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Abstract 

We study the induced gluon radiation of a high energy quark in a finite-size QCD medium. 
For a sufficiently energetic quark produced inside a medium we find the radiative energy loss 
D.Eq ex L2, where L is the distance passed by quark in the medium. In this regime D.Eq has 
a weak dependence on the initial quark energy Eq. It is dominated by the gluon radiation 

with Feynman x close to zero and unity. The L2 dependence turns to L1 as the quark energy 
decreases. :"Jumerical calculations are performed for a cold nuclear matter and a hot quark­
gluon plasma. For a quark incident on a nucleus we predict D.Eq "" O. lEq(L/ l 0 fm)i3, with /3 
close to unity. 

54 1 



In the recent work1l we developed a new path integral approach to the Landau-Pomeranchuk­
Migdal effect2•3) in QED and QCD. Here we report on the evaluation within our technique of 
the radiative energy loss of a fast quark, l::i.Eq, propagating through a finite-size QCD medium.4l 
We consider both a cold nuclear matter and a hot quark-gluon plasma (QGP). Following pre­
vious works5-7J we model QGP by a system of static scattering centres described by the Debye 
screened potential o:: exp(-rµD)/r, where µD is the color screening mass. For the screening 
mass we use perturbative formula µD = (1 + nF/6)112g, T, where g, = ./47ret, is the QCD 
coupling constant, T is the temperature of QGP. We assume that a fast quark produced at 
z = 0 through a hard mechanism propagates in a medium of extent L along z axis. 

Neglecting the multigluon emission the radiative energy loss can be written as 

1 dP l::i.Eq = Eq 1 dxx dx , ( 1 )  
0 

where Eq is the initial quark energy, x is the Feynman variable for the radiated gluon, and dP / dx 
is the probability of gluon radiation as function of x. In the approach of Ref. 1 an evaluation of 
dP/dx is reduced to solving a two-dimensional Schrodinger equation in the impact parameter 
space. The longitudinal coordinate z plays the role of time. This Schrodinger equation describes 
evolution of the light-cone wave function of a spurious three-body qqg color singlet system. 
The relative positions of the constituents of the qqg system in the impact parameter space are 
Pq = -px, Pq = 0, p9 = (1 - x)p. The corresponding Hamiltonian has the form 

p2 
H = 2µ(x) + v(p, z) , 

v(p, z) = -in(z)o-a (p, x) . 2 

(2) 

(3) 

Here µ(x) = Eqx(l - x) is the reduced " Schrodinger mass" , n(z) is the medium density, and 
o-3(p, x) is the cross section of interaction of the qijg system with a medium constituent (color 
centre for QGP and nucleon for nuclear matter) .  In the case of QGP on the rhs of ( 3) summation 
over triplet (quark) and octet (gluon) color states is implicit. 

In order to simplify the analysis we neglect the q --+ qg spin-flip transitions which give a 
small contribution to the energy loss. Then the radiation rate is given by1l  

dP 100 100 [ i(�2 - 6) ] 
dx = 2Re �1 �2 exp - L g(�1 , 6, x) [K(0, �210, 6) - K.(0, 610, 6)] . 

0 �l 
f 

Here the generalization of the QED vertex operator of Ref. 1 to QCD reads 

(� � 
) 

_ a,[4 - 4x + 2x2] . p(�2) · p(�i) g .,i , .,2 , x -
3x µ2(x) , 

(4) 

(5) 

K is the Green's function for the Hamiltonian (2), Kv is the vacuum Green's function, L f = 

2Eqx(l  - x)/[m�x2 + m� ( l  - x)] is the so called gluon formation length (time) ,  mq is the quark 
mass and m9 is the mass of radiated gluon. The latter plays the role of an infrared cutoff 
removing contribution of the long-wave gluon excitations which cannot be treated perturba­
tively. In contrast to the expression for the bremsstrahlung spectrum for an electron incident 
on a target of Ref. 1, in which the integration over �1 starts from -oo, in (4) we integrate over 
6 from 6 = 0, i.e. from the point where a fast quark is produced by hard scattering. 
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The three-body cross section entering the imaginary potential (3) can be expressed in terms 
of the dipole cross section for color singlet qij pair, a2(p),8l 

(6) 

The radiation rate is dominated by the contribution from p � l/m9,1l where a2(p) = C2(p)p2 
and C2(p) has a smooth (logarithmic) dependence on p.9•8) This allows one to estimate the 
energy loss replacing C2(p) by C2(1/m9) .  Then a3(p,x) = C3(x)p2 , with C3(x) = {9[1 + (1 -
x)2] - x2 }C2( 1/m9)/8, and the Hamiltonian ( 1 )  takes the oscillator form with the frequency 

n = (1 - i) 
(

n(z)C3 (x) ) 112 
= 

(1 - i) 
( 

n(z)C3 (x) ) 1!2 
y'2 µ(x) y'2 Eqx(l - x) 

Making use of the oscillator Green's function after some algebra one can represent the 
bremsstrahlung rate (4) in the form 

where 
daBH 

dx 

dP da8H 
dx = Ln�S(T/, l) , 

4a,C3 (x) (4 - 4x + 2x2) 
97rx[m�x2 + m�(l - x)] ' 

(7) 

(8) 

is the Bethe-Heitler cross section. The suppression factor S(T1, l) , depending on the dimension­
less variables 

is given by 

T/ = L IDI = [4nC3 (x)Eqx(l - x)J 112 1 m�x2 + m�(l - x) ' 

L[m2x2 + m2(1 - x)] l = L/L1 = ;Eqx(l � x) , 

S(T/, l) = S(ll
(T/, l) + S(2l (T/, l) , 

( I )  _ · ty2 1 <{) 3 I� YI 

( 
. ) { [ , ] 2

} S (T/, l) - 1T/2 Re [ dy1 [ dy2 exp ----:;; Yi - sin(¢y2) 
, 

I� oo 
5(2) ( l) - 3 Re i d i d . [ i(Y1 + y2) ] 

T/, - /2 Yi Y2 exp 
T/ 

0 0 T/ 

x { (Y1 �Y2)2 - '[cos(¢yi ) (ta:(¢yi ) + ¢Y2J } ' 

(9) 

(10) 

( 1 1 )  

( 12) 

( 13) 

with ¢ =  D/IOI = exp(-i7r/4). The two terms on the rhs of ( 1 1 )  correspond in (4) to the 
contributions from the integration regions �1 < �2 < L and �1 < L < �2, respectively. The 
variables in (12) ,  ( 13) in terms of those in (4) are y1 = (L - �1 ) 101 , Y2 = (�2 - �1 ) 101 (in ( 12)) 
and Y2 = (�2 - L) ID I  (in ( 13)) .  In arriving at ( 13) we have used representation of the first 
Green's function in the square brackets in (4) through convolution of the oscillator Green's 
function {for the interval (6 , L)) and the vacuum one (for the inten'al (L, 6)) .  

In a medium it  is  either L1 or l/ IDI which sets the effective medium-modified formation 
length L� = min(L1, l /I DI ) ,  which is the typical value of 6 - �1 in (4) for L » L�. The 
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finite-size effects come into play only at L � Lj, i.e. l � lo = min(l, l/ry). From (11 )-(13) 
we find S(ry, l) :::::: - 12 Jog l as l -+ 0. The source of this suppression of radiation at small L is 
obvious: the energetic quark produced through a hard mechanism loses soft component of its 
gluon cloud and radiation at distances shorter than the time required for regeneration of the 
quark gluon field turns out to be suppressed. For l » lo S(17, l) is reduced to that for the infinite 
medium. At large and small T/ it can be approximated as S(ry, l = oo) :::::: 3/1/,/2 ( T/ » 1 )  and 
S(17, l = oo) :::::: 1 - 16174/21 ( 1/ « l) . 1l Notice, that according to (9) , (10) T/ -+  0 and l -+  oc as 
x -+ 0, 1 and the Bethe-Heitler regime takes place in these limits. 

Before presenting the numerical result, Jet us consider the energy loss at a qualitative level. 
We begin with the case of a sufficiently large E9 such that the maximum value of Lj, Lj(max), 
is much bigger than L. Taking into account the finite-size suppression of radiation at Lj ;::, L, 
we find that 6.E9 is dominated by the contribution from two narrow regions of x: x � Oy :::::: 
Lm�/2loE9 and 1 - x  � o9 :::::: Lm�/2l0E9. In both the regions the finite-size effects are marginal 
and the energy Joss can be estimated using the infinite medium suppression factor. For instance, 

( 14) 

Using (9) one can show that 17(x � oy) � 1 at L � m;/2nC3(0). In this region of L in (14) we 
can put S(ry(x) ,  l = oo) :::::: 1 and find 6.E9 � 0.25a,C3(0)nL2, which does not depend on the 
quark energy. At L » m;/2nC3(0) the typical values of T/ in (14) are much bigger than unity, 
and using the asymptotic formula for the suppression factor we obtain 6.E9 � a,C3(0)nL2. 
Similar analysis for x close to unity gives the contribution to 6.Eq suppressed by the factor 
� 1/4 as compared to that for small x. Notice that in this L2 regime, despite the l/m;,q 
infrared divergence of the Bethe-Heitler cross section, 6.E9 has only a smooth my-dependence 
originating from the factor C3. We emphasize that the above analysis of the origin of the 
leading contributions makes it evident that L2 dependence of 6.E9 cannot be regarded as a 
consequence of the Landau-Pomeranchuk-Migdal suppression of the radiation rate due to small 
angle multiple scatterings. 

The finite-size effects can be neglected and 6.E9 becomes proportional to L if Lj(max) « L. 
If in addition the typical values of 1/ are much bigger than unity, from ( 1 ) ,  (7), (8) along with 
the asymptotic form of S(ry, l = oo) at 1/ » 1 one can obtain the following infrared stable result 
6.E9 :::::: l . la,LJnC3(0)Eq. 

In numerical calculations we take my = 0 .75 GeV. This value of my was obtained from 
the analysis of HER.A data on structure function F2 within the dipole approach to the BFKL 
equation.10•1 1) For scattering of the qijg system on a nucleon, we find from the double gluon 
modeJ9l C2(1/my ) � 1 .3-4 where the lower and upper bounds correspond to the t-channel gluon 
propagators with mass 0.75 and 0.2 GeV, respectively. The latter choice allows one to reproduce 
the dipole cross section extracted from the data on vector meson electroproduction.12) However, 
there is every indication lO,ll) that a considerable part of the dipole cross section obtained in 
Ref. 12 comes from the nonperturbative effects for which our approach. is not justified. For 
this reason we take C2(1/my) = 2 which seems to be plausible estimate for the perturbative 
component of the dipole cross section.10l For QGP at T = 250 MeV the double gluon formula 
with the Debye screened gluon exchanges gives C2(1/my) :::::: 0.5 for triplet centre. For octet 
centre the result is CA/CF = 9/4 times larger, here CA(CF) is the octet(triplet) second-order 
Casimir invariant. For quark mass, controlling the transverse size of the qijg system at x :::::: 1 , 
we take m9 = 0.2 GeV. Notice that our prediction for 6.Eq is insensitive to the value of m9. 

We calculate 6.E9 for nuclear matter taking n = 0.15 fm-3 and a, = 1 /2. For QGP 
at T = 250 MeV we take a, = 1/3. In the region L � 5 fm the numerical results can be 
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parametrized in the form t::..Eq � D(L/5 fm)P. The D and /3 as functions of Eq are shown in 
Fig. 1 (nuclear matter) and Fig. 2 (QGP). To illustrate the m9-dependence of the predictions, 
besides the results for m9 = 0.75 GeV (solid curve), we also show in Figs. 1 ,  2 the results for 
m9 = 0.375 GeV (dashed curve) .  In the region 5 � L ;::;, 10 fm /3 is by 10-20 3 smaller than 
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Figure 1: The parameters D (a) and /3 (b) for the parametrization !:::.Eq � D(L/5 fm)P for 
nuclear matter. The solid lines correspond to m9 = 0.75 GeV, and the dashed ones to m9 = 

0.375 GeV. 
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Figure 2 :  The same as in Fig. 1 but for QGP at T = 250 MeV. 

for L ;::;, 5 fm. Notice that L� (max) � 5 - 10 fm for Eq � 10 - 40 GeV in nuclear matter, 
and for Eq � 1 50 - 600 GeV in QGP. From Figs. 1, 2 one can conclude that the onset of L2 
regime takes place when L�(max)/ L � 2.  The closeness of /3 to unity at Eq = 10 GeV for QGP 
agrees with a small value of L� (max) (� 1 fm) .  The m9-dependence of !:::.Eq becomes weak at 
Eq � 50 GeV. However, it is sizeable for Eq � 10 - 20 GeV. Our predictions for !:::.Eq must 
be regarded as rough estimates with uncertainties of at least a factor of 2 in either direction. 
Nonetheless rather large values of !:::.Eq obtained for QGP indicate that the jet quenching may 
be an important potential probe for formation of the deconfinement phase in AA collisions. 
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We also studied the energy loss of a fast quark incident on a target. In this case the radiation 
by initial quark is allowed and the lower limit of integration over �1 in ( 4) must be replaced by 
-oo. For this situation, as in the case of QED, 13) after expanding the medium Green's function 
in a series in the potential the spectrum can be represented as a sum of the Bethe-Reitler term 
and an absorptive correction. For our choice of the gluon mass the absorptive correction is 
relatively small. This means that f::..Eq ex: EqLna,C3(0)/m�. For nuclear matter in the region 
L � 10 fm the numerical calculations give t::..Eq � O.lEq (L/lO fm).8 with f3 � 0.9 - 1  for Eq � 50  
GeV and f3 � 0.85 - 0.9 fo r  Eq ;::, 200 GeV. This result differs drastically from prediction of 
Brodsky and Hoyer14l t::..Eq � 0.25(L/l fm) GeV. Our estimate is in a qualitative agreement 
with the longitudinal energy flow measured in hard pA collisions with dijet final state15l and 
the energy loss obtained from the analysis of the inclusive hadron spectra in hA interactions. 16l ' 

I thank R. Baier and D. Schiff for discussions. 
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