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Abstract

The infinite-dimensional symmetry algebra of a conformal field theory (CFT), the
Virasoro algebra, is generated by the holomorphic and anti-holomorphic part of the
stress tensor. Besides such ‘chiral symmetries’ the CFT also has an integrable sym-
metry, that is, infinite families of commuting conserved charges. In this thesis a step
towards combining these two symmetries into a single formalism is taken, by identi-
fying integrable structures of a CF'T through studying the representation category of
the underlying chiral algebra. Then by introducing defects in the system, conserved
charges can be constructed by perturbing certain conformal defects.

Starting from an abelian rigid braided monoidal category C one defines an abelian
rigid monoidal category Cr which captures some aspects of perturbed conformal de-
fects in two-dimensional CFT. Namely, for U a rational vertex operator algebra one
considers the charge-conjugation CFT constructed from U (the Cardy case). Then
C = Rep(*Y) and an object in Cr corresponds to a conformal defect condition to-
gether with a direction of perturbation. To each object in Cr one assigns a perturbed
defect operator on the space of states of the CFT and then shows that the assign-
ment factors through the Grothendieck ring of Cr. This allows one to find functional
relations between perturbed defect operators. Such relations are interesting because
they contain information about the integrable structure of the CFT.
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Introduction and Summary

Conformal symmetry is a potent tool in the construction of two-dimensional confor-
mal quantum field theories [BPZ84|. Their infinite-dimensional symmetry algebra, the
Virasoro algebra, is generated by the modes of two conserved currents: the holomor-
phic and anti-holomorphic part of the stress tensor. Besides such ‘chiral symmetries’
obtained from conserved currents, in many examples the CFT also has an integrable
symmetry, that is, infinite families of commuting conserved charges [BLZ96]. Present
approaches to CFT tend to favour either the conformal or the integrable symmetry,
and it seems worthwhile to eventually combine these two symmetries into a single
formalism.

In this thesis, whose results have been published in a joint paper with Ingo Runkel
in [MR09], we hope to take a step in this direction by continuing to develop the
approach of [Ru08] which allows one to identify integrable structures of a CFT by
studying the representation category of the chiral algebra. It is worth remarking that
the idea to find questions about CFT that can be formulated on a purely categorical
level, and that can then be investigated independent of whether there is an underlying
CFT or not, has proved useful already in [FS03, FRS02-I] (the interested reader could
consult [KR09] for a brief overview).

In [Ru08] families of conserved charges are constructed as perturbations of certain

conformal defects. A conformal defect is a line of inhomogeneity on the world sheet



of the CF'T, that is, a line where the fields can have discontinuities or singularities.
By putting a circular defect line on a cylinder we obtain the defect operator, a linear
operator on the space of states. If one considers a particular class of conformal
defects (so-called topological defects) and perturbs such a defect by a particular type
of relevant defect field, one obtains a family of defect operators which still commute
with Lo + Lo, the sum of the zero modes of the holomorphic and anti-holomorphic
component of the stress tensor. Sometimes these perturbed defect operators obey
functional relations. An example is provided by the non-unitary Lee-Yang CFT, the
Virasoro minimal model of central charge ¢ = —22/5. There, one obtains a family
of operators D(\), A € C, on the space of states of the model, which obey, for all
A\ e C

[Lo+ Lo, DIN)] =0 , [D\),D(u)] =0, D(™/PX)D(e ?/>\) =id +D()) .

(0.0.1)
The last relation above is closely linked to the description of the Lee-Yang model
via the massless limit of factorising scattering and the thermodynamic Bethe Ansatz,
see e.g. the review [DDTO07]. This example illustrates that the functional relations
obeyed by perturbed defect operators encode at least part of the integrable structure
of the model. In fact, the defect operator in (0.0.1) (and more generally those for
the M5 9,,,+1 minimal models) can be understood as certain linear combinations of the
chiral operators which were constructed in [BLZ96] to capture the integrable structure
of these models.

This thesis presents a categorical structure that captures some aspects of per-
turbed defect operators, and in particular allows one to find functional relations such
as the one in (0.0.1). We work in rational conformal field theory, so that the holo-
morphic fields of the model form a rational' vertex operator algebra 2. We consider
the ‘Cardy case’ CFT constructed from U, namely the CF'T with charge-conjugation
modular invariant - the thesis conclusions 6.3 contain a brief comment on how to

extend the formalism to general rational CFTs. In the Cardy case the defects are

! By ‘rational’ we mean that the vertex operator algebra satisfies the conditions in [Hu05, Sect. 1].



labeled by representations of . Denote C = Rep(). The category describing the
properties of perturbed defects is called Cg. It is an enlargement of C which depends
on a choice of object F' € C. Roughly speaking, I’ is the representation of U from
which the perturbing field is taken, and the objects of Cr are pairs of an unperturbed
defect together with a direction of perturbation.

Concretely, the objects in Cr are pairs (R, f) where R€ C and f: F® R — R is
a morphism in C. The morphisms in Cr are those morphisms in C which make the
obvious diagram commute (see Def. 4.1.1). If, in addition to being monoidal, the
category C is also abelian rigid and braided (as it would be for C = Rep(¥) with U a
rational vertex operator algebra), then Cr is an abelian rigid monoidal category (Thm.
4.3.2). In particular, the Grothendieck ring Ky(Cr) is well-defined. However, Cr is
typically not braided. We will see in the example of the Lee-Yang model that there
can be simple objects (U, f) and (V, g) in Cp such that (U, f) ®(V, g) 2 (V, 9) ®(U, f),
where ® denotes the tensor product in Cp.

If C = Rep(*Y), we can assign a perturbed defect operator D[(R, f)] to an object
(R, f) € Cp, provided certain integrals and sums converge (see Sect. 5.2). Sup-
pose that for two objects (R, f),(S,g) € Cr the perturbed defect operators exist.
Then the tensor product in Cr is compatible with composition of defect operators,
DI(R, f)&(S.9)] = DI(R, f)]DI(S,9)] (Thm. 52.1), and D((R, )] = DI(S.,g)] if
(R, f) and (S, g) represent the same class in the Grothendieck ring Ky(Cr) (Cor.
5.2.2). Thus, identities of the form [(A,a)] - [(B,b)] = [(Cy,c1)] + -+ + [(Ch, )] in
Ko (Cr) will give rise to functional relations among the defect operators, such as the
one quoted in (0.0.1) (see Chap. 6 for the Lee-Yang example).

The category Cr has similarities to categorical structures that appear in the treat-
ment of defects in other contexts. In B-twisted N' = 2 supersymmetric Landau-
Ginzburg models, boundary conditions [KL03, BHLS06, Laz05] and defects [BRo07]
can be described by so-called matrix factorisations. There, one considers a category
whose objects are pairs: a Zs-graded free module M over a polynomial ring and an

odd morphism f: M — M, so that f o f takes a prescribed value. The morphisms



of this category have to make the same diagram commute as those of Cr. And as in
Cr, the module M can be interpreted as a defect in an unperturbed theory, and f
as a perturbation. However, in the context of matrix factorisations one passes to a
homotopy category, which is something we do not do for Cp.

A more direct link comes from integrable lattice models. In one approach to these
models, one uses the representation theory of a quantum affine algebra to construct
families of commuting transfer matrices. The decomposition of tensor products of
representations of the quantum affine algebra gives rise to functional relations among
the transfer matrices [KNS94, RW, Ko03]. The category of finite-dimensional repre-
sentations of a quantum affine algebra [CP91] shares a number of features with the
category Cr. For example, the tensor product of simple objects tends to be simple
itself, except at specific points in the parameter space, where the tensor product is
the middle term in a non-split exact sequence. To make the similarity a little more
concrete, in App. A we point out that the evaluation representations of U, <5A[(2)>
can be thought of as a full subcategory of Cr for appropriate C and F.

This thesis is organized as follows. In Chapter 1 we give a short review of CFT.
In particular we review only those areas of CFT that will be relevant later on. In
Chapter 2 we introduce the concept of defects and defect operators and we review
some of their properties as well as their fusion rules. The machinery of topological
field theory is discussed in Chapter 3, where we start by defining cobordisms and work
our way up to define an n-dimensional TFT and at the end a 3-dimensional extended
TFT. These first three chapters give the necessary background in order to describe
the main results of the thesis, which are given in Chapters 4-6. More concretely, in
Chapter 4 we introduce the category Cr and study its properties. In this section we
make no reference to conformal field theory or vertex operator algebras. The relation
of Cr to defect operators in conformal field theory is described in Chapter 4. There,
we also show that the assignment of defect operators to objects in Cr factors through
the Grothendieck ring of Cr. In Chapter 6 we study the Lee-Yang Virasoro minimal

model conformal field theory in some detail.



CHAPTER 1

Conformal Field Theory

In this Chapter we give a short introduction to Conformal Field Theory (CFT).
However, it is beyond the scope of this thesis to present a full summary of CFT.
Conformal field theory is a highly developed subject with many excellent reviews and
textbooks available. A selection recommended by the author, in alphabetical order,
is
[ASG89]  An introduction by Alvarez-Gaume, Sierra and Gomez, writ-
ten with an emphasis on the connection to knots and quantum
groups.

[BYB] The book by Di Francesco, Mathieu and Sénéchal, which
develops CFT from first principles. The treatment is self-
contained, pedagogical, exhaustive and includes background
material on QFT, statistical mechanics, Lie and affine Lie al-
gebras.

[Ca08] Lectures given at Les Houches (2008) by John Cardy.

[Gab99] An overview of CFT centered on the role of the symmetry
generating chiral algebra by Matthias Gaberdiel.
[Gin88]  Lectures given at Les Houches (1988) by Paul Ginsparg.

In the following sections, an introduction is given to those areas of CFT that are
most relevant to the current thesis. In some cases we just state the results since they

are considered as standard in the literature and the readers may refer themselves to

the recommendations mentioned above, for further details.



1.1 Conformal Invariance in Two Dimensions

Conformal field theories in two dimensions are Euclidean QFTs whose symmetry
group contains, in addition to the Euclidean symmetries, local conformal transforma-
tions, i.e. transformations that preserve angles but not necessarily lengths. Indeed,
in two dimensions there exists an infinite variety of coordinate transformations that,
although not everywhere well defined, are locally conformal and they are holomor-
phic mappings from the complex plane to itself. The local conformal symmetry is of
special importance in two dimensions since the corresponding symmetry algebra is
infinite-dimensional (and in certain cases, e.g. Rational CFTs;, see Sect. 1.6, organizes
the Hilbert space of the quantum theory into finitely many representations). As a
consequence, two-dimensional CF'Ts have an infinite number of conserved quantities,
and are completely solvable by symmetry considerations alone.

Consider now a flat metric g,,, on a space-time manifold . .

Definition 1.1.1. A conformal transformation of the coordinates is an invertible

mapping z* — x'#, that leaves the metric tensor invariant

G (2) = Q) g (@) (1.1.1)

up to a scale factor Q(z), called the conformal factor.

We will restrict ourselves to two dimensional Euclidean space with a metric g, =
diag(1,1). The set of all conformal transformations forms the conformal group which
is isomorphic to SO(3,1). For an infinitesimal transformation a#* — 2" = a# 4 ()

to be conformal, Definition 1.1.1 implies
09 = Ux) g = 20(,€) - (1.1.2)
The factor Q(z) is determined by taking traces

O(x) = e . (1.1.3)



Combining equations (1.1.2) and (1.1.3) we get
1 p
Oy = §8pe Guv - (1.1.4)

Equations (1.1.4) are the Cauchy-Riemann equations O1e; = Orea and 01€y = —0ae;.
Therefore, if we identify the two dimensional Euclidean space with the complex plane
we may write

1

e(z) =€ +ie*, &z)=¢ —ié, (1.1.5)

in the complex coordinates z = x + 1y and Z = x — 4y. The metric tensor in terms of

0 1 0 2
20 2 0

where the indices «, § take the values z and Z, in that order. In this language, the

z,Z is given by

holomorphic Cauchy-Riemann equations become
Osw(z,z) =0, (1.1.7)

whose solution is any holomorphic mapping z — w(z) = z + €(z). Analytic functions
automatically preserve angles and we see that there are infinitely many independent

such transformations.

Remark 1.1.1. If we extend the Cartesian coordinates (z,y) to the complex plane,
then the variables z and z are independent and z is not the complex conjugate of
z, but rather a complex coordinate. However, it should be kept in mind that the
physical space is the two-dimensional submanifold defined by 2* = Z.

Everything we have said up to now is purely local, we have not yet imposed any
conditions for the conformal transformations to be everywhere well defined and in-
vertible. Strictly speaking, in order to form a group, the mappings must be invertible
and must map the whole plane to itself (more precisely the Riemann sphere). One,
therefore, must distinguish global conformal transformations, which satisfy these re-

quirements, from the local ones, which are not everywhere well defined. The group of



conformal transformations on the Riemann sphere is finite dimensional and consists
only of Mobius transformations

az+b
cz+d’

where a, b, c,d € C. To each of these mappings we can associate the matrix

AZ(Z 2) . (1.1.9)

We easily see that the composition of two maps corresponds to matrix multiplication

ad —bc=1, (1.1.8)

and the condition ad — bc = 1 to det A = 1. Therefore, the global conformal group in
two dimensions is isomorphic to the Lie group SL(2, C)/Zs and it is finite dimensional.

To the fields ¢(z, z) in the theory we can associate a scaling dimension A and a
spin s. Given such a field, we define the holomorphic conformal dimension h and its

antiholomorphic counterpart h as

h = %(A+s) , h= %(A —5) . (1.1.10)

Every conformal transformation z = w(z) looks locally like a combined rescaling
and rotation. The CFT will contain some fields, called primary fields which can only
see this local behaviour, i.e. whose transformation properties depend only on the first
derivative of w.

Definition 1.1.2. A field ¢(z,z) that under any local conformal transformations

z = w(z),Z — w(z), transforms as
dw\ ™" (dw\ ™"
¢'(w,w) = (5) (%) (2, 2) , (1.1.11)

is called a primary field. If ¢(z, Z), under global conformal transformations, transforms
as in (1.1.11), then it is called a quasi-primary field.

The infinitesimal version of (1.1.11), under the conformal mapping 2z — z + €(2)
and z — Z 4 €(2), is

Occ(2,2) = (hO.e + €0, + hose + €0:) ¢(z, 2) . (1.1.12)



1.2 The Stress Tensor and Ward Identities

We would now like to explore the consequences of conformal invariance for correla-
tion functions in a fixed domain (usually the entire complex plane). It is necessary
to consider transformations which are not conformal everywhere, i.e. local confor-
mal transformations. This brings in the energy-momentum tensor (or stress-energy
tensor). The name energy-momentum tensor refers to Minkowski space-time while
the name stress-energy tensor refers to the elastic properties of materials. In a slight
abuse of notation we will use both names. In a classical field theory it is defined as
the Noether current which is conserved and symmetric, in response of the action! S

to a general infinitesimal transformation e*(z),
68 = / >z T 0,6, = / Pz T Oy - (1.2.1)

This is valid even if the equations of motion are not satisfied. Then equations (1.1.2)
and (1.1.3) imply that the corresponding variation of the action under an infinitesimal

conformal transformation is
58 = /d% T Qx) =0, (1.2.2)

where Q(z) = 0,€” is not an arbitrary function. The tracelessness of 7" then implies
the invariance of the action under conformal transformations.
In complex coordinates (z, Z), the components of T, are

1 1
Tzz — Z (Tll - 27;T21 - TQQ) y Tg* = Z (Tll —|— 2iT21 - TQQ) y ng - Tg - 0 . (123)

The conservation law ¢*70,T,3 = 0, implies that
oTr =0T =0, (1.2.4)

where, 0 = 05,0 = 0,. Therefore, the energy-momentum tensor splits into a holo-
morphic and an antiholomorphic part and it is customary to write these parts as

T=T(z2)=T,, and T = T(2) = Ts, respectively.

'Even though we will never explicitly need an action in this thesis, it is sometimes useful to think
that there is a path integral formulation of the theory.



We now use radial quantization on the complex plane. Consider an infinite cylinder
of circumference L, with the time ¢t € R, running along the “flat” direction of the
cylinder and space being compactified with a coordinate = € [0, L], the points (0, ?)
and (L, t) being identified. If we continue to Euclidean space, the cylinder is described
by a single coordinate w = x + it (or w = = — it). We then “explode” the cylinder

onto the complex plane (or rather, the Riemann sphere) via the mapping

The remote past (t — —o0) is situated at the origin z = 0, whereas the remote future
(t — 400) lies on the point at infinity on the Riemann sphere.

With the decomposition (1.2.4) of the energy-momentum tensor into holomorphic
and antiholomorphic parts at hand, we can now define in radial quantization the

conserved charge X
Q= 5 515 (dz T(2)e(z) + dz T(2)&(z)) | (1.2.6)

from the conserved current J%(z,z) = T*%(z, 2)eg(z,2) = T(2)e(z) + T(2)é(2). The
line integral is performed over some circle of fixed radius and our sign conventions
are such that both the dz and the dz integrations are taken in the counter-clockwise
sense (hence the symbol ¢). Note that (1.2.6) is a formal expression that cannot be
evaluated until we specify what other fields lie inside the contour.

The variation of a primary field ¢(w,w), is given by the equal-time commutator

with the charge @)

5. ct(w, @) = [Q, d(w, 1)) = —— 56 [dz T(2)e(z) + dz T(2)e(2), dlw, @)] . (1.27)

- 211

Now products of two operators O;(z)Oy(w), in Euclidean space quantization are only

10



defined for |z| > |w|. Thus, we define the radial-order operator

O01(2)O0z(w) , if 2| > |w|

0 (01(2)On(w)) = {

This allows us to define the meaning of the commutators in equation (1.2.7). Consider

now the following pictorial equation

= . (1.2.9)

In this equation we have represented the contour integrations that we need to perform
in order to evaluate the commutator in (1.2.7). We see that the difference combines
into a single integration about a contour drawn tightly around the point w. Then we
can write the equal-time commutator [O;(2), Os(w)] as a contour integral around the

point w, therefore (1.2.7) becomes

seotwi) = (= ) (s 0T 0 () + o 0 (Tt ) ()

= 2—7”95 {dz o(T(2)p(w, w)) e(2) + dz o (T(2)p(w, w)) &%) }
= (hde + €0 4 hde + €)) p(w, w) |,
(1.2.10)

where in the last line we have substituted the desired result, equation (1.1.12). Insert-
ing the holomorphic and antiholomorphic parts of (1.2.10), separately in a correlator

and using Cauchy’s formula one can deduce the conformal Ward identity

<T(Z)Q51(w1,ﬂ_)1)...¢n(wmwn)) = Z ((z _hwj)2 T z —1wj awj) (1 2 11)

A1 (w1, W1)...pp(Wy, Wy,)) + rEg(2)

11



where reg(z) is a regular function on the complex plane. A similar relation holds for
T(z). In particular we see that the operator product expansion (OPE) of the stress

tensor with a primary bulk field is

T(z)p(w,w) = (( h + 0 ) o(w, w) 4 reg(z —w) |, (1.2.12)

z—w)?  z—w

with a similar expression for T(2). The most general OPE for T' (similarly for 7)),

consistent with associativity is

T Tw) = —L2 4+ 2 )+ 2

(z—w)*  (z—w)? z—w

T(w)+reg(z —w)|. (1.2.13)

The constant c is called the central charge and fixes the properties of the CFT. The
OPE of T with T has no poles. A consequence of (1.2.13) is the transformation

behaviour of T'(z) under a conformal map z — w(z)

dw 2 c
T =(— | T — : 1.2.14
@)= (92 T+ £ (wsad | (1214
/// 11 2
where {w; 2} == — ((ZZ)) —% (:f’u, ((ZZ))> ,is the Schwarzian derivative. Thus, we see that the

energy momentum tensor is not a primary field. However, the Schwarzian derivative
of (1.1.8) vanishes. This needs to be so, since T'(z) is a quasi-primary field.
In two dimensional CFTs, we can always take a basis of quasi-primary fields ¢;

with fixed conformal weight. If we normalize their 2-point functions as

(9i(2,2)p;(w,w)) = =0 (z = w)m , (1.2.15)
then the OPE of two such fields will be of the form
¢i(z,2)p;(w, w) ZC T—hi=hs (5 )Rl g () (1.2.16)

where ng , are the operator product coefficients and are symmetric in ¢, j, k. In the
following section we will see what is the exact form of the OPE ¢;(z, 2)¢,(w, w), but
in order to do that we need to know all the primary and descendant fields of the

theory. This is done via the Hilbert space formulation of CFT.
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1.3 Hilbert Space Formulation

A 2D CFT is determined by the following data:

& A space of states® H, a C-vector space, as well as, a space of fields .7, an S-
graded vector space F = @5 F (8) with S, the spectrum, a discrete subset
of R and 0 < dim .Z® < .

[ ) Its correlation functions, which are defined for collections of vectors in %,
together with an isomorphism ¢: % — 2, the state-field correspondence, in
the sense that a field inserted at a point can be thought of as a state and vice

versa.

As we have seen, two-dimensional CFTs contain an infinite variety of coordinate
transformations that although not everywhere well defined, are locally conformal and
they are holomorphic mappings from the complex plane to itself. The corresponding
infinite-dimensional symmetry algebra of the CFT is related to a preferred subspace
Fy of Z, that is characterised by the property that it only allows holomorphic de-
pendance of the coordinates for the correlation functions, see [Gab99, Sect.2.1] for
example.

The correlation functions of the theory determine the OPE of the conformal fields,
as one can see from (1.2.15) and (1.2.16) for example. In turn, the OPE of two
conformal fields is given in terms of a sum of single fields as in (1.2.16). Thus, we
see that the OPE defines a certain product on the fields via the operator product

. k
coefficients C};",

which are the only non-trivial input in the OPE. It is, therefore, the
operator product coefficients that force the product to involve the complex parameters
z; in a non-trivial way and hence, it does not directly define an algebra (in the

appropriate sense); the resulting structure is a vertex (operator) algebra, 5.

2May or may not be a Hilbert space, but it will be clear from the context. For example, as we will
see later on, the space of states of the Lee-Yang model is not a Hilbert space, as the inner product
is not positive-definite.
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The OPE is associative and if we consider the case of two holomorphic fields
01, P2 € F, then the associativity of the OPE implies that the states in .%, form a
representation of 0. The same also holds for the vertex operator algebra associated
to the anti-holomorphic fields and one can decompose the whole space .# (or J¢) as

H =P (Riwc R)™M (1.3.1)
i,j€T
where Z denotes the set indexing the irreducible representations of U, {R; | i € T}
the corresponding representations and M;; € IN denotes the multiplicity with which
the tensor product R; Q¢ Rj— occurs in 7.

Note that the operator formalism distinguishes a time direction from a space
direction and thus we will work in radial quantization as we did in the previous
section.

We must also assume the existence of a vacuum state |0) € .7 upon which the
Hilbert space is constructed. In free field theories, the vacuum may be defined as the

state annihilated by the positive frequency part of the field [BYB, Sect.2.1 & 6.1.1].
Remark 1.3.1. To be precise we should call |0) the sl(2)-invariant vacuum, since e.g.
for a non-unitary theory on a cylinder, it is not the state of lowest energy and thus not
the real vacuum. It will always be clear from the context whether “vacuum” refers to
the state of lowest energy or the sl(2)-invariant state |0). Moreover, the expressions,
correlation function, n-point function, amplitude and vacuum-expectation value all
refer to the (radially ordered) vacuum-expectation value (0] ... |0) with respect to the

s[(2)-invariant vacuum.

For an interacting field ¢ € .%#, we assume that the Hilbert space is the same
as for a free field, except that the energy eigenstates are different [BYB, Sect.6.1.1].
The timescales over which interactions happen are extremely short. The scattering
(interaction) process takes place during a short time interval around some particular
time ¢t with —oco < t < 400. Long before ¢, the incoming particles evolve indepen-

dently and freely. In other words, we suppose that the interaction decreases (and

14



eventually vanishes) as t — 0o and that the asymptotic field ¢y, o< lim;_, o ¢(z, 1)
is free. Within radial quantization, this asymptotic field reduces to a single operator,

which upon acting on |0), creates a single asymptotic “in” state
[#m) = lim 6(z, 2)[0) - (1.3.2)

This is just the state-field correspondence, mentioned in # above. Later on in this
section, we will use this correspondence to lift the representation properties of the
fields, onto the states. In this way, we will see that 2 can be decomposed into a
direct sum of (highest weight) representations of the underlying symmetry algebra.

In this Hilbert space we must also define an inner product, which we do indirectly
by defining an “out” state, together with the action of Hermitian conjugation on
conformal fields. In radial quantization this can be done via the mapping z — 1/2*.
This almost justifies the following definition of Hermitian conjugation on the real
surface Z = z* (recall Remark 1.1.1).

$(z,2) =272 (i 1) : (1.3.3)

z Z

where ¢ is a quasi-primary field of dimension (h, k). Out-states then have the form

11 _
<¢0ut| = lim <0|¢in <_7 _) 5—2h,—2h

2,2—0 z Z

. ) 2\ T

= lim (¢in(2,2)[0))

z,Z2—0
= (Jom))" -

Then the inner product on 7 is

(Goulm) = Tim, (01(=,2)'o(uw, )]0
w,w—0

= lim z 2" <0 ’qﬁ G é) qb(w,w)‘ 0> (1.3.5)

z,2—0
w,w—0

= tim (¢ (010(C.C)(0.0)[0)

15



Remark 1.3.2. Note, that according to the conformal two-point function

CH2

(61(C.)62(0.0)) = 7

the last expression in (1.3.5) is independent of ¢ and this justifies the prefactors
appearing in (1.3.3). If they were absent, the inner product (Pout|¢im) would not have
been well defined as ( — oo. Note also that the passage from a vacuum expectation
value to a correlator in the last equation is correct since the operators are already
time-ordered within radial quantization. The first one is associated with ¢ — oo and
the second one with ¢t — —o0.

We can now define the action of the stress tensor T and its antiholomorphic

counterpart 7 on the Hilbert space 4#, via their mode expansion

T(z)=) 2" "Ly,, T(2) =) 7" °L,. (1.3.6)

nez nez
The exponent —n — 2 in (1.3.6) is chosen so that for the scale change z — z/A, under
which T'(z) — A\2T'(z/)), we have L_,, — A"L_,. The operators L_,, L_,, thus have

scaling dimension n. Equation (1.3.6) is formally inverted by the relations

1 - 1
L,=— ntlp L,=— i 7 . 1.3.
5t dz z (2), 57 dz z (2), ne€ (1.3.7)

From (1.2.13) one can deduce that the modes fulfil the Virasoro algebra

[L 7Lm] (TL - m>Ln+m + % (n3 - n) 6n+m,0

(Lo, L] = : (1.3.8)
[Ln, L i

} (n —m) Lyym + 5 (n — n) Sntm.0

Note that the Virasoro algebra decomposes into holomorphic and antiholomorphic
parts. These are denoted by Vir and Vir, which are generated by the holomorphic

and antiholomorphic modes respectively?.

3Some times in the literature these are called chiral and antichiral or left and right moving parts.

16



In this thesis we will assume ¢ = ¢. In the case where ¢ = 0 we retrieve the Witt
algebra. One can identify L_y + L_; and ¢ (L_1 — Z_l) as generators of translations,
Lo+ Ly and i (LO — EO) as generators of dilations and rotations respectively, while
Li+ L, and i (L1 — [:1) are generators of special conformal transformations.

The Virasoro algebra is infinite dimensional and it was originally discovered in
the context of string theory [Vir70]. To see how one can obtain equations (1.3.8), one
needs to employ a procedure for making contact between OPEs and commutators of
operator modes. The commutator of two contour integrations [56 dz, ngw] is eval-
uated by first fixing w and deforming the difference between the two z integrations
into a single z contour drawn tightly around the point w, as in (1.2.9). In evaluating
the z contour integration, we may perform operator product expansions to identify
the leading behavior as z approaches w. The w integration is then performed without

further subtlety. For the modes of the stress-energy tensor, this procedure gives
1
[Lp, L) = e [ygdz ,%dw} 2T (2w T (w)

= e f st 7t (e 2

+_8T(w) +reg(z — w)) (1.3.9)
Z—w
1 C n— m
=5 dw (S(n+ n(n — Dw"2w™ !

+ 2(n + Dw"w™ T (w) + "M w™ 1 oT (w)) .

Integrating the last term by parts and combining with the second term gives (n —
m)w™ T (w), so performing the w integration, produces the required result.

The vacuum state |0) € S must be invariant under global conformal transfor-
mations. This means that it must be annihilated by L_;; and I_/—l,O,L This, in
turn, can be recovered from the condition that T'(2)|0) and T(2)|0) are well defined

as z,z — 0, which implies

L,J0) =0, L,0)=0, n>-1. (1.3.10)



From the state-field correspondence (1.3.2) we see that primary fields, when acting
on the vacuum, create asymptotic states. Performing the corresponding contour

integral with (1.2.12), we get the commutation relations

(L, ¢(w, )] = h(n + Dw"é(w, w) + w" M d¢(w, w)

_ ) - . (1.3.11)
(Lo, p(w, )] = h(n+1)a"¢(w, w) + " d(w, )
After applying these relations to the asymptotic state
h, B = 6(0,0)[0) | (1.3.12)
we take
Lolh,h) = h|h,h) , Lolh,h) = hlh,h) . (1.3.13)
Thus, |k, h) is an eigenstate of the Hamiltonian?. Similarly,
Ly|lh,h) = Ly|h,h) =0, n€IN. (1.3.14)

The Hilbert space thus decomposes into highest weight representations of Vir & Vir
of the form (1.3.1). Each module is spanned by a highest weight state |h, h) and an
infinite set of descendent states of the form L, ... Ly, ...|h, h), with all m,n < 0.
Once we know the central charge ¢, of the theory and the conformal weights (h, 71), of
all primary fields, we can construct the Hilbert space. However, some care has to be
taken in the construction of a basis, since not all products of L’s and L’s are linearly
independent.

The inner product (1.3.5) of two highest weight states |¢) and |j), simply is
(il7) = 65 - (1.3.15)
If we Hermitian conjugate 7" and T and restricting to the real surface zZ = 2*, we get
Ll=rL,, LI =L, (1.3.16)

This relation together with the Virasoro algebra and highest weight condition can be
used to write the inner product of an arbitrary pair of fields in terms of the inner

product of primary fields.

4As will be seen later, the Hamiltonian is proportional to Lo + Lo — 15

18



Let M(c, h) be a highest weight representation of Vir, then M (c, h) has the de-
composition [KR, Sect. 3.2]

M(e,h) = @ M(c,h)nin | (1.3.17)

where M (¢, h)pyn is the (h 4+ N)-eigenspace of Ly, spanned by vectors of the form
Lop oo L B, 1<k <... <k, (1.3.18)

where h+N = h+ki+...+k, is the Ly eigenvalue of (1.3.18). The number N € IN is
called the level of the state. Therefore, the operator Ly, acts as a grading operator on
the Vir-module M(c, h). The states (1.3.18) are called descendants of the asymptotic
state |h). The number of states at level N is simply the number p(N) of partitions

of the integer N. p(IN) is given in terms of the generating function

@ = H . —1q" = Zp(N)qN ) (1.3.19)

n=1

where p(0) = 1 and ¢(q) is Euler’s function.

The subset of the full Hilbert space generated by the asymptotic state |h) and its
descendants is closed under the action of the Virasoro generators and thus forms a
Vir-module. If all the states of the form (1.3.18) in a highest weight representation
of Vir are linearly independent, then this highest weight representation is called a
Verma module, denoted by V' (¢, h). Starting from a highest-weight state |h) € V (¢, h),

one can build the set of states given in the following table.
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Level | Dimension State
0 h |h)
1 h+1 L_4|h)
2 h+2 L _5|h), L?,|h)
3 h+3 L_slh), L_1L_olh), L3 |h)
4 h+4 L_4lh), L_yL_slh), L* L _»|h), L%,|h), L* |h)
N h+ N p(IN) states

Table 1.1: Basis for the Verma module V(c, h).

The states in Table 1.1 form a basis for the Verma module. If among the vectors of
a Verma module there exist states |y) which are also highest weight states, L,|x) = 0
for all n € IN, then these states are called null states and are orthonormal to all the
other states in the module. In particular for a null state we have (x|x) = 0. We will
call a null state, singular, if it is not the descendent of a null state. The fields ¢ € .F#
that correspond to the states |h) € # in Table 1.1, arise from repeated OPEs of the
primary field ¢ with 7'(z), and constitute the conformal family [¢] of ¢.

Now that we know all the states in the Hilbert space, and thus all the primary and
descendent fields, we can write down the OPE of two primary fields. Let us consider
(1.2.16) with ¢; and ¢; primary fields, and group together all the secondary fields

belonging to the conformal family [¢,] in the summation to write

6i(2,2)0;(w, @) = Z ij{k,l’c}z(hp—hi—h]-@g k[)g(ﬁp—ﬁi—ﬁj‘f‘Z[El)qﬁ;gkjﬂ}(w’w) .

p.{k,k}
(1.3.20)

Here, we have labeled the descendants L_y, ... L_y, L By - I_/_,;;m ¢, of a primary field

n -

¢, by ,‘E’“”_“}, and we assume the normalization (1.2.15). Performing a conformal
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transformation on both sides of (1.3.20) and comparing terms, one can show that

p{kk} _ p{k} Zp{k}
ClPM = C P Bl (1.3.21)

i Pig o
where the constants C,;” are the structure constants. They are the only nontrivial
input in the OPE, in the sense that the structure constants are not directly fixed by
the representation theory of the Virasoro algebra. The numbers 3, 3 are determined
by the representation properties of the fields and may be calculated in terms of the
h’s, h's and ¢, see [BPZ84] for detals.

We thus see that the data needed to specify a 2D CFT are given by (hi, f_li,c)
and the structure constants C’ijp between the primary fields. Everything else follows
from the values of these parameters, which themselves cannot be determined by the
conformal symmetry alone. However, as we will see in Sect. 3.5.2 one can construct
a full CFT from its correlation functions, using the machinery of three dimensional

topological field theory.

1.4 Modular Invariance

The CFT on the full complex plane we formulated up to now, decouples into holomor-
phic and antiholomorphic sectors. In fact, the two sectors may describe two distinct
theories since they do not interfere. However this situation is very unphysical.

The decoupling exists only at the fixed point in parameter space (the conformally
invariant point) and in the infinite plane geometry. One, therefore, can solve this
problem by coupling the holomorphic and antiholomorphic sectors of the theory,
through the geometry of space, on which the theory is defined. In this way, one
imposes physical constraints on the holomorphic-antiholomorphic content of a CFT
without leaving the fixed point. The infinite plane is topologically equivalent to the
Riemann sphere, i.e. the Riemann surface of genus ¢ = 0. One may study CFTs
on Riemann surfaces of arbitrary genus g. The simplest non-spherical case is that
of genus g = 1, i.e. a torus, which is equivalent to a plane with periodic boundary

conditions, in two directions.
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More precisely, consider the map (1.2.5), from the cylinder to the complex plane.
We now want the inverse procedure, i.e. to go back to the infinite cylinder from which
we can construct a torus of length R, by cutting a segment of the cylinder and by
gluing the two boundaries of the segment together. In terms of CFT this means that
one has to sum over intermediate states. The Hamiltonian and the momentum oper-
ators then propagate states along different directions of the torus and the spectrum
of the theory is encoded in the partition function.

Consider now the map z — w(z) = % In z, from the complex plane parameter-
ized by z, to the infinite cylinder of circumference L, parameterized by w. On the
cylinder, time translations are movements in the imaginary direction, generated by

the Hamiltonian

Hop = /OL T, dr = — 51§ (dw T(w) + do T(w)) . (14.1)

The transformation law (1.2.14) of the stress tensor, gives

T(w) = (?)2 (1) - o) (1.4.2)

with a similar expression for 7. Then by changing integration variables, dw = ﬁ%dz,

we obtain the action of H.y in the Hilbert space of the complex plane

= o (- 51) i (- 52))

2 - c
-1 (r L——)
L( tho— g

(1.4.3)

In taking the last expression, we used (1.3.7) and the fact that ¢dz 1 = 2mi. As
one can see, for the Hamiltonian (1.4.3) to be bounded from below, the Hilbert space
must decompose into the direct sum of highest weight representations of Vir @ Vir
as in (1.3.1).

The partition function of the theory on the torus is given as the trace over the

whole space of states
Z(T, 7_') = TI'{%p (efRHcyl) — Trjf <qL072%1qE07i> , (144)
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2T and 7 = iR/L, is called the modular parameter of the torus. Since

where ¢ = e
the tori that are described by 7 and Ar, for A € SL(2,7Z)/Z are equivalent, the

partition function is invariant under the modular transformations

1
TiT—71+1, S:7— —. (1.4.5)
T

of the modular parameter 7. The group SL(2,7Z)/Z.s, is isomorphic to the modular
group I', generated by (1.4.5). Note that the modular group will keep 7 on the upper
half plane. If we decompose the Hilbert space into representations of Vir @ Vir by
(1.3.1), we can rewrite the partition function (1.4.4) as
Z(r,7) =Y Mipa(m)x;(7) (1.4.6)
i,J€T

where M;; € Ny is the multiplicity of occurrence of R; ® R; in ## and
\il(r) = Trg, (¢75) |, (7) = Teg, (g% %) (1.4.7)

are the Virasoro characters of the irreducible representations forming the Hilbert
space of the theory. The characters transform into one another under the modular
transformations (1.4.5) as
RS DE VG PR C) I DTV P T
JET JET

where 7" and S are constant matrices, called the modular matrices and they are sym-
metric and unitary. Thus the torus partition function is modular invariant provided
that

Z SilMiijE = Z ElMijT’jfc = MIE . (1-4-9)

i,J€1 i,J€T
The case where M;; = 0,5, is called the Cardy case.

1.5 Fusion Algebra and the Verlinde Formula

The action of the Virasoro generators on the product of two primary fields, preserves

the Virasoro algebra and endows the tensor product of the representations with the
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structure of a representation. This leads to a natural product on representations,
called the fusion product, which constrains the fields that appear in the OPE. The
consistency of the OPE (1.3.20) with the existence of null vectors leads to the fusion
algebra of the CFT [Ca04]

Ri@R; =Y N,;"Ry (1.5.1)
ke
where /\/'ij ¥ € Ny are the fuston numbers. This applies separately to the holomorphic
and antiholomorphic sectors and determines how many copies of Rj occur in the
fusion of R; with ;. The fusion algebra is commutative, associative and contains an
identity given by the vacuum representation Rj.
Consistency of the CF'T on the torus implies that the fusion numbers are given in
terms of particular products of matrix elements of the modular matrix
SiSj1S
N, F = ; # : (1.5.2)
This is the so called Verlinde formula [Ver88]. In this thesis, we will make the
simplifying assumption that Mjk € {0,1}. In full generality, the fusion numbers
may be larger than one, but it is not so for the Virasoro minimal models (that we
will study in Sect. 1.7). This reflects the absence of multiplicity greater than one in

ordinary tensor products of representations of su(2) [BYB, footnote p. 125].

1.6 Rational Conformal Field Theory

In Section 1.5, we gave an explicit relation between the modular transformation S
of the characters and the fusion numbers A/ which proves to be a very general fact.
This naturally leads to the concept of rational conformal field theory (RCFT). These
are CFTs, whose Hilbert space contains only a finite number of irreducible highest
weight representations, of the symmetry algebra. The term “rational” is because

if there are only a finite number of primary fields then the conformal weights are
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all rational numbers [Va88, AM88]. RCFTs may contain an infinite number of Vi-
rasoro representations, but these can be reorganised into a finite set of irreducible
representations corresponding to an extended symmetry algebra. Actually the only
theories that contain only a finite number of Virasoro irreducible representations, are
the Virasoro minimal models. For a condensed panoramic view of the development
of two-dimensional RCEFT in the last twenty-five years see [FRS10], or for a lightning
review of RCFT see [GWO03, Sect. 2].
Consider now a RCFT whose Hilbert space 7 decomposes into a finite number
of irreducible representations
H =P[R R)M (1.6.1)
ijeT
of a chiral algebra U, such that Vir C 0. On the set Z, indexing the representations
R;, we assume there is the charge conjugation (i¥)" = i, which preserves the conformal

weights and the fusion numbers
k kY
hrL - hZV ; '/\/;J - N;;vjv . (16.2)
From this we define the charge conjugation matriz as

The charge conjugation matrix can be used to raise and lower indices (just like the

metric tensor). The modular matrix satisfies
52 = C 5 Sijv == S@'j . (164)

This requires that the characters, under modular transformations must transform as

=D Si(@) s xal@ =) Syvxla) =Y Suxi(a) (1.6.5)

jET jeT jeT
where ¢ = €*7 and § = e ?/7. The fusion numbers also satisfy the following
identities
k_ nr k k k N — 0 _
Ny" =N ZM]’ Nia' Z i N No? =055 N7 = (1.6.6)

kel kel
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Note, that the commutativity and associativity of the fusion rules is reflected in the

first and second identities respectively.

1.7 Minimal Models

A class of theories that are among the simplest CFTs are the Virasoro minimal
models. These were introduced by Belavin, Polyakov and Zamolodchikov [BPZ84].
The minimal models are theories whose Hilbert space consists of a finite number of
representations of the Virasoro algebra. The simplicity of minimal models allows for
a complete solution and they were classified in [CIZ87]. The discovery of minimal
models and their identification with statistical models at criticality, is the greatest
application of conformal invariance so far. In this section we will discuss a selection
of facts about minimal models and in the next subsection we will introduce the Lee-
Yang model, which will be one of the main examples when we will discuss perturbed
defects later on. The reader interested in more details on minimal models, may refer
to the choice of texts mentioned in the beginning of Chapter 1.

The minimal models exist for specific values of the central charge for which the
OPE of the fields closes even if the theory contains a finite number of primary fields.

The allowed values for the central charge are given by
c=13-6(t+t"), teQ"-N-1/N. (1.7.1)

In other words the central charge is parametrised by a rational number ¢t = p/q with
P, q € Z>9 that have no common divisor. We denote these models by M (p, ¢) and they
are unitary if p = ¢+1. Furthermore, the highest weight irreducible representations of
Vir can be organised in a (p—1) x (¢—1) table, called the Kac table. If r € {1,...,p—1}
and s € {1,...,q — 1}, then the corresponding highest weights are given by
1

By = T ((r—st)> = (1—1)?) . (1.7.2)

Each representation with highest weight h and central charge ¢ contributes to the

Virasoro characters (1.4.7). These representations contain null states and in order
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to obtain irreducible representations one must quotient out these states, then the

characters are given by

hr,s—i

Z (qn(npq+qr—ps) _ qn(npq+q7"+p8)+7“5) . (173)

XT,S(Q) = SD(Q) =~

These under the modular transformation 7 — —1/7, transform into each other ac-

cording to (1.6.5), with the modular matrix given by

/ /
Siry sty = 22 (pg) "2 (= 1)+ sin (”q:” ) sin (”pq‘” ) . (1.7.4)

Note that S? = 1.

1.7.1 The Lee-Yang Model

In this section, following [MR09, Sect.4.1], we fix our conventions for the Lee-Yang
model. This is the non unitary Virasoro minimal model M (2,5) of central charge
¢ = —22/5. The two irreducible highest weight representations of the Virasoro al-
gebra that lie in the Kac table have highest weights h 1) = ha4) = 0 and hqg) =
has = —1/5. We will abbreviate 1 = (1,1) and ¢ = (1,2), and we will denote
the corresponding representations by R; (for h = 0) and R, (for h = —1/5). The
characters of Ry and R, are (see e.g. [Na04])

X1(7) = Trp,qlo=c/?t = /60 H 1—g) =1+ P+ @ tq+...),

n=52,3

X¢(T) _ TrR¢qLofc/24 _ q71/60 H (1 . qn)q: q71/60<1 +q+q2 +q3 +2q4 +. ) 7
77,551,4

(1.7.5)
where a =,, b is a shorthand notation for a = b (mod n) and q = €¢*™. The products
are from n = 1 to infinity with the restriction modulo 5 as shown. Under the modular

transformation 7 +— —1/7 they transform as x;(—1/7) = >_;c 1 4 Sij x;(7) with

SH Sl¢) 1 (1 d >
S = = - , 1.7.6
(5¢>1 Sso [Vd+2| \d -1 170
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where

i1 _2\/3 = —0.618... . (1.7.7)
The space of states of the Lee-Yang model is
H =Ry @c R1 @ Ry ®c Ry . (1.7.8)
The partition function
Z(r) =Ty (/g ~2) = P () + Peo(T) (1.7.9)

is modular invariant, as it should be.
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CHAPTER 2

Defects and Defect Operators

In this chapter, we introduce the notion of defect lines (or simply defects). To each
such defect, one can associate an operator in the space of states. These operators are
called defect operators and they will play a very important role in this thesis. Before
we go into further details it will be good at this point to mention a few reasons why
defects are important.

When introducing a boundary into the system under consideration, two new ingre-
dients appear: conformal boundary conditions and boundary fields, see for example
[Ca89] and for a review [Ca04, Ca08]. Conformal boundary conditions describe a
universality class of boundary critical behavior. A conformal defect is a universality
class of critical behavior at a one dimensional junction of two such quantum systems.
For example, the authors of [OA97] used the better understood boundary theory to
deduce facts about defects. In particular, they found in the critical two dimensional
Ising model with a defect line, the complete spectrum of boundary operators, exact
two-point correlation functions and the universal term in the free energy of the defect
line. It was also conjectured that all the possible universality classes of defect lines
in the Ising model were found.

Defect lines can also describe duality symmetries, as in [FFRS04] for example,
where it was shown that the fusion algebra of conformal defects of a 2D-CFT contains

information about the internal symmetries of the theory and allows one to read off
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generalisations of Kramers-Wannier duality [KW41]. Furthermore, in [FGRS07] it
was also shown that the isomorphism between two T-dual free boson CFTs can be
described by the action of a topological defect (to be defined in Sect. 2.1), and hence
that T-duality can be understood as a special type of order-disorder duality.

Defects, also appear in higher dimensional field theory. They provide more observ-
ables in gauge theories, ‘surface operators’, see for example [GuWi07, KT09, KaWi07].
Furthermore, defects provide an alternative point of view of orbifold theories, as well
as a generalisation thereof [FFRS09].

Defects have also applications to quantum wires, domain walls in string theory,
other works focused on general constructive methods or structural implications and
finally, there are also articles which have originally been written in a different con-
text but have implications for the study of defect systems. For those interested, see

[QRWO07] and references therein for a more extensive list of references.

2.1 Topological and Conformal Defects

A defect line is a line of inhomogeneity on the surface on which the CFT is defined,
where fields can have discontinuities or singularities. A defect is characterised by a
‘defect condition’ in the same way a boundary of a system which is described by a
boundary state |b)), is characterised by a boundary condition. In particular, when the
boundary is conformally invariant, the boundary state |b)) must satisfy the condition
(Ln — E,n) |b)) = 0.

To formulate the analogous ideas for defects, we first define what we call a defect
operator. To do this, consider a CF'T on a cylinder and denote by . the space of
states on a circle. A defect line a that goes around the cylinder gives rise to a linear

operator D,: 7 — 7, called a defect operator.

Definition 2.1.1. A defect a is said to be conformal if the corresponding defect
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operator D, obeys

[Ln—L_y,D,] =0, VneZ. (2.1.1)

A special class of solutions to this condition is provided by totally transmitting
defects, also known as topological defects. Such defects were first investigated in the

context of rational CFT in [PZ01la] and were termed topological defects in [BGO4]:

Definition 2.1.2. A defect a is said to be topological if the corresponding defect
operator D, obeys

Ly, D,)=0=[L,,D,] , VneZ. (2.1.2)

This means that the holomorphic and anti-holomorphic components of the stress
tensor are continuous across the defect line. As a consequence, the defect line is
tensionless and can be deformed without affecting the value of correlators on the

cylinder, as long as it is not taken across field insertions or other defect lines [BGO4].

2.2 Petkova’s and Zuber’s Defect Lines

In Sect. 1.4, we saw that the partition function (1.4.4) of the theory on the torus is
given as the trace over the whole space of states and is modular invariant. In this
section, we consider the set of partition functions which result by inserting defects in
our theory. These defects are compatible with conformal invariance in two dimensions
and in particular they are topological defects, i.e. the corresponding defect operators
satisfy (2.1.2). However, the partition function with defect insertions is not modular
invariant, but one can find a consistency condition by using the modular transforma-
tion properties of the characters. In [PZ0la] the above procedure was used to show
that the consistency equation gives a classification of defects and it was solved in
particular cases. In this section we follow [PZ01la] to show that the fusion rules of
two defects are just the fusion rules of the representations of the underlying chiral

algebra.
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Consider a RCFT with a chiral (vertex) algebra U (the Virasoro algebra or one
of its extensions). Furthermore, suppose this RCFT has a Hilbert space of the form
(1.3.1). In order to study this CFT, we will use the techniques described in Sect. 1.4,
but this time we want to insert one or more defects in our theory. Thus, consider
a cylinder of circumference L and insert one or more defect lines along its non-
contractible cycles. As an example, consider two defects with opposite orientation
and along the imaginary direction of the cylinder. These are described by a and a'
respectively. That is, af is the same defect line as a, but with its orientation reversed

relative to a. Then if we identify the two boundaries of the cylinder we take a torus:

Identify

To each defect line a we associate a defect operator D,: 5 — 7. Then, as in the
boundary case and Cardy’s condition [Ca89], there are also a number of consistency
conditions which must be satisfied by the operator D,. To formulate these conditions,

one first notes that as a consequence of (2.1.2), D, is a sum of projectors,
peFe) . (R @c ) = (R, @c By)' | (2.2.1)

intertwining the different copies of R; ®c R; C ', where o, o’ € {1,2, ..., M;;} allow
for repeated representations in the Hilbert space. If {|i,n) ® |7,n)} is an orthonormal
basis of R; ®c R; labelled by multi-indices n, i, we may write

plaee’) =37 (i n) @ 17,8) (.0l @ (7,0) (222)

n,n
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There are )

different values. The projectors satisty,

. . . A !
| M;:|2 many different projectors P:75%®) hecause «, o can take M;,
1,761 J ) ) 7

P(i,i;a,a’)P(]‘Jﬁﬁ/) — 5ij5€j6a’ﬁp(i’i;aﬂl) ] (223)
and they are required to be Hermitian,
. = / T s )
(P(“;O"a)> — plizale) (2.2.4)

This corresponds to interpreting the defect line a' described by D} as having opposite
orientation relative to the line a described by D,.

The most general linear combination of these operators is

(4,750,)
Ya pliga.a’)

Z-,]-Zez \/ S0iSoz 7

where W is an a priori arbitrary complex n X n matrix, n =)

D, = (2.2.5)

(M;;)?. To under-
stand this, recall from above that the P’s form a basis of all intertwiners from 7

to # and there are Y, -, |M;;|* such P’s. The Wi 7) are a basis transformation,

1,761

where (i, 7; o, ) is thought of as one index taking n values and a as the other taking
n values as well.

From now on we drop the indices «, o’ for notational convenience.

A consistency condition is found by considering a pair of defect lines a and b,
wrapping a canonical cycle on a torus. Using a Hamiltonian picture with time moving
perpendicular to the defect lines, the torus partition function may be written as
(WJ)) " p )

Zalp = Trp (DlDbijO_c/%C?EO_C/%) =) 33
0i90

1,7€L

Xi (@D)x;(@) . (2.2.6)

where § = €*™. A second representation of the same partition function may be
obtained by considering time running parallel to the defect lines. In this case, condi-
tion (2.1.2) for the defect line, ensures one may still construct two sets of generators
L, and L, satisfying the Virasoro algebra (or more generally the chiral algebra ).
Hence, the Hilbert space decomposes into irreducible representations,

oy = @D (Ri 0 By) Vo (2.2.7)

iJ€T
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for some non-negative integers sza Thus, the partition function becomes,

Za|b — TI'%“) (qLo 6/24 ~Lo— c/24> Z ‘/;]a Xz X] ) . (228)

©,7€L

One can equate these two expressions for the partition function, using the modular

transformation properties of the characters, to obtain the consistency equation

gD gEkD | 2.2.9
Z SOk:SOZ % ( )

klez

Although the methods presented below can be applied to general RCFTs, here
(and for the rest of this thesis) we only consider the Cardy case (M;; = d;;), for our

purpose, so (1.3.1) becomes
H =R @R . (2.2.10)
ieT
Because of (2.1.2) the defect operator D, for a € Z will act as a multiple of the
identity on each sector R; ®c R;, and taking into account (2.2.5) it follows that

vy
a |R;®@cR;— S, 1dR¢®CRi ; (2211)
04

D

that is P 1dR @k, 18 the projector in R; ®cR;. However, Dy :=1 = Yoieridr ek,
for which \If = Sp;- This suggests the ansatz \If( = S4i, which satisfies the consis-
tency equation (2.2.9) with

lijk o SlkSakSC,C SclSlebl . b
SokSok Sk S0k = Z Sor ZMG Mj ’ (2-2-12)

kel c,k,leT ceT

and V..

i 0 =N, ® Therefore, the resulting fusion rules of the defects are

Db _ Z Saszj P(z () (_i) Z Sazsln P(Z :) Z Sm'SbZ'SCi Sck P(k) (i) ZNabCDC7

So;S S0;:S Soi S
ijez 00 7 F0ir0 ik, ceT 0i Ok =

(2.2.13)
where in step (1) we used (2.2.3), in step (2) the fact that S is unitary and finally in
(3) Verlinde’s formula (1.5.2).
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Therefore, we see that defects are labeled by irreducible representations of the
chiral algebra U, and hence, their fusion rules are just the fusion rules for the repre-

sentations of 2. Thus, to summarise our results, we have

 Su
Du |pogck =3 “idpgen, and DoDy =Y Ny°De|. (2.2.14)

ceT

2.3 Defect Fields and Perturbed Defect Operators

Similar to boundary conditions and boundary fields, one can also consider defect fields
which live on the defect line. For example, if we consider a defect field ¢ of weight

(hg,0), inserted on a defect line a on the cylinder, we have the following picture

(2.3.1)

which represents a segment of the cylinder. In addition to defect fields inserted on a
defect line a, one can also consider defect-changing fields ¢*~° which change a defect

of type b to a defect of type a:

(2.3.2)

The space S of defect changing fields decomposes into representations of U ®c U

as
25 = @ (R @ By)*Eeer™ea®) (2.3.3)
ijeT

with the multiplicity given by (2.2.12). Then the space of bulk fields 7 = P, ;.; Ri®c
R;, is the space of defect fields living on the invisible defect (labeled by Ry), so that

H = 0 [Ru08].
We will be interested in perturbing a defect of type a by a chiral defect field, that
is by a field ¢*<®, of weight (h,0). The reason one perturbs with a chiral field of
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weight (h,0) is that it can be shown that the defect commutes with the hamiltonian
[Ru08]. Consider now a cylinder with a defect of type a placed on the circle wrapping
the cylinder at R + z, for z € C. Then the corresponding perturbed defect operator
for D, placed on the line R + z, for z € C, is denoted by D, (A¢**“) for some A € C
and is obtained by inserting the exponential exp ()\ f027r Pz + 2) da:) on the defect
line. Explicitly,

27
(A9 2 Z /d:cl cday Dy(x,. .., Tn; 2)

where the defect fields are inserted at the points z + x4, ..., 2+ x, on the defect line.

Remark 2.3.1. To understand the physical meaning of the exponential, consider the
path integral description of a field theory [BYB, Sect.2.4.3] with a field ¢ and an

action S[¢]. Then consider the general unperturbed correlation function

(Olar)+-olao = 5 [ D6 ofar) - dlan)e

where Z is the vacuum functional. One can modify the action by terms localised on
a line. For example, if ¢ lives on a cylinder of circumference L, one could replace
Sl¢] by S[¢o] + fo ) dz for some potential V. More explicitly, the correlation

function in the perturbed mode would be

<¢(3§1) o ¢(xn)>pert = ZLert /D¢ ¢($1) SR ¢($ ) (S[¢]+f0 dr) )
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Observe now that (¢(z1) -+ (2n))pert = (B(a1) -+~ dlay)eJo V@) o) Thys the
perturbed correlator is obtained by inserting e~ Iy V(@) d into the unperturbed one.
This is an example of a perturbed defect, where, however, the initial ‘defect’ is trivial.

Generally, one expects that if ¢, ¢ has conformal weight h¢,}_lqg < % then the
multiple integrals in (2.3.4) converge, but we do not have a proof for that, see Sect.

5.2 for more details. Furthermore observe that

0

— D, (A" 2) =0, 2.3.5

DL (36" 2) (235
since ¢*~® is a chiral field; therefore % annihilates each of the summands on the right

hand side of (2.3.4). If one also performs a change of integration parameters in (2.3.5)
we see that D, (A\¢*% 2) = D, (A¢*% 2z 4+ x). Combining these two observations it
follows that

%Da (A" %iy) =0, yeR. (2.3.6)

This means that one can move the perturbed defect along the cylinder without affect-
ing the correlator under consideration, as long as the defect line does not cross any
field insertions or other defect lines. Note also that D, (A¢*<®) still commutes with
the anti-holomorphic modes of the chiral algebra and due to the simple decomposition
(2.2.10) it has no choice but to also preserve the holomorphic representation. Thus

it maps each sector R; ®@c R; to itself.

2.4 Chirally Perturbed Topological Defects with

su(2)-type Fusion Rules

In Sect. 2.2 we saw that topological defects inserted on a cylinder obey the fusion
algebra of the representations of the underlying chiral algebra of the CFT. This al-
gebra tells us how to fuse two or more of these defects and that the result will be a

superposition of such defects. Furthermore, since the corresponding defect operators
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act as multiples of the identity on each sector of R; ®c R;, then two such defect

operators mutually commute!
[Da, Dy =0, Va,beT. (2.4.1)

Thus, one sees that the fusion algebra of defects is a commutative algebra. How-
ever, this is not always the case. If one switches on a perturbation in the system,
then the algebra is in general not commutative, since, the corresponding perturbed
defect operators do not act as multiples of the identity on each sector R; ®¢ R; any-
more. However, as it was shown in [Ru08] there are special cases where there can
be exceptions. It was also shown in [Ru08] that if the unperturbed defects satisfy
su(2) type fusion rules, then the operators associated to the perturbed defects obey
functional relations known from the study of integrable models as T-systems. These
functional relations are useful because, together with certain assumptions on their
analytic properties, they can be solved in terms of a set of integral equations known
as the thermodynamic Bethe ansatz [Za90], see [DDT07] for a review. This result can
be used to explain the behaviour of the perturbed disc amplitudes, but it contains
much more information than that since the defect operators act on all bulk states,
not just on the ground state. In this section, we briefly review the results (and in
most cases we just state them) of [Ru08] since they will play an important role in the
work presented in this thesis.

As we saw in Sect. 1.4 the hamiltonian of a CFT on a cylinder of circumference
L is given by (1.4.3). Since the defects are topological, then [H.y, D,] = 0 and
therefore we can move a defect along the cylinder without affecting the correlator
under consideration, as long as the defect line does not cross any fields or other
defect lines. If two topological defects, a and b are inserted on adjacent loops on the

cylinder, they can be fused into a single defect, denoted by axb, without encountering

1 As an aside it is worth pointing out that all defects preserving U ®@¢ U commute if and only if
M;; € {0,1} for all entries of the modular matrix, specifying the decomposition of the space of bulk
states cf. [Ru08, Sect.2.5] and references therein.
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a singularity:.

Fusion

Defect lines can form junctions, for example when fusing two defects not along
their entire length, but only along a segment. (A defect junction can alternatively be
thought of as an insertion of a ‘defect-joining field’ of left /right conformal dimension
0.) The space of possible couplings joining two incoming defects a and b to an out-
going defect ¢ is N, °-dimensional [FFRS07]. The same holds when the roles of in-
and out-going defects are reversed. In the nonzero coupling spaces (i.e. if N,¢=1)

we choose, once and for all, basis elements such that

(2.4.2)

Equation (2.4.2) means that a ‘defect bubble’ without defect field insertions and which
does not enclose any bulk fields can be omitted from the defect line. The identity
(2.4.2) is valid locally on the surface under consideration in the sense that if the left
hand side appears as part of a correlator, it can be replaced by the right hand side

without affecting the value of the correlator.
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Next, when fusing two defects along a segment one has the identity [FFRS07]

(2.4.3)

Here it is understood that the coupling of the defects a and b to ¢ is zero if N, © = 0.

When collapsing a defect-bubble in the presence of defect fields, one finds the
identities (see [Ru08, App. A.2])

as well as

ab
_n G(fae)d

- ,r]cd be

ab
n (fae)d
= Gy

R(be)d
R(ae)c
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where 7% € C describes the normalisation of ¢, G is the inverse of the fusing matrix
F and R is the braiding matrix. The F-matrix (as well as G) are the coefficients
of a basis transformation in the category of representations of the VOA built on
the vacuum representation Ry (a so called ribbon category), while R interchanges
two objects in the category, see Sect. 3.3 for a proper definition of G,F,R. Note
also that the superscript f € Z in G labels a fixed preferred representation and
¢ € Ry ®c Ry C 0.

On a superposition a + b of defects, apart from perturbing by the defect fields
»*% and ¢*" one can also perturb by the defect changing fields ¢*° and ¢*<*. The

corresponding defect operator is
Do (Naa®™ ™" + A" " 4+ Aapd™ ™" + Mad” ) . (2.4.6)

However, ¢*°(2)¢*°(y) = 0 and ¢*°(2)¢*%(y) = 0 and hence every ¢*~? insertion
must be paired with a ¢*~® insertion, see (2.4.4) and (2.4.5) for example. In particular,
if only ¢?? is involved in the perturbation, but not ¢, no terms involving the defect
changing field can contribute to the expansion of the exponential in the perturbed

operator. Thus we have the identity
Da+b ()\aa(baea + )\bbgbbeb + )\ab(baeb) — Da+b ()\aa(zsaea i )\bb(bb%b) . (247>

Since the right hand side contains no contribution mixing the two defects, the per-

turbed operator is just the sum of the two individual perturbations,
Daer ()\aagb(u—a + )\bbgbb(ib + )\abqﬁa%b) — Da ()\aaqﬁa%a) 4 Db ()\bb(bbeb) ) (248)

Suppose now that the unperturbed defects a and b fuse to axb=c1+...4¢,. To

compute the result of the fusion in the perturbed case, we expand out the exponential
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generating the two perturbations and we use identities of the form

(2.4.9)
on each term. One can then apply (2.4.4) or (2.4.5) to collapse each of the defect
bubbles to obtain the appropriate defect (changing) field. Altogether, for two chirally
perturbed defects D, (A¢*~*) and Dy (u¢®") one gets the fusion

Dy (A" ™) Dy (/Mbb(_b) = Dei 1. ven (Z fijﬁbci(_cj) , (2.4.10)

1,7=1

where " )
e = AT GUanes oy, T b R

nsici ac; neics acq R(ba)e;

[Ru08, Eqns. (2.20) and (2.21)].

(2.4.11)

Given for concreteness the minimal model M (p,q), in the case of elementary
topological defects, which are labeled by entries (r,s) in the Kac-table (modulo the
usual Zy identification), where 1 < r < p and 1 < s < ¢, the fusion of these defects
is given by the fusion of the corresponding irreducible representations of J.

In the case where the perturbing field has conformal weight less than %, it can be
shown, that if one perturbs the defect by a chiral defect field ¢ of conformal weight
hys = —1 4 2p/q, in the subset of defects labeled by (1,s), for s = 2,...,q — 2, the

defect operators obey the functional relation

Di1,5) (CA®) D1y (CT'AG) = 14 D1 g1y (Ad) D1 511y (AD) | (2.4.12)
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for ( = ¢™/4. Tt can also be shown that the perturbed defect operators mutually

commute,

[Dirs) (Ad) , Dy sy ()] = 01, (2.4.13)

for all (r,s) and (', s’) in the Kac-table and for all A\, u € C.
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CHAPTER 3

Topological Field Theory

Einstein’s formulation of general relativity not only revolutionised our concepts of
gravity, space and time but also linked geometry and physics. Since then the two
are intertwined through string theory, supersymmetry and so on. In the new era of
present developments, new links between mathematics and physics have emerged and
one of those is between quantum physics and topology. One theory that does that is
topological field theory (TFT). A TFT is a theory in which the output is unchanged
under a variation of the metric on the background manifold, so that expectation
values of observables must give rise to topological invariants of the manifold (e.g.
Betti numbers).

Physical interest in TFTs comes mainly from the observation that they possess
certain features one expects from a theory of quantum gravity [Cr93, Cr95, Sm03].
One of course can point out that there are local excitations in gravity, so it cannot be
topological. However, TFTs serve as a toy model in which one can do calculations and
gain experience before embarking on the quest for the full theory, which is expected
to be much more complicated.

According to [At88] the best starting point is Witten’s paper [Wi82] where he ex-
plained the geometric meaning of supersymmetry. Essentially what Witten showed is
that QFT's should be viewed as the differential geometry of certain infinite-dimensional

manifolds, including the associated analysis (e.g. Hodge theory) and topology (e.g.
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Betti numbers).

According to [Law96] the first interesting TEFT in three dimensions was introduced
by Witten in 1989 [Wi89]. The partition function of the theory supplies invariants
of 3-manifolds .# in the form of a Feynman path integral. The data for this theory
consists of an integer k, called the level, and a Lie group, GG. From the same field
theory, Witten also generated invariants of links embedded in .#, as the expectation
value of a suitable observable known as a Wilson loop. In the simplest case when
g = s5l(2) he showed that the partition function for a (framed) link in S% is just
the value of the Jones polynomials for a suitable root of unity. In four dimensions,
Witten [Wi88] produced a supersymmetric Lagrangian which formally reproduces
the Donaldson theory [Do90]. Witten’s formula can be understood as an infinite-
dimensional analogue of the Gauss-Bonnet theorem (cf [At88]).

However, Witten’s path integral approach, although it gives a topological invari-
ant, has the disadvantage of not being defined rigorously, because it is unclear what
measure one may put on the infinite dimensional space the path integral is over. Sub-
sequently, Atiyah [At88] gave the axiomatic formulation of TFT, followed by Segal
[Se89] and others (e.g. [RT91, Cr91, TV92]). According to Atiyah’s axiomatic formu-
lation (cf. [Ko, Intro.]) an n-dimensional TFT is a rule which to each closed oriented
n — l-manifold X assigns a vector space H(X), and to each oriented n-manifold .#
with 0.4 = X assigns a vector Z(.#) in H(X). This rule is subject to Atiyah’s
axioms which express that topologically equivalent manifolds have isomorphic asso-
ciated vector spaces, and that disjoint unions of manifolds go to tensor products of
vector spaces, etc. (see Def. 3.5.1).

Furthermore, one can formulate TFT in categorical terms. One can define the
category of cobordisms Cob(n) (see Def. 3.2.1) whose objects are closed oriented
(n — 1)-manifolds X, and a morphism set Homgob(n) (X, X’) whose elements are
diffeomorphism classes (rel the boundary) of (compact topological closed) oriented

n-manifolds ., whose ‘in-boundary’ is X and whose ‘out-boundary’ is X’ (see Def.
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3.5.1). Composition of cobordisms is defined by gluing together the underlying man-
ifolds along common boundary components. The operation of taking disjoint unions
of manifolds and cobordisms gives this category monoidal structure. On the other
hand, the category Vecty of vector spaces over a field k, is monoidal under tensor
products (see Sect. 3.3).

With this terminology one can define a TFT as a (symmetric) monoidal functor
(H,Z): Cob(n) — Vecty (see Def. 3.5.1). This means roughly that, the closed
manifolds represent space, while the cobordisms represent spacetime. The associated
vector spaces are then the state spaces, and an operator associated to a spacetime
is the time evolution operator (also called transition amplitude, or Feynman path
integral). That the theory is topological means that the transition amplitudes do
not depend on any additional structure on spacetime (like Riemannian metric or cur-
vature), but only on the topology. In particular there is no time evolution along
cylindrical spacetime. That disjoint union goes to tensor product expresses the prin-
ciple in quantum mechanics that the state space of two independent systems is the
tensor product of the two state spaces.

In the case of 2D TFT, the relations that hold in Cob(2) correspond precisely
to the axioms of a commutative Frobenius algebra (this is due to Dijkgraaf [Di89]),
i.e. there is a canonical equivalence of categories 2TFT ~ cFA (see Thm. 3.5.3 [Ko,
Thm. 3.3.2], see also [Ab96]).

In the context of rational 2D-CFT, it was shown in [RFFS05] that a (not neces-
sarily commutative) symmetric special Frobenius algebra (in the braided monoidal
category of representations of the vertex operator algebra giving the chiral symmetry)
determines a CF'T and that Morita-equivalent algebras give equivalent 2D CFTs. It
is this latter relation that is further investigated in [REFS05].
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3.1 Cobordisms

In this section, following [Ko, Chap. 1] we discuss cobordisms in some detail. The
notion of cobordism goes back to Pontryagin and Thorn [Th54] in 1954 (cf. [Ko,
Chap. 1 Summary|). The name comes from the French word bord for boundary and
the prefix ‘co’ has nothing to do with duality as it is used in categorical language.
It simply means ‘together’. Originally, a single manifold X was called bordant if it
formed the boundary of some manifold ., then two manifolds were called cobordant
if together they formed the boundary of some manifold ..

Before we start talking about cobordisms in more detail, it will be good at this
point to introduce the concept of in- and out-boundaries. Let .# be a n-manifold
and X a closed submanifold of .# of codimension 1 and assume both are oriented®.
Suppose now X is a connected component of the boundary of .#; then it makes sense
to ask whether the positive normal n points inwards or outwards compared to the
induced orientation by .# — locally the situation is that of a vector in R™ for which
we ask whether it points in or out from the half-space H" = {z € R"|A(x) > 0},

where A: R™ — R is a nonzero linear map.

Definition 3.1.1. Let X,Y and .# be as above and let 0.# = X I Y. Then X is
called an in-boundary and Y an out-boundary. We write X =: 0_.# and Y =: 0, . .

Thus, the boundary of a manifold . is the union of various in- and out-boundaries.
The in-boundary of .# may be empty, and the out-boundary may also be empty. Note

that if we reverse the orientation of both .# and its boundary X, then the notion of

what in-boundary or out-boundary are, is still the same.

Definition 3.1.2. An oriented cobordism 0_.# % O M s atriple (M ,0_ M ,0, M)

together with two orientation preserving diffeomorphisms®* O_.# — A4 < O, 4.

n this chapter X, Y, ... always denote (n— 1)-manifolds, while .#, .4, ... n-manifolds. Further-
more, the corresponding manifolds with opposite orientation are denoted by X,Y,...and .#Z, .4, . ..
respectively.

2See Def. 3.1.3 for more details.
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When a cobordism exists, 0_.# and 0, .# are said to be cobordant. O_.# and 0.4

are also called the bottom and the top bases of the cobordism.

Example 3.1.1. In two dimensions the simplest examples are:

Oy M=51=51 O M=S"
Oy M=0 O M=S!
\\\it, 9 C\;, @
O_ . =5" O_.#=S'11St O M=S" o_.M=0
(i) cylinder (ii) pair of pants (iii) death of a circle (iv) birth of a circle

where the pictures are to be read from bottom to top.

A cobordism can be thought of as an interpolation between the two (boundary)
manifolds. Another analogy is that of a history or a movie. In the context of string
theory one may think of cobordism (ii) as the time propagation and merging of two
closed strings.

One may also think of the cobordism as describing an evolution in time, say from
time t = 0 to time ¢ = 1. In other words we consider a smooth map from .# to the

unit interval I = [0, 1] such that 0_.# maps to 0 and 0, .# maps to 1.

Remark 3.1.1. Cobordisms are not functions. An oriented cobordism is something
that goes from one manifold 0_.# to another manifold d,.#. It makes no sense to
ask what it does to a particular point of 0_.#. Note that we can have a cobordism

from a nonempty manifold to (). This is not possible with functions of any kind.

Definition 3.1.3. Given two oriented cobordisms (.#,0_.# ,0,.#) and
(M, 0_ M, 0, M) from O_M to O, M , together with the orientation preserving dif-

N

O, M (3.1.1)

NS

M

feomorphisms
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we say they are equivalent if there is an orientation preserving diffeomorphism ¢: .# —

" making this diagram commute:

%/

an

O v| 0 Ol (3.1.2)

NP4

M

Note that the two triangles truly commute not just up to diffeomorphisms. Since
O_.# and Oy are submanifolds in .# (and in .#’) situated on the boundary of
A (and A") so that the maps 0_.# — A and O_.# — .#' are the corresponding
embedding maps, then 1|5__4, induces the identity map on the boundaries. The same
holds for 0,.# [Ko, Def.1.2.17].

One can also consider cylinders with both boundaries being in or out-boundaries.

In this case we have the following pictures respectively

oy

oyl Oy

= @ (3.1.3)
oA o4 M

The equal sign in (3.1.3) and in the pictures that will follow denotes that the cobor-

disms are equivalent. In the case at hand for example, it means that the cylinder can
be drawn as a U-tube.

An important feature of cobordisms is that one can decompose them. In the movie
analogy, this means that we take some intermediate frame (corresponding to time t)

and regard it as a submanifold in .# which splits it into two parts (not necessarily
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connected). For example, one can use (3.1.3) to decompose the cylinder as

},,///19//1 114,
(3.1.4)

}'///o(ﬂbﬂ’//o

This is called the ‘snake decomposition’ of the cylinder (see [Ko, Sect. 1.2.21] for more
details). Thus, we have found a decomposition of a cylinder into two cobordisms, .#

and .7, which are not cylinders.

3.2 The Category Cob(n)

The clearest formulation of bordisms? is in categorical terms (see for example [Lu09][Ko,

Sect. 1.3 & 1.4.13]).

Definition 3.2.1. Let n € IN. The category Cob(n) has as objects (n— 1)-manifolds
X,Y,... and a morphism % € Homgob) (X, Y) is an equivalence class of bordisms
from X to Y, that is, an oriented n-dimensional manifold % equipped with an orien-
tation preserving diffeomorphism 0% =~ X 11Y.

The identity morphism idy is represented by the product bordism £ = X x [,
i.e. the cylinder.

For a triple X, X', X" € Cob(n) and a pair of bordisms, % € Homcob ) (X, X’)
and %' € Homgob(n) (X', X”), composition of morphisms in Cob(n) is defined to be

the morphism represented by the manifold %' o % := %'l x: % € Homcobm) (X, X"),

3From now on we will abbreviate the word ‘cobordism’ by ‘bordism’ for short. That is, cobordism
and bordism are the same thing.
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i.e. we glue ' with &£ along the common boundary component X’. This completes

the definition.

Remark 3.2.1. (i) The composition law for bordisms described in the above definition
is potentially ambiguous, because we did not explain how to endow the manifold
B o B = RB llx A with a smooth structure. However, the composition law is well
defined up to diffeomorphisms, but not up to a unique one. In other words, there
is not a universal property. This problem is solved (at least in dimensions n < 3) if
we consider diffeomorphism classes of bordisms instead of bordisms. In other words,
the arrows are cobordism classes in the sense of Def. 3.1.3. So instead of speaking
about the composition, one could speak only of a composition (for more information
on this technical issue see [Ko, Sect. 1.3]). Such considerations lead to the notions of
higher-dimensional categories where we have usual arrows (in dimension 1), arrows
between arrows (dimension 2), and so on (see [Lu09] or [Pr09] for example). (ii) We
regard two bordisms % and %’ as defining the same morphism in Cob(n) if they are
equivalent (see Def. 3.1.3). This equivalence extends to the evident diffeomorphism

0B =2 XY = 0A between their boundaries.

Example 3.2.1. Consider the bordisms & € Homcon(z) (S'ILSY, SY) and % €
Homeob(e) (0, ST IISY), then we can compose them as P o U = P Ugingt U €

Homcob(2) (0, S1). In terms of pictures:

(3.2.1)

w
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Following [Di97, Sect.4], we have one extra operation that is not standard in
categories. We also want to be able to glue two boundary components of a single

irreducible manifold.

Definition 3.2.2. Let .# € Homgob () (0-.#, 0.4 ). 1f two boundary components

of A contain a common factor X € Cob(n), we define the partial trace

Trx: M — Trx(A) . (3.2.2)
This is best explained in the following example.

Example 3.2.2. For % € Homgob(2) (Sl, St H?), we get:

Trgi: € Homgob(2) (5", 0) . (3.2.3)

St St

In dimension two, ‘everything is known’ since surfaces are completely classified,

so one can describe Cob(2) completely.

Proposition 3.2.3. The category Cob(2) is generated under composition and dis-

joint union by [Ko, Prop.1.4.13]

Z€Homcgob(2) (St1Ist,sh) i’7/€Homcob(2)(S1 ,SHILST)

(3.2.4)

Z*eHomgop(2)(0,5) Z*eHomgop(2)(S1,0)

As will be seen in Sect. 3.4, these are also the generators of a commutative Frobe-
nius algebra and they are called: wunit, multiplication, co-unit and co-multiplication

respectively, subject to some relations.
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3.3 Monoidal Structure and Graphical Calculus

The category structure describes how to connect bordisms in series; in other words,
how to connect the output of one bordism to the input of another (composition of
bordisms, see Example 3.2.1). It is also important to consider parallel couplings;
that is, disjoint union of bordisms. This amounts to giving symmetric monoidal
structure (cf. Def. 3.3.6) to the category Cob(n). In this section, we introduce all
the categorical machinery that will be of interest for this thesis and which is necessary
in order to make the connection with the CFT language and with defects presented
in the previous chapters. For this reason, we just state the results that we need, for a
detailed exposition the reader is referred to [McL, Chapters VIL.1-3 & VIII| or [BK,
Chapters 1-4]. We also introduce the graphical notation for morphisms in an Abelian
monoidal category, following the conventions of [FRS02-1].

We start by recalling the definition of an Abelian category:

Definition 3.3.1. An abelian category C is an Ab-category® satisfying the following
conditions:

(i) there is a zero object 0 € C,

(i) it has binary biproducts®,

(iii) it has kernels and cokernels®,

4That is, each Hom-set is an additive abelian group and composition is bilinear.

°For the definition of binary biproducts see equation (B.0.1).

6Let f € Home(A, B) be a morphism in C. A kernel is a pair (K, ker f), where K € C and
ker f: K — A such that the diagram commutes

ker f f
‘ er A B
\\ O i
EN
N
K’

This diagram describes the universal property of the kernel. Namely, for each k: K’ — A such that
fok =0, there exists a unique k: K’ — K such that ker f o k = k. The dual concept to that of
kernel is that of a cokernel. In other words, for a cokernel consider the above diagram but with
all its arrows reversed and in place of ker f put cok f. Then the universal property of the cokernel
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(iv) every monomorphism is a kernel and every epimorphism is a cokernel”.

Note that the first two conditions insure that C is additive [McL, Sect. VIII. 3].

Definition 3.3.2. A monoidal category C = (C,®, 1, a, A, p), consists of the following
data: a category C, a bifunctor ®: C x C — C, an identity object 1 € C and three

natural isomorphisms «, A, p. We require, the associator

aspc: (A®B)C S A® (B (), (3.3.1)
and the two unit isomorphisms

A I®@AS Aand py: AT S A (3.3.2)

to be natural for all A, B,C € C and to satisfy the following coherence conditions:

(i) Pentagon axiom: For any A, B,C, D € C, the diagram commutes

(A B)®C)® D

aA,BiW WB

(A (B®C))® D O (A® B)® (C® D)

A® (B®C)® D)

laA,B,C@)D

A® (B® (C® D))

ida ®ag,c,p

states that for each k: A — K’ such that ko f = 0, there exists a unique k: K — K’ such that
cok fok =k.

A monomorphism (also called mono or monic), is a morphism f € Hom¢ (A, B), such that for
all morphisms g, h € Home (M, A)

A——DB =g=h.

Namely, a monomorphism is a left-cancellative morphism, that is, an arrow f: A — B such that,
for all morphisms g,h: M — A, the equality f o g = f o h implies g = h. The categorical dual of
a monomorphism is an epimorphism. That is, a monomorphism in a category C is an epimorphism
in the opposite category. Namely, consider the above diagram with all the arrows reversed, then
an epimorphism is a right-cancellative morphism, that is, an arrow f: B — A such that, for all
morphism g, h: A — M the equality go f = h o f implies g = h.
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(ii) Triangle axiom: For any A, B € C, the diagram commutes

(A1) B—="" . A% (1 B)
pmg‘A@)\B
A® B

Example 3.3.1. The category Vecty of all vector spaces over a given field k, with
the usual tensor product ®y of vector spaces, and with the one dimensional vector
space k as unit, is a standard example of a monoidal category. Monoidal categories

are often called tensor categories.

For the categories considered in this thesis we define a simple object as®

Definition 3.3.3. A simple (or irreducible) object A of an Abelian monoidal category
C, is an object for which End¢(A) = kida.

Definition 3.3.4. A strict monoidal category C = (C,®,1) is a monoidal category

C, for which the isomorphisms «, A, p are the identity morphisms.

A very useful way to represent morphisms in an Abelian monoidal category C is via
graphs (cf. [FRS02-1, Sects. 2.1 & 2.2]), where lines stand for the identity morphisms.
In this way, the identity morphism id4 and f € Hom¢(A, B), are represented as

A B

idg = . f= [f:l : (3.3.3)

8In a general category, this defines an absolutely simple object, while simplicity of an object
means that it does not possess a non-trivial proper subobject. In semisimple categories, absolutely
simple implies simple, and in any abelian category over an algebraically closed ground field the two
notions are equivalent cf. [FRS02-I, Footnote 3].
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All the pictures are to be read from bottom to top. In particular, the tensor unit
1 € C is simple, thus idy = 1 € k, therefore lines labeled by the tensor unit will
be omitted, so that in the pictorial representation, morphisms in Hom¢(1, A) or
Home (A, 1) emerge from and disappear into ‘nothing’, respectively. Furthermore,
whenever we use the pictorial notation we silently pass to a strict version of C. The
non strict case follows by invoking coherence [McL, Sect. VII.2] and verifying that the
a, p and A sit in the required places.

In the pictorial notation, composition of two morphisms f € Hom¢(A, B) and
g € Home(B,C'), amounts to concatenation of lines, while the tensor product to

juxtaposition

c C BxC B C

[eof] = |p and [ed = [7] [o] - (3.3.4)

A A AQB A B

Definition 3.3.5. A braided monoidal category is a monoidal category C, together
with a family of braiding isomorphisms

B A B A B A B A

kad = K tA®B S BRA, £, = ):B®A1>A®B,(3.3.5)

l

natural in A, B € C, i.e. caopo(f®g) = (9® f)ocap, for any morphisms f €

A B A B A B A
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Hom¢ (A, A') and g € Home (B, B'). In terms of pictures:

B’ A’

\
= (3.3.6)
a
A A B

The braiding ¢ and the associator « are required to be tensorial, i.e. to satisfy

B

Hexagon axioms: (a) For any A, B,C € C, the diagram commutes

A®(B®C)—2 _(BeC)e A
(A B)&C 3 B®(C®A)
CA%A ap A c %@:A,C
(BoA)aC—"" . Ba(AaC)

(b) The same as in (a) but with ¢! in place of ¢ and their arguments exchanged.
After passing to a strict category the above diagram is expressed in terms of

pictures as:

C A B C

CA,C
e = (3.3.7)
A B C A B C

Definition 3.3.6. A symmetric monoidal category is a braided monoidal category

C, such that, all the braiding isomorphisms satisfy ¢? = id.
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Example 3.3.2. For each n € N, the category Cob(n) = (Cob(n),IL, () can be en-
dowed with the structure of a symmetric monoidal category, where the tensor product
is given by the disjoint union of manifolds 11: Cob(n) x Cob(n) — Cob(n). The

unit object of Cob(n) is the empty set O (of dimension (n—1)).

Definition 3.3.7. Given a pair of symmetric monoidal categories C = (C, ®, 1¢, ac, Ac, pc)
and D = (D, ®, 1p, ap, Ap, pp), a symmetric monoidal functor from C to D, is a triple

(H, H?, H°), consisting of a functor H: C — D, together with a natural transforma-
tion

Hip: HA)® H(B) > HA® B) , (3.3.8)

and an isomorphism H°: 1p — H(1¢), such that the following diagrams commute,

(H(A) ® H(B)) ® H(C) 22 54 g By e H(C) LA | (A® B)® C)

QH(A),H(B),H(C) O H(aa,B,c)

H(A)® H(Bw C) 2225 | (A® (Bw )

PH(A)

1p® H(A) —2Y . [(A) H(A) @ 1p H(A)
HO®id 7 (4) O H(Aa) idg(a) ®H° O H(pa)
HZ H3,
H(le) ® H(A) ¢4 H(1e @ A) H(A)® H(le) 2% H(A® 1¢)
H(A)® H(B) ~ 2 1 (B) ® H(A)
H3 O HE ,
Hs(A® B)—14" _ (B o A)

for all A,B,C € C. If C, D are not symmetric, then H is braided monoidal.
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Definition 3.3.8. A right-duality on a monoidal category C, associates to every

object A € C, another object AY € C, called the right-dual object, together with

morphisms
A AY
A AY da
= 1= A AV, = AY@A—=1, (3.3.9)
AV A

such that the following diagrams commute

p;v id v ®@ba ba®id 4

1 -1

AV 25 AV el ——A'® (A® AY) A4 @A (A AY)® A

id 4v @) XAV, 4,4V ida O o via
- v v v

AY Aav 1oAY dA®idAv(A ®A)® A A pA Al ids ®da A® (A" ®4)

for all A € C. These two commuting diagrams are called the rigidity axioms or right
duality aztoms and in terms of pictures they are given by

AY AY A A

_ , = . (3.3.10)

AY AY A A

Furthermore, a right duality, associates to every morphism f € Home¢ (A, B), the
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morphism (see [BK, Lemma 2.1.6])

A\/

B\/

= Agv O (dB & idAv) o O‘E;B,AV o (idBv ®f X idAv> o (idBv ®bA) o ppv

€ HOIIlc(B\/, Av) .
(3.3.11)

Similarly, a left-duality, associates to every object A € C the left-dual object VA € C

together with morphisms

VA A

by = 1= VYA®A , dy= AR YA -1, (3.3.12)

A VA
such that similar diagrams as in Def. 3.3.8 commute, and to every morphism f &

Hom¢ (A, B) it associates the morphism Vf € Home(VB,YA).

Definition 3.3.9. If every object in a monoidal category C has left and right duals,

then C is called rigid.

Definition 3.3.10. A strict, braided monoidal category, is a ribbon category if it is

rigid, and it comes together with a family of isomorphisms

A A A A
Eﬂ = o E;ﬂ = O € Home(A,A) (3.3.13)
A A A A
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called the twist, one for each object A € C, and which is natural for any f €

Homc(A, A/)

A’ A’

= 5 (3.3.14)
A A
and satisfies the balancing axioms:
(91 = id]]_ =1lek y (9Av = ((9A)V y 9A®B = CA,BO© (93 X QA) O0CB,A - (3315)
The last two can be expressed in terms of pictures as
A B A B
\Pm . (3.3.16)

5

A A A aAY K/
U : U | GAT -
A B A B
Remark 3.3.1. The reason one needs to impose the consistency conditions (3.3.6),
(3.3.7), (3.3.10), (3.3.14) and (3.3.16) is that in a ribbon category, the morphisms are
ribbons rather than lines” (hence the term) and the above axioms guarantee that the
visualisation via ribbons is appropriate. For example, the picture drawn for the twist

04, cf. (3.3.13) is isotopic to the picture of id4. If we had drawn a ribbon instead,

then 04 would no longer be isotopic to the trivial ribbon [BK, Sect. 2.3]. This means

9In this thesis, the interpretation with lines as ribbons is implicit. However, we talk a bit more
about ribbons in Sect. 3.5.2 and we draw the first genuine ribbon graph in Sect. 5.1.
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that the graphs one obtains by the composition of the duality, braid and twist, among
themselves, share the properties of the corresponding glued ribbons [RT91].

Furthermore, a ribbon category comes equipped by definition with a left duality,
defined on objects as VA := A" and left duality morphisms (3.3.12). One can check
that this left duality coincides with the right duality also on morphisms, i.e. Vf = fV.
Categories with coinciding left and right dualities are called sovereign. Thus, for
example, the double dual (AY)" of an object A € C, is isomorphic (not equal in
general) to A. Furthermore, since we have two dualities, one can define the left and

right traces of f € End¢(A), via

Tr.(f) = . Tr(f) = , (3.3.17)
which are cyclic
Tr&r(Lq © f) = Tré,r(f © g) ) (3318)
and obey
Tr&r(f ® g) = Tré,r(.f)Tré,r(g) : (3319)

In a ribbon category apart from the left and right dualities which coincide, the two
notions of the trace coincide as well. Categories with this property are called spherical
[BW96]. The trace of the identity morphism is the quantum dimension'® of an object,

which is additive under direct sums and multiplicative under tensor products

dimy(A) := Tr,(ida) = AQ . (3.3.20)

107t is also called categorical dimension or rank [Maj, Sect.9.3]. The word quantum dimension
comes from the relation to quantum groups, see also the book by Kassel [Ka]. The reason is that it is

_ q"—q "

q—q— 1’
see [Maj, Examples 9.3.6 & 9.3.7]. Thus ‘quantised’ is used as ‘deformed away from its classical value
by a parameter dependent deformation’.

a ‘deformation’ of the ordinary dimension. For example, the integer n gets replaced by [n]
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Finally, in order to make contact with the CFT language developed in the first
Chapter and therefore with defects, which were discussed in the second Chapter, we

will need to recall the definition of the Grothendieck ring first.

Definition 3.3.11. The Grothendieck group Ky(C) of an Abelian category C is the
free abelian group generated by isomorphism classes (A) of objects A € C, quotiented
by the subgroup generated by the relations (A) = (K) + (C) for all short exact
sequences 0 - K — A — C' — 0. We denote the equivalence class of (A) in Ky(C)

by [A].

Definition 3.3.12. A functor F': C — D is said to be right-ezact if for A, B,C € C,
exactness of A — B — C' — 0 implies exactness of F(A) - F(B) — F(C) — 0. A
tensor product bifunctor is called right-exact if X ® (—) and (—) ® X are right-exact
functors for all X € C. That is, if exactness of A - B — C — 0 implies exactness of

X®A—-X®B—X®C—0,similarly for (—) ® X.

Remark 3.3.2. If C is monoidal with exact!! tensor product, then the Grothendieck
group K;(C) carries a ring structure defined via [A] - [B] = [A ® B]. In this case,

Ky(C) is called the Grothendieck ring.

We now make the connection of the above categorical constructions to the CFT
language. First note that the representation category of a RCFT is a semisim-

2 monoidal category C with simple tensor unit. The simple objects of C are

ple
the irreducible representations of the chiral algebra U and the morphisms in C are
the U-intertwiners. The tensor product in C is the fusion tensor product of U-

representations, with the tensor unit given by the vacuum representation, i.e. Ry = 1.

' The tensor product is said to be exact if it is both left and right exact, with the definition of
left exactness being similar to that of right exactness.

12A semisimple category is characterised by the property that every object is the direct sum of
finitely many simple objects.
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The isomorphism classes of (simple) objects, corresponds to the primary chiral vertex
operators and the Grothendieck ring Ky (C) is the fusion ring of the CFT. The duality
in C encodes the existence of conjugate U-representations and the twist is given by
the fractional part of the conformal weight, 04 = exp(—2mihy4)ida, for A € C, while
the braiding accounts for the presence of braid group statistics in two dimensions, cf.
[FRS02-1, Sect. 2.2] and references therein.

All the axioms of C can be viewed as formalisations of the properties of primary
chiral vertex operators in RCFT. We can formulate these properties by fixing bases
A € Home(4; ® Aj, Ay) and dual basis A/ € Home(Ay, 4; ® A;), depicted as'®

k i J

M = ;N = , (3.3.21)

<
~

i j k

where the label ¢ € {0,1,2,...,]Z| — 1} in the pictures, is for notational simplicity,
in place of the elements A; of the family { A;};c7 of objects in C. Duality of the basis
means that if we compose )\fj with its dual S\Zj we get the identity, i.e. )\fj o 5\;5 = idy.
In terms of pictures this translates to placing the picture for )\fj on top of the picture
for S\Zj and then collapsing the bubble to obtain the identity morphism.

Once we have chosen a basis as above, there are two distinct bases for the
morphism space Home(A; ® A; ® Ay, A;), corresponding to its two decompositions
D, cr Home(A4;®A4;, Aj)@Home (A,® Ay, Ar) and @, Home (A;0 Ay, Ay)@Home (4,@

A,. A;), respectively. The coefficients of the basis transformation between the two are

Here we have assumed for simplicity that dimy Home(A; @ Aj, Ax) = N; ¥ =1, so that the basis
consists of only one non-zero vector.
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known as the fusing matrices F of C. These are depicted as

l
p q
= FU ”’fﬂ . (3.3.22)
qeT
z' j k

i k
The inverse of F is denoted by G and is defined as

l
q
GLaht (3.3.23)
AN =

i j k

l

Combining the braiding morphisms with the basis ChOlce (3. 3 21) we get the braiding

matrices R: k

1
— REDk /K (3.3.24)

i
If we replace ¢; ; by its inverse c;. then the number we obtain is denoted by R=U9*,

One easily checks that RFR- (ﬂ =1.

3.4 Frobenius Structure

In this section we follow [FRS02-I, Sect. 3.1]. We thus define a Frobenius algebra as
an algebra object in a monoidal category C. We start by recalling the definition of
an algebra object in a monoidal category C, but before we do that, note the following

remark:
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Remark 3.4.1. Note that the cobordism graphical notation we will use in this section
and in 3.5.1, is usually reserved for commutative algebras, because the diagram with
an exchange of the two arguments before the multiplication is homeomorphic to the
one without the exchange. Therefore, the cobordism notation will be confusing if
used for not necessarily commutative algebras. Here, we are only concerned with
commutative Frobenius algebras, since these are in one to one correspondence (only
in the category of vector spaces, not for general monoidal categories) with the 2

dimensional topological field theories that we will discuss in the next section.

Definition 3.4.1. A commutative algebra object (A,p,n), in a braided monoidal

category C, is an object A € C together with two morphisms

called the multiplication and unit respectively, such that the diagrams commute

QAAA n®ida

idg ®
(Ao A) @A AR (A4 1042 404" Ag1
l

p®id 4 ) ida ®p M O l%

AA——— A~ AR A A
\g/
CA A

These two commutative diagrams can be expressed in terms of pictures (after
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passing to a strict category). For the first upper diagram we have

(3.4.2)

while for the first bottom diagram, which expresses the commutativity condition we

have

(3.4.3)

and for the second diagram

(3.4.4)

Note that we have suppressed the labels A and 1 on the algebra pictures and we will
do that from now on, when this is unambiguous, that is, when we are dealing with

morphisms involving only A and 1.

Example 3.4.1. As an example of a commutative algebra object which can also be
turned into a Frobenius algebra, consider the algebra of polynomials C[X] in one
indeterminate X over the field C, divided by the ideal (X?), i.e. A = C[X]/(X?).
This is a commutative algebra object in the category of finite dimensional complex
vector spaces Vectc. The reason one divides by the ideal (X¢) is to make the algebra

object (viewed as a vector space over C) finite dimensional, in order to be able to turn
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it into a Frobenius algebra. Thus in the case at hand dim A = d. The tensor product
bifunctor ®c: Vectc X Vecte — Vectc is given by -: A x A — A. More explicitly
the multiplication is
d—1 d—1 d—1
() () - (3 m )
i=0 j=0 k=0 \i+j=Fk

where a;,b; € C and X" € A. The monoidal unit is given by the underlying field C.

Definition 3.4.2. A commutative co-algebra object (C,J,¢), in a monoidal category

C, is an object C' € C together with two morphisms

(3.4.5)

called the co-multiplication and co-unit respectively, such that the diagrams commute

ast e®id i e
(Co0) o0~ (o0 180~ Coc* cg1
S@ide O idc ®6 O .
Pc
CRC~—"—C—F5—CaC
\9/
cc,c

In a similar way as in (3.4.2) and (3.4.4), one can express these two commutative

diagrams in terms of pictures, but this time rotated 180°.

Definition 3.4.3. A commutative associative Frobenius algebra, in a braided monoidal

category C, is an object that is both an algebra and a co-algebra, i.e. an object
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(A, u,m, 9, ¢), for which the product and co-product are related by

(3.4.6)

3.5 Topological Field Theory

In this section and its subsections, following [BK, Sect.4.2], [Ko, Sect.3.3], [Tu,
Chap. III} and [FRS02-1, Sect.2.4], we discuss in some detail topological field the-
ory (TFT), which is the main subject of this chapter. When we say ‘some detail’
we mean only those aspects of TFT that will be of interest for this thesis. Also,
when we say ‘manifold” we mean a compact topological closed oriented manifold with
a boundary (unless otherwise indicated) and all vector spaces considered are over a
base field k of characteristic zero.

Roughly, a n-dimensional TFT (nD TFT), is a pair (H, Z), that to every closed
oriented n — l1-manifold X without a boundary, assigns a vector space H(X) and
to every closed oriented n-manifold .#, assigns a vector Z(.#) in H(0.#). This
rule is subject to some axioms, due to Atiyah [At88], which express that topologically
equivalent manifolds have isomorphic associated vector spaces and that disjoint union
of manifolds goes to tensor products of vector spaces, etc. In other words, a TF'T, is a
symmetric monoidal functor H: Cob(n) — Vecty, from the category of cobordisms

to the category of finite dimensional vector spaces. More concretely:
Definition 3.5.1. A n-dimensional TFT is a symmetric monoidal functor
(H,Z): Cob(n) = Vecty (3.5.1)

where the first datum H gives the action on the objects, while the second datum Z,

to every bordism assigns a linear map. In particular:
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1. To X € Cob(n), associates a finite-dimensional vector space H(X) € Vecty.
2. To a bordism .# € Homcop(n)(0—.#, 0.4 ), associates a linear map Z(.#) €
Homvect, (H(O-A), H(0+.#)), called the operator invariant of the bordism.
3. To any homeomorphism f: X — Y, associates an isomorphism f;: H(X) =

HY).

4. Establishes functorial isomorphisms:
H(X)=HX), HO) =k, HXLTY)=2H(X)xHY),

which are compatible with each other and with the unit, braiding and associator

isomorphisms as follows:

Cob(n) Vect,
D=0 k = kY
XOY~2YIX (H(X) @ H(Y))Y ZH(Y)Y @ H(X)Y
X10=Xx H(X) @ k = H(X)
XY ~YIIX HX) @ H(Y) = H(Y) @ H(X)
XTIV Z2XTT(YIZ) | (H(X) @ H(Y)) @ H(Z) ZH(X) @ (HY) @ H(Z))

Table 3.1: Compatibility conditions for the functorial isomorphisms.

This data is required to satisfy the following axioms:
(A1) Naturality: Consider the bordisms .# € Homcobmn)(0-#,0+.#) and
A € Homeobn)(0-A,044") and let f: . # — 4 be an orientation preserving
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homeomorphism, then the diagram

Z2()

H(O_.M) (D, M)
fua//zl O |fua+//t
HO-N ) — e H(D1 )

commutes.

(A2) Multiplicativity: If Z = .# 11 .4/, then the third functorial isomorphism
in 4. above, (or equivalently (3.3.8)), means that Z(%) = Z(.#) @ Z(N).

(A3) Functoriality: Consider the bordisms .# € Homcobn)(0-.4, 0.4 ) and
A € Homeob(n) (0-A",044) and let f: 0,.# — O_.4 be a homeomorphism and

2 the bordism obtained by the disjoint union of .#Z and .4 using f, then
Z(B) = kZ(N ) o f; 0 Z(M) |

where k € k, is called the anomaly of the triple (.#Z, A, f).

(A3) Normalization: For any X € Cob(n), we have
Z (X x[0,1], X x {0}, X x {1}) = idyx) -

This completes the definition.

3.5.1 2D TFT

In this subsection we consider a 2D TFT, which can be viewed as a toy model of
a TFT. The main result here will be that 2D TFTs are equivalent to commutative
Frobenius algebras. In other words, there is a canonical equivalence between the
category 2TFT of 2D TFTs and that of commutative Frobenius algebras cFA. This
equivalence is proved (following [BK, Sect. 4.3]) in Theorem 3.5.3 below.
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Before we state and prove the main theorem, the following two lemmas, which we

state without a proof, will be useful [BK, Lemmas4.3.2 & 4.3.3].

Lemma 3.5.1. Fvery 2-manifold with a boundary can be cut into a union of

(i) cylinders (ii) pair of pants (iii) discs

However, a 2-manifold .#Z can be cut in several different ways and we will need

to check when Z () is well defined, thus we need the following result.

Lemma 3.5.2. Any two ways to cut a 2-manifold A into cylinders, pair of pants
and discs, can be related by isotopy of M and a sequence of ‘simple moves’, which

are (3.4.2), (3.4.4), as well as*!

" The idea is that one draws simple curves on the surface of the manifold and then cut the manifold
into cylinders, pair of pants and discs as in Lemma 3.5.1. For example, the first set of pictures in
(3.5.2) are obtained as follows: Consider the following pictures

This says that if you have a cylinder with two circles inserted you can omit one of the circles. Then
to obtain the required result observe that the circles cut the cylinder in question into three and two
subcylinders respectively. Then if we remove the two outer subcylinders from both sides we recover
the first set of pictures in (3.5.2). The second set of pictures in (3.5.2) simply says that the simple
move in question is to interchange the two circles, i.e. the circle that lies around the arm can be
interchanged with the circle that lies around the hole and vise versa. For more details see [HTS80,
Appendix].
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We now state the main theorem as promised:

Theorem 3.5.3. There is a canonical equivalence of categories 2TFT ~ cFA. In
other words,

(a) Every 2D TFT gives a Frobenius algebra.

(b) Every Frobenius algebra gives a 2D TF'T.

Proof. (a) By definition a 2D TFT is a symmetric monoidal functor (H, Z): Cob(2) —
Vecty. The generators of Cob(2) are given in Prop. 3.2.3, so we need to show that
the TFT of these generators gives a commutative Frobenius algebra.

The only 1-dimensional, closed, connected manifold is the circle S* € Cob(2)
and ST = S'. Let now A := H(S'), be the vector space obtained H. The disc

9t € Homcon(2) (0, S1) gives the linear map

2T )ieoa,

the unit e € A. On the other hand we also have 2! € Homcob(2) (?, (Z)), which gives

AN ) aox.

the co-unit in A. The next generator is & € Homgon(2)(S* IS, S*), which gives

the multiplication a ® b — ab, where a,b € A. Finally, % € Homcon(2)(S*, ST 11 S1)
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gives

the co-multiplication on A.

Now we have to show commutativity and associativity of multiplication. The
commutativity follows from the fact that the flipping of the legs of a pair of pants is a
homeomorphism and associativity follows from pictures (3.4.2) and the gluing axiom
(A2). The unit property (3.4.4) is a consequence of the gluing and normalization
axioms. This agrees with Def. 3.4.3, thus we proved (a).

(b) Let A be a Frobenius algebra. To the circle we assign H(S') := A. Now recall
that the objects of Cob(2) are {0,1,2,...} where n is the disjoint union of n circles,
thus H(n) := A®". For f: S* — S' we let f, = id and for g: S* — STlet g,: A = AV

be the isomorphism given by the non-degenerate bilinear form Tr(ab), for a,b € A.

t15

It is clear tha

)EAV@)kAv@kA,Z( @ )eA.

Using Lemma 3.5.1 we can extend this to any 2-manifold using axioms (A2) and (A3)

from Def. 3.5.1, while using Lemma 3.5.2 we need to check that Z(—) gives the same

15To see how we obtain the one for the cylinder € for example, note that 9¢ = ST 11 S', then
2(€) € H(OC) = H (@H sl) —H (@) o H(SY) = AY @y A.
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result on both sides of (3.4.2):

We only show the first one; the rest can be shown in the same way. For the left hand

side we have that
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and for the right hand side

Then associativity follows from pictures (3.4.2) and the gluing axiom (A2), hence

they are equal. Therefore Z(—) is well defined on any 2-manifold .. O

3.5.2 3D TFT

In this subsection, we will introduce some of the machinery of 3D TFT which will
play an important role in Chap. 5. There, we will relate the categorical constructions
of Chap. 4 to defect operators and we will construct correlators of chiral defect
fields, using the machinery of 3D TFT. In this subsection, however, we will not talk
about defects. We will only introduce those areas of 3D TFT that are going to be
relevant later on. For a more detailed exposition on 3D TFT the reader is referred to
[FRS02-1, FRS04-11, FRS04-11I, FRS05-1V, FFRS06-V, FFRS04, FFRS07, FFFS00,
FFFS02], as well as to the books by Bakalov and Kirillov [BK, Sect. 4.4] and Turaev
[Tu, Chap. V], which we also follow here.

In Sect. 3.3 we saw that the objects, morphisms, the tensor product and so on, of
a monoidal category C encodes some information about the chiral data!® of the CFT.
However, C contains strictly less information than the chiral data'”, but most of the

important information of the CF'T, such as, its field content, boundary conditions

16By chiral data we mean the representation theory of the chiral algebra and the conformal blocks
of a RCFT.

1"Roughly, as stated in [FRS02-I, Sect.5], the category encodes only the monodromies of the
conformal blocks, but not their functional dependence on the insertion points and the moduli of the
world sheet or the information which state of a given representation of the chiral algebra is inserted.
See also [FRS02-1, Foot. 22] for a more detailed explanation.
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and defect lines, the OPE and the consistency of these data with factorisation, can
be discussed at the level of C [FRS02-I, Sect. 5.

As we mentioned above, we will be interested in determining correlation functions
of a RCFT. In order to do that, one needs to specify them as a particular element
in the relevant space of conformal blocks. A very convenient characterisation of
conformal blocks is via ribbon graphs in 3-manifolds. Then the coefficients in the
expansion of a CFT correlator in terms of a chosen basis of conformal blocks are
obtained as invariants of closed 3-manifolds with embedded ribbon graphs.

Let us briefly introduce the concept of a ribbon graph, following the conventions
of [FRS02-1, Sect.2.3]. A ribbon graph consists of the following data: an oriented 3-
manifold .#, possibly with boundary, together with embedded ribbons and coupons.
A ribbon, is an oriented rectangle [—1/10,1/10]x [0, 1], together with an orientation for
its core {0} x[0,1]. The ends of the ribbons are the two subsets [—-1/10,1/10]x{0} and
[—1/10,1/10] x {1}. A coupon, is an oriented rectangle with two preferred opposite
edges, called the top and bottom. The embeddings of ribbons and coupons into .#
are required to be injective. A ribbon minus its ends does not intersect any other
coupon nor the boundary of .#, while its ends must lie, either on one of the preferred
edges of some coupon or on 0.#. Finally, the orientation of the ribbon and the
coupon must agree whenever the ribbon ends on a coupon. The side of the ribbons
and coupons that will face the reader will be drawn on a lighter colour that the back
side and we will use open arrows to indicate their orientation.

One can use the machinery of Sect. 3.3 to assign numbers to ribbon graphs (e.g.
in 53, see [FRS02-1, Sect. 2.3] for example) and for this purpose, it is sufficient that C
is a ribbon category. Consider for example the second graph in equation (3.3.17) and
think of it as a ribbon graph in S* = R3 U {oo}. If we deform the ribbon so that it
faces upwards as described above and arrange it in such a way that the bends, twists
and crossing can be expressed as dualities, twists and braidings respectively, then we
can assign to it an element in Home(1, 1) by reading the graph from bottom to top

and interpreting it as concatenation of morphisms in C. Thus, in the case at hand, the
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ribbon in (3.3.17) will correspond to the element d4 o (idyv ®f) 0 by € Home (1, 1).
If in addition C is modular, this implies the highly non trivial result, due to Turaev
[Tu], that it gives rise to a full extended 3D TFT, i.e. a 3D TFT with embedded

ribbon graphs. Let us recall the definition of a modular tensor category.

Definition 3.5.2. A modular tensor category (MTC), is a semisimple, abelian, rib-
bon, k-linear category C, with absolutely simple tensor unit and with the additional

properties:
(i) C has only a finite number of isomorphism classes of simple objects: |Z| < occ.

(ii) The matrix s = (s;;)i jez, is non-degenerate, where

sij = Tr(cij, ca;0,) = j@’ (3.5.3)

Remark 3.5.1. (i) The matrix s coincides, up to normalisation, with the modular

S-matrix of the CFT via
Soo

(3.5.4)

Sij
Conversely, Sog and thereby s is recovered from the data of the MTC by requiring

S = Spo - § to be unitary. In terms of s the quantum dimensions (3.3.20) are

dimg(4;) = si0 = == . (3.5.5)

Note that (3.5.4) is a non-trivial statement. For minimal models and WZW models,
(3.5.4) was first checked by explicitly computing both expressions for s and comparing
them. A general argument in terms of conformal blocks was given in [MS90]. A
general proof in terms of vertex operator algebras was given by Huang in [Hu04).
(ii) The axioms of a MTC can be best understood in the language of ribbons.

This was done in Sect. 3.3 by using lines instead of ribbons (recall Rem. 3.3.1).

78



It was mentioned at the end of Sect. 1.3 that one can construct a full CF'T via its
correlation functions. In order to do that, an additional input is required. This input
is a symmetric special Frobenius algebra object (A, u,n,d,¢) in C. For a definition
of the terms symmetric special see [FRS02-1, Def. 3.4], since this is the last time we
refer to these terms in this thesis. The correlators on an arbitrary world sheet X
are expressed as specific elements in the vector spaces of conformal blocks'® on the
complex double X (Def. 3.5.4) of X. Such an element is described by a ribbon graph
in a 3-manifold .#x, which is called the connecting manifold (Def. 3.5.5), such that
OMx = X. In this thesis we will only consider orientable world sheets X. Now we

define the notion of an extended surface or C-marked surface.

Definition 3.5.3. An extended surface is a triple (X, ~, A1) with a lagrangian sub-
space L£(X) of the first homology group H;(X,R)", where X is an oriented compact
surface, v = (p;, v;) is a collection of finite disjoint arcs, i.e. a finite number of points
P1,--.,Pn With a non-zero tangent vector v; attached to every point p;, labeled by

pairs Ay = (A;,e;) with A; € C and ¢; € {£1}.

Remark 3.5.2. Note that the world sheets themselves are not extended surfaces. For
example world sheets can have defect lines or boundaries, but extended surfaces do
not have such decorations. An example of an extended surface is the complex double

X produced from the world sheet X.

18To make the connection to the conclusions of Sect. 1.3 if we know the conformal blocks then
the crossing symmetry [Gin88, Eqn. (3.32)] of the 4-point function yields a system of equations that
determine the structure constants as well as the conformal weights h, h, hence the full CFT.

9First note that for any oriented surface X, the real vector space Hi(X,R) supports the inter-
section pairing Hy (X, R) x H1(X,R) — R, which is antisymmetric so that H; (X, R) is a symplectic
vector space. In general, a lagrangian subspace of a symplectic vector space V, is a vector space
L such that V = L @ L*, where £, L* are both isotropic. Following [Tu, Sect.3.3, 4.1 & 4.2], a
natural source of lagrangian subspaces in the homologies of surfaces is provided by the theory of
3-manifolds. An oriented compact 3-manifold .# gives rise to a lagrangian subspace in H; (0.4 ,R)
which is the kernel of the inclusion homomorphism Hy(0.#,R) — Hi(.#,R). The fact that this
subspace is lagrangian is a well known corollary of the Poincaré duality [He].
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The opposite of an extended surface is the triple (=X, —v, AY), where —y =
(pi, —v;), AL = (A, —¢) and —X is the same as X but with reversed orientation.

For simplicity we will write X for an extended surface and X for its opposite.

Definition 3.5.4. The complex double X of an extended surface X consists of two

disconnected copies of X with opposite orientation X~XIIX.

The next ingredient for defining a 3D TFT is the notion of an extended cobordism.
It is defined similarly to Def. 3.1.2 but this time the 3-manifold .# contains a rib-
bon graph, while the two boundaries 0..# are endowed with lagrangian subspaces
L(O_AM ), L(OyA) of their first homology groups Hy(0_.#,R) and H,(0;.#,R) re-
spectively. Then turn 0i+.# into extended surfaces by taking as arcs the ends of
ribbons, with orientation induced by the ribbons. When a ribbon ending on 0.4 is
labeled by A; € C, then the corresponding arc is labeled by A if the core of the ribbon
points away from the surface and by AY otherwise. Then the triple (.#,0_.#,0, )
is an extended cobordism from d_.# to 0,.#. We denote the category of extended
3-cobordisms by Cobc(3).

Definition 3.5.5. The connecting 3-manifold .#x consists of pairs (x,t), with = € X
and t € [—1, 1], modulo the identification (x,t) ~ (o(z), —t), where o is an orientation

reversing map of order two. In other words
My = (X x [~-1,1])/Zs (3.5.6)

where the group Zs acts on X by o and on the interval [—1, 1] by the sign flip ¢ — —t.

Note that X is naturally embedded in .#x, via the map

v X — My

e (o0 (3.5.7)

Thus the connecting manifold .Zx can be regarded as a ‘fattening’ of the extended

surface X. In this thesis, we will think of X as being embedded in .#x in this fashion.
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Next, one needs to describe how to construct the ribbon graph in .#Zy. We are
not going to discuss this construction in detail but it is worth mentioning that this
construction involves several choices, however the invariant associated to the graph
is independent of all these choices. We are going to give some examples of ribbons
embedded in .#x, following [Rul0, Sect.4.2]. The reader is referred to [FRS02-I,
Sect. 5.1] for all the details of the construction.

In the following examples we will consider coupons with two incoming and one
outgoing ribbons and vice versa. For incoming ribbons labelled R; and R; and the
outgoing ribbon labelled Ry, the coupon is labelled by an element in Home(R; ®
R;, Ry), i.e. an intertwiner from R; x R; to R;,. We pick basis and dual basis elements

(3.3.21) and use them to label such coupons.

Example 3.5.4. If we consider a bulk field ®(z) on the Riemann sphere X = CU{oc0},
then the relevant 3-manifold is #x = X x [—1,1] and the corresponding ribbon graph

18

S H'

My = 4 (3.5.8)

ol
:/'TL 1

Example 3.5.5. If we consider the Riemann sphere X = C U {oc} with a defect of

type a and a defect field $*%(z) insertion on that defect, then the relevant 3-manifold
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is Mx = X x [—1,1] and the corresponding ribbon graph is

°@
N
R
=1

M=t SR (3.5.9)

N*l

Note that the linear map that the TF'T associates to a bordism .# does not change
if we execute any of the modifications (3.3.20), (3.3.22), (3.3.23), (3.3.24) on a part
of the embedded ribbon graph.

We have now gathered all the ingredients we need to define a 3D TFT. The
definition is analogous to Def. 3.5.1, i.e. a modular functor tftc: Cob¢(3) — Vecty
where now in addition to the given axioms, we require naturality in A; [BK, Sect. 4.4].
The vector space H(X) is the space of conformal blocks and a vector Z(.#) € H(X)
is the correlator of the extended surface X, which we write as tfte(#x).

Let us see this in an example following [FFFS02, Sect. 3.2]. Suppose X is closed
with a given orientation, then X = XIIX. Let X be endowed with n distinct disjoint
arcs 7vi,...,vs, labeled by simple objects 7,...,%,. The connecting 3-manifold is
Mx = X x [—1,1], with the embedded ribbon graph consisting of v; x [—1, 1], where
7; runs over the marked arcs on X. To these data one associates an element tfte (. #x)

on the space of conformal blocks 7-1,()? ), the correlator of X:
tfte (M) = Z(X x [-1,1],0,X) . (3.5.10)

The next thing to do is to check if (3.5.10) obeys the modular and factorisation
properties one expects for correlation functions. This is done in [FFFS02, Thms. 3.1

& 3.2).
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CHAPTER 4
Category Theory for Perturbed
Defects

In this and in the remaining chapters, we present the main results of this thesis which
are published in the joint paper with Ingo Runkel [MR09].

In particular, in this chapter we present a categorical structure which captures
some aspects of perturbed defect operators. Starting from a monoidal category C,
we then enlarge it to a category Cr whose objects are pairs (R, f), where R € C and
f: F®R — R is amorphism in C. Then we show that if C is abelian (cf. Def. 3.3.1),
rigid (cf. Def. 3.3.9) and braided (cf. Def. 3.3.5) then Cr is an abelian rigid monoidal
category (Thm. 4.3.2).

4.1 The Category Cp

We start from a monoidal category C and enlarge it to a new category Cr, depending
on an object F' € C. We then investigate how properties of C carry over to Cr. In
particular we will see that if C is braided and additive then we can define a monoidal
structure on Cr. The relation to perturbed defects is discussed in more detail in
Chap. 5. The basic idea is that an object in Cr gives an unperturbed defect together
with a direction for the perturbation by a defect field in the representation F'.
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Definition 4.1.1. Let C be a monoidal category and let F' € C. The enlarged
category Cr has as objects pairs Uy = (U, f), where U € C and f: F® U — U. The
morphisms a: Uy — V, are all morphisms a: U — V in C such that the following

diagram commutes:

F® idr ®a F®V
fl O Lg
U . v

The identity morphism idy, is idy in C, and the composition of morphisms is that of

C.

Remark 4.1.1. (i) The condition which singles out the subset of morphisms in C that
belong to Cr is linear. Therefore, if C is an Ab-category, then so is Cp. Similarly, if

C is k-linear for some field k, then so is Cp.

(ii) There is an action of the monoid (a monoid is an algebraic structure with
a single associative binary operation and an identity element) End(F)° on Cp'.
Namely, for each ¢ € End(F) we define the endofunctor R, of Cr on objects as
R,(Us) = (U, f o (¢ ®idy)) and on morphisms U; - V, as R,(a) = a. We have
Ry o Ry = Ryo, without the need for natural isomorphisms. This also shows that
we have an action of End(F)°P instead of End(F'). If C is k-linear, in this way, in

particular, we obtain an action of k via A — Ryiq,-

(iii) If C is an Ab-category, we obtain an embedding I of C into Cp. The functor
I:C — Cp is defined via I(U) = (U,0) and I(f) = f; it is full® and faithful®. The

!Given an algebra A with multiplication (a,b) — p(a,b), the opposite algebra has multiplication
(a,b) = p(a,b) = u(b, a).

2A functor F': C — D is full when to every A, B € C and to every g € Homp(F(A), F(B)), there
is an f € Home (A, B), with g = F(f).

3A functor F': C — D is faithful when to every pair of objects A, B € C and to every pair of
morphisms f, g € Home (A, B), the equality F(f) = F(g): F(A) — F(B) implies f = g.

84



forgetful* functor Cr — C is a left inverse for 1.

(iv) One way to think of Cr is as a category of ‘F-modules in C’, where the morphism
f: F®U — U in Uy is the ‘action’, and the morphisms of Cr intertwine this action.
But F is not required to carry any additional structure, and so there is no restriction

on the ‘action’” morphisms f.

(v) The category Cp can also be obtained as a (non-full) subcategory of the comma
category (F'® (—) | Id) (see [McL, Sect.II.6] for more details on comma categories).
The objects of (F'® (—) | Id) are triples (U, V, f) where U,V € C and f: FQU — V.
The morphisms (U, V, f) — (U, V', f') are pairs (z: U — U',y: V — V’) so that
yo f = f o(idp ®z). The subcategory in question consists of all objects of the form

(U, U, f) and all morphisms of the form (z,x).

(vi) The category of evaluation representations of the quantum affine algebra U, (5[(2))

is a full subcategory of Rep (U,(sl(2)))

# Where I is U, <5A[(2)> understood as a

U, (s[(2))-module. The details can be found in Appendix A. As briefly mentioned in
the introduction, short exact sequences of representations of U, (;I(Q)) provide iden-
tities between transfer matrices for certain integrable lattice models. On the other
hand, in Chap. 5 below we will see that short exact sequences in Cr give identities
between certain defect operators in CF'T. We hope that this similarity can be made
more concrete in the future.

We will be interested in the Grothendieck group of Cr, and to this end we need
to know when Cr is abelian. The following theorem gives a sufficient condition. The

proof is given in Appendix B.

Theorem 4.1.1. IfC is an abelian monoidal category with right-exact tensor product,

4A functor which simply ‘forgets’ some or all of the structure of an algebraic object is called a
forgetful functor or an underlying functor.
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then Cr is abelian.

The following lemma will be useful; it is also proved in Appendix B.

Lemma 4.1.2. Let C be as in Theorem 4.1.1 and Uy 4 Vy LN Wy be a complex in

Cr. Then Ufiﬂ/:qu/Vh is exact at Vy in Cp iﬁU&V&W s exact at'V in C.

4.2 Monoidal Structure on Cp

Let C be a braided monoidal Ab-category, see Def. 3.3.2 & Def. 3.3.1. The braiding
and the abelian group structure on Hom-spaces allows us to define a tensor product

® on Cp as follows. On objects Us, Vy € Cr we set
Up®Vy= UV, T(f9)), (4.2.1)
where T'(f,g): FQ (U ®V) = U ®V is defined as
T(f.9) = (f ®idv) o apyy + (idv ®9) 0 agpy o (cry ®@idy) carpy . (4.2.2)

This definition, and some of the definitions and arguments below, are easier to un-
derstand upon replacing C by an equivalent strict category (cf. Def. 3.3.4) and using
the graphical representation of morphisms in braided monoidal categories, see Sect.

3.3. For example, the graphical representation of (4.2.2) is

U Vv U Vv
T(f,g)= } + o] (4.2.3)
F U 14 F U 14

We will write 1 for the object 1o = (1,0) in Cp. This will be the tensor unit for ®.

Lemma 4.2.1. The associator and unit isomorphisms of C are isomorphisms in
Cr as follows: ayyw: Ur@V,&W,) — (Ur&Vy) @Wy, Ay, : 1@U; — Uy and

prI Uf®]l—>Uf
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Proof. We have to show that

avyw: (U@ (VRW),T(f,T(g.h)) = (U V) W,T(T(f,9),h))
(4.2.4)

Ao: (LU T, f) = (U.f), po: (Ue1,T(f,0) = (U, f)
make the diagram in Def. 4.1.1 commute. These are all straightforward calculations.

For example, pyoT(f,0) = pyo(f®idy)oarys = fopreroarys = fo(idr ®py). O

Lemma 4.2.2. Let a: Uy — U}, and b: Vy — V,, be morphisms in Cr. Then a ®

b: UV — U ®V'is also a morphism Uy @V, — U},®Vg’, in Cp.

Proof. We have to show that (a ® b) o T'(f,g) =T(f',¢) o (idr ®(a ® b)).

v’ v’ v’

(a®b)oT(f g) =

Vv F U 1%
uv vV
f! :
o [7 . e (dreaat) .
T oo
F U 1% F U 14

In step (1) in the first term we used the fact that a o f = f’ o (idp ®a), since a is a
morphism in Cr (same for bo g in the second term), while in the second term we used

the naturality of the braiding (3.3.6). O

According to the previous lemma, on morphisms a,b we can define the tensor

product to be the same as in C,
a®b=a®b. (4.2.5)
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One checks that ® is a bifunctor. Together with Lemma 4.2.1 this shows that Cp is
a monoidal category.

Remark 4.2.1. (i) Even though C is braided, Cp is in general not. The reason is that
cy,y is typically not a morphism in Cp. Also, we actually demand too much when we
require C to be braided, since all we use are the braiding isomorphisms where one of

the arguments is given by F.

(ii) The functors R, defined in Remark 4.1.1 are strict monoidal functors. That is,
R, (U &Vy) = Ry(Us) @Ry, (V) for objects and Ry, (a®b) = Ry, (a) ® R, (b) for

morphisms. is follows from o(p®idy),go (p®idy)) = o(p®idygy ).
ph This follows from T'(f o (¢ ®idy), go (¢ ®idyv)) = T(f,g) o (¢ ®@iduev)

Theorem 4.2.3. IfC is an abelian braided monoidal category with right-exact tensor
product, then Cr is an abelian monoidal category with right-exact tensor product. If

the tensor product of C is exact, then so is that of Cp.

Proof. We have seen above that Cr is monoidal and in Theorem 4.1.1 that Cp is
abelian. We will show that if ® is right-exact, then the functor X, ®(—) is right-exact.
The arguments for (—) ® X, and for ‘exact’ in place of ‘right-exact’ are analogous.

Let U; % V, % W), — 0 be exact. Then X ® U “X2% X @V X% X o 1 — 0 is

exact in C. By Lemma 4.1.2, Xx®Uf ldx ®a, Xx®‘/;] ldx &b, X, @ W, — 0 is exact

in CF ]

Corollary 4.2.4. If C is an abelian braided monoidal category with exact tensor

product, then Cr has a well-defined Grothendieck ring Ko(Cr).
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4.3 Duality On Cp

Suppose now that C is a braided monoidal Ab-category which has right duals (see Def.
3.3.8 for the precise definition of right duality and for the graphical representation,
as well as for a definition of left duality). To a given object Uy € Cp we assign the

object
(Up)" = (U, e(f)) ;
C(f): —Ayv o (dU X ide) o ((lde ®f) X ide) o (Oél;i,F,U & idU\/) (431)
(@) aUV(X)F,U,UV (@) (CF,UV ® bU) o (pF®U\/>_1

If C has left duals, we define analogously
(Uy) = (UEf))
c(f)=—pwo (idVU ®CiU> o O‘;l},U,VU o ((idw® (fo CE}U)) ® idw) (4.3.2)
o (e yp®idw) o <<EU ® idF> ® idvU) o (\p' ®@idvy) -
Similarly, as in (4.2.2) it is helpful to pass to a strict category and write out the
graphical representation of (4.3.1) and (4.3.2). This leads to the simple expressions

(4.3.3)

Lemma 4.3.1. (i) IfC hagm'ghgéuals, thenby: 1 — Uy ®(U}F)V and dy - Up)VeU; —
1 are morphisms in Cp. (i) If C has left duals, then by: 1 — Y(U;)@U; and

dy: Ur@Y(Uy) — 1 are morphisms in Cp.

Proof. The proof works similar in all four cases. Consider by as an example. The
commuting diagram in Def. 4.1.1 boils down to the condition that the morphism

T(f,e(f)o(idp®by): F®1 — U ®UY has to be zero, i.e. that

— T(O, C(f)) o (ldF ®bU) = T(f, 0) O (ldF ®bU) . (434)
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The calculation is best done using the graphical notation. ,
U

—7(0,e(f)) o (idp @by) = — | (0] O

—~
w
=
—~
N

F

=T(f,0) o (idr ®by) .
In step (1) we used equation (4.3.3) to substitute for ¢(f), in step (2) we used the
tensoriality property of the braiding (3.3.7), (3) uses the naturality property (3.3.6)
of the braiding to pull by through crpyeyv and the fact that ¢y = idp and finally, in

step (4) we used the right duality axioms (3.3.10). O

Theorem 4.3.2. Let C be a braided monoidal Ab-category. If C has right and/or left

duals, then so has Cg. In particular, if C is rigid, so is Cg.

Remark 4.3.1. (i) Suppose C has left and right duals. Even if in C we were to have
UY = VU, the same need not be true in Cr due to the distinct definitions of ¢(f) and
¢(f). Also, even if in C we were to have (UY)Y = U, the same need not hold in Cp.

We will see this explicitly in the Lee-Yang example in Section 6.2.

(ii) Let C be as in Corollary 4.2.4. If C has right duals, then the existence of a
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right duality for Cr tells us that in K(Cr) we have [(Uf)Y] - [Us] = [1] + [W}] and
[Us]-[(Uy)Y] = [1]+[W},] for some W),, W}, € Cp. This will imply functional identities
for perturbed defect operators via the relation described in Chap. 5. The same holds

for left duals.

(ili) The functors R, defined in Remark 4.1.1 are compatible with these dualities in
the sense that R, ((Us)Y) = (R,(U;))" and R, (V(Uy)) = V(R,(Uy)). This follows

from ¢ (f o (p®idy)) = ¢(f) o (p ®@idyv) and ¢ (f o (¢ ®idy)) = &(f) o (¢ @ idvy).

91



CHAPTER 5

Relation to Defect Operators

As we have already seen in Chap. 2, defects are lines on the world sheet where the
fields can be discontinuous or even singular. Suppose we are given a CF'T that is
well-defined on surfaces with defect lines, that is, it satisfies the axioms in [RS08,
Sect. 3] (or at least a genus 0 version thereof). Recall that to a defect we can assign
a linear operator D on the space of states ¢ of the CFT. This operator can be
extracted by wrapping the defect line around a short cylinder [—¢, ] x S, where we
place two states v and v on the two boundary circles. The resulting amplitude, in
the limit € — 0, is the pairing (u, Dv).

Working with fields rather than with states, the defect operator D is obtained as
the correlator assigned to the Riemann sphere C U {oo} with one in-going puncture
at 0 and one out-going puncture at co, both with standard local coordinates, and a
defect line placed on the unit circle S*. By the state-field correspondence (1.3.2), the
space of states ¢ is at the same time the space of local bulk fields, so that again
D: o — .

Here we are interested in topological defects (recall Def. 2.1.2). We will be also
working in rational CFT, so that the chiral algebra of the CFT will be a rational
vertex operator algebra U (recall footnote 1 of the Introduction of the thesis). Denote
by C = Rep(Y) the category of (appropriate) representations of 2. It is a semi-
simple finite rigid braided monoidal category which is modular [HL94, Hu05]. We
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will not need many details about modular categories, but we note that C satisfies the
conditions of Theorems 4.2.3 and 4.3.2.

Let us pick a set of representatives' { R;|i € Z} of the isomorphism classes of
simple objects, so that 1 = Ry = U is the monoidal unit. We restrict ourselves in
this paper to the Cardy case constructed from 0. The space of states of this model
is

H =@ Riec R, (5.0.1)

i€

where R} denotes the contragredient representation to R;. Also, we will only consider
topological defects which are maximally symmetric in that they are compatible with
the entire chiral symmetry U ®¢ U, i.e. (2.1.2) holds for the modes of all fields in
U ®¢ U not just for those of the stress tensor. As we saw in Sect. 2.2 according to
[PZ01a, FRS02-1] the different maximally symmetric topological defects are labeled
by representations of U, that is, objects R € C. We denote the defect operator of the
defect labeled by R € C by D[R]. The defect operator assigned to a simple object R;
is (recall (2.2.14))

Sij .
D[R] =) SJ idr,eery (5.0.2)

jez 7%
where by idg, e, RY We mean the projector to the direct summand R; ®c R}-/ of A,
and S is the modular matrix, i.e. the |Z|x|Z|-matrix which describes the modular

transformation of characters. If R = @, _,(R;)®™ then D[R] = . _;n; D[R]

5.1 Correlators of Chiral Defect Fields

Recall that by a chiral defect field we mean a field that ‘lives on the defect’ and that
has left/right conformal weight (h,0). The notion of defect fields is described for
example in [FRS05-1V, Sect. 3.4] and [RS08, Sect. 3.2], see also Chap. 2 for a review.

! The notation R;, where i is an index of a simple object, should not be confused with the
notation Ry for objects of Cr (for some F'), where f: F @ R — R is a morphism. The meaning of
the index should be clear from the context, and in any case we will mostly use 14, j, k for indices of
simple objects and f, g, h, as well as ¢ and x, for morphisms.
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The defect fields have well-defined weights with respect to Ly and Ly because we are
considering topological defects, and those are transparent to the holomorphic and
anti-holomorphic part of the stress tensor.

The space of chiral defect fields on a defect labeled by R € C consists of all vectors
v®Rc Q€ (R®RY) ®c Y, where Q € U is the vacuum vector of U, see [FRS05-1V,
Eqn. (3.37)] and [PZ01la, PZ01b, FRS02-I]. Here, the tensor product R ® R is the
fusion tensor product in C. Pick a representation F' € C. A chiral defect field in
representation F is specified by a vector ¢ € F and a morphism f: F — R® RY in
C. Instead of f we find it more convenient to give a morphism f: F ® R — R.

We are going to define a defect operator for a defect labeled by a representation

R with chiral defect fields ¢ inserted at mutually distinct points €1, ..., e on the
unit circle, where for each insertion we allow a different morphism fi,..., f,. We will
denote this operator by

The operator D may have contributions in an infinite number of graded components
of the target vector spaces. Hence, we have to pass to a completion of 7, namely to
the direct product  of the graded components of . We will later integrate over
the variables 0, and the resulting operator commutes with the grading, so that we
obtain an operator ¢ — 2.

Let us restrict D to the sector R; ®c R) of  and call the resulting operator
D;. Because the defect fields are all chiral, they do not affect the anti-holomorphic
sector, and hence the image of D; will lie entirely in the summand Ri®—(cRiV of A.
The operator D; is an element of a suitable space of conformal blocks, namely of a
tensor product (over C) of two spaces of conformal blocks on the sphere, related to
the two chiral halves of the CEFT. On the first sphere C U {cc} we have insertions of
R; at 0 and oo, and of F at €1, ... ¢* . Insertions at oo will always be treated as
out-going, the others as in-going. Because the defect fields are chiral, on the second

sphere we just have insertions of R, at 0 and oo. Altogether, the conformal block is
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an operator
CIR; fryeeos fui b1y, 0nlit Ri®c R @c F®@¢ -+ ®@c F — R;@c Ry . (5.1.2)
It determines the defect operator D; on a vector u ® v € R; ®c RY C A via
Di(u®v) =CR; fi,..., fn;01, ., On]i(u@v @R - ®¢) . (5.1.3)

The vector space of conformal blocks from which (5.1.2) is taken is finite-dimensional,
as is always the case in rational CFT, but its dimension can be quite high and will
grow with the number n of insertions. We thus need an efficient method to specify
elements in the space of conformal blocks. Such a method is provided by using three-
dimensional topological field theory to describe correlators of rational CF'T, see Sect.
3.5.2 for an introduction to 2D TFT and references therein, which treat defect lines
and defect fields in detail.

Recall from Sect. 3.5.2 that the 3D TFT assigns to a three-manifold .#Z with
embedded ribbon graph an element in the space of conformal blocks on the boundary
surface 0.4 of .. 1f the 3D TFT is Chern-Simons theory for a gauge group G, the
conformal blocks are those of the corresponding WZW model [Wi89, FK89], see also
[Wi84] where the topological nature as well as the conditions under which the model
becomes conformal are investigated. There is also a general construction, whereby
the 3D TFT is defined by a modular category C (see Def. 3.5.2), which in turn is
obtained from the representations of a rational vertex operator algebra [MS90, Hu05].
Let us denote this TFT as tftc.

In the TFT approach to correlators of rational CFT, one starts from a world
sheet X, possibly with boundary and defect lines, and with various field insertions,
and constructs from this a three-manifold .#x with embedded ribbon graph. The
boundary of .#x is the double X of the surface X and the TFT assigns to A x a
conformal block in X, which we write as tfte(#x). This is the correlator for the
world sheet X.

Let us see how this works in the case at hand, where X is CU{oo} with bulk fields

in representation R; ®c R inserted at 0 and oo, and with a defect line labeled R
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placed on the unit circle on which defect fields in representation F' are inserted at the
points €1, ... e® .  As X is oriented and has empty boundary, the three-manifold
is simply #x = X x [—1,1]. Note that 0.#x does indeed consist of two Riemann
spheres, so that the TFT will determine an element in the tensor product of two
spaces of conformal blocks on the sphere, as discussed above. It remains to construct
the ribbon graph embedded in .#x. To do this, we place a circular ribbon labeled by
the representation R on the unit circle in the plane X x {0}. This ribbon is connected
to the marked points e on the boundary X x {1} of My with ribbons labeled by F.
The junction of F' and R is formed by the intertwiner fx: FF® R — R. For the bulk
insertions at 0 and oo one places a vertical ribbon inside My connecting the marked
points on the boundary components X x {1} and X x {—1}. The resulting ribbon
graph is

MB; fr, - O, O =

(5.1.4)
For the TFT conventions used here, see [FRS02-1, Sect. 2|, and for more details on
the construction of the ribbon graph consult [FRS05-1V, Sect. 3 & 4]. The orientation

of the ‘top’ plane of .#Z is obtained from that of .# by taking the inward pointing

normal. The arrows at the ends of the ribbons refer to a particular choice of local
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coordinates around the F-insertions, namely the local coordinate at exp(if,y) is given
by ¢ — —i(exp(—ibyx)C — 1), so that exp(if,;) gets mapped to zero and the real axis
of the local coordinate system is tangent to the defect circle. We do not demand that
the 6y,...,0, are ordered. Instead we define o € S, to be the unique permutation
of n elements for which 0 < 0,1 < 6,5+ < 0,, < 27w. Finally, the conformal block
(5.1.2) is given by

CIR; froos faiOry o Onli = thte (AR fro i 01y On)i) (5.1.5)

One can work out this conformal block in terms of intertwiners as in [FRS05-1V,
Sect. 5], but we will not need such an explicit expression here. This conformal block
in turn determines the defect operator (5.1.1) via D = @, D; with D; given in (5.1.3).

The strength of the representation (5.1.5) lies in the fact that we can now use
identities that hold within the 3D TFT, i.e. manipulations which change the ribbon
graph inside .# without modifying the value of tfte(.#'), to prove identities among
conformal blocks. This will be used extensively in the proof of the next lemma. In
fact, the manipulations below will only involve a neighbourhood of the circular ribbon
in (5.1.4). For this reason, it is convenient to have a shorthand for (5.1.4) which only
shows this region of .Z. We will write

5901 E00“2 Eerrn,

> - > > >
R R R R R

Lemma 5.1.1. (i) Let 0 = K;, — Ry — C. — 0 be an exact sequence in Cp, and let

01,...,0m €10,27) be mutually distinct. Then

DR, f,...., [;01,...,0 = D[K;h,...,h;01,...,0,]+ D[C;c,...,c;01,...,0]
(5.1.7)

(11) Let Ry, Sy € Cp, and let 0y, ..., 60m,m1,...,n, € [0,27) be mutually distinct. Then

lir&D[R; fooos f301, ..., 60)] e=(Lo+Lo) DIS;q,..., g, M0
e—

= DIR® S;T(f,0),...,T(f,0),T(0,9),...,7(0,9);61,...,0m, 01, 1]
(5.1.8)
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Proof. (i) Denote the morphisms in the exact sequence by e : Kj — Ryandre: R —
C.. In the present situation, the category C = Rep(%¥) is modular, and thus in partic-
ular semi-simple. Therefore, in C the exact sequence 0 — K <5 R 2% €' — 0 splits,
i.e. we can find rg: R — K and ec: C' — R such that rg oex = idg, rc o ec = idg,

and ex org 4+ ec ore = idg. Using the decomposition of idg we can write

CIR; f,.... [;01,...,00) = thte (M) + thte(Ac) (5.1.9)
where
{051 .
My = M B Py ,
> 2> 2> o= - 2 >
R
(5.1.10)
0,1 -
Mo = M By Fy

Since e : K}, — Ry is a morphism in Cp, it satisfies the identity exoh = fo(idp ®ek).

This can be used to move ex past f, for example,

§9‘71 Eeo"n
tfte (M) = tite | A FlL Yy . (5.1.11)
& > 2> ’ ------ > >
R K K R R R

at

tfte (M) = tite | M Fy Fy

:‘K[K,h,,h,el,,ﬁn]z .
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In the last step we used rx o ex = idg and Equation (5.1.5). For tfte(.#) one
proceeds similarly, only that here r¢: Ry — C, is the morphism in Cp, and so one

has to move r¢ around the loop in the opposite sense. This results in
tfte (M) = €[Cse,y ..., c;01,...,0,]; . (5.1.13)

Combining (5.1.9), (5.1.12) and (5.1.13) establishes part (i) of the lemma.

(ii) Because the conformal block in (5.1.5) is a map from R; ®c R) to the direct
product Ri®—(cR;/ of the L,L-eigenspaces in R; ®¢ R), we have to take care that
the composition is well-defined. This is ensured by the exponential in (5.1.8). Since
the insertion points e of the intertwining operators (of the vertex operator algebra
representations) are distinct, the limit € — 0 is well-defined. Let éj,s and %5 be the
conformal blocks obtained from the left and right hand side of (5.1.8), respectively.
To see that €l,s = %ms We again use the 3D TFT. Let us look at a particular example
of the ordering of the 6, and n, say 6h < < e < by < -+ < 1m, < 6,,. The

general case works along the same lines. Substituting the definitions, one finds that

the three-manifold and ribbon graph for %y is

P01 mi

n2 i

\

Cglhs - (grhs - tftc % >

To see that %}, leads to the same result, one has to translate the composition of
conformal blocks into a gluing of three-manifolds as in [FFFS02, Thm. 3.2]. Namely,
one needs to cut out a cylinder around the R;-ribbon at z = 0 of D[R; .. .| and around
the RY-ribbon at z = oo of D[S;...], and identify the resulting cylindrical boundaries.

The resulting ribbon graph can be deformed to give (5.1.14). This establishes part
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(ii) of the lemma. O

5.2 Perturbed Topological Defects

The operator of the perturbed defect is defined via an exponentiated integral. That

is, for an object Ry € Cr we set?

&9 1 2T
D[R;|=> = DIR{™ | DIR{™ = | DIR;f,.... f;61,...,0,]d6;---db, .

n! 0

(5.2.1)
Because of the permutation that orders the arguments in the definition (5.1.4), (5.1.5)
and (5.1.3) of the defect operator, a path-ordering prescription is automatically im-
posed and does not need to be included explicitly in the integration regions for
D[Rs]™. The integrals in D[R;]™ and the infinite sum in D[R;] may or may not
converge. Since we have no direct way to ensure convergence, we say that an object
R; € Cr has finite integrals if p(D[Rs]™v) exists for each ¢ € %, v € S, and
n € INy. Note that this is not a property of the category Cr alone, but instead also
depends on the vertex operator algebra U and the vector ¢ € F. As already men-
tioned in Sect. 2.3, generically one expects that if the element ¢ € F has conformal
weight hy < %, then all Ry € Cr have finite integrals (but we have no proof). Let
R; € Cp have finite integrals. It is demonstrated in [Ru08, Sect. 2.2] that

[Lo, DIR;]™] =0 and [L,,D[R;™] =0, Vm e Z. (5.2.2)

We will not discuss the convergence of the infinite sum in (5.2.1). Instead we will
treat it as a formal power series in the following way. For ¢ € C we have D[R, f](”) =

(" D[R;]™. Now take ( to be a formal parameter and let us define, by slight abuse

2Recall from below (5.1.5) that the local coordinate around the insertion of a defect field ¢ at
' was chosen to be ¢ — —i(e~*¢ — 1). This choice makes (for example) D[R; f;6] periodic under
0 ~~ 0 + 2w. Had we instead chosen the standard local coordinates ¢ — ( — p on the complex plane
around a point p, D[R; f; 6] would have picked up the phase e~
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of notation,
o Cn
D[R] =) > ™ € End(s2)[(] - 5.2.3
=D D wd()[¢] (5.2
Theorem 5.2.1. Let  be a formal parameter.
(1) Let 0 = Ky, — Ry — C. — 0 be an exact sequence in Cr, and let Ky, Ry, C. have
finite integrals. Then D[R] = D[K¢x] + D[Ce).

(ii) Let R¢, S, € Cp have finite integrals. Then D[R¢f|D[S¢y] = DI(R® S,CT(f,9))].

Proof. Part (i) holds because by Lemma 5.1.1 (i) it already holds before integration.
For part (ii) first note that the exponential in (5.1.8) is not necessary to make the
composition D[R ;] D[S¢,] well-defined, because D[R] commutes with Lo+ Lo and we
can write D[R] D[S¢,] = lim._,q e==(FotL0) D[R, flesLo+Lo) D[S.,]. We will therefore
not write the limit in the equations below. Define operators A, and B, via

D[R¢f|D[S¢,) = Z —("A, and D[(R®S,(T(f,9))] Z —("B, . (5.2.4)

ne]N : nE]N

We have to show that A, = B,,. Starting from A,, we find

n

— n (m) (n—m)
Ay, Z:O (m)D[RCf] DI[S¢,]
n
(m) /D[R;f,...,f;@l,...,Hm]D[S;g,...,g;nl,...,nn_m]
0

(Z) /D[R@S;T(f,O),...,T(f,O),T(O,g),...,T(O,g);@l,...,Qm,nl,...,nn_m]
’ (5.2.5)

|
MSS

m

3

m=

where [ = fozw dby - - db,,dny - - - dny_rm and in the last step we used Lemma 5.1.1 (ii).

For B, we get

2m
Bn:/ doy - --doy, DIR® S;T(f,9),...,T(f,9);00,...,05] . (5.2.6)
0
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To see that this is equal to the right hand side of (5.2.5) one first writes T'(f, g) =
T(f,0) + T(0,g), then expands out the integrand into 2" summands and groups
together those with the same number of T'(f,0) and 7'(0, ¢g). The distinct ordering in
each term can be absorbed into a change of integration variables as the angles oy, are

all integrated from 0 to 2. O

Theorem 5.2.1 implies the following corollary.

Corollary 5.2.2. Let ¢ be a formal parameter and let Ry, S, € Cp have finite inte-
grals.

(1) If [Ry] = [S,] in Ko(Cp), then D[Rc¢] = D[S¢,].

(1t) If [Ry| - [Sy] = [My] in Ko(Cr) then D[R¢f|D[S¢q] = D[Mcp).

Remark 5.2.1. (i) If all Ry € Cp have finite integrals, then Corollary 5.2.2 says that
the map [Rf| — D[R¢s| defines a ring homomorphism Ky(Cr) — End(52)[¢]. Since
DI[R¢y] commutes with Ly and Lo (and in fact with all modes of the anti-holomorphic
copy of the chiral algebra) the ‘representation’ of K((Cr) on ¢ splits into an infinite
direct sum of subrepresentations. One may then wonder why one should consider all
of them together, rather than restricting one’s attention to a given eigenspace. One
reason to do this is that one expects D[R] to have the following appealing behaviour
under modular transformations. Let Z[Rf]() = Trpq=0=/4(¢*)Lo—/> D[R], where
q = exp(2miT), and let us assume that the infinite sum in D[R] converges, and that
the trace over ¢ converges for 7 in the upper half plane. The resulting power series
in ¢ and ¢* will typically not have integral coefficients. But when expressed in terms

of ¢ = exp(—2mi/7) and ¢* we are counting the states that live on a circle intersected
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by the perturbed defect, and so we expect that
ZIRfl(r) = Y nlRley G°(@) , nlRley € No, (5.2.7)
(z,y)eCxC
and n[Ry|,, # 0 only for countably many pairs. The infinite direct sum of subrepre-
sentations on ¢ has to conspire in a precise way in order to give rise to non-negative

integer coefficients in the crossed channel.

(ii) The construction of perturbed topological defects and their relation to Cr applies
also to perturbations of conformal boundary conditions. Of course, in this case the
composition in Theorem 5.2.1 (ii) does not make sense, but Theorem 5.2.1 (i) remains
valid. In the Cardy case, the discussion of perturbed boundary conditions is however
subsumed in that of perturbed topological defects because (in the Cardy case) the
boundary state of a perturbed boundary condition can always be written as D[Ry]|1))
for |1)) the Cardy boundary state [Ca89] associated to the vacuum representation of
0. This follows from the 3D TFT formulation of boundary and defect correlators
[FFFS02, FRS05-1V]. So in the Cardy case, treating perturbed conformal boundaries
instead of perturbed topological defects amounts to forgetting the monoidal structure

on Cp.
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CHAPTER 6

Lee Yang Model

In this chapter, we use the construction described in Chapters 4 & 5 to find functional
relations, for perturbed defects, in the Lee-Yang model (introduced in Sect. 1.7.1).
There, one obtains a family of operators D(A), A € C, on the space of states of the
model, which obey, for all A, u € C,

[Lo+ Lo, DIN)] =0, [DA),D(w)] =0, D (e*™/\) D (e */°)) =id+D()) .

(6.0.1)
The last relation above is closely linked to the description of the Lee-Yang model
via the massless limit of factorising scattering and the thermodynamic Bethe Ansatz,
see e.g. the review [DDTO07]. This example illustrates that the functional relations
obeyed by perturbed defect operators, encode at least part of the integrable structure
of the model. In fact, the defect operator in (6.0.1) (and more generally those for
the M5 9,,+1 minimal models) can be understood as certain linear combinations of the
chiral operators which were constructed in [BLZ96] to capture the integrable structure
of these models.

The two irreducible highest weight representations of the Virasoro algebra are
denoted by R; (for h = 0) and R, (for h = —1/5). As already remarked in footnote
1, the notation Ry and R, should not be confused with objects Ry of Cp (for some C
and F'); in any case we will never use 1 or ¢ to denote morphisms.

Let Rep(*Us5) be the category of all Virasoro representations at ¢ = —22/5 which
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are isomorphic to finite direct sums of Ry and R,;. On Rep(Ys5) we have the fusion
tensor product! with non-trivial fusion Ry ® Ry = Ry @ Ry. The Grothendieck group
of Rep(Ys5) is therefore isomorphic to Z x Z with generators [R;] and [R,]. The
product on Ko(Rep(V25)) has [R;] as multiplicative unit, and [Ry]-[Ry] = [R1]+[Re)-

As described in Chap. 2 and in the introduction of Chap. 5, to each object
R € Rep(Y,5) we can associate a topological defect operator D[R]: s — J that
commutes with the two copies of the Virasoro algebra. Since D[R] depends only on

[R] € Ko(Rep(Ys5)), it is enough to give D[R] and D[R] as in (5.0.2),
D[Rl] = idw ’ D[R¢] =d- idR1®<cR1 - d_l : idR¢®cR¢ ) (602)

where d is as in (1.7.6). It is easy to check that indeed D[R4]|D[R,| = id +D[Ry], as
required by the corresponding relation in Ky(Rep(Uzs)).

We can now perturb the defect labeled R, by a chiral defect field with left/right
conformal weights (—%, 0) as described in Sect. 5.2. This amounts to considering the
objects Ry(it) = (Ry, 1t - Mge)g) in Cr,, where pp € C and Ayg)e is a fixed non-zero
morphism Ry ® Ry — Rs. We then obtain a family of defect operators D[R,;(M)].
In [Ru08] it was shown — assuming convergence — that these operators mutually

commute,

[ D[R4(N)], D[Rg(p)]] =0 for all \, p € C (6.0.3)

and that they satisfy the functional relation
D[Ry(e*™/°\)] D[Ry(e 2™/5\)] = id +D[R4(\)]  forall A€ C . (6.0.4)

In the next section we recover this functional relation from studying the tensor prod-

uct and exact sequences in the corresponding category Cp.

'More precisely, U, 5 is the Virasoro vertex operator algebra built on R;. Rep(Us5) is the cate-
gory of admissible modules of Us 5; this category is finite and semi-simple [Wa93, Def. 2.3 & Thm. 4.2]
and forms a braided monoidal category [Hu95, Cor. 3.9].
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6.1 The Category Cr for the Lee-Yang Model

The category Rep(Us5) is equivalent (as a C-linear braided monoidal category) to
a category V defined as follows. The objects A of V are pairs A = (A;, Ay) of
finite-dimensional complex vector spaces indexed by the labels {1, ¢} used for simple
objects in Rep(Ys5). A morphism f: A — B is a pair f = (f1, fs) of linear maps,
where f;: Ay — B; and fs: Ay — B,. This construction is described in more detail

in Appendix C. The tensor product ® of V is given on objects as
A®B= (A1 ®c B & Ay®c By, A @c By ® Ay®c Bi @ Ay ®c By) . (6.1.1)

The tensor product on morphisms and the non-trivial associator are described in
Appendix C. The dual of an object A € V is A = (A}, 4}), where A} and A} are
the dual vector spaces. The duality morphisms are given in Appendix C.

As representatives of the two isomorphism classes of simple objects we take 1 =
(C,0) and & = (0,C). We are interested in the category Vg for ' = ®. Note
that ® ® A = (A4, A1 @ Ay). Therefore, in an object Ay € Vs, the morphism
f: ®®A — A has components f1: Ay = A; and f4: A @ Ay — A,. We will denote
the two summands of f, as fy1: Ay — Ay and fye: Ay — Agy; for consistency of
notation we will also denote f; = fi4. It is convenient to collect these three linear

maps into a matrix

A A,
= Al( ’ fw) , (6.1.2)
Ap \Jor  foo

where we have also indicated the source and target vector spaces. We can now
compute the dual of an object Ay € Vg according to (4.3.1). This is done in Appendix
D with the simple result

A5 A
(A)Y = (A"elf)) with e(f) 2 AT( ! —d<2f€51> and ¢ =

AG\=d7U iy —Cfoy 6.13)
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The tensor product in Vg is more lengthy. We have A;®B, = (A® B,T(f,g)) where
T(f,9): P® (A® B) - A® B. The source vector spaces of T'(f, g) are (we omit the

‘®(C7>
P®(A®B) = (A1 By @ AyB1® Ay By, A1 B1®AyBy B A1 By ®AyB1® Ay By) . (6.1.4)

In Appendix D we evaluate equation (4.2.2) for T'(f, g) in the category Vg. The result

is best represented in a 5 X 5-matrix,

A1®cB1 Ayp®cBy A1®@cBy  Ag®cBi Ap®cBy
A1®cB1 0 0 iday 914 fipidB, 0
Ay®cBg 0 0 foridp,  (*ida, ge1 Foo+Cas0
= . 1 . . .
T(f7 g) - A1®CB¢ ldA1 9ol Ef1¢ ldB¢ ldA1 9oé 0 'wf¢1 1d3¢
. 1 . . .
Ag®cB1 | fprids, 24 1dag 910 0 foeidB, % iday 919
Ay®cB 0 H(feettoes) Feids,  Cidaggm  —5(festess)
+@cBy wd \Joot 7906 s1idB,, 5 961 a(foot9ss

(6.1.5)
Here ¢ was given in (6.1.3), w € C* is a normalisation constant (see Appendix D), and
in the entries with sums we have omitted the identity maps. For example, fss + Cgse
stands for fyy ®c idp, +(ida, @cggg-

6.2 Some Exact Sequences in Cp

Two objects Ay and B, in Vg are isomorphic if and only if there exist isomorphisms

7 Ay — By and 4: Ay — By such that

-1
(O g1¢> = 0 meodwens ) (6.2.1)
9o Yoo Yoo for 0V Voo fes 0y
For A € C write ®(\) = (®, f(\)) with f(A); =0 and f(A)g = A-idc. In other words,
d(N) = ((O, C), ()\)) Then ®(\) = ®(u) if and only if A = . As another example,

<<C’C>’<2 Z)) - <(C’C)’(£’ Z:>> < {flf(:)ib/rl;(;):,c;d?bc)l:rk(b’)

(6.2.2)
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where rk(a) € {0, 1} denotes the rank of the linear map a - idc.
For 1 and ®(\) there are no non-trivial exact sequences as the underlying objects

in V are already simple. For (((C, C), (2 ‘Cl)) there are two exact sequences,

0—®(\) — ((C,C),(§%)) =1—-0, 01— ((C,C),(3%)) = ®(X) —0.
(6.2.3)
Let us explain how one arrives at the first one. One checks that there is a surjective
morphism ((C,C), (92)) — 1 in Vg iff (1,0)(9¢) = 0, i.e. iff a = 0. To complete
this to an exact sequence, we need an injective morphism ®(\) — (((C,(C), (2 g))
This exists iff (5¢)(9) = (%), i.e. iff a =0 and A = ¢. From (6.2.3) it follows that

in K(Vs) we have

[((C,©),(92)] = W +[@N)] = [((C,C),(3%)]. (6.2.4)

even though ((C,C), (99)) and ((C,C), (34)) are not isomorphic unless a = b = 0.
Next let us look at the simplest non-trivial tensor product, ®(\)®® (). Formula
(6.1.5) simplifies to

D(N)@D(p) = <<<c,<c>, < L ’ Aen )) . (6.2.5)

AT ) —dT ()

By comparing to (6.2.2) we see that ®(\)®® (1) = ®(u)®P(N) iff either A = = 0 or

A+ )N+ ¢ tp) # 0. In particular, ®(—Cu)®P (1) 2 P(u)®P(—Cp) unless p = 0.
This shows that Vg cannot be braided. The reducibility of ®(\)®®(p) is summarised

in three cases:

(i) if A & {—Cu, —C1u} then ®(N\)@®P(p) is irreducible,

(ii) if A = —Cp we have 0 — ®(C2p) — O(—Cpu)®@P () — 1 — 0,
(i) if A = —¢"'p we have 0 — 1 — &(—C " )®P (1) — B(Cp) — 0
In K¢(Vo) we therefore get the relations

(111

¢V [R(CN)] 2]+ [e)] @A) [(C2N)] (6.2.6)
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Combining with the case when ®(\)®®(p) is irreducible we find that in Kq(Ve) we
have
[PN)] - [@(w)] = [@(p)] - [R(M)] for all A, u e C . (6.2.7)

In fact we could have obtained the reducibility in (ii) and (iii) above already from
the existence of duals. Namely, by (6.1.3), (®()))Y = ®(—(\) and by Lemma 4.3.1
we have non-zero morphisms bg: 1 — ®(A\)P(—(\) and dg: ®(—CN)P(A) — 1. Also
note that taking the dual n times gives ®(A\)Y"Y = ®((—()"\), and since —( is a
10th root of unity, the 10-fold dual is the first one that is again isomorphic to ®(\)
(for A # 0). This is different from e.g. fusion categories (which are by definition
semi-simple [CE04, Def.1.9]) where VVY = V for all simple objects V, see [CE04,
Prop. 1.17].

To conclude our sample calculations in Vg we point out that for a given ((C, C), (g ‘C‘))

at least one of the isomorphisms
(€C.C). (32)) = 1@ a(N). ((C.C),(32)) = B(N@B(n) . (6.2.8)

holds for some A,y € C. This is easy to check by comparing cases in (6.2.2) and
(6.2.5).

6.3 Some Implications for Defect Flows

The relation (6.2.6) in Ky(Vs) gives the functional relation (6.0.4) for the perturbed
R4-defect in the Lee-Yang model. Let us point out one application of such functional
relations, namely how they can give information about endpoints of renormalisation
group flows. We use the notation for objects as in Vs, e.g. we write D[®())] instead
of D[R4(M\)].

We shall assume that D[®()\)] is an operator-valued meromorphic function on C,

and that its asymptotics for A — 400 along the real axis is given by (compare to
[BLZ96, Eqn. (62)] or [BLZ97, Eqn. (2.21)])

D[®(N)] ~ exp(fAY D 4 less singular terms (6.3.1)
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where \'/(1=7¢) = \5/6 has dimension of length, f > 0 is a free energy per unit length,
and D, is the operator describing the defect at the endpoint of the flow. We assume

that this asymptotic behavior remains valid in the direction A = re®

, T — +00,
of the complex plane at least as long as the real part of (¢)%/% remains positive,
i.e. for |#] < 37/5. This is a subtle point as in analogy with integrable models the
asymptotics will be subject to Stokes’ phenomenon, see e.g. [DDT07, App. D.1].
With these assumptions, we can substitute the asymptotic behavior (6.3.1) into

the functional relation (6.0.4), which gives
exp (f(CPN)Y° + F(C2N)*/®) Doo Do = id + exp(fA*/) D - (6.3.2)

As f > 0, the identity operator will be subleading, and since ((?)%° 4+ (¢72)%/6 =1
the leading asymptotics demands that

DeoDoe = Do . (6.3.3)

Since D, is the endpoint of a renormalisation group flow, we expect it to be a
conformal defect, i.e. [L,, + L_,., Dy] = 0. On the other hand for every value of A
we have [L,,, D[®(\)]] = 0, so that Dy, is again a topological defect. Thus Dy, =
m -id+n - Dy for some m,n € IN. This is consistent with (6.3.3) only for D, = id.
We thus obtain the asymptotic behavior

D[®(N)] 222 exp(fAY0)id . (6.3.4)

This is the expected result, because via the relation of perturbed defects and per-
turbed boundaries mentioned in Remark 5.2.1 (ii), the above flow agrees with the
corresponding boundary flow obtained in [DPTW, Sect.3]. It also agrees with the
corresponding free field expression [BLZ97, Eqn. (2.21)].

This result allows us to make some statements about perturbations of the super-
position of the 1- and ¢-defect, i.e. the topological defect labeled by Ry ® R;. We can
either perturb it by a defect field on the topological defect labeled R, alone, in which
case we would get the operator id +D[®(A)] which flows to Dy, = id as A — +o0.
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Or we can in addition perturb by defect-changing fields. In this case we can use the
result (6.2.8), which tells us that we can write the perturbed defect as the composi-
tion D[®(N)]D[®(u)] for some A, pi. Then, if the necessary A, i lie in the wedge of the

complex plane where (6.3.4) is valid, we again have

D[((€.0), (§70))] = exp(£°/%)id . (6:3.5)
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Conclusions

In conclusion, this thesis proposes an abelian rigid monoidal category Cr, constructed
from an abelian rigid braided monoidal category C and a choice of object F' € C,
that captures some of the properties of perturbed topological defects. To make the
connection to defects, we set C = Rep (), for U a rational vertex operator algebra,
and choose a *U-module F' € C together with a vector ¢ € F. Then we consider the
charge-conjugation CFT constructed from U (the Cardy case). An object Uy € Cp
corresponds to an unperturbed topological defect labeled U and a perturbing field
given by the chiral defect field defined via ¢ € F' and the morphism f: FQ U — U.
Assuming convergence of the multiple integrals and the infinite sum in (5.2.1), to Uy
we can assign an operator D[Uy] on the space of states 7 = @, ; R; ®c R; of the
CF'T. This operator describes the topological defect perturbed by the specified defect
field. Again assuming convergence of all DJ...] involved, the main properties of the

assignment Uy — D[Uy] are

(i) D[1] =ids,
(11) D[Uf:()] = Zi,jEI dlm HOIIlc<RZ', U) Sij/SOj ide®CRJY,
(iii) [Lo, D[Us]] =0 and [ L,,, D[Us]] =0 for m € Z,
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(iv) if 0 = K} — Uy — C, — 0 is an exact sequence, then D[U;] = D[K}] + D[C,],
(iv') if [Uf] = [Vg] in Ko(Cp), then D[Us] = D[V,
(v) DUy @V,] = DU D[V,].

There is an anti-holomorphic counterpart of the construction in this paper, where one
perturbs the topological defect by a defect field of dimension (0,k). This generates
another set of defect operators which commute with those introduced here.

The results presented in this thesis also leave a large number of question unan-

swered, and we hope to come back to some of these in the future:

1. In the Lee-Yang example it should be possible to describe the category Cr and its
Grothendieck ring more explicitly. For example it would be interesting to know if Cr
is generated by the ®()) in the sense that every object of Cr is obtained by taking
direct sums, tensor products, subobjects and quotients starting from ®(\). Note that
at this stage we do not even know whether or not Cr is commutative in the Lee-Yang

example.

2. Consider the case C = Rep(Y) for a rational vertex operator algebra U and let
U; € Cr have finite integrals. Suppose the infinite sum O(¢) = D[U;¢] has a finite
radius of convergence in ¢. One can then extend the domain of definition of O(() by
analytic continuation. To solve the functional relations it is most important to under-
stand the global properties of O((), in particular whether all functions ¢(O(¢)v) (for
p € % and v € ) are entire functions on C, and what their asymptotic behaviors
are. It should be possible to address these questions with the methods reviewed and
developed in [DDT07] and [IIKNS08].

3. The category Cr is designed specifically for the Cardy case. The formalism devel-
oped in [FRS02-I, FFRS07] allows one to extend this treatment to all rational CFTs
with chiral symmetry U ®c¢ 0. The different CF'Ts with this symmetry are in one-
to-one correspondence with Morita-classes of special symmetric Frobenius algebras

A in C = Rep(Y). Given such an algebra A, the category Cr has to be replaced
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by a category C(A)r whose objects are pairs (B, f) where B is an A-A-bimodule?
and f: F®t B — B is an intertwiner of bimodules (see [FRS05-IV, Sect. 2.2] for the
definition of ®*). The details remain to be worked out. For A = 1 one recovers the

Cardy case discussed in this paper.

4. It would be interesting to understand if the map Ko(Cr) — Endc(57) from the
Grothendieck ring to defect operators is injective. The map Ky(C) — Endc(s2)
taking the class [R] of a representation of the rational vertex operator algebra U
to the topological defect D[R] is known to be injective, and in fact a corresponding

statement holds for symmetry-preserving topological defects in all rational CF'T's with

chiral symmetry U ®¢ U [FRS08].

5. It would be good to investigate the properties of Cr in more examples. The evi-
dent ones are the Virasoro minimal models, the SU(2)-WZW model, the rational free
boson, etc. Or, coming from the opposite side, one could use the fact that modular
categories with three or less simple objects (and unitary modular categories with four
or less simple objects) have been classified [RSW09], and study Cg for all C in that
list and different choices of F'. The proper treatment of supersymmetry in the present

formalism also remains to be worked out.

6. One application of the perturbed defect operators is the investigation of boundary
flows. As pointed out in Remark 5.2.1 (ii), in the Cardy case the boundary state of
a perturbed conformal boundary condition can be written as D[Uy]|1)). However,
for other modular invariants this need not be true. But, as in the unperturbed case
[SFRO6, Sect. 2], the category of perturbed boundary conditions will form a module
category over the category of chirally perturbed defect lines. It would be interesting
to investigate this situation in cases where the two categories are distinct (as abelian

categories).

7. In general an object Uy € Cr describes a topological defect perturbed by defect

Briefly, for A, B algebra objects in C, an A-B-bimodule M is a triple (M7 p?, pP), where M ec,
p* € Home(A ® M, M) and 5P € Home(M @ B, M), such that (M, p?) is a left A-module and
(M, pP) is right B-module, such that the actions p* and 5? commute [FRS02-I]. If both algebras
are the same, one sometimes uses the abbreviation A-bimodule instead of A-A-bimodule.
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changing fields. Placed in front of the conformal boundary labeled by the vacuum
representation 1 € C one obtains the boundary condition U perturbed by boundary
changing fields. Such perturbations have been studied for unitary minimal models
in [Gr01]. While our method is not directly applicable to unitary minimal models
(the multiple integrals diverge in this case as hy 3 > %), one could still study it if the
functional relations predict a similar flow pattern for the non-unitary models.

8. The relation to finite-dimensional representations of quantum affine algebras
should be worked out beyond the remarks in App. A.

9. Baxter’s QQ-operator is a crucial tool in the solution of integrable lattice models.
Such Q-operators have been obtained in chiral conformal field theory [FeS95, BLZ97,
BLZ99], and in lattice models via the representation theory of quantum affine algebras
[KNS94, RW, Ko03]. Recently they have also been studied in certain (discretised)
non-rational conformal and massive field theories [BT09]. It would be good to trans-

late these constructions and obtain (Q-operators also in the present language.
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APPENDIX A

Relation to Evaluation
Representations of U ( sl(2)

In this appendix we collect some preliminary remarks on the relation of a category of
the form Cp and evaluation representations of the quantum affine algebra U, (;[(2))
We follow the conventions of [CP91]. Let ¢ € C* be not a root of unity. The quantum
group U,(s[(2)) is generated by elements e*, K*! with relations

K—-K!
KK_l = K_lK =1 , KGiK_l = q:l:Zeﬂ: s [€+,€_] = — 1 - (AO]_)
qa—q

The quantum group U, <5A[(2)) is generated by elements ef, Kiil, 1 = 0,1, with

relations
KK '=KT'K =1, KeK'=q% | [ef.e]= K(:]:—;:l , (A02)
as well as, for ¢ # j,
[Ko, K1) =0, [eg,ef] =0, Kie;'th'_l = qqtze;':

_ A.0.3
(eF)ef —ef(ef)? = —q3 —a ((ei)Qeiei — eiei(eif) ) | )
j 3 \%i q—q L\ 3 \%i

Let us abbreviate U, = U,(sl(2)) and U, = U, (;[(2)) There are infinitely many

ways in which U, is a subalgebra of (7q. We will make use of the injective algebra

116



homomorphism ¢, : U, < U, given by (this is the case i = 0 in [CP91, Sect. 2.4])
(K=Y = K ) y(e®) =6 . (A.0.4)

This turns Uq into an infinite-dimensional representation of U,. Let C be the category
of (not necessarily finite-dimensional) representations of U,. The coproduct of U,
gives rise to a tensor product on C and the R-matrix of U, to a braiding.

For each a € C*, there is a surjective algebra homomorphism ev,: Uq — Uy,
described in [CP91, Sect.4]. It has the property that ev, o t; = idy,. An evaluation
representation of Uq is a pull-back of a representation V' of U, via ev,, for some a € C*.
We denote this representation of Uq by V(a). Let D be the category of (not-necessarily

finite-dimensional) evaluation representations of Uq.
Theorem A.0.1. D is a full subcategory of CUq-

Proof. Define a map G from D to Cp_on objects by G(V(a)) = (V,ev, @y, idv),
where we identified U, ®y, V = V. We will show that f: V(a) — W (b) is a morphism
in D iff f is a morphism G(V(a)) — G(W (b)) in Cy, . Indeed, the condition for f to

be an intertwiner f: V(a) — W (b) is that for all u € U, and v € V we have
evp(u).f(v) = fevy(u).v) , (A.0.5)
and the condition for f to be a morphism (V,ev, ®@y, idy) — (W, ev, @y, idw) is
(evy, ®u, idw) o (idg, ®u, f) = f o (eve ®y, idy) . (A.0.6)

If we evaluate this equality on u ®y, v for u € Uq, v € V, we obtain exactly (A.0.5).
Thus we can define G on morphisms as G(f) = f. It is clear that G is compatible

with composition, and that it is full. O

Since C is abelian braided monoidal with exact tensor product, CUq is abelian and

monoidal by Theorem 4.2.3. Let (CUq>f be the full subcategory of CUq formed by
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all (V,g) where V is a finite-dimensional representation of U,. Note that (Cﬁq>f

is again an abelian monoidal category. Let Rep; <0q) be the abelian monoidal
category of all finite-dimensional representations of ﬁq of type (1,1) (as defined in
[CP91, Sect. 3.2]). It would be interesting to understand the precise relation between
<CUq>f and Rep; (Uq). For example, one might expect that Rep; <Uq> is a full

subcategory of (CUq)f~

As a first step towards this goal, one could use that all finite-dimensional ir-
reducible representations of Uq of type (1,1) are isomorphic to tensor products of
evaluation representations [CP91, Sect.4.11]. However, to make use of this property
one first has to establish that the tensor product of Uq—representations is compatible
with & defined on (CUq>f via the tensor product and braiding on C. We do not

attempt this in the present paper but hope to return to this point in future work.

118



APPENDIX B

Proof of Theorem 4.1.1 and

Lemma 4.1.2

In this appendix, C satisfies the assumptions of Theorem 4.1.1. Namely, C is an

abelian monoidal category with right-exact tensor product.

Lemma B.0.2. Let z: Uy — V, and y: V; — W), be morphisms in Cr.
(i) If x: U =V is a kernel of y in C, then x: Uy — V, is a kernel of y in Cp.

(i1) If y: V- — W is a cokernel of x in C, then y: V; — W), is a cokernel of x in Cp.

Proof. (i) We need to show that x has the universal property of kery in Cr, that is,

we need to show that there exists a unique k: U J’f, — Uy, such that the diagram

x Yy
Uf - Vg Wi,
<~ O T
N k
kS N
U,

commutes in Cp. Since 2 = kery in C we know that there exists a unique k: U’ — U

119



such that k = z o k. It remains to prove that kis a morphism in Cp, i.e. that

kof =fo (idp ®l;;) To this end consider the following diagram in C:

id T id
FoU—"2 pov L2 pow
A
L f O 9\ O Lh
|
x Yy
U+ 1% W
‘ s 90l o laren
\ ko~
" g
idrp ®k
\\ fl
\\‘F®U’

All the diagrams with (9 commute, but the one with the two dashed arrows. To
establish that also the latter commutes, since x is monic it is enough to show that

xo/;:of’:xofo(idp ®];;) Indeed,
o fo(idr @k) = go (idp @z) o (idp ®k) = go (idp ®k) = ko f' =z 0f0 f .

(ii) The proof works along the same lines as that of part (i), but, as opposed to part
(i) here we need to use that the tensor product of C is right-exact. For this reason we
spell out the details once more. We need to show that y has the universal property
of cok z in Cp, that is, we need to show that there exists a unique é: W), — W}, such

that the diagram
T Y

commutes in Cp. Since y = cokz in C we know there exists a unique morphism

¢: W — W' in C such that ¢ = ¢oy. It remains to show that ¢: W), — W), is a
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morphism in Cg, i.e. that ¢oh = I’ o (idr ®¢). Consider the diagram:

FoU—2% poy Y% peow
\
jf O /9 O hl\
x Yy !
U 1% =W
idp ®c O c O//f/ II
W’A/ //
//idF®E
% P
F®W/<///

Since y is an epimorphism and the tensor product is right-exact, then idr ®y is also
an epimorphism. It is therefore enough to show that ¢oho (idp ®y) = h' o (idr ®¢) o
(idrp ®y). Indeed,

h' o (idp ®¢) o (idp ®@y) = h' o (idp ®c) = cog=¢céoyog=_coho (idr®y) .

Lemma B.0.3. Cr has kernels.

Proof. We are given Uy, V, € Cr and a morphism z: Uy — V. Since C has kernels,
there exists an object K € C and a morphism ker: K — U such that ker is a kernel of
x in C. We now wish to construct a morphism k: FF® K — K such that ker: K;, — Uy

is a morphism in Cr. Consider the following diagram:

idp ® ker idp ®x
e ——

Fo K FU FeV
|
:alk O |f O g
Y ker T
K U V

Note that z o fo (idp ®ker) = g o (idp ®(x o ker)) = 0. By the universal property of

kernels in C, there exists a unique morphism k: F'® K — K which makes the above
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diagram commute. Thus, ker: Kj — Uy is a morphism in Cp. Since ker is a kernel of

x in C, by Lemma B.0.2 (i) ker is also a kernel of z in Cp. O
Lemma B.0.4. Cr has cokernels.

Proof. The proof is similar to that for the existence of kernels, with the difference
that for the existence of cokernels we need the tensor product of C to be right-exact.
We are given a morphism x: Uy — V. The morphism z has a cokernel cok: V' — C

in C. Consider the following diagram:

idp Q@x idp ® cok

FeU FeV Fedl
|

f @) ‘9 ) :Elc
x cok )
U %4 C

Since ® is right-exact, idp ® cok is a cokernel of idp ®2x. Note that cok ogo (idp ®z) =
cokox o f = 0. By the universal property of cokernels in C, there exists a unique
morphism ¢: F'®C — C which makes the above diagram commute. Thus, cok: V, —
C. is a morphism in Cr. Since cok is a cokernel of z in C, by Lemma B.0.2 (ii) it is
also a cokernel of z in Cp. O

The proof of Lemma B.0.3 shows that there exists a kernel for x: Uy — V; of the
form ker: K} — Uy, with ker a kernel of  in C. The proof of Lemma B.0.4 implies a

similar statement for cokernels. Since kernels and cokernels are unique up to unique

isomorphism, we get as a corollary the converse statement to Lemma B.0.2.

Corollary B.0.5. Let x: Uy — V, and y: V, — W), be morphisms in Cp.
(1) If x: Uy — V is a kernel of y in Cp, then x: U — V is a kernel of y in C.

(11) If y: V, = W)y is a cokernel of x in Cp, theny: V — W is a cokernel of x in C.
We have now gathered all the ingredients to prove Lemma 4.1.2.
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Proof of Lemma 4.1.2. By Lemmas B.0.3 and B.0.4, Cr has kernels and cokernels.
Let x: Ky — V, be a kernel of b: V, — W), and let v: V;, — C. be a cokernel of
a: Uy — V,. By Corollary B.0.5, also in C we have that x is a kernel of b: V' — W
and v is a cokernel of a: U — V.

Suppose Uy & Vy KN Wi, is exact at Vj in Cp, i.e. x is also a kernel for v in Cp.
By Corollary B.0.5, y is a kernel for v in C and so U & V 2 W is exact at V in C.
Conversely, if y is a kernel for v in C, then by Lemma B.0.2 y is also a kernel for ~
in Cp. Thus Uy N Vy LN W, is exact at V, in Cp. L]

Corollary B.0.6. (to Lemma 4.1.2) Let x: Uy — V, be a morphism in Cp. Then x

1s monic in Cp iff it is monic in C, and x is epi in Cr iff it is epi in C.
Lemma B.0.7. Cr has binary biproducts.

Proof. Let Uy, V, € Cp be given. Since C has binary biproducts, for U,V € C, there

exists a W € C and morphisms

€U ey

U W v
v v (B.0.1)

where e, is the embedding map and r4 is the restriction map, such that
rpoey =idy , ryoey =idy , eyory+eyory =idy .
This implies ry o ey = 0 and ry o ey = 0. Define a morphism h: FQ W — W as
h=eyo fol(idp®ry)+eyogo(idp®ry) .

We claim that (B.0.1) with U, W and V replaced by Uy, W), and V,, respectively,

defines a binary biproduct in Cr. To show these we need to check that the relevant
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four squares in

idF ®ey idp Rey
FeU FeoWw FeV
idp ®ry idp ®ry
f O h O g
€U ey
U w \%4
U (8%

commute. For the first square one has

ho(idrp®ey) =eyo fo(ldp®(ryoey)) +evogo(idp®(ryoey)) =epo f,
=idys =0

and for the second one
rooh=ryoeyofo(idr®ry)+ryoeyogo (idp®@ry) = fo (idr®ry) .

In a similar fashion one checks that also h o (idp ®ey) = ey og and ry o h = go
(idp ®@1v/). m

Lemma B.0.8. In Cr every monomorphism is a kernel and every epimorphism is a

cokernel.

Proof. First we show that every monomorphism is a kernel. We need to show that if
x: Uy = V, is mono in Cp, there exists a Wj and y: V, — W}, such that z = kery.
Since Cr has cokernels we can choose W, = C,. and y = cokx. Since by Corollary
B.0.6 x is monic also in C, we have & = ker(cok z) in C. Finally, by Lemma B.0.2 we
get that x = ker(cok ) also in Cg. The proof that every epimorphism is a cokernel

goes along the same lines. O

Proof of Theorem 4.1.1. Since C is an Ab-category, so is Cp. As zero object in Cp we
take (0,0), where 0 is the zero object of C and 0 : F ® 0 — 0 is the zero morphism.
Furthermore, Cr has binary biproducts (Lemma B.0.7), has kernels and cokernels
(Lemmas B.0.3 and B.0.4) and in Cr every monomorphism is a kernel and every

epimorphism is a cokernel (Lemma B.0.8). Thus Cr is abelian. O
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APPENDIX C

Finite Semisimple Monoidal

Categories

Let k be a field. In this section we take C to be a k-linear abelian semi-simple finite
braided monoidal category, such that 1 is simple, and End¢(U) = kidy for all simple
objects U. We also assume that C has right duals and that

C is strict.

Note that if we would add to this the data/conditions that C has compatible left-duals
and a twist (so that C is ribbon), we would arrive at the definition of a premodular
category [Br00]. Here we will content ourselves with right duals alone.

For explicit calculations in Cp it is useful to have a realisation of C in terms of
vector spaces. One way to obtain such a realisation is as follows. Pick a set of
representatives {U;|i € Z} of the isomorphism classes of simple objects in C such that
Up = 1. For each label a € Z define a label a via U; = U). Define the fusion rule
coefficients N, " as

N;* = dimy (Home (U; @ U, Uy)) (C.0.1)
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We restrict ourselves to the situation that
"e{0,1} . (C.0.2)

This is satisfied in the Lee-Yang model studied below, but also for other models such
as the rational free boson or the s1(2),-WZW model. Whenever Mjk = 1 we pick

basis vectors
/\(U)k € Homc(Ui & Uj, Uk) such that /\(01 Yi = =A (i0)i 1dUZ . (003)

The fusing matrices F%k)l € k are defined to implement the change of basis between
two bases of Home (U; @U;®@Uy, U)) as in (3.3.22), and they obey the pentagon relation.
See e.g. [FRS02-1, Sect.2.2] for more details. The inverse matrices are denoted by
G gee (3.3.23),

Z FUIRLG ”k = Opg - (C.0.4)

reT
The braiding ¢y gives rise to the braid matrices R#* € k, see (3.3.24)

With these ingredients, we define a k-linear braided monoidal category V =
VIk,Z,0 € Z, N, F,R]. This definition will occupy the rest of this section. The objects
of V are lists of finite-dimensional k-vector spaces indexed by Z, A = (A;,i € Z), and
the morphisms f: A — B are lists of linear maps f = (f;,i € Z) with f;: A; — B;.

There is an obvious functor H: C — V which acts on objects as H(V') =
(Homy(U;, V),i € ). For a morphism f: V — W we set H(f) = (H(f):,i € T),
where H(f);: Homy(U;,V) — Homy(U;, W) is given by a — f o a. Since H is fully

faithful and surjective we have:

Lemma C.0.9. The functor H: C — V s an equivalence of k-linear categories.

We can now use H to transport the tensor product, braiding and duality from C
to V. Let us start with the tensor product in ¥V, which we denote by ®. For an object
A €V we denote by (A); (or just A;) the i*" component of the list A. We set

(A® B); @ @ A; ®y By, . (C.0.5)



The direct summand A; ®y By, can appear in several components (A ® B);. To index

one specific direct summand, we introduce the notation (A ® B);(jx) to mean
(A ® B)i(jk) = Aj ®x B, C (A ® B)l . (C06)

This notation can be iterated. For example (A® (B ® C));(jkum)) stands for the direct
summand (we do not write out the associator and unit isomorphisms in the category

of k-vector spaces)

A @k By Cp, CAj @ (B®C)y C(A® (B®(0)); . (C.0.7)
while ((A® B) ® C);(j(kiym) stands for the direct summand

Ay @ Bi@x C, C(A® B); @k Cr, C (A® B)® C); . (C.0.8)

If v € A; ®y By, we denote by (v)(x) the element v in the direct summand (A ®
B)iiry C (A® B);, etc.

On morphisms f: A — X and g: B — Y the tensor product is defined to have
components (f ® ¢);: (A® B); — (X ®Y);, where, for a € A; and b € By,

(f ®9), (@ )ign) = (fi(a) @k g1(0) ), €X; Y C(X@Y)i.  (C.0.9)

The tensor unit 1 € V has components 1g = k and 1; = 0 for ¢ # 0. The unit
isomorphisms of V are identities, but we find it useful to write them out to keep track
of the indices of the direct summands,

Aa)i: (I ®A); — A and (pa)i: (A1), — A (C.0.10)
(1 ®k a)iosy — (a); (a @k 1)igoy — (a);
Finally, the associator has components (a4 p5¢0)i: (A® (B®C)); — (A® B) ® C);,

where, for v € A; ®y By ® C),

(as.0)i( (©)igarny ) = > (GEF v | P (C.0.11)
peL
Its inverse is (a4 pc); " (A®B)®C); — (A® (B® C)),,
(ax's.o)i((@i@arn ) = Z (FUkD )i(jp(kl)) . (C.0.12)
peL
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We can now turn H into a monoidal functor (see Def. 3.3.7 excluding the last commut-
ing diagram). To this end we need to specify natural transformations Hgy: H(U) ®
H(V) = H(U®V) and an isomorphism H°: 1y, = H(1¢). To describe Hf,, we need
the basis dual to Ay, that is, elements A € Homy(Uy, U; @ U;) (see (3.3.21))
such that Ajjx © Agjix = idy,. Note that (H(U) ® H(V))igry = Homy(U;,U) @y
Homy, (U, V) and H(U ® V'); = Homy(U;, U @ V). We set, for u € Homy,(U;, U) and
v € Homy,(Uy, V),

(H)i((u @k 0)igry) = ((u®v) 0 yinyi)i - (C.0.13)
Finally, (H°); = 0 for i # 0 and (H)¢(1) = idy, € Homy(Uy, Up).
Theorem C.0.10. (H, H? H®): C — V is a monoidal functor.

Proof. From Def. 3.3.7 we have to check that all (apart from the last) diagrams
commute, for all U, V, W € C . More precisely, the following equalities of morphisms
HU)®(HV)®HW)) > HUVeW),1y® HU) - H({U) and HU)® 1, —
H(U), respectively, hold,

Higvw © (Hiy ® iduwy) o anw)mwymw) = Hivew © ([duw) ®Hiy)

AH(v) = HJ%I(TILH(U) o(H® idyw)) » pPrHW) = HIQ-I(U),H(ll) o (idg ) ®H) .
(C.0.14)

(Recall that C is strict.) The identities involving A and p are most easy to check. For

example, the ith component of two sides of the identity for A are, for u € Homy,(U;, U),
(A @))i(1 @k w)iopy) = ()i and

(Hrwy )i © (H® ® id )i (1 ®x w)ion) = (Heray my)i((idu, ©xw)ion)

= ((ide, ®u) © Aoiyi)i = (w); -
(C.0.15)
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To check the first condition in (C.0.14) we pick elements v € Homy(U;,U), v €
Homy, (U, V), w € Home(U;, W) and evaluate both sides on the element (u ®y v ®k

W);i(jqkr))- For the left hand side this gives
(Hegvaw © (Hiy ®iduw)) © anw),mwyamw)),; (4 @x v @k w)igamy))

= Z U®VW o ( UV ® idH(W)))i((G;(aékl)i U QK U Rk w)i(p(jk)l))

peL
= (Heouw)i(GU" - (u® v) 0 Aiyy) @k i)
peL
= (D GUI - ((w®v) 0 Agiy) @w) 0 ygii), = (1@ v @w) o (idy, ®Ayg) © Ay, -
peEL

(C.0.16)
For the right hand side we find

(HU vew © (duw ®HVW)) ((U R V Dk w)i(jq(kl)))
= (HIQJ,V@)W)Z'((U Rk [(v@w) o E‘(kl)q])i(jq»

= (v ® [(v ® w) 0 Awngl) © Aggri); = ((u® v @ w) o (idy, @Akg) © AGiyi), -
(C.0.17)

Thus H is indeed a monoidal functor. O

We define a braiding cq p: A® B — B®A on V by setting, fora € A; and b € By,
(can)i((a@Dbligry) = (R @ a)iqry) - (C.0.18)

One verifies that H(cy,v) o H;y = H{ 0 cu(w),m(v) so that H is a braided monoidal
functor between C and V.

It remains to define the right duality on V. The components of the dual of an
object are given by dual vector spaces, (AY), = Aj. We identify k* = k so that
1V = 1. The duality morphisms bs: 1T — A ® AY and ds: AY ® A — 1 have
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components (ba); =0 = (da); for i # 0. To describe the 0-component, we fix a basis
{aio} of each A;; and denote by {a;,} the dual basis of A7. Then

(ba)o: (1)g — (A® AY)g (da)o: (AY ® A)yg — (1)
(1) — ; (%:ak,a Ok az,a> o(ER) ’ (¢ ®x a)or) — %
(C.0.19)

As an exercise in the use of the nested index notation we demonstrate the first identity
n (3.3.10) (or equivalently see the first commutative diagram above that). Let a; ,,

a;, be as above. Then, for ¢ € A7,

(P48 ), (@) = (¢ Ok Viwoy = *1

( id g ®bA Z Z k Ok (k0 Ok af, o) o) )k;(k:O)
el «
= Z Y Qk Ok,0 Ok a’,;a )k(kO(lZ)) =*2
(aav.aav) Z D2 (60" ¢ B tia B )kiotran = *3
= la(kmk (C.0.20)
(da®idav )k(*S) =D (G (da)p((% Bk ara)p) Ok (G7.)1)
Pl
(a) kkk)k = (kkk)k\ — *
=3 (GRS plaka) @ ap, ) iom)
(b)
(1@ @)k(om =4

(Aav ), (k1) = (@) -

In step (a) we used that (dy4), is non-zero only for p = 0, and that in this case we

4)
are also forced to choose | = k (otherwise the direct summand (- - - )o() is empty). In
step (b) the equality
FURRE _ Gk (C.0.21)

is used. This equality can be derived by using either F or G to simplify () ®
Aryo) © (ido, ®5\(kg)0 ® idy,) t0 Ak (Which also shows that both are non-zero).

Remark C.0.1. (i) The above construction is a straightforward generalisation of the

way one defines a (braided) monoidal category starting from a (abelian) group and a
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(abelian) three-cocycle, see [FRS04-1II, Sect. 2] and references therein.

(ii) The construction is different from what one would do in Tannaka-Krein recon-
struction for monoidal categories [Ha99]. There one constructs a fibre-functor from C
to a category of R-R-bimodules for a certain ring R (isomorphic to k®"!). However,
this fibre-functor is typically neither an equivalence nor full.

Let f: F® A — Aand g: F® B — B be morphisms in V. We can now substitute
the explicit structure morphisms (C.0.11), (C.0.12), (C.0.18) into the definition of
T(f,g) in Section 4.2. After a short calculation one finds, for v € F};, a € A; and
be B,

T(f,9)i( (u @k a @y b)igu(imy) )

= 3 (0mGE™ (P (1 B @)e) @5 (B), (C.0.22)

z,yel

R(ik)i

Imyj)i
+ deigis RG™Y Fg(,k & (a)r Pk (Q)y(<u Y b)y(jm))>i(zy) :

When verifying this one needs to use the following two equivalent expressions for the
B-matrix (see e.g. [FRS05-1V, Eqn. (5.46)]), one of which is [FRS05-1V, Eqn. (5.47)]
and the other one appears in the calculation of 7'(0, g)z( (4 @k a @k b)i(jkm)) ),

Rk N\
FUmai (C.0.23)

lm)z iDp (Gm)i (glm)i _
ZF J ] Pka = Byk — R(]m)y yk

For ¢(f) the calculation is slightly longer, and one finds, for u € Fj and ¢ € A7, and
using (C.0.21) at an intermediate step,

()i (u @k 0)igry )

F(()i(;j)l k (kz . v N
R RUOTFL Z P ® aza)iin)) - aio € (A)i = A7

00
(C.0.24)
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APPENDIX D

T(f,g) and c(f) for the Lee-Yang
Model

The Lee-Yang model is the minimal model M (2,5). The fusing matrices of minimal
models are known from [DF85, FGP90]. We use the conventions of [Ru08, App. A.3].
The index set is Z = {1, ¢} and the unit element is 1 € Z. The non-zero entries in

the braiding matrix are, for x € {1, ¢}

Rz — Rz — 1 RO — 2 = RO — ¢ where ( =e ™/ . (D.0.1)

The nonzero entries in the fusing matrices are, for z,y, z € {1, ¢}

Flzy)z _ plely)z _ playl)z _ ngZ)l -1

zx yx Yz )

I

Feoos _ L possrs pesare _ 1 peese _ —1 1-
2

d7 1¢ :w; $1 _wd, [o30) d Whered:
(D.0.2)

Here d is the quantum dimension of ¢. The constant w € C* depends on the choice

of normalisation of the basis vectors Agg)1 and A(gg)e. Different choices of w yield

equivalent braided monoidal categories. There is a preferred choice related to the
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normalisation of the vertex operators, for which
(iT(é
w = w =2431... (D.0.3)
L(5)r(5)

but one may as well set w to 1. The inverse matrix of F is simply
(ijk)l _ p(kji)l
Gy =F (D.0.4)

Let us indicate how to obtain the explicit formulas quoted in Section 6.1. First of
all, in terms of the notation (C.0.6) for the direct summands of A® B, the individual

components in (6.1.1) are, in the same order,

A® B = ((A@B)l,(A@)B) )

= ((A®B)111) ® (A® B)1gg) » (A® B)g(1) D (A® B)g(or) D (A® B)gae) ) -
(D.0.5)

Consider a morphism f: ® ® A — A. In terms of three linear maps in (6.1.2) the
action of f on the individual summands of ® ® A is as follows. For 1 € ¢, = C,
aeAl andb€A¢,

(N ((1®cb)ie) ) = fre(b) ,
(Ne((A@c a)gny) = for(a) , (Fo((1@cb)swe)) = fos(D) -

To obtain the expression (6.1.3) for the dual of an object in Vs we have to specialise

(C.0.24) to the Lee-Yang model. For example, for f: ® ® A — A and ¢ € A} one

(D.0.6)

gets

F(111)1 . )
c(Fi((L®c Phpe ) = F(chw R F?Y Z 2((N)s((u® ara)sen)) - a1 a

= —d¢? ZQO fo1 al,a)> Ay = —d¢? f;l(QO) '
¢ (D.0.7)

which is the top right corner in (6.1.3). Expression (6.1.5) for the tensor product of

two morphisms in Vs is obtained from (C.0.22). Denote by Tz(g,f()l ) the linear map

T(f,g); restricted to (P® (A® B));(sk(m)) and projected to the summand (A® B);(zy),
R(6h)i

Ry ok i, ©cgym (D.0.8)

77((;:&771)) = 6y7mF(zT];Ll¢)ifa:l Xc ldBy +5ml
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In terms of these, the elements of the matrix (6.1.5) are

A1®cB1 Ag®cBy  A1®cBgy  Ayp®cBi Ap®cBy

1(11) 7111 1(11)

A1®cB1 0 0 T T

Wes(16)  T1(ss(e1)  T1(o6(69))
Ag®cBy 0 0 Tiigatiey  Tieatsry  Tilostssy
T(9) = mecs, | 800, Tl Tither Tillory Teollewy | - (D09)
As@cB | TEE00)  Toiteen  Tocwotien  Tocsetery Tatostsen
Ap®cBy \ Tooihny  Tomwon  Towatisy  Toceatorn  Tocoatosy
For example, the underlined entries are
Titomtony = ¢+ ida, ®c gor
Ty(ossy = foo @c idp, ¢ - ida, @c gos (D.0.10)
Tf((ﬁls@) = ﬁ - foo Qc idB¢ +§u+d : idA¢ Qc Gos »

in agreement with (6.1.5).
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