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1 Introduction

It is a widespread opinion that topology first appeared with the famous problem of the seven
bridges of Konigsberg:

The city of Kdnigsberg in Prussia (now Kaliningrad, Russia) was set on both sides of
the Pregel River, and included two large islands which were connected to each other and the
mainland by seven bridges. The problem was to find a walk through the city that would cross
each bridge once and only once. The islands could not be reached by any route other than the
bridges, and every bridge must have been crossed completely every time; one could not walk
halfway onto the bridge and then turn around and later cross the other half from the other side.
The walk need not start and end at the same spot.

Although it is Leonhard Euler in 1736 who showed that the problem has no solution, one
can nonetheless consider Carl Friedrich Gauss (1777-1855) as the true father of topology, with a
special mention of the integral which determines the induction coefficient of two electric current
loops and which now bears his name. In fact some recent researches suggest that it is from
astronomical considerations, rather than electromagnetic, that Gauss discovered his integral
formula for linking numbers. The excellent article [1] provides more details on this story.
Gauss integral computing linking numbers (which are integers) is invariant under continuous
deformations of the ambient manifold into which the links are immersed: it is an ambient
isotopic invariant. This is where topology intervenes in this context.

Since then, topology has been largely developed and has become an independent part of
mathematics. Topology has recently made a remarkable comeback in physics in the context of
Quantum Field Theory'. This might be a little surprising at first sight, since a Quantum Field
Theory (QFT) is fundamentally based on locality while topology is more concerned about global
aspects of manifolds. We shall return later to the interplay between local and global aspects of
QFT’s.

In this review we are going to present two examples where QFT provides information about
the topological nature of the space on which they are defined. The common thread in these
two examples is that they are both based on cohomology. Let us point out that the QFT’s we
will deal with are all Euclidean.

The fact that cohomology plays a role in topology should not be too surprising deal with
objects which are invariant under continuous deformations of the manifold on which they are
defined. It is perhaps more surprising that cohomology can be used in physics (and more
specifically in quantum theories). For instance, Deligne-Beilinson cohomology that will appear
at length in this report is a basic element of Geometric Quantization. This sounds as an echo
to our previous questioning about locality.

We will start by recalling some basic facts concerning cohomology. Then, we will show
how equivariant cohomology, combined with QFT, gives rise to a large number of topological
invariants, such as those of Donaldson and Mumford. Our second example will be part of

! Actually an extension of the Gauss integral, coined as ”helicity” by H. Mofatt in 1969 [44], has been intro-
duced in 1958 by L. Woltjer [43] in his study of magnetic fields of the Crab Nebula, thus referring to Gauss initial
point of view in a sort of epistemological loop. Since then helicity has played an important role in astrophysics,
solar physics and plasma physics



the epistemological loop mentioned in the previous footnote: we will show how Chern-Simons
abelian theories allow to compute link invariants, actually those expressed in terms of the Gauss
integral, and how the construction can be generalised when the manifold has torsion and/or
has a dimension larger than three. The last part of this report will be devoted to proposal for
future works.



2 A fly over Equivariant and Deligne-Beilinson cohomologies

In this section we will give a quick presentation of the two cohomologies we will use in the
sequel. There will be almost no proof, but mostly references to specialized text books such as
[4, 2]. We will first consider equivariant cohomology and then Deligne-Beilinson cohomology.
We will assume that the reader is relatively familiar with the standard cohomologies such as de
Rham or Cech, as well as the singular cohomology. Similar knowledge will be assumed for the
corresponding homologies as well as Poincaré duality.

2.1 Equivariant Cohomology: Weil, Kalkman and Cartan schemes

Equivariant cohomology is based on the quite natural following idea: if one considers a principal
bundle with total space P, base space B and typical fibre a Lie group G, is it possible to
determine the cohomology of B from that of P? One knows that B = P/G, where the quotient
is made for the right action on G on P. The interest of the construction that answers the
previous question is that if M is a manifold on which a Lie group G is acting, then, even if the
quotient M /G is not a manifold, one can define a cohomology for the action of G on M from that
of M. We will show that there are different ways to present Equivariant Cohomology. These
ways will be referred to as different schemes. The first scheme we will introduce is the one of
WEeil which is from our point of view the most natural. Cartan scheme is a bit more subtle, and
will be introduced at the end. As to Kalkman scheme, besides the fact it provides an elegant
way to relate Weil and Cartan schemes, it also proves a very powerful tool in applications of
Equivariant Cohomology within the framework we will present later.

Let us consider a principal fibre bundle £ = (P, B, G, w) with total space a smooth manifold
P, base space a smooth manifold B, typical fibre a Lie group G acting (transitively) to the
right on P and with projection 7 : P — B. We will denote by mp the dimension of B and
by mp the dimension of P. One introduces the exterior derivative dp on P which acts on
Q*(P) = @ QF(P), the space of smooth differential forms on P: dp| : QF(P) — QF1(P).
This provides Q*(P) with the structure of a differential complex on which closed forms are
defined as dpw = 0 and exact forms as w = dpn. De Rham cohomology groups are then defined
on P according to:

i Ker(dp|k)
Hjp Tmdplra) (2.1)

Associated with the right action of G on P, one introduces two more differential operators:
the interior derivative (or contraction) and the Lie derivative. Since the typical fibre of our
principal bundle ¢ is a Lie group, then the fibres of P, i.e. the sub-sets 771 ({z}), where z € B,
can be identified with the orbits of G in P. One then defines the vertical direction in the
tangent space at p € P as the set of tangent vectors at p which are sent to zero by (dr),, the
tangent mapping at p associated with 7:

VpP ={T, € T,,P/(dm),(Tp) = 0} = Ker((dm)p) . (2.2)



Since the typical fiber of { is the Lie group G, the vertical space V,, P can be canonically identified
with the tangent space of G at g € G: V,P ~ T,,G. Thanks to the adjoint action of G, T;G can
be canonically sent to T.G, the tangent space of G at the identity of GG, which is nothing but
the Lie algebra G of G. Hence, one gets: V,P ~ G. For any w € QI(P) and A € G, on defines
the interior derivative of w along A at p by:

Vpe P, i(Nw=w(p), (2.3)

where Xp € V,P is the tangent vector canonically associated with A, via the previously men-
tioned isomorphism V,P ~ G.

Let us recall that differential forms are dualizing vector fields, which gives a meaning to the
RHS of (2.3), thus providing a O-form (i.e. a function) on P. The definition of the interior
derivative straightforwardly extends to QF(P):

ip: G x QF(P) — QF(P). (2.4)

This mapping is bilinear and is also called the contraction on Q(P). For antisymmetry reasons,
the interior derivative satisfies:

¥p e P,YAEG, ip(N)ip(A) =0. (2.5)

Whereas dp increases by one the degree of forms, i, decreases it by one.
The last derivative to be introduced reads:

lp:ipodp+dp0ip: {ip,dp}. (26)

This derivative retains the degree of forms on which it acts and is called the Lie derivative.
It corresponds to the idea of an infinitesimal action of G' (and so of an action of G) on Q(P).
Thus, one obtains a bilinear mapping:

l,: G x QF(P) — Q~(P). (2.7)

that commutes in an obvious way with dp. One also has:

VAL, A2 € G, [lp(M), lp(A2)] = lp([A1, A2]) (2.8)
as well as:
VAL A2 €6, [lp(A1),dp(A2)] = ip([A1, A]) (2.9)

A k-form w € QF(P) is said to be horizontal if:
VAe g, ip(AMw=0. (2.10)
and invariant if:

VAEG, L(Mw=0. (2.11)



A form which is both horizontal and invariant will be called basic. The spaces of basic k-forms
on the total space P is denoted QZ(P) One can show the following important result:

QL (P) ~ OF(B), (2.12)

which means that basic forms on the total space P of the principal bundle x can be canonically
identified with forms on the base space B of x. This is where the terminology ”basic” comes
from. More precisely, for any w € Q’é(P) the canonically associated form & € QF(B) is such
that: 70 = w. Proving the existence of & is the difficult part in the demonstration of (2.12).
Uniqueness is more obvious: if 7*w; = m*ws = w, then 7*(w; —wy) = 0. But the only form whose
pull-back via 7* is the zero form is the zero form itself. Conversely, to any form @ € Q¥(B) is
canonically associated the k-form 7*@ € QF(P) such that:

VAe g, i,(\)(rm'w) =w(mAy) =w(0) =0, (2.13)
and:
VAae g, L\ (m'w)=1i,(\)(r*(dpw)) = (dB@))(W*Xp) =0, (2.14)

where dp denotes the exterior derivative on B. These last two equations prove that 7*w is
basic. Let us remark that if & € QF(B) is closed, then so is 7*@ since dp o 7* = 7* o dp.
Conversely, if w € Q% (P) is closed, then so is the canonically associated form @ € QF(B).
Indeed, if w € Q&(P) was defining a form @ on B which is not closed, since 7*& = w, then
one would necessarily infer that w also is not closed, hence a contradiction. Consequently, if
one denotes H§R,G(P) the space of cohomology classes build from Q% (P) and Qgﬁl(P), one
deduces that:

Hjjp (P) = Hip(B) . (2.15)

More generally, if P is a smooth manifold and G a Lie group acting to the right on P, then
the spaces H gR,G(P), build from basic elements of P, as just exposed, are called the basic
cohomology groups of P for the right action of G. From (2.15), this cohomology coincides
with the cohomology of P/G when this quotient is a manifold.

The next ingredient is provided by W(G), the Weil algebra of G. It is the differential graded
algebra generated by two G-valued objects: the ”connection” 6, of degree 1, and its ” curvature”
O, of degree 2, such that:

1
dwl = © — 510,0], (2.16)
where dyy is the exterior derivative of W(G). One has the Bianchi identity:
dw® = —1[0,0]. (2.17)

This differential graded algebra is a way to describe connections (and their curvatures) on
principal bundles without the need of specifying either a base space nor the total space of the



bundle. Only the group is taken into consideration. It plays a fundamental role in the theory
of classifying spaces. The Weil algebra can be endowed with an interior derivative, iyy, and a
Lie derivatives, lyy, for which one has, for any A € G:

iwN0 =X, Ly(\)o=—[\10]. (2.18)
and
iwN)O =0 , I\ =—-[\0]. (2.19)

It can be shown, for instance using a homotopy operator, that the cohomology of W(G) is
trivial [3]. This is mainely due to the algebraic nature of this space. In fact, in the action of
iy and [lyy all references to points of a base space have disappeared.

Let us now consider a manifold M on which a Lie group G acts to the right. The Lie algebra
of G is denoted G. As explained before, one can then construct the basic cohomology of M,
Hgrc(M). Let the graded algebra Q(M) @ W(G) be provided with the natural operations
dm + dw, i + i and Iaq + by, which turns it into a graded differential algebra. The
elements of Q(M) ® W(G) annihilated by (ipg + iyw)(N) and (Iag + lw)(A) for any A € G,
are called equivariant cochains. Equivariant cochains annihilated by daq + dyy are called
equivariant cocycles, and equivariant cochains which can be written as the das + dyy of some
other equivariant cochains are called equivariant coboundaries. This generates a cohomology
called Weil scheme of Equivariant Cohomology. The mapping:

¢ = exp{—im(8)}C. (2.20)
is an isomorphism of the differential algebra Q(M) @ W(G) for which:

dm+dyw — Dy =dy+dw+1m(0) —im(0)
iMtityw — Ig =1t (2.21)
ImM+lw — Lg=Ilpm+1lw.

It can easily be checked that Dy, Ix and Lx are respectively exterior, interior and Lie deriva-
tives, and that the equivariant cohomology these derivatives define is isomorphic to the one of
Weil scheme. The isomorphism is provided by a canonical extension of (2.20) to appropriate
spaces. The version of Equivariant Cohomology thus obtained will be called Kalkman scheme
of Equivariant Cohomology.

Finally, from Kalkman scheme, if one sets 8 = 0, then D%(\gzo reduces to zero on invariant
cochains and not on the whole differential algebra. This gives rise to the so-called Cartan
scheme of Equivariant Cohomology. It is in this scheme that E. Witten adopted in [5]
when he showed the interest of Equivariant Cohomology for the computation of observables in
some topological models. We will come back to this later.

Although popular, Cartan’s scheme is not well adapted to explicit computations. Hence,
we will prefer to use Weil or even Kalkman schemes, the relevance of which will appear in the
examples of the next section.



Let us now have a look at the second type of cohomology we will use in the topological
models we want to present here.

2.2 Deligne-Beilinson Cohomology

Once again, there exist several, but equivalent, ways to present Deligne-Beilinson Cohomology
[16, 17, 18, 19]. For instance, it can be defined as the cohomology of a cone. This seems to
be more appropriate when dealing within algebraic geometry and in particular the theory of
regulators [17, 18]. For smooth manifolds it can be constructed more explicitly introducing
cochains, a differential and then cocycles on some Cech-de Rham bi-complex [18]. This smooth
Deligne-Beilinson Cohomology can also be seen as a realization of Cheeger-Simons Differential
Characters [20, 21], Harvey-Lawson ”Sparks” [22] or Singer-Hopkins Differential Cohomology
[23]. The advantage of the Cech-de Rham explicit method is that it provides expressions
which are quite convenient for physicists [24]. On the other hand, using Differential Characters
or Sparks turns out to be particularly well-adapted when dealing with abelian Chern-Simons
theories as it will appear later. In the sequel DB will stand for ” Deligne-Beilinson”, and we will
only consider smooth, closed (i.e. compact and without boundary) manifolds.

If one chooses to use the Cech-de Rham bi-complex, DB Cohomology on a manifold M can
be constructed as follow. Let U = (U;);crcn be a good cover of M, i.e. a cover such that any
non empty intersection of elements of U is contractible. This is equivalent to say that all non
empty intersections have no homology, nor cohomology (except in degree zero of course). A
DB cochain is defined as a collection

wl! = (WOP) =1 ®0) pp+1,—1)) (2.22)
where the w*?=F)s are QP~#(U;)-valued Cech k-cochains (with QP~*(U;) the space of (p — k)-

forms on (U;) € U), whereas the last term, n®t1:~1) is an integral Cech (p + 1)-cochain.
One provides the set of DB cochains with a differential, denoted D and defined by:

D=6+d, (2.23)

where ¢ is the Cech differential, d=+d Mm depending on whether the exterior derivative dy is
taken on objects having even or odd Cech degree 2, and d = 0 on p-forms. When acting on
"pure” Cech cochains (denoted w® 1), d has to be understood (up to sign) as the injection of
numbers into (constant) functions. More explicitly:

Dl = (0,607 4 dwP=1 | 50uPO) 4 dnP+L=1 gpEtl=1)) (2.24)

The differential D is a truncation on p-forms of the Cech-de Rham differential used to prove
that real Cech cohomology and de Rham cohomology are isomorphic. We can check without

2This alternation of sign ensures that D? = 0



any difficulty that (2.24) leads to D? = 0. One will say that a DB cochain wl”! is a DB cocycle
if:

DuwlPl =0, (2.25)

which locally (i.e. with respect of the w*?~%)’s) reads:

swOP) 4 dur=1) =
swlp=D) | duy@r-2 =
. : (2.26)
Sw®=11) L q®0) = 9
Sw®0) 4 dne+l-1) —
on(P+L=1) = 0.

These equations are often referred to as the ”descent” equations of the DB cocycle wlPl. Not
surprisingly, one says that a DB cocycle is a DB coboundary whenever:

Gyt ) ) = pylp-1], (2.27)

which locally reads:

w(ovp) = Jfr](ozpfl)
w(lvpfl) — 577(07}771) _|_ gn(17p72)
: N 2.28
w(p—l,l) = 577(17_271) + dn(p_lvo) ( )
w(P,O) — 577(1)—1,0) _|_ Cfivn(pv_l)
n+l-1)  _ Sm®—1

One finally defines the pth DB Cohomology space as the quotient of the space of DB p-cocycles
by the space of DB p-coboundaries, as usual in cohomology theory. One denotes [w [p]], or simply
[w], a DB class of degree p, and one says that the DB cocycles associated with this class are its
representative for the good cover U, whereas equations (2.28) identify the ambiguities on the
representatives of a given DB class. The resulting cohomology spaces are independent of the
good cover and are only depending on the manifold M. This is actually also true within Cech
cohomology when one uses good covers. They are denoted:

H (M, 7). (2.29)

To be a more precise, one should define H%(M ,Z) as the inductive limit over refined good

covers of M of the previously build DB cohomology spaces.

Let us point out that our choice of degree for the DB classes is the one coming from Sparks

and Differential Characters, whereas in DB theory one uses a degree shifted by minus one.
One of the first results that which shows the interest of Deligne-Beilinson Cohomology

is the following: H})(M ,Z) canonically identifies with the space of equivalence classes of



U(1)-principal bundles with connections, the classification being made with respect to U(1)-
isomorphisms.

Let us first show that a DB class [w] of degree p defines in a natural way a closed (p + 1)-
form with integral periods on M, i.e. a curvature when p = 1. Indeed, (2.26) implies that
5de(0’p) = (0 and therefore that there exists a form w(~1P*tY) on M whose restrictions in the
opens of the good cover U coincide with the local expressions of da;w(®?). Thus, the descent
equations (2.26) can be seen as standard Cech-de Rham descent equations for the (global)
form w(~1P*1D_ These descent equations end (by construction) with an integral Cech cocycle
n®+L=1) Therefore, w(~1P+1) turns out to be a closed form with integral periods on M. Let us
remark that w(~1P*1) is closed simply because its restrictions are exact. Note that the Cech-de
Rham descents of a closed form with integral periods generically end with a real Cech cocycles.
However this cocycle can always be turned into an integer cocycle. The Cech cohomology class
associated with this integer cocycle can only determine a free cohomology class but not a torsion
class. The interpretation of HY (M, Z) as a classifying space can be made in terms of abelian
(bundle) Gerbes together with their connections. This gives a ”geometric” meaning to the DB
construction [25].

Let us now try to give a more precise description of the spaces HY (M, Z). To begin with,
let us note that from the descent equations (2.26), and the ”ambiguity” equations (2.28), any
DB class [w] defines an integral Cech cohomology class [n], thus generating a map:

by« HY(M,Z) — HPYH (M, Z), (2.30)

where FI”+1(M ,Z) denotes the p-th Cech cohomology group of M. This map is surjective as
the descent equations easily show. One can equivalently say that the following sequence:

HY (M, Z) 3 HPY (M, Z) — 0. (2.31)

is exact.

Equations (2.28) which organize the ambiguities of (2.26) for a given DB class [w] imply
that DB classes with the same image under 2 may differ by an element of QP(M)/QF (M), the
quotient of the space of p-forms on M by the subspace of closed p-forms with integral periods.
This provides an extension to the left of (2.31) into the following exact sequence:

0 — QB(M) - QP(M) — HY(M,Z) B HP™(M,Z) — 0. (2.32)

From this last exact sequence we infer that H7) (M, Z) is an affine bundle with (discrete)
base space HPT1(M,Z), and translation group QP(M)/Q%(M). This structure plays a crucial
role when Deligne-Beilinson Cohomology is used within the abelian Chern-Simons framework
in order to compute link invariants.

If on the other hand one rather starts from the other edge of the descent equations defining
the DB class [w], that is to say if one first consider the generalised curvature w(—LPHD) canonically
defined by [w], then another surjective mapping naturally emerges:

8y : HY.(M,Z) — Qb (M). (2.33)



There follows another exact sequence:

HP (M, Z) 2 Q2L (M) — 0, (2.34)
which can be completed into the following exact sequence:

0 — HP(M,R/Z) — HY(M,Z) 55 Q8 (M) - 0. (2.35)

where HP(M,R/Z) denotes the p-th R/Z-valued Cech cohomology group of M. This last exact
sequence shows that H?,(M,Z) is also an affine bundle over Q%H(M ) whose translation group
is now HP(M,R/Z). Let us point out that whereas it has a discrete basis with respect to (2.32),
HY,(M,Z) has a continuous (although potentially disconnected) basis with respect to (2.35).
In the particular case where p = m = dimM the exact sequence (2.32) becomes:
Q7' (M)

0— L

aman — TBOLZ) % g (M, Z) = 0. (2.36)

A choice of a normalized volume form on M allows to prove that Q7'(M)/Q™ (M) ~ R/Z, thus
leading to:

HP(M,Z) ~R/Z. (2.37)

One can chose the zero class of H}}(M,Z) as origin on the unique fiber of H}}(M,Z), which
makes the isomorphism (2.37) canonical.

Cech-de Rham descents of closed forms with integral periods on M cannot by themselves
generate alone Deligne-Beilinson spaces. For instance, as we already mentioned, such descents
can only generate the free part of the Cech cohomology groups. This is due to the fact that
Cech-de Rham deals with forms and then only provide an isomorphism for real cohomologies
thus eliminating torsion. In fact its the truncation (d = 0 on p-formes) which gives access via
ambiguities to torsion. One then finds torsion either in the Cech cohomology group at the end
of the exact sequence (2.32), or in the R/Z-valued Cech cohomology at the start of the exact
sequence (2.35). In other words, torsion is either contained in the base space of HY,(M,Z) when
one deals with (2.32)), or in the translation group of H? (M,Z) when one deals with (2.35).

Beside their affine bundle structure, DB spaces enjoys a natural Z-module structure: the
sum of two DB classes of degree p is a DB class of degree p, and so is any integral combination
of DB classes of degree p. There is also a natural pairing on Deligne-Beilinson Cohomology
spaces:

p : HY(M,Z) x HY(M,Z) — H% (M, Z) . (2.38)
This pairing, called the DB product, is graded commutative:
(WP «p [wld] = (—1)PHD@FDla] g (W] (2.39)

Let us give an example by considering two DB classes of degree 1, hence defining two inequivalent
classes of U(1)-bundles with connections. Let (AN A10) 5n2=1) and (A0 AL 72-1))
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be a representative for each of these classes, with respect to a good cover U of M. The DB
class resulting from the DB product of the two classes of these DB cocycles can be represented
by the following DB 3-cocycle:

(ACDAZFOD AQOAGFOD DR FOD pC-DATIO ,@oD GFE-D) (240

where A denotes the combination of the exterior product A with the cup product U. This
combination is the one used in the standard Cech-de Rham machinery. When p+¢+1=m =
dimM , using (2.37), one gets:

xp: HY (M, Z) x HY(M,Z) — H}}(M,Z) ~ R/Z. (2.41)

We will see later on that (2.41) defines an R/Z-duality between H} (M, Z) and H](jm_p_l)(M, 7).

Remembering the link between DB classes of degree 1 and U(1)-connections, one is naturally
led to wonder whether integration of a DB class over a cycle on M is well defined. This would
be something which generalizes U(1) holonomies. It is well-known that the integral ng A, of an
abelian gauge field (i.e. a U(1)-connection) A over a 1-cycle z of M, does not define a real (or
complex) number but rather an element of R/Z. From a physical point of view this is nothing
but the Aharonov-Bohm? effect [8]. This can be seen for instance when the cycle is trivial
(z = bc) since then one can locally write:

éA:j{cA:/ch:/cF(A), (2.42)

with F'(A) = dA the curvature of A. Yet, the chain ¢, whose boundary is z, is not unique, and
if ¢ is another such chain then there exists a 2-cycle ¥ on M such that ¢ = ¢+ X. Accordingly:

794:/510(14):/0+E F(A) :/CF(A)+/EF(A). (2.43)

Since, up to a normalization factor 2w, F'(A) has integral periods, one concludes that fz A s
defined modulo integers. There would remain to show that fz A can be extended to any 1-cycles
on M. This will be achieved by defining the integral of a general DB classes of degree p on
p-cycles of M. We have already mentioned that the Cech-de Rham description of DB classes
(in term of their representatives) provide explicit formulas. Therefore, finding an expression
for fzp [w[p}] might be easier using this explicit description. Fortunately, there is a descent for

(singular) p-cycles of M into Cech p-cycles associated with good covers of M. Here is the
essence of this construction details of which can be found in the classic article from A. Weil
(7).

Let U be a good cover of M and z, be a (singular) p-cycle on M. One says that z, is a
U-cycle if there exist a family ¢ ,) of (singular) p-chains indexed by I, such that:

zp = Oc(gp) = Z Céo,p) . (2.44)

iel

3In fact, first discovered by W. Ehrenberg and R. E. Siday in 1949 [6]

11



For a given good cover, a generic singular p-cycle z, of M is not necessarily a U/-cycle. However,
it is always possible to refine U into a good cover V in such a way that z, turns out to be a
V-cycle. It will only remain to show that the whole construction is independent of the good
cover. For a p-cycle z,, one show that there exists a collection:

Z[p] = (C(O,p)a C1,p—1)s -+ C(p,0)» ((p,—l)) ) (245)

where the ¢, ,_)’s are Cech chains taking their values in the set of singular chains of M, and

((p,—1) 1s an integral Cech cycle. Furthermore, this collection verifies the following homological
descent;:

by = Ocup-1)
bep-1) = Oc@p-2)
: (2.46)
bep-11) = Ocp)
bocpo)y = Cp-1)-

In these equations, b denotes the boundary operation on singular chains and 9 the boundary
operation on Cech chains. This extends definition (2.44). These two operations can be seen as
dualizing de Rham?* d for b, and Cech & for 8. As for by, it is the operation which associates
to any singular O-cycle its integer coefficients obtained by decomposing it over a base of points
(which are 0-cycles). Let us note that the descent equations (2.46) imply that ((, _1) is an
integral Cech cycle, and Jc(op) = 2p an integral singular cycle. This construction allows in
particular to show that singular and Cech homologies are isomorphic.

Let us consider an example: z is a 1-cycle on M such that the good cover of M induces a
good cover of z made of three open sets. We write U|, = (Vi, Vs, V3), with V; = U; N z and
Vies = Vi N Vo N V3 = 0. Not every cycle and good cover are such. But for a given cycle it
is always possible to find a good cover that meets our requirements. We could say that U], is
an "excellent” cover of z. One decomposes z with respect to U|, by considering three integer
1-chains, let say c1, co and c3, such that: ¢; 4+ co + c3 = 2z, and whose boundaries are contained
into the intersections of U/, that is to say: bc; = x12 — x31, beg = x93 — 212 and bes = 131 — 23,
with x;; € U;; = U; NU;. The Cech 1-chain so generated is given by: (12 = 1 = —(21 in Uio,
(o3 =1 = —(32 in Usg, and (31 = 1 = —(313 in Us;. These integers are nothing but the weights
of the points 12, x23 and x3; seen as basic O-cycles in the various Uj; of U|,. Although by
construction Ujo3 = Uy NUs NU3 = () on 2, in M one might have Ujoz3 = Uy NUs N U3 # 0. If
this happens this means that the cycle z was actually a boundary, and this implies that there
exists a Cech 2-chain Tijk such that (;; = >, Tijk. Conversely if Uiog = U1 NU2 N Uz # @ also
holds in M, then the cycle is not a boundary and the same applies to (;;. As a final point, let
us noticed that from the point of view of z provided with the excellent cover U], the cycle (;; is
not trivial because there is no possibility to construct 7;;; since Uja3 = Uy N Uz N Us = @ on z.
This amounts to compute the first homology group of S! which is well-known to be non trivial.

4Actually b is dualizing the singular coboundary operation so that one needs to first send forms into singular
cochains, which is done by integration, in order to see a duality between d and b
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One immediately notices that beside their last term, all the terms of (2.22) and (2.45) have
degrees that allow integration. Therefore, it seems natural to set, for any cycle z,

p
% Wk =" / WEP=R) 110d 7 (2.47)
Zp k=0 " ¢(k,p—k)

where integrals have to be understood with also a summation over all the Cech indices appearing
there, in such a way that the final result has no Cech indices. Equality (2.47) is defined modulo
integers, that is to say, the integral is an element of R/Z, as expected. When the cycle z, is a
boundary, i.e. z, = bcpy1, one immediately sees that (2.47) yields:

]{[w[p]]Z/ FP = modZ, (2.48)

P Cp+1

where FPH! is the closed form with integral period associated with (i.e. the curvature of) [w!Pl].

When z, is a torsion cycle, that is to say z, is not a boundary but that there an integer
m and an integral chain ¢, such that m.z, = beyy1, if one denotes ((, 1) an integral Cech
cycle associated (by the Weil descent) with 2, and 6,41 1) an integral Cech chain such that
m.((p,—1) = 90 p41,-1) (and so associated with ¢, 1), then it is easy to show that (2.47) gives:

1
?{ [wiPl] = p- [/ Frt_ (w(p+1’_1),9(p+17_1)> modZ, (2.49)
% Cp+1

where ( , ) denotes the duality operation between integral Cech chains and cochains. Hence, the
couple (FPH [w®P=1=D]) associated with a DB class [w[]], completely determines this DB class
on the torsion group of degree p of M [21]. Finally, one can check that the expression defining
the integration of the DB [w[p]] over the cycle z, is independent of the chosen representative
of [w[p}] as well as of the descent of z,, and of the good cover. In fact, by checking all these
independencies one also proves that integration is actually performed in R/Z rather than in R.

We have now just established an R/Z-duality between cycles on M and DB spaces. This
is exactly how Cheeger and Simons have introduced Differential Characters [20] which are a
different but equivalent way to see Deligne-Beilinson Cohomology.

Denoting H?,(M,Z)* = Hom(H?,(M,Z),R/Z), the Pontrjagin dual of H7,(M,Z) and Z,(M)
the space of singular p-cycles on M, one has:

Zy(M) C Hom(H® (M,Z),R/Z). (2.50)

This reminds us of another inclusion: singular chains seen as de Rham currents on M, the latter
being dual to forms on M.

By combining the DB product *p, integration and result (2.37), one deduces that there is
another inclusion (or rather an injection):

H}P~Y(M,Z) ¢ Hom(HY(M,Z),R/Z), (2.51)
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which is analogous to the inclusion of QP (M) into the space of de Rham (m — p)-currents on M.
From this point of view, the elements of H g (M,Z)* can be seen as distributional DB classes.

Eventually, one can show that any singular p-cycle z on M defines a canonical distributional
DB (m — p — 1)-class such that:

7{ WlPl] = /M QP 4 (0] modZ, (2.52)

P

for any [wlPl] € HY(M,7Z) (see [24] for details). To compute the RHS of (2.52) using the
integration formula (2.48), one has to decompose M itself according to Weil method thus
obtaining something equivalent to (2.45). This decomposition, that we call a ”polyhedral”
decomposition of M, is quite standard. It can be used for instance to define the integration of
a top form on M via the corresponding Cech objects.

One can also rewrite formula (2.48) using a partition of unity with compact support and
subordinated to the good cover U of M. This avoids the use of a Weil decomposition of M (and
of any cycle z in M). It also avoids problems occurring when dealing with distributional classes
and products of such objects which might appear in (2.52). Once more we refer the reader to
[24] for details. This is also very similar to the usual case where one can either use partition of
unity or chains to define integration of forms.

Let us have a look at the dual spaces Hom(H7(M,Z),R/Z). 1If one applies Pontrjagin
duality to the exact sequences (2.32) and (2.35), one deduces that these spaces are themselves
terms of exact sequences. More specifically one finds that:

0 — Hom(Q5T (M), R/Z) — HE(M,Z)* — H™ P(M,Z) — 0, (2.53)
and:

0— H™ P Y (M,R/Z) — HY(M,Z)* — Hom (¥ (M)/Q(M),R/Z) — 0. (2.54)
To establish these two exact sequences one uses:

Hom(HP(M,R/Z),R/Z) = H™ P(M,Z). (2.55)

Let us have a closer look at the case m = 3 and p = 1 since it will be met later on. The
exact sequences into which H} (M, Z) and H},(M,Z)* are embedded read:

0— ?z%éz\]\j)) HLH(M,Z) — H*(M,Z) — 0, (2.56)
0— HYM,R/Z) — HLHM,Z)— Q3(M) =0, (2.57)
and:
0 — Hom(Q%(M),R/Z) — HL(M,Z)* — H*(M,Z) — 0, (2.58)
71 1 x QN (M)
0— HY(M,R/Z) — HLH(M,7)* — Hom(%(M),R/Z) -0, (2.59)
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and the canonical injection (2.51) gives:
HLH(M,Z) C Hh(M,Z)*. (2.60)
This sheds some new light on the previous exact sequences since we have the following injections:

2! (1) oL (1)
arany P i

Q% (M) C Hom( C Hom(03(M),R/Z), (2.61)

which confirms the inclusion (2.60), using the ”5 lemma”.

We will see the full interest of inclusion (2.60) in the study and computation of link invariants
within the framework of abelian Chern-Simons theories.

In order to conclude, and as announced at the beginning of this mathematical section, let
us point out that there exists another way to introduce Deligne-Beilinson Cohomology. More
precisely, S-S. Chern and J. Simons have shown that for any (compact) Lie group G there
exist natural objects which trivialise (either locally on M or globally on a G-bundle over M)
symmetric invariant polynomials in curvature forms [45]. The objects thus obtained are not
forms on M, but Cheeger-Simons Differential Characters [20, 21, 19]. Note that this is done in
a non abelian context, although at the end everything is abelian. More recently Harvey and
Lawson have proposed an alternative description in terms of Sparks [22]. In this approach a
closed form with integral periods is connected with a rectifiable current (one representing a
cycle) on M. The class of the closed form would then be a Poincaré dual of the class of the
cycle (or the current representing it). All these points of view are equivalent at the level of
smooth manifolds and they all provide the same set of exact sequences as well as the same
Pontrjagin dual spaces. The same holds true with Hopkins-Singer Differential Cohomology as
shown by J. Simons and D. Sullivan [46].
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3 Topological models

We are going to present two families of topological models strongly based on the two coho-
mologies previously introduced. We will only expose the main results obtained in the original
articles. These articles can be found at the end of this review.

First, topological Yang-Mills in 3 dimensions, topological gravity in 2 and then 4 dimensions
will be dealt with. For these models Equivariant Cohomology will be used, thus allowing
to identify some observables of the corresponding theories which will appear as topological
invariants: those of Donaldson in the case of Yang-Mills and of Mumford in the case of 2D
gravity.

In a second step we will focus on the theory of links in a three dimensional space and more
specifically on the role played by the abelian Chern-Simons field theory in the determination
of link invariants. This is where Deligne-Beilinson Cohomology will appear as a very powerful
tool, allowing to get links invariants in a purely geometrical way, without the use of any surgery
technique, to which it provides an alternative.

Let us amusingly note that the use of Equivariant Cohomology will concern even-dimensional
manifolds whereas the use of Beilinson-Deligne Cohomology will concern odd-dimensional ones.

3.1 Equivariant Observables

As in section 2.1 but with slightly different notations let us consider a manifold M on which
a Lie group G is acting to the right. Let £ = (P, M, H, ) be a principal bundle over M with
structure group a compact Lie group H. In general, H has nothing to do with G. The Lie
algebra of H is denoted H, and G denotes the one of G . By construction H acts to the right
on the total space P in such a way that M = P/H. As done before, all derivatives will be
indexed by the space on which they are defined.

Let I' be a G-invariant H-connection on &:

VAe g, lp(AM)I'=0. (3.62)
The pull-back T of T on Q*(P) @ W(G) is a 1-form on P and a 0-form in W(G). Consequently:
YA€ G, i\ =0. (3.63)

In Q*(P)®@W(G), the equivariant curvature of T is defined by (denoting w and €2 the generators
of W(G))

~ o ]
R(T,w,Q) = DT + S [T (3.64)

Therefore, if Zy is an H-invariant symmetric polynomial on H one can consider the H-
characteristic class 7/ - (I, w, Q) = T (R (L, w,)). It is well-defined on M and satisfies:

DT (T, w,Q) 0
IKNIH (Tw,Q) = 0 (3.65)
L (NI (T, ) 0
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where all derivatives appearing here were defined by (2.21). We are in Kalkman scheme of
the Equivariant Cohomology, as recalled by the index K. This shows why this scheme is so
interesting: it allows to construct cohomology classes in a very simple way, only relying on
constraint (3.63) whereas in Weil scheme one should have to consider a quantity I' such that
(ip + iw)(MT = 0. Of course, once an Equivariant Cohomology class has been identified in
Kalkman scheme, one can switch to Weil scheme by the use of (2.20), thus getting:

T 1o (T, w, Q) = Iify, (T,w, Q) = Ty (Rt (T, w,Q)) . (3.66)
with
RG(T,w, Q) = exp{—ip(w)}R(T,w,Q) (3.67)

— (dp+dw)(@ +ip@)D) + %[f ip(W)T,T 4+ ip(w)T].

When M can be endowed with a G-connection 6, with curvature ©, one can respectively
replace w and Q by # and © in Zj/ (T, w, Q) in such a way that equations (3.65) become:

dmZyw(T.0,0) = 0
iMNIfy(T.0,0) = 0 (3.68)
ZM(A)IIe{q,W(fve’@) = 0)

for any A € G. The cohomology classes thus obtained are remarkably independent of T and 6.
Once the basic forms I;‘{W(f, 0,0) have been obtained, one knows that they uniquely define
forms on M /G which can be integrated over cycles on this space, thus obtaining G-invariant
quantities. We will now take some example to make all this clearer. But before this let us make
some remarks. We do no need any action (or lagrangian) in order to determine equivariant
observables. We only need the structure equations of the topological model. In fact, it is
through these structure equations that the topological model will be identified as such. They
typically read:

s'P¢ = P+ LP(w)¢ (3.69)
S = D)+ L)

s'Pw = Q—%[w,w]

sfPQ = [Q,u],

where ¢ is the fundamental field of the theory (a connection, a metric, etc.). The expression
of the BRST operator s'? will depend on the chosen scheme (Kalkman or Weil) in which the
topological model is described.

3.1.1 Topological Yang-Mills in 3 dimensions and Donaldson invariants

In this topological model one considers a four dimensional manifold B* seen as a euclidian
version of a space-time manifold. Then let ¢ = (P, B H,7) be a principal bundle over B*
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where H is a compact Lie group (most of the time H = SU(N) or SO(N)). The manifold M
of the previous paragraph is now taken as A, the affine space of H-connections on £, while G
is the group of vertical automorphisms of P. Therefore, and unlike the general case, there is a
link between H and G since this last group appears as the gauge group of the structure group
H of £&. As before, H and G will denote the Lie algebras of H and G, respectively. Furthermore,
and also unlike the general case, there is a natural action (or lagrangian) associated with this
topological model, which is:
Syyp = / Tr[F A F), (3.70)
top B4

where F' is the curvature of a H-connection on B* (or equivalently on ¢). Up to some normali-
sation factor, the topological lagrangian T'r[F A F] identifies with the second Chern class of the
bundle &. Accordingly, the action takes its values in Z.

The Weil algebra W(G) can be nicely realised with the use of a copy A of A endowed with a
connection w and its curvature {2 both playing the role of generators of W(G). The fundamental
fields of this model are therefore: a € A, d4a , w and Q. The structure equations read:

§'%q = o+ Iyx(@)a =+ L' @)a = — Voo (3.71)
sPy = —L'P(Q)a+ LP(Q)y = —VaQ + [, 7]
~ 1
sPG = Q- 51@.5]
s = [Q,a],
where:
s = dg+da+1a@) —ia(Q) (3.72)

Y = daa = Yk,
in Kalkman scheme, and:
stop = di+da (3.73)
v o= dga—Ilx(0a = Yy,

in Weil scheme. In both schemes L' = [ 3+ 4. In (3.72) (resp. (3.73)) one recognizes Kalkman

(resp. Weil) differential. To go from one scheme to the other we naturally use the equivalent
of (2.20):

Vi = exp{—ia(@)}Pw . (3.74)
For any A € G
v (yg=| 2 to=0 (3.75)

| 0 otherwise,

where I'? = i 3 (vesp. I' =iz +i4) in Kalkman (resp. Weil) scheme. Note that equations
in (3.71) are of BRST type and that their ”form” is independent of the chosen scheme.
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In order to obtain observables, we now consider M = A x B*, together with the principal
bundle over M whose total space is Q@ = A x P and structure group H, the same as P. Let
us recall that on the other hand G acts to the right on A and to the left on P. Therefore,
G acts accordingly on Q. We construct a G-invariant H-connection I' on Q in the following
way: for any a € A one considers the H-bundle with total space P over B* endowed with the
H-connection a. This gives rise to a collection @ of H-connections such that:

V(a,p) € Q, d(a,p) = a(p). (3.76)

The H-connection thus generated Q can be extended to A x Q. We refer the reader to [33]
for details. The fundamental vector field associated with the action of A € G takes the following
form:

- 5~
A=lp(Ap)aus — = Apea, (3.77)
m

where Xp is the fundamental vector field associated with the action of A on P, and e, is the
fundamental vector field associated with a basis (T4 ), of H. Since @ does not depend on A, we
have:

VAEG, (ig+i0)(N)d=—ip(\)a=—X, (3.78)

where the sign in front of E comes from the change of the right action to a left action of G on
P. the H-valued function A on Q is defined by:

Y(a,p) € Q, Xa,p) = A(p). (3.79)

Let us recall that for A € G: A(p) € H for any p € P.
In the same way we have:

- S -
VAEG, (;+lQ)(Na = zg(zpup)a%)a_wp)a
n

= Ip(Ap)a—Ilp(Ap)a (3.80)
= 0.

The connection @ is clearly G-invariant, so one can apply the general construction of section
3.1. The equivariant curvature thus obtained reads:

~ 1

Fil(@,0,9) = Dga + S[a,alu (3.81)
where
D =dz+ (da+dp)+ (Ia+1p)@) — (ia+ip)(Q). (3.82)
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Finally, taking into account the G-invariance of @, one concludes that the equivariant curvature
in Kalkman scheme can be written:

F(@,5,9Q) = F(a) + daa + ip(Q)a = F@) + vk + Q, (3.83)

with F(a) = dpa 4 1/2[a,d) g

Let us leave aside computational details needed to go to Weil scheme, and let us directly con-
sider an H-invariant symmetric polynomial /7 which generates the (automatically) equivariant
form: IﬁgW(a,w, Q) = Iy(F(a,w, Q)). One can eventually substitute to @ and € a connec-

tion w and its curvature €2, defined on A, in such a way that any reference to A disappears.
Equivariant constraints reduce to:
(da+ dpa) iy (@,0,9) =
(ia+ iB4)()\)ZZ{W(a, w, ) = 0 (3.84)
(La+ ) NIy (@.0,Q) = 0,
for any A € G. The fact that P has been replaced by B? in (3.84) is due to the nature of Iy.

Indeed, Z;{ (@, w, Q) satisfies even stronger constraints than those of the Weil scheme. Indeed,
we have:

Ve €G, iale)Tiy(a,w,Q) =0=1ip(e)Ty (@, w, Q) =ips(e) Ly yy (@, w, Q) (3.85)

which implies that Zp/ (@, w, Q) is a well-defined form on M = A x B*. We can decompose
this form according to:

2n
Iy (@,w,Q) = Y Zh2nk) (3.86)
k=0

where each term Z(2"=k) is a k-form on A and a (2n — k)-form on B*, such that the following
recursive relations (V) :

dAI(k—l,2n—k+l) +dB4I(k,2n—k)
ig(AN)ZEFL2n=k=1) g (k2R — (3.87)
LaNZE2R) — g (NZR2=R) = 0,

e}

(k,2n—k)

are fulfilled. Finally, one ”eliminates” B* by integrating T over a (2n — k)-cycle o,

in B*, thus providing:
ok = / Zk2n=k) (3.88)
T2n—k

From (3.87), these quantities verify:

dsOF =0, i40" =0, 1,0%=0. (3.89)
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Thus, we have obtained basic cohomology classes. It can be shown that these classes coincide
with the 4-dimensional Donaldson invariants.

We have presented here a somewhat detailed construction so that the reader could become
more familiar with notations and techniques used. In the forthcoming examples we will only
give the broad lines, referring the reader to the original articles for details.

3.1.2 Topological Gravity in 2 dimensions and Mumford invariants

In this second example, we replace the previous manifold B* by a closed (i.e. compact and
without boundary) Riemann surface 22 of genus g > 1. To avoid confusion we will denote 3,
the smooth 2-dimensional manifold on which this Riemann surface 22 is build. With respect
to C*° structures, closed surfaces are classified by their genus. However for a given genus there
are many inequivalent (with respect to conformal equivalence) Riemann surfaces. The space of
admissible conformal structures on Y, identifies with B(Eg), the space of Beltrami differentials
on 22, this Riemann surface being seen as an origin. Thus, this identification is not canonical
since it depends on the origin Eg. Nevertheless, changing Eg gives an isomorphic representation
of the space of admissible conformal structures on ¥,. Let us remind quickly how B (22) is built.
If {Us, (2a,Za) }acr is a complex atlas that defines the conformal structure of B(Eg), then any

other admissible conformal structure on Y, is given by some complex coordinates (Zé“ ) , 7((1“ ) Jacr
satisfying the Beltrami equation:

(95, - 1200..) 20 0. (3.90)

The collection made of the ugz ’s appearing in this equation defines a vector field valued 1-form

on Zg: p= % dZo ® 0,,, named a Beltrami differential on 22. The set of Beltrami differentials
on X, will be denoted by B (22). It can be seen as the space of generators of admissible conformal

structures on X, starting from the one of Eg. However, B(Zg) does not provide a one-to-one
identification of admissible conformal structures on X,.

Let g1 and ps be two Beltrami differentials on Eg. If (Z&’”),Zgu))ae] and (ZéM),?gQ))aE[
are the two conformal structures they define via (3.90), let us denote 3j* and ¥§? the Riemann
surfaces thus generated. Note that there exists diffeomorphisms ¢, : 22 — 2§ and ¢, -
%) — X4* since these surfaces have the same genus (they all "come from” ¥,). Now, if there
exist p € Dif fg(Eg) (the connected component to the identity of the group of diffeomorphisms
of 22) and a conformal map ®,,,, : X' — 47, one says that pq and uo are conformally
equivalent. The space generated by this equivalence relation between Beltrami differentials is
called the Teichmiiller space of 22. Formally:

B 0
T(Z)) = Dz‘f(ffég) . (3.91)

As for B(Eg), for a fixed genus all Teichmiiller spaces are isomorphic, even if they depend
on Eg. The quotient defining Teichmiiller spaces is built from the natural action of the infinite
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dimensional Lie group Dif fo(2]) on B(X)). This quite obviously suggests what to do in order
to construct equivariant observables. Let us simply say that to obtain them, one will have to
follow the same reasoning as in the previous example: one introduces a copy of B (22), provided
with a connection W and its curvature Q, the fundamental fields for this model being p, w and
Q. The action of Di f fg(E(g)) on these fields is then given by the following structure equations:

Py = v+ LP@)p=v—Ilg@p=v—0,—{ww,} =v—D,o, (3.92)
sPy = —L'P(Q)p+ L'P(@)v = D,Q, — {v,@,}
~ 1
s'PG, = Quli{awau}
sPQ, = —{Q,, o},

where w,, = (532 + ,u%@z) and ﬁu = (CDZ + ,u%ﬁz + V;&E). We can already remark the similarity
between (3.92) and (3.71). Of course, s!’ and v have an expression which depends on the
chosen scheme.

Let us recall that when g > 1, the Gauss curvature of the corresponding surfaces can always
be normalized to —1. One considers the trivial bundle M = B(Eg) x ¥4 endowed with the

complex structure defined by u et Z#, where Z* shortly denotes the coordinates (Z&“ ),7&“ ))ae I

previously met. Thus, over u € B(Eg) one finds the Riemann surface 3§ and over u = 0 the
”original” Riemann surface Eg. For any u € B(Zg) one considers the holomorphic tangent
bundle of ¥, thus obtaining a family Tﬁl’o)(Eg). One then goes to the associated GL(1,C)-
principal bundle, PT,SLO)(EQ), which plays the role of the space Q met in Topological Yang-
Mills. A set of holomorphic coordinates on PT, él’o)(Eg) is then locally given by u, Z* and
E?" € GL(1,C).

For any u € B(Eg) one provides ¥ with the metric dsi = pzﬂfudZ”dfu where p,,—»
satisfies:

Oz Oz I0(p yumn) = prumm - (3.93)

This is nothing but saying that the Gauss curvature ofe ¥, is —1, as already mentioned. A
Dif fo(Eg)—invariant GL(1,C)-connection quite naturally shows off:

['=Dln(p,.zn) + DIn(E?"), (3.94)

with D the type (1,0) of the total differentialacting on PT/SLO)(Zg), D =D+D, and DIn(E?")
is the Maurer-Cartan form on GL(1,C). Once more we refer the reader to the original articles
for all the details.

Once the connection I has been identified, one can apply in extenso the general method.
This leads to the introduction of the Kalkman equivariant curvature of f,~before switching to
Weil scheme. After having eliminated the copy of B(ES), replacing @ and €2 by a connection 6
with curvature © on B(Eg), the Weil equivariant curvature decomposes according to:

RE(T,0,0) = R0 + RO 4 RO (3.95)
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where the first index denotes a form degree on B (22) and the second a form degree on 22. One

. . . . . peq
then generates equivariant observables of the topological model by taking powers of R = Ry,
that is to say:

R — (R(Q,O))n +n(R(2,O))n—1R(1,1) + <n(R(2,0))n—1R(o,2) + ”(”2— 1)(R(2,0))n—1(R(1,1))2>

— @) L p@n-11) 4 H(2n-22) (3.96)

It is the dimension of 22 that produces the truncation in degree. There is a fundamental
difference with Topological Yang-Mills: here the gauge group is Dif fO(Eg), and it does act
on 22, whereas the gauge group G = Aut(P) reduces to the identity on B*, the base space
of P. Accordingly, if one integrates the different terms occurring in (3.96) on cycles of Z(g)
with the hope to get Dif fg(ES)—invariants, one is immediately face with the non invariance
of 0-cycles and 1-cycles under the action of Dif fo(Eg). Only Eg itself (and its multiples) is
Dif fo(Eg)-invariant. This reduces the topological invariants of 2D Gravity to:

o= | otn=22), (3.97)
g

These observables coincide with Mumford invariants.

3.1.3 Topological Gravity in 4 dimensions

In the previous example we have chosen to use Beltrami differentials as fundamental fields of the
topological 2D Gravity. This was natural because we were dealing with Riemann surfaces. Yet,
we also use metrics on these Riemann surfaces during the procedure leading to the equivariant
observables. This suggest another way to treat 2D Gravity, based on metrics from the beginning.
In fact there is a description of Teichmiiller spaces in term of metrics given by:

B Met(X,)
 Dif fo(E,) x Weyl(Sy)

T(2g) (3.98)
In (3.98), Met(X,) denotes the space of metrics on X4, Weyl(X,) the group of Weyl transfor-
mations on Met(X,), and x the semi-direct product corresponding to the obvious action of
Dif fo(X4) on Weyl(X,). Instead of presenting the construction and the computations leading
to the equivariant observables in this metric approach, we will rather show how metrics can be
used to provide topological invariants in the framework of (euclidian) 4D Gravity.

Let B* be closed four dimensional manifold. The topological model is now defined by the
following structure equations:

s'Pg = ¢+ L*P(@)g (3.99)
Sy = —LIP(Q)g + L'P (@)

sOPG = ﬁ—%[w,a]

s = [Q,3)],
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where g € Met(B*), @ is a connection on a copy of Weyl(3,) with curvature Q. As already
done, one considers the fiber bundle Q@ = Met((B*) x R((B*), R((B*) being the canonical frame
bundle of B%. This last bundle is well-known to be a principal bundle over B* with structure
group GL(4,R). The required Dif fo(B*)-invariant GL(4,R)-connection for the construction is
the equivalent of 3.94), that is to say:

~ 1
=T+ §g_1(5g, (3.100)

with Féc the Levi-Civita connection associated with g, and § the exterior derivative on Mtet(B*).
With T one gets the equivariant curvature within Kalkman scheme, then switch to Weil
scheme thus obtaining the equivariant curvature R;{ﬂ(f, @,9Q).
The last step consists in identifying GL(4,R)-invariant symmetric polynomials which turn
out to define Euler and Pontrjagin class of B* Actually, the Pontrjagin class is sufficient.

Finally one eliminates the copy of Met(B*) by replacing @ and Q by 6 and ©, a connection and
its curvature on 9Met(B*). Eventually, one gets:

B = QWO 4BV 4+ @3 4 Q¥ 4 Q0 (3.101)
P;I/Z _ G(4’0) + G(3,1) + G(Z,Z) + G(1,3) + G(0,4) ,
where the first index is a form degree on 9et(B*) and the second on B*. The relevant observ-
ables are obtained from (Ef})™(P5!)" once one truncates by the dimension of B*, that is to
say:
(Elcig)m(P;g)n — V(4m+4n,0) + V(4m+4n71,1) + V(4m+4n72,2) + V(4m+4n73,3) + V(4m+4n74,4) )

(3.102)

Detailed expressions for V#m+4n=kk) can be found in the original article [34]. As in the two
dimensional case, the gauge group Dif fo(B*) acts non trivially on B*, which implies that the
only invariant cycle is B* itself (and multiples of it). This gives for equivariant observables of
this topological model:

Y2 _ / (Am—dn—a.4) (3.103)
B4

The techniques presented below can be applied to any even dimensional closed manifold.
In the 2-dimensional case one can wonder whether the equivariant observables obtained using
Beltrami differentials are the same as those obtained from metrics. To our knowledge, there is
no answer to that last question.

3.1.4 Representatives of the Thom Class of a vector bundle

As a last example of the use of Equivariant Cohomology, let us show how it provides other
interesting mathematical quantities.
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An important role is played by the so-called Thom class a of vector bundle. One can see such
a class as the Poincaré dual of the zero section of some vector bundle. A famous representative
of the Thom class is provided by the Mathai-Quillen form. However, the construction we have
previously used to get manifold invariants, based on Equivariant Cohomology, can be applied
in the context of vector bundles thus generating a large family of new representatives of the
Thom class of vector bundles. We will give a feeling of this without going into details, which
can be found in the original article [4], as usual.

Let ((E, M,V, ) be a vector bundle over a smooth closed m-dimensional manifold M, with
total space E, typical fiber a linear space V of dimension n = 2k, and of projection 7. One
usually says that ¢ is a rank n vector bundle over M. We denote by Q7 'the space of n-forms
on F with fast decrease along the fibers of (. Working with these forms prevents divergencies
at infinity when integrating along the fibers. The associated (de Rham) cohomology space is
denoted H", . The Thom class of ¢ (or equivalently of F) is the cohomology class T (F) € H

rdv* rdv
for which any of its representative 77 satisfies:

/ TE=1. (3.104)
v

This means that the integral of 77 along the fibers of ¢ gives rise to the constant function 1 on
M. Note that in (3.104) the integration is done over V' whereas 7 lives on E, so it has to be
understood as a simple notation standing for ”integration along the fibers”.

Our aim is then to generate representative of 7 (E) with the use of Equivariant Cohomology.
To achieve this purpose, let us first provide V' with a hermitian product ( , )y from which one
selects an orthogonal basis of V, B = {€,},=1,.. n:

(€p,€q) = Opq - (3.105)

One decomposes any vector of V' according to:

n

n
T=> 0P8 = (€, )E,. (3.106)
p=1

p=1

Such a decomposition provides a coordinates system (v”)pzl,mm on V, subordinated to ‘B,
turning V' into a smooth manifold. Let V* be the (algebraic) dual of V. We provide V* with
the dual basis B* = {é;}pzl,m,n as well as with the hermitian product (, )y that dualises
(, )v in such a way that: €,(€;) = (€,,€,)v = (€,€;)v+ = dpg. Finally, one introduces the
”coordinates” (wp)p=1,..n for the Grassmann algebra AV*, together with the derivatives §, I
and L, dual to those of V

We already mentioned that the Thom class of a vector bundle ((E, M, V, ) can be seen as
the Poincaré dual of so(E), the image of M in E by the zero section sg of (. With our notations,
an obvious representative of this Poincaré dual is provided by the Dirac distribution according

to:

S(V)dv' AdvE A LA du™. (3.107)
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One can write this current as a Fourier transform and then use the topological BRST operator
5P whose expression depends on the scheme one wants to work in. One obtains:

U= (271r)” /dbdw exp{is'P(w.v) + i(w, b)y+}, (3.108)
which is an equivariant cohomology class.

In order to get new representatives, one considers the tangent bundle TV and then the
associated frame bundle R(V'). This last one is canonically a GL(n,R)-principal bundle over
V. One endows R(V) with local coordinates coming from those of V' and some of GL(n,R).
The last ingredient of the construction is provided by the isometry group of ( , )y: SO(n), and
by &(P,M,SO(n),7), a SO(n)-principal bundle over M. The total bundle used to generate
equivariant observables is then @ = £ x R(V') (or P x R(V)). Let us note that, as in the case of
the topological Yang-Mills model, there is a relation between the various Lie groups appearing
in the construction since SO(n) C GL(n,R). One must not confuse them.

In a now standard way, one endows Q with the SO(n)-invariant GL(n, R)-connection defined
by:

T =b"Y(TE + b~ dgb, (3.109)
where I‘gc is the Levi-Civita connection defined by the metric g, itself defined by:
ds*(0) = e?((dvP)* + o (vPdvP)?) (3.110)

where ¢ and o are functions only depending on (¥, ¥)y. The metric g is the canonical SO(n)-
invariant metric on V, therefore Féc and T are SO(n)-invariant, the latter being the lift on Q
of the former. Eventually, one constructs equivariant curvatures first in Kalkman scheme (the
most "natural”), then switch it to Weil scheme to get Rf/g. This is injected into a symmetric
G L(n,R)-invariant polynomial, which, as in the gravitational case, generates the Euler class:

EHIPI---Hde

V9
Of course (3.111) depends on g that itself depends on ¢ and o. Accordingly these two functions
appear as parameters for a whole family of representatives of the Thom class 7(E). In the
original article where all this is detailed ([4]), it was shown that for n = 2 (i.e. d = 1) the
Mathai-Quillen representative belongs to the equivariant family.

This example concludes our presentation of the use of Equivariant Cohomology in some
topological models. Of course this use is not systematic what ever the topological model is.

Also, although the procedure used provides topological observables, we do not know if one can
obtain them all this way. We send the reader to the end of this review for open questions.

B = i+ Gpava (REVA A o A (REL)Y (3.111)

3.2 Chern-Simons and links invariants

The link between Chern-Simons theories and invariants polynomials of knots started with a set
of remarks made by E. Witten in [13].
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Explicit perturbative computations for SU (V) were originally performed by E. Guadagnini,
M. Martellini and M. Mintchev in a Euclidean Quantum Field Theory framework ([28]). Beside
the fact it is, by essence, perturbative, this approach uses a Euclidean metric in R3 all over the
computations, although at the end one obtains isotopic invariants. To our knowledge, all com-
putations already done are in agreement with the expansion of the corresponding polynomial.
However all these computations are perturbative. Despite some attempts to define Quantum
Field Theory over closed manifolds (see for instance [47]), nothing conclusive seems to have
been achieved in the case of a Chern-Simons theory. As we will see, the true mathematical
nature of this theory might be one of the reasons for this.

We will present an alternative point of view based on Deligne-Beilinson Cohomology. His-
torically, we studied the use of this Cohomology Theory within Quantum Field Theory in a
totally independent way in [24]. It is only after the general considerations presented in this
earlier work that it appeared that Chern-Simons could be a very good playground to apply DB
Cohomology techniques. It was rather a surprise to see how this idea has proven so successful.
Unfortunately the price to pay is to be in the abelian framework of the Chern-Simons theory.
But we still think that there are many more benefits than drawbacks in using Deligne-Beilinson
cohomology: non-perturbative treatment, all (4] 4 3)-dimensional closed manifolds treated, tor-
sion taken into account, quantisation of all charges (k for the space or ¢ for the loops), and
some more not yet investigated similar properties usually obtained from surgery.

In this introductory section M will denote a smooth closed manifold of dimension 3. The
general case of a closed smooth manifold of dimension 4]+ 3 will be discussed in the last section.
Also the reader is referred to the original articles [9, 35, 32] for details.

Let us consider [w] € H},(M,Z), and write:

cs1([w]) = [w] *p [w] € HY(M,Z) = R/Z, (3.112)

the DB square of this class. If one uses the Cech-de Rham technique to get representatives of
DB classes, ¢s1([w]) is made of 5 ”components” the first of which is w(®V A dw®V | where w1
is the highest component of some representative of [w]. One immediately identifies this highest
component of [w]*p [w] with the abelian Chern-Simons lagrangian. Actually, and as we already
mentioned in the mathematical introduction, any Chern-Simons lagrangian can be seen as a
local representative of a DB class which is canonically associated with a second Chern class,
even in the non-abelian case.

From now on, ¢si([w]) will be considered as the fundamental lagrangian of the abelian
Chern-Simons theory. The level k Chern-Simons theory is described by the lagrangian:

csk([w]) = kesi(Jw]) = klw] *p [w] . (3.113)

From a field theoretic point of view, k should rather be named the coupling constant of the
theory.
If we want to interpret csi([w]) as a DB cohomology class, then:

csp(jw]) € HY(M,Z) 2 R/Z = k€7, (3.114)
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thus implying a quantisation of the coupling constant k. This perfectly agrees with the fact
that the Chern class associated with csi([w]) is integral if and only if k € Z.

The action of the abelian Chern-Simons theory is just defined as the integral of the la-
grangian, that is to say:

CSk(lw]) = /M ese(lw]) = k /M[w] wp ] (3.115)

One has CS([w]) € R/Z < k € Z, which coincides with the previous quantization constraint
(3.114).
If one considers the (formal) Chern-Simons functional measure:

duk([w]) = Dlw] exp{2inCSk(Jw])}, (3.116)

then due to the exponential one deduces that quantisation of k£ is a necessary and sufficient
condition for this exponential to be well-defined. From now on we will assume that:

kel. (3.117)

The functional measure (3.116) enjoys the following important property:

duk([w] + @) = dug(Jw]) x exp {2i7rk /M(Z[w] *p @+ Q *p a)} , (3.118)

called the Cameron-Martin like (or simply Cameron-Martin) property. This property is typical
of gaussian measures and of their functional generalizations. In fact, due to the presence of ¢ in
the exponential, the functional measure (3.116) is not a gaussian measure but rather quadratic,
which is actually enough to ensure (3.118). The Cameron-Martin property will be a keystone of
our construction. As a final remark, let us recall that the Lebesgue measure D used in (3.116)
is formal since there is no infinite-dimensional analogue of Lebesgue measure.

Condition (3.118) is unfortunately not sufficient to define a functional measure since such
a measure depends on the space on which we try to define it. In a first step, let us assume
that this space is Hi,(M,Z), the space of classes of U(1)-connections on M. From section
2.2 we know that this space is an affine bundle over H 2(M,Z). Tt is generically made of two
parts: a free part and a torsion part, both being discrete. The translation group of the fibers
of HL(M,Z) is QY (M)/Q,(M). Integration over an affine space can be defined via integration
over the underlying linear space. Therefore, our functional measure will have to be defined as
some extension of a functional measure on Q' (M)/Q (M). More precisely, for each base point
x € H*(M,Z) one fixes an origin [n]. on the fiber over &, what amounts to define a global
(discrete) section of HL(M,Z). Then, one decomposes any element of Hp (M, Z) according to
this section, let us say:

[w] = [n] + @, (3.119)
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where r = 62([w]) (¢f. (2.31)) and @ € QY (M)/Q}(M). The functional measure (3.116) takes
the more precise form:

dup(w]) = S Daexp {m /M([m] + @) (] +a>} , (3.120)

On the fiber over xk = 0 there exists a canonical origin which is the zero connection (i.e.
the connection defined by the exterior derivative dj; and associated with the trivial bundle
M x U(1)). However, such a canonical choice does not exist on the other fibers® of H} (M, Z).
On the other hand, if one wants the loops (i.e. cycles) to be among the fields of the theory
one is lead to extend our functional measure to a distributional version of HL(M,Z), which
corresponds to the usual setting of a Quantum Field Theory into which fields are (tempered)
distributions. But we have seen that the Pontrjagin dual of H},(M,Z) is such a distribu-
tional extension. Consequently, we also want to extend the Chern-Simons functional measure
to H}D(M ,Z)* (or a sub space of it which would correspond to the configuration space of the
quantum theory). Fortunately, H}(M,Z)* is also an affine bundle over H?(M,Z) which con-
tains H},(M,Z) and Z1(M) (see (2.51)). Similarly, the translation group of this affine bundle,
Hom(Q%(M),R/Z), contains Q' (M)/QL(M) (see 2.61). Therefore an extension of dug([w]) cor-
responds to an extension of the measure on Q(M)/QL (M) to a measure on Hom(Q%(M),R/Z).
On the other hand, we have already noticed that HL(M,Z)* also contains Z;(M). Hence, cy-
cles can be used as "natural” origins on the fibers of H},(M,Z)*. However, there is an infinite
number of such cycles and no canonical way to pick one, unlike for the zero cycle which lies on
the fiber over the zero class in H?(M,Z).

Let us write [y] the DB class canonically defined by a cycle v € Z;(M). For each k €
H?(M,Z) one picks up, once and for all, a fundamental cycle (or loop) .. This is possible
thanks to Poincaré duality: H?(M,Z) ~ H;(M,Z). One then chooses as origin over s the DB
class [yx] associated with .

We can be more precise: the space H 2(M,Z) can be decomposed into its free part and its
torsion part. The free part of H?(M,Z) is of the form ZY for some positive integer N. If
{/%'(j)}jzl,”_, ~ denotes the canonical basis of ZV , the previous construction associates to each

basis vector £(;) a fundamental cycle Vi 88 well as its DB class ['y;{(j)]. The same holds true

7)
for the torsion part of H?(M,Z) except that there exist some integers mq (a = 1, ..., ]\7) such
that myK, = 0, with <, forming a basis of the torsion sector. Let us denote vz, the fundamental
(torsion) cycles chosen as origins over kg, and [yz,] its DB class.

Thanks to this, the Chern-Simons functional measure over H},(M,Z)* can be itself decom-

posed according to:

N
dpy([w]) = ;%;Zmexp {2m/~c /M ([w(j)] +a) D (h%] +a>} . .
GZ:::Z_I Da exp {ink‘ /M (] + @) *p ([ +a)} .

°In fact, there also exists such a canonical choice on torsion fibers [30].
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Of course the problem of finding a functional measure on the @’s remains, and will not be
investigated further. From now on we assume that such a measure satisfying the Cameron-
Martin property can be found, either on the full space Hom(Q%(M),R/Z) or on a convenient
subspace.

A first problem that is faced when dealing with (3.121) is the presence of products [yz]*p [yz]-
If one assumes the previous decomposition for [yz] only the following fundamental products
will actually occur: [yz,] *p [Vz ], and [vz,] *p [yz,]. When including the Wilson lines we
will also meet mixed products like [vz, ] *p [vz,]. Such products can be ill-defined as are
generally products of distributions, and some regularisation may be necessary for (3.121) to
become meaningful. If one has chosen the fundamental cycles defining the Vi, s and Yg,’s in
such a way that they have no self-intersection and no intersection with each anothers, then
the regularisation of all the previous fundamental products can be done in the zero DB class.
Beside the fundamental cycles generating the homology (and hence by Poincaré duality the
cohomology) of M, one can also encounter DB products of DB classes of homologically trivial
cycles. For products between cycles with no intersection, the result is actually free of ambiguities
and divergencies and it coincide with the linking number. When the product is the DB square
of a trivial cycle, the standard regularisation by framing can be applied. Note that in both cases
this regularisation is finer than the previous one but in term of DB classes it still correspond
to a zero regularisation. In the case of a mixed product (containing a trivial cycle and a non
trivial one) zero regularisation still holds since the linking is defined up to an integer in such
cases, i.e. it is zero in R/Z. What is remarkable is that only these fundamental regularisation
are necessary to compute link invariants. Of course other products of distributions appear in
the theory (think about the Chern-Simons action itself), but what ever regularisation is chosen
for them, as long as we apply the zero one for fundamental cycles, the result does not depending
on these regularizations.

Let v be a loop on M, and [y] its DB representative class. As already noticed, for any
[w] € H},(M,Z) one has:

]i [w] = /M [w] *p [y] modZ. (3.122)

Let us assume that [y] = g[v/], where [y;] is one of the [yz ] or of the [yz,], and ¢ a real
number. We can write:

é [w]=4q /MM #p [y1] modZ. (3.123)

In Chern-Simons theory ¢ is called the charge (or colour) of the loop +. From the point of
view of Deligne-Beilinson Cohomology, this charge has to be quantised for ¢[y;] to be a DB
class. This quantisation ensure that:

exp 74 (W]} = exp{q /M W] *p byl} (3.124)
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is well-defined for any DB class [w]. This quantity is usually called the holonomy of ~ along
[w]. Thus we have established that:

= (3.125)

For a loop decomposed as:

V] = alvi] + Be, (3.126)

with 8. € Hom(Q%(M),R/Z), if we also decompose [w] according to [w] = [v,] + @, we obtain:

exp {20 / ol =exp {2in [ 1+ @) 50 (sl + B0 } (3.127)

Zero regularisation gives a meaning to products like [ys] *p [y]. Therefore, zero regularisation
also applies to Wilson loops.
We eventually introduce the expectation value of a Wilson loop:

(=3 [ Doy {2ink [ (bl + @) (] +) | (3.128)

X exp {21'7r /M([yg] + @) *p (q[v1] +Bc)} ,

where & stands for a basis vector of H2(M,Z) (either free or torsion). A more precise decom-
position can be obtained from (3.121).

We are now going to explain how to obtain links invariants using (3.128). We will start
with the case of closed manifolds without torsion such as S3 and S' x Y4 where Y, is a closed
surface of genus g. Then we will present a quite simple (but non trivial) case with torsion:
SO(3) ~ RP3. Lastly, we will show how this approach naturally extends to higher-dimensional
closed manifolds.

3.2.1 Links invariants on torsionless 3-dimensional closed manifolds

Let us start with the simplest case of S3. Here H?(S%,Z) = 0 and therefore H}(S%,Z)* ~
Hom(Q2%(5%),R/Z). This non-canonical isomorphism is made ”canonical” by choosing the zero
connection as origin. The affine bundle H}(S53,Z)* is made of only one fiber. The Chern-Simons
functional measure reduces to:

duy(a) = Daexp {2i7r]<:/ a*p a} . (3.129)
M

with @ € Hom(Q2%(5%),R/Z). On the other hand, Poincaré duality implies that H;(S3,Z) = 0,
which means that any 1-cycle (or loop) in S® is trivial (i.e. contractible). Consequently, the
canonical DB representative of a cycle v = bc is simply generated by f., the de Rham current
of the 2-chain c¢. This reads:

[y] = [0] + B = Be - (3.130)
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For a given cycle =, the chain ¢ is not unique but two such chains differ by a 2-cycle. The
collection of chains bounding y define an element of Hom(Q%(S%), R/Z) since the integral of an
element Q%(S?)) over any 2-cycle is by definition an integer. The Wilson line of a loop v = be
thus simplifies to:

W () = exp {%ryia} = exp {2m /Ma*D /BC} ,

and its expectation value reads:

(W) = /Daexp{zmk/Ma*D a} X exp{zm/Ma*D ﬁc} . (3.131)

Let us assume that the loop v holds charge ¢ € Z, that is to say v = ¢ for some fundamental
loop (i.e. an embedding of S* in $3). Since v = bcy, then:

(W) = /Daexp{zmk/Ma*D a} X exp{zmq/Ma *D ﬁco} : (3.132)

One shows that by setting:

aHy:a+q500 (3.133)

2k’
} X /Dxexp{%wk‘/ X*DX} ) (3.134)
M

then (3.132) turns into:
Assuming that the functional has been normalised, one finally gets:

Bey . Bey
2. *D
v 2k P2k

(W () = exp {2iﬂkq2

W)k = exp {—mmq? [y } . (3.135)

But BCO is the de Rham current of the 2-chain ¢g. Therefore, the DB square in the exponential
gives:

BCO BCO / BCQ /\ dBC()
*p — ——— modZ, 3.136
M 2k 2k M 4k? ( )
in such a way that:
e
(W(y))x = exp {—2i7r4k co M fyo} : (3.137)

This expression is obviously ill-defined since there appears the self-linking of vy: L., = ¢ rh 7o.

Nevertheless, using regularisation by ”framing”, one deduces that:
¢
(W(7))k = exp {—2i7r4k co h 75} : (3.138)

32



where fyg is a chosen framing of 79. Now, if L is a generic link that decomposes as:

L= am, (3.139)
%

with 7§ = bc some fundamental framed loops and ¢; some (integral) charges, one has:

1K
(W(L))x = exp { =2im ‘ZlqiL(JL)qj : (3.140)
1,]=

where the linking matrix (LZ(]W )) of the link L has been introduced. It is defined by:

L?L) = g, (3.141)

with the framing convention when i = j. Expression (3.140) is the one of abelian link invariants
on S3.

One could have noticed that the expectation value of the Wilson line W () satisfies a 2k-
nilpotency property (also named 2k-periodicity). For details on this property see [9].

Let us now consider the less trivial case M = S! x ;. In this example the use of Deligne-
Beilinson will appear more acutely than in the case of S3.

The first step is to try to write the Chern-Simons measure (3.121) in an explicit way, taking
into account the precise homology (or cohomology) of M = St x 4. It is well-known, if not
obvious, that:

H*(M,Z) = H*(S* x %,,Z) = H1(S* x %,,Z) ~ 7?9 (3.142)

Hence as done in the general section, one introduces the canonical basis {ﬁ(i)}izo,,_,,gg, in such
a way that any 7 € Z?9T! decomposes according to:

2g
= n'ig. (3.143)
1=0

One then chooses a representative for each 7i(;) € 72971 let say the fundamental loops 7;, to
which correspond DB classes [y;]. A very convenient choice of section s of H}, (M, Z)* is then
given by:

s: 72T HE(M,Z)* (3.144)
29
i s(i) = >l = [l
j=0
According to this section, any DB class [w] € H} (M, Z)* decomposes as:
W] = [va] + @, (3.145)
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where 7 = d2([w]) (see 2.30) and @ € Hom(Q2(M),R/Z) > QY (M)/Q,(M).
Our functional measure takes the form:

dug([w]) = Z Da exp {Qiﬂk/ ([va] + @) *p (7] —i—a)} . (3.146)
Rez29+1 M
Once more, products of de Rham currents occur implying regularisations in particular in the
DB squares [yz] * [vi], -

When i # j, products [v;] * [y;] are regularised by [0]. For homologically trivial cycles this
is exactly as obvious as in the M = S2 case since the corresponding DB product are given by
the linking of v; with ~;. This is related to a general property of linking on manifolds (see for
instance [36]). When the loops [v;] and [;] are not trivial, as already mentioned their linking
is not a uniquely-defined integer. Yet, setting [vyz] * [yz] = [0] remains a consistent choice of
regularisation for this product.

Thus, our choice of taking fundamental cycles as origins on fibers of Hllj(M ,Z)* leads to a
somewhat natural regularisation of products [v;] % [;]. For DB squares, one uses ”framing” and
set [y;] * [fyzf | = [0]. Let us point out that we do NOT say that ”framing” defines self-linking
of non trivial loops. We just say that it provides a regularisation into the zero DB class for
products like [v;] * [%f ]. And it is the only one required. In other words, we do not need a
definite expression for the self-linking but we only need to know it is an (undefined) integer
which ensures the consistency of the zero regularisation (i.e. regularisation into the zero DB
class). We could also obtain the same result by (homotopically) ”smoothing” the various cycles
and then taking the limit when the smoothed forms go to the initial currents.

Let 7 be a fundamental loop in M. Then, for any [w] € H},(M,Z)* we have:

]2 [w] = /M [w] *p [7] modZ. (3.147)

Using the discrete section (3.144), one gets:
f[u)] = /M(['Yﬁ] +@) *p ([vg] + Bc) modZ. (3.148)
gl

where 7 = ds[w], § = d2[7], and B, is generated by the de Rham current of a 2-chain ¢ such
that: v =), ¢ivi (these have been previously defined). One finally obtains for the expectation
value of the Wilson loop of +:

W= 3 [oaes{aink [ (a4 @) wo (bl + ) | (3.149)

neZ29+1
<exp {2im [ (al +0) 20 (il + ) |

Unlike the trivial case M = 5%, in (3.149) we cannot get rid of [yz] and [yg], nor can we
perform the shift (3.133) on [y4] + B.. Indeed, we cannot divide [y4] by 2k. However, the shift:

(3.150)
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made on Hom(Q%(M),R/Z) remains possible. In fact, one can notice that the functional
measure (3.146) has the quite hidden following invariance [9, 32]:

duy ([w] " (”;i)) — dyun(() (3.151)

for any current 5, corresponding to a 2-cycle (like a closed a surface) o on M. Thus, if (0;)s
denotes a set of generators Ha(S* x Y4,Z), and if B; are the associated 1-currents, one sets for
any loop 7:

Nj(v) = ?{BJ =yMoj;eZ. (3.152)
v

Note that thanks to Poincaré and Hom dualities, there are as many o; than generators of
Hy (S x %4,7).
Under a shift by (mf;/2k) the expectation value of the Wilson loop of v changes according

to:
1 2k—1 m
W = WO g 3 e {aingy f 5 3.153)
1 2k—1 m
= WO g 2 e {2im N0}
But:
1= m 1 if Nj () = 0 mod 2k
I i N — J =
2k Z_:Oexp {2m2kN] (7)} N { 0 otherwise. ' (3.154)
Consequently:
(N;(7) # 0 mod 2k) = ((W(7))r =0). (3.155)
On the other hand:
(¥4, Nj(v) = 0 mod 2k) = (v € [0] € Hi(S* x £,,Z)). (3.156)

This shows that only homologically trivial links give rise to a non trivial expectation value of
their Wilson line, and in this case:

1
W)k =expq =2t > aLiyg; ¢ s (3.157)

,5=1

just as in the M = S3 case.
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Let us point out that the infinite sum in (3.149) has been truncated into a sum from 0 to
(2k — 1) (see equations (3.153)). This was achieved thanks to 2k-nilpotency. This truncation
explains why one also speaks about a 2k-periodicity. Since the nilpotency property induces an
obvious degeneracy of the infinite sum, the truncation appears as a simple (re)normalisation
of the measure. We would like to recall that there is NO way to obtain all these results from
the field theoretic point of view, simply because we do not have a version of QFT on a generic
closed manifold. What is usually done is to compute perturbatively (or not) the links invariants
of a given Chern-Simons theory over R3, then use an argument stating that links invariants on
53 are those of R?, and finally use surgery to deduce invariants on any closed 3-manifold.

We can now have a look at a case with torsion, namely RP3. Let us note that its a purely
torsion case because there is no free 1-cycle on RP3, except the trivial ones of course.

3.2.2 A case with torsion: RP3

The simplest closed 3-manifold with torsion is without any contest RP3 ~ SO(3) ~ SU(2)/Z,.
Its first homology group is Hy (RP3,Z) = Zy = {0,1} (with 2 x T = 0), and by Poincaré duality
one has:

H?*(RP3,Z) ~ H\(RP3,Z) = Zs . (3.158)

Consequently, H:(RP3,Z)* D H:(RP3,Z) is an affine bundle over Zy = {0,1}. As usual, the
fiber over the class 0 contains the zero DB class (i.e. the zero connection), and over 1 one picks
up a torsion cycle 7 as origin. Its DB class is denoted [r]. By construction one has:

2 x [r] = [0] + Bc = B, (3.159)

which corresponds to the homological identify 2 x 7 = bc.
The Chern-Simons functional measure is now made of two terms :

dp([w]) = D exp {2z‘7rk /Ma . a} + Daexp {mm /M (7] + @) *p (7] + a)} - (3.160)

for the same reasons as in the torsionless case, the level k (or coupling constant or space charge)
is quantised:

ke, (3.161)

Yet, due to the presence of [7] *p [7] in (3.160), if one tries to regularise this DB square in the
zero class as we did in the torsionless case, one is faced with the definition of linking of torsion
cycles. For torsion cycles of order 2, like 7, their linking is in general a half-integer (see [35]).
This prevents from regularising [7] *xp [7] into the zero DB class, and makes the Chern-Simons
measure ill-defined except if one assumes that k& = 2[ since in this case the linking will always
be an integer and so [7] *p [7] can rightfully be regularised into [0]. Hence from now on we will
assume that:

k=2,l€7, (3.162)
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in such a way that:
k] xp [r] = 2l[r] *p [7] = L(2[7] *p [7]) , (3.163)

For Wilson lines there are two different cases to consider. Either the cycle is trivial, v = bc,
or it is of order two: 2y = bc'.

First, let us assume that v = be, and therefore that [y] = B. € Hom(QZ(RP3),R/Z), B.
being the de Rham 1-current of the 2-chain ¢. One can straightforwardly apply the computation
made in the M = S? case, and mainely based on the shift:

B
= — 3.164
a—Y a+2k, (3.164)
or:
a—yY=a+ Pe (3.165)

q ok’
when v holds charge g. As usual, details can be found in the original article [35]. Thus, for a
trivial link we get, without any surprise:

1
(W(L)) = exp —QZW@Z%L&)% . (3.166)
ij=1

Now, let us assume that v has torsion: 2y = bc whereas v # bc’. We have denoted by 7 the
fundamental torsion cycle whose DB class [7] plays the role of origin of the fiber of H},(RP3,7Z)*
over 1 (the torsion fiber). Accordingly, there exists a 2-chain y such that v = 7 + by, and the
expectation value of the Wilson line of v = 7 + by holding charge ¢ reads:

W) = /Daexp{2i7rk/Ma*Da} -exp{Qiﬂ'q/Ma*D (] +/3y)}+ (3.167)
+empmﬁwwﬂwﬂm+M}wﬁﬁMAwﬂﬂﬂﬂm+%%-

Once again, the consistency of the usual regularisation by ”framing” for the product [7] *p [7]
is questioned, and once more one must add an hypothesis for this regularisation to work. One
can ask the charge to satisfy:

g=2m meZ. (3.168)

The factor 2 occurring in this charge constraint allows the zero regularisation of the term
[7] *p [7] in (3.167) to be consistent. Furthermore, performing the standard shift:

a%y:aJrﬁ’;:y, (3.169)
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where u is a 2-chain such that 27 = bu, one obtains:
m2
(W) = exp {—%r%(u +2y) ’yf} , (3.170)

with 47 a framing of v. The intersection appearing in (3.170) is a well-defined integer and if
one put back the charge into this expression one gets the usual result:

W)k = exp {—2i7rq26 ho! } )

71
4k 2 (3.171)

where c is a 2-chain such that 2y = be.

This terminates our treatment of link invariants from the abelian Chern-Simons theory on
closed 3-manifolds. We can now see how to generalise this construction to higher-dimensional
closed manifolds. This is done in the last section that follows.

3.2.3 Higher-dimensional cases

Let M be a smooth m-dimensional closed manifold. Let us try to find a Chern-Simons la-
grangian for this manifold. From the physical point of view one would be tempted to consider
a p-form A, generalising the idea of U(1)-connections, and to naively write:

L=ANdA (3.172)

But we know from the start that this is not the right direction to take if we want to deal
with connections rather than forms. Accordingly, it seems better to consider DB classes [w]
whose DB square [w] *p [w] will define our Chern-Simons lagrangian. If [w] € HY (M, Z) then
[w] *p [w] € H%pH(M, Z). Consequently, one must have:

m=2p+1, (3.173)

for the integral over M of [w] *xp [w] to be well-defined. This constrains M to be odd-
dimensional.
Since the DB product is a graded product (see (2.39)), one also has:

[w] #p [w] = (~)PVEID ] xp [w]. (3.174)
Thus a necessary condition for our Chern-Simons lagrangian not to be trivial is that:

(p+Dpp+1)=2l,1€Z, (3.175)
Constraints (3.173) and (3.175) combine to give:

m=4n+ 3, (3.176)
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The case of 3-dimensional manifold is a special case.

Actually (3.176) also agrees with the linking theory. Indeed, on a manifold of dimension
4n + 1 the intersection of a trivial (2n)-cycle with any transversal (2n 4 1)-chain is zero. But
this intersection is a way to define the linking between two trivial (2n)-cycles in a 4n + 1-
dimensional closed manifold (see [36]).

Eventually, the level k¥ Chern-Simons action in dimension m = 4n + 3 is chosen as:

CSk([w]) = /M esk(Jw])) = k:/M[w] xp [w], (3.177)

with [w] € HIQD”H(M ,Z). For the same reason than in the three-dimensional case, the coupling
constant has to be quantised:

ke, (3.178)

and one introduces the Pontrjagin dual H%p TYM,Z)* D Zons1(M) as the quantum configura-
tion space. From (2.32) it is an affine bundle over H?"*2(M, Z) whose translation group on the
fibers is Hom(Q*"*2(M),R/Z) > Q"1 (M)/Q*F1(M). The functional measure associated
with the generalised Chern-Simons action reads:

din( o) = Pl exp {2k [ [l o1} (3.179)

Here again a more precise meaning has to be given to this measure by relying on the affine
bundle structure of H%p (M, Z)*. Since Poincaré duality still holds true, one will use it to
fix as origins on fibers of this bundle a family of chosen (2] + 1)-cycles (seen as elements of
H%pH(M, Z)* by the now familiar inclusion (2.50). The zero cycle will be a special origin on
the fiber over 0 € H?"*2(M,Z). We will obtain a decomposition totally similar to (3.121),
except that all objects are of degree p, not 1.

As for Wilson loops, they are generated by fundamental loops (cycles) 7 of dimension 2n+1,
according to:

Wi(7) = exp {2m L [w]} — oxp {m /M[w] “n m} . (3.180)

Let us notice that the degrees of the objects [w] and [y] play an important role ensuring that
[w] *p [Y] = [7] *p [w]. The fundamental difference with the m = 3 case is that fundamental
loops appearing in (3.180) are NOT necessarily diffeomorphic to spheres $2"*1. For instance,
one can have v =2 St x §2 or v = S! x (S1)2") or many different types of geometrical objects.
Nevertheless, it is quite obvious that the methodology we have exposed in the previous three-
dimensional examples will apply straightforwardly here. In particular, the zero regularisation
and the finer framing regularisation will allow to deal with DB squares of fundamental loops.
Also, we will define the charge of a loop as the number of times a fundamental loop is covered
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and a (20 + 1)-link will denotes a formal combination of charged loops. At the end one will get
for the expectation value of the Wilson line of a homologically trivial link:

1~
(Wn(L))r = exp —QZW@Z%L({”% , (3.181)
ij=1

whereas such a expectation value will prove to be zero for non-trivial links.

As for torsion one can expect to treat it the same way as in the 3-dimensional case.

Let us note that m = 1 is a trivial case since the Chern-Simons action is then an integer (zero
in R/Z). The same holds for m = 5 and therefore the first non-trivial new case will be m = 7.
But the topological sphere S” has many different and inequivalent differential structures. One
can then wonder whether these structures plays a role in the computation of links invariants.

To end this chapter, let us note that a quantum field theory approach to these higher-
dimension Chern-Simons theory can be used ([32]), but only in the case of R¥*3. To be able to
go further, one would need Euclidean Quantum Field Theory to be defined on closed manifold
which is far from being achieved. However, Chern-Simons theories provide a very interesting
playground to try and test some possible extension of the usual QFT to theories on closed
manifold. The reasons are that we know the fields exactly (I mean their representative for a
given good cover are known), we know how to define Chern-Simons action in terms of these
fields, and everything is local in this way. Furthermore, it is only topology, not physics. This
either gives hope or despair.
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4 Conclusion: what to do now?

In this last section I would like to present a list of possible developments in the framework of
Topological models of cohomological type.

4.1 Equivariant Cohomology

- First, let us return to the problem of determining Mumford invariants using Equivariant Co-
homology. We have seen that beside applying this cohomology theory on the space of Beltrami
differential of a Riemann surface one can also obtain a collection of invariants by using metrics
instead of Beltrami fields. Up to our knowledge, there is no clear demonstration showing that
the two sets of invariants are identical. It should be so but it is not easy to show. This could
appear as an exercise, but we have the feeling it might also provide new light in the field of
topological models: how to decide if a set of equivariant observables are equivalent or not?

- What we have done only dealt with closed smooth manifolds: compact smooth manifolds
without boundary. How could we extend this to smooth manifold with boundary? One could
have in mind ADS/CFT which relates two models one on a manifold and the other on its
boundary. This could be related to the supersymmetric version of Equivariant models like the
one done in [37]. This is however more a guess (and so very speculative) than an evidence.

- One knows that Equivariant Cohomology admits a supersymmetric interpretation (see
[38]). For instance one can easily show that a twisted supersymmetric conformal algebra can
be seen, via its fundamental OPE, as the structure of an equivariant model. One can wonder
what could be done in higher dimensions.

4.2 Deligne-Beilinson Cohomology

This is manifestly where most of our open questions can be asked.

- Chern-Simons theories are based on a quadratic functional measure, itself based on the
DB square of (generalised) p-connections: A xp A. But we have already noticed that the
DB product is more general (see (2.38)) than the simple square. One could then imagine
products of p-connections with g-connections: A xp B, thus providing new quantum actions.
With a closer look one can check that this would correspond to consider so-called abelian ” BF”
systems (or models). This is known in physics but as always from a purely QFT point of view.
Using from the start DB Cohomology could be a new way to deal with these BF models. In
particular, one sees that when B = A one recovers the Chern-Simons lagrangian. So having a
good mathematical ”control” on the basic objects might also give a better understanding of the
physical quantities these BF theories provide and also put some light on the link with Chern-
Simons theories. Note that from DB point of view, the name BF is totally ambiguous. One
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should speak of an AB theory considering the lagrangian to be A*p B rather than AAdB. We
have learnt that a curvature is not enough to define a connection. Of course one can expect the
Wilson lines of a BF models to be made of cycles (loops) of degree p and ¢ and the invariants to
just be intersections, as in the Chern-Simons case. Then a new challenge appears: what about
trying to study non quadratic theories: A *p B *p C, and even more general ones. Of course
all the tricks we have used in the quite simple quadratic case might failed to apply. However,
they should give access, if not to all the observables, at least to some of them. Are there other
observables providing computable ”physical” quantities, and does DB Cohomology shed any
light on this? These are interesting questions.

In the abelian Chern-Simons theory treated from the DB Cohomology point of view there are
many open questions left (if not all) concerning the relation between this approach and surgery.
Many theorems can be established using surgery and one can wonder how these theorems could
be demonstrate within the DB framework. We are actually investigating these question with
E. Guadagnini starting with the Reshetikhin-Turaev theorem relating expectation values of a
Wilson line on a closed manifold to Wilson lines on the sphere. At first sight it should be
possible to establish this via Chern-Simons and DB cohomology, but it has to be worked out.

- Of course, the Grail stands in the possible understanding of the non-abelian case. First,
one knows that the non abelian Chern-Simons lagrangian, the one written Tr(A A dA + %AS)
by physicists, is actually a DB class (or a translation from a DB class to another depending on
the point of view) of degree 3. This is actually why the level of these theories is also quantised,
even if physicists like to say that it is due to gauge invariance. In fact gauge transformations
provide terms that belongs to the (large) gauge group Q3 (M) defining H3 (M,Z) within the
exact sequence (2.36). This means that unlike the abelian case, one could quantised the level k
of the non-abelian theory by only considering Tr(A A dA + %A3) as the lagrangian. Anyway, in
QFT one uses this former lagrangian arguing about the quantisation of k from the point of view
of M = S3 which is not totally satisfactory. However, non abelian QFT gives a perturbative
answer to the computation of the expectation value of non abelian Wilson lines (non abelian
holonomies) (for given representations of the underlying lie group, usually SU(N)). Of course
it is shown that these perturbative results coincide with the equivalent development of some
link polynomials, at least up to some fixed order (maybe three at the moment). A large family
of polynomials are then perturbatively ”generated”: HOMFLY polynomials. Then one can use
surgery to get polynomials for any three-dimensional closed manifold. On the other hand, it
seems hard to find a relation between Wilson lines (or their trace within a representation of the
Lie group considered) and a DB class, unlike in the abelian case. Nevertheless there exists a non
abelian Stokes theorem. It provides in a quite complicated way a relation between a non abelian
connection and an abelian one. However, it is not totally clear yet if the abelian gauge field
thus obtained is really a DB class. And if it is so, what is its relation with the Chern-Simons
lagrangian itself? Mathematically there are higher-order invariants named Massey products
which allow to distinguished the borromean link from a totally trivial one, whereas we know
that the linking number fails to do so. Furthermore, there are extensions of Massey products to
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DB classes. Therefore, one can wonder whether these Massey products are related to the non-
abelian Chern-Simons theory and the invariants it (still perturbatively) generates. Also there
is a classification (up to link homotopy) of three-component links in S® [48] using generalised
Gauss maps and integrals. One can wonder wether this could be understand from the point of
view of a Deligne-Beilinson Quantum Field Theory.

There has been attempts to define a non abelian version of Deligne-Beilinson cohomology
(see for instance [39]): as in the abelian case it is supposed to classify non-abelian principal
bundles with connections, as well as generalisations of such geometrical data. However, there
doesn’t seem to be more specific descriptions of these cohomology spaces, including for instance
the knowledge of their embedding into some simple exact sequences, as the abelian DB spaces
are. It has to be noticed that we were more interested in the structure of their Pontrjagin
dual than on the DB spaces themselves. This was so because we wanted cycles to lie in the
Quantum configuration space of the model. Accordingly, one could naively expect that the
relevant structure is the one of a dual of the space of classes of non abelian principal bundles
with connections, that is to say something like distributional connections. Ashtekar names such
objects ”generalized non abelian connections”. It is from these spaces of generalized connections
that Loop Gravity is built (see for instance ([40]). However we would like to point out a subtle
difference between such an approach and what we have done in the abelian case: in Loop
Gravity (and actually in all known case of QFT dealing with a non abelian group) one fixes a
principal bundle on which gauge fields (i.e. connections) are supposed to live. In our abelian
Chern-Simons models based on Deligne-Beilinson Cohomology we have considered the whole
set of classes of bundle with connections. In other words, in the functional integration we
also integrate over (classes of) principal bundles, not just on connections over a fixed bundle®.
In the best case the non-abelian Deligne hypercohomology will allow to identify a canonical
dual in which quantum fields stand. Then one would have to understand how these fields (or
classes of fields) are related to the abelian DB theory and more precisely how they are related
to the DB class represented by Tr(A A dA + %A?’). There should also be a relation with the
non abelian Stokes theorem since this last one provides a link between non abelian and abelian
holonomies (except for the fact it is a functional relation [41]). Actually, it is already possible to
formally see the abelian DB theory on the self-linking part of the non abelian invariants, which
is not surprising since it is mainly related to the quadratic part of the Lagrangian, formally
of the same kind as the abelian lagrangian: A A dA. Of course the possible light shaded by
DB on non abelian Chern-Simons theory could have consequences in other theories like BF,
Loop Gravity or even ”more physical” Yang-Mills theories. As a final remark concerning these
non abelian theories, let us point out that it is not possible to define straightforwardly a non
abelian Chern-Simons lagrangian the way we did it in the abelian case (as a DB square). This
is mainly due to the presence of the non quadratic part in the Lagrangian, which itself follows

51n fact, the space of generalized non-abelian connections which play the role of fundamental fields in Loop
Gravity is obtained via some completion of the space of G-connections on a fixed principal G-bundle P over
M. This completion naturally extends (generalized) G-connections on P to (generalized) connections on all
G-bundles over M. Accordingly, our CS theory appears as an example of this completion in the abelian case.
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from the quadratic part (A A A) appearing in the non abelian curvature. This must not be
confused with the fact that there are higher-dimensional DB classes built from a non-abelian
connection and its curvature and which are associated with higher-dimensional Chern classes.
However one could consider objects such as F4(B) = dB + A A B and wonder what are the
largest ambiguities on A and B for F4(B) to be still a p-form taking its values in some Lie
algebra. Note that by construction A would have to be of degree 1, and B of degree (p—1).The
theory of non-abelian Gerbes could be involved.

- Recently with E. Guadagnini we wonder about doing a modes decomposition of the gauge
fields in order to do a canonical quantisation. Of course, in order for these modes to be easily
handled the manifold on which we have to consider our theory has to be simple, e.g. a product
of two circles: S' x S!. It is possible to represent such a space by R” divided by some discrete
group: S x S! = R2/Z2. In this representation a connection can be describe as an object made
of two parts: one is corresponding to a well-defined 1-form on S' x S and it is represented
by a periodic 1-form on R™ compatible with the action of the discrete group, while the other
part is made of a 1-form term not compatible with the action of the discrete group (we call
it a periodicity breaking term for obvious reasons). It is quite remarkable that one can have
a complete description of the DB Cohomology classes using these modes (i.e. we recover the
standard exact sequences). Of course one think immediately about adapting this to the non-
abelian case. If this approach were successful it would provide something equivalent to DB
classes what would be of course very interesting in order to understand the non-abelian Chern-
Simons theory. It would then be remarkable to know the answer on S! x S x S but not on S3
(there the modes decomposition turns out to be much more difficult to handle because of the
use of spherical harmonics). Nevertheless, it wouldn’t be a total surprise since there are clues
which lead to think that on a 3-manifold made of at least one non trivial circle, this circle can
be used to gauge fixe non-abelian connections (see for instance [42]).

- With E. Pilon and L. Gallot we have studied recently the dimensional extension of abelian
Chern-Simons theories. Our main results were produced as a last example of this kind in this
review (see section 3.2.3). We would like to explain a bit more what one could have in mind
concerning the use of this work in order to try to define a QFT (at least a topological one)
on a closed manifold: first of all there will be no way to perturbatively compute expectation
values since by essence a perturbative development is local. However, it turns out that the
computation in abelian QFT can be done non perturbatively. So the whole point is about the
use of DB classes instead of naive differential forms. We have noticed in this review that not
only the DB classes admit nice representatives within the Cech-de Rham framework, but so
do their DB products. In other words, we know the correct expression to use in action. The
problem is that it is made of collections of fields defined in the open sets of a good cover of the
manifold and in their intersections. This finally gives four terms to write the lagrangian in a
correct way. Each of these terms has to be considered as a lagrangian on its own, each of which
corresponds to some field theory in some open set (made of intersections of the elements of the
good cover). It would be a first direction along which we may start the study. One could also
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use the expression of the DB product in another way: first make a polyhedral decomposition
of the manifold according to the Weil techniques mentioned in section 2.2. This gives now a
set of lagrangians one for each polyhedra of the decomposition, but also one for each faces of
these polyhedra and another one for the edges of these faces and finally one set for the ends
of the edges. This give four family like before, but now each family is define on a space of
lower and lower dimension. the next step would be to define propagators and see how the
gluing conditions for the various lagrangians (necessary to say that they actually build the
Chern-Simons lagrangian) translate on these propagators. Then one could hope to make some
computations using all these ingredients. If this can be achieved the computation will be non
perturbative for the same reason as in the case of R**3. the simplest case to be treated should
be of course S and later S4+3.

- There is another domain where DB Cohomology could be very useful. It is well known that
this cohomology is at the base of Geometric (pre)Quantisation. In this approach of Quantum
Mechanics, one has to turn the symplectic form of the classical model into a closed 2-form (which
it is already) with integral periods (which is a new requirement). This turns the symplectic
form into a curvature suggesting the existence of some U(1) bundle over configuration space.
The lagrangian then turns into a DB class (a connection actually) the most famous example of
which is provided by the Aharonov-Bohm effect. The interesting question is: if we start with
a 3-curvature, or more precisely with an abelian 2-connection (on some abelian gerbe), what is
the classical structure associated with the quantised curvature. It should be a generalisation of
the Poisson brackets. Some authors, like J. Baez, have already investigated this, but directly
from the point of view of generalized Poisson brackets, and not starting from a quantum version
and trying to go back to its classical version. Note that if such a classical structure based on
generalised Poisson brackets can be found (and it should be), it implies that it will be a trilinear
object, suggesting that the new ”configuration space” should be made of three independent
coordinates. What would they be? And how could they be interpreted physically? Are there
still positions and momenta? Is the new coordinate related to a derivative of the momentum,
that is to say forces? Or on the contrary are positions related to this new coordinate? This
game seems quite interesting and could have amusing consequences.
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I) Introduction.

In a classical article [W88], E. Witten proposed a Euclidean field theory scheme which
should allow one to compute cohomology classes of orbit spaces using field theory methods.
The example treated in that article is that of the Donaldson invariants [DK90]. Whereas the
corresponding classical action was found thanks to N=2 supersymmetry arguments, it was
progressively realized that equivariant cohomology could be thought of as the proper mathe-
matical background at the root of such constructions [W88, BS88, B92, OSB89, BS91, K93].

While equivariant cohomology is more than twenty years old [C50, GHVT3, AB84,
MQ86, BGV91, K93] relatively little is known about the corresponding field theory models in
which both ultraviolet and infrared problems arise. Here, we shall have in mind a perturbative
local field theory approach which is probably suitable since it is conjectured that the
semiclassical approximation is exact. This sheds no light on the infrared problem, and in
particular, the question of integration over moduli. These notes will focus on algebraic aspects
needed to constrain the above mentioned field theories. Two models will be studied to some
extent : "topological Yang-Mills in four dimensions (YMZ”’ ), pure topological gravity in two
dimensions (Gré0 7). These are the examples for which equivariant cohomology is needed.
Topological o-models [WBS88] barely need such refinements unless they are coupled to
Gré"p _In all models, on the other hand, field theory is the ideal set up to perform "fiber"
integration.

These notes will be divided into three parts :

Section II will be devoted to a description of equivariant cohomology with emphasis on
the points needed in the following sections.

Section IIT is devoted to YMg?.

Section IV is devoted to Gr,” .

The point of view taken here will be as algebraic as possible since it is the first step to control

the perturbative renormalization problems to be solved next.

11) Equivariant cohomology [K93].
Let M be a smooth manifold and Q' (M) the exterior algebra of differential forms on
M endowed with the differential dy A Lie group § is assumed to be acting on M and its Lie

algebra will be denoted LieS. For any AeLie§ there is a vector field A, representing the infini-
tesimal action of A on M. This vector field Ay is usually called the fundamental vector field
associated with A. We shall denote ind\) = igfhgy) and 134X = ladhag = [i4N), dad the
contraction (or inner derivative) and Lie derivative acting on Q' (M). Let us recall that i5(})

takes n-forms into (n—1)-forms while I,{)\) acts on forms without changing their degrees.
Elements of Q'(M) which are annihilated by both i,(A) and I,AM), for any AeLieS, are the



so-called hbasic elements of Q" (M) for the action of ©. The basic cohomology of M, for the
action of 8, is accordingly defined [C50].

We now consider the Weil algebra W of Lie®. It is generated by the "connection" ©

and its curvature Q :
1
Q= dyo +[00] @1)

where dyis the differential of W Of course, one has the Bianchi identity :

doyQ+[0,Q]=0 (2.2)

There is an action ig(A), Ig(}) for Aelie§ :
igMo=r , Ilypho=- A, o] (2.32)

ifAMQ=0 , [HMNQ=- A, Q) (2.3b)
For instance, ® may be a connection on a principal S-bundle I1 and Q its curvature. In that
case i) and [5(Q) are generated by the action of G on I1, and Wwill be referred to as My.
We now consider the graded algebra Q'(M)® W equipped with the differential
dg,t+ dgy so that (Q(M)YBW, dyt dyy) tums into a graded differential algebra. Finally, the
operations it iqy and It I,y are defined on (Q (M)W, dyt doy). The so-called

equivariant cochains are the elements of ' (M)®W that are annihilated by (ige+ ig)(M)
and (Ip,+ ly)(A) for any AcLieS, and the equivariant cohomology, for the action of 8, is

accordingly defined. This is what is called the Weil scheme for equivariant cohomology.

Equivariant cohomology can be alternatively described in the so-called intermediate
scheme, which was introduced in [K93] and which will be repeatedly used in the sequel. It is
obtained from the Weil scheme via of the following algebra isomorphism :

X —> exp{—iM(o))}x (2.4)

for any xe Q' (M) ® W. This isomorphism changes the original differential and operations on
Q'(M)®W by conjugation’

dM+d‘W - D':dw +dfM +IM((D)—1M(Q) (253)
(g +ig)R) = iy(R)=e™™ ()i + g YA)E™ ) (2.5b)

Upe +l)A) = (1M+lw)(x>=e"'ﬂ“*’)(lww)(x)e‘ﬂ(“’) (2.5¢)

3These equations can be gasily obtained by introducing the family of isomorphisms x — exp{—t ~lag (m)}x,

0 <t< 1, and solving the differential equations for the transformed differential and operations, recalling that
Mo = A



Finally, the so-called Cartan model is obtained from the intermediate scheme by
putting © = 0 so that D? o= vanishes when restricted to invariant cochains. This is the most

popular model, although many calculations are better automatized in the intermediate scheine.

Another item which will be repeatedly used is "Cartan’s theorem 3" [C50] : let us
assume that (Q° (M), dag ias la) admits a S-connection, that is to say a LieS-valued 1-form 6

on M such that i, A)0 = A and /,{A)0 = - [A, 6] for any AeLieS, with curvature ©®. Then any

equivariant cohomology class of Q'(M)®@W with representative P(0,Q)) gives rise
canonically to a basic cohomology class of Q"(M) with representative P(6,0). This can be
easily proven by using the homotopy which allows to prove the triviality of the cohomology of
the Weil algebra [MSZ85]. It follows from the construction that the cohomology class of
P(0,0) does not depend on 6 (see Appendix B).

One convenient way to produce equivariant cohomology classes is as follows
[BGV91] : we consider an H-bundle P(MH) on which there exists an action of § which lifts

the action of § on M. In general, the Lie group H has nothing to do with the Lie group 9. As
before, P(MH) is endowed with a differential dg, a contraction ig and a Lie derivative /.
Next, let I" be a S-invariant H-connection on P(MH) :

L,(MI'=0  for any LeLieS (2.6)
The pull-back T of T on Q" (M) ® W @ LieH is a 1-form on P(MH) and a 0-form in W. It
follows that*
i (M =0 2.7
for any AcLieS.
In O (P(M,H))® W, the equivariant curvature of I is defined by :

A A lra s
R (', 0,0)=DI"+ 5[r, f (2.8)

where D = dgy +dg +15(0)—ig(€2). Then, if I is a symmetric invariant polynomial on LieH,
we consider the H-characteristic class I fﬂmt(f‘,m,ﬂ) = IH(Rf,?t(f,m,Q)). It is defined on M
and fulfills :

(dgy +d g + (@) - i (O (F,0,9) =0 (2.92)
(WIS (F0,0)=0 (2.9b)
Uy + oy YW (Fr0,0) =0 (2.9¢)

“This construction may be extended by choosing for W a W for some II as above, and have I' depending
parametrically on points of I1. Equation (2.6) has then to be replaced by : (/g + lgY(ML =0 whereas (2.7) still
holds.



In the Weil scheme, the equivariant curvature is defined by

RY(E,0,Q) = (dg +dgy)(T+ igp(m)f')+%[(f+ig(ﬂ))f),(f“ﬂg((b)f‘)]H (2.10)

We may similarly consider [ f_’f{w(f,m,n) =1 H(R@ ([0, Q)) = exp{—igp(m )} I H(Rf,?t(f’,m, Q))
which fulfills :

(g + dp) i (£,0,9) = 0 (2.11a)
(igg + iYW (E0,9) = 0 (2.11b)
Ly + L) M (F,0,9) = 0 2.11¢)

Finally, if M admits a S-connection 6 with curvature ®, we can apply "Cartan’s theorem

3" and substitute 6 and © instead of @ and Q in I fﬁw(f",m,ﬂ)s, so that :

dyeIiw(f,6,0)=0 (2.123)
i WIS (1,6,0) =0 (2.12b)
LIy (F,6,0)=0 (2.12¢)

By standard arguments, these cohomology classes do not depend either on [ or on 0. In the
following P(M;H) will be a family of H-bundles over a finite dimensional manifold £ and M
will be itself an infinite dimensional fibered manifold with fiber X and base, a space of fields
defined on X. In this set up, the generators of the Weil algebra can be also realized as fields on
I

As we shall see in the sequel, this rather modest equipment proves quite useful to
understand many features of the cohomological theories. The interesting aspects lie in the
interconnection between various equivariant cohomologies, schematically, one attached to
fields and one attached to observables as just described.

One final remark is in order : the above constructions only involve Lie algebras. In

practice, this may not be enough and global group properties may have to be checked.

I11) Topological Yang-Mills (YM;”) [W88, BS88).
At the geometric level as well as at the field theory level, one has to distinguish the
fields and the observables.

5 One may wonder why one does not use such a connection right from the beginning. The rt:ader2 may copvince
himself that doing so would spoil the main algebraic properties of the whole construction, e.g. D° =0, with D
the differential of equation (2.5a).




In YMY?, the idea is to produce cohomology classes of 3/ where (is a suitably de-

fined space of connections a on some principal G-bundle P(Z,G) over a four-dimensional
space-time manifold £ and § is a suitably defined gauge group (group of vertical

automorphisms of P(Z,G)) [DK90]. The differential and operations are respectively denoted by
dy, ix and ks for Z, dp, ip and p for P(Z,G) and 8, J and Lfor @

To produce the structure equations of the model, we follow section II. Here, M=4

and W is realized by a $-connection © and its curvature Q on another copy @ of &. The

differential and operations on @ are denoted by 5, J and £ . Tre fields will be chosen as a,
8a, & and Q.

The structure equations then read :

sPe =Y+ L@)a=¥Y+LP@)a=¥Y-D,d (3.1a)
sOPY = _@UP ((Y)q + £¥P (&) W=D, 0+ [¥.8] (3.1b)
o = Lo
s“’pm:Q—E[w,m (3.1c)
PO =0, (3.1d)
where :
sP =515+ L@)-9Q) , Y=8a=¥y (3.2)
in the intermediate scheme, whereas :
P-F45 . W=da- KG)a=da- LP@)a=Yy (3.3)
in the Weil scheme, and £°P = € + £ in both schemes®. One can check that :
Wi = exp{-9(0)] Pw (3.4)
goPa@=2 ,  9°P(A)(other)=0 (3.5)

for any AecLieS, with $“P (1) = 9 (M) in the intermediate scheme and J ©P (A)=g () I(A) in
the Weil scheme.

Now choose M= x T, P(MH) =P(@x £,G) =@ x P(Z,G) and ["=a : for any point
a of @ we consider the principal bundle P(Z,G) equipped with the connection a. This is a family
4 of G-connections such that d(a,p) = a(p) for any (a,p)ed x P(%,G), which defines a G-
connection on P(@ x Z,G). We extend d to @ x P(@x Z,G). As a zero-form on @ and a
LieG-valued 1-form on P(Z,G), 4 is a LieG-valued 1-form on $(@ x L,G).

¢ To get equation (3.1b) in the Weil scheme, one can cither use (3.4) together with (2.5¢) or directly compute it
by using : £@)£@)a = £(E@)5)a = -£([5,8])a = 22" @L@)a.



From Appendix A, the fundamental vector field A associated with the action of AeLieS
on P(@ x Z,G) takes the following expression at (a,p)eP(d x 2.G):

5
A=lp(hp)ay 5~ e (3.62)
K

where Ap is the fundamental vector field on P(Z,G) associated with A (for the natural lefi-
action of § on P(Z,G)) and e, the fundamental vector field associated with a basis of LieG

indexed by o Noting that @ does not really depend on é, the actions of LieS on 4 reads
(3 +9+ip)M)a=9(n)a-ip()a = -4
~ . Fe) . .
(€ + 2+ 1) M= 20 (upla 5 )a - (p)d (3.6b)
n

=Ip(Ap)a—Ip(Ap)a=0
where A is a LieG-valued function on @ x P(Z,G) defined by : A (a,p) = Mp) for any element
(a,p) of @ x P(Z,G). From equations (3.6b), one sees that 4 is Lie§G-invariant.

In the intermediate scheme, the equivariant curvature of ais:
F(4,5,8) = Da + %[a, a] G.7)
with :
D=3+ (5+dp)+(L+5)@) - (9+ip)@ (3.8)
Taking into account the LieS-invariance of a, we get
F(4,5,0) = F(a) + 8 + ip(@)a=Fla) + §, +0 (3.9)

N 1 . .
where F(@) =dpd+ 5[&, 4]. Notice the similarity of equation (3.9) with equation (3.2) up to

the symbol ~. Moreover, using the S-invariance of &, one can verify the S-basicity condition :
TR (a5,8)=0 , (E+e+i)ER(as.0)=0 (3.10)

holding for any AcLieS.

In order to go to the Weil scheme, we transform 4 as follows :
G5O~ a1 (9+ i) @) =d-p@a=d+a 3.11)
The corresponding equivariant curvature is :
R (2,5,89) = (5 45 +dp) a1 @) + 5[0 @0, (@ _p@h)]  G.12)

or equivalently :



F@(&,E),Q)=15(&)+(6&+Da$)+5:ﬁ(&)+‘i’w +5 (3.13)
By construction Fy (a,a,ﬁ) = exp{(ﬂ + iP)(ﬁ)}F-e% (&,(T), ﬁ) and consequently :
(3 + 9+ )R} (a8 E
(8 +2+p)MEHa,6.0)=0
Now, for any symmetric invariant polynomial I on LieG, I fﬁw (&,m, ﬁ) =1 G(F&,q (& cT),(NZ))
fulfills :

(5 +6+dp)Ew(d,6,8)=0 (3.152)
(3 +9+ip)0)IEw(a.5.9) =0 (3.15b)
(E+e+L)M1gw(a8.0)=0 (3.15¢)

for any AcLieS.

Last but not least, we apply "Cartan's theorem 3" to IGW(a 0] Q) Let  be a -

connection on @& and Q its curvature. It does define a S-connection on M=0AxZ.

Accordingly, we just replace ® and Q respectively by ® and Q in I g‘}w(a,a,ﬁ). Then :

G+dp)aw(d,0,Q =0+ d)IGw(3,0,Q)=0 (3.16a)
(I+ip)MIGw(d,0,Q) = +i YMIGw(4,0,0)=0 (3.16b)
e +5)MIGw(a0Q=(2+ 1YW Gw(4,0,9Q) =0 (3.16¢)

for any AcLieS. Recall that
FS&‘(&,OJ,Q)=f7(a)+(6a+Dac?))+f2=13(a)+‘i’w+f2 (3.17)

with : & = —ip(0)a and §=ip(Q)a.
In fact, I e ,Q) fulfills a horizontality property stronger than (3.16b), namely :
9(X)IG,W(C’,(D,Q) = ”’PO")IG,W(a:m,Q) is(MIGw(d,0 ,Q) (3.18)

and is defined on @ x Z. Now, let us decompose I, g}w (4,0,€) according to :

1§w(a,0,9)= ﬁIE‘n_k (3.19)
k=0

where [ %‘n_k is a form of degree 2n — k on I and of degree k on ( such that :




dyplfyx +8 135kt =
IS~ i3 =0 (3.20)
S5y ~ Iy (M, =0
Then, the integration over a cycle Yy, on I yields a k-formon @ :
Ok = f Iinx (3.21)
Y2n-k
From the descent equations (3.20), we deduce :

50% = - f de 5 =0 (3.22)

Y2nk

and because of the detailed horizontality condition expressed in equation (3.18) :

IOk = J IMIX =0 (3.23)
Y2n-k
Finally :
oot = | k= Jitisthix=
Y 2n-k Y2n-k (3 2 4)
= j. NN JLNNET: j is (M3 k=0
Y2n-k Y2n-k

Hence, the k-form O defines a basic cohomology class’. This class does not depend on 4, @,
Q) and ‘i’w provided that they are related by equation (3.17), so that one may average it out
over these fields variables, which is the formal reason why the topological YMffp field theory
should be a tool able to construct such cohomology classes. Of course, this is so provided the
field theory treatment (e.g. renormalized perturbation theory which in the present case ought to

be exact) retains enough properties of the averaging out process, which, in turn will be insured
by the fulfiliment of the proper Ward identities entailed by the requirement of s, g(A) and

£()) invariance. Note that the equivalence between the structure equations (3.1-3) and those

leading to the construction of the observables (equations (3.17)) is insured by "Cartan's
theorem 3", which, at the cohomology level allows one to replace @ and Qby 6 and Q.

For a review of the field theory context, we refer to [OSB89] supplemented with the
proof, provided in [K93], that the basic cohomology proposed there is isomorphic with that
proposed in [W88] in view of the equivalence between the intermediate model and the Cartan
model. Of course, these (ultraviolet) considerations do not touch the problem of the integration
of the relevant cohomology classes over orbit space.

7 An alternative much faster construction is given in Appendix C. This one is identical to that used for 2d
topological gravity. That of Appendix C takes advantage of the product structure P(M.G) = @ x PZ,G).



IV) Topological 2d gravity (Gr,”).

Let T be a compact Riemann surface without boundary, of genus larger than one. We
recall that the space of complex structures on X can be canonically identify with the space B(Z)
of Beltrami differentials on £. The origin in B(Z) is nothing but the complex analytic structure
defining ¥ itself. Let us introduce more notations : M(Z) is the space of metrics on Z; W(X) is
the group of Weyl transformations acting on 9(Z) by local scaling of the metrics; the space
M(T) / W(T) of conformal classes of metrics on T is denoted by CIZ) and is naturally
isomorphic to B(Z); finally, Dy(Z) is the component of the group D(T) of diffeomorphisms of
% connected to the identity. We recall that the Lie algebra of 9y(Z) is the opposite of the Lie
algebra“((Z) of vector fields on X [Mi].

Let {(Ua,(za,ia ))} be an atlas defining the complex analytic structure of Z, and let g

be a metric on . With respect to this atlas, the metric element takes the form :

2
dz, + uz"‘za dz, 4.1)

2 _
ds” = pzaza

where p*z is the component in (zy,Z,) of the Beltrami differential p= phog 0,, ®dzy

parametrizing the conformal class of the metric g. Note that equation (4.1) produces an
isomorphism between N(Z) and B(T).

In topological (Euclidean) 2d gravity, one first wishes to study the Teichmiller space
3(Z) of T and later go over to the moduli space (as already explain in section II, we do not

consider the global group properties and hence do not look at the whole group of
diffeomorphisms). There are two ways to define 5(Z). In the first one, that we shall refer to as

the "Riemannian route", one considers 9M(Z) as the parameter space together with the action of
WE)X Dy(Z)® oniit :

TZ)
- 42a
OB %9, 2
In the second approach, the space of parameters is B(Z) and the "gauge group” Dy(Z) so that :
B(E)
3 = (4.2b)
=9

This will be referred to as the "Conformal route". The equivalence between the Conformal an.d
Riemannian routes comes from the canonical identification of ®OW(Z) with B(Z). The former is
natural from the mathematical point of view but presumably less amenable to a field theory
treatment by virtue of the non-linearities involved. The latter, closer to field theory [BCI94],
will be exhibited as an alternative.

8 Where X denotes the semi-direct product.




In the Conformal route, the Weyl transformations are eliminated from the start by fixing
the factor p of equation (4.1), as a function of u and T, through the 9(Z) invariant constraint :

R(p,u, 1) = -1 (43)

where R is the scalar curvature of the metric (4.1). (Recall this is possible because the genus of
T was assumed to be larger than 1).
We take a Dy(Z)-connection & on another copy B(Z) of B(Z). So, o and its curvature

Q are vector field on X :
= _ =7 ~Z
B=0°0,+0 0 (44)
Q=0%, +Q% 05

If we denote 8, J and £ the differential and operations on B(Z) and 5, g and £ those on
B (%), the action of A = A23, + A28, €T(Z) on B(T) is :

eu=|(6, -n7s8, +(2,n%2))A%] 2@, = (20n"2) 2@,

(4.5)
- (D, ;A%) dz®8,=D,A,
where we have introduced the type (1,0) vector field :
A, =N, 8, =(N +uiNF) g, (4.6)
and to emphasize the similarities with YM,? we have defined the operator D, :
D, =D, dz=(8; —u*z0, +(9,u%z)) dz=3- {u.} @.7)

acting on type (1,0) vector fields. In equation (4.7), D is the usual Dolbeault operator, . is
considered as a 1(Z)-valued one-form on X and { , } is the natural Lie bracket that turns T(Z)

into a Lie algebra’ . Finally, noting that @ ’Eu and p are odd while Q is even, we get the

structure equations :

P = v+ &@)u=v+ £P@)u=v+Dd, (4.8a)

Py =~ P @) + £P @)v=-D,0, - {3, | (4.8b)
1

I N (4.80)

P, = (0,8, (4.8d)

where we have introduced the p-dependent basis

® Since T(Z) is the opposite of Lied(E : {A,,A,} = —{A,,2,], where [, ] is the Lie bracket of Lie9(Z) and we
have denoted by the same symbol an element of LieD(Z) and its image in T(Z) by the canonical isomorphism
between these two spaces [Mi]. Now, compare equation (4.9) with equation (3.1).

10




~  __~Z |~z Z_~ZT
@, =00, —(m + u“z0 )az

’ _ (4.9)
0, = 08, = (O + w207 +vi267)8,
with :
S =F+5+2@)-9@) , v=du=(on’z)dz®8, (4.10)
in the intermediate scheme, whereas :
SP=5+5 v:6u+ﬁuo~3“:(6uzz—Dﬂﬁﬁ) dz ®0, 4.11)

in the Weil scheme, and £°P(A)= £(A)+£(1) in both schemes.
The action of (X) is given by :
9P, = A,
g, = (vVa\?) 8, (4.12)
9P (A)other = 0

with 9°P (%) = 9 (A) in the intermediate scheme and 9°°P(A) = 9 (A)+9(A) in the Weil scheme.
The formulae for £(1) follow from equations (4.8) and (4.12). Had we stuck to the initial

basis, there would be complete similarity with the gauge case YM}”? . The p dependent basis,

more appropriate to discuss holomorphic factorization [KLS91] introduces however an
inconvenience : the second of equations (4.12).

Now, choose M= B(T) x T equipped with the complex structure defined by the
complex variables u, Z,, where Z, are complex coordinates on £ which fulfill (locally) the
Beltrami equation :

(8, -1?28,)Z, =0 (4.13)

allowing to construct from T and p a Riemann surface denoted by Z,,.
For each ue B(z) we consider the holomorphic tangent bundle of 2. This generate the
(1,0)

family T{p} (Z) of holomorphic tangent bundles of Z, and the associated GL(1,¢) principal
bundle is denoted Q’T{(:;;) )(2) (P(MH) of section IT). A set of holomorphic coordinates on
T{(:;;) )(Z) is given locally by u, Z, VZ“, or EZ» eGL(1,€) on Q’T{(L’? )(Z)m. 9D(Z) acts
holomorphically on these coordinates so that along an orbit of 9(T) one may choose the

action :

19 The fiber of EPT{(L§ )(Z) over (u,x) is the set of all frames (i.e. bases) of T,El’o)Zp. Hence, with respect to the

chart (U,Z) at xe z, the coordinates E”* of a frame E, are the entries of the GL(1,Q) matrix transforming the
natural frame 9, of T"V% , into E, : E,=E* 5, .
M ]
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po— w
2,7) — Z,07@DT @2)=2,(27) (4.19)
Z
Eh(zz) — EF@'@DF@)=E* @D
(cf. Appendix D). The fundamental vector field on Q’T{ } )(Z) representing A€ (Z) thus reads :

2z + cc=Al+AP (4.15)

)
L—ISW _—

y O

where, as indicated, the derivative with respect to y is evaluated at fixed Z,, and E” #, and
with : Syu=E&(A)u= D p (cf equation (4.5)). The Dolbeault operators on Q’T{ })(Z) are

accordingly given by :
e 0 0
D= fa,p 2z +dZ, —— +dE™ —7 (4.16)
. o z, A% oL, OE“»
and its complex conjugate, and the total differential is :
D=D+D (4.17)

By construction, the contraction I and the Lie derivative L on S’T( 0)(2) split up :

1) = 1AM+ 1R = ")+ 1Y)

_ - (4.13)
L) =LAM) + LM =L )+ L' ()
with :
o ={rm. D],
o= o, ‘5]+ *1)
so that -
[hon. )=, D=0 (4.20)

and the operators carrying the label h, together with D commute (in the graded sense) with

those carrying the label h together with D.
Now, for each peB(z) choose the metric ds* = =Pz,7, az, dZ solution of the constant

curvature equation .
az“azp In pZ“—Zy = pZM-ZH (421)

equivalent to equation (4.3). In local coordinates, the canonical GL(1,C)-connection on

(1,0) . . o
Q)T{u} (Z) associated with Pzz, 18
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=Dinp, 7 +DInE™ (4.22)

where DInE”* denotes the Maurer-Cartan form of GL(1,C).
It is immediate that :

LA=0 (4.23)
since the solution of equation (4.21) is independent of the point of any orbit in B(X) under
D).

Now, given a 9(Z)-connection @ and its curvature Q on another copy of B(Z), the

connection becomes in the Weil scheme :

A VA —_
I'=PDln P2z, * DInE™ +1(@)PDIn Pz,Z, (4.24)

and its equivariant curvature is given by :
RE@)= (5 +Q)+§)f‘
=DDln P2z, * [(®)DDin P27,

P@D-1"OD i (4.25)

2 7,2,
[(@)I(0) ~
+ '—2-—‘ DDIn ngzu

(details are given in Appendix E). B
There remains to replace & and Q by a 9(Z)-connection 6 on BE)x Z and its

curvature ® (Cartan's theorem 3). This is obtained by pulling back on B(Z) x Z a DZ)-
connection on B(Z). All in all, we may write :

R=R%(f,6,0)=R5+R} +R) (4.26)

where the lower index labels the form degree on Z and the upper index labels the form degree
on B(Z), and :

(5+dg )R = (9+ig) MR =(L+I5)(WR =0 4.27)
Observables are extracted from'" :
-1 -1 n(n-1) -1 2
R = (R3)" + fR2)" R+ o) RY + X (w3 (R]) ) s
=0} + o1 L o2

with :

1! There is no need of making Gl(1,¢) invariant polynomial, because R is already invariant.
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6@2“ =0
dz(‘) n 502t = (4.292)
dzOF ! +803" % =0

[(£+l )05 = (£ -1M)63" =
(e+i)yop! =(e)- 12(7»))02“‘ (4.29b)
( )()\’)OZn—ZZ(E/(}\‘) lz()\')) 2n—2

g()\’)OZn -2 _
g()")ofn -1 (X)Oln-Z (4290)
IR -ig (MO =0
Let us introduce :
2n 2 j@Zn -2
T
oy :j 2n-1 (4.30)

o = O&“ (x)

where ¥ (resp. x) is a one cycle (resp. 0 cycle) in T. One verifies that 9272 represents a basic

cohomology class on B(Z) since :

50212 = g0 2 = ()02 =0 (4.31)
However :
502571 =0 (4.322)
but :
s = [ s =0 (4.32b)
Y

LMy =f (VO = ] ig(\)d5OF" !
Y ! (4.32¢)

= af is (MOZ" 2 £0
Y

Hence, O( n-1 does not represent a basic cohomology class. Similarly :

502 =0 while I()O%=ix(WO" #0 (433)
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This is different from what happened in the YM4? case and is essentially due to the fact that
9(Z) moves points on Z.
One should realize at this point that one should make sure that whatever cohomology

classes have been constructed are non trivial. It is known that modular invariance plays a
crucial role in that respect [Mu, BCI94].

On the other hand, the choice of the metric p fulfilling the constant negative curvature
condition (4.21) is immaterial provided it behaves properly under diffeomorphisms, i.e. a
change in p produces a coboundary.

Whereas the holomorphic fibration of B(Z) x £ over 3(Z) is essential (the smooth
fibration being trivial), a real approach is possible whereby the GL(1,¢) bundle is reduced to

U(1) and the canonical connection I is replaced by the unitary connection :

it
et = " Inp,7 (4.34)
This make the bridge with the Riemannian route chosen in [BCI94], as follows.
The structure equations for the action of 9Z) on IM(Z) read :

s$Pg=y+&(B)g= v+ £°P(@)g (4.352)
s10Py = 9P (g + £P @)y (4.35b)
s'PG = Q—%[a,as] (4.35¢)
sP0 = [ (4.35d)

where geM(Z), @ a Dy(Z)-connection on another copy 9TL(Z) of () and Q its curvature,
y = 8g in the intermediate scheme, y = 8g - £ (&)g in the Weil scheme, and g =g +~£ El
both schemes. Of course, 8, 9 and £ are the differential and operations on IM(Z) while 8, 9
and € are those on E’)TL(Z).

One may wonder why one does not write down the structure equations for the action

of W(X) X D(Z). The main reason is that there is no known Weyl invariant connection on a
bundle over M(T) x T to provide non trivial cohomology classes.

We now consider the family $F,, () = M(T) x P(Z, GI(2,R)) of frame bundles over X
indexed by ge?)ﬂ(Z)lz. As usual, we wish to provide ?F{g}(Z) with a D(Z)-invariant GI(2,R)-
connection. Accordingly, we look for a GI(2,R)-connection T that leaves g invariant. In terms

of local coordinates :

12 1t is a GI(2,R) principal bundle over M(E) x I whose fiber F( 2 over (g,x) is made of all the frames of T,Z.

With respect to coordinates (xk) of x, the coordinates of a frame E(w =(E,) of F(mz will bE the entries A"k of
the GI(2,R) matrix A changing the natural frame (8, ) associated with (x) into Ego: E= A jak.

15



8+ dg)guy— T ugry ~ T8 =0 (436)
A solution of this compatibility equation is given by :

1
=t + Eg“&gw (4.37)

where LT is the Levi-Civita connection :
. 1
Leph = Eg“(apgmapgpv 5,8 )dx" (4.38)

while the general solution is obtained according to :
Sgw———ﬂigw + auv) (439)

Ay being antisymmetric13 . In equation (4.37) we have chosen a,,; = 0.
One lifts T to get a gl(2,R)-valued one form I on PFg(2)

£, = (A oo vAT: +(A o dgA” (4.402)
or in a more compact notation :
T=ATTA+AT'dgA (4.40b)

As explained in Appendix F, the action of D(T) extends to PFigy (X)), and the
fundamental vector field associated with A€0(X) reads :

d o
A {(lz(l)gpv) Se K0, — (0,17 )AP: SAC ] (4.41)
uv 1

It follows that :

(i (D)< = g (WD) = (A™ )(% g""’(“Dpiz'—LCDJp))A"T
< (yeonip]

Iy =l =0 (4.43)

(4.42)

and :

where Xp =B 2% and "°D is the covariant derivative associated with LCT Hence, T is the
9)(T)-invariant Gl(2,R)-connection on PFiy (L) we are looking for, and its curvature reads :

11( ! )
R(r)_dg,r+2[r,r]_A (6+d2)1"+2[1“,1“]A @)

= A'R(DA

13 We wish to thank M. Dubois Violette for communicating the above construction of I'.
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with :

]
R()= (5+dz)(LCr+ g18gj [Lcnz “log T+ - glsg]

LCR+LCD( '16g)+6LC1" ( 15g]2

LC referring to the Levi-Civita part of the connection.
Let & be a T(Z)-valued connection on another copy 9IL(Z) of I(T), and Q its

(4.45)

curvature. In the intermediate scheme, the equivariant curvature of I (the pull-back of T on
M(Z) x PFigy (X)) 1s given by :

- ~ - L ~0A 112 2
RS (F5,0)= (6+d9+lg,(m)—19,(Q))1"+-2—[l",F]
_R(E)-ip @) = A‘l(f{(f“) - %LC DA ?i)A (4.46)

=ATRA

int
with R(I") the pull-back of R(T) on E’)IL(Z) x PEy(Z). In view of the particular form taken by

€ .
R“?t, and since the invariants we are looking for are constructed in terms of curvatures, one

can forget about the GI(2,R) fibration (represented by the Al and A terms) since one deals

with forms globally defined on X, such as R([") and Rmt
As before, 9, £and iy, Iy refer to the action of P(T) on IMT) and X respectively. In the

Weil scheme, the equivariant curvature is given by :

RY(E,5,0)= exp{(9+ig) @R (., 0)
epIEN )@ g

= R(F) +(9+ig )(6)R(F) (4.47)
- Lic Dna _§:2
2

The equivariant Euler class, which plays the role of the invariant polynomial I :gw of section
I1, is defined by :

) R
& = oo (Y (t). (4.48)

Once equation (4.47) has been made explicit (using equations (G.8) and (G.11) of Appendix
G), &y can be written as :
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P Len . ~iCe | (@)s(@®)1c

&\N :—\/;g—gpv( R—IZ((D) R+ 2 R

1 = 1 = 1Y
DAY - —iz((T))LCD AY ——\u\yj (4.49)

2 2 4 "

1 SHP

+§7g:( LCD“a_LCDVEM)

with :
T = T = (683 ~ (@) )" = (08, ~ @08,
~ A A 1=\ (4.50)
v, =8 (ngu ‘lz((ﬂ)gxu) =gV = (g‘ v)p
and "D A Y as defined in Appendix G.
Using the basicity property :
(§+9+ig)my=0 (@.51)
one easily checks :
(9 +9+ig)m& =0 (4.52)

et , N
Now, because T g,y is covariant constant (see Appendix G) and because of the Bianchi
g

identity for Ry :
(5+8+ds)éw =0 (4.53)
And consequently :
(E+e+ig)mEa =0 (4.54)

(Compare with [BCI94]). B
The last step is to apply Cartan's theorem 3 : one has to replace @ by a DE)-

connection on M(T) x £ [BGVI1]. An obvious solution is given by a 9(Z)-connection ® on
IN(E), so that the form of equation (4.47) is maintained with the replacement :

O—0
~ 1
Q——)Q:8m+5[m,m]

y—y=0g-L£(0)8

—y=gr=¢"'6g-L(0)g)
Furthermore, since () is a principal bundle over CM(Z) with structure group the
Weyl group, one may choose ® a 9(Z)-connection on ONE). It is very likely that the
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conformal picture is recovered by choosing the section provided by the (negative) constant
scalar curvature condition (4.21), but, at the time of writing this has not been explicitely
checked.

V) Concluding Remarks.

Cohomological field theories are gauge theories of an exotic type. The question of the
definition of the observables is crucial. The definition has to be such that "physics" - €.8.
correlation functions of observables - be gauge independent, i.e. be independent of the
parameters or external fields needed to define a perturbatively computable Lagrangian, namely,
a Lagrangian whose quadratic part is non degenerate. The fact that the equivariant
cohomology classes defined in the previous section do not depend on the various connections
used to define them suggests that they be computed by "averaging out" over these connections.
This is formally realizable in terms of functional integrals. The well known difficulties in
defining those result in ambiguities which are well understood at the perturbative level
provided that they are properly constrained algebraically. The equivariant cohomology
framework exhibited here both at the level of fields and at the level of observables 1s a
compelling ingredient whose necessity has often not been fully appreciated.

The construction reviewed here may not give all observables. Note that those which
have been constructed here emerge as integrated local expressions in the fields. Whereas these
are basic cohomology classes [OSB89], it is not clear a priori which cohomology classes the
local densities represent. Another delicacy in the definition of observables has to do with global
aspects which are known to be crucial [DK90, Mu83].

The corresponding mathematics should in each case guarantee that one is not
describing a trivial cohomology class via complicated formulae. A final remark is in order since
it provides a bridge with the origin of cohomological theories. The introduction of the
connection @ -the Faddeev-Popov ghost introduced by L. Baulieu and IL.M. Singer-, rather
natural from the geometrical point of view may however look somewhat redundant, since only
curvatures are involved in the final formulae. A similar impression may prevail from the field
point of view. It has however several advantages, one being the necessity to introduce the
operations 5 g and i The devoted reader will easily establish the bridge between equivariant

cohomology and twisted N = 2 supersymmetry.
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APPENDIX A

Some basic facts and conventions about associated bundles.

Let TI(B,S) be a smooth principal fiber bundle with a right action of the Lie group S.
The right-transformed by yeS of a point nell is written ©'. An infinitesimal transformation,
represented by AeLie§, gives rise to a so-called fundamental vector field Ay on IL. The

operations on IT are denoted by .
i(A) = ig(A and [(A) = Ig(A Al
IH( ) f’n( H) H( ) of ll( |) ( )

while the differential is dpy.
Now, let us consider a smooth manifold J with a left-action of § on it. The left-

transformed by ye§ of a point feJF is written y(f). Here again, to any AcLie§ there
corresponds a fundamental vector field A; on J, and the operations on F are also written :

(M) = ig(A d LA =I(A A2
is(3) = is(hs) and (%) = l5(hg) (a2)
Finally, we consider the right-action on the smooth product manifold IT x F defined by :

(£ =,y (D) (A.3)
for ye8. Hence, for an infinitesimal transformation AeLieS, the corresponding fundamental
vector field on IT x F will be :

7"1'1)(3’:7"1'[_)"5‘ (A4)

where Aj; and Ag are the fundamental vector fields associated to the original right and left
actions of A on IT and J respectively.

One can show that IT x § with this right-action of § can be made into a smooth
principal bundle with structure group g, whose base space, denoted by ITxgJ, is itself a
smooth fiber bundle (not principal) over B, with typical fiber F [GHV73].

Whereas the differentials on IT x § are dp; , 5 = dpy + dy, the operations become

il’[x?(;")l):efiﬂxff()"nxﬁ)z (i +35)(AMixs)
= ig(A) —ig(hs) = in(M) —is(A)

and the same for /7, 5. Note that A is the fundamental vector field associated with the original
action of § on F (here a left action) which explains the relative sign in the last term of (A.5).

(A.5)
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APPENDIX B
Cartan's Theorem 3 [C50].

Let P(0,Q) represent an equivariant cohomology class of Qf (M) ® T Let 6 be a

connection in Q* (M), i.e. a Lie§ valued one form on M such that :
igdMo=A and LMo =-[r, o]
for any AeLieS, and @ its curvature.
Let:
o, =to+(1-1)0

1 0<t<l
0 = (4 + w043 l0000

It is easy to check that :
(inA) +ia Mo =X
(1n)+ Iy W)o, =104

For all polynomials P in © and Q, define [MSZ85] the derivation k by :

(P)0.0= | kP2
[0.1]

with :

ki, =0

k& = dioy
such that :

kt(dH+ dM) ‘(dn+ dM)kt =dy
and
i) +isc WKy | = (1M + I (W), k| = 0
Thus :
[0+ ing . K] = [0+ o (). K] =0

and :

P0.0)-PE.0)= |d,P0,.Q)
o

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

B.7)

(B.8)

= jkt[(dn+dM)P](mt,Qt)— f(dmdﬂ)ktp(mt,nt) (B.9)

[0.] (0]
= k(dn + dm)P —(dn + dM)kP

Now, since P represents an equivariant cohomology class :
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(dpg+dae)P = (inW)+ i WP = (I (M) + ly (W)P =0 (B.10)
Then :
P(0,Q) = P(6,0)~(dp + da kP (B.11)
Because of the commutativity of k with ir(A) + ing(A) and I(A)+ Ly(M),
(ig )+ ing V)P = (I(A) + Ly (M)kP =0 (B.12)
1t follows that :
(dry+ gy )P(8,0) = d5P(8,0) =0

(i) + 5 (1))P(8,0) = i (1)P(6,0) =0 (B.13)
(13 + Ly (1))P(6,8) = Ly (WP(6,0) = 0

P(0,0) is an element of the basic cohomology of M, cohomologous to P(0,02) within the

equivariant cochain algebra and this correspondence is obviously defined at the level of
cohomology. The same calculation shows that given two connections 0;, 6, on Q'(M),
P(6,,9,) and P(6,,0,) are cohomologous within the basic cohomology of Q'(M).
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APPENDIX C
An Alternative construction of equivariant cohomology classes of (.

The construction given in the text may look unnecessarily complicated. In the present
case where P(M,G) = @ x P(Z,G) and § acts separately on ( and P(Z,G), the situation can be

simplified as follows : construct equivariant cohomology classes of P(Z,G) using a connection
o on (, with curvature Q. Now, choose I' =4 :

g =0 (C.1)
(£+5)MI=0 (C2)

The equivariant curvature of 4 in the intermediate scheme is given by :
Foi (&):(6 +dp +1P(6)—ip(ﬁ))d+%[&,&] (C3)
One easily finds that this is the same as the equivariant curvature in the Weil scheme :
Fyp (@) = (5 +dp)(d +ip (@) + %[(a +ip(@)a),(d +ip©)d)] (C.4)

and they both coincide with Ey (@, 0,€) of equation (3.17).
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APPENDIX D

An action of D(Z) on T{(L’?)(E) and Q’T{(:;?)(Z).

If (x,u1,V,) is a point of T{(:f? )(Z), we choose the following right-action of H(Z) :
Voed(®) , (LaV?= (1% 07 (), dyo” (V) (D.1)
where dx(p'1 CTZ— T(p.l (X)Z is the differential of pe9(Z) at xeX :

YV, T, , VEeC™(E) , do™'Vy 6=V, (Fo0™) (D.2)

and p? is the element of B(Z) with components

o\ _ (6W¢W)+(5www)(uzz °0) :
e rrey o= R

where (z,Z) and (w, W) are coordinates at x and (p"l(x) respectively, and (o™ ,0") the local

representative of @ with respect to (z,Z) and (w,W). Equation (D.3) defines the natural right-
action of D(T) on B(T).

For an infinitesimal diffeomorphism represented by A = Ao, + A23,€0Z)

z(x) = z(p(x)) = z(x) + M (x) , and c.Cc. (D.4)
we get
W=p+du=p+DyA, (D.5)
with the notations of equation (4.5).
Now, at xeZ with coordinates (z,z) we can solve the Beltrami equation (4.14) thus

obtaining new complex coordinates (Zu,zu) at x. The component v (x) of V, with respect
to the natural frame 62}l associated to (Zu,z y) are chosen to be coordinates of V,. Similarly,

at ¢ '(x)eZ with coordinates (w, W) we solve the Beltrami equation for p + 8; and obtain

complex coordinates (Z uﬁxu,lu%w) at ¢7(x), and the coordinates of V(p,l o € the
component yvimom ((p'l(x)) of Vq)_l ) with respect to the natural frame 6Zu+m. This is how
we define a complex analytic structure on T{(:f? )(Z). Hence, at the coordinates level, the
infinitesimal action of D(T) is
z ; Zy ;
(b2, V) — (1481020 @ V(@ 'w) ©)

Combining the Beltrami equations which define the coordinates (Zu,zu) and (Z 45, Zyis,p)
with equation (D.3), one can show that Zu+5w((p_1(x)) is an invertible holomorphic function

of Z,(x). Hence, since the complex coordinates Z 5 , are unique up to a biholomorphic

mapping, we can choose [L] :
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Z 15, (07 () = Z, (%)

Accordingly, for the coordinates v (x) of V(x) we get :

oz,
VA (o7 () = (V2 o007 () 2 (9) = V7 (9
i

Finally, it is straightforward to see that on Q’T{(L’? )(E) ;

OLyy+8,p

E%o (7 ()= (% o0)(0 ™ (x) 5 (Zu () =E* ()
T

with EZ# (x) and E“#*%% (¢™}(x)) coordinates for QT{(:;f)(z) (see main text).
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APPENDIX E
Calculation of the equivariant curvature of I".
Re\{‘,(f)z (g +9 +§3_)(€Dln Pz 7 +DlnEZ“ +1(@)PInpy 7 )
P pép
=(3 9 - +1(@ - E.1
(5+9+ ED)(ED Inpy, 7, +1@)91n prZp) (E.1)
— ~ e =
=9PDIn P27, ~ I(Q—E[m,m])g)ln PzZ, +1(@)99DIn Pz,Z,
where we have used the invariance of I'. The third term is :
1~ ~ lp, o g
EI([(D,(D]) Dln P27, = —E[L(m), 1(@)]|91n P27,
1 o~
= —EL((D)I(@)EDln P27,

(e 62+ @I )" @Inpz7,

[\®]

(E.2)

—

@l @3+ P @I @9)Inp, 7,

[\

_P@)N"@)DDnpz 7,
1. - =
=3 1(@)(@)DDIn Pz,Z,

Finally :
N Y R (1 ay _
Ry (I")-EDEDin Pz,Z, j(m)fDEDln pZpZi ©3)
@I @)DDInpz 7, ~()Dnpy 7,
The last term can be antisymmetrized since :

(Q)Dinpy 7, = ") Dnp, 7, -
4
- 1 ~ T = :
= "QDIn P27, = E(Ih ©9-1" (Q)ED) Inpz 7,

due to the invariance of Inp; 7 - Thus, as expected, Ry ([) is of type (1,1) for the natural
pou

complex structure of B(T) x L.
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APPENDIX F
The action of D(Z) on S’F{g}(E).

Let (x, E,) be a point of F(Z) the frame bundle of £, where, by definition, E, is a frame
(a basis) of T,Z: E,=(Ey;). One defines coordinates for E, as follows. One selects

coordinates (x) for xeX and denoted by (6) the natural basis of T,Z defined by these
coordinates : 0 :é/axk. Then, the coordinates of E, are the components A’k of the

decomposition of E, with respect to the natural basis (6,) :

Eyx = A%, (F.1)

Each vector E, ; belongs to T,Z. As explained in Appendix C, there is a natural (left) action of
0eD(Z) on T,Z, given by d¢ : T,Z —> T, )2 the differential of ¢ at x

o
VVeT, 2 , ¥feCT) , doV, () =V, (fe0) (F.2)
In terms of coordinates, this gives :

(%)’ = V(2o (F3)

where @' means the local representative of ¢ with respect to the coordinates COF
ox)=y= (yi) = ((pi(xk)). Applying equation (F.3) to the frame vectors E, j» one gets :
A’ij = Amj(am(pi) F.4)
and at the infinitesimal level, for A€(Z) :
A= AT (0 (x4 1) = A7 (B0 + k) = Al + @uh)A; (ES)
where A" j are the coordinates of the transformed frame at ¢(x).
Finally, at the coordinates level, the natural left-action of A €(XZ) on F(Z) is :
(90aT)) — (4 Ak, (Al +@a1)A™)) £.6)
Hence, the fundamental vector field on F(Z) defined by the action of A€T(Z) reads :
d

i

J

Aoy + A™(0,0)

(F.7)

Now, if we consider Q’F{g}(Z) instead of F(Z), we need a right-action of 9(Z) on Q’F{g}(z)

and thus a right-action on F(Z) :

() (AT )) (B + I (Mg (6% ~ A7), (A%~ (B,1°)A%:))  (F.8)
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at the coordinates level, for A€T(Z), and the corresponding fundamental vector field is given
by :

5 5
- —— 2%, — (3,00 )AL, F.9)
x [(IZ(MgW)SgW K0, - (01°) wf] (

In particular :

5
ls(Mgay = (Mg, :S‘l((lz(k)guv)a)gxy +15 (-A)gay (£.10)

=I5 (\)gnd58y —I5(M)gyy =0
so that :
lo(M)g=0 (F.10)
for any ge M(T).
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APPENDIX G

Calculation of the equivariant curvature Ry

and of the corresponding Euler class Gy .
Recall :
1, 1
r)x.u:LCr)\.u +_2_(g lﬁg)quLCFxp +_2_g}.v6gvu (Gl)
where CT is the Levi-Civita connection :
i

C A

ok, = (0,8 + 0oy — 018 o dx? (G.2)

Now :

1 1
R(D)=(6+ dz{mn%g“ag}r%[Lcnag"sg,mn—g‘lag}

2
, . 5 (G3)
_LCg,LC D(—g'lﬁgj%]‘cf _(_ g_ISg)
2 2
where LCR stands for the Levi-Civita curvature .
1
LCR =4, %€ r+E[LC r,\r (G.4)

and LD stands for the Levi-Civita covariant derivative. We also recall that, by definition :

Lpg=0 (G.5)
Differentiating equation (G.5), one gets .
Le D).(aguv) —(SLC r}.pv)gpp. —(SLCFpr)ng =0 (G~6)
from which one deduces that :
1
LC LC LC LC
5LCT,Y, = EgPV( D, 58 5, D 881 D 58, G.7)

Since 5 and dy anticommute, it follows that :

1 1
(ﬁwﬁgg‘lﬁg) =8 (1D, 583D g0 dx"

M (G.8)
_ ey 55)
Def 2 ( Da Sg)u
where :
g, =gudx" (G.9)

In the same way, using
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9@ g '0e) - ¢ 9@ g =& L@r="8 =@k (G.10)

one obtains :

(sxm)(awn g lag)] 8™ (D @), LoD b @)gy0.)dx

b (G.11)

1 LC ~ v
=——{"*DAls(0)g
(DAL @),
ame construction occurs in the transformation of the

Going over to the Weil scheme, the s

2
1 1 ~~ ~ . .
quadratic term (E g'lﬁg] , leading to the term : Z\N’ with y defined in equation (4.50).

ghp

Finally, one needs the property that T gpv I8 covariant constant for the connection I'.
g

First, for the Levi-Civita part :

(ghp ghP
Le DXL Bpv gpv Dy, \/—
J- (G.12)
1 ( Y p et af
==L +T: \ﬁ“) ~=87 08
\/g A A 2 \/_ ( “ﬁ)
Using the identity :
VEeYP + VPR + VEH =0 (G.13)
together with
1
Ly =5 8% 0180 (G.14)
the property follows.

Finally, for the second part of the connection, one needs :

(\rgpv] (g Sg) \/‘gpv 1(g Sg) Jggpx 0

which again follows from the identity (G.13).
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Abstract

After a review of several methods designed to produce equivariant cohomology classes, we apply
one introduced by Berline et al. (1992) to get a family of representatives of the universal Thom class
of a vector bundle. Surprisingly, this family does not contain the representative given by Mathai
and Quillen (1986). However, it contains the particularly simple and symmetric representative of
Harvey and Lawson (1993). © 1998 Elsevier Science B.V.

Subj. Class.: Differential geometry; Quantum field theory
1991 MSC: 14F05, 55R10, 81T40
Keywords: Thom class; Vector bundle; Topological models; Equivariant cohomology classes

1. Introduction

In arecent paper [STW94] it has been shown how equivariant cohomology is related to the
so-called (cohomological) topological models [BI92,BS88,BS91,0SB89, W88, WBS88]. In
the same work, a way to compute some representatives of equivariant cohomology classes
(i.e. observables of the corresponding topological model) was exhibited.

Here, we shall use this method in order to generate a family of representatives of the
Thom class of a vector bundle depending on two arbitrary functions. As we shall see, these
representatives are quite different from the Mathai—Quillen representative. They offer a
good deal of flexibility at the price of being slightly complicated. Special choices allow to
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find a very special representative with remarkable symmetry properties. However, its slow
decrease at infinity makes it necessary to consider a cohomology theory with coefficients
with sufficiently fast decrease (instead of compact). Some of these representatives (in par-
ticular the most symmetric one) already appeared in a quite different framework in the work
of Harvey and Lawson [HL.93] on singular connections, a fact we learned after this work
was completed.

This work is divided into three parts. In Section 2 we recall basic facts about equivariant
cohomology as well as the way to compute representatives of equivariant cohomology
classes. This section parallels the explanations given in [STW94]. Section 3 is devoted to
the Mathai—Quillen representative of the Thom class. Finally, Section 4 exhibits a large
family of representatives of the Thom class.

2. Equivariant cohomology

Let us consider the following setting: M is a smooth manifold and G a connected Lie
group acting smoothly on M. We would like to define a cohomology of the quotient space
M/G which coincides with the De Rham cohomology when this quotient is a smooth
manifold but which also exists when it is not, i.e. when G acts with fixed points. Equivariant
cohomology solves this problem.

Let M be a smooth manifold and £2*(M) the exterior algebra of differential forms
on M endowed with the differential do. A Lie group G is assumed to be acting on M
as well as its Lie algebra, denoted LieG. For any A € LieG there is a vector field A a4
representing the infinitesimal action of A on M. This vector field A x4 is usually called
the fundamental vector field associated with A. We shall denote by ia(A) = ir(A ) and
Ipm(A) = Iam(Aat) = [daty i am(A)] 5 the contraction (or inner derivative) and Lie derivative
acting on £2*(M). Let us recall that i »((A) takes n-forms into (n — 1)-forms while /¢ (X)
acts on forms without changing the degree. Elements of £2*(A1) which are annihilated by
both i pq(A) and /x4 (A), for any A € Lie G, are the so-called basic elements of £2* (M) for
the action of §. As d 4, maps basic elements into basic elements, this leads to the definition
of the basic cohomology of M for the action of G [C50].

We now consider the Weil algebra W(G) of Lie G.? It is a graded differential algebra
generated by two Lie G-valued indeterminates, the “connection” w, of degree 1, and its
“curvature” §2, of degree 2, such that

Q:dww-f—%[w,w], (1)
where dyy is the differential of W(G). Of course, one has the Bianchi identity

dws2 + [w, 2] =0. (2)
There is an action iy (1), lw(A) for A € LieG:

2 This is a harmless abuse of notation, but it is to be remembered that equivariant cohomology deals only
with the local structure of G.
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iwMw=A, Mo = —[r. w]. (3)
iw(A)§2 =0, w2 = —[r, 2]. (4)

For instance, w may be a connection on a principal G-bundle /7 and 2 its curvature. In that
case iy (A) and Ly (X) are generated by the action of G on 7, and in this case W(G) will
be referred to as Wyy.

We now consider the graded differential algebra (2* (M) @ W(G). d o+ dw). on which
the operations (i ¢ +iyw)(A) and (paq + pyy)(2) forany A € Lie G are well-defined. There
common kernel is a graded differential subalgebra of £2*(M) ® W(G). By definition,
the so-called equivariant cochains are the elements of this subalgebra annihilated by the
differential d a4 + dwy, leading to the equivariant cohomology of M for the action of G: this
is the so-called Weil model for equivariant cohomology.

Equivariant cohomology can be alternatively described in the so-called intermediate
model, which was introduced in [K93] and which will be repeatedly used in the sequel. It
is obtained from the Weil model via the following algebra isomorphism: 3

X — exp{—ir(A)}x (5)

for any x € £2*(M) ® W(G). This isomorphism changes the original differential and
operations on £2*(M) ® W(G) by conjugation:

dm + dw —> Dige = dag +dw + v (w) — iam(82), (6)
(iag 4+ i) (W) —> iw(h) = e P (i i) (R)e v, (7)
Upt + IV —> (g + )R = e MBI (1 + ) (el (8)

Finally, the so-called Cartan model is obtained from the intermediate model by putting
w = 0 so that Di2nt lw=0 vanishes when restricted to invariant cochains. This is the most
popular model, although many calculations are better automatized in the intermediate model.

Another item which will be repeatedly used is “Cartan’s Theorem 37 [C50]: let us as-
sume that (£2*(M), day, i pm. Iaq) admits a G-connection # 4, with curvature @. Then any
equivariant cohomology class of 2*(M) ® W(G) with representative P(w, §2) gives rise
canonically to a basic cohomology class of £2(M) with representative P (6. @). There is a
simple proof using the homotopy that expresses the triviality of the cohomology of the Weil
algebra [MSZ85]. It follows from the construction that the cohomology class of P(#. )
does not depend on 6.

One convenient way to produce equivariant cohomology classes is as follows [BGVI1]:
we consider a H-bundle P(M, H) over M on which there exists an action of G which
lifts the action of G on M. In general, the Lie group H has nothing to do with the Lie
group G. As before, P(M, H) is endowed with a differential dp, a contraction i and a
Lie derivative Ip.

3 See {DV93] for a more general theorem.
4 that is to say a Lie G-valued 1-form on M such that i pq(1)8 = 4 and {Aq(})8 = —[A.0] for any
relieG.
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Next, let I” be a G-invariant H-connection on P(M, H):
Ip(M)IF =0, foranya e LieG. 9

The pull-back I of I on 2*(M) ® W(G) is a 1-form on P(M, H) and a O-form in
W(G). It follows that

W =0 (10)

forany A € Lieg.
In £2* (M) ® W(G), the equivariant curvature of I" is defined by
R

(Mo, 2) = Dinl + 31, 1], (n
where Dy = dw +dp +1p(w) — ip(82). Then, if Iy is a symmetric invariant polynomial
on Lie H, we consider the H-characteristic class 5. (", w, 2) = Iy (R:?lim(l”, w, §2)).

H.int
It is defined on M and fulfills

(dw + da + (@) — im(2) I (5w, 2) =0, (12)
iw) I (50, 2) =0, (13)
Uw + )W) I (Fow, 2) =0 (14)

forany A € LiegG.
In the Weil model, the equivariant curvature is defined by

RW(F @, 2) = (dyw +dp)[" + 3T +ip( ). T +ip()F]. (15)

We may similarly consider

IPw(F 0. 2) = Ig(Ry w0, 2)) = e MWL (w0, 2), (16)
which fulfills

dw +dm) I (F 0, 2)=0, (17)

(iw +irm) W) I (5, 0, £2) =0, (18)

Uw + )R Iy (T w,2) =0 (19)

forany A € LieG.
Finally, if M admits a G-connection 6 with curvature &, we can apply “Cartan’s Theorem
3”7, and substitute & and @ instead of w and £2 in Iffw(l“ ,w, §2), so that

dum Iy (I, 0, ©) =0, (20)
im) Iy (F,0,0)=0, @1
I I (F.0,©)=0 (22)

forany A € LieG.
By standard arguments, these cohomology classes do not depend either on I~ or on 6.
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3. Thom class of a vector bundles: The Mathai-Quillen strategy [M(Q86]

Let V be areal oriented Euclidean vector space of dimension n = 2d with scalar product
(, Jv.On V. we choose a canonical basis {e;} orthonormal with respectto (, }y:

(ej.€)y =§;. (23)

Any vector on V can be decomposed as

v = vFe;. (24)
Such a decomposition gives a coordinates system (v) on V, turning V into a manifold. Due
to the linear space structure of V, only G L (n, R) transformations define allowed coordinate
changes. The group of isometries of V, with respectto (, )v,is SO(n) C GL(n, R), with
Lie algebra so(n) and Weil algebra W(S O (n)). Finally, we endow V and W(S O (n)) with
the standard differential operations dy, iv, v, dw, iw and [,

Now, let E(M, V) be a vector bundle over a smooth manifold M with typical fiber V,
equipped with differential operations: dg, ig and /g,. We denote £2)'; (E) the space of
n-forms on E whose restriction to each fiber of E is rapidly decreasing. The corresponding
cohomology space is written H'; (E). The Thom Class of E is the element T(E) of
Hr"dv(E) such that

/T(E):l, (25)

Vv

which means that integration of T (E) along the fiber produces the constant function | on
M.

Actually, following Mathai and Quillen [MQ86], we would like to exhibit a representative
of T(E) in the form of an integral representation. Then, we consider V*, the dual space of
V, equipped with the scalar product (, )y, dual to (, )y on V. Moreover, we introduce
coordinates (wy) for the Grassmann algebra AV™ of V* together with the differential
operations 4, I and L, dual to those on V.

We take as structure equations:

Stopvk — lI/k +Lt0p(a))vk,
StOPlllk — _Ltop(g)vk —}—me(w)wk,

sPoy = by + LP(w)wy,

(26)
sOPh = —L"P () + L*P(w)by,
Py = 2 — %[w,w],
sPR = —[w, 2],
with
$'P =dyy + (dv + 8) + (lv + LY (w) — (iv + D(£2), 27

Uk = dyok = wk

int

(28)
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in the intermediate model, and

sYP —dw +dy + 38, (29)

vk = (dy — LP()0* = o (30)
in the Weil model, while

L =y +L (31

in any model.

The null section sg of E(M, V) that sends any point of M into the null vector, diffeo-
morphically maps M into so(M) C E. Then, the Thom Class T (E) of E is nothing but
the Poincaré dual of so(M) in E [BT82], and the Dirac form on E:

S(W)dv' A A dV (32)

represents the Poincaré dual of sq(AM) in E. This form can be written as a Fourier transform:

1
2m)"

/dbdwexpi{b-v+w-lll}

_ 1
- @m)n

/ db dew expi{bpv* + @ Wk}, (33)

From the structure equations (26), we deduce
b-v+ow ¥ =sPw.v). (34)

However, we can consider a smoother representative, with a gaussian behavior for instance.
That means that we must insert a term of the form:

i(b, b)y+ (35)
into (34). Now, we can try to write the new argument as an s'°P-exact term:
sP(w v +i(w, byy)=b-v+w - ¥ +ib, by — I(L"P(2)T, m)y«  (36)

so that we are led to define
1
Ty
Note that U is an element of W(SO (n)) ® 2*(V).
In order to prove that U maps into a representative of T (E), let us proceed in the inter-
mediate model where we write Uiy instead of U. Then, since in (37) w € W(SO(n)) does

not appear, we immediately conclude that Ui, does not explicitly depend on w, that is to
say:

f dbdw expi{s"P(wv +i(w, b)y,)}. (37)

Vi € so(n), iwA)Up =0, (38)

which express the basicity condition within the intermediate model. Now, there remains to
show that Ujy is closed with respect to Dip = dywy + dv + lv(w) — iv(§2). Indeed
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1
DintUint = —— Dint / dbdw exp{i - s“P(w.v + i(w, bv,)} 39
(2m)n
= / dbdw (s'P — Dy«)expli-s"P(w - v+ i(w, b)y,)}. (40)
(2m)"
where Dy~ = 8 + L(w) — I1(£2). Hence
DintUin = — / dbdw [Dy- expli - s'P(e - v + i(w, b))}, (a1
Q2m)"
Now, from the structure equations (26), we get
0] ]
Dy« = (b + L'P(w)wr) — + (—L"P(2)y + L'P(w)by) — (42)
dwy aby
= (L“’p(w)wk—a— + L“"D(w)bki
dwy by
+ (bk_q_ - L‘°P(Q)ark—a—) (43)
oy b, ) )

The first term in Dy~ corresponds to an so(n)-transformation. Due to the so(n)-invariance
of the measure db dw, it does not contribute to (41). The last term in (43) vanishes upon
integration by parts. Then

DintUim =0. (44)
Finally, combining Egs. (38) and (44), we deduce that
Vi eso(n), (hy+1y)(W)Uin =0, (45)

and conclude that Uy, is a representative in W(SO(n)) ® £2*(V) of the Thom Class of
E(M, V). The corresponding representative in the Weil model is obtained by setting

S[OPZdW +dy + 8, (46)
k= (dy - LP(w))v* = ¥k (47)
within Eq. (37).

Actually, it can be easily shown that Fourier transform (denoted F) commutes with
equivariant differential operations. More precisely

Fldw + 38+ L(w) — 1(2)) @] = (dw +dv + lv(w) — iy (2)) F [P]. (48)
FliwM) @] =iw(M)F[P]. (49)
Fliw + LYM@] = (w +1v)W)F [P] (50)

in the intermediate model. The same holds in the Weil model with suitable differentials. Let
us point out that this mainly relies on the identity 5 - v + @ - ¥ = s*P(z - v).

Then, since ¢ = (b, b)y+ + (L*P(2)w, w)y+ is equivariant, it is straightforward to
find that its Fourier transform is also equivariant. This simple remark allows to construct
representatives of equivariant cohomology classes using Fourier transform of functions of

¢.
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Finally, we can consider a principal SO (n)-bundle P over M. It is well known that
P xso(m V is a vector bundle isomorphic to E, and P x V is called the principal SO (n)-
bundle associated with E(M, V). Hence, as an n-form on E, any representative of the
Thom Class T (E) of E comes from a closed SO (n)-basic n-form on the associated bundle
P x V of E. In order to produce such a representative of T (E), we use Cartan’s Theorem
3, that is to say we replace (w, §2) (in the representative U) by (6, &), a connection and its
curvature on P(M, SO (n)).

4. Construction of representatives of Thom class of vector bundles: The
Berline-Getzler—Vergne strategy [BGV91]

In this section, we shall use the strategy explained in Section 2 in order to produce
representatives of T (E).

To begin with, we are going to turn V into a Riemannian manifold, i.e. a manifold V
with a metric. The tangent bundle of V, denoted by T V, is obviously isomorphicto V x V.
The only SO (n)-invariants formed with v and dv are the three scalar products, so that the
general SO (n)-invariant metric on V is:

ds?(v) = e?((dv')? + o (v' dv')?), 51

where ¢ and o are smooth functions of t+ = (v, v)y only. The above expression is positive
definite if and only if 1 4o (¢)¢ > O for¢ > 0. One can assume if convenient that the metric
is asymptotically flat (i.e. that the curvature vanishes at infinity).

We can consider the principal G L (n, R)-bundle associated with 7'V, i.e. the frame bundle
R(V) of V. Itis made of the points (v, by) where by is a frame (i.e. a basis) at v. Coordinates
for by are defined as follows. We denoted by (d¢) the natural basis of 7yV defined by
the canonical coordinates W of Vi = 8 /0 v¥. Then, the coordinates of by are the
components b,ﬁ of the decomposition of b, with respect to the natural basis (3):

by = b} 9; (52)

with by, the kth frame vector of the frame by. The isometry group of (V, (, )v), namely
SO (n), acts both on elements of V and on frames, that is to say on R(V). This goes as
follows. For any @ € SO (n),

Dk (v) = @k ym, (53)
At the infinitesimal level, if we write &% = 8% 4 o | we get
V) = (B + @)V = v + " = ok £, (54)

where £ = <,o,’§, v™ defines a vector field on V, the so-called fundamental vector field
associated with the action of ¢ € so(n):

0
vk’

£=¢* (55)
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The natural action of @ € SO(n) on TV is given by the so-called differential of @ at v,
dv¢ . TVV d T¢(V)VZ

VXy e IV, Yf e C®(V) dy@ Xy (f) = Xy(f o D). (56)
Applying this definition to the frame vectors by, one gets
bl = b (3 @' (V) = b D}, (57)

where 5;. are the coordinates of the transformed frame at @(v). At the infinitesimal level,
for ¢ € so(n),

i pmggi Py f m i __ i m i __ i i

bj = b} (8, + ¢p,) = bj + by = b; + b, = b} + & (58)

Combining Eqgs. (54) and (58), we deduce that the fundamental vector field associated with
the action of ¢ € so(n) on R(V) reads

d 3
ap=E— 45—
R8T T 9pF

p 0

—. 59
’"abg’ (59)

3
k
= Pm v m + b:]nqo
Now, let P(M, SO(n)) be some principal SO (n)-bundle over a smooth manifold M.
It is well known that there is a vector bundle over M associated with P for the action of
SO(n) on V. The group SO(n) acts on the right on P and on the left on V. We first define
aright-action of SO(n) on P x V by setting

(P.®=(p-@, 07 (W) (60)
so that, the fundamental vector field representing the action of ¢ € so(n) on P x V reads
ad a
— gk T _ —gkm
Apxy =hip—§ 3ok =rp — @uV" Pl (61)

where A p is the fundamental vector field representing the action of ¢ on P.
Finally, the action of any ¢ € so(n) onthe G L(n, R)-principal bundle P x R(V) is given
by following fundamental vector field:

A=2Ap — AR (62)

with A defined in Eq. (59).

In the following, V, R(V) and P are equipped with the following differential operations:
dy,dgr,dp.iv.ig.ip,ly,Ig and lp, respectively, exterior differentials, inner products and
Lie derivatives.

Now, since we are looking for representatives of equivariant cohomology classes, we can
mimic the construction made in [STW94] in the case of two-dimensional Gravity. We first
look for a GL(n, R)-connection on P(P x V, GL(n, R)) = P x R(V) invariant under the
action of SO (n). If we notice that, by construction, the metric g on V is SO (n)-invariant,
we can consider the Levi-Cevita connection L€ I associated with g. Due to the SO(n)-
invariance of g, “CI" is an $ O (n)-invariant connection. More precisely, the lift of “C I" into
a connection 1-form I on R(V) according to

r=b"'"rb+b'drb (63)
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is invariant under the action of SO (n). The fundamental vector field for the action of so(n)
was given before, so that

(ip()I = (™" (=CD,E")b", (64)
where ip(A) = (ip + ig)(A), and
Ip() =0 (65)

with Ip(L) = (Ip +1R)(V).

The next step is to consider the Weil algebra W(SO (r)) of so{n). The relevant formulae
were given in Section 2. We recall that the equivariant curvature of I” in the intermediate
model is

RGN @, 2) = (dw +dp +1p(@) —ip(2) T + 5[ T] (66)

nt

while the corresponding curvature in the Weil model is obtained as

RY(I 0, 2) =PRI o, 2), (67)
which gives

R;‘}(F, w,2) = R(I") +ip(w)R(I") + %i‘p((t))i‘p((r))R(F) —ip($)I. (68)

The Weil equivariant Euler class is defined by

1P Hd Pd
N

which after normalization gives rise to a representative of T(E) in P(M, SO(n)) x V.

It is now time to use the explicit form of the metric to get a formula for the Thom
class. Surprisingly, we shall see there is no choice of metric that allows to recover the
Mathai—Quillen representative of 7(E). From now on, the computations, if painful, are
straightforward. We use the intermediate model so that dy v! = ¥'. As (63) looks formally
like a change of coordinates in the fiber, we know that its effect on curvature will be a
simple conjugation which disappears completely on the Thom class. So we can forget it in
the computation. From (51) we find that the metric is:

Ey = Zorvr ** Bpava (RWIN A -+ ARG, (69)

&ij :e“’(&,'j + ov;v)). (70)

Our notations need some comment: we start with global coordinates v’ on V, so the
exponent / is not a tensor component but just a label. The metric is expressed with respect
to this particular coordinate system. However, it is convenient to deal consistently with
formal lower and upper indices in the Einstein summation convention. So we define v; =
v and §;; = 6V = 8}’: =38/ = 1ifi = j and 0 else. For instance we use the notation v;
and §;; in g;; and we write t = v;v'. This becomes slightly less formal if we restrict the
diffeomorphism group of V to linear orthogonal transformations.
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A simple computation shows that the inverse metric is
g7 =e (Y + vy, (71)

where o is defined by (1 +t6)(1 +1t0) = 1.

First, we need a formula for the connection and curvature. The fact that ¢ and o depend
only on ¢ leads to many simplifications in the computation. We use dots for derivatives with
respect to r.

With the expression of g, we get for the connection:

I = (1 +16)00* (0 — 9)8ij + (6 = o@)viv;] + @(vik + v;8F) (72)
so that the connection matrix is
I} = ') = Avivu gt + B o + Co ¥/ + 57wy, (73)
where we have set
A= (1415)(¢ —Co), B=(1+415)0o —0), C=g. (74)
The curvature matrix is given by
R/ =dry +r{ nTk. (75)

A tedious computation leads to

Rij EgikR]{
=e (1 +16) MY W + MpQ (e — ol (b)), (76)
where
My =C*+2C—0, M;p=2C-C>—6+(1+15)0 —C)io. (77)

To get the full equivariant curvature, we need the partinvolving £2. In accordance with our
convention on indices, we define 2/ = /. By definition 2/ is antisymmetric. According
to formulae (64) and (66), the part of the equivariant curvature containing §2 is the covariant
derivative of Q,g v¥ | the so(n) vector field associated to §2. Consequently

(—ip()] = 2] + 2Ly, (78)
The antisymmetry of £2 leads to further simplifications. The outcome is:
g (@l + 2
= e (1 +16)[M21 2" + Mn (v v 2% — v/ v 2], (79
where
My =1 +to, My =C-o. (80)

5 Remember that l“/; = l:gk](a,-g,,- + 0jgir — &)
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‘We note the striking similarity between the two contributions. If we define a 2 x 2 matrix
N by

. wigl Qi
i . i . . . ; . -, 81
N (v’(vklllk)lllf — v/ (W VM — vy QM ) D)

the equivariant curvature can be written as a trace

(RS = e™%(1 4+ t6)Tr MNY, (82)

int

The equivariant Euler class is
Ein
with the usual definition of the Pfaffian. Note that /g = e"?/2(1 + t0)1/2,

This is the explicit formula for the universal Thom class that we were after. It involves
two arbitrary functions of ¢, ¢ and o (with the mild restriction 1 4+ to > 0) which may be
localized at will thus so leaving a fair amount of flexibility.

The first comment to make is that apparently the above representative, which is of course
so(n) invariant when so(n) acts on V, £2 and ¥ at the same time, is not invariant when
so(n) acts only on V. To state it more simply, the V dependence of the Thom class is not
only through z. This is to be contrasted with the Mathai—Quillen representative.

Let us deal with a special case first. When n = 2, it is easy to see that

B wlyg? 2
&ijNY =2 12 12
e 12
so we have some hope to recover the Mathai—Quillen formula as a special case. After some
manipulations one finds

= 2"/2_ /g Pfaff (RS3)! (83)

nt

(84)

Ed = 4Fyly? { 2F Q12 (85)
where
14+1C
F= i .

So the Thom class depends only on one arbitrary function of 7, namely F, which can
easily be adjusted to recover the Mathai~Quillen representative. The correct choice is F =
—(1/(4)) exp(—t /4).

When r > 2 the situation is more complicated. We shall use a trick to see how much the
symmetry of the so(n) action on V is broken.

The first observation is that under a similarity, the Pfaffian has a simple behavior: if A
is a square antisymmetric matrix and S an arbitrary square matrix of the same size with
transpose S', S* AS is again antisymmetric and Pfaff S’AS = Det S Pfaff A. The square of
this equation just follows from the multiplicative property of the determinant, and the sign
is fixed by the case when S is the identity matrix. So if we can find a matrix S¥/ (independent
of ¥ and £2) such that S‘anth simplifies, we shall end with a simpler formula for the Thom
class.
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Define a symmetric matrix S(D) of parameter D by

This matrix is easily diagonalized: the vectors orthogonal to v are left invariant and v' is
multiplied by 1 +¢D. So

Det S(Dy=1+1tD (88)
and
S(D)S(E)=S(D+ E+:tDE). (89)
Moreover, if A/ is any antisymmetric matrix,
(S(DYAS(DNY = AV + D v AM — v/ v AR, (90)

We apply this identity to the four antisymmetric objects building the 2 x 2 matrix N/ to
get

S(D)NS(D) = S(D)N, 91)

where S(D) is the 2 x 2 matrix

1 D
. 92
(6 14w) )

In Eq. (91), the left-hand side involves a product of n x n matrices, and the 2 x 2 indices
are spectators whereas on the right-hand side the opposite occurs.
So we can write

S(D)R}

nt

S(D)=e¢e"%(1+1t6)Tr M(D)N (93)
with M (D) = M S(D), and the Thom class is

ES = (1 +1ta)'™™/2(1 4 ¢ D)~ 'Pfaff (Tr M(D)N). (94)

int
eq

We can choose D to simplify the expression of E .

First we take

D =D,. where M(D)= (* 0).
* *

€q

int that does not involve £2. The outcome is

This makes it easy to compute the term in E

EXN

int

M
=n!(1 +to)(I"M/2 (1 + 'M_lz) M@ @ terms involving 2. (95)
11

One can check that this is compatible with (85) for n = 2.
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Second, we take

D =D, whereM(D;)= (: ;)

This makes it easy to compute the term in EJ it that does not involve . The outcome is

M2
Efd = 2"2(1 4 1)1~/ (1 + rM ) M}/ Pfaff 2 + terms involving ¥,  (96)
21

1nt

a result which is again compatible with (85) forn = 2.

Those two terms in Elm automatically depend only on 7. On the other hand, the other
terms are not scalars for the so(n) action on V. To see this we keep D = Dy, set AY =
MWW/ 4+ My 29U and BY = v/ (0 W¥)W/ — v (0 k)@l Using the fact that x; ¥*
squares to 0 we get

Egi=(+1ta)17"7

nt
Mo Det M
x<2"/2<1+t )PfffA—n/2 ©
M3

1 Elljl"'iﬂjnBi]j] AiZjZ o Ainjﬂ) :
97

As §2 and ¥ are independent families of indeterminates, the matrix elements of AV are
independent of each other (except for antisymmetry) and of the matrix elements of BY/. So
in the expansion of

S i
3i|j1~~i,,j,, BiWIARIZ LA n]n, (98)

no compensation can occur between A-factors and B-factors or between different B-factors.
Morcover, B-factors contain the full non-so(n) invariant part of the V dependence of the
Thom class. So we have the following three possibilities. Either Det M is 0, or B/ is invariant
for the action of so(n) on V, or the representative of the Thom class is not invariant for the
action of so{n) on V. The first term of the alternative depends on our choice of ¢ and .
The second is easily checked to occur if and only if n = 2, a case we have already treated.

So finally, we have shown that if n > 2 the representative of the Thom class is invariant
for the so(n) action on V if and only if Det M = 0.

We shall now see that despite the fact that apparently our representative of the Thom class
depends on two arbitrary functions, the single condition Det M = O fixes it completely. This
can be seen as a manifestation of the topological character of the Thom class. We shall also
see that the representative we end up with is not the Mathai—Quillen representative.

From now on, we set Det M = 0. Explicit computation shows that this equation has a
first integral. Namely Det M = Q is equivalent to

a+0pS ( c ! —1)=0. (99)
(1+1C)? z(1+tC)2 t

The term in parenthesis can be written as

_C2r+2c—a or (1 +t0)— (1 +10)?
(1 4+1:C)2 t(l +1C)?

(100)
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Now, we distinguish two cases.
Suppose first that for some value of ¢ the function 1 + ¢C vanishes together with its first
derivative. Then

l+rto [/ —1 1/t
M= < />. (101)

t r =1

Asabyproduct, M|+t My vanishes, and the equivariant Euler class vanishes. So clearly,
the function | 4 rC cannot vanish everywhere if we are to find a non-trivial class. Anyway,
the vanishing of 1+ 1C would mean that e¥ = 73/t for some constant g leading to a metric
singular at the origin. It is likely that in this case. a careful computation with distributions
would give a curvature concentrated at the origin, but we are not interested in this anyway.

On the open intervals where 1 4 1C # 0 the second factor of (99) has to vanish. We get

o 1 1 1

-+ = 102
(1+:C)?  t(14+tC)? 1t 1y 1
for some constant #9. Using (100), one obtains
1 +1tC — , -1
[V ( (L+1C) (14 (o +DC) 1 +1) ) (103)
fo (1 4+tC)tg+ 1) —(1+ (19 + 1))
leading to a remarkable simplification of (97):
to 172 . 1 S
Ejl =22 ( ) Pfaff(.Q’f - ——w'w>. (104)
o+t o+t

Now, as M>; = | + o, which has to remain strictly positive, | +7C cannot vanish at the
boundary of an open interval where it is non-zero. This means that | +Ct vanishes nowhere,
and that formula (104) is valid everywhere. This is our final formula for the equivariant
Euler class if we decide to trade flexibility (arbitrary choice of ¢ and o) for simplicity
(so(n) invariance on V, leading to a simple Pfaffian). The Mathai—Quillen representative
never shows up forn > 2.

Some comments are in order. Usually the Thom class is defined by using function with
compact support (differential topology) or rapid decrease at infinity (quantum field theory)
on V. The Mathai-Quillen representative belongs to this second category. With the general
formula, the freedom on ¢ and o allows us to impose any behavior at infinity. ® On the other
hand our rigid proposal for the Thom class does not decrease fast at infinity. Despite the fact
that this may be inconvenient in certain applications, we would like to point that it makes
sense nevertheless. To define the Thom class, the crucial point is that the cohomology of
V with coefficients having compact support or rapid decrease at infinity is concentrated in
the dimension of V and one dimensional there. It seems clear that a cohomology of V can
be build such as to retain this property and accept our rigid representative as a well-defined
cohomology class. For instance k-forms on V such that for any non-negative integer / the
partial derivatives of order / of the coefficients exist and are O(r~*+/+1/2y at infinity,
endowed with the usual exterior derivative, should work.

% In fact to localize the Thom class on arbitrary spherical shells if this proves useful.
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In particular, we can normalize things in such a way that the integral on V of the term
independent of £2 is 1, as is usual for the Thom class. A simple calculation gives for the
normalized Thom class

Ty — fo l/szaff( 1 w"wf—fz"f) (105)
YT\ +1 to+1 '

Playing with the value of 7y allows to localize around the zero section. This formula already
appears in [HL93] as a specialization of another formula for the Thom class.

5. Conclusion

In these notes, we have obtained formulae for the universal Thom class of a vector bundle.
A special choice leads to a rigid representative involving Cauchy-type kernels. It would be
very interesting to know whether the Mathai—Quillen representative, with its Gaussian-type
kernel, is also a rigid member of some natural family of representatives.
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Abstract

‘We show that the method of Wu [J. Geom. Phys. 12 (1993) 205] to study topological 4D-gravity
can be understood within a standard method now designed to produce equivariant cohomology
classes. Next, this general framework is applied to produce some observables of the topological
4D-gravity. © 1998 Elsevier Science B.V.

Subj. Class.: Quantum gravity
1991 MSC: 83C45
Keywords: 4D-gravity, Cohomology classes; Observables

1. Introduction

Since their appearance in 1988 in a famous article of Witten [13], topological field theories
have played an important role in theoretical physics as well as in mathematics. Actually, the
1988 article gave a prototype of topological field theories of cohomological type. Witten has
recognized that these cohomological field theories are related to equivariant cohomology
and more precisely to the so-called Cartan model of equivariant cohomology.

Although cohomological field theories can be described independently of the models used
for equivariant cohomology, the construction by Kalkman [9] of the so-called intermediate
model [12] is of considerable technical help. In [12], topological Yang-Mills [1,3,13] and
topological 2D gravity [4,5] were studied from this point of view. In [2], new representatives
of the Thom class of a vector bundle were produced using this general framework.

Wu [14] explained the role of the universal bundle in 4D gravity,? and exhibited some
observables of the corresponding topological model. We shall explain here how his method
can be deduced from the general approach of [12] and which observables are obtained.

1 URA 14-36 du CNRS, associée i I’Ecole Normale Supérieure de Lyon et 3 I'Université de Savoie.
2 4D topological gravity was first proposed by Witten [13].

0393-0440/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved
PI1 S0393-0440(97)00076-4
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2. From the intermediate to the Weil model of equivariant cohomology

In [12] it was explained how one can generate representatives of equivariant cohomology
classes using an idea of [6] which benefits from Kalkman’s construction [9] as follows: let
us assume that M is a smooth manifold with a smooth G-action for some connected Lie
group G (with Lie algebra Lie G). Let d o4, i o1, o4 be the standard exterior derivative, inner
product and Lie derivative on M. The action of G induces an action of Lie G, and to any
A € Lie G, there corresponds a so-called fundamental vector field A ,; on M. The space
of forms on M is denoted by £2(M), and its basic elements are those annihilated both by
ipm(A) and Ipq (1), for any A € Lie G. We recall that [y = [dpq, im]+.

The Weil algebra OV(G), dyy, iw, ly) of G is the graded differential algebra generated
by the “connection w” and its “curvature £2”

dywo = 2 — Lo, 0], (1)
dw2 = —[o, 2], 2
iwMw = A, 3
iw(\)2 =0, 4)
e = —[*, ], )]
w2 = ~[, 21, (6)

for any A € Lie G.

Then the equivariant cohomology for the action of G on M is the basic cohomology of the
graded differential algebra (W(G) @ 2(M), dw + daq, iw +iam, I + Iag). It generates
the so-called Weil model of equivariant cohomology.

Now let us consider another Lie group H such that M is the base space of some principal
H-bundle P(M, H) on which the action of G can be lifted. This bundle is also equipped with
standard differential operations: dp, ip, [p. Then some equivariant cohomology classes
can be represented as follows: consider a G-invariant H-connection I on P. Extend I to
W(G) ® §2(M), still denoting it I". Since I" does not depend on e, it fulfills

iwWIr =0, @)
(w +ip)WI =0, ®)

for any A € Lie G. This expresses the basicity of I' in the so-called intermediate model of
equivariant cohomology. In this model, the exterior derivative reads

Dine = dw +dp + Ip(w) — ip($2) &)
so that
DI’ =dpl’ —ip(82)T" (10)

and the equivariant curvature of I” in the intermediate model reads

RN w, 2) = Dined” + %[1‘, ri. an
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It satisfies

DmtRmt [Rlnl’ ]9 (]2)
iwMRS =0, (13)
(w + Ip)AR =0. (14)

The H-fibration is eliminated by considering symmetric H-invariant polynomials ;. lm =
1R,

To go to the more usual Weil model, we use the Kalkman differential algebra isomorphism
explip ()}, thus obtaining

(dw +dp) I3 =0, (15)
(iw +ip)(WIg =0, (16)
(w +1p) WG = 17

where I{;;l = explip(w)}; m? Now since the H-fibration has disappeared, I liesin W(G)®
£2(M). Under the assumption that M is a principal G-bundle over M/ g we can replace
w and §2 by a G-connection 6 and its curvature & on M. Cartan’s Theorem 3 guarantees
that our new representative gives a representative of the same equivariant cohomology class

[7,12]. Still denoting this representative by I&?, we verify that

dmly) =0, (18)
imA) Iy =0, , 19)
MM = 0. (20)

Now, we are ready to use this method in topological 4D-gravity.

3. Wu’s construction [14] in topological 4D-gravity

Let X be a 4D smooth manifold. The fundamental objects in Grg’p are the metrics of
X and the generators of the Weil algebra of Diffp(2'), the connected component of the
diffeomorphism group of X'. The structure equations then read

s'%Pg =¥ + L'P(w)g, 1)
sPY = —L'P(2)g + L*P(w)¥, (22)
S0 = 2 — Yo, w), (23)

sOPR = —[w, 2]. (24)

Let us note that the form of these structure equations is universal (i.e. independent of the
model we choose). Now, let us apply the precepts of the previous section. The group of dif-
feomorphisms of X' plays the role of the gauge group G over Met(X'). The H-fibration
is obtained by considering the frame bundle over ¥, F(X),? and our final principal

3 Note that F(X) is the principal bundle associated to the tangent vector bundle 7 X of .
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GL(4, R)-bundle P is just Met(X') x F(X'). The Diff (¥')-invariant G L (4, R)-connection
I’ on Met(X) x F(X) is given by

r=r e + 1888 (25)

where I"'LC(g) is the Levi-Civita connection of g € Met(X), and § is the exterior derivative
on Met(X) [4,8].

This G L(4, R)-connection is used in the intermediate model. Before going any further,
let us notice that in the Weil model, this connection reads

F=r>—Gp@n),t, (26)
which is comparable with (2.5) in [14]. Now, the intermediate curvature

R\l w0, 2) = Die” — }[I", T'] @7

int
gives the corresponding Weil curvature

RY (T, w, 2) =explip (@)} R (I, w, 2)
= (dw +dp)I" + 3[I", T, (28)

which is of the form (2.6) of Wu [14].
Now, let us construct some observables.

4. Some observables for topological 4D-gravity

In order to generate observables of the theory, we first eliminate the GL(4, R)-fibration.
As explained in Section 2 this is achieved by considering symmetric GL(4, R)-invariant
polynomials. The Euler class and the Pontrjagin classes generated by R&? are such poly-
nomials [10]. Actually, only the first Pontrjagin class is relevant.* Up to normalization
factors, those two cohomology classes are given by

Eyl = e 8oy (RyDL A (R, (29)
«/é m P
Pyl = (8588 — 8H87) (RyDL A (RGDX, (30)

and decompose into five terms

Ex=04+ 01+ 03+ 0} + o), (31
Py =G{+ G} +G3+ Gy + G, (32)

4 The zeroth class is trivially 1 while the second (and the highest) class is the square of the Euler class.
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where the upper index refers to the form degree on Met(Z') while the lower one refers to the
form degree on X . These expressions are to be compared with (2.9) of [14].> Observables
extracted from monomials (Es\?)’" (Pve\?)".

(E ) (Peq) 4(m+n) + V4(m+n) 1 V4(m+n)—2

4(m+n)—3 4(m+n)— 4

+V, +V, 33)

with
vyt — (o™ (GYY", (34)
VT = n(™GH G + m()™ T BHGH", (35)
=D (066
+mn(Qo)'" 'oYGH- 1G3+m(Q0>'" oL {(er

'"( mim — D) gty 02036y, (36)
nin—1)

v, = (@™ (G G5 +

V=~ (g™ «;3)"—163 +

- Dn-2
fre =D )(Qg>'"(60>"‘3(0?)3

+mn ()™ 0325 G3
+m"(” D (04m1 03(GY (G2
+mn(Qo)’” '03Gy 6y

=2 (040} (G 6}
m(m — 1)

(QO) (G4)n 2G2G3

+m (@Y™ QMUGH" + ———=

— Dm —
S )(QO)'"—3(QI) Gy, 37
V4(m+n) 4 (Qo)m(GO)n 1G4

n(n

Q)" 20303 (GH"

+ (Q0> (GH"2(GH* + GIG))

+————"( == (Qé)”’(GS)"‘3(G?)ZG§

+n(n - 1)(’12; 2)(” (Q())m (G )n—4(G3)4

+mn(Q" 1 03 (GH" G}

5 In earlier references [11] devoted to algebraic studies of topological gravity, one can find similar formulae
whose geometrical meaning is given here.
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™= (0 036636}
+m"("—_1—6)(";)<90>"’ 101G G
+mn(Q0)" ™ 03(G))" 'G5
™ o 03626y
+n'—"(’"——)(Q0)’" 2ODGY' G

mnin = D0 =D (202G 6D

+mn(Q)" 1 03(G)" ' G
—1
T 1
+nm(m — 1(m —-2)
6
+m(Q™ 1 03 (GY)"
—1
+f’—("12—)(Q3)'"—2<(Q%)2 + 030Gy
m(m — 1)(m — 2)
+ 6
m(m — 1)(m —2)(m — 3)

4ym—4 34 n
+ o @Y™ DG (38)

QY"30iGH 63

(@Y OH?03GYH"

Next, we replace w and £2 by a Diff (X')-connection ¢ and its curvature ® on Met(X'). The
corresponding forms fulfill the “descent” equations

3V, +dy V“j"’*‘ =0, (39)
IOV P 4 g(A)V4" Pl _ o, (40)
LAV P 1)V, =0, (41)

where 7 and £ are the inner product and Lie derivative on Met(X'). Finally, we integrate
over cycles on X' to obtain forms on Met(X') only

vinop = 7{ VP 42)
Yp
Exactly as in the 2D-gravity, only

V4n—4 — f V:n—4 (43)
X
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defines an equivariant form on Met(Z'). This gives observables of Grfp, which are the
analogues of the Mumford invariants appearing in Grt2°p.
An explicit expression of the Q’s and the G’s is given in Appendix A.

5. Conclusion
All the work done above can be applied to higher-dimensional gravity theory. Of course
this also applies to Yang—Mills topological theory. Nevertheless, in this last case things are

much simpler since the gauge group does not act on the space—time manifold X, while in
gravity theory the diffeomorphism group does.
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Appendix A

It was already shown in [12] that the Weil curvature takes the form

(RW)), = (RC — iz (@R + Jis @iz (@R + ;D Ay

—Jis@DC A S — 199 + 1D A D)), (A1)
where
Vi = (08pu — 12 (@)gpp) dx” = jp, dx”, (A2)
U = 8" (88ou — Lz (@)gpu) = 8" (Fou) = (8" 7))}, (A3)
(D' A ), = 8 (DY, — DU™F"). (A4)
Then, after a “straightforward” algebraic juggle, one finally obtains
o_ M LCyA LCyx
0,= —fguxgax(R Yy AR =Ex, (A5)
1 _ LCyA ; e, e, z\*
Q3 = 2%‘8\))\&7)((1e )l/« A —iz(@R"™ + ED ANy s (A.6)
P
2 _ 7 ; LC\A o (: LC
Q5= fgvlgox[(lE(w)(R )u Aiz(w)R )%

— 2(iz (@R}, A (DY A p)X

+ (DY AP, A D AP
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+ (REOL A (i (@)iz (@)R™C — iz(0)(D*C A P)
— 13§ — DI A D], (A7)

EIWPU . . ~
0} = —— 21380y (is(®)iz (W) RC ~ ig (@) (D'C A Y)

JE

~ 399 - D AQ:

A(=iz(@)R* + 1D A p)X, (A.8)

uvpo -
0} = Zﬁgugax(ix(w)iz(w)lfl‘c ~iz@)(DY A )

— 39 - DA D)

Al (@)(iz(@)RC = ig(0)(D™C A )

— 199 - DA D). (A9)

Finally, the G’s are obtained by replacing (#"°° /, /g)gvi 8oy in the Q’s by (8185 — 85 82).
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1. Introduction

Parallel transports and generalizations thereof have been repeatedly met both in mathe-
matics [[]-fi] and in global aspects of gauge theories [§—[[{], which played a major role in
elementary particle physics.

It has taken some time for the existing mathematics [[]-[[§, [l to become known to
physicists [, [L0, L —[9].

At the semi-classical level one is lead to integrate objects more general than differen-
tial forms over cycles with a result defined modulo integers; Cheeger-Simons differential
characters [f]] are privileged candidates. Their integral representations in terms of Deligne-
Beilinson smooth cohomology classes are particularly well adapted to field theory for two
reasons : first of all, they involve locally defined fields subject to some gluing properties.
Besides, they allow for natural generalizations well adapted to, at least, semi-classical quan-
tization. Indeed the latter already requires regularizing (thickening) the integration cycles,
an operation which can be performed easily within the Deligne-Beilinson cohomology frame-
work. This operation is less naive than one might think; indeed the corresponding currents
are not any longer differential forms (de Rahm currents) but Deligne-Beilinson classes. In
view of this phenomenon we shall proceed in detail from the semi-classical situation for
which the use of Cheeger-Simons characters is well adapted. In this case there exist canon-
ical integral representations in terms of differential forms with discontinuous coefficients
and therefore inappropriate for applications to quantum fields, even in the semi-classical
approximation. Fortunately, these integral representations can be replaced by others with
smooth coefficients. The latter are easily generalizable to situations involving distributions
and therefore well adapted to quantum fields. There is however a price to pay: the dif-
ferential forms involved in the classical formulae have to be replaced (non canonically) by
Deligne-Beilinson smooth classes.

We start in section f] with the prototype example of Maxwell’s electromagnetism in
which a functional integral is defined under “reasonable” hypotheses concerning the in-
teraction with an external current. The rest of the paper is devoted to a sequence of
constructions which give a mathematical foundation of the above hypotheses.

Section [J proposes three equivalent ways to describe Cheeger-Simons differential char-
acters in terms of the integration of Deligne-Beilinson cohomology classes.

Section [ presents the natural generalizations required upon quantization: the integra-
tion of Deligne-Beilinson classes with distributional coefficients.

Section f] contains our concluding remarks.

A number of technical details are collected in three appendices.

2. Maxwell Semi-Classical theory (a la Feynman)

While in a classical theory the action (when it exists) is optional (in principle, the equations
of motion are sufficient), it becomes the keystone of the Feynman semi-classical point of
view. Hence, such an action must be carefully defined. In the context of Maxwell’s elec-

tromagnetism, we consider the euclidean action defined on a 4-dimensional, riemmannian,!



compact manifold My
SEle/ F/\*F+i~“/ JNAY. (2.1)
2 My My

Quotes emphasize that we have to make precise the meaning of the second integral since A
is not a 1-form on My, but rather a connection on a U(1)-bundle over My, with curvature
F. We defer until the next section a mathematically sound definition 2 of ” J A, J N A7 for
j a 3-form with integral periods.

At this point, we only need to know that ” [ YA A7 will be defined modulo 277 and
will fulfill the following natural property : if A = Ag+ « (with Ay a fixed U(1)-connection
and « a generic 1-form), then

“/ j/\A”:“/ j/\Ao”—i—/ JNa. (2.2)
My My My

Gauge invariance requires |’ M, jA(g~1dg) € 277 which is less restrictive than the ” classical”
requirement |’ My N (97 1dg) = 0, commonly assumed [R0, 1] to hold at the quantum level.
Once the choice of definition of the action integral with the above property has been

made, we can try to evaluate the state 2 (A = 1)

<67 v “fM4 j/\A”> = /DA 67% fM4 LA “fM4 INAT , (2.3)
where A is a U(1)-connection. First let
A= A() + o, (24)

with Ay a background connection and « a globally defined 1-form. Then, denoting by
Fy = dAg the background curvature, we obtain

o . 9 1 Y . ”
<6_ i fM4j/\A > — o2 IM4 FonsFy —i- fM4]/\Ao %
1 . .
X /Da ¢~ 2 Jary donsdo— [y, Fonsdo—i [y, iAo (2.5)

The 1-form « is linearly coupled to (j+1idx* Fp) and we need to gauge fix the « integration.
Note that [ jA« is an ordinary integral. Gauge transformations connected with the identity
are eliminated by choosing a Green function (¢, the gauge parameter)

Ge = [dd+&ds)™,  €>0, (2.6)

in the subspace orthogonal to harmonic forms (the elimination of large gauge transforma-
tions will come later). So, we are led to

- . 1 . .
<€_ v fM4JAA”> — o2 Jay FoNRFO =i [y GAAOT

x ¢~ 2, UHidF) CertidRo o 7 () 27)

The subscript L (resp. ||) refers to the decomposition of forms into components orthogonal
to (resp. along) harmonic forms. We shall come to the definition of Z(j) later.

L is the usual Hodge operator.
%It will turn out that more data than just the 3-form j will be needed.
3 A linear functional on observables.



The Ay dependence can be reduced to:

2w - ” 1 s . 9
<€* i [, INA > — o2 gy FoyrsFo — i-% [y, indo”

1 . .
x e 2l 1Cexin 7 (5 (2.8)

The first term yields an overall normalization factor to be divided out. The third term is
¢ independent by dj = 0. The forms a) and jj being harmonic are necessarily closed (also
co-closed). Using Poincaré duality and assuming no torsion, we can decompose them along
a dual basis of integral 3-cycles and 1-cycles respectively

o=@ +di), g =Y G +d)
k k

with

<Ck(3)Cl(1)> = Okl » (2.9)
where the ay’s are real numbers since « is real, while the ny’s are integers since j has
integral periods. With this decomposition of ) and j);, we can formally write

Z(j)) Z/Dan@i’f%‘a“' 2/ dai e, (2.10)

where & = (a1, ..., ) and @ = (ny,. .., Ny).
Now, large gauge transformations are :

ap — o + Pk, pr € 277 (2.11)

and can be factored out by transforming oy integration into ¥ integration 0 < ¥ < 2m:
Z(j) = /dﬁeiﬁ‘ﬁ. (2.12)

These angles ¥y parametrize H!(My,R)/H!(My,Z), still assuming no torsion (torsion
yields an extra factor).
Similarly
e Iy AT iid (2.13)

)

where g, are fixed angles which may be incorporated into .
To conclude, after normalization, the state ( ) can be decomposed into gauge invariant
states labelled by the angles ¥

<€i~“fM4j/\A”> :/d1§<ei"‘fM4MA”>5, (2.14)

<ei~ “fM4 j/\A” >1§ — elﬁﬁ . e_% fA{4 ]LGE *jL , (215)
a familiar situation which provides an alternative to the commonly accepted choice [0, PT]

with

which amounts to integrate over s with the result oc 6(jy); in the latter case j = dm
are the only possible integration currents for A, while for the states defined in (R.15) the
currents j are only required to be closed forms with integral periods. In other words,
homological triviality of Wilson loops or appropriately smeared version thereof are not
consequences of gauge invariance, but rather, of some form of locality.



3. Integral representations of differential characters

In section P we have described the physical consequences of “ [ v JNA 7 being defined
modulo 277 (with j a form with integral periods). We shall now proceed to give some
substance to this assumption and write down explicit formulae.

To start with, let us recall that one can associate to any closed curve? I' in a manifold
M a closed current dr (i.e. a closed form whose local representatives have distributional
coefficients) such that integration of a form w along I' formally reduces to the integration
of 6r A w over the whole of M [R3].

We shall first try to find a satisfactory definition of the circulation integral of A along
a closed curve I' by considering various situations. This study will naturally lead us to the
mathematical notion of differential character introduced by Cheeger and Simons [J.

Then, while seeking for a representation of a differential character supported by Cech-
de Rham cohomology theory, there will emerge a defining formula for “ [, jAA 7 in
terms of Deligne-Beilinson cohomology [[[3]. We will see that for j = dr, there is a canonical
definition of this integral, whereas for general j there is a whole class of adequate definitions.

From now on, M will be a torsion-free smooth n-dimensional oriented compact man-
ifold without boundary.

3.1 Circulation of U(1) gauge fields as differential characters

Within Maxwell’s theory of electromagnetism on My, due to the triviality of the homology
and cohomology groups of R* (i.e. any closed curve is a boundary, and any closed 3-form
is exact), the circulation of a U(1)-gauge field A along a closed curve I is a perfectly well-
defined and gauge invariant integral which measures the magnetic flux through any surface
3 with boundary I' = 93, namely

uémzﬁ;ﬁA:LF. (3.1)

Of course, such a property fails for a general manifold M with non-trivial (co-)homology
groups. Nevertheless, it may be asked whether (@) can be maintained for boundaries
I' = 0%, assuming that fr A” has a mathematical meaning for any closed curve I' in M.
Let us then consider a closed curve I' that splits a closed surface X into two components
Yyand X X =¥, UX_ and I' = 0¥ = —0%_, where the minus sign takes care of

orientations. Then, we would have
“7{/1” = / F (3.2)
r i

par-—[ (3.3)

since I' = 9% _. Since F' is a U(1) curvature, we know that

Jq{ F+7{E F_yfFeZ 1) := 2irZ (3.4)

4By curve we mean a 1-dimensional embedded smooth submanifold of M.

since I' = 0¥, and




on any closed surface ¥. This suggests that, if it exists, “fr A” is only defined modulo
Z(1) := 2inZ. Otherwise stated, we can expect, for fixed A, “% $p A” to be some R/Z-
valued linear functional on the space of closed curves (cycles). Let us have a closer look at
such an assumption.

To begin with, a U(1)-gauge transformation, g, changes the connection A into the

connection A9 = A + g~1dg with the same curvature F; therefore, if (B.1]) holds

“ A9 =« A+gldg” = /F = ¢ A7, (3.5)
ox ox % ox
ie “§,- A7 is gauge invariant.

In fact, for any closed 1-form « on M, A + « is also a connection with curvature
F = dA, so that we obtain a relation similar to (B.§) with « in place of g 'dg. Con-
sequently, we can infer that connections with the same curvature may define (a priori
different) R/Z-valued linear functionals on cycles which coincide on boundaries. In this
sense, the “integral” of A on boundaries is completely defined by F'.

For a general closed curve I and any gauge transformation g, we would like to maintain
gauge invariance of * 361“ A7, which is not immediate since the term fl“ ¢~ 'dg may not vanish
(T not being necessarily a boundary). However, since g~'dg is the pullback by g of the
standard U(1) (~ S') volume 1-form, z~'dz, we have

%g_ldg eZ().
r

Accordingly, still assuming that “ ¢. A” is defined modulo Z(1), we obtain the sought after

gauge invariance
u% AQ » u% A”, (36)
r r
though T" is not a boundary.

All these requirements can be satisfied if we ask for (B.1]) and define “% $r A” to be
an R/Z-valued functional, linear in I and affine in A,%, a property which is satisfied if we

uém+qy:u£Aw3£% (3.7)

where the last integral is the ordinary integral of the 1-form ~ -in the same line of thought

set

recall (R.2)-. Then, for any closed 1-form o we have

g£m+ayzuﬁAw (3.8)

if and only if all periods of a take values in Z(1). In fact the 1-forms g~ 'dg, with ¢
running through the U(1)-gauge group, generate the space of closed 1-forms with Z(1)-
valued periods. That is, if per(a) € Z(1), we can write

o = g tdg +dX

5This is a natural demand since the space of connections is an affine space.



for some U(1)-gauge transformation g and some function A on M. Then, as far as “inte-
gration” of A on closed curves is concerned, gauge invariance is equivalent to invariance
under A — A+ «, with a a form with Z(1)-valued periods. Therefore, it is expected that
two connections that differ by a form with Z(1)-valued periods define the same R /Z-valued
linear functional on the space of closed curves.

At this point, let us make some remarks. First, if the connection A is a 1-form on M
(for instance when the corresponding U(1)-bundle is flat), we must require that the gen-
eral definition of fr A7 reduces to the usual definition of the integral of a form. Second,
up to now, we have only considered U(1)-connections on M. In a more general situa-
tion we will consider objects A®), representing antisymmetric tensor “gauge potentials”
which appear in supergravities and string theories [RJ. However, the geometric situation
turns out to be more involved than in the case of connections. Indeed, a U(1)-connection,
although it is not a 1-form on M, is lifted as a 1-form on some principal U(1)-bundle
over M. Such A®)’s will in general not be p-forms on M. It turns out that they can
be considered as connections on new mathematical objects called gerbes [[3, R4]. Here
we will not go into such an interpretation: we will consider locally defined differential
forms “A®)” on M whose differentials, F**t1 are globally defined (p + 1)-forms with Z-
valued periods on M. We will define an R/Z-valued linear functional, * fsp A®)” on the
space of closed p-submanifolds, S, of M. Such linear functionals turn out to be differ-
ential characters in the sense of J. Cheeger and J. Simons. Differential characters have
been constructed within the framework of Chern-Simons’ theory of secondary character-
istic classes, an extension of the Chern-Weil theory. They were introduced to describe,
on the base space, secondary characteristic classes of principal bundles initially defined as
differential forms on the whole bundle space (see [{] for a review, and [B] for the original
reference).

Our integrals, 3§S,, AP " are related to Deligne-Beilinson cohomology classes as pre-
sented in [[LJ] and therefore (cf. section [A.7) offer a parametrization of differential charac-
ters.

In appendix [4] the reader will find notations, basic definitions and results concerning
smooth Deligne-Beilinson cohomology groups H?(C,, D).

Our basic example deals with a U(1)-connection on the n- dimensional manifold M. In
this case there is a one to one correspondence between the second smooth Deligne cohomol-
ogy group of M, H?(Cy, D),” and the set of equivalence classes of U(1) principal bundles
with connection, (P[U(1)], A) (cf. appendix [). We will show how to integrate an element
of H?(Cq, D) over a 1-cycle, z1, and take this “integral” as a definition for “# fr A”. This
generalizes to integrating elements of HPT1(Cp1, D) over p-cycles, z, which provides a defi-
nition for ¢ fzp AP - As we shall see (section B.9) the classical Weil construction, pertaining
to singular homology, both suggests a natural definition of elements of H?*1(Cp11, D) and
of their integration over a p-cycle. In [[L§ R. Zucchini gives integral representations of
“relative” differential characters, essentially identical with ours, independently of the ex-

%In this framework, A = (2iw)A®), and its curvature F = (2ir)F®.
"cf. appendix E



pression of the integrand in terms of Deligne-Beilinson classes. Later (section B.3) we will
give another definition of the integral which avoids Weil’s analysis of the cycle and allows

for generalization.

3.2 Integration over a cycle: the appearance of Deligne-Beilinson classes

There is a natural procedure to define integration over integral cycles, based on the classic
work of André Weil [RH]. In this paper, for any simple® covering U of M, "U-p-chains” are
defined as singular p-chains, Cp, such that

Cp = 0C(g,) = Z Clop), o (3.9)

where every C(q ) o is a singular p-chain with carrier U, (here, d is the boundary operator
on Cech chains). A U-p-cycle z, is a closed U-p-chain (bz, = 0, with b the boundary
operator on singular chains). Then, it is shown that for any U-p-cycle z, of M there exists
a sequence of Cech (smooth) singular I/-chains, 2(k,p—k)

W ._
Z(p) = (Z(O,p), oy Z(kp—k)s - ,Z(pyo)) , (3.10)

where each z( ,_1) has support in some open (k + 1)-fold intersection of U, such that

2(0p) = Z(-1p) "= %
b2(kp—k) = OZ(k+1p—k-1)> ke{l,....,p—1}
b0Z(p,0) 7= Z(p,-1) » (3.11)

where by is just the “degree” operator on singular chains [23], Z(p,—1) 1s an integral Cech

p-cycle of U and (92(xp—i))ag-ap_, = Zﬁ Z(k,p—k),Bao--ap_1 -

The collection zg/;) is called a Weil descent of z,, and the corresponding equations (B.11])
a Weil descent equation of zg/;).

Now, if Z(% is another Weil descent of the same U-p-cycle z,, it differs from zg;\j)

according to

Z(0.p) = Z(0,p) + O(1p) T bt pr1),
Zhp—tk) = Z(kp—k) T Otk p—t1) + Ottt p—k) » k=1,...,p—1
Z(p,0) = Z(p,0) + bl(p,1) + Ol(pt1,0) » (3.12)

where the ¢, 141) are some Cech U-chains. Since zp is fixed, we must have

8bt(07p+1) =0 = b@t(07p+1), (313)
which means that 9t 1) is a U-(p + 1)-cycle, Zp41 which in turn gives rise to a Weil
descent

Zie) = (B0pt1) = H0p41)s Z0p)s -+ s Zbip—bt 1) - 5 Z(p41,0)) 5

8Definitions and notations are given in appendix E



so that

Zop) = Z0p) T tap + 21p)
Zikp—k) = 2(k;p—k) T O0E ke p—tt1) + Zthp—tt1)) T O (et1,p—k) + Z(h1,p—k)) >
Z(p0) = 2(p,0) + 0,1y + Z(p,1) + Ot p10) + Z(p+1,0)) » (3.14)

with k = 1,...,p — 1. Accordingly, the general ambiguities on a Weil descent of a given
cycle z, of M take the form

Z(0,p) = Z0p) + Oh(1p) s
Z(kp—k) = Z(kp—k) + 0P p—rt1) T Oh(ir1 p—r) »
Z(p,0) = Z(p,0) + bhp,1) + i), (3.15)

By identifying Weil descents that differ by ambiguities (B.17), one defines an equivalence
relation between Weil descents whose corresponding equivalence classes canonically rep-
resent U-p-cycles of M. Actually, one could introduce a boundary operator made of the
operators b and d, turning what we have just done into a homological game in which Weil
descent classes are homology classes.

Similarly — cf. appendix [A] —, a sequence
o) i= (w09, utiooD, . 00,3 <P+171>) , (3.16)

where w(FP=k) ¢ Ck(u, Q@=k)(M1)) and 51 ¢ C(p+1)(2/{) defines a Deligne-Beilinson
cocycle if
<J+5>wg}) :Dwg) =0,
ie.
dy_pwFPR) = guk=bp=k+l) g 1. (3.17)

In the above equation § is the Cech coboundary operator, d_lc% (P+1,-1) {5 the injection of
numbers into Q2 (M) and d the differential of the Deligne complex (it coincides with the
de Rham differential d, up to degree p—1 and is the zero map at degree p). By convention,
cohomology (resp. homology) indices are upper (resp. lower) indices, those referring to Cech
complex coming first.

Note that c% (#+1,-1) jg necessarily a cocycle, and, although dw®?) = 0, dw©P) is the
restriction of a globally defined closed form w(~1'P*1) with integral periods [B5). This
w1 will be called the top form of the cocycle wg)).

We can now proceed and build Deligne-Beilinson cohomology classes as equivalence
classes of Deligne-Beilinson cocycles related as follows:

w(pp) :wg) +DQp,
ie.
w0 = ,OP) 4 gg0r=1)
wbp=k) = y(kp=k) o gokr—k=1) 4 5q(k=1p=k) k=1,....p,

Loty Z Lo 4 5q0-0) (3.18)



y zZ .

where ¢FP=F=1) ¢ Ck(Z/l,Q(p*kfl)(M)) and ¢~ e C” (). As an immediate conse-
quence, all cocycles belonging to the same Deligne-Beilinson cohomology class have the
same top form.

(p)

The integral of a Deligne-Beilinson cocycle wp” over a p-cycle Z<va> is naturally defined

as the pairing

p
/W wg)) = <wg),zg/;)> = Z/ w(kP=k)

() k=0 " #(k,p—Fk)

p
— 1 (k.p—Fk)
=D D) > / war Lo (3.19)

k=0 T ag,,ap Y E(kp—k)ag o

In (B.19) the ambiguities on the representatives 222}) (resp. w(D)) of [z E/V)] (resp. [wg)])
generate terms of the form

/ d_; <5<P+17—1>+55<P»—1>> +/ d_1q 0. (3.20)
hp+1,0) z

(p,0)

These terms are necessarily integers since the chains and the cochains appearing there are
integers. In other words, (B.19) extends to classes as long as we work modulo “integers”.
This also means that the duality so realized is over R/Z, not R, i.e. of Pontrjagin type.
Actually, this is not totally surprising since a Deligne-Beilinson cohomology class defines a
form up to a form with integral periods (cf. appendix [4]).

Many of the equalities we will encounter only hold true mod Z, accordingly we shall

13

. 7
use the notation “ = ” to mean “= ... mod Z”.

With all this information, we finally set

/[ g)} ‘_/[ [ (p) Z/Z(kp ) kp-h) (3.21)

( )

for any representative of [wg )] and [zzgj)] to which we shall refer to (B.21) as the “Defining
Formula™.

Let us note that the linearity of (B.21)) with respect to z, is clear since all descents are
linear.

3.2.1 Examples

Let us apply (B.21) to two simple cases. First, consider the situation where the cycle z,
is a boundary: z, = bc,11. Due to the equivalence of singular and Cech homologies, any
Cech p-cycle, Z(p,—1), arising from the descent of z, is a Cech boundary, i.e.

Z(p7_1) = aC(p+17_1) 5 (3.22)

for some integral Cech chain C(p+1,—1)- Then, the corresponding descent has a representative
of the form

Z(p) = ( (0 p) — bC(07p+1) 0. ,0, PN ,O) N (323)

,10,



with dc(gp41) = ¢p+1. Accordingly, the integral of [wg )] over this trivial cycle z, reads

/ [wgﬂ] / L0p) Z / dw0p) Z / 5 1o (—LoHD)
Zp beqo,p+1) €(0,p+1) (0,p+1)

/ Lo—Lptl) Z / w(=Lptl) (3.24)
9co,p+1) 1

This property is exactly what we were expecting when we considered the integration of a

IS

IS

U(1)-connection (cf the introduction to this section).

Second, let us assume that the (p + 1)-form associated to [wg? )] is exact. Then, it can

be shown that there is a Deligne-Beilinson representative
W) = <w<ovp) — 5 1450, 0,... ,0) (3.25)

(p)

of [wpy’], where w=bptY) — ¢4(=1P)  The integration formula now reads

/ [wg)} E/ w(0:p) E/ 5_1qLP)
z ( Z(0.p)

P 0,p)

/ S 2 / el (3.26)
9z(0,p) z

P

IS

as expected. Indeed, on the one hand, as we write w("1PtD) = dg(=1P)  we canonically
associate to w("1PTY 4 definite form, on the other hand, we have emphasized the fact
(p)
D |

that a Deligne-Beilinson cohomology class [wr,’] defines a p-form on M, up to p-forms with

integral periods, ¢(~1?). It is then natural to find that the integral of [wg’)] over a cycle

coincides -up to integers- with the integral of ¢(~P) over this cycle.

3.3 An equivalent integration over the whole manifold

In the previous approach that led to the Defining Formula, we have only dealt with integrals
defined over cycles. In view of further generalization we shall first express those as integrals
over the whole manifold M. A way to do so is to construct a version of Pontrjagin duality
in the Deligne-Beilinson framework. In other words, we construct a (non smooth) canonical
Deligne-Beilinson cohomology class [77%1 ) (z)] associated to any singular p-cycle z on M
and a cup product (Up) [A, [L1], [ such that

/Z 8] = /M Wi | up 50 (=)] (3.27)

for any Deligne-Beilinson cohomology class [wg )]. We refer the reader to appendix [B| for a

construction of (a representative of) [ngl P 71)(2)]. Now, let
e zZ
ngl P 1)(2) — <n(0,n—p—1)7 o ’n(n—p—l,O)’ n (n—p,—l)) ’

be a representative of [ngl - _1)(z)] and

o) <w<o,p), 00 L <p+1,1>) ,

— 11 —



a representative of a Deligne-Beilinson cohomology class [wg )]. Then a representative of
(p) (n—p-1)

the cup product [wp’] Up [1p (z)] is given by
(w«xp) Dy On D 00 gy Onp=1) B D) Onp-1)
5 +1,-1) unnP=1.0), G +1,-1) UTZ](n—pﬁ—l) > . (3.28)

The cup product U within the Cech-de Rahm complex is defined in [B7]. In this Deligne-

Z Z L
Beilinson cohomology class, w PT1=1 yn (»=2.=1) s an integral Cech (n 4+ 1)-cocycle which
is necessarily trivial since the covering of M is simple. Hence

Z41,-1) | (nmp—1) _ g% (1) (3.29)

. V/
for some integral Cech n-cochain X =Y. Accordingly, considering M itself as a cycle we

can associate to it a Weil decomposition ?
MW = (m(o,n), . ,m(k,n,k), ce ,m(mo)) y (330)
so that we obtain
P
/ @) up [ )] 23 / W E=k) ) gp(On—p=1) |
M k=0 M (k,n—k)
n
S / 5 01,-1) | (b=p=Lin—k)
k=p+1 "7 M (k,n—k)
z zp: / (k:0=k) | g )
& k,p—k 0,n—p—1
= w udn . (3.31)
k=0 """ (kn—k)

It has to be noted that not all representatives of [M"V] and of [ngL —=1) (z)] are suitable.
Indeed, representatives of [ngl P _1)(2)] are de Rham currents and so cannot always be
integrated on a singular chain. Strictly speaking, the integration is possible only when the
current and the chain are transversal; this is the same problem as encountered in trying to
define the product of distributions. Intersection theory of chains in R™ assures that there
exist representatives of [M"Y] and [322})] for which (B.31)) is well defined. More precisely the
allowed ambiguities on the representatives of the m’s and the 7)’s are just those required to
set the chains they represent in “general position”, so that their intersection can be defined
(see for instance [PG]). Then we can show that (B.3])) gives, up to integers, the same result
as (B.21).

We shall refer to formula (B.31)) as the “Long Formula” which obviously allows to
generalize the integration of [w(Dp)] over cycles in the sense that we can now define the
Deligne-Beilinson product of [wg) )] with any Deligne-Beilinson cohomology class [771(;1 P _1)]
(not necessarily representing a singular cycle) and integrate over M. As an exercise, one
can check that the two simple cases presented in subsection (B.2.1)) lead to the same results
when using the Long Formula, instead of the Defining Formula.

9Which is nothing but a polyhedral decomposition of M, as defined in @}

— 12 —



3.4 Smoothing

Instead of using singular chains as in the previous construction we use here de Rham chains
which are equivalence classes of singular chains — for which the integrals of any smooth
form on M are the same (23, p. 28]) —. Accordingly we introduce de Rham integration

currents

T(z)n];p+k

associated with z , 1), elements of which can be seen as (n — p)-forms with compact
supports (and distributional coefficients). In analogy with (B.1()) we obtain a sequence of

currents
n— n—p+k n
T (2) = (T(2)" 7, ..., T(2)" P ), (3.32)
and the descent equations
dT(=)" " = 0T ()" T (3.33)
fork=1,...,p—1and
O =TT =T) [ TE} el (3.34)

where T'(z) is the integration current of z and [2(, _1)] is the Cech homology class of z in
M. In terms of these de Rham currents, the Defining Formula reads

p
(18] 25 [ rorro s
z k=0

where we define:

n—p+k kp—k) _ 1 n—p+k k.p—k
T(z)y P o wkeh) = ] Yo T AGkeh (3.36)

0, -, Qk

As a special case, the whole cycle M gives rise to a sequence

Tow(M) = (T(M)g, Tk, ,T(M)g) , (3.37)
with
dT (M)}, = OT(M);*] (3.38)

OT (M) = T(M) %y == T(M) = 1; /M T(M) € [mn,1)], (3.39)

[m(nv_l)] being the Cech homology class of M. Accordingly, the Long Formula now reads

L] e )

> / T(M)F o <£ <p+1v—1>un<’f—f)—1v"—k>> . (3.40)
M

+
k=p+1

,13,



The allowed ambiguities of de Rham currents representing [Tyy(M)] are bigger than
those implied by the Weil descent in the decomposition of M, except at the first and the
last steps — cf. (B-39) —. Indeed, in (B.4Q) an ambiguity may be any de Rham current
and not necessarily the integration current of an integral chain as in the case of (8.30), in
particular it can be any smooth form (but still with compact support). This freedom on
the ambiguities allows us to smooth the T(M )ﬁ currents occurring in the Long Formula,
replacing them by differential forms induced by a partition of unity on M, as shown below.

Let us seek for sequences of (smooth) forms that satisfy the same descent equations
as Tyy(M) and such that when substituted into (B.4Q) they define the same integrals.
Concerning the descent equations, it is well-known (see for instance [25]) that a partition
of unity on M, subordinate to the simple covering i of M, gives rise to a sequence of forms

Ow(M) == (93,...,0%, ..., 0" ), (3.41)

n

which satisfy homological descent equations
Aoy = 99yt (3.42)

k=1,....,n—1, as well as
o0y =9"1=1. (3.43)

Furthermore, since M is supposed to be compact, the forms 19’]2 can all be chosen with
compact supports in their defining open sets. Due to the smoothness of all the components
of ©y (M), the second constraint of (B.39) reads

[ =t + Orui (3.44)

where t(,, _1) is an integral Cech cycle while T(n+1,—1) 18 a real Cech chain. That is to say,
Uy defines an integral cycle up to a real boundary. Using homological and cohomological
descents, one can show that ¢¢, 1) € [m(n,_l)]. This is mainly due to the fact that the
integration of any closed n-form on M can be performed by means of a partition of unity
on M.

Let us compare Ty (M) with ©yy(M) in order to replace Tyy (M) by Ow (M) in (B.40).
To begin with,

MY — 0Ty =0 = 95 —TQ=0RY +d_1Ry", (3.45)

with d_1 Ry = 0, hence OR;' = 0. As M is connected Ho(M,R) =0, Ry' = oR;". Ty
can be replaced by 99 in (B.40) since

/M d-1Rg' o (OO uan®n D) /Md (R o (WOrOuan®rD) | <o,

(3.46)
Thus R, ' can be ignored in (B:4H) and the first step of the descent reads
o(0] — T} = d(9) — 1)) = dORY = ddRY, (3.47)
so that
9t — T} = dR) + OR) . (3.48)

— 14 —



Similarly

O — TF =dR}™ + OR} 4, k=1,...,n. (3.49)
Finally, the constraints (B-34) and (B.44) give
/ (Wp =T =0\, 1, =0 / R .. (3.50)
M

Now, if we replace T,f by 192 and its ambiguities, the Long Formula reads:

P
é k (k,p—k) (O,n—p—l)
/M(. ) Z/M (y40} <w udn > +
n Z / 9o ( (p+1,— )Un(k—p—l,n—k:)) n

k=p+1
+/ R, © (a%(“l’l)un(”PlvOO : (3.51)
M

The last term in this equation gives

/ R,y 08 (G0 10y — / R, o6% ™D
M M

_ / DR, o x D) = / W7 — T o X " 452)
M M

Since all integrals of T7"’s are integers, we obtain

/ Rn+1 (C%(erl’l)UT]n p— 10)> / ﬁn@X

so that the (smoothed) Long Formula reads

p
/Z[wg)} - Z /M 40 (w(’“’p*’@udn(()mfpfl))
(p+1,-1) ) py(k—p—1,n—k) n Z(n,—l)
+ Z / I < un >+/Mz9n@x . (3.53)

k=p+1

Let us make some final remarks. First, if the simple covering & of M is such that all
intersections of order larger than n + 1 are empty — we shall say that U is “excellent” —
we deduce that

z
/ mox ™D ez, (3.54)
M

which leads to

p
/ W] 2 Z /M%@ (w0527 uag@r0)
+ Z / e < (p+1,~ )un(’f—P—L”—’f)>. (3.55)

k=p+1

In other words, with respect to an excellent covering of M, the 19’,2’8 play the role of
the integration currents T'(M)¥ of the Weil descent of M.

,15,



Second, the previous construction, i.e. the smoothing, cannot be applied to the Defin-
ing Formula without care. Indeed, a simple covering of M does not always induce a
simple covering on the p-cycle z,, so that, although a (p + 1)-cocycle on M reduces to a
(p + 1)-cocycle on z,, this cocycle is not necessarily trivial. Therefore we cannot establish
a smoothed Defining Formula in full generality. However, let us assume that z, admits a
tubular neighborhood, V., such that Uy, - the restriction to V, of the simple covering U of
M - is also simple. Then, as a tubular neighborhood, V', has necessarily the same cohomol-
ogy as zp, and since U)y, is simple, this cohomology is also the Cech cohomology of Uy, .

3 zZ

In particular the Cech (p 4+ 1)-cocycle, w ®*1=1 on M is also a (p + 1)-cocycle on V, and
Z Z .

is necessarily trivial on it, that is: w @t = §® =1 for some integral Cech p-cochain

f%(p’_l), just as in the case of the Long Formula. With all this, a natural candidate for a
smoothed Defining Formula would be

p—1
/ @] 23 [ showte o / 2o <w<p7o> _é(p,—n),
Zp Zp

k=0"%p
which compares to the smoothed Long Formula (B.53).

As a third remark, one can wonder what is the relation between the Defining Formu-
las and the decomposition A = Ay + a used in section J in the case of U(1)-connections.
Let us consider two Deligne-Beilinson classes, [wp] and [yp], representing the same Cech
cohomology class, [€], as detailed in appendix [A.§. We know that [wp] and [xp] dif-
fer by a Deligne-Beilinson class, [(da)p] coming from a global form « on M. This ex-
actly corresponds to the standard decomposition A = Ay + « for U(1)-connections met
in section Pl This can also be seen at the level of the integrals : choose representatives
(wOP) ... M(M)j%(pﬂﬁl)) and (x(OP), .. .’X(p70)7§Z<(p+1,*1)) of [wp] and [xp] respectively,

and write the previous decomposition

(Xm,p)’“_,X(p,o>,§zc<p+1,—1>> _ <w(0,p>,._.7w<p,o>,£(p+1,—1>> +(0,....0.60) +
Z
+D(q077) o g0, gy, (3.56)

Z A
for some [¢p]. By assumption XP+L=1) and w®*+L=1 are cohomologous, so

/ZP[XD] @/ZP[@H/Z o

D
This result also means that the standard decomposition A = Ay + « of U(1)-connections,
extends to any generalized p-connection.

A final remark on notations, we could have denoted the integral over z, of the class

(e8] 50))

[wp’] simply as:

[

IS

L IR (L (P+L—1), Zop) T oot Z(p’0)>
7 n—p—
2 (L@ up s V), M) (8:57)

,16,



which has the advantage to make easier the proof of independence with respect to the
various representatives.

4. Integration of Deligne-Beilinson classes with distributional coefficients

In any quantization procedure, w will be by nature distributional and integration over a
cycle will, in general, be ill defined so that the integration current of the cycle will have
to be replaced by some regularized form. This is the situation which has been exhibited
in the example of section P A canonical way to perform such an operation for [wg)] of
distributional character is to use formula (B.53), (B.57) with zg% replaced by a smooth

Deligne-Beilinson class [j(D" —p=1) |, the integration formula being

p
(Wf1up g7 ar) 23 [ oo (wtrPugionrn) +
k=0

S / 9o <£<p+1,—1)uj(k—p—1,n—k>>
M

k=p+1

+/ I X D) (4.1)
M

Note that (1)) is — mod Z ! — symmetric in [wg)] and [j(Dn_p_l)], as can be easily
verified. Whereas we have shown that to the current of a cycle 2, is associated a special
Deligne-Beilinson class [nghpfl)(z)], the map z, — [nghp*l)(z)] being analogous to the
cycle map in [fl], we do not know of such an assignment in the case of a smoothed version.
It(is exgl);acted that after renormalization some of the characteristics of the regularized class
[.n—p—

Jp | will survive.

5. Conclusions

We have described in some details a class of topological actions which are “topological”
in the sense that they are defined modulo “integers”, a situation repeatedly met in semi
classical treatments of various field theories involving particular geometries (mostly gauge
theories, including gravity). They are described by integral formulae which involve refine-
ments of closed differential forms with integral periods named Deligne-Beilinson cohomol-
ogy classes. The integrals are written as pairings of two such classes in such a way that one
of them may have a distributional character as demanded in most field theory contexts.

A. Deligne-Beilinson cohomology

We have not been able to find an elementary discussion of Deligne-Beilinson cohomology
in the mathematical literature. The purpose of this appendix is to fill in this gap, con-
centrating on the computation of Deligne-Beilinson cohomology and on the proof of its
independence upon the covering. For more algebraic exposés we refer to , B]
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A.1 Definitions and notations

As in the main text, M denotes a compact differentiable manifold of dimension n, and
{UYaer a simple covering'® of M, M = Uyeiiy. A Cech cochain of degree k with values
in an abelian group G is a collection of elements cqy..., 0of G, one for each intersection
Ung--.ay,» Which is totally antisymmetric in all its indices and vanishes on empty intersections.
A Cech cochain of degree —1 is a constant map from M to G.

The Cech differential, §, maps (k — 1)-cochains to k-cochains and squares to 0. Acting
on (—1)-cochains, § is the restriction : (dc)o, = ¢ on any non empty U,,. For k > 1, if
Cag--ay_y 18 a (k — 1)-cochain and Uyy...q,, # 0,

k
(0€)ag-ap = Z (=) Cagas o (A1)
=0

)

were the ~ means omission.

The elements in the kernel of § are Cech cocycles, those in the image of § are Cech
coboundaries.

In the sequel, we shall have no use of general abelian groups G, but R ( for real Cech
cochains), Z ( for integral Cech cochains) and R/Z will play preferred roles.

One can also consider Cech cochains where each Cag--ay, 18 a differential [-form defined
on Upyg-a,,; Such cochains are often referred to as Cech-de Rham cochains of bidegree (k, 1).
In Cech degree —1, we retrieve global differential I-forms defined on M and ¢ is still defined
by restriction. On these “extended” Cech (k — 1)-cochains, k > 1, the action of ¢ is still
given by ([A.1]) except for an overall multiplicative factor (—)"*! on the right hand side :
each term makes sense with the proviso that it is restricted to the corresponding (k+1)-fold
intersection . This leads to the space'’ denoted by C*®)(2/,Q!(M)) in the main text. To
save space in this appendix, we shall denote it simply by QD (R), because most of the
time M and U will be fixed.

By convention, a “purely Cech ” cochain with constant coefficients (in a subgroup G of
R) receives form degree —1, so it belongs to Q%=1 (@). The de Rham differential d maps
QED(G) into QFHD(G) for k> 0 .12 We extend d to (—1)-forms as the injection which
maps an element of G C R to the corresponding constant function. This is sometimes
denoted by the symbol d_;. This extension still satisfies d? =0 .

Later in the appendix, we shall need to compare several simple coverings. Suppose that
the simple covering V = {V,},cs of M is a refinement of the simple covering U = {Un }acr
: this means that there is the restriction map r : J — I such that V, C U, () for all
indices o € J. A Cech k-cochain, c, for U can be restricted to V : if the intersection Vy,...q,,

10Such an open covering is alternatively called a good covering in [@] This means that any finite
intersection of U,’s, Uag--ag = Uag N - NlUay, (o, +,aq) € Iq“, is either empty or diffeomorphic to
R™.

1A more appropriate language for this setting involves sheaves, but we shall not use the corresponding
terminology.

2The sign factor (—1)"™ insures that d§ +dd = 0.
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is nonempty, then 8o is U,.(5)...r(), and

T(C)oo---ak = (Cr(cro)"'T(Uk))|V(,O.4.U]C ’

The Cech and de Rham differentials commute with restriction, i.e. § o = r o § (it being

understood that the Cech differential on the left-hand side is for the covering V and on the
right-hand side for the covering ) and dor =rod.

A.2 Deligne-Beilinson cochains

Take an integer 0 < p < n + 1 ( n the dimension of the manifold) and consider the double
complex

Q(O,—l)(Z) d_1> 0O, 0)( ) _d .. d Q(O,p—l)(R) _0_ 0

1 6 0

Q=1 (z) G QLO(R) I QUP=D(R) —2> 0

s s s
Q@-1(z) Ay QEO(R) R (R) —=0

0 6 0

The columns of this diagram form standard Cech complexes. The rows are Deligne com-
plexes of index p, that is de Rham complexes extended to the left by d_; (the injection of
integral constants into real functions) and truncated on the right at (p — 1)-forms by the
0 map. We denote by d this modified differential, to avoid confusion with the de Rham
differential, d.

We build a new “diagonal complex” from this double complex. The space Cf of
Deligne-Beilinson cochains of degree ¢ > 0 (with fixed index p) is defined by

(

+ZQ kkl ) for0<g<p
Cl = —i—ZQP kkl ) for ¢=1p

q’_l +ZQ(‘1 kok—1) R) for ¢ > p

\

Elements of these spaces are respectlvely represented by the following sequences :

. <C<o,q1>7...,% (q,1>>, . <c<o,p1>,...7% <p,1)),
- <c<q—p,p—1>, L (q,—1)> 7

with the last element Z-valued.'?

30Our complex contains (1 (Z) while in the literature one usually finds Q@Y (Z(p)), where Z(p) =
(2¢m)Z. This difference is irrelevant for our purpose.
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We set Cp:CgEBC;EB'--.
The operator D = d+ ¢ maps C} to CEH and, due to the sign convention in the defini-

tion of § on I-forms, D? = 0. The complex (Cp, D) is called the Deligne-Beilinson complex,'4

and the elements of C, Deligne-Beilinson cochains. We write Z = {KerD O — Cg“}

(resp. Bp = {ImD Xo e }) for the space of Deligne-Beilinson cocycles (resp.
coboundaries).
We are interested in the cohomology of (Cp, D). A priori, it depends on the covering,
but we shall see later that the cohomologies for simple coverings are canonically isomorphic.
The projection 7 : Cf — Q&= (Z) gives a chain map

D D D

Cg Cngl
lﬂ' lﬂ'
L0 Qle=1(7) o Qlat=1)(7) _o0 .
so that in all cases, there is a canonical map H%(C,, D) — ngch(M ,Z). The computation
of HY(Cp, D) goes along different lines whether ¢ <p—1or¢>p—1.
A.3 Computation of H(C,, D), ¢ <p

In this case, we use the Poincaré lemma for differential forms (ensuring that for forms of
nonnegative degree, the de Rham cohomology is locally trivial) to show that

HY(Cy, D) ~ HE— (M,R/Z) (I

(the isomorphism is canonical). In particular, the canonical map
HY(C,, D) — H%ech(M, Z)
maps H?(C,, D) onto the subgroup ngch(M , L)torsion Of torsion classes.

Proof. Suppose ¢ = (c(o’q_l),c(l’q_z), . ',c(q_l’o),% (q’_l)) is a Deligne-Beilinson cocycle.
This implies that dc(%9=1) = 0, and since g < p— 1, the operator d in this equation
is the standard de Rham differential. So, by the Poincaré lemma, there is an element
p04=2) e QOI=2)(R) such that ¢4~ 4 dp(®4=2) = 0. Accordingly the cocycle ¢ is
cohomologous to the cocycle

c _|_ Dp(07q_2) = <O’ Q(lvq_2)7 e ,C(q_LO),% (q7_1)> ,

where ¢(14-2) = ¢(1,a=2) 4 5p(07q72).

The cocycle condition for ¢ + Dp(®7=2) yields de(972) = 0 were d is the standard
exterior derivative. The procedure can be iterated to show that the cohomology class of ¢
contains a representative of the form

(07 e 707§(qfl,0)7% (q,1)>

1A better notation would be (C,(M),U, D).

— 20 —



with the standard descent equations fulfilled :

dc(q_170) — 0, 5Q(q_170) — d—l % (qv_l) , (5 % (‘L_l) — 0 .

The first equation just tells that ¢(?=10) = d_;p@=1=1  where the components p(¢—1=1)

are real constants. This, combined with the second equation, implies that the integral Cech
cocycle % (@-1) is exact as a real cocycle, so that it represents a torsion class.

Reduction modulo 1 turns p=b=1 into an R/Z Cech cocycle and the ambiguity on
cl4719) (mod 1) is a Cech coboundary. So we have proved the announced result, (I), which
is also the content of the following exact sequence [[L3]

0——=H9"Y (M, Z(p))—=H9" (M, R)——=H*(Cp, D)——=H(M, Z(p))torsion—>0.

A.4 The Cech homotopy operator

Here we introduce the Cech homotopy operator that we shall need to compute H9 (Cp, D) in
the special cases ¢ > p. This homotopy!® operator, which depends on a partition of unity
defined on M, is instrumental to establish the generalized Mayer-Vietoris exact sequence,
the Cech-de Rham isomorphism and the Collating Formula [27], a construction we illustrate
below.

A.4.1 The K operator on the enlarged double complex

Consider the following double complex :

QELO(R) — L= L Lo (R) —2s
5 5
001 (7) 600 R) —%> - —Ls Or-DH(R) —L>0
5 5 5
Q-1 (z) 6o R) —1> - —Ls qUr-DHR) —Ls0
5 5 5
0@-1)(z) 6o (R) —2> - —L - Cr-1(R) —2>0
5 5 5

where the de Rham complex of global differential forms truncated at degree (p — 1) has
been added at the top. We extend the definition of D to this enlarged complex.

Let us choose a partition of unity 9, subordinate to the simple covering {Uy }aer of
M: each ¥, is a (smooth) non-negative function on M with compact support in U,, and
Y o Ya is the constant function 1 on M. On the enlarged complex, define an operator K
(depending on the chosen partition of unity) as follows.

15Ensuring that the Cech cohomology for forms of nonnegative degree is trivial.
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Take ¢ = {cag--a,} € Q*D(R), k,1 > 0. Due to the support properties of the 94 ’s,
Cap--ap * Vo, (extended by 0 outside Uy, ) is a smooth differential form in each nonempty
Ung ey, Let Ke={(—)H! >y, Cagar * Vay } € Qk=LD(R).

For ¢ € QCLO(R), 1> 0, set K¢ =0, and for ¢ € QB~1(Z), k > 0, set Ke = Kd_jc €
O (k—1,0) (R)

Though we shall not try to compute its homology, note that K? = 0 so K is a boundary
operator (or equivalently a co-differential).

A.4.2 The homotopy property and the fundamental identity

Algebraic manipulations show that Ké + 6K is the identity operator on Q(k’l)(R), k >
—1,1 >0 and d_; on Q*~1)(Z), k > 0. In particular, in the enlarged double complex, the
vertical Cech complexes in nonnegative de Rham degree have vanishing Cech cohomology,
since K is a homotopy operator.

Acting on the enlarged double complex, K d lowers the Cech degree by one unit, so K d
is locally nilpotent and 1 + K d is invertible : locally the geometric series for (1 + K cZ)fl
stops after a finite number of terms. Moreover, as a consequence of

@+Jn®(J+5)—5a+4nb=d44n%—5K&=(1—Aﬁ—5K)J:o,

(the first equality uses d? = 0, the second d§ = —dd and the last one that the image of d
lives in de Rham degree > 0 where K + 0K = 1) one derives that on the enlarged double
complex, D and J are conjugate, that is

(1+Kd)D=6(1+Kd). (V)
This fundamental identity (©) is at the heart of the computation of the Deligne-Beilinson
cohomology when ¢ > p as shown later in [A.§ and [A.6. It can also be useful in other
contexts as illustrated below.

A.4.3 Relation with the Cech-de Rham isomorphism

Suppose that in the first column of the enlarged complex we replace the coefficient group
Z by R, and that we take p = n + 1, n the dimension of the manifold, so that the lines
are usual de Rham complexes, hence d = d in this enlarged context and the (V) identity
can be written (1 + Kd)D = 6(1 + Kd). This double complex is a Cech-de Rham complex
with differential D = d + § and of course ¢ < p =n + 1. In the sequel this is the complex
we have in mind when we refer to Cech-de Rham cochains, cocycles or coboundaries.

On the one hand if ¢(¢~1 e Q(q’*l)(R) is a Cech cocycle, it is a D-cocycle, hence its
top component (—Kd)qﬂc(q’*l) is a global closed ¢-form, i.e. a de Rham g-cocycle.

On the other hand if ¢(@=1 is a Cech coboundary, ¢@1) = §y(@=1=1 for some
yla=1=1 ¢ Qla=L=1(R), then using (V) (1+ Kd) 'el@™V) = D(1+ Kd)~ '@ is a D-
coboundary. Identifying top form components, (—Kd)?+1¢(¢~1 is a de Rham coboundary
d(—Kd)1~a-1L=1),

Finally, if ¢ = (c(-19),... @10 (&=} is a D-cocycle, ¢/@~1) is a Cech cocycle,
(=19 ig a closed global de Rham ¢-form, and ¢ is D-cohomologous to (1+ Kd)_lc(q’_l).
Indeed, start from D(1+Kd) 'K (c—c@= V) = (14 Kd) " '6K (c— 1), a consequence of
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the (V) identity. As ¢ —c(®~Y has no component in de Rham degree —1, §K (¢ — c(®@~1) =
(1 — K6)(c — ¢/2=Y) by the homotopy property. By Dc = 0 = §¢(@~ Y| we obtain finally
that 0K (¢ — ¢~ 1) = (1 + Kd)c — %=1, Multiplication by (14 Kd)~! leads to

= (14+Kd) ' 4 DA+ Kd) ' K(c— 7)) (%)

proving that ¢ is D-cohomologous to (1 + Kd) '¢@~1). This implies that ¢(~19 is d-
cohomologous to (—Kd)?+1 (@~ explicitly,

qg—1
L) = (K d)rtiele— +d< Z —dK)"ema1= *>>

r=

which is the famous Collating Formula; see e.g. [@], where it is used to prove that ¢(¢—1) —
(—Kd)9t1 @~ which maps (real) Cech cocycles to de Rham cocycles and (real) Cech
coboundaries to de Rham coboundaries induces an isomorphism in cohomology. With
notations closer to the ones used in the main text, the Collating Formula can be rewritten'®

L) — g (198 LA0amD) gl e g gt c(q—1,0>> + 99 clomD)

The Collating Formula is related to the Weil theorem which can be rewritten neatly
using the Deligne-Beilinson machinery.

First, observe that C’p+1 = Cb but 2P i1 C Z5. Indeed on QOP~1) Cgﬂ the operator
d is the genuine de Rham differential, while on Q21 ¢ C? it is the 0 map, so the condition
to be D-closed is more stringent in the first case. If ¢ = (c(o’pfl),c(l’pd), R AC b
%(7”*1)) belongs to ZF, the standard de Rham differential applied to c0P=1) Jeads to a
global closed p-form. Indeed, 6dc®P~1) = dgcOr—1) = +420r=2) = 0, so de®P~b is
the restriction of a global p-form, which is obviously closed. So there is a canonical map
{KerD :Ch— C£+l} - {Kerd : Q1P — Q(=1P+D1 . The image of this map is not
totally obvious, but this is precisely the content of Weil’s theorem [@] the sequence of
abelian groups

0 zP

- i zp—m {Closed global p—forms} 0

with integral periods
is exact.

A.4.4 Refinements

If the simple covering V = {V, },cj of M is a refinement of the simple covering U = {Uy }ner
and {¢,} is a partition of unity for V, we define a (compatible) partition of unity for U
{Va} =1 Z ¢ }. For compatible partitions of unity, the homotopy operator commutes

oeJ
r(o)=«a
with restriction, i.e. K or = r o K (it being understood that the homotopy operator on

the left-hand side is for the covering V and on the right-hand side for the covering U/). To

15¢f. (B.41)~(B43) in the main text for properties of the 6)’s
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summarize, restriction commutes with 9d, d, D and K :
dor=rod, dor=rod, Kor=roK, Dor=robD. (A.2)

We could say this more pedantically by drawing the Deligne-Beilinson complexes (or
their enlarged versions) for & and V on top of each other (in three dimensions) and stating
that restriction is a (co-)chain map for all differentials or co-differentials defined up to now.

A.5 Computation of HY(C,, D), ¢ > p

We show that for ¢ > p ,

HY(Cp, D)~ HY (M, Z)  (II)

(the isomorphism is canonical).
Proof. Start from the simple observation that for ¢ > p one has the inclusion Kd(C}) C Cf,

so that one can freely use (1 + Kd)D = §(1 + Kd) to compute H(Cp, D).

d Cp d C’g“ 0 is con-
centrated in de Rham degree —1 because ¢ does not change the de Rham degree and has no

The middle cohomology in the complex 0 Cg_l

cohomology in nonnegative de Rham degree due to the existence of the homotopy operator.
z .

So this cohomology is simply ngch(M, Z). If ¢ =Y ¢ Q@=1(Z) ¢ Cf is a Cech cocycle,

(1+Kd)™! €@ g, D-cocycle. Conversely if the cochain ¢ = (c(@=PP=1 ...

z (@=1D) € ¢ is a D-cocycle, ¢ (@1 is a Cech cocycle and the relation (*) is satisfied i.e.
c=(1+Kd) ' ¢@ D4 D1+ Kd) 'K(c— ¢ @ D).

Hence the projection map 7 : Cjp — Qo1 (Z) descends to an isomorphism in cohomology
which proves the announced result (7).

A.6 The case ¢ =p

A full description of HP(C,, D) is complicated in general, but it fits in all cases into an
exact sequence of abelian groups'”

Cech

Closed global (p — 1)-forms
with integral periods

}—>Qp_1(M7R)—>Hp(Cp,D)—>HP (M,Z)——=0
(II1)

Proof. We shall treat separately the cases p = ¢ = 0 and p = ¢ # 0, starting with the
latter. ; ;
Let ¢ = (0P~ ... p=1.0) ¢ (p.=1)) ¢ Ch be a D-cocycle, then ¢ =1 i a Cech

cocycle and (%) tells us that

c—(1+Kd)™ é¢®V = pa+ Kd) 'K <c ¢ <P’—1>> :

YFor instance, when p = 2, we recover the classification of line bundles with connection modulo gauge
equivalence, as expected. This case is treated in detail in appendix @
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However, we now have K J(C’g) c Cf + QELO(R), in contrast with the previous case
for which we had the inclusion Kd(C{) ¢ CZ. Accordingly, as an element of CE~' +

QE=LP-1)(R), (14 Kd) 'K (c— f (7=1)) has a component, say v(~5P~1 in Q-LP~1(R),
so we cannot conclude that ¢ and (1 + K d)~! ¢ D) are D-cohomologous. Nevertheless
dy(=1P=1) =0 (not d !), hence ¢ is D-cohomologous to (1 4 Kd)~" ¢ + oy(=1p=1),
Conversely, the cochain (1 + Kc‘lv)_1 ¢ 1) + 67(=1P=1) ig a Deligne-Beilinson cocycle
whenever v(=5P~1) is a global de Rham (p — 1)-form and ¢ 1) ¢ QP=1(7) is a Cech
cocycle.
So we have exhibited a family of “reduced” representatives

(1+ Kd)™* ¢ = + gL (xx)

of Deligne-Beilinson cohomology classes.
Decomposition (xx) leads us to consider the following maps

Tie= (Cm,p—l)’ oo 0m10) G (p,—1>) €Cr ¢ =D ¢ o101, 7),

(already met in subsection [A.2), and

¢ P e QELPD(R) s (5y71P7Y 0,...,0) € CF.
We provide Q(-1P~1) with the trivial differential = 0, so that = and ¢ are maps between
complexes. It is quite easy to check that these two maps are chain maps, i.e. ¢-0=D - ¢
and w- D = § - 7, hence, passing to cohomology,

QC1r-0(R) -2~ HP(C,, D)—">HE,  (M,Z).

Let us show that 7 is surjective. First, by definition and with obvious notations,
z
7([c]) := [c (p’l)] :

For any class £ € ngch(M, Z), let us pick a representative ¢ 1) of & From (xx), we
deduce that ;

c=1+Kd e
is a Deligne-Beilinson cocycle which trivially fulfills 7(c) _G (=1 g0 that

Z

#([d]) = [c PV =¢.

This means that any integral Cech cohomology class is the image under 7 of a Deligne-
Beilinson cohomology class, thus establishing the surjectivity of 7.
According to this, we can extend further the previous exact sequence to the right

Q1r-(R) -2~ HP(C,, D)—">HE,_ | (M, Z)—>0.

Now, let us show that this sequence is actually exact on the left, that is to say Ker(7) =

Im(g).
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If [¢] € Ker(7) then 7([c]) = [% (=1] = 0, meaning that any representative of [% (P, =1)]

. zZ -
is a Cech coboundary, §\®~1=1, Thus, if (1 + Kd)~! ¢ @D + 6~(=1P=1 5 a “reduced”
representative of [c] € Ker(7), we have

~ 7
c=(1+ Kd)'o\P 4 54(Lr=) = Dg 4 5p—tp=D)

- Z

with p(-1P=1 = 4(=1p=1) 1 (_ K d)P\P=1:=D_ In other words, Ker(#) is made of Deligne-
Beilinson classes [c] that admit a representative of the form dp(~17=1 for some global
form p(=Lr=D ¢ Q=LP=D(R). Conversely, for any global form p(=12=1 ¢ Q(=1Lr=1(R)
the Deligne-Beilinson class [6p(~1?~1] trivially belongs to Ker(#). This implies Ker(#) =

Im(3).

So, the sequence

Q-1r-1)(R)—2>HP(Cy, D)—">H?, (M, Z)—0

9

A~

is exact, and to extend it to the left, we have to compute Ker(¢).
If 4(-Lr=1) e Ker(¢), then ¢(y(~1r~1) = [57(-1r~D] = 0, which means that any
representative of [0y(~1P~1)] is a Deligne-Beilinson coboundary. In particular

by Lp=1) (57<—1m—1>,0,...,0) = Dr,

for some 7 = (r(OP=2) ... ,T(p_Q’O),%(p_l’_l)) € 0571. This gives rise to the following
Cech-de Rham cochain

<_7<1,p1>77<o,p2>7 L 20), 7Z_<p1,1)> ,

which turns out to be a Cech-de Rham cocycle since 6y(~1P~D = Dr. Now, from

y/
Weil’s theorem (see subsection [F4.3) we conclude that since 7®~1~1 is integral the
global form ~(~1?=1) has integral periods. Conversely, if 7(*1’71*1) has integral peri-
ods then, still from Weil’s theorem, it gives rise to an integral Cech-de Rham cocycle

(T(flzpfl) — _,7(*1,})*1)’7—(0,})*2)’ .. ',T(p72’0),%(p71’71)) SUCh that 6/-)/(71@71) — DT. ThlS

A~

shows that Ker(¢) is nothing else but the space of (p — 1)-forms with integral periods. So
we can extend our exact sequence to the left using the canonical injection of (p — 1)-forms
with integral periods into (p — 1)-forms

{ Closed global (p — 1)-forms
Cech

Qe D (RS HP(C,, D)— s HE (M, Z)—0.
with integral periods } @ (R) (€, D) ( )

Finally, it is obvious that Ker(i) = 0. This last point definitively establishes the
exactness of (III) for p=q # 0.
In the special case p = ¢ = 0, identity (xx) reads

(1 + Kd)_l % (07_1) + 5’7(_1’_1) :% (07_1) + 5,}/(—1,—1)’
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where 411 is just a real number. This means that reduced representatives of [¢] €
H%(Cy, D) are integral Cech cohomology classes (canonically imbedded in the real Cech
cohomology). Conversely, any Cech cohomology class & € ngch(M ,Z) defines a Deligne-

Beilinson class [(1 + Kd)~! ¢ =D i.e. HY(Cy, D) =~ ngch(M, Z). As a side note, this
can be combined with (I7) to yield the more general result

~ q
H(Co, D) ~ HY, (M, Z).

It H gech(M ,Z) has novtorsion7 the sequence (I11) is split : choose a basis of H geeh(M ,
Z), take a representative Cech cocycle in QP (M, Z) for each basis element, and multiply it
by (1+ K J)_l to get a Deligne-Beilinson cocycle, then extend by linearity. This gives an
injection of ngch(M ,Z) into HP(Cp,, D) which is isomorphic (as an abelian group, but in

a non canonical way) to

_ Closed global (p — 1) forms
1
ngch(M7Z)®Qp (M,R)/{ .

with integral periods

If H gech(M ,Z) has torsion there is no splitting and the above description is not cor-
rect. Finally note the special case p = ¢ = 1 : H'(Cy, D) is canonically isomorphic to
C>°(M,R/Z), the multiplicative group of smooth functions from M to the circle group, a
more compact description than the one given by the exact sequence (I11).

A.7 The isomorphism between Cheeger-Simons differential characters and De-
ligne-Beilinson classes for ¢ = p

The Deligne-Beilinson cohomology group can be imbedded into another exact sequence

0——=H% (M,R/Z)—HP(Cp, D)—=Q (M, R)—>0,

which fits better with the representation we have chosen for the classes, namely:

w = (w(07p71)7 R w(pflvo)’(’%(pvfl)) .

)

On the other hand, the Cheeger-Simons differential character group HP(M,R/Z) can also
be imbedded into the same exact sequence [B, [[4]

p—1
0—>HC

(M, R/Z)—=[?(M, R/Z)—,(M,R)—>0.

These two sequences can be combined into the following commutative diagram

0 HL (M,R/Z) —> HP(Cp. D) —= Q4 (M,R) —>0

idI {f id[

—1 ~
0—=HE_ (M,R/Z) — HP(M,R/Z) — (M, R) —=0

in which the descending map in the middle - [- is given by (B.21)). Then by the 5-Lemma
this map is an isomorphism.
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A.8 The Deligne-Beilinson cohomology is the same for all good coverings

A proof is needed only when ¢ = p, because in the other cases, we have given canonical
isomorphisms with standard Cech cohomology spaces.

If the simple covering V of M is a refinement of the simple covering U, it is a classical
theorem that for Cech cohomology the restriction chain map induces an isomorphism in
cohomology. This isomorphism is canonical because restriction is canonical.

We use this as a starting point to prove the corresponding result for Deligne-Beilinson
cohomology. To avoid notational ambiguities, we write C,(U) (resp. Cp(V)) for the Deligne-
Beilinson complex for the covering U (resp. V).

Restriction gives a chain map from the complex (Cp,(U), D) to the complex (C,(V), D).
So there is a canonical homomorphism

restriction
—

HP(C(U)p, D) HP(C(V)y, D).

We want to show that this homomorphism is one-to-one onto.!® We start by showing
that the homomorphism is one to one. Suppose that an element of H?(C(U),, D), repre-
sented by a certain ¢ = (¢(OP=1) ... c(p*m),% (r=1)) € C(U)b, maps to the trivial element
in HP(C(V)p, D). This implies that the restriction of ¢»~1 to the covering {V,},ecs is a
trivial Cech cocycle, and by the isomorphism theorem for Cech cohomology, ¢ itself
is trivial. From the previous section, we know then that c is Deligne-Beilinson cohomolo-
gous to some 6P~ where () is a global de Rham (p — 1) form, so we can assume that
¢ = 671 to start with. The condition of triviality is then the same for both coverings,
i.e. 7?1 has to be closed with integral periods. We have proved that in the diagram

HP(C( )PvD) > ngch(Maz) >0

lT |1

p D) —=HY, (M, Z) —>0

=
=
8
=

the first column is exact (i.e. restriction is one to one) and the kernels of the top and
bottom rows are canonically isomorphic via restriction.

To prove that the restriction map is onto, we take compatible partitions of unity
{Uo} and {g,} for U and its refinement V. Take a class in HP(C(V),, D), represented
by a cocycle s = (s(0P=1 ... s=10) s>:=1)y ip C(V)p. Then s®=1 ig a Cech cocycle
for V. If s*~1=1) is an integral Cech cochain of degree (p—1) for V, s + DsP=1.-1) —
(-, 51 +5s(p*1’*1)) represents the same Deligne-Beilinson class, so by the isomorphism
theorem for Cech cohomology, we can assume without loss of generality that s®~1) is the
restriction of a Cech cocycle @1 for {Un}aer. We have proved in the previous section

8The general canonical isomorphism theorem for two (arbitrary) simple coverings is an automatic con-
sequence of the fact that on a compact manifold two simple coverings have a common simple refinement.
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that s is Deligne-Beilinson cohomologous to (14 Kd)~'s®~1 4 5yP=1) = (.. sP:=1) for
some global de Rham (p — 1)-form v®~1 (in this formula, K, d and é are with respect to
the covering V) so we can assume without loss of generality that s is of that form to start
with. Then (1 + Kd) '¢®=1 4+ §y®=1) (where now K, d and § are with respect to the
covering U) is a Deligne-Beilinson cocycle, and (as restriction commutes with K, d and J),
s = r(c). So each element of HP(C(V),, D) has a representative which is the restriction of
a Deligne-Beilinson p-cocycle for i : the restriction chain map leads to a surjective map in
Deligne-Beilinson cohomology. Putting things together, the proof that restriction induces
a canonical bijection from HP(C(U),, D) to HP(C(V)p, D) is complete.

B. Deligne-Beilinson dual of a cycle

In this section we present a construction of a “cycle map” which associates a Deligne-
Beilinson cohomology class to a given cycle. The kind of duality that is implied is not of
the “Poincaré” type, but is rather an analog of Pontrjagin duality for Deligne-Beilinson
cohomology.

Let 2, be a singular or rather a de Rham (cf. section B.4) integral p-cycle of M and U
a simple cover. We perform the following descent!'® using the singular boundary operator,
b, and the Cech coboundary operator, d:

(02p)ag = Zplag = b cg_i_LQO in Uy, - (B.1)
Then
0 0 :
b(cp-s—l,m - Cp+1:040) = Zplar ~ Zplag =0 0 Ungay, (B.2)
so that
0 0 0 1 .
(5 Cp-&-l)aoa1 = Cpit,a1 ~ Cpilia0 = 0Cpy9,a000 I Uagay - (B.3)
This descent goes on at level k (the fact that the covering is simple is crucial):
k k+1
0 Cpyt1 = bcpj,-_k:—‘,—Q (B.4)
and stops for k=n—p—2
STP2 = Pt (B.5)
As usual CI;L}: 4o 1s defined in Upgayy -
Finally,
ScPT = (7P with bP =0, (B.6)

. n— . . .
in each Uyg...q,_,- Hence every ¢ ¥ apea,_, is a integral n-cycle in Uyg...q,,_,, S0 that we
can write

Cn P agan_p = Nz a00n_p - Uag-m_p s (B.7)
once Uapy.-a,_, has been identified with a singular n-cycle in a natural way. Furthermore,

7 .
the Uz,ao...an_p’s define a Cech cocycle in an obvious way. In terms of de Rham currents

Cf;_;'_k_;’_]_ — nz(k7n_p_k_1)7 (BS)

19 All chains involved below are integral chains.

— 29 —



the above descent equations read
S kD) gy (e pke2) 5 (ep2d) _ gy 0010 (Bg)

Now
§n, P10 — g p, (nmPmD)

Y

where one can show, using integration of n-forms with compact supports in Us...q,,_,, that
(n-p-1) _ L
nz,ao-nan,p = nz,ao~~~an7p .

Therefore the sequence
o o o z
77%1 P 1)(2) = (Uz(o’" P 1)7 e ﬂ?z(” P 1’0)777z)

fulfilling the descent (B.9) is nothing but a Deligne-Beilinson cocycle with distribution
coeflicients.

The singular homology that was used here (in the intersections of the simple covering)
is not the usual one (i.e. with compact support), but rather the “infinite” one where
chains may have non-compact supports. Accordingly, the corresponding currents do not

necessarily have compact support in the intersections either. Moreover, the Cech cocycle
V/ .
1, is a priori non trivial since it is obtained from a Cech-de Rham descent of the a prior:

Z .
non trivial integration current of z. In fact, 17, is a Cech representative of the Poincaré
dual of z on M.
Let us have a look at the ambiguities of the descent of the p-cycle z which led to

(n—p—1) (n—p—k,k—1)

Np (z). At the level of the currents 7, , one can check that ambiguities of

Deligne-Beilinson type (B.1§) are obviously present. However, since our starting point is
the integral current of z, we could also have ambiguities on 7,©"~P~1) corresponding to the
restriction of a globally defined closed (n —p — 1)-current, on,(~1m=P=1)  But, since all the
currents of our descent must be integration currents of integral chains, 67, (~5"=P~1) must
necessarily be the integration current of a (p + 1)-cycle. Hence, it produces a Deligne-
Beilinson ambiguity. The same argument holds at the bottom of the descent, where
our integral chains will only produce integral Cech cochain ambiguities, which are also
of Deligne-Beilinson type. In other words, the fact we use integral chains to produce a
Deligne-Beilinson cocycle provides us with a canonical Deligne-Beilinson class [ngl —p1) (2)]
associated with z.20

C. U(1) connections as Deligne-Beilinson cohomology classes

Let us briefly recall how connections over U(1)-bundles are related to Deligne-Beilinson
cohomology classes [1J]. Let P := P(M,U(1), E, ) be a principal U(1)-bundle with total
space F over M and projection 7. For a given simple open covering of M, U, P is described
by transition functions gog : Uap — U(1) which satisfy the cocycle condition

gaoalgalaggagao - ]-7 (Cl)

20This result can be obtained using integrally flat currents defined in [@}, see also [@}
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in any intersection Unya,ay, OF equivalently

Aaoa1 + Aoqag + Aagao = Nogaias € Z, (02)
with
Japay = €xp(2imAagay ) - (C.3)
Trivially
Nagaias — Nagaias T Nagasas — Najasas = 0, (04)

i Unyay anas» Which means that the collection n(2—1)

defined by these integers is an integral
Cech 2-cocycle on M.
Given a collection of local sections, a connection A on P induces a collection (A), of

locally defined 1-forms on M which glue together on every U,,o, according to
Aoy — Aoy = 9o, A9agar = (2im) dAaga, - (C.5)
We then obtain a family
(AOD AL =y e O @ V(M) x COU, QM) x CPD (U, z), (C.6)
such that

(5‘4(0’1))@0&1 = Ay — Aoy = (Qiﬂ) dAagay (0'7)
(51\(1’0))&0&1&2 = Aagar + Aajas + Aazag = d=1Magaras = Nagasas »

2,1 o _
(‘5"( " avarazas = Nagaraz — Magaras T Nagasas — Neyazas = 0,

in the appropriate intersections. As described in detail above such a sequence makes up a
Deligne-Beilinson cocycle.

The curvature of A also admits canonical local representatives on M, F, := dAq,
which are globally defined since

Fo, — Foy = d(Any, — Agy) = 2imd(dApye,) =0, (C.8)

0.1 and

Obviously, the existence of F on M is a direct consequence of the existence of A
we can formally write “F = dAOD”.

For a given triple (U, P, A) the Deligne-Beilinson cocycle (AN A10) (=1 is not
unique. More precisely, ambiguities on the local representatives of P and A (that is al-
lowed changes of transition functions and local sections) induce ambiguities on the Deligne-

Beilinson cocycle (C.6) of the following form
<dq(0,0)75q(0,0) + d_lm(l’_l),ém(l_’l)) , (C.9)

with (m=1 g0y ¢ WU, 7Z) x COU,Q0(M)) . Such ambiguities correspond pre-

cisely to Deligne-Beilinson coboundaries and thus represent the ambiguities among the

representatives of the relevant Deligne-Beilinson cohomology classes.?!

21See appendix E
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Two triples (U, P, A) and (U, P', A’) are said to be U(1)-equivalent if there is a U(1)
isomorphism ® : P — P’, such that A’ = &, A. Locally, this means that the transition
functions of P and P’ are related according to

Jop = ha ' gap - hg, (C.10)

or equivalently
Aix,@ = Aaﬁ + 45 — qa (C.ll)

where the h, = exp(2imqy). In the same way the local representatives of the connections

fulfill
Ay = Ay + 2imdg, . (C.12)

Then we clearly see that these relations assume the same form as the ambiguities in (C.9),
showing that two equivalent triples are associated to the same Deligne-Beilinson cohomol-
ogy class in H3 (M, Z(2)).

This correspondence can be established in the reverse way. Indeed, consider a repre-
sentative (A1 A0 n2=1) of a Deligne-Beilinson cohomology class, the U(1)-valued
mappings go3 := exp2imA,g are U(1) transition functions over U since they satisfy the
cocycle condition ([C.1). With these functions, one can canonically build a principal U(1)-
bundle over M, P(M,U(1),E, ) B9, BO]. Furthermore, there is only one connection A

on P whose local representatives on M coincide with those of A0

. Hence our Deligne-
Beilinson cocycle defines a couple (P, fl) in a canonical way.

Now, with another representative, (A(O’l) + dg®0 A1) 5q(0’0),n(2’*1)), we obtain
another set of transition functions which defines an equivalent principal bundle — cf. ({C.10).
In the same way, AL 4 ¢(00) ig related to A through a U(1)-bundle isomorphism.

Finally, a representative (A(O’l),A(l’O) + mL=D p2- 4 6m(1’_1)) gives the same
transition functions and the same connection. This establishes that the Deligne-Beilinson
cohomology class of (A(071), AL0), n(Q’_l)) can be canonically associated to a whole class of
U(1)-equivalent triples (U, P, A).

The independence of this isomorphism upon the chosen covering U of M is a direct
consequence of the results proven in (A-g).

Note added. While completing this paper, we became aware of the recent mathematical
work of R. Harvey, B. Lawson and J. Zweck [14], who discuss in detail the Pontrjagin
duality we use in section B.3. The authors emphasize the differential character point of
view rather than the Deligne-Beilinson one we have adopted here.
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Abstract. For the Abelian Chern—Simons field theory, we consider the quantum functional
integration over the Deligne—Beilinson cohomology classes and we derive the main properties
of the observables in a generic closed orientable 3-manifold. We present an explicit path-
integral non-perturbative computation of the Chern—Simons link invariants in the case of
the torsion-free 3-manifolds S3, S x 5% and S* x 3.
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1 Introduction

The topological quantum field theory which is defined by the Chern—Simons action can be
used to compute invariants of links in 3-manifolds [1, 2, 3, 4]. The algebraic structure of these
invariants, which is based on the properties of the characters of simple Lie groups, is rather
general. In fact, these invariants can also be defined by means of skein relations or of quantum
group Hopf algebra methods [5, 6].

In the standard quantum field theory approach, the gauge invariance group of the Abelian
Chern—Simons theory is given by the set of local U(1) gauge transformations and the observables
can directly be computed by means of perturbation theory when the ambient space is R? (the
result also provides the values of the link invariants in $). For a nontrivial 3-manifold Ms,
the standard gauge theory approach presents some technical difficulties, and one open problem
of the quantum Chern—Simons theory is to produce directly the functional integration in the
case of a generic 3-manifold M3. In this article we will show how this can be done, at least for
a certain class of nontrivial 3-manifolds, by using the Deligne—Beilinson cohomology. We shall
concentrate on the Abelian Chern—Simons invariants; hopefully, the method that we present will
possibly admit an extension to the non-Abelian case.

The Deligne—Beilinson approach presents some remarkable aspects. The space of classical
field configurations which are factorized out by gauge invariance is enlarged with respect to
the standard field theory formalism. Indeed, assuming that the quantum amplitudes given
by the exponential of the holonomies — which are associated with oriented loops — represent
a complete set of observables, the functional integration must locally correspond to a sum over 1-
forms modulo forms with integer periods, i.e. it must correspond to a sum over Deligne—Beilinson
classes. In this new approach, the structure of the functional space admits a natural description
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in terms of the homology groups of the 3-manifold Ms. This structure will be used to compute
the Chern—Simons observables, without the use of perturbation theory, on a class of torsion-free
manifolds.

The article is organized as follows. Section 2 contains a description of the basic properties
of the Deligne—Beilinson cohomology and of the distributional extension of the space of the
equivalence classes. The framing procedure is introduced in Section 3. The general properties
of the Abelian Chern—Simons theory are discussed in Section 4; in particular, non-perturbative
proofs of the colour periodicity, of the ambient isotopy invariance and of the satellite relations
are given. The solution of the Chern-Simons theory on S is presented in Section 5. The
computations of the observables for the manifolds S x 52 and S* x %, are produced in Sections 6
and 7. Section 8 contains a brief description of the surgery rules that can be used to derive the
link invariants in a generic 3-manifold, and it is checked that the results obtained by means
of the Deligne—Beilinson cohomology and by means of the surgery method coincide. Finally,
Section 9 contains the conclusions.

2 Deligne—Beilinson cohomology

The applications of the Deligne—Beilinson (DB) cohomolgy [7, 8, 9, 10, 11] — and of its various
equivalent versions such as the Cheeger—Simons Differential Characters [12, 13] or Sparks [14] —
in quantum physics has been discussed by various authors [15, 16, 17, 18, 19, 21, 20, 22, 23]. For
instance, geometric quantization is based on classes of U(1)-bundles with connections, which are
exactly DB classes of degree one (see Section 8.3 of [24]); and the Aharanov—Bohm effect also
admits a natural description in terms of DB cohomology.

In this article, we shall consider the computation of the Abelian link invariants of the Chern—
Simons theory by means of the DB cohomology. Let L be an oriented (framed and coloured)
link in the 3-manifold Mj3; one is interested in the ambient isotopy invariant which is defined by
the path-integral expectation value

J DAexp {2i7rk: fM3 AN dA} exp {2ir [, A}

<exp{2i7r/LA}>k N J DAexp {2k [, AndA} ’ 2

where the parameter k£ represents the dimensionless coupling constant of the field theory. In
equation (2.1), the holonomy associated with the link L is defined in terms of a U (1)-connec-
tion A on Mj3; this holonomy is closely related to the classes of U(1)-bundles with connections
that represent DB cohomology classes. The Chern—Simons lagrangian AAdA can be understood
as a DB cohomology class from the Cheeger—Simons Differential Characters point of view, and
it can also be interpreted as a DB “square” of A which is defined, as we shall see, by means of
the DB *-product.

To sum up, the DB cohomology appears to be the natural framework which should be used in
order to compute the Chern—Simons expectation values (2.1). As we shall see, this will imply the
quantization of the coupling constant k and it will actually provide the integration measure DA
with a nontrivial structure which is related to the homology of the manifold Ms. It should be
noted that the gauge invariance of the Chern—Simons action and of the observables is totally
included into the DB setting: working with DB classes means that we have already taken the
quotient by gauge transformations.

Although we won’t describe DB cohomology in full details, we shall now present a few pro-
perties of the DB cohomology that will be useful for the non-perturbative computation of the
observables (2.1).
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2.1 General properties

Let M be a smooth oriented compact manifold without boundary of finite dimension n. The
Deligne cohomology group of M of degree g, H}, (M,Z), can be described as the central term
of the following exact sequence

0— QU (M)/Q% (M) — H} (M,Z) — HY (M,Z) — 0, (2.2)

where Q7 (M) is the space of smooth g-forms on M, QF (M) the space of smooth closed g-forms
with integral periods on M and H9%! (M, Z) is the (q + 1)th integral cohomology group of M.
This last space can be taken as simplicial, singular or Cech. There is another exact sequence
into which H}, (M,Z) can be embedded, namely

0 — H?(M,R/Z) — HY% (M,Z) — QL™ (M) — 0, (2.3)

where HY (M,R/Z) is the R/Z-cohomology group of M [11, 14, 25].

One can compute HY, (M, Z) by using a (hyper) cohomological resolution of a double complex
of Cech—de Rham type, as explained for instance in [9, 25]. In this approach, H% (M,Z) appears
as the set of equivalence classes of DB cocycles which are defined by sequences (w(oﬂ), w(ba=1),

.. ,w(q’o),w(qﬂ’*l)), where w®47P) denotes a collection of smooth (¢ — p)-forms in the intersec-
tions of degree p of some open sets of a good open covering of M, and w@t=Y is an integer
Cech (p+1)-cocyle for this open good covering of M. These forms satisfy cohomological descent
equations of the type dw®=14=P+1) 4 quy(Pa=P) = 0, and the equivalence relation is defined via
the 6 and d operations, which are respectively the Cech and de Rham differentials. The Cech—
de Rham point of view has the advantage of producing “explicit” expressions for representatives
of DB classes in some good open covering of M.

Definition 2.1. Let w be a g-form which is globally defined on the manifold M. We shall
denote by [w] € Hf) (M,Z) the DB class which, in the Cech—de Rham double complex approach,
is represented by the sequence (w(o’q) =w,w D =0,... w0 =0t = 0).

From sequence (2.2) it follows that H}, (M,Z) can be understood as an affine bundle over
H9*1 (M, Z), whose fibres have a typical underlying (infinite dimensional) vector space struc-
ture given by Q4 (M)/Q) (M). Equivalently, Q4 (M)/Q (M) canonically acts on the fibres of
the bundle H}, (M,Z) by translation. From a geometrical point of view, H}, (M,Z) is canoni-
cally isomorphic to the space of equivalence classes of U (1)-principal bundles with connections
over M (see for instance [14, 25]). A generalisation of this idea has been proposed by means
of Abelian Gerbes (see for instance [11, 26]) and Abelian Gerbes with connections over M. In
this framework, H9*!1 (M, 7Z) classifies equivalence classes of some Abelian Gerbes over M, in
the same way as H? (M,Z) is the space which classifies the U (1)-principal bundles over M,
and HY, (M,Z) appears as the set of equivalence classes of some Abelian Gerbes with connec-
tions. Finally, the space Qf (M) can be interpreted as the group of generalised Abelian gauge
transformations.

We shall mostly be concerned with the cases ¢ = 1 and ¢ = 3. As for M, we will consider
the three dimensional cases M3 = 53, M3 = S! x S and M3 = S x ¥4, where 3, is a Riemann
surface of genus g > 1. In particular, M3 is oriented and torsion free. In all these cases, the
exact sequence (2.2) for ¢ = 3 reads

0 — Q3 (M) /Q3 (Ms) — H3, (M3, Z) — H* (M3,Z) =0 — 0,

where the first non trivial term reduces to

Q (M) R
03 (M3) ~ 2 (2.4)
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Figure 1. Presentation of the Deligne-Beilinson affine bundle H}, (S L% 82, Z).

The validity of equation (2.4) can easily be checked by using a volume form on M3. By definition,
for any (p,7z) € Q3 (Ms) x Q3 (M3) one has

[0+ 72) = [p] € H}) (M3,2Z);
consequently

QF (M) R
Hp (M3, Z) ~ 5= —.
p (M. 7) 0 (Ms)  Z
These results imply that any Abelian 2-Gerbes on M is trivial (H* (Ms,Z) = 0), and the set
of classes of Abelian 2-Gerbes with connections on M3 is isomorphic to R/Z. In the less trivial
case ¢ = 1, sequence (2.2) reads

0 — QY (M3)/Q (M3) — Hi) (M3, Z) — H? (M3, Z) — 0. (2.5)
Still by definition, for any (n,wz) € Q' (Ms) x Qf (M3) one has
[+ wz] = [n] € Hp (M3,Z).

When H?(M3,7) = 0, sequence (2.5) turns into a short exact sequence; this also implies
H'(M3,7Z) = 0 due to Poincaré duality. For the 3-sphere S®, the base space of H{'j (53,Z)
is trivial. Whereas, the bundle H%) (S1 x 52, Z) has base space H?> (S1 x S2, Z) = 7 and, as de-
picted in Fig. 1, its fibres are (infinite dimensional) affine spaces whose underlying linear space
identifies with the quotient space Q! (51 X 52)/92 (51 X 52). In the general case M3 = S1 x g
with g > 1, the base space H? (51 X Xg, Z) is isomorphic to Z29+1,

Finally, one should note that sequence (2.5) also gives information on QF} (Ms) since its
structure is mainly given by the H}, (Mj3,Z). For instance, 2} (53) = dN° (53), all other cases
being not so trivial.

2.2 Holonomy and pairing

As we have already mentioned, DB cohomology is the natural framework in which integration (or
holonomy) of a U (1)-connection over 1-cycles of M3 can be defined and generalised to objects
of higher dimension (n-connections and n-cycles). In fact integration of a DB cohomology class
[x] € H}, (M, Z) over a g-cycle of M, denoted by C' € Z, (M), appears as a R/Z-valued linear
pairing

(,)g: HhH(M,Z) x Z,(M) — R/Z = S,

(K, C) — (W], C), = / . (2.6)
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which establishes the equivalence between DB cohomology and Cheeger—Simons characters [12,
13, 11, 14, 25]. Accordingly, a quantity such as

exp{zm /C [X]}

is well defined and corresponds to the fundamental representation of R/Z = S ~ U (1). Using
the Chech—de Rham description of DB cocycles, one can then produce explicit formulae [25] for
the pairing (2.6).

Alternatively, (2.6) can be seen as a dualising equation. More precisely, any C' € Z, (M)
belongs to the Pontriagin dual of HY, (M,Z), usually denoted by Hom (H% (M, 7Z) ,Sl), the
pairing (2.6) providing a canonical injection

Z, (M) CHom (H}, (M,Z),5"). (2.7)

A universal result [27] about the Hom functor implies the validity of the exact sequences, duali-
sing (2.2) (via (2.3)),

0 — Hom(QZ4™ (M), 81) — Hom (HY, (M, Z),S') — H" (M, Z) — 0, (2.8)

where H"~% (M, Z) = Hom (H? (M,R/Z), S*).
The space Hom (H}, (M,Z),S') also contains Hg_q_l (M,Z), so that Z, (M) (or rather its

canonical injection (2.7)) can be seen as lying on the boundary of H]"j_q_1 (M,Z) (see details
n [14]). Accordingly

Zy (M) @ Hpy " (M, Z) € Hom (HY (M, Z), 8%, (2.9)

with the obvious abuse in the notation. Let us point out that, as suggested by equation (2.9),
one could represent integral cycles by currents which are singular (i.e. distributional) forms.
This issue will be discussed in detail in next subsection.

Now, sequence (2.8) shows that Hom (H}, (M,Z), S*) is also an affine bundle with base space
H"%(M,Z). In particular, let us consider the case in which n = 3 and ¢ = 1; on the one hand,
Poincaré duality implies

H"9(M,Z) = H* (M3,Z) = H' (M3, 7).
On the other hand, one has
H}, (M,Z) C Hom (Hp, (M, Z),S"),
and, because of the Pontriagin duality,
Zy (M) & H}, (M, Z) C Hom (Hp, (M, Z),S") .

This is somehow reminiscent of the self-dual situation in the case of four dimensional manifolds
and curvature.

2.3 The product
The pairing (2.6) is actually related to another pairing of DB cohomology groups

H? (M,Z) x HL, (M,Z) — H%"" (M, Z), (2.10)

whose explicit description can be found for instance in [12, 14, 25]. This pairing is known as
the DB product (or DB x-product). It will be denoted by *. In the Cech—-de Rham approach,
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the DB product of the DB cocyle (w(o’p),w(l’p_l),...,w(p’o),w(pﬂv_l)) with the DB cocycle
(n(ovq)7"7(lvq_1)’ cee 77(%0)7 U(Q'i'l,_]-)) reads

(w(ovp)udn(ovq)’ . ,w(p’O)UdT](07q), bw(p+17_1)un(07Q)’ .. ,w(p+1’_1)u77(n_p’_1)), (211)

where the product U is precisely defined in [28, 9, 25|, for instance.

Definition 2.2. Let us consider the sequence (n(o’q), a1 a0 77(‘1+1”1)), in which the
components n(k_q’k) satisfy the same descent equations as the components of a DB cocycle but,
instead of smooth forms, these components are currents (i.e. distributional forms). This allows
to extend the (smooth) cohomology group HY, (M, Z) to a larger cohomology group that we will

denote HY (M, 7).

Obviously, the DB product (2.11) of a smooth DB cocycle with a distributional one is still
well-defined, and thus the pairing (2.10) extends to

HE (M, Z) x HL (M,Z) — H%M (M, 7).

Then, it can be checked [25] that any class [] € H}y 9" (M, Z) canonically defines a R /Z-valued
linear pairing as in (2.6) so that

H 97N (M, Z) € Hom (HY, (M,Z), S1) .

It is important to note that, as it was shown in [25], to any C' € Z,(M) there corresponds
a canonical DB class [n¢] € Hg_q_l (M,Z) such that

exp {22’#/0 [X]} = exp {2i7f /M [X] * [770]} ;

for any [x] € H}, (M, Z). This means that we have the following sequence of canonical inclusions

Zy(M) c Hy ' (M,Z) C Hom (HY, (M, Z),S?).
Let us point out the trivial inclusion

HY " (M, z)c Hy 7N (M, Z).

In the 3 dimensional case, let us consider the DB product

Hi (M3, Z) x H (M3, Z) — Hp (M3, Z) = R/Z. (2.12)
Starting from equation (2.12) and extending it to

Hpy (M3, 2) x Hp (M3, Z) — Hj) (M3, Z) = R/,

one finds that it is possible to associate with any l-cycle C' € Z; (M3) a canonical DB class
nc) € H}) (Ms,7Z) such that

exp {2m /C [w]} = exp {2@'77 /MS [w] * [nc]}, (2.13)

for any [w] € H}, (Ms3,Z). As an an alternative point of view, consider a smoothing homotopy
of C within H}, (M3, Z), that is, a sequence of smooth DB classes [n.] € H}, (M, Z) such that
(see [14] for details)

lim exp {2m /M [A] * [ng]} = exp {2m /C [A]} . (2.14)
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Figure 2. In a open domain with local coordinates (z,y, z), a piece of a homologically trivial loop C
can be identified with the y axis, and the disc that it bounds (Seifert surface) can be identified with
a portion of the half plane (z < 0, y,z = 0).

This implies

lim [n.] = [nc] (2.15)

e—0
within the completion I:jll) (Ms,Z) of H}, (Ms,Z); this is why in [14] [n¢] is said to belong
to the boundary of H} (Ms,Z). It should be noted that, by definition, the limit (2.14) and
the corresponding limit (2.15) are always well defined. For this reason, in what follows we
shall concentrate directly to the distributional space Hll) (Ms,Z) and, in the presentation of
the various arguments, the possibility of adopting a limiting procedure of the type shown in
equation (2.14) will be simply understood.

Finally, let us point out that with the aforementioned geometrical interpretation of DB coho-
mology classes, the DB product of smooth classes canonically defines a product within the space
of Abelian Gerbes with connections. For instance, the DB product of two classes of U(1)-bundles
with connections over M turns out to be a class of U(1)-gerbe with connection over M.

2.4 Distributional forms and Seifert surfaces

How to construct the class [n¢], which enters equation (2.13), is explained in detail for instance
in [25]. Here we outline the main steps of the construction and we consider, for illustrative
purposes, the case M3 ~ S3. The integral of a one-form w along an oriented knot C' C S can
be written as the integral on the whole S of the external product w A J¢, where the current Jo
is a distributional 2-form with support on the knot C; that is, [, w = [¢ w A Je. Since Jg can
be understood as the boundary of an oriented surface Y¢ in S% (called a Siefert surface), one
has Jo = dne for some 1-form ne with support on X¢. One then finds, [,w = [ow A dnc,
which corresponds precisely to equation (2.13) with [n¢] € f[%, (5’3,Z) denoting the Deligne
cohomology class which is associated to n¢ and with [w] € Hll) (S3, Z) denoting the class which
can be represented by w.

Let us consider, for instance, the unknot C in S3, shown in Fig. 2, with a simple disc as
Seifert surface. Inside the open domain depicted in Fig. 2, the oriented knot is described — in
local coordinates (z,y, z) — by a piece of the y-axis and the corresponding distributional forms Jo
and 7n¢ are given by

Jo = 0(2)0(z)dz A de, nc = 0(2)0(—x)dz. (2.16)

For a generic 3-manifold M3 and for each oriented knot C' C Mj, the distributional 2-
form Jo always exists, whereas a corresponding Seifert surface and the associated 1-form n¢
can in general be (globally) defined only when the second cohomology group of M3 is vanishing.
Nevertheless, the class [nc] € H} (M, Z) is always well defined for arbitrary 3-manifold M3. In



8 E. Guadagnini and F. Thuillier

fact, when a Seifert surface associated with C' C M3 does not exist, the Chech—de Rham cocycle

sequence representing [nc] € ﬁll) (M,Z) is locally of the form (ng)’l),Ag’o),NéZ_l)) where,

inside sufficiently small open domains, the expression of 77(69 Y s trivial or may coincide with

)

the expression (2.16) for n¢, and Ag’o and Néz’_l) are nontrivial components (when a Seifert

surface exists, the components Ag,o) and Ng’_l) are trivial).

3 Linking and self-linking

As we have already mentioned, in the context of equation (2.13) the pairing H}, (M3, Z) x
f]}) (Ms,Z) — H 3 (M3, 7Z) is well defined. However, in what follows we shall also need to con-
sider a pairing induced by the DB product of the type flb (Ms,7Z) x IA{% (Ms,7) — f[% (Ms,7)
and this presents in general ambiguities that we need to fix by means of some conventional
procedure.

3.1 Linking number

Let us consider first the case M3 ~ S3. Let C; and Cy be two non-intersecting oriented knots
in S% and let 7; and 72 the corresponding distributional 1-forms described in Section 2.4, one
has

[ mndne= [ = K(C1,Co), (3.1)
53 53

where (k(C, Cs) denotes the linking number of Cy and Cq, which is an integer valued ambient
isotopy invariant. In fact, 1 A dne represents an intersection form counting how many times Co
intersects the Seifert surface associated with C; (see also, for instance, [28, 29]). Let [m] and [12]
denote the DB classes which are associated with 7; and ns; since the linking number is an integer,
one finds

exp {2m /S ] * [772]} = exp {2m /S (1] * [m]} = exp {m /5 A dm]} =1 (32

Equations (3.1) and (3.2) show that the product [n] * [n2] is well defined and just corresponds
to the trivial class

[m] * [] = [0] € H}, (S*,Z). (3.3)

In the next sections, we shall encounter the linking number in the DB cohomology context in
the following form. Let x be a real number, since 7, is globally defined in S3, the 1-form x5 is
also globally defined. Let us denote by [xns] the DB class which is represented by the form zns.
One has

exp {2m /S ] [m]} ~ exp {2m /S o d(m)} — exp {2imalh(C1, o)} (34)

3.2 Framing

Let nc be the distributional 1-form which is associated with the oriented knot C' C S3; for
a single knot, the expression of the self-linking number

/ ne A dnc (3.5)
S3
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is not well defined because the self-intersection form nc A dnc has ambiguities. This means
that, similarly to what happens with the product of distributions, at the level of the class
[nc] € H) (53,Z), the product [nc] * [nc] is not well defined a priori.

As shown in equations (2.14) and (2.15), [n¢] can be determined by means of the e — 0 limit
of [n:] € H} (M3,Z). One could then try to define the product [n¢] * [¢] by means of the same
limit

tim [ o)+ o] = [ fnc) =l (3.

Unfortunately, the limit (3.6) does not exist, because the value that one obtains for the inte-
gral (3.6) in the £ — 0 limit nontrivially depends on the way in which [r.] approaches [¢]. This
problem will be solved by the introduction of the framing procedure, which ultimately specifies
how [n:] approaches [n¢]. One should note that the ambiguities entering the integral (3.5) and
the limit (3.6) also appear in the Gauss integral

1 (x —y)f
— dx“?g dy¥ €y o=, 3.7
ar Jo c P e —y)3 (3.7

which corresponds to the self-linking number. A direct computation [30] shows that the value of
the integral (3.7) is a real number which is not invariant under ambient isotopy transformations;
in fact, it can be smoothly modified by means of smooth deformations of the knot C in S3. In
order to remove all ambiguities and define the product [nc] * [nc], we shall adopt the framing
procedure [29, 31], which is also used for giving a topological meaning to the self-linking number.

Definition 3.1. A solid torus is a space homeomorphic to S' x D?, where D? is a two dimensional
disc; in the complex plane, D? can be represented by the set {2z, with |z| < 1}. Consider now an
oriented knot C' C S3; a tubular neighbourhood V¢ of C' is a solid torus embedded in S3 whose
core is C. A given homeomorphism h : S x D? — V( is called a framing for C. The image of
the standard longitude h(S! x 1) represents a knot C'y C S3, also called the framing of C, which
lies in a neighbourhood of C' and whose orientation is fixed to agree with the orientation of C.
Up to isotopy transformations, the homeonorphism / is specified by Cf.

Clearly, the thickness of the tubular neighbourhood Vi of C is chosen to be sufficiently
small so that, in the presence of several link components for instance, any knot different from C'
belongs to the complement of Vi C S3.

For each framed knot C, with framing Cy, the self-linking number of C' is defined to be
tk(C, Cy),

/53 ne Adne = /53 ne Adnc, = tk(C,Cy). (3.8)

Definition 3.2. In agreement with equation (3.8), one can consistently define the product
[nc] * [nc] as

[nc] * [nc] = el * e, ]- (3.9)

Definition (3.9) together with equations (3.8) and (3.3) imply that, for each framed knot C'
(in S3), the product [nc] * [nc] is well defined and corresponds to the trivial class

[nc] = [nc] = [0] € H (S*,Z) .
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Remark 3.1. The product [nc] * [nc] also admits a definition which differs from equation (3.9)
but, as far as the computation of the Chern—Simons observables is concerned, is equivalent to
equation (3.9). Instead of dealing with a tubular neighbourhood V¢ with sufficiently small but
finite thickness, one can define a limit in which the transverse size of the neighbourhood V¢
vanishes. Let p > 0 be the size of the diameter of the tubular neighbourhood Vi (p) of the
knot C; p is defined with respect to some (topology compatible) metric g. The homeomorphism
h(p) : St x D? — Vi (p) is assumed to depend smoothly on p. Then, the corresponding framing
knot C¢(p) also smoothly depends on p. Consequently, the linking number ¢k(C,Cy(p)) does
not depend on the value of p and it will be denoted by ¢k(C,C}). It should be noted that
lk(C,Cy) does not depend on the choice of the metric g. In the p — 0 limit, the solid torus
Vc(p) shrinks to its core C' and the framing Cf(p) goes to C. One can then define nc A dnc
according to

/S3 e A dne = lim /ss ne A dng,(p) = }g(l)fk(cv Cr(p)) = tk(C,Cy). (3.10)
In agreement with equation (3.10), one can put
[nc] * [ncl = ;ii%[ﬁc] * [Ny (0))- (3.11)

Remark 3.2. The definition (3.9) of the DB product [nc] * [nc] is consistent with equations
(3.2)—(3.4) and is topologically well defined. In fact, in the case of an oriented framed link L
with N components {C7,Cy,...,Cy} the corresponding canonical class [nz] € ﬁb (53,2) is
equivalent to the sum of the classes which are associated with the single components, i.e. [n;] =
>_;[n;]. Thus one finds

[ne) * [ne) =Y ] * il +2> il = [ny]. (3.12)

J i<j

The framing procedure which is used to define the DB product [n.]* [n1] guarantees that, if one
integrates the 3-forms entering expression (3.12), the result does not depend on the particular
choice of the Seifert surface which is used to (locally) define the distributional forms associated
with L. This means that the framing procedure preserves both gauge invariance and ambient
isotopy invariance.

Remark 3.3. In order to define the extension of the DB product to distributional DB classes,
one could try to start from equation (2.11). In this case, the product of the DB representatives
of two cycles (2.11) would only contain local integral chains and the cup product U would just
reduce to the intersection number of such integral chains (once these chains have been placed
into transverse position, which is always possible because of the freedom in the choice of the
DB cocycles representing a given DB class). Accordingly, the extension of the product to the
distributional case would only produce integral chains and eventually integers in the integrals.
Finally, by using smooth approximations of the cycles within (2.11) and then performing the
limits, as described above in equation (3.11), one would obtain the same result. Note that, in
this last approach, the limit would be performed with the linking number ¢k(C, Cy) fixed. This
is similar to the definition of the charge density of a charged point particle by taking the limit
r — 0 of a uniformly charged sphere of radius r while keeping the total charge of the sphere
fixed, which leads to the well-known Dirac delta-distribution.

Knots or links can be framed in any oriented 3-manifold Ms. In order to preserve the
topological properties of the pairing H%) (8372) X Hllj (5’3, Z) — H,% (53,Z) which is defined
by means of framing in S, we shall extend the framing procedure to the case of a generic
3-manifold M3 by extending the validity of properties (3.3) and (3.9).
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Definition 3.3. If [;] and [n2] are the classes in fl}j (Ms,7Z) which are canonically associated
with the oriented nonintersecting knots Cy and Cs in M3, in agreement with equation (3.3) we
shall eliminate the (possible) ambiguities of the product [n;] * [12] in such a way that

[m] 2] = [0] € Hp (Ms, 7). (3.13)
Consequently, for each oriented framed knot C' C M3 with framing C'y, we shall use the definition

(] * nc] = Inc] * ne,] = (0] € H}, (M3, Z). (3.14)

Remark 3.4. Definition (3.14) can also be understood by starting from equation (2.11) and
by using the same arguments that have been presented in the case Mz ~ S3. Let us point out
that, unlike the S case, for generic M3 one finds directly equation (3.14) without the validity
of some intermediate relations like equation (3.8), which may not be well defined for Mz « S3.

4 Abelian Chern—Simons field theory

4.1 Action functional

If one uses the Cech—de Rham double complex to describe DB classes, it can easily be shown
that the first component of a DB product of a U (1)-connection A with itself is given by A AdA
or, more precisely, it is given by the collection of all these products taken in the open sets of
a good cover of M3. This means that the expression of the Chern—Simons lagrangian of a U (1)-
connection A can be understood as a DB class which coincides with the “DB square” of the
class of A. Let [A] denote the DB class associated to the U (1)-connection A, the Chern-Simons
functional S¢g is given by

Scs = /M [A] * [A].

By definition of the DB cohomology, the Chern—Simons action S¢g is an element of R/Z and
then it is defined modulo integers. Consequently, in the functional measure of the path-integral,
the phase factor which is induced by the action has to be of the type

exp {2imkScs} = exp {22’77/{:/ [A] * [A]} ,
M3
where the coupling constant k& must be a nonvanishing integer
keZ, k # 0.

A modification of the orientation of Mj3 is equivalent to the replacement k — —k.

4.2 Observables

The observables that we shall consider are given by the expectation values of the Wilson line
operators W (L) associated with links L in M3. An oriented coloured and framed link L C M3
with N components is the union of non-intersecting knots {C1,Cs,...,Cn} in M3, where each
knot C; (with j = 1,2,..., N) is oriented and framed, and its colour is represented by an integer
charge g; € Z. For any given DB class [A], the classical expression of W(L) is given by

N

W(L)zHexp{quj/C.[A]} = exp 2mij/c-[A] , (4.1)

j=1
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which actually corresponds to the pairing (2.6)

W (L) = exp {m/L [A]} = exp {27 ([A], L)} .

Once more, each factor

exp {Qiﬂ'qj /C [A]} , (4.2)

which appears in expression (4.1), is well defined if and only if ¢; € Z; that is why the charges
associated with knots must take integer values. A modification of the orientation of the knot C}
is equivalent to the replacement q; — —g;. Obviously, any link component with colour ¢ = 0
can be eliminated.

Remark 4.1. The classical expression (4.1) does not depend on the framing of the knots {C)};
however, only for framed links are the Wilson line operators well defined. The point is that, in the
quantum Chern—Simons field theory, the field components correspond to distributional valued
operators, and the Wilson line operators are formally defined by expression (4.1) together with
a set of specified rules which must be used to remove possible ambiguities in the computation of
the expectation values. In the operator formalism, these ambiguities are related to the product
of field operators in the same point [32, 33] and they are eliminated by means of a framing
procedure. In the path-integral approach, we shall see that all the ambiguities are related to the
definition of the pairing H}, (M3, Z) x HY, (Ms,Z) — Hj, (Ms,Z); as it has been discussed in
Section 3, we shall use the framing of the link components to eliminate all ambiguities by means
of the definition (3.14).

Remark 4.2. In equations (4.1) and (4.2), we have used the same symbol to denote knots and
their homological representatives because a canonical correspondence [28] between them always
exists. At the classical level, for any integer ¢ one can identify the 1-cycle ¢qC' € Zy(M) with
the g-fold covering of the cycle C or the ¢-times product of C' with itself. At the quantum level,
this equivalence may not be valid when it is applied to the Wilson line operators because of
ambiguities in the definition of composite operators; so, in order to avoid inaccuracies, we will
always refer to Wilson line operators defined for oriented coloured and framed knots or links.

Definition 4.1. For each link component Cj, let [n;] € I;Tll) (Ms,Z) be the DB class such that

exp {zmqj /C j [A]} — exp {mqj /M3 4] + [nj]}.

With the definition

L] = E g5y, (4.3)

one has

exp {zm / [A] [nL]} =exp{ 2Ty g / [A] % [nj]
M; F M3
The expectation values of the Wilson line operators can be written in the form

[ D[A]exp {zm Jag, [A] % [A]} W (L)
[ D[A]exp {21’77/»{: fMg [A] * [A]}

(W(L)), =
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_/DUlew {2k [y, 141+ 1]} exp {207 [y, 1] * 2] ]
[ D[A]exp {ink Jos, [A] % [A]}

and our main purpose is to show how to compute them for arbitrary link L.

, (4.4)

Remark 4.3. In the DB cohomology approach, the functional integration (4.4) locally corre-
sponds to a sum over 1-form modulo forms with integer periods. So, the space of classical field
configurations which are factorized out by gauge invariance is in general larger than the standard
group of local gauge transformations. It should be noted that this enlarged gauge symmetry per-
fectly fits the assumption that the expectation values (4.4) form a complete set of observables.
In the DB cohomology interpretation of the functional integral for the quantum Chern—Simons
field theory, this enlargement of the “symmetry group” represents one of the main conceptual
improvements with respect to the standard formulation of gauge theories and, as we shall show,
allows for a description of the functional space structure in terms of the homology groups of the
manifold Ms.

4.3 Properties of the functional measure

The sum over the DB classes [ D[A] corresponds to a gauge-fixed functional integral in ordinary
quantum field theory, where one has to sum over the gauge orbits in the space of connections. In
the path-integral, smooth fields configurations or finite-action configurations have zero measure
[34, 35]; so, the functional integral (4.4) has to be understood as the functional integral in
the appropriate extension or closure H}, (Ms,Z) of the space H}, (Ms,Z), with H}, (M3,Z) C
H}, (M3, Z) and, more generaly, with Hom (H}, (M, Z),S') C H}, (M3, Z). In order to guarantee
the consistency of the functional integral and its correspondence with ordinary gauge theories,
we assume that the quantum measure has the following two properties.

M1) The space HL (Ms,Z) inherits its structure from H}Y (Ms,Z) in agreement with sequen-
D D
ce (2.5).

Equation (2.5) then implies that the sum over DB classes is locally equivalent to a sum over
Q! (M3)/Q}, (Ms), i.e. a sum over 1-forms modulo generalized gauge transformations.

(M2) The functional measure is translational invariant.

This implies in particular that, for any [w] € fl}j (Ms3,Z), the quadratic measure

du ([A]) = D [A] exp {2i7rk: /M3 (4] + [A]} (4.5)

satisfies the equation

dpg ([A] + [w]) = dp ([A]) exp {4i7rk /M‘ [A] * [w] + 2imk /M,

ol <ot} (4.6)
which looks like a Cameron—Martin formula (see for instance [36] and references therein).

Equation (4.6) will be used extensively in our computations. The importance of generalized
Wiener measures in the functional integral — which necessarily imply the validity of the Cameron—
Martin property — and of the singular connections was also stressed in the articles [37] and [38]
in which, however, the space of the functional integral is supposed to coincide with the space of
the classes of smooth connections on a fixed U(1)-bundle over Ms.

In the computation of the observables (4.4), we shall not use perturbation theory; only
properties (M1) and (M2) of the functional measure will be utilized. We shall now derive the
main properties of the observables of the Abelian Chern—Simons theory which are valid for any
3-manifold Msj.
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4.4 Colour periodicity

The colour of each oriented knot or link component C' C Mj is specified by the value of its
associated charge q € Z. For fixed nonvanishing value of the coupling constant k, the expectation
values (4.4) are invariant under the substitution ¢ — g + 2k, where ¢ is the charge of a generic
link component. Consequently, one has

Proposition 4.1. For fized integer k, the colour space is given by Zoj, which coincides with the
space of residue classes of integers mod 2k.

Proof. Let {g;} be the charges which are associated with the components {C;} (j =1,2,...,N)
of the link L. With the notation (4.5), the expectation value (W (L)), shown in equation (4.4)
can be written as

J i ([AD exp {2im 32, 05 [, 1] % [ny]}
W= [ @A '

(4.7)

Property (M2) implies that, with the substitution [A] — [A] + [n:1], the numerator of expres-
sion (4.7) becomes

Jantiapes $2imYa; [ a1l p = [dmiiahess {2im 365 [ (41«0

x exp 2imk [ [m]*[m]pexpq 2im> q; [ [m]*[nj] ¢
M3 - M:

j 3

where ¢} = g; + 2kd;1. In agreement with equation (3.13), for j # 1 one has [m] * [n;] ~ [0] €
ﬁ% (Ms3,Z), and then

exp {2imy /. s 1} =1.

Similarly, in agreement with equation (3.14), by means of the framing procedure one obtains
[m] * [m] ~ [0] € H% (Ms,7Z), and then

exp {Qiﬂ((h + k) /M3 [m] = [771]} =1L

Consequently, the numerator of expression (4.7) can be written as

/d,uk([A]) exp QiWZq]' /M [A] * [n;]

which proves that, for fixed k, the expectation values (4.4) are invariant under the substitution
q1 — q1 + 2k, where ¢ is the charge of the link component Cf. |
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4.5 Ambient isotopy invariance

Two oriented framed coloured links L and L’ in M3 are ambient isotopic if L can be smoothly
connected with L' in Mj.

Proposition 4.2. The Chern—Simons expectation values (4.4) are invariants of ambient isotopy
for framed links.

Proof. Suppose that two oriented coloured framed links L and L’ are ambient isotopic in Ms.
The link L has components {Cy, Co,...,Cn} with colours {q1, ¢2, . ..,qn}; whereas the link L’
has components {C],Ca,...,Cn} with colours {q1, ¢, ...,qn}, so that

) = alm]+ Y g, Il =alml+ Y g, (4.8)
J#1 J#l

where the class [n;] refers to the knot C; C M3 and [n]] is associated to the knot C] C Ms.

Let 7 : [0,1] — Ci(7) C M3 be the isotopy which connects Cy with C in M3, with C1(0) = C4
and C1(1) = C]. We shall denote by ¥ C M3 the 2-dimensional surface which has support on
{Ci(1) € M3;0 < 7 < 1}; because of the freedom in the choice of 7 within the same ambient
isotopy class, it is assumed that ¥ is well defined and presents no singularities. > belongs
to the complement of the link components {Co,Cs,...,Cn} in M3 and one can introduce an
orientation on ¥ in such a way that its oriented boundary is given by 0¥ = C{ U C| 1. where
Oy ! denotes the knot C with reversed orientation.

The distributional 1-form 7y, which is associated with X, is globally defined in M3 and
satisfies

dns, = diy — dm. (4.9)

where, with a small abuse of notation, din; and dn; denote the integration currents of C; and
respectively. For j # 1 one finds

[ nan o (4.10)
M3
because the link components {Cs,Cs,...,Cn} do not intersect the surface ¥. Moreover, ac-
cording to the framing procedure, the orientation of ¥ implies
/ ns A (dn) + dny) = / s —|—/ ny =0, (4.11)
M3 C{f Cyy

where C] 7 denotes the framing of C1 and C| s represents the framing of Cy. Since 7y, is globally
defined in M3, the 1-form xns (with x = (q1/2k) € R) is also globally defined. Let [ns] €
H{j (Ms,7Z) be the DB class which can be represented by the 1-form xny; by construction, one
has

exp {42‘7rk /Mg[A] * [(q1/2k)ns] }

= exp {2i7rq1 /M3 [A] * [ng]} exp {—2i7rq1 /M3 [A] % [m]} . (4.12)

The expectation value (W (L)), is given by

J dp([AD exp {20 o, [4] + 2] |
(W(L))), = J dux([A])

(4.13)
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Equation (4.12) and property (M2) imply that, with the substitution [A] — [A] + [xnx], the
numerator of expression (4.13) can be written as

[ anapep {2in [ )
< exp { ik ] ol o] exp { 20 IR ml -

By using the relations

exp {2iﬂk /M3 [zns] * [wnz]} = exp {(iﬂqf/ 2k) /M3 s A (dny — dm)} ,

exp {2m /M3 [2ns] * [nL]} = exp {(imﬁ/ k) /M3 s A dm}

X exp (iﬂql/k)qu/ s Adn g

jA M

and equations (4.9)—(4.11), one finds that the numerator of expression (4.13) assumes the form

[ anapep {2in [ -

Consequently, the expectation values of the Wilson line operators associated with the links L
and L', entering equation (4.8), are equal. The same argument, applied to all the link compo-
nents, implies that, for any two ambient isotopic links L and L', one has

(W(L)y, = (W(L)),-

This concludes the proof. |

4.6 Satellite relations

For the oriented framed knot C' C Ms, let the homeomorphism h : S* x D? — Vi be the framing
of C, where V¢ is a a tubular neighbourhood of C. Let us represent the disc D? by the set
{2, with |z| < 1} of the complex plane. The framing Cy of C is given by h(S! x 1), whereas
one can always imagine that the knot C just corresponds to h(S' x 0). Let P be a link in the
solid torus S' x D?; if one replaces the knot C' C Mz by h(P) C M3 one obtains the satellite
of C which is defined by the pattern link P.

Definition 4.2. Let B C S! x D? be the oriented link with two components {Bj, B2} given
by By = (S' x0) € S' x D? and By = (S' x 1/2) ¢ S! x D?. For any oriented framed
knot C' C Ms, let us denote by C'® € Mjs the satellite of C' with is obtained by means of the
pattern link B. The two oriented components {K1, Ko} of C(? are given by K; = h(B;) and
Ky = h(B3). Let us introduce a framing for the components of the link C®: the knot K has
framing K¢ = h(S! x 1/4) and the knot K> has framing Koy = h(S! x 3/4).

By construction, the satellite C®) of C' is an oriented framed link.

Proposition 4.3. Let L and L be two oriented coloured framed links in Ms in which L is
obtained from L = {C1,...,Cn} by substituting the component Cy, which has colour q1 € Z,

with its satellite sz) whose components K1 and Ko have colours ¢ = ¢1 £1 and g = Fl1
respectively. Then, the corresponding Chern—Simons expectation values satisfy

(W(L))k = (W(L))- (4.14)
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Proof. Because of the ambient isotopy invariance of <W(E)>k, one can consider the limit in
which the component K; approaches to Ko and coincides with Ks. In this limit, for each field
configuration (i.e. for each DB class) the associated holonomies W (C7) and W(CF)) coincides.
This means that, at the classical level, equality (4.14) is satisfied. Thus, we only need to
consider possible ambiguities in the expectation value of the composite Wilson line operator
W(CF)) = W(K;)W(K32) in the K1 — K> limit. In agreement with what we shall show in the
following sections, we now assume that all the ambiguities which refer to composite Wilson line
operators are eliminated by means of the framing procedure which is used to define the product

[n7] * [n7]. According to the definition (4.3), one has

N
) = aulm] + > a;[ni] = aulm] + [,
=2
’ N
nz] = @uln,) + @ni) + > g5(ni] = @ulng,) + @lnis) + 7],
=2

and then

(L] * ] = ilne, ] * ey ) + 2q1lne, ] * Tip) + [) * Fg),
[z * 0] = (@nk, | + @2nk,]) * (@nk, ] + 2k, ])
+ 2 (q1[nK, ] + @2[rs]) * L] + W] * L)

As far as the computation of the Chern—Simons observables is concerned, ambient isotopy in-
variance and equality ¢1 = ¢1 + ¢2 imply

2q1 [7701] * [ﬁL] =2(q [771(1] + ¢ [nKz]) * [ﬁL]?
moreover, by construction of the satellite sz) and the definition (3.14), one also finds

Q%[TICI] * [7701] = (Z]Vl [nfﬁ] + 52[771(2]) * (Q~1[77K1] + 52[77&]) .

Therefore, as far as the computation of the Chern—Simons observables is concerned, one can
replace [nz] * [nL] by [n7] * [n;], and then (W (L))x = (W (L)) [

Definition 4.3. In agreement with Proposition 4.3, for any oriented coloured framed link L C
Ms, one can replace recursively all the link components which have colour given by ¢ # +1 by
their satellites constructed with the pattern link B, in such a way that the resulting link L C M3
has the following property: each oriented framed component of L has colour which is specified
by a charge ¢ = +1 or ¢ = —1. Remember that, for each link component C, the sign of the
associated charge ¢ is defined with respect to the orientation of C'. So, with a suitable choice of
the orientation of the link components, all the link components of L have charges +1. For each
link L C M3, the corresponding link L C M3 will be called the simplicial satellite of L and, as
a consequence of Proposition 4.3, one has

(W(L))k = (W (L))k- (4.15)

5 Abelian Chern—Simons theory on S3

When M3 = S3, the DB cohomology group satisfies Hllj (5’3,2) ~ Q! (33)/5% (53) and one
has Q! (53)/9% (53) = 0! (5’3) /dQO (5’3). Since in general the path-integral of the Chern—
Simons theory on Mj locally corresponds to a sum over the space of 1-forms modulo forms
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with integer periods, it is convenient to introduce a new notation; with respect to the origin of
Ol (SS) / Q) (5’3) that one can choose to correspond to the vanishing connection, an element of
Q! (5%) /) (S®) will be denoted by [a]. So that, in agreement with property (M1), for any
oriented coloured and framed link L C S the expectation value (4.4) can be written as

_ I Dla]exp {2ink [ [a] * [o] } exp {2im [gs [0 * [nL]}
[ Dla]exp {2ink [g o] % [a]}

S dpx([o]) exp {2im [gs [a] * [ne]}

N J du([e]) ’

where [a] € Q' (5%)/Q} (5%) and [n;] € ﬁll) (M3,Z) denotes the class which is canonically
associated with L. The integral (5.1) actually extends to HlD (5’3, Z) which has to be understood
as a suitable extension of Q' (5%)/Q}, (S%). We shall now compute the observable (W (L)), for
arbitrary link L.

(W(L))y

(5.1)

Theorem 5.1. Let the oriented coloured and framed link components {C;} of the link L, with
j=1,2,...,N, have charges {q;} and framings {C;s}. Then

(W(L))x = exp 4 —(2im/4k) > qilija; ¢ (5.2)
]
where the linking matriz L;; is defined by
Lij = /53 mi A dnj = Lk(Cy, Cj),  for i ],
Lj; = /33 nj A dnj = tk(Cj, Cjy).

Proof. Since H? (53, Z) = 0, Poincaré duality implies that any 1-cycle on S® is homologically
trivial. Equivalently, for each knot C; one can find an oriented Seifert surface ¥; C S 3 such that
0% = Cj (in fact, there is an infinite number of topologically inequivalent Seifert surfaces) and
one can then define a distributional 1-form 7; (with support on ¥;) which is globally defined
in S3. The distributional 1-form 77, associated with the link L,

L= 4,
j

is globally defined in S2 and, in the Chech-de Rham description of DB cocycles, the class [ny)]
can be represented by the sequence (7r,0,0). The distributional 1-form

nL/2k = (g;/2k)m;

J

is also globally defined in $3 and we shall denote by [ny,/2k] € H}, (Ms, Z) the DB class which, in
the Chech—de Rham description of DB cocycles, is represented by the sequence (11 /2k,0,0). It
should be noted that the class [n;,/2k] does not depend on the particular choice of the 1-form 7y,
which represents [nz]. (In turn, this implies that [n;/2k] does not depend on the particular
choice of the Seifert surfaces.) In fact, any representative 1-form of [n] can be written as
nr + dx for some x € Q°(S3); therefore, for the corresponding class [(1z, + dx)/2k] one finds

[(nr + dx)/2k] = [nL/2k + dx/2k] = [n/2K] + [d(x/2k)] = [nL/2k].
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By construction, the class [y /2k] satisfies the relation

2k[nL/2k] = [nL],

therefore

exp {4i7rk: /S o] » [nL/2k:]} ~ exp {2m /S o] » [m}. (5.3)

In agreement with property (M2), by means of the substitution [«] — [&]—[n/2k] the numerator
of expression (5.1) assumes the form

[ duetial) ex {—mk [ o [nL/%]} exp {mwk IR [nL/2k1}

X exp {2i7rk /S ol x {m]} exp {—2m /S ne/2K] + [m]} . (5.4)

With the help of equation (5.3), expression (5.4) becomes

exp{—(%w/llk‘)/ssnL/\dﬁL}/dﬂk([a])’

and then

(W(L))k = exp {—(2m/4k) /SS nL A dnL} %-

Assuming that, for the manifold S3, one has

/ RCET)

one finally obtains

(W (L)) = exp {—<2iw/4k> [ dnL}

= exp | —(2im/4k) Z 4iq; / ni Adnj o, (5.5)
ij 53
which coincides with expression(5.2); and this concludes the proof. |

Remark 5.1. Expression (5.2) describes an invariant of ambient isotopy (Proposition 4.2) for
oriented coloured framed links. Since the matrix elements L;; are integers, in agreement with
Proposition 4.1 the observable (5.2) is invariant under the substitution ¢; — ¢; + 2k (for fixed 7).
Moreover, one can verify that Proposition 4.3 is indeed satisfied by expression (5.2).

Remark 5.2. The topological properties of knots and links in S® and in R? are equal. Therefore,
expression (5.2) also describes the Wilson line expectation values for the quantum Chern—Simons
theory in R? and, in fact, equation (5.2) is in agreement with the results which can be obtained
by means of standard perturbation theory [33].
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Figure 3. The region of R? which is delimited by two spheres S2, one into the other, with their face-to-
face points identified, provides a description of ST x S2. The oriented fundamental loop Gy C S* x S? is
also represented.

iz

\

Figure 4. The trivial knot surrounding the non trivial knot Gy is moved down (via an ambient isotopy).
The intersection number of its associated surface — given by a disc — with G goes from unity to 0.

6 Abelian Chern—Simons theory on S! x S?

One can represent S x S? by the region of R? which is delimited by two concentric 2-spheres
(of different radii), with the convention that the points on the two surfaces with the same
angular coordinates are identified. The nontrivial knot Gy, which can be taken as generator of
H1(S' x S?,7) ~ Z, is shown in Fig. 3.

Let us recall that, since Hy(S' x S2,7Z) is not trivial, the linking number of two knots may
not be well defined in S* x S?; one example is shown in Fig. 4.

Differently from S2, the manifold S' x S? has nontrivial cohomology and homology groups.
While H% (Sl x S2, Z) is still canonically isomorphic to Q3 (Sl X 52)/9% (Sl X SQ), the group
H}, (Sl x 52, Z) has the structure of a non trivial affine bundle over the second integral coho-
mology group H? (5’1 x S2, Z) ~ 7. As shown in Fig. 1, one can then represent H}, (Sl x S2, Z)
by means of a collection of fibres over the base space Z, each fibre has a linear space structure
and is isomorphic to Q! (S1 X SQ)/QE (S1 X S2). For the fiber over 0 € Z one can choose the
trivial vanishing connection as canonical origin, so that this fibre can actually be identified with
Ot (51 X 52)/92 (51 X 52). The fiber over n € Z, with n # 0, has not a canonical origin, but
one can fix an origin and each element of this fibre will be written as a sum of this origin with
an element of Q' (St x 52)/Q7 (S x S?).

6.1 Structure of the functional measure

The choice of an origin on each fibre of the affine bundle H%) (S 1y 52, Z) defines of a section s
of Hll) (S1 x 52, Z) over the discrete base space Z = H? (S1 x 52, Z), with the convention that
5(0) = [0] € H}, (S' x S%,Z). In agreement with property (M1), the quantum measure space
HE(S! x S?,Z) can also be understood as an affine bundle over Z, and the section s will be
used to make the structure of the functional integral explicit. Therefore, one can actually admit
distributional values for s and, in fact, it is convenient to define the section s with values in
H}, (8" x $2,7).

Definition 6.1. The simplest choice for s is suggested by the additive structure of the base space.
More precisely, let us pick up a nontrivial 1-cycle (or oriented knot) Gy which is directed along
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the S! component of S* x S? and is a generator of Hy (S x S?,Z) ~ Z. If [y] € fl}j (S' x S2,Z)
denotes the DB class which is canonically associated with G, we shall consider the section
s: Z— H} (S x §%,17),
n— s(n) =nly. (6.1)
Each element [A] of ﬁfllj (S' x §2,7Z) (and of H},(S' x S?,7Z)) can then be written as
[A] = n ] + o],
for some integer n and [a] € Q! (Sl X 52)/9% (Sl X 5’2); and the functional measure takes the

form

+oo
dn(4]) = Y D[a]exp{zmk - <nwo]+[a]>*<nw+[a1>}. (6.2

n=—oo

Remark 6.1. Because of the translational invariance of the quantum measure, the particular
choice (6.1) of the section s will play no role in the computation of the observables. In fact,
a modification of the origin of each fiber of H}(S! x S%,Z) can be achieved by means of an
element of Q' (S* x 52)/Q4, (S x S?).

Expression (6.2) can be written as

+oo

dun([A]) = nzzoo Dla] exp {2i7rk e [a]} exp {4i7rk:n /S OE ho]}
X exp {2i7rkn2 /S e [v0] * [70]} : (6.3)

As usual, in order to define [yg]*[yo] € ﬁ% (S' x S2,Z) we shall introduce a framing Gy for the
knot G and, in agreement with equations (3.13) and (3.14), we define [yo] * [v0] = [v0] * [Yor] =
[0] € I;T]%(S 1'% §2,Z). Therefore, with integers k and n, the last factor entering expression (6.3)
is well defined and it is equal to the identity. So, one obtains

+oo

dur([A]) = > Dl exp{?iﬂ'k Slxsg[a]*[a]}e){p {4i7rl<:n /S 1X52[a]*[70]}, (6.4)

n=—oo

with [a] € Q1 (S* x §2)/QL (S* x 2).

6.2 Zero mode

Definition 6.2. Let Sy be a oriented 2-dimensional sphere which is embedded in S* x S? in
such a way that it can represent a generator of Ho(S! x S% 7).

Sp is isotopic with the component S? of S' x S? and, if one represents S' x S? by the
region of R3 which is delimited by two concentric spheres, Sy can just be represented by a third
concentric sphere. We shall denote by g the distributional 1-form which is globally defined in
S1 x S? and has support on Sp; the overall sign of 3 is fixed by the orientation of Sy so that

fo =1 (6.5)
Go
Since the boundary of the closed surface Sy is trivial, one has d@Fy = 0. For any given real
parameter z, the 1-form zf, is also globally defined in S! x S%; let us denote by [z30] €
Ol (31 X 52)/9% (51 X 52) the class which is represented by the form z3j.
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Proposition 6.1. For each value m of the integer residues mod 2k, the Chern—Simons mea-
sure (6.4) on S' x S2, with nontrivial coupling constant k, satisfies the relation

dpr.([A]) = dpr([A] + [(m/2k) fo)- (6.6)

Proof. From expression (6.4) one finds

dpr([A] + [(m/2k) Bo])

= Jff Dla] exp{?iﬂk /SIXS2[04] * [a]}eXp {4i7rkn/slxs2[a] * [’Yo]}

n=—oo

« exp {4m1~c G [(m/%)ﬁo]} exp {m [ /2] (o2
X exp {mrm JRCEOE [no]} , (6.7

where the integer m takes the values m = 0,1,2,...,2k—1. From the equality d3y = 0 it follows
that

4i7rk/ [a] % [(m/2k)Bo] = 2imm aNdfBy =0,
S1xS2 S1% .52

where v € Q! (S x 5?) represents the class [a],

2irk /S L /2k)30) [ 28) 0] = ()28 /S Bo A dfly = 0.

1% 52

Finally, relation (6.5) implies

exp {4z'7rkn /Slxsz[(m/%)ﬁo] x [70]} = exp {innm . 50} =1.

Therefore expressions (6.7) and (6.4) are equal. [

6.3 Values of the observables

Let us consider an oriented coloured and framed link L in S* x S?; without loss of generality,
one can always assume that L does not intersect the knot Gy. In agreement with equation (6.5),
the integral

No(Z) = /L fo

takes integer values; more precisely, No(L) is equal to the sum of the intersection numbers
(weighted with the charges of the link components) of the link L with the surface Sp.

Theorem 6.1. Given a link L C S* x S?,
e when No(L) # 0 mod 2k, one finds (W(L)), = 0;
e whereas for No(L) =0 mod 2k, one has

(L)) = exp {~C@iman) [ wnan}, (63)

where ng, A dng, is defined by means of the framing procedure.
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Proof. The expectation value of the Wilson line operator is given by

WL, = 2" [ duelia)exp {m L [m} 7 (6.9)

1% §2

where duy([A]) is shown in equation (6.4) and

7 = / )

Equation (6.6) implies that W (L) satisfies the following relation

2k—1
(WD) =2 5 Z / dpn([A] + [(m)2k) Bo] )2 st xs2 (AIH(m/28) ol sl

2%k—1
_ Zk_l/dﬂk([A]) 2im [g1, g2 [Al*[nL] o0 Z 2im [o1, g2[(m/2k)Bol*[n1]
m=0

ik i: {2m m/2k)/Lﬁo}. (6.10)

One has

2k—1

% 3 exp {2imNg (L) m/2k} = { L if No(L)=0 mod 2k,
m=1

0 otherwise.

Therefore equation (6.10) shows that, when No(L) # 0 mod 2k, the expectation value (W (L)),
is vanishing.

Let us now consider the case in which No(L) = 0 mod 2k. Because of Proposition 4.1, we
only need to discuss the case Ny(L) = 0. In fact, if No(L) = 2kp for some integer p # 0, at
least one of the link components C' C L intersects Sp; one can then modify the value ¢ of its
charge according to go — qo — 2kp so that No(L) vanishes. According to the decomposition
[A] = n[y0] + [@], one finds

exp{2im [ 1altulf = e {2imn [ polelmdbes {2in [ ol
—ew{2in [ ol

where the last equality is a consequence of the identity [yo] *[nz] = [0] € H 2 (S x S%,Z), which
follows from the framing procedure. Then, from equation (6.9) one gets

(W / Z [ale 2i7rkf31XSQ[a}*[a}e‘liﬂkn‘f@XSQ[a]*[WO]GQiW,/@st[a]*[ﬂL]‘ (6.11)

n=—oo

When No(L) = 0, the link L is homological trivial and one can find a Seifert surface for L.
More precisely, in agreement with Proposition 4.3 and equation (4.15), one can substitute L
with its simplicial satellite L, defined in Section 4, whose components have unitary charges.
The oriented framed link L C S x S? also is homologically trivial and it is the boundary of an
oriented surface that we shall denote by ¥+ C S 1'% 82, Let n, be the distributional 1-form with
support on X7 which is globally defined in S 1 % §2; because of Proposition 4.3, in the Chech—
de Rham description of the DB classes, [ny] can then be represented by the sequence (7,0, 0).
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Figure 5. An example of conservation of the intersection number under ambient isotopy for a globally
trivial 1-cycle.

The 1-form (1/2k)n;, also is globally defined in St x S? and we shall denote by [(1/2k)n.] the
DB class which is represented by the form (1/2k)nz. By construction,

exp {—4i7rk /S G [(1/%)@} = exp {—2m /S G [m]}, (6.12)

and the condition Ny(L) =0 (or No(L) = 0 mod 2k) implies that, for integer n,

exp { —dirkn [(1/2k)7] * [y0] b = 1. (6.13)
{-wein [ |

By means of the substitution [a] — [a] — [(1/2k)nz] and with the help of equations (6.12)
and (6.13), expression (6.11) assumes the form

(), = exp { ~(2in/a0) [ nwndn | 2,12

1y G2

Therefore, assuming 7, # 0, when No(L) = 0 mod 2k one gets

(W(L))y = exp {—<2z'w/4k> [ mn dnL} ,

1% §2

and this concludes the proof. |

Remark 6.2. Expression (6.8) formally coincides with the result (5.5) which has been obtained
in the case M3 ~ S3. It should be noted that the integral (which appears in equation (6.8))

/ nL ANdng = / nL A dﬁff = | Br, (6.14)
S1x 52 S1x 82 L,

where ff denotes the framing of L, is well defined because it does not depend on the choice
of the Seifert surface of L. Indeed suppose that, instead of ¥z, we take Z’f as Seifert surface
for the link L. The difference between the intersection number (6.14) of Ly with E/f and Y is
given by the intersection number of L; with the closed surface EIZU E%l. This surface could be
nontrivial in S x S? but, since L is homologically trivial, ff also is homologically trivial and
then its intersection number with a closed surface vanishes. The example of Fig. 5 illustrates
the ambient isotopy invariance of the intersection number of a homologically trivial link with
the Seifert surface of a trivial knot in S* x 2.
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7 Abelian Chern—Simons theory on S* x 3,

Let us now consider the manifold Mz ~ St x Y, where ¥, is a closed Riemann surface of
genus g > 1. In this case, the computation of the Chern—Simons observables is rather similar
to the computation when Mz ~ S x S2. So, we shall briefly illustrate the main steps of the
construction.

As it has been mentioned in Section 1, H}D(S1 X ¥g4,7Z) has the structure of a affine bundle
over H?(S* x 54, Z) ~ 727! with Q1(S* x ¥,)/QL(S! x ;) acting canonically on each fibre by
translation. In agreement with property (M1), the functional space H},(S! x 4, Z) is assumed
to have the same structure of H} (S x $,,7Z) and, in order to fix a origin in each fibre, we need
to introduce a section s : Z29t1 — HL(S! x £,,7Z).

Definition 7.1. Let the nonintersecting oriented framed knots {Go, G1,...,Go,} in St x %,
represent the generators of Hj (Sl X Zg,Z). For each 5 = 0,1,...,2¢g, we shall denote by

[v;] € .F~I117(S 1'% ¥,,7Z) the DB class which is canonically associated with the knot G.

Definition 7.2. If the elements of Z29*! are represented by vectors
— __ 2g+1
= (no,n1,n2,...,N2g) € Z ,

a possible choice for the section s is given by

st 2% — Hp (S x %,,7),
29
s () =y =7 7= n[yl.
=0

Each class [4] € Efll)(Sl X Yg4,Z) can then be written as
[A] = [n7] + [od,

for certain 77 and [o] € Q1(S* x £,)/QL(S* x ;). Consequently, the Chern-Simons functional
measure takes the form

dug([4]) = Z D[a] exp {ink /51Xs2 [a] * [a]} exp {4i7rk/s

which is the analogue of equation (6.4). The condition [ny] * [ny] =0 € PNI?’D(S 1'% %,,Z), which
results from the framing procedure, has already been used to simplify the expression of dug([A]).

o] # [m]} , (7.1)

1y §2

Definition 7.3. Let the oriented closed surfaces S; C St x Y4, with j = 0,1,...,2g, represent
the generators of Ho(S' x ¥,,Z) ~ Z?T!. We shall denote by ; € I:I% (S x X4,7Z) the
distributional 1-form which is globally defined in S x Y4 and has support on S;. One can
choose the generators of Ho(S! x ¥4, Z) in such a way that the following orthogonality relations
are satisfied

/ﬁj:5ij7 1,7 =0,1,...,2g.
G;

Since S; are closed surfaces, one has d3; = 0. For any real parameter x, the 1-form z3; also
is globally defined in S' x Y, and the corresponding class, which can be represented by xz/3;,
will be denoted by [z3;] € Q1(S x £,)/QL(S! x £,). The arguments that have been presented
to prove Proposition 6.1 can also be used to prove the following
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Proposition 7.1. The quantum measure (7.1) of the Chern-Simons theory on S* x g, with
nontrivial coupling constant k, satisfies the relation

dpr([A]) = dpx([A] + [(m/2k)5;]).
form=20,1,2,...,2k — 1 and for each value of j =0,1,...,2g.
Finally, the expectation values of the Wilson line operators are determined by the following

Theorem 7.1. Let L be a oriented coloured framed link in S' x %,. For each j =0,1,...,2g,
let us introduce the integer

N;(L) = /L Bj.
Then

e when N;j(L) #0 mod 2k for at least one value of j =0,1,...,2g, one has (W (L)), =0 ;
e whereas when N;(L) =0 mod 2k for all values of j =0,1,...,2g, one finds

(W (L)), = exp {—<2z'w/4k> /S n A dnL}, (7.2)

Ix%y
where ng, A dng, is defined by means of the framing procedure.

Proof. The proof is similar to the proof of Theorem 6.1. In fact, when N;(L) # 0 mod 2k for
at least one value of j =0, 1,...,2g, Proposition 7.1 implies that the Chern—Simons expectation
value (W(L)), vanishes. On the other hand, when N;(L) = 0 mod 2k for all values of j =
0,1,...,2g, the substitution [a] — [a] — [(1/2k)nz] in the functional measure (7.1) leads to the
equation (7.2). It should be noted that expression (7.2) is well defined because the link L and
then its framing L; are homologically trivial. |

8 Surgery rules

For the quantum Abelian Chern-Simons theory on the manifolds S* x $? and S! x ¥, (and,
in general, in any nontrivial 3-manifold), the standard gauge theory approach which is based
on the gauge group U(1) is in principle well defined but presents some technical difficulties,
which are related, for instance, to the implementation of the gauge fixing procedure and the
determination of the Feynman propagator. As a matter of facts, by means of the usual methods
of quantum gauge theories, the computation of the Chern—Simons observables in a nontrivial
3-manifold has never been explicitly produced.

In order to determine the Wilson line expectation values in M3 £ S3, one can use for instance
the surgery rules of the Reshetikhin—Turaev type [6] as developed by Lickorish [39] and by Morton
and Strickland [40]. In this section, we outline the surgery method which turns out to produce
the Chern—Simons observables for the manifolds S! x S§? and S x ¥, in complete agreement
with the results obtained in the DB approach of the path-integral.

Every closed orientable connected 3-manifold M3 can be obtained by Dehn surgery on S3
and admits a surgery presentation [29] which is described by a framed surgery link £ C S® with
integer surgery coefficients. Each surgery coefficient specifies the framing of the corresponding
component of £ because it coincides with the linking number of this component with its framing.
The manifold S* x S? admits a presentation with surgery link given by the unknot with vanishing
surgery coefficient, whereas S' x S! x S! for example corresponds to the Borromean rings with
vanishing surgery coefficients. Any oriented coloured framed link L C M3 can be described by
alink L' = LU £ in S? in which:
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e the surgery link £ describes the surgery instructions corresponding to a presentation of
M3 in terms of Dehn surgery on S3;

e the remaining components of L’ describe how L is placed in M3.

Assuming that the expectation values of the Wilson line operators form a complete set of
observables, one can find [33] consistent surgery rules, according to which the expectation value
of the Wilson line operator W (L) in M3 can be written as a ratio

(W(L))klats = WL)W(L))klss / (W(L))k|ss, (8.1)

where to each component of the surgery link is associated a particular colour state 1)9. Remember
that, for fixed integer k, the colour space coincides with space of residue classes of integers
mod 2k, which has a canonical ring structure; let x; denote the residue class associated with
the integer j. Then, the colour state v is given by

One can verify that the surgery rule (8.1) is well defined and consistent; in fact, expression (8.1)
is invariant under Kirby moves [41]. Finally, one can check that, according to the surgery
formula (8.1), the expectation values of the Wilson line operators in S* x S% and in S* x X, are
given precisely by the expressions of Theorems 6.1 and 7.1, which have been obtained by means
of the DB cohomology.

9 Conclusions

In the standard field theory formulation of Abelian gauge theories, the (classical fields) configu-
ration space is taken to be the set of 1-forms modulo closed forms. But when the observables
of the theory are given by the exponential of the holonomies which are associated with oriented
loops, the classical configuration space is actually given by the set of 1-forms modulo forms
of integer periods; that is, the classical configuration space indeed coincides with space of the
Deligne—Beilinson cohomology classes. So, in this article we have considered the Abelian Chern—
Simons gauge theory, in which a complete set of observables is given by the set of exponentials
of the holonomies which are associated with oriented knots or links in a 3-manifold M3. We
have explored the main properties of the quantum theory and of the corresponding quantum
functional integral, which enters the computation of the observables, when the path-integral is
really defined over the Deligne—Beilinson classes. Within this new approach, we have produced
an explicit path-integral computation of the Chern—Simons link invariants in a class of torsion-
free 3-manifolds. In facts, we have not used any standard gauge-fixing and perturbative method,
as it has been done so far in literature. Our results are based on an explicit non-perturbative
path-integral computation and are exact results.

Let us briefly summarize the main issues of our article. In Sections 2 and 3 we have discussed
a few technical points which are important for the computation of the observables. The basic
definitions and properties of the DB cohomology together with a distributional extension of the
space of the equivalence classes have been illustrated. Then we have shown how the framing pro-
cedure, which is used to give a topological meaning to the self-linking number, can be naturally
defined also in the DB context. The general features of the Abelian Chern—Simons theory in a
generic 3-manifold M3 have been derived in Section 4. The main achievements concerning the
observables are the “colour periodicity” property (Proposition 4.1), the “ambient isotopy inva-
riance” (Proposition 4.2) and the validity of appropriate “satellite relations” (Proposition 4.3).
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With respect to the standard field theory approach, our proofs extend the validity of these
properties from R3 to a generic (closed and oriented) manifold Ms;.

The Abelian Chern-Simons theory formulated in S? is discussed in Section 5 and its solution
is given by Theorem 5.1; in this case, the outcome is in agreement with the results obtained
by means of standard perturbation theory in R®. The expressions of the observables for the
Chern-Simons theory formulated in S x S? and in a generic 3-manifold of the type S x %,
are contained in Theorems 6.1 and 7.1; in the standard field theory approach, no proof of these
theorems actually exists.

Finally, we have checked the validity our path-integral results by means of an alternative
“combinatorial method”. Indeed, the link invariants defined in the Chern—Simons theory are
related to the link invariants defined by means of the quantum group methods of Reshetikhin and
Turaev. Given a surgery presentation in S® of a generic 3-manifold M3 and knowing the values
of the link invariants in S, one can use the surgery method of Lickorish and Morton-Strickland
to determine the values of the link invariants in M3. As far as the Abelian Chern—Simons is
concerned, we have presented the basic aspects of this surgery method in Section 8. We have
verified that the expression of the link invariants for the manifolds S* x S2? and S! x Y4, which
are described by Theorems 6.1 and 7.1, precisely coincide with the results obtained by means of
the surgery method.

Clearly, in the case of a generic 3-manifold, the general features of the Deligne-Beilinson
approach to the Abelian Chern—Simons functional integral remain to be fully explored. Possible
applications of this formalism to the non-Abelian Chern—Simons theory would also give new
hints on the topological meaning of the polynomial link invariants. Finally, we mention that
extensions of Deligne—Beilinson cohomology approach to the topological field theories in lower
dimensions can easily be produced, but the resulting structure of the observables appears to be
quite elementary. Presumably, applications in higher dimensions will produce more interesting
invariants.
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For the Abelian Chern—Simons field theory, we consider the quantum functional
integration over the Deligne—Beilinson cohomology classes and present an explicit
path-integral nonperturbative computation of the Chern—Simons link invariants in
SO(3)=RP?, a toy example of a 3-manifold with torsion. © 2009 American Insti-
tute of Physics. [doi:10.1063/1.3266178]

I. INTRODUCTION

In a quite recent paper,9 we have shown how Deligne-Beilinson (DB) cohomology5’2’6’12’3’1

within Chern—Simons (CS) quantum field theory (QFT) framework 101822131987 b be used to
provide a nonperturbative way to compute Abelian link invariants on some three dimensional
manifolds, such as 3, $> X §', etc. In particular, quantization of the CS parameter k, as well as the
charges ¢ of the links, was a straightforward consequence of the use of DB cohomology, and the
standard regularization via framing was directly interpreted as the problem of regularizing the
product of two distributional DB cohomology classes.

Actually, this former article only deals with torsion free (oriented) 3-manifold. We are going
to mend this lake of generality by explaining how to extend our approach to (oriented) 3-manifold
with torsion. As a school case, we will consider the oriented 3-manifold SO(3)=RP3.

In Sec. II, we will recall some basic facts concerning DB cohomology and how it relates to the
functional measure based on the Abelian CS action. In Sec. III, we will deal with Wilson lines
themselves.

Here are the following three results we will obtain:

(1) the CS level parameter k has to be even;
(2) trivial cycles give the same result than in S°; and
(3) torsion cycles must hold an even charge,

in perfect agreement with surgery methods.
Throughout this paper we will use the notation =, which stands for equality modulo Z.
A

Il. DB COHOMOLOGY: CONSTRAINTS ON THE LEVEL k OF THE ABELIAN CS THEORY

Let us recall that DB cochains can be seen as generalizations of U(1)-connections on
U(1)-principal bundles over smooth manifolds, their classes classifying the corresponding objects,
i.e., U(1)-gerbes with connections. > Concentrating on the case of an oriented 3-manifold M, its
DB cohomology space H;)(M ,7) is canonically embedded into the following exact sequence:3’]l
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0 — Q' (M)/QLM) — HY(M,7) — H*(M,7) — 0, 2.1)

where Q'(M) is the space of smooth 1-form on M, Q}(M) is the space of smooth closed 1-form

with integral periods on M, and I:IZ(M ,7) is the second integral Cech cohomology group of M.
Actually, H})(M ,7) can also be embedded into"'

0 — H'(M,R/Z) — H\(M,7) — Q}(M) — 0, (2.2)

where H'(M,R/7) is the first R/Z-valued Cech cohomology group of M and Q%(M) is the space
of smooth closed 2-form with integral periods on M. Each one of these two exact sequences has
its own interest to describe HID(M ,7), but both give this space the structure of an affine bundle,

with (discrete) base H2(M,7) and translation group Q'(M)/Q}(M) from the former sequence, and

with base (M) and translation group H'(M,R/7) from the latter one.

The other important DB space we will need is Hf)(M ,7). However, the exact sequences of the
previous type into which this space is embedded both lead to Hf)(M ,2)=R/Z.

A (graded) pairing between DB cohomology spaces can be introduced. In our particular case
of interest, it reduces to a commutative product,

sp:Hp(M,7) X Hp(M,7) — Ho(M,7) = R/Z. (2.3)
The “DB square” of a class [w] € H})(M,Z),

esi([w]) = [o]plo] (2.4)

canonically identifies with the Abelian CS Lagrangian, while the level k CS Lagrangian simply
reads as

es[w]) = k- csi([w]) =k - [o]#p[w]. (2.5)
Of course, due to the Z-module structure of DB spaces, cs([w]) belongs to H3 (M ,7) if and only
if keZ.

In fact, DB classes are another point of view for what is called Cheeger—Simons differential
characters (see, for instance, Refs. 3, 4, 14, 11, and 1). This implies that any DB cohomology class
can be integrated over any (integral) cycle of M of the corresponding dimension. However, the
result takes values in R/7 and not R like in standard integration. Integral 3-cycles on an oriented
3-manifold are just integer multiples of M. Hence, the Lagrangian cs,([ w]) defines the well known
level k& CS action as

CSk([w])Ekf Csl([w])=kf [w]*p[w], (2.6)
M M

which takes its values in R/7 if and only if k € Z. We now have all the necessary ingredients to try
to define the functional “CS measure” on H ID(M ,7), denoted by

ml[w]) = D[w]eXp{%wk f [w]*D[w]}- 2.7)
M
Let us point out that (2.7) imposes quantization of the level k, that is to say,

kel (2.8)

for the exponential to be well defined. The procedure giving a meaning to (2.7) was detailed in
Ref. 9. To make it, short let us say that if we choose the exact sequence (2.1) as defining

H B(M ,7), the measure will be made of a discrete sum indexed by elements of HX(M,7); then, we
pick up an origin on every (affine) fiber, and for each of these fibers, we consider a (formal)
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measure over the translation group Q'(M)/Q}(M). As already noted and extensively used in Ref.
9, the CS measure satisfies

e (0] +a) = ,U«k([w])eXp{ Zika Qlolpa+ 5*05)} (2.9)
M

for all @ e Q'(M)/Q}(M), which is similar to the Cameron—Martin property cylindrical functional
measures verified.

In addition to the product *p, integration of elements of H})(M ,7) over l-cycle on M also
provides a pairing,

% Hp(M,7) X Z,(M) — R/7Z, (2.10)

where Z,(M) denotes the Abelian group of (integral) 1-cycle on M. This pairing allows us to see
1-cycle on M as elements of H})(M,Z)* EHom(HlD(M,Z) ,R/7), the Pontrjagin dual of H})(M,Z).
This dual space is itself embedded into dual sequences,

0 — H'(M,R/Z) — H\(M,Z)" — Hom(Q'(M)/QL(M),R/Z) — 0 (2.11)

and

0 — Hom(Q%(M),R/7) — HY(M,7)* — H*(M,7) — 0, (2.12)

both being very similar to the original sequences (2.1) and (2.2). On the other hand, the DB
product (2.3) also allows us to canonically identify HID(M ,7) as a subspace of HID(M ,72)* via
integration over M, which is also legitimated by the sequences above. However, since
Z,(M) CH})(M ,7)*, one is naturally led to consider the possibility to associate with each 1-cycle,
z, on M a (distributional) DB class, [ 7,]. Details of this association can be found in Ref. 1. These
arguments look totally similar to how smooth functions can be considered as distributions via
standard integration and how chains can be seen as de Rham currents, except that everything is
done with respect to R/7Z and not R.

The usefulness of the Pontrjagin dual in our problem is deeply related to the fact that in QFT,
the quantum configuration space is made of distributional objects, and not just smooth ones. The
first consequence will be an attempt to extend the CS measure to H})(M ,7)*. However, while the
DB product (2.3) obviously extends to

sp:Hp(M,Z) X Hp(M,7)* — R/Z, (2.13)

it is hopeless to try to extend it straightforwardly to

sp:Hp(M,Z)* X Hy(M,7)* — R/Z (2.14)

since we will face the problem of defining product of distributions (or currents). Actually, we will
not really need to give a meaning to the products of any two elements of H Il)(M ,7)*. We will only
need to define products such as [ 7,]#p[ 7.], where [ 7.] is the DB representative of a 1-cycle, z, on
M. For the rest, we just need to assume that there is a functional measure on the quantum
configuration space (QH;)(M ,7)%), which satisfies the Cameron—-Martin-like property (2.9) (see
Ref. 9 and references therein concerning this point).

Let us now deal with Wilson lines. We will explicitly consider M=RP?, although our treat-
ment is quite obviously general.
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lll. EXPECTATION VALUE OF WILSON LINES WITH TORSION IN THE ABELIAN CS
THEORY: M=RP® CASE

The 3-manifold M=RP? is among the simplest ones involving torsion. Indeed, and due to
Poincaré duality, we have

HX(M,7) = H,(M,Z) = 7,,

H'(M,7) = Hy(M,7) = 0. (3.1)

The first equation, together with (2.1), implies that HII)(M ,7) is an affine fiber bundle with base
space Zzz{d ,1}, with 2-1=0. The fiber over 0 clearly contains the zero U(1)-connection, [0],
which plays the role of a canonical origin in this fiber so that a DB class [w,] over 0 satisfies

[wo] =[0]+ @ (3.2)

for some @ e Q'(M)/Q}(M). Over [ there is unfortunately no such canonical choice. Neverthe-
less, from the exact sequence (2.12), we see that HID(M ,7)* is also an affine bundle with base

space ZZE{d,f}. Thus, the choice of [0] for origin on the fiber over 0 still holds. Now, as
explained in [GT], and because of the inclusion Z,(M) C HID(M ,7)¥, there is a family of “natural”

choices of origin for the fiber over [ provided by 1-cycle, z, on M, or rather by their DB
representatives [7,]. All we have to assume is that such an origin also belongs to the quantum
configuration space of the theory. We can then formally write the functional CS measure on
Hp(M,7)",

w(lw]) =Da exp{ 2i7'rkf &*Dc_v} +Da exp{Ziﬂ'kf ([n,]+ a)xp([ 7]+ Ez)} , (3.3)
M M

where [ 7] is the origin on the fiber over [ associated with some given (and so fixed) torsion cycle
7, on M. In the second term of (3.3), there appears the quantity [ 7, ]*p[ 7, ], which is ill defined as
being a product of distributions (or rather de Rham currents). This is where regularization is
required. Actually, and as mentioned earlier, regularization is only required later on when com-
puting expectation values of Wilson lines. However, as we will see (check Ref. 9), the quantities
to regularize are of the type [ 1, ]#p[ 7,]. This is why we are going to deal with regularization right
now.

A. Regularization of [ 7, ]*p| ;] via framing: Linking numbers of torsion cycles

When a cycle z is trivial, i.e., z=bc, with b as the usual boundary operator, one can define the
self-linking number of z as the linking number of z with z/, where z/ is a framing of z. This reads
as

L(z,2) =L(z,Z)=c N, (3.4)

with M denoting the transverse intersection. Of course, the result fully depends on the chosen
framing of z. This also provides a regularization procedure for [ 7, |*p[ 7,]. Indeed, if z and z’ are
two trivial cycles in M without any common points, their DB representatives, [7.] and [7,],
satisfy

[7.)#pl 7. 1=[0]+ . Adn.s € H3D(M,Z)* = R/Z, (3.5)

where 7, (7.) is the de Rham current of the cycle z (z') such that z=bc (z'=bc'). However,
n.Adm, is the de Rham current representing the intersection c¢MNz’'=c’MNz. Accordingly,
Sum.~dn.r €7 so that [5.]*p[ 7.,]=[0]. Note that we did not use any regularizing at this stage.
We can now apply this to z and 7/, leading to [ 7,]#,[ 7,/]=[0]. Thus, the framing procedure can be
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used to regularize [ 7,]#p[7.] into [0]. It can even be applied for a non trivial (but torsionless)
cycle (see Refs. 1 and 9 for details).

For two torsion cycles 7and 7 on M, we have 27=b{ and 27'=b{’. Hence, (N7 and {'N 7
are still well defined integers. The linking number this torsion cycle is then

L(r,7)= %(ﬂ = %Z (3.6)

Due to the occurrence of the % factor in (3.6), we immediately conclude that there is no chance for
the framing procedure to regularize [ 7,]*p[ 7,] into [0]. Accordingly, the term [ 7, ]%,[ 7,] appear-
ing within (3.3) will plague the CS measure since, by construction, it is built from a torsion cycle.
Fortunately, there is the level parameter k also occurring in (3.3). Now, if k=2, then
k[ )#plm]=1-2[ 9 )#pL 7], and hence the framing procedure consistently applies to 2[ 7, *p[ 7]
because the factor % into (3.6) is now vanishing. Thus, here comes a new constraint on the CS
level parameter for M =RP3,

k=21, leZ. (3.7)

Note that one could decide to regularize by using only an “even” framing, keeping k e Z. How-
ever, obviously, this would be totally equivalent to consider any framing and k=2/. This is this last
point of view we will chose and from now on k will be even.

We are now ready to look at Wilson lines.

B. Expectation value of a Wilson line on M=RP?: Trivial cycles and torsion cycles with
charge q

Let z be a 1-cycle on M=RP3. As previously explained, for any [w] € H})(M , 1)

J[a)] e R/Z. (3.8)

This integral defines parallel transport of the connection [w] along the cycle z, and

exp{Ziﬂ'f [w]} (3.9)

is called the U(1)-holonomy of z with respect to the connection (or to the DB class) [w]. We also
noticed that it is possible to write

[ o[ torend (3.10)
z z M

for [1.] € H,(M,7)*, canonically representing z. As long as [w] is smooth, formula (3.10) is well
defined, but since we need to go to H})(M ,7)*, once more, some regularization will be required.
On the other hand, a fundamental loop is a continuous mapping, f:S' — M, such that f(S')=S!. A
singular decomposition of S! provides a singular decomposition of f(S') so that this last quantity
can be considered as a (singular) 1-cycle on M. Then, we can consider linear combinations,

N
2= 2 qZ; (3.11)

where the Z; are fundamental loops without any common points.
From now on, we will assume that the functional CS measure is (existing and) normalized so
that
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f wl[w]) =1. (3.12)

The expectation values of the Wilson line for a fundamental loop Z with respect to the level k CS
measure formally read as

W)= <exp{zm J [w]}> - uk([wDexp{zm J [w]}, G.13)

and for a cycle z=¢gZ

<W(Z=qZ)>k=f Mk([w])eXp{ZiCI?TJ [w]}- (3.14)
VA

From (3.10), we can equivalently write

(W(z=q2)),= f Mk([w])eXp{%ml J [w]*D[nz]}. (3.15)
M

Finally, substituting (3.3) into (3.15), we obtain
(W(z=q2))= f Da exp{ 2i77f axp(ka + 61[772])}
M

+JD67 eXp{ZiWJ ([m]+&)*D(k[m]+k&+q[7zz])}- (3.16)
M

There are two different cases to consider: either Z=bC (trivial cycle) or 2Z=bC" but Z+# bC
(torsion cycle).

When Z=bC and with our choice of origin on the trivial fiber of H ,%,(M ,7)*, we can write
[7,]=Bc for some B e Hom(Q%(M),R/Z). As explained in Ref. 1, B¢ is built from the de Rham
current B¢ of the chain C. Unlike DB classes, B¢ can be divided by 2k, giving rise to B¢/2k
e Hom(Q2(M),R/7). Now, as intensively done in Ref. 9, we perform the shift

. B
=a+qg_— 3.17
@ X=a+q ( )
in both terms of (3.16), thus obtaining
N IR DN o[ Be, Be
(W(z=qZ)),= | Dxexp)2imk | x*pX (expy—2imkq *p
" w2k D2k
] _ _ o Be, Bc
+ | Dxexp) 2imk | (L] +0)#p(lm]+X) fexp) = 2imkq” | = wpo
" 2k P2k
(3.18)

where we used 2k8./ 2k=,3_c. Note that the result mainly derives from the Cameron—Martin prop-
Z
erty of the CS measure. Finally, since

Be, Bc_Bc, fe_Bcndbc

_ - , 3.19
2% Pokzok N Cokz 4K (3.19)

we derive
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: Bc, Be 2img’
exp{—Zlﬂ'qu MZ_If*DZ_Ii =expy—— o MBC/\dBC . (3.20)

The product S-Adp has to be regularized for its integral over M to have a meaning. Applying the
framing procedure to Z leads to

J BerdBe=L(ZZ)=CcnNZ e . (3.21)
M

We then conclude that

2 2
(W(z=q2)), = exp{— 21'77%L(Z,Zf)} = exp{— 21'77%6‘ N Zf} , (3.22)

which is, as expected, the same result as for M =53 Let us prove that the above procedure does not
depend on our choice of S.. Let C be another chain bounding Z. Then, b(C—-C)=0 which means

that C—C is a 2-cycle on M. Since here M=RP3, from (3.1), we deduce that C-C=b¥. Then,
bdNZ'=9NbZ'=0, and (3.22) will still hold. If M has free homology of degree 2, there will also
be free cohomology of degree 2 (see universal coefficient theorem), and then the base space of
HID(M ,7) [and H;)(M ,7)*] will also have a free part so that we have to adapt our measure.
However, it is almost obvious that (3.20) would then produce a term (C-C)NZ'=(C-Cc)nbcf
=bh(C—C) N C'=0, since by hypothesis Z, and so Z, is a trivial cycle. o o

In the torsion case, since 2Z=bC’, we can obviously write [ 7,,1=2[ 7,]= B¢, with B¢ built
from the de Rham current B¢/ of the chain C'. However, since Z# bC, we cannot find any de
Rham current B of an integral chain such that [7,]=8c. This is because DB cohomology is
defined over Z and not (). On the other hand, [ 7,], the DB representative of the fixed torsion cycle

71, has been chosen as origin of the fiber over 1, so we can also write [772]=[7/1]+,l7y, where ,6’_) is
made from the de Rham current B, of the chain y relating Z and 7: Z=7,+by. Substituting that
into (3.16) gives

(W(z=q2)), = f Da exp{2i77f axp(ka+qln ]+ qu)}
M
+ f Da exp{Ziﬂ'f (L] + @ pk{m] + ka+qlm]+ qg)}- (3.23)
M

Since k is even, the quantity k[ 7, ]*p[ 7] occurring in the second term of this expression is
consistently regularized into [0] using the framing procedure. Unfortunately, in the same term we
also see the quantity g[ 7, ]#p[7,]. It combines with the previous one to give (k+q)[ 7, ]#pl 7]
From the same regularization argument, which led us to impose k to be even, we deduce that
(k+¢) has to be even too, and thus

q=2m, meZ. (3.24)

In other words, charges inherit the same constraint than the level parameter and for exactly the
same reasons. Note that when ¢ is odd then the framing procedure might produce variations in the
relative sign between the two terms of (3.23), depending on whether the framing is odd or even,
hence implying that the expectation value would not be properly defined. Let us assume for the
rest of this section that ¢g=2m, and let us rewrite (3.23), accordingly,
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(W(z=q2)),= j Da CXP{Ziﬂ'j akp(ka+2mln]+ ZmE)}
M

+JDaexp{2mf ([m]+a)*D(k[m]+ka+2m[m]+2mﬁy)}. (3.25)
M

Since [ #5,] is the DB representative of the torsion cycle 7, there exists a chain C with de Rham
current vy, such that 27=bC, that is to say, 2[ 7;]=7¢. Hence,

(W(z=g2)) = f Da exp{Zi’n’f axplka+myc+ ZmB_))}
M
+ f Da exp{2iﬂ'f (L] + @) p(kL 7] + ket + myc + Zm,B_))}
M

=JDZ¥ exp{2i7rf &*D(k&+mpc+2y)}
M

+ch_x exp{Ziﬂ'f ([7]1]+&)*D(k[n1]+kc_t+mm)}. (3.26)
M

where we have introduce pc+2y='y_c+2ﬁy= Yc+2B,, with pe,, being the de Rham current of C
+2y. Now, let us perform the usual shift

a@— x= c_z+qp;: (3.27)
to obtain
(W(z= qZ))k—fDxexp{kaf X*D)(}exp{ 2177ka Pesyy D%X}
f Dxexp{zmk f ([771]+X)*D([771]+X)}6XP{—2kam f e D%X}.
(3.28)

We are left with proving that the framing procedure provides a consistent regularization of
Pcsay! 2k ppciny/ 2k, giving a meaning to (3.28). Actually, if 7/ denotes a framing of Z,

f pC+22 Pc+2y m’ m’ f
=— d =—(C+2y)N27Z, 3.29
y *D 2k 74k MPC+2y/\ Pc+2y 4k( y) ( )

which implies that

f
£e+2ynz } (3.30)

(W(z=q2)) = eXP{ m )

We also introduce the 2-chain C’ such that 2Z=bC’. Hence, b(C'—C-2y)=0, which means that
C'—C-2y is a 2-cycle on M. Since the second homology group of RP? is trivial, in this case
C'—C-2y=b"¥, which implies that (C+2y)NZ'=C’NZ. Once more, if M had a nontrivial
second homology group, then we would have (C+2y) NZ'=C'NZ'+2NZ for some (possibly
nontrivial) 2-cycle 3. Yet, since 2Z/=bC' we would still obtain that (C+2y) N Z/=C’ N Z/. Finally
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(W(z=q2)),=exp) = 2im— - —— (, (3.31)

with 2Z=bC’, which is exactly the result coming from surgery.20’7’]6 This last series of results also
prove that nothing depends on the choice we made for pc,s,.

Finally, note that (3.31) is actually containing (3.22) since if 2Z=bC" and Z=bC then C’
=2C is a possible choice and then C' NZ//2=CNZ has expected. And consistently, we do not
need ¢ to be even within (3.22). One can convince himself that the factor 1/2 appearing in (3.30)
is nothing but the torsion degree of Z, and thus in the case of a 3-manifold with torsion cycle of
degree p, we would see a term such as C’' N Z//p=CNZ/. This is also in agreement with the case
of trivial cycles, which can be seen as torsion cycles of degree 1.

IV. CONCLUSIONS

The treatment of Abelian CS to generate link invariants introduced in Ref. 9 straightforwardly
extends to the case of oriented 3-manifold with torsion. Although we only considered RP?, it is
clear that our results apply to any oriented 3-manifold with torsion. In Ref. 17, we will show how
DB cohomology can also be applied to higher dimensional Abelian CS theories and link invari-
ants, thus fulfilling some of the questions left opened in Ref. 9.
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Abstract

The role played by Deligne-Beilinson cohomology in establishing the relation between
Chern-Simons theory and link invariants in dimensions higher than three is investigated.
Deligne-Beilinson cohomology classes provide a natural abelian Chern-Simons action,
non trivial only in dimensions 4] + 3, whose parameter k is quantized. The generalized
Wilson (2 + 1)-loops are observables of the theory and their charges are quantized. The
Chern-Simons action is then used to compute invariants for links of (2{+1)-loops, first on
closed (4l + 3)-manifolds through a novel geometric computation, then on R*+3 through
an unconventional field theoretic computation.

LAPTH-030/12


http://arxiv.org/abs/1207.1270v1

1 Introduction

The role that Deligne-Beilinson cohomology [11 2 3], [4, [5l 6], [7] plays in establishing the
relation between Chern-Simons Quantum Field Theory and link invariants [8] 9] [10] 1T,
12| 13, 141 15 [16], in the abelian case, has been stressed out in a series of papers [17, [I§].
We will here complete these works by showing how higher dimensional Deligne-Beilinson
(DB) cohomology classes, and their DB-products, provide a natural generalisation of
the Chern-Simons action, and how they can be used to compute invariants for higher
dimensional links [I3], [19]. We will produce a novel, geometric computation for closed
(41 + 3)-manifolds. We will then compare it to a field theoretic computation made on
R4l+3.

In section 2, we recall some basic facts concerning Deligne-Beilinson cohomology and
how it relates to the functional measure based on the abelian Chern-Simons action. In
section 3, we present a natural candidate for the generalized CS action. In section 4,
we deal with generalized abelian loops and their expectation values for closed (41 + 3)-
manifolds within the DB approach. We further illustrate it with two specific examples.
Section 5 is devoted to a quite unusual field theoretic computation of these expecta-
tion values in the R*+3 case, and the extension of this type of computation to S¥+3 is
sketched. In Appendix, a geometrical interpretation of the higher dimensional linking
number relating it to the notions of solid angle and zodiacus is presented following the
original ideas of Gauss [20].

Here are the main results elaborated in this article:

1. The abelian Chern-Simons generalised action is non trivial only in dimension 41+ 3,
and its level parameter k& has to be quantized;

2. The generalised Wilson (2{+1)-loops are observables of the theory and their charges
are quantized.

3. In the geometric DB approach provided by functional integration over the space
[HA (M, Z)]* > H¥* (M, Z), the 2k-nilpotency property holds and the observ-
ables are given by (self-)linking numbers under the so-called zero-regularization
choice (i.e. framing). Furthermore only homology is involved in abelian Chern-
Simons theories and only homologically trivial links (modulo 2k) give non vanishing
expectation values.

4. A field theoretic computation in R**3 can be handled in a non perturbative way,
yet it still misses quantization of the level and charges. Once the latter are imposed
by hand the result reproduces the one from the DB approach.



2 Basic facts about Deligne-Beilinson cohomology

Without recalling the whole theory let us remind the basic facts about DB-cohomology
useful in this paper.

2.1 Definition via exact sequences

If M is a closed (i.e. compact and without boundary) n-dimensional smooth manifold,
the p-th DB cohomology group of M, denoted H}, (M,Z) (p < dimM =n), is canonically
embedded into the following equivalent exact sequences [5 21]:

0— QP (M) (M) — HY (M,Z) — H"*'(M,Z) — 0, (2.1)
0— H?(M,R/Z) — H? (M,Z) — Q2" (M) —0, (2.2)

where 2P (M) is the space of smooth p-forms on M, 2 (M) the space of smooth closed p-
forms with integral periods on M, H?P*! (M, Z) is the (p+1)-th integral Cech cohomology
group of M, and H'(M,R/Z) is the p-th R/Z-valued Cech cohomology group of M.
These exact sequences also occur in the context of Cheeger-Simons differential characters
[22, 23] or Harvey-Lawson sparks [21].

Thanks to exact sequences (Z1I) one can interpret HY, (M,Z) as an affine bundle over
Hp+Y (M, Z) (vesp. Q5™ (M) with structure group Q2 (M) /9% (M) (resp. H? (M,R/Z)).
Note that in the former case Q) (M) plays the role of a gauge group, which is much
bigger (in general) than the usual group of exact forms. An element of H} (M,Z) will
be generically written w(P].

Let us pick up a normalized volume form on M, i.e. a n-form p such that [, = 1.
For dimensional reasons any n-form on M is closed, hence for any n-form w on M there
exists a (n—1)-form v such that w = 7+ dv, with 7 = [,, w € R. Furthermore, if w has
integral periods, then 7 € Z, since dv is a closed n-form with zero periods ( f,, dv = 0 since
M has no boundary). This proves that any element of Q"(M)/Q%(M) can be written as
Op, with 6 € R/Z. Finally, integrating 0 over M makes the construction independent of p
and proves that Q(M)/Q%(M) ~ R/Z (equivalently one can pick up another normalized
volume form and see that it will give the same 6, and finally pick any volume form and
prove the same). Still for dimensional reasons, H"*1(M,Z) = 0, so we conclude that
HY (M,Z) ~R/Z.

For later convenience, let us consider two special cases. First, when M = S4+3 and
p=20+1, we have H2+*1 (M,R/Z) =0 = H?+2(M,R/Z), then sequence (ZI)) reduces to:

0 — QM) [dO* (M) — HI* (M,Z) —0. (2.3)
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Hence HZ*'(M,Z) is isomorphic to the quotient space Q2*1(M)/dQ* (M), the gauge
group reducing to the trivial group dQ%(M). Although this is a quite trivial case, it is
very close to the one of the field theoretic approach.

The second example is provided by M = S+l x S2+2 still with p = 20 + 1. Since
H2+ (M, R/Z) = 7. = H?+2 (M,R/7Z), sequence (2. reads:

0 — (M) [OF* (M) — HEN(M,Z) — H***(M,Z)=Z—0. (2.4)

The DB Z-module HZ*1(M,Z) is then a non trivial affine bundle over Z, the gauge group
Q2+1(M) being also now non trivial.

2.2 Pontrjagin dual of DB-spaces

Due to the form of the exact sequences (2.1I), one can consider dual sequences not with
respect to R but to R/Z. This gives rise to the Pontrjagin dual space of H?) (M,Z):
HY (M,Z)" = Hom(HY, (M,Z),S"). In particular, H? (M, Z)" belongs itself to an exact
sequence (dualizing ([2.2)) in R/Z):

0— Hom (5" (M), R/Z) — HY) (M,Z)" — H" P (M,Z) — 0, (2.5)

This identifies H? (M,Z)" as an affine bundle over the same base, H"#~1 (M,Z), than
HYP "1 (M, Z). Of course there is a second exact sequence we could obtain from dualizing
(m%hanks to integration over integral cycles on M, the quotient Qm=P=1 (M) / QP (M)
can be canonically embedded into Hom (Q’gl (M) ,]R/Z). We have also noticed that
Hp(M,Z) =~ R/Z. This suggests that H}, """ (M,Z) might be canonically identified as a
subset of H?) (M,Z)", just as continuous functions can be seen as (regular) distributions.
The notion of integration of DB-classes over cycles is needed to confirm this.

2.3 Integration of DB-classes over integral cycles

There is a canonical pairing between DB-class and cycles on M provided by integration
of the later over the former:

§:H% (M,Z) x Z, (M) — R/, (2.6)

where Z,(M) denotes the space of integral p-cycles on M. Let us stress that these
integrals take their values in R/Z ~ S', not R.

Since M itself is a cycle, one can integrate any DB-class w(™l € H}, (M,Z) over M.
This confirms that H7,(M,Z) ~ R/Z and proves that H};?~" (M,Z) can be canonically
identified as a subset of HY, (M,Z)".



Incidentally, integration also shows that Z, (M) is canonically embedded into HY, (M, Z)"
- which can be expressed [21] by saying that p-cycles live in the topological boundary of
HY, (M,Z)". Hence:
HyPH (M, Z) x Z,(M) ¢ HY (M, Z)" (2.7)

where c has to be understood as the above canonical embeddings.

Property 1 As in the three dimensional case, abelian holonomies defined by:

exp 2i7r§w[p] : (2.8)

z

are observables of the generalized abelian Chern-Simons theories.

2.4 DB-product and cycle map

There is a natural bilinear product, referred here as the DB-product:
xp s HY (M, Z) x HY (M, Z) — HY " (M, Z) , (2.9)
which is graded according to:
WPl s p 1 = (1) D@D L o lal (2.10)
From our previous remarks, one straightforwardly verifies:
xp HY (M, Z) x HyP"Y(M,Z) — Hp(M,Z) ~R/Z (2.11)
The “DB-square” operation satisfies the graded commutation property:
WPl s p Pl = (—1) DD el ) Il (2.12)

which implies in particular:
Wt p Wl =0 (2.13)
for any wl?1 e HZ(M,Z).

The DB-classes introduced above are smooth ones. They can be extended to distribu-
tional DB-classes. relying on Pontrjagin duality. Setting H'(M,Z) = Z, one extends the
previous DB-product to a pairing of H},(M,Z) and H},(M,Z)* into Hgﬁp*l)(M, Z)* >
HY P (M,Z) (q 2 p). Note that H;'(M,Z)* = R/Z = H?(M,Z) hence xp, : H?, (M, Z)x
HY(M,Z)* - H;'(M,Z)* = R/Z as expected. This is similar to the usual theory of de
Rham currents.



We end this subsection with the following important result shown in [7]: to any p-
cycle z on M one can associate a canonical distributional DB-class 1, € HY (M, Z)* such

that:
jgw[p]:f wPlxpm, (2.14)
M

for any wlPl € H? (M,Z). Such distributional DB-classes thus appear as elements of
HY (M,Z)". This is just another way to see the inclusion Z,(M) c HY, (M,Z)". In the
particular case where the p-cycle is a boundary, z = be, the associated DB-class n£""’ -1l

reduces to the de Rham current of the integral (p + 1)-chain c. See [7] for details.

3 Generalized Chern-Simons action, Chern-Simons
functional measure, observables and framing

3.1 Generalized Chern-Simons action

It is standard from a physicist point of view to present the abelian Chern-Simons (CS)
lagrangian on R? as :
cs1(A) = AndA, (3.15)

or, using the CS action:
CS1(A) = 2in fR AndA, (3.16)

where A is a U(1)-connection on some principal U(1)-bundle P over R3. A natural
generalization for R4*3 would be to replace A in eqn. by a (20 + 1)-form. This is
what will be done in section 5 when dealing with the field theoretic formulation.
However U (1)-connections on M are actually not 1-forms for compactclosed 3-manifolds

M. Hence, as explained in [I7, [I8], we rather have to use DB-classes to write the la-
grangian (3.15]), and hence the action ([BI6). Let us recall that H}, (M,Z) canonically
identifies with the set of classes of U(1)-isomorphic principal U(1)-bundles with connec-
tion over M. Hence we must replace eqn. (3.16) by

0S5 (A) = 2i7TfMA*DA, (3.17)

where A has now to be understood as a DB class.
For a level k£ CS theory we set:

CSp(A) = 2ink fM Asp A (3.18)



We can extend the definition of the action ([B.I8) to any closed smooth n-dimensional
manifold M as:

OS(wP)) = 2imk [ W) g P (3.19)
M

This will be our definition of the n-dimensional Chern-Simons theory of level £ on M.
Since integrals take values in R/Z this quantity is well defined provided

keZ, (3.20)

which is the announced quantization of the level parameter.
We now consider the “quantum weight”:

exp {CSp(wl!)} = exp {Qiﬁk[Mw[p] *p w[p]} . (3.21)

When p = 2] the graded commutation property (2.12]) leads to:

exp {CS (w1} = exp {ink [Mw[2l] *D w[zl]} =1. (3.22)

thereby providing a trivial functional measure. Consequently, the non-trivial cases only
occur when p = 2[+1 which implies that n = 2p+1 = 4143. In particular, if M is a sphere,
the only non trivial abelian Chern-Simons theories will occur for

S8 87, St (3.23)

Note that this is namely the set of spheres for which Hopf invariants are non-trivial,
hence linking numbers are non trivial as well [24]. Furthermore, this expression for the
CS action holds true for closed manifolds with torsion.

In summary:

Property 2 The non trivial generalized abelian Chern-Simon lagrangian of level k is de-
fined by the DB square product of (21+1) dimensional DB classes on a (41+3)-dimensional
closed manifold, with k an integer.

For a (41 + 3)-dimensional manifold and its (2[ + 1)-loops, the inclusions stressed out

after (20)) and in (Z71) give:
H¥Y(M,Z) ¢ HEY(M,Z)", (3.24)
QML (M) /2 (M) < Hom Q22 (M),R/Z) .
We will assume that the space of quantum fields of a generalized abelian Chern-Simons

theory in (47 + 3) dimensions is a subset of HZ* (M,Z)" which contains HA (M, Z) x
Z2l+1(M)-



3.2 Chern-Simons functional measure and zero mode property

The generalized Chern-Simons “gaussian” functional measure for a (4/+3)-manifold takes
the form:

dpg(w) = Dwexp {CSr(w)} . (3.25)

Since we wish to use this measure to compute observables and identify them with
(20 + 1)-links invariants, let us have a closer look at it. First, dux(w) is supposed to be
a measure on HA* (M, Z) or rather on (some subset of) HA* (M,Z)", its “quantum”
version. Of course, and as usual for infinite dimensional spaces, the measure ([3.25) is
totally formal on both spaces: as a Lebesgue measure over H2*! (M,Z), Dw is zero, and
so is (B:28); considering globally on dpuy(w) HE (M,Z)", we should need to regularize
products of distributional DB classes appearing in the gaussian part of the measure -
something common in Quantum Field Theory. In fact, we will only need the fundamental
Cameron-Martin like property for the measure (B:25), that is to say:

duk(w+C)zduk(w)exp{élz'ﬁkaw *p C}exp{QiﬂkaC*D C}, (3.26)

for any given ¢ € H2*! (M,Z). Note that this property is similar to the one of a finite-
dimensional gaussian measure which relies on the translational invariance of the Lebesgue
measure. In other words, we have to assume that the “existing measure” on the functional
space has property ([B.26) which holds true for (8:25) seen has a measure on any finite
dimensional subset of HZ™ (M, Z).

Let us consider a (2] +2)-cycle X, whose integration (2/ + 1)-current in M is denoted
Bs. While this current canonically represents the zero class in HA* (M,Z), in general
the current % does not. From property ([B.26]), and identically denoting currents and the
DB classes which they represent, we deduce:

Bs\ { : f 52} { : /' By 52}
dpg(w + Qk) = dpy(w) exp {dimk W ED 5[ eXP 2irk B (3.27)
In contrast with the identity
. 2i
exp{2mk: Mg—E*D g—;}zexp{%; [Mﬁg/\dﬁg}:l, (3.28)

trivial since dfy, = 0, the following one:

exp{4i7rkf W *p &}:exp{%wf W *p 52}:1, (3.29)
M 2k M

deserves some justification. The factor 4dirk = 2k - (2i7) in eqn. (B.29) is of pivotal
importance. Indeed, w *p Py /2k is not the zero class, whereas 2k(w *p fx/2k) = w *p Os
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is, as fy is trivial. Note that fx/2k is not an integer current, and that a DB class w is
not the restriction of a current in general (see for instance [7]). Of course, one should
be careful when dealing with the product of currents fBx A dfx. However one can always
smooth [y, around X (i.e. use a Poincaré representative with support as close to X
as necessary) in order to consistently regularize Sy A dfsx to the zero DB class. More
generally, for any integer m,

d,uk(ermg—i) = dpg(w) (3.30)

which provides the generalization of Property 4 of [17]:

Bs

Property 3 The functional measure duy(w) is invariant under translations by m32,

where By, is the integration current of a (21 +2)-cycle ¥ and m an integer.

When ¥ is homologically trivial (3 = b)) then Sy = dxy, and therefore g—i =d(3F) .
In this case the DB-class of g—i is also zero. This happens for any ¥ when the (21 + 2)th
homology group of M is trivial. Conversely, as we shall see in the next section, when M
has a non trivial (2{ + 2)-th homology group, Property 3 will provide a treatment of the
so-called ”zero modes”, thus leading to the important result of this paper concerning the
vanishing of links invariants.

3.3 Observables and Framing

Following Property 1, let us consider an observable of our level k generalized CS theory:

exp 2i7r§w zexp{Qiﬂf w*Dnz}. (3.31)
M

z

Let us remind that a (2[ + 1)-loop is meant to be a continuous mapping 7 : 3g,1 > M,
where Y941 is a closed (21 + 1)-dimensional manifold. It is always possible to identify
such a loop with a (2/+1)-cycle in M. Furthermore, if the mapping is an embedding (i.e.
the image v(2g,1) is isomorphic to ¥g,1) v is said to be a fundamental loop. Then,
seen as a cycle, any (2[ + 1)-loop in M can be written as: v = g7, for some fundamental
loop 7o and ¢ € Z. Hence, the abelian Wilson line of the gauge field w of degree (21 + 1)
along a (20 + 1)-loop 7 = ¢y in M reads:

W(w,v) = exp 2i7rﬂ€w =exp{2i7rq[ w}, (3.32)
0

Y



Conversely, the righthand side of this expression has a meaning if and only if ¢ is an
integer. This leads to:

Property 4 In the generalized CS theories, loops must have integer charges.

The charge (or colour) of a loop v can be geometrically interpreted as the number
of times the fundamental loop associated with v has been covered. When ~ is not
homologically trivial, its charge canonically identifies with its homology class. The charge
can also be seen has defining a representation for the U(1) holonomy of a fundamental
loop. This is also true for the level k parameter which can be seen as a charge of M, or

as a representation of the U(1) 3-holonomy given by the Chern-Simons action.

If 7, and 7o are the DB classes (e HZ* (M, Z)") associated with v and v, respectively,
then 1, = gny. Hence we can alternatively write:

W(w,v) =exp {2i7rq [Mw *p 7)0} . (3.33)
The expectation values of the Wilson lines are given by:
<W(w,7) >cs,= Z;! f dpu(w) exp {2i7rq wa *p 770} : (3.34)
where Zj, is the normalization factor such that < W(w,v =0) >¢g,= 1.

For a generic homological combination v = YI'; ¢;7Y with ¢; € Z and 4 fundamental,
we get:

W(w,v) =exp {iniqi LQ w} , (3.35)

(3

or in term of the DB representatives 7 of these ~?:

W(w,v) = exp {2@'%2% wa *D ?7?} : (3.36)
Let us first exhibit the nilpotency property of the expectation values
<W(w,7) >cs,= Z3* [ dpg(w) exp {2@'% 2 i [Mw *p 77?} , (3.37)
For the loop 2k~y, where 7, is fundamental with DB representative 7):

<W(w,2ky) >cs,= Zi" [ dpy(w) exp {2i7r(2k) [ W *p 170} : (3.38)
M
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Performing the shift
W W+, (3.39)

thanks to property (B.20]), we obtain:

<W(w,2kv0) >cs,= Z;;* f duk(w)exp{—%ﬂ/;ﬂno *p 170} : (3.40)

Such an expression is ill-defined since 7 is distributional. If we decide to regularize the
quantities 7y *p 19 into the zero DB class, which we refer to as the zero-regularization,
then:

<W(w,2kvyy) >cs,=1 =< W(w,7y=0)>¢cs, - (3.41)

This gives:
Property 5 The generalized CS theories satisfy the 2k-nilpotency property.

Zero-regularization calls for a comparison with framing. If -, is a boundary (i.e. is
homologically trivial), then

ano *D ﬁoszXo/\de (3.42)

where Y is the current of a chain whose 7 is the boundary, while dy is the de Rham
current of 7. The symbol p in eqn. (3.42)) means “equals modulo integers”. The framing

procedure gives a meaning to the right hand side of eqn. (B.42): each framing choice
assigns a well defined i.e. homotopically invariant integer value to the self-linking of .
The difference between two choices of framing is an integer, which coincides with taking
Mo *p Mo = 0. However, when 7, is not a boundary the framing procedure is not a well-
defined regularization as it does not provide a definite homotopically invariant integer
for the self-linking number [,, xo A dxo. Notwithstanding property ([B.41]) still holds, the
zero-regularization is thus coarser than framing yet more “general”. Let us point out
that 2k—nilp0tenc is totally equivalent to zero-regularization.

4 Abelian (2] + 1)-links invariants: a geometric com-
putation

In this section we will show:

Y

!This was called colour periodicity in [I7]. Yet the name “nilpotency’

property (34T]).

accounts more accurately of

10



Property 6 In generalized CS theories, the only Wilson loops having non vanishing
expectation values are those of the homologically trivial links (modulo 2k). The expectation
values of these Wilson loops are given by the self-linking of the corresponding link and
the only required regularization is the one provided by framing (i.e. self-linking of the
fundamental loops forming the link).

We will first present the general ideas used to compute expectation values (B.37).
Then we will consider the particular case M = S**3, the closest to the field theoretical
computation of section Bl We will next treat the less trivial case M = S2+1 x §2+2 In
these two examples, we will present an alternative and more computational way to get
Property 6. Since M is assumed without torsion, all its homology and cohomology groups
are free and of finite type, i.e of the form Z¥, for some integer N. If (€);-1_n denotes
the canonical basis of ZV, then any @ € ZV is written as

N
=Y u'é; , u el
I1=1

4.1 Abelian (2[+1)-links invariants on (4/+3)-dimensional man-
ifolds

As already mentioned, HZ*1 (M, Z)", as well as its smooth version HZ*! (M, Z), are affine
bundles over the discrete space H2+2(M,Z) . Although the Chern-Simons functional
measure on this space is written as in eqn. (3:28), we need to give a more precise meaning
to this expression before we perform any computation. First, since the base space is of
the form ZV, the measure duy(w) has to be decomposed into a sum of measures over each
(affine) fiber of HZ* (M,Z)". On each of these fibers we choose an origin, say w9, where
i € ZN denotes the corresponding base point in H2+2 (M, 7). Thus, duy(w) reduces to a
“vectorial” measure on Hom (2" (M) ,R/Z). This amounts to pick up a global section
for the affine bundle HZ*! (M,Z)". The CS measure hence reads:

dpp(w) = ). Daexp{CSk(w2+a)}= > dp(wls ), (4.43)

ueZN ueZN

where av € Hom (922 (M) ,R/Z), Da is a measure on Hom (Q2+2 (M) ,R/Z), and each
measure djy(w?; o) satisfies the Cameron-Martin property (3.23]).

On the other hand, inclusion (2.7)) together with Poincaré duality imply that on each
fiber of HA+1 (M, Z)" we can use, as an origin on this fiber, a (21+1)-cycle or equivalently
its DB representative. In particular, a fundamental loop 79 can be associated with each
basis vector é; of ZV. Its DB representative 79 then plays the role of origin on the fiber
over é;. If 4 = Y ulér, then n; = Y uln? will be a possible origin for the fiber over .

11



Note that the de Rham current of 49 would play the role of the “curvature” of 19, as an
element of Hom (Q2+ (M) [QZ+1 (M) ,R/Z).

Once such an origin for each fiber of HZ*1 (M,Z)" has been chosen, any DB class w
can be decomposed as

N
w=Y ulnl+a=t,-7°+a, (4.44)
=

with o € Hom (Q2+2 (M) ,R/Z), and i, being the base point over which w stands. In
particular, the DB representative 1 of a cycle v will decompose as

N
n=Yy ulnl+a=i,-i’+a. (4.45)
=

For a link L, we can express the expectation value of the corresponding Wilson line
according to our choice of basis (77?)1:1 _____ N

WD) >es,= 2 % [ din(i-i% ) Wi, 0. 8). (4.46)
where
2= [ (i), (4.47)
and

W(ﬂ,a,@L,ﬁ)=exp{2i7r[M(ﬂ~ﬁ0+a) * (17L~770+B)} (4.48)

.....

decomposition 7y, = v, - 779 + 8 for the DB representative of L. We recall that L is a link
(a formal combination of charged fundamental loops) hence a cycle.
Instead of evaluating the Wilson line (4.40), we rather use the zero mode property.

-----

are orthogonal to the fundamental loops ~9:
foﬁg=51J=zgmy?, (4.49)
1

J being the currents of the 37, and m denoting transversal intersection. Due to Poincaré
and Hom dualities there are as many 3 as 7.
Let us consider again:

<W(L) >Cgk:Z,;1fdpk(w)eXp {QiﬁfLw}, (4.50)
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into which we perform the shift

N I
s 4.51
W = W Izlm12k ( )

for a collection of integers m;. This gives:

<W(L) >cs,= Z;* /.d,uk(w+2m15 )exp{me(w+§;mI§—]é)}. (4.52)

Using Property 3, we obtain:

N
<W(L) >¢s,= Z;lfduk(w)exp {Qiﬂfw}exp {Qiﬂ'zﬂ[ﬁé} . (4.53)
L 2k JL
That is to say:
Y my I
<W(L) >cs,=< W(L) >cs, exp12im y. o [Lﬁo : (4.54)
=

Since this has to hold for any collection of integers (m;);-1....n, we conclude that, for a

non vanishing mean value:

-----

fL B4 =0 [2k], (4.55)

VIe{l,...,N}. Thus, if we forget about [2k], the link L has to be ”orthogonal” to the
generators of Hoyo(M,Z), which means that L must be homologically trivial, for the
mean value of the corresponding Wilson loop to be non vanishing. When L is not trivial,
the mean value of the Wilson loop it defines has to be zero. The modulo 2k appearing
in eqn. (4.55) simply reminds us of the 2k-nilpotency property (B.41]).

Finally, let L be an homologically trivial link in M. This amounts to set ¥ = 0 in
eqn. ([AAG]), thus reducing it to:

zﬁ:[Daexp{CSk(ﬁ'ﬁo+oz)}exp{2i7r[M(ﬂ~ﬁ0+a) 0B} (4.56)

where [ is the DB class of a current of a (2[ + 2)-chain with boundary L. Now let us
perform into eqn. (L56) the shift:

a—> o+ g—k (4.57)
what leads to:
ZfDozexp {CSu(i- 77 +a }exp{ 2irk gch gch} (4.58)
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Hence, we obtain:

<W (L) >CS,€:e;<;p{—24@—;T [ BL/\dﬁL}. (4.59)

The integral in this expression is, modulo zero-regularization via framing, exactly the self-
linking number of the link L [25] 26], 27], itself made of self-linking (defined via framing)
and linking of the fundamental loops composing L. We stress out that while the link has
to be homologically trivial, its components do not have to. This completes the proof of
Property 6.

Of course we could have directly used property ([B.20) together with the shift (Z.57)
to obtain eqn. (A19). However we have preferred to use the explicit definition (£43]) of
the functional integral rather than the formal one.

Let us have a closer look at a first example where zero modes are not required to be
treated: the spheres. This will provide us with a general property concerning (4l + 3)-
manifolds whose (2[ + 1)-th homology group vanishes.

4.2 Abelian links invariants on S4+3

Since H2+2(S4+3 7)) = 0 = 2+ (S4+3,7), the first of the exact sequences (1)) reduces
to:

H%Hl (S4l+3, Z) ~ Q2l+1 (S4l+3)/9%l+1 (S4l+3) (460)
Q2l+1 (S4l+3) /dQ2l (S4l+3) ’

and the dual sequence (1) to:
H%Hl (S4l+3, Z)* ~ Hom (Q%l+2 (S4l+3) ,R/Z) (461)
= Hom (dQ** (5**%) R/Z) .

These isomorphisms are somehow canonical if we consider that the choice of the zero class,
0, as origin of these spaces is canonical. More explicitly, for any w € HZ*1 (S4+3 Z)" there
is a e Hom (22172 (S4+3) ,R/Z) such that:

w=0+a=a, (4.62)

This corresponds to choose the zero cycle z = 0 as origin, the DB representative of this
cycle being 0. Since Hy.y (S4+3,Z) = 0, any (2 + 1)-cycle in S4+3 is trivial, i.e. a
boundary. Hence, if L denotes a (21 + 1)-link which is the sum of charged fundamental
(20 + 1)-loops 4?2 on S4+3:

N
i=1

14



then there exists some (21 + 2)-chain, ¥, such that L = b¥;. Geometrically, ¥, can be
seen as a (20 + 2)-surface in S**3. This surface is of course not unique, but two of them
only differ by a closed (2l + 2)-surface. As explained in [7], the de Rham current of such
a X, By, completely determines the DB representative, 1., of L, according to:

N =0+ Py, (4.64)

with By € Hom (Q2+2 (S4+3) ,R/Z). The Wilson line of L is then written:

W(a, L) = exp {in [54 L O*D 52} , (4.65)

I+

and its expectation value reads:

[ Daexp {22'7rk: Jguss @ xp @+ 2T [qus @ *p BZ}

<W(L) >¢cs, = 4.66
(L) >cs, | Daexp {2i7rk: Jquss @ *p a} (4.66)
Seen as an element of Hom (Q2+2(S4+3) R/Z), Ps/2k fulfills:
Bs\ _
2k( 21{:) =Py (4.67)

However, the corresponding DB class, 0 + (s /2k), is not the representative of any fun-
damental loop in S*+3.
Next, we perform the change of variable:
By

arad=a+— (4.68)

2k’
into eqn. (Z60). This turns the expectation value into:

_ , Ps By

<W(L) >¢s,=exp {—227‘(‘]{3 s o5 *D %} : (4.69)

Making explicit the DB product within this expression, we obtain:
W(L) >cs,= 2n d 4.70
<W(L) >¢s,= exp Ik S4H3ﬁz/\ Bs i (4.70)

what is exactly eqn. (A359).
Finally in terms of the charged fundamental loops, 7?9, building L, we have
2 0 0
< W(L) >Csk: €xXp _E Z%L(% 77) )q] ) (471)
i\j

15



where L(7},77) is the linking number of »{ with »?, that is to say:

0 0y _ 0 0
L(vij) = [54z+3 a; Adaog (4.72)

with o the de Rham current for which 0+a? is the DB representative of the fundamental
loop 7?. As for “diagonal” terms L(7?,7Y) we regularize them using the usual framing
procedure (what we have called zero-regularization):

L340 = L(2, 7). (4.73)

As in the three dimensional case extensively detailed in [I7], the abelian invariants thus
obtained are nothing but those coming from linking and self-linking numbers, that is
to say intersection theory in S**3. Let’s note that this result is what we are supposed
to recover via a quantum field theory approach. There, the gauge fixing procedure is
supposed to provide a choice of representatives for DB classes, and the propagator thus
obtained appears like an inverse of the de Rham differential d, deeply related to the
Poincaré chain homotopy operator. The consistency of the procedure is ensured by the
fact that if v is a loop (a (2[ + 1)-cycle), and if ¥ is a (2 + 2)-chain such that b% = -,
which corresponds to dfy; =7, in term of currents, then [y, (as the current of an integral
chain) is unique up to closed (2 + 1)-currents (of integral (2 + 2)-cycles). However, on
S4+3 any (21 + 2)-cycle is trivial so By is unique up to dy, where x is the 2l-current of
an arbitrary (2/)-chain. This means dfs, =7, has to be inverted on classes [y ~ Os + dx.
This is exactly gauge invariance from the point of view of integral chains (and currents).
This will be detailed in section [l

What we have done here for S%+3 can be straightforwardly applied to any (41 + 3)-
manifold M for which H2+1(M,Z) = 0 = H2+2 (M, Z), leading to exactly the same final

result.

Property 7 Over a (41+3)-dimensional closed manifold, without torsion, whose (21+1)th
homology groups vanishes, the generalized abelian Wilson loop of a link L defines a link
wnvariant made of the self-linkings, the linkings and the charges of the fundamental loops
composing L.

The second example will present a homologically non trivial case which is the equiv-
alent of the three dimensional pedagogical case S x S? widely discussed in [17].
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4.3 Abelian links invariants on S2/+1 x §2i+2

Let us now consider the less trivial case M = S2+1 x S2+2 for which H2+2(M,Z) = 7 =
H2+' (M, 7), so that:

. Q2l+1 (M)
Hy (M,Z) =~ Zx o0 (4.74)
and:
HEY (M,Z)" ~ ZxHom(Q%*(M),R/Z), (4.75)

none of these isomorphisms being canonical. However, over the base point 0 € Z we still
have the zero DB class (which is again the representative of the zero cycle in M), so
that this particular fiber of HZ* (M,Z)" can be (almost canonically) identified with the
translation group Hom (Q2*2 (M) ,R/Z). This is similar to what previously happened in
the case of the sphere S4+3). However, we now have Hyy,y (M, Z) = Z, which means that
there are non trivial (2{+1)-loops in M. Accordingly, we pick up a fundamental (2{+1)-
loop 70 which generates Hy,y (M,Z). Formally 40 is given by a S21 in M. Its DB
representative, n° will play the role of the origin on the fiber over 1€ Z in HZ* (M,Z)".
If L is a link in M, then its DB representative, 1, satisfies

nL=nen’ + Py, (4.76)

with ny, € Z the base point over which 7, stands in HA* (M,Z)", and the translation
term Sy, belongs to Hom (Q2+2 (M) ,R/Z). Once more, S, alternatively denotes the de
Rham current of a (20 +2)-chain X, for which L =n;7°+0%, as well as the DB class this
current defines via sequence (Z1]). Such a chain is not unique, but two of them differ by a
(21+2)-cycle whose de Rham current belongs to the zero class in Hom (Q2% (M) ,R/Z),
making [y unique from the DB class point of view.

So, up to the normalization factor Z, !, the expectation value ([£46) reduces to:

> f Daexp {2i7r fM(mnO +a) *p (kmn® +ka+npn® + Bg)} : (4.77)
meZ
Instead of using the elegant zero-mode property, as was done to establish Property 6,
we shall present a somehow more computational approach. Although this will be a bit
"heavier”, we make this choice in order to show more explicitly the usefulness of zero
modes as well as of zero-regularization.

Since it provides the final answer, let us first consider the case where ny = 0 ( i.e.
when L is homologically trivial). Then expression (AL.1TT) takes the form:

> f Daexp {2@'% fM(mnO +a) *p (kmn® + ka + 52)} . (4.78)

meZ
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For the same reasons than in the previous example, fx/2k € Hom (Q2*2 (M) ,R/Z). So,
we perform the shift:

> —= 4.79
a-as= a+ o (4.79)

The expectation value of the Wilson line of L then simplifies into:

> fDaexp{Qm[ (mn° + a) *p (kmn° +k5a)} (4.80)

meZ
xexp{ 217r[ ﬁ—z*Dﬁ—E}
M2k T 2k)7

that is to say:

_ Bs 52}
<W(L) >cs,= exp{ -2irk o D 5k (4.81)
or equivalently:
21
<W(L) >cs,= exp{ il f By A dﬁg} (4.82)

just as in the S**3 case. Once more, this is totally similar to what happens in the three
dimensional case S'xS? detailed in [I7]. This turns out to be the same expression as eqn.
([4.10), and of course as eqn. (L59): the link invariant is made of linking and self-linking
numbers of the fundamental loops forming the link. However let us stress again that
whereas the link L has to be homologically trivial, this is not the case of its components.

Let us now assume that nj is not zero (nor an integral multiple of 2k, although
this can be dealt with straightforwardly). If we expand all the expressions within the
exponentials appearing in eqn. ([{LTT), and then apply the zero-regularization to n° * 70,
we obtain the expression:

kaxpa+axpfBs+ (2km+np)n’ xp a+mn’ *p Py (4.83)

Once more, we perform the shift (£79]), and get, after some simplifications:

By By Bs
kaspa+ (2km+np)n® *p a - ka ok npn’ *p — o (4.84)
The last two terms are independent of m and «, and then give rise to:
. BZ BZ 0 }
“im [ SE e (ko2 4
exp{ T a2k * ( 2kr+nLn) ’ (4.85)
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out of the integration and sum in eqn. ([A.78)). In the remaining factor, we can invert the
sum over m with the integration over «, thus obtaining:

/ D2k [y o pa > exp {QZﬂf ((2km +np)n° *p a)} : (4.86)
M

meZ

But:

3 exp {zm(zkm) f } (4.87)

meZ

I{EE:Z&([YO@—K/%).

Putting this back into eqn. (4380]), and performing some algebraic juggling, we obtain:

Z e2zwnLK/2k[Da 5([()0‘_[(/2]{:) e2i7rkaa>eDa‘ (488)
v

KeZ

> exp {2i7r /J;[ ((2k)mn° *p a)}

meZ

Let us introduce a closed (21 + 2)-surface Xy, with de Rham (21 + 1)-current p°, which
satisfies:

£0p0=1:20m70. (4.89)

This surface is a generator of H2+ (M, Z) ~ Hyo (M,7Z) = Z and is formally a sphere
SC@2) in M = SCHD x §CI+2) - The (trivial) DB class associated with p9 ( also denoted
p°) give rises to the DB class p°/2k, which is non trivial since:

P’ 1
L5z (4:90)

Actually, p°/2k € Hom (222 (M) ,R/Z) and the DB class it determines is 0 + p°/2k.
Moreover, as seen when establishing the zero-mode property:

= 2k [ L 491
fM% Porzz e (4.91)
for any v € Hom (922 (M) ,R/Z). Consequently, eqn. ([L88) reads:

Ze2zwnLK/2kaa5(f (CY K ) 227rkaa>eDa’ (492)

KeZ

and for each value of K, if we perform the shift:

p°
K— 4.93
a-a=a- o7 (4.93)
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and use eqn. (A91)), the expression under the integral in eqn. (£88]) turns out to be
independent of K. Thus:

Z e2i7rnLK/2k’ (494)
KeZ
factorizes out of eqn. ([L92). The same procedure has to be applied to the denominator
of expression (£46]) (which is the normalization factor needed to compute expectation
values), producing a term:

> (1.95)

KeZ

None of the expressions ([A.94)) and ([@97)) is well-defined. However, using 2k-nilpotency,
we can reduce each of these infinite sums to a sum over a period, thus obtaining:

2%h-1 . _
Y e2inn K2k 2k it ng =0 (4.96)
= 0 otherwise
for the former one and
2%h-1
> 1=2k. (4.97)
K=0

for the latter one. The “regularized” quotient defining the expectation value will then
be taken as:

r N Z%?:—Ol e2imnp K [2k B Z%f:—ol e2imnp K [2k B 1 ifn,=0 [2]{7] A
15,20 2k-1 - 2k-1 10 h ; ( -98)
N NYk=ol Yk 1 otherwise .

Hence, when ny # 0 [2k], the expectation value of the corresponding Wilson line
is zero, while when ny = 0 the expectation value is given by eqn. (£&1]). Due to 2k-
nilpotency, when ny = 2kN, with N € Z*, then the corresponding link invariant is trivial.
These results are a clear generalization of those investigated in [I7] for the three dimen-
sional case. Also, it is quite obvious how to deal with a more general case than the quite
simple product S?*1 x S2+2 as long as M is torsionless. The case of (41 + 3)-manifolds
with torsion might be treated extending [18].

5 Naive abelian gauge field theory and (2] + 1)-links
invariants

This section provides a formulation of the abelian (4l + 3)-dimensional Chern Simons
theory on R**3 with Euclidean metric in terms of a lagrangian density involving a U(1)
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connection i.e. gauge field A, plus gauge fixing. This formulation, coined “naive gauge
field theory” extends eqns. (BIH), (BI6) to the (4 + 3)-dimensional case, and is the
one familiar to field theorists. The presentation is formulated in a somewhat hybrid way
conveniently using notations which keep track of the geometric nature of the fields and
operations, combined with algebraic manipulations familiar in field theory. We aim here
at emphasizing the ambiguities or weaknesses arising in this framework, in order to stress
where the above non perturbative formulation in terms of DB cohomology classes brings
clarification. In particular, the normalization of both the level k£ and loop charges e are a
priori unspecified in the naive field theory approach: the prescription that they have to
be integers is ad hoc, whereas they are bound to be integers ab-initio in the DB approach.
Furthermore, the naive approach leads to ill-defined self-linking integrals which require
to be given meaning and integer values by some extrinsic regularization procedure, such
as framing, whereas the DB approach was shown above provides a natural reqularization
independent normalization prescription for the latter. Last, this study on R*+3 also
suggests which complications may arise when trying to extend the naive field theoretical
framework to manifolds with non trivial cohomology.

5.1 Formulation and computation on R**3

The lagrangian density@ Lcs (ACHD) of the abelian (41 + 3)-dimensional Chern-Simons
theory reads:

ECS (A(2l+1)) — %A@Hl) A dA(2l+1) ) (599)

An extra factor 1/2 is introduced in the normalization of Lcg with respect to the nor-
malization of ¢s1(A) in eq. ([BIH). This normalization choice is convenient to calculate
the propagator of the AZ+1 field. This extra factor is subsequently compensated by
defining the Chern Simons action as 4im times the integral of Log indeed matching the
normalization of C'S1(A) in eq. (B10).

The degeneracy coming from the gauge invariance A2+ — AQHD 4+ ACD of this la-
grangian density shall be fixed, in order that the functional integral giving the generating
functional, and, in particular, the propagator of the A2+1) field be defined.

*

2Properly speaking the Chern-Simons lagrangian density familiar to field theorists is the Hodge
dual (on R**3 with Euclidean metric) of the lagrangian (41 + 3)-form familiar to geometers introduced
by eq. (BIH). The left hand side of eq. (5:99) should thus be *Lcs (A(Q”l)), and likewise for the gauge
fixing lagrangian density Lgp in the forthcoming subsection .1l This sloppiness will hopefully not be
confusing.
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5.1.1 Covariant gauge fixing and corresponding propagator

In the three dimensional case, a common procedure consists in imposing the “covariant
gauge fixing” d*A®) = 0 by adding the following Lagrange constraint:

L8 = BO A g A® (5.100)

where * here denotes the Hodge dual operation with respect to the Euclidean metric on
R3 and the Lagrange multiplier B is a scalar field i.e. a zero-form. Let from now
on * denote the Hodge dual operation on flat Euclidean R#**3, such that for any g-form
B@ B = (-1)a@+3-9) B(a) = B, The naive straightforward generalization of eqn.
(5I00) by means of a single auxiliary 2/-form B(®) according to

Eg{%ve _ B(2l) Ad*A(21+l)

is not effective as L4 still has the residual gauge invariance B®) — BC) + dAG-D),
An appropriate formulation requires a collection of 2/ + 1 auxiliary forms of decreasing
degrees (B, BZ-1) ... B(0)) according to:

Lap=B® Ad*ACHD o BEED A q*pCY 4 .. 4 BO Aq*BW (5.101)
Regrouping all the fields into
A= (A, Ay, Ag, o, Agiin) = (AGHD BEO BRI . B(0)

we can compactly write the full action given by L = Log (AG*D) + Lop as a scalar
product:

o o 1., - .
[Etot=[R4l+3A/\ *DAE§(A,DA) (5.102)
with: ) i
*d —d 0 0
§ 0d 0
0 6 0 -d
0 045 0
D= 0d 0 (5.103)
5§ 0 -d
035 0
0 -d
- 5 0_
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where 0 =*d* is the co-differential associated with the Hodge dual. The Euler-Lagrange
equations of motion of the A field read:

DA=0 (5.104)

The propagator < A(z)®A(y) > of the field A is the inverse of the operator D conveniently

determined solving B .
D < A(z) ® A(y) >= 6W*3) (2 - y) Myys (5.105)

by means of Fourier transformation, taking advantage of translation invariance on Eu-
clidean space R**3. It is especially convenient to use a Fourier transformation, defined
by means of Berezin integration, which preserves the degrees of forms, as detailed in
Appendix A. The Fourier transform of D §(4+3)(z —y) reads:

[ P -P 0 0
= 0P 0
0 = 0 -P
0O 0 = 0
D = i 0P 0 . (5.106)
= 0 -P
0= 0
0 -P
= 0

The expression for P and Z are given in eqns. (6139) of Appendix A.
The Fourier transforms N j; of the < Agjyo-; ® Agpio-i > satisfy:

i (*PANy;=PANs;) = 61;1deuy, jell,..20+2] (5.107)
—1 (E ANg1j+(=)"P A Nmu) = Oy Id(asa-j)

jell,..,20+2] , ke[2,...,20+1] (5.108)

-1 (E A NQHLJ') = 52[+2,j.1d(0) , j € [1, ,2l + 2] . (5109)

A particular solution to the inhomogeneous eqns. (5.107)-(%.109) on the diagonal j = k is
suggested by the Hodge decomposition of the Laplacian operator whose Fourier transform
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reads: Z A P + P A Z = p?1d, and by the identities P A P =0, Z A Z =0:
Ny = i%*ﬂmﬂ) (5.110)
Ny = ;%E@HI”,2sjgm+2 (5.111)
N =-G%Emﬂﬂﬁlgjgm+1 (5.112)

and all the other ﬁ” vanishing. The particular solution thus found for the Fourier

transform N, | of the propagator < AZ*D @ AL > involved in the computation of
Wilson (21 + 1)-loops correlators turns out to be the so-called Moore-Penrose pseudo-
inversdd of the operator ¢ * P which satisfies:

~i*PN,, = O (5.113)

where II is the projector onto the subspace selected by the covariant gauge fixing condi-
tion.

The propagators < Ago-; ® Agio-k > might differ from the particular solution above by
terms corresponding to general solutions of the homogeneous equations associated with
eqns. (BI07) - (BI09) éi.e. with all right hand sides vanishing. The general solutions
of these homogeneous equations on the space of tempered currents can be proven to be
forms with harmonic coefficients. Hence in the present case on R**3 with Euclidean
metrics the coefficient functions of these harmonic forms are harmonic pollnomials of
(z-vy). In a first step we shall ignore such potential terms and consider the N j;, entirely
given by eqns.(T.I10) - (5112). We will comment on them in paragraph and prove
that they do not contribute insofar as we are only concerned with the computation of
correlators of (2 + 1)-loops.

Performing the inverse Fourier transforms of eqns.(BI10) - (B.I12) yields the explicit
expressions of the < A;(x)Ax(y) >. The only one explicitly needed in the following is:

20+1 20+1
(A () AS, L ()

r (%% (z-y)
S I G L (5.114)

3This can be most simply and explicitly checked in the three dimensional case. The projector II is
then the projector transverse to p, which indeed corresponds to the subspace of Fourier modes A(p)
such that p* A, (p) = 0 i.e. the Fourier dual of the covariant gauge fixing condition d*A = 0 imposed in
x-space.
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['(w) being the Euler Gamma function and e the (47+3)-dimensional Levi-Civita symbol.
The derivation of identity (5.114]) relies on eqn. (GI37) of Appendix A.

The gauge field theory is provided by the generating functional in presence of arbitrary
source currents J, which may be formally expressed by the following functional integral:

2(J) = N [ DA ArDri(A9) (5.115)

in which DA exp{2irk (A, DA)} is a functional integration measure on some (unspeci-
fied) appropriate functional space. This measure is assumed to have all nice properties
of usual gaussian integrals, and N is a normalization constant such that Z (j =0)=1.
The correlator of two (21 + 1)-loops 71 and s is provided by the quantity

N[ DA DA e f A s 0, (5.116)
Let us represent the (21 + 1)-loop 7, by the (21 + 2)-current js(21+2) so that
[ A(2l+1) _ [ A(2l+1) /\js(2l+2) (5117)
s R41+3
hence o
2me; [ ACHY 4 2mey f ACED = (A7) (5.118)
71 Y2
so that the loop correlator (5.110]) is given by eqn. (B.II5) identifying
J = 27r(61 R ey i) 0,0, o) . (5.119)
The phase in the integrand of eqn. (5.116) involves:
oL I 1 . .
k(A D f A2tD) f A@H) Z g (A DAY - D! 5.120
(A A)+61 Y + €9 " (A, A) 167’(’2]{} (j -.7) ( )
where
R 1 .
A = A+ —D'7. 5.121
Atk J ( )

The functional space {A} is assumed to be stabld] under the shift (EI21)). This shift is
namely the counterpart of the one performed in eqn. (@GS, and the gaussian proper-
ties of the functional measure DA exp{2ink (A, D.A)} are the mere counterparts of the
Cameron-Martin property ([B:20]). We thus proceed as in the geometric approach.

4By passing let us notice that any current j**2?) representing a (2 + 1)-loop is such that j!*2) =
dn*1) | the corresponding *j(?*2) thus belongs to the functional subspace of {AZ*D} obeying the
covariant gauge fixing condition d* A?*1) = 0. Furthermore this subspace is stable under the action of
the operator [D7'] | cf. eqn. (G.I13), so that this subspace is itself stable under the shift (G121
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The functional integration leads to:

N f DA e2ink (ADA) 2imer [, ACED dimes [, AP _ - 0n(7.070) - (5.122)

In the integral in the exponential in the r.h.s. of eqn. (5122)), the term of degree (2/+1)

is made of:
1A 2041 2+1
(D 1*72“1)/117“'7#2“1(55) = A4l+3 (A/(M,t',zmu I)Al(/lj"ﬂ)/mu(y))
Yy
(a2 %y (5123)
and:

(Fotets D7 Fog) = fR A (o )5 (2) (D7 T Y (7). (5.124)

This yields two sorts of terms.

1. Those of the form:

% (2042 1% -(20+2
L) = [ d (i s @) (D7), ()

-(20+2) (21+1) (20+1) -(20+2)
f[&%l”xﬂ%m i @) a (A (z)®A W)~ gz ()

1
(21—"_—1)!2 ﬁ(dlﬂl A A dl»ﬂ2l+1) x

Y1
ﬁ(dy“l A ndy ) (ASTD, L (@) AST, L () - (5.125)
Y2

They turn out to be the linking of 7; and 7, since after injecting expression (5.114))
in the last line of eqn. (5.I25) one recognizes the generalized Gauss formula [19].
The latter is recalled in Appendix B providing a consistency check of all normal-
izations between the geometric and the “naive” approaches. However, at variance
with the virtue of the geometric approach, it is important to notice in this respect
that the values of the level £ and of the loop charges e; are not quantized in the
naive approach: their prescribed integer natures here are ad hoc and imposed “by
hand”.

This derivation sheds some light on the relation between the generalized Gauss
formula (5.125) and the geometric approach developed in section . With respect to
the variable J the propagator identifies with [*d];},, the (Moore-Penrose pseudo-)
inverse of *d, whereas it identifies with [d];}, the inverse of d with respect to the
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loops currents j§21+2) and j2(2l+2) in the following way. All loops are contractible in

R#+3_ therefore there exists a de Rham current ngzm) such that:

j2(2l+2) — dn§2l+1), (5126)
whose general solution is
2+1 S1 (242 2+1
ng" ) = [dhgpds™ + G0 (5.127)
(20+1) . ; (2l+1) . .
where (, is an arbitrary closed current. Indeed the current n, is not unique
since:
d(n§2l+1) + 2(2[+1)) — j§2l+2) . (5128)

This reminds us of the definition of the Poincaré Homotopy:

kKAd+dA k= Idoy (5.129)

that encodes Poincaré Lemma (for R%*3). The degeneracy associated with the
inversion of d is exactly the one due to gauge invariance since on R**3, and still by
virtue of Poincaré’s lemma, one has:

2(2”1) € Ker[d] < 3¢@+) C2(21+1) =&

We shall come back to this comment below when addressing the corresponding
issue on topologically non trivial (41 + 3)-dimensional manifolds instead of R4+3.

2. It also involves the self-linkings of (2[ + 1)-loop v; and of (2] + 1)-loop 2 by means
of formulas very similar to eqn. (B5.I28), yet the integrals involved here are ill-
defined [25] 26], 27]. An extrinsic procedure is required to have them make sense
as quantities defined modulo integers. Framing provides one such procedure in the
present case, a given integer for each self-linking corresponding to a given framing
choice. By contrast the zero regularization implemented in the geometric approach
is less detailed as it does not prescribe any definite integer value to any given
self-linking.

5.1.2 Harmonic terms do not contribute

So far we have ignored the presence of a harmonic contribution H(z-y) to the propagator
< ACH3) (1)@ AI3) () >. At first sight one might be tempted to argue that the absence of
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such terms is implied by the cluster property meaning that < AZ+3) (1) ® A@+3) (y) >— 0
when ||z - y|| > +00. However this is i) beside the point ii) not necessarily true.

i) It is beside the point insofar as we are interested in correlators of (21 + 1)-loops i.e.
closed curves. Assuming that the propagator involves such a harmonic term H(z - y),

let us generalize eqn. (G.125) by

Z(Vlﬁz)
(2142 (2142
- [R%HSXRW i (@) A (AR () @ ACH (y)) + H(z - )} 1S ()
= L(y,72) + Ly (7,72) (5.130)
The currents j§?21+2) dualize (20 + 1)-loops so that e.g. j£21+2) = dn?lﬂ) so that through

integration by part,

20+1 -(20+2
Ly (11,72) ngzwagm 1 (@) A (dyH (- ) A 558D (y)

-0 (5.131)

This suggests that the appropriate functional space on which the propagator has to be
defined is a quotient modulo harmonic parts. Such a functional space has been studied

in ref. [32].
.(20+2)

By passing, eqn. (G.I31]) proves that harmonic contributions vanish even when j;
dualizes a non compactly supported loop, such as a (20 + 1)-hyperplane. This property

is expected to be particularly relevant in order to extend the present result to the sphere
S4l+3‘

ii) The cluster property may not hold with another gauge fixing choice. See for instance
the 3-dimensional case with axial gauge fixing.

5.1.3 Impact of the gauge fixing choice

Equation (5.125]) was noticed to reproduce the generalized Gauss formula when the prop-
agator < A2+3) @ ACI+3) > is given by eqn. (B.114). Another condition than the gauge
fixing (5.100) would lead to a different propagator. Equation (5123]) would then provide
an expression of the linking number different from the one obtained using the generalized
Gauss invariant. For example in the three dimensional case, the “axial gauge” choice
leads to a braiding interpretation of the linking number [29], rather than the solid angle
interpretation reminded in Appendix B. Let us stress that all gauge fixing choices are
equivalent ways of computing the generalized linking number. Indeed, the propagator
in the covariant gauge and one with an alternative gauge choice differ by terms involv-
ing the derivative d whose actions on the closed currents dualizing (21 + 1)-loops vanish.
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In a Quantum Electro-Dynamical language, the latter are “conserved currents” which
guarantees the gauge fixing independence of observables associated with these currents.

5.2 Further issues arising on the S¥*3 then on further non trivial
manifolds

As we already mentioned it, Chern-Simons field theory cannot provide a quantization of
the level k£ nor of the charge ¢q. This is due to the fact such a theory is developed over
the non compact space R**3. It’s only when going on a closed manifold such as a sphere
that the quantization naturally appeared in the geometric approach. This suggest that
to get such a quantization of £ and ¢ within the field theoretic framework, one should
have to first define a field theory over a closed manifold M, starting with S%+3. Since
the CS lagrangian is not a globally defined 3-form, we anticipate two possible paths: one
based on a partition of unity subordinated to a good covering of M and a second based
on a polyhedral decomposition of M.

1. We could consider a polyhedral decomposition A of M and start with field theories
on each of the fundamental i.e. (4[+ 3)-dimensional polyhedra A, of the decompo-
sition. Once this done on fundamental polyhedra we would have to see how things
match on the (4/ + 2)-dimensional boundaries A,z of these polyhedra leading to
(41 + 2)-dimensional field theories on those boundaries. We would have to keep
proceeding along this line till we reach the polyhedral elements of dimension 0 of
the decomposition. This would be related to the short formula defining the integral
of a DB class, as explained in [7].

2. We could provide M with a partition of unity subordinated to a good covering U in
such a way that each open set U, supports a field theory in R*+3. Matching these
theories in the (4/+3)-dimensional intersections U,z would lead to considering extra
field theories in these intersections then in the triple intersections U,s, etc. The
present point of view in which all supplemented field theories would be on R%+3 is
a smoothing of the former polyhedral approach. This would be related to the long
formula appearing in [7].

We would like to stress out that our procedure to compute the propagator of the
abelian CS field theory on R#%+3 exhibits a set of descent equations whose resolution is
made simple because R**3 has no cohomology (except in dimension 0). Our results might
be extended to S**3 since it shares the same cohomology properties for the concerned
degrees. In the case of a general closed manifold, such has S2+1 x S%+2  this would
not be true. However, locally that is to say with respect to a good covering and with
an Euclidean metric on each open set, such a descent might still hold. Yet the gluing
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constraints on the whole manifold (e.g. via a partition of unity) would prevent the descent
from being globally trivial. The simplest case to investigate would be S3 and the first
non trivial one St x S2.

Concerning the propagator itself, the fact it coincides with the Gauss integral is once
more only due to the fact we are working on R¥+3. One would expect a different ex-
pression for the propagator on a closed manifold. However there exist expressions of the
Gauss integral on spheres [31]. One could also try to mimic Gauss zodiacus idea, at least
in the case of S? identified with SU(2), replacing the notion of translations acting on
R3 by actions on SU(2). From the point of view of the two possible approaches previ-
ously mentioned, we can expect a collection of propagators, associated with the different
field theory arising from the construction (for instance one for each polyhedra type of
the decomposition of the closed manifold), but also a gluing rule explaining how these
propagators ” communicate”.

It appears as a very interesting problem how this could be properly handled because
it would provide an example of a field theory over a closed manifold. We can have
some hope about how this can be done, because the theory which we are dealing with
is a topological one, and also because the geometric approach provides us with the final
answer concerning Wilson observables.

6 Conclusions and outlook

The treatment of abelian Chern-Simons to generate link invariants introduced in [I7]
straightforwardly extends to the case of oriented closed (4[ + 3)-dimensional manifolds
without torsion. Actually, we didn’t show that the expectation values of our generalised
Wilson lines are ambient isotopy invariants. This can be easily checked extending what
has been done in [I7]. In the same way, it is possible to establish satellite relations for
our generalised invariants. As for torsion, one could follow the approach developed for
RP3 in [18]. One can wonder whether the DB strategy applies more generally to abelian
BF systems. Using Deligne-Beilinson Cohomology technics might also provide a way to
study higher order systems, that is to say systems whose classical lagrangian involves DB
products of more than two DB classes. In any of these cases one should expect homology
and intersection to play the fundamental role.
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Appendix A: Forms and Fourier Transform

This appendix is devoted to the conventions and properties of Fourier transform applied
to forms and linear operators acting on them. These properties are used in Section [ in
order to evaluate precisely the propagator of the vector potential in the covariant gauge.

Berezin-Fourier transform preserving forms degrees

The components of a ¢-form are defined through
BW = B(x),, 0" A AP (6.132)

where # = dx#. This convention partially avoids clutter with factorial numbers.
The Fourier transform of a ¢-form is then defined as

B@

U d"xe”"”””B(x)m...uq][zL f R R NN
(n-q)

[[ d"x eipuwMB(x)ylmyq]

€Vq+l-Vn . V1.Vg ¢Tqrl - Tn.o [l -fiq

e Oy Wy Ao Ay,

(n-q)! q! VariTan
B
) % et 5Vq+1Tq+1 Y A Whg
= B(P)m___uq OV QTG A L ANy,
= B(p)" 1@, A . Ay, (6.133)

where [(,) = 1 if a is even and [,y =i if a is odd, &, = dp,, and ~ denotes the usual Fourier
transform on functions. With this definition, the Fourier transform of a ¢g-form is itself a
g-form, that is to say the Fourier transform respects the form degrees.

Inverse Fourier transform is accordingly defined as

e ln-q) .
E(;L')Vl...uq

mel/qﬂ...un...ul...uq
= é(l')vl...qumm...(squ WPUA A

IR (6.131)

B@

14 1%
OYaTa L OV € i g WA A DM

where 7 is the inverse Fourier transform on functions. An explicit evaluation indeed
confirms that
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B =B. (6.135)

An important property is that the Hodge operation and Berezin-Fourier transform do
commute:

*|: 1 [d"wem“wqﬁyl AL /\W’q]
l(n-q)
1

= 00y 07 LTI Ly A Ay,

q!

1 n Pt * (01 Vq
_ [l(n_q)fd PPV (G A A )]. (6.136)

An useful Fourier transform

The explicit computation of the fundamental propagator (5.114]) relies on the following
Fourier transform

(p_T) — 1 d4l+3 _iprMp_T _ _F(4l7+3) x’ (6 137)
pz N (27?)4”3 pe pz = 27T4IT+3 A3 )

Berezin-Fourier transform for linear operators

The Berezin-Fourier transform of a linear operator O acting on forms is defined by

_

OB=0B. (6.138)

Accordingly, the (useful) Fourier transform of the differential, its Hodge dual and the
co-differential read:

d = —ip'e,=-iP (6.139)
Cd) = *(d)=-ip (6.140)
0 = (d)=-i"Pr=-iz. (6.141)
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Appendix B: Generalized Gauss linking number
Definition of the linking number

We consider two (20 + 1)-dimensional closed surfaces 7y.1 and 75, embedded in the
space R4*+3. They are defined as a map from the (2! + 1)-dimensional closed manifold T,
respectively 77, to R4+3. Their linking number is given by [19]

Lvarets vy = M 35 d § Ay, 6770, =y (6.142)

Y21+1 Vi1

where the xs (resp. ys) are the coordinates of points of vy.1 (resp. 75,,,) and € is the
(41+3)-dimensional Levi-Civita symbol. We have used the following shorthand notations

dat = daH---dat2 | dy” = dy”-dy" ) €uo = €pnepor s o (6.143)

and set 0, = 0. The other choice of the derivative, ¢ = J,, reverses the sign of the linking
number, e.g. it corresponds to an orientation choice. The normalisation of the linking
number is s
T (22
M _ ( 2 ) ]
(81 + 2)Vmw4+3(21 + 1)!2
with I' the Euler Gamma function, satisfying I'(n + 1) = n! for an integer n.

The linking number can be given a more enlightening form as follows. For two points
x (resp y) on g1 (resp. 75,,,), we consider the unitary vector

(6.144)

z-y
€y = 6.145
I (6.145)

The unitary vector e, thus defines a map from 7' x T” to the sphere S**2 whose degree
is the linking number [33]. We now consider the quantity

1
[exy; da; dy] = BB datdy”eg, (6.146)
which has a simple physical interpretation:
[e2y; da; dy]
-y (6.147)

is the oriented solid angle formed by a simultaneous displacement dx on 79,1 and dy on

!
Vor1-
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The linking number can thus be given the following equivalent form

, 1 [€xy: d; dy]
L(72l+1,721+1):% jg 45 Te—yii (6.148)

Yai+1 b

and interpretation of a global solid angle. We have used the value of the surface of a unit
sphere S™ is given by

(6.149)

This is also the total solid angle in dimension n + 1.

The three dimensional case

In the three dimensional case (I = 0), the linking number (6.148) is the famous Gauss
invariant [20]

1 -9
L Y= — dz x dy. . 6.150
(1) = = etz < an ==L (6.150)
v
The unitary vector
ey =2V (6.151)
Y eyl '

defines a map e from S! x S* to the sphere S? whose degree is the linking number [33].
The image of the map e is generically a surface called the zodiacus by Gauss who also
obtained a necessary condition for a point to be on its boundary: the tangent vectors to
the two curves at points x and y respectively and the vector é,, are linearly dependent.
In other words, these are points such that

[€0y: dit: dij] = 0 (6.152)

and do not contribute to the Gauss integral. This condition is only necessary and not all
solutions do represent actual boundaries of the zodiacus. Two cases have to be distin-
guished: (1) the two curves are not linked and the zodiacus has at least one boundary,
(2) the two curves are linked and the curve defined by the previous condition cannot be
a boundary of the zodiacus which is in fact the whole sphere.

Some intuition on these matters can be given by the following particular case. We
consider a basic configuration of two circles v, having radius one and centered at the
origin, and ~’, having radius R greater than one. This configuration has linking number
one when the circle 7/ intersects the disc defined by ~. In the extreme case where the
radius R — oo, the 7/ circle may be deformed to a straight line perpendicular to the plane
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containing the circle v completed with an half circle at infinity whose contribution to the
Gauss integral vanishes.
The circle v can be parameterized as

x1 =cos(s), xg =sin(s), x3=0 (6.153)

and the straight line v’ as
1 =0,y2=y (6.154)

and intersection with the disc bounded by v occurs when |y| < 1.
We obtain the linking number by integrating over the straight line

1 2 +oo 1—y31ﬂ(5)
L | N _[ dsf d . 6155
(7:7") 47 Jo —oo 93 (1—2ysin(s)+y2+y§)% ( !

The integral over ys is classical and, for |y| # 1, one has

1 [z 1 —ysin(s)
L ! :_f 1
=50 Jy T amG) 7 (6.156)

The evaluation of this integral can be done by expanding the integrand in powers of the
sine, using then the classical values of integral of even powers of the sine function. The
result is then

L(v,y")=1for |y| <1, L(y,7")=0for |y|>1. (6.157)

The unitary vector € reads

cos(s) i+ (sin(s) —y)j - ysk
(1-2ysin(s) +y?+ yg)%

e =

(6.158)

and the necessary condition for a point to be on the boundary of the zodiacus is
1 —ysin(s) =0. (6.159)

A moment thought shows that for |y| < 1, there is no boundary and the vector é sweeps
the whole sphere once. On the contrary, for |y| > 1, the zodiacus has two boundaries
at the values s = arcsin(y~!) and s = 7 — arcsin(y~!) that join at antipodal points for
Ys = +00.

Higher dimensional cases

As in the three dimensional case, the unitary vector e,, spans on the sphere S**2 the
zodiacus associated with the two surfaces y9,1 and 75, ;. The eventual boundaries of the
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zodiacus necessarily correspond to stationary points of e,, upon infinitesimal displace-
ments dx (resp. dy) on the surface yo.1 (resp. 7,,,), that is to say de,, = 0 where

Se. = r-y)- exy(e:cy'(s(x -v))
v |~y

(6.160)

If the surfaces 741 and 77, , are parameterized by (even local) coordinates s;, t; respec-
tively (¢, =1...20 + 1), then

ox oy

— —-bj— 161
65,- Jé’tj (6 6)

6(z-y)=a
where a; and b; are two families of infinitesimal coefficients. As a consequence of the
stationarity conditions, the vector e, is thus a linear combination of the 4/ + 2 tan-

gent vectors dy,x and 0y;y. Hence the oriented solid angle formed by two simultaneous
displacements on both curves vanishes at the boundary of the zodiacus:

[€xy: Oix; 0jy] = 0. (6.162)

We shall now check the normalisation of the linking number considering a simple
choice of linked surfaces. We choose a (21 + 1)-sphere centered at the origin and an
orthogonal (2 + 1)-hyperplane containing the origin. They are given respectively by

Yor41 LE% + e+ SL’%HQ = 1, X143 = =+ = L4143 = 0 (6163)

and a (2[ + 1)-hyperplane
Vore1 S YL = = Yarea = 0 (6.164)

with its completion (an half-sphere) at infinity whose contribution to the Gauss integral
vanishes. The ball defined by the sphere 5., and the hyperplane ~,,, intersect at the
origin so we have a configuration with linking number equal to one and a moment thought
shows that the zodiacus is the whole (41 + 2)-sphere.

The linking number (6148 here reads

1 1
L(vzte1,79001) = 5— § ' jg Py —— 7 (6.165)
41+2 , (1 + |y| ) 2
Y21+1 Vore1
The first integral yields the surface of the (21 + 1)-sphere
§ d2”1x = SglJrl y (6166)

Y20+1
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while the second integral can be decomposed in a surfacic and a radial ones as

1 oo y2l
Py~ g [ dy—2 6.167
§ Yy (1+?j2)# 21 0 ) (1+y2)4l2+3 ( )

!
Yai+1

The radial integral is a classic one and may be computed after the change of variable
y = tan(#)

S ¥ ()18 (g
f dy (1+y2)‘“;3 [ dsin? (0) =" 3rtas 5 (6.168)

We thus obtain

SorSor (1 +3)T(1+1)

L(7o141,75 = 6.169
(72l 1 72l+1) S4l+2 2F(2l + %) ( )

what drastically simplifies into the expected result
L(vare1,Yo101) = +1 (6.170)
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