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IFT-UNESP

Abstract

An extensive study on ambitwistors models is presented. We construct the free am-

bitwistor string field theory action for the bosonic string, heterotic string, and both GSO

sectors of the Type II string. These actions contain higher derivative terms, implying

non-unitary states. We also re-examine the bosonic chiral string in the sectorized inter-

pretation, computing its spectrum, kinetic action, and 3-point amplitude. As expected,

the bosonic ambitwistor string is recovered in the tensionless limit. Finally, we consider

an extension of the bosonic model with current algebras. In this case, we compute the ef-

fective action and show that it is essentially the same as the action of the mass-deformed

(DF )2 theory found by Johansson and Nohle.

Key Words: Super Strings, Twistors, Ambitwistors, String Field theory .

https://www.ift.unesp.br/br/
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Resumo

É apresentado um extenso estudo sobre modelos de ambitwistors. Nós constrúımos

a ação livre da teoria de campo de cordas do ambitwistor para a corda bosônica, corda

heterótica e ambos setores GSO da corda tipo II. As ações contêm termos de derivadas

mais altas, implicando em estados não unitários. Também reexaminamos a corda quiral

bosônica na interpretação setorizada, computando seu espectro, ação cinética e ampli-

tude de 3 pontos. Como esperado, a corda bosônica de ambitwistor é recuperada no

limite sem tensão. Finalmente, consideramos uma extensão do modelo bosônico com

álgebras de correntes. Nesse caso, calculamos a ação efetiva e mostramos que é essen-

cialmente a mesma ação da teoria de massa-deformada (DF )2 encontrada por Johansson

e Nohle.

Palavras-chave: Super Cordas, Twistors, Ambitwistors, Teoria de campos de cor-

das

https://www.ift.unesp.br/br/
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Chapter 1

Introduction

The search for compact formulas of scattering amplitudes can be traced back to Parke

and Taylor [1] in 1986 where they conjectured a simple expression for the maximal

helicity violating (MHV) scattering amplitude for n number of particles at tree-level.

Adopting this approach, the 10, 000 terms required to calculate the 5-gluon tree scatter-

ing reduces to a single term. One step towards a better understanding of this formula

was achieved in 2004 by Witten [2] and separately by Berkovits [3] with a new type of

string theory in d = 4 based on twistor worldsheet variables. Both models were shown

to be equivalent and provided a simple way to derive the MHV tree-level amplitude for

N = 4 super-Yang Mills.

The idea to describe amplitudes using twistor variables drastically changed how peo-

ple think about scattering amplitudes and the quest for alternative methods to describe

and compute amplitudes became an extremely active area of research. In 2013 the field

received a lot of attention by a series of remarkable papers [4–7] by Cachazo-He-Yuan

(CHY), where a compact formula for massless tree-level S-matrix in any dimension for

spin-0, 1, 2 was obtained. The n−point amplitude is given by an integral over the moduli

space of the Riemann sphere with n-punctures:

An(kn, εn) =

∫
dnz

volSL(2,C)

∏
a

′δ

(
ka · P (za)

)
× In({kn, εn, zn}) (1.1)

where kµn, ε
µ
n are the external momenta and polarization vectors for the particle n.

This elegant formula contains a lot of ingredients. The most important one, is the

delta function which has the property to completely localize all integrals by imposing

1



Introduction 2

the scattering equations:

ka · P (za) =
∑
b6=a

ka · kb
za − zb

= 0 where Pm(z) =
n∑
b=1

kbm
z − zb

(1.2)

These equations relate kinematic invariants (ka · kb) of n massless particles to marked

points (zn) in a 2-sphere.

One has to eliminate 3 delta’s to remove the redundancy of the scattering equations,

since only n− 3 are independent. So the amplitude result is just a sum over solutions of

the scattering equations, which is amazing because the CHY formula (1.1) transforms

the problem of computing Feynman diagrams into an algebraic one ( finding solutions to

the scattering equations). Even though the S-Matrix is just a sum of algebraic equations,

it is important to note that it is not trivial to solve analytically for higher number of

particles. The total number of solutions for generic kinematics is (n− 3)!.

The second crucial element is the integrand In(k, ε, z) responsible to accommodate

different theories. A systematic procedure to obtain integrands is yet unknown, but the

space of possibilities is restricted by the properties that an amplitude must satisfy, such

as multilinearity in polarization vectors, SL(2,C) invariance, mass dimension, gauge

invariance, and more. With all these constraints Cachazo et al, were able to postulate

In(k, ε, z) for the Bi-adjoint scalar, Yang-Mills, gravity and others.

Because of the similarities with the string amplitude, a natural question was if these

amplitudes (1.1) could be described by a worldsheet model. The answer came in the

same year where Mason and Skinner created the so-called the ambitwistor string [8],

followed by Berkovits’ supersymmetric version using pure spinor formalism [9]. The

CHY formulae were later generalized to different theories [10, 11] and, again, different

ambitwistor strings were proposed as their underlying worldsheet model [12].

By construction, ambitwistor strings are two-dimensional chiral theories that contain

no dimensionful parameter. As we’ll see in 2 the bosonic gauge fixed action takes the

form :

SB =
1

2π

∫
d 2z (Pm∂̄X

m + b∂̄c+ b̃∂̄c̃), (1.3)

where Xm is the target space coordinates, b, c are the reparametrization ghosts, and b̃, c̃

are the ghosts associated to the null contraint P 2 = 0. At first, they were considered as

an infinite tension limit of ordinary string theory, a belief motivated in part by the fact

that the spectrum and tree-level amplitude of type II GSO(+) sector are identical to

that of the corresponding supergravity. However, for the bosonic and heterotic models,

this is not true, since the kinetic term contains higher-derivative terms which imply a

non-unitary spectrum. Also the tree-level amplitude for the bosonic string has higher
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momentum dependence. The n−particle scattering amplitude prescription given by

Mason and Skinner with 3 fixed vertex operators and n− 3 integrated vertex is

An = 〈c1c̃1V1c2c̃2V2c3c̃3V3

n∏
i=4

∫
d2ziδ̄(ki · P (zi))Vi〉 (1.4)

Since all the fields are holomorphic the delta function δ̄(k · P ) is needed to insure the

integrated vertex operator is well defined in the Riemann surface. When the Xm depen-

dence in the vertex operator is only in the exponent eiX·k, the delta function imposes

the scattering equations. This can be seen by integrating X in the correlation function

(1.4) , the zero-modes of X gives the usual conservation of momentum δ-function, the

non-zero modes impose

∂̄Pm(z, z̄) = 2πi
n∑
j=1

kjmδ
2(z − zj) at genus one Pm(z) =

n∑
b=1

kb
z − zb

(1.5)

Now the ambitwistor scattering amplitude has a similar form to the CHY expression, the

delta function imposes the scattering equations, the c ghosts take care of the SL(2,C)

invariance. The ghost c̃ associated to the null constraint P 2 = 0 removes the redundancy

of the scattering equations and the vertex operators represent different integrants In.

However the vertex operator for the bosonic and heterotic models contain ∂Xm in

the vertex operator, as was shown by Berkovits and me in [13], so the X path integral

becomes hard to compute. Since these theories have higher derivatives, it is expected to

be difficult to define and compute scattering amplitudes. It’s important to remark that

part of the spectrum in the heterotic model gives the correct equations of motion and am-

plitude for super Yang-Mills. This is similar to the d = 4 twistor string whose spectrum

includes super Yang-Mills and a higher derivative theory(conformal supergravity)[14].

In hindsight, the higher derivatives should have been expected since the three-point

amplitudes in ambitwistor strings (except for the Type II string) were computed [8]

to have higher powers of momenta compared to the usual massless theories. And since

there are no dimensionful constants like α′ in ambitwistor strings, the higher momentum

dependence in the cubic term of the string field theory action implies higher momentum

dependence in the quadratic kinetic term. These non-unitary states were first found by

Berkovits and me in [13], where we have constructed the most general vertex operator.

In contrast, the vertex operators in [8] were assumed to contain only Pm dependence

and to be independent of ∂Xm, where Xm and Pm are the spacetime variable and its

conjugate momentum. Based on the usual definition of BPZ conjugate [15] we found

the kinetic term consistent with the non-unitary states. This definition differs from

a previous construction [16] where the BPZ conjugate, was chosen unconventionally to
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give a kinetic term with the standard unitary massless spectrum. In a subsequent paper,

[17] the Ramond sector for the heterotic model was investigated. Previously only the

NS-sector received the proper attention. With this in mind H.Flores and I constructed

the vertex operator for the fermionic spectrum and computed the susy transformation.

Also, the kinetic term was built and despite the non-unitary states in the model, the

free action is invariant under the susy transformations.

A new interpretation of the ambitwistor was proposed by Siegel [18] called chiral

string, where he introduced a new gauge fixing (HSZ gauge - first investigated in [19])

and also a new boundary condition for Xm. In this prescription, he obtained the same

results of Mason and Skinner. In [20] the authors found an alternative method to

compute amplitudes for the chiral string model. The boundary condition for Xm is

the same as in [18], but the amplitudes are computed in the conformal gauge. In this

approach, it was noted that the spectrum of these chiral strings contains a finite number

of massive states, depending on the amount of spacetime supersymmetry. For the type

II case, for instance, the physical spectrum is independent of the string tension; and two

spin-2 states with mass-squared +1,−1 were found in the Bosonic model.

In this context, the so-called sectorized string model [21] plays an important role. It

was introduced as an alternative pure spinor analog of ambitwistor strings [9], motivated

by some inconsistencies in its heterotic version and difficulties in coupling it to the N = 2

supergravity background [22]. As such, it was supposed to be a theory for massless

particles only. Nevertheless, it was later shown [23] that the the heterotic sectorized

model contains the N = 1 supergravity states together with a single massive multiplet

with the same quantum numbers as the first massive level of the (conventional) open

superstring. This is possible thanks to a dimensionful parameter whose existence had

been overlooked since the chiral worldsheet action has no parameters. Moreover, when

this parameter is taken to zero, corresponding to a tensionless limit, one recovers the

heterotic ambitwistor string.

Following these ideas, together with T.Azevedo, R.Jusinskas, in [24] we analyze the

bosonic incarnation of the sectorized model above and show how the theory can be

interpreted in terms of two sectors after a particular gauge-fixing is performed. As in

the heterotic case, the two sectors emulate the left- and right-moving sectors of the

usual string theory, but all worldsheet fields are holomorphic. Using methods similar to

the ones used in [13], we found the same physical spectrum as in the alternative Chiral

String [20]. Also in [25] one of the massive spin-2 states was determined to be ghost

via a 4-point amplitude analysis based on a “twisted” Kawai–Lewellen–Tye formula.

This fact is manifest in the quadratic action we constructed from the vertex operator.



Introduction 5

And a careful analysis confirmed that in the tensionless limit, these extra massive states

become auxiliary fields which then leads to the higher derivative theory found in [13].

Finally, we consider an extension of the bosonic model by including current algebras,

which provide a worldsheet derivation of the so-called (DF )2 + YM theory found by

Johansson and Nohle [26]. In particular, the scalar field transforming in some real

representation of the gauge group, whose inclusion might seem somewhat contrived in the

original construction, appears naturally in the sectorized-string formulation. Theories

whose Lagrangians include a (DF )2-type kinetic term were first introduced as a way

of obtaining conformal (super)gravity amplitudes (R2 gravity, in general) from color-

kinematics duality [27], and were shown to admit CHY/ambitwistor representations in

[28]. Like R2 gravity, such theories contain “ghost” states which render them non-

unitary.

This thesis will present the three projects accomplished throughout my Ph.D. in

chronological order. First, in chapter 2 we analyze the free ambitwistor string field

theory action for the bosonic, heterotic, and both GSO sectors of the type II string.

And show that these models — except type II GSO(+) — contain non-unitary states.

In chapter 3 we continue our analysis of the heterotic string, by constructing the action

for the fermionic states, we demonstrate that this model is invariant under N = 1 susy.

Then in chapter 4, we study the bosonic sectorized model, in which the tensionless limit

recovers the bosonic ambitwistor model as expected. Next, we show the extension of the

model to include current algebras result in the (DF )2 + YM theory. Finally chapter 5

summarizes the thesis results and discuss some open problems and perspectives.



Chapter 2

Field theory actions for

ambitwistor string and

superstring

2.1 Outline

In section 2.2 we start with a review of the bosonic ambitwistor model and use the

standard BRST method to compute the spectrum. Then we proceed to construct the

kinetic action in terms of gauge-invariant objects and show that the model contains

higher derivative terms, which implies non-unitary states. This clarifies the unexpected

A3 ∼ (momenta)6 behavior in the three-point amplitude found by Mason and Skinner

[8]. Since the theory does not contain a dimensionful parameter the higher derivative in

the kinetic term solves this inconsistency. And in sections 2.3 and 2.4, we repeat this

procedure for the Neveu-Schwarz states in Type II for both GSO sectors and heterotic

ambitwistor string field theory actions. The spectrum for the GSO(+) Neveu-Schwarz

sector is the expected supergravity states, however, the spectrum for the GSO(−) sector

contains unusual non-unitary states. These non-unitary states are also present in the

heterotic model.

2.2 Bosonic ambitwistor string

We first describe the bosonic ambitwistor string. Subsection 2.2.1 defines the model

and our notation, subsection 2.2.2 computes the spectrum via BRST cohomology, and

6



Field theory actions for ambitwistor string and superstring 7

subsection 2.2.3 constructs the kinetic string field theory action. The same steps will be

later described in sections 2.3 and 2.4 for the Type II and heterotic ambitwistor strings.

2.2.1 Review and notation

The gauge-fixed worldsheet action[8] is

SB =
1

2π

∫
d 2z (Pm∂̄X

m + b∂̄c+ b̃∂̄c̃), (2.1)

where all matter and ghost fields are left-moving bosons and fermions on the worldsheet.

(Pm, X
m) are the matter fields of conformal weight (1, 0), (b, c) are the Faddeev-Popov

ghosts for reparametrization symmetry of conformal weight (2,−1), and (b̃, c̃) are the

Faddeev-Popov ghosts for the null geodesic constraint, P 2 = 0, and carry conformal

weight (2,−1). The action (2.1) is invariant under the BRST transformation generated

by

Q =

∮
dz

2πi

(
cTM + cTb̃c̃ + bc∂c+

1

2
c̃P 2

)
(2.2)

where

TM = −Pm∂Xm, Tb̃c̃ = c̃∂b̃− 2b̃∂c̃, (2.3)

and one uses the free field OPE’s,

Pm(z)Xn(w) ∼ − δnm
(z − w)

, b(z)c(w) ∼ 1

(z − w)
, b̃(z)c̃(w) ∼ 1

(z − w)
. (2.4)

Notice that the XX OPE is regular, so eik·X does not acquire an anomalous dimension.

Furthermore, there are no dimensionful parameters such as α′ in the theory. So the

physical spectrum defined by the BRST cohomology is not expected to contain massive

states. This will be confirmed below, however, we will show that the spectrum contains

both unitary and non-unitary massless states.

Physical closed string states should have ghost number 2 where the ghost number is

defined as

Ngh = −
∮

dz

2πi
(bc+ b̃c̃), (2.5)
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such that b, b̃ have ghost number −1 and c, c̃ have ghost number 1. In order to compute

the ghost number 2 cohomology, Mason and Skinner [8] considered only homogeneous

polynomials in P so that their expression for the spin-2 unintegrated vertex operator is

V (z) = c(z)c̃(z)Pm(z)Pn(z)gmneikX(z). (2.6)

BRST closedness implies

kmgmn = 0 and k2 = 0, (2.7)

while BRST exactness gives

δgmn = k(mλn) and kmλm = 0. (2.8)

Equations (2.7) and (2.8) are the usual conditions satisfied by the graviton field in

linearized gravity where gmn and λ are the target space metric and infinitesimal dif-

feomorphism generator. So it is tempting to say that the vertex (2.6) describes the

graviton. However, this would present a paradox since the three-point scattering ampli-

tude computed using (2.6) is [8]

〈V (z1)V (z2)V (z3)〉 = δ26
(∑

k
)

(grs2 k
1
rk

1
s)(g

mn
3 k2

mk
2
n)(gpq1 k

3
pk

3
q ). (2.9)

Since (2.9) behaves like k6 instead of the k2 behavior of general relativity and since there

are no dimensionful parameters in the theory, one would expect the kinetic term for gmn

should also behave like k6. This suggests that the equation of motion for gmn should be

something like �3gmn = 0 instead of the �gmn = 0 equation implied by (2.7).

In this paper, we aim to clarify this issue. Mason and Skinner constructed the vertex

operator using only polynomials in P . However, from the string theory perspective,

nothing prevents us from considering vertex operators involving ∂X. By considering the

most general vertex operator with ghost number two, we will find that the equation of

motion for gmn behaves like k6.
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2.2.2 Bosonic spectrum

The most general vertex operator with ghost number two that is annihilated by b0 and

L0 is1

V (z) =cc̃Φ2 + c∂c̃Ψ1 + ∂2cc̃S(4) + c∂2c̃S(5) + ∂2ccS(2) + ∂c̃c̃Γ1

+ ∂2c̃c̃S(3) + b̃c̃c∂c̃S(6) + bc∂c̃c̃S(1) ,
(2.11)

where

Φ2 = PmPnG(1)
mn + ∂Xm∂XnG(2)

mn + ∂XmPnHmn + ∂2XmA(1)
m + ∂PmA(2)

m ,

Ψ1 = PmA(5)
m + ∂XmA(6)

m , Γ1 = PmA(3)
m + ∂XmA(4)

m ,

Hmn = G(3)
mn +Bmn.

(2.12)

The symmetric fields with two indices are represented by G
(1)
mn, G

(2)
mn, G

(3)
mn; the anti-

symmetric 2-form by Bmn = B[mn]; the 1-forms by A
(1)
m , . . . , A

(6)
m ; and the scalars by

S(1), . . . , S(6). These fields have arbitrary dependence on X, e.g., G
(1)
mn = G

(1)
mn(X).

The target space fields have gauge symmetry δV = QΛ, where Λ has ghost number

one and also satisfies b0Λ = L0Λ = 0. The most general gauge parameter Λ takes the

form

Λ =cPmΛ(1)
m + c∂XmΛ(2)

m + c̃PmΛ(4)
m + c̃∂XmΛ(5)

m + ∂c̃Λ(6) + bcc̃Λ(7) + cb̃c̃Λ(3).

(2.13)

The vertex (2.11) can be simplified by removing fields that are pure gauge. Whenever

the gauge transformation of a field does not involve spacetime derivatives of the gauge

parameter, we can eliminate this field without producing gauge-fixing ghosts. By a suit-

able choice of gauge parameters, it is easy to show that the fields S(2), S(4), S(6), A
(1)
m , A

(2)
m

can be eliminated from the vertex operator (2.11).

1Since L̄0 is identically zero, the usual constraints that L0 − L̄0 and b0 − b̄0 annihilate the off-shell
closed string vertex operator are replaced by the constraints that L0 and b0 annihilate the off-shell vertex
operator. By L0 and b0 we mean the zero-modes of the b-ghost and stress-energy tensor:

b0 =

∮
dz

2πi
z b(z) and L0 =

∮
dz

2πi
z T (z). (2.10)
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Cohomology: Now that we have the most general vertex operator we can calculate

the cohomology. The BRST-closedness condition QV = 0 gives the following auxiliary

equations

A(5)
n = −∂mG(1)

mn, A(6)
m = −1

2
∂nHmn, A(3)

m = A(6)
m , A(4)

m = −∂mS(1),

G(3)
mn =

1

2
�G(1)

mn −
1

2
∂(n∂

rG
(1)
m)r, 2G(2)

mn = +
1

2
�G(3)

mn + ηmnS
(1),

S(5) = +
1

2
∂n∂mG(1)

mn, S(3) = −1

2
∂mA(3)

m +
3

2
S(1),

(2.14)

together with the equations of motion

�Gm(1)
m + 4∂n∂mG(1)

mn =0,

�Bnm + ∂n∂
pBmp − ∂m∂pBnp =0,

�3G(1)
mn −�2∂(n∂

pG
(1)
m)p + 4ηmnS

(1) + 16∂m∂nS
(1) =0.

(2.15)

The gauge transformations given by δV = QΛ for the propagating fields are

δG
(1)
(mn) =

1

2
∂(nΛ

(1)
m) −

1

6
ηmn(∂ · Λ(1)),

δB[mn] = ∂[mΛ
(4)
n] ,

δS(1) =
1

24
�2(∂ · Λ(1)).

(2.16)

Although the gauge transformation for the field G
(1)
mn does not correspond to the linear

diffeomorphism of the graviton, we will perform in the next subsection a field redefinition

to obtain the usual transformation. However, it is unclear how to interpret this vertex

operator as a deformation around the background.

2.2.3 Ambitwistor kinetic term

The standard kinetic term S[Ψ] = 1
2〈Ψ|(c0 − c̄0)QΨ〉 for the closed bosonic string was

introduced in [15] using the string field defined by the state-operator mapping: |Ψ〉 =

V (0)|0〉 where |0〉 is the SL(2, C) vacuum and |Ψ〉 is constrained to satisfy (L0−L̄0)|Ψ〉 =

(b0−b̄0)|Ψ〉 = 0. For the ambitwistor string, we will have a similar kinetic term; however,

since all the fields are holomorphic, we discard the antiholomorphic zero-modes L̄0 and

b̄0.
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Therefore, we propose for the ambitwistor string kinetic term

S[Ψ] =
1

2
〈Ψ|c0QΨ〉 =

1

2
〈I ◦ V (0)|∂cQV (0)〉 (2.17)

where |Ψ〉 is constrained to satisfy

L0|Ψ〉 = b0|Ψ〉 = 0. (2.18)

The bra state of the string field 〈Ψ| is defined by the usual BPZ conjugate, 〈Ψ| =

〈0|I ◦ V (0) where I(z) = 1/z. For a primary field of conformal weight h the conformal

transformation I acts as

I ◦ φ(y) = (∂yI)hφ(1/y). (2.19)

The variation of S[Ψ] implies c0Q|Ψ〉 = 0. The condition b0|Ψ〉 = 0 turns this

into the linearized equations of motion Q|Ψ〉 = 0. The action S[Ψ] is invariant under

|δΨ〉 = Q|Λ〉, where Λ has ghost number one and is annihilated by L0 and b0. The proof

of gauge invariance and the derivation of the field equations follows exactly as in [15],

so it will not be reproduced here. A similar string field theory action was previously

proposed in [16], but their construction did not allow insertions of ∂X in the vertex

operator and they modified the usual definition of the BPZ inner product to get a

massless unitary spectrum.

Let us focus on computing the action for the ambitwistor string vertex operator

(2.11). The action can be calculated in two different – but equivalent – ways: using

creation and annihilation operator algebra or vertex correlation functions. We will work

with the latter.

The gauge parameter (2.13) can set S(2), S(4), S(6), A(1), A(2) to zero without produc-

ing ghosts, so the vertex operator (2.11) simplifies to

V (z) =cc̃Φ2 + c∂c̃Ψ1 + c∂2c̃S(5) + ∂c̃c̃Γ1 + ∂2c̃c̃S(3) + bc∂c̃c̃S(1) , (2.20)

where

Φ2 = PmPnG(1)
mn + ∂Xm∂XnG(2)

mn + ∂XmPnHmn,

Ψ1 = PmA(5)
m + ∂XmA(6)

m , Γ1 = PmA(3)
m + ∂XmA(4)

m .
(2.21)
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One can verify that the auxiliary field equations of (2.14) imply that

T (z)V (0) ∼+ z−4[−cc̃(Hm
m + 6S(5))] + z−3[c∂c̃(−∂mA5

m − 2S(5))] +

+ z−3[cc̃(−2Pm(∂nG1
mn +A(5)

m )− ∂Xm(∂nHmn + 2A(6)
m ))] +

+ z−3[c̃∂c̃(+∂mA(3)
m + 2S(3) − 3S(1))] + z−1∂V (0)

∼z−4[−cc̃(Hm
m + 6S(5))] + z−1∂V (0).

(2.22)

So after applying the auxiliary field equations of (2.14), T has no double or cubic poles

with V , which implies that I ◦ V (z) = V (I(z)) and the string action (2.17) becomes

the two point function 〈V (I(0))∂cQV (0)〉. We stress that applying the auxiliary field

equations before computing the kinetic term is a trick to simplify the computation. One

could have done the calculation in full detail and obtained the same answer.

Using the vacuum normalization 〈∂2c∂cc∂2c̃∂c̃c̃〉 = 4, the string action becomes

S = −
∫
d26X

[
+

1

8
Gmn(1)�3G(1)

mn +
1

4
∂rG

mr(1)�2∂pG(1)
mp + 4Gmn(1)∂n∂mS

(1)+

+Gp(1)
p �S(1) − 1

2
Bmn(�Bmn + ∂[m∂

pBn]p)

]
.

(2.23)

The equations of motion agree with (2.15) and the gauge transformations are those

given by (2.16). Note that the kinetic action for G
(1)
mn involves 6 derivatives, so the

inconsistency between the momentum dependence of the 3-point amplitude (2.9) and

the momentum dependence of the kinetic term is resolved.

To write the kinetic action in terms of gauge invariant objects, it is convenient to

perform a field redefinition since the gauge transformation for G
(1)
mn is not quite the

transformation of the graviton. A convenient field redefinition is

hmn −
1

6
ηmnh

p
p = G(1)

mn, t = 4S(1) − 1

6
�2hpp, (2.24)

to obtain the gauge transformations of linearized gravity

δhmn =
1

2
∂(nλm) , δt = 0. (2.25)

The action (2.23) written in terms of gauge invariant objects becomes
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S = −
∫
d26X

[
1

2
Rmn�R

mn − 1

4
R�R+ tR− 1

3!
HmnpHmnp

]
, (2.26)

where we have defined the linearized Ricci tensor and 3-form field strength

2Rmn = ∂m∂
phnp + ∂n∂

phmp −�hmn − ∂m∂nhpp,

Hmnp = ∂mBnp + ∂nBpm + ∂pBmn.
(2.27)

One can simplify further by shifting t to t + �R/4 so the term R�R drops out of the

action.

2.3 Type II ambitwistor

In this section we will describe the Type II ambitwistor string for both GSO Neveu-

Schwarz sectors. The spectrum for the GSO(+) Neveu-Schwarz sector will be the usual

bosonic massless Type II supergravity states, however, the spectrum for the GSO(−)

Neveu-Schwarz sector will have some unusual non-unitary states. Although only the

GSO(+) sector is supersymmetric, the GSO(−) sector is expected to appear as inter-

mediate states before summing over spin structures using the RNS formalism. So by

analyzing the contribution of individual spin structures to the one-loop partition func-

tion of the Type II ambitwistor superstring, one should be able to verify this unusual

spectrum for the GSO(−) sector.

2.3.1 Review and notation

For the Type II action we add two fermionic holomorphic worldsheet variables ψ1, ψ2,

both with conformal weight 1/2. We also introduce two pairs of bosonic Faddev-Popov

ghosts: (β1, γ1) and (β2, γ2). The β’s have conformal weight 3/2 while the γ’s have

conformal weight −1/2. The action for this system is

StII =
1

2π

∫
d 2z (Pm∂̄X

m + b∂̄c+ b̃∂̄c̃+ ψ1∂̄ψ1 + ψ2∂̄ψ2 + β1∂̄γ1 + β2∂̄γ2). (2.28)

The new field variables have the OPE’s
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ψmi (z)ψnj (w) ∼ δij
ηmn

(z − w)
, βi(z)γj(w) ∼ − δij

(z − w)
for i, j = 1, 2, (2.29)

in addition to the ones obtained in (2.4). The action (2.28) also presents BRST symmetry

generated by

Q =

∮
dz

2πi
(cTM +cTb̃c̃+cTβ1γ1 +cTβ2γ2 +bc∂c+

1

2
c̃P 2 +γ1P ·ψ1 +γ2P ·ψ2−γ2

1 b̃−γ2
2 b̃),

(2.30)

where

TM = −Pm∂Xm − 1

2
ψ1 · ∂ψ1 −

1

2
ψ2 · ∂ψ2, Tb̃c̃ = c̃∂b̃− 2b̃∂c̃,

Tβiγi = −1

2
∂βiγi −

3

2
βi∂γi .

(2.31)

The nilpotency of the BRST charge imposes the critical spacetime dimension d = 10. In

order to write the vertex operator in the picture (−1,−1) we bosonize the ghosts (βi, γi)

by introducing a set of fermions (ηi, ξi) with conformal weight (1, 0) together with a

chiral boson φi. This new system is described by the free field OPE’s

φi(z)φj(w) ∼ −δij ln(z − w), ηi(z)ξj(w) ∼ δij
z − w

, (2.32)

and the change of variables is

βi = e−φi∂ξi , γi = ηie
+φi . (2.33)

The BRST charge (2.30) in terms of bosonized variables (η, ξ, φ) is written by replacing

Tβiγi = −1

2
∂φi∂φi − ∂2φi − ηi∂ξi and γ2

i = ηi∂ηie
−2φi , (2.34)

for each pair (βi, γi). The ghost number charge (2.57) is modified to accommodate the

(β, γ) system as

Ngh = −
∮

dz

2πi
(bc+ b̃c̃+ ξ1η1 + ξ2η2) (2.35)
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In addition to the ghost number charge we define the picture number:

NPi =

∮
dz

2πi
(ξiηi − ∂φi), (2.36)

such that β and γ have picture zero and ghost number −1 and 1 respectively.

2.3.2 Type II spectrum

There are two sectors for Neveu-Schwarz states in superstring theory which contain

either GSO parity + or GSO parity −. The vertex operator considered by Mason and

Skinner [8] is in the GSO(+) sector. The field content found in [8] is a spin-2 Gmn,

a scalar Gmm and a 2-form Bmn which agrees with the bosonic fields of d = 10 N=2

supergravity. However, the ambitwistor superstring also has a GSO(−) sector that has

not yet been fully investigated.

In order to distinguish the two sectors, we introduce the operator (−)parity where the

parity of ψ1 and eφ1 is defined to be odd, the parity of ψ2 and eφ2 is defined to be even,

and the parity of all other variables (Pm, X
m, b, c, b̃, c̃, ξi, ηi) is defined to be even. One

can easily verify that (−)parity commutes with the BRST charge of (2.30).

Although the superstring is only spacetime supersymmetric after truncating out the

GSO(−) sector, it will be interesting to compute the spectrum for both sectors. The

most general Neveu-Schwarz vertex operator in the picture (−1,−1) with ghost number

two and which is annihilated by b0 and L0 is

V (z) =e−φ1e−φ2(cc̃Φ1 + c∂c̃S(1) + c̃∂c̃S(6)) + ∂φ1e
−φ1e−φ2cc̃S(2)+

+e−φ1∂φ2e
−φ2cc̃S(3) + ∂ξ1e

−2φ1e−φ2(cc̃∂c̃ψ1 ·A(3) + cc̃∂c̃ψ2 ·A(4))+

+e−φ1∂ξ2e
−2φ2(cc̃∂c̃ψ1 ·A(5) + cc̃∂c̃ψ2 ·A(6)) + η1∂ξ2e

−2φ2cc̃S(4)+

+∂ξ1e
−2φ1η2cc̃S

(5),

(2.37)

with

Φ1 = P ·A(1) + ∂X ·A(2) +B(1)
mnψ

m
1 ψ

n
1 +B(2)

mnψ
m
2 ψ

n
2 +Hmnψ

m
1 ψ

n
2 ,

Hmn = Gmn +Bmn.
(2.38)

where the fields are represented by six scalars S, six 1-forms Am, one symmetric two-

form Gmn, and three antisymmetric 2-forms Bmn. Note that the vertex operator (2.37)

is defined in the small Hilbert space, i.e does not contain the zero mode of ξi. Using the

definition of the operator (−)parity the fields can be separated into
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GSO(+) : Hmn = Gmn +Bmn, A
(4)
m , A(5)

m , S(4), S(5)

GSO(−) : A(1)
m , A(2)

m , A(3)
m , A(6)

m , B(1)
mn, B

(2)
mn, S

(1), S(2), S(3), S(6).
(2.39)

Cohomology: As in the bosonic case, the fields in (2.37) have gauge transformations

δV = QΛ, where the gauge field Λ is in the small Hilbert space and satisfies L0Λ = b0Λ =

0. So the gauge field with ghost number one is

Λ = ∂ξ1e
−2φ1e−φ2cc̃(ψ1 · Λ(1) + ψ2 · Λ(2)) + ∂ξ2e

−2φ2e−φ1cc̃(ψ1 · Λ(3) + ψ2 · Λ(4))+

+ e−φ1e−φ2(cΛ(6) + c̃Λ(7)) + ∂ξ1e
−2φ1∂ξ2e

−2φ2cc̃∂c̃Λ(5)+

+ ∂2ξ1∂ξ1e
−3φ1e−φ2cc̃∂c̃Λ(8) + ∂2ξ2∂ξ2e

−3φ2e−φ1cc̃∂c̃Λ(9),

(2.40)

which can be used to gauge away (A
(1)
m , S(1), S(2), S(5)). After using QV = 0 to eliminate

the auxiliary fields in the vertex operator (2.37) whose equations of motion do not

involve derivatives, the remaining equations of motion and gauge transformations for

both sectors are

• GSO(+) :

Field equations Gauge transformations

�Gmn − ∂(m∂
pGn)p + ∂n∂mS

(4) = 0, δGmn = +
1

2
∂(mΛ

(2)
n) +

1

2
∂(mΛ

(3)
n) ,

∂p∂mGpm −�S(4) = 0, δBmn = +
1

2
∂[mΛ

(2)
n] −

1

2
∂[mΛ

(3)
n] ,

�Bmn + ∂[m∂
pBn]p = 0, δS(4) = ∂ · Λ(3) + ∂ · Λ(2).

• GSO(−) :
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Field equations Gauge transformations

∂pB+
pn = 0, δB+

mn = 0,

�B+
mn + ∂[nA

(2)
m] = 0, δB−mn = ∂[nΛ

(4)
m] ,

�B−mn − ∂[n∂
pB−m]p = 0, δA(2)

m = −4∂mΛ(9) − ∂m∂ · Λ(4),

where in the GSO(−) sector we defined B±mn ≡ B
(1)
mn ± B(2)

mn. The field content in the

GSO(+) sector is the expected one from superstring theory and has a graviton Gmn

coupled to a scalar S(4), and an antisymmetric 2-form Bmn. On the other hand, the

spectrum in the GSO(−) sector is unusual and includes two antisymmetric 2-forms and

a 1-form. One of the antisymmetric 2-forms has the usual gauge transformation but the

other one is gauge invariant.

2.3.3 Ambitwistor kinetic term

The construction of the quadratic action for the superstring is similar to the bosonic

construction of section 2.2.3. In addition to the constraints L0|Ψ〉 = b0|Ψ〉 = 0, the

string field at ghost-number 2 is also constrained to be in the (−1,−1) picture in the

small Hilbert space. The string field |Ψ〉 is given by the vertex operator (2.37) introduced

in the previous section. We have

S[Ψ] =
1

2
〈Ψ|c0Q|Ψ〉 =

1

2
〈I ◦ V (0)|∂cQV (0)〉 (2.41)

where I ◦V (z) is the conformal transformation (2.19). The vertex operator (2.37), after

eliminating gauge fields and auxiliary fields, is a primary field with conformal weight

zero, i.e,

T (z)V (0) ∼ z−1∂V (0),

thus the conformal transformation I ◦ V (z) = V (z−1) acts as (2.19). So the calcula-

tion for the action becomes an ordinary two point function with vacuum normalization

〈c∂c∂2cc̃∂c̃∂2c̃e−2φ1e−2φ2〉 = 4. After some algebra, the actions for the GSO(±) Neveu-

Schwarz sectors are
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S+ = −1

2

∫
d10x

[
Gmn(

1

2
�Gmn −

1

2
∂(m∂

pGn)p) + S(4)(∂p∂mGpm −
1

2
�S(4))+

+Bmn(
1

2
�Bmn +

1

2
∂[m∂

pBn]p)

]
,

(2.42)

S− = −1

2

∫
d10x

[
Bmn(1)(�B(1)

mn − ∂[n∂
pB

(1)
m]p + ∂[nA

(2)
m] )+

+Bmn(2)(�B(2)
mn − ∂[n∂

pB
(2)
m]p + ∂[nA

(2)
m] )
]
.

(2.43)

The GSO(+) sector has the standard Type II spectrum – graviton, Kalb-Ramond,

and dilaton. In order to make the field content more clear, rewrite the action (2.42) in

terms of gauge invariant objects by redefining the fields

Gmn = hmn, R = −�hpp + ∂m∂nhmn, φ = S(4) + hmm,

Hmnp = ∂mBnp + ∂nBpm + ∂pBmn,
(2.44)

such that the gauge transformations are

δhmn = +
1

2
∂(mλn) , δBmn = +

1

2
∂[mωn] , δφ = 0, (2.45)

with λm = Λ
(2)
m + Λ

(3)
m and ωm = Λ

(2)
m −Λ

(3)
m . The action for the GSO(+) sector written

in term of these gauge covariant objects is

S+ = −1

2

∫
d10x

[
hmn

1

2
�hmn + (∂phnp)

2 − 1

2
hrr�h

p
p + hrr∂

p∂mhpm + φR

−1

2
φ�φ+

1

6
HmnpHmnp

] (2.46)

which agrees with the action found by[16].

On the other hand, the action (2.43) for the GSO(−) sector is unusual. In terms of

B±mn = B
(1)
mn ±B(2)

mn, the action (2.43) is

S− = −1

2

∫
d10x[

1

3!
H−mnpH−mnp +

1

3!
H+mnpH+

mnp +B+mnFmn] (2.47)

where Fmn = ∂[mA
(2)
n] and H±mnp = ∂[mB

±
np]. So B−mn has the standard kinetic term for

an antisymmetric two-form, but B+
mn couples to Fmn and does not have the usual gauge

invariance of an antisymmetric two-form.
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2.4 Heterotic ambitwistor string

2.4.1 Review and notation

The worldsheet action for the heterotic model is similar to the Type II, but the two

worldsheet fermions (ψ1, ψ2) are replaced by one worldsheet fermion ψ together with a

new current action SJ

Shet =
1

2π

∫
d 2z (Pm∂̄X

m + b∂̄c+ b̃∂̄c̃+ ψ∂̄ψ + β∂̄γ) + SJ . (2.48)

The particular form of the current action SJ is irrelevant, except that it should allow

the vertex operator to be written using a current algebra Ja which has conformal weight

one and satisfies the OPE

Ja(z)Jb(w) ∼ δab

(z − w)2
+

fabc
z − w

Jc(w), (2.49)

where fabc are the structure constants of the algebra. The action (3.1) has BRST sym-

metry generated by

Q =

∮
dz(cTM + bc∂c+ cTb̃c̃ + cTβγ + cTJ +

1

2
c̃P 2 + γP · ψ − γ2b̃), (2.50)

with

TM = −P · ∂X − 1

2
ψ · ∂ψ, Tb̃c̃ = c̃∂b̃− 2b̃∂c̃, Tβγ = −1

2
∂βγ − 3

2
β∂γ,

being the stress energy tensor for the matter and ghost fields. The new feature compared

to the Type II ambitwistor, after removing the variables (ψ2, γ2, β2), is the stress energy

tensor TJ associated with the current action SJ with

TJ(z)TJ(w) ∼ cJ
2(z − w)4

+
2TJ(w)

(z − w)2
+
∂TJ(w)

(z − w)
,

where cJ is the central charge. Nilpotency of the BRST charge implies 41−cJ− 5
2D = 0,

so the critical spacetime dimension is D = 10 for cJ = 16.



Field theory actions for ambitwistor string and superstring 20

2.4.2 Heterotic spectrum

Although the Yang-Mills vertex operator of [8] for the heterotic ambitwistor string has

the expected behavior for Yang-Mills scattering amplitudes, the graviton vertex operator

proposed by Mason and Skinner (2.1) for the heterotic model has similar issues as in

the bosonic model. The three-point graviton scattering amplitude behaves like k4 as

opposed to the expected k2 behavior of general relativity. After allowing ∂X in the

construction of the vertex operator, we will find that the equation of motion for the

symmetric 2-form hmn is

�2hmn + · · · = 0,

which is consistent with the momentum behavior of the three-point amplitude. Another

unexpected feature of the heterotic ambitwistor string is that the spectrum contains a

three-form which is not present in the massless sector of the usual heterotic superstring.

The most general vertex operator in picture (−1) in the small Hilbert space that is

annihilated by b0 and L0 with ghost number 2 is:

V (z) =e−φ(cc̃Φ3/2 + c∂c̃A(2) · ψ + ∂c̃c̃A(1) · ψ) + ∂φe−φ(cc̃A(3) · ψ)+

+ ∂ξe−2φ(∂c̃c̃cΨ1 + ∂2c̃c̃cS(4)) + η(cS(1) + c̃S(3)) + ∂ξe−2φ(∂2ccc̃S(2))+

+ ∂ξ∂φe−2φ∂c̃c̃cS(5) + ∂2ξe−2φ(∂c̃c̃cS(6)),

(2.51)

where

Φ3/2 = H(1)
mnP

mψn +H(2)
mn∂X

mψn + Cmnpψ
mψnψp + Jaψ ·Aa + ∂ψ ·A(4),

Ψ1 = P ·A(5) + ∂X ·A(6) + JaCa +B(3)
mnψ

mψn, H(i)
mn = G(i)

mn +B(i)
mn.

(2.52)

The target space fields are described by six abelian scalars S, one non-abelian scalar Ca,

six abelian 1-forms Am, one non-abelian 1-form Aam, two symmetric 2-forms Gmn, three

antisymmetric 2-forms Bmn and a 3-form Cmnp.

Cohomology: The gauge invariance δV = QΛ can be used to gauge away S(2), S(1), A
(4)
m ,

A
(3)
m , B

(1)
mn where the gauge parameter in picture (−1) with ghost number 1 is

Λ = e−φ(cΛ(6)
m ψm + c̃Λ(7)

m ψm) + ∂ξe−2φ(cc̃Φ1 + c∂c̃Λ(2)) + ∂2ξe−2φcc̃Λ(8)+

+ ∂2ξ∂ξe−3φ∂c̃c̃cΛ(10)
m ψm + ∂ξ∂φe−2φcc̃Λ(9),

(2.53)

with Φ1 = P · Λ(3) + ∂X · Λ(4) + ψmψnΛ
(5)
mn + JaΛa(1).
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After using QV = 0 to fix all auxiliary fields whose equations do not contain deriva-

tives, the remaining dynamical fields are G
(1)
mn, G

r(2)
r , B

(2)
mn, Aam and Cmnp. The equations

of motions together with its gauge transformations for these remaining fields are

−1

4
�2G(1)

mn + �
1

4
∂(m∂

pG
(1)
n)p −

1

10
ηmn�∂

r∂sG(1)
rs −

1

5
∂n∂m∂

r∂sG(1)
rs +

− 1

20
ηmn�G

r(2)
r − 1

10
∂n∂mG

r(2)
r =0,

(2.54)

�Aam − ∂m(∂pAap) =0,

−�Cmnp +
1

6
∂[pB

(2)
mn] =0,

∂pCmnp =0,

(2.55)

with gauge transformations

δG
(1)
(mn) = −1

2
∂(nΛm) +

1

4
ηmn∂ · Λ, Λm = Λ(6)

m + Λ(3)
m ,

δGm(2)
m = +

1

4
�∂ · Λ,

δB(2)
mn = ∂[mΛ

(4)
n] ,

δCmnp = 0,

δAam = −∂mΛa(1).

(2.56)

2.4.3 Ambitwistor kinetic term

The kinetic term follows exactly the Type II construction of section 2.3.3, so we shall not

review it here. The vertex operator (3.53) transforms as a primary field with conformal

weight zero after using the equation of motion for the auxiliary fields. Finally, the

quadratic term takes the form

S =
1

4

∫
d10x

[
−1

4
G(1)mn�2G(1)

mn −
1

2
�(∂rG

(1)nr)(∂sG(1)
sn )− 1

5
�Gm(1)

m ∂m∂nG(1)
mn+

−2

5
(∂m∂nG(1)

mn)2 +
1

10
Gr(2)
r (−�Gm(1)

m − 2∂m∂nG(1)
mn)− 6B(2)mn∂pCmnp+

+6Cmnp(−1

2
�Cmnp +

1

4
∂[p∂

rCmn]r) + 2Aam(�Aam − ∂m(∂ ·Aa))
]
,

(2.57)

where ∂[pCmn]r = 2∂pCmnr + 2∂mCnpr + 2∂nCpmr.

To write the action (2.57) in terms of gauge invariant objects, we redefine the fields
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G(1)
mn = hmn −

1

4
ηmnh

p
p, Gr(2)

r = t− 1

4
�hpp ⇒ δhmn = −1

2
∂(mΛn), δt = 0.

(2.58)

Using the field strengths for the gauge and 2-form fields together with the linearized

Riemann tensor

Rabcd = ∂b∂chad + ∂a∂dhbc − ∂a∂chbd − ∂b∂dhac,

F amn = ∂mA
a
n − ∂nAam,

Hmnp = ∂pB
(2)
mn + ∂mB

(2)
np + ∂nB

(2)
pm,

(2.59)

the action (2.57) takes the form

S = −1

4

∫
d10x

[
6

10
RmnR

mn +
1

10
RmnpqR

mnpq +
1

5
tR− 2CmnpHmnp+

−3Cmnp
(
�Cmnp −

1

2
∂[p∂

rCmn]r

)
+ F amnF amn

]
.

(2.60)

Although the heterotic ambitwistor action correctly describes Yang-Mills, it also has

a symmetric two-form field hmn whose kinetic action is neither Einstein nor conformal

gravity. In addition, it contains an antisymmetric 2-form B
(2)
mn and antisymmetric 3-

form Cmnp with unusual couplings. It is interesting to note, however, that the heterotic

ambitwistor string was used in [28] to reproduce MHV amplitudes for conformal gravity

in D = 4.



Chapter 3

On the Spectrum and Spacetime

Supersymmetry of Heterotic

Ambitwistor String

3.1 Outline

In section 3.2 we decided to review again the ambitwistor model so the chapter is self-

contained, it can be skipped on a first reading. We start in section 3.3, where we use

the standard BRST method to compute the equations of motion of the Ramond sector

for the heterotic system. These represent the fermionic degrees of freedom of the the-

ory, and our analysis shows that they also follow non-unitary equations of motion. We

write a gauge-invariant version of the theory in terms of Fronsdal fields [29]. The kinetic

term of the fermionic ambitwistor string field theory action is also computed in section

3.4. It is expressed in terms of gauge-invariant objects and resembles Fronsdal’s free

action despite having more derivatives. Finally, in section 3.5 we write the supersym-

metry transformations of the system. Then we prove the invariance of the action under

supersymmetry transformations.

3.2 Ambitwistor Action and Ramond Sector.

We first review the ambitwistor model. Its main purpose is to set the basic definitions

and notation. The heterotic ambitwistor model is defined by the free action

S =
1

2π

∫
d2z

(
pm∂̄x

m + ψm∂̄ψ
m + b∂̄c+ b̃∂̄c̃+ β∂̄γ + Sj

)
(3.1)

23
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where pm is a worldsheet holomorphic one-form and xm is an holomorphic coordinate

function. The b and c fields together with β and γ are the Faddeev-Popov ghosts of

superconformal worldsheet symmetry. Particular to the heterotic model, we have the

current action Sj; its specific form is irrelevant for us, we only require the existence of a

current ja with conformal weight 1 that satisfies the OPE

ja(z)jb(w) ∼ δab

(z − w)2
+
fabc jc(w)

(z − w)
, (3.2)

being fabc the structure constants of the Lie algebra in question. The Ambitwistor model

differs from the superstring due to the presence of the b̃ and c̃ ghosts related to the gauge

symmetries of the light-cone constrain: p2 = 0. These ghosts have conformal weights 2

and −1 respectively and both are worldsheet fermions.

Our Majorana spinors ψm will be rewritten in the complex linear combinations:

ψ±i =
1√
2

(
ψ2i−1 ∓ iψ2i

)
(3.3)

for i = 1, . . . , 5 that are subsequently bosonized to

ψ±i(z) = exp

(
± φi(z)

)
c±ei (3.4)

with φ’s satisfying

φi(z)φj(w) ∼ + δij ln(z − w) (3.5)

The (β, γ) system is bosonized with extra fermions (ξ, η)[30], both primaries of conformal

weight 0 and 1 respectively:

β = ∂ξe−φ6ce6 and γ = ηeφ6ce6 . (3.6)

This choice follows the conventions of [31] and [32] where we have introduced the cocycles

cei and ce6 . During the computation of cohomology, cocycle factors are important and

must be taken into account. The definition of cocycles depends on the way we order

the different φi. For us the chiral bosons corresponding to ψm are ordered from 1 to 5

while the boson coming from the βγ system is labeled as 6. A review of how to operate

with cocycles can be found in [31] and a brief explanation is written in appendix A. The

sixth boson has OPE:

φ6(z)φ6(w) ∼ − ln(z − w) (3.7)
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while (ξ, η) form a free system:

ξ(z)η(w) ∼ 1

(z − w)
(3.8)

The symmetries of this action are encoded in the following BRST charge:

Q =

∮
dz

2πi

[
c

(
Tmatter + Tb̃c̃ + Tβγ + Tj

)
+ bc∂c+

1

2
c̃p2 + γpmψm − γ2b̃

]
(3.9)

provided

Tmatter = −pm∂x
m +

1

2

5∑
i=1

∂φi∂φi, Tb̃c̃ = c̃∂b̃− 2b̃∂c̃, (3.10a)

Tβγ = −1

2
∂φ6∂φ6 − ∂2φ6 − η∂ξ, and γ2 = η∂ηe+2φ6 . (3.10b)

These are all the stress-energy tensors for (xm,pm, ψ
m), (β, γ) and (b̃, c̃). We only require

for the stress tensor of the current sector, Tj, that the following OPE is satisfied:

Tj(z)Tj(w) ∼ cj
2(z − w)4

+
2Tj(w)

(z − w)2
+
∂Tj(w)

(z − w)
. (3.11)

Then, provided the central charge of the current system is 16, it is possible to show that

Q2 = 0 when the spacetime is 10-dimensional.

3.3 Cohomology.

In this section, we compute the ghost number 2 BRST cohomology of the Ambitwistor

string for states in the Ramond sector. The cohomology of the Neveu-Schwarz sector

has already been computed in section 2.4 [13].

We start by writing the most general vertex operator and the most general gauge

parameter. Once all equations of motion and gauge transformations are obtained, we

solve the algebraic gauge conditions to obtain a set of independent field equations.

3.3.1 Vertex operators.

States are defined by picture number −1/2 and ghost number 2 BRST cohomology. We

define ghost and picture numbers by the expressions:
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Nghost = −
∮

dz

2πi

(
bc+ b̃c̃+ ξη

)
and Npicture =

∮
dz

2πi

(
ξη − ∂φ6

)
. (3.12)

Vertex Operator. The most general ghost number 2 and picture number −1/2

vertex operator that is annihilated by b0 is given by the sum,

VR = V+ + V−, (3.13)

where V+ and V− are the GSO(+) and GSO(−) combinations. The GSO(+) vertex

operator is given by:

V+ = cηSαeφ/2Aα + c̃ηSαeφ/2Bα + cc̃Sα̇e−φ/2∂xmCmα̇ + cc̃Sα̇e−φ/2pmDm
α̇ + (3.14)

+ cc̃Sα̇e−φ/2jaEa
α̇ + c∂c̃Sα̇e−φ/2Fα̇ + cc̃Sα̇∂e−φ/2Gα̇+

+ cc̃ψm(/ψS)αe−φ/2Hm
α + cc̃∂c̃∂ξSαe−3φ/2Iα + c̃∂c̃Sα̇e−φ/2Jα̇ (3.15)

while V− is obtained from V+ by changing the chirality of our spinors. Notice that the

vertices ψmψnSα̇ and ∂Sα̇ have not been written. In bosonized form, these combinations

are related to ψ/ψS via field redefinitions[31]; there is no need to worry about them.

Gauge vertex. As for the gauge transformations, we parametrize them by ghost

number 1 and picture number −1/2 vertex operators:

Λ = cSα̇e−φ6/2λα̇ + c̃Sα̇e−φ6/2ωα̇ + cc̃∂ξSαe−3φ6/2µα. (3.16)

Both expressions (3.13) and (3.16) constitute the basic field content of BRST cohomol-

ogy.

3.3.2 Equations of motion and gauge symmetries.

For clarity we consider only the GSO(+) sector. The GSO(−) is obtained by replacing

chiral indices for anti-chiral and vice-versa. We present the equations of motion organized

by ghost number as they were obtained from the OPE of Q and V+. We also write the

worldsheet operator that multiplies the resulting equation of motion.
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• For (2c, 1c̃) multiplying (Sα̇e−φ6/2cc̃∂2c):

+
1

2
∂mDm

α̇ + Fα̇ −
3

8
Gα̇ −

9

4
(Γm)βα̇Hmβ = 0 (3.17)

• For (0c, 1c̃) multiplying (Sα̇e3φ6/2c̃η∂η):

+ Jα̇ −
i√
2

(Γm)βα̇∂mBβ = 0 (3.18)

• For (1c, 0c̃) multiplying (Sα̇e3φ6/2cη∂η):

− i√
2

(Γm)βα̇∂mAβ −Gα̇ + Fα̇ = 0 (3.19)

• For (1c, 2c̃)

– multiplying (Sαe−φ6/2cc̃∂c̃pm):

− 1

2
�Dm

α̇ + Cm
α̇ − ∂mFα̇ −

i√
2

(Γm)βα̇Iβ = 0 (3.20)

– multiplying (Sα̇e−φ6/2cc̃∂2c̃):

− 1

2
∂mCmα̇ − Jα̇ = 0 (3.21)

– multiplying (Sα̇e−φ6/2cc̃∂c̃∂xm):

− 1

2
�Cmα̇ − ∂mJα̇ = 0 (3.22)

– multiplying (Sα̇e−φ6/2cc̃∂c̃∂φ6):

+
1

4
�Gα̇ +

1

2
Jα̇ +

i√
2

(Γm)βα̇∂mIβ = 0 (3.23)

– multiplying (cc̃∂c̃ψm(/ψS)α):

+
1

2
�Hm

α −
i

4
√

2
∂mIα +

i

8× 9
√

2
(Γm)β̇α(/∂I)β̇ +

1

9× 4
(Γm)β̇αJβ̇ = 0 (3.24)
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• For 1c, 1c̃

– multiplying (Sαeφ6/2cη∂c̃):

− 1

2
�Aα + Bα + 2Iα −

i√
2

(Γm)β̇α∂mFβ̇ = 0 (3.25)

– multiplying (Sαeφ6/2cc̃η∂xm):

− ∂mBα +
i√
2

(Γn)β̇α∂nCmβ̇ = 0 (3.26)

– multiplying (Sαeφ6/2cc̃ηpm):

− ∂mAα +
i√
2

(Γn)β̇α∂nD
m
β̇

+
i

2
√

2
(Γm)β̇αGβ̇ −

i8√
2
Hm
α −

i√
2
Hβn(Γn)βα̇(Γm)α̇α = 0

(3.27)

– multiplying (Sαeφ6/2cc̃∂η):

−Bα + 3Iα +
i√
2

(Γm)β̇αCmβ̇ −
i

2
√

2
(Γm)β̇α∂mGβ̇ +

8i√
2
∂mHαm+ (3.28)

+
i√
2

(Γn)β̇α(Γm)τ
β̇
∂nHτm = 0

– multiplying (Sαeφ6/2cc̃η∂φ6):

1

2
Bα + 4Iα +

i√
2

(Γm)β̇αCmβ̇ −
i√
2

(Γm)β̇α∂mGβ̇ +
8i√

2
∂mHαm+ (3.29)

+
i√
2

(Γn)β̇α(Γm)τ
β̇
∂nHτm = 0

– multiplying
(
ηcc̃ψm(/ψS)α̇eφ6/2

)
:
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+
i

2
√

2

[
1

4
∂mGβ̇ −

1

9× 8
(Γm)τα̇(/∂G)τ

]
− i√

2

[
1

4
Cα̇m −

1

9× 8
(Γm)τα̇(/C)τ

]
+

− i√
2

[
− 1

4
(Γn)βα̇∂mHβn − (Γn)βα̇∂nHβm +

1

9
(Γm)βα̇∂

nHβn

]
+

(3.30)

+
1

36
(Γm)αα̇Bα −

i√
2

[
1

9× 8
(Γm)βα̇(Γl)β̇β(Γp)τ

β̇
∂lHτp

]
= 0

These 14 equations of motion are all invariant under the following 10 gauge transforma-

tions:

δAα = +
i√
2

(Γm)β̇α∂mλβ̇ + 2µα (3.31a)

δBα = +
i√
2

(Γm)β̇α∂mωβ̇ (3.31b)

δIα =
1

2
�µα (3.31c)

δHm
α =

1

9× 4
(Γm)β̇αωβ̇ +

i

4
√

2
∂mµα −

i

8× 9
√

2
(Γm)β̇α(/∂µ)β̇ (3.31d)

δCmα̇ = ∂mωα̇ (3.31e)

δDm
α̇ = ∂mλα̇ −

i√
2

(Γm)βα̇µβ (3.31f)

δEA
α̇ = 0 (3.31g)

δFα̇ = −1

2
�λα̇ + ωα̇ (3.31h)

δGα̇ = ωα̇ −
2i√

2
(Γm)βα̇∂mµβ (3.31i)

δJα̇ = −1

2
�ωα̇ (3.31j)

We determined the basic content of ghost number 2 BRST cohomology; all equations

of motion have been written between (3.17) and (3.30). This set is highly redundant,

and the next step is to use (3.31) to stablish the independent field equations.

3.3.3 Gauge-fixing and independent equations of motion.

In order to find the independent set of equations of motion, we begin by fixing algebraic

gauge conditions and solving auxiliary field equations. Let us gauge-fix A and F to zero
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using the parameters µ and ω, that is, we choose µ = −A and ω = −F so that the

residual gauge parameters µ′ and ω′ must satisfy:

µ
′
α +

i

2
√

2
(Γm)β̇α∂mλβ̇ = 0, (3.32)

and

ω
′
α̇ −

1

2
�λα̇ = 0. (3.33)

After this gauge fixing, the following auxiliary field conditions can be imposed:

Gm
α̇ = 0, (3.34a)

Bα = −2Iα, (3.34b)

Cm
α̇ = +

1

2
�Dm

α̇ +
i√
2

(ΓmI)α̇, (3.34c)

Jα̇ = −1

4
� ∂mDm

α̇ −
i

2
√

2
(/∂I)α̇, (3.34d)

Hm
α =

1

8
/∂
β̇
αDm

β̇
− 1

18× 8
(ΓmΓn /∂)β̇αDn

β̇
. (3.34e)

At this point it is already clear that there only remains two independent fields given by

Dm
α̇ and Iα. Moreover, the only remaining gauge parameter is λ. We leave the gluino

field Ea
β̇

out of the discussion since its equation of motion is already the Dirac equation

and it has no gauge transformations.

Finally, the following set of 3 equations,

i√
2
∂mIα = �

(
1

4
/∂
β̇
αDm

β̇
− 1

12
(Γm)β̇α∂nD

n
β̇

)
(3.35a)

2∂mDm
α̇ + (ΓnΓp)

β̇
α̇∂

nDp

β̇
= 0 (3.35b)
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/∂
α̇
αEa

α̇ = 0 (3.35c)

with the corresponding gauge transformations:

δDm
α̇ =

3

4
∂mλα̇ −

1

4
(Γmn) β̇

α̇ ∂nλβ̇ (3.36a)

δIα = − i

4
√

2
/∂
β̇
α�λβ̇ (3.36b)

defines the spectrum of the theory.

Gauge-invariant description. Consider the following field redefinitions:

dmα̇ = Dm
α̇ −

1

6
(Γm)αα̇ /Dα (3.37a)

iα = +
i4√

2
Iα +

1

6
� /Dα (3.37b)

such that our gauge transformations are mapped to

δdmα̇ = ∂mλα̇ and δiα = 0. (3.38)

The gauge-invariant object is then naturally defined as:

Fmnα̇ = ∂mdnα̇ − ∂ndmα̇ (3.39)

which allows us to write the equations of motion in the following form:

∂miα = �Fmα (3.40a)

and

(/F)α̇ = 0 (3.40b)
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where

Fmα ≡ (Γn)α̇αFmnα̇ = (/∂dm − ∂m/d)α. (3.41)

In the formulation of free higher-spin theories Fm is called Fronsdal tensor[29], it is the

analog of the Ricci curvature in spin 2 formulation.

This section started with the most general ghost number 2 picture −1/2 vertex

operator. Then we obtained all equations of motion from the BRST method together

with all gauge transformations parametrized by ghost number 1 picture −1/2 vertex

operators. By fixing some of this gauge freedom, we have found a independent set of

equations of motion that can be parametrized by Fronsdal fields. The next natural step

is to write the spacetime action that gives the dynamics of this system.

3.4 Action

The kinetic term of the ambitwistor string field theory was defined in [13]:

S[V ] = 〈I ◦ V (−3/2)(0) ∂cQV (−1/2)(0)〉, (3.42)

where V −1/2 is the vertex operator (3.13) introduced in the previous section, an element

of the small Hilbert space that is also constrained to satisfy L0V = b0V = 0. The RNS

string has one additional feature: the picture number. It is necessary to saturate the

background charge of supermoduli space to −2, and that is why we need a string field

with picture −1/2, V −1/2, together with a string field with picture −3/2, V −3/2. We

define picture raising, Z, and picture lowering, Y , by the following expressions:

Z = c∂ξ + eφ6pmψ
m − ∂(e2φ6ηb̃)− e2φ6∂ηb̃, (3.43)

Y (z) = c̃∂ξe−2φ6 , (3.44)

so that we can obtain V −3/2 from V −1/2 via

V −3/2(z) =
1

2πi

∮
dw

(w − z)
Y (w)V −1/2(z). (3.45)
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Using the auxiliary gauge-fixing conditions imposed on the previous section, we obtain

V −3/2 = (3.46)

+ c̃∂c̃Sαe−3φ6/2Bα − cc̃∂c̃∂ξSα̇e−5φ6/2∂xmCmα̇ − cc̃∂c̃∂ξSα̇e−5φ6/2pmDm
α̇

− cc̃∂c̃∂ξSα̇e−5φ6/2jaEa
α̇ − cc̃∂c̃∂ξψm(/ψS)αe−5φ6/2Hm

α −
1

2
cc̃∂c̃∂ξ∂2c̃∂2ξSαe−7φ6/2Iα

(3.47)

The composition I ◦V −3/2 is the BPZ conjugate of the picture −3/2 field with I = −1/z.

We should be careful when computing the conformal transformation I ◦ V −3/2 because

V −1/2 is not primary. From the OPE with the stress-energy tensor

T (z)V −1/2(0) ∼ z−3Sα̇e−φ6/2cc̃

(
1

2
∂mDm

α̇ + Fα̇ −
3

8
Gα̇ −

9

4
/Hα̇

)
+ · · · (3.48)

we obtain a cubic pole contribution that changes the finite conformal transformation to

I ◦ V =

[
V
(
I(z)

)
+

1

2

I ′′(z)

[I ′(z)]2
#
(
I(z)

)]
. (3.49)

where # is cubic pole coefficient. Even after the auxiliary conditions are imposed we

still have non-primary contributions that must be taken into account.

To calculate the free action, we fix the normalization 〈c∂c∂2cc̃∂c̃∂2c̃e−2φ6〉 = 4, then

the correlation function (3.42) gives the following gauge-invariant action:

SR = −
∫
d 10x

[
1

2
dmα�

(
Fmα −

1

2
(γm)αβ /F

β
)

+
1

2
(/F)αiα −

i

2
Tr

(
E/∂E

)]
. (3.50)

In this expression we used the symmetric gamma matrices (γmαβ, γ
αβ
m ) defined in appendix

A. When using these symmetric matrices, the charge conjugation is used to eliminate

all dotted indices; different chiralities are just represented by upper and lower indices,

i.e. (Cαα̇dmα̇ = dmα).

We have written a non-unitary action that gives the equations of motion obtained in

(3.40). It closely resembles the gauge-invariant formulation of spin 3/2, the difference



On the Spectrum and Spacetime Supersymmetry of Heterotic Ambitwistor String 34

being the presence of more derivatives. Let us proceed and study the supersymmetry of

this non-unitary system.

3.5 Supersymmetry.

Let us define the supersymmetry generator as

Q−1/2
α =

1

2πi

∮
dz Sαe

−φ6/2 (3.51)

Notice that it carries picture, which means that supersymmetry algebra only closes

on-shell. We need the picture 1/2 supersymmetric charge:

Q1/2
α =

1

2πi

∮
dz

[
ipm(γm)αβS

βeφ6/2 + b̃ηSαe
3φ6/2

]
. (3.52)

to obtain {Q−1/2
α , Q

1/2
β } = 2γmαβpm. In practice, supersymmetry transformations are

written up to equations of motion. One also needs to choose a GSO sector to have well-

defined supersymmetry transformations, otherwise there will be branch cuts. Given the

generator (3.51), we need use the GSO(+) vertex operator.

3.5.1 Supersymmetry transformations of NS and R sectors.

The Neveu-Schwarz vertex operator in picture −1 was written in [13]:

V −1
NS =

e−φ6cc̃

[(
G

(1)
(mn) +B

(1)
[mn]

)
pmψn +

(
G

(2)
(mn) +B

(2)
[mn]

)
∂xmψn + Cmnpψ

mψnψp + jaψmAam

]
+ e−φ6cc̃∂ψmA(4)

m + ∂φ6e
−φ6cc̃A(3)

m ψm + ∂ξe−2φ6∂2c̃c̃cS(4) + ηcS(1) + ∂ξe−2φ6∂2ccc̃S(2)

+ . . . (3.53)

where . . . depends only on the previous fields. In [13], the fields (B
(1)
mn, A

(3)
m , A(4), S(1), S(2))

of (3.53) were gauged to zero. If we choose to keep this gauge, we must observe that

in general supersymmetry does not preserve a given gauge condition. Therefore when

calculating supersymmetry transformations, we have to choose the gauge parameter Λ:
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δζV
−1
NS =

[
ζQ−1/2, V

−1/2
R

]
+

[
QBRST ,Λ

−1

]
, (3.54)

which is a vertex operator of ghost number 1 and picture−1, to ensure that δζ(B
(1)
mn, A

(3)
m , A(4),

S(1), S(2)) all give zero. In the transformations below, the contributions of H are due to

the gauge-fixing of these auxiliary fields:

δζG
(1)
mn = 2(ζγ(mDn)) (3.55)

δζG
(2)
mn =

2

5
(ζγ(nCm))−

48

5
∂(nζHm) (3.56)

δζB
(2)
mn = −4(ζγ[nCm])−

48

5
(ζ∂[mHn]) (3.57)

δζCmnp =
3

2
∂[p(ζγmDn])− 24(ζγ[npHm]) + 6(ζγmnp /H) (3.58)

and using the field redefinitions of [13]:

hmn = G(1)
mn +

1

4
ηmnh

r
r, t =

1

4
�hmm +Gm(2)

m and B(2)
mn = Bmn (3.59)

we arrive at

δζhmn = 2ζγ(mdn) (3.60)

δζt = ζi (3.61)

δζCmnp = −3(ζγt[mnF
t
p])− 3(ζγ[mFnp]) (3.62)

δζBmn = −2�(ζγ[mdn])− (ζγmni) +
1

6
(ζγmn∂pF

p) (3.63)

δζA
a
m =

i

2
(ζγmEa). (3.64)

The term (ζγmn∂pF
p) is zero if we use the equation of motion /F = 0, and so could not

have been obtained from the supersymmetry generator (3.51). This term was added by

hand in order to make the action invariant under supersymmetry.

For the Ramond sector the same can be done if we use instead the picture +1/2

supersymmetry generator (3.52):
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δζd
α
m = +(γrsζ)α∂shmr − 2(γnpζ)αCmnp +

1

3
(γmnpsζ)Cnps (3.65)

δζiα = 2(ζ/∂)αt− (γmnpζ)αHmnp +
1

3
(γmnpζ)α�Cmnp (3.66)

δζE
aβ = −1

4
Fmn(γmnζ)β (3.67)

At this point, we have obtain the supersymmetry transformations of both NS and

R system for the independent fields of the theory in equations (3.60) to (3.59). Let us

proceed and check that indeed the total GSO(+) action is supersymmetric invariant.

3.5.2 Supersymmetry invariance of the action.

The action that describes the Neveu-Schwarz sector is

SNS = −
∫
d10x

[
1

2
hmn�

(
Rmn −

1

2
ηmnR

)
− tR+

1

4
Tr(FmnFmn)+

−CmnpHmnp +
1

2
Cmnp

(
�Cmnp −

1

2
∂[p∂

rCmn]r

)]
(3.68)

where Hmnp is the field strength for Bmn and Rmn is the Ricci tensor. This expression

is equivalent to the action written in equation (4.13) of [13] if we shift t by t 7→ t+R2.

The equations of motion derived from (3.68) are 1

�Rmn − ∂m∂nt = 0 , R = 0 , �Cmnp −Hmnp = 0 ,

∂mCmnp = 0 , and ∂mF
mn = 0. (3.69)

Now, the Ramond sector is described by equation (3.50):

SR = −
∫
d 10x

[
1

2
dmα�

(
Fmα −

1

2
(γm)αβ /F

β
)

+
1

2
(/F)αiα −

i

2
Tr

(
E/∂E

)]
. (3.70)

1Notice that we use the fact

(δhmn)�

(
Rmn − 1

2
ηmnR

)
= hmn�δ

(
Rmn − 1

2
ηmnR

)
+ total derivative
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from which we obtain the following set of equations of motion – (3.40):

∂miα = �Fmα , /F
α

= 0 and i/∂αβE
a β = 0. (3.71)

From now on, we leave the Yang-Mills system out of the discussion because its super-

symmetry transformations and action are already standard. For later use, let us write

the supersymmetry transformation for all field strengths:

δζRmn = (ζ∂(mFn)) + (ζγ(m∂
pFn)p) (3.72a)

δζHmnp = 3�(ζγ[mFnp])− 3(ζγ[mn∂p]i) +
1

2
(ζγ[mn∂p]∂`F

`) (3.72b)

δζF
α
mn = −2(γrsζ)αRmrsn + 4(γrpζ)α∂[nCm]rp −

2

3
(∂[nγm]rpsζ)αCrps (3.72c)

δζFmα = +2(γnζ)αRmn − 2(γlnpζ)α∂lCmnp +
1

3
(γlmnpsζ)α∂

lCnps

+ 4(γnζ)α∂
pCmnp − (γmpsζ)α∂nC

nps (3.72d)

δ /F
β

= 2ζβR− 6(γnpζ)β∂mCnpm (3.72e)

3.5.3 Supersymmetry for (hmn, t, i,d)

Let us consider the system:

S = −
∫
d10x

(
1

2
hmn�

(
Rmn −

1

2
ηmnR

)
− tR

+
1

2
dmα�

(
Fmα −

1

2
(γm)αβ /F

β
)

+
1

2
(/F)αiα

)
(3.73)

such that the

SNS variation is given by

δζ (−tR) = −ζαiαR− 2tζα∂pF
p
α

δζ

[
1

2
hmn�

(
Rmn −

1

2
ηmnR

)]
= 2(ζγmdn)�

(
Rmn −

1

2
ηmnR

)



On the Spectrum and Spacetime Supersymmetry of Heterotic Ambitwistor String 38

and the

SR variation is given by

δζ

(
1

2
dmα�

(
Fmα −

1

2
(γm)αβ /F

β
))

= 2dmα�

(
(ζγn)αRmn −

1

2
(ζγm)αR

)
= −2(ζγndm)�

(
Rmn −

1

2
ηmnR

)

δζ

(
1

2
(/F)αiα

)
= ζαRiα + (/F)α/∂αβζ

βt

= ζαiαR+ 2ζα(∂pF
p
α)t+ ∂(...)

where we have used (3.72) and (/∂ /Fζ) = 2(ζ∂pF
p). It is clear that the sum of all terms

cancels and invariance of this system is stablished.

3.5.4 Supersymmetry for (Hmnp, Cmnp,d
α
m, iα)

It remains for consideration the following system:

S = −
∫
d10x

(
− CmnpHmnp +

1

2
Cmnp

(
�Cmnp −

1

2
∂[p∂

rCmn]r

)

+
1

2
dmα�

(
Fmα −

1

2
(γm)αβ /F

β
)

+
1

2
(/F)αiα

)
(3.74)

In order to check supersymmetric invariance we have to gather all independent combi-

nation of gamma matrices (γm, γmn, γmnp, γmnpp, γmnpqr). So consider the

SNS variation:

δζ(−CmnpHmnp) = +3
[
(ζγtmnF

t
p) + (ζγmFnp)

]
Hmnp − 3(ζγmFnp)�C

mnp

− 3(ζγmni)∂pC
mnp − 1

2
(ζγmn∂pF

p)∂pC
mnp + ∂(. . . )
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δζ

[
1

2
Cmnp

(
�Cmnp −

1

2
∂[p∂

rCmn]r

)]
=− 3

[
(ζγtmnF

t
p) + (ζγmFnp)

]
�Cmnp

+
1

2

[
(ζγmn∂

pFp) + (ζγm∂n /F)
]
∂rC

mnr + ∂(. . . )

and the

SR variation:

δζ

(
1

2
/Fi

)
= −3(γnpζ)β∂mCnpmiβ −

1

2
/F
α
(γmnpζ)αHmnp +

1

6
/F
α
(γmnpζ)α�Cmnp

= +3(ζγnmi)∂pCnmp+

−
[

1

6
(ζγmnptsFts)�Cmnp − (ζγtmnF p

t )�Cmnp − (ζγmFnp)�Cmnp

]
+

[
1

2
(ζγmnptsFts)Hmnp − 3(ζγtmnF p

t )Hmnp − 3(ζγmFnp)Hmnp

]

δζ

(
1

2
dαm�

(
Fm
α −

1

2
(γm)αβ /F

β
))

=

=

(
−2(γnpζ)αCmnp +

1

3
(γmnpsζ)αCnps

)
�

(
Fm
α −

1

2
(γm)αβ /F

β
)

= +2(F m
l γlnpζ)�Cmnp − 4(Fmnγpζ)�Cmnp+

− 1

3
(Flmγ

lmnpsζ)�Cnps − (F n
m γpsmζ)�Cnps+

−
[

1

6
(ζγmnptsFts)�Cmnp − (ζγtmnF p

t )�Cmnp − (ζγmFnp)�Cmnp

]

Recall that the γmnpqr is symmetric and γmnp is antisymmetric under the spinor indices.

Gathering all independent terms we confirm the system is supersymmetric.



Chapter 4

Bosonic sectorized strings and the

(DF )2 theory

4.1 Outline

This chapter is organized as follows. In section 4.2, we introduce the sectorized descrip-

tion of the bosonic chiral string, having the Polyakov action in first-order form as our

starting point. We then investigate the physical spectrum of the model and analyze

its tensionless limit. The kinetic part of its effective action and some results on the

tree-level three-point amplitudes are also presented. In section 4.3, the bosonic model

is extended with the inclusion of current algebras, and the effective field theory inferred

from the three-point functions is shown to agree with the (DF )2 + YM + φ3 theory of

Johansson and Nohle. The Appendix B includes further details on the CFT of current

algebras that are relevant for this work.

4.2 The bosonic sectorized string

In this section we will rederive some known results for chiral bosonic strings using the

sectorized description, including its physical spectrum and tensionless limit analysis.

4.2.1 The Polyakov action in first-order form

The Polyakov action is given by

SP =
T
2

∫
dτdσ

√
−g{gij∂iXm∂jXm}, (4.1)

40
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where T > 0 is the string tension, gij is the worldsheet metric (with inverse gij) and

g = det(gij), with i, j denoting the usual worldsheet coordinates τ and σ. Spacetime

indices m,n, . . . are raised and lowered with the (mostly plus) Minkowski metric ηmn.

In the first order formulation, one can define a classically equivalent action, given by

S̃P =

∫
dτdσ

{
Pm∂τX

m − 1
4T e+(Pm + T ∂σXm)(Pm + T ∂σXm)

− 1
4T e−(Pm − T ∂σXm)(Pm − T ∂σXm)

}
, (4.2)

where e± denote the Weyl invariant Lagrange multipliers related to the worldsheet metric

as

e± ≡
1

gττ
√
−g
∓ gτσ

gττ
. (4.3)

Although not manifestly, the action S̃P is invariant under worldsheet reparametriza-

tions, generated by

H± ≡ (Pm ± T ∂σXm)(Pm ± T ∂σXm). (4.4)

The corresponding gauge transformations are given by

δXm = 1
2c+(Pm + T ∂σXm) + 1

2c−(Pm − T ∂σXm), (4.5a)

δPm = T
2 ∂σ[c+(Pm + T ∂σXm)− c−(Pm − T ∂σXm)],

δe+ = ∂τ c+ + c+∂σe+ − e+∂σc+, (4.5b)

δe− = ∂τ c− − c−∂σe− + e−∂σc−, (4.5c)

where c+ and c− are local parameters.

4.2.2 The sectorized interpretation

The quantization of the action (4.2) is straightforward, and the usual conformal gauge

is obtained when we choose e± = 1. We want to discuss, instead, a particular case of

the one-parameter (β) family of gauges introduced in [18], which can be cast as

e+ = 1, e− =
(1− β)

(1 + β)
. (4.6)

For β = 0, the conformal gauge is recovered. We are interested in the singular gauge

β → ∞, leading to a chiral worldsheet action. In this limit, e± = ±1. This singular

gauge was proposed in the context of doubled-coordinate field theory in [19]. After a
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Wick rotation of the worldsheet coordinate τ , the gauge-fixed action can be written as

S =
1

2π

∫
d2z{Pm∂̄Xm + b+∂̄c+ + b−∂̄c−}, (4.7)

where the gauge parameters c± have been promoted to anticommuting ghosts with

corresponding antighosts b±. All fields in S are holomorphic and the string tension T
is now hidden.

A few comments about the gauge fixing (4.6) are in order. For any finite β, a

redefinition of the worldsheet coordinates can always bring the gauge fixed action to the

conformal gauge. This is hardly surprising, since the physical model should be gauge

independent. This was noted by Siegel in [18], but his construction of the chiral string

involved another crucial ingredient related to a change in the boundary conditions of

the action. At any rate, adopting the singular gauge (β → ∞) is useful since then the

delta functions realizing the scattering equations become explicit.

It was later noticed that the boundary condition leading to Siegel’s new propagator

for the target space coordinates could in fact be described by the usual string theory

in the conformal gauge (β = 0), albeit with a different choice of vacuum [33]. In the

ambitwistor context, this alternative vacuum was investigated in [34] (and further in

[35]) and also arises naturally from the quantization of the action (4.7). As it turns out,

this seems to be the only consistent vacuum in the singular gauge β → ∞. It might

look like a contradiction, but the key idea here is precisely that this is a singular gauge

which effectively leads to a degenerate worldsheet metric. In other words, the action

(4.7) is completely oblivious to the usual conformal gauge in string theory because this

gauge choice is not invertible (hence, singular).

In spite of being chiral, the model can be interpreted in terms of two sectors, namely

the “+” and the “−”, which partially emulate the left and right movers of the usual

bosonic string. Each sector has its own characteristic energy-momentum tensor given

by

T+ = − 1

4T
P+
mP

+
n η

mn − 2b+∂c+ + c+∂b+, (4.8a)

T− =
1

4T
P−mP

−
n η

mn − 2b−∂c− + c−∂b−, (4.8b)

with

P±m ≡ Pm ± T ∂Xm. (4.9)
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The sectorization is manifest in the BRST charge Q:

Q = Q+ +Q−, (4.10)

Q± ≡
∮
{c±T± − b±c±∂c±}. (4.11)

Nilpotency of Q requires the number of spacetime dimensions to be d = 26.

Note that the complete energy-momentum tensor is given by

T = T+ + T−

= −Pm∂Xm − b∂c− ∂(bc)− b̃∂c̃− ∂(b̃c̃), (4.12)

and it is BRST exact, since {Q, (b+ + b−)} = T . In fact, if we define

c ≡ 1
2(c+ + c−), c̃ ≡ 1

2T (c− − c+),

b ≡ (b+ + b−), b̃ ≡ T (b− − b+),
(4.13)

the action (4.7) becomes

S =
1

2π

∫
d2z{Pm∂̄Xm + b∂̄c+ b̃∂̄c̃}, (4.14)

while the BRST charge is rewritten as

Q =

∮
{cT − bc∂c+ 1

2 c̃P
mPm + T 2

2 c̃(∂X
m∂Xm − 2b∂c̃)}, (4.15)

and the familiar Virasoro structure emerges. The tensionless limit of Q is now very clear:

it is precisely the BRST operator introduced by Mason and Skinner for the bosonic

ambitwistor string [8].

We will see, however, that the sectorized description is more advantageous in the

cohomology analysis, for it leads to a natural splitting of the vertex operators in the

different mass levels.

4.2.3 Physical spectrum

The BRST cohomology at ghost number zero is given by the identity operator. At ghost

number one, the cohomology contains only the zero-momentum states mapped to the

operators c+P
+
m and c−P

−
m .

Physical states will be defined as elements of the BRST cohomology with ghost

number two and annihilated by the zero mode of b. The latter follows from the usual

off-shell condition (b0− b̄0) = 0 on physical states, but adapted to the chiral model. The
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most general vertex operator with conformal weight zero satisfying these conditions can

be written as

V = V0 + V+ + V−, (4.16)

where

V0 = c+c−P
+
mP

−
n G

mn + T (c+∂
2c+ + c−∂

2c−)D + T (c+∂
2c+ − c−∂2c−)E

+c+P
+
m(∂c+ − ∂c−)Am+ + c−P

−
m(∂c+ − ∂c−)Am− , (4.17)

V+ = c+c−P
+
mP

+
n H

mn
+ + c−P

+
m(∂c+ − ∂c−)Bm

+ + c+c−∂P
+
mC

m
+

+T c−∂2c+F
+ + b+c+c−(∂c+ − ∂c−)G+, (4.18)

V− = c+c−P
−
mP

−
n H

mn
− + c+P

−
m(∂c+ − ∂c−)Bm

− − c+c−∂P
−
mC

m
−

+T c+∂
2c−F

− + b−c+c−(∂c+ − ∂c−)G−. (4.19)

Here, Gmn, Hmn
± Am± , Bm

± , Cm± , D, E, F± and G± are the X dependent fields. This

splitting of the terms appearing in the vertex operator is motivated by their mass-level,

as will become clear shortly.

In order to determine the physical degrees of freedom, we will analyze each of the ver-

tices in (4.16) separately. For V0, the equations of motion imposed by BRST closedness

are given by

Am+ = 1
2∂nG

mn − 1
2∂

m(D − E), �D = ∂m(Am+ +Am− ),

Am− = 1
2∂nG

nm − 1
2∂

m(D + E), �E = ∂m(Am+ −Am− ),

�Gmn = 2∂mAn− + 2∂nAm+ .

(4.20)

These equations become more transparent if we rewrite them in terms of the fields

gmn ≡ 1
2(Gmn +Gnm), (4.21a)

bmn ≡ 1
2(Gmn −Gnm), (4.21b)

φ ≡ T
2 G

mnηmn − T D, (4.21c)

gm ≡ Am+ +Am− − 1
T ∂

mD, (4.21d)

bm ≡ Am+ −Am− − 1
T ∂

mE, (4.21e)

such that gm and bm have algebraic solutions, cf. (4.20),

gm = ∂ng
mn − ηnp∂mgnp + 2

T ∂
mφ, (4.22a)

bm = ∂nb
mn, (4.22b)
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and

�gmn − ∂p∂ngmp − ∂p∂mgnp + ηpq∂
m∂ngpq − 2

T ∂
m∂nφ = 0, (4.23a)

�φ = 0, (4.23b)

∂p(∂
pbmn + ∂mbnp + ∂nbpm) = 0. (4.23c)

The gauge transformations, with parameters λm and ωm, are simply

δφ = 0, δgmn = ∂(mλn), δbmn = ∂[mωn]. (4.24)

It is now easy to identify the field content of the massless sector described by the ver-

tex V0: φ corresponds to the dilaton, bmn is the Kalb-Ramond 2-form and gmn is the

graviton, satisfying the linearized equation of motion (4.23a).

For the vertices V+ and V−, the two sets of equations of motion are very similar to

each other and can be displayed collectively as

Bm
± = ∂nH

mn
± − Cm± − 1

2∂
mF±,

(
1
4�∓ T

)
Cm± = T Bm

± + 1
2∂

mG±,

G± = T
2 H

mn
± ηmn + 1

2∂mC
m
± − 3T

2 F
±,

(
1
4�∓ T

)
F± = 1

2∂mB
m
± ∓ 3

2G
±,(

1
4�∓ T

)
Hmn
± = 1

4∂
mBn
± + 1

4∂
nBm
± ∓ 1

4η
mnG±,

(4.25)

Again, these equations become more transparent after the field redefinitions

hmn± ≡ Hmn
± − 1

4T (∂nCm± + ∂mCn±)± 1
20T (∂m∂n ± T ηmn)F±

∓ 1
20T (∂m∂n ± T ηmn)Hpq

± ηpq, (4.26a)

f± ≡ F± −Hmn
± ηmn, (4.26b)

cm± ≡ Cm± ± 1
10∂

mHnp
± ηnp ∓ 1

10∂
mF±, (4.26c)

which imply (using d = 26) that

(
1
4�∓ T

)
hmn± = 0, (4.27a)

∂nh
mn
± = 0, (4.27b)

hmn± ηmn = 0, (4.27c)

with gauge transformations

δhmn± = 0, δf± = ±5Σ±, δcm± = T Πm
± . (4.28)

The fields f± and cm± are pure gauge, therefore hmn± contain all the physical degrees of

freedom, corresponding to spin 2 fields with m2 = ±4T .
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Tensionless limit

Evidently, in the tensionless limit all the physical states are massless. In fact, if we

naively take the T → 0 limit of the vertex (4.16), it may seem that Mason and Skinner’s

results are recovered [8]. However, the analysis of such limit has to be done more carefully

precisely because all the physical states become massless. In other words, the vertices

(4.17), (4.18) and (4.19) should mix in the tensionless limit. Therefore, we should find

a convenient combination of the fields Gmn, Hmn
± Am± , Bm

± , Cm± , D, E, F± and G±

in (4.16) such that the tensionless limit preserves the most general form of the vertex

operator. The solution is

V = cc̃PmPnG
mn
(1) + cc̃∂Xm∂XnG

mn
(2) + cc̃Pm∂XnG

mn
(3) + cc̃Pm∂XnB

mn

+cc̃∂2XmA
m
(1) + cc̃∂PmA

m
(2) + ∂c̃c̃PmA

m
(3) + ∂c̃c̃∂XmA

m
(4)

+c∂c̃PmA
m
(5) + c∂c̃∂XmA

m
(6) + bc∂c̃c̃S(1) + ∂2ccS(2)

+∂2c̃c̃S(3) + ∂2cc̃S(4) + c∂2c̃S(5) + b̃c̃c∂c̃S(6), (4.29)

with

Gmn(1) ≡ 2T [1
2(Gmn +Gnm) +Hmn

+ +Hmn
− ], Am(5) ≡ −2T (Am+ +Bm

+ +Am− +Bm
− ),

Gmn(2) ≡ 2T 3[Hmn
+ +Hmn

− − 1
2(Gmn +Gnm)], Am(6) ≡ −2T 2(Am+ +Bm

+ −Am− −Bm
− ),

Gmn(3) ≡ 4T 2(Hmn
+ −Hmn

− ), S(1) ≡ 2T 2(G+ +G−),

Bmn ≡ −2T 2(Gmn −Gnm), S(2) ≡ −(2D + F+ + F−),

Am(1) ≡ 2T 2(Cm+ + Cm− ), S(3) ≡ −T 2(2D − F+ − F−),

Am(2) ≡ 2T (Cm+ − Cm− ), S(4) ≡ T (2E − F+ + F−),

Am(3) ≡ −2T 2(Am+ −Bm
+ −Am− +Bm

− ), S(5) ≡ −T (2E + F+ − F−),

Am(4) ≡ −2T 3(Am+ −Bm
+ +Am− −Bm

− ), S(6) ≡ 2T (G− −G+).

(4.30)

Here the notation for the fields was chosen so as to agree with the ambitwistor

construction of [13], where it was demonstrated that the free field dynamics associated

to the fields above involve higher derivative operators. This result follows naturally from

our construction above. For example, we can show that the equation of motion for the

fields Gmn(1) , Gmn(2) and Gmn(3) can be obtained using (4.23a) and (4.27), and are given (in

the gauge cm± = f± = 0) by

Gmn(2) = 1
4�G

mn
(3) − T

2Gmn(1) , (4.31a)

2Gmn(3) = �Gmn(1) − ∂p∂
nGmp(1) − ∂p∂

mGnp(1) + ηpq∂
m∂nGpq(1) −

2
T ∂

m∂nφ,(4.31b)

(�2 − 16T 2)Gmn(3) = 0, (4.31c)

with Gmn(3) ηmn = ∂nG
mn
(3) = 0.
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Note that, by substituting (4.31b) into (4.31c), we get an equation involving �3Gmn(1)

which, in the tensionless limit, has the same form as the one found in [13]. Of course,

this had to be the case since the vertex operator (4.29) preserves its form as T → 0,

while the BRST operator reduces to the (bosonic) ambitwistor one, as is evident from

(4.15). Indeed, all the other equations of motion can be reproduced in a similar way.

4.2.4 Bosonic kinetic action and 3-point amplitudes

As shown above, Gmn(2) and Gmn(3) can be seen as auxiliary fields1 which effectively im-

plement a higher derivative equation of motion for Gmn(1) . This behavior can be better

understood from another point of view, namely in terms of the effective action of the

model and, in particular, its kinetic part.

Indeed, the kinetic terms associated to gmn and hmn± have opposite signs. Physically,

this indicates an instability of the model (ghosts), in agreement with the results of [20].

Such ghosts can usually be described in terms of higher derivative theories and this is

precisely what happens here.

Bosonic kinetic action

Inspired by Zwiebach’s closed string action [15], the kinetic action for ambitwistor strings

was built in [13]. We will use the same prescription for the tensionful model and the

kinetic action will be defined by

S =
1

2
〈V |∂cQ|V 〉 (4.32)

where |V 〉 is the state associated to the vertex operator (4.16), obtained from the identity

state |0〉 through the state-operator map

|V 〉 = lim
z→0

V (z) |0〉 , (4.33)

and 〈V | its BPZ conjugate. In order to simplify the calculations, we will fix the gauge

f± = cm± = 0 — cf. equations (4.26) and (4.28) — and use the auxiliary equations of

motion in (4.21) to write the vertex operator (4.16) in terms of the fields gmn, bmn, φ

and hmn± .

1Here the word “auxiliary” should not be understood as “not propagating degrees of freedom,” but
rather that the degrees of freedom represented by these fields can be incorporated in another one which
satisfies a higher-derivative equation of motion — cf. equations (4.31) above.
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Now, using the usual ghost measure 〈c±∂c±∂2c±〉 = 2, it is straightforward to show

that the free action can be cast as

Sbosonic = S0 + S+ + S−, (4.34)

where

S0 = 2

∫
d26x{gmn�gmn + ∂pg

mp∂qgmq + 2(g + φ)∂m∂ng
mn

− (g + φ)�(g + φ) + bmn�bmn − bmn∂m∂rbnr}, (4.35)

and

S± = 4

∫
d26x{−hmn± (�∓ 4T )h±mn +hmn± ∂n∂

rh±mr− 2h±∂m∂nh
mn
± +h±(�∓ 4T )h±},

(4.36)

with g = gmnηmn and h± = hmn± ηmn. As expected, the free field equations of motion

derived from S0 and S± precisely reproduce (4.23) and (4.27). The kinetic terms for

gmn and hmn± have opposite signs, consistent with the ghost interpretation.

3-point amplitudes

The 3-point tree level scattering amplitudes for the bosonic chiral string were obtained

in [20]. However, it is instructive to redo this analysis here since our unintegrated vertex

operators have a different structure and, in particular, do not give rise to a Koba–Nielsen

factor. For higher point amplitudes, we would need integrated vertex operators but their

definition is still unknown.

It will be convenient to gauge fix the vertex operators in (4.16) and work with mo-

mentum eigenstates, such that

V0 = c+c−P
+
mP

−
n G

mneik·X , V± = c+c−P
±
mP

±
n H

mn
± eik·X , (4.37)

where Gmn, Hmn
± are now seen as polarization tensors satisfying kmG

mn = knG
mn =

kmH
mn
± = ηmnH

mn
± = 0.

In order to compute the 3-point amplitudes, we have to evaluate its OPE reduction

by contracting all P±m ’s with one another and with the momentum exponentials eik·X .

We also need the ghost 3-point function, which has the usual form

〈c±(z)c±(y)c±(w)〉 = (z − y)(y − w)(w − z). (4.38)
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By virtue of the sectorized description, it is easy to show that the amplitude factorizes

into a product of two open string amplitudes (where T 7−→ −T in the minus sector).

With all this in mind, we can compute, for example, the 3-point amplitude involving

only massless states. The result is

〈V0(z1)V0(z2)V0(z3)〉 = Gmn1 Gpq2 G
rs
3 TmprT̄nqsδ

26(k1 + k2 + k3), (4.39)

where

Tmnp ≡ k2
mk

3
nk

1
p + 2T (k2

mηnp + k3
nηmp + k1

pηmn) (4.40)

and T̄nqs is equal to Tnqs with the sign of T flipped. The amplitude does not depend on

the positions of the vertex operator insertions and is, therefore, SL(2,C) invariant. This

result is to some extent expected, since the vertex structure is completely analogous to

the ordinary bosonic string and the Koba–Nielsen factors are just 1 for three massless

vertices. However, the SL(2,C) invariance can be shown for any 3-point tree level

amplitude, even though the Koba–Nielsen factor is always 1 in the chiral model (there

are no contractions between the momentum exponentials since the XX OPE is trivial).

The amplitudes factorize in the plus and minus sectors, and there is a precise cancelation

of the poles and zeros in zij ≡ zi − zj .

4.3 Extension of the sectorized model with current alge-

bras

In this section we will explore the extension of the bosonic sectorized model in a target

space with dimension d < 26 and the introduction of current algebras, i.e. a gauge

sector. To the action (4.7), we will add two extra pieces, S+
C and S−C , describing two

current algebras. The new BRST charge preserves its form in (4.10) but now with

T+ = − 1
4T P

+
mP

+
n η

mn − 2b+∂c+ + c+∂b+ + T+
C , (4.41)

T− = 1
4T P

−
mP

−
n η

mn − 2b−∂c− + c−∂b− + T−C , (4.42)

where T±C denotes the energy-momentum tensor associated to different group manifolds

with central charge

c(±) = 26− d. (4.43)

For now we will focus on the “−” sector, which contains the tachyonic excitations.

The inclusion of the “+” sector, which has an analogous structure, will be discussed in

subsection 4.3.4.



Bosonic sectorized strings and the (DF )2 theory 50

Let us consider an affine Lie algebra associated to some group G, with structure

constants f c
ab (a, b, . . . = 1 to dimG) and level k. The addition of S−C to the action

allows us to define currents Ja which are primary conformal fields and satisfy the OPE

Ja(z) Jb(y) ∼ kδab
(z − y)2

+ if c
ab

Jc(y)

(z − y)
. (4.44)

Here the group generators have been orthonormalized such that the metric δab corre-

sponds to a Kronecker delta, and we will make no further distinction between upper and

lower indices.

The energy-momentum tensor of the algebra can be obtained using the Sugawara

construction and is given by

T−C ≡
1

2(k + g)
(Ja, Ja) , (4.45)

where g is the dual Coxeter number, defined through

facdfbcd = 2gδab. (4.46)

We use the ordering prescription

(A,B) (y) ≡ 1
2πi

∮
dz

(z − y)
A(z)B(y), (4.47)

which can be understood as the product of two operators A(z) and B(y) in the limit

z → y, with singular terms removed.

It is then straightforward to compute the central charge of this model, which is given

by

c(−) =
k∆

(k + g)
,

!
= 26− d, (4.48)

where

∆ ≡ δabδab = dimG. (4.49)

The second equality in (4.48) comes from imposing the nilpotency of the BRST operator

and constrains the group G and the level k of the current algebra. For example, for a

target space with d = 10 one of the solutions is G = SO(32) and k = 1, while for d = 4

we can have G = SU(5) and k = 55, and so on. Further constraints on the group should

arise from the analysis of anomalies but this will not be discussed in this work.
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4.3.1 Physical spectrum

The BRST cohomology now includes additional states with corresponding vertex oper-

ators containing the currents Ja, expressed as

VJ = c+c−P
+
mJaF

m
a + c−(∂c+ − ∂c−)JaF

a + c+c−∂JaSa

+c+c−P
−
mJaG

m
a + c+(∂c+ − ∂c−)JaG

a + c+c−Jαϕα. (4.50)

Here Fma , Gma , Sa, Fa, Ga and ϕα are target space fields. The index α belongs to

a traceless-symmetric bi-adjoint representation of the group G (see appendix), with

dimension

∆(α) =
∆(∆ + 1)

2
− 1. (4.51)

Jα is a primary conformal weight 2 operator defined as

Jα ≡
(
C−1

)
αab

J(ab), (4.52)

where J(ab) is given by the traceless-symmetric ordered product of two currents, i.e.

J(ab) ≡ 1
2 (Ja, Jb) + 1

2 (Jb, Ja)− 2(k+g)
∆ δabT

−
C , (4.53)

and
(
C−1

)
αab

are the inverse of the Clebsch-Gordan coefficients, Cαab. The properties of

these coefficients will be discussed in the next subsection and in the appendix. Observe

that we could have considered also the trace contribution in the vertex, e.g. c+c−T
−
C ϕ.

However, the field ϕ couples only to the vertex V− in subsection (4.2.3) and does not

change the physical content of the model.

The BRST invariance of the vertex VJ implies the following equations of motion

(� + 4T )ϕα = 0, (4.54a)

Fa = 1
2∂mF

m
a , (4.54b)

Ga = 1
2∂mG

m
a − Sa, (4.54c)

∂n(∂mFna − ∂nFma ) = 0, (4.54d)

∂n(∂mGna − ∂nGma ) = 4T Gma + 2∂mSa, (4.54e)

and the gauge transformations can be summarized as

δFma = ∂mΛa, δGma = ∂mΩa, δSa = −2T Ωa. (4.55)

Since Sa is pure gauge, the physical states described by the vertex (4.50) correspond to

a massless vector Fma and two fields with negative mass-squared m2 = −4T namely the



Bosonic sectorized strings and the (DF )2 theory 52

scalar ϕα and the vector Gma .

In parallel to subsection 4.2.3, we can prepare the vertex VJ for the tensionless limit

analysis. Considering the redefinitions of the worldsheet ghosts of (4.13), VJ can be

rewritten as

1
2T VJ = cc̃Jαϕα + cc̃PmJaA

m
a + cc̃∂XmJaB

m
a − c∂c̃JaAa − c̃∂c̃JaBa. (4.56)

Here, the fields Aa, A
m
a , Ba and Bm

a are defined in terms of Fma , Gma , Fa and Ga as

Aa ≡ Fa +Ga, Ba ≡ T (Fa −Ga),
Ama ≡ Fma +Gma , Bm

a ≡ T (Fma −Gma ),
(4.57)

with gauge transformations δAma = ∂mΛa and δBm
a = T ∂mΛa.

Their equations of motion follow from (4.54) and are given by

Aa = 1
2∂mA

m
a , T Ama − 1

2∂nF
mn
a = Bm

a ,

Ba = 1
2∂mB

m
a , (� + 4T )∂nF

mn
a = 0.

(4.58)

Therefore, the physical spectrum can be described in terms of only two fields, ϕα and

Ama . The vector Bm
a is auxiliary, helping to implement a quartic equation of motion for

Ama , which carries the degrees of freedom of both the massless and the massive vector

fields, Fma and Gma . Note, in particular, the tensionless limit renders a massless spectrum

with equations of motion �ϕα = �2Ama = 0. As in the bosonic model of section 4.2,

this behavior can be easily observed when analyzing the effective field theory associated

to the model, which will be done in subsection 4.3.3. The first step will be to determine

the 3-point amplitudes using the vertex (4.50).

4.3.2 3-point amplitudes

In order to compute the 3-point amplitude

A3 ≡ 〈VJ(z)VJ(y)VJ(w)〉 , (4.59)

we need to provide further details on the current algebra CFT, in particular the OPE’s

involving the operator Jα defined in (4.52) and the properties of the Clebsch-Gordan

coefficients Cαab.
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The operator Jα satisfies the following OPE’s:

T−C (z) Jα(y) ∼ 2Jα
(z − y)2

+
∂Jα

(z − y)
, (4.60a)

Ja(z) Jα(y) ∼ Cαab
Jb

(z − y)2
− (Ta)αβ

Jβ
(z − y)

, (4.60b)

Jα(z) Jβ(y) ∼
kδαβ

(z − y)4
− (Ta)αβ

{
Ja

(z − y)3
+ 1

2

∂Ja
(z − y)2

+ 1
6

∂2Ja
(z − y)

}
+dαβγ

{
Jγ

(z − y)2
+ 1

2

∂Jγ
(z − y)

}
+dαβabc

J(abc)

(z − y)
+ dαβ[ab]

J[ab]

(z − y)
+ eaαβ

(
Ja, T

−
C

)
(z − y)

. (4.60c)

The first OPE states that Jα is a primary operator of conformal dimension 2. The second

OPE is connected to the definition of the Clebsch-Gordan coefficients (quadratic pole)

and the group transformation of Jα (simple pole). (Ta)αβ denotes the group generators

in the traceless bi-adjoint representation of the group G and satisfy

[Ta, Tb]αβ = ifabc (Tc)αβ , (4.61a)

(Ta)αβ ≡ 2ifabcCα(ce)

(
C−1

)
β(be)

, (4.61b)

(TaTb)αα = 2g(∆ + 2)δab, (4.61c)

(TaTa)αβ = 4gδαβ − 2fabcfadeCα(ce)

(
C−1

)
β(bd)

, (4.61d)

The OPE (4.60c) can be used to define the 2-point and 3-point functions involving

only Jα’s. Operators of conformal dimension 3 appear in the last line (with numerical

coefficients dαβabc, dαβ[ab] and eaαβ) but they do not contribute to A3. J(abc) is the

totally symmetric traceless normal ordered product of Ja, Jb and Jc, and J[ab] is the

antisymmetric product (Ja, Jb)− (Jb, Ja).

The Clebsch-Gordan coefficients Cαab are defined in such a way that

Cαab
(
C−1

)
βab

= δαβ, (4.62a)

Cαab
(
C−1

)
αcd

= δ(ab)(cd), (4.62b)

CαabCαcd = ∆(ab)(cd) + 2kδ(ab)(cd), (4.62c)

CαabCβab = fadefbceCβab
(
C−1

)
αcd

+ 2kδαβ, (4.62d)

with

δ(ab)(cd) ≡ 1
2δacδbd + 1

2δadδbc −
1
∆δabδcd, (4.63a)

∆(ab)(cd) ≡ 1
2fadefbce + 1

2facefbde −
2g
∆ δabδcd. (4.63b)
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Finally, the coefficient dαβγ is defined as

dαβγ ≡
(
C−1

)
βab

[
(TaTb)αγ + 2CαacCγbc

]
, (4.64)

or

Cβabdαβγ = 1
2 (TaTb)αγ + CαaeCγbe + (a↔ b)− trace. (4.65)

Although not manifestly, dαβγ is traceless, i.e. dααγ = 0, and completely symmetric in

the exchange of any pair of indices.

The 2-point amplitudes involving the gauge currents can be easily determined through

the OPE’s (4.44), (4.60b) and (4.60c), and are given by

〈Ja(z)Jb(y)〉 =
kδab

(z − y)2
, (4.66a)

〈Ja(z)Jα(y)〉 = 0, (4.66b)

〈Jα(z)Jβ(y)〉 =
kδαβ

(z − y)4
. (4.66c)

The 3-point amplitudes are now straightforward to compute. They can be summarized

as

〈Ja(z)Jb(y)Jc(w)〉 = −ikfabc(z − y)−1(y − w)−1(w − z)−1, (4.67a)

〈Jα(z)Ja(y)Jb(w)〉 = kCαab(z − y)−2(w − z)−2, (4.67b)

〈Jα(z)Jβ(y)Ja(w)〉 = k (Ta)αβ (z − y)−3(y − w)−1(w − z)−1, (4.67c)

〈Jα(z)Jβ(y)Jγ(w)〉 = kdαβγ(z − y)−2(y − w)−2(w − z)−2. (4.67d)

As one last step before evaluating (4.59), it will be convenient to fix the gauge degrees

of freedom of VJ . Using the gauge transformations (4.55), we will choose Sa = 0. In

this gauge, ∂mG
m
a = 0 as a consequence of the equations of motion. We can use the

remaining parameter to fix the transversal gauge for the massless vector, such that the

vertex is simplified to

VJ = c+c−P
+
mJaF

m
a + c+c−P

−
mJaG

m
a + c+c−Jαϕα. (4.68)
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Using the tree level measure for the ghosts (4.38), the 3-point amplitude (4.59) can

be computed to be

A3 = kdαβγ 〈ϕαϕβϕγ〉 − 3k (Ta)αβ 〈ϕα∂mϕβ(Fma +Gma )〉

−3kCαab 〈∂m∂nϕα(Fma +Gma )(Fnb +Gnb )〉

−ikfabc 〈∂p(Fma +Gma )∂m(Fnb +Gnb )∂n(F pc +Gpc)〉

+6kT Cαabηmn 〈ϕα(Fma −Gma )(Fnb +Gnb )〉

−6ikT fabcηmn 〈(Fma −Gma )∂p(F
n
b +Gnb )(F pc +Gpc)〉 . (4.69)

Observe that A3 is at most linear in T (Fma −Gma ). If we look at the vertex (4.56), this

is easy to understand because the 3-point amplitudes with two or three Bm
a ’s vanish

trivially.

In principle, 4-point amplitudes can be computed using the results of Siegel in [18].

Currently, however, there is no clear definition of the integrated vertex operators and

higher point amplitudes cannot be directly computed from the chiral model. This prob-

lem will be dealt with in a separate paper by one of the authors.

In the next subsection we will propose an effective field theory action for the field

content of the previous subsection.

4.3.3 Effective field theory: (DF )2 +YM

As the main result of this paper, we would like to argue that the effective field theory

action corresponding to this extension of the bosonic sectorized model is precisely the

action of the (DF )2 + YM theory constructed in [26]. Indeed, we have already shown

the spectrum to be the same. The action can be decomposed as

Seff = S0
J + SintJ , (4.70)

where S0
J is the kinetic part of the action and SintJ corresponds to the interactions.

For the kinetic part, we will proceed like in subsection (4.2.4). For the interaction

part, we will analyze the possible vertices that give rise to the 3-point amplitudes dis-

played in (4.69). Next, we will require the non-linear gauge invariance of the resulting

model in order to finally propose its effective action.
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4.3.3.1 Kinetic action

As stated above, we will define the kinetic action as

S0
J ≡ 〈VJ |∂cQ|VJ〉 , (4.71)

up to normalization.

In order to further simplify the computation, we will consider the algebraic solutions

(4.54b) and (4.54c), such that

∂c[Q,VJ ] = 1
4T c+c−∂c+∂c−JaP

+
m [∂n(∂nFma − ∂mFna )]

+ 1
4T c+c−∂c+∂c−JaP

−
m [∂n(∂nGma − ∂mGna) + 4T Gma ]

+ 1
4T c+c−∂c+∂c−∂Ja[2T ∂mGma ]

+ 1
4T c+c−∂c+∂c−Jα[�ϕα + 4T ϕα]. (4.72)

It is then straightforward to show that

S0
J =

∫
ddx{ϕα(�ϕα + 4T ϕα)− 2T Fma(�Fma − ∂m∂nFna )

+ 2T Gma(�Gma + 4T Gma − ∂m∂nGna)}. (4.73)

Note that the kinetic terms of the fields Fma and Gma have opposite sign in S0
J .

Technically, the sign difference can be traced back to the OPE’s of P+
m and P−m with

themselves. As discussed previously, this indicates an instability of the model and we

can again reinterpret it in terms of a higher derivative theory. In fact, as we will now

show, this behavior is more transparent if we rewrite the action in terms of the vectors

Ama and Bm
a defined in (4.57). The kinetic action can then be cast as

S0
J =

∫
ddX {ϕα(�ϕα+4T ϕα)+2Bma∂nF

mn
a +2(Bm

a −T Ama )(Bma−T Ama)}, (4.74)

with

Fmna ≡ ∂mAna − ∂nAma . (4.75)

Ignoring for now the interaction terms, observe that the equation of motion for Bm
a

is algebraic, given by

Bm
a = T Ama + 1

2∂nF
nm
a . (4.76)

If we replace this solution back in the action, we obtain

S0
J |B =

∫
ddX {ϕα(�ϕα + 4T ϕα) + T Fmna Fmna − 1

2∂nF
mn
a ∂pFmpa}. (4.77)
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This action can be identified with the kinetic part of the (DF )2+YM theory constructed

in [26]. Note that the propagator of Ama is given in momentum space by

Gmnab (p) =
iηmnδab

p2(p2 − 4T )
. (4.78)

The pole structure of this propagator agrees with the interpretation given after equation

(4.58) that Ama effectively describes the massless and the massive vector fields, Fma and

Gma .

4.3.3.2 Cubic vertices and the effective action

As it turns out, the procedure of integrating Bm
a out can be partially extended to

interactions. We say “partially” because in this paper we consider only unintegrated

vertex operators, therefore only 3-point tree level amplitudes. We expect this integration

to hold for higher point vertices as well.

By looking at A3 in (4.69), it is easy to show that the 3-point vertices in terms of

the vectors Ama and Bm
a can be schematically expressed as

ϕ3 ∼ dαβγϕαϕβϕγ , ϕA2 ∼ Cαabϕα∂nA
m
a ∂mA

n
b ,

ϕ2A ∼ (Ta)αβ ϕα∂mϕβA
m
a , A3 ∼ ifabc∂pA

m
a ∂mA

n
b ∂nA

p
c ,

ϕAB ∼ CαabηmnϕαB
m
a A

n
b , A2B ∼ ifabcηmnB

m
a ∂pA

n
bA

p
c .

(4.79)

The idea now is to analyze the possible gauge invariant interactions that can generate

these vertices after integrating out Bm
a , which is at most linear in the expressions above.

The equation of motion for Bm
a in (4.76) gets modified to

Bm
a = T Ama + 1

2∂nF
nm
a + c#CαabϕαAmb + id#fabcηmn∂pA

n
bA

p
c + . . . , (4.80)

where c# and d# are numerical constants and the dots contain other terms necessary

to generate the correct gauge transformation for Bm
a (remember that the onshell 3-

point amplitude A3 was computed using gauge-fixed vertex operators). Taking this into

consideration and replacing Bm
a in the action, we can show that all 3-point vertices come

from the operators

CαabϕαF
mn
a Fmnb, (Dϕ)2, (DF )2, F 3, F 2, dαβγϕαϕβϕγ ,

where Fmna was redefined to be the non-Abelian field strength

Fmna ≡ (∂mAna − ∂nAma ) + igfabcA
m
b A

n
c , (4.81)
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with coupling constant g, and Dm denotes the covariant derivative with respect to the

vector Ama . The form of the higher point vertices (4, 5 and 6) is severely restricted by

the non-linear gauge invariance of the effective action. Some contributions naturally

appear after integrating out Bm
a and we expect them to combine with the input coming

from higher-point amplitudes, which involve integrated vertex operators.

Finally, we propose the effective field theory action of the model to be

Seff =

∫
ddx
{

1
2(DnF

mn
a )2 − T Fmna Fmna + 1

2DmϕαD
mϕα − 2T (ϕα)2

+ g
3fabcF

m
naF

n
pbF

p
mc + g

2CαabϕαF
mn
a Fmnb + g

3!dαβγϕαϕβϕγ

}
, (4.82)

where g is the coupling constant. This action describes the (DF )2 + YM theory of [26].

Moreover, if we include the “+” sector mentioned in the beginning of this section,

the effective field theory action describes a more general model with a mirrored set of

fields. In particular, if we restrict the gauge symmetry of the “+” sector to be instead a

global symmetry, the effective action describes the (DF )2 + YM + φ3 theory. This will

be shown next.

4.3.4 Including the other gauge sector: (DF )2 +YM+ φ3

We will consider for the “+” sector an affine Lie algebra associated to a group Ĝ (with

structure constants f̂ C
AB ) and level k̂. Apart from the central charge constraint (4.43),

{Ĝ, k̂} are independent of {G, k}, from the “−” sector. The new currents, ĴA, are

completely analogous to the ones discussed there, e.g. they satisfy the OPE

ĴA(z) ĴB(y) ∼ k̂δAB
(z − y)2

+ if̂ C
AB

ĴC(y)

(z − y)
, (4.83)

when conveniently normalized. Here, δAB is a Kronecker delta.

In order to analyze the physical spectrum, we can start with the hatted version of

(4.50), defined by

V
Ĵ

= c+c−P
+
m ĴAĜ

m
A + c−(∂c+ − ∂c−)ĴAĜ

A + c+c−∂ĴAŜA

+c+c−P
−
m ĴAF̂

m
A + c+(∂c+ − ∂c−)ĴAF̂

A + c+c−Ĵα̂ϕ̂
α̂. (4.84)

It is easy to see that the fields appearing in this vertex operator will satisfy essentially

the same equations of motion and gauge transformations as their counterparts in the

“−” sector, albeit with one important difference: the replacement T → −T . By going

through the same steps as in subsection 4.3.1, we find that the physical spectrum in this
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sector contains a “mirror image” of the physical spectrum in the “−” sector, but with

opposite mass-squared.

In addition, we can build a new type of vertex operator involving currents from both

sectors. It has the form

Vφ = c+c−JaĴAφ
aA, (4.85)

where φaA is a bi-adjoint scalar transforming in the adjoint representation of both gauge

groups. BRST closedness implies the equation of motion

�φaA = 0, (4.86)

whence φaA is a massless field.

Following the same method used in subsection 4.3.3, the kinetic part of the effective

action involving the group indices can be cast as

S0 = S0
J + S0

Ĵ
+ S0

φ, (4.87)

where S0
J was given in (4.77) and S0

Ĵ
is its hatted analogue, and

S0
φ = kk̂

∫
ddX{φaA�φaA}. (4.88)

As for the interacting part, it clearly contains the corresponding part in (4.82) and its

hatted version. Moreover, note that cubic vertices mixing the fields in VJ with those in

V
Ĵ

can only appear through 〈VφVJVĴ〉, since the three-point functions involving 〈JĴĴ〉
or 〈JJĴ〉 vanish. The non-vanishing three-point functions with insertions of Vφ are given

by:

〈Vφ(z)Vφ(y)Vφ(w)〉 = kk̂fabcf̂ABC
〈
φaAφbBφcC

〉
, (4.89a)

〈Vφ(z)Vφ(y)VJ(w)〉 = −ikk̂fabc
〈
φaA∂mφ

bA(Fmc +Gmc )
〉

−kk̂Cαab
〈
φaAφbAϕα

〉
, (4.89b)〈

Vφ(z)Vφ(y)V
Ĵ
(w)
〉

= −ikk̂fABC
〈
φaA∂mφ

aB(F̂mC + ĜmC )
〉

−kk̂Ĉα̂AB
〈
φaAφaBϕ̂α̂

〉
, (4.89c)〈

Vφ(z)VJ(y)V
Ĵ
(w)
〉

= 1
2kk̂ηmn

〈
(Fma +Gma )(F̂nA + ĜnA)�φaA

〉
−kk̂ηmn

〈
φaA∂p(F

m
a +Gma )∂p(F̂nA + ĜnA)

〉
+kk̂

〈
φaA∂n(Fma +Gma )∂m(F̂nA + ĜnA)

〉
. (4.89d)
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Thus, defining

ÂmA ≡ F̂mA + ĜmA , F̂mnA ≡ ∂mÂnA − ∂nÂmA + igf̂ABCÂ
m
B Â

n
C , (4.90)

and following arguments similar to the ones given in the previous subsection, we can

write the effective action as

Seff = S[A,ϕ] + S[Â, ϕ̂] + S[A, Â, φ], (4.91)

where S[A,ϕ] is the right-hand side of (4.82), S[Â, ϕ̂] is its hatted version and

S[A, Â, φ] ≡
∫

ddx
{ k̂

2
(Dmφ

aA)2 +
gk̂

3!
fabcf̂ABCφ

aAφbBφcC +
g

2
Cαabϕ

αφaAφbA

+
g

2
Ĉα̂ABϕ̂

α̂φaAφaB + gφaAFmna F̂mnA

}
, (4.92)

where the covariant derivative of φaA with respect to both gauge fields is given by

DmφaA = ∂mφaA − igfabcAmb φcA − igf̂ABCÂmBφaC . (4.93)

Thus we have found the complete effective action in the gauge sector of the model.

Now we would like to make contact with the scalar extension of the (DF )2 + YM theory

which was introduced by Johansson and Nohle [26]. There, the group Ĝ (with indices

A,B, . . .) is viewed instead as a global symmetry group.2 In the present chiral string

formulation, we can turn off the gauge field ÂmA and the scalar ϕ̂α̂, effectively taking

S[Â, ϕ̂]→ 0 and turning the group Ĝ into a global symmetry at tree level. Moreover, we

are free to rescale the field φ in order to eliminate k̂ from its kinetic term. However, a

factor of λ ≡
√
k̂ would still be present in the cubic term (with λ > 0). After performing

these modifications, we can finally write the effective Lagrangian in the same form as in

[26]:

L(DF )2+YM+φ3 =
1

2
(DnF

mn
a )2 +

1

2
(Dmϕ

α)2 +
1

2
(DmφaA)2 +

1

2
m2(ϕα)2 +

1

4
m2(Fmna )2

+
g

3
F 3 +

g

2
Cαabϕ

αFmnaF bmn +
g

3!
dαβγϕ

αϕβϕγ +
g

2
Cαabϕ

αφaAφbA

+
gλ

3!
fabcf̂ABCφ

aAφbBφcC , (4.94)

where m2 = −4T .

2In the context of the double-copy construction found in [36], this would be the heterotic string group.



Chapter 5

Results and Discussion

An extensive study on ambitwistors models was presented. The first chapter (1) was

dedicated to correctly compute the spectrum for the main ambitwistor models: bosonic,

type II (both GSO sectors), and heterotic. By constructing the most general vertex op-

erator we showed that these models (expected type II GSO(+)) contain higher derivative

equations of motion. Even though higher derivative terms indicate non-unitary states,

the result is consistent with the unusual momenta dependence of three-level amplitudes

for bosonic (A3 ∼ k6 ↔ �3hmn) and spin-2 heterotic (A3 ∼ k4 ↔ �2hmn), necessary

since ambitwistor does not have a dimensionful constant. In the chapter 2, we com-

puted the cohomology for the heterotic system in the Ramond sector and confirmed

the higher derivative terms for the fermions are also present. By constructing the free

action, we prove the invariance under supersymmetry transformations. These results

are interesting for a few reasons:

Loop: An advantage to described the CHY with ambitwistors is that it provides

a natural extension to compute loop amplitudes as simply integrals over higher genus

curves. In [37, 38] they provided a formula for 1-loop integrands for type II and super

Yang-Mills. The resulting worldsheet can be viewed as a Riemann sphere with two

points ”glued” together where the loop momenta flows. In ten dimensions the loop

amplitudes for these theories have UV divergences, only the integrand were computed.

This introduces another difficulty since there is not a unique representation for the

integrant. For type II the authors found the generalization of the scattering equations

for genus one :

61
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ka · P (za) =
ka · `
za

+
∑
b 6=a

ka · kb
za − zb

= 0, (5.1)

where ` is interpreted as the off-shell momentum circling the loop. The delta function

δ̄(ka ·P (za)) that enforces the scattering equations localizes all integrals with exception

of the loop
∫
d`. It is interesting to point out that this formula was soon interpreted

as a forward limit of tree-level amplitudes by the same authors of CHY [39, 40]. One

problem inherent to this formulation is to finding solutions to the one-loop scattering

equations, which were already hard at the tree-level. Some solutions of (5.1) give rise to

unphysical poles, however, using BCFW arguments these poles can be discarded [40].

Although the heterotic model correctly describes super Yang-Mills theory, the gravi-

ton spectrum contains non-unitary states. At tree-level, it is possible to recover the

Yang-Mills amplitudes by extracting the single-trace amplitude, but at loop level, the

single trace gluon amplitude receives contributions from internal supergravity states.

This feature also appears in the d = 4 twistor string theory [14]. Thus the integrand

conjectured in [37, 38] for Yang-Mills is given by replacing one of the Pfaffians ( in the

gravity integrand ) with a Parke-Taylor factor. This trick is also used at tree-level and

can be viewed as a realization of gravity = (YM)2. Even though the type II is the only

model that can compute 1-loop integrands, would be interesting to verify if the partition

functions in [37, 38] reproduce the non-unitary states in the massless spectrum. Before

performing the sum over spin structures, one should be able to observe in the partition

function the contribution of the states in the GSO(−) sector.

Action: As noted in [28], the d = 10 heterotic ambitwistor string has some similarities

with the d = 4 twistor string which describes N = 4 d = 4 conformal supergravity

coupled to super Yang-Mills [14]. One could try to generalize the quadratic kinetic term

computed here to the full string field theory action including interactions and check if

describes a generalization of N = 4 d = 4 conformal supergravity.

In the last project we reexamined the bosonic chiral string, now in the sectorized

interpretation, deriving a few novel results. The spectrum found here in the sectorized

string, namely a massless level identical to that of the ordinary bosonic string and two

traceless-symmetric fields hmn± with mass-squared m2 = ±4T , is the same in the chiral

string model [20]. Moreover, we showed that the extra (massive) states can be seen as

auxiliary fields leading to the higher derivative gravity theory, which in the tensionless

limit (T → 0) reduces to the bosonic gravity in [13]. In [25] the massive spin-2 states
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were determined to be ghosts via a 4-point amplitude analysis based on a ”twisted” KLT

formula. This fact is manifest in the quadratic action we constructed.

Finally, we showed that the current algebra extension of the bosonic model effectively

leads to the (DF )2 +YM+φ3 Lagrangian of [26], with all its fields and couplings coming

naturally from standard string (field) theory techniques. The emergence of the higher

derivative term (DF )2 from two vector fields of the physical spectrum is particularly

interesting. In addition, we would like to point out that the group constants Cαab

and dαβγ , their relations and properties emerge naturally in our model and are valid

for a generic level k of the algebra. In [26], on the other hand, such relations are

obtained by demanding that the gluon amplitudes satisfy the Bern–Carrasco–Johansson

relations [27] and our results agree when we take k → 0. This limit corresponds to a

projection to the single-trace amplitude sector, which is where we expect our results to

match. The multitrace sector of the worldsheet model is ”contaminated” by the gravity

theory described in section 4.2, much like the Berkovits–Witten twistor string necessarily

includes conformal gravity [2, 14].

Analytical continuation for the Chiral String: Even though a lot of develop-

ment has been made, there are still open questions regarding these models. As mentioned

before, the new chiral string introduced in [20], has a finite number of states in their

spectrum and may contain massive states depending on the amount of supersymmetry.

In this approach, the conformal gauge is adopted instead of the singular gauge HSZ and a

new boundary condition is used. The fields now have holomorphic and antiholomorphic

components and XX has nontrivial OPE (contrary to the ambitwistor models). The

new boundary condition effectively changes the sign in the antiholomorphic piece in the

propagator X(z, z̄)X(0, 0) ∼ ln(z) − ln(z̄), and similar for the other antiholomorphic

fields. This modification on the propagator was interpreted as Bogoliubov transforma-

tions, where the role of creation and annihilation are interchanged for the modes coming

from z̄, and also in [34] as a different choice of vacua.

Given the above consideration, this model is quite close to standard string theory,

making the chiral model the best place to study its relationship with string theory.

During my period at Stony Brook together with Warren Siegel, we began a project to

tackle this problem. We introduced a tuning parameter into the propagator which allows

us to go back and forth between string theory and chiral string:

Xm(z, z̄)Xn(y, ȳ) ∼ −α
2
ηmn[ln(z − y) + f(θ)ln(z̄ − ȳ)] (5.2)

where f(θ) = 1 and −1 gives the ordinary string theory and chiral string theory respec-

tively. Since, f(θ) can not be zero, one have to use a complex function to go from 1
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to −1 without passing through zero. The same parameter f(θ) is introduced for other

anti-holomorphic fields, like b̄, c̄ and ψ̄m. Then with this new propagator, in princi-

ple, one can compute tree-level amplitudes. The type II spectrum is massless in the

chiral string and agrees with the low energy limit of the string theory. The vertex is

identical to string theory, but the OPE’s are different for the anti-holomorphic fields.

For both three-point and four-point amplitudes the only thing that differs from string

theory, modulo an overall factor of f(θ) in front, is the Koba-Nielsen factor. One can

see this by realizing that all terms in the correlation function contain the same number

of wick contraction, so same powers of f(θ). Since we are considering massless states,

the kinematics ki · kj = 0 implies that 〈
∏3
i=1 e

iki·Xi〉 = 1, so the three-point amplitude

is identical to that of ordinary strings. After fixing (z1 = 0, z2 = z, z3 = 1, z4 =∞) the

4-point amplitude can be casted as

A4(s, t, u) =

∫
d2zz−s(1− z)−tz̄−sf(θ)(1− z̄)−tf(θ)F [z, (1, 2, 3, 4)]F̄ [z̄, (1, 2, 3, 4)] (5.3)

where F [z, (1, 2, 3, 4)] is a function of the kinematics, polarization vectors and integer

powers of z, (1− z). This factor is identical to ordinary string theory. We tried to solve

this integral by two methods. First was using the KLT decomposition for closed string

amplitude and the second was to rewrite (5.3) using a Melling transformation. Both

results gave the same answer:

A = K0K̄0
1

stu

Γ(−f(θ)u)Γ(−f(θ)t)

Γ(f(θ)s)

Γ(−s)
Γ(t)Γ(u)

(5.4)

Note that this agrees with type II string theory, for f(θ) = 1 you get kinematic function

(K0K̄0) times the Virasoro-Shapiro-like factor. Also for f(θ) = −1, all the massive

poles in the gamma functions cancel, leaving only the massless term 1/stu, as found in

[20]. However, this answer is not stu symmetric for arbitrary f(θ), which is the biggest

problem with our result, and unfortunately, we were unable to find a satisfactory stu

symmetric amplitude. One can force the amplitude to be symmetric, by multiplying

it with sin(πs)/ sin(πf(θ)s). Of course, this is not a satisfactory solution, and more

development is needed. The difficulty is to find the proper contour region of integration

to derive a stu symmetric amplitude, and to justify the anzats (5.2). This is a rather

ambitious project that might help find new interpretations of chiral string type models

and understand how the transition between the string theory spectrum and the chiral

model occurs.



Appendix A

Ramond sector, cocycles and

Gamma matrices

Spinor indices in 10 dimensions can be distinguished between chiral and anti-chiral.

We denote chiral indices by undotted greek letters, α, while anti-chiral indices are repre-

sented by dotted greek letters, α̇. Both run from 1 to 16. Spinor indices are 5-dimensional

vector representations of u(5):

α̇ =
1

2


− − − − −
− − − + +

− + + + +

 and β =
1

2


+ + + + +

+ + + − −
+ − − − −

 . (A.1)

where an anti-chiral index, α̇, must have an even number of plus signs, and a chiral

index, β, must have an odd number of plus signs. Each of these combinations has 16

independent components represented as 16 = 1 + 10 + 5.

A.1 The Ramond Sector.

The Ramond sector of the Ambitwistor string is defined by the antiperiodic boundary

conditions of ψm:

ψm(e2πiz) = −ψm(z). (A.2)

We follow[30] and implement these boundary conditions via spin fields. That is, we have

a conformal primary S(z) that twists a periodic ψ:

ψm
(
z + (w − z)e2πi

)
S(z) = −ψm (w)S(z). (A.3)

65
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This implies that a state |α〉 created from the vacuum |0〉 via

|α〉 = Sα(0)|0〉 (A.4)

should transform as a spacetime spinor. Notice that, due to the presence of S forcing ψ

to be in the Ramond sector, this state must belong to an irreducible representation of

the zero-mode Clifford algebra of ψm: {ψm0 , ψn0 } = ηmn, which implies

ψm0 |α〉 =
1√
2

Γmα
β̇
|β̇〉. (A.5)

A.2 Bosonization and cocycles.

Because Sα twists the boundary conditions of ψm, the system is not free and OPE’s are

difficult to compute. Bosonization is a technique that allows us to deal with free fields

only. Bosonization assigns for a pair of complex fermions one chiral boson, which means

that we have to break manifest so(10) invariance down to u(5).

Spin Fields. The bosonization of spin fields is given by

Sα(z) = exp

(
α · φ(z)

)
cα (A.6)

where α is a chiral spinor index. The same expression is valid for anti-chiral spin fields

by just replacing α for α̇. The factor cα is a cocycle phase that guarantees the correct

anticommutation relations.

Cocycles. The anticommuting fermionic algebra is reproduced in the bosonic system

via the Baker-Campbell-Hausdorff formula:

eφ(z)e±φ(z′) = e±φ(z′)e∓φ(z′)eφ(z)e±φ(z′) = −e±φ(z′)eφ(z) (A.7)

provided for |z′| = |z| we have

[
φ(z′), φ(z)

]
= ±iπ which implies φ(z)φ(0) ∼ ln z (A.8)

Now, if we are given more than one pair of fermions, they won’t naturally anticommute

because [φi, φj ] = 0. This is corrected by the introduction of cocycles[31]:

https://en.wikipedia.org/wiki/Baker\OT1\textendash Campbell\OT1\textendash Hausdorff_formula
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• Order all bosons of the theory: φi where i = 1, . . . , N ;

• Then multiply each exponential by a factor (−)N1+...+Ni−1 , where Ni is the fermion

number operator:

Ni = −
∮

dz

2πi
ψiψi =

∮
dz

2πi
∂φi. (A.9)

For example, if we consider two pairs of fermions, the bosonization becomes

ψ1 = eφ1 , ψ1 = e−φ1 (A.10)

with

ψ2 = eφ2(−)N1 , ψ2 = e−φ2(−)N1 (A.11)

where now ψ1 and ψ2 anticommute

eφ1eφ2(−)N1 = eφ2eφ1(−)N1 = eφ2(−)N1(−)−N1eφ1(−)N1 = −eφ2(−)N1eφ1 (A.12)

provided [
Ni, e

nφj
]

= nδije
nφj . (A.13)

Thus, for more than one pair of fermions, we need to introduce the cocycle phase factors:

ci = (−)N1 + ...+Ni−1 . (A.14)

Consider the vector

∂φ = (N1, N2, . . . , N5) (A.15)

then the cocycle factor can be written as

c±ei = exp [±iπ〈eiM∂φ〉] (A.16)

where ei is 1 in the ith component and zero elsewhere, 〈 〉 is a matrix inner product and

M is a lower triangular matrix with entries ±1:

M =



0 0 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

−1 1 −1 0 0 0

1 1 1 1 0 0

−1 −1 −1 −1 −1 0


.
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The signs of M are arbitrary at this point, but they can be specified studying the charge

conjugation matrix[31].

The cocycle factors of spin fields, cα and cα̇, are given the following expressions:

cα = exp [iπ〈αM∂φ〉] and cα̇ = exp [iπ〈α̇M∂φ〉] (A.17)

Gamma Matrices. To motivate the construction of gamma matrices and show how

cocycles work, let us consider the OPE between ψi and Sα. Using expressions (3.4) and

(A.6) we have to compute the OPE of eφi(z)ci with eαφ(w)cα. Notice that ci will pass

through eαφ and due to Baker-Campbell-Hausdorff we obtain an extra phase:

cie
αφ = eiπ〈eiM∂φ〉eαφ = eiπ〈eiMα〉eαφci (A.18)

so that our OPE becomes

eφi(z)ci e
αφ(w)cα ∼ (z − w)α·ei eiπ〈eiMα〉e(ei+α)φci+α. (A.19)

Notice that we obtain a branch-cut if α · ei = αi = −1/2 which in turn implies that the

sum ei + α must be an anti-chiral index β̇. Therefore given

eφi(z)ci e
αφ(w)cα ∼ (z − w)−1/2 eiπ〈eiMα〉eβ̇φcβ̇, (A.20)

we see that it becomes natural to define the gamma matrices as

(Γj)βα̇ =
√

2δ (ej + β − α̇) eiπ〈ejMα̇〉 (A.21a)

and

(Γj) β̇α =
√

2δ
(
ej + β̇ − α

)
eiπ〈ejMα〉 (A.21b)

giving us the final result:

ψi(z)Sα(w) ∼ 1√
2

Γi α
β̇
Sβ̇(w)

(z − w)1/2
. (A.22)

The explicit representation is written in terms of the Pauli-matrices via

Γ±ej = (±i)j−1
√

2
(
σ3⊗

)j−1
σ∓ (⊗1)5−j (A.23)
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and one can convert between u(5) and covariant so(10) using

Γ2j−1 =
1√
2

(
Γej + Γ−ej

)
(A.24a)

and

Γ2j =
i√
2

(
Γej − Γ−ej

)
(A.24b)

Notice that in our construction, the notation γµ is reserved for the symmetric gamma

matrices:

γµαβ = Γµ β̇α Cβ̇β (A.25a)

γµαβ = Γµα
β̇
C β̇β (A.25b)

as it is common in the literature. In above equations, C denotes the charge conjugation

matrix which is the next topic in our discussion.

Charge Conjugation Matrix. We define C as

Cββ̇ = δ
(
β + β̇

)
eiπβMβ̇ (A.26a)

and

C β̇β = −δ
(
β̇ + β

)
eiπβ̇Mβ (A.26b)

and with these convetions we have Cββ̇ = C β̇β . These expressions can be motivated by

studying the OPE of Sα and Sβ̇.

It is also common to use only undotted indices when describing spinors in 10d. Charge

matrices act as metrics on the spinor space and can remove all dotted indices. For us

all spinors are defined with upper indices and then anti-chiral ones are written as

Sβ = Cββ̇S
β̇. (A.27)

This notation is used together with the symmetric gamma representation.



Appendix B

Current algebra CFT

In this appendix we will discuss some general properties of the CFT of gauge sector of

section 4.3.

As mentioned in the text, we are using the ordering prescription (4.47), which can

be understood as the product of two operators A(z) and B(y) in the limit z → y with

the removal of singular terms. Note that this prescription is neither commutative nor

associative:

(A,B) 6= (B,A) , (B.1)

((A,B) , C) 6= (A, (B,C)) . (B.2)

The energy-momentum tensor of the algebra can be obtained using the Sugawara

construction and it is defined by

T ≡ A (Ja, Ja) , (B.3)

where A is a numerical constant to be determined by imposing the OPE

Ja(z)T (y) ∼ Ja
(z − y)2

. (B.4)

In order to do that, we can compute first

Ja(z) (Jb, Jc) (y) ∼ ik
fabdδdc

(z − y)3
− fabdfdce

Je
(w − y)2

+
kδacJb

(z − y)2
+

ifacd
(z − y)

(Jb, Jd)

+
kδabJc

(z − y)2
+

ifabd
(z − y)

(Jd, Jc) . (B.5)
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It implies that

Ja(z)T (y) ∼ 2Ak
Ja

(z − y)2
+Afacdfbcd

Jb
(w − y)2

. (B.6)

Now we introduce the dual Coxeter number, g, defined through

facdfbcd = 2gδab. (B.7)

Therefore we can fix A to

A =
1

2(k + g)
. (B.8)

Now we can compute the central charge of the model through the OPE

T (z)T (y) ∼ c/2

(z − y)4
+

2T

(z − y2)
+

∂T

(z − y)
. (B.9)

The result is

c =
k∆

(k + g)
. (B.10)

This is the central charge of the gauge sector.

Building additional primary operators

One of the operators we need for the computation of 3-point amplitudes is related to

the ordered product of two currents, (Ja, Jb). Observe, however, that this product is not

symmetric. In fact, we can show that

(Ja, Jb)− (Jb, Ja) = ifabc∂Jc. (B.11)

Therefore, we can define the operator Jab = Jba as

Jab ≡ 1
2 (Ja, Jb) + 1

2 (Jb, Ja) , (B.12)

= (Ja, Jb)− i
2f

c
ab ∂Jc, (B.13)

which can be further decomposed in two irreducible pieces: its trace, proportional to T ,

and a traceless part.

Observe that any rank two tensor Tab can automatically generate a symmetric trace-

less tensor T(ab) via a multiplication by the projector

δ(ab)(cd) ≡ 1
2δacδbd + 1

2δadδbc −
1
∆δabδcd.
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It acts as an identity operator for the indices (ab), as

δ(ab)(ef)δ(ef)(cd) = δ(ab)(cd). (B.14)

The pair (ab) is an explicit realization of the index α introduced in section (4.3), labeling

the field ϕα of the vertex operator (4.50).

As it turns out, the symmetric traceless projection picks only the primary part of the

operator (Ja, Jb):

T (z) δ(ab)(cd) (Jc, Jd) (y) ∼ δ(ab)(cd)
2 (Jc, Jd)

(z − y)2
+ δ(ab)(cd)

∂ (Jc, Jd)

(z − y)
. (B.15)

This is the only dimension 2 primary operator that can be build out of the currents Ja.

In addition, we will define the operator

∆(ab)(cd) ≡ 1
2fadefbce + 1

2facefbde −
2g
∆ δabδcd, (B.16)

which is also symmetric and traceless in the index pairs (ab) and (cd), and the power

series

C(ab)(cd) = δ(ab)(cd) − 2

∞∑
n=1

(−1)n
(2n− 2)!

(8k)nn!
(∆n)(ab)(cd) , (B.17)

satisfying

C(ab)(ef)C(ef)(cd) = δ(ab)(cd) + 1
2k∆(ab)(cd). (B.18)

This is a realization of the Clebsch-Gordan coefficients, Cαab, introduced earlier. By

construction,

(
C−1

)
(ab)(cd)

≡ δ(ab)(cd) +
∞∑
n=1

(−1)n
(2n)!

(8k)nn!
(∆n)(ab)(cd) . (B.19)

Let us now define the dimension 2 primary operator

J(ab) ≡
(
C−1

)
(ab)(cd)

(Jc, Jd) , (B.20)

which satisfies the OPE

Ja(z) J(bc)(y) ∼ 2kC(ad)(bc)
Jd

(z − y)2
− (Ta)(bc)(de)

J(de)

(z − y)
,

where

(Ta)(bc)(de) ≡ −2i
(
C−1

)
(bc)(fg)

fafhC(gh)(de) (B.21)
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Observe that (Ta)(bc)(de) constitutes a representation of the group generator, as

[Ta, Tb](de)(fg) ≡ (Ta)(de)(hi) (Tb)(hi)(fg) − (Tb)(cd)(gh) (Ta)(gh)(ef) .

= ifabc (Tc)(de)(fg) . (B.22)

In addition, it satisfies

(TaTa)(bc)(de) = 2gδbdδce + 2gδbeδcd − fbdffcef − fbeffcdf , (B.23a)

(TaTb)(cd)(cd) = 2g(∆ + 2)δab. (B.23b)

At the next conformal level, there are only two primary operators that can be build

out of Ja, defined as

J[ab] ≡ 1
2 (Ja, ∂Jb)− 1

2 (Jb, ∂Ja)− i
3fabc∂

2Jc + iCfabc (Jc, T ) , (B.24a)

J(abc) = Jabc − C [δbc (Ja, T ) + δac (Jb, T ) + δab (Jc, T )] , (B.24b)

where

Jabc ≡ 1
3 (Ja, Jbc) + 1

3 (Jb, Jac) + 1
3 (Jc, Jab) , (B.25a)

C =
2(k + g)

k∆ + 2(k + g)
. (B.25b)

They are naturally generated in the OPE algebra. For example,

J(bc)(z) J(ad)(y) ∼ 2k2 δ(ad)(bc)

(z − y)4
+ 4k(k+g)

∆ δ(ad)(bc)

{
2T

(z − y)2
+

∂T

(z − y)

}
−k (Te)(bc)(ad)

{
2Je

(z − y)3
+

∂Je
(z − y)2

+ 1
3

∂2Je
(z − y)

}
+1

2

(
C−1

)
(ad)(gh)

(TgTh)(bc)(ef)

{
2J(ef)

(z − y)2
+

J(ef)

(z − y)2

}
+Dd(bc)(ef)

J(aef)

(z − y)
+Da(bc)(ef)

J(def)

(z − y)

+D(bc)(ad)[ef ]

J[ef ]

(z − y)
+ Ee(bc)(ad)

(Je, T )

(z − y)
, (B.26)

where Da(bc)(de), D(ab)(cd)[ef ] and Ea(bc)(de) are given in terms of the structure constants

of the group, but their precise expression will not be needed here. The OPE above was

presented in the main text with the indices α, β in equation (4.60c).
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