramond 2-form and ¢™" is the

graviton, satisfying the linearized equation of motion (4.23a).

For the vertices V and V_, the two sets of equations of motion are very similar to

each other and can be displayed collectively as

BT = 0,HT™ — C' — 20 F*, (;O0FT)Cr = TBT + 30™G*,
G* = THY n + 30mC1 — 3L F*, (30F7) F* = 10,.BT ¥ 3G+,
(s0F T) HP" = 10™BY + 30"BY T 1™ G*,
(4.25)
Again, these equations become more transparent after the field redefinitions
RY" = HIM — ﬁ(@”@? +0"CY) + ﬁ(@mﬁn + Tn™) FE
:Fﬁ(aman + Tﬁmn)Hiquq, (4.26a)
f+ = Fi - Him"?mn) (4.26b)
o= O £ 50" H Py, F L0 FE, (4.26¢)
which imply (using d = 26) that
(FAFT)hE" = 0, (4.27a)
Oph" = 0, (4.27D)
T mn = 0, (4.27¢c)
with gauge transformations
ShT" =0,  O0fy =45%%, 6P = TP (4.28)

The fields fi and c' are pure gauge, therefore A" contain all the physical degrees of

freedom, corresponding to spin 2 fields with m? = +47.
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Tensionless limit

Evidently, in the tensionless limit all the physical states are massless. In fact, if we
naively take the 7 — 0 limit of the vertex (4.16), it may seem that Mason and Skinner’s
results are recovered [8]. However, the analysis of such limit has to be done more carefully
precisely because all the physical states become massless. In other words, the vertices
(4.17), (4.18) and (4.19) should mix in the tensionless limit. Therefore, we should find
a convenient combination of the fields G™", HI'"™ AT, BT, C', D, E, F + and G*
in (4.16) such that the tensionless limit preserves the most general form of the vertex

operator. The solution is

V = cEPmPnGHS"‘ + céaXm@XnG?Q”)1 + céPmﬁXnGg? + c¢P,,0X,B™
—|—cé<92XmA7a) + cCOPy Alyy + 0GPy Aly) + 0230 X0 A}
+COEP Al + OGO X Alg) + bedEES (1) + 0P ccS(y)

+0%EES(3) + 0%cES(4) + c*ES(5) + bEcOES g, (4.29)
with
Gy = 2T[3(G™ +G™™) + HP" + H™], AR = —2T(AT + By + A" + B™),
Gy = 2T[HI™ + HI™ — 3(G™ +G™™)], Ay = —2T%(A} + B} — A" — B™),
Gy = AT(HP" - HI™), Say = 2T*GT+G7),
B™ = —2T*GM" — G, Se) = —-@D+Ft+F7),
A%y = 2T2(C™ + C™), Sa = -T?@2D-Ft—F7),
Apy = 2T(Cp - Cm), Sawy = TRE-F*+F),
Al = —2T?(A} - BY — A™ + B™), S = —-TQRE+FT—F7),
Al = —2T°(A} - BT + A" — B™), Se = 2T(G-—-GM).

(4.30)

Here the notation for the fields was chosen so as to agree with the ambitwistor
construction of [13], where it was demonstrated that the free field dynamics associated
to the fields above involve higher derivative operators. This result follows naturally from
our construction above. For example, we can show that the equation of motion for the
fields Gy, G5} and G{3}' can be obtained using (4.23a) and (4.27), and are given (in
the gauge ' = f1 = 0) by

B = i06E - TG (4312)
2Gl = OG- 00" G} = 0,0" G + npgd™ "GP, — 29" 0'4,31b)
(* —16TH)GE = 0, (4.31c)
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Note that, by substituting (4.31b) into (4.31c), we get an equation involving D3G8;‘
which, in the tensionless limit, has the same form as the one found in [13]. Of course,
this had to be the case since the vertex operator (4.29) preserves its form as 7 — 0,
while the BRST operator reduces to the (bosonic) ambitwistor one, as is evident from

(4.15). Indeed, all the other equations of motion can be reproduced in a similar way.

4.2.4 Bosonic kinetic action and 3-point amplitudes

As shown above, G’(ggl and %L can be seen as auxiliary fields' which effectively im-
plement a higher derivative equation of motion for 7&7)1 This behavior can be better
understood from another point of view, namely in terms of the effective action of the

model and, in particular, its kinetic part.

Indeed, the kinetic terms associated to ¢g"" and A" have opposite signs. Physically,
this indicates an instability of the model (ghosts), in agreement with the results of [20].
Such ghosts can usually be described in terms of higher derivative theories and this is

precisely what happens here.

Bosonic kinetic action

Inspired by Zwiebach’s closed string action [15], the kinetic action for ambitwistor strings
was built in [13]. We will use the same prescription for the tensionful model and the

kinetic action will be defined by
1
S = 3 (V]0eQ|V) (4.32)

where |V') is the state associated to the vertex operator (4.16), obtained from the identity
state |0) through the state-operator map

V) = lim V(2)]0), (4.33)

z—0

and (V| its BPZ conjugate. In order to simplify the calculations, we will fix the gauge
fr = =0 — cf. equations (4.26) and (4.28) — and use the auxiliary equations of
motion in (4.21) to write the vertex operator (4.16) in terms of the fields g™, b™", ¢

and A"

'Here the word “auxiliary” should not be understood as “not propagating degrees of freedom,” but
rather that the degrees of freedom represented by these fields can be incorporated in another one which
satisfies a higher-derivative equation of motion — cf. equations (4.31) above.
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Now, using the usual ghost measure (c+0ct0%ct) = 2, it is straightforward to show

that the free action can be cast as
Sbosonic = SO + S+ + S—, (434)

where

So =2 / d26x{gmnmgmn + apgmpaqgmq + 2(9 + ¢)8mangmn

—(g+®)0(g + ¢) + """ Obpn — b0, 0" by, },  (4.35)
and

Sy =4 / A0z {—h" (O F AT ) htmn + K700 0" bty — 2R O O ™ + he (O F 4T )Rt },

(4.36)
with ¢ = ¢"™"mpn and hy = B Nmn. As expected, the free field equations of motion
derived from Sy and S precisely reproduce (4.23) and (4.27). The kinetic terms for

g™" and A" have opposite signs, consistent with the ghost interpretation.

3-point amplitudes

The 3-point tree level scattering amplitudes for the bosonic chiral string were obtained
in [20]. However, it is instructive to redo this analysis here since our unintegrated vertex
operators have a different structure and, in particular, do not give rise to a Koba—Nielsen
factor. For higher point amplitudes, we would need integrated vertex operators but their

definition is still unknown.

It will be convenient to gauge fix the vertex operators in (4.16) and work with mo-

mentum eigenstates, such that
Vo = cre_PEP-GM M X Vi =cic PEPFH e* X, (4.37)

where G™", H" are now seen as polarization tensors satisfying k,,G™" = k,G™" =
km HT™ = 0y HI™ = 0.

In order to compute the 3-point amplitudes, we have to evaluate its OPE reduction
by contracting all P+’s with one another and with the momentum exponentials e?*X .

We also need the ghost 3-point function, which has the usual form

(cx(2)ex(y)ex(w)) = (2 - y)(y — w)(w — 2). (4.38)
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By virtue of the sectorized description, it is easy to show that the amplitude factorizes
into a product of two open string amplitudes (where 7 — —7 in the minus sector).
With all this in mind, we can compute, for example, the 3-point amplitude involving

only massless states. The result is
(Vo(z1)Vo(22)Vo(23)) = G GHIGE Ty Tgs 020 (k' + k2 + k%), (4.39)

where

Tomp = ke kkiy + 2T (kipinp + kg + Ky imn) (4.40)

and ans is equal to T},4s with the sign of 7 flipped. The amplitude does not depend on
the positions of the vertex operator insertions and is, therefore, SL(2,C) invariant. This
result is to some extent expected, since the vertex structure is completely analogous to
the ordinary bosonic string and the Koba—Nielsen factors are just 1 for three massless
vertices. However, the SL(2,C) invariance can be shown for any 3-point tree level
amplitude, even though the Koba—Nielsen factor is always 1 in the chiral model (there
are no contractions between the momentum exponentials since the X X OPE is trivial).
The amplitudes factorize in the plus and minus sectors, and there is a precise cancelation

of the poles and zeros in z;; = z; — z;.

4.3 Extension of the sectorized model with current alge-

bras

In this section we will explore the extension of the bosonic sectorized model in a target
space with dimension d < 26 and the introduction of current algebras, i.e. a gauge
sector. To the action (4.7), we will add two extra pieces, Sér and S, describing two

current algebras. The new BRST charge preserves its form in (4.10) but now with

T. = — PRI~ 2,0c, +c0bs 1 TH, (441
T = P Pon™ —2b_0c_ +c_0b_ + 1, (4.42)

where Tg denotes the energy-momentum tensor associated to different group manifolds
with central charge

F) =26 —d. (4.43)

For now we will focus on the “—” sector, which contains the tachyonic excitations.

The inclusion of the “4” sector, which has an analogous structure, will be discussed in

subsection 4.3.4.
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Let us consider an affine Lie algebra associated to some group G, with structure
constants f,¢ (a,b,... = 1 to dimG) and level k. The addition of S; to the action

allows us to define currents J, which are primary conformal fields and satisfy the OPE

(zkéaz)2 Fif,° (ZC(y;). (4.44)

Here the group generators have been orthonormalized such that the metric d,p corre-

Ja(2) Jo(y) ~

sponds to a Kronecker delta, and we will make no further distinction between upper and

lower indices.

The energy-momentum tensor of the algebra can be obtained using the Sugawara

construction and is given by

1

"= ——
¢ 7 2k+g)

(Jas Ja) , (4.45)
where ¢ is the dual Coxeter number, defined through

facdfbcd = 295ab' (446)

We use the ordering prescription

dz
(z—y)

(A,B) (1) = 5= 74 A(2)B(y). (4.47)

which can be understood as the product of two operators A(z) and B(y) in the limit

z — y, with singular terms removed.

It is then straightforward to compute the central charge of this model, which is given
by

) kA
C = —,
(k+9)
|
= 26—d, (4.48)
where
A = 5%, = dimG. (4.49)

The second equality in (4.48) comes from imposing the nilpotency of the BRST operator
and constrains the group G and the level k of the current algebra. For example, for a
target space with d = 10 one of the solutions is G = SO(32) and k = 1, while for d =4
we can have G = SU(5) and k = 55, and so on. Further constraints on the group should

arise from the analysis of anomalies but this will not be discussed in this work.
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4.3.1 Physical spectrum

The BRST cohomology now includes additional states with corresponding vertex oper-

ators containing the currents J,, expressed as

V; = cyc PFJ,F™ +c_(0cy — Oc_)J F* + cyc_0J,Sa
+ere_ P J G+ e (0cy — 0c2)JoG* + crc—Japa. (4.50)

Here F}", G, S¢, F,, G, and ¢, are target space fields. The index « belongs to
a traceless-symmetric bi-adjoint representation of the group G (see appendix), with

dimension

A(A+1)

Ala) = 5

~ 1. (4.51)

Jo 18 a primary conformal weight 2 operator defined as
Jo = (Cil)aab J(ab), (4.52)

where J(4p) is given by the traceless-symmetric ordered product of two currents, i.e.

Jan) = 3 (s o) + & (Jy, Ju) — 26896, 1 (4.53)

and (C7)

these coefficients will be discussed in the next subsection and in the appendix. Observe

are the inverse of the Clebsch-Gordan coefficients, C,,,. The properties of

that we could have considered also the trace contribution in the vertex, e.g. cic_Tg .
However, the field ¢ couples only to the vertex V_ in subsection (4.2.3) and does not

change the physical content of the model.

The BRST invariance of the vertex V; implies the following equations of motion

(O+4T)pa = 0, (4.54a)
F, = 30n.F, (4.54b)
Go = 30mGl —Sa, (4.54c)
On(OMF)} —O"F") = 0, (4.54d)
O (0MGy — O"GY') = ATGI +20™S,, (4.54e)
and the gauge transformations can be summarized as
OF" = 0™A,, IGT = 0™, 05, = —2T1€,. (4.55)

Since S, is pure gauge, the physical states described by the vertex (4.50) correspond to

a massless vector F/™ and two fields with negative mass-squared m? = —47 namely the
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scalar ¢, and the vector G7".

In parallel to subsection 4.2.3, we can prepare the vertex V; for the tensionless limit
analysis. Considering the redefinitions of the worldsheet ghosts of (4.13), V; can be

rewritten as
%—VJ = ctJopa + Py J AL + cCOXpJo Bl — c0CJy Agq — €0¢J o By. (4.56)

Here, the fields A,, A}', B, and B]" are defined in terms of F)", GI', F, and G, as

Aa EFa+Ga, BaET(Fa_GQ)y (4 57)
Am = F 4G, B =T(FM -G, '
with gauge transformations §A}' = ™A, and 0B]* = TO0"A,.
Their equations of motion follow from (4.54) and are given by
1 m m 1 mn _ Rm
Ay = 50mAY, TAG — 50, = B, (4.58)
B, = 10,,B™, (O +4T)0, Fm = 0.

Therefore, the physical spectrum can be described in terms of only two fields, ¢, and
A7'. The vector B is auxiliary, helping to implement a quartic equation of motion for

Am

., which carries the degrees of freedom of both the massless and the massive vector

fields, F" and GJ'. Note, in particular, the tensionless limit renders a massless spectrum
with equations of motion Oy, = [0?A™ = 0. As in the bosonic model of section 4.2,
this behavior can be easily observed when analyzing the effective field theory associated
to the model, which will be done in subsection 4.3.3. The first step will be to determine

the 3-point amplitudes using the vertex (4.50).

4.3.2 3-point amplitudes

In order to compute the 3-point amplitude
As = (Vi (2)Vi(y)Vs(w)) (4.59)

we need to provide further details on the current algebra CFT, in particular the OPE’s
involving the operator J, defined in (4.52) and the properties of the Clebsch-Gordan

coefficients Cqp.
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The operator J, satisfies the following OPE’s:
2Jq 0J,,

T-(2) Joly) ~ + , 4.60a
C() () (z—y)2 (z—y) ( )
Jo(2) Jaly) ~ Coapr2t— = (Ta)y 22— (4.60D)
a « aab(z_y)Q a)af (Z_y)a .

kas { Jo o, 0de | O, }

Jo(2) Jg(y) ~ — (To),, + 1 1

BB~ Gy T T\ Gy T T ey
J. aJ.
NG )
'](abc) J[ab} (Jm TC_‘)
0 S . B ey tegugrC) 4.60c
ez —y) TP —y) -y (4.60c)

The first OPE states that J, is a primary operator of conformal dimension 2. The second
OPE is connected to the definition of the Clebsch-Gordan coefficients (quadratic pole)
and the group transformation of J, (simple pole). (T,),s denotes the group generators

in the traceless bi-adjoint representation of the group G and satisfy

[Ta) Tb]aﬁ = ifabc (Tc)aﬁ s (461&)

(Ta)aﬁ = 27:fabcca(ce) (Cil)ﬁ(be) , (461b)
(TaTv)oe = 29(A + 2)0a, (4.61c)
(TaTa)aﬁ = 4g(5aﬁ - 2fabcfadeca(ce) (Cil)ﬂ(bd) ; (461d)

The OPE (4.60c) can be used to define the 2-point and 3-point functions involving
only J,’s. Operators of conformal dimension 3 appear in the last line (with numerical
coeflicients dogabe; daglap) and €aap) but they do not contribute to As. J(abe) 18 the
totally symmetric traceless normal ordered product of J,, Jp and Je, and Jiyy) is the

antisymmetric product (Jq, Jp) — (Jp, Ja)-

The Clebsch-Gordan coefficients Cqp are defined in such a way that

Caab (C_l)ﬂab - 5aﬁa (462&)
Caab (C_l)acd = 5(ab)(cd)a (462b)
CoabCacd = Aab)(cd) + 2K0(ab)(ca): (4.62c)
Caabcﬂab = fadefbcecﬁab (Cil)acd + Qkéaﬁ, (462(1)
with
5(ab)(cd) %5ac(5bd + %5ad6bc — %5ab60d7 (4.63&)
A(ab)(cd) = %fadefbce + %facefbde - %5ab5cd- (4.63b)
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Finally, the coefficient d,g, is defined as
dagy = () gy [ (TaTh)ar, + 2CaacCrne] (4.64)

or

CBapdapy = % (TaTb)M + CaaeCqpe + (@ <+ b) — trace. (4.65)

Although not manifestly, d,g, is traceless, i.e. doay = 0, and completely symmetric in

the exchange of any pair of indices.

The 2-point amplitudes involving the gauge currents can be easily determined through
the OPE’s (4.44), (4.60b) and (4.60c), and are given by

(Ja(2) () = (Zkf“;)g, (4.66a)
(Ja(2)Ja(y)) = 0O, (4.66b)
(Ja(2)J5(®)) = (’“fj) (4.660)

The 3-point amplitudes are now straightforward to compute. They can be summarized

as

(Ja(2) DoY) Je(w)) = —ikfape(z —y) (y —w)Hw—2)"", (4.67a)
(Ja(2)Ja(y) Jo(w)) = kCaap(z —y) *(w—2)72, (4.67b)
(Ja(2)Jp() Ja(w)) = k(Ta)gs(z—y) (Y —w)(w—2)"", (4.67c)
(Ja(2)Jp(y) I (w)) = kdagy(z—y) 2 (y —w) > (w —2)72 (4.67d)

As one last step before evaluating (4.59), it will be convenient to fix the gauge degrees
of freedom of V;. Using the gauge transformations (4.55), we will choose S, = 0. In
this gauge, 0,,G' = 0 as a consequence of the equations of motion. We can use the
remaining parameter to fix the transversal gauge for the massless vector, such that the

vertex is simplified to

Vi=cyc PrJ,F" +cic P, J,GM + cic_Japa. (4.68)
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Using the tree level measure for the ghosts (4.38), the 3-point amplitude (4.59) can
be computed to be

As = kdapy (Pappy) — 3k (Ta)ap (PaOmps(Fy" + Gg'))
—3kCaab (OmOnpa(Fy" + G3')(Fy' + GY))
=ik fabe (Op(F" + G )Om (Fy' + Gy )On(FE + G7))
65T Caabhmn (pa(Fg" — G3')(Fy' + GY))
—6ikT favenmn (Fy" — G3")Op(Fy + Gy) (FE + GY)) . (4.69)

Observe that A3 is at most linear in 7 (E)* — GJ'). If we look at the vertex (4.56), this
is easy to understand because the 3-point amplitudes with two or three B!"’s vanish

trivially.

In principle, 4-point amplitudes can be computed using the results of Siegel in [18].
Currently, however, there is no clear definition of the integrated vertex operators and
higher point amplitudes cannot be directly computed from the chiral model. This prob-

lem will be dealt with in a separate paper by one of the authors.

In the next subsection we will propose an effective field theory action for the field

content of the previous subsection.

4.3.3 Effective field theory: (DF)?+YM

As the main result of this paper, we would like to argue that the effective field theory
action corresponding to this extension of the bosonic sectorized model is precisely the
action of the (DF)? + YM theory constructed in [26]. Indeed, we have already shown

the spectrum to be the same. The action can be decomposed as
Sepp =S89+ ST, (4.70)

where 59 is the kinetic part of the action and Sf,"t corresponds to the interactions.

For the kinetic part, we will proceed like in subsection (4.2.4). For the interaction
part, we will analyze the possible vertices that give rise to the 3-point amplitudes dis-
played in (4.69). Next, we will require the non-linear gauge invariance of the resulting

model in order to finally propose its effective action.
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4.3.3.1 Kinetic action

As stated above, we will define the kinetic action as
S§ = (VilocQ|Vy), (4.71)

up to normalization.

In order to further simplify the computation, we will consider the algebraic solutions
(4.54b) and (4.54c), such that

9clQ,Vy] = frepc_0ci0c_J Pl[0n(0"F) — O™ Fy)]
+ ey c_0cy0c_Jo Py [0, (0" GY — O™ GY) + AT G
+prcyc_0cy0c_0J4[2T 0 Gy
—|—ﬁc+c,8c+8c, Jo|Opa + 4T va). (4.72)

It is then straightforward to show that

8= [ do{pa(Cpa + 4T pa) = 2T Fra OF ~ 070, )

+ 2T G (OG™ + ATG™ — 9™9,G™)}.  (4.73)

Note that the kinetic terms of the fields F}" and G7' have opposite sign in Sg.
Technically, the sign difference can be traced back to the OPE’s of P} and P, with
themselves. As discussed previously, this indicates an instability of the model and we
can again reinterpret it in terms of a higher derivative theory. In fact, as we will now
show, this behavior is more transparent if we rewrite the action in terms of the vectors

A" and B defined in (4.57). The kinetic action can then be cast as
8= [ 41X {ga(Opa+4T 00) + 2B B + 2B~ TAD) Boa ~ TAma)}. (479

with
EM =0mAL — 0" A", (4.75)

Ignoring for now the interaction terms, observe that the equation of motion for B}
is algebraic, given by
B = TAD + 50, F)™. (4.76)

If we replace this solution back in the action, we obtain

SY 5 = / "X {pa(Opa + 4T 0a) + TE Frna — 500 F™0P Frpa ). (4.77)
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This action can be identified with the kinetic part of the (DF)?+YM theory constructed

in [26]. Note that the propagator of A]" is given in momentum space by

mn Z‘Tfnnéab
= . 4.78
ab (p) p2 (pg _ 47-) ( )
The pole structure of this propagator agrees with the interpretation given after equation
(4.58) that A" effectively describes the massless and the massive vector fields, F* and

Gm.

4.3.3.2 Cubic vertices and the effective action

As it turns out, the procedure of integrating B/ out can be partially extended to
interactions. We say “partially” because in this paper we consider only unintegrated
vertex operators, therefore only 3-point tree level amplitudes. We expect this integration

to hold for higher point vertices as well.

By looking at As in (4.69), it is easy to show that the 3-point vertices in terms of

the vectors A" and B]* can be schematically expressed as

903 ~ dozﬁ'y(pa‘;oﬁ@’ya SDAQ ~ Caab@aanAZnamAg,

‘P2A ~ (Ta)aﬁ@aamSOﬂAZn, A3~ ’ifabcapAZ”é’mAganAg, (4'79)
QOAB ~ Caabnmn@ocB;nAna AQB ~ ifabcnmnBtTapAgAg

The idea now is to analyze the possible gauge invariant interactions that can generate
these vertices after integrating out B]*, which is at most linear in the expressions above.

The equation of motion for B} in (4.76) gets modified to
B = TAY + 300 F)™ + c4CoabPaAmp + ids fabelmnOp A AL + ..., (4.80)

where cy and dy are numerical constants and the dots contain other terms necessary
to generate the correct gauge transformation for B]* (remember that the onshell 3-
point amplitude A3 was computed using gauge-fixed vertex operators). Taking this into
consideration and replacing B in the action, we can show that all 3-point vertices come

from the operators
CaabsaaF;nnanba (D(P)27 (DF)Qa F37 F27 da,@v@a@ﬂsa'ya
where F]"" was redefined to be the non-Abelian field strength

FI™ = (™AL — 0" AT) + ig func AT AT, (4.81)
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with coupling constant g, and D™ denotes the covariant derivative with respect to the
vector Al". The form of the higher point vertices (4, 5 and 6) is severely restricted by
the non-linear gauge invariance of the effective action. Some contributions naturally
appear after integrating out B}* and we expect them to combine with the input coming

from higher-point amplitudes, which involve integrated vertex operators.

Finally, we propose the effective field theory action of the model to be

Seff - /ddx{%(Dannn)2 - TF(;nnana + %meaDmgpa - 27‘(()0&)2
+ %fachmnaanprmc + %Caabsant:nnFm"b + %daﬁygﬁoﬁpﬁ@'y}a (4'82)

where g is the coupling constant. This action describes the (DF)? + YM theory of [26].

Moreover, if we include the “+” sector mentioned in the beginning of this section,
the effective field theory action describes a more general model with a mirrored set of
fields. In particular, if we restrict the gauge symmetry of the “+” sector to be instead a
global symmetry, the effective action describes the (DF)? + YM + ¢3 theory. This will

be shown next.

4.3.4 Including the other gauge sector: (DF)? + YM + ¢*

We will consider for the “4” sector an affine Lie algebra associated to a group G (with
structure constants f 15 and level k. Apart from the central charge constraint (4.43),
{G, 12:} are independent of {G,k}, from the “—” sector. The new currents, Ja, are
completely analogous to the ones discussed there, e.g. they satisfy the OPE

SN kFoap 5 ¢ Joly)

Ja(2) Jp(y) ~ (e ifap (z—y)

, (4.83)
when conveniently normalized. Here, §4p is a Kronecker delta.

In order to analyze the physical spectrum, we can start with the hatted version of
(4.50), defined by

Vj = C+C_P;1_jAGA'ZL +c_ (aC+ — 36_)jAGA + C+C_8jA§A
+epe  PrJaET 4 ¢y (Ocy — Oc_)JaFA + cpeJap. (4.84)

It is easy to see that the fields appearing in this vertex operator will satisfy essentially
the same equations of motion and gauge transformations as their counterparts in the
“_»

sector, albeit with one important difference: the replacement 7 — —7. By going

through the same steps as in subsection 4.3.1, we find that the physical spectrum in this
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“_»

sector contains a “mirror image” of the physical spectrum in the sector, but with

opposite mass-squared.

In addition, we can build a new type of vertex operator involving currents from both

sectors. It has the form
Vy = cyc_JaJag™, (4.85)

where ¢ is a bi-adjoint scalar transforming in the adjoint representation of both gauge

groups. BRST closedness implies the equation of motion
O¢* =0, (4.86)

whence ¢4 is a massless field.

Following the same method used in subsection 4.3.3, the kinetic part of the effective

action involving the group indices can be cast as
§% =55+ 55+ 5], (4.87)

where SY was given in (4.77) and 5’% is its hatted analogue, and
S9 = kk / Ad4X {paa0g ). (4.88)

As for the interacting part, it clearly contains the corresponding part in (4.82) and its
hatted version. Moreover, note that cubic vertices mixing the fields in V; with those in
V5 can only appear through (V;V;V3), since the three-point functions involving (J JJ)

or (JJ J ) vanish. The non-vanishing three-point functions with insertions of V;, are given

by:
(Voo )Valw)Volw)) = khfFAPC (4P (4.892)
VaWa)Va(w)) = —ikkfane (900" (F2" + GT))
kb Coan (67165 ) (4.89b)
(Vo(2)Va)Vs(w)) = —ikhkfapc (6"0u0"" (FE + GE) )
—kkCaap ("9 P50 ) (4.89¢)

Bl { (F" + GI) (F5 + G064 )

N[

(Vs()Vas()Vi(w)) =
e (940, (FE" + GEOP (B} + Gh) )

ke (940, (F' + GO (F +G1)) . (4.89d)
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Thus, defining
Am=Fp+Gm,  Epr=omAn — 0n AT +igfapc AR A, (4.90)

and following arguments similar to the ones given in the previous subsection, we can

write the effective action as

Sers = S[A, 0] + S[A, ¢] + S[A, A, ], (4.91)

A

where S[A, ¢] is the right-hand side of (4.82), S[A, ¢] is its hatted version and

S A9 = [ 'af S (Dnd P + & fuhancs P8 + I Conpp6" 1604

g A~ A N
+ 9 Cann@ 0" 46" + go" Fy Frnna§, (4:92)
where the covariant derivative of ¢4 with respect to both gauge fields is given by

D™ = 0 — ig fare A6 — ig fapc AR (4.93)

Thus we have found the complete effective action in the gauge sector of the model.
Now we would like to make contact with the scalar extension of the (DF)? +YM theory
which was introduced by Johansson and Nohle [26]. There, the group G (with indices
A B,...) is viewed instead as a global symmetry group.? In the present chiral string
formulation, we can turn off the gauge field AZ{ and the scalar ¢%, effectively taking
S [A, ¢] — 0 and turning the group G into a global symmetry at tree level. Moreover, we
are free to rescale the field ¢ in order to eliminate k from its kinetic term. However, a
factor of A\ = \/E would still be present in the cubic term (with A > 0). After performing
these modifications, we can finally write the effective Lagrangian in the same form as in
[26]:

Loorpnics = 5(DaFI™? 4 5(Dng®) + 5(Dnaa)® + 5m?(6") + gm(F)?

g g g g
+§F3 + §Caab¢aanaF7?rm + ?daﬁfy@a@ﬁwv + §Caab§0a¢aA¢bA

g)‘ P a c
+57 fabefapod™ 6P 67, (4.94)

where m? = —4T.

2In the context of the double-copy construction found in [36], this would be the heterotic string group.



Chapter 5

Results and Discussion

An extensive study on ambitwistors models was presented. The first chapter (1) was
dedicated to correctly compute the spectrum for the main ambitwistor models: bosonic,
type II (both GSO sectors), and heterotic. By constructing the most general vertex op-
erator we showed that these models (expected type I GSO(+)) contain higher derivative
equations of motion. Even though higher derivative terms indicate non-unitary states,
the result is consistent with the unusual momenta dependence of three-level amplitudes
for bosonic (A3 ~ kb <+ [%h,,,) and spin-2 heterotic (A3 ~ k% < O0%hy), necessary
since ambitwistor does not have a dimensionful constant. In the chapter 2, we com-
puted the cohomology for the heterotic system in the Ramond sector and confirmed
the higher derivative terms for the fermions are also present. By constructing the free
action, we prove the invariance under supersymmetry transformations. These results

are interesting for a few reasons:

Loop: An advantage to described the CHY with ambitwistors is that it provides
a natural extension to compute loop amplitudes as simply integrals over higher genus
curves. In [37, 38] they provided a formula for 1-loop integrands for type II and super
Yang-Mills. The resulting worldsheet can be viewed as a Riemann sphere with two
points "glued” together where the loop momenta flows. In ten dimensions the loop
amplitudes for these theories have UV divergences, only the integrand were computed.
This introduces another difficulty since there is not a unique representation for the
integrant. For type II the authors found the generalization of the scattering equations

for genus one :

61
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kg - 0 ko - ko
kia - P(zq) = +> b, (5.1)

Z Za — %
a bta a b

where £ is interpreted as the off-shell momentum circling the loop. The delta function
§(kq - P(z4)) that enforces the scattering equations localizes all integrals with exception
of the loop [dl. Tt is interesting to point out that this formula was soon interpreted
as a forward limit of tree-level amplitudes by the same authors of CHY [39, 40]. One
problem inherent to this formulation is to finding solutions to the one-loop scattering
equations, which were already hard at the tree-level. Some solutions of (5.1) give rise to

unphysical poles, however, using BCFW arguments these poles can be discarded [40].

Although the heterotic model correctly describes super Yang-Mills theory, the gravi-
ton spectrum contains non-unitary states. At tree-level, it is possible to recover the
Yang-Mills amplitudes by extracting the single-trace amplitude, but at loop level, the
single trace gluon amplitude receives contributions from internal supergravity states.
This feature also appears in the d = 4 twistor string theory [14]. Thus the integrand
conjectured in [37, 38| for Yang-Mills is given by replacing one of the Pfaffians ( in the
gravity integrand ) with a Parke-Taylor factor. This trick is also used at tree-level and
can be viewed as a realization of gravity = (Y M)?. Even though the type II is the only
model that can compute 1-loop integrands, would be interesting to verify if the partition
functions in [37, 38] reproduce the non-unitary states in the massless spectrum. Before
performing the sum over spin structures, one should be able to observe in the partition

function the contribution of the states in the GSO(—) sector.

Action:  Asnoted in [28], the d = 10 heterotic ambitwistor string has some similarities
with the d = 4 twistor string which describes N' = 4 d = 4 conformal supergravity
coupled to super Yang-Mills [14]. One could try to generalize the quadratic kinetic term
computed here to the full string field theory action including interactions and check if

describes a generalization of N = 4 d = 4 conformal supergravity.

In the last project we reexamined the bosonic chiral string, now in the sectorized
interpretation, deriving a few novel results. The spectrum found here in the sectorized
string, namely a massless level identical to that of the ordinary bosonic string and two
traceless-symmetric fields h'T™ with mass-squared m? = +47, is the same in the chiral
string model [20]. Moreover, we showed that the extra (massive) states can be seen as
auxiliary fields leading to the higher derivative gravity theory, which in the tensionless

limit (7 — 0) reduces to the bosonic gravity in [13]. In [25] the massive spin-2 states
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were determined to be ghosts via a 4-point amplitude analysis based on a ”twisted” KLT

formula. This fact is manifest in the quadratic action we constructed.

Finally, we showed that the current algebra extension of the bosonic model effectively
leads to the (DF)?+YM + ¢ Lagrangian of [26], with all its fields and couplings coming
naturally from standard string (field) theory techniques. The emergence of the higher
derivative term (DF)? from two vector fields of the physical spectrum is particularly
interesting. In addition, we would like to point out that the group constants Cgup
and d,gy, their relations and properties emerge naturally in our model and are valid
for a generic level k of the algebra. In [26], on the other hand, such relations are
obtained by demanding that the gluon amplitudes satisfy the Bern—Carrasco—Johansson
relations [27] and our results agree when we take £ — 0. This limit corresponds to a
projection to the single-trace amplitude sector, which is where we expect our results to
match. The multitrace sector of the worldsheet model is ” contaminated” by the gravity
theory described in section 4.2, much like the Berkovits—Witten twistor string necessarily

includes conformal gravity [2, 14].

Analytical continuation for the Chiral String: Even though a lot of develop-
ment has been made, there are still open questions regarding these models. As mentioned
before, the new chiral string introduced in [20], has a finite number of states in their
spectrum and may contain massive states depending on the amount of supersymmetry.
In this approach, the conformal gauge is adopted instead of the singular gauge HSZ and a
new boundary condition is used. The fields now have holomorphic and antiholomorphic
components and XX has nontrivial OPE (contrary to the ambitwistor models). The
new boundary condition effectively changes the sign in the antiholomorphic piece in the
propagator X (z,2)X(0,0) ~ In(z) — In(Z), and similar for the other antiholomorphic
fields. This modification on the propagator was interpreted as Bogoliubov transforma-
tions, where the role of creation and annihilation are interchanged for the modes coming

from Z, and also in [34] as a different choice of vacua.

Given the above consideration, this model is quite close to standard string theory,
making the chiral model the best place to study its relationship with string theory.
During my period at Stony Brook together with Warren Siegel, we began a project to
tackle this problem. We introduced a tuning parameter into the propagator which allows

us to go back and forth between string theory and chiral string:
m = n — & mn = —
X" (2, 2) X" (y,9) ~ —5n™" [In(z —y) + f(0)in(z — )] (5.2)

where f(6) =1 and —1 gives the ordinary string theory and chiral string theory respec-

tively. Since, f(6) can not be zero, one have to use a complex function to go from 1
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to —1 without passing through zero. The same parameter f(6) is introduced for other
anti-holomorphic fields, like b, é and ™. Then with this new propagator, in princi-
ple, one can compute tree-level amplitudes. The type II spectrum is massless in the
chiral string and agrees with the low energy limit of the string theory. The vertex is
identical to string theory, but the OPE’s are different for the anti-holomorphic fields.
For both three-point and four-point amplitudes the only thing that differs from string
theory, modulo an overall factor of f(6) in front, is the Koba-Nielsen factor. One can
see this by realizing that all terms in the correlation function contain the same number
of wick contraction, so same powers of f(6). Since we are considering massless states,
the kinematics k; - k; = 0 implies that ([]>_, e®"¥i) = 1, so the three-point amplitude
is identical to that of ordinary strings. After fixing (23 = 0,22 = 2,23 = 1,24 = 00) the

4-point amplitude can be casted as
Ay(s, t,u) = / Pz (1= 2) IO - 2O F[z, (1,2,3,4)|F[z, (1,2,3,4)] (5.3)

where F'[z,(1,2,3,4)] is a function of the kinematics, polarization vectors and integer
powers of z, (1 — z). This factor is identical to ordinary string theory. We tried to solve
this integral by two methods. First was using the KLLT decomposition for closed string
amplitude and the second was to rewrite (5.3) using a Melling transformation. Both
results gave the same answer:

1 D(=f(0)u)l(=f(6)) T(-—s)

A=Kl == @) ToTW

(5.4)

Note that this agrees with type II string theory, for f(#) = 1 you get kinematic function
(KoKj) times the Virasoro-Shapiro-like factor. Also for f(#) = —1, all the massive
poles in the gamma functions cancel, leaving only the massless term 1/stu, as found in
[20]. However, this answer is not stu symmetric for arbitrary f(6), which is the biggest
problem with our result, and unfortunately, we were unable to find a satisfactory stu
symmetric amplitude. One can force the amplitude to be symmetric, by multiplying
it with sin(mws)/sin(wf(0)s). Of course, this is not a satisfactory solution, and more
development is needed. The difficulty is to find the proper contour region of integration
to derive a stu symmetric amplitude, and to justify the anzats (5.2). This is a rather
ambitious project that might help find new interpretations of chiral string type models
and understand how the transition between the string theory spectrum and the chiral

model occurs.



Appendix A

Ramond sector, cocycles and

Gamma matrices

Spinor indices in 10 dimensions can be distinguished between chiral and anti-chiral.
We denote chiral indices by undotted greek letters, a;, while anti-chiral indices are repre-
sented by dotted greek letters, &. Both run from 1 to 16. Spinor indices are 5-dimensional

vector representations of u(5):

_|_
1
d=g|- - — + +| and B=g|+ - - (A.1)
+

-+ + + +

where an anti-chiral index, &, must have an even number of plus signs, and a chiral
index, 8, must have an odd number of plus signs. Each of these combinations has 16

independent components represented as 16 = 1 + 10 + 5.

A.1 The Ramond Sector.

The Ramond sector of the Ambitwistor string is defined by the antiperiodic boundary

conditions of ¢™:

P (¥ z) =~y (2). (A.2)

We follow[30] and implement these boundary conditions via spin fields. That is, we have

a conformal primary S(z) that twists a periodic v:
P (2 + (w — 2)e®™) S(z) = =™ (w) S(2). (A.3)

65
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This implies that a state |a) created from the vacuum |0) via
) = 5%(0)]0) (A.4)

should transform as a spacetime spinor. Notice that, due to the presence of S forcing
to be in the Ramond sector, this state must belong to an irreducible representation of
the zero-mode Clifford algebra of ¢™: {1, 1¢} = ™", which implies

1

o' ler) = 7

7 |8). (A.5)

A.2 Bosonization and cocycles.

Because S twists the boundary conditions of ™, the system is not free and OPE’s are
difficult to compute. Bosonization is a technique that allows us to deal with free fields
only. Bosonization assigns for a pair of complex fermions one chiral boson, which means

that we have to break manifest so(10) invariance down to u(5).
Spin Fields. The bosonization of spin fields is given by

S%(2) = exp (a : qﬁ(z))ca (A.6)

where « is a chiral spinor index. The same expression is valid for anti-chiral spin fields
by just replacing « for &. The factor ¢, is a cocycle phase that guarantees the correct

anticommutation relations.

Cocycles. The anticommuting fermionic algebra is reproduced in the bosonic system

via the Baker-Campbell-Hausdorff formula:

() RBZ) _ R6(2) FO) () () _ _ Eb(2) p0(2) (A7)
provided for |2'| = |z| we have
[qb(z'), gi)(z)] = +im  which implies ¢(2)¢(0) ~Inz (A.8)

Now, if we are given more than one pair of fermions, they won’t naturally anticommute

because [¢;, ¢;] = 0. This is corrected by the introduction of cocycles[31]:


https://en.wikipedia.org/wiki/Baker\OT1\textendash Campbell\OT1\textendash Hausdorff_formula
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e Order all bosons of the theory: ¢; where t =1,..., N;

Ni+..+N,;_

e Then multiply each exponential by a factor (—) 1. where NV; is the fermion

number operator:

Ni=- §sETwi= § 5 00 (A.9)

2mi
For example, if we consider two pairs of fermions, the bosonization becomes
P =e®, p=e N (A.10)

with
Py = e (—)M (A.11)

where now 1 and 1o anticommute

€¢>16¢2(_)N1 — 6¢26¢1(_)N1 — 6¢2(_)N1(_)—N16¢>1(_)N1 — _e¢2(_)N16¢1 (A.12)

provided
|:NZ', €n¢]} = n5ije”¢j . (A13)

Thus, for more than one pair of fermions, we need to introduce the cocycle phase factors:
& = (=Nt N, (A.14)

Consider the vector
8¢:(N17N27"'7N5) (A15)

then the cocycle factor can be written as

Cie, = €xp [Lim(e; MO¢)] (A.16)

where e; is 1 in the ith component and zero elsewhere, ( ) is a matrix inner product and

M is a lower triangular matrix with entries +1:

0 0 0 0 O
0 0 0 O
1 1 0 0 O
M =
-1 1 -1 0 0 O
1 1 1 1 0 O
-1 -1 -1 -1 -1 0
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The signs of M are arbitrary at this point, but they can be specified studying the charge

conjugation matrix[31].

The cocycle factors of spin fields, ¢, and cg, are given the following expressions:

Co = exp [in(aMIp)] and ¢4 = exp [in(GMOP)] (A.17)

Gamma Matrices. To motivate the construction of gamma matrices and show how
cocycles work, let us consider the OPE between 1’ and S®. Using expressions (3.4) and
(A.6) we have to compute the OPE of e?(®¢; with e*®(We¢,. Notice that ¢; will pass
through e®® and due to Baker-Campbell-Hausdorff we obtain an extra phase:

Cieaqﬁ — eiw(eiMad)) eaQS — eiw(qMoz) eagbci (A18)

so that our OPE becomes

eqﬁi(z)ci eaqﬁ(w)ca -~ (Z _ W)a~5i €iﬂ<eiMa>e(ei+a)¢Ci+o<' (A19)

Notice that we obtain a branch-cut if « - ¢; = a; = —1/2 which in turn implies that the

sum e; + o must be an anti-chiral index 3. Therefore given

e?@e; @ MWey ~ (2 — w) 712 eiﬂ(eiMMeB‘z’cB, (A.20)
we see that it becomes natural to define the gamma matrices as
(T9) 2 = V26 (e + B — &) ™MD (A.21a)
and
(19)f = v/26 (ej - a) gim(eiMa) (A.21D)
giving us the final result:
s ~ L5 (A2

The explicit representation is written in terms of the Pauli-matrices via

I+ = (+i) 71 V2 (6%0) T 0T (®1)77 (A.23)
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and one can convert between u(5) and covariant so(10) using

; 1 _ :
r-1= 7 (T +T-%) (A.24a)
and .
; 1 .y e
2 — % (I‘ i T J) (A.24b)

Notice that in our construction, the notation v* is reserved for the symmetric gamma

matrices:

Vhg = FgﬁCﬁ-ﬁ (A.25a)
ool — The O (A.25D)

as it is common in the literature. In above equations, C' denotes the charge conjugation

matrix which is the next topic in our discussion.

Charge Conjugation Matrix. @ We define C as

o8 = § (5 + B) ¢imBMB (A.262)

and

o = 5 (B + ﬂ) eimBMB (A.26D)

and with these convetions we have €% = 098, These expressions can be motivated by
studying the OPE of S* and SP.

It is also common to use only undotted indices when describing spinors in 10d. Charge
matrices act as metrics on the spinor space and can remove all dotted indices. For us

all spinors are defined with upper indices and then anti-chiral ones are written as
Sp = CgsS". (A.27)

This notation is used together with the symmetric gamma representation.



Appendix B

Current algebra CFT

In this appendix we will discuss some general properties of the CFT of gauge sector of

section 4.3.

As mentioned in the text, we are using the ordering prescription (4.47), which can
be understood as the product of two operators A(z) and B(y) in the limit z — y with
the removal of singular terms. Note that this prescription is neither commutative nor

associative:

(A,B) # (B,A), (B.1)
((4,B),C) # (4A,(B,0)). (B.2)

The energy-momentum tensor of the algebra can be obtained using the Sugawara

construction and it is defined by
T=A(Jg,Ja), (B.3)

where A is a numerical constant to be determined by imposing the OPE

Ja
Jo(2) T (y) ~ . B.4
OTW ~ 2 (B.4)
In order to do that, we can compute first
. fabd(sdc Je
Ja(z) (Jba Jc) (y) ik (Z — y)3 fabdfdce (w — y)2
k(sact]b ifacd
+ Jp, J.
(z —y)? (z—y)(b 2
kdapJc i fabd
+ + Ja, Je) - B.5
CEMERS R R 9
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It implies that
Ju(2) T(y) ~ 24k —2"— 1 Afurafroa—20 (B.6)
a ~ VEERY) acdJbed 7 N9 .
(z —y)? (w—y)?
Now we introduce the dual Coxeter number, g, defined through
facd foed = 290 ab- (B.7)
Therefore we can fix A to
1
=—\ B.8
2(k+g9) (B#)
Now we can compute the central charge of the model through the OPE
c/2 2T or
T(2)T(y) ~ + + . B.9
e A T R ey ()
The result is A
k
= : B.10
(k+9) (510

This is the central charge of the gauge sector.

Building additional primary operators

One of the operators we need for the computation of 3-point amplitudes is related to

the ordered product of two currents, (J,, Jp). Observe, however, that this product is not

symmetric. In fact, we can show that
(']a, Jb) - (Jln Ja) = Z.fabcat]c-
Therefore, we can define the operator Jy, = Jp, as

Jab = 5 (Jar D) + 3 (I, Ja),
= (Ja; Jb) - % abcajca

(B.11)

which can be further decomposed in two irreducible pieces: its trace, proportional to T',

and a traceless part.

Observe that any rank two tensor T,; can automatically generate a symmetric trace-

less tensor T{4p) via a multiplication by the projector

S(ab)(ed) = 30acObd + 30addbe — X Oabded-
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It acts as an identity operator for the indices (ab), as

O(ab)(ef) (e (ed) = O(ab)(cd): (B.14)

The pair (ab) is an explicit realization of the index « introduced in section (4.3), labeling

the field ¢, of the vertex operator (4.50).

As it turns out, the symmetric traceless projection picks only the primary part of the
operator (Jq, Jp):

2 (Je, Ja)

0 (J, J
G—y)? +5(ab)<cd>7( 0

= (B.15)

T(2) O(av)(cd) (Jes Ja) () ~ O(ab)(ca)

This is the only dimension 2 primary operator that can be build out of the currents J,.

In addition, we will define the operator

A(ab)(cd) = %fadefbce + %facefbde - %q(sabécd, (Blﬁ)

which is also symmetric and traceless in the index pairs (ab) and (cd), and the power

series
N ) LI
Clabed) = S(ab)(edy — 2 Y (1) k)l (A™) (ab)(cdy » (B.17)
n=1
satisfying
Clab)(en)Cles)(ed) = Oab)(ed) T 25 D(ab)(ed)- (B.18)

This is a realization of the Clebsch-Gordan coefficients, Cqp, introduced earlier. By

construction,

1 _ = L)
(C )(ab)(cd):6(ab)(0d)+nz_:l(_l) syt A @ (B.19)

Let us now define the dimension 2 primary operator

Tty = (C7) (atyeay (e ) (B.20)

which satisfies the OPE

Ja J(de)

Ja(2) J(bc) (y) ~ 2kC(ad)(bc)m - (Ta)(bc)(de) my

where

(Ta) heyde) = =2 (C71) ey g) JasnClghy (e (B.21)
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Observe that (7, a)(bc)(de) constitutes a representation of the group generator, as

Lo Tol(aeyrg) = (Ta)ae)(hi) (o) hiy 1) = (1) cayiony (Tad ghy(es) -
= i fabe (Tc)(de)(fg) . (B.22)
In addition, it satisfies
(TaTa) (be)(de) = 290badce + 290bedcd — fodf feef — foef fedr (B.23a)
(TaTb)(cd)(Cd) = QQ(A + 2)(5[1[). (B23b)

At the next conformal level, there are only two primary operators that can be build

out of J,, defined as

Ja) = 5 (Jas 0D) — 5 (Jo,0Ja) = & fapc0®Je +iC fape (Je, T),  (B.24a)
J(abc) = Jue—C [5{,0 (Ja, T) + Oge (Jb, T) + b (Jc, T)] , (B.24b)
where
Jabc = % (Jaa ch) + % (Jb, Jac) + % (Jca Jab) ’ (B25a)
2(k+g9)
cC = ————~—. B.25b
kA +2(k+g) ( )

They are naturally generated in the OPE algebra. For example,

2T oT
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Jioe (2) Jia ~ o2 Ay dhkig) 5 { -
(b)() (d)(y) (z —y)* A Yad)(bc) (z —y)2

2.J, dJ, | 0%
R ) 0oy aa) { CEE P e ey }

(z—v)

2J(er) N Jier)

N[ =

-1
+2 (C7) aygny ToTh) ey o) { (

J(aes) J(des)

FPawe)en 7 =y T Datbeen 72
les] (Je, T)
FDte)adlen) 77— gy + Betborad) (25

I

z=y)?  (z2—-v)

)

(B.26)

where Do (pe)(de)s D(ab)(cd)lef] @0d Eq(pe)(de) are given in terms of the structure constants
of the group, but their precise expression will not be needed here. The OPE above was

presented in the main text with the indices «, 8 in equation (4.60c).
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