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We develop a method to connect the infinite-dimensional description of optical continuous-variable
quantum key distribution (QKD) protocols to a finite-dimensional formulation. The secure key rates of
the optical QKD protocols can then be evaluated using recently developed reliable numerical methods
for key-rate calculations. We apply this method to obtain asymptotic key rates for discrete-modulated
continuous-variable QKD protocols, which are of practical significance due to their experimental simplic-
ity and potential for large-scale deployment in quantum-secured networks. Importantly, our security proof
does not require the photon-number cutoff assumption relied upon in previous works. We also demon-
strate that our method can provide practical advantages over the flag-state squasher when applied to
discrete-variable protocols.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2] enables two
remote parties, Alice and Bob, to establish information
theoretically secure keys even in the presence of an eaves-
dropper, Eve. These keys can then be used in many other
cryptographic applications, such as the one-time pad. To
prove QKD to be secure with a specified key rate, we
need to assume a quantum-mechanical model for Alice and
Bob’s devices, but do not have to assume anything about
the processing power available to the eavesdropper [3].
Reviews of QKD protocols can be found in Refs. [4–6].

For a given QKD protocol, the goal of a security proof
is to find a lower bound on the secure key rate. Analyti-
cal methods for this task can be very involved, tend to be
restricted to symmetric protocols, and can introduce loose-
ness in the lower bounds. These issues are ameliorated by
the recent development of tight, reliable numerical meth-
ods for finding secure key rates [7,8]. At a high level, these
methods determine the key rate by solving a particular
convex optimization over the set of quantum states that
could be held by Alice and Bob. Thus, when the bipar-
tite Hilbert space is infinite dimensional, the numerical
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methods cannot be used directly. Fortunately, for many
discrete-variable (DV) protocols, the numerical methods
can be applied by using the squashing map [9–11] or the
more general flag-state squasher [12] to reduce the problem
to finite dimensions. However, these squashing approaches
do not seem applicable to continuous-variable (CV) pro-
tocols. Additionally, even for DV protocols, the flag-state
squasher can have challenging runtimes [13].

Discrete-modulated continuous-variable QKD (DMCV
QKD) is a family of protocols that utilize existing telecom-
munication infrastructure, including homodyne or conju-
gate homodyne detection [14–16]. They are thus promising
candidates for deployment in large-scale quantum-secured
networks. In comparison to Gaussian-modulated CVQKD
[17–19], discrete modulation is less demanding on the
source modulator and on the error-correction protocols,
yet is expected to achieve similar key rates. It is thus
of interest to establish security proofs for DMCVQKD.
Of particular interest is DMCVQKD with four or more
modulated states, which is expected to outperform proto-
cols with a smaller constellation. While there are analytic
asymptotic security proofs of DMCVQKD with two [20]
or three [21] modulated states, they are difficult to gen-
eralize to more states. Recent works have numerically
studied asymptotic security proofs for DMCVQKD with
any number of modulated states [22,23]. However, these
approaches assume the state is finite dimensional, known
as the photon-number cutoff assumption. Thus, while these
results seem numerically plausible, they do not consti-
tute a rigorous asymptotic security proof, as the cutoff
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assumption cannot be justified. A full finite-key analysis
of binary-modulated DMCVQKD has also been recently
completed in Ref. [24].

The main contribution of this paper is a method to
tightly lower bound the key rate of an infinite-dimensional
QKD protocol in terms of a finite-dimensional convex
optimization. In combination with existing numerical tools
for solving finite-dimensional convex optimizations, this
enables us to find tight, reliable key rates for general
device-dependent QKD protocols in infinite-dimensional
Hilbert spaces. Our dimension reduction method can also
be applied to study other tasks in quantum information,
such as entanglement verification [25].

As a result, our method can provide a complete asymp-
totic security proof for discrete-modulated continuous-
variable protocols with any number of modulated states,
with tight key rates and without relying on the photon-
number cutoff assumption. While our focus in this work
is on calculating asymptotic key rates, we expect key
elements of our method to lift to a finite-key analysis.

Our dimension reduction method also provides an alter-
native approach to study protocols admitting a flag-state
squasher. We consider unbalanced phase-encoded BB84
as an example, and show that our method can have an
improved runtime compared to the flag-state squasher,
while providing similar results.

The remainder of this paper is structured as follows.
In Sec. II, we review the basic steps of a QKD proto-
col and how the key rate can be formulated as a convex
optimization. In Sec. III, we develop our framework for
dimension reduction, in more generality than is needed for
QKD. In Sec. IV, we then specialize our general method to
asymptotic key rate calculations. In Sec. V, we show how
to implement the relevant optimizations numerically. In
Sec. VI, we calculate key rates for DMCVQKD, including
modeling postselection and trusted noise. In Sec. VII we
compare our method to the flag-state squasher. Finally, we
provide concluding remarks and avenues for future work
in Sec. VIII. Certain technical details are relegated to the
appendices.

II. BACKGROUND: QKD PROTOCOLS AND
SECURITY ANALYSIS

A. Generic QKD protocol steps

We first review the basic steps of a generic QKD pro-
tocol. Alice and Bob have access to an uncharacterized
quantum channel and an authenticated, public classical
channel. By the source-replacement scheme [26–29], any
prepare-and-measure (P&M) protocol can be equivalently
viewed as an entanglement-based (EB) one. Thus, with-
out loss of generality we consider entanglement-based
protocols.

1. Alice and Bob establish a quantum state ρAB.

2. Alice and Bob measure their subsystems with pos-
itive operator-valued measures (POVMs) {Pi

A} and
{Pj

B}. To each outcome i, j , they associate two pieces
of classical data: a public announcement ai, bj and
a private measurement result αi, βj . The respec-
tive alphabets from which the values are drawn
are Sa, Sb, Sα , Sβ . We can think of the classical
announcements as partitioning the data.

After repeating the previous two steps for a large number
of rounds, Alice and Bob proceed to the classical phase.

3. Alice and Bob choose a random subset of the rounds
to use for parameter estimation. For these testing rounds,
they announce their public and private results. This allows
them to determine the expectations γi of some testing
observables �i.

4. Alice and Bob announce their public data. Based on
the joint announcements, they may decide to discard some
rounds. This is represented by a binary function d : Sa ×
Sb → {0, 1}; where d = 0 if the signal is kept and d = 1 if
discarded.

5. Based on the public announcements and their private
data, one party performs the key map. When Alice (Bob)
performs the key map, it is conventionally referred to as
direct (reverse) reconciliation. In the following discussion,
we consider the case where Bob performs the key map.
For a k-ary key, the key map is a function g : Sa × Sb ×
Sβ → {0, 1, . . . , k − 1, ⊥}. The ⊥ symbol is only used to
flag the discarded or sifted signals, so g(a, b,β) = ⊥ ⇐⇒
d(a, b) = 1.

6. Alice and Bob then perform error correction over the
classical channel to get Alice’s data to agree with the sifted
key established by Bob.

7. Alice and Bob perform privacy amplification using
a two-universal hash function to obtain the final shared
secret key.

In practice, the discarded signals are simply removed
before performing privacy amplification. We include them
with the discard flag ⊥ only to formulate the protocol in a
trace-preserving manner.

This description of an EB protocol is general. When
modeling the EB version of a P&M protocol, some steps
can be made more specific. Suppose Alice prepares signal
states |ψi〉 with probability p(i). In the source-replacement
scheme, this is modeled as Alice preparing the state τAA′ =∑

ij

√
p(i)p(j ) |i〉 〈j |A ⊗ |ψi〉

〈
ψj
∣
∣
A′ , sending system A′ to

Bob, and measuring with the POVM {|i〉 〈i|A}. As Eve
cannot access Alice’s lab, the reduced density matrix
is known. Thus, for P&M protocols there is an addi-
tional constraint in parameter estimation, namely ρA =
τA = ∑

ij

√
p(i)p(j )

〈
ψj |ψi

〉 |i〉 〈j |. Note that τA is closely
related to the Gram matrix of signal states.
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B. Postprocessing channel

In order to evaluate the key rate, we formally define the
postprocessing steps as a quantum channel. We introduce
registers Ã and B̃, which hold the public announcements,
A and B, which hold the private measurement data, and
Z, which holds the result of the key map. Without loss of
generality, Eve has access to the register E purifying ρAB
and the public information.

Alice and Bob’s measurement can be described by a
channel 	AB

M that is simply given by TrAB(	
AB
T ), where

	AB
T (ρABE) =

∑

i,j

|ai〉 〈ai|Ã ⊗ |αi〉 〈αi|A

⊗ ∣
∣bj
〉 〈

bj
∣
∣
B̃ ⊗ ∣

∣βj
〉 〈
βj
∣
∣
B

⊗
[(√

Pi
A ⊗

√

Pj
B

)

ρABE

(√
Pi

A ⊗
√

Pj
B

)]

.

(1)

The action of the key map can be represented by the
isometry

V =
∑

Sa,Sb,Sβ

|g(a, b,β)〉Z ⊗ |a〉 〈a|Ã ⊗ |b〉 〈b|B̃ ⊗ |β〉 〈β|B .

(2)

The final state between all parties is then V	AB
M (ρABE)V†.

We can pull the partial trace in the measurement channel
	AB

M through the isometry V. Then, the final classical-
quantum state between the register holding the result of
the key map and Eve is

σZ[E] = TrAABB[V	AB
T (ρABE)V†], (3)

≡ 	(ρABE). (4)

The channel 	 characterizes the postprocessing steps and
[E] denotes the composite register EÃB̃. Note that dis-
carded signals will not contribute to the key rate, as
σZ[E] is block diagonal in the classical announcements.
To compute 	, it is thus simpler and equivalent to
not apply the POVM elements leading to discarded out-
comes, rather than use a discard symbol [23]. In this case,
the postprocessing map is completely positive and trace
nonincreasing.

C. Asymptotic key-rate formula

The secure key rate of a QKD protocol, in the asymp-
totic limit and assuming independent and identically dis-
tributed (IID) rounds (collective attack), is given by the
Devetak-Winter formula [30]. One can then aim to lift this
to the key rate under coherent attacks, for example, using a
quantum de Finetti theorem [31], and ultimately to a fully
composable security proof incorporating finite-size effects.

Under collective attacks, for a given ρAB, the asymptotic
key rate is

R∞ = I(Z : X )− χ(Z|[E]), (5)

where I denotes the mutual information and χ denotes the
Holevo information. The quantities are evaluated on the
postprocessed state after a single round, and X refers to
the party who does not perform the key map. In general, the
state ρAB is unknown. However, it is constrained by Alice
and Bob through testing. The Devetak-Winter formula
should be evaluated on the worst-case state compatible
with these constraints.

Determining the key rate of a protocol can then be
reformulated as a convex optimization problem [7]. The
Devetak-Winter formula can be rearranged as

R∞ = H(Z|[E])− H(Z)+ I(Z : X ), (6)

= H(Z|[E])− H(Z|X ). (7)

Only the first term needs to be optimized over. The second
term is replaced by the actual error-correction cost δleak

EC ,
which is the number of bits leaked per round. For realistic
error correction, δleak

EC will be larger than the Shannon limit
H(Z|X ). The key rate is thus

R∞ = min
ρAB∈SQKD

[f QKD(ρAB)] − δleak
EC , (8)

where the objective function is the conditional entropy
evaluated on the purified state after postprocessing

f QKD(ρAB) = H(Z|[E])	(ρABE), (9)

and the set SQKD is defined by the parameter estimation
Alice and Bob perform, as well as the reduced density
matrix constraint for P&M protocols [8]. That is,

SQKD = {ρ ∈ Pos (HAB) : Tr(ρ) = 1,

TrB(ρ) = τA,

Tr(ρ�i) = γi}.
(10)

As both the objective function and feasible set are convex
[8], Eq. (8) is a convex optimization.

When the Hilbert space HAB is finite dimensional, this
problem can be reliably solved numerically [7,8]. How-
ever, when the Hilbert space is infinite dimensional, it
is clearly not possible to directly solve this optimiza-
tion numerically. We develop a general method that, for
all QKD protocols, allows us to compute tight lower
bounds on the asymptotic key rate by relating the infinite-
dimensional optimization to a finite-dimensional one. We
can then numerically solve the finite-dimensional problem
using the methods of Ref. [8] to get tight lower bounds
on the key rate for protocols where the state lives in an
infinite-dimensional Hilbert space.

020325-3



UPADHYAYA, VAN HIMBEECK, LIN, and LÜTKENHAUS PRX QUANTUM 2, 020325 (2021)

III. GENERAL FRAMEWORK

In this section, we develop a general method to lower
bound infinite-dimensional optimizations of the sort seen
in the previous section. In fact, we present our results in
more generality than used for finding QKD key rates. Our
general method may be applied to other scenarios in quan-
tum information, such as entanglement verification [25].

Our notational conventions are as follows. For a Hilbert
space H, let D(H) (D̃(H)) be the set of (sub)normalized
density operators on H. That is, D̃(H) = Pos (H) ∩ T1,
where Pos (H) is the set of positive semidefinite operators
on H, and T1 is the set of trace-class operators with trace
no greater than 1. We use tildes to denote operators that are
subnormalized.

A. Problem setup and definitions

We begin with some definitions. Let H∞ be a separa-
ble Hilbert space, which may be infinite dimensional. Let
S∞ be a convex subset of D̃(H∞). Finally, let f be a con-
vex function from D̃(H∞) to R. The infinite-dimensional
optimization we consider is

min
ρ̃∈S∞

f (ρ̃). (11)

We assume that there exists a feasible operator ρ̃∞ achiev-
ing the optimum. This assumption holds in the practi-
cal case where the objective function f is continuous
and S∞ is compact. Our goal then is to find a lower
bound on f (ρ̃∞). Our strategy to do this is to relate
the infinite-dimensional optimization to a suitably cho-
sen finite-dimensional optimization, which can then be
solved numerically. Note that in the process we choose
certain mathematical objects freely; how to choose them
effectively is the focus of the following sections.

Choose HN to be any finite-dimensional subspace of
H∞. 
 is defined as the projector onto this subspace, and

̄ ≡ 1 −
. Choose SN to be a nonempty convex subset
of D̃(HN ) satisfying


S∞
 ⊆ SN . (12)

It is always possible to choose such a set SN , as

D̃(H∞)
 ⊆ D̃(HN ). We can now define the finite-
dimensional optimization

min
ρ̃∈SN

f (ρ̃). (13)

We assume there exists a feasible operator ρ̃N achieving
this optimum. Again, this assumption holds in the practical
case when f is continuous and SN is compact.

B. Main theorem

At a high level, our proof method is illustrated in Fig. 1.
In order to relate the objective function f evaluated at the

FIG. 1. Pictorial representation of Theorem 1. The set SN is
chosen to contain the projection 
ρ̃∞
. This auxiliary variable
is used to relate f (ρ̃∞) and f (ρ̃N ).

two optimal operators, ρ̃∞ and ρ̃N , we introduce an auxil-
iary variable, ρ̃
 ≡ 
ρ̃∞
. This variable is the projection
of the infinite-dimensional optimum ρ̃∞ onto the cho-
sen finite subspace. We relate the optima to this auxiliary
variable separately, and then to each other. For positive
operators P and Q, our convention for the fidelity function
is F(P, Q) = Tr(

√√
QP

√
Q).

Inequality 1, finite set: We first relate f (ρ̃N ) and
f (ρ̃
). By definition, ρ̃
 ∈ 
S∞
. By the containment
property introduced in Eq. (12), it follows that ρ̃
 ∈ SN .
Thus, ρ̃
 is feasible for the minimization in Eq. (13). Since
ρ̃N achieves the minimum, it follows that

f (ρ̃N ) ≤ f (ρ̃
). (14)

Inequality 2, projection: We next relate f (ρ̃∞) and
f (ρ̃
). To do this, we introduce a property of f relating
the fidelity of input states to changes in the function. Define
f as being uniformly close to decreasing under projection
(UCDUP) on S ⊆ D̃(H∞) with correction term � if, for
every σ̃ ∈ S, it satisfies

F(σ̃ ,
σ̃
) ≥ Tr(σ̃ )− W

=⇒ f (
σ̃
)− f (σ̃ ) ≤ �(W), (15)

where � is a non-negative, increasing function satisfying
�(0) = 0. This property has some similarities to uniform
continuity with respect to trace distance. In fact, it is
implied by the latter. However, because being UCDUP
is a weaker condition, we may be able to find smaller �
than implied by a uniform-continuity bound (see Sec. IV
C 1). In some cases, it may also be possible to set � = 0.
This is the case for bounding the QKD objective function
when the key map POVM elements commute with 
 (see
Sec. IV C 2). It is also the case for some entanglement
measures [25].

We can re-express the condition on W in a more use-
ful way. By Winter’s gentle measurement lemma [32],
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which holds with equality when considering projections,
the fidelity can be written as

F(σ̃ ,
σ̃
) = Tr(σ̃
). (16)

Rearranging, it follows that

F(σ̃ ,
σ̃
) ≥ Tr(σ̃ )− W ⇐⇒ Tr(σ̃ 
̄) ≤ W. (17)

Thus, when f is UCDUP on S∞ and Tr(ρ̃∞
̄) ≤ W,

f (ρ̃
)−�(W) ≤ f (ρ̃∞). (18)

We now have all the pieces in place to prove our main
theorem.

Theorem 1 (Relating finite- and infinite-dimensional opti-
mizations). If f is UCDUP on S∞ with correction term �

[Eq. (15)] and Tr(ρ̃∞
̄) ≤ W, then

f (ρ̃N )−�(W) ≤ f (ρ̃∞). (19)

Proof. This theorem follows from chaining the inequality
in Eq. (14), which relates f (ρ̃N ) and f (ρ̃
), with the one
in Eq. (18), which relates f (ρ̃∞) and f (ρ̃
). �

In order to apply this theorem, in addition to choosing
HN and SN , we need to determine an expression for the
correction term� and a suitable value for W (see Sec. IV).
For the latter quantity, as ρ̃∞ is unknown, we choose the
smallest value of W satisfying

W ≥ max
ρ̃∈S∞

Tr(ρ̃
̄). (20)

We thus see that the determination of W itself involves
an infinite-dimensional optimization. In practice, this opti-
mization tends to be considerably easier to solve than the
original one [Eq. (11)]. In particular, when S∞ is the fea-
sible set of a semidefinite program (SDP), known as a
spectrahedron, then any solution to the dual problem pro-
vides an upper bound. For the QKD protocols we study,
we can obtain tight values of W by analytically solving the
dual or a relaxed version of the primal problem (see Sec. IV
B).

Note that W is not only used to determine the correction
term �(W), but also to parametrize the set SN we choose
(see Sec. IV D).

IV. APPLICATION OF FRAMEWORK TO QKD

Having developed a general method to lower-bound
convex optimizations, we now apply it to asymptotic QKD
key rate optimizations. Our initial infinite-dimensional
optimization is as described in Sec. II C, so that H∞ =
HAB, f = f QKD, and S∞ = SQKD. Unless otherwise stated,

we focus on the case where HA is finite dimensional. In
order to apply Theorem 1, we need four inputs: the sub-
space HN onto which 
 projects, the bound on weight
outside the subspace W, the correction term �, and the
finite set SN . The first two of these depend on the specific
QKD protocol, so we give only some general remarks on
them in this section. The second two are generic for all
protocols, so we derive them in detail.

A. Choose subspace HN

This step is protocol specific, and the choice of finite
subspace HN can be made freely. However, for a fixed
finite dimension, some subspaces will give a better lower
bound than others. Intuitively, we want to choose a sub-
space that contains most of the weight of ρ̃∞. Since this
state is unknown, a good heuristic is to choose the subspace
containing the most weight of the expected state under
a representative channel model (see Sec. VI C 1). This
is conceptually similar to assuming a particular channel
for the purpose of designing a QKD protocol or error-
correcting code. Another consideration is to choose the
projection to commute with the objective function POVM
elements (see Sec. VI C 2) or the constraint operators
(see Sec. IV D). The choice of the dimension of the finite
subspace is influenced by the run time of the numerical
method used to solve the finite-dimensional optimization.

B. Bound weight W outside subspace

This step is also protocol specific. Note that for S∞ as
given in Eq. (10), the bound on W shown in Eq. (20) is a
semidefinite program. The range of approaches to calcu-
late W is fairly wide, so in place of general strategies, we
instead survey some examples. For DMCVQKD, we ana-
lytically find a solution to the dual SDP (see Sec. VI C
2). For unbalanced phase-encoded BB84, the monotonic-
ity of cross clicks or double clicks with increasing photon
number, along with Markov’s inequality, is used to bound
W [13].

C. Determine correction term �

Recall our objective function f is given in Eq. (9). We
show that it is UCDUP and determine the correction term
� as a function of W. We find a general correction term,
which does not depend on the details of the postprocessing
map [see Eq. (4)] and is thus applicable to all protocols.
We also show that when the postprocessing map satisfies
a certain property, which holds for some protocols, we can
omit the correction term entirely, i.e., � = 0.

1. General case

In this case, we do not make any assumptions about the
postprocessing channel 	 in Eq. (4), other than the fact
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that it is indeed a channel. The crux of the proof is in the
following lemma.

Lemma 1. Let HA and HB be two Hilbert spaces, where
the dimension of HA is |A| while HB can be infinite
dimensional. Let ρ̃AB, σ̃AB ∈ D̃(HA ⊗ HB) be two subnor-
malized, classical-quantum states with Tr(ρ̃AB) ≥ Tr(σ̃AB).
If 1

2 ‖ρ̃AB − σ̃AB‖1 ≤ ε, then

H(A|B)σ̃AB − H(A|B)ρ̃AB ≤ ε log2 |A|

+ (1 + ε)h
(

ε

1 + ε

)

, (21)

where h(x) is the binary entropy function.

Proof. This result is a generalization of Lemma 2 in
Ref. [33], which was derived for normalized states. The
proof of the extension to subnormalized states is given in
Appendix A. �

With this lemma in hand, we prove that f is UCDUP on
D(H∞) in the following theorem. Note this is sufficient as
for any QKD protocol, S∞ ⊆ D(H∞).

Theorem 2. The QKD objective function f is UCDUP on
D(H∞) with correction term

�(W) =
(√

2W − W2 log2 |Z|
)

+
(

1 +
√

2W − W2
)

h

( √
2W − W2

1 + √
2W − W2

)

,

(22)

where |Z| is the dimension of the key map register.

Proof. As per the definition of UCDUP, let σAB ∈ D(H∞)
be a state satisfying F(σAB,
σAB
) ≥ 1 − W. Let σABE
and σ̃ 
ABE be purifications of σAB and 
σAB
, respectively,
(we consider a purification of an unnormalized state to not
change the trace). By Uhlmann’s theorem [34], we can
choose the purifications to satisfy

F(σABE , σ̃ 
ABE) = F(σAB,
σAB
) (23)

≥ 1 − W. (24)

By the monotonicity of fidelity under channels, we have

F(τZ[E], τ̃
Z[E]) ≥ 1 − W, (25)

where τZ[E] = 	(σABE) and τ̃ 
Z[E] = 	(σ̃
ABE). The Fuchs-
van de Graaf inequalities [35], which are valid in infi-
nite dimensions and for subnormalized states, relate

fidelity and trace distance as follows: 1 − F(ρ̃, σ̃ ) ≤
1
2 ‖ρ̃ − σ̃‖1 ≤

√
1 − F(ρ̃, σ̃ )2. By the second of these,

1
2

∥
∥τZ[E] − τ̃ 
Z[E]

∥
∥

1
≤
√

2W − W2. (26)

Since 	 is trace preserving, Tr
(
τZ[E]

) ≥ Tr
(
τ̃
Z[E]

)
. Thus,

we can apply Lemma 1 to obtain

f (
σAB
)− f (σAB) = H(Z|[E])τ̃
Z[E]
− H(Z|[E])τZ[E]

(27)

≤
√

2W − W2 log2 |Z|

+ (1 +
√

2W − W2)h

( √
2W − W2

1 + √
2W − W2

)

. (28)

This is precisely the condition we require for f to be
UCDUP, so we identify the right-hand side as �(W). �

For a key map with k outcomes, the dimension of the
key map register is k. For the purpose of this argument, the
discard symbol ⊥ does not count towards a key outcome.
The reason for this is that instead of ⊥, one could use any
pre-existing key symbol to flag discarded signals. Since the
classical-quantum state σZ[E] between the key map register
and Eve is block diagonal in the classical announcements
[Eq. (4)], Eve could identify the discarded signals from
those public announcements alone. This would leave the
value of the objective function unchanged. Indeed, the ⊥
symbol is only used for clarity in our presentation.

2. Special case: Block-diagonal measurements

If the key map POVM elements are block diagonal with
respect to 
 and 
̄, the correction term is zero.

Theorem 3. Let	 be defined by the POVMs {Pi
A} and {Pj

B}
and a key map isometry V. If all POVM elements are block
diagonal, so that [Pi

A ⊗ Pj
B,
] = 0 ∀i, j , then

�(W) = 0. (29)

Proof. Recall that
 only acts on the AB subsystem. Then,

ρABE
 is a purification of 
ρAB
. 
 commutes with V
as they act on different subsystems, and commutes with all
elements of the POVMs {Pi

A} and {Pj
B} by assumption. By

the definition of 	AB
T [Eq. (1)], it then follows that


V	AB
T (ρABE)V†
 = V	AB

T (
ρABE
)V† (30)

and analogously for 
̄.
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Defining the channel �AB(ρ) = 
ρ
+ 
̄ρ
̄, we have

f (ρAB) = H(Z|[E])	(ρABE) (31)

= H(Z|[E])
TrAABB

[
V	AB

T (ρABE)V†
] (32)

= H(Z|[E])
TrAABB

(
�AB

[
V	AB

T (ρABE)V†
]) (33)

= H(Z|[E])
TrAABB

(
V	AB

T [�AB(ρABE)]V†
) (34)

≥ H(Z|[E])	(
ρABE
) + H(Z|[E])	(
̄ρABE
̄)
(35)

≥ H(Z|[E])	(
ρABE
) (36)

= f (
ρAB
), (37)

where in Eq. (33) we freely introduce a channel as it
is traced out, in Eq. (35) use the concavity of condi-
tional entropy, and in Eq. (36) use the nonnegativity
of conditional entropy for classical-quantum states [see
Eq. (4)]. �

D. Choose finite set SN

Recall that the feasible set S∞ for the infinite-
dimensional optimization is given in Eq. (10). The form of
this set is common to all protocols. We consider one partic-
ular way of choosing SN , which is to individually expand
the constraints of S∞, using W as a parameter. Note that in
order to have the highest key rates, we want SN to be as
small as possible, while still satisfying the containment in
Eq. (12). Assuming σ ∈ S∞, we now list constraints that
σ̃ 
 ≡ 
σ
 must satisfy.

We begin with the trace constraint, Tr(σ ) = 1, which
can be easily expanded. By the definition of W in Eq. (20),
1 − W ≤ Tr(σ̃
) ≤ 1.

We next consider the expectation constraints, Tr(σ�i) =
γi. We choose to define the loosened constraints as γmin

i ≤
Tr(σ̃
�i) ≤ γmax

i , where

γmax
i = max

ρ∈S∞
Tr(�i 
ρ
), (38)

γmin
i = min

ρ∈S∞
Tr(�i 
ρ
). (39)

For concreteness, we now specialize our discussion to the
case where [
,�i] = 0 and �i ≥ 0 ∀i. This condition is
satisfied for all the protocols we study in this paper. We
emphasize that this is not a particularly strong assump-
tion. With a judicious choice of 
, this condition can be
achieved for many protocols. In the alternate, determining
the bounds in Eqs. (38) and (39) without this assumption is
also tractable. For example, tight bounds are derived even
for noncommuting, nonpositive, and unbounded observ-
ables �i in Ref. [25].

In the following theorem, we derive the desired bounds
on expectations in the finite subspace.

Theorem 4. Let �i ≥ 0 and [
,�i] = 0. If Tr(ρ
̄) ≤ W
and Tr(ρ�i) = γi, then γi − W ‖�i‖∞ ≤ Tr(
ρ
 �i) ≤
γi.

Proof. By the commutation relation, it follows that

Tr(
ρ
�i) = Tr
(√
�i
ρ


√
�i

)
(40)

= Tr
(


√
�iρ

√
�i


)
. (41)

We now find the upper and lower bounds separately.
For the upper bound, we simply note that the trace of a

positive operator can only decrease under projection. Then,

Tr
(


√
�iρ

√
�i


)
≤ Tr

(√
�iρ

√
�i

)
(42)

= γi. (43)

For the lower bound, recall Hölder’s inequality, which
states that for any two operators A and B, Tr(A†B) ≤
‖A‖p ‖B‖q, where 1/p + 1/q = 1 so that ‖·‖p and ‖·‖q are
dual Schatten norms. Then,

Tr
(


√
�iρ

√
�i


)
= Tr

(√
�iρ

√
�i

)

− Tr
(

̄
√
�iρ

√
�i
̄

)
(44)

= γi − Tr
(

̄ρ
̄�i

)
(45)

≥ γi − ∥
∥
̄ρ
̄

∥
∥

1 ‖�i‖∞ (46)

≥ γi − W ‖�i‖∞ , (47)

where in Eq. (46) we use Hölder’s inequality. Note that this
lower bound is trivial for unbounded observables. �

Finally we consider the reduced state constraint
TrB(σ ) = τA. We could, using a complete Hermitian basis
on system A, write the reduced state constraint as a set of
expectations and expand it in the same manner as above.
However, there are two better ways to perform the expan-
sion. One approach works in general, while the other
is tighter but only works in a specific case. In general,
by the Fuchs-van de Graaf inequalities, 1

2

∥
∥σ − σ̃ 


∥
∥

1 ≤√
2W − W2. By the monotonicity of trace distance under

channels, and by the fact that taking the partial trace is a
channel, this implies the constraint 1

2

∥
∥τA − TrB(σ̃


)
∥
∥

1 ≤√
2W − W2. Alternatively, in the case where the projection

has the form 
 = 
A ⊗
B, a simple positivity argument
implies the constraint TrB(σ̃


) ≤ 
AτA
A. This constraint
can be used even when HA is infinite dimensional.

Having expanded all the constraints in the case where
the observables are positive operators and commute with
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the projection, we summarize the definitions of the original
infinite-dimensional optimization:

minimize
ρ

: f (ρ)

subject to: Tr(ρ) = 1

TrB(ρ) = τA

Tr(ρ�i) = γi

ρ ∈ Pos (H∞)

(48)

and the expanded finite-dimensional optimization:

minimize
ρ̃

: f (ρ̃)

subject to: 1 − W ≤ Tr(ρ̃) ≤ 1

1
2

‖TrB(ρ̃)− τA‖1 ≤
√

2W − W2

γi − W ‖�i‖∞ ≤ Tr(ρ̃�i) ≤ γi

ρ̃ ∈ Pos (HN ) .

(49)

When 
 = 
A ⊗
B, the constraint on the reduced den-
sity matrix is instead TrB(ρ̃


) ≤ 
AτA
A. By construc-
tion, SN is a convex subset of D̃(HN ) containing 
S∞
.
The tightness of the feasible set is guaranteed by the fact
that for W = 0, SN = S∞. For nonzero W, our numeri-
cal results in Sec. VII provide strong evidence that our
definition of SN is close to the optimal choice 
S∞
.

V. NUMERICAL IMPLEMENTATION

A. Review of reliable numerical method

Having formulated the finite-dimensional optimization
of interest, we now wish to solve it numerically. In order
to obtain a reliable lower bound in spite of floating-point
imprecision and the imperfection of convex solvers, we use
the numerical framework developed in Ref. [8]. We briefly
summarize the two steps of the method here.

The first step is to approximately solve the optimiza-
tion as written, using a method such as the Frank-
Wolfe algorithm. This returns an approximate minimum,
ρopt. The gradient of the objective function at this point
∇f (ρopt) is computed. In the second step an expanded,
linearized SDP is constructed from the first-step optimiza-
tion. To linearize, the objective function is replaced with
Tr[ρ∇f (ρopt)]. Intuitively, this represents lower bounding
the original convex function f by a tangent hyperplane.
To expand, the feasible set is enlarged by a small amount
to account for numerical imprecision. Finally, the dual of
this expanded, linearized SDP is derived. This dual SDP
is solved numerically and any feasible point is a reli-
able lower bound on the original convex minimization.
As discussed in Appendix C, we make use of one small
improvement in how we expand the set in the second

step, to account for numerical imprecisions, compared to
Ref. [8]. This change is important because it allows us
to improve our numerical results at long distances (see
Sec. VI E).

Note that the constraint operators �i and the POVM
elements Pk defining f are, in general, infinite dimen-
sional. However, as Tr(
ρ
 X ) = Tr[(
ρ
)(
X
)],
we can equivalently set �i → 
�i
 and Pk → 
Pk
.
In the following discussion, we tacitly assume this sub-
stitution is made in order to represent the optimizations
numerically.

B. SDP formulation for numerics

To apply the numerical framework, we need the feasi-
ble set of the convex minimization to be that of a SDP.
To show that SN is such a set, we rewrite the trace dis-
tance constraint for the reduced density matrix. The trace
norm can be expressed as a SDP [36], which allows us to
rewrite the constraint using slack variables. This equiva-
lent reformulation of the finite-dimensional optimization
is given by

minimize
ρ̃,R,S

: f (ρ̃)

subject to: 1 − W ≤ Tr(ρ̃) ≤ 1

Tr(R)+ Tr(S) ≤ 2
√

2W − W2

TrB(ρ̃)− R ≤ τA

− S − TrB(ρ̃) ≤ −τA

γi − W ‖�i‖∞ ≤ Tr(ρ̃�i) ≤ γi

ρ̃ ∈ Pos (HN )

R, S ∈ Pos (HA).

(50)

Let ξ denote the adjoint of the partial trace map
TrB restricted to operators on HN . Following the
numerical framework, the corresponding dual linearized
SDP is

maximize
�y,ys,Y1,Y2

: − �y · ( �γ + �εrep)− ys

(
2
√

2W − W2 + ε′
rep

)

− Tr (τAY1)+ Tr(τAY2)

subject to:
2m∑

i=1

yi�i + ξ(Y1)− ξ(Y2) ≥ −∇f (ρopt)

ys1A ≥ Y1 (51)

ys1A ≥ Y2

�y ∈ R2m
≥0

ys ∈ R≥0

Y1, Y2 ∈ Pos (HA) ,
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where �γ = ({γi}m
i=1, {W ‖�i‖ − γi}m

i=1), �� = ({�i}m
i=1,

{−�i}m
i=1), and �εrep and ε′

rep are the expansion parameters,
which account for finite numerical precision (see Appendix
C for further discussion).

As noted in Sec. IV D , the finite-dimensional optimiza-
tion has a slightly different form when the projection only
acts on Bob’s system, that is 
 = 1A ⊗
B. In this case,
the dual SDP is the same as above, but the term in the
objective function and both constraints involving ys are
removed, Y2 is set to zero, and the term −ε′

repTr(Y1) is
added to the objective function.

VI. DISCRETE-MODULATED CVQKD

We apply our approach for infinite-dimensional key-rate
calculations to DMCVQKD. We begin by reviewing the
protocol and setting up the infinite-dimensional optimiza-
tion. We then apply the steps of our method from Sec.
IV to relate the key rate to a finite-dimensional optimiza-
tion. Finally, we solve this finite problem numerically to
obtain key rates. Unless otherwise stated, all discussion
is in the ideal detector scenario. We note that although
continuity bounds have been considered in the context of
DMCVQKD in Ref. [37], this is very different from our
work, as the bounds in Ref. [37] are used to quantify how
well Gaussian modulation is approximated.

A. Protocol description

We briefly review the DMCVQKD protocol. More
details can be found in Ref. [23]. In each round of the quan-
tum phase, Alice prepares one of d coherent signal states
{|αi〉}d−1

i=0 with probability p(i). Our security proof works
for any constellation of signal states, but we focus on the
protocol with four symmetrically modulated states, also
known as quadrature phase-shift keying. In this case, Alice
prepares the states {|α〉 , |iα〉 , |−α〉 , |−iα〉} uniformly at
random, for a fixed signal-state amplitude α. Bob then per-
forms either a homodyne or heterodyne measurement. We
focus on the case where he does a heterodyne measure-
ment. Bob’s POVM is then {1/π |ζ 〉 〈ζ |}ζ∈C , while Alice’s
POVM is {|i〉 〈i|}d−1

i=0 as we work in the source-replacement
picture.

We focus on reverse reconciliation as it is known to
outperform direct reconciliation in terms of transmission
distance. Again, our security proof can be easily adapted to
direct reconciliation. In reverse reconciliation, Bob maps
his heterodyne measurement outcome ζ to a key symbol
based on which region in the complex plane, or phase
space, the outcome falls in. The key map is visualized
in Fig. 2. Bob can also perform postselection (sifting) to
improve the key rate of the protocol [16].

After a large number of rounds, Alice and Bob move
on to the classical phase. For parameter estimation, Alice

0

1

2

3

⊥

Im(ζ)

Re(ζ)Δa

Δp

FIG. 2. Phase-space regions for the key map, with postse-
lection, for reverse reconciliation in QPSK DMCVQKD. Bob
obtains the measurement result ζ from the heterodyne detector.
He maps the outcome to the symbol of the region containing ζ .
�a and �p are amplitude and phase postselection parame-
ters, respectively. The ⊥ region corresponds to signals that are
discarded.

announces which signal state was sent. Since Bob’s mea-
surement determines the Husimi Q-function, he could, in
principle, perform complete tomography to uniquely deter-
mine the received conditional states. This would not extend
reasonably to a finite-key analysis. We thus choose to only
use certain coarse-grained observables as constraints. (It
is then unnecessary for Bob to announce his fine-grained
measurement results, he only needs to announce these
coarse-grained expectations.) In Appendix E, we outline
how to calculate the coarse-grained expectations from the
fine-grained probability distribution. For reverse recon-
ciliation with postselection, Bob also announces which
signals are discarded. Finally, Alice and Bob perform error
correction and privacy amplification on the sifted key.

B. Infinite-dimensional optimization

To formalize this description of the protocol, we define
the objective function f and the observables �i.

1. Objective function

Recall the definition of the postprocessing map in Eq.
(4). Outside of the testing rounds, the only announcements
in this protocol are for sifting. Since Bob defines the key
map and makes the sifting decision, this means that Alice’s
data is irrelevant for the postprocessing map. Thus, for the
purpose of the postprocessing map, we can take Alice’s
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POVM to trivially be {1A}. For Bob’s POVM, we do not
need to work with the fine-grained set and can instead deal
directly with the coarse-grained region operators. These
region operators can be expressed as linear combinations
of the fine-grained POVM elements. The region operators
corresponding to nondiscarded signals are

Rj
B = 1

π

∫ ∞

�a

∫ (2j +1)π
4 −�p

(2j −1)π
4 +�p

r
∣
∣reiθ 〉 〈reiθ

∣
∣ dθdr, (52)

for j ∈ {0, 1, 2, 3}. Here �a and �p are postselection
parameters for the amplitude and phase. Not performing
postselection corresponds to setting �a,�p = 0. The key
map g trivially maps Bob’s private measurement result to
the key register. Thus, we can omit the key map isome-
try altogether, and simply relabel the register B to Z. The
simplified completely positive and trace the nonincreasing
form of the postprocessing map 	 in Eq. (4) is then

	(ρABE) =
3∑

z=0

|z〉 〈z|Z ⊗ TrAB[ρABE(1A ⊗ Rz
B)], (53)

where we omit trivial or redundant registers [23].

2. Observables

Alice and Bob’s POVMs are as given above. As dis-
cussed, we need to choose a set of coarse-grained observ-
ables for Bob’s side of parameter estimation. Typically,
these observables are taken to be the quadratures and their
higher moments [23]. However, we introduce a different
set of observables, which will simplify our development,
as they will commute with the projection we later define
[Eq. (58)]. They will be parametrized by a list of complex
numbers {βi}d−1

i=0 . For any operator X , we use the short-
hand notation Xγ ≡ D̂ (γ )X D̂† (γ ), where D̂ (γ ) is the
displacement operator with complex parameter γ . Denot-
ing the photon-number operator by n̂ ≡ â†â, we choose, as
constraint observables for our protocol, the set

{�i} = {|i〉 〈i| ⊗ n̂βi , |i〉 〈i| ⊗ n̂2
βi
}d−1

i=0 . (54)

We consider second-order constraints in n̂ as this will
be necessary to make the weight W outside the subspace
sufficiently small. We choose the displacements to be

βi = √
ηαi, (55)

which are the amplitudes of the coherent signal states after
passing through a Gaussian channel with loss η. As dis-
cussed in Sec. VI E, our choice here is based on the
expected channel behavior in an honest implementation
of the protocol. We emphasize however that our security
proof method works for any choice of {βi}.

This choice of coarse-grained observables is of interest
as it elucidates some of the essential working principles of
the DMCVQKD protocol. The observables measure how
spread out a state is compared to the coherent state |βi〉.
Intuitively, this characterizes the deviation from a gener-
alized beam-splitting attack [38]. These constraints also
dovetail with a natural choice for the finite subspace.

Note that although Bob’s observables have a depen-
dence on the signal state, Bob physically performs the
same heterodyne measurement each round. For parameter
estimation, he simply holds all fine-grained data and coarse
grains only after Alice announces which signal state was
sent.

3. Optimization formulation

We are now able to write down the infinite-dimensional
optimization for DMCVQKD. Let HA be the Hilbert space
with dimension equal to the number of signal states d.
Let HB be the Hilbert space of a single optical mode,
spanned by Fock states {|n〉}∞n=0. The minimization is
then

minimize
ρ

: f (ρ)

subject to: Tr(ρ) = 1

TrB(ρ) =
∑

i,j

√
p(i)p(j )

〈
αj |αi

〉 |i〉 〈j |

Tr
[
ρ
(

1
p(i) |i〉 〈i| ⊗ n̂βi

)]
= 〈

n̂βi

〉

Tr
[
ρ
(

1
p(i) |i〉 〈i| ⊗ n̂2

βi

)]
= 〈

n̂2
βi

〉

ρ ∈ Pos (HA ⊗ HB) .

(56)

C. Finite-dimensional optimization and correction
term

We apply the steps of our method to convert the pre-
ceding infinite-dimensional optimization into a tractable
finite-dimensional one, and determine the associated cor-
rection term.

1. Choose subspace HN

Recall our general principle is to choose the subspace
containing the most weight of the state under a typical
channel model. As discussed in Sec. VI E, the channel
model for a fiber-based implementation of this protocol
is a lossy and noisy Gaussian channel. As noted above,
for a pure-loss channel the expected coherent state is∣
∣0βi

〉
, where

∣
∣nγ

〉 ≡ D̂ (γ ) |n〉. For the specific noise model
we consider, the expected state will be a displaced ther-
mal state. This means some weight leaks into displaced
Fock states with n > 0. For the ith signal state, the best
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projection on HB is thus


N
Bβi

=
N∑

n=0

∣
∣nβi

〉 〈
nβi

∣
∣ . (57)

We refer to N as the subspace dimension parameter. The
projection operator on the total Hilbert space is


N ≡
d−1∑

i=0

|i〉 〈i|A ⊗
N
Bβi

. (58)

Note that this projection commutes with the observables
[Eq. (54)] because 
N

Bβi
commutes with n̂βi . We use this

fact to define the finite set (see Sec. VI C 4).
Unlike the truncated Fock basis considered in previ-

ous work [22,23], our finite subspace contains the full
weight of the state when the channel is purely lossy. This
is important as it ensures our numerics exactly reproduces
the analytically solvable loss-only case.

2. Bound weight W outside subspace

To bound the weight outside the subspace, we analyti-
cally solve the dual of the SDP in Eq. (20). Our result is
stated in the following theorem.

Theorem 5 (Bound on W for DMCVQKD). For the
DMCVQKD protocol, with 
N as defined in Eq. (58), the
weight outside the subspace is bounded by

W =
d−1∑

i=0

p(i)

〈
n̂2
βi

〉
− 〈

n̂βi

〉

N (N + 1)
. (59)

Proof. To prove this theorem, we consider Bob’s con-
ditional states ρ i

B = [1/p(i)]TrA [ρAB (|i〉 〈i|A ⊗ 1B)]. Let

̄N

Bβi
≡ 1B −
N

Bβi
and let Wi ≡ Tr(ρ i

B
̄
N
Bβi
) be the weight

of the ith conditional state. We first show that W =∑
i p(i)Wi.

Tr(ρ
̄N ) = Tr

[

ρ

(
d−1∑

i=0

|i〉 〈i|A ⊗ 
̄N
Bβi

)]

(60)

=
d−1∑

i=0

Tr
(
ρ̃ i

B
̄
N
Bβi

)
(61)

=
d−1∑

i=0

p(i)Wi. (62)

Now, we only need to bound the weight of each conditional
state. Using the constraints from Eq. (56), each of these

bounds can be expressed as a primal SDP.

maximize
ρ

: Tr
(

̄N

Bβi
ρ
)

subject to: Tr(ρ) = 1

Tr(n̂βiρ) = 〈
n̂βi

〉

Tr(n̂2
βi
ρ) = 〈

n̂2
βi

〉

ρ ∈ Pos (HB) .

(63)

In order to find an upper bound on this primal SDP we
consider its dual. By weak duality, it holds that a feasible
solution to the dual SDP upper bounds the primal. In fact,
strong duality holds for this SDP, so this upper bound can
be made tight.

minimize
�y

: y1 + 〈
n̂βi

〉
y2 + 〈

n̂2
βi

〉
y3

subject to: y11B + y2n̂βi + y3n̂2
βi

− 
̄N
Bβi

≥ 0

�y ∈ R3.

(64)

A feasible solution for the dual is y1 = 0, y2 =
−1/N (N + 1), y3 = 1/N (N + 1). (This is in fact the opti-
mal solution.) This can be easily verified as all operators in
the constraint are diagonal in the

∣
∣nβi

〉
basis, so positivity

is implied if and only if the diagonal entries are non-
negative. This solution leads to the objective value Wi =(〈

n̂2
βi

〉
− 〈

n̂βi

〉)
/N (N + 1). Substituting into Eq. (62), the

proof is complete. �

3. Determine correction term �

The correction term, as a function of the weight W and
key map register dimension |Z|, is given in Theorem 2. We
use the value of W determined in Sec. VI C 2. Regardless
of whether postselection is performed, |Z| = 4 as there are
four nondiscarded key outcomes (see Sec. IV C).

4. Choose finite set SN

By design, the projection 
N [Eq. (58)] commutes
with the positive observables �i [Eq. (54)]. We can thus
use the form of SN in Eq. (49). The finite-dimensional
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optimization is

minimize
ρ̃

: f (ρ̃)

subject to: 1 − W ≤ Tr(ρ̃) ≤ 1

1
2

‖TrB(ρ̃)− τA‖1 ≤
√

2W − W2

Tr
[
ρ̃
(

1
p(i) |i〉 〈i| ⊗ n̂βi

)]
≤ 〈

n̂βi

〉

Tr
[
ρ̃
(

1
p(i) |i〉 〈i| ⊗ n̂2

βi

)]
≤ 〈

n̂2
βi

〉

ρ̃ ∈ Pos (HN ) ,

(65)

where τA = ∑
ij

√
p(i)p(j )

〈
αj |αi

〉 |i〉 〈j | and W = ∑
i p(i)

(〈
n̂2
βi

〉
− 〈

n̂βi

〉)
/N (N + 1). Note that the lower bounds

in Eq. (49) are not useful as the observables �i are
unbounded.

In order to implement the optimization numerically, we
need to choose a basis in which to represent our opera-
tors. The natural choice is {|i〉A ⊗ ∣

∣nβi

〉
B}. We compute the

matrix elements of the observables and the objective func-
tion POVM in this basis in Appendix B. As this basis is not
a standard construction for a bipartite Hilbert space, calcu-
lating the partial trace and its adjoint is slightly involved.
We present these technical details in Appendix B.

D. DMCVQKD with trusted detector noise

In the previous section, we give a security proof for
DMCVQKD assuming Bob’s detector is ideal. We can
extend this result to the scenario where Bob has imper-
fect but characterized detectors. We consider the spe-
cific model for detector imperfections given in Ref. [39].
Namely, the two homodyne detectors comprising the het-
erodyne measurement have an associated efficiency and
electronic noise. To illustrate our approach, we focus on
the case where the two detectors have the same efficiency
ηd and electronic noise νel. In this case, Bob’s POVM ele-
ments are displaced thermal states, as opposed to coherent
states [39].

The protocol description is exactly the same as for
the ideal detector case, except Bob’s heterodyne detec-
tion is noisy. This noisy POVM enters into the optimiza-
tion in two ways: changing the objective function f and
the observables �i. To evaluate the objective function
defined by a noisy POVM f noisy, we need only calcu-
late the new matrix elements. This calculation is presented
in Appendix D. Critically, due to our coarse graining,
there is a simple relation between the noisy and ideal
observables. Thus, our results on the bound of W carry
over from the ideal detector scenario. For any operator
A, we denote its noisy counterpart by [A]′. As shown in
Appendix D, the ideal and noisy observables are related by

linear combinations,

[
n̂√

ηdβi

]′ = ηdn̂βi + νel1, (66)

[
n̂2√

ηdβi

]′
= η2

dn̂2
βi

+ ηd(4νel + 1 − ηd)n̂βi + (2ν2
el + νel)1.

(67)

Bob measures the observables displaced by
√
ηdβi. With

these noisy expectations, the ideal ones can effectively be
recreated by inverting the relationships in Eqs. (66), (67).
Explicitly,

〈
n̂βi

〉eff =
〈[

n̂√
ηdβi

]′〉− νel

ηd
, (68)

〈
n̂2
βi

〉eff = 1
η2

d

[ 〈[
n̂2√

ηdβi

]′〉
− 2ν2

el − νel

− (4νel + 1 − ηd)
(〈[

n̂√
ηdβi

]′〉− νel

) ]

. (69)

The finite-dimensional optimization is then

minimize
ρ̃

: f noisy(ρ̃)

subject to: 1 − W ≤ Tr(ρ̃) ≤ 1

1
2

‖TrB(ρ̃)− τA‖1 ≤
√

2W − W2

Tr
[
ρ̃
(

1
p(i) |i〉 〈i| ⊗ n̂βi

)]
≤ 〈

n̂βi

〉eff

Tr
[
ρ̃
(

1
p(i) |i〉 〈i| ⊗ n̂2

βi

)]
≤ 〈

n̂2
βi

〉eff

ρ̃ ∈ Pos (HN ) ,

(70)

where τA = ∑
ij

√
p(i)p(j )

〈
αj |αi

〉 |i〉 〈j | and W = ∑
i p(i)

[(〈
n̂2
βi

〉eff
− 〈

n̂βi

〉eff
)

/N (N + 1)
]

.

E. Simulation results

1. Simulation parameters

To understand the performance of this protocol and
demonstrate our security proof approach, we simulate
expectation values obtained from a typical experiment. In
particular, we model the signal states as passing through
a noisy and lossy Gaussian channel. The transmittance η
is modeled as a function of distance d according to η =
10−k·d/10, where k is the attenuation factor of the channel.
We use a typical value for commercial-grade fiber k = 0.2
dB/km. The excess noise ξ is taken to be fixed at the chan-
nel input, for example as preparation noise, so that Bob
sees the effective noise δ = ηξ . The expectation values
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for this simulation are
〈
n̂βi

〉 = δ/2 and
〈
n̂2
βi

〉
= δ(1 + δ)/2,

as derived in Appendix E. This implies W = δ2/[2N (N +
1)]. We emphasize that our security proof does not depend
on these parameter choices and simulation model, which
are only used to illustrate the performance of the protocol
in a typical implementation.

To account for realistic error-correction costs, δleak
EC in

Eq. (8) is taken to be H(Z)− βECI(Z : X ), where βEC
characterizes the error-correction efficiency. We use βEC =
0.95 as a representative value. The error-correction cost is
calculated by simulating the joint probability distribution
obtained by Alice and Bob (see Appendix E).

All our algorithms are implemented in MATLAB
R2019B, using the convex optimization package CVX 2.1
[40,41] with the MOSEK 8.0.0.60 solver [42]. The Frank-
Wolfe algorithm, with a maximum of 30 iterations, is used
to solve the first step of the numerical method. All param-
eter optimizations use the fminbnd algorithm included in
the MATLAB distribution, which uses a combination of
parabolic interpolation and golden-section search.

We emphasize that all key rate plots include the correc-
tion term unless stated otherwise. That is, R∞ = Cnum −
δleak

EC −�(W), where Cnum denotes the reliable numerical
lower bound on f (ρ̃N ). In order to evaluate the effect of the
correction term, and to compare with previous work using
the photon-number cutoff assumption, we find it useful to
consider the uncorrected values, defined as Cnum − δleak

EC .

2. Key-rate plots

We present key-rate plots for different choices of chan-
nel parameters η and ξ , protocol parameters α,�a, and�p ,
and the subspace dimension parameter N . For the trusted
noise scenario, we also consider ηd and νel.

In Fig. 3, we compare the key rates and uncorrected
values from our dimension reduction method to the key
rates under the photon-number cutoff assumption obtained
in Ref. [23]. In order to enable a meaningful compari-
son, we use the protocol parameters from Ref. [23]. The
uncorrected values, which are equal to the key rate before
subtracting the correction term �, are essentially identical
to those in Ref. [23]. As the results from Ref. [23] are an
upper bound on the key rate, this indicates our choice of SN
is tight. Further, our corrected key rates are very close to
the uncorrected values. This illustrates our correction term
is small for reasonable values of the subspace dimension
parameter N , at low channel excess noise (see Fig. 5).

As our key rates are very similar to the ones under the
cutoff assumption, the qualitative conclusions of previous
work [23,39] are confirmed to hold under our precise treat-
ment, without the previous working assumptions. We thus
defer to Ref. [23,39] for more extensive parameter explo-
ration, and only focus on some important results in this
section.

FIG. 3. Comparison of key rates and uncorrected values from
our dimension reduction method with key rates under the photon-
number cutoff assumption from Ref. [23]. Results are plotted
versus distance with excess noise ξ = 0.01, and are in the
ideal detector scenario. Postselection parameters and signal-state
intensities from Ref. [23] are used: α = 0.6, �p = 0, and �a
is optimized with a coarse-grained search over [0.5, 0.65]. The
subspace dimension parameter is N = 20.

In Fig. 4, we plot the ideal detector key rates for different
channel parameters. The signal-state intensity and post-
selection parameters are numerically optimized for each
distance and value of excess noise, using N = 10. The key
rates are calculated using N = 40, except for a small num-
ber of points where we use N = 30 to ameliorate numerics
issues, as discussed in Appendix C. Using postselection
extends the range of the protocol for high excess noise
while also reducing the amount of data processing for error
correction, which can be a bottleneck in actual implemen-
tations. For example, for 2% excess noise, postselection
increases the maximum distance by around 50 km, while
discarding 40% of the signals. The small number of outly-
ing points that deviate from the trend are due to numerical
issues inherent to convex solvers. We emphasize that these
key rates are still rigorous, and can be improved by using
higher numerical precision.

To illustrate the relative size of the correction term, we
plot it as a fraction of the uncorrected value in Fig. 5,
at a fixed distance of 15 km. More precisely, for each
value of excess noise ξ and subspace dimension param-
eter N , we plot the fractional correction term �(W)/Cnum,
where W = (ηξ)2/[2N (N + 1)], while Cnum is computed
at a fixed value of N = 40 for each ξ . (In the range con-
sidered here, Cnum has a negligible dependence on N .) The
protocol parameters are the same as in Fig. 4. We see that
for a pure-loss channel, the correction term is zero since
our subspace fully contains the simulation state, as dis-
cussed in Sec.VI C 1. For small values of excess noise, the
correction term is negligible even for small N . For larger
values of excess noise, and especially in the high loss
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FIG. 4. Ideal detector secure key rates versus transmission dis-
tance, for different values of excess noise ξ , with optimized
postselection parameters and signal-state intensity. For each
point, the better of the two results from N = 30 and N = 40 is
used, with the majority of points from N = 40. Postselection can
improve the noise tolerance and range of the protocol.

regime, N must be increased to obtain reasonable results.
This is because the correction term scales like the loss η
for all values of excess noise ξ , while, for nonzero ξ , the
key rate scales worse than η. It is an interesting avenue for
future research to determine if a smaller correction term
can be found.

The optimal signal-state amplitudes αopt are shown in
Fig. 6. The optimization range [0.5, 2] is sufficient for
almost all parameter choices, though αopt tends to infin-
ity as distance and excess noise tend to zero. The general
trend is that αopt decreases as distance and excess noise
increase. With αopt fixed,�a is optimized over [0, 1]. (One
could jointly optimize all protocol parameters, but we do

FIG. 5. The fractional correction term versus the subspace
dimension parameter N for different values of excess noise, in
the ideal detector scenario. The distance is 15 km and protocol
parameters are optimized.

FIG. 6. Optimal signal-state amplitude αopt versus transmis-
sion distance, for different values of excess noise ξ and in the
ideal detector scenario. The amplitude is optimized in the range
[0.5, 2], with �a = �p = 0 and N = 10.

not expect this to noticeably improve the key rates.) We
find that the optimal value for�p seems to always be zero,
so phase postselection is omitted altogether. Thus, while
the postselection pattern used here is a simple and intuitive
one, it is an interesting future research topic to investigate
other postselection patterns.

In Fig. 7, we consider the key rates in the trusted
detector noise scenario. We take the channel to have 1%
excess noise, and consider different values of detector effi-
ciency and electronic noise. The protocol parameters are
optimized for the ideal detector scenario, and the same
parameters are used for each of the different trusted noise
cases. We observe that even with large detector imper-
fections and 1% channel excess noise, it is possible to
generate secure key at 200 km. As expected, trusted detec-
tor noise does not significantly alter the scaling of the key
rates. This is markedly different from the effect of channel
excess noise (see Fig. 4).

DMCVQKD is intended to be a more experimentally
feasible alternative to Gaussian-modulated (GM) CVQKD
[19,43]. It is thus of interest to compare the performance
of the two protocols. We perform a very basic compari-
son in Fig. 8, using the same error-correction efficiency
βEC = 0.95, detector loss ηd = 0.6, and electronic noise
νel = 0.05. The signal variance is optimized for GM, while
the optimized protocol parameters for DM are the same as
in Fig. 7. We note that a complete and in-depth compari-
son of the two protocols would have to account for many
more implementation details. For a pure-loss channel, the
GM key rates are around an order of magnitude higher. At
higher excess noise, the gap is larger as GM is more robust
to channel noise. However, both protocols are largely unaf-
fected by trusted detector imperfections. At ξ = 0.01, a
typical value for channel excess noise, the key rates scale
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FIG. 7. Key rates versus distance for different trusted detector
imperfections, with excess noise ξ = 0.01. Protocols are eval-
uated with the same optimized protocol parameters, including
postselection, as in Fig. 4. The subspace dimension parameter
is N = 10.

similarly. Further, we expect the tolerance of DM to chan-
nel noise can be improved by using a larger constellation
of signal states.

VII. COMPARISON TO FLAG-STATE SQUASHER

Our dimension reduction (DR) approach encompasses
another method known as the flag-state squasher (FSS)
[12]. The FSS also obtains lower bounds on the key
rate by solving a finite-dimensional optimization. How-
ever, the FSS is restricted to protocols where both the
key map POVM elements and constraint observables com-
mute with the projection. Notably, this is not the case for
DMCVQKD. In this section, we compare our method to

FIG. 8. Comparison of Gaussian [43] and discrete-modulation
key rates for different values of excess noise ξ , in the trusted
noise scenario with ηd = 0.6, νel = 0.05. Parameters for both
protocols are optimized. The subspace dimension parameter is
N = 10.

the FSS both analytically and numerically. This demon-
strates the advantages of our method and offers further
insight into the FSS approach.

A. Analytical comparison

We briefly summarize the FSS, deferring a complete
description to Ref. [12]. As usual, Alice’s POVM is given
by {|j 〉 〈j |A}, while Bob’s POVM is {�i

B}. The correspond-
ing probabilities are {γij }. The FSS also requires choosing
a projection 
 = 1A ⊗
B onto a finite subspace and
upper bounding the weight W outside that subspace. It is
assumed that [�i

B,
B] = 0.
Define a flag Hilbert space HF , with dimension equal

to the number of elements in Bob’s POVM. The finite-
dimensional optimization is over density matrices in HN ⊕
HF . Bob’s new POVM is �̃i = 
�i
⊕ |i〉 〈i|F . Alice’s
POVM and the expectation values are unchanged. The
objective function is fFSS(ρ̃N ⊕ σ̃F) = f (ρ̃N ), i.e., it sim-
ply discards the flag portion and evaluates the usual key-
rate function on the remaining portion. This completes the
formulation of the finite-dimensional optimization for the
FSS.

The squashing map �B is a channel from H∞ to HN ⊕
HF defined as �B(ρ∞) = 
ρ∞
⊕∑

i TrB[ρ∞(�i −

�i
)] |i〉 〈i|F . Note that ρ∞ is feasible for the original
infinite-dimensional optimization if and only if �(ρ∞) is
feasible for the finite-dimensional one. In this sense, we
can think of the flag-state squasher as implicitly solving
over the tightest possible choice of SN , namely 
S∞
.

As a special case, our method can be applied to any
protocol admitting a flag-state squasher. The FSS requires
choosing a projection 
 and getting a bound on weight W,
which establishes the first two steps of our method. Since
the key map POVM elements commute with the projec-
tion, we can set � = 0 (Theorem 3). All observables are
POVM elements, so we can use the explicit form of SN in
Eq. (49). This establishes the last two steps of our method.
We can now compare both approaches in the following
theorem.

Theorem 6. For a fixed projection 
 and weight W, our
dimension reduction (DR) method gives the same key rate
as the flag-state squasher (FSS) when SN = 
S∞
.

Proof. Let �(ρ∞) = ρ̃N ⊕ σ̃F be a state reaching the min-
imum in the FSS optimization. By definition, fFSS(ρ̃N ⊕
σ̃F) = fDR(ρ̃N ). By the definition of �, ρ̃N = 
ρ∞
.
Thus, ρ̃N ∈ SN , so is feasible for the dimension reduction
optimization. Since this optimization is a minimization,
R∞

FSS ≥ R∞
DR.

Conversely, let ρ̃N be a subnormalized state reaching the
minimum in the dimension reduction optimization. By the
definition of SN , ρ̃N = 
ρ∞
 for some state ρ∞ ∈ S∞.
By definition, fDR(ρ̃N ) = fFSS[�(ρ∞)]. By the property of
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the squashing map, �(ρ∞) is feasible for the FSS opti-
mization. Since the FSS optimization is a minimization,
R∞

DR ≥ R∞
FSS. �

If SN is not chosen optimally, then our dimension reduc-
tion method gives a lower key rate. In practice, our explicit
prescription for choosing SN in Eq. (49) gives very simi-
lar key rates to the flag state squasher (see Sec. VII B),
suggesting this choice is essentially optimal.

In addition to being more general, our method has an
important advantage compared to the flag-state squasher.
Our finite-dimensional optimization is over a smaller
Hilbert space, since we do not require flag-state dimen-
sions. Therefore, if we compare fixed total dimension,
which roughly determines the runtime, our method can
give higher key rates than the flag-state squasher. Some
protocols can have a very large number of POVM con-
straints. For the flag-state squasher, using all the con-
straints would make the runtime prohibitive, as the
dimension of the problem depends on the number of con-
straints. Thus, a smaller set of coarse-grained POVM ele-
ments is typically used. Our dimension reduction method
is not limited by the number of constraints and can thus
handle the fine-grained POVM directly, potentially giving
better key rates.

B. Numerical comparison: Unbalanced phase-encoded
BB84

Having provided an analytical comparison between our
method and the flag-state squasher, we now perform a sam-
ple numerical comparison of the two methods. We consider
the unbalanced phase-encoded BB84 protocol, to which
the flag-state squasher has recently been applied [13]. We
defer a complete description of the protocol to Ref. [13].
Briefly, this is a phase-encoded BB84 protocol where Alice
and Bob’s interferometers each have a loss 1 − κ only in
the arm with the phase modulator; hence the term unbal-
anced. The projection is 
B = ∑

0≤n1,n2
n1+n2≤N

|n1, n2〉 〈n1, n2|,
where |n1, n2〉 are two-mode Fock basis states. The weight
W is bounded using the fact that the frequency of cross
clicks increases with photon number [13].

In Fig. 9 we compare the key rates from our method and
the flag-state squasher, for a channel with transmittance
η and for different interferometer asymmetric transmit-
tance κ . All parameters are the same as in Fig. 3(a) of
Ref. [13], and the signal-state intensity is optimized sep-
arately for each method and parameter choice. We see that
our method gives essentially identical key rates. In con-
junction with Theorem 6, this provides strong numerical
evidence that our heuristic choice of SN in Eq. (49) is tight.
While a more thorough benchmarking would be in order,
we remark that for generating the data in Fig. 9, our method
is approximately 5 times faster than the flag-state squasher

Dimension reduction: K = 0.5

Flag-state squasher K = 0.1

Flag-state squasher K = 0.3

Flag-state squasher K = 0.5

Dimension reduction: K = 0.1

Dimension reduction: K = 0.3

FIG. 9. Key rates for unbalanced phase-encoded BB84, ver-
sus transmission efficiency η, for different values of asymmetric
interferometer loss 1 − κ . It is clear that the key rates from our
dimension reduction method are nearly identical to those from
the flag-state squasher, indicating the tightness of our method
in practice. In generating the data for this graph, our dimen-
sion reduction method is approximately 5 times faster than the
flag-state squasher as implemented in Ref. [13].

as implemented in Ref. [13] (using the same SDPT3 solver
[44,45]).

VIII. CONCLUSION

In summary, we establish a framework to lower bound
a large dimensional convex optimization using a judi-
ciously chosen smaller dimensional one. We show how
this framework can be used to reduce the dimension of
QKD key rate calculations. This allows existing numeri-
cal tools for finite-dimensional key rate calculations to be
applied to protocols in infinite-dimensional Hilbert spaces.
This allows us to do more detailed modeling of imperfec-
tions in devices. An important application of our method
is to prove the asymptotic security of DMCVQKD with
an arbitrary number of modulated states. As a concrete
example, we apply this method to the quadrature phase-
shift keying scheme in both ideal and trusted detector noise
scenarios. We show that discrete modulation key rates can
scale similarly to Gaussian modulation. Moreover, we rig-
orously demonstrate that postselection of data can improve
the key rates for DMCVQKD. Using unbalanced phase-
encoded BB84 as an example, we show that our approach
can achieve key rates nearly identical to those from the
flag-state squasher, while having an improved runtime.

Some directions for future work are as follows. One may
be able to make the correction term for the QKD objec-
tive function smaller by using the commutation relations
of the POVM elements and the projection. Qualitatively,
this would interpolate between the two cases we consider.
There may also be tighter ways to construct the finite
set. This could involve using additional properties of the

020325-16



DIMENSION REDUCTION IN QUANTUM KEY DISTRIBUTION... PRX QUANTUM 2, 020325 (2021)

constraint operators in specific cases. For DMCVQKD in
particular, one may consider the effects of using more mod-
ulated states and different postselection regions in order to
increase the key rate. Given the recent development of a
finite-key numerical framework [46], we hope to extend
our dimension reduction method to finite-key analysis of
protocols in infinite-dimensional Hilbert spaces. We expect
that key elements of the method, including bounding the
weight outside the subspace and expanding the feasible set,
will lift to the finite-key analysis.
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APPENDIX A: UNIFORM CONTINUITY BOUND

Here we prove an extension of Lemma 2 in Ref. [33]
to subnormalized states. Our development closely paral-
lels that result. Although we are only interested in showing
the conditional entropy is uniformly close to decreasing
under projection with correction �, we effectively have to
derive uniform continuity to determine�; so for complete-
ness we give the overall uniform continuity bound as well.
Note that the correction term in Eq. (A3) is smaller than
Eq. (A2).

Theorem 7 (Uniform continuity and UCDUP of condi-
tional entropy). Let HA and HB be two Hilbert spaces
where the dimension of HA is |A| while HB can be infinite
dimensional. Let ρ̃AB, σ̃AB ∈ D̃(HA ⊗ HB) be two subnor-
malized states; we omit the system subscripts for readabil-
ity. Without loss of generality, suppose Tr(ρ̃) ≥ Tr(σ̃ ). Let
1
2 ‖ρ̃ − σ̃‖1 ≤ ε ≤ 1, 1

2 Tr(ρ̃ − σ̃ ) = δ and 1
2 Tr(ρ̃ + σ̃ ) =

a. Let ε′ = ε + δ and ε′′ = ε − δ. Then, it holds that

∣
∣H(A|B)ρ̃ − H(A|B)σ̃

∣
∣ ≤ 2ε log2 |A|

+ (a + ε)max
{

h
(

ε′

a + ε

)

, h
(

ε′′

a + ε

)}

. (A1)

If ρ̃ and σ̃ are classical-quantum states, that is ρ̃ =
∑|A|

i=1 |i〉 〈i|A ⊗ ρ̃ i
B and σ̃ = ∑|A|

i=1 |i〉 〈i|A ⊗ σ̃ i
B, then

∣
∣H(A|B)ρ̃ − H(A|B)σ̃

∣
∣ ≤ ε′ log2 |A|

+ (a + ε)max
{

h
(

ε′

a + ε

)

, h
(

ε′′

a + ε

)}

, (A2)

and

H(A|B)σ̃ − H(A|B)ρ̃ ≤ ε′′ log2 |A| + (a + ε)h
(

ε′′

a + ε

)

.

(A3)

Proof. We can assume 1
2 ‖ρ̃ − σ̃‖1 = ε since our bound

will be increasing in ε. Note that δ ≤ ε. As usual, ρ and
σ denote the normalized ρ̃ and σ̃ . Let ·+ denote the pos-
itive part of a Hermitian operator. The proof consists of
a series of operator inequalities and applications of strong
subadditivity.

We first determine the trace of the positive and neg-
ative parts of ρ̃ − σ̃ . To do this, consider the eigenval-
ues λi of ρ̃ − σ̃ . By assumption,

∑ |λi| = ‖ρ̃ − σ̃‖1 =
2ε and

∑
λi = Tr(ρ̃ − σ̃ ) = 2δ. Thus, Tr[(ρ̃ − σ̃ )+] =∑

λi≥0 λi = ε + δ = ε′. Similarly, Tr[(ρ̃ − σ̃ )−] =
−∑

λi<0 λi = ε − δ = ε′′.
Thus, (1/ε′)(ρ̃ − σ̃ )+ and (1/ε′′)(ρ̃ − σ̃ )− are normal-

ized states. Denote them by � and �′, respectively.
After some rearrangement, we can define a third state ω
satisfying

ω = Trσ̃
Trσ̃ + ε′ σ + ε′

Trσ̃ + ε′�

= Trρ̃
Trρ̃ + ε′′ρ + ε′′

Trρ̃ + ε′′�
′. (A4)

Note that Trσ̃ + ε′ = Trρ̃ + ε′′ = a + ε. We find an upper
and lower bound on H(A|B)ω, and combine them to get our
final result.

The lower bound simply follows from the concavity of
conditional entropy and the definition of ω in Eq. (A4),

H(A|B)ω ≥ Trσ̃
a + ε

H(A|B)σ + ε′

a + ε
H(A|B)�. (A5)

For the upper bound, we first rewrite the conditional
entropy in terms of the relative entropy as follows [47]:

−H(A|B)ωAB = min
ξB

D(ωAB||1A ⊗ ξB). (A6)

Note that the minimum is achieved at ξB = ωB =
TrA(ωAB). Expanding the definition of the relative entropy,
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we have

H(A|B)ω = −D(ωAB||1A ⊗ ωB) (A7)

= H(ω)+ Tr[ω(1A ⊗ log2 ωB)]. (A8)

We upper bound the first term using strong subadditivity,

H(ω) = H
(

Trρ̃
a + ε

ρ + ε′′

a + ε
�′
)

(A9)

≤ Trρ̃
a + ε

H(ρ)+ ε′′

a + ε
H(�′)+ h

(
ε′′

a + ε

)

. (A10)

In the second term, we simply insert the definition of ω and
expand. Thus, we have

H(A|B)ω ≤ Trρ̃
a + ε

H(ρ)+ ε′′

a + ε
H(�′)

+ Trρ̃
a + ε

Tr[ρ(1A ⊗ log2 ωB)]

+ ε′′

a + ε
Tr[�′(1A ⊗ log2 ωB)] + h

(
ε′′

a + ε

)

(A11)

= − Trρ̃
a + ε

D(ρ||1A ⊗ ωB)− ε′′

a + ε
D(�′||1A ⊗ ωB)

+ h
(

ε′′

a + ε

)

, (A12)

where we recombine the terms into relative entropies. We
now use the relation in Eq. (A6) again, to obtain

H(A|B)ω ≤ Trρ̃
a + ε

H(A|B)ρ + ε′′

a + ε
H(A|B)�′

+ h
(

ε′′

a + ε

)

. (A13)

The upper and lower bounds on H(A|B)ω, in Eqs. (A13)
and (A5), respectively, can be combined to obtain

Trσ̃
a + ε

H(A|B)σ + ε′

a + ε
H(A|B)� ≤ Trρ̃

a + ε
H(A|B)ρ

+ ε′′

a + ε
H(A|B)�′ + h

(
ε′′

a + ε

)

, (A14)

H(A|B)σ̃ − H(A|B)ρ̃ ≤ ε′′H(A|B)�′ − ε′H(A|B)�

+ (a + ε)h
(

ε′′

a + ε

)

. (A15)

By repeating the proof but interchanging the two expres-
sions for ω, we similarly obtain

H(A|B)ρ̃ − H(A|B)σ̃ ≤ ε′H(A|B)� − ε′′H(A|B)�′

+ (a + ε)h
(

ε′

a + ε

)

. (A16)

Conditional entropies of normalized states are bounded
between ± log2 |A|. Thus, we have

∣
∣H(A|B)ρ̃ − H(A|B)σ̃

∣
∣ ≤ 2ε log2 |A|

+ (a + ε)max
{

h
(

ε′

a + ε

)

, h
(

ε′′

a + ε

)}

. (A17)

When ρ̃ and σ̃ are both classical-quantum states, � and
�′ are also both classical-quantum states. Then, their con-
ditional entropy is between 0 and log2 |A|. This gives the
tighter bound of

∣
∣H(A|B)ρ̃ − H(A|B)σ̃

∣
∣ ≤ ε′ log2 |A| + (a + ε)max

{

h
(

ε′

a + ε

)

, h
(

ε′′

a + ε

)}

. (A18)

Similarly,

H(A|B)σ̃ − H(A|B)ρ̃ ≤ ε′′ log2 |A| + (a + ε)h
(

ε′′

a + ε

)

.

(A19)

�
Corollary 1. Let ρ̃AB and σ̃AB be two bipartite subnor-
malized classical-quantum states with Tr(ρ̃) ≥ Tr(σ̃ ); the
dimension of system B can be infinite. Let 1

2 ‖ρ̃ − σ̃‖1 ≤
ε ≤ 1. Then,

H(A|B)σ̃ − H(A|B)ρ̃ ≤ ε log2 |A| + (1 + ε)h
(

ε

1 + ε

)

.

(A20)

Proof. Begin with the third statement of Theorem 7. We
can upper bound ε′′ in the first term on the right-hand side
by ε. Then, since the function g(a) = (a + ε)h [c/(a + ε)]
is increasing on a ∈ [0, 1], we can upper bound the second
term on the right-hand side by evaluating it at a = 1. We
have

ε′′

1 + ε
≤ ε

1 + ε
≤ 1

2
. (A21)

Since the binary entropy is increasing on [0, 1
2 ],

h
(

ε′′

1 + ε

)

≤ h
(

ε

1 + ε

)

. (A22)

Thus we can replace ε′′ with ε in the second term as well.
This leaves us with the desired expression. �
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APPENDIX B: MATRIX OPERATIONS IN
DISPLACED BASIS

Recall our basis is {|i〉A ⊗ ∣
∣nβi

〉
B}. We calculate the

matrix elements of certain operators in this basis and
evaluate the action of relevant channels.

1. Operators

Our constraint operators take a particularly simple form
in the displaced basis. The matrix elements are

〈i| 〈mβi

∣
∣
(|k〉 〈k| ⊗ n̂βk

) |j 〉 ∣∣nβj

〉 = δikδjk
〈
mβk

∣
∣ n̂βk

∣
∣nβk

〉

(B1)

= δikδjkδmnn. (B2)

Similarly, for n̂2
βk

, they are δikδjkδmnn2. The key map
POVMs are more complicated. Recall the POVM elements
[Eq. (53)] are

Pk = 1A ⊗ Rk
B, (B3)

where Rk
B are the region operators for the nondiscarded

signals. The matrix elements are

Pk
ijmn = 〈i| 〈mβi

∣
∣
(
1A ⊗ Rk

B

) |j 〉 ∣∣nβj

〉
(B4)

= δij
〈
mβi

∣
∣Rk

B

∣
∣nβj

〉
(B5)

= 〈
mβi

∣
∣Rk

B

∣
∣nβi

〉
(B6)

= 1
π

∫ ∞

�a

∫ [(2k+1)π/4]−�p

[(2k−1)π/4]+�p

re−|κ|2 κ
mκ∗n

√
m!n!

dθdr, (B7)

where κ = reiθ − βi. This integral is computed in MATLAB.

2. Channels

Our basis for the bipartite Hilbert space is not of the
form |i〉A ⊗ |j 〉B, where |i〉A and |j 〉B are bases for HA
and HB, respectively. Matrix multiplication proceeds as
normal, since we simply have some orthonormal basis.
However, operations that care about subsystems, namely
the partial trace and its adjoint, have a different matrix
representation than the typical presentation. We have

ρAB =
∑

i,j ,m,n

cijmn |i〉 〈j | ⊗ ∣
∣mβi

〉 〈
nβj

∣
∣ , (B8)

where the coefficients c are the matrix elements of ρ. We
denote this matrix by Mρ ;

Mρ =
∑

i,j ,m,n

cijmn |i〉 〈j | ⊗ |m〉 〈n| . (B9)

The reduced density matrix is

ρA =
∑

i,j ,m,n

cijmn |i〉 〈j | 〈nβj |mβi

〉
. (B10)

Defining

G =
∑

i,j ,m,n

〈
nβj |mβi

〉 |i〉 〈j | ⊗ ∣
∣mβi

〉 〈
nβj

∣
∣ , (B11)

we have that

〈i|ρA|j 〉 = ρij � Gij , (B12)

where the subscripts on the bipartite operators indicate
the respective block matrix, and � is the elementwise dot
product. Note that each Gij can be thought of as a basis
change unitary in HB. An explicit formula for the elements
of G is

〈
nβj |mβi

〉 = 〈n| D†(βj )D(βi) |m〉 (B13)

= exp[i Im(−βjβ
∗
i )] 〈n| D(βi − βj ) |m〉 (B14)

= exp

(

i Im(−βjβ
∗
i )−

∣
∣βi − βj

∣
∣2

2

)√
m!n!

×
min(m,n)∑

k=0

1
k!(m − k)!(n − k)!

(βi − βj )
n−k(β∗

j − β∗
i )

m−k.

(B15)

We compute and store this matrix once at the beginning
of the optimization algorithm, and use it each time to
calculate the partial trace.

The adjoint of the partial trace also has a matrix repre-
sentation involving G. The adjoint of the partial trace is
ξ(σA) = σA ⊗ 1B. Letting

σA =
∑

ij

cij |i〉 〈j | , (B16)

we seek dijmn such that

σA ⊗ 1B =
∑

ijmn

dijmn |i〉 〈j | ⊗ ∣
∣mβi

〉 〈
nβj

∣
∣ . (B17)

This implies
∑

mn

dijmn
∣
∣mβi

〉 〈
nβj

∣
∣ = cij1B ∀i, j . (B18)

Taking the bra-ket on both sides, we obtain dijmn =
cij
〈
mβi |nβj

〉
. We recognize the factor on the right-hand side

as G∗. Thus, we have that

ξ(σA) =
∑

ijmn

cij |i〉 〈j | ⊗ G∗
ij . (B19)
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APPENDIX C: NUMERIC FRAMEWORK
MODIFICATION

In principle, the numerical framework presented in Ref.
[8] is tight. We observe the following issue in practice.
The near-optimal ρ computed in the first step often has
constraint violations, due to the inherent imprecision of
convex solvers. At all distances and values of excess noise,
and for our particular implementation using MATLAB and
CVX with the MOSEK solver, these violations are typically
10−7 − 10−6. At distances approaching 200 km, the sim-
ulated expectation values

〈
n̂βi

〉
and

〈
n̂2
βi

〉
are both small;

approximately 10−6 for the nonzero values of excess noise
we consider. Since the constraint violation is the same
order of magnitude as the expectation, the first-step solu-
tion is effectively an optimal state for double the excess
noise. Given the poor scaling of the protocol with excess
noise, this implies the approximate key rate from this first
step will be much lower than its theoretical value. Since the
first step upper bounds the second step, this implies a poor
second-step result. One way to ameliorate this is to solve
with a smaller N so that the solver returns a better first-step
solution. Thus, purely due to numerical precision issues,
solving with N = 30 instead of N = 40 can improve the
key rate at long distances. Even though the correction
term �(W) is slightly larger, this is more than offset by
the improved quality of the first-step solution. This sug-
gests that due to numerical issues, one should choose
the finite dimension carefully, even though analytically a
larger dimension is always better.

The reason the first step upper bounds the second step
is due to the expansion of the feasible set. Referring to the
notation in Appendix D of Ref. [8], the large constraint
violations lead to a large value of ε′, which controls how
much the set is expanded for the second step. However, the
choice ε′ = max(εrep, εsol) [Eq. (165) of Ref. [8] ] is pes-
simistic. One only needs to choose ε′ = εrep. As noted in
Eq. (162) of Ref. [8], this is sufficient to provide a reli-
able lower bound when accounting for finite numerical
precision. Further, note that f (ρ) is lower bounded by a
tangent hyperplane at any point in its domain. Thus, it is
not necessary to expand the feasible set further to include
the point returned by the first step. This change gives
improved results in practice, while still being reliable and
tight.

In previous work using the numerical framework in Ref.
[8], it has been assumed that εrep ≤ εsol. Hence the issue of
how to suitably choose εrep has not been considered. As
noted in Ref. [8], rigorously determining εrep for a par-
ticular implementation can be an involved process. For
our MATLAB implementation, which has precision better
than 10−15, we conservatively use 10−10 for ε′

rep and all
elements of �εrep. Finally note that in our numerical eval-
uation of the unbalanced phase-encoded BB84 protocol,
we continue to use the original, larger set expansion as in

Ref. [8]. This is to ensure a fair comparison to the flag-state
squasher numerical results.

APPENDIX D: TRUSTED DETECTOR NOISE
OPERATORS

We determine expressions for the relevant operators in
the trusted detector noise scenario, focusing on the case
where both homodyne detectors in the overall heterodyne
setup have the same efficiency ηd and electronic noise νel.
The only change in the protocol for the trusted noise sce-
nario is Bob’s POVM. The changed POVM enters the
optimization in two different ways: through Bob’s new
observables in the constraints and new region operators in
the objective function definition.

Recall Bob’s POVM in the ideal case is a projection onto
coherent states {1/π |ζ 〉 〈ζ |}ζ∈C . In the trusted noise sce-
nario, it is instead a projection onto scaled and displaced
thermal states

{
(1/ηdπ)D̂

(
ζ/

√
ηd
)
ρth(n̄)D̂†

(
ζ/

√
ηd
)}

ζ∈C
where the mean photon number of the thermal state is
n̄ = (1 − ηd + νel)/ηd. We simplify our notation by omit-
ting the dependence of ρth on n̄. We denote the POVM
elements by Gζ . Recall our notation [·]′ for the noisy ver-
sion of an operator. From Ref. [39], if an operator in the
ideal detector model is defined as

X =
∫

ζ∈C
fX (ζ )

1
π

|ζ 〉 〈ζ | d2ζ , (D1)

then its noisy counterpart is

[X ]′ =
∫

ζ∈C
fX (ζ )Gζd2ζ , (D2)

where d2ζ = d Re(ζ )d Im(ζ ).

1. Objective function

Recall the region operators are defined as Rj
B =

1/π
∫

Aj |ζ 〉 〈ζ | d2ζ , where Aj are the regions in phase space
in Fig. 2. By definition, the noisy region operators are then

[
Rj

B

]′
=
∫

Aj
Gζ d2ζ , (D3)

and the noisy POVM is
[
Pk
]′ = 1A ⊗ [

Rk
B

]′. Referring to
Eq. (B6), the matrix elements are

[
Pk]′

ijmn = 〈
mβi

∣
∣
[
Rk

B

]′ ∣∣nβi

〉
, (D4)

=
∫

Ak

〈
mβi

∣
∣Gζ

∣
∣nβi

〉
d2ζ , (D5)
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= 1
ηdπ

∫

Ak
〈m| D

(
ζ√
ηd

− βi

)

ρthD†
(
ζ√
ηd

− βi

)

|n〉 d2ζ .

(D6)

We use the expression in Eq. (B1) in Ref. [39] for
the matrix elements of the displaced thermal operator in
the Fock basis, convert to polar coordinates, and compute
the integral in MATLAB.

2. Observables

To express the observables in the form of Eq. (D1), we
write them in antinormal ordering, and replace the ladder
operators â, â† with ζ , ζ ∗,

n̂ = ââ† − 1 =⇒ fn̂(ζ ) = |ζ |2 − 1, (D7)

n̂2 = â2(â†)2 − 3n̂ − 2 =⇒ fn̂2(ζ ) = |ζ |4 − 3 |ζ |2 + 1.
(D8)

To find f for the displaced observables, we simply perform
a change of variables,

n̂β = D̂ (β)
(

1
π

∫

(|ζ |2 − 1) |ζ 〉 〈ζ | d2ζ

)

D̂† (β) , (D9)

= 1
π

∫

(|ζ |2 − 1) |ζ + β〉 〈ζ + β| d2ζ , (D10)

= 1
π

∫

(|ζ − β|2 − 1) |ζ 〉 〈ζ | d2ζ , (D11)

and similarly for n̂2
β . Thus,

fn̂β (ζ ) = |ζ − β|2 − 1 (D12)

and

fn̂2
β
(ζ ) = |ζ − β|4 − 3 |ζ − β|2 + 1. (D13)

We can now calculate the noisy observables using Eq.
(D2). We make use of the following identity:

〈γ |ρth(n̄)|γ 〉 = e−|γ |2/(1+n̄)

1 + n̄
. (D14)

By definition,

[
n̂β
]′ =

∫

(|ζ − β|2 − 1)Gζd2ζ (D15)

= ηd

π

∫ (∣
∣
∣
∣ζ − β√

ηd

∣
∣
∣
∣

2

− 1
ηd

)

D(ζ )ρthD†(ζ ) d2ζ .

(D16)
Then,

〈α| [n̂β
]′ |α〉 = ηd

π

∫ (
∣
∣ζ − β ′∣∣2 − 1

ηd

)

〈α − ζ | ρth |α − ζ 〉 d2ζ (D17)

= ηd

π(1 + n̄)

∫ (
∣
∣ζ + α − β ′∣∣2 − 1

ηd

)

e−|ζ |2/(1+n̄)d2ζ ,

(D18)

where β ′ = β/
√
ηd. Converting to polar coordinates, the

integral is

〈α| [n̂β
]′ |α〉 = ηd

π(1 + n̄)

×
∫ (

r2 + γ ∗reiθ + γ re−iθ + |γ |2 − 1
ηd

)

e−r2/(1+n̄)r dr dθ (D19)

= ηd |γ |2 + νel, (D20)

where γ = α − β ′. By the uniqueness of the Husimi Q-
function,

[
n̂β
]′ = ηdn̂β/√ηd + νel1. (D21)

Similarly,

[
n̂2
β

]′ = 1
πηd

∫
(|ζ − β|4 − 3 |ζ − β|2 + 1

)
D̂
(
ζ√
ηd

)

ρthD̂†
(
ζ√
ηd

)

d2ζ (D22)

= 1
π

∫ (
η2

d

∣
∣ζ − β ′∣∣4 − 3ηd

∣
∣ζ − β ′∣∣2 + 1

)
D̂ (ζ ) ρthD̂† (ζ ) d2ζ . (D23)

The Q-function is then

〈α| [n̂2
β

]′ |α〉 = 1
π(1 + n̄)

∫ (
η2

d

∣
∣ζ + α − β ′∣∣4 − 3ηd

∣
∣ζ + α − β ′∣∣2 + 1

)
e−|ζ |2/(1+n̄)d2ζ (D24)
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= 1
π(1 + n̄)

∫
[
η2

d(r
4 + 4r2 |γ |2 + |γ |4)− 3ηd(r2 + |γ |2)+ 1

]
e−r2/(1+n̄) r dr dθ (D25)

= 2
(

1 + 2νel + ν2
el + 2ηd(1 + νel) |γ |2 − 3

1 + νel

2
+ η2

d |γ |4 1
2

− 3
2
ηd |γ |2 + 1

2

)

(D26)

= η2
d |γ |4 + ηd(4νel + 1) |γ |2 + 2ν2

el + νel. (D27)

Again, by the uniqueness of the Husimi Q-function,

[
n̂2
β

]′ = η2
dn̂2
β/

√
ηd

+ ηd(4νel + 1 − ηd)n̂β/√ηd

+ (2ν2
el + νel)1. (D28)

APPENDIX E: SIMULATED EXPECTATIONS AND
ERROR-CORRECTION COST

We discuss how the coarse-grained expectations can be
determined from a heterodyne measurement, and what the
expectation values are for the simulation. We focus on the
trusted detector noise scenario, as the ideal detector results
can be recovered as a special case.

Bob’s measurement results determine a probability den-
sity p(ζ ) = Tr(ρGζ ) over the complex plane. In general,
given an observable � = ∫

ζ∈C f�(ζ )Gζd2ζ , the expecta-
tion value is then

Tr(ρ�) =
∫

ζ∈C
f�(ζ )p(ζ )d2ζ . (E1)

For the ith conditional state, Bob’s coarse-grained observ-
ables are n̂βi and n̂2

βi
. The corresponding functions fn̂βi

and
fn̂2
βi

are given in Eqs. (D12) and (D13). Using his measure-

ment result p(ζ ), Bob can thus compute the integral (E1)
to determine the desired expectations for each conditional
state.

Note that for the typical quadratures X and P, we have
that

X = 1√
2
(â† + â) =⇒ fX (ζ ) =

√
2 Re(ζ ), (E2)

P = i√
2
(â† − â) =⇒ fP(ζ ) =

√
2 Im(ζ ). (E3)

Thus, by expanding fn̂βi
(ζ ) and fn̂2

βi
(ζ ) as polynomials in

Re(ζ ) and Im(ζ ), we can also relate the expectations of n̂βi
and n̂2

βi
to the moments and crossterms of the measurement

data of quadratures X and P.
We now consider the expectations under the simulated

channel model. After passing through a Gaussian chan-
nel with loss η and excess noise ξ , a coherent signal state

becomes a displaced thermal state

|αi〉 〈αi| → D̂ (βi) ρth
(
δ
2

)
D̂† (βi) , (E4)

where δ = ηξ and βi = √
ηαi. The expectation values for

each conditional state are straightforward to calculate,

Tr
[
n̂βi D̂ (βi) ρth

(
δ
2

)
D̂† (βi)

]
= Tr

[
n̂ρth

(
δ
2

)] = δ
2 (E5)

and

Tr
[
n̂2
βi

D̂ (βi) ρth
(
δ
2

)
D̂† (βi)

]
= δ(1 + δ)

2
. (E6)

For the reduced state constraint, we use the well-known
formula for the overlap of two coherent states [48]

〈
αj |αi

〉 = exp
(

i Im(αiα
∗
j )− 1

2

∣
∣αi − αj

∣
∣2
)

. (E7)

The error-correction cost is determined by the simulated
joint probability distribution. Given Alice prepares |αi〉,
the probability Bob gets the key map outcome j , with i ∈
{0, 1, 2, 3} and j ∈ {0, 1, 2, 3, ⊥}, is given by the following
integral:

p(j |i) = Tr
[
Rj D̂ (βi) ρth

(
δ
2

)
D̂† (βi)

]
(E8)

=
∫

Aj
Tr
[
Gζ D̂ (βi) ρth

(
δ
2

)
D̂† (βi)

]
d2ζ . (E9)

The integrand, which is the overlap of two displaced
thermal states, is given by [39]

Tr
[
Gζ D̂ (βi) ρth

(
δ
2

)
D̂† (βi)

]

= 1
π(1 + 1

2ηdδ + νel)
exp

(
− ∣
∣ζ − √

ηdβi
∣
∣2

1 + 1
2ηdδ + νel

)

.

(E10)

The integral in Eq. (E9) is converted to polar coordinates
and computed in MATLAB. As the signal states are dis-
tributed uniformly, pA(i) = 1

4 . Then, pAB(i, j ) = 1
4 p(j |i).
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Since discarded signals do not incur an error-correction
cost, we remove the outcome j =⊥ and renormalize p
accordingly. Denoting this sifted probability distribution
by q, the error-correction cost is

δleak
EC = 2 − βEC[H(qA)+ H(qB)− H(qAB)]. (E11)
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