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Abstract. This proceedings contribution summarizes the effective field theory approach to
searches for violations of Lorentz invariance in gravity with a focus on propagation effects.

1. Introduction
The question of how General Relativity (GR) and the Standard Model (SM) of particle physics
merge to form a single consistent theory is one of the most fundamental questions we currently
face in physics. Over the past several decades, the realization that certain scenarios for this
merge could generate violations of local Lorentz invariance (Lorentz violation) [1] has led to
the development of a framework known as the gravitational Standard-Model Extension (SME)
[2, 3, 4], which is designed to search for Lorentz violation comprehensively and systematically.
The SME is an effective field-theory framework that characterizes arbitrary Lorentz-violating
corrections to GR and the SM. These corrections can be sought in existing experiments in hopes
of gaining insight about the nature of Planck-scale physics with existing technology, and dozens
of SME-based experiments have been performed to date [5].

The SME consists of an expansion about the action of GR and the SM in operators
of increasing mass dimension d. The idea is to search systematically for Lorentz violation
throughout physics rather than individually testing a large number of special models (though
specific models [6] also provide useful insight). The approach resonates philosophically with
other familiar test frameworks including the Parameterized Post Newtonian (PPN) formalism
[7], while differing in its goals, construction, and physical effects. In terms of goals, the SME
parameterizes deviations from exact Lorentz symmetry throughout physics, some of which are
modifications to GR, while the PPN parameterizes differences from GR, some of which are
Lorentz violating. By way of construction, the SME parameterizes deviations from the action of
GR and the SM, while the PPN parameterizes deviations from the post-newtonian metric of GR.
Another approach that has some philosophical similarity with the SME is the Parameterized
Post Einsteinian (PPE) framework [8]. The key points are that (i) the SME is a broad and
general test frame work having philosophical similarities with other test frameworks and (ii)
the SME is unique in its comprehensive focus on Lorentz symmetry via an effective field-theory
approach. While a number of approaches to Lorentz violation restrict attention to models that
are isotropic in a special frame, the SME treats general anisotropic effects.
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2. Linearized gravity
Much work has been done across a wide variety of gravitational systems in the SME. Lorentz
violation in the pure-gravity sector at mass dimension four has been sought in a large number of
systems including laboratory [9, 10, 11], solar-system [12, 13, 14], and astrophysical [15, 16, 17]
tests. Much of this experimental and observational work is based on the theoretical and
phenomenological developments of Ref. [18]. Searches for Lorentz violation in matter-gravity
couplings have also been done [9, 11, 14, 19], initiated by the theoretical and phenomenological
work of Refs. [20]. Studies of gravitational Lorentz violation beyond d = 4 have also begun.
Here it has been shown that laboratory tests and gravitational-wave tests provide complementary
coverage of the coefficient space [21]. Short-range gravity tests have made significant progress in
this area [22], as have gravitational-wave tests [15, 17, 23, 24]. Exploration of the role of solar-
system tests in searches for higher mass dimension operators has has also begun [25], as have
considerations of nonlinear gravity effects [26]. We also note in passing that Finsler geometry
provides a geometric interpretation for a number of Lorentz-violating effects in the effective
field-theory construction [27].

In this section we focus on the full Lorentz-violating expansion about linearized gravity and
the associated effects on the propagation of gravitational waves. Here the generic form of the
Lagrange density including both the Lorentz-violating and Lorentz-invariant contributions can
be written [23],

LK(d) = 1
4hµνK̂

(d)µνρσhρσ, (1)

where the operator
K̂(d)µνρσ = K(d)µνρσε1ε2...εd−2∂ε1∂ε2 . . . ∂εd−2

(2)

has mass dimension d ≥ 2. Here hµν is the usual metric perturbation and the coefficients

K(d)µνρσε1ε2...εd−2 are taken as small constants. Intuition for Eq. (1) can be gained by noting
that it contains the standard linearized limit of the Einstein–Hilbert action, which is recovered
in the limit

K̂(d)µνρσ → εµρακενσβληκλ∂α∂β. (3)

In other cases, the coefficients K(d)µνρσε1ε2...εd−2 parameterize the amount of Lorentz violation
in the theory. A decomposition of the operator into irreducible parts generates 14 classes of
operators. Three of these classes respect the usual gauge invariance of GR. These can be
understood as being associated with spontaneous Lorentz violation [3, 28]. Initial exploration
of these classes has been done [23].

Similar considerations in the photon sector lead to effects in vacuum that are analogous to
the propagation of light in matter including energy-dependent birefringence, dispersion, and
anisotropy. These effects have been sought astrophysically using a variety of observations
including gamma-ray bursts [29, 30, 31] and CMB observations [29, 32]. The three classes
of operators identified above are associated with the gravitational versions of the photon effects
noted. These effects can be characterized via the dispersion relation

ω =
(

1− ς0 ±
√

(ς1)2 + (ς2)2 + (ς3)2
)
|p|, (4)

found from the relevant limit of (1) [23], where

ς0 =
∑
djm

ωd−4 Yjm(n̂) k
(d)
(I)jm,

ς1 ∓ iς2 =
∑
djm

ωd−4 ±4Yjm(n̂)
(
k
(d)
(E)jm ± ik

(d)
(B)jm

)
,

ς3 =
∑
djm

ωd−4 Yjm(n̂) k
(d)
(V )jm. (5)
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Here the relevant contributions to the coefficients K(d)µνρσε1ε2...εd−2 can be decomposed into

the spherical coefficients k
(d)
(I)jm, k

(d)
(E)jm, k

(d)
(B)jm, k

(d)
(V )jm using spherical harmonics Yjm, and spin-

weighted spherical harmonics sYjm [29]. The features in the analogy with optics in matter can
be seen directly from (4). Birefringence is associated with the plus/minus in (4), dispersion with
the appearance of factors of ω at each mass dimension d > 4, and anisotropy with the direction
of origin for the wave n̂ via the spherical harmonics with j 6= 0.

3. Gravitational-wave applications
The first direct observations of gravitational waves from binary black-hole mergers were used to
place initial direct constraints on modifications to the gravitational wave dispersion relation in
the context of effective field theory. This was done through the absence of birefringence [23] in
the first gravitational-wave observation [33] and the absence of dispersion [24] in the first [33]
and second [34] gravitational-wave observations. These first analyses were performed via the
chirp signals published by LIGO. The dispersive effects of Lorentz violation have subsequently
been sought by the LIGO collaboration in the context of an isotropic phenomenological model
[35]. Gravitational waves were also used indirectly in early work placing limits via the lack of
gravitational Čerenkov radiation by scalar cosmic rays [36]. More recently, this idea has been
expanded upon within the effective field-theory framework of the SME to include the full space
of anisotropic effects, Lorentz violation associated with higher mass dimension operators, and
gravitational Čerenkov radiation by other species including photons [15].

As an example of recent progress, the seminal observation of gravitational waves from a binary
neutron-star merger by the LIGO-Virgo collaboration coincident with the observation of gamma-
ray photons by the Fermi telescope provided an impressive new test of the effects contained in
the gravitational dispersion relation [17]. The fact that the gamma-ray photons arrived about
1.7 seconds after the gravitational waves associated with the merger implies constraints on the
relative speed of the gravitational waves and the photons [17] that are a significant improvement
over prior direct speed-of-gravity tests [38]. Within effective field theory, the relative group
velocity of the gravitational waves and the electromagnetic waves, ∆v = vg−vγ , is controlled by
differences in coefficients for Lorentz violation in the gravitational sector and the photon sector
at each mass dimension. The explicit form of the group-velocity difference can be obtained
from the dispersion relation in each sector [23, 29, 31] via standard methods. As birefringent
coefficients can often be better sought with higher sensitivity using birefringence directly [23],
we focus here on non-birefringent effects. Following this specialization, the resulting difference
in group velocities for the two sectors can be written

∆v = −
∑
djm

(d− 3)Yjm(n̂)
(
Ed−4g k

(d)
(I)jm − E

d−4
γ c

(d)
(I)jm

)
. (6)

Here Eg is the energy corresponding to the observed gravitational-wave frequency, and Eγ is
the energy of the observed gamma rays. The result is presented in a spherical harmonic, Yjm,

basis, with k
(d)
(I)jm and c

(d)
(I)jm being the nonbirefingent spherical-basis coefficients for Lorentz

violation in the gravity sector and electromagnetic sector, respectively. The sum is over even
d ≥ 4, and j ≤ d − 2. The direction n̂ refers to the direction of the incoming messengers from
the event and is described by the standard spherical polar coordinates θ, φ in the Sun-centered
celestial-equatorial frame [37]. Use of this frame is standard in SME studies as it facilitates easy
comparison among results of different experiments.

The focus of the analysis performed by the LIGO, Virgo, Fermi Gamma-ray Burst Monitor,
and INTEGRAL collaborations was on the minimal Lorentz-violating effects associated with
operators of mass dimension d = 4, which are nondispersive and hence inaccessible to other
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gravitational wave-based approaches. Here, Eq. (6) can be written

∆v = −
∑
jm

Yjm(n̂)
(
1
2(−1)1+js

(4)
jm − c

(d)
(I)jm

)
, (7)

where k
(4)
(I)jm = 1

2(−1)1+js
(4)
jm [21] is used to facilitate contact with earlier SME work at d = 4.

The resulting speed constraints generated a ten order of magnitude improvement over existing

sensitivities to s
(4)
00 [16, 12] and order of magnitude improvements in a number of other d = 4

gravity-sector coefficients in the context of a maximum-reach analysis [9] in which each of the
gravity-sector coefficients were considered one at a time.

Before ending discussion of this result, we provide a few remarks to help the reader develop
an intuition for spherical coefficients. First, note that based on the range of the indices in

Eq. (6), nine d = 4 spherical coefficients s
(4)
jm contribute. This is consistent with the counting

in the Cartesian basis where sµν is symmetric and traceless. Note also that the coefficients

satisfy (s
(4)
jm)∗ = (−1)ms

(4)
j(−m), where ∗ is complex conjugation. The phase convention for the

spherical harmonics is chosen such that they satisfy the same condition. Contact can then be
made between the Cartesian and spherical coefficients by matching terms from each side of an
expression such as

sµν p̂µp̂ν =
∑
jm

Yjm(p̂)s
(4)
jm. (8)

For example, one finds 2sY Z =
√

15
2π Ims

(4)
21 . Reference [39] provides explicit relations for all nine

coefficients. For additional details, see Ref. [29].

4. Summary
Effective field theory methods provide a framework for searching for Lorentz violation. This
proceedings contribution summarizes this approach in the context of linearized gravity with a
focus on propagation effects. As an example of the approach, we highlight the recent progress
via multimessenger-astronomy observations. The future is bright for such searches as additional
gravitational-wave observations distributed across the sky can be expected to generate tests that
are increasingly sensitive and robust.
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