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Abstract

The infinite-dimensional symmetry algebra of a conformal field theory (CFT), the

Virasoro algebra, is generated by the holomorphic and anti-holomorphic part of the

stress tensor. Besides such ‘chiral symmetries’ the CFT also has an integrable sym-

metry, that is, infinite families of commuting conserved charges. In this thesis a step

towards combining these two symmetries into a single formalism is taken, by identi-

fying integrable structures of a CFT through studying the representation category of

the underlying chiral algebra. Then by introducing defects in the system, conserved

charges can be constructed by perturbing certain conformal defects.

Starting from an abelian rigid braided monoidal category C one defines an abelian

rigid monoidal category CF which captures some aspects of perturbed conformal de-

fects in two-dimensional CFT. Namely, for V a rational vertex operator algebra one

considers the charge-conjugation CFT constructed from V (the Cardy case). Then

C = Rep(V) and an object in CF corresponds to a conformal defect condition to-

gether with a direction of perturbation. To each object in CF one assigns a perturbed

defect operator on the space of states of the CFT and then shows that the assign-

ment factors through the Grothendieck ring of CF . This allows one to find functional

relations between perturbed defect operators. Such relations are interesting because

they contain information about the integrable structure of the CFT.
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Introduction and Summary

Conformal symmetry is a potent tool in the construction of two-dimensional confor-

mal quantum field theories [BPZ84]. Their infinite-dimensional symmetry algebra, the

Virasoro algebra, is generated by the modes of two conserved currents: the holomor-

phic and anti-holomorphic part of the stress tensor. Besides such ‘chiral symmetries’

obtained from conserved currents, in many examples the CFT also has an integrable

symmetry, that is, infinite families of commuting conserved charges [BLZ96]. Present

approaches to CFT tend to favour either the conformal or the integrable symmetry,

and it seems worthwhile to eventually combine these two symmetries into a single

formalism.

In this thesis, whose results have been published in a joint paper with Ingo Runkel

in [MR09], we hope to take a step in this direction by continuing to develop the

approach of [Ru08] which allows one to identify integrable structures of a CFT by

studying the representation category of the chiral algebra. It is worth remarking that

the idea to find questions about CFT that can be formulated on a purely categorical

level, and that can then be investigated independent of whether there is an underlying

CFT or not, has proved useful already in [FS03, FRS02-I] (the interested reader could

consult [KR09] for a brief overview).

In [Ru08] families of conserved charges are constructed as perturbations of certain

conformal defects. A conformal defect is a line of inhomogeneity on the world sheet
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of the CFT, that is, a line where the fields can have discontinuities or singularities.

By putting a circular defect line on a cylinder we obtain the defect operator, a linear

operator on the space of states. If one considers a particular class of conformal

defects (so-called topological defects) and perturbs such a defect by a particular type

of relevant defect field, one obtains a family of defect operators which still commute

with L0 + L̄0, the sum of the zero modes of the holomorphic and anti-holomorphic

component of the stress tensor. Sometimes these perturbed defect operators obey

functional relations. An example is provided by the non-unitary Lee-Yang CFT, the

Virasoro minimal model of central charge c = −22/5. There, one obtains a family

of operators D(λ), λ ∈ C, on the space of states of the model, which obey, for all

λ, µ ∈ C,

[L0 + L̄0, D(λ)] = 0 , [D(λ), D(µ)] = 0 , D(e2πi/5λ)D(e−2πi/5λ) = id +D(λ) .

(0.0.1)

The last relation above is closely linked to the description of the Lee-Yang model

via the massless limit of factorising scattering and the thermodynamic Bethe Ansatz,

see e.g. the review [DDT07]. This example illustrates that the functional relations

obeyed by perturbed defect operators encode at least part of the integrable structure

of the model. In fact, the defect operator in (0.0.1) (and more generally those for

the M2,2m+1 minimal models) can be understood as certain linear combinations of the

chiral operators which were constructed in [BLZ96] to capture the integrable structure

of these models.

This thesis presents a categorical structure that captures some aspects of per-

turbed defect operators, and in particular allows one to find functional relations such

as the one in (0.0.1). We work in rational conformal field theory, so that the holo-

morphic fields of the model form a rational1 vertex operator algebra V. We consider

the ‘Cardy case’ CFT constructed from V, namely the CFT with charge-conjugation

modular invariant - the thesis conclusions 6.3 contain a brief comment on how to

extend the formalism to general rational CFTs. In the Cardy case the defects are

1 By ‘rational’ we mean that the vertex operator algebra satisfies the conditions in [Hu05, Sect. 1].
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labeled by representations of V. Denote C = Rep(V). The category describing the

properties of perturbed defects is called CF . It is an enlargement of C which depends

on a choice of object F ∈ C. Roughly speaking, F is the representation of V from

which the perturbing field is taken, and the objects of CF are pairs of an unperturbed

defect together with a direction of perturbation.

Concretely, the objects in CF are pairs (R, f) where R ∈ C and f : F ⊗ R→ R is

a morphism in C. The morphisms in CF are those morphisms in C which make the

obvious diagram commute (see Def. 4.1.1). If, in addition to being monoidal, the

category C is also abelian rigid and braided (as it would be for C = Rep(V) with V a

rational vertex operator algebra), then CF is an abelian rigid monoidal category (Thm.

4.3.2). In particular, the Grothendieck ring K0(CF ) is well-defined. However, CF is

typically not braided. We will see in the example of the Lee-Yang model that there

can be simple objects (U, f) and (V, g) in CF such that (U, f) ⊗̂(V, g) � (V, g) ⊗̂(U, f),

where ⊗̂ denotes the tensor product in CF .

If C = Rep(V), we can assign a perturbed defect operator D[(R, f)] to an object

(R, f) ∈ CF , provided certain integrals and sums converge (see Sect. 5.2). Sup-

pose that for two objects (R, f), (S, g) ∈ CF the perturbed defect operators exist.

Then the tensor product in CF is compatible with composition of defect operators,

D[(R, f) ⊗̂(S, g)] = D[(R, f)]D[(S, g)] (Thm. 5.2.1), and D[(R, f)] = D[(S, g)] if

(R, f) and (S, g) represent the same class in the Grothendieck ring K0(CF ) (Cor.

5.2.2). Thus, identities of the form [(A, a)] · [(B, b)] = [(C1, c1)] + · · · + [(Cn, cn)] in

K0(CF ) will give rise to functional relations among the defect operators, such as the

one quoted in (0.0.1) (see Chap. 6 for the Lee-Yang example).

The category CF has similarities to categorical structures that appear in the treat-

ment of defects in other contexts. In B-twisted N = 2 supersymmetric Landau-

Ginzburg models, boundary conditions [KL03, BHLS06, Laz05] and defects [BRo07]

can be described by so-called matrix factorisations. There, one considers a category

whose objects are pairs: a Z2-graded free module M over a polynomial ring and an

odd morphism f : M → M , so that f ◦ f takes a prescribed value. The morphisms
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of this category have to make the same diagram commute as those of CF . And as in

CF , the module M can be interpreted as a defect in an unperturbed theory, and f

as a perturbation. However, in the context of matrix factorisations one passes to a

homotopy category, which is something we do not do for CF .

A more direct link comes from integrable lattice models. In one approach to these

models, one uses the representation theory of a quantum affine algebra to construct

families of commuting transfer matrices. The decomposition of tensor products of

representations of the quantum affine algebra gives rise to functional relations among

the transfer matrices [KNS94, RW, Ko03]. The category of finite-dimensional repre-

sentations of a quantum affine algebra [CP91] shares a number of features with the

category CF . For example, the tensor product of simple objects tends to be simple

itself, except at specific points in the parameter space, where the tensor product is

the middle term in a non-split exact sequence. To make the similarity a little more

concrete, in App. A we point out that the evaluation representations of Uq

(
ŝl(2)

)
can be thought of as a full subcategory of CF for appropriate C and F .

This thesis is organized as follows. In Chapter 1 we give a short review of CFT.

In particular we review only those areas of CFT that will be relevant later on. In

Chapter 2 we introduce the concept of defects and defect operators and we review

some of their properties as well as their fusion rules. The machinery of topological

field theory is discussed in Chapter 3, where we start by defining cobordisms and work

our way up to define an n-dimensional TFT and at the end a 3-dimensional extended

TFT. These first three chapters give the necessary background in order to describe

the main results of the thesis, which are given in Chapters 4–6. More concretely, in

Chapter 4 we introduce the category CF and study its properties. In this section we

make no reference to conformal field theory or vertex operator algebras. The relation

of CF to defect operators in conformal field theory is described in Chapter 4. There,

we also show that the assignment of defect operators to objects in CF factors through

the Grothendieck ring of CF . In Chapter 6 we study the Lee-Yang Virasoro minimal

model conformal field theory in some detail.
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Chapter 1

Conformal Field Theory

In this Chapter we give a short introduction to Conformal Field Theory (CFT).

However, it is beyond the scope of this thesis to present a full summary of CFT.

Conformal field theory is a highly developed subject with many excellent reviews and

textbooks available. A selection recommended by the author, in alphabetical order,

is

[ASG89] An introduction by Alvarez-Gaume, Sierra and Gomez, writ-

ten with an emphasis on the connection to knots and quantum

groups.

[BYB] The book by Di Francesco, Mathieu and Sénéchal, which

develops CFT from first principles. The treatment is self-

contained, pedagogical, exhaustive and includes background

material on QFT, statistical mechanics, Lie and affine Lie al-

gebras.

[Ca08] Lectures given at Les Houches (2008) by John Cardy.

[Gab99] An overview of CFT centered on the role of the symmetry

generating chiral algebra by Matthias Gaberdiel.

[Gin88] Lectures given at Les Houches (1988) by Paul Ginsparg.

In the following sections, an introduction is given to those areas of CFT that are

most relevant to the current thesis. In some cases we just state the results since they

are considered as standard in the literature and the readers may refer themselves to

the recommendations mentioned above, for further details.

5



1.1 Conformal Invariance in Two Dimensions

Conformal field theories in two dimensions are Euclidean QFTs whose symmetry

group contains, in addition to the Euclidean symmetries, local conformal transforma-

tions, i.e. transformations that preserve angles but not necessarily lengths. Indeed,

in two dimensions there exists an infinite variety of coordinate transformations that,

although not everywhere well defined, are locally conformal and they are holomor-

phic mappings from the complex plane to itself. The local conformal symmetry is of

special importance in two dimensions since the corresponding symmetry algebra is

infinite-dimensional (and in certain cases, e.g. Rational CFTs, see Sect. 1.6, organizes

the Hilbert space of the quantum theory into finitely many representations). As a

consequence, two-dimensional CFTs have an infinite number of conserved quantities,

and are completely solvable by symmetry considerations alone.

Consider now a flat metric gµν on a space-time manifold M .

Definition 1.1.1. A conformal transformation of the coordinates is an invertible

mapping xµ 7→ x′µ, that leaves the metric tensor invariant

g′µν(x
′) = Ω(x)gµν(x) , (1.1.1)

up to a scale factor Ω(x), called the conformal factor .

We will restrict ourselves to two dimensional Euclidean space with a metric gµν =

diag(1, 1). The set of all conformal transformations forms the conformal group which

is isomorphic to SO(3, 1). For an infinitesimal transformation xµ 7→ x′µ = xµ + εµ(x)

to be conformal, Definition 1.1.1 implies

δgµν = Ω(x)gµν = 2∂(µεν) . (1.1.2)

The factor Ω(x) is determined by taking traces

Ω(x) = ∂µε
µ . (1.1.3)
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Combining equations (1.1.2) and (1.1.3) we get

∂(µεν) =
1

2
∂ρε

ρgµν . (1.1.4)

Equations (1.1.4) are the Cauchy-Riemann equations ∂1ε1 = ∂2ε2 and ∂1ε2 = −∂2ε1.

Therefore, if we identify the two dimensional Euclidean space with the complex plane

we may write

ε(z) = ε1 + iε2 , ε̄(z̄) = ε̄1 − iε̄2 , (1.1.5)

in the complex coordinates z = x+ iy and z̄ = x− iy. The metric tensor in terms of

z, z̄ is given by

gαβ =

(
0 1

2
1
2

0

)
, gαβ =

(
0 2

2 0

)
, (1.1.6)

where the indices α, β take the values z and z̄, in that order. In this language, the

holomorphic Cauchy-Riemann equations become

∂z̄w(z, z̄) = 0 , (1.1.7)

whose solution is any holomorphic mapping z 7→ w(z) = z + ε(z). Analytic functions

automatically preserve angles and we see that there are infinitely many independent

such transformations.

Remark 1.1.1. If we extend the Cartesian coordinates (x, y) to the complex plane,

then the variables z and z̄ are independent and z̄ is not the complex conjugate of

z, but rather a complex coordinate. However, it should be kept in mind that the

physical space is the two-dimensional submanifold defined by z∗ = z̄.

Everything we have said up to now is purely local, we have not yet imposed any

conditions for the conformal transformations to be everywhere well defined and in-

vertible. Strictly speaking, in order to form a group, the mappings must be invertible

and must map the whole plane to itself (more precisely the Riemann sphere). One,

therefore, must distinguish global conformal transformations , which satisfy these re-

quirements, from the local ones, which are not everywhere well defined. The group of
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conformal transformations on the Riemann sphere is finite dimensional and consists

only of Möbius transformations

z 7→ az + b

cz + d
, ad− bc = 1 , (1.1.8)

where a, b, c, d ∈ C. To each of these mappings we can associate the matrix

A =

(
a b

c d

)
. (1.1.9)

We easily see that the composition of two maps corresponds to matrix multiplication

and the condition ad− bc = 1 to detA = 1. Therefore, the global conformal group in

two dimensions is isomorphic to the Lie group SL(2,C)/Z2 and it is finite dimensional.

To the fields φ(z, z̄) in the theory we can associate a scaling dimension ∆ and a

spin s. Given such a field, we define the holomorphic conformal dimension h and its

antiholomorphic counterpart h̄ as

h =
1

2
(∆ + s) , h̄ =

1

2
(∆− s) . (1.1.10)

Every conformal transformation z = w(z) looks locally like a combined rescaling

and rotation. The CFT will contain some fields, called primary fields which can only

see this local behaviour, i.e. whose transformation properties depend only on the first

derivative of w.

Definition 1.1.2. A field φ(z, z̄) that under any local conformal transformations

z 7→ w(z), z̄ 7→ w̄(z̄), transforms as

φ′(w, w̄) =

(
dw

dz

)−h(
dw̄

dz̄

)−h̄
φ(z, z̄) , (1.1.11)

is called a primary field . If φ(z, z̄), under global conformal transformations, transforms

as in (1.1.11), then it is called a quasi-primary field .

The infinitesimal version of (1.1.11), under the conformal mapping z 7→ z + ε(z)

and z̄ 7→ z̄ + ε̄(z̄), is

δε,ε̄φ(z, z̄) =
(
h∂zε+ ε∂z + h̄∂z̄ ε̄+ ε̄∂z̄

)
φ(z, z̄) . (1.1.12)
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1.2 The Stress Tensor and Ward Identities

We would now like to explore the consequences of conformal invariance for correla-

tion functions in a fixed domain (usually the entire complex plane). It is necessary

to consider transformations which are not conformal everywhere, i.e. local confor-

mal transformations. This brings in the energy-momentum tensor (or stress-energy

tensor). The name energy-momentum tensor refers to Minkowski space-time while

the name stress-energy tensor refers to the elastic properties of materials. In a slight

abuse of notation we will use both names. In a classical field theory it is defined as

the Noether current which is conserved and symmetric, in response of the action1 S

to a general infinitesimal transformation εµ(x),

δS =

ˆ
d2x T µν∂µεν =

ˆ
d2x T µν∂(µεν) . (1.2.1)

This is valid even if the equations of motion are not satisfied. Then equations (1.1.2)

and (1.1.3) imply that the corresponding variation of the action under an infinitesimal

conformal transformation is

δS =

ˆ
d2x T µµΩ(x) = 0 , (1.2.2)

where Ω(x) = ∂νε
ν is not an arbitrary function. The tracelessness of T µν then implies

the invariance of the action under conformal transformations.

In complex coordinates (z, z̄), the components of Tαβ are

Tzz =
1

4
(T11 − 2iT21 − T22) , Tz̄z̄ =

1

4
(T11 + 2iT21 − T22) , Tzz̄ = Tz̄z = 0 . (1.2.3)

The conservation law gαγ∂γTαβ = 0, implies that

∂̄T = ∂T̄ = 0 , (1.2.4)

where, ∂̄ ≡ ∂z̄, ∂ ≡ ∂z. Therefore, the energy-momentum tensor splits into a holo-

morphic and an antiholomorphic part and it is customary to write these parts as

T ≡ T (z) ≡ Tzz and T̄ ≡ T̄ (z̄) ≡ Tz̄z̄, respectively.

1Even though we will never explicitly need an action in this thesis, it is sometimes useful to think
that there is a path integral formulation of the theory.
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We now use radial quantization on the complex plane. Consider an infinite cylinder

of circumference L, with the time t ∈ R, running along the “flat” direction of the

cylinder and space being compactified with a coordinate x ∈ [0, L], the points (0, t)

and (L, t) being identified. If we continue to Euclidean space, the cylinder is described

by a single coordinate w = x + it (or w̄ = x − it). We then “explode” the cylinder

onto the complex plane (or rather, the Riemann sphere) via the mapping

x t1 t2

−→
t

e2πiw/L−−−−→ t1 t2 x (1.2.5)

The remote past (t→ −∞) is situated at the origin z = 0, whereas the remote future

(t→ +∞) lies on the point at infinity on the Riemann sphere.

With the decomposition (1.2.4) of the energy-momentum tensor into holomorphic

and antiholomorphic parts at hand, we can now define in radial quantization the

conserved charge

Q =
1

2πi

‰ (
dz T (z)ε(z) + dz̄ T̄ (z̄)ε̄(z̄)

)
, (1.2.6)

from the conserved current Jα(z, z̄) ≡ Tαβ(z, z̄)εβ(z, z̄) = T (z)ε(z) + T̄ (z̄)ε̄(z̄). The

line integral is performed over some circle of fixed radius and our sign conventions

are such that both the dz and the dz̄ integrations are taken in the counter-clockwise

sense (hence the symbol
�

). Note that (1.2.6) is a formal expression that cannot be

evaluated until we specify what other fields lie inside the contour.

The variation of a primary field φ(w, w̄), is given by the equal-time commutator

with the charge Q

δε,ε̄φ(w, w̄) = [Q, φ(w, w̄)] =
1

2πi

‰ [
dz T (z)ε(z) + dz̄ T̄ (z̄)ε̄(z̄), φ(w, w̄)

]
. (1.2.7)

Now products of two operators O1(z)O2(w), in Euclidean space quantization are only

10



defined for |z| > |w|. Thus, we define the radial-order operator

% (O1(z)O2(w)) :=

{
O1(z)O2(w) , if |z| > |w|
O2(w)O1(z) , if |z| < |w| . (1.2.8)

This allows us to define the meaning of the commutators in equation (1.2.7). Consider

now the following pictorial equation

wz

−

wz

=

wz

(1.2.9)

In this equation we have represented the contour integrations that we need to perform

in order to evaluate the commutator in (1.2.7). We see that the difference combines

into a single integration about a contour drawn tightly around the point w. Then we

can write the equal-time commutator [O1(z),O2(w)] as a contour integral around the

point w, therefore (1.2.7) becomes

δε,ε̄φ(w, w̄) =
1

2πi

(‰
|z|>|w|

−
‰
|z|<|w|

){
dz % (T (z)φ(w, w̄)) ε(z) + dz̄ %

(
T̄ (z̄)φ(w, w̄)

)
ε̄(z̄)

}
=

1

2πi

‰
w

{
dz % (T (z)φ(w, w̄)) ε(z) + dz̄ %

(
T̄ (z̄)φ(w, w̄)

)
ε̄(z̄)

}
=
(
h∂ε+ ε∂ + h̄∂̄ε̄+ ε̄∂̄

)
φ(w, w̄) ,

(1.2.10)

where in the last line we have substituted the desired result, equation (1.1.12). Insert-

ing the holomorphic and antiholomorphic parts of (1.2.10), separately in a correlator

and using Cauchy’s formula one can deduce the conformal Ward identity

〈T (z)φ1(w1, w̄1)...φn(wn, w̄n)〉 =
n∑
j=1

(
h

(z − wj)2
+

1

z − wj
∂wj

)
· 〈φ1(w1, w̄1)...φn(wn, w̄n)〉+ reg(z)

, (1.2.11)
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where reg(z) is a regular function on the complex plane. A similar relation holds for

T̄ (z̄). In particular we see that the operator product expansion (OPE) of the stress

tensor with a primary bulk field is

T (z)φ(w, w̄) =

(
h

(z − w)2
+

∂

z − w

)
φ(w, w̄) + reg(z − w) , (1.2.12)

with a similar expression for T̄ (z̄). The most general OPE for T (similarly for T̄ ),

consistent with associativity is

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

∂

z − w
T (w) + reg(z − w) . (1.2.13)

The constant c is called the central charge and fixes the properties of the CFT. The

OPE of T with T̄ has no poles. A consequence of (1.2.13) is the transformation

behaviour of T (z) under a conformal map z 7→ w(z)

T (z) =

(
dw

dz

)2

T (w) +
c

12
{w; z} , (1.2.14)

where {w; z} := w′′′(z)
w′(z)
− 3

2

(
w′′(z)
w′(z)

)2

, is the Schwarzian derivative. Thus, we see that the

energy momentum tensor is not a primary field. However, the Schwarzian derivative

of (1.1.8) vanishes. This needs to be so, since T (z) is a quasi-primary field.

In two dimensional CFTs, we can always take a basis of quasi-primary fields φi

with fixed conformal weight. If we normalize their 2-point functions as

〈φi(z, z̄)φj(w, w̄)〉 =
δij

(z − w)2hi(z̄ − w̄)2h̄i
, (1.2.15)

then the OPE of two such fields will be of the form

φi(z, z̄)φj(w, w̄) ∼
∑
k

C k
ij (z − w)hk−hi−hj(z̄ − w̄)h̄k−h̄i−h̄jφk(w, w̄) , (1.2.16)

where C k
ij , are the operator product coefficients and are symmetric in i, j, k. In the

following section we will see what is the exact form of the OPE φi(z, z̄)φj(w, w̄), but

in order to do that we need to know all the primary and descendant fields of the

theory. This is done via the Hilbert space formulation of CFT.
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1.3 Hilbert Space Formulation

A 2D CFT is determined by the following data:

♣ A space of states2 H , a C-vector space, as well as, a space of fields F , an S-

graded vector space F =
⊕

∆∈SF (∆), with S, the spectrum, a discrete subset

of R and 0 < dim F (∆) <∞.

♠ Its correlation functions, which are defined for collections of vectors in F ,

together with an isomorphism ι : F → H , the state-field correspondence, in

the sense that a field inserted at a point can be thought of as a state and vice

versa.

As we have seen, two-dimensional CFTs contain an infinite variety of coordinate

transformations that although not everywhere well defined, are locally conformal and

they are holomorphic mappings from the complex plane to itself. The corresponding

infinite-dimensional symmetry algebra of the CFT is related to a preferred subspace

F0 of F , that is characterised by the property that it only allows holomorphic de-

pendance of the coordinates for the correlation functions, see [Gab99, Sect. 2.1] for

example.

The correlation functions of the theory determine the OPE of the conformal fields,

as one can see from (1.2.15) and (1.2.16) for example. In turn, the OPE of two

conformal fields is given in terms of a sum of single fields as in (1.2.16). Thus, we

see that the OPE defines a certain product on the fields via the operator product

coefficients C k
ij , which are the only non-trivial input in the OPE. It is, therefore, the

operator product coefficients that force the product to involve the complex parameters

zi in a non-trivial way and hence, it does not directly define an algebra (in the

appropriate sense); the resulting structure is a vertex (operator) algebra, V.

2May or may not be a Hilbert space, but it will be clear from the context. For example, as we will
see later on, the space of states of the Lee-Yang model is not a Hilbert space, as the inner product
is not positive-definite.
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The OPE is associative and if we consider the case of two holomorphic fields

φ1, φ2 ∈ F0, then the associativity of the OPE implies that the states in F0 form a

representation of V. The same also holds for the vertex operator algebra associated

to the anti-holomorphic fields and one can decompose the whole space F (or H ) as

H =
⊕
i,̄∈I

(
Ri ⊗C R̄̄

)⊕Mi̄ , (1.3.1)

where I denotes the set indexing the irreducible representations of V, {Ri | i ∈ I}
the corresponding representations and Mi̄ ∈ N denotes the multiplicity with which

the tensor product Ri ⊗C R̄̄ occurs in H .

Note that the operator formalism distinguishes a time direction from a space

direction and thus we will work in radial quantization as we did in the previous

section.

We must also assume the existence of a vacuum state |0〉 ∈ H upon which the

Hilbert space is constructed. In free field theories, the vacuum may be defined as the

state annihilated by the positive frequency part of the field [BYB, Sect. 2.1 & 6.1.1].

Remark 1.3.1. To be precise we should call |0〉 the sl(2)-invariant vacuum, since e.g.

for a non-unitary theory on a cylinder, it is not the state of lowest energy and thus not

the real vacuum. It will always be clear from the context whether “vacuum” refers to

the state of lowest energy or the sl(2)-invariant state |0〉. Moreover, the expressions,

correlation function, n-point function, amplitude and vacuum-expectation value all

refer to the (radially ordered) vacuum-expectation value 〈0| . . . |0〉 with respect to the

sl(2)-invariant vacuum.

For an interacting field φ ∈ F , we assume that the Hilbert space is the same

as for a free field, except that the energy eigenstates are different [BYB, Sect. 6.1.1].

The timescales over which interactions happen are extremely short. The scattering

(interaction) process takes place during a short time interval around some particular

time t with −∞ � t � +∞. Long before t, the incoming particles evolve indepen-

dently and freely. In other words, we suppose that the interaction decreases (and
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eventually vanishes) as t→ ±∞ and that the asymptotic field φin ∝ limt→−∞ φ(x, t)

is free. Within radial quantization, this asymptotic field reduces to a single operator,

which upon acting on |0〉, creates a single asymptotic “in” state

|φin〉 = lim
z,z̄→0

φ(z, z̄)|0〉 . (1.3.2)

This is just the state-field correspondence, mentioned in ♠ above. Later on in this

section, we will use this correspondence to lift the representation properties of the

fields, onto the states. In this way, we will see that H can be decomposed into a

direct sum of (highest weight) representations of the underlying symmetry algebra.

In this Hilbert space we must also define an inner product, which we do indirectly

by defining an “out” state, together with the action of Hermitian conjugation on

conformal fields. In radial quantization this can be done via the mapping z → 1/z∗.

This almost justifies the following definition of Hermitian conjugation on the real

surface z̄ = z∗ (recall Remark 1.1.1).

φ(z, z̄)† = z̄−2hz−2h̄φ

(
1

z̄
,
1

z

)
, (1.3.3)

where φ is a quasi-primary field of dimension (h, h̄). Out-states then have the form

〈φout| = lim
z,z̄→0
〈0|φin

(
1

z̄
,
1

z

)
z̄−2hz−2h̄

= lim
z,z̄→0
〈0|φin(z, z̄)†

= lim
z,z̄→0

(φin(z, z̄)|0〉)†

= (|φin〉)† .

(1.3.4)

Then the inner product on H is

〈φout|φin〉 = lim
z,z̄→0
w,w̄→0

〈0|φ(z, z̄)†φ(w, w̄)|0〉

= lim
z,z̄→0
w,w̄→0

z̄−2hz−2h̄

〈
0

∣∣∣∣φ(1

z̄
,
1

z

)
φ(w, w̄)

∣∣∣∣ 0〉
= lim

ζ,ζ̄→∞
ζ̄2hζ2h̄〈0|φ(ζ̄ , ζ)φ(0, 0)|0〉 .

(1.3.5)
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Remark 1.3.2. Note, that according to the conformal two-point function

〈
φ1(ζ̄ , ζ)φ2(0, 0)

〉
=

C12

ζ2hζ̄2h̄
,

the last expression in (1.3.5) is independent of ζ and this justifies the prefactors

appearing in (1.3.3). If they were absent, the inner product 〈φout|φin〉 would not have

been well defined as ζ →∞. Note also that the passage from a vacuum expectation

value to a correlator in the last equation is correct since the operators are already

time-ordered within radial quantization. The first one is associated with t→∞ and

the second one with t→ −∞.

We can now define the action of the stress tensor T and its antiholomorphic

counterpart T̄ on the Hilbert space H , via their mode expansion

T (z) =
∑
n∈Z

z−n−2Ln , T̄ (z̄) =
∑
n∈Z

z̄−n−2L̄n . (1.3.6)

The exponent −n− 2 in (1.3.6) is chosen so that for the scale change z → z/λ, under

which T (z)→ λ2T (z/λ), we have L−n → λnL−n. The operators L−n, L̄−n, thus have

scaling dimension n. Equation (1.3.6) is formally inverted by the relations

Ln =
1

2πi

‰
dz zn+1T (z) , L̄n =

1

2πi

‰
dz̄ z̄n+1T̄ (z̄) , n ∈ Z . (1.3.7)

From (1.2.13) one can deduce that the modes fulfil the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m + c
12

(
n3 − n

)
δn+m,0[

Ln, L̄m
]

= 0[
L̄n, L̄m

]
= (n−m)L̄n+m + c

12

(
n3 − n

)
δn+m,0

. (1.3.8)

Note that the Virasoro algebra decomposes into holomorphic and antiholomorphic

parts. These are denoted by Vir and Vir, which are generated by the holomorphic

and antiholomorphic modes respectively3.

3Some times in the literature these are called chiral and antichiral or left and right moving parts.
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In this thesis we will assume c = c̄. In the case where c = 0 we retrieve the Witt

algebra. One can identify L−1 + L̄−1 and i
(
L−1 − L̄−1

)
as generators of translations,

L0 + L̄0 and i
(
L0 − L̄0

)
as generators of dilations and rotations respectively, while

L1 + L̄1 and i
(
L1 − L̄1

)
are generators of special conformal transformations.

The Virasoro algebra is infinite dimensional and it was originally discovered in

the context of string theory [Vir70]. To see how one can obtain equations (1.3.8), one

needs to employ a procedure for making contact between OPEs and commutators of

operator modes. The commutator of two contour integrations
[�
dz,
�
dw
]

is eval-

uated by first fixing w and deforming the difference between the two z integrations

into a single z contour drawn tightly around the point w, as in (1.2.9). In evaluating

the z contour integration, we may perform operator product expansions to identify

the leading behavior as z approaches w. The w integration is then performed without

further subtlety. For the modes of the stress-energy tensor, this procedure gives

[Ln, Lm] =
1

(2πi)2

[‰
dz ,

‰
dw

]
zn+1T (z)wn+1T (w)

=
1

(2πi)2

‰ ‰
dzdw zn+1wn+1

(
c/2

(z − w)4
+

2T (w)

(z − w)2

+
∂T (w)

z − w
+ reg(z − w)

)
=

1

2πi

‰
dw

(
c

12
(n+ 1)n(n− 1)wn−2wm+1

+ 2(n+ 1)wnwm+1T (w) + wn+1wm+1∂T (w)
)
.

(1.3.9)

Integrating the last term by parts and combining with the second term gives (n −
m)wn+m+1T (w), so performing the w integration, produces the required result.

The vacuum state |0〉 ∈ H must be invariant under global conformal transfor-

mations. This means that it must be annihilated by L−1,0,1 and L̄−1,0,1. This, in

turn, can be recovered from the condition that T (z)|0〉 and T̄ (z̄)|0〉 are well defined

as z, z̄ → 0, which implies

Ln|0〉 = 0 , L̄n|0〉 = 0 , n ≥ −1 . (1.3.10)
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From the state-field correspondence (1.3.2) we see that primary fields, when acting

on the vacuum, create asymptotic states. Performing the corresponding contour

integral with (1.2.12), we get the commutation relations

[Ln, φ(w, w̄)] = h(n+ 1)wnφ(w, w̄) + wn+1∂φ(w, w̄)[
L̄n, φ(w, w̄)

]
= h̄(n+ 1)w̄nφ(w, w̄) + w̄n+1∂̄φ(w, w̄)

. (1.3.11)

After applying these relations to the asymptotic state

|h, h̄〉 ≡ φ(0, 0)|0〉 , (1.3.12)

we take

L0|h, h̄〉 = h|h, h̄〉 , L̄0|h, h̄〉 = h̄|h, h̄〉 . (1.3.13)

Thus, |h, h̄〉 is an eigenstate of the Hamiltonian4. Similarly,

Ln|h, h̄〉 = L̄n|h, h̄〉 = 0 , n ∈ N . (1.3.14)

The Hilbert space thus decomposes into highest weight representations of Vir⊕Vir

of the form (1.3.1). Each module is spanned by a highest weight state |h, h̄〉 and an

infinite set of descendent states of the form Lm1 . . . L̄n1 . . . |h, h̄〉, with all m,n < 0.

Once we know the central charge c, of the theory and the conformal weights
(
h, h̄
)
, of

all primary fields, we can construct the Hilbert space. However, some care has to be

taken in the construction of a basis, since not all products of L’s and L̄’s are linearly

independent.

The inner product (1.3.5) of two highest weight states |i〉 and |j〉, simply is

〈i|j〉 = δij . (1.3.15)

If we Hermitian conjugate T and T̄ and restricting to the real surface z̄ = z∗, we get

L†n = L−n , L̄†n = L̄−n , (1.3.16)

This relation together with the Virasoro algebra and highest weight condition can be

used to write the inner product of an arbitrary pair of fields in terms of the inner

product of primary fields.

4As will be seen later, the Hamiltonian is proportional to L0 + L̄0 − c
12 .
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Let M(c, h) be a highest weight representation of Vir, then M(c, h) has the de-

composition [KR, Sect. 3.2]

M(c, h) =
⊕
N∈N

M(c, h)h+N , (1.3.17)

where M(c, h)h+N is the (h+N)-eigenspace of L0, spanned by vectors of the form

L−k1 . . . L−kn|h〉 , 1 ≤ k1 ≤ . . . ≤ kn , (1.3.18)

where h+N = h+k1 + . . .+kn is the L0 eigenvalue of (1.3.18). The number N ∈ N is

called the level of the state. Therefore, the operator L0, acts as a grading operator on

the Vir-module M(c, h). The states (1.3.18) are called descendants of the asymptotic

state |h〉. The number of states at level N is simply the number p(N) of partitions

of the integer N . p(N) is given in terms of the generating function

1

ϕ(q)
:=

∞∏
n=1

1

1− qn
=

∞∑
N=0

p(N)qN , (1.3.19)

where p(0) ≡ 1 and ϕ(q) is Euler’s function.

The subset of the full Hilbert space generated by the asymptotic state |h〉 and its

descendants is closed under the action of the Virasoro generators and thus forms a

Vir-module. If all the states of the form (1.3.18) in a highest weight representation

of Vir are linearly independent, then this highest weight representation is called a

Verma module, denoted by V (c, h). Starting from a highest-weight state |h〉 ∈ V (c, h),

one can build the set of states given in the following table.
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Level Dimension State

0 h |h〉

1 h+ 1 L−1|h〉

2 h+ 2 L−2|h〉, L2
−1|h〉

3 h+ 3 L−3|h〉, L−1L−2|h〉, L3
−1|h〉

4 h+ 4 L−4|h〉, L−1L−3|h〉, L2
−1L−2|h〉, L2

−2|h〉, L4
−1|h〉

...
...

...

N h+N p(N) states

Table 1.1: Basis for the Verma module V (c, h).

The states in Table 1.1 form a basis for the Verma module. If among the vectors of

a Verma module there exist states |χ〉 which are also highest weight states, Ln|χ〉 = 0

for all n ∈ N, then these states are called null states and are orthonormal to all the

other states in the module. In particular for a null state we have 〈χ|χ〉 = 0. We will

call a null state, singular, if it is not the descendent of a null state. The fields φ ∈ F

that correspond to the states |h〉 ∈H in Table 1.1, arise from repeated OPEs of the

primary field φ with T (z), and constitute the conformal family [φ] of φ.

Now that we know all the states in the Hilbert space, and thus all the primary and

descendent fields, we can write down the OPE of two primary fields. Let us consider

(1.2.16) with φi and φj primary fields, and group together all the secondary fields

belonging to the conformal family [φp] in the summation to write

φi(z, z̄)φj(w, w̄) =
∑
p,{k,k̄}

C
p{k,k̄}
ij z(hp−hi−hj+

∑
` k`)z̄(h̄p−h̄i−h̄j+

∑
` k̄`)φ{k,k̄}p (w, w̄) .

(1.3.20)

Here, we have labeled the descendants L−k1 . . . L−knL̄−k̄1
. . . L̄−k̄mφp of a primary field

φp by φ
{k,k̄}
p , and we assume the normalization (1.2.15). Performing a conformal
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transformation on both sides of (1.3.20) and comparing terms, one can show that

C
p{k,k̄}
ij = C p

ij β
p{k}
ij β̄

p{k̄}
ij , (1.3.21)

where the constants C p
ij are the structure constants. They are the only nontrivial

input in the OPE, in the sense that the structure constants are not directly fixed by

the representation theory of the Virasoro algebra. The numbers β, β̄ are determined

by the representation properties of the fields and may be calculated in terms of the

h’s, h̄’s and c, see [BPZ84] for detals.

We thus see that the data needed to specify a 2D CFT are given by
(
hi, h̄i, c

)
and the structure constants C p

ij between the primary fields. Everything else follows

from the values of these parameters, which themselves cannot be determined by the

conformal symmetry alone. However, as we will see in Sect. 3.5.2 one can construct

a full CFT from its correlation functions, using the machinery of three dimensional

topological field theory.

1.4 Modular Invariance

The CFT on the full complex plane we formulated up to now, decouples into holomor-

phic and antiholomorphic sectors. In fact, the two sectors may describe two distinct

theories since they do not interfere. However this situation is very unphysical.

The decoupling exists only at the fixed point in parameter space (the conformally

invariant point) and in the infinite plane geometry. One, therefore, can solve this

problem by coupling the holomorphic and antiholomorphic sectors of the theory,

through the geometry of space, on which the theory is defined. In this way, one

imposes physical constraints on the holomorphic-antiholomorphic content of a CFT

without leaving the fixed point. The infinite plane is topologically equivalent to the

Riemann sphere, i.e. the Riemann surface of genus g = 0. One may study CFTs

on Riemann surfaces of arbitrary genus g. The simplest non-spherical case is that

of genus g = 1, i.e. a torus, which is equivalent to a plane with periodic boundary

conditions, in two directions.
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More precisely, consider the map (1.2.5), from the cylinder to the complex plane.

We now want the inverse procedure, i.e. to go back to the infinite cylinder from which

we can construct a torus of length R, by cutting a segment of the cylinder and by

gluing the two boundaries of the segment together. In terms of CFT this means that

one has to sum over intermediate states. The Hamiltonian and the momentum oper-

ators then propagate states along different directions of the torus and the spectrum

of the theory is encoded in the partition function.

Consider now the map z 7→ w(z) = L
2πi

ln z, from the complex plane parameter-

ized by z, to the infinite cylinder of circumference L, parameterized by w. On the

cylinder, time translations are movements in the imaginary direction, generated by

the Hamiltonian

Hcyl =

ˆ L

0

Ttt dx = −
‰ (

dw T (w) + dw̄ T̄ (w̄)
)
. (1.4.1)

The transformation law (1.2.14) of the stress tensor, gives

T (w) =

(
2πi

L

)2 (
z2T (z)− c

24

)
, (1.4.2)

with a similar expression for T̄ . Then by changing integration variables, dw = L
2πi

1
z
dz,

we obtain the action of Hcyl in the Hilbert space of the complex plane

Hcyl = −2πi

L

‰ {
dz

(
zT (z)− c

24

1

z

)
+ dz̄

(
z̄T̄ (z̄)− c

24

1

z̄

)}
=

2π

L

(
L0 + L̄0 −

c

12

) . (1.4.3)

In taking the last expression, we used (1.3.7) and the fact that
�
dz 1

z
= 2πi. As

one can see, for the Hamiltonian (1.4.3) to be bounded from below, the Hilbert space

must decompose into the direct sum of highest weight representations of Vir ⊕Vir

as in (1.3.1).

The partition function of the theory on the torus is given as the trace over the

whole space of states

Z(τ, τ̄) = TrH

(
e−RHcyl

)
= TrH

(
qL0− c

24 q̄L̄0− c
24

)
, (1.4.4)
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where q = e2πiτ and τ = iR/L, is called the modular parameter of the torus. Since

the tori that are described by τ and Aτ , for A ∈ SL(2,Z)/Z2 are equivalent, the

partition function is invariant under the modular transformations

T : τ → τ + 1 , S : τ → −1

τ
. (1.4.5)

of the modular parameter τ . The group SL(2,Z)/Z2, is isomorphic to the modular

group Γ, generated by (1.4.5). Note that the modular group will keep τ on the upper

half plane. If we decompose the Hilbert space into representations of Vir ⊕Vir by

(1.3.1), we can rewrite the partition function (1.4.4) as

Z(τ, τ̄) =
∑
i,̄∈I

Mi̄χi(τ)χ̄̄(τ̄) , (1.4.6)

where Mi̄ ∈ N0 is the multiplicity of occurrence of Ri ⊗ R̄̄ in H and

χi(τ) = TrRi
(
qL0− c

24

)
, χ̄̄(τ̄) = TrR̄̄

(
q̄L̄0− c

24

)
, (1.4.7)

are the Virasoro characters of the irreducible representations forming the Hilbert

space of the theory. The characters transform into one another under the modular

transformations (1.4.5) as

χi(τ + 1) =
∑
j∈I

Tijχj(τ) , χi

(
−1

τ

)
=
∑
j∈I

Sijχj(τ) , (1.4.8)

where T and S are constant matrices, called the modular matrices and they are sym-

metric and unitary. Thus the torus partition function is modular invariant provided

that ∑
i,̄∈I

SilMi̄S̄̄k̄ =
∑
i,̄∈I

TilMi̄T̄̄k̄ = Mlk̄ . (1.4.9)

The case where Mi̄ = δi̄, is called the Cardy case.

1.5 Fusion Algebra and the Verlinde Formula

The action of the Virasoro generators on the product of two primary fields, preserves

the Virasoro algebra and endows the tensor product of the representations with the
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structure of a representation. This leads to a natural product on representations,

called the fusion product, which constrains the fields that appear in the OPE. The

consistency of the OPE (1.3.20) with the existence of null vectors leads to the fusion

algebra of the CFT [Ca04]

Ri ⊗Rj =
∑
k∈I

N k
ij Rk , (1.5.1)

where N k
ij ∈ N0 are the fusion numbers. This applies separately to the holomorphic

and antiholomorphic sectors and determines how many copies of Rk occur in the

fusion of Ri with Rj. The fusion algebra is commutative, associative and contains an

identity given by the vacuum representation R0.

Consistency of the CFT on the torus implies that the fusion numbers are given in

terms of particular products of matrix elements of the modular matrix

N k
ij =

∑
l∈I

SilSjlS̄kl
S0l

. (1.5.2)

This is the so called Verlinde formula [Ver88]. In this thesis, we will make the

simplifying assumption that N k
ij ∈ {0, 1}. In full generality, the fusion numbers

may be larger than one, but it is not so for the Virasoro minimal models (that we

will study in Sect. 1.7). This reflects the absence of multiplicity greater than one in

ordinary tensor products of representations of su(2) [BYB, footnote p. 125].

1.6 Rational Conformal Field Theory

In Section 1.5, we gave an explicit relation between the modular transformation S
of the characters and the fusion numbers N which proves to be a very general fact.

This naturally leads to the concept of rational conformal field theory (RCFT). These

are CFTs, whose Hilbert space contains only a finite number of irreducible highest

weight representations, of the symmetry algebra. The term “rational” is because

if there are only a finite number of primary fields then the conformal weights are
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all rational numbers [Va88, AM88]. RCFTs may contain an infinite number of Vi-

rasoro representations, but these can be reorganised into a finite set of irreducible

representations corresponding to an extended symmetry algebra. Actually the only

theories that contain only a finite number of Virasoro irreducible representations, are

the Virasoro minimal models. For a condensed panoramic view of the development

of two-dimensional RCFT in the last twenty-five years see [FRS10], or for a lightning

review of RCFT see [GW03, Sect. 2].

Consider now a RCFT whose Hilbert space H decomposes into a finite number

of irreducible representations

H =
⊕
i,j∈I

(Ri ⊗ R̄j)
Mij , (1.6.1)

of a chiral algebra V, such that Vir ⊂ V. On the set I, indexing the representations

Ri, we assume there is the charge conjugation (i∨)∨ = i, which preserves the conformal

weights and the fusion numbers

hi = hi∨ , N k
ij = N k∨

i∨j∨ . (1.6.2)

From this we define the charge conjugation matrix as

Cij = δij∨ . (1.6.3)

The charge conjugation matrix can be used to raise and lower indices (just like the

metric tensor). The modular matrix satisfies

S2 = C , Sij∨ = S̄ij . (1.6.4)

This requires that the characters, under modular transformations must transform as

χi(q) =
∑
j∈I

Sijχj(q̃) , χi(q̃) =
∑
j∈I

Sij∨χj(q) =
∑
j∈I

S̄ijχj(q) , (1.6.5)

where q = e2πiτ and q̃ = e−2πi/τ . The fusion numbers also satisfy the following

identities

N k
ij = N k

ji ,
∑
k∈I

N k
ij N r

kl =
∑
k∈I

N k
il N

r
kj , N j

0i = δij , N 0
ij = δij∨ . (1.6.6)
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Note, that the commutativity and associativity of the fusion rules is reflected in the

first and second identities respectively.

1.7 Minimal Models

A class of theories that are among the simplest CFTs are the Virasoro minimal

models. These were introduced by Belavin, Polyakov and Zamolodchikov [BPZ84].

The minimal models are theories whose Hilbert space consists of a finite number of

representations of the Virasoro algebra. The simplicity of minimal models allows for

a complete solution and they were classified in [CIZ87]. The discovery of minimal

models and their identification with statistical models at criticality, is the greatest

application of conformal invariance so far. In this section we will discuss a selection

of facts about minimal models and in the next subsection we will introduce the Lee-

Yang model, which will be one of the main examples when we will discuss perturbed

defects later on. The reader interested in more details on minimal models, may refer

to the choice of texts mentioned in the beginning of Chapter 1.

The minimal models exist for specific values of the central charge for which the

OPE of the fields closes even if the theory contains a finite number of primary fields.

The allowed values for the central charge are given by

c = 13− 6
(
t+ t−1

)
, t ∈ Q+ −N− 1/N . (1.7.1)

In other words the central charge is parametrised by a rational number t = p/q with

p, q ∈ Z≥2 that have no common divisor. We denote these models by M(p, q) and they

are unitary if p = q±1. Furthermore, the highest weight irreducible representations of

Vir can be organised in a (p−1)×(q−1) table, called the Kac table. If r ∈ {1, ..., p−1}
and s ∈ {1, ..., q − 1}, then the corresponding highest weights are given by

hr,s =
1

4t

(
(r − st)2 − (1− t)2

)
. (1.7.2)

Each representation with highest weight h and central charge c contributes to the

Virasoro characters (1.4.7). These representations contain null states and in order
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to obtain irreducible representations one must quotient out these states, then the

characters are given by

χr,s(q) =
qhr,s−

c
24

ϕ(q)

∑
n∈Z

(
qn(npq+qr−ps) − qn(npq+qr+ps)+rs

)
. (1.7.3)

These under the modular transformation τ 7→ −1/τ , transform into each other ac-

cording to (1.6.5), with the modular matrix given by

S(r,s),(r′,s′) = 2
3
2 (pq)−

1
2 (−1)1+rs′+sr′ sin

(
πqrr′

p

)
sin

(
πpss′

q

)
. (1.7.4)

Note that S2 = 1.

1.7.1 The Lee-Yang Model

In this section, following [MR09, Sect. 4.1], we fix our conventions for the Lee-Yang

model. This is the non unitary Virasoro minimal model M(2, 5) of central charge

c = −22/5. The two irreducible highest weight representations of the Virasoro al-

gebra that lie in the Kac table have highest weights h(1,1) = h(1,4) = 0 and h(1,2) =

h(1,3) = −1/5. We will abbreviate 1 = (1, 1) and φ = (1, 2), and we will denote

the corresponding representations by R1 (for h = 0) and Rφ (for h = −1/5). The

characters of R1 and Rφ are (see e.g. [Na04])

χ1(τ) = TrR1q
L0−c/24 = q11/60

∏
n≡52,3

(1− qn)−1 = q11/60(1 + q2 + q3 + q4 + . . . ) ,

χφ(τ) = TrRφq
L0−c/24 = q−1/60

∏
n≡51,4

(1− qn)−1= q−1/60(1 + q + q2 + q3 + 2q4 + . . . ) ,

(1.7.5)

where a ≡n b is a shorthand notation for a ≡ b (mod n) and q = e2πiτ . The products

are from n = 1 to infinity with the restriction modulo 5 as shown. Under the modular

transformation τ 7→ −1/τ they transform as χi(−1/τ) =
∑

j∈{1,φ} Sij χj(τ) with

S =

(
S11 S1φ

Sφ1 Sφφ

)
= − 1∣∣√d+2

∣∣
(

1 d

d −1

)
, (1.7.6)
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where

d =
1−
√

5

2
= −0.618 . . . . (1.7.7)

The space of states of the Lee-Yang model is

H = R1 ⊗C R1 ⊕ Rφ ⊗C Rφ . (1.7.8)

The partition function

Z(τ) = TrH

(
qL0−c/24q̄L̄0−c/24

)
= |χ1(τ)|2 + |χφ(τ)|2 , (1.7.9)

is modular invariant, as it should be.
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Chapter 2

Defects and Defect Operators

In this chapter, we introduce the notion of defect lines (or simply defects). To each

such defect, one can associate an operator in the space of states. These operators are

called defect operators and they will play a very important role in this thesis. Before

we go into further details it will be good at this point to mention a few reasons why

defects are important.

When introducing a boundary into the system under consideration, two new ingre-

dients appear: conformal boundary conditions and boundary fields, see for example

[Ca89] and for a review [Ca04, Ca08]. Conformal boundary conditions describe a

universality class of boundary critical behavior. A conformal defect is a universality

class of critical behavior at a one dimensional junction of two such quantum systems.

For example, the authors of [OA97] used the better understood boundary theory to

deduce facts about defects. In particular, they found in the critical two dimensional

Ising model with a defect line, the complete spectrum of boundary operators, exact

two-point correlation functions and the universal term in the free energy of the defect

line. It was also conjectured that all the possible universality classes of defect lines

in the Ising model were found.

Defect lines can also describe duality symmetries, as in [FFRS04] for example,

where it was shown that the fusion algebra of conformal defects of a 2D-CFT contains

information about the internal symmetries of the theory and allows one to read off
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generalisations of Kramers-Wannier duality [KW41]. Furthermore, in [FGRS07] it

was also shown that the isomorphism between two T -dual free boson CFTs can be

described by the action of a topological defect (to be defined in Sect. 2.1), and hence

that T -duality can be understood as a special type of order-disorder duality.

Defects, also appear in higher dimensional field theory. They provide more observ-

ables in gauge theories, ‘surface operators’, see for example [GuWi07, KT09, KaWi07].

Furthermore, defects provide an alternative point of view of orbifold theories, as well

as a generalisation thereof [FFRS09].

Defects have also applications to quantum wires, domain walls in string theory,

other works focused on general constructive methods or structural implications and

finally, there are also articles which have originally been written in a different con-

text but have implications for the study of defect systems. For those interested, see

[QRW07] and references therein for a more extensive list of references.

2.1 Topological and Conformal Defects

A defect line is a line of inhomogeneity on the surface on which the CFT is defined,

where fields can have discontinuities or singularities. A defect is characterised by a

‘defect condition’ in the same way a boundary of a system which is described by a

boundary state |b〉〉, is characterised by a boundary condition. In particular, when the

boundary is conformally invariant, the boundary state |b〉〉 must satisfy the condition(
Ln − L̄−n

)
|b〉〉 = 0.

To formulate the analogous ideas for defects, we first define what we call a defect

operator. To do this, consider a CFT on a cylinder and denote by H the space of

states on a circle. A defect line a that goes around the cylinder gives rise to a linear

operator Da : H →H , called a defect operator.

Definition 2.1.1. A defect a is said to be conformal if the corresponding defect
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operator Da obeys [
Ln − L̄−n, Da

]
= 0 , ∀n ∈ Z . (2.1.1)

A special class of solutions to this condition is provided by totally transmitting

defects, also known as topological defects. Such defects were first investigated in the

context of rational CFT in [PZ01a] and were termed topological defects in [BG04]:

Definition 2.1.2. A defect a is said to be topological if the corresponding defect

operator Da obeys

[Ln, Da] = 0 =
[
L̄n, Da

]
, ∀n ∈ Z . (2.1.2)

This means that the holomorphic and anti-holomorphic components of the stress

tensor are continuous across the defect line. As a consequence, the defect line is

tensionless and can be deformed without affecting the value of correlators on the

cylinder, as long as it is not taken across field insertions or other defect lines [BG04].

2.2 Petkova’s and Zuber’s Defect Lines

In Sect. 1.4, we saw that the partition function (1.4.4) of the theory on the torus is

given as the trace over the whole space of states and is modular invariant. In this

section, we consider the set of partition functions which result by inserting defects in

our theory. These defects are compatible with conformal invariance in two dimensions

and in particular they are topological defects, i.e. the corresponding defect operators

satisfy (2.1.2). However, the partition function with defect insertions is not modular

invariant, but one can find a consistency condition by using the modular transforma-

tion properties of the characters. In [PZ01a] the above procedure was used to show

that the consistency equation gives a classification of defects and it was solved in

particular cases. In this section we follow [PZ01a] to show that the fusion rules of

two defects are just the fusion rules of the representations of the underlying chiral

algebra.
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Consider a RCFT with a chiral (vertex) algebra V (the Virasoro algebra or one

of its extensions). Furthermore, suppose this RCFT has a Hilbert space of the form

(1.3.1). In order to study this CFT, we will use the techniques described in Sect. 1.4,

but this time we want to insert one or more defects in our theory. Thus, consider

a cylinder of circumference L and insert one or more defect lines along its non-

contractible cycles. As an example, consider two defects with opposite orientation

and along the imaginary direction of the cylinder. These are described by a and a†

respectively. That is, a† is the same defect line as a, but with its orientation reversed

relative to a. Then if we identify the two boundaries of the cylinder we take a torus:

a†

a

Identify −→

a†

a

To each defect line a we associate a defect operator Da : H →H . Then, as in the

boundary case and Cardy’s condition [Ca89], there are also a number of consistency

conditions which must be satisfied by the operator Da. To formulate these conditions,

one first notes that as a consequence of (2.1.2), Da is a sum of projectors,

P (i,̄;α,α′) :
(
Ri ⊗C R̄̄

)(α′) →
(
Ri ⊗C R̄̄

)(α)
, (2.2.1)

intertwining the different copies of Ri ⊗C R̄̄ ⊂H , where α, α′ ∈ {1, 2, ...,Mi̄} allow

for repeated representations in the Hilbert space. If {|i,n〉 ⊗ |̄, n̄〉} is an orthonormal

basis of Ri ⊗C R̄̄ labelled by multi-indices n, n̄, we may write

P (i,̄;α,α′) =
∑
n,n̄

(|i,n〉 ⊗ |̄, n̄〉)(α) (〈i,n| ⊗ 〈̄, n̄|)(α′) . (2.2.2)
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There are
∑

i,̄∈I |Mi̄|2 many different projectors P (i,̄;α,α′), because α, α′ can take Mi̄

different values. The projectors satisfy,

P (i,̄ı;α,α′)P (j,̄;β,β′) = δijδı̄̄δα′βP
(i,̄ı;αβ′) . (2.2.3)

and they are required to be Hermitian,(
P (i,̄;α,α′)

)†
= P (i,̄;α′,α) . (2.2.4)

This corresponds to interpreting the defect line a† described by D†a as having opposite

orientation relative to the line a described by Da.

The most general linear combination of these operators is

Da =
∑
i,̄∈I

Ψ
(i,̄;α,α′)
a√
S0iS0̄

P (i,̄;α,α′) , (2.2.5)

where Ψ is an a priori arbitrary complex n× n matrix, n =
∑

i,̄∈I(Mi̄)
2. To under-

stand this, recall from above that the P ’s form a basis of all intertwiners from H

to H and there are
∑

i,̄∈I |Mi̄|2 such P ’s. The Ψ
(i,̄;α,α′)
a are a basis transformation,

where (i, ̄;α, α′) is thought of as one index taking n values and a as the other taking

n values as well.

From now on we drop the indices α, α′ for notational convenience.

A consistency condition is found by considering a pair of defect lines a and b,

wrapping a canonical cycle on a torus. Using a Hamiltonian picture with time moving

perpendicular to the defect lines, the torus partition function may be written as

Za|b := TrH

(
D†aDbq̃

L0−c/24 ˜̄qL̄0−c/24
)

=
∑
i,̄∈I

(
Ψ

(i,̄)
a

)∗
Ψ

(i,̄)
b

S0iS0̄

χi (q̃)χ̄ (˜̄q) , (2.2.6)

where q̃ = e2iπτ̃ . A second representation of the same partition function may be

obtained by considering time running parallel to the defect lines. In this case, condi-

tion (2.1.2) for the defect line, ensures one may still construct two sets of generators

Ln and L̄n satisfying the Virasoro algebra (or more generally the chiral algebra V).

Hence, the Hilbert space decomposes into irreducible representations,

Ha|b =
⊕
i,̄∈I

(
Ri ⊗C R̄̄

)⊕V b
i̄;a , (2.2.7)
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for some non-negative integers V b
i̄;a . Thus, the partition function becomes,

Za|b := TrHa|b

(
qL0−c/24q̄L̄0−c/24

)
=
∑
i,̄∈I

V b
i̄;a χi(q)χ̄ (q̄) . (2.2.8)

One can equate these two expressions for the partition function, using the modular

transformation properties of the characters, to obtain the consistency equation

V b
i̄;a =

∑
k,l̄∈I

SikS̄l̄
S0kS0l̄

Ψ(k,l̄)
a Ψ

∗(k,l̄)
b . (2.2.9)

Although the methods presented below can be applied to general RCFTs, here

(and for the rest of this thesis) we only consider the Cardy case (Mi̄ = δi̄), for our

purpose, so (1.3.1) becomes

H =
⊕
i∈I

Ri ⊗C R̄i . (2.2.10)

Because of (2.1.2) the defect operator Da for a ∈ I will act as a multiple of the

identity on each sector Ri ⊗C R̄i, and taking into account (2.2.5) it follows that

Da |Ri⊗CR̄i=
Ψ

(i)
a

S0i

idRi⊗CR̄i , (2.2.11)

that is P (i) = idRi⊗CR̄i is the projector in Ri⊗CR̄i. However, D0 := 1 =
∑

i∈I idRi⊗CR̄i ,

for which Ψ
(i)
0 = S0i. This suggests the ansatz Ψ

(i)
a = Sai, which satisfies the consis-

tency equation (2.2.9) with

V b
ij;a =

∑
k∈I

SikSjk
S0kS0k

SakS̄bk =
∑
c,k,l∈I

SikSakS̄ck
S0k

SclSjlS̄bl
S0l

=
∑
c∈I

N c
ia N

b
cj . (2.2.12)

and V b
ij;0 = N b

ij . Therefore, the resulting fusion rules of the defects are

DaDb =
∑
i,j∈I

SaiSbj
S0iS0j

P (i)P (j) (1)
=
∑
i∈I

SaiSbi
S0iS0i

P (i) (2)
=
∑
i,k,c∈I

SaiSbiS̄ci
S0i

Sck
S0k

P (k) (3)
=
∑
c∈I

N c
ab Dc ,

(2.2.13)

where in step (1) we used (2.2.3), in step (2) the fact that S is unitary and finally in

(3) Verlinde’s formula (1.5.2).
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Therefore, we see that defects are labeled by irreducible representations of the

chiral algebra V, and hence, their fusion rules are just the fusion rules for the repre-

sentations of V. Thus, to summarise our results, we have

Da |Ri⊗CR̄i=
Sai
S0i

idRi⊗CR̄i and DaDb =
∑
c∈I

N c
ab Dc . (2.2.14)

2.3 Defect Fields and Perturbed Defect Operators

Similar to boundary conditions and boundary fields, one can also consider defect fields

which live on the defect line. For example, if we consider a defect field φ of weight

(hφ, 0), inserted on a defect line a on the cylinder, we have the following picture

φ

a (2.3.1)

which represents a segment of the cylinder. In addition to defect fields inserted on a

defect line a, one can also consider defect-changing fields φa←b which change a defect

of type b to a defect of type a:

φa←b

b a (2.3.2)

The space H a←b of defect changing fields decomposes into representations of V⊗C V̄
as

H a←b =
⊕
i,j∈I

(
Ri ⊗C R̄j

)⊕(
∑
c∈I N

c
ij N

b
ca )

, (2.3.3)

with the multiplicity given by (2.2.12). Then the space of bulk fields H =
⊕

i,̄∈I Ri⊗C
R̄̄, is the space of defect fields living on the invisible defect (labeled by R0), so that

H = H 0←0 [Ru08].

We will be interested in perturbing a defect of type a by a chiral defect field, that

is by a field φa←a, of weight (h, 0). The reason one perturbs with a chiral field of
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weight (h, 0) is that it can be shown that the defect commutes with the hamiltonian

[Ru08]. Consider now a cylinder with a defect of type a placed on the circle wrapping

the cylinder at R + z, for z ∈ C. Then the corresponding perturbed defect operator

for Da placed on the line R+ z, for z ∈ C, is denoted by Da (λφa←a) for some λ ∈ C
and is obtained by inserting the exponential exp

(
λ
´ 2π

0
φa←a(x+ z) dx

)
on the defect

line. Explicitly,

Da (λφa←a; z) =
∞∑
n=0

λn

n!

ˆ 2π

0

dx1 · · · dxn Da(x1, . . . , xn; z)

=
a

+ λ

ˆ 2π

0

dx1

φa←a

+
λ2

2

ˆ 2π

0

dx1dx2

φa←a

φa←a +
λ3

6

ˆ 2π

0

dx1dx2dx3

φa←a φa←a

φa←a + · · ·

(2.3.4)

where the defect fields are inserted at the points z+ x1, . . . , z+ xn on the defect line.

Remark 2.3.1. To understand the physical meaning of the exponential, consider the

path integral description of a field theory [BYB, Sect. 2.4.3] with a field φ and an

action S[φ]. Then consider the general unperturbed correlation function

〈φ(x1) · · ·φ(xn)〉0 =
1

Z

ˆ
Dφ φ(x1) · · ·φ(xn)e−S[φ] ,

where Z is the vacuum functional. One can modify the action by terms localised on

a line. For example, if φ lives on a cylinder of circumference L, one could replace

S[φ] by S[φ] +
´ L

0
V (φ(x)) dx for some potential V . More explicitly, the correlation

function in the perturbed mode would be

〈φ(x1) · · ·φ(xn)〉pert =
1

Zpert

ˆ
Dφ φ(x1) · · ·φ(xn)e−(S[φ]+

´ L
0 V (φ(x)) dx) .
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Observe now that 〈φ(x1) · · ·φ(xn)〉pert = 〈φ(x1) · · ·φ(xn)e−
´ L
0 V (φ(x)) dx〉0. Thus the

perturbed correlator is obtained by inserting e−
´ L
0 V (φ(x)) dx into the unperturbed one.

This is an example of a perturbed defect, where, however, the initial ‘defect’ is trivial.

Generally, one expects that if φ, φ̄ has conformal weight hφ, h̄φ̄ < 1
2

then the

multiple integrals in (2.3.4) converge, but we do not have a proof for that, see Sect.

5.2 for more details. Furthermore observe that

∂

∂z̄
Da (λφa←a; z) = 0 , (2.3.5)

since φa←a is a chiral field; therefore ∂
∂z̄

annihilates each of the summands on the right

hand side of (2.3.4). If one also performs a change of integration parameters in (2.3.5)

we see that Da (λφa←a; z) = Da (λφa←a; z + x). Combining these two observations it

follows that
∂

∂y
Da (λφa←a; iy) = 0 , y ∈ R . (2.3.6)

This means that one can move the perturbed defect along the cylinder without affect-

ing the correlator under consideration, as long as the defect line does not cross any

field insertions or other defect lines. Note also that Da (λφa←a) still commutes with

the anti-holomorphic modes of the chiral algebra and due to the simple decomposition

(2.2.10) it has no choice but to also preserve the holomorphic representation. Thus

it maps each sector Ri ⊗C R̄i to itself.

2.4 Chirally Perturbed Topological Defects with

su(2)-type Fusion Rules

In Sect. 2.2 we saw that topological defects inserted on a cylinder obey the fusion

algebra of the representations of the underlying chiral algebra of the CFT. This al-

gebra tells us how to fuse two or more of these defects and that the result will be a

superposition of such defects. Furthermore, since the corresponding defect operators
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act as multiples of the identity on each sector of Ri ⊗C R̄i, then two such defect

operators mutually commute1

[Da, Db] = 0 , ∀a, b ∈ I . (2.4.1)

Thus, one sees that the fusion algebra of defects is a commutative algebra. How-

ever, this is not always the case. If one switches on a perturbation in the system,

then the algebra is in general not commutative, since, the corresponding perturbed

defect operators do not act as multiples of the identity on each sector Ri ⊗C R̄i any-

more. However, as it was shown in [Ru08] there are special cases where there can

be exceptions. It was also shown in [Ru08] that if the unperturbed defects satisfy

su(2) type fusion rules, then the operators associated to the perturbed defects obey

functional relations known from the study of integrable models as T-systems. These

functional relations are useful because, together with certain assumptions on their

analytic properties, they can be solved in terms of a set of integral equations known

as the thermodynamic Bethe ansatz [Za90], see [DDT07] for a review. This result can

be used to explain the behaviour of the perturbed disc amplitudes, but it contains

much more information than that since the defect operators act on all bulk states,

not just on the ground state. In this section, we briefly review the results (and in

most cases we just state them) of [Ru08] since they will play an important role in the

work presented in this thesis.

As we saw in Sect. 1.4 the hamiltonian of a CFT on a cylinder of circumference

L is given by (1.4.3). Since the defects are topological, then [Hcyl, Da] = 0 and

therefore we can move a defect along the cylinder without affecting the correlator

under consideration, as long as the defect line does not cross any fields or other

defect lines. If two topological defects, a and b are inserted on adjacent loops on the

cylinder, they can be fused into a single defect, denoted by a?b, without encountering

1As an aside it is worth pointing out that all defects preserving V⊗C V̄ commute if and only if
Mij ∈ {0, 1} for all entries of the modular matrix, specifying the decomposition of the space of bulk
states cf. [Ru08, Sect. 2.5] and references therein.
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a singularity.

a

b

Fusion−−−−−→ a?b

Defect lines can form junctions, for example when fusing two defects not along

their entire length, but only along a segment. (A defect junction can alternatively be

thought of as an insertion of a ‘defect-joining field’ of left/right conformal dimension

0.) The space of possible couplings joining two incoming defects a and b to an out-

going defect c is N c
ab -dimensional [FFRS07]. The same holds when the roles of in-

and out-going defects are reversed. In the nonzero coupling spaces (i.e. if N c
ab = 1)

we choose, once and for all, basis elements such that

a

b

c

= c (2.4.2)

Equation (2.4.2) means that a ‘defect bubble’ without defect field insertions and which

does not enclose any bulk fields can be omitted from the defect line. The identity

(2.4.2) is valid locally on the surface under consideration in the sense that if the left

hand side appears as part of a correlator, it can be replaced by the right hand side

without affecting the value of the correlator.
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Next, when fusing two defects along a segment one has the identity [FFRS07]

a

b

=
∑
c∈I

a

b

a

bc

(2.4.3)

Here it is understood that the coupling of the defects a and b to c is zero if N c
ab = 0.

When collapsing a defect-bubble in the presence of defect fields, one finds the

identities (see [Ru08, App. A.2])

φd←c

φa←b

ab

e

d c

=
ηab

ηcd
G

(fae)d
bc d c

φd←c

φc←d
(2.4.4)

as well as

φd←c

φa←b
ab

e

d c

=
ηab

ηcd
G

(fae)d
bc

R(be)d

R(ae)c
d c

φd←c

φc←d

(2.4.5)
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where ηab ∈ C describes the normalisation of φa←b, G is the inverse of the fusing matrix

F and R is the braiding matrix. The F-matrix (as well as G) are the coefficients

of a basis transformation in the category of representations of the VOA built on

the vacuum representation R0 (a so called ribbon category), while R interchanges

two objects in the category, see Sect. 3.3 for a proper definition of G,F,R. Note

also that the superscript f ∈ I in G labels a fixed preferred representation and

φa←b ∈ Rf ⊗C R̄0 ⊂H a←b.

On a superposition a + b of defects, apart from perturbing by the defect fields

φa←a and φb←b one can also perturb by the defect changing fields φa←b and φb←a. The

corresponding defect operator is

Da+b

(
λaaφ

a←a + λbbφ
b←b + λabφ

a←b + λbaφ
b←a) . (2.4.6)

However, φa←b(x)φa←b(y) = 0 and φa←b(x)φa←a(y) = 0 and hence every φa←b insertion

must be paired with a φb←a insertion, see (2.4.4) and (2.4.5) for example. In particular,

if only φa←b is involved in the perturbation, but not φb←a, no terms involving the defect

changing field can contribute to the expansion of the exponential in the perturbed

operator. Thus we have the identity

Da+b

(
λaaφ

a←a + λbbφ
b←b + λabφ

a←b) = Da+b

(
λaaφ

a←a + λbbφ
b←b) . (2.4.7)

Since the right hand side contains no contribution mixing the two defects, the per-

turbed operator is just the sum of the two individual perturbations,

Da+b

(
λaaφ

a←a + λbbφ
b←b + λabφ

a←b) = Da (λaaφ
a←a) +Db

(
λbbφ

b←b) . (2.4.8)

Suppose now that the unperturbed defects a and b fuse to a? b = c1 + . . .+ cn. To

compute the result of the fusion in the perturbed case, we expand out the exponential
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generating the two perturbations and we use identities of the form

φa←a

φb←b φb←b

b

a

=
n∑

i,j,k=1

ci

a
φb←b

b b

a a
φa←a

b

a
φb←b

b b
cj ck

(2.4.9)

on each term. One can then apply (2.4.4) or (2.4.5) to collapse each of the defect

bubbles to obtain the appropriate defect (changing) field. Altogether, for two chirally

perturbed defects Da (λφa←a) and Db

(
µφb←b

)
one gets the fusion

Da (λφa←a)Db

(
µφb←b

)
= Dc1+...+cn

(
n∑

i,j=1

ξijφ
ci←cj

)
, (2.4.10)

where

ξij = λ
ηaa

ηcicj
G(fab)cj
aci

+ µ
ηbb

ηcicj
G(fba)cj
aci

R(ba)cj

R(ba)ci
, (2.4.11)

[Ru08, Eqns. (2.20) and (2.21)].

Given for concreteness the minimal model M(p, q), in the case of elementary

topological defects, which are labeled by entries (r, s) in the Kac-table (modulo the

usual Z2 identification), where 1 ≤ r < p and 1 ≤ s < q, the fusion of these defects

is given by the fusion of the corresponding irreducible representations of V.

In the case where the perturbing field has conformal weight less than 1
2
, it can be

shown, that if one perturbs the defect by a chiral defect field φ of conformal weight

h1,3 = −1 + 2p/q, in the subset of defects labeled by (1, s), for s = 2, ..., q − 2, the

defect operators obey the functional relation

D(1,s) (ζλφ)D(1,s)

(
ζ−1λφ

)
= 1 +D(1,s−1) (λφ)D(1,s+1) (λφ) , (2.4.12)
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for ζ = eiπp/q. It can also be shown that the perturbed defect operators mutually

commute, [
D(r,s) (λφ) , D(r′,s′) (µφ)

]
= 0 , (2.4.13)

for all (r, s) and (r′, s′) in the Kac-table and for all λ, µ ∈ C.
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Chapter 3

Topological Field Theory

Einstein’s formulation of general relativity not only revolutionised our concepts of

gravity, space and time but also linked geometry and physics. Since then the two

are intertwined through string theory, supersymmetry and so on. In the new era of

present developments, new links between mathematics and physics have emerged and

one of those is between quantum physics and topology. One theory that does that is

topological field theory (TFT). A TFT is a theory in which the output is unchanged

under a variation of the metric on the background manifold, so that expectation

values of observables must give rise to topological invariants of the manifold (e.g.

Betti numbers).

Physical interest in TFTs comes mainly from the observation that they possess

certain features one expects from a theory of quantum gravity [Cr93, Cr95, Sm03].

One of course can point out that there are local excitations in gravity, so it cannot be

topological. However, TFTs serve as a toy model in which one can do calculations and

gain experience before embarking on the quest for the full theory, which is expected

to be much more complicated.

According to [At88] the best starting point is Witten’s paper [Wi82] where he ex-

plained the geometric meaning of supersymmetry. Essentially what Witten showed is

that QFTs should be viewed as the differential geometry of certain infinite-dimensional

manifolds, including the associated analysis (e.g. Hodge theory) and topology (e.g.
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Betti numbers).

According to [Law96] the first interesting TFT in three dimensions was introduced

by Witten in 1989 [Wi89]. The partition function of the theory supplies invariants

of 3-manifolds M in the form of a Feynman path integral. The data for this theory

consists of an integer k, called the level, and a Lie group, G. From the same field

theory, Witten also generated invariants of links embedded in M , as the expectation

value of a suitable observable known as a Wilson loop. In the simplest case when

g = sl(2) he showed that the partition function for a (framed) link in S3 is just

the value of the Jones polynomials for a suitable root of unity. In four dimensions,

Witten [Wi88] produced a supersymmetric Lagrangian which formally reproduces

the Donaldson theory [Do90]. Witten’s formula can be understood as an infinite-

dimensional analogue of the Gauss-Bonnet theorem (cf [At88]).

However, Witten’s path integral approach, although it gives a topological invari-

ant, has the disadvantage of not being defined rigorously, because it is unclear what

measure one may put on the infinite dimensional space the path integral is over. Sub-

sequently, Atiyah [At88] gave the axiomatic formulation of TFT, followed by Segal

[Se89] and others (e.g. [RT91, Cr91, TV92]). According to Atiyah’s axiomatic formu-

lation (cf. [Ko, Intro.]) an n-dimensional TFT is a rule which to each closed oriented

n− 1-manifold X assigns a vector space H(X), and to each oriented n-manifold M

with ∂M = X assigns a vector Z(M ) in H(X). This rule is subject to Atiyah’s

axioms which express that topologically equivalent manifolds have isomorphic asso-

ciated vector spaces, and that disjoint unions of manifolds go to tensor products of

vector spaces, etc. (see Def. 3.5.1).

Furthermore, one can formulate TFT in categorical terms. One can define the

category of cobordisms Cob(n) (see Def. 3.2.1) whose objects are closed oriented

(n − 1)-manifolds X, and a morphism set HomCob(n)(X,X
′) whose elements are

diffeomorphism classes (rel the boundary) of (compact topological closed) oriented

n-manifolds M , whose ‘in-boundary’ is X and whose ‘out-boundary’ is X ′ (see Def.
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3.5.1). Composition of cobordisms is defined by gluing together the underlying man-

ifolds along common boundary components. The operation of taking disjoint unions

of manifolds and cobordisms gives this category monoidal structure. On the other

hand, the category Vectk of vector spaces over a field k, is monoidal under tensor

products (see Sect. 3.3).

With this terminology one can define a TFT as a (symmetric) monoidal functor

(H, Z) : Cob(n) → Vectk (see Def. 3.5.1). This means roughly that, the closed

manifolds represent space, while the cobordisms represent spacetime. The associated

vector spaces are then the state spaces, and an operator associated to a spacetime

is the time evolution operator (also called transition amplitude, or Feynman path

integral). That the theory is topological means that the transition amplitudes do

not depend on any additional structure on spacetime (like Riemannian metric or cur-

vature), but only on the topology. In particular there is no time evolution along

cylindrical spacetime. That disjoint union goes to tensor product expresses the prin-

ciple in quantum mechanics that the state space of two independent systems is the

tensor product of the two state spaces.

In the case of 2D TFT, the relations that hold in Cob(2) correspond precisely

to the axioms of a commutative Frobenius algebra (this is due to Dijkgraaf [Di89]),

i.e. there is a canonical equivalence of categories 2TFT ' cFA (see Thm. 3.5.3 [Ko,

Thm. 3.3.2], see also [Ab96]).

In the context of rational 2D-CFT, it was shown in [RFFS05] that a (not neces-

sarily commutative) symmetric special Frobenius algebra (in the braided monoidal

category of representations of the vertex operator algebra giving the chiral symmetry)

determines a CFT and that Morita-equivalent algebras give equivalent 2D CFTs. It

is this latter relation that is further investigated in [RFFS05].
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3.1 Cobordisms

In this section, following [Ko, Chap. 1] we discuss cobordisms in some detail. The

notion of cobordism goes back to Pontryagin and Thorn [Th54] in 1954 (cf. [Ko,

Chap. 1 Summary]). The name comes from the French word bord for boundary and

the prefix ‘co’ has nothing to do with duality as it is used in categorical language.

It simply means ‘together’. Originally, a single manifold X was called bordant if it

formed the boundary of some manifold M , then two manifolds were called cobordant

if together they formed the boundary of some manifold M .

Before we start talking about cobordisms in more detail, it will be good at this

point to introduce the concept of in- and out-boundaries. Let M be a n-manifold

and X a closed submanifold of M of codimension 1 and assume both are oriented1.

Suppose now X is a connected component of the boundary of M ; then it makes sense

to ask whether the positive normal n points inwards or outwards compared to the

induced orientation by M – locally the situation is that of a vector in Rn for which

we ask whether it points in or out from the half-space Hn = {x ∈ Rn|Λ(x) ≥ 0},
where Λ: Rn → R is a nonzero linear map.

Definition 3.1.1. Let X, Y and M be as above and let ∂M = X q Y . Then X is

called an in-boundary and Y an out-boundary. We write X =: ∂−M and Y =: ∂+M .

Thus, the boundary of a manifold M is the union of various in- and out-boundaries.

The in-boundary of M may be empty, and the out-boundary may also be empty. Note

that if we reverse the orientation of both M and its boundary X, then the notion of

what in-boundary or out-boundary are, is still the same.

Definition 3.1.2. An oriented cobordism ∂−M
M−→ ∂+M is a triple (M , ∂−M , ∂+M )

together with two orientation preserving diffeomorphisms2 ∂−M → M ← ∂+M .

1In this chapter X,Y, . . . always denote (n−1)-manifolds, while M ,N , . . . n-manifolds. Further-
more, the corresponding manifolds with opposite orientation are denoted by X,Y , . . . and M ,N , . . .
respectively.

2See Def. 3.1.3 for more details.
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When a cobordism exists, ∂−M and ∂+M are said to be cobordant. ∂−M and ∂+M

are also called the bottom and the top bases of the cobordism.

Example 3.1.1. In two dimensions the simplest examples are:
∂+M =S̄1=S1

M

∂−M =S1

(i) cylinder

∂+M =S1

M

∂−M =S1qS1

(ii) pair of pants

∂+M =∅

∂−M =S1

(iii) death of a circle

∂−M =∅

∂+M =S1

(iv) birth of a circle

where the pictures are to be read from bottom to top.

A cobordism can be thought of as an interpolation between the two (boundary)

manifolds. Another analogy is that of a history or a movie. In the context of string

theory one may think of cobordism (ii) as the time propagation and merging of two

closed strings.

One may also think of the cobordism as describing an evolution in time, say from

time t = 0 to time t = 1. In other words we consider a smooth map from M to the

unit interval I = [0, 1] such that ∂−M maps to 0 and ∂+M maps to 1.

Remark 3.1.1. Cobordisms are not functions. An oriented cobordism is something

that goes from one manifold ∂−M to another manifold ∂+M . It makes no sense to

ask what it does to a particular point of ∂−M . Note that we can have a cobordism

from a nonempty manifold to ∅. This is not possible with functions of any kind.

Definition 3.1.3. Given two oriented cobordisms (M , ∂−M , ∂+M ) and

(M ′, ∂−M , ∂+M ) from ∂−M to ∂+M , together with the orientation preserving dif-

feomorphisms

M ′

∂−M ∂+M

M

??

��

__

��

(3.1.1)
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we say they are equivalent if there is an orientation preserving diffeomorphism ψ : M
∼→

M ′ making this diagram commute:

M ′

∂−M ∂+M

M

	 	

??

��

__

��

OO

ψ o (3.1.2)

Note that the two triangles truly commute not just up to diffeomorphisms. Since

∂−M and ∂+M are submanifolds in M (and in M ′) situated on the boundary of

M (and M ′) so that the maps ∂−M →M and ∂−M →M ′ are the corresponding

embedding maps, then ψ|∂−M , induces the identity map on the boundaries. The same

holds for ∂+M [Ko, Def. 1.2.17].

One can also consider cylinders with both boundaries being in or out-boundaries.

In this case we have the following pictures respectively

↓

↑

∂−M

∂−M

= ↑ ↑
∂−M ∂−M

,

↑

↓

∂+M

∂+M

=
↑ ↑

∂+M ∂+M

(3.1.3)

The equal sign in (3.1.3) and in the pictures that will follow denotes that the cobor-

disms are equivalent. In the case at hand for example, it means that the cylinder can

be drawn as a U-tube.

An important feature of cobordisms is that one can decompose them. In the movie

analogy, this means that we take some intermediate frame (corresponding to time t)

and regard it as a submanifold in M which splits it into two parts (not necessarily
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connected). For example, one can use (3.1.3) to decompose the cylinder as

↑

↑
C =

↑

C1

}
M1=U1qC1

}
M0=C0qU0

↑
U0

↑
U1↑

C0

↑

(3.1.4)

This is called the ‘snake decomposition’ of the cylinder (see [Ko, Sect. 1.2.21] for more

details). Thus, we have found a decomposition of a cylinder into two cobordisms, M0

and M1, which are not cylinders.

3.2 The Category Cob(n)

The clearest formulation of bordisms3 is in categorical terms (see for example [Lu09][Ko,

Sect. 1.3 & 1.4.13]).

Definition 3.2.1. Let n ∈ N. The category Cob(n) has as objects (n−1)-manifolds

X, Y, . . . and a morphism B ∈ HomCob(n)(X, Y ) is an equivalence class of bordisms

from X to Y , that is, an oriented n-dimensional manifold B equipped with an orien-

tation preserving diffeomorphism ∂B ∼= X q Y .

The identity morphism idX is represented by the product bordism B = X × I,

i.e. the cylinder.

For a triple X,X ′, X ′′ ∈ Cob(n) and a pair of bordisms, B ∈ HomCob(n)(X,X
′)

and B′ ∈ HomCob(n)(X
′, X ′′), composition of morphisms in Cob(n) is defined to be

the morphism represented by the manifold B′ ◦B := B′qX′B ∈ HomCob(n)(X,X
′′),

3From now on we will abbreviate the word ‘cobordism’ by ‘bordism’ for short. That is, cobordism
and bordism are the same thing.
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i.e. we glue B′ with B along the common boundary component X ′. This completes

the definition.

Remark 3.2.1. (i) The composition law for bordisms described in the above definition

is potentially ambiguous, because we did not explain how to endow the manifold

B′ ◦B := B′ qX′ B with a smooth structure. However, the composition law is well

defined up to diffeomorphisms, but not up to a unique one. In other words, there

is not a universal property. This problem is solved (at least in dimensions n < 3) if

we consider diffeomorphism classes of bordisms instead of bordisms. In other words,

the arrows are cobordism classes in the sense of Def. 3.1.3. So instead of speaking

about the composition, one could speak only of a composition (for more information

on this technical issue see [Ko, Sect. 1.3]). Such considerations lead to the notions of

higher-dimensional categories where we have usual arrows (in dimension 1), arrows

between arrows (dimension 2), and so on (see [Lu09] or [Pr09] for example). (ii) We

regard two bordisms B and B′ as defining the same morphism in Cob(n) if they are

equivalent (see Def. 3.1.3). This equivalence extends to the evident diffeomorphism

∂B ∼= X q Y ∼= ∂B′ between their boundaries.

Example 3.2.1. Consider the bordisms P ∈ HomCob(2) (S1 q S1, S1) and U ∈

HomCob(2) (∅, S1 q S1), then we can compose them as P ◦ U = P qS1qS1 U ∈

HomCob(2) (∅, S1). In terms of pictures:

P ◦
U

= P◦U (3.2.1)
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Following [Di97, Sect. 4], we have one extra operation that is not standard in

categories. We also want to be able to glue two boundary components of a single

irreducible manifold.

Definition 3.2.2. Let M ∈ HomCob(n)(∂−M , ∂+M ). If two boundary components

of M contain a common factor X ∈ Cob(n), we define the partial trace

TrX : M → TrX(M ) . (3.2.2)

This is best explained in the following example.

Example 3.2.2. For Y ∈ HomCob(2)

(
S1, S1 q S1

)
, we get:

TrS1 :

S1 S1

S1

Y −→ Tr(Y )

S1

∈ HomCob(2)(S
1, ∅) . (3.2.3)

In dimension two, ‘everything is known’ since surfaces are completely classified,

so one can describe Cob(2) completely.

Proposition 3.2.3. The category Cob(2) is generated under composition and dis-

joint union by [Ko, Prop. 1.4.13]

D1∈HomCob(2)(∅,S1)

P∈HomCob(2)(S
1qS1,S1)

D1∈HomCob(2)(S
1,∅)

Y ∈HomCob(2)(S
1,S1qS1)

(3.2.4)

As will be seen in Sect. 3.4, these are also the generators of a commutative Frobe-

nius algebra and they are called: unit, multiplication, co-unit and co-multiplication

respectively, subject to some relations.
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3.3 Monoidal Structure and Graphical Calculus

The category structure describes how to connect bordisms in series; in other words,

how to connect the output of one bordism to the input of another (composition of

bordisms, see Example 3.2.1). It is also important to consider parallel couplings;

that is, disjoint union of bordisms. This amounts to giving symmetric monoidal

structure (cf. Def. 3.3.6) to the category Cob(n). In this section, we introduce all

the categorical machinery that will be of interest for this thesis and which is necessary

in order to make the connection with the CFT language and with defects presented

in the previous chapters. For this reason, we just state the results that we need, for a

detailed exposition the reader is referred to [McL, Chapters VII.1-3 & VIII] or [BK,

Chapters 1-4]. We also introduce the graphical notation for morphisms in an Abelian

monoidal category, following the conventions of [FRS02-I].

We start by recalling the definition of an Abelian category:

Definition 3.3.1. An abelian category C is an Ab-category4 satisfying the following

conditions:

(i) there is a zero object 0 ∈ C,

(ii) it has binary biproducts5,

(iii) it has kernels and cokernels6,

4That is, each Hom-set is an additive abelian group and composition is bilinear.
5For the definition of binary biproducts see equation (B.0.1).
6Let f ∈ HomC(A,B) be a morphism in C. A kernel is a pair (K, ker f), where K ∈ C and

ker f : K → A such that the diagram commutes

K A B

K ′

	

//ker f //f

OO

k

cc

∃!k̃

This diagram describes the universal property of the kernel. Namely, for each k : K ′ → A such that
f ◦ k = 0, there exists a unique k̃ : K ′ → K such that ker f ◦ k̃ = k. The dual concept to that of
kernel is that of a cokernel. In other words, for a cokernel consider the above diagram but with
all its arrows reversed and in place of ker f put cok f . Then the universal property of the cokernel
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(iv) every monomorphism is a kernel and every epimorphism is a cokernel7.

Note that the first two conditions insure that C is additive [McL, Sect. VIII. 3].

Definition 3.3.2. A monoidal category C = (C,⊗,1, α, λ, ρ), consists of the following

data: a category C, a bifunctor ⊗ : C × C → C, an identity object 1 ∈ C and three

natural isomorphisms α, λ, ρ. We require, the associator

αA,B,C : (A⊗B)⊗ C ∼→ A⊗ (B ⊗ C) , (3.3.1)

and the two unit isomorphisms

λA : 1⊗ A ∼→ A and ρA : A⊗ 1 ∼→ A , (3.3.2)

to be natural for all A,B,C ∈ C and to satisfy the following coherence conditions:

(i) Pentagon axiom: For any A,B,C,D ∈ C, the diagram commutes

((A⊗B)⊗ C)⊗D

(A⊗ (B ⊗ C))⊗D (A⊗B)⊗ (C ⊗D)

A⊗ ((B ⊗ C)⊗D) A⊗ (B ⊗ (C ⊗D))

	
ww

αA,B,C⊗idD

''

αA⊗B,C,D

��
αA,B⊗C,D

��
αA,B,C⊗D

//
idA⊗αB,C,D

states that for each k : A → K ′ such that k ◦ f = 0, there exists a unique k̃ : K → K ′ such that
cok f ◦ k̃ = k.

7A monomorphism (also called mono or monic), is a morphism f ∈ HomC(A,B), such that for
all morphisms g, h ∈ HomC(M,A)

M A B ⇒ g = h .
//g

//
h

//f

Namely, a monomorphism is a left-cancellative morphism, that is, an arrow f : A → B such that,
for all morphisms g, h : M → A, the equality f ◦ g = f ◦ h implies g = h. The categorical dual of
a monomorphism is an epimorphism. That is, a monomorphism in a category C is an epimorphism
in the opposite category. Namely, consider the above diagram with all the arrows reversed, then
an epimorphism is a right-cancellative morphism, that is, an arrow f : B → A such that, for all
morphism g, h : A→M the equality g ◦ f = h ◦ f implies g = h.
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(ii) Triangle axiom: For any A,B ∈ C, the diagram commutes

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

	

//
αA,1,B

$$ρA⊗idB zz
idA⊗λB

Example 3.3.1. The category Vectk of all vector spaces over a given field k, with

the usual tensor product ⊗k of vector spaces, and with the one dimensional vector

space k as unit, is a standard example of a monoidal category. Monoidal categories

are often called tensor categories.

For the categories considered in this thesis we define a simple object as8

Definition 3.3.3. A simple (or irreducible) object A of an Abelian monoidal category

C, is an object for which EndC(A) = k idA.

Definition 3.3.4. A strict monoidal category C = (C,⊗,1) is a monoidal category

C, for which the isomorphisms α, λ, ρ are the identity morphisms.

A very useful way to represent morphisms in an Abelian monoidal category C is via

graphs (cf. [FRS02-I, Sects. 2.1 & 2.2]), where lines stand for the identity morphisms.

In this way, the identity morphism idA and f ∈ HomC(A,B), are represented as

idA ≡

A

A

, f ≡

B

A

f . (3.3.3)

8In a general category, this defines an absolutely simple object, while simplicity of an object
means that it does not possess a non-trivial proper subobject. In semisimple categories, absolutely
simple implies simple, and in any abelian category over an algebraically closed ground field the two
notions are equivalent cf. [FRS02-I, Footnote 3].
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All the pictures are to be read from bottom to top. In particular, the tensor unit

1 ∈ C is simple, thus id1 = 1 ∈ k, therefore lines labeled by the tensor unit will

be omitted, so that in the pictorial representation, morphisms in HomC(1, A) or

HomC(A,1) emerge from and disappear into ‘nothing’, respectively. Furthermore,

whenever we use the pictorial notation we silently pass to a strict version of C. The

non strict case follows by invoking coherence [McL, Sect. VII.2] and verifying that the

α, ρ and λ sit in the required places.

In the pictorial notation, composition of two morphisms f ∈ HomC(A,B) and

g ∈ HomC(B,C), amounts to concatenation of lines, while the tensor product to

juxtaposition

C

A

g◦f =

C

B

A

g

f

and

B⊗C

A⊗B

f⊗g =

B

A

f

C

B

g . (3.3.4)

Definition 3.3.5. A braided monoidal category is a monoidal category C, together

with a family of braiding isomorphisms

B A

A B

cA,B =

B A

A B

: A⊗B ∼→ B ⊗A ,

B A

A B

c−1
B,A =

B A

A B

: B ⊗A ∼→ A⊗B , (3.3.5)

natural in A,B ∈ C, i.e. cA′,B′ ◦ (f ⊗ g) = (g ⊗ f) ◦ cA,B, for any morphisms f ∈
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HomC(A,A
′) and g ∈ HomC(B,B

′). In terms of pictures:

B′ A′

f g

A B

=

B′ A′

g f

A B

(3.3.6)

The braiding c and the associator α are required to be tensorial, i.e. to satisfy

Hexagon axioms: (a) For any A,B,C ∈ C, the diagram commutes

A⊗ (B ⊗ C) (B ⊗ C)⊗ A

(A⊗B)⊗ C B ⊗ (C ⊗ A)

(B ⊗ A)⊗ C B ⊗ (A⊗ C)

	

//
cA,B⊗C

''

αB,C,A
77

αA,B,C

''cA,B⊗idC

//
αB,A,C

77

idB ⊗cA,C

(b) The same as in (a) but with c−1 in place of c and their arguments exchanged.

After passing to a strict category the above diagram is expressed in terms of

pictures as:
C A B

cA⊗B,C

A B C

=

C A B

cA,C

cB,C

A B C

. (3.3.7)

Definition 3.3.6. A symmetric monoidal category is a braided monoidal category

C, such that, all the braiding isomorphisms satisfy c2 = id.
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Example 3.3.2. For each n ∈ N, the category Cob(n) = (Cob(n),q, ∅) can be en-

dowed with the structure of a symmetric monoidal category, where the tensor product

is given by the disjoint union of manifolds q : Cob(n) × Cob(n) → Cob(n). The

unit object of Cob(n) is the empty set ∅ (of dimension (n− 1)).

Definition 3.3.7. Given a pair of symmetric monoidal categories C = (C,⊗,1C, αC, λC, ρC)

and D = (D,~,1D, αD, λD, ρD), a symmetric monoidal functor from C to D, is a triple

(H,H2, H0), consisting of a functor H : C → D, together with a natural transforma-

tion

H2
A,B : H(A)~H(B)

∼→ H(A⊗B) , (3.3.8)

and an isomorphism H0 : 1D
∼→ H(1C), such that the following diagrams commute,

(H(A)~H(B))~H(C) H(A⊗B)~H(C) H ((A⊗B)⊗ C)

H(A)~ (H(B)~H(C)) H(A)~H(B ⊗ C) H (A⊗ (B ⊗ C))

	

//
H2
A,B~idH(C) //

H2
A⊗B,C

��

αH(A),H(B),H(C)

//
idH(A) ~H

2
B,C //

H2
A,B⊗C

��

H(αA,B,C)

1D ~H(A) H(A)

H(1C)~H(A) H(1C ⊗ A)

	

//
λH(A)

��

H0~idH(A)

��

H(λA)

//
H2
1C ,A

H(A)~ 1D H(A)

H(A)~H(1C) H(A⊗ 1C)

	

//
ρH(A)

��

idH(A) ~H
0

��

H(ρA)

//
H2
A,1C

H(A)~H(B) H(B)~H(A)

Hs(A⊗B) H(B ⊗ A)

	

//
cH(A),H(B)

��

H2
A,B

��

H2
B,A

//H(cA,B)

for all A,B,C ∈ C. If C,D are not symmetric, then H is braided monoidal.
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Definition 3.3.8. A right-duality on a monoidal category C, associates to every

object A ∈ C, another object A∨ ∈ C, called the right-dual object, together with

morphisms

A A∨

bA

=

A A∨

: 1→ A⊗ A∨ ,

A∨A

dA

=

A∨ A

: A∨ ⊗ A→ 1 , (3.3.9)

such that the following diagrams commute

A∨ A∨ ⊗ 1 A∨ ⊗ (A⊗ A∨)

(A∨ ⊗ A)⊗ A∨1⊗ A∨A∨

	

//ρ−1
A∨ //idA∨ ⊗bA

��

αA∨,A,A∨

oo
dA⊗idA∨

oo
λA∨

��

idA∨

A 1⊗ A (A⊗ A∨)⊗ A

A⊗ (A∨ ⊗ A)A⊗ 1A

	

//λ−1
A //bA⊗idA

��

α−1
A,A∨,A

oo
idA⊗dA

oo
ρA

��

idA

for all A ∈ C. These two commuting diagrams are called the rigidity axioms or right

duality axioms and in terms of pictures they are given by

A∨

A∨

=

A∨

A∨

,

A

A

=

A

A

. (3.3.10)

Furthermore, a right duality, associates to every morphism f ∈ HomC(A,B), the
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morphism (see [BK, Lemma 2.1.6])

A∨

B∨

f∨ =

B∨

A∨

f

= λA∨ ◦ (dB ⊗ idA∨) ◦ α−1
B∨,B,A∨ ◦ (idB∨ ⊗f ⊗ idA∨) ◦ (idB∨ ⊗bA) ◦ ρB∨

∈ HomC(B
∨, A∨) .

(3.3.11)

Similarly, a left-duality, associates to every object A ∈ C the left-dual object ∨A ∈ C
together with morphisms

b̃A ≡

∨A A

: 1→ ∨A⊗ A , d̃A ≡

A ∨A

: A⊗ ∨A→ 1 , (3.3.12)

such that similar diagrams as in Def. 3.3.8 commute, and to every morphism f ∈
HomC(A,B) it associates the morphism ∨f ∈ HomC(

∨B, ∨A).

Definition 3.3.9. If every object in a monoidal category C has left and right duals,

then C is called rigid.

Definition 3.3.10. A strict, braided monoidal category, is a ribbon category if it is

rigid, and it comes together with a family of isomorphisms

A

A

θA =

A

A

,

A

A

θ−1
A =

A

A

∈ HomC(A,A) , (3.3.13)
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called the twist, one for each object A ∈ C, and which is natural for any f ∈

HomC(A,A
′)

A′

f

A

=

A′

f

A

, (3.3.14)

and satisfies the balancing axioms :

θ1 = id1 = 1 ∈ k , θA∨ = (θA)∨ , θA⊗B = cA,B ◦ (θB ⊗ θA) ◦ cB,A . (3.3.15)

The last two can be expressed in terms of pictures as

A A∨

=

A A∨

,

A B

θA⊗B

A B

=

A B

θB θA

A B

. (3.3.16)

Remark 3.3.1. The reason one needs to impose the consistency conditions (3.3.6),

(3.3.7), (3.3.10), (3.3.14) and (3.3.16) is that in a ribbon category, the morphisms are

ribbons rather than lines9 (hence the term) and the above axioms guarantee that the

visualisation via ribbons is appropriate. For example, the picture drawn for the twist

θA, cf. (3.3.13) is isotopic to the picture of idA. If we had drawn a ribbon instead,

then θA would no longer be isotopic to the trivial ribbon [BK, Sect. 2.3]. This means

9In this thesis, the interpretation with lines as ribbons is implicit. However, we talk a bit more
about ribbons in Sect. 3.5.2 and we draw the first genuine ribbon graph in Sect. 5.1.
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that the graphs one obtains by the composition of the duality, braid and twist, among

themselves, share the properties of the corresponding glued ribbons [RT91].

Furthermore, a ribbon category comes equipped by definition with a left duality,

defined on objects as ∨A := A∨ and left duality morphisms (3.3.12). One can check

that this left duality coincides with the right duality also on morphisms, i.e. ∨f = f∨.

Categories with coinciding left and right dualities are called sovereign. Thus, for

example, the double dual (A∨)∨ of an object A ∈ C, is isomorphic (not equal in

general) to A. Furthermore, since we have two dualities, one can define the left and

right traces of f ∈ EndC(A), via

Trr(f) ≡ f , Tr`(f) ≡ f ∈ Endk(1) = k , (3.3.17)

which are cyclic

Tr`,r(g ◦ f) = Tr`,r(f ◦ g) , (3.3.18)

and obey

Tr`,r(f ⊗ g) = Tr`,r(f)Tr`,r(g) . (3.3.19)

In a ribbon category apart from the left and right dualities which coincide, the two

notions of the trace coincide as well. Categories with this property are called spherical

[BW96]. The trace of the identity morphism is the quantum dimension10 of an object,

which is additive under direct sums and multiplicative under tensor products

dimq(A) := Trq(idA) ≡ A . (3.3.20)

10It is also called categorical dimension or rank [Maj, Sect. 9.3]. The word quantum dimension
comes from the relation to quantum groups, see also the book by Kassel [Ka]. The reason is that it is

a ‘deformation’ of the ordinary dimension. For example, the integer n gets replaced by [n] = qn−q−n
q−q−1 ,

see [Maj, Examples 9.3.6 & 9.3.7]. Thus ‘quantised’ is used as ‘deformed away from its classical value
by a parameter dependent deformation’.
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Finally, in order to make contact with the CFT language developed in the first

Chapter and therefore with defects, which were discussed in the second Chapter, we

will need to recall the definition of the Grothendieck ring first.

Definition 3.3.11. The Grothendieck group K0(C) of an Abelian category C is the

free abelian group generated by isomorphism classes (A) of objects A ∈ C, quotiented

by the subgroup generated by the relations (A) = (K) + (C) for all short exact

sequences 0 → K → A → C → 0. We denote the equivalence class of (A) in K0(C)

by [A].

Definition 3.3.12. A functor F : C → D is said to be right-exact if for A,B,C ∈ C,

exactness of A → B → C → 0 implies exactness of F (A) → F (B) → F (C) → 0. A

tensor product bifunctor is called right-exact if X ⊗ (−) and (−)⊗X are right-exact

functors for all X ∈ C. That is, if exactness of A→ B → C → 0 implies exactness of

X ⊗ A→ X ⊗B → X ⊗ C → 0, similarly for (−)⊗X.

Remark 3.3.2. If C is monoidal with exact11 tensor product, then the Grothendieck

group K0(C) carries a ring structure defined via [A] · [B] = [A ⊗ B]. In this case,

K0(C) is called the Grothendieck ring.

We now make the connection of the above categorical constructions to the CFT

language. First note that the representation category of a RCFT is a semisim-

ple12 monoidal category C with simple tensor unit. The simple objects of C are

the irreducible representations of the chiral algebra V and the morphisms in C are

the V-intertwiners. The tensor product in C is the fusion tensor product of V-

representations, with the tensor unit given by the vacuum representation, i.e. R0 = 1.

11The tensor product is said to be exact if it is both left and right exact, with the definition of
left exactness being similar to that of right exactness.

12A semisimple category is characterised by the property that every object is the direct sum of
finitely many simple objects.
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The isomorphism classes of (simple) objects, corresponds to the primary chiral vertex

operators and the Grothendieck ring K0(C) is the fusion ring of the CFT. The duality

in C encodes the existence of conjugate V-representations and the twist is given by

the fractional part of the conformal weight, θA = exp(−2πihA) idA, for A ∈ C, while

the braiding accounts for the presence of braid group statistics in two dimensions, cf.

[FRS02-I, Sect. 2.2] and references therein.

All the axioms of C can be viewed as formalisations of the properties of primary

chiral vertex operators in RCFT. We can formulate these properties by fixing bases

λkij ∈ HomC(Ai ⊗ Aj, Ak) and dual basis λ̄ijk ∈ HomC(Ak, Ai ⊗ Aj), depicted as13

λkij ≡

k

i j

, λ̄ijk ≡

k

i j

, (3.3.21)

where the label i ∈ {0, 1, 2, . . . , |I| − 1} in the pictures, is for notational simplicity,

in place of the elements Ai of the family {Ai}i∈I of objects in C. Duality of the basis

means that if we compose λkij with its dual λ̄ijk we get the identity, i.e. λkij ◦ λ̄
ij
k = idk.

In terms of pictures this translates to placing the picture for λkij on top of the picture

for λ̄ijk and then collapsing the bubble to obtain the identity morphism.

Once we have chosen a basis as above, there are two distinct bases for the

morphism space HomC(Ai ⊗ Aj ⊗ Ak, Al), corresponding to its two decompositions⊕
q∈I HomC(Ai⊗Aj, Aq)⊗HomC(Aq⊗Ak, Al) and

⊕
p∈I HomC(Aj⊗Ak, Ap)⊗HomC(Ai⊗

Ap, Al), respectively. The coefficients of the basis transformation between the two are

13Here we have assumed for simplicity that dimk HomC(Ai⊗Aj , Ak) = N k
ij = 1, so that the basis

consists of only one non-zero vector.
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known as the fusing matrices F of C. These are depicted as

l

p

i j k

=
∑
q∈I

F(ijk)l
p,q

l

q

i j k

. (3.3.22)

The inverse of F is denoted by G and is defined as

l

q

i j k

=
∑
p∈I

G(ijk)l
q,p

l

p

i j k

. (3.3.23)

Combining the braiding morphisms with the basis choice (3.3.21) we get the braiding

matrices R: k

i j

= R(ij)k

k

i j

. (3.3.24)

If we replace ci,j by its inverse c−1
j,i then the number we obtain is denoted by R−(ji)k.

One easily checks that R(ij)kR−(ji)k = 1.

3.4 Frobenius Structure

In this section we follow [FRS02-I, Sect. 3.1]. We thus define a Frobenius algebra as

an algebra object in a monoidal category C. We start by recalling the definition of

an algebra object in a monoidal category C, but before we do that, note the following

remark:
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Remark 3.4.1. Note that the cobordism graphical notation we will use in this section

and in 3.5.1, is usually reserved for commutative algebras, because the diagram with

an exchange of the two arguments before the multiplication is homeomorphic to the

one without the exchange. Therefore, the cobordism notation will be confusing if

used for not necessarily commutative algebras. Here, we are only concerned with

commutative Frobenius algebras, since these are in one to one correspondence (only

in the category of vector spaces, not for general monoidal categories) with the 2

dimensional topological field theories that we will discuss in the next section.

Definition 3.4.1. A commutative algebra object (A, µ, η), in a braided monoidal

category C, is an object A ∈ C together with two morphisms

µ ≡

A

A A

: A⊗ A→ A , η ≡
A

1

: 1→ A , (3.4.1)

called the multiplication and unit respectively, such that the diagrams commute

(A⊗ A)⊗ A A⊗ (A⊗ A)

A⊗ A A⊗ AA

	

	

//
αA,A,A

��

idA⊗µ

oo
µ

��

µ⊗idA

//
µ

cA,A

99

1⊗ A A⊗ A A⊗ 1

A

	 	

//η⊗idA oo
idA⊗η

""

λA

||

ρA
µ

��

These two commutative diagrams can be expressed in terms of pictures (after
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passing to a strict category). For the first upper diagram we have

= (3.4.2)

while for the first bottom diagram, which expresses the commutativity condition we

have

1 2

=

2 1

(3.4.3)

and for the second diagram

= = (3.4.4)

Note that we have suppressed the labels A and 1 on the algebra pictures and we will

do that from now on, when this is unambiguous, that is, when we are dealing with

morphisms involving only A and 1.

Example 3.4.1. As an example of a commutative algebra object which can also be

turned into a Frobenius algebra, consider the algebra of polynomials C[X] in one

indeterminate X over the field C, divided by the ideal 〈Xd〉, i.e. A = C[X]/〈Xd〉.

This is a commutative algebra object in the category of finite dimensional complex

vector spaces VectC. The reason one divides by the ideal 〈Xd〉 is to make the algebra

object (viewed as a vector space over C) finite dimensional, in order to be able to turn
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it into a Frobenius algebra. Thus in the case at hand dimA = d. The tensor product

bifunctor ⊗C : VectC ×VectC → VectC is given by · : A × A → A. More explicitly

the multiplication is(
d−1∑
i=0

aiX
i

)
·

(
d−1∑
j=0

bjX
j

)
=

d−1∑
k=0

(∑
i+j=k

aibj

)
Xk ,

where ai, bj ∈ C and X i ∈ A. The monoidal unit is given by the underlying field C.

Definition 3.4.2. A commutative co-algebra object (C, δ, ε), in a monoidal category

C, is an object C ∈ C together with two morphisms

δ ≡

C

C C

: C → C ⊗ C , ε ≡
1

C

: C → 1 , (3.4.5)

called the co-multiplication and co-unit respectively, such that the diagrams commute

(C ⊗ C)⊗ C C ⊗ (C ⊗ C)

C ⊗ C C ⊗ CC

	

	

oo
α−1
C,C,C

OO

idC ⊗δ

//
δ

OO

δ⊗idC

oo
δ

cC,C

ee

1⊗ C C ⊗ C C ⊗ 1

C

	 	

oo
ε⊗idC //idC ⊗ε

bb

λ−1
C

<<

ρ−1
C

δ

OO

In a similar way as in (3.4.2) and (3.4.4), one can express these two commutative

diagrams in terms of pictures, but this time rotated 180◦.

Definition 3.4.3. A commutative associative Frobenius algebra, in a braided monoidal

category C, is an object that is both an algebra and a co-algebra, i.e. an object
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(A, µ, η, δ, ε), for which the product and co-product are related by

= = (3.4.6)

3.5 Topological Field Theory

In this section and its subsections, following [BK, Sect. 4.2], [Ko, Sect. 3.3], [Tu,

Chap. III] and [FRS02-I, Sect. 2.4], we discuss in some detail topological field the-

ory (TFT), which is the main subject of this chapter. When we say ‘some detail’

we mean only those aspects of TFT that will be of interest for this thesis. Also,

when we say ‘manifold’ we mean a compact topological closed oriented manifold with

a boundary (unless otherwise indicated) and all vector spaces considered are over a

base field k of characteristic zero.

Roughly, a n-dimensional TFT (nD TFT), is a pair (H, Z), that to every closed

oriented n − 1-manifold X without a boundary, assigns a vector space H(X) and

to every closed oriented n-manifold M , assigns a vector Z(M ) in H(∂M ). This

rule is subject to some axioms, due to Atiyah [At88], which express that topologically

equivalent manifolds have isomorphic associated vector spaces and that disjoint union

of manifolds goes to tensor products of vector spaces, etc. In other words, a TFT, is a

symmetric monoidal functor H : Cob(n)→ Vectk, from the category of cobordisms

to the category of finite dimensional vector spaces. More concretely:

Definition 3.5.1. A n-dimensional TFT is a symmetric monoidal functor

(H, Z) : Cob(n)→ Vectk , (3.5.1)

where the first datum H gives the action on the objects, while the second datum Z,

to every bordism assigns a linear map. In particular:
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1. To X ∈ Cob(n), associates a finite-dimensional vector space H(X) ∈ Vectk.

2. To a bordism M ∈ HomCob(n)(∂−M , ∂+M ), associates a linear map Z(M ) ∈

HomVectk (H(∂−M ),H(∂+M )), called the operator invariant of the bordism.

3. To any homeomorphism f : X → Y , associates an isomorphism f\ : H(X)
∼→

H(Y ).

4. Establishes functorial isomorphisms:

H
(
X
) ∼= H(X)∨ , H(∅) ∼= k , H(X q Y ) ∼= H(X)⊗k H(Y ) ,

which are compatible with each other and with the unit, braiding and associator

isomorphisms as follows:

Cob(n) Vectk

∅ ∼= ∅ k ∼= k∨

X q Y ∼= Y qX (H(X)⊗k H(Y ))∨ ∼= H(Y )∨ ⊗k H(X)∨

X q ∅ ∼= X H(X)⊗k k ∼= H(X)

X q Y ∼= Y qX H(X)⊗k H(Y ) ∼= H(Y )⊗k H(X)

(X q Y )q Z ∼= X q (Y q Z) (H(X)⊗k H(Y ))⊗k H(Z) ∼= H(X)⊗k (H(Y )⊗k H(Z))

Table 3.1: Compatibility conditions for the functorial isomorphisms.

This data is required to satisfy the following axioms:

(A1) Naturality: Consider the bordisms M ∈ HomCob(n)(∂−M , ∂+M ) and

N ∈ HomCob(n)(∂−N , ∂+N ) and let f : M → N be an orientation preserving
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homeomorphism, then the diagram

H(∂−M ) H(∂+M )

H(∂−N ) H(∂+N )

	

//Z(M )

��

f\|∂−M

��

f\|∂+M

//
Z(N )

commutes.

(A2) Multiplicativity: If B = M qN , then the third functorial isomorphism

in 4. above, (or equivalently (3.3.8)), means that Z(B) = Z(M )⊗ Z(N ).

(A3) Functoriality: Consider the bordisms M ∈ HomCob(n)(∂−M , ∂+M ) and

N ∈ HomCob(n)(∂−N , ∂+N ) and let f : ∂+M → ∂−N be a homeomorphism and

B the bordism obtained by the disjoint union of M and N using f , then

Z(B) = kZ(N ) ◦ f\ ◦ Z(M ) ,

where k ∈ k, is called the anomaly of the triple (M ,N , f).

(A3) Normalization: For any X ∈ Cob(n), we have

Z (X × [0, 1], X × {0}, X × {1}) = idH(X) .

This completes the definition.

3.5.1 2D TFT

In this subsection we consider a 2D TFT, which can be viewed as a toy model of

a TFT. The main result here will be that 2D TFTs are equivalent to commutative

Frobenius algebras. In other words, there is a canonical equivalence between the

category 2TFT of 2D TFTs and that of commutative Frobenius algebras cFA. This

equivalence is proved (following [BK, Sect. 4.3]) in Theorem 3.5.3 below.
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Before we state and prove the main theorem, the following two lemmas, which we

state without a proof, will be useful [BK, Lemmas 4.3.2 & 4.3.3].

Lemma 3.5.1. Every 2-manifold with a boundary can be cut into a union of

(i) cylinders (ii) pair of pants (iii) discs

However, a 2-manifold M can be cut in several different ways and we will need

to check when Z(M ) is well defined, thus we need the following result.

Lemma 3.5.2. Any two ways to cut a 2-manifold M into cylinders, pair of pants

and discs, can be related by isotopy of M and a sequence of ‘simple moves’, which

are (3.4.2), (3.4.4), as well as14

= , = . (3.5.2)

14The idea is that one draws simple curves on the surface of the manifold and then cut the manifold
into cylinders, pair of pants and discs as in Lemma 3.5.1. For example, the first set of pictures in
(3.5.2) are obtained as follows: Consider the following pictures

=

This says that if you have a cylinder with two circles inserted you can omit one of the circles. Then
to obtain the required result observe that the circles cut the cylinder in question into three and two
subcylinders respectively. Then if we remove the two outer subcylinders from both sides we recover
the first set of pictures in (3.5.2). The second set of pictures in (3.5.2) simply says that the simple
move in question is to interchange the two circles, i.e. the circle that lies around the arm can be
interchanged with the circle that lies around the hole and vise versa. For more details see [HT80,
Appendix].
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We now state the main theorem as promised:

Theorem 3.5.3. There is a canonical equivalence of categories 2TFT ' cFA. In

other words,

(a) Every 2D TFT gives a Frobenius algebra.

(b) Every Frobenius algebra gives a 2D TFT.

Proof. (a) By definition a 2D TFT is a symmetric monoidal functor (H, Z) : Cob(2)→

Vectk. The generators of Cob(2) are given in Prop. 3.2.3, so we need to show that

the TFT of these generators gives a commutative Frobenius algebra.

The only 1-dimensional, closed, connected manifold is the circle S1 ∈ Cob(2)

and S1 = S1. Let now A := H(S1), be the vector space obtained H. The disc

D1 ∈ HomCob(2) (∅, S1) gives the linear map

Z

( )
: k→ A ,

the unit e ∈ A. On the other hand we also have D1 ∈ HomCob(2)

(
S1, ∅

)
, which gives

Z

( )
: A→ k ,

the co-unit in A. The next generator is P ∈ HomCob(2)(S
1 q S1, S1), which gives

Z

( )
: A⊗k A→ A ,

the multiplication a⊗ b 7→ ab, where a, b ∈ A. Finally, Y ∈ HomCob(2)(S
1, S1 q S1)
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gives

Z

( )
: A→ A⊗k A ,

the co-multiplication on A.

Now we have to show commutativity and associativity of multiplication. The

commutativity follows from the fact that the flipping of the legs of a pair of pants is a

homeomorphism and associativity follows from pictures (3.4.2) and the gluing axiom

(A2). The unit property (3.4.4) is a consequence of the gluing and normalization

axioms. This agrees with Def. 3.4.3, thus we proved (a).

(b) Let A be a Frobenius algebra. To the circle we assign H(S1) := A. Now recall

that the objects of Cob(2) are {0,1,2, . . .} where n is the disjoint union of n circles,

thus H(n) := A⊗n. For f : S1 → S1 we let f\ = id and for g : S1 → S1 let g\ : A
∼→ A∨

be the isomorphism given by the non-degenerate bilinear form Tr(ab), for a, b ∈ A.

It is clear that15

Z

( )
∈ A∨⊗kA , Z

( )
∈ A∨⊗kA∨⊗kA , Z

( )
∈ A .

Using Lemma 3.5.1 we can extend this to any 2-manifold using axioms (A2) and (A3)

from Def. 3.5.1, while using Lemma 3.5.2 we need to check that Z(−) gives the same

15To see how we obtain the one for the cylinder C for example, note that ∂C = S1 q S1, then

Z(C ) ∈ H(∂C ) = H
(
S1 q S1

)
= H

(
S1
)
⊗k H(S1) = A∨ ⊗k A.
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result on both sides of (3.4.2):

Z

( )
= Z

( )
∈ A∨ ⊗k A∨ ⊗k A∨ ⊗k A ,

of (3.4.4):

Z

( )
= Z

( )
= Z

( )
∈ A∨ ⊗k A

and of (3.5.2):

Z

( )
= Z

( )
∈ A∨⊗kA , Z

( )
= Z

( )
∈ A .

We only show the first one; the rest can be shown in the same way. For the left hand

side we have that

Z

( )
: (A⊗ A)⊗ A→ A
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and for the right hand side

Z

( )
: A⊗ (A⊗ A)→ A .

Then associativity follows from pictures (3.4.2) and the gluing axiom (A2), hence

they are equal. Therefore Z(−) is well defined on any 2-manifold M .

3.5.2 3D TFT

In this subsection, we will introduce some of the machinery of 3D TFT which will

play an important role in Chap. 5. There, we will relate the categorical constructions

of Chap. 4 to defect operators and we will construct correlators of chiral defect

fields, using the machinery of 3D TFT. In this subsection, however, we will not talk

about defects. We will only introduce those areas of 3D TFT that are going to be

relevant later on. For a more detailed exposition on 3D TFT the reader is referred to

[FRS02-I, FRS04-II, FRS04-III, FRS05-IV, FFRS06-V, FFRS04, FFRS07, FFFS00,

FFFS02], as well as to the books by Bakalov and Kirillov [BK, Sect. 4.4] and Turaev

[Tu, Chap. IV], which we also follow here.

In Sect. 3.3 we saw that the objects, morphisms, the tensor product and so on, of

a monoidal category C encodes some information about the chiral data16 of the CFT.

However, C contains strictly less information than the chiral data17, but most of the

important information of the CFT, such as, its field content, boundary conditions

16By chiral data we mean the representation theory of the chiral algebra and the conformal blocks
of a RCFT.

17Roughly, as stated in [FRS02-I, Sect. 5], the category encodes only the monodromies of the
conformal blocks, but not their functional dependence on the insertion points and the moduli of the
world sheet or the information which state of a given representation of the chiral algebra is inserted.
See also [FRS02-I, Foot. 22] for a more detailed explanation.
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and defect lines, the OPE and the consistency of these data with factorisation, can

be discussed at the level of C [FRS02-I, Sect. 5].

As we mentioned above, we will be interested in determining correlation functions

of a RCFT. In order to do that, one needs to specify them as a particular element

in the relevant space of conformal blocks. A very convenient characterisation of

conformal blocks is via ribbon graphs in 3-manifolds. Then the coefficients in the

expansion of a CFT correlator in terms of a chosen basis of conformal blocks are

obtained as invariants of closed 3-manifolds with embedded ribbon graphs.

Let us briefly introduce the concept of a ribbon graph, following the conventions

of [FRS02-I, Sect. 2.3]. A ribbon graph consists of the following data: an oriented 3-

manifold M , possibly with boundary, together with embedded ribbons and coupons.

A ribbon, is an oriented rectangle [−1/10, 1/10]×[0, 1], together with an orientation for

its core {0}×[0, 1]. The ends of the ribbons are the two subsets [−1/10, 1/10]×{0} and

[−1/10, 1/10] × {1}. A coupon, is an oriented rectangle with two preferred opposite

edges, called the top and bottom. The embeddings of ribbons and coupons into M

are required to be injective. A ribbon minus its ends does not intersect any other

coupon nor the boundary of M , while its ends must lie, either on one of the preferred

edges of some coupon or on ∂M . Finally, the orientation of the ribbon and the

coupon must agree whenever the ribbon ends on a coupon. The side of the ribbons

and coupons that will face the reader will be drawn on a lighter colour that the back

side and we will use open arrows to indicate their orientation.

One can use the machinery of Sect. 3.3 to assign numbers to ribbon graphs (e.g.

in S3, see [FRS02-I, Sect. 2.3] for example) and for this purpose, it is sufficient that C
is a ribbon category. Consider for example the second graph in equation (3.3.17) and

think of it as a ribbon graph in S3 = R3 ∪ {∞}. If we deform the ribbon so that it

faces upwards as described above and arrange it in such a way that the bends, twists

and crossing can be expressed as dualities, twists and braidings respectively, then we

can assign to it an element in HomC(1,1) by reading the graph from bottom to top

and interpreting it as concatenation of morphisms in C. Thus, in the case at hand, the
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ribbon in (3.3.17) will correspond to the element dA ◦ (idU∨ ⊗f) ◦ b̃A ∈ HomC(1,1).

If in addition C is modular, this implies the highly non trivial result, due to Turaev

[Tu], that it gives rise to a full extended 3D TFT, i.e. a 3D TFT with embedded

ribbon graphs. Let us recall the definition of a modular tensor category.

Definition 3.5.2. A modular tensor category (MTC), is a semisimple, abelian, rib-

bon, k-linear category C, with absolutely simple tensor unit and with the additional

properties:

(i) C has only a finite number of isomorphism classes of simple objects: |I| <∞.

(ii) The matrix s = (sij)i,j∈I , is non-degenerate, where

sij := Tr(ci,j, cAj ,Ai) ≡ j i . (3.5.3)

Remark 3.5.1. (i) The matrix s coincides, up to normalisation, with the modular

S-matrix of the CFT via

sij =
Sij
S00

. (3.5.4)

Conversely, S00 and thereby s is recovered from the data of the MTC by requiring

S = S00 · s to be unitary. In terms of s the quantum dimensions (3.3.20) are

dimq(Ai) = si0 =
Si0
S00

. (3.5.5)

Note that (3.5.4) is a non-trivial statement. For minimal models and WZW models,

(3.5.4) was first checked by explicitly computing both expressions for s and comparing

them. A general argument in terms of conformal blocks was given in [MS90]. A

general proof in terms of vertex operator algebras was given by Huang in [Hu04].

(ii) The axioms of a MTC can be best understood in the language of ribbons.

This was done in Sect. 3.3 by using lines instead of ribbons (recall Rem. 3.3.1).
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It was mentioned at the end of Sect. 1.3 that one can construct a full CFT via its

correlation functions. In order to do that, an additional input is required. This input

is a symmetric special Frobenius algebra object (A, µ, η, δ, ε) in C. For a definition

of the terms symmetric special see [FRS02-I, Def. 3.4], since this is the last time we

refer to these terms in this thesis. The correlators on an arbitrary world sheet X

are expressed as specific elements in the vector spaces of conformal blocks18 on the

complex double X̂ (Def. 3.5.4) of X. Such an element is described by a ribbon graph

in a 3-manifold MX , which is called the connecting manifold (Def. 3.5.5), such that

∂MX = X̂. In this thesis we will only consider orientable world sheets X. Now we

define the notion of an extended surface or C-marked surface.

Definition 3.5.3. An extended surface is a triple (X, γ,A±) with a lagrangian sub-

space L(X) of the first homology group H1(X,R)19, where X is an oriented compact

surface, γ ≡ (pi, vi) is a collection of finite disjoint arcs, i.e. a finite number of points

p1, . . . , pn with a non-zero tangent vector vi attached to every point pi, labeled by

pairs A± ≡ (Ai, εi) with Ai ∈ C and εi ∈ {±1}.

Remark 3.5.2. Note that the world sheets themselves are not extended surfaces. For

example world sheets can have defect lines or boundaries, but extended surfaces do

not have such decorations. An example of an extended surface is the complex double

X̂ produced from the world sheet X.

18To make the connection to the conclusions of Sect. 1.3 if we know the conformal blocks then
the crossing symmetry [Gin88, Eqn. (3.32)] of the 4-point function yields a system of equations that
determine the structure constants as well as the conformal weights h, h̄, hence the full CFT.

19First note that for any oriented surface X, the real vector space H1(X,R) supports the inter-
section pairing H1(X,R)×H1(X,R)→ R, which is antisymmetric so that H1(X,R) is a symplectic
vector space. In general, a lagrangian subspace of a symplectic vector space V , is a vector space
L such that V = L ⊕ L∗, where L,L∗ are both isotropic. Following [Tu, Sect. 3.3, 4.1 & 4.2], a
natural source of lagrangian subspaces in the homologies of surfaces is provided by the theory of
3-manifolds. An oriented compact 3-manifold M gives rise to a lagrangian subspace in H1(∂M ,R)
which is the kernel of the inclusion homomorphism H1(∂M ,R) → H1(M ,R). The fact that this
subspace is lagrangian is a well known corollary of the Poincaré duality [He].
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The opposite of an extended surface is the triple (−X,−γ,A∨±), where −γ ≡
(pi,−vi), A∨± = (A∨i ,−ε) and −X is the same as X but with reversed orientation.

For simplicity we will write X for an extended surface and X for its opposite.

Definition 3.5.4. The complex double X̂ of an extended surface X consists of two

disconnected copies of X with opposite orientation X̂ ∼= X qX.

The next ingredient for defining a 3D TFT is the notion of an extended cobordism.

It is defined similarly to Def. 3.1.2 but this time the 3-manifold M contains a rib-

bon graph, while the two boundaries ∂±M are endowed with lagrangian subspaces

L(∂−M ),L(∂+M ) of their first homology groups H1(∂−M ,R) and H1(∂+M ,R) re-

spectively. Then turn ∂±M into extended surfaces by taking as arcs the ends of

ribbons, with orientation induced by the ribbons. When a ribbon ending on ∂M is

labeled by Ai ∈ C, then the corresponding arc is labeled by A+ if the core of the ribbon

points away from the surface and by A∨− otherwise. Then the triple (M , ∂−M , ∂+M )

is an extended cobordism from ∂−M to ∂+M . We denote the category of extended

3-cobordisms by CobC(3).

Definition 3.5.5. The connecting 3-manifold MX consists of pairs (x, t), with x ∈ X̂

and t ∈ [−1, 1], modulo the identification (x, t) ∼ (σ(x),−t), where σ is an orientation

reversing map of order two. In other words

MX := (X̂ × [−1, 1])/Z2 , (3.5.6)

where the group Z2 acts on X̂ by σ and on the interval [−1, 1] by the sign flip t 7→ −t.

Note that X is naturally embedded in MX , via the map

ι : X →MX

x 7→ (x, 0)
. (3.5.7)

Thus the connecting manifold MX can be regarded as a ‘fattening’ of the extended

surface X. In this thesis, we will think of X as being embedded in MX in this fashion.
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Next, one needs to describe how to construct the ribbon graph in MX . We are

not going to discuss this construction in detail but it is worth mentioning that this

construction involves several choices, however the invariant associated to the graph

is independent of all these choices. We are going to give some examples of ribbons

embedded in MX , following [Ru10, Sect. 4.2]. The reader is referred to [FRS02-I,

Sect. 5.1] for all the details of the construction.

In the following examples we will consider coupons with two incoming and one

outgoing ribbons and vice versa. For incoming ribbons labelled Ri and Rj and the

outgoing ribbon labelled Rk, the coupon is labelled by an element in HomC(Ri ⊗
Rj, Rk), i.e. an intertwiner from Ri×Rj to Rk. We pick basis and dual basis elements

(3.3.21) and use them to label such coupons.

Example 3.5.4. If we consider a bulk field Φ(z) on the Riemann sphere X = C∪{∞},

then the relevant 3-manifold is MX = X× [−1, 1] and the corresponding ribbon graph

is

MX =
λ0
ij

i

j

z

z∗

1
23

12

(3.5.8)

Example 3.5.5. If we consider the Riemann sphere X = C ∪ {∞} with a defect of

type a and a defect field φa←a(z) insertion on that defect, then the relevant 3-manifold
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is MX = X × [−1, 1] and the corresponding ribbon graph is

MX =
λaia

i

a a

z

z∗

1
23

12

(3.5.9)

Note that the linear map that the TFT associates to a bordism M does not change

if we execute any of the modifications (3.3.20), (3.3.22), (3.3.23), (3.3.24) on a part

of the embedded ribbon graph.

We have now gathered all the ingredients we need to define a 3D TFT. The

definition is analogous to Def. 3.5.1, i.e. a modular functor tftC : CobC(3)→ Vectk

where now in addition to the given axioms, we require naturality in Ai [BK, Sect. 4.4].

The vector space H(X̂) is the space of conformal blocks and a vector Z(M ) ∈ H(X̂)

is the correlator of the extended surface X, which we write as tftC(MX).

Let us see this in an example following [FFFS02, Sect. 3.2]. Suppose X is closed

with a given orientation, then X̂ = XqX. Let X be endowed with n distinct disjoint

arcs γ1, . . . , γn, labeled by simple objects i1, . . . , in. The connecting 3-manifold is

MX = X × [−1, 1], with the embedded ribbon graph consisting of γi× [−1, 1], where

γi runs over the marked arcs on X. To these data one associates an element tftC(MX)

on the space of conformal blocks H(X̂), the correlator of X:

tftC(MX) = Z(X × [−1, 1], ∅, X̂) . (3.5.10)

The next thing to do is to check if (3.5.10) obeys the modular and factorisation

properties one expects for correlation functions. This is done in [FFFS02, Thms. 3.1

& 3.2].

82



Chapter 4

Category Theory for Perturbed
Defects

In this and in the remaining chapters, we present the main results of this thesis which

are published in the joint paper with Ingo Runkel [MR09].

In particular, in this chapter we present a categorical structure which captures

some aspects of perturbed defect operators. Starting from a monoidal category C,
we then enlarge it to a category CF whose objects are pairs (R, f), where R ∈ C and

f : F ⊗R→ R is a morphism in C. Then we show that if C is abelian (cf. Def. 3.3.1),

rigid (cf. Def. 3.3.9) and braided (cf. Def. 3.3.5) then CF is an abelian rigid monoidal

category (Thm. 4.3.2).

4.1 The Category CF
We start from a monoidal category C and enlarge it to a new category CF , depending

on an object F ∈ C. We then investigate how properties of C carry over to CF . In

particular we will see that if C is braided and additive then we can define a monoidal

structure on CF . The relation to perturbed defects is discussed in more detail in

Chap. 5. The basic idea is that an object in CF gives an unperturbed defect together

with a direction for the perturbation by a defect field in the representation F .
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Definition 4.1.1. Let C be a monoidal category and let F ∈ C. The enlarged

category CF has as objects pairs Uf ≡ (U, f), where U ∈ C and f : F ⊗ U → U . The

morphisms a : Uf → Vg are all morphisms a : U → V in C such that the following

diagram commutes:

F ⊗ U F ⊗ V

U V

	

//a

//idF ⊗a

��
f

��
g

The identity morphism idUf is idU in C, and the composition of morphisms is that of

C.

Remark 4.1.1. (i) The condition which singles out the subset of morphisms in C that

belong to CF is linear. Therefore, if C is an Ab-category, then so is CF . Similarly, if

C is k-linear for some field k, then so is CF .

(ii) There is an action of the monoid (a monoid is an algebraic structure with

a single associative binary operation and an identity element) End(F )op on CF 1.

Namely, for each ϕ ∈ End(F ) we define the endofunctor Rϕ of CF on objects as

Rϕ(Uf ) = (U, f ◦ (ϕ ⊗ idU)) and on morphisms Uf
a→ Vg as Rϕ(a) = a. We have

Rϕ ◦ Rψ = Rψ◦ϕ without the need for natural isomorphisms. This also shows that

we have an action of End(F )op instead of End(F ). If C is k-linear, in this way, in

particular, we obtain an action of k via λ 7→ Rλ idF .

(iii) If C is an Ab-category, we obtain an embedding I of C into CF . The functor

I : C → CF is defined via I(U) = (U, 0) and I(f) = f ; it is full2 and faithful3. The

1Given an algebra A with multiplication (a, b) 7→ µ(a, b), the opposite algebra has multiplication
(a, b) 7→ µop(a, b) = µ(b, a).

2A functor F : C → D is full when to every A,B ∈ C and to every g ∈ HomD(F (A), F (B)), there
is an f ∈ HomC(A,B), with g = F (f).

3A functor F : C → D is faithful when to every pair of objects A,B ∈ C and to every pair of
morphisms f, g ∈ HomC(A,B), the equality F (f) = F (g) : F (A)→ F (B) implies f = g.
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forgetful4 functor CF → C is a left inverse for I.

(iv) One way to think of CF is as a category of ‘F -modules in C’, where the morphism

f : F ⊗ U → U in Uf is the ‘action’, and the morphisms of CF intertwine this action.

But F is not required to carry any additional structure, and so there is no restriction

on the ‘action’ morphisms f .

(v) The category CF can also be obtained as a (non-full) subcategory of the comma

category (F ⊗ (−) ↓ Id) (see [McL, Sect. II.6] for more details on comma categories).

The objects of (F ⊗ (−) ↓ Id) are triples (U, V, f) where U, V ∈ C and f : F ⊗U → V .

The morphisms (U, V, f) → (U ′, V ′, f ′) are pairs (x : U → U ′, y : V → V ′) so that

y ◦ f = f ′ ◦ (idF ⊗x). The subcategory in question consists of all objects of the form

(U,U, f) and all morphisms of the form (x, x).

(vi) The category of evaluation representations of the quantum affine algebra Uq

(
ŝl(2)

)
is a full subcategory of Rep (Uq(sl(2)))F , where F is Uq

(
ŝl(2)

)
understood as a

Uq (sl(2))-module. The details can be found in Appendix A. As briefly mentioned in

the introduction, short exact sequences of representations of Uq

(
ŝl(2)

)
provide iden-

tities between transfer matrices for certain integrable lattice models. On the other

hand, in Chap. 5 below we will see that short exact sequences in CF give identities

between certain defect operators in CFT. We hope that this similarity can be made

more concrete in the future.

We will be interested in the Grothendieck group of CF , and to this end we need

to know when CF is abelian. The following theorem gives a sufficient condition. The

proof is given in Appendix B.

Theorem 4.1.1. If C is an abelian monoidal category with right-exact tensor product,

4A functor which simply ‘forgets’ some or all of the structure of an algebraic object is called a
forgetful functor or an underlying functor.
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then CF is abelian.

The following lemma will be useful; it is also proved in Appendix B.

Lemma 4.1.2. Let C be as in Theorem 4.1.1 and Uf
a−→ Vg

b−→ Wh be a complex in

CF . Then Uf
a−→ Vg

b−→ Wh is exact at Vg in CF iff U
a−→ V

b−→ W is exact at V in C.

4.2 Monoidal Structure on CF
Let C be a braided monoidal Ab-category, see Def. 3.3.2 & Def. 3.3.1. The braiding

and the abelian group structure on Hom-spaces allows us to define a tensor product

⊗̂ on CF as follows. On objects Uf , Vg ∈ CF we set

Uf ⊗̂Vg = (U ⊗ V, T (f, g)) , (4.2.1)

where T (f, g) : F ⊗ (U ⊗ V )→ U ⊗ V is defined as

T (f, g) = (f ⊗ idV ) ◦ α−1
F,U,V + (idU ⊗g) ◦ α−1

U,F,V ◦ (cF,U ⊗ idV ) ◦ αF,U,V . (4.2.2)

This definition, and some of the definitions and arguments below, are easier to un-

derstand upon replacing C by an equivalent strict category (cf. Def. 3.3.4) and using

the graphical representation of morphisms in braided monoidal categories, see Sect.

3.3. For example, the graphical representation of (4.2.2) is

T (f, g) =

F

f

U V

U V

+

F

g

U V

U V

. (4.2.3)

We will write 1 for the object 10 ≡ (1, 0) in CF . This will be the tensor unit for ⊗̂.

Lemma 4.2.1. The associator and unit isomorphisms of C are isomorphisms in

CF as follows: αU,V,W : Uf ⊗̂(Vg ⊗̂Wh) → (Uf ⊗̂Vg) ⊗̂Wh, λUf : 1 ⊗̂Uf → Uf and

ρUf : Uf ⊗̂1→ Uf .
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Proof. We have to show that

αU,V,W :
(
U ⊗ (V ⊗W ), T (f, T (g, h))

)
→
(
(U ⊗ V )⊗W,T (T (f, g), h)

)
,

λU :
(
1⊗ U, T (0, f)

)
→ (U, f) , ρU :

(
U ⊗ 1, T (f, 0)

)
→ (U, f)

(4.2.4)

make the diagram in Def. 4.1.1 commute. These are all straightforward calculations.

For example, ρU◦T (f, 0) = ρU◦(f⊗id1)◦αF,U,1 = f◦ρF⊗U◦αF,U,1 = f◦(idF ⊗ρU).

Lemma 4.2.2. Let a : Uf → U ′f ′ and b : Vg → V ′g′ be morphisms in CF . Then a ⊗

b : U ⊗ V → U ′ ⊗ V ′ is also a morphism Uf ⊗̂Vg → U ′f ′ ⊗̂V ′g′ in CF .

Proof. We have to show that (a⊗ b) ◦ T (f, g) = T (f ′, g′) ◦ (idF ⊗(a⊗ b)).

(a⊗ b) ◦ T (f, g) =

F

a b

f

U V

U ′ V ′

+

F

g

ba

U V

U ′ V ′

(1)
=

F

f ′

a b

U V

U ′ V ′

+

F

g′

ba

U V

U ′ V ′

= T (f ′, g′) ◦ (idF ⊗(a⊗ b)) .

In step (1) in the first term we used the fact that a ◦ f = f ′ ◦ (idF ⊗a), since a is a

morphism in CF (same for b◦ g in the second term), while in the second term we used

the naturality of the braiding (3.3.6).

According to the previous lemma, on morphisms a, b we can define the tensor

product to be the same as in C,

a ⊗̂ b = a⊗ b . (4.2.5)
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One checks that ⊗̂ is a bifunctor. Together with Lemma 4.2.1 this shows that CF is

a monoidal category.

Remark 4.2.1. (i) Even though C is braided, CF is in general not. The reason is that

cU,V is typically not a morphism in CF . Also, we actually demand too much when we

require C to be braided, since all we use are the braiding isomorphisms where one of

the arguments is given by F .

(ii) The functors Rϕ defined in Remark 4.1.1 are strict monoidal functors. That is,

Rϕ

(
Uf ⊗̂Vg

)
= Rϕ(Uf ) ⊗̂Rϕ(Vg) for objects and Rϕ

(
a ⊗̂ b

)
= Rϕ(a) ⊗̂Rϕ(b) for

morphisms. This follows from T (f ◦ (ϕ⊗ idU), g ◦ (ϕ⊗ idV )) = T (f, g) ◦ (ϕ⊗ idU⊗V ).

Theorem 4.2.3. If C is an abelian braided monoidal category with right-exact tensor

product, then CF is an abelian monoidal category with right-exact tensor product. If

the tensor product of C is exact, then so is that of CF .

Proof. We have seen above that CF is monoidal and in Theorem 4.1.1 that CF is

abelian. We will show that if ⊗ is right-exact, then the functor Xx ⊗̂(−) is right-exact.

The arguments for (−) ⊗̂Xx and for ‘exact’ in place of ‘right-exact’ are analogous.

Let Uf
a−→ Vg

b−→ Wh → 0 be exact. Then X ⊗ U idX ⊗a−−−−→ X ⊗ V idX ⊗b−−−−→ X ⊗W → 0 is

exact in C. By Lemma 4.1.2, Xx ⊗̂Uf
idX ⊗a−−−−→ Xx ⊗̂Vg

idX ⊗b−−−−→ Xx ⊗̂Wh → 0 is exact

in CF .

Corollary 4.2.4. If C is an abelian braided monoidal category with exact tensor

product, then CF has a well-defined Grothendieck ring K0(CF ).
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4.3 Duality On CF
Suppose now that C is a braided monoidal Ab-category which has right duals (see Def.

3.3.8 for the precise definition of right duality and for the graphical representation,

as well as for a definition of left duality). To a given object Uf ∈ CF we assign the

object

(Uf )
∨ = (U∨, c(f)) ;

c(f)= −λU∨ ◦ (dU ⊗ idU∨) ◦ ((idU∨ ⊗f)⊗ idU∨) ◦
(
α−1
U∨,F,U ⊗ idU∨

)
◦ αU∨⊗F,U,U∨ ◦ (cF,U∨ ⊗ bU) ◦ (ρF⊗U∨)−1 .

(4.3.1)

If C has left duals, we define analogously

∨ (Uf ) = (∨U, c̃(f)) ;

c̃(f)= −ρ∨U ◦
(

id∨U ⊗d̃U
)
◦ α−1

∨U,U,∨U ◦
((

id∨U ⊗
(
f ◦ c−1

F,U

))
⊗ id∨U

)
◦
(
α−1
∨U,U,F ⊗ id∨U

)
◦
((
b̃U ⊗ idF

)
⊗ id∨U

)
◦
(
λ−1
F ⊗ id∨U

)
.

(4.3.2)

Similarly, as in (4.2.2) it is helpful to pass to a strict category and write out the

graphical representation of (4.3.1) and (4.3.2). This leads to the simple expressions

c(f) = −

F

f

U∨

U∨

, c̃(f) = −

F

f

∨U

∨U

. (4.3.3)

Lemma 4.3.1. (i) If C has right duals, then bU : 1→ Uf ⊗̂(Uf )
∨ and dU : (Uf )

∨ ⊗̂Uf →

1 are morphisms in CF . (ii) If C has left duals, then b̃U : 1 → ∨(Uf ) ⊗̂Uf and

d̃U : Uf ⊗̂ ∨(Uf )→ 1 are morphisms in CF .

Proof. The proof works similar in all four cases. Consider bU as an example. The

commuting diagram in Def. 4.1.1 boils down to the condition that the morphism

T (f, c(f)) ◦ (idF ⊗bU) : F ⊗ 1→ U ⊗ U∨ has to be zero, i.e. that

− T (0, c(f)) ◦ (idF ⊗bU) = T (f, 0) ◦ (idF ⊗bU) . (4.3.4)
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The calculation is best done using the graphical notation.

−T (0, c(f)) ◦ (idF ⊗bU) = −

U U∨

F

c(f) (1)
=

U U∨

f

F

(2)
=

(2)
=

U U∨

f

F

(3)
=

U U∨

F

f

(4)
=

U U∨

F

f

= T (f, 0) ◦ (idF ⊗bU) .

In step (1) we used equation (4.3.3) to substitute for c(f), in step (2) we used the

tensoriality property of the braiding (3.3.7), (3) uses the naturality property (3.3.6)

of the braiding to pull bU through cF,U⊗U∨ and the fact that cF,1 = idF and finally, in

step (4) we used the right duality axioms (3.3.10).

Theorem 4.3.2. Let C be a braided monoidal Ab-category. If C has right and/or left

duals, then so has CF . In particular, if C is rigid, so is CF .

Remark 4.3.1. (i) Suppose C has left and right duals. Even if in C we were to have

U∨ = ∨U , the same need not be true in CF due to the distinct definitions of c(f) and

c̃(f). Also, even if in C we were to have (U∨)∨ ∼= U , the same need not hold in CF .

We will see this explicitly in the Lee-Yang example in Section 6.2.

(ii) Let C be as in Corollary 4.2.4. If C has right duals, then the existence of a
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right duality for CF tells us that in K0(CF ) we have [(Uf )
∨] · [Uf ] = [1] + [Wh] and

[Uf ]· [(Uf )∨] = [1]+[W ′
h′ ] for some Wh,W

′
h′ ∈ CF . This will imply functional identities

for perturbed defect operators via the relation described in Chap. 5. The same holds

for left duals.

(iii) The functors Rϕ defined in Remark 4.1.1 are compatible with these dualities in

the sense that Rϕ ((Uf )
∨) = (Rϕ(Uf ))

∨ and Rϕ (∨(Uf )) = ∨ (Rϕ(Uf )). This follows

from c (f ◦ (ϕ⊗ idU)) = c(f) ◦ (ϕ⊗ idU∨) and c̃ (f ◦ (ϕ⊗ idU)) = c̃(f) ◦ (ϕ⊗ id∨U).
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Chapter 5

Relation to Defect Operators

As we have already seen in Chap. 2, defects are lines on the world sheet where the

fields can be discontinuous or even singular. Suppose we are given a CFT that is

well-defined on surfaces with defect lines, that is, it satisfies the axioms in [RS08,

Sect. 3] (or at least a genus 0 version thereof). Recall that to a defect we can assign

a linear operator D on the space of states H of the CFT. This operator can be

extracted by wrapping the defect line around a short cylinder [−ε, ε]× S1, where we

place two states u and v on the two boundary circles. The resulting amplitude, in

the limit ε→ 0, is the pairing 〈u,Dv〉.
Working with fields rather than with states, the defect operator D is obtained as

the correlator assigned to the Riemann sphere C ∪ {∞} with one in-going puncture

at 0 and one out-going puncture at ∞, both with standard local coordinates, and a

defect line placed on the unit circle S1. By the state-field correspondence (1.3.2), the

space of states H is at the same time the space of local bulk fields, so that again

D : H →H .

Here we are interested in topological defects (recall Def. 2.1.2). We will be also

working in rational CFT, so that the chiral algebra of the CFT will be a rational

vertex operator algebra V (recall footnote 1 of the Introduction of the thesis). Denote

by C = Rep(V) the category of (appropriate) representations of V. It is a semi-

simple finite rigid braided monoidal category which is modular [HL94, Hu05]. We
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will not need many details about modular categories, but we note that C satisfies the

conditions of Theorems 4.2.3 and 4.3.2.

Let us pick a set of representatives1 {Ri | i ∈ I } of the isomorphism classes of

simple objects, so that 1 ≡ R0 ≡ V is the monoidal unit. We restrict ourselves in

this paper to the Cardy case constructed from V. The space of states of this model

is

H =
⊕
i∈I

Ri ⊗C R∨i , (5.0.1)

where R∨i denotes the contragredient representation to Ri. Also, we will only consider

topological defects which are maximally symmetric in that they are compatible with

the entire chiral symmetry V ⊗C V, i.e. (2.1.2) holds for the modes of all fields in

V ⊗C V not just for those of the stress tensor. As we saw in Sect. 2.2 according to

[PZ01a, FRS02-I] the different maximally symmetric topological defects are labeled

by representations of V, that is, objects R ∈ C. We denote the defect operator of the

defect labeled by R ∈ C by D[R]. The defect operator assigned to a simple object Ri

is (recall (2.2.14))

D[Ri] =
∑
j∈I

Sij
S0j

idRj⊗CR∨j
, (5.0.2)

where by idRj⊗CR∨j
we mean the projector to the direct summand Rj ⊗C R∨j of H ,

and S is the modular matrix, i.e. the |I|×|I|-matrix which describes the modular

transformation of characters. If R ∼=
⊕

i∈I(Ri)
⊕ni then D[R] =

∑
i∈I niD[Ri].

5.1 Correlators of Chiral Defect Fields

Recall that by a chiral defect field we mean a field that ‘lives on the defect’ and that

has left/right conformal weight (h, 0). The notion of defect fields is described for

example in [FRS05-IV, Sect. 3.4] and [RS08, Sect. 3.2], see also Chap. 2 for a review.

1 The notation Ri, where i is an index of a simple object, should not be confused with the
notation Rf for objects of CF (for some F ), where f : F ⊗ R → R is a morphism. The meaning of
the index should be clear from the context, and in any case we will mostly use i, j, k for indices of
simple objects and f, g, h, as well as c and x, for morphisms.
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The defect fields have well-defined weights with respect to L0 and L̄0 because we are

considering topological defects, and those are transparent to the holomorphic and

anti-holomorphic part of the stress tensor.

The space of chiral defect fields on a defect labeled by R ∈ C consists of all vectors

v ⊗C Ω ∈ (R ⊗ R∨) ⊗C V, where Ω ∈ V is the vacuum vector of V, see [FRS05-IV,

Eqn. (3.37)] and [PZ01a, PZ01b, FRS02-I]. Here, the tensor product R ⊗ R∨ is the

fusion tensor product in C. Pick a representation F ∈ C. A chiral defect field in

representation F is specified by a vector φ ∈ F and a morphism f̃ : F → R ⊗ R∨ in

C. Instead of f̃ we find it more convenient to give a morphism f : F ⊗R→ R.

We are going to define a defect operator for a defect labeled by a representation

R with chiral defect fields φ inserted at mutually distinct points eiθ1 , . . . , eiθn on the

unit circle, where for each insertion we allow a different morphism f1, . . . , fn. We will

denote this operator by

D[R; f1, . . . , fn; θ1, . . . , θn] : H →H . (5.1.1)

The operator D may have contributions in an infinite number of graded components

of the target vector spaces. Hence, we have to pass to a completion of H , namely to

the direct product H of the graded components of H . We will later integrate over

the variables θk, and the resulting operator commutes with the grading, so that we

obtain an operator H →H .

Let us restrict D to the sector Ri ⊗C R∨i of H and call the resulting operator

Di. Because the defect fields are all chiral, they do not affect the anti-holomorphic

sector, and hence the image of Di will lie entirely in the summand Ri ⊗C R∨i of H .

The operator Di is an element of a suitable space of conformal blocks, namely of a

tensor product (over C) of two spaces of conformal blocks on the sphere, related to

the two chiral halves of the CFT. On the first sphere C ∪ {∞} we have insertions of

Ri at 0 and ∞, and of F at eiθ1 , . . . , eiθn . Insertions at ∞ will always be treated as

out-going, the others as in-going. Because the defect fields are chiral, on the second

sphere we just have insertions of R∨i at 0 and ∞. Altogether, the conformal block is
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an operator

C [R; f1, . . . , fn; θ1, . . . , θn]i : Ri ⊗C R∨i ⊗C F ⊗C · · · ⊗C F −→ Ri ⊗C R∨i . (5.1.2)

It determines the defect operator Di on a vector u⊗ v ∈ Ri ⊗C R∨i ⊂H via

Di(u⊗ v) = C [R; f1, . . . , fn; θ1, . . . , θn]i(u⊗ v ⊗ φ⊗ · · · ⊗ φ) . (5.1.3)

The vector space of conformal blocks from which (5.1.2) is taken is finite-dimensional,

as is always the case in rational CFT, but its dimension can be quite high and will

grow with the number n of insertions. We thus need an efficient method to specify

elements in the space of conformal blocks. Such a method is provided by using three-

dimensional topological field theory to describe correlators of rational CFT, see Sect.

3.5.2 for an introduction to 2D TFT and references therein, which treat defect lines

and defect fields in detail.

Recall from Sect. 3.5.2 that the 3D TFT assigns to a three-manifold M with

embedded ribbon graph an element in the space of conformal blocks on the boundary

surface ∂M of M . If the 3D TFT is Chern-Simons theory for a gauge group G, the

conformal blocks are those of the corresponding WZW model [Wi89, FK89], see also

[Wi84] where the topological nature as well as the conditions under which the model

becomes conformal are investigated. There is also a general construction, whereby

the 3D TFT is defined by a modular category C (see Def. 3.5.2), which in turn is

obtained from the representations of a rational vertex operator algebra [MS90, Hu05].

Let us denote this TFT as tftC.

In the TFT approach to correlators of rational CFT, one starts from a world

sheet X, possibly with boundary and defect lines, and with various field insertions,

and constructs from this a three-manifold MX with embedded ribbon graph. The

boundary of MX is the double X̂ of the surface X and the TFT assigns to MX a

conformal block in X̂, which we write as tftC(MX). This is the correlator for the

world sheet X.

Let us see how this works in the case at hand, where X is C∪{∞} with bulk fields

in representation Ri ⊗C R∨i inserted at 0 and ∞, and with a defect line labeled R
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placed on the unit circle on which defect fields in representation F are inserted at the

points eiθ1 , . . . , eiθn . As X is oriented and has empty boundary, the three-manifold

is simply MX = X × [−1, 1]. Note that ∂MX does indeed consist of two Riemann

spheres, so that the TFT will determine an element in the tensor product of two

spaces of conformal blocks on the sphere, as discussed above. It remains to construct

the ribbon graph embedded in MX . To do this, we place a circular ribbon labeled by

the representation R on the unit circle in the plane X×{0}. This ribbon is connected

to the marked points eiθk on the boundary X×{1} of MX with ribbons labeled by F .

The junction of F and R is formed by the intertwiner fk : F ⊗ R→ R. For the bulk

insertions at 0 and ∞ one places a vertical ribbon inside MX connecting the marked

points on the boundary components X × {1} and X × {−1}. The resulting ribbon

graph is

M [R; f1, . . . , fn; θ1, . . . , θn]i =

C ∪ {∞}

−1

0

1

1

2
3

1

2

z=0 z=∞

Ri R∨i

fσ1

fσ2

fσn
θσ1

θσ2

θσn

F

F

F

R

R
R

R

(5.1.4)

For the TFT conventions used here, see [FRS02-I, Sect. 2], and for more details on

the construction of the ribbon graph consult [FRS05-IV, Sect. 3 & 4]. The orientation

of the ‘top’ plane of M is obtained from that of M by taking the inward pointing

normal. The arrows at the ends of the ribbons refer to a particular choice of local
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coordinates around the F -insertions, namely the local coordinate at exp(iθσk) is given

by ζ 7→ −i(exp(−iθσk)ζ − 1), so that exp(iθσk) gets mapped to zero and the real axis

of the local coordinate system is tangent to the defect circle. We do not demand that

the θ1, . . . , θn are ordered. Instead we define σ ∈ Sn to be the unique permutation

of n elements for which 0 ≤ θσ1 < θσ2 · · · < θσn < 2π. Finally, the conformal block

(5.1.2) is given by

C [R; f1, . . . , fn; θ1, . . . , θn]i = tftC
(
M [R; f1, . . . , fn; θ1, . . . , θn]i

)
. (5.1.5)

One can work out this conformal block in terms of intertwiners as in [FRS05-IV,

Sect. 5], but we will not need such an explicit expression here. This conformal block

in turn determines the defect operator (5.1.1) via D =
⊕

iDi with Di given in (5.1.3).

The strength of the representation (5.1.5) lies in the fact that we can now use

identities that hold within the 3D TFT, i.e. manipulations which change the ribbon

graph inside M without modifying the value of tftC(M ), to prove identities among

conformal blocks. This will be used extensively in the proof of the next lemma. In

fact, the manipulations below will only involve a neighbourhood of the circular ribbon

in (5.1.4). For this reason, it is convenient to have a shorthand for (5.1.4) which only

shows this region of M . We will write

M [R; f1, . . . , fn; θ1, . . . , θn]i = M


fσ1 fσ2 fσn

θσ1 θσ2 θσn

F F F

R R R R R

 . (5.1.6)

Lemma 5.1.1. (i) Let 0→ Kh → Rf → Cc → 0 be an exact sequence in CF , and let

θ1, . . . , θm ∈ [0, 2π) be mutually distinct. Then

D[R; f, . . . , f ; θ1, . . . , θm] = D[K;h, . . . , h; θ1, . . . , θm] +D[C; c, . . . , c; θ1, . . . , θm]

(5.1.7)

(ii) Let Rf , Sg ∈ CF , and let θ1, . . . , θm, η1, . . . , ηn ∈ [0, 2π) be mutually distinct. Then

lim
ε→0+

D[R; f, . . . , f ; θ1, . . . , θm] eε(L0+L̄0) D[S; g, . . . , g; η1, . . . , ηn]

= D[R⊗ S;T (f, 0), . . . , T (f, 0), T (0, g), . . . , T (0, g); θ1, . . . , θm, η1, . . . , ηn]

(5.1.8)
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Proof. (i) Denote the morphisms in the exact sequence by eK : Kh → Rf and rC : Rf →

Cc. In the present situation, the category C = Rep(V) is modular, and thus in partic-

ular semi-simple. Therefore, in C the exact sequence 0→ K
eK−→ R

rC−→ C → 0 splits,

i.e. we can find rK : R→ K and eC : C → R such that rK ◦ eK = idK , rC ◦ eC = idC ,

and eK ◦ rK + eC ◦ rC = idR. Using the decomposition of idR we can write

C [R; f, . . . , f ; θ1, . . . , θn]i = tftC(MK) + tftC(MC) (5.1.9)

where

MK = M


rK eK f f

θσ1 θσn

F F

R K R R R R

 ,

MC = M


rC eC f f

θσ1 θσn

F F

R C R R R R

 .

(5.1.10)

Since eK : Kh → Rf is a morphism in CF , it satisfies the identity eK◦h = f◦(idF ⊗eK).

This can be used to move eK past f , for example,

tftC(MK) = tftC

M


rK h eK f

θσ1 θσn

F F

R K K R R R


 . (5.1.11)

If one repeats this procedure and in this way takes eK around the loop, one arrives

at

tftC(MK) = tftC

M


eK rK h h

θσ1 θσn

F F

K R K K K K




= C [K;h, . . . , h; θ1, . . . , θn]i .

(5.1.12)
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In the last step we used rK ◦ eK = idK and Equation (5.1.5). For tftC(MC) one

proceeds similarly, only that here rC : Rf → Cc is the morphism in CF , and so one

has to move rC around the loop in the opposite sense. This results in

tftC(MC) = C [C; c, . . . , c; θ1, . . . , θn]i . (5.1.13)

Combining (5.1.9), (5.1.12) and (5.1.13) establishes part (i) of the lemma.

(ii) Because the conformal block in (5.1.5) is a map from Ri ⊗C R∨i to the direct

product Ri ⊗C R∨i of the L0,L̄0-eigenspaces in Ri ⊗C R∨i , we have to take care that

the composition is well-defined. This is ensured by the exponential in (5.1.8). Since

the insertion points eiθ of the intertwining operators (of the vertex operator algebra

representations) are distinct, the limit ε→ 0 is well-defined. Let Clhs and Crhs be the

conformal blocks obtained from the left and right hand side of (5.1.8), respectively.

To see that Clhs = Crhs we again use the 3D TFT. Let us look at a particular example

of the ordering of the θk and ηk, say θ1 < η1 < η2 < θ2 < · · · < ηn < θm. The

general case works along the same lines. Substituting the definitions, one finds that

the three-manifold and ribbon graph for Crhs is

Clhs = Crhs = tftC

M


g1 g2 gn

f1 f2 fn

η1 η2 ηnθ1 θ2 θm

F F F

F F F

S S S S S

R R R R R


 .

(5.1.14)

To see that Clhs leads to the same result, one has to translate the composition of

conformal blocks into a gluing of three-manifolds as in [FFFS02, Thm. 3.2]. Namely,

one needs to cut out a cylinder around the Ri-ribbon at z = 0 of D[R; . . . ] and around

the R∨i -ribbon at z =∞ of D[S; . . . ], and identify the resulting cylindrical boundaries.

The resulting ribbon graph can be deformed to give (5.1.14). This establishes part
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(ii) of the lemma.

5.2 Perturbed Topological Defects

The operator of the perturbed defect is defined via an exponentiated integral. That

is, for an object Rf ∈ CF we set2

D[Rf ] =
∞∑
n=0

1

n!
D[Rf ]

(n) , D[Rf ]
(n) =

ˆ 2π

0

D[R; f, . . . , f ; θ1, . . . , θn] dθ1 · · · dθn .

(5.2.1)

Because of the permutation that orders the arguments in the definition (5.1.4), (5.1.5)

and (5.1.3) of the defect operator, a path-ordering prescription is automatically im-

posed and does not need to be included explicitly in the integration regions for

D[Rf ]
(n). The integrals in D[Rf ]

(n) and the infinite sum in D[Rf ] may or may not

converge. Since we have no direct way to ensure convergence, we say that an object

Rf ∈ CF has finite integrals if ϕ(D[Rf ]
(n)v) exists for each ϕ ∈ H ∗, v ∈ H , and

n ∈ N0. Note that this is not a property of the category CF alone, but instead also

depends on the vertex operator algebra V and the vector φ ∈ F . As already men-

tioned in Sect. 2.3, generically one expects that if the element φ ∈ F has conformal

weight hφ <
1
2
, then all Rf ∈ CF have finite integrals (but we have no proof). Let

Rf ∈ CF have finite integrals. It is demonstrated in [Ru08, Sect. 2.2] that[
L0, D[Rf ]

(n)
]

= 0 and
[
L̄m, D[Rf ]

(n)
]

= 0 , ∀m ∈ Z. (5.2.2)

We will not discuss the convergence of the infinite sum in (5.2.1). Instead we will

treat it as a formal power series in the following way. For ζ ∈ C we have D[Rζf ]
(n) =

ζnD[Rf ]
(n). Now take ζ to be a formal parameter and let us define, by slight abuse

2Recall from below (5.1.5) that the local coordinate around the insertion of a defect field φ at
eiθ was chosen to be ζ 7→ −i(e−iθζ − 1). This choice makes (for example) D[R; f ; θ] periodic under
θ  θ + 2π. Had we instead chosen the standard local coordinates ζ 7→ ζ − p on the complex plane
around a point p, D[R; f ; θ] would have picked up the phase e−2πihφ .
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of notation,

D[Rζf ] =
∞∑
n=0

ζn

n!
D[Rf ]

(n) ∈ End(H )[[ζ]] . (5.2.3)

Theorem 5.2.1. Let ζ be a formal parameter.

(i) Let 0→ Kk → Rf → Cc → 0 be an exact sequence in CF , and let Kk, Rf , Cc have

finite integrals. Then D[Rζf ] = D[Kζk] +D[Cζc].

(ii) Let Rf , Sg ∈ CF have finite integrals. Then D[Rζf ]D[Sζg] = D[(R⊗ S, ζT (f, g))].

Proof. Part (i) holds because by Lemma 5.1.1 (i) it already holds before integration.

For part (ii) first note that the exponential in (5.1.8) is not necessary to make the

compositionD[Rζf ]D[Sζg] well-defined, becauseD[Rζf ] commutes with L0+L̄0 and we

can write D[Rζf ]D[Sζg] = limε→0 e
−ε(L0+L̄0)D[Rζf ]e

ε(L0+L̄0)D[Sζg]. We will therefore

not write the limit in the equations below. Define operators An and Bn via

D[Rζf ]D[Sζg] =
∑
n∈N

1

n!
ζnAn and D[(R⊗ S, ζT (f, g))] =

∑
n∈N

1

n!
ζnBn . (5.2.4)

We have to show that An = Bn. Starting from An we find

An =
n∑

m=0

(
n

m

)
D[Rζf ]

(m)D[Sζg]
(n−m)

=
n∑

m=0

(
n

m

) ˆ
D[R; f, . . . , f ; θ1, . . . , θm]D[S; g, . . . , g; η1, . . . , ηn−m]

=
n∑

m=0

(
n

m

) ˆ
D[R⊗ S;T (f, 0), . . . , T (f, 0), T (0, g), . . . , T (0, g); θ1, . . . , θm, η1, . . . , ηn−m]

(5.2.5)

where
´
≡
´ 2π

0
dθ1 · · · dθmdη1 · · · dηn−m and in the last step we used Lemma 5.1.1 (ii).

For Bn we get

Bn =

ˆ 2π

0

dα1 · · · dαn D[R⊗ S;T (f, g), . . . , T (f, g);α1, . . . , αn] . (5.2.6)
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To see that this is equal to the right hand side of (5.2.5) one first writes T (f, g) =

T (f, 0) + T (0, g), then expands out the integrand into 2n summands and groups

together those with the same number of T (f, 0) and T (0, g). The distinct ordering in

each term can be absorbed into a change of integration variables as the angles αk are

all integrated from 0 to 2π.

Theorem 5.2.1 implies the following corollary.

Corollary 5.2.2. Let ζ be a formal parameter and let Rf , Sg ∈ CF have finite inte-

grals.

(i) If [Rf ] = [Sg] in K0(CF ), then D[Rζf ] = D[Sζg].

(ii) If [Rf ] · [Sg] = [Mm] in K0(CF ) then D[Rζf ]D[Sζg] = D[Mζm].

Remark 5.2.1. (i) If all Rf ∈ CF have finite integrals, then Corollary 5.2.2 says that

the map [Rf ] 7→ D[Rζf ] defines a ring homomorphism K0(CF )→ End(H )[[ζ]]. Since

D[Rζf ] commutes with L0 and L̄0 (and in fact with all modes of the anti-holomorphic

copy of the chiral algebra) the ‘representation’ of K0(CF ) on H splits into an infinite

direct sum of subrepresentations. One may then wonder why one should consider all

of them together, rather than restricting one’s attention to a given eigenspace. One

reason to do this is that one expects D[Rf ] to have the following appealing behaviour

under modular transformations. Let Z[Rf ](τ) = TrH qL0−c/24(q∗)L̄0−c/24D[Rf ], where

q = exp(2πiτ), and let us assume that the infinite sum in D[Rf ] converges, and that

the trace over H converges for τ in the upper half plane. The resulting power series

in q and q∗ will typically not have integral coefficients. But when expressed in terms

of q̃ = exp(−2πi/τ) and q̃∗ we are counting the states that live on a circle intersected
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by the perturbed defect, and so we expect that

Z[Rf ](τ) =
∑

(x,y)∈C×C

n[Rf ]x,y · q̃ x(q̃∗)y , n[Rf ]x,y ∈ N0 , (5.2.7)

and n[Rf ]x,y 6= 0 only for countably many pairs. The infinite direct sum of subrepre-

sentations on H has to conspire in a precise way in order to give rise to non-negative

integer coefficients in the crossed channel.

(ii) The construction of perturbed topological defects and their relation to CF applies

also to perturbations of conformal boundary conditions. Of course, in this case the

composition in Theorem 5.2.1 (ii) does not make sense, but Theorem 5.2.1 (i) remains

valid. In the Cardy case, the discussion of perturbed boundary conditions is however

subsumed in that of perturbed topological defects because (in the Cardy case) the

boundary state of a perturbed boundary condition can always be written as D[Rf ]|1〉〉

for |1〉〉 the Cardy boundary state [Ca89] associated to the vacuum representation of

V. This follows from the 3D TFT formulation of boundary and defect correlators

[FFFS02, FRS05-IV]. So in the Cardy case, treating perturbed conformal boundaries

instead of perturbed topological defects amounts to forgetting the monoidal structure

on CF .

103



Chapter 6

Lee Yang Model

In this chapter, we use the construction described in Chapters 4 & 5 to find functional

relations, for perturbed defects, in the Lee-Yang model (introduced in Sect. 1.7.1).

There, one obtains a family of operators D(λ), λ ∈ C, on the space of states of the

model, which obey, for all λ, µ ∈ C,

[L0 + L̄0, D(λ)] = 0 , [D(λ), D(µ)] = 0 , D
(
e2πi/5λ

)
D
(
e−2πi/5λ

)
= id +D(λ) .

(6.0.1)

The last relation above is closely linked to the description of the Lee-Yang model

via the massless limit of factorising scattering and the thermodynamic Bethe Ansatz,

see e.g. the review [DDT07]. This example illustrates that the functional relations

obeyed by perturbed defect operators, encode at least part of the integrable structure

of the model. In fact, the defect operator in (6.0.1) (and more generally those for

the M2,2m+1 minimal models) can be understood as certain linear combinations of the

chiral operators which were constructed in [BLZ96] to capture the integrable structure

of these models.

The two irreducible highest weight representations of the Virasoro algebra are

denoted by R1 (for h = 0) and Rφ (for h = −1/5). As already remarked in footnote

1, the notation R1 and Rφ should not be confused with objects Rf of CF (for some C
and F ); in any case we will never use 1 or φ to denote morphisms.

Let Rep(V2,5) be the category of all Virasoro representations at c = −22/5 which
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are isomorphic to finite direct sums of R1 and Rφ. On Rep(V2,5) we have the fusion

tensor product1 with non-trivial fusion Rφ⊗Rφ
∼= R1⊕Rφ. The Grothendieck group

of Rep(V2,5) is therefore isomorphic to Z × Z with generators [R1] and [Rφ]. The

product on K0(Rep(V2,5)) has [R1] as multiplicative unit, and [Rφ]·[Rφ] = [R1]+[Rφ].

As described in Chap. 2 and in the introduction of Chap. 5, to each object

R ∈ Rep(V2,5) we can associate a topological defect operator D[R] : H → H that

commutes with the two copies of the Virasoro algebra. Since D[R] depends only on

[R] ∈ K0(Rep(V2,5)), it is enough to give D[R1] and D[Rφ] as in (5.0.2),

D[R1] = idH , D[Rφ] = d · idR1⊗CR1 − d−1 · idRφ⊗CRφ , (6.0.2)

where d is as in (1.7.6). It is easy to check that indeed D[Rφ]D[Rφ] = id +D[Rφ], as

required by the corresponding relation in K0(Rep(V2,5)).

We can now perturb the defect labeled Rφ by a chiral defect field with left/right

conformal weights (−1
5
, 0) as described in Sect. 5.2. This amounts to considering the

objects Rφ(µ) ≡ (Rφ, µ · λ(φφ)φ) in CRφ , where µ ∈ C and λ(φφ)φ is a fixed non-zero

morphism Rφ ⊗ Rφ → Rφ. We then obtain a family of defect operators D[Rφ(λ)].

In [Ru08] it was shown – assuming convergence – that these operators mutually

commute, [
D[Rφ(λ)] , D[Rφ(µ)]

]
= 0 for all λ, µ ∈ C , (6.0.3)

and that they satisfy the functional relation

D[Rφ(e2πi/5λ)]D[Rφ(e−2πi/5λ)] = id +D[Rφ(λ)] for all λ ∈ C . (6.0.4)

In the next section we recover this functional relation from studying the tensor prod-

uct and exact sequences in the corresponding category CF .

1More precisely, V2,5 is the Virasoro vertex operator algebra built on R1. Rep(V2,5) is the cate-
gory of admissible modules of V2,5; this category is finite and semi-simple [Wa93, Def. 2.3 & Thm. 4.2]
and forms a braided monoidal category [Hu95, Cor. 3.9].
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6.1 The Category CF for the Lee-Yang Model

The category Rep(V2,5) is equivalent (as a C-linear braided monoidal category) to

a category V defined as follows. The objects A of V are pairs A = (A1, Aφ) of

finite-dimensional complex vector spaces indexed by the labels {1, φ} used for simple

objects in Rep(V2,5). A morphism f : A → B is a pair f = (f1, fφ) of linear maps,

where f1 : A1 → B1 and fφ : Aφ → Bφ. This construction is described in more detail

in Appendix C. The tensor product ~ of V is given on objects as

A~B =
(
A1 ⊗C B1 ⊕ Aφ ⊗C Bφ , A1 ⊗C Bφ ⊕ Aφ ⊗C B1 ⊕ Aφ ⊗C Bφ

)
. (6.1.1)

The tensor product on morphisms and the non-trivial associator are described in

Appendix C. The dual of an object A ∈ V is A∨ = (A∗1, A
∗
φ), where A∗1 and A∗φ are

the dual vector spaces. The duality morphisms are given in Appendix C.

As representatives of the two isomorphism classes of simple objects we take 1 =

(C, 0) and Φ = (0,C). We are interested in the category VF for F = Φ. Note

that Φ ~ A = (Aφ, A1 ⊕ Aφ). Therefore, in an object Af ∈ VΦ, the morphism

f : Φ~A→ A has components f1 : Aφ → A1 and fφ : A1⊕Aφ → Aφ. We will denote

the two summands of fφ as fφ1 : A1 → Aφ and fφφ : Aφ → Aφ; for consistency of

notation we will also denote f1 ≡ f1φ. It is convenient to collect these three linear

maps into a matrix

f =̂

( A1 Aφ

A1 0 f1φ

Aφ fφ1 fφφ

)
, (6.1.2)

where we have also indicated the source and target vector spaces. We can now

compute the dual of an object Af ∈ VΦ according to (4.3.1). This is done in Appendix

D with the simple result

(Af )
∨ = (A∨, c(f)) with c(f) =̂

( A∗1 A∗φ

A∗1 0 −dζ2f ∗φ1

A∗φ −d−1f ∗1φ −ζf ∗φφ

)
and ζ = e−πi/5 .

(6.1.3)
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The tensor product in VΦ is more lengthy. We have Af~̂Bg = (A~B, T (f, g)) where

T (f, g) : Φ~ (A~B)→ A~B. The source vector spaces of T (f, g) are (we omit the

‘⊗C’)

Φ~(A~B) = (A1Bφ⊕AφB1⊕AφBφ, A1B1⊕AφBφ⊕A1Bφ⊕AφB1⊕AφBφ) . (6.1.4)

In Appendix D we evaluate equation (4.2.2) for T (f, g) in the category VΦ. The result

is best represented in a 5× 5-matrix,

T (f, g) =̂



A1⊗CB1 Aφ⊗CBφ A1⊗CBφ Aφ⊗CB1 Aφ⊗CBφ

A1⊗CB1 0 0 idA1
g1φ f1φ idB1

0

Aφ⊗CBφ 0 0 fφ1 idBφ ζ2 idAφ gφ1 fφφ+ζgφφ

A1⊗CBφ idA1
gφ1

1
d
f1φ idBφ idA1

gφφ 0 wfφ1 idBφ

Aφ⊗CB1 fφ1 idB1

1
ζ2d

idAφ g1φ 0 fφφ idB1

w
ζ

idAφ g1φ

Aφ⊗CBφ 0
1
wd

(
fφφ+

1
ζ
gφφ

)
fφ1 idBφ ζ idAφ gφ1 −1

d
(fφφ+gφφ)


.

(6.1.5)

Here ζ was given in (6.1.3), w ∈ C× is a normalisation constant (see Appendix D), and

in the entries with sums we have omitted the identity maps. For example, fφφ + ζgφφ

stands for fφφ ⊗C idBφ +ζ idAφ ⊗Cgφφ.

6.2 Some Exact Sequences in CF
Two objects Af and Bg in VΦ are isomorphic if and only if there exist isomorphisms

γ1 : A1 → B1 and γφ : Aφ → Bφ such that(
0 g1φ

gφ1 gφφ

)
=

(
0 γ1 ◦ f1φ ◦ γ−1

φ

γφ ◦ fφ1 ◦ γ−1
1 γφ ◦ fφφ ◦ γ−1

φ

)
. (6.2.1)

For λ ∈ C write Φ(λ) ≡ (Φ, f(λ)) with f(λ)1 = 0 and f(λ)φ = λ · idC. In other words,

Φ(λ) =
(
(0,C), (λ)

)
. Then Φ(λ) ∼= Φ(µ) if and only if λ = µ. As another example,(

(C,C),

(
0 a

b c

))
∼=

(
(C,C),

(
0 a′

b′ c′

))
⇔

{
ab = a′b′ , c = c′ and

rk(a) = rk(a′) , rk(b) = rk(b′)
,

(6.2.2)
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where rk(a) ∈ {0, 1} denotes the rank of the linear map a · idC.

For 1 and Φ(λ) there are no non-trivial exact sequences as the underlying objects

in V are already simple. For
(
(C,C),

(
0 a
b c

))
there are two exact sequences,

0→ Φ(λ)→
(
(C,C),

(
0 0
b λ

))
→ 1→ 0 , 0→ 1→

(
(C,C),

(
0 a
0 λ

))
→ Φ(λ)→ 0 .

(6.2.3)

Let us explain how one arrives at the first one. One checks that there is a surjective

morphism
(
(C,C),

(
0 a
b c

))
→ 1 in VΦ iff (1, 0)

(
0 a
b c

)
= 0, i.e. iff a = 0. To complete

this to an exact sequence, we need an injective morphism Φ(λ) →
(
(C,C),

(
0 a
b c

))
.

This exists iff
(

0 a
b c

)(
0
1

)
=
(

0
λ

)
, i.e. iff a = 0 and λ = c. From (6.2.3) it follows that

in K0(VΦ) we have[ (
(C,C),

(
0 0
b λ

)) ]
= [1] + [Φ(λ)] =

[ (
(C,C),

(
0 a
0 λ

)) ]
, (6.2.4)

even though
(
(C,C),

(
0 0
b λ

))
and

(
(C,C),

(
0 a
0 λ

))
are not isomorphic unless a = b = 0.

Next let us look at the simplest non-trivial tensor product, Φ(λ)~̂Φ(µ). Formula

(6.1.5) simplifies to

Φ(λ)~̂Φ(µ) =

(
(C,C),

(
0 λ+ζµ

1
wd

(λ+ζ−1µ) −d−1(λ+µ)

))
. (6.2.5)

By comparing to (6.2.2) we see that Φ(λ)~̂Φ(µ) ∼= Φ(µ)~̂Φ(λ) iff either λ = µ = 0 or

(λ+ ζµ)(λ+ ζ−1µ) 6= 0. In particular, Φ(−ζµ)~̂Φ(µ) � Φ(µ)~̂Φ(−ζµ) unless µ = 0.

This shows that VΦ cannot be braided. The reducibility of Φ(λ)~̂Φ(µ) is summarised

in three cases:

(i) if λ /∈ {−ζµ,−ζ−1µ} then Φ(λ)~̂Φ(µ) is irreducible,

(ii) if λ = −ζµ we have 0→ Φ(ζ−2µ)→ Φ(−ζµ)~̂Φ(µ)→ 1→ 0,

(iii) if λ = −ζ−1µ we have 0→ 1→ Φ(−ζ−1µ)~̂Φ(µ)→ Φ(ζ2µ)→ 0.

In K0(VΦ) we therefore get the relations

[Φ(ζ−2λ)] · [Φ(ζ2λ)]
(ii)
= [1] + [Φ(λ)]

(iii)
= [Φ(ζ2λ)] · [Φ(ζ−2λ)] . (6.2.6)
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Combining with the case when Φ(λ)~̂Φ(µ) is irreducible we find that in K0(VΦ) we

have

[Φ(λ)] · [Φ(µ)] = [Φ(µ)] · [Φ(λ)] for all λ, µ ∈ C . (6.2.7)

In fact we could have obtained the reducibility in (ii) and (iii) above already from

the existence of duals. Namely, by (6.1.3), (Φ(λ))∨ = Φ(−ζλ) and by Lemma 4.3.1

we have non-zero morphisms bΦ : 1→ Φ(λ)Φ(−ζλ) and dΦ : Φ(−ζλ)Φ(λ)→ 1. Also

note that taking the dual n times gives Φ(λ)∨···∨ = Φ((−ζ)nλ), and since −ζ is a

10th root of unity, the 10-fold dual is the first one that is again isomorphic to Φ(λ)

(for λ 6= 0). This is different from e.g. fusion categories (which are by definition

semi-simple [CE04, Def. 1.9]) where V ∨∨ ∼= V for all simple objects V , see [CE04,

Prop. 1.17].

To conclude our sample calculations in VΦ we point out that for a given
(
(C,C),

(
0 a
b c

))
at least one of the isomorphisms(

(C,C),
(

0 a
b c

)) ∼= 1⊕ Φ(λ),
(
(C,C),

(
0 a
b c

)) ∼= Φ(λ)~̂Φ(µ) , (6.2.8)

holds for some λ, µ ∈ C. This is easy to check by comparing cases in (6.2.2) and

(6.2.5).

6.3 Some Implications for Defect Flows

The relation (6.2.6) in K0(VΦ) gives the functional relation (6.0.4) for the perturbed

Rφ-defect in the Lee-Yang model. Let us point out one application of such functional

relations, namely how they can give information about endpoints of renormalisation

group flows. We use the notation for objects as in VΦ, e.g. we write D[Φ(λ)] instead

of D[Rφ(λ)].

We shall assume that D[Φ(λ)] is an operator-valued meromorphic function on C,

and that its asymptotics for λ → +∞ along the real axis is given by (compare to

[BLZ96, Eqn. (62)] or [BLZ97, Eqn. (2.21)])

D[Φ(λ)] ∼ exp(fλ1/(1−hφ))D∞ + less singular terms , (6.3.1)
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where λ1/(1−hφ) = λ5/6 has dimension of length, f > 0 is a free energy per unit length,

and D∞ is the operator describing the defect at the endpoint of the flow. We assume

that this asymptotic behavior remains valid in the direction λ = reiθ, r → +∞,

of the complex plane at least as long as the real part of (eiθ)5/6 remains positive,

i.e. for |θ| < 3π/5. This is a subtle point as in analogy with integrable models the

asymptotics will be subject to Stokes’ phenomenon, see e.g. [DDT07, App. D.1].

With these assumptions, we can substitute the asymptotic behavior (6.3.1) into

the functional relation (6.0.4), which gives

exp
(
f(ζ2λ)5/6 + f(ζ−2λ)5/6

)
D∞D∞ = id + exp(fλ5/6)D∞ . (6.3.2)

As f > 0, the identity operator will be subleading, and since (ζ2)5/6 + (ζ−2)5/6 = 1

the leading asymptotics demands that

D∞D∞ = D∞ . (6.3.3)

Since D∞ is the endpoint of a renormalisation group flow, we expect it to be a

conformal defect, i.e. [Lm + L̄−m, D∞] = 0. On the other hand for every value of λ

we have
[
L̄m, D[Φ(λ)]

]
= 0, so that D∞ is again a topological defect. Thus D∞ =

m · id +n ·Dφ for some m,n ∈ N. This is consistent with (6.3.3) only for D∞ = id.

We thus obtain the asymptotic behavior

D[Φ(λ)]
λ→+∞−−−−−→ exp(fλ5/6) id . (6.3.4)

This is the expected result, because via the relation of perturbed defects and per-

turbed boundaries mentioned in Remark 5.2.1 (ii), the above flow agrees with the

corresponding boundary flow obtained in [DPTW, Sect. 3]. It also agrees with the

corresponding free field expression [BLZ97, Eqn. (2.21)].

This result allows us to make some statements about perturbations of the super-

position of the 1- and φ-defect, i.e. the topological defect labeled by R1⊕Rφ. We can

either perturb it by a defect field on the topological defect labeled Rφ alone, in which

case we would get the operator id +D[Φ(λ)] which flows to D∞ = id as λ → +∞.
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Or we can in addition perturb by defect-changing fields. In this case we can use the

result (6.2.8), which tells us that we can write the perturbed defect as the composi-

tion D[Φ(λ)]D[Φ(µ)] for some λ, µ. Then, if the necessary λ, µ lie in the wedge of the

complex plane where (6.3.4) is valid, we again have

D
[(

(C,C),
(

0 ra
rb rc

))] r→+∞−−−−−→ exp(f ′r5/6) id . (6.3.5)
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Conclusions

In conclusion, this thesis proposes an abelian rigid monoidal category CF , constructed

from an abelian rigid braided monoidal category C and a choice of object F ∈ C,
that captures some of the properties of perturbed topological defects. To make the

connection to defects, we set C = Rep(V), for V a rational vertex operator algebra,

and choose a V-module F ∈ C together with a vector φ ∈ F . Then we consider the

charge-conjugation CFT constructed from V (the Cardy case). An object Uf ∈ CF
corresponds to an unperturbed topological defect labeled U and a perturbing field

given by the chiral defect field defined via φ ∈ F and the morphism f : F ⊗ U → U .

Assuming convergence of the multiple integrals and the infinite sum in (5.2.1), to Uf

we can assign an operator D[Uf ] on the space of states H =
⊕

i∈I Ri ⊗C R∨i of the

CFT. This operator describes the topological defect perturbed by the specified defect

field. Again assuming convergence of all D[. . . ] involved, the main properties of the

assignment Uf 7→ D[Uf ] are

(i) D[1] = idH ,

(ii) D[Uf=0] =
∑

i,j∈I dim HomC(Ri, U)Sij/S0j idRj⊗CR∨j
,

(iii)
[
L0 , D[Uf ]

]
= 0 and

[
L̄m , D[Uf ]

]
= 0 for m ∈ Z,
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(iv) if 0→ Kh → Uf → Cg → 0 is an exact sequence, then D[Uf ] = D[Kh] +D[Cg],

(iv′) if [Uf ] = [Vg] in K0(CF ), then D[Uf ] = D[Vg],

(v) D[Uf ⊗̂Vg] = D[Uf ]D[Vg].

There is an anti-holomorphic counterpart of the construction in this paper, where one

perturbs the topological defect by a defect field of dimension (0, h). This generates

another set of defect operators which commute with those introduced here.

The results presented in this thesis also leave a large number of question unan-

swered, and we hope to come back to some of these in the future:

1. In the Lee-Yang example it should be possible to describe the category CF and its

Grothendieck ring more explicitly. For example it would be interesting to know if CF
is generated by the Φ(λ) in the sense that every object of CF is obtained by taking

direct sums, tensor products, subobjects and quotients starting from Φ(λ). Note that

at this stage we do not even know whether or not CF is commutative in the Lee-Yang

example.

2. Consider the case C = Rep(V) for a rational vertex operator algebra V and let

Uf ∈ CF have finite integrals. Suppose the infinite sum O(ζ) = D[Uζf ] has a finite

radius of convergence in ζ. One can then extend the domain of definition of O(ζ) by

analytic continuation. To solve the functional relations it is most important to under-

stand the global properties of O(ζ), in particular whether all functions ϕ(O(ζ)v) (for

ϕ ∈H ∗ and v ∈H ) are entire functions on C, and what their asymptotic behaviors

are. It should be possible to address these questions with the methods reviewed and

developed in [DDT07] and [IIKNS08].

3. The category CF is designed specifically for the Cardy case. The formalism devel-

oped in [FRS02-I, FFRS07] allows one to extend this treatment to all rational CFTs

with chiral symmetry V ⊗C V. The different CFTs with this symmetry are in one-

to-one correspondence with Morita-classes of special symmetric Frobenius algebras

A in C = Rep(V). Given such an algebra A, the category CF has to be replaced
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by a category C(A)F whose objects are pairs (B, f) where B is an A-A-bimodule2

and f : F ⊗+ B → B is an intertwiner of bimodules (see [FRS05-IV, Sect. 2.2] for the

definition of ⊗+). The details remain to be worked out. For A = 1 one recovers the

Cardy case discussed in this paper.

4. It would be interesting to understand if the map K0(CF ) → EndC(H ) from the

Grothendieck ring to defect operators is injective. The map K0(C) → EndC(H )

taking the class [R] of a representation of the rational vertex operator algebra V

to the topological defect D[R] is known to be injective, and in fact a corresponding

statement holds for symmetry-preserving topological defects in all rational CFTs with

chiral symmetry V⊗C V [FRS08].

5. It would be good to investigate the properties of CF in more examples. The evi-

dent ones are the Virasoro minimal models, the SU(2)-WZW model, the rational free

boson, etc. Or, coming from the opposite side, one could use the fact that modular

categories with three or less simple objects (and unitary modular categories with four

or less simple objects) have been classified [RSW09], and study CF for all C in that

list and different choices of F . The proper treatment of supersymmetry in the present

formalism also remains to be worked out.

6. One application of the perturbed defect operators is the investigation of boundary

flows. As pointed out in Remark 5.2.1 (ii), in the Cardy case the boundary state of

a perturbed conformal boundary condition can be written as D[Uf ]|1〉〉. However,

for other modular invariants this need not be true. But, as in the unperturbed case

[SFR06, Sect. 2], the category of perturbed boundary conditions will form a module

category over the category of chirally perturbed defect lines. It would be interesting

to investigate this situation in cases where the two categories are distinct (as abelian

categories).

7. In general an object Uf ∈ CF describes a topological defect perturbed by defect

2Briefly, for A,B algebra objects in C, an A-B-bimodule M is a triple (Ṁ, ρA, ρ̃B), where Ṁ ∈ C,
ρA ∈ HomC(A ⊗ Ṁ, Ṁ) and ρ̃B ∈ HomC(Ṁ ⊗ B, Ṁ), such that (Ṁ, ρA) is a left A-module and
(Ṁ, ρ̃B) is right B-module, such that the actions ρA and ρ̃B commute [FRS02-I]. If both algebras
are the same, one sometimes uses the abbreviation A-bimodule instead of A-A-bimodule.
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changing fields. Placed in front of the conformal boundary labeled by the vacuum

representation 1 ∈ C one obtains the boundary condition U perturbed by boundary

changing fields. Such perturbations have been studied for unitary minimal models

in [Gr01]. While our method is not directly applicable to unitary minimal models

(the multiple integrals diverge in this case as h1,3 ≥ 1
2
), one could still study it if the

functional relations predict a similar flow pattern for the non-unitary models.

8. The relation to finite-dimensional representations of quantum affine algebras

should be worked out beyond the remarks in App. A.

9. Baxter’s Q-operator is a crucial tool in the solution of integrable lattice models.

Such Q-operators have been obtained in chiral conformal field theory [FeS95, BLZ97,

BLZ99], and in lattice models via the representation theory of quantum affine algebras

[KNS94, RW, Ko03]. Recently they have also been studied in certain (discretised)

non-rational conformal and massive field theories [BT09]. It would be good to trans-

late these constructions and obtain Q-operators also in the present language.
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Appendix A

Relation to Evaluation
Representations of Uq

(
ŝl(2)

)

In this appendix we collect some preliminary remarks on the relation of a category of

the form CF and evaluation representations of the quantum affine algebra Uq

(
ŝl(2)

)
.

We follow the conventions of [CP91]. Let q ∈ C× be not a root of unity. The quantum

group Uq(sl(2)) is generated by elements e±, K±1 with relations

KK−1 = K−1K = 1 , Ke±K−1 = q±2e± , [e+, e−] =
K −K−1

q − q−1
. (A.0.1)

The quantum group Uq

(
ŝl(2)

)
is generated by elements e±i , K±1

i , i = 0, 1, with

relations

KiK
−1
i = K−1

i Ki = 1 , Kie
±
i K

−1
i = q±2e±i , [e+

i , e
−
i ] =

Ki −K−1
i

q − q−1
, (A.0.2)

as well as, for i 6= j,

[K0, K1] = 0 , [e±0 , e
∓
1 ] = 0 , Kie

±
j K

−1
i = q∓2e±j

(e±i )3e±j − e±j (e±i )3 =
q3 − q−3

q − q−1

(
(e±i )2e±j e

±
i − e±i e±j (e±i )2

)
.

(A.0.3)

Let us abbreviate Uq ≡ Uq(sl(2)) and Ûq ≡ Uq

(
ŝl(2)

)
. There are infinitely many

ways in which Uq is a subalgebra of Ûq. We will make use of the injective algebra
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homomorphism ι1 : Uq ↪→ Ûq given by (this is the case i = 0 in [CP91, Sect. 2.4])

ι1(K±1) = K±1
1 , ι1(e±) = e±1 . (A.0.4)

This turns Ûq into an infinite-dimensional representation of Uq. Let C be the category

of (not necessarily finite-dimensional) representations of Uq. The coproduct of Uq

gives rise to a tensor product on C and the R-matrix of Uq to a braiding.

For each a ∈ C×, there is a surjective algebra homomorphism eva : Ûq → Uq,

described in [CP91, Sect. 4]. It has the property that eva ◦ ι1 = idUq . An evaluation

representation of Ûq is a pull-back of a representation V of Uq via eva for some a ∈ C×.

We denote this representation of Ûq by V (a). LetD be the category of (not-necessarily

finite-dimensional) evaluation representations of Ûq.

Theorem A.0.1. D is a full subcategory of CÛq .

Proof. Define a map G from D to CÛq on objects by G(V (a)) = (V, eva ⊗Uq idV ),

where we identified Uq⊗Uq V ≡ V . We will show that f : V (a)→ W (b) is a morphism

in D iff f is a morphism G(V (a))→ G(W (b)) in CÛq . Indeed, the condition for f to

be an intertwiner f : V (a)→ W (b) is that for all u ∈ Ûq and v ∈ V we have

evb(u).f(v) = f(eva(u).v) , (A.0.5)

and the condition for f to be a morphism (V, eva ⊗Uq idV )→ (W, evb ⊗Uq idW ) is

(evb ⊗Uq idW ) ◦ (idÛq ⊗Uqf) = f ◦ (eva ⊗Uq idV ) . (A.0.6)

If we evaluate this equality on u⊗Uq v for u ∈ Ûq, v ∈ V , we obtain exactly (A.0.5).

Thus we can define G on morphisms as G(f) = f . It is clear that G is compatible

with composition, and that it is full.

Since C is abelian braided monoidal with exact tensor product, CÛq is abelian and

monoidal by Theorem 4.2.3. Let
(
CÛq
)
f

be the full subcategory of CÛq formed by
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all (V, g) where V is a finite-dimensional representation of Uq. Note that
(
CÛq
)
f

is again an abelian monoidal category. Let Repf

(
Ûq

)
be the abelian monoidal

category of all finite-dimensional representations of Ûq of type (1,1) (as defined in

[CP91, Sect. 3.2]). It would be interesting to understand the precise relation between(
CÛq
)
f

and Repf

(
Ûq

)
. For example, one might expect that Repf

(
Ûq

)
is a full

subcategory of
(
CÛq
)
f
.

As a first step towards this goal, one could use that all finite-dimensional ir-

reducible representations of Ûq of type (1,1) are isomorphic to tensor products of

evaluation representations [CP91, Sect. 4.11]. However, to make use of this property

one first has to establish that the tensor product of Ûq-representations is compatible

with ⊗̂ defined on
(
CÛq
)
f

via the tensor product and braiding on C. We do not

attempt this in the present paper but hope to return to this point in future work.
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Appendix B

Proof of Theorem 4.1.1 and

Lemma 4.1.2

In this appendix, C satisfies the assumptions of Theorem 4.1.1. Namely, C is an

abelian monoidal category with right-exact tensor product.

Lemma B.0.2. Let x : Uf → Vg and y : Vg → Wh be morphisms in CF .

(i) If x : U → V is a kernel of y in C, then x : Uf → Vg is a kernel of y in CF .

(ii) If y : V → W is a cokernel of x in C, then y : Vg → Wh is a cokernel of x in CF .

Proof. (i) We need to show that x has the universal property of ker y in CF , that is,

we need to show that there exists a unique k̃ : U ′f ′ → Uf , such that the diagram

Uf Vg Wh

U ′f ′

	

//x //
y

OO

k

cc

∃!k̃

commutes in CF . Since x = ker y in C we know that there exists a unique k̃ : U ′ → U
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such that k = x ◦ k̃. It remains to prove that k̃ is a morphism in CF , i.e. that

k̃ ◦ f ′ = f ◦ (idF ⊗k̃). To this end consider the following diagram in C:

F ⊗ U F ⊗ V F ⊗W

U V W

U ′

F ⊗ U ′

	 	

	
	

��
f

��
g

��
h

//idF ⊗x //idF ⊗y

//x //
y

OO

k

OO

f ′

gg

k̃
idF ⊗k

ZZ

idF ⊗k̃

JJ

All the diagrams with 	 commute, but the one with the two dashed arrows. To

establish that also the latter commutes, since x is monic it is enough to show that

x ◦ k̃ ◦ f ′ = x ◦ f ◦ (idF ⊗k̃). Indeed,

x ◦ f ◦ (idF ⊗k̃) = g ◦ (idF ⊗x) ◦ (idF ⊗k̃) = g ◦ (idF ⊗k) = k ◦ f ′ = x ◦ c̃ ◦ f ′ .

(ii) The proof works along the same lines as that of part (i), but, as opposed to part

(i) here we need to use that the tensor product of C is right-exact. For this reason we

spell out the details once more. We need to show that y has the universal property

of cokx in CF , that is, we need to show that there exists a unique c̃ : Wh → W ′
h′ , such

that the diagram

Uf Vg Wh

W ′
h′

	

//x //
y

��
c

{{ ∃!c̃

commutes in CF . Since y = cokx in C we know there exists a unique morphism

c̃ : W → W ′ in C such that c = c̃ ◦ y. It remains to show that c̃ : Wh → W ′
h′ is a
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morphism in CF , i.e. that c̃ ◦ h = h′ ◦ (idF ⊗c̃). Consider the diagram:

F ⊗ U F ⊗ V F ⊗W

U V W

W ′

F ⊗W ′

	 	

	
	

��
f

��
g

��
h

//idF ⊗x //idF ⊗y

//x //
y

��
c

OO

h′

ww
c̃

idF ⊗c

��

idF ⊗c̃

qq

Since y is an epimorphism and the tensor product is right-exact, then idF ⊗y is also

an epimorphism. It is therefore enough to show that c̃ ◦ h ◦ (idF ⊗y) = h′ ◦ (idF ⊗c̃) ◦

(idF ⊗y). Indeed,

h′ ◦ (idF ⊗c̃) ◦ (idF ⊗y) = h′ ◦ (idF ⊗c) = c ◦ g = c̃ ◦ y ◦ g = c̃ ◦ h ◦ (idF ⊗y) .

Lemma B.0.3. CF has kernels.

Proof. We are given Uf , Vg ∈ CF and a morphism x : Uf → Vg. Since C has kernels,

there exists an object K ∈ C and a morphism ker : K → U such that ker is a kernel of

x in C. We now wish to construct a morphism k : F⊗K → K such that ker : Kk → Uf

is a morphism in CF . Consider the following diagram:

F ⊗K F ⊗ U F ⊗ V

K U V

	 	
��

∃!k

��

f

��

g

//idF ⊗ ker //idF ⊗x

//ker //x

Note that x ◦ f ◦ (idF ⊗ ker) = g ◦ (idF ⊗(x ◦ ker)) = 0. By the universal property of

kernels in C, there exists a unique morphism k : F ⊗K → K which makes the above
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diagram commute. Thus, ker : Kk → Uf is a morphism in CF . Since ker is a kernel of

x in C, by Lemma B.0.2 (i) ker is also a kernel of x in CF .

Lemma B.0.4. CF has cokernels.

Proof. The proof is similar to that for the existence of kernels, with the difference

that for the existence of cokernels we need the tensor product of C to be right-exact.

We are given a morphism x : Uf → Vg. The morphism x has a cokernel cok: V → C

in C. Consider the following diagram:

F ⊗ U F ⊗ V F ⊗ C

U V C

	 	
��

f

��

g

��

∃!c

//idF ⊗x //idF ⊗ cok

//x //cok

Since ⊗ is right-exact, idF ⊗ cok is a cokernel of idF ⊗x. Note that cok ◦g◦(idF ⊗x) =

cok ◦x ◦ f = 0. By the universal property of cokernels in C, there exists a unique

morphism c : F⊗C → C which makes the above diagram commute. Thus, cok: Vg →

Cc is a morphism in CF . Since cok is a cokernel of x in C, by Lemma B.0.2 (ii) it is

also a cokernel of x in CF .

The proof of Lemma B.0.3 shows that there exists a kernel for x : Uf → Vg of the

form ker : Kh → Uf , with ker a kernel of x in C. The proof of Lemma B.0.4 implies a

similar statement for cokernels. Since kernels and cokernels are unique up to unique

isomorphism, we get as a corollary the converse statement to Lemma B.0.2.

Corollary B.0.5. Let x : Uf → Vg and y : Vg → Wh be morphisms in CF .

(i) If x : Uf → Vg is a kernel of y in CF , then x : U → V is a kernel of y in C.

(ii) If y : Vg → Wh is a cokernel of x in CF , then y : V → W is a cokernel of x in C.

We have now gathered all the ingredients to prove Lemma 4.1.2.
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Proof of Lemma 4.1.2. By Lemmas B.0.3 and B.0.4, CF has kernels and cokernels.

Let χ : Kk → Vg be a kernel of b : Vg → Wh and let γ : Vg → Cc be a cokernel of

a : Uf → Vg. By Corollary B.0.5, also in C we have that χ is a kernel of b : V → W

and γ is a cokernel of a : U → V .

Suppose Uf
a−→ Vg

b−→ Wh is exact at Vg in CF , i.e. χ is also a kernel for γ in CF .

By Corollary B.0.5, χ is a kernel for γ in C and so U
a−→ V

b−→ W is exact at V in C.
Conversely, if χ is a kernel for γ in C, then by Lemma B.0.2 χ is also a kernel for γ

in CF . Thus Uf
a−→ Vg

b−→ Wh is exact at Vg in CF . �

Corollary B.0.6. (to Lemma 4.1.2) Let x : Uf → Vg be a morphism in CF . Then x

is monic in CF iff it is monic in C, and x is epi in CF iff it is epi in C.

Lemma B.0.7. CF has binary biproducts.

Proof. Let Uf , Vg ∈ CF be given. Since C has binary biproducts, for U, V ∈ C, there

exists a W ∈ C and morphisms

U W V
//

eU oo eV

oo
rU

//
rV (B.0.1)

where eA is the embedding map and rA is the restriction map, such that

rU ◦ eU = idU , rV ◦ eV = idV , eU ◦ rU + eV ◦ rV = idW .

This implies rU ◦ eV = 0 and rV ◦ eU = 0. Define a morphism h : F ⊗W → W as

h = eU ◦ f ◦ (idF ⊗rU) + eV ◦ g ◦ (idF ⊗rV ) .

We claim that (B.0.1) with U , W and V replaced by Uf , Wh and Vg, respectively,

defines a binary biproduct in CF . To show these we need to check that the relevant
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four squares in

F ⊗ U F ⊗W F ⊗ V
//idF ⊗eU oo idF ⊗eV

oo
idF ⊗rU

//
idF ⊗rV

	 	

U W V
//

eU oo eV

oo
rU

//
rV

��

f

��

h

��

g

commute. For the first square one has

h ◦ (idF ⊗eU) = eU ◦ f ◦ (idF ⊗(rU ◦ eU︸ ︷︷ ︸
=idU

)) + eV ◦ g ◦ (idF ⊗(rV ◦ eU︸ ︷︷ ︸
=0

)) = eU ◦ f ,

and for the second one

rU ◦ h = rU ◦ eU ◦ f ◦ (idF ⊗rU) + rU ◦ eV ◦ g ◦ (idF ⊗rV ) = f ◦ (idF ⊗rU) .

In a similar fashion one checks that also h ◦ (idF ⊗eV ) = eV ◦ g and rV ◦ h = g ◦

(idF ⊗rV ).

Lemma B.0.8. In CF every monomorphism is a kernel and every epimorphism is a

cokernel.

Proof. First we show that every monomorphism is a kernel. We need to show that if

x : Uf → Vg is mono in CF , there exists a Wh and y : Vg → Wh such that x = ker y.

Since CF has cokernels we can choose Wh = Cc and y = cokx. Since by Corollary

B.0.6 x is monic also in C, we have x = ker(cok x) in C. Finally, by Lemma B.0.2 we

get that x = ker(cok x) also in CF . The proof that every epimorphism is a cokernel

goes along the same lines.

Proof of Theorem 4.1.1. Since C is an Ab-category, so is CF . As zero object in CF we

take (0, 0), where 0 is the zero object of C and 0 : F ⊗ 0→ 0 is the zero morphism.

Furthermore, CF has binary biproducts (Lemma B.0.7), has kernels and cokernels

(Lemmas B.0.3 and B.0.4) and in CF every monomorphism is a kernel and every

epimorphism is a cokernel (Lemma B.0.8). Thus CF is abelian. �
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Appendix C

Finite Semisimple Monoidal

Categories

Let k be a field. In this section we take C to be a k-linear abelian semi-simple finite

braided monoidal category, such that 1 is simple, and EndC(U) = k idU for all simple

objects U . We also assume that C has right duals and that

C is strict.

Note that if we would add to this the data/conditions that C has compatible left-duals

and a twist (so that C is ribbon), we would arrive at the definition of a premodular

category [Br00]. Here we will content ourselves with right duals alone.

For explicit calculations in CF it is useful to have a realisation of C in terms of

vector spaces. One way to obtain such a realisation is as follows. Pick a set of

representatives {Ui|i ∈ I} of the isomorphism classes of simple objects in C such that

U0 = 1. For each label a ∈ I define a label ā via Uā ∼= U∨a . Define the fusion rule

coefficients N k
ij as

N k
ij = dimk (HomC(Ui ⊗ Uj, Uk)) . (C.0.1)
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We restrict ourselves to the situation that

N k
ij ∈ {0, 1} . (C.0.2)

This is satisfied in the Lee-Yang model studied below, but also for other models such

as the rational free boson or the ŝu(2)k-WZW model. Whenever N k
ij = 1 we pick

basis vectors

λ(ij)k ∈ HomC(Ui ⊗ Uj, Uk) such that λ(0i)i = λ(i0)i = idUi . (C.0.3)

The fusing matrices F
(ijk)l
pq ∈ k are defined to implement the change of basis between

two bases of HomC(Ui⊗Uj⊗Uk, Ul) as in (3.3.22), and they obey the pentagon relation.

See e.g. [FRS02-I, Sect. 2.2] for more details. The inverse matrices are denoted by

G
(ijk)l
pq , see (3.3.23), ∑

r∈I

F(ijk)l
pr G(ijk)l

rq = δp,q . (C.0.4)

The braiding cU,V gives rise to the braid matrices R(ij)k ∈ k, see (3.3.24)

With these ingredients, we define a k-linear braided monoidal category V ≡
V [k, I, 0 ∈ I,N ,F,R]. This definition will occupy the rest of this section. The objects

of V are lists of finite-dimensional k-vector spaces indexed by I, A = (Ai, i ∈ I), and

the morphisms f : A→ B are lists of linear maps f = (fi, i ∈ I) with fi : Ai → Bi.

There is an obvious functor H : C → V which acts on objects as H(V ) =

(HomV(Ui, V ), i ∈ I). For a morphism f : V → W we set H(f) = (H(f)i, i ∈ I),

where H(f)i : HomV(Ui, V )→ HomV(Ui,W ) is given by α 7→ f ◦ α. Since H is fully

faithful and surjective we have:

Lemma C.0.9. The functor H : C → V is an equivalence of k-linear categories.

We can now use H to transport the tensor product, braiding and duality from C
to V . Let us start with the tensor product in V , which we denote by ~. For an object

A ∈ V we denote by (A)i (or just Ai) the ith component of the list A. We set

(A~B)i =
⊕
j∈I

⊕
k∈I
N i
jk =1

Aj ⊗k Bk . (C.0.5)
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The direct summand Aj ⊗kBk can appear in several components (A~B)i. To index

one specific direct summand, we introduce the notation (A~B)i(jk) to mean

(A~B)i(jk) = Aj ⊗k Bk ⊂ (A~B)i . (C.0.6)

This notation can be iterated. For example (A~(B~C))i(jk(lm)) stands for the direct

summand (we do not write out the associator and unit isomorphisms in the category

of k-vector spaces)

Aj ⊗k Bl ⊗k Cm ⊂ Aj ⊗k (B ~ C)k ⊂ (A~ (B ~ C))i . (C.0.7)

while ((A~B)~ C)i(j(kl)m) stands for the direct summand

Ak ⊗k Bl ⊗k Cm ⊂ (A~B)j ⊗k Cm ⊂ ((A~B)~ C)i . (C.0.8)

If v ∈ Aj ⊗k Bk, we denote by (v)i(jk) the element v in the direct summand (A ~

B)i(jk) ⊂ (A~B)i, etc.

On morphisms f : A → X and g : B → Y the tensor product is defined to have

components (f ~ g)i : (A~B)i → (X ~ Y )i, where, for a ∈ Aj and b ∈ Bk,(
f ~ g

)
i

(
(a⊗k b)i(jk)

)
=
(
fj(a)⊗k gk(b)

)
i(jk)

∈ Xj ⊗k Yk ⊂ (X ~ Y )i . (C.0.9)

The tensor unit 1 ∈ V has components 10 = k and 1i = 0 for i 6= 0. The unit

isomorphisms of V are identities, but we find it useful to write them out to keep track

of the indices of the direct summands,

(λA)i : (1~ A)i −→ Ai
(1⊗k a)i(0i) 7−→ (a)i

and
(ρA)i : (A~ 1)i −→ Ai

(a⊗k 1)i(i0) 7−→ (a)i
. (C.0.10)

Finally, the associator has components (αA,B,C)i : (A~ (B ~C))i → ((A~B)~C)i,

where, for v ∈ Aj ⊗k Bk ⊗k Cl,

(αA,B,C)i
(

(v)i(jq(kl))
)

=
∑
p∈I

(
G(jkl)i
pq v

)
i(p(jk)l)

. (C.0.11)

Its inverse is (αA,B,C)−1
i : ((A~B)~ C)i → (A~ (B ~ C))i,

(α−1
A,B,C)i

(
(v)i(q(jk)l)

)
=
∑
p∈I

(
F(jkl)i
pq v

)
i(jp(kl))

. (C.0.12)
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We can now turn H into a monoidal functor (see Def. 3.3.7 excluding the last commut-

ing diagram). To this end we need to specify natural transformations H2
U,V : H(U)~

H(V )
∼→ H(U⊗V ) and an isomorphism H0 : 1V

∼→ H(1C). To describe H2
U,V we need

the basis dual to λ(ij)k, that is, elements λ̄(ij)k ∈ HomV(Uk, Ui ⊗ Uj) (see (3.3.21))

such that λ(ij)k ◦ λ̄(ij)k = idUk . Note that (H(U) ~ H(V ))i(jk) = HomV(Uj, U) ⊗k
HomV(Uk, V ) and H(U ⊗ V )i = HomV(Ui, U ⊗ V ). We set, for u ∈ HomV(Uj, U) and

v ∈ HomV(Uk, V ),

(H2
U,V )i((u⊗k v)i(jk)) = ((u⊗ v) ◦ y(jk)i)i . (C.0.13)

Finally, (H0)i = 0 for i 6= 0 and (H0)0(1) = idU0 ∈ HomV(U0, U0).

Theorem C.0.10. (H,H2, H0) : C → V is a monoidal functor.

Proof. From Def. 3.3.7 we have to check that all (apart from the last) diagrams

commute, for all U, V,W ∈ C . More precisely, the following equalities of morphisms

H(U)~ (H(V )~H(W ))→ H(U ⊗ V ⊗W ), 1V ~H(U)→ H(U) and H(U)~ 1V →

H(U), respectively, hold,

H2
U⊗V,W ◦ (H2

U,V ~ idH(W )) ◦ αH(U),H(V ),H(W ) = H2
U,V⊗W ◦ (idH(U)~H

2
V,W ) ,

λH(U) = H2
H(1),H(U) ◦ (H0 ~ idH(U)) , ρH(U) = H2

H(U),H(1) ◦ (idH(U)~H
0) .

(C.0.14)

(Recall that C is strict.) The identities involving λ and ρ are most easy to check. For

example, the ith component of two sides of the identity for λ are, for u ∈ HomV(Ui, U),

(λH(U))i((1⊗k u)i(0i)) = (u)i and

(H2
H(1),H(U))i ◦ (H0 ~ idH(U))i((1⊗k u)i(0i)) = (H2

H(1),H(U))i((idU0 ⊗ku)i(0i))

= ((idU0 ⊗u) ◦ λ̄(0i)i)i = (u)i .

(C.0.15)
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To check the first condition in (C.0.14) we pick elements u ∈ HomV(Uj, U), v ∈

HomV(Uk, V ), w ∈ HomC(Ul,W ) and evaluate both sides on the element (u ⊗k v ⊗k

w)i(jq(kl)). For the left hand side this gives

(
H2
U⊗V,W ◦ (H2

U,V ~ idH(W )) ◦ αH(U),H(V ),H(W )

)
i

(
(u⊗k v ⊗k w)i(jq(kl))

)
=
∑
p∈I

(
H2
U⊗V,W ◦ (H2

U,V ~ idH(W ))
)
i

(
(G(jkl)i

pq · u⊗k v ⊗k w)i(p(jk)l)

)
=
∑
p∈I

(H2
U⊗V,W )i

(
(G(jkl)i

pq · ((u⊗ v) ◦ λ̄(jk)p)⊗k w)i(pl)
)

=
(∑
p∈I

G(jkl)i
pq · (((u⊗ v) ◦ λ̄(jk)p)⊗ w) ◦ y(pl)i

)
i

=
(
(u⊗ v ⊗ w) ◦ (idUj ⊗λ̄(kl)q) ◦ λ̄(jq)i

)
i
.

(C.0.16)

For the right hand side we find

(
H2
U,V⊗W ◦ (idH(U)~H

2
V,W )

)
i

(
(u⊗k v ⊗k w)i(jq(kl))

)
=
(
H2
U,V⊗W

)
i

(
(u⊗k [(v ⊗ w) ◦ λ̄(kl)q])i(jq)

)
=
(
(u⊗ [(v ⊗ w) ◦ λ̄(kl)q]) ◦ λ̄(jq)i

)
i

=
(
(u⊗ v ⊗ w) ◦ (idUj ⊗λ̄(kl)q) ◦ λ̄(jq)i

)
i
.

(C.0.17)

Thus H is indeed a monoidal functor.

We define a braiding cA,B : A~B → B~A on V by setting, for a ∈ Aj and b ∈ Bk,

(cA,B)i((a⊗ b)i(jk)) = (R(jk)ib⊗ a)i(kj) . (C.0.18)

One verifies that H(cU,V ) ◦H2
U,V = H2

V,U ◦ cH(U),H(V ) so that H is a braided monoidal

functor between C and V .

It remains to define the right duality on V . The components of the dual of an

object are given by dual vector spaces, (A∨)k = A∗
k̄
. We identify k∗ = k so that

1∨ = 1. The duality morphisms bA : 1 → A ~ A∨ and dA : A∨ ~ A → 1 have
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components (bA)i = 0 = (dA)i for i 6= 0. To describe the 0-component, we fix a basis

{ai,α} of each Ai, and denote by {a∗i,α} the dual basis of A∗i . Then

(bA)0 : (1)0 −→ (A~ A∨)0

(1)0 7−→
∑
k∈I

(∑
α

ak,α ⊗k a∗k,α
)

0(kk̄)

,

(dA)0 : (A∨ ~ A)0 −→ (1)0

(ϕ⊗k a)0(k̄k) 7−→
ϕ(a)

F
(kk̄k)k
00

.

(C.0.19)

As an exercise in the use of the nested index notation we demonstrate the first identity

in (3.3.10) (or equivalently see the first commutative diagram above that). Let ai,α,

a∗i,α be as above. Then, for ϕ ∈ A∗
k̄
,(

ρ−1
A∨

)
k

(
(ϕ)k

)
= (ϕ⊗k 1)k(k0) = ?1(

idA∨ ~bA
)
k
(?1) =

∑
l∈I

∑
α

(
(ϕ)k ⊗k (ak,α ⊗k a∗k,α)0(ll̄)

)
k(k0)

=
∑
l,α

(
ϕ⊗k ak,α ⊗k a∗k,α

)
k(k0(ll̄))

= ?2(
αA∨,A,A∨

)
k
(?2) =

∑
p∈I

∑
l,α

(
G

(kll̄)k
p0 · ϕ⊗k ak,α ⊗k a∗k,α

)
k(p(kl)l̄)

= ?3(
dA ~ idA∨

)
k
(?3) =

∑
p,l,α

(
G

(kll̄)k
p0 · (dA)p((ϕ⊗k ak,α)p(kl))⊗k (a∗k,α)l̄

)
k(pl̄)

(a)
=
∑
α

(
G

(kk̄k)k
00 (F

(k̄kk̄)k̄
00 )−1 · ϕ(ak,α)⊗k a∗k,α

)
k(0k)

(b)
=
(

1⊗k ϕ
)
k(0k)

= ?4(
λA∨

)
k
(?4) = (ϕ)k .

(C.0.20)

In step (a) we used that (dA)p is non-zero only for p = 0, and that in this case we

are also forced to choose l = k̄ (otherwise the direct summand (· · · )0(kl) is empty). In

step (b) the equality

F
(k̄kk̄)k̄
00 = G

(kk̄k)k
00 (C.0.21)

is used. This equality can be derived by using either F or G to simplify (λ(k̄k)0 ⊗
λ(k̄k)0) ◦ (idUk̄ ⊗λ̄(kk̄)0 ⊗ idUk) to λ(k̄k)0 (which also shows that both are non-zero).

Remark C.0.1. (i) The above construction is a straightforward generalisation of the

way one defines a (braided) monoidal category starting from a (abelian) group and a
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(abelian) three-cocycle, see [FRS04-III, Sect. 2] and references therein.

(ii) The construction is different from what one would do in Tannaka-Krein recon-

struction for monoidal categories [Ha99]. There one constructs a fibre-functor from C

to a category of R-R-bimodules for a certain ring R (isomorphic to k⊕|I|). However,

this fibre-functor is typically neither an equivalence nor full.

Let f : F ~A→ A and g : F ~B → B be morphisms in V . We can now substitute

the explicit structure morphisms (C.0.11), (C.0.12), (C.0.18) into the definition of

T (f, g) in Section 4.2. After a short calculation one finds, for u ∈ Fj, a ∈ Al and

b ∈ Bm,

T (f, g)i
(

(u⊗k a⊗k b)i(jk(lm))

)
=
∑
x,y∈I

(
δy,mG

(jlm)i
xk (f)x

(
(u⊗k a)x(jl)

)
⊗k (b)y

+ δx,l
R(jk)i

R(jm)y
F

(lmj)i
yk (a)x ⊗k (g)y

(
(u⊗k b)y(jm)

))
i(xy)

.

(C.0.22)

When verifying this one needs to use the following two equivalent expressions for the

B-matrix (see e.g. [FRS05-IV, Eqn. (5.46)]), one of which is [FRS05-IV, Eqn. (5.47)]

and the other one appears in the calculation of T (0, g)i
(

(u⊗k a⊗k b)i(jk(lm))

)
,

∑
p

F(ljm)i
yp R(jl)p G

(jlm)i
pk = B

(jlm)i
yk =

R(jk)i

R(jm)y
F

(lmj)i
yk . (C.0.23)

For c(f) the calculation is slightly longer, and one finds, for u ∈ Fj and ϕ ∈ A∗
k̄
, and

using (C.0.21) at an intermediate step,

c(f)i
(

(u⊗k ϕ)i(jk)

)
= − F

(ı̄īı)ı̄
00

F
(k̄kk̄)k̄
00

R(jk)i F
(kjı̄)0

k̄i

∑
α

ϕ
(
(f)k̄((u⊗ aı̄,α)k̄(jı̄))

)
· a∗ı̄,α ∈ (A∨)i = A∗ı̄ .

(C.0.24)
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Appendix D

T (f, g) and c(f ) for the Lee-Yang

Model

The Lee-Yang model is the minimal model M(2, 5). The fusing matrices of minimal

models are known from [DF85, FGP90]. We use the conventions of [Ru08, App. A.3].

The index set is I = {1, φ} and the unit element is 1 ∈ I. The non-zero entries in

the braiding matrix are, for x ∈ {1, φ}

R(1x)x = R(x1)x = 1 , R(φφ)1 = ζ2 , R(φφ)φ = ζ , where ζ = e−πi/5 . (D.0.1)

The nonzero entries in the fusing matrices are, for x, y, z ∈ {1, φ}

F(1xy)z
zx = F(x1y)z

yx = F(xy1)z
yz = F(xyz)1

xz = 1 ,

F
(φφφ)φ
11 =

1

d
, F

(φφφ)φ
1φ = w , F

(φφφ)φ
φ1 =

1

wd
, F

(φφφ)φ
φφ =

−1

d
where d =

1−
√

5

2
.

(D.0.2)

Here d is the quantum dimension of φ. The constant w ∈ C× depends on the choice

of normalisation of the basis vectors λ(φφ)1 and λ(φφ)φ. Different choices of w yield

equivalent braided monoidal categories. There is a preferred choice related to the
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normalisation of the vertex operators, for which

w =
Γ
(

1
5

)
Γ
(

6
5

)
Γ
(

3
5

)
Γ
(

4
5

) = 2.431... , (D.0.3)

but one may as well set w to 1. The inverse matrix of F is simply

G(ijk)l
pq = F(kji)l

pq . (D.0.4)

Let us indicate how to obtain the explicit formulas quoted in Section 6.1. First of

all, in terms of the notation (C.0.6) for the direct summands of A~B, the individual

components in (6.1.1) are, in the same order,

A~B =
(
(A~B)1, (A~B)φ

)
=
(

(A~B)1(11) ⊕ (A~B)1(φφ) , (A~B)φ(1φ) ⊕ (A~B)φ(φ1) ⊕ (A~B)φ(φφ)

)
.

(D.0.5)

Consider a morphism f : Φ ~ A → A. In terms of three linear maps in (6.1.2) the

action of f on the individual summands of Φ ~ A is as follows. For 1 ∈ Φφ = C,

a ∈ A1 and b ∈ Aφ,

(f)1

(
(1⊗C b)1(φφ)

)
= f1φ(b) ,

(f)φ
(

(1⊗C a)φ(φ1)

)
= fφ1(a) , (f)φ

(
(1⊗C b)φ(φφ)

)
= fφφ(b) .

(D.0.6)

To obtain the expression (6.1.3) for the dual of an object in VΦ we have to specialise

(C.0.24) to the Lee-Yang model. For example, for f : Φ ~ A → A and ϕ ∈ A∗φ one

gets

c(f)1

(
(1⊗C ϕ)1(φφ)

)
= − F

(111)1
11

F
(φφφ)φ
11

R(φφ)1 F
(φφ1)1
φ1

∑
α

ϕ
(
(f)φ((u⊗ a1,α)φ(φ1))

)
· a∗1,α

= −dζ2
∑
α

ϕ
(
fφ1(a1,α)

)
· a∗1,α = −dζ2f ∗φ1(ϕ) ,

(D.0.7)

which is the top right corner in (6.1.3). Expression (6.1.5) for the tensor product of

two morphisms in VΦ is obtained from (C.0.22). Denote by T
i(xy)
i(φk(lm)) the linear map

T (f, g)i restricted to (Φ~(A~B))i(φk(lm)) and projected to the summand (A~B)i(xy),

T
i(xy)
i(φk(lm)) = δy,mF

(mlφ)i
xk fxl ⊗C idBy +δx,l

R(φk)i

R(φm)y
F

(lmφ)i
yk idAx ⊗Cgym (D.0.8)
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In terms of these, the elements of the matrix (6.1.5) are

T (f, g) =̂



A1⊗CB1 Aφ⊗CBφ A1⊗CBφ Aφ⊗CB1 Aφ⊗CBφ

A1⊗CB1 0 0 T
1(11)
1(φφ(1φ))

T
1(11)
1(φφ(φ1))

T
1(11)
1(φφ(φφ))

Aφ⊗CBφ 0 0 T
1(φφ)
1(φφ(1φ))

T
1(φφ)
1(φφ(φ1))

T
1(φφ)
1(φφ(φφ))

A1⊗CBφ T
φ(1φ)
φ(φ1(11))

T
φ(1φ)
φ(φ1(φφ))

T
φ(1φ)
φ(φφ(1φ))

T
φ(1φ)
φ(φφ(φ1))

T
φ(1φ)
φ(φφ(φφ))

Aφ⊗CB1 T
φ(φ1)
φ(φ1(11))

T
φ(φ1)
φ(φ1(φφ))

T
φ(φ1)
φ(φφ(1φ))

T
φ(φ1)
φ(φφ(φ1))

T
φ(φ1)
φ(φφ(φφ))

Aφ⊗CBφ T
φ(φφ)
φ(φ1(11))

T
φ(φφ)
φ(φ1(φφ))

T
φ(φφ)
φ(φφ(1φ))

T
φ(φφ)
φ(φφ(φ1))

T
φ(φφ)
φ(φφ(φφ))


. (D.0.9)

For example, the underlined entries are

T
1(φφ)
1(φφ(φ1)) = ζ2 · idAφ ⊗C gφ1 ,

T
1(φφ)
1(φφ(φφ)) = fφφ ⊗C idBφ +ζ · idAφ ⊗C gφφ ,

T
φ(φφ)
φ(φ1(φφ)) = 1

wd
· fφφ ⊗C idBφ + 1

ζwd
· idAφ ⊗C gφφ ,

(D.0.10)

in agreement with (6.1.5).
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