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Einleitung

Der abstrakteste Kontext, in dem der Hauptsatz dieser Dissertation formuliert
werden kann, vereinigt zwei Konzepte aus der Lie Theorie: das einer Wurzel-
raumzerlegung einer (komplexen) zerfällbaren Lie-Algebra, und das einer adjun-
gierten Wirkung einer reellen Lie-Gruppe.
Sei G zunächst eine Lie-Gruppe mit der Eigenschaft, dass ihre Lie-Algebra
g :“ LpGq eine maximale abelsche Unteralgebra h Ă g enthält, deren Komple-
xifizierung hC :“ h‘ ih in gC :“ g‘ ig zerfällend ist. Im endlichdimensionalen
Fall heißt das, wenn V 1 den topologischen Dualraum eines Vektorraums V be-
zeichnet, und

gα :“ tx P g : p@h P hqrh, xs “ αphqxu mit α P phCq1

die Wurzelräume sind, und

∆ :“ ∆pg, hq :“ tα P h1zt0u : gα ‰ t0uu

das Wurzelsystem ist, dass es eine entsprechende Wurzelraumzerlegung gibt:

gC “ hC ‘
à

αP∆

gCα.

In dem unendlichdimensionalen Szenario, an dem wir hauptsächlich interessiert
sind, ist g eine topologische Lie-Algebra, d.h. g ist ein topologischer Vektorraum
mit stetiger Lie Klammer. Wurzelräume sind hier genauso definiert, aber die
Wurzelraumzerlegung ist topologisch zu verstehen in dem Sinn, dass

gCalg :“ hC ‘
à

αP∆

gCα

als Unteralgebra dicht in gC liegt. Man beachte, dass diese Zerlegung eine
natürliche Einbettung von phCq1 in pgCq1 ermöglicht, als den Unterraum der
Funktionale, die alle Wurzelräume auf 0 abbilden.
Zusätzlich zu den bisherigen Annahmen müssen wir fordern, dass galg :“ gCalgXg

eine unitäre reelle Form von gCalg ist; dieser Begriff ist eine direkte Verallgemei-
nerung des Begriffes einer kompakten reellen Form einer endlichdimensionalen
komplexen halbeinfachen Lie-Algebra auf die Klasse der komplexen zerfällbaren
quadratischen Lie-Algebren. Sie ist definiert als die reelle Unteralgebra von Fix-
punkten einer antilinearen Involution ˚ : gCalg Ñ gCalg, die mit der Wurzelraum-
zerlegung und einer invarianten symmetrischen Bilinearform im folgenden Sinn
verträglich ist:

(i) αpxq P R für alle Wurzeln α P ∆ und x “ x˚ P gCalg.

(ii) pgCαq
˚ “ gC´α für alle α P ∆.

(iii) κpx˚, y˚q “ κpx, yq für alle x, y P gCalg.

Dies impliziert insbesondere, dass alle Wurzeln in ∆ auf h rein imaginäre Werte
annehmen.
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Eine Wurzel wird als integrierbar bezeichnet, wenn Elemente xα P gα und
x´α P g´α existieren, so dass αprxα, x´αsq ‰ 0 und adpx˘αq lokal nilpotent
sind, d.h. für jedes y P gCalg die Folge padpx˘αq

nyqnPN nur endlich viele Glieder
ungleich 0 hat.
Die integrierbaren Wurzeln ∆i Ă ∆ Ă ih sind bijektiv mit Kowurzeln assoziiert.
Dabei handelt es sich um bestimmte Elemente α̌ P ih mit αpα̌q “ 2, so dass die
linearen Abbildungen

σα : ih1 Ñ ih1, σαpλq :“ λ´ λpα̌qα

Spiegelungen auf dem topologischen linearen Dualraum ih1 von ih sind. Die
Menge dieser Spiegelungen erzeugt die Weyl-Gruppe W :“ Wp∆q, die mit der
Wurzelraumzerlegung von gC bezüglich hC assoziiert ist.
Um auf die Lie-Gruppe G und ihrer adjungierten Wirkung Ad : G ñ g
zurückzukommen, betrachten wir die entsprechende koadjungierte Wirkung,
welche für alle x P g durch

Ad˚ : G ñ g1, Ad˚pgqpλqpxq :“ λpAdpg´1qpxqq

definiert ist, und komplex linear auf pgCq1 » g1 ‘ ig1 erweiterbar ist. Dieser
Dualraum ist mit der schwach-˚ Topologie ausgestattet, welche als die Initial-
topologie bezüglich der Evaluationsmorphismen evx : pgCq1 Ñ C, evxpλq :“ λpxq
für x P gC definiert ist.
Weiterhin schreiben wir konvexe Abschlüsse (d.h. Abschlüsse konvexer Hüllen)
von Teilmengen S Ď g1 bezüglich der schwach-˚ Topologie als convpSq und die
koadjungierte Bahn von ξ P pgCq1 als Oξ und setzen

Oξ|ih :“ tγ P ih1 : pDχ P Oλqχ|ih “ ξu.

Doppelerweiterungen von Hilbert-Schleifenalgebren bilden eine Klasse von Lie-
Algebren, die alle obengenannten Bedingungen erfüllen. Das Hauptziel dieser
Dissertation ist, diese Lie-Algebren und damit assoziierten Lie-Gruppen ausrei-
chend detailliert zu beschreiben, um zeigen zu können, dass

Oλ|ih Ď convpW.λq (0.1)

für
”
die meisten“ Funktionale λ P ih1 Ď ig1.

Konkret ist eine Doppelerweiterung pKc ‘ω aq ¸ Kd einer Lie-Algebra a über
einem Körper K (normalerweise R or C) eine direkte Summe von Vektorräumen
Kc‘ a‘Kd mit der Klammer

rsxc` x0 ` txd, syc` y0 ` tyds :“ ωpx0, y0qc` rx0, y0s ` txdpy0q ´ tydpx0q,

wobei d : a Ñ a eine derivation, c ein zentrales Element, und ω ein 2-Kozykel
ist, d.h. eine alternierende bilineare Abbildung aˆaÑ K, welche die Bedingung

ωpx, ry, zsq ` ωpz, rx, ysq ` ωpy, rz, xsq “ 0 für alle x, y, z P g (0.2)

erfüllt. Mit dieser Definition kann die Einschränkung der der Gewichte λ in
(0.1) zu

”
λpicq ‰ 0“ konkretisiert werden.
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Im ersten Kapitel werden Doppelerweiterungen von Lie-Algebren und Lie-
Gruppen eingeführt, zunächst für allgemeine Lie-Algebren, dann für die wichtige
Unterklasse derjenigen topologischen Lie-Algebren, die ein invariantes inneres
Produkt tragen, d.h. eine invariante, symmetrische, positiv definite Bilinear-
form. Im Kontext von Lie Algebren bedeutet

”
Invarianz“ einer symmetrischen

Bilinear- (oder Hermite-) form auf a, dass die Operatoren

adpxq : aÑ a, adpxqpyq :“ rx, ys

für alle x P a bezüglich dieser Form schiefadjungiert sind.
Im Abschnitt 1.1 wird die Definition von Doppelerweiterungen vorbereitet, in-
dem zentrale Erweiterungen und semidirekte Produkte von Lie-Algebren und
Lie-Gruppen definiert werden. Grundlegende Eigenschaften von beiden wer-
den hergeleitet, zusammen mit Beziehungen zwischen den jeweiligen Erweite-
rungen der Lie-Gruppen und ihrer Lie-Algebren. Doppelerweiterungen werden
dann mittels einer Kompatibilitätsbedingung definiert, die notwendig und hin-
reichend dafür ist, dass eine zentrale Erweiterung und ein semidirektes Produkt
eine Doppelerweiterung ergeben. Grundlegende Eigenschaften dieser Doppeler-
weiterungen werden dann auf die entsprechenden Eigenschaften der zugrunde-
liegenden Erweiterungen zurückgeführt. Ein besonders wichtiger Aspekt, der
über einen großen Teil dieser Dissertation regelmäßig verwendet wird, ist die
Definition einer bestimmten Wirkung: wenn K eine 1-zusammenhängende Lie-
Gruppe ist, und g eine Doppelerweiterung von k :“ LpKq, dann gibt es eine
adjungierte Wirkung von K auf g, unabhängig davon, ob eine Lie-Gruppe G
mit g “ LpGq existiert.
Abschnitt 1.2 untersucht Doppelerweiterungen, die durch eine Kombination aus
einem invarianten inneren Produkt auf einer Lie-Algebra und einer schiefadjun-
gierten äußeren Derivation entstehen. Diese Doppelerweiterungen sind mit einer
invarianten Lorentz-Form

κ : ppRc‘ω aq ¸ Rdq ˆ ppRc‘ω aq ¸ Rdq Ñ R,
κppc1, x1, t1q, pc2, x2, t2qq :“ px1, x2q ´ c1t2 ´ c2t1

ausgestattet. Zusammen mit ihren assoziierten invarianten Lorentzschen For-
men bilden diese doppelerweiterten Lie-Algebren die Klasse der Lorentzschen
Doppelerweiterungen, und alle doppelerweiterten Lie-Algebren, die in dieser
Dissertation behandelt werden, gehören zu dieser Klasse.
Auf jeder Lorentzschen Doppelerweiterung kann eine Familie von invarianten
Lorentz-Formen konstruiert werden. Diese Familie wird von den reellen Zahlen
parametrisiert und hat die Eigenschaft, dass jedes Element der doppelerweiter-
ten Lie-Algebra, bis auf eine bestimmte Hyperebene, in einem offenen Lorentz-
kegel enthalten ist, der von einer invarianten Lorentz-Form definiert wird. Dies
gibt einen ersten Einblick in die invariante konvexe Geometrie, welche die ad-
jungierte Wirkung auf einer Lorentzschen Doppelerweiterung erzeugt.

Das zweite Kapitel beschreibt die adjungierte Wirkung von Hilbert-Schleifen-
gruppen auf Doppelerweiterungen ihrer korrespondierenden Hilbert-Schleifen-
algebren im Detail.
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Abschnitt 2.1 gibt eine detaillierte Konstruktion dieser Objekte an. Zur Vor-
bereitung von Schleifengruppen und Schleifenalgebren, werden Hilbert–Lie-Al-
gebren und Hilbert–Lie-Gruppen kurz vorgestellt, ebenso die kompakt-offene
Ck-Topologie auf CkpM,Nq für k P N0 Y t8u und Ck-Mannigfaltigkeiten M
undN . Informationen aus [GN20] werden verwendet, um zu zeigen, dass für jede
Lie-Gruppe H das punktweise Produkt und die kompakt-offene Ck-Topologie
LH :“ C8pS1, Hq zu einer Lie-Gruppe mit Lie-Algebra Lh :“ C8pS1, hq ma-
chen, wobei h :“ LpHq und die Lie Klammer die punktweise Klammer und die
Topologie die kompakt-offene C8-Topologie ist.
Es gibt auch eine getwistete Version von Schleifengruppen, die man mit einem
Automorphismus von H von endlicher Ordnung N und r :“ 2π

N durch die De-
finition

C8Φ,rpR, Hq :“ tf P C8pR, Hq : p@t P Rq fpt` rq “ Φpfptqqu

erhält. Die natürliche Injektion von 2π-periodischen Funktionen RÑ H in die
Menge der Funktionen S1 Ñ H macht LΦH :“ C8Φ,rpR, Hq zu einer Untergrup-
pe von LH. Eine Lie-Gruppen Topologie auf LH erhält man dann folgender-
maßen:
Es gibt einige Methoden aus dem Kontext der endlichdimensionalen Lie-Theorie,
die nicht allgemein auf das unendlichdimensionale Szenario übertragbar sind. Im
Fall von lokal-exponentiellen Lie-Gruppen, siehe [GN20], kann ein großer Teil
davon wiederhergestellt werden. Hilbert–Lie-Gruppen sind lokal-exponentiell,
und LH ist lokal exponentiell, wenn H lokal exponentiell ist. Dieser Begriff
wird verwendet, um eine Lie-Gruppen Topologie auf LΦH einzuführen, indem
man sie als eine Fixpunkt-Untergruppe von LH unter einem bestimmten Au-
tomorphismus begreift.
In Abschnitt 2.2 werden Doppelerweiterungen von Hilbert-Schleifenalgebren
konstruiert. Diese sind Lorentzsche Doppelerweiterungen, wobei das invariante
innere Produkt durch Integration über den Einheitskreis aus dem invarianten
inneren Produkt der zugrundeliegenden Hilbert–Lie-Algebra konstruiert wird,
und die schiefadjungierte Derivation ist die Ableitung glatter Kurven.
Die Familie invarianter Lorentz-Formen wird verwendet, um folgende Formel für
die adjungierte Wirkung der Identitätskomponente einer Hilbert-Schleifengruppe
auf einer Doppelerweiterung ihrer Lie-Algebra herzuleiten:

Proposition 0.1. Wenn K eine Hilbert–Lie-Gruppe ist, k “ LpKq und

g :“ pRc‘ω Lϕkq ¸ Rd

eine doppelerweiterte Schleifenalgebra, dann ist die adjungierte Wirkung von
LΦK mit ϕ “ LpΦq gegeben durch

Adpgqpa, x0, tq “
´

a´ pδrpgq, x0q ´
t

2
pδrpgq, δrpgqq,Adkpgqpx0q ´ tδ

rpgq, t
¯

,

wobei δrpgq “ g1g´1 die rechte logarithmische Ableitung der Kurve g ist.

Abschnitt 2.3 beschließt das zweite Kapitel mit einem Thema, das in en-
gem Zusammenhang mit Konvexitätssätzen steht. Die grundlegende Idee ist
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die folgende: angenommen, für eine Lie-Algebra g mit einer maximalen abel-
schen Unteralgebra h so, dass gC über hC zerfällt, gibt es einen Konvexitätssatz
der Form phpOxq Ď convpW.xq für alle x P h, wobei Ox die Bahn von x unter
der adjungierten Wirkung einer passenden Lie-Gruppe bezeichnet, und ph die
lineare Projektion auf h entlang der Wurzelraumzerlegung von gC bezüglich hC.
Dann kann dieser Satz auch auf alle Elemente y P g, die OyXh ‰ H erfüllen, an-
gewendet werden in dem Sinn, dass phpOyq Ď convpW.zq für alle z P OyXh. Um
Elemente y P g mit dieser Eigenschaft zu finden, wenn g eine doppelerweiterte
Hilbert-Schleifenalgebra ist, wird eine Klassifikation von unendlichdimensiona-
len einfachen Hilbert–Lie-Algebren verwendet. Nach dem Satz von Schue, siehe
[Sc60] und [Sc61], sind diese alle realisierbar als die Lie-Algebren der schiefad-
jungierten Hilbert–Schmidt Operatoren auf einem Hilbertraum über R,C oder
H; entsprechend sind alle unendlichdimensionalen Hilbert–Lie-Gruppen reali-
siert als Schnitte der isometrischen Automorphismen von H und den Hilbert–
Schmidt Störungen der Identität auf H, d.h.

Proposition 0.2. Wenn K eine einfache Hilbert–Lie-Gruppe ist, dann existiert
ein Hilbertraum H über R,C oder H, so dass

K » U2pHq :“ UpHq X pidH` gl2pHqq,

wobei gl2pHq für die Menge der Hilbert–Schmidt-Operatoren auf H steht.

Damit werden wohlbekannte Spektralsätze anwendbar, wodurch folgender
Satz abgeleitet werden kann:

Proposition 0.3. Wenn K » U2pHq eine einfache Hilbert–Lie-Gruppe ist, H
ein komplexer oder quaternionischer Hilbertraum, x P k “ LpKq, die Unteral-
gebra h Ă k maximal abelsch, und Ox die Bahn von x unter Autpkq0 bezeichnet,
dann ist Ox X h ‰ H.
Wenn statt dessen H ein reeller Hilbertraum ist, bilden die maximal abelschen
Unteralgebren von k unter Autpkq0 zwei Konjugationsklassen.

Analoge Aussagen sind wahr wenn g die Lorentzsche Doppelerweiterung der
Schleifenalgebra Lϕk mit ϕ “ LpΦq P Autpkq ist, und eine der beiden folgenden
Bedingungen erfüllt ist:

• Entweder ist K endlichdimensional, und folglich kompakt, dann ist LΦK
die passende Gruppe, die durch Adjunktion auf g wirkt, und das ent-
scheidende Konjugationstheorem kann von einem Konjugationstheorem
für nicht-zusammenhängende kompakte Lie-Gruppen aus [Se68] abgelei-
tet werden.

• Oder K ist eine einfache, unendlichdimensionale Hilbert–Lie-Gruppe, und
Φ “ idK . In diesem Fall ist die passende Lie-Gruppe LK ¸ K, wobei
K “ AutpKq0.

In beiden Fällen verwendet der Beweis die Äquivarianzeigenschaft einer Holo-
nomieabblidung Hol : Lϕk Ñ K, um ein Konjugationstheorem von K auf die
Schleifenalgebra zurückzuziehen.
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Kapitel 3 konzentriert sich auf die rechte Seite der Inklusion (0.1). Es beginnt
mit der formalen Einführung der Wurzelraumzerlegung durch eine zerfällende
Cartan-Unteralgebra und dem wichtigen Konzept von integrierbaren Wurzeln.
In zerfällbaren quadratischen Lie-Algebren werden diese Begriffe mit invarian-
ten, symmetrischen, nicht-ausgearteten Bilinearformen zusammengebracht; die
wichtigsten Eigenschaften werden zur Referenz aufgeführt. Lokal endliche Wur-
zelsysteme werden definiert, und Ergebnisse von John R. Schue und Nina Stum-
me werden zitiert, welche diese als die Wurzelsysteme von Komplexifizierungen
von Hilbert–Lie-Algebren identifizieren. Das heißt, die Komplexifizierung je-
der einfachen Hilbert–Lie-Algebra hat eine Wurzelraumzerlegung bezüglich ei-
nes lokal endlichen Wurzelsystems, und jede komplexe zerfällbare Lie-Algebra
mit einem lokal endlichen Wurzelsystem kann topologisch zu einer Hilbert–Lie-
Algebra vervollständigt werden; dieser Kontext umfasst auch eine Klassifikation
dieser Wurzelsysteme in Begriffen von realisierungen von Hilbert–Lie Algebren
als Algebren von schiefadjungierten Hilbert–Schmidt-Operatoren.
Diese Identifikation liefert die Notation, die benötigt wird, um eine Bedingung
anzugeben, unter der Doppelerweiterungen von (getwisteten) Schleifenalgebren
zu glatten Doppelerweiterungen von korrespondierenden Schleifengruppen in-
tegriert werden können.
Abschnitt 3.2 beschreibt die Wurzelraumzerlegung einer gegeben doppelerwei-
terten Schleifenalgebra im Detail. Dies gipfelt in der Folgerung, dass das Wur-
zelsystem einer Komplexifizierung einer doppelerweiterten Schleifenalgebra ein
lokal affines Wurzelsystem ist, was impliziert, dass gC eine dichte lokal affine
Lie-Algebra gCalg enthält. Dies ermöglicht es, eine dichte Unteralgebra gfin Ă g
mit einer Familie pgnqnPN von doppelerweiterten Schleifenalgebren über kompak-
ten Lie-Algebren auszuschöpfen. Diese Familie hat die Eigenschaft, dass jedes
Glied gn eine zerfällende Cartan-Unteralgebra hn hat, so dass die gerichtete
Vereinigung dieser hn eine Cartan-Unteralgebra von gfin ausschöpft.
Am Ende dieses Kapitels wird die Weyl-Gruppe zu einer Wurzelraumzerlegung
einer lokal affinen Lie-Algebra und einer doppelerweiterten Schleifenalgebra de-
finiert.

Im ersten Abschnitt von Kapitel 4 wird die Geometrie konvexer Abschlüsse
von Bahnen von Weyl-Gruppen im Kontext einer doppelerweiterten Schleifenal-
gebra über einer einfachen kompakten, d.h. endlichdimensionalen Hilbert–Lie
Algebra untersucht. Dies wird vorbereitet, indem gezeigt wird, dass die Cartan-
Unteralgebra mit ihrer Weyl Gruppe als lineares Coxeter System aufgefasst
werden kann. Diese linearen Coxeter Systeme werden axiomatisch eingeführt.
Coxeter-Gruppen, die Fundamentalkammer, der Tits-Kegel, Wurzeln und Ko-
wurzeln werden definiert, letztere a priori unabhängig vom homonymen Begriff
aus dem Kontext von Wurzelraumzerlegungen. Im nächsten Schritt werden
einfache Systeme in den Wurzelsystemen von Doppelerweiterungen von get-
wisteten Wurzelalgebren identifiziert. Diese ermöglichen es, den Begriff einer
Coxeter-Gruppe auf diesen Kontext zu übertragen und zu zeigen, dass die-
se Wurzelraumzerlegungen zu linearen Coxeter Systemen führen, wobei die
Coxeter-Gruppe mit der entsprechenden Weyl-Gruppe identisch ist und eine
Fundamentalkammer durch den Dualkegel eines einfachen Systems von Wur-
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zeln gegeben ist.
Das wichtigste Resultat, das auf diese Weise auf Wurzelraumzerlegungen und
Weyl-Gruppen angewendet werden kann, ist [HN14, Theorem 2.7], welches im-
pliziert, dass für jedes v aus der Fundamentalkammer eines linearen Coxeter
Systems gilt:

convpW.vq Ď
č

σPW

σpv ´ ČSq, (0.3)

wobei ČS ein abgeschlossener, spitzer Kegel ist, der von v unabhängig ist. Dies
kann auf alle inneren Elemente des Tits Kegels angewendet werden, denn die
Coxeter-Gruppe konjugiert jedes solche Element in die Fundamentalkammer.
Der größere Teil dieses Abschnitts beschäftigt sich in der Folge damit, die Inklu-
sion (0.3) zu einer Gleichheit zu verfeinern, was in einem Theorem erreicht wird,
welches sicherstellt, dass der konvexe Abschluss von W.v mit

Ş

σPW σpv ´ ČSq
identisch ist. Dies kann wieder auf alle inneren Punkte des Tits Kegels ange-
wendet werden.

Im letzten Abschnitt werden die Themen aus den vorangegangen Abschnitten
zusammengetragen, um folgenden Konvexitätssatz zu beweisen:

Theorem. Wenn g eine doppelerweiterte Schleifenalgebra über einer einfachen
Hilbert–Lie-Algebra k ist, und λ P it1g ein Gewicht mit λpcq ‰ 0, dann ist

Oλ|itg Ď copλq.

Der grundlegende Ansatz zu diesem Beweis ist, einen Konvexitätssatz für
eine Teilmenge der imaginären Gewichte auf einer Cartan-Unteralgebra tg ei-
ner doppelerweiterten Hilbert-Schleifenalgebra zu zeigen, und diesen dann auf
immer größere Teilmengen auszuweiten, bis er auf alle imaginären Gewichte
verallgemeinert ist, die auf dem Zentrum nicht verschwinden.
Die erste Version dieses Konvexitätssatzes gilt für das Gitter der ganzzahli-
gen Gewichte, also den Gewichten, die ganzzahlige Werte auf den Kowurzeln
annehmen (und auf dem Zentrum nicht verschwinden); es ist abgeleitet von
der unitären Darstellungstheorie von lokal affinen Lie-Algebren, die in [Ne10]
entwickelt worden ist. Um dies vorzubereiten, werden die relevanten Begriffe
von unitären und integrierbaren Darstellungen von zerfällbaren Lie-Algebren
mit unitären reellen Formen definiert. Eine unitäre, integrierbare Darstellung
ρλ : gCalg ñ Lalgpλq von höchstem Gewicht λ wird definiert, die insbesonde-

re die Eigenschaft hat, dass die Wirkung von tCg Ă gCalg auf dem komplexen
prä-Hilbertraum Lalgpλq durch das Gewichtssystem

Pλ “ convpW.λq X pλ` spanZp∆qq Ă pt
C
g q
1 (0.4)

diagonalisiert wird.
Die Methode der holomorphen Induktion, nach der Formulierung in [JN18,
Proposition 8.6], wird verwendet um ρλ zu einer unitären Darstellung einer
Lie-Gruppe G mit g “ LpGq auf der Hilbertraum-Vervollständigung Hλ von
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Lalgpλq zu integrieren. Anschließend, mit der Notation H8
λ Ď Hλ für den dich-

ten Unterraum von Vektoren mit glatten Bahnen, wird die Impulsabbildung

Φπ : PpH8
λ q Ñ g1, Φπprvsqpxq :“ ´i

xρpxqv, vy

xv, vy
für x P g

verwendet, um die gewünschte Konvexitätseigenschaft von (0.4) herzuleiten.
Im nächsten Schritt wird dieser Konvexitätssatz für den Fall einer Schleifen-
gruppe über einer kompakten Lie-Gruppe zu allen Gewichten λ P itg (die auf
dem Zentrum nicht verschwinden) verallgemeinert. Der Beweis verallgemeinert
die Konvexitätseigenschaft zunächst auf die dichte Untermenge der rationalen
Gewichte und verwendet dann Ergebnisse aus dem 3. Kapitel über die konvexe
Coxeter Geometrie auf itg, um ein Approximationsargument zu ermöglichen.
Die allgemeinste Version des Konvexitätstheorems setzt nur voraus, dass g ei-
ne doppelerweiterte Schleifenalgebra über einer einfachen Hilbert–Lie-Algebra
ist, und dass das Gewicht λ P it1g wiederum auf dem Zentrum nicht verschwin-
det. Der Beweis verwendet eine Ausschöpfung von g durch doppelerweiterte
Schleifenalgebren über kompakten Lie-Algebren, welche in Kapitel 3 vorberei-
tet worden ist. Dies erlaubt ein Approximationsargument aus dem kompakten
Kontext.

Literatur
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Introduction

The most abstract setting in which the main theorem of this thesis can be
formulated brings together two concepts of Lie theory: that of a root space
decomposition of a (complex) split Lie algebra, and that of the adjoint action
of a real Lie group.
To start with, let G be a Lie group with the property that its Lie algebra
g :“ LpGq contains a maximal abelian subalgebra h Ă g such that its complexi-
fication hC :“ h‘ ih is splitting in gC :“ g‘ ig. In the finite-dimensional case
this means that, if V 1 denotes the topological dual space of a topological vector
space V , and

gα :“ tx P g : p@h P hqrh, xs “ αphqxu with α P phCq1

are root spaces of, and

∆ :“ ∆pg, hq :“ tα P h1zt0u : gα ‰ t0uu

is the root system, then we have a root space decomposition:

gC “ hC ‘
à

αP∆

gCα.

In the infinite-dimensional scenario we are mostly interested in, g is a topological
Lie algebra, i.e. carries a topology such that the Lie bracket is continuous. Here,
root spaces and the root system are defined the same way, but the root space
decomposition is to be understood in a topological way in the sense that

gCalg :“ hC ‘
à

αP∆

gCα

is a dense subalgebra of gC. Note that this decomposition provides a natural
way of injecting phCq1 into pgCq1 as the subspace of functionals which send all
root spaces to 0.
In addition to the preceding assumptions, one has to assume that galg :“ gCalgXg

is a unitary real form of gCalg; this notion is a straightforward generalisation of
the notion of a compact real form of a finite-dimensional complex semisimple
Lie algebra to the class of complex split quadratic Lie algebras. It is defined as
the real fixed point subalgebra of an antilinear involution ˚ : gCalg Ñ gCalg which
is compatible with the root space decomposition and an invariant symmetric
bilinear form κ on gCalg in the following sense:

(i) αpxq P R for all roots α P ∆ and x “ x˚ P gCalg.

(ii) pgCαq
˚ “ gC´α for all α P ∆.

(iii) κpx˚, y˚q “ κpx, yq for all x, y P gCalg.

It implies in particular that all roots in ∆ take purely imaginary values on h.
A root α is called integrable, if there exist xα P gα and x´α P g´α, such that
αprxα, x´αsq ‰ 0 and adpx˘αq are locally nilpotent, i.e. for every y P gCalg the
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sequence padpx˘αq
nyqnPN has only finitely many non-zero members.

The integrable roots ∆i Ă ∆ Ă ih have coroots associated to them bijectively,
which are particular elements α̌ P ih with αpα̌q “ 2 so that the linear maps

σα : ih1 Ñ ih1, σαpλq :“ λ´ λpα̌qα

are reflections on the topological linear dual space ih1 of ih. The set of these
reflections generates the Weyl group W :“ Wp∆q associated to the root space
decompositions of gC with respect to hC.
Returning to the Lie group G and its adjoint action Ad : G ñ g, we consider
the corresponding coadjoint action, which is defined by

Ad˚ : G ñ g1, Ad˚pgqpλqpxq :“ λpAdpg´1qpxqq for all x P g,

and extends complexly linear to pgCq1 » g1 ‘ ig1. This dual space carries the
weak-˚ topology, which is the initial topology with respect to the family of
evaluation morphisms evx : pgCq1 Ñ C, evxpλq :“ λpxq for x P gC.
We further write convex closures (i.e. closures of convex hulls) of subsets S Ď g1

with respect to the weak-˚ topology as convpSq and the coadjoint orbit of any
ξ P pgCq1 as Oξ, and set

Oξ|ih :“ tγ P ih1 : pDχ P Oλqχ|ih “ ξu.

Double extensions of Hilbert loop algebras form a class of Lie algebras which
satisfy all the conditions above. The main goal of this thesis is to describe these
Lie algebras and their associated Lie groups in sufficient detail to show that

Oλ|ih Ď convpW.λq (0.1)

for “most” functionals λ P ih1 Ď ig1.
Concretely, a double extension pKc ‘ω aq ¸ Kd of a Lie algebra a over a field
K (usually R or C) is the direct vector space sum Kc ‘ a ‘ Kd endowed with
the bracket

rsxc` x0 ` txd, syc` y0 ` tyds :“ ωpx0, y0qc` rx0, y0s ` txdpy0q ´ tydpx0q,

where d : aÑ a is a derivation, c is a central element, and ω is a 2-cocycle, i.e.
an alternating bilinear map aˆ aÑ K satisfying

ωpx, ry, zsq ` ωpz, rx, ysq ` ωpy, rz, xsq “ 0 for all x, y, z P g. (0.2)

With this definition, the constraint on the weight λ in (0.1) is expressed by the
assumption that λpicq ‰ 0.

In the first chapter, double extensions of Lie algebras and Lie groups are
introduced, first for Lie algebras in general, then for the important subclass of
those topological real Lie algebras which carry an invariant inner product, i.e.
an invariant, symmetric, positive definite bilinear form. In the context of Lie
algebras, “invariance” of a symmetric bilinear (or hermitian) form means that,
with respect to this form, a Lie algebra acts on itself via the adjoint action as
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skew-adjoint operators.
In Subsection 1.1, the definition of double extensions is prepared by defining
central extensions and semidirect products of both Lie algebras and Lie groups.
Basic properties of both are derived, along with relations between the respective
extensions of Lie groups and their Lie algebras. Double extensions are defined
by means of a compatibility condition which is necessary and sufficient for a
central extension and a semidirect product to give rise to a double extension.
Basic properties of the resulting double extension are reduced to corresponding
properties of the underlying extensions. A particular important aspect of this,
which will frequently be applied throughout a major part of this thesis, is the
definition of a certain adjoint action: if K is a 1-connected Lie group, and g a
double extension of k :“ LpKq, then there exists an adjoint action of K on g,
regardless of whether a Lie group G with g “ LpGq exists.
Subsection 1.2 examines double extensions which arise from the combination of
an invariant inner product on a Lie algebra and a skew-adjoint outer derivation.
These doubly extended Lie algebras can be equipped with the invariant Lorentz
form

κ : ppRc‘ω aq ¸ Rdq ˆ ppRc‘ω aq ¸ Rdq Ñ R,
κppc1, x1, t1q, pc2, x2, t2qq :“ px1, x2q ´ c1t2 ´ c2t1. (0.3)

These doubly extended Lie algebras, together with their associated invariant
Lorentz forms, form the class of Lorentzian double extensions, and the double
extensions of loop algebras which are studied in this thesis belong to this class.
On every Lorentzian double extension, a family of invariant Lorentz forms can
be constructed. This family is parametrised by the real numbers, and has the
property that every point of the doubly extended Lie algebra, excluding one
specific hyperplane, is contained in the open Lorentzian double-cone defined by
an invariant Lorentz form. This gives a first insight into the invariant convex
geometry which the adjoint action generates on a Lorentzian double extension.

The second chapter describes the adjoint action of Hilbert loop groups on
double extensions of their corresponding Hilbert loop algebras in depth.
Subsection 2.1 provides a detailed construction of the objects in question. To
prepare the definition of loop groups and loop algebras, Hilbert–Lie algebras
and Hilbert–Lie groups are introduced shortly, as well as the compact open
Ck-topology on CkpM,Nq for k P N0Yt8u and Ck-manifolds M and N . Infor-
mation from [GN20] is used to show that, for any Lie group H, the pointwise
product and the compact open C8-topology turn LH :“ C8pS1, Hq into a Lie
group with Lie algebra Lh :“ C8pS1, hq, where h :“ LpHq, and the Lie bracket
is the pointwise bracket and the topology is the compact open C8-topology.
There is also a twisted version of loop groups, which is obtained using an auto-
morphism Φ of H of finite order N and defining

C8Φ,rpR, Hq :“ tf P C8pR, Hq : p@t P Rq fpt` rq “ Φpfptqqu

for r :“ 2π
N . The natural injection of 2π-periodic maps R Ñ H into the set of

maps S1 Ñ H turns LΦH :“ C8Φ,rpR, Hq into a subgroup of LH. A Lie group
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topologiy on LΦH is then obtained as follows:
There is a wide range of methods from finite-dimensional Lie theory, which are
not generally available in the infinite-dimensional setting. A large part of these
can be re-established in the case of locally exponential Lie groups, see [GN20].
Hilbert–Lie groups are locally exponential, and LH is locally exponential for
locally exponential H. This notion is then applied to establish a Lie group
topology on LΦH by regarding it as a fixed point subgroup of LH under a
certain automorphism.
In Subsection 2.2, double extensions of Hilbert loop algebras are constructed.
These are Lorentzian double extensions, where the invariant inner product
comes from the invariant inner product of the underlying Hilbert–Lie algebra
by integration over the circle, and the skew-adjoint derivation is the derivative
of smooth curves.
The family of invariant Lorentz forms is used to derive the following formula
for the adjoint action of the identity component of a Hilbert loop group on a
double extension of its Lie algebra:

Proposition 0.1. If K is a Hilbert–Lie group, k “ LpKq, and

g :“ pRc‘ω Lϕkq ¸ Rd

is a doubly extended loop algebra, then the adjoint action of LΦK with ϕ “ LpΦq
is given by

Adpgqpa, x0, tq “
´

a´ pδrpgq, x0q ´
t

2
pδrpgq, δrpgqq,Adkpgqpx0q ´ tδ

rpgq, t
¯

,

where δrpgq “ g1g´1 is the right-logarithmic derivative of the curve g.

Subsection 2.3 concludes the second chapter with a topic that is closely re-
lated to convexity theorems. The basic idea is the following: suppose that, for
some Lie algebra g with a maximal abelian subalgebra h such that hC Ă gC

is splitting, there is a convexity theorem of the form phpOxq Ď convpW.xq for
all x P h, where Ox denotes the orbit of x under the adjoint action of some
appropriate Lie group, and ph denotes the linear projection onto h along the
root space decomposition of gC with respect to hC. Then this theorem can
also be applied to all elements y P g which satisfy Oy X h ‰ H in the sense
that phpOyq Ď convpW.zq for any z P Oy X h. To find elements y P g with this
property when g is a double extension of a Hilbert loop algebra, a classifica-
tion of the infinite-dimensional simple Hilbert–Lie algebras is employed. By
Schue’s Theorem, see [Sc60] and [Sc61], all of these appear as the Lie algebras
of skew-adjoint Hilbert–Schmidt operators on some Hilbert space H over R,C
or H; accordingly, infinite-dimensional simple Hilbert–Lie groups are generally
(isomorphic to) the intersections of the group of isometric automorphisms of H
with the group of Hilbert–Schmidt perturbations of the identity on H, i.e.:

Proposition 0.2. If K is a simple Hilbert–Lie group, then there exists a Hilbert
space H over R,C or H, so that

K » U2pHq :“ UpHq X pidH` gl2pHqq,
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where gl2pHq denotes the set of Hilbert–Schmidt operators on H.

This makes well-known spectral theorems applicable, from which the follow-
ing proposition can be derived:

Proposition 0.3. If K » U2pHq is a simple Hilbert–Lie group, H is a complex
or quaternionic Hilber space, x P k “ LpKq and h Ă k is maximal abelian, and
Ox denotes the orbit of x under Autpkq0, then Ox X h ‰ H.
If, instead, H is a real Hilbert space, the maximal abelian subalgebras in k under
Autpkq0 form two conjugacy classes.

Analogous statements hold if g is the Lorentzian double extension of the loop
algebra Lϕk with ϕ “ LpΦq P Autpkq, and if one of the following two conditions
is satisfied:

• Either K is finite-dimensional and therefore compact. Then the appro-
priate group acting on g by the adjoint action is LΦK, and the relevant
conjugacy theorem can be derived from a conjugacy theorem for non-
connected compact Lie groups from [Se68].

• Or K is a simple, infinite-dimensional Hilbert–Lie group, and Φ “ idK .
In this case, the appropriate Lie group is LK ¸K, where K “ AutpKq0.

In both cases, the proof employs an equivariance property of a holonomy map
Hol : LϕkÑ K to pull back a conjugacy theorem from K to the loop algebra.

Chapter 3 focuses on the right hand side of the inclusion (0.1). It starts
out by formally introducing a root space decomposition by a splitting Cartan
subalgebra and the important concept of integrable roots. These notions are
combined with invariant, symmetric, non-degenerate bilinear forms in the split
quadratic Lie algebras, and important properties of these are listed for refer-
ence. Locally finite root systems are defined and results from John R. Schue
and Nina Stumme are used to identify them as the root systems of (complexi-
fied) Hilbert–Lie algebras, which means that every complexification of a simple
Hilbert–Lie algebra has a root space decomposition with respect to a locally
finite root system, and every complex split Lie algebra with a locally finite root
system can be topologically completed to a Hilbert–Lie algebra. This context
also includes a classification of these root systems in terms of realisations of
Hilbert–Lie algebras as algebras of skew-adjoint Hilbert–Schmidt operators.
This identification provides the notation needed to give a condition for a double
extension of a (twisted) Hilbert loop algebra to integrate to a smooth double
extension of a corresponding loop group.
Subsection 3.2 describes the root space decomposition of a given double ex-
tended loop algebra in detail. This culminates in the conclusion that the root
system of a complexification of a double extended Hilbert loop algebra g is a
locally affine root system, which implies that gC contains a dense locally affine
Lie algebra gCalg. This allows to exhaust a dense subalgebra gfin Ă g with a fam-
ily pgnqnPN of double extended loop algebras over compact Lie algebras. This
family has the property that every member gn has a splitting Cartan subalgebra
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hn such that the directed union of these hn exhausts a given Cartan subalgebra
of gfin.
At the end of this chapter, the Weyl group corresponding to the root space
decomposition of a locally affine Lie algebra and of a double extended loop
algebra is defined.

In the first subsection of Chapter 4, the geometry of convex closures of the
orbits of the Weyl group are studied in the context of a double extended loop
algebra over a simple compact Lie algebra, i.e. the finite-dimensional case of
a simple Hilbert–Lie algebra. This is prepared by showing that the Cartan
subalgebra together with its Weyl group action can be seen as a linear Coxeter
system. These linear Coxeter systems are defined by a list of axioms. Coxeter
groups, the fundamental chamber, Tits cone, roots and coroots are defined, the
latter a priory independently from the homonymous notion in the context of
root space decompositions. Simple systems are identified in the root systems of
double extensions of twisted loop algebras. These allow to transfer the notion
of a Coxeter group to this context, and to show that these root space decompo-
sitions give rise to linear Coxeter systems, where the Coxeter group is identical
with the respective Weyl group, and a fundamental chamber is given as the
dual cone of any simple system of roots.
The most important result which can be applied to root space decompositions
and Weyl groups in this way is [HN14, Theorem 2.7], which implies that, for
any v in the fundamental chamber of a linear Coxeter system,

convpW.vq Ď
č

σPW

σpv ´ ČSq, (0.4)

where ČS is a closed pointed cone which is independent of v. This can be applied
to all inner elements of a Tits cone, because the Coxeter group conjugates every
such element to some element of the fundamental chamber.
The larger part of this subsection then deals with sharpening inclusion (0.4)
to an equality, which is finally achieved in a Theorem which asserts that the
convex closure of W.v equals

Ş

σPW σpv´ ČSq. Again, this can be applied to all
inner points of the Tits cone.

In the final subsection, the topics prepared in the previous sections are
brought together to derive the following convexity theorem:

Theorem. If g is a doubly extended loop algebra over some simple Hilbert–Lie
algebra k, and λ P it1g a weight with λpcq ‰ 0, then

Oλ|itg Ď copλq.

The basic approach is to show a convexity theorem for a subset of the imag-
inary weights on the Cartan subalgebra tg of a double extended Hilbert loop
algebra g and then extend it to increasingly larger subsets, until it is generalised
to all imaginary weights on tg not vanishing on the centre.
The first version of the convexity theorem holds for the grid of integral weights,
i.e. those weights that take integral values on the coroots (and do not vanish

xiv



on the centre); it is derived from the unitary representation theory of locally
affine Lie algebras developed in [Ne10]. To prepare this, the relevant notions
of unitary and integrable representations of split Lie algebras with a unitary
real form are defined. A unitary, integrable representation ρλ : gC ñ Lalgpλq of
highest weight λ is defined, which has the property that the action of tCg Ď gC

on the complex Hilbert space Lalgpλq is diagonalised by the weight system

Pλ “ convpW.λq X pλ` spanZp∆qq Ă pt
C
g q
1. (0.5)

The method of holomorphic induction, in the formulation from [JN18, Propo-
sition 8.6], is used to integrate ρλ to a unitary representation of a Lie group
G with g “ LpGq on the Hilbert space completion Hλ of Lalgpλq. Then, with
H8
λ Ď Hλ denoting the dense subspace of vectors with smooth orbit map, the

momentum map

Φπ : PpH8
λ q Ñ g1, Φπprvsqpxq :“ ´i

xρpxqv, vy

xv, vy
for x P g;

is used to derive the desired convexity property from (0.5).
In the next step, this convexity theorem is generalised to all weights λ P itg
(not vanishing on the centre) in the case of a loop group over a compact Lie
group. The proof first generalises the convexity property to the dense subset
of rational weights, then employs the results from Chapter 3 about the convex
Coxeter geometry on itg to allow an approximation argument.
The most general version of the convexity theorem only requires g to be a
double extended loop algebra over a simple Hilbert–Lie algebra, and, again, the
weight λ P it1g to not vanish on the centre. The proof employs an exhaustion
of g by double extended loop algebras over compact Lie algebras, which has
been prepared in Chapter 3. This allows an approximation argument from the
compact context.

xv





Preface

The interest in invariant convex sets in the topological dual of Lie algebras
stems from the unitary representation theory of Lie groups, and this correla-
tion will be outlined in the following.
Right now, we cannot hope to develop a satisfying general theory of unitary
representations of infinite-dimensional Lie groups, but the situation becomes
more manageable if we focus on representations that satisfy appropriate reg-
ularity conditions. In this regard, semiboundedness is particularly promising.
It is closely related to the physical concept of a “Hamiltonian”, which is, ab-
stractly spoken, an essentially self-adjoint operator whose spectrum is bounded
from below. Every semibounded unitary representation of a Lie group G with
Lie algebra g :“ LpGq contains such operators in idπpgq, and in many cases
the converse statement is true, i.e., under certain assumptions on the group
in question, the existence of a “Hamiltonian” implies the semiboundedness of
a given representation. This is in particular the case for representations of
finite-dimensional Lie groups, groups with Kac–Moody algebras and Hilbert
loop groups (see [Ne14]).
For a unitary Lie group action π : G ñ H and v P H, let πv : G Ñ H denote
the orbit map; then π is said to be smooth if the subspace of smooth vectors
H8 :“ tv P H : πv P C8pG,Hqu is dense in H. A smooth unitary representa-
tion is called semibounded if there exists an open subset of the topological Lie
algebra g :“ LpGq on which the convex functional

sπ : gÑ p´8,`8s, xÑ suppSpecp´idπpxqqq

is bounded. Then the interior of the domain of sπ can be written as

Bπ :“ tx P g : pD neighbourhood U Q x, r P Rq sπpUq Ă p´8, rqu.

This is an open convex cone invariant under the adjoint action of G, and sπ is
continuous on this cone [Ne08a].
The function sπ coincides with the support functional

gÑ p´8,`8s, xÑ suppIπpxqq

of the closed convex momentum set Iπ Ă g1, which is defined as the weak-˚
convex closure of the image of the momentum mapping

Φπ : PpH8q Ñ g1, Φπprvsqpxq :“ ´i
xdπpxqv, vy

xv, vy
for x P g;

see [Mi90] for general properties of this map. Subsets X of the topological
dual V 1 of a real vector space V which exhibit the property that their support
functional is bounded on an open subset of V are called semi-equicontinuous.
Considering the coadjoint action

Ad˚ : G ñ g1, Ad˚g pλq :“ λ ˝Adg´1 ,
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we find that Φπ is equivariant with respect to the actions π and Ad˚ of G on
H and g1, so the momentum set is invariant under Ad˚.
This means that, in the case of a semibounded representation π, information
about the spectral bounds of the operators idπpxq, x P g is encoded in the in-
variant convex set Iπ Ă g1 and the invariant open convex cone Bπ Ă g. This can
be employed to study various classes of unitary representations of Lie groups for
which the invariant convex geometry of the dual of their Lie algebras is known;
for example, one could easily determine whether all semibounded representa-
tions are bounded (which is the case for compact Lie groups, as follows from
the linear version of Kostant’s convexity theorem [Ko73]) or that non-trivial
semibounded representations do not exist.
Early general results about invariant convex cones in semisimple (finite-dimen-
sional) Lie algebras include works of Kostant and Segal [Se76], Vinberg [Vin80]
and Paneitz [Pa81], [Pa83]. They will be summarised here very briefly:
If a simple Lie algebra g contains non-trivial invariant cones, it contains a unique
(up to sign) minimal one Cmin, which is itself contained in a maximal one Cmax.
The minimal cone Cmin is generated by a half-line which is invariant under the
action of a maximal compactly embedded subgroup of inner automorphisms,
and

Cmax “ tx P g : supκpCmin, xq ď 0u,

where κ denotes the Cartan-Killing form.
Further, every invariant convex cone in a semisimple Lie algebra g is uniquely
determined by its intersection with the Cartan subalgebra t of a maximal com-
pact subalgebra k Ă g (the one corresponding to the subgroup of inner au-
tomorphisms just mentioned). These intersections are convex cones invariant
under the natural action of the Weyl group W corresponding to the root space
decomposition of k with respect to t. If g is compact, the relation between
AdG-invariant subsets of g and W-invariant convex sets in t can be described
explicitly using the projection pt : gÑ t with respect to the root space decom-
position:

ptpAdGpxqq “ convpW.xq for all x P t. (0.1)

This leads to a complete classification of invariant open convex cones in g
[HHL89].
In [KP84], Kac and Peterson achieved a very similar result for Kac–Moody
algebras, which are a close infinite-dimensional analogon of finite-dimensional
split Lie algebras, i.e. those Lie algebras which admit a root space decom-
position with respect to a maximal abelian subalgebra. As has already been
known from [Ka83, Theorem 8.5], these are (up to isomorphism) exactly the
complexifications of Lie algebras of algebraic loops into compact Lie algebras.

In this Thesis, we derive a convexity theorem along the lines of 0.1 for a large
class of loop algebras over Hilbert–Lie algebras, along with related conjugation
theorems.
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1 Double extensions and invariant Lorentz cones

Invariant Lorentz cones are maybe the most “obvious” class of cones that appear
in Lie algebras and their dual spaces; they emerge whenever a real Lie algebra is
equipped with an invariant Lorentzian form. These can always be constructed
as double extensions of Lie algebras with an invariant inner product. Any such
Lorentzian form leads to a convenient description of the adjoint and coadjoint
orbits, as well as a classification of invariant convex semi-equicontinuous sets.

In this chapter, double extensions will be defined and constructed in a setting
appropriate for later application to loop groups. First, some basic facts about
central extensions and semidirect products will be gathered separately, then
those will be put together to draw the first, rough picture of the invariant
convex geometry of Lorentzian double extensions.

1.1 Construction of Lie algebra extensions

In this subsections, the “building blocks” of double extensions of Lie algebras
are constructed, namely central extensions and extensions by derivation. In the
last step, these are put together in the construction of double extensions, and
the basic properties of these will be reduced to properties of the underlying
extensions. This includes their relation to appropriate extensions of Lie groups,
and the interplay of the extension structures with the smooth structure of any
related Lie group.

Definition 1.1. ([HN12, p.201]) A central extension of a Lie algebra g by a
Lie algebra a is a short exact sequence

a ãÑ rg � g

such that the image of a lies in the center of rg.

Note that this implies that a is abelian.

Definition 1.2. ([HN12, pp.195 ff]) For Lie algebras g and a, the latter assumed
to be abelian, a Lie algebra 2-cocycle is a bilinear alternating map ω : gˆgÑ a
with the property:

@x, y, z P g : ωpx, ry, zsq ` ωpz, rx, ysq ` ωpy, rz, xsq “ 0. (1.1)

If g and a are topological Lie algebras, then we denote the set of all continuous
2-cocycles by Z2pg, aq.

This definition quite directly leads to an explicit construction of central ex-
tensions:

Proposition 1.3. In the situation of Definition 1.2, the Lie algebra rg, defined
as the vector space a‘ g with the Lie bracket

rpa, xq, pb, yqs :“ pωpx, yq, rx, ysq for a, b P a, x, y P g, (1.2)
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gives rise to a central extension a ãÑ rg � g by pa, xq Ñ x for all x P g and
a P a.

If g and a are topological Lie algebras, and ω is continuous, then the prod-
uct topology makes rg into a topological Lie algebra. In this case, we use the
designation “topological central extension”.

We denote the Lie algebra obtained this way by a ‘ω g, and also call it a
“central extension of g by a”.

The proof is just a quick calculation to verify axioms, with the obvious homo-
morphisms. More interesting is the fact that there is also a reverse construction,
which enables a description of isomorphism classes of central extensions in terms
of cohomology.

Definition 1.4. A continuous central extension a‘ω g is called trivial, if there
is a continuous isomorphism Ψ : a‘ω gÑ a‘g such that the following diagram
commutes:

a‘ω g

a g

a‘ g

Ψ

Proposition 1.5. For every continuous central extension

a
s

ãÑ rg
t
� g,

which admits a continuous linear section σ1 of t, there exists a continuous
cocycle ω1 P Zpg, aq such that rg » a‘ω1 g.
Furthermore, two continuous central extensions a‘ω1g and a‘ω2g are equivalent
if and only if ω1 “ ω2 ` l ˝ r¨, ¨s for some linear map l : g Ñ a, which then is
automatically continuous.

Proof. We define

ε1 : gˆ gÑ rg, ε1px, yq :“ rσ1pxq, σ1pyqs ´ σ1prx, ysq. (1.3)

From t being a homomorphism and σ1 a section of t follows that

Impε1q Ă Kerptq “ Impsq,

which allows to define ω1 :“ s´1 ˝ ε1. The following calculation shows that ε1

and, therefore, ω1 fulfil the Jacobi identity:

ε1px, ry, zsq ` ε1pz, rx, ysq ` ε1py, rz, xsq

“rσ1pxq, σ1pry, zsqs ` rσ1pzq, σ1prx, ysqs ` rσ1pyq, σ1prz, xsqs

´ pσ1prx, ry, zssq ` σ1prz, rx, yssq ` σ1pry, rz, xssqq
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“rσ1pxq, σ1pry, zsqs ` rσ1pzq, σ1prx, ysqs ` rσ1pyq, σ1prz, xsqs

“rσ1pxq, rσ1pyq, σ1pzqs ´ ε1py, zqs ` rσ1pzq, rσ1pxq, σ1pyqs ´ ε1px, yqs

` rσ1pyq, rσ1pzq, σ1pxqs ´ ε1pz, xqs

“ ´ rσ1pxq, ε1py, zqs ´ rσ1pzq, ε1px, yqs ´ rσ1pyq, ε1pz, xqs “ 0

for x, y, z P g, where in the last line we used that Impε1q Ă Kerptq, which lies
in the center of rg.
An isomorphism ϕ1 : a ‘ω1 g Ñ rg is then given by ϕ1ppa, xqq :“ spaq ` σ1pxq.
Now, for ω2 P Z

2pg, aq and an isomorphism ϕ2 : a ‘ω2 g Ñ rg we get a section
σ2 of t by defining l0 : gÑ a‘ω2 g, l0pxq :“ p0, xq and σ2 :“ ϕ2 ˝ l0.
Thus we can rewrite ω2 in analogy to ω1 as ω2 “ s´1 ˝ ε2 with

ε2px, yq :“ rσ2pxq, σ2pyqs ´ σ2prx, ysq.

Because σ1 and σ2 are both sections of t, there exists a linear l0 : g Ñ Kerptq
such that σ1 “ σ2 ` l0, and we get

ε1px, yq “σ2prx, ysq ` l0prx, ysq ´ rσ2pxq ` l0pxq, σ2pyq ` l0pyqs

“σ2prx, ysq ` l0prx, ysq ´ rσ2pxq, σ2pyqs “ ε2px, yq ` l0prx, ysq.

Applying s´1 on both sides yields ω1 “ ω2 ` l ˝ r¨, ¨s with l :“ s´1 ˝ l0; the
later is once again defined because Impl0q Ă Kerptq “ Impsq. This shows that
ω1 “ ω2 ` l ˝ r¨, ¨s if a‘ω1 g » a‘ω2 g.

To prove the reverse implication, we start with ω1 P Zpg, aq, l P Linpg, aq
and ω2 :“ ω1 ` l ˝ r¨, ¨s. Then ϕpa, xq :“ pa ` lpxq, xq is an isomorphism
a‘ω1 gÑ a‘ω2 g.

This proposition implies in particular that a continuous central extension
a‘ω g is trivial if and only if ω “ l ˝ r¨, ¨s for some continuous linear l : gÑ a.

Definition 1.6. A 2-cocycle of Lie algebras ω : gˆ gÑ a is called trivial or a
coboundary , if ω “ l ˝ r¨, ¨s for some l P Linpg, aq.
Two 2-cocycles ω1, ω2 P Z

2pg, aq are called equivalent or cohomologous if there
exists a linear l : gÑ a such that ω1 “ ω2 ` l ˝ r¨, ¨s.
The set of all trivial 2-cocycles is denoted by B2pg, aq, and the set of cohomology
classes is denoted by

H2pg, aq :“ Z2pg, aq{B2pg, aq.

In the special case of finite-dimensional semisimple Lie algebras, this gives an
exhaustive answer to the question for a classification of the central extensions:

Proposition 1.7 (Whitehead Lemma). [HN12, Lemma 7.5.27] If g is a
finite dimensional, semisimple Lie algebra over F “ R or F “ C, then every
2-cocycle ω P Z2pg,Fq is trivial.
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For the notion of central extensions to work well on the Lie group level,
an additional smoothness assumption is convenient; it is closely related to the
continuity assumption regarding Lie brackets.

Definition 1.8. Let α : H ñ M be a smooth right action of the Lie group H
on the smooth manifold M ; then, a surjective morphism p : M Ñ N of smooth
manifolds is called an H-principal bundle, if for every x P N , there exists a
neighbourhood Ux Q x with a local trivialization ϕU : p´1pUq Ñ U ˆH which
is equivariant to α and the natural right action H ñ U ˆH, py, hq.g :“ py, hgq.

Definition 1.9. A central extension of a group G by an abelian group A is a
short exact sequence

A
σ

ãÑ rG
τ
� G (1.4)

such that the image of A lies in the center of rG.
If this short exact sequence is defined in the category of Lie groups, and (1.4)
defines an A-principal bundle rG, it is called a smooth central extension.

Definition 1.10. For a group G and an abelian group A, a group 2-cocycle is
a map ϕ : GˆGÑ A with the following properties for all g, h, a P G:

ϕpg,1q “ ϕp1, gq “ 1, (1.5)

ϕpg, hqϕpgh, aq “ ϕpg, haqϕph, aq. (1.6)

If G and A are Lie groups, and there exists an open neighbourhood U of 1 P G
such that ϕ|UˆU is smooth, it is called a locally smooth cocycle.
ϕ is said to be trivial or a coboundary, if there exists a map e : G Ñ A with
ϕpg, hq “ epghqepgq´1ephq´1 for all g, h P G.
Just as in the Lie algebra case, the set of all group 2-cocycles G ˆ G Ñ A is
called Z2pG,Aq, and the trivial cocycles are denoted by B2pG,Aq. These sets
inherit an abelian group structure from A, so we can define the cohomology
classes as H2pG,Aq :“ Z2pG,Aq{B2pG,Aq. If G and A are Lie groups, this
notation always refers to the respective sets of locally smooth cocycles.

The following lemma goes without proof, because that is just verifying axioms
through the obvious calculations:

Lemma 1.11. Let G and A be groups, the latter abelian, and ϕ P Z2pG,Aq.
The product

pa, gq ¨ pb, hq :“ pϕpg, hqab, ghq for all g, h P G, a, b P A, (1.7)

makes the set AˆG into a group, which we denote by Aˆϕ G.
Then, the short exact sequence

A
σϕ
ãÑ Aˆϕ G

τϕ
� G

with σϕpaq :“ pa,1q and τϕppa, gqq :“ g is a central extension.
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Remark 1.12. Let us consider any central extension as in (1.4), and a section
t : G Ñ rG of τ which maps 1 P G to 1 P rG. In close analogy to the proof
of Proposition 1.5, we define ε : G ˆ G Ñ rG, εpg, hq :“ tpgqtphqtpghq´1, and
accordingly find that Impεq Ă Impσq.
This implies in particular that all elements of the image of ε commute with
anything in rG, so that for all g, h, a P G we get:

εpg, hq´1εph, aq “tpghqtphq´1εph, aqtpgq´1

“tpghqtpaqtphaq´1tpgq´1

“tpghqtpaqtpghaq´1tpghaqtphaq´1tpgq´1

“εpgh, aqεpg, haq´1,

which is (again by commutativity) equivalent to

εpg, hqεpgh, aq “ εpg, haqεph, aq.

The cocycle condition (1.6) now follows immediately for

ϕ :“ σ´1 ˝ ε.

The condition (1.5) is verified by a quick calculation using the supposition that
tp1q “ 1.

With this procedure, we can obviously for all central extensions A
σ

ãÑ rG
τ
� G

and sections t of τ get a cocycle ϕ such that rG » A ˆϕ G. By the Axiom
of Choice, there exists a “wild” section for every surjective map, so we can
find such a cocycle for every central extension; however, “wild” means that it
will not be generally compatible with any additional structure imposed on the
groups in question and be rather useless without additional information.

The following proposition, which is essentially quoted from [Ne02, Proposition
4.2], sums up the relation between smooth central extensions of Lie groups and
locally smooth cocycles.

Proposition 1.13. Let G be a connected, and A an abelian Lie group; then

i) for any locally smooth cocycle ϕ1 P Z
2pG,Aq as in Definition 1.10, the

group A ˆϕ G from Lemma 1.11 admits a Lie group structure such that
the short exact sequence

A
σ

ãÑ Aˆϕ G
τ
� G

with σpaq :“ pa,1q and τppa, gqq :“ g is a smooth central extension of Lie
groups.

ii) If a short exact sequence

A
σ2
ãÑ rG

τ2
� G,

is a smooth central extension, then there exists a locally smooth 2-cocycle
ϕ2 : G ˆ G Ñ A and an isomorphism of Lie groups f : rG Ñ A ˆϕ G
satisfying fpσ2pAqq “ σpAq.
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Remark 1.14. There are examples of central extensions of Lie groups which
are not principal bundles, but those won’t be discussed here. Since “being
smooth” is necessary and sufficient for a central extension to be expressed in
terms of locally smooth cocycles, which is, in turn, necessary to relate those to
continuous Lie algebra cocycles, all central extensions of Lie groups are assumed
to be smooth from here on.

Definition 1.15. Let V and W be vector spaces, and let the Lie group H act
linearly on V . A map α : H ˆ V Ñ W is called a cocycle if it is linear in the
second argument and satisfies

αghpxq “ αhpxq ` αgph.xq (1.8)

for all g, h P H and x P V .

The next proposition helps us lifting smooth group actions on Lie algebras
to given central extensions; see also [MN03, Corollary V.10] for more general
results on this topic.

Proposition 1.16. Let g and a be Lie algebras, a abelian, ω P Z2pg, aq, and
R : H ñ g an automorphic action of a Lie group H on g. The action R lifts to
a smooth action rR of H on the central extension a‘ω g which fixes a point-wise
if and only if there exists a smooth cocycle α : H ˆ gÑ a with

ωpg.x, g.yq “ ωpx, yq ` αgprx, ysq (1.9)

for all x, y P g and g P H; then the lift is obtained by

g.pa, xq :“ rRgpa, xq :“ pa` αgpxq, g.xq. (1.10)

Proof. We denote the natural injection a ãÑ a‘ω g by s. If rR is a lift of R to
a‘ω g which is trivial on a, we set

α : H ˆ gÑ a, αgpxq :“ s´1
`

rRgp0, xq ´ p0, Rgpxqq
˘

.

Smoothness of α follows directly from the smoothness of R and rR, and linearity
implies

rRgpa, xq “ rRgpa, 0q ` rRgp0, xq “ pa` αgpxq, g.xq.

It is immediate that α is linear in the second argument, and the cocycle property
follows by evaluating rRghpa, xq two times, which yields:

pa` αhpxq ` αgph.xq, pghq.xq “ pa` αghpxq, pghq.xq.

Formula (1.9) encodes the automorphism property of rRg for every g P H, i.e.:

rRgpωpx, yq, rx, ysq “ rpαgpxq, g.xq, pαgpyq, g.yqs
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for x, y P g.
On the other hand, starting with a map α meeting the requirements (1.9) and
(1.8), the same calculations show that

rRgpa, xq :“ pa` αgpxq, g.xq

defines an automorphic action on a‘ω g fixing a and interwined with R via the
natural projection a‘ω gÑ g.

Corollary 1.17. If, in addition to the prerequisites of Proposition 1.16, the
2-cocycle ω is invariant under the action of H, we may take αs “ 0 for all
s P H, and rRspa, xq “ pa, s.xq defines a lift of the action H ñ g to a‘ω g.

Lemma 1.18. Let f P Z2pG,Aq for a connected Lie group G and an abelian
Lie group A be locally smooth, and g :“ LpGq, a :“ LpAq; then:

(i) The formula for the conjugation action c : Aˆf G ñ Aˆf G is:

cpa,gqppb, hqq “ pbfpg, hqfpghg
´1, gq´1, ghg´1q. (1.11)

(ii) There is a cocycle θ : Gˆ gÑ a such that:

Adpa,gqpr, xq “ pr ` θgpxq,Adg xq. (1.12)

(iii) The bilinear map ω : LpGq ‘ LpGq Ñ LpAq defined by

ωpx, yq :“ d2fp1,1qpx, yq ´ d2fp1,1qpy, xq (1.13)

is a continuous Lie algebra cocycle and LpAˆf Gq » a‘ω g.

Proof. The first two statements are taken from [Ne02, p.1390], and the proof
can be found there.
For the last statement, we apply [Ne04, Theorem B.6] with n “ 2.

Alas, the reverse statement does not generally hold, i.e. for Lie groups G and
A and a Lie algebra cocycle ω P Z2pLpGq,LpAqq we cannot generally expect
to find a Lie group cocycle f P Z2pG,Aq such that ωpx, yq “ Dfp1,1qpy, xq ´
Dfp1,1qpx, yq. This implies that there are central extensions of Lie algebras
LpAq ‘ω LpGq which do not correspond to any central extension of Lie groups
Aˆf G. The details can be found in [Ne02], but see also [EK64].
However, in the case such a central extension exists, A lies in its centre, which
in turn is the kernel of Ad : Aˆf G Ñ Autpa‘ gq. In this sense, the A-factor
does not actually act on LpAq ‘ω LpGq at all, and the adjoint action is rather
dependent on the crossed homomorphism θ alone, as in (1.12).

Proposition 1.19. For a connected Lie group G, g :“ LpGq and an abelian Lie
algebra a, let θ : GˆgÑ a be a smooth cocycle, and let dθpx, yq :“ dθp1, yqpx, 0q
denote the derivative in the first argument in the direction x P g for all y P g.
Then, ω : gˆ gÑ a, ωpx, yq :“ dθpxqpyq is a Lie algebra cocycle.
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Proof. Because θ is required to be a smooth cocycle, the map

R : Gˆ pgˆ aq Ñ gˆ a, Rgpy, aq :“ pAdgpyq, a` θgpyqq

is a smooth linear action of G. Thus it induces a linear action LpRq of g on
gˆ a, which can be expressed as

LpAqpxqpy, aq “ padpxqpyq,dθpx, yqq “ prx, ys, ωpx, yqq.

These considerations, together with Proposition 1.16, lead to the conclu-
sion, that an adjoint action of a Lie group G can be defined on a central
extension of Lie algebras a ‘ω LpGq if there exists a crossed homomorphism
θ P Z1pG,Linpg, aqq such that dθ is antisymmetric, even if a corresponding
central extension of Lie groups does not exist. To make this precise:

Definition 1.20. Let G be a Lie group, and a ‘ω LpGq a central extension
of Lie algebras, such that there exists a smooth cocycle θ : G ˆ g Ñ a with
ωpx, yq “ dθpxqpyq for all x, y P g. The adjoint action ĂAd : G ñ a ‘ω LpGq is
defined by

ĂAdgpr, xq :“ pr ` θgpxq,Adg xq

for all g P G, r P a, x P LpGq.

In the case where a‘ω g “ LpAˆf Gq for some f P Z2pG,Aq, the subgroup
A lies in the kernel of the action

Ad : Aˆf G ñ a‘ω g,

so Lemma 1.18 means that the above definition is equivalent to factoring out
A Ď kerpAdq.
The following lemma means that we can quite generally use Definition 1.20 to
construct an adjoint group action for a given central extension of Lie algebras;
it is stated without proof, which can be found in [Ne02, Corollary 7.7].

Lemma 1.21. Let G be a 1-connected Lie group with g :“ LpGq, and a be a
sequentially complete locally convex vector space. Then, for every ω P Z2pg, aq,
there exists a smooth cocycle θ : Gˆ gÑ a such that ωpx, yq “ dθpyqpxq for all
x, y P g.

When we proceed to studying the coadjoint action

ĂAd
˚

: G ñ pa‘ω gq1, ĂAd
˚

g pλq :“ λ ˝ ĂAdg´1 ,

we quickly find the following formula for every λ “ λa ` λg P pa ‘ω gq1 and
pa, xq P a‘ω g:

ĂAd
˚

g pλqpa, xq “ λppa` θg´1pxq,Adg´1 xqq “ λapa` θg´1pxqq `Ad˚g λgpxq,

which leads to the conclusion:
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Proposition 1.22. For every λa P a1, the coadjoint action ĂAd
˚

induces an
affine action of G on the invariant affine subspace tλau ‘ g1 Ă pa‘ω gq1.

Now we turn to the other side of the double extensions, the semidirect prod-
ucts, which respect a specific Lie algebra or Lie group action.

We say that a Lie algebra extension f
s

ãÑ g
t
� h splits if there exists a subalgebra

h0 ă g and an isomorphism u : hÑ h0 which is a section of t. This situation is
described by the following:

Definition 1.23. Let f, h be Lie algebras and ρ : fˆhÑ h a continuous action
by derivations. Then, the vector space h‘ f, equipped with the Lie bracket

rpx, rq, py, sqs :“ prx, ys ` ρprqy ´ ρpsqx, rr, dsq

for all x, y P h, r, s P f is called a semidirect product of Lie algebras. It is
denoted by h ¸ρ f; the “ρ” may be omitted if it is clear from the context.
Obviously, h is an ideal in h¸ρ f.

Proposition 1.24. [GN20, Proposition 4.2.8] When considering semidirect
products of Lie groups, H ¸R F , we always assume the map R : F ˆH Ñ H to
be smooth, so that H ¸R F is itself a Lie group.
This definition corresponds to semidirect products of Lie algebras via the Lie
functor, i.e.

LpH ¸R F q » LpHq ¸LpRq LpF q, (1.14)

where

LpRqpx, yq :“ dRp1H ,1F qpx, yq for x P LpHq and y P LpF q.

Proposition 1.25. Let G¸RA be a semidirect product of Lie groups, and A be
abelian. With g :“ LpGq and a :“ LpAq, the adjoint action Ad : G¸RA ñ g¸ρa
reads:

Adpg,aqpx, rq “ pAdgpρapxqq ` ζgprq, rq, (1.15)

where ρapxq :“ LpRaqpxq denotes the induced Lie algebra morphism for all
a P A, and ζ : GÑ Linpa, gq is a cocycle with respect to the action

Gˆ Linpa, gq Ñ Linpa, gq, lÑ Adg ˝l.

Proof. The formula for the conjugation action of G¸R A is:

cpg,aqph, bq “ pg, aqph, bqpRa´1pg´1q, a´1q “ pgRaphqRbpg
´1q, bq.

Differentiating this at p1, 1q P G¸R A in the direction px, 0q P g‘ a yields

Adpg,aqpx, 0q “ pAdgpρapxqq, 0q.

To calculate the differential in the direction p0, rq P g‘ a we note

cpg,aqp1, bq “ cpg,1qp1, bq “ pgRbpg
´1q, bq,

9



and thus

Adpg,aqp0, rq “ pζgprq, rq.

The cocycle property of ζ follows by evaluating Adpg,1q ˝Adph,1qp0, rq two times
for a, b P A, g, h P G:

Adpgh,1qp0, rq “pζghprq, rq,

Adpg,1qpζhprq, rq “pAdgpζhprqq ` ζgprq, rq.

Remark 1.26. A special form of a split extension is the “extension by a deriva-
tion”, which, for a K-Lie algebra g and d P Derpgq is denoted by g ¸d K and
defined as the semidirect product of g by Kd Ă Derpgq.
Starting with a smooth automorphic action R of the circle group T on a Lie
group G, by taking the Lie functor LpRsq at each point s P T, we get a smooth
action of T on LpGq; we denote this action by ρ.
By taking derivatives of the orbit maps ρx : T Ñ g, t Ñ ρtpxq at 1 P T,
we get a derivation dR on g; we call this derivation the infinitesimal genera-
torinfinitesimal generator of R.

Now that all building blocks are described in sufficient detail, we can define
and describe double extensions of Lie algebras. We will find that the properties
of both, central extensions and semidirect products, can be conferred to the
complete scenario rather directly. This includes a definition of an adjoint action
of an appropriate Lie group.

Definition 1.27. [Ne14, Definition 2.3] Let g0 be a K-Lie algebra, ω P Z2pg0,Kq,
and d P Derpg0q such that there exist a linear map δ : g0 Ñ R with

δprx, ysq “ ωpdpxq, yq ` ωpx,dpyqq for all x, y P g0; (1.16)

then,
rd : K‘ω g0 Ñ K‘ω g0, rdpr, xq :“ pδpxq,dpxqq

is a derivation, and

rpr, x, tq, ps, y, uqs :“ pωpx, yq ` tδpyq ´ uδpxq, rx, ys ` tdpyq ´ udpxq, 0q, (1.17)

defines a Lie bracket on the vector space K‘ g0‘K. The resulting Lie algebra
is called a double extension and usually denoted by

g :“ pK‘ω g0q ¸
rd
K.

In the case δ “ 0, the condition on ω simplifies to ωpdx, yq ` ωpx,dyq “ 0 for
all x, y P g. A 2-cocycle ω with this property is said to be d-invariant . In this
case we write

g :“ pK‘ω g0q ¸Kd.
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Remark 1.28. In the definition above, instead of using δ to extend d P Derpg0q

to rd P DerpK‘ω g0q, one can also extend ω P Z2pg0,Kq to rω P Z2pg0 ¸d K,Kq
by setting

rωppx, tq, py, uqq :“ ωpx, yq ` tδpyq ´ uδpxq

for t, u P K and x, y P g0. This defines an isomorphism

pK‘ω g0q ¸
rd
K » K‘

rω pg0 ¸d Kq.

This allows to apply results about both central and split extensions to double
extensions.

Remark 1.29. When referring to double extensions, we will often use the
notational convention

c :“ p1, 0, 0q P g “ pK‘ω g0q ¸
rd
K.

We further write d˚ for the linear functional on g that sends d “ p0, 0, 1q to 1
and all of pKc ‘ω gq to zero; likewise, c˚pcq :“ 1 and c˚pg0q “ c˚pKdq :“ t0u.
In this notation, the topological dual pg1 decomposes as Kc˚ ‘ g10 ‘Kd˚.

Remark 1.30. A double extension of Lie groups could be defined in the fol-
lowing way:
Let R : T ñ G0 be a smooth automorphic action, and f : G0 Ñ T be a locally
smooth cocycle. If there exists a lift rR : T ñ Tˆf G0 of R, then the semidirect
product

pTˆf G0q ¸
rR
T

is a double extension of G0; in this case, successively applying Proposition 1.24
and Lemma 1.18 shows that this definition is compatible with the definition of
double extensions of Lie algebras in 1.27.
It is a nontrivial task to determine whether any such lift rR exists, but to study
the adjoint action of this group, it is sufficient to consider only the action of
G0 ¸R T, by applying Remark 1.28. Then, for

g :“ pR‘Lpfq LpG0qq ¸Lp rRq
R

the adjoint action

Ad : pG0 ¸R Tq ñ g

is already covered by the formulas (1.10), (1.12) and (1.15). For some applica-
tions, this allows us to avoid the question of whether a lift rR exists.

1.2 Lorentzian double extensions

In this subsection, our setting will get narrowed down to a class of Lie algebras
which already exhibit an important part of the geometric properties we later
want to study in the double extensions of loop algebras.
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Definition 1.31. A continuous bilinear form κ : g ˆ g Ñ K on a topological
Lie algebra g is called invariant if κprx, ys, zq “ ´κpy, rx, zsq for all x, y, z P g.
If κ is, in addition, non-degenerate and symmetric, then g is called a symmetric
Lie algebra.
Because of the non-degeneracy assumption, the continuous linear map

5 : gÑ g1, x5pyq :“ κpy, xq

is injective, and therefore has an inverse g5 Ñ g, which we write as λ Ñ λ7.
This defines a pull-back:

κ˚ : g5 ˆ g5 Ñ K, κ˚pλ, γq :“ κpλ7, γ7q.

Example 1.32. Let g0 be a Lie algebra, and d P Derpg0q be skew-adjoint with
respect to an invariant symmetric bilinear form β. Then,

ω : g0 ˆ g0 Ñ R, ωpx, yq :“ βpx,dyq (1.18)

is a 2-cocycle. This follows from

ωpx, yq “ βpx,dyq “ βpdy, xq “ ´βpy,dxq “ ´ωpy, xq

and

ωprx, ys, zq “ ´ βpdrx, ys, zq “ ´βprdx, ys, zq ´ βprx,dys, zq

“ ´ βpdx, ry, zsq ` βpdy, rx, zsq “ ´ωpry, zs, xq ´ ωprz, xs, yq

for all x, y, z P g0. Also, d-invariance of ω follows directly from d being skew-
adjoint, and thus we get a double extension for every pair pβ,dq of an invariant
symmetric bilinear form and a skew-adjoint derivation on g0.

Definition 1.33. A Lorentzian space is a pair pV, κq of a real topological vector
space V and a Lorentzian form κ, which is defined as a continuous symmetric
bilinear form on V for which there exists a vector v P V such that κpv, vq ă 0
and κ|vKˆvK is positive definite.

The set C of all vectors v P V such that κpv, vq ď 0 for some Lorentzian
form κ on V is a double cone. For an arbitrary v0 from the interior of C, i.e.
κpv0, v0q ă 0, the cone tv P C : κpv, v0q ď 0u is called a Lorentz cone.

One of our more important tools are invariant Lorentz forms on Lie algebras.
They have first been intensively studied in [MR85]; however, our results here
are derived independently from that article.

Proposition 1.34. Let g0 be a real Lie algebra endowed with an invariant inner
product p¨, ¨q, d P Derpg0q be skew-symmetric and ω P Z2pg0,Rq be defined as
in (1.18) with respect to the invariant inner product on g0. Then, the bilinear
map κ : gˆ gÑ R,

κppc1, x1, t1q, pc2, x2, t2qq :“ px1, x2q ´ c1t2 ´ c2t1 (1.19)

on the associated double extension g “ pR‘ωg0q¸dR is an invariant Lorentzian
form.

12



Proof. We have to show that

κpadppxqpy1, py2q “ ´κppy1, adppxqpy2q (1.20)

for px “ pb, x, sq, py1 “ pc1, y1, t1q, py2 “ pc2, y2, t2q P g, and we do so by splitting
the formula by linearity:
Central elements of g, specifically px “ c, just send both sides to 0, and for
elements of the form px “ sd we get:

κprpx, py1s, py2q “κpp0, sdpy1q, 0q, pc2, y2, t2qq

“ ´ psdpy1q, y2q “ py1, sdpy2qq “ ´κppy1, rpx, py2sq

by applying (1.17). The calculation for the case px “ p0, x, 0q is similar:

κprpx, py1s, py2q “ κppωpx, y1q, rx, y1s ´ t1dpxq, 0q, pc2, y2, t2qq

“ prx, y1s ´ t1dpxq, y2q ´ t2ωpx, y1q

“ prx, y1s, y2q ´ t2px,dpyq1q ´ t1pdpxq, y2q

“ ´py1, rx, y2sq ` t1px,dpyq2q ` t2pdpxq, y1q “ ´κppy1, rpx, py2sq.

To see that κ is Lorentzian, we insert v :“ p1, 0, 1q P pg and get κpv, vq “ ´2;
further, vK “ g0 ‘ wR, where w “ p1, 0,´1q P pg, and κ is obviously positive
definite on this subspace.

Corollary 1.35. With the prerequesites from Proposition 1.34 and a P R, the
bilinear map κa : gˆ gÑ R,

κappsx, x0, txq, psy, y0, tyqq :“ κppsx, x0, txq, psy, y0, tyqq ´ atxty

is also an invariant Lorentzian form.

Proof. From formula (1.17) we conclude that, if x P rg, gs, then tx “ 0, and
if y P rg, gs, then ty “ 0, so in both cases atxty “ 0, so the invariance follows
directly from the invariance of κ.
To show that κa is Lorentzian, we set v :“ p0, 0, 1q and w :“ pa, 0,´1q. Then
κapv, vq “ ´a, κapw,wq “ a, and g0, v and w are orthogonal to each other. If
a ą 0, then κa is negative definite on Rv and positive on g‘Rw, and for a ă 0,
the roles of v and w are switched.

This justifies the following definition:

Definition 1.36. We call a Lie algebra g :“ pR‘ω g0q ¸Rd a Lorentzian dou-
ble extension if g0 is a real topological Lie algebra equipped with a continuous
invariant inner product, d P derpg0q is skew-symmetric and ωpx, yq :“ px,dyq
for all x, y P g0.
Every Lorentzian double extension comes equipped with the invariant Lorentzian
form κ from Proposition 1.34.
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Proposition 1.37. Let x “ ps, x0, tq P g and a, b P R; let further pκaqaPR be the
family of invariant Lorentzian forms on a Lorentzian double extension g of g0.
Then the corresponding open and closed Lorentzian double cones

Ca :“ tx P g : κapx, xq ă 0u and Ca “ tx P g : κapx, xq ď 0u

have the following properties:

(i) If t ‰ 0, then the map RÑ R : aÑ κapx, xq is surjective.

(ii) If t ‰ 0, then κapx, xq “ 0 for a “ ´2s
t `

px0,x0q

t2
.

(iii)
Ş

aPRCa “ Rc

(iv) If x “ ps, x0, tq P g with t ‰ 0, then x P
Ť

aPRCa.

Proof. (i) is obvious.

(ii) is proven by a simple computation.

(iii) κapc, cq “ 0 for all a P R, and thus c P
Ş

aPRCa. If t “ 0, then either
x0 “ 0 and therefore x P Rc, or, by (i), there exists an a P R with
κapx, xq ą 0, which means that x R Ca and thus x R

Ş

aPRCa.

(iv) is another application of (i).

Remark 1.38. If x “ psx, x0, txq P g with tx ‰ 0 and κapx, xq “ 0, then the
adjoint orbit Ox is contained in the parabolic conic section

BCa X tps, y0, tq P g : t “ txu,

and thus

sy “
}y0}

2 ´ at2x
2tx

for every y “ psy, y0, txq P Ox.

Likewise, with a cocycle ζ : G0 Ñ LinpR, g0q » g0 as in Proposition 1.25, we
find that κappsy, y0, txq, psy, y0, txqq “ 0 for

y0 “ Adpgqpx0q ` txζpgq and a “
}x0}

2 ´ 2sxtx
t2x

.

If G0 is connected, then sy can be directly computed by inserting a and y0,
taking into account that }x0}

2 “ }Adpgqpx0q}
2. This allows us to spell out the

formula for the adjoint action of G0 on g:

Adpgqpsx, x0, txq

“

´

sx ´
`

Adpgqpx0q, ζpgq
˘

´
tx
2
}ζpgq}2,Adpgqpx0q ` txζpgq, tx

¯

.

We are going to extend this Lorentzian geometry to the topological dual
g1; this will also lead to a sufficient criterion for an element λ P g1 to have a
semi-equicontinuous orbit.
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Remark 1.39. We consider the injection 5 : g Ñ g1 of a Lorentzian double
extension into its dual space via its invariant Lorentzian form. Explicitly, for
x “ psx, x0, txq and y :“ psy, y0, tyq P g, we have

y5pxq “ κppsx, x0, txq, psy, y0, tyqq “ px0, y0q´ sxty´ sytx “ y50px0q´ sxty´ sytx,

so comparing coefficients shows

y5 “ psy, y0, tyq
5 “ tyc

˚ ` y50 ` syd
˚

in the notation of Remark 1.29. In particular, 5 sends c to d˚ and d to c˚.

Definition 1.40. If g0 is a topological Lie algebra with an invariant inner
product, we write g0 for the completion of g0 with respect to the topology
induced by its invariant inner product norm.
If g :“ pRc‘ω g0q ¸ Rd is a Lorentzian double extension, then we set

g :“ Rc‘ g0 ‘ Rd.

This space inherits the Lorentzian forms κa for a P R. If we are talking about
“the” Lorentzian space g, then we always refer to the space equipped with
κ “ κ0.

Note that g0 is a Hilbert space, but, in general, neither g0 nor g is a Lie
algebra. However:

Proposition 1.41. The adjoint action G0 ñ g on a Lorentzian Lie algebra
constructed from g0 “ LpG0q extends to an action of G0 on g. This action
is smooth in the sense that the set g8 of smooth vectors, i.e. elements with
smooth orbit maps, is dense in g.

Proof. To see that there is a continuous extension of the adjoint action, we
look at Remark 1.38 and find that there is only to show that Ad : G0 ñ g0

extends to g0. For every g P G0, the operator Adpgq is unitary and thus auto-
matically norm-continuous. So it maps Cauchy sequences to Cauchy sequences,
and therefore g0 to itself.
The smoothness statement is then obvious, because g Ă g8 is dense in g by
definition.

Remark 1.42. g inherits the invariant Lorentzian form κ, and thus the injec-
tion 5 : g Ñ g1. By applying the invariance of κ to the coadjoint action on
elements y5 P g5, we find

Adpgq˚py5qpxq “ y5pAdpg´1qxq “ κpx,Adpgqyq “ pAdpgqyq5pxq,

for all x P g, so from the preceding proposition follows that the coadjoint action
Ad˚ : G0 ñ g1 normalises the subspace g ãÑ g1. Now Remark 1.39 implies that
the coadjoint and the extended adjoint action on g are basically the same.
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It is more natural to refer to it as the coadjoint action, as it arises directly
from duality. In particular, for every a P R, the coadjoint action respects the
Lorentzian form κa in the sense that κapAdpgq˚λ, γq “ κapλ,Adpg´1q˚γq for all
g P G0 and λ, γ P g.

Proposition 1.43. Let λ “ sd˚ ` λ0 ` tc˚ P g with λ0pdq “ λ0pcq “ 0 and
a, b P R; let further Ca Ă g be an open Lorentzian cone with respect to the
Lorentzian form κa on g and Ca be its closure. Then:

(i) If t ‰ 0, then the map RÑ R : aÑ κapλ, λq is surjective.

(ii) If t ‰ 0, then κapλ, λq “ 0 for a “ ´2s
t `

pλ0,λ0q

t2
.

(iii)
Ş

aPRCa “ Rd˚

(iv) If t ‰ 0, then λ P
Ť

aPRCa

Proof. Every single item here is a reformulation of the respective item from
Proposition 1.37; with that in mind, (i) through (iii) follow because they are
stable under applying closures in the topology of g, and (iv) follows from (i).

Proposition 1.44. For every λ P g Ă g1 with λpcq ‰ 0, the coadjoint orbit
AdpGq˚λ “ Oλ is semi-equicontinuous.

Proof. We pick a P R such that κapλ, λq ă 0 and consider the cones

Da :“ tγ P g : κapγ, γq ă 0, κapγ, λq ă 0u and

Ea :“ D7a X g “ tx P g : κapx, xq ă 0, λpxq ă 0u,

see Remarks 1.39 and 1.42. For any y P Ea, we have

Oλpyq “ κpAdGpyq, λ
7q “ λpAdpG0qpyqq,

and, because Ea is invariant, λpAdpgqpyqq ă 0 for all g P G0, which is just what
we had to show because Ea is open in g.
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2 Conjugacy theorems in Hilbert loop algebras

Kostant’s convexity theorem and theorems generalising or resembling it (see
[Ko73], [KP84], [Neu00]) are built around the concept of projecting a Lie al-
gebra g onto a maximal abelian subalgebra h and describing the action of the
normaliser of h in the inner automorphisms of g, as in Equation (0.1).
In the original context of compact Lie groups K, the Kostant convexity theo-
rem could easily be applied to arbitrary elements of the Lie algebra k :“ LpKq.
Because every x P k is conjugate to some element of any Cartan subalgebra tk,
the projection of Ox onto tk can always be determined by conjugating x into tk
and then applying Kostant’s convexity theorem.
We are interested in extending this concept to (twisted) Hilbert loop algebras;
this means that we have to determine the elements of g that are conjugate
to some element x P tg under the adjoint action. We refer to propositions
describing such elements and their orbits as ‘conjugacy theorems”.

2.1 The construction of loop groups and loop algebras

The following subsection contains a collection of definitions and basic properties,
establishing the setting in which the findings from Section 1 will be applied and
refined.
Compact, simply connected Lie groups correspond bijectively with semisimple
complex Lie algebras, which makes both very accessible and leads to a rich
theory; similar results about Hilbert–Lie groups will be quoted shortly.
The set C8pM,Kq of smooth maps from a compact manifold M into a Lie
group K is itself a Lie group. In the case of the circle M “ S1 and a Hilbert–
Lie group K, this group inherits quite some properties from K.
For compact K, these “loop groups” are closely related to the class of affine
Kac–Moody algebras. Extensive disquisitions about both the loop groups and
Kac–Moody algebras can be found in [PS86] and [Ka83].
[AP83] and [KP84] both describe the projections of adjoint orbits of (doubly
extended) loop groups to Cartan subalgebras in terms of convex geometry,
though they do so from different points of view. The following definitions treat
the compact Lie algebras as a subclass of the Hilbert–Lie algebras as often as
possible and only deviate from this approach in non conferrable details.

Definition 2.1. A Hilbert–Lie algebra is a pair of a (real or complex) topologi-
cal Lie algebra k and an invariant inner product which induces the topology of k.

Accordingly, a Hilbert–Lie group is defined as a Lie group K whose Lie
algebra k is a Hilbert–Lie algebra. If K is connected, then the invariance of the
inner product immediately implies that K acts on k by isometries.

Definition 2.2. As we are going to talk about Hilbert spaces a lot, it is cus-
tomary to fix the following notation: for any family pHjqjPJ of Hilbert spaces

17



over some field in tR,C,Hu, we denote the direct Hilbert space sum by

x

à

jPJ

Hj :“
!

x “
ÿ

jPJ

xj : xj P Hj ,
ÿ

jPJ

}xj}
2
Hj
ă 8

)

.

Definition 2.3. We call a Hilbert–Lie algebra k semisimple if it is a direct
Hilbert space sum of simple ideals.

We call a Lie algebra reductive if it is the direct sum of a semisimple and an
abelian Lie algebra.

Any compact Lie algebra is reductive, and by [Sc60], the same is true for
general Hilbert–Lie algebras. As an abelian summand in a direct sum only
contributes a central factor to any associated Lie group, the (co)adjoint action
of this factor is trivial, as is the action of the whole group on any abelian ideal
in the Lie algebra. Therefore, as we aim at a description of orbits and invariant
sets of the (co)adjoint action, we can safely ignore the abelian summands and
factors and restrict our attention to semisimple Lie algebras.

Definition 2.4. For a locally convex Lie group H, an automorphism
Φ : H Ñ H, and some constant r ą 0, the set

C8Φ,rpR, Hq :“ tf P C8pR, Hq : p@t P Rq fpt` rq “ Φpfptqqu

becomes a group with the point-wise multiplication

pghqptq :“ gptqhptq for g, h P C8Φ,rpR, Hq, t P R.

Analogously, for a (real or complex) locally convex Lie algebra h and
ϕ P Autphq, we define a Lie algebra as

C8ϕ,rpR, hq :“ tx P C8pR, hq : p@t P Rq xpt` rq “ ϕpxptqqu,

endowed with the point-wise defined Lie bracket

rx, ysptq :“ rxptq, yptqs for x, y P C8ϕ,rpR, hq.

In the following, we consider the case of an automorphism Φ of order N P N0

and, for r :“ 2π{N endow the group C8Φ,rpR, Hq with a group topology which
makes it into a Lie group with Lie algebra C8ϕ,rpR, hq, where ϕ :“ LpΦq and
h :“ LpHq.

Definition 2.5. [GN20, Definition 3.5.1] For two topological spaces X and Y ,
the compact open topology on CpX,Y q is the topology generated by all sets of
the form

P pL,Oq :“ tf P CpX,Y q : fpLq Ă Ou
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for L Ă X compact and O Ď Y open.
When M,N are Ck-manifolds, then on the set of k-times continuously differ-
entiable maps CkpM,Nq the compact open Ck-topology is defined as the initial
topology with respect to the injection

CkpM,Nq ãÑ

k
ź

r“0

CpT rM,T rNq, f Ñ pT rfq0ďrďk.

Here, T r denotes the tangent functor applied iteratively r times.
If M and N are actually smooth manifolds, one can consider the common refine-
ment of the compact open Ck-topologies for all k P N0 on C8, i.e. the topology
generated by the union of all compact open Ck-topologies. This topology is
called the compact open C8-topology.

Theorem 2.6. [GN20, Theorem 4.4.2] Let H be a Lie group with Lie algebra h,
M a compact smooth manifold, and k P N0Yt8u. Then the compact open Ck-
topology makes CkpM,Hq into a Lie group with Lie algebra CkpM, hq, endowed
with the pointwise bracket.

Definition 2.7. [GN20, Definition 4.6.1] For a Lie group H, a smooth map
expH : LpHq Ñ H is called exponential map if R Ñ H, t Ñ expHptxq is a
smooth one-parameter-group and

d

dt

ˇ

ˇ

ˇ

t“0
expKptxq “ x for all x P LpHq.

Note that this implies T0pexpHq “ idLpHq.

H is called locally exponential if an exponential map expH exists and restricts
to a diffeomorphism on some neighbourhood of 0 P LpHq.

Proposition 2.8. [GN20, Proposition 4.6.12] If ϕ : G Ñ H is a morphism of
Lie groups with an exponential map, then the following diagram commutes:

G H

LpGq LpHq

ϕ

expG

Lpϕq

expH

In terms of category theory, this property is called naturality.

Proposition 2.9. If Φ is a Lie group automorphism of a locally exponential
Lie group H, then the group of fixed points, HΦ, is a locally exponential Lie
subgroup of H with Lie algebra LpHqLpΦq, the subalgebra of fixed points of the
induced automorphism of a topological Lie algebra.

Proof. We consider the subalgebra

LepHΦq :“ tx P LpHq : expHpRxq Ă HΦu.
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Using the naturality of the exponential map, we find that LepHΦq “ LpHqLpΦq;
this implies that, if U Q 0 is an open neighbourhood in LpHq, we have

expHpL
epHΦq X Uq “ HΦ X expHpUq.

Now [GN20, Proposition 8.3.11] applies, which tells us thatHΦ is a Lie subgroup
of H, and [GN20, Lemma 8.3.8] allows us to canonically identify LepHΦq, and
therefore LpHqLpΦq, with LpHΦq.

Theorem 2.10. [GN20, Theorem 4.4.2] Let H be a Lie group and M a compact
smooth manifold. Then, the compact open C8-topology makes C8pM,Hq into
a Lie group with Lie algebra C8pM,LpHqq.

Remark 2.11. By [GN20, Example 4.6.7], if H admits an exponential map
expH , then there exists an exponential map expC8pM,Hq; it is given by

expC8pM,Hq : C8pM,LpHqq Ñ C8pM,Hq, expC8pM,Hqpxq :“ expH ˝x.

By [GN20, Example 6.1.4 (b)], if H is locally exponential, then C8pM,Hq is
locally exponential.

Corollary 2.12. The compact open C8-topology makes C8id,2πpR, Hq into a Lie
group with Lie algebra C8id,2πpR,LpHqq.
If H is locally exponential, then so is C8id,2πpR, Hq.

Proof. C8id,2πpR, Hq can be identified with C8pS1, Hq, so that Theorem 2.10
and Remark 2.11 apply.

Lemma 2.13. If X and Y are topological spaces, and ρ : X Ñ X a homeo-
morphism, then the translation operation

τρ : CpX,Y q Ñ CpX,Y q, τρpfq :“ f ˝ ρ

is continuous in the compact open topology.

Proof. By Definition 2.5, it suffices to show that the preimage under τρ of
every subset of the form P pL,Oq Ă CpX,Y q with compact L Ă X and open
O Ă Y is open. Clearly, τ´1

ρ pP pL,Oqq “ P pρ´1pLq, Oq, which is open in the
compact open topology.

Lemma 2.14. For smooth manifolds M and N , and a diffeomorphism ρ of M ,
the corresponding translation operation

τρ : C8pM,Nq Ñ C8pM,Nq, τρpfq :“ f ˝ ρ

is continuous in the compact open C8-topology.
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Proof. For every k P N0, by functoriality of T , we have

T kpτρpfqq “ T kf ˝ T kρ for all f P C8pM,Nq.

By Definition 2.5, the compact open C8-topology is generated by sets of the
form pT kq´1pPkq, where Pk :“ P pLk, Okq with compact Lk Ă T kM and open
Ok Ă N . We have to show that the preimage τ´1

ρ ppT kq´1pPkqq is open for every
such set. So:

τ´1
ρ ppT kq´1pPkqq “ tf P C

8pM,Nq : T kpτρpfqq P P pLk, Okqu

“ tf P C8pM,Nq : T kf ˝ T kρ P P pLk, Okqu

“ tf P C8pM,Nq : T kf P P pT kpρ´1qpLkq, Okqu

“ pT kq´1pP pT kpρ´1qpLkq, Okqq;

because ρ, and thus T kρ, is a diffeomorphism, T kpρ´1qpLkq Ă M is compact,
which means that P pT kpρ´1qpLkq, Okq is open in the compact open topology
on C8pT kM,T kNq, and finally the rightmost term references an open set in
the compact open C8-topology on C8pM,Nq by Definition 2.5.

Lemma 2.15. For topological spaces X, Y , and a continuous map g : Y Ñ Y ,
the map

Fg : CpX,Y q Ñ CpX,Y q, Fgpfq :“ g ˝ f

is continuous w.r.t. the compact open topology.

Proof. The preimage F´1
g pP pL,Oqq of the open set P pL,Oq with compact

L Ă X and open O Ă Y is P pL, g´1pOqq, which is again open. Because sets
of the form P pL,Oq generate the compact open topology, this shows that Fg is
continuous.

Lemma 2.16. If M and N are smooth manifolds, and g : N Ñ N a diffeo-
morphism, then

Fg : C8pM,Nq Ñ C8pM,Nq, Fgpfq :“ g ˝ f

is continuous in the compact open C8-topology.

Proof. For k P N0, let Lk P T kM be compact, Ok P T kM be open, and
Pk :“ P pLk, Okq as in Definition 2.5. Considering the injection

T k : C8pM,Nq ãÑ C8pT kM,T kNq,

the compact open C8-topology is generated by sets of the form pT kq´1pPkq.
So, we have to show that the preimage F´1

g ppT kq´1pPkqq is open. We do this
by applying the functoriality of T repeatedly, i.e.

T kpFgpfqq “ T kg ˝ T kf for all f P C8pM,Nq,
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thereby obtaining

F´1
g ppT kq´1pPkqq “ tf P C

8pM,Nq : T kgpT kfpLkqq Ď Oku

“ tf P C8pM,Nq : T kfpLkq Ď T kpg´1qpOkqu

“ pT kq´1pP pLk, T
kpg´1qpOkqqq.

Analysing the rightmost term, we find that T kg is continuous by assumption,
so that T kpg´1qpOkq Ă Y is open, and thus P pLk, T

kpg´1qpOkqq is open in the
compact open topology on C8pT kM,T kNq, so that its preimage in C8pM,Nq
is open by definition.

Lemma 2.17. For a locally exponential Lie group H and Φ P AutpHq of finite
order, the map

pΦ : C8id,2πpR, Hq Ñ C8id,2πpR, Hq, pΦpxqptq :“ Φ´1pxpt` rqq for all t P R

is a Lie group automorphism.

Proof. The purely algebraic automorphism property is easy to see. Because
H is assumed to be locally exponential, [GN20, Theorem 6.2.4] applies to pΦ,
asserting that it is smooth if it is continuous. Because pΦ is the composition of
the translation operation

τr : C8id,2πpR, Hq Ñ C8id,2πpR, Hq, τrpxqptq :“ xpt` rq for all t P R

and the pointwise application of Φ´1, we can show continuity of pΦ by showing
continuity of both of these operations; this is done by directly applying Lemmas
2.14 and 2.16 above, which completes the proof.

Proposition 2.18. For a locally exponential Lie group H, an automorphism
Φ of H of finite order N P N and r :“ 2π{N, the group C8Φ,rpR, Hq from Defi-
nition 2.4 is a locally exponential Lie group with Lie algebra C8ϕ,rpR, kq, where
ϕ :“ LpΦq and k :“ LpKq.

Proof. By Lemma 2.17, the map

pΦ : C8id,2πpR, Hq Ñ C8id,2πpR, Hq, pΦpfqptq :“ Φ´1pfpt` rqq for all t P R

is a Lie group automorphism, so Proposition 2.9 applies, which asserts that

C8id,2πpR, Hq
pΦ is a Lie subgroup, with Lie algebra C8id,2πpR,LpHqqLp

pΦq. Using
the naturality of the exponential map, Proposition 2.8, it is easy to see that the
tangent Lie algebra automorphism of pΦ is given by

LppΦq : C8id,2πpR,LpHqq Ñ C8id,2πpR,LpHqq,

LppΦqpxqptq :“ LpΦ´1qpxpt` rqq for all t P R.

With this, the identities

C8id,2πpR, Hq
pΦ “ C8Φ,rpR, Hq
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and

C8id,2πpR,LpHqqLp
pΦq “ C8Φ,rpR,LpHqq

are immediate, which gives us the asserted Lie group structure on C8Φ,rpR, Hq.

Corollary 2.12 and Proposition 2.18 justify the following definition:

Definition 2.19. For a Lie group H, we call the group C8id,2πpR, Hq, equipped
with the Lie group structure associated to the compact open C8-topology, the
(untwisted) loop group over H and denote it by LH.
If H is locally exponential, Φ an automorphism of H of order N P N, and
r :“ 2π{N, we call the group C8Φ,rpR, Hq, equipped with the Lie group structure
induced by

id : C8Φ,rpR, Hq ãÑ C8id,2πpR, Hq

the Φ-twisted loop group over H and denote it by LΦK.

Likewise, for a topological Lie algebra h and ϕ P Autphq of finite order N , we
define the untwisted loop algebra over h as Lh :“ C8id,2πpR, hq, equipped with
the compact open C8-topology, and the ϕ-twisted loop algebra as

Lϕh :“ C8ϕ,rpR, hq,

equipped with the topology induced by the natural injection

id : C8ϕ,rpR, hq ãÑ C8id,2πpR, hq.

2.2 Double extensions of loop algebras and the adjoint action

In the following, Definition 1.36 is applied to the case of a Hilbert loop algebra
to construct a Lorentzian double extension on it.

Definition 2.20. Let k be a Hilbert–Lie algebra with invariant inner product
p¨, ¨qk. This can be extended to a continuous invariant inner product on Lk by

px, yq :“
1

2π

ż 2π

0
pxpsq, ypsqqkds for x, y P Lk; (2.1)

as p¨, ¨qk and p¨, ¨q coincide on the constant loops k ãÑ L k, only the notation p¨, ¨q
will be used henceforth.

Note that any twisted loop algebra Lϕk ãÑ Lk inherits this invariant inner
product.

We are now ready to define the double extensions of loop groups and algebras,
which are needed to obtain an interesting representation theory and convex
geometry.
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Definition 2.21. We identify the circle group T with R{2πZ and, accordingly,
write its group multiplication as “`”.
Let K be a locally exponential Lie group, k :“ LpKq, and Φ a finite-order-
automorphism of K. Then, the rotation action R : TˆLϕkÑ Lϕk on the loop
algebra is defined via

Rtpxqpsq :“ xps` tq

for x P Lk and s, t P T. The rotation action R : T ˆLΦK Ñ LΦK is defined
the same way:

Rtpgqpsq :“ gps` tq

for g P LΦK and s, t P T.

Proposition 2.22. The rotation actions of T on Lϕk and LΦK have the fol-
lowing properties:

(i) Both, R : TˆLϕkÑ Lϕk and R : TˆLΦK Ñ LΦK, are smooth maps.

(ii) Rr ˝ expLΦK “ expLΦK ˝Rr for all r P T.

(iii) The rotation on Lϕk is induced by the rotation on LΦK via the Lie func-
tor.

(iv) The infinitesimal generator d :“ LpRq P derpLϕkq of the rotation action
R : T ñ Lϕk is the differentiation xÑ x1 of smooth curves.

Proof. i) is from [MN03, Lemma VI.1], ii) follows directly from the description
of the exponential function in Remark (2.11), and (iii) follows from (ii).
For the last point, we can calculate LpRq directly as differential:

LpRqpxqpsq “
d

dt

ˇ

ˇ

ˇ

t“0
Rtpxqpsq “ lim

tÑ0
t´1pxpsq ´ xps` tqq “ x1psq

for all x P Lϕk and s P T.

Corollary 2.23. Considering the semidirect product LΦK ¸R T for a finite-
order-automorphism Φ of K, the associated Lie algebra is

LpLΦK ¸R Tq “ Lϕk¸d R,

where dx :“ x1, so that the bracket on Lϕk¸d R, with ϕ :“ LpΦq reads

rpx, sq, py, tqs :“ prx, ys ` sy1 ´ tx1, 0q (2.2)

for all x, y P Lϕk and s, t P R.

With this, we have collected all necessary “building blocks” to finally define
the most important objects of our studies:

Definition 2.24. For k compact or Hilbert, let us recall the invariant symmetric
bilinear form (2.1) on Lϕk; integration by parts shows that the derivation d is
skew-adjoint, so that

ωpx, yq :“ px,dyq for all x, y P Lϕk
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defines a Lie algebra cocycle LϕkˆLϕkÑ R, and

g :“ pLϕk :“ pR‘ω Lϕkq ¸
rd
R

is a Lorentzian double extension as by Definition 1.36, equipped with the in-
variant Lorentzian form κ from Proposition 1.34. The Lie bracket of g reads

rpa, x, sq, pb, y, tqs “ pωpx, yq, rx, ys ` sy1 ´ tx1, 0q

for all a, b, s, t P R and x, y P Lϕk.

When dealing with central extensions of Lie algebras, the question whether a
corresponding Lie group exists arises naturally. However, because the answer to
that question requires knowledge about root space decompositions of Hilbert–
Lie algebras, this subject will be postponed to the next chapter.
As long as we are only interested in the Lie group corresponding to g as far as its
adjoint action is concerned, we may ignore the central extension of LΦK ¸R T
even if it exists, because central group elements are invisible in the adjoint
action. In this sense, Lemma 1.21 allows us to evade the existence question
when dealing with the adjoint action on central extensions.

Definition 2.25. For a Lie group K, k :“ LpKq and a differentiable curve
f : RÑ K, the curve

δrpfq : RÑ k, δrpfqptq :“ f 1ptq.fptq´1 (2.3)

is called the right logarithmic derivative of f . Analogously, the left logarithmic
derivative δlpfq is defined as f´1.f 1.

With the use of this notation, the full formula for the adjoint action of the
identity component pLΦKq0 on g “ pRcˆω Lϕkq ¸d R reads

Adpgqpa, x0, tq “
´

a´pδrpgq, x0q´
t

2
pδrpgq, δrpgqq,Adkpgqpx0q´tδ

rpgq, t
¯

. (2.4)

Modulo the centre, this can be shown by directly computing the induced action
Lϕk ñ Lϕk¸Rd; the central component is then obtained by inserting into the
formula given in Remark 1.38, with ζpgq “ ´δrpgq.
In this context, also note that δlpgq “ ´δrpg´1q.

2.3 Twisted conjugation and adjoint orbits

Every compact Lie algebra k contains a maximal abelian subalgebra t, and every
corresponding compact Lie group K contains a maximal torus T “ expKptq; in
fact, every x P k is contained in some maximal abelian subalgebra, and all these
subalgebras are conjugate under the adjoint action of K, see [HN14, Theorem
12.2.2].
In the case of Hilbert–Lie algebras, the situation is very similar:
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Definition 2.26. Let H be an infinite-dimensional real, complex or quater-
nionic Hilbert space. We denote the space of linear self-maps on H of Hilbert–
Schmidt class, endowed with the commutator bracket, by gl2pHq, and set

GL2pHq :“ tg P GLpHq : g ´ idH P gl2pHqu.

For continuous operators g on a Hilbert space there is always a well-defined
adjoint g Ñ g˚, and with this we further write

UpHq :“ tg P GLpHq : g˚ “ g´1u and upHq :“ tx P glpHq : x˚ “ ´xu.

If H is real, we also use the notation

OpHq :“ UpHq and opHq :“ upHq,

and if H is quaternionic we put

SppHq :“ UpHq and sppHq :“ upHq

for the orthogonal and symplectic groups and Lie algebras. At last, we set

O2pHq :“ OpHq XGL2pHq, U2pHq :“ UpHq XGL2pHq and

Sp2pHq :“ SppHq XGL2pHq,

as well as

o2pHq :“ opHq X gl2pHq, u2pHq :“ upHq X gl2pHq and

sp2pHq :“ sppHq X gl2pHq.

Theorem 2.27 (Schue’s Theorem). [Ne14, Chapter 1.1] Every infinite-
dimensional simple real Hilbert–Lie algebra is isomorphic to u2pHq for a real,
complex or quaternionic Hilbert space H, with the natural inner product

p¨, ¨q : u2pHq ˆ u2pHq Ñ R, px, yq :“ Trpxy˚q.

Remark 2.28. There are spectral theorems for all cases of K P tR,C,Hu which
state that for any normal, compact operator x on HK, which includes normal
Hilbert–Schmidt operators, there exists an ONB B of HK which, in a sense,
diagonalises x.
The case K “ C is the most well-known and in some form included in virtually
all textbooks on functional analysis, e.g. [Ru73, Theorem 12.22]; in this case,
we have the “usual” notion of diagonalisation, i.e. x acts on the Hilbert space

HCpBq :“
!

f P MappB,Cq :
ÿ

bPB

|fpbq|2 ă 8
)

of square-summable maps as a multiplication operator. Operators which are
diagonal with respect to the same ONB form a maximal abelian subalgebra of
u2pHCq, which means that:
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(CD) For any complex Hilbert space HC, the maximal abelian subalgebras of
u2pHq correspond bijectively to the ONB’s of HC.

The quaternionic case, K “ H, is a slight variation of the previous, details
can be looked up in [Vis71, Theorem 3.4]. A “diagonal” operator x in this
case is a multiplication operator on the space HHpBq Ă MappB,Hq such that
x commutes with all operators of the form HHpBq Ñ HHpBq, f Ñ lf , where
l P ti, j, ku is one of the fundamental quaternion units. This implies that,

(QD) for any quaternionic Hilbert space HH, the maximal abelian subalgebras
in sp2pHq correspond bijectively to pairs pB, lq of an ONB and a funda-
mental quaternion unit.

In [Ba69], u2pHq and sp2pHq are called standard L˚-algebras of types A and C;
in that paper it is shown that

(QC) All maximal abelian subalgebras of u2pHCq and sp2pHHq are conjugate
under the conjugation action of UpHCq or SppHHq, respectively.

Remark 2.29. In the case K “ R, the situation is more complicated; the clos-
est we get to a spectral theorem is the following statement, which is transcribed
from [AK94, Theorem 2.7]: for any x P o2pHRq, there exists an x-invariant de-
composition of HR into either mutually orthogonal planes, or, if kerpxq is of
finite and odd dimension, into mutually orthogonal planes and exactly one line,
which then lies in the kernel. x then acts on every plane by an antisymmetric
matrix.
To make this more formal, let pP 0

j qjPJ0 denote an orthogonal Hilbert space de-

composition of HR into planes, i.e. pP 0
j qjPJ0 is a family of mutually orthogonal,

2-dimensional subspaces of HR such that

HR “
x

à

jPJ0

P 0
j ;

let further v1 P HR denote any one vector and pP 1
j qjPJ1 denote an orthogonal

Hilbert space decomposition of vK1 Ă HR into 2-dimensional planes, i.e.

HR “ Rv1 ‘
x

à

jPJ1

P 1
j .

Writing the set of real antisymmetric operators on a plane as opR2q, equipped
with the norm }A}2 :“ TrpAA˚q for all A P opR2q, an operator x P o2pHRq is
diagonal with respect to the decomposition pP 0

j qjPJ0 if it respects this decom-

position, and hence can be represented by a map ξ0 : J0 Ñ opR2q satisfying:

xpwq “
ÿ

jPJ0

ξ0pjqpwjq for all w “
ÿ

jPJ0

wj P HR,

and
ÿ

jPJ0

}ξ0pjq}
2
2 ă 8.
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Likewise, an operator y P o2pHRq is diagonal with respect to the decomposition
pRv1, pP

1
j qjPJ1q if it respects pP 1

j qjPJ1q and annihilates v1, so that we have a

map ξ1 : J1 Ñ opR2q with

ypwq “
ÿ

jPJ1

ξ1pjqpwjq for all w “ rv1 `
ÿ

jPJ1

wj P HR,

and
ÿ

jPJ1

}ξ1pjq}
2
2 ă 8.

Similarly, such a decomposition exists for every g P O2pHRq; for a decomposition
of the form pP 0

j qjPJ0 , the operator g is diagonal if there is a map γ0 : J0 Ñ OpR2q

such that
gpwq “

ÿ

jPJ0

γ0pjqpwjq for all w “
ÿ

jPJ0

wj P HR,

and
ÿ

jPJ0

}γ0pjq ´ idR2 }
2
2 ă 8,

and for the case of a decomposition pRv1, pP
1
j qjPJ1q, an operator h P O2pHRq is

diagonal if we have a map γ2 : J1 Ñ OpR2q satisfying

hpwq “ rv1 `
ÿ

jPJ1

γ1pjqpwjq for all w “ rv1 `
ÿ

jPJ1

wj P HR,

and
ÿ

jPJ1

}γ1pjq ´ idR2 }
2
2 ă 8.

In addition, we get a conjugacy theorem from [Ba69], where the Lie algebras
o2pHRq are called standard L˚-algebras of type B. We summarise these findings
so far:

(RD) For every x P o2pHRq, and every g P O2pHRq, there is a decomposition
of HR of the form pP 0

j qjPJ0 or pRv1, pP
1
j qjPJ1q which diagonalises x or g,

respectively.

(RC) There are two conjugation classes of maximal abelian subalgebras in
o2pHRq under the conjugation action of OpHRq, corresponding to the
two types of decompositions above.

Our goal in this chapter is to study the extent to which conjugation theorems
like these can be transferred to loop algebras over Hilbert–Lie algebras.

Convention 2.30. From here on, in this chapter we will use the conventions
that K denotes a semisimple Hilbert–Lie group and k “ LpKq its Lie algebra,
as well as g :“ pRc‘ω Lϕkq ¸Rd a double extended loop algebra with twist ϕ
of order N .

Remark 2.31. The fixed point algebra kϕ is Hilbert if k is, and if k is compact,
then so is kϕ. As such, they contain maximal abelian subalgebras t0, and it is
evident that subalgebras of g of the form

tg :“ Rc‘ t0 ‘ Rd.

are maximal abelian.
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To prove conjugation theorems in loop algebras over compact Lie algebras,
a concept from gauge theory will be adopted, namely the holonomy. For a
Hilbert–Lie group K and k :“ LpKq, it will yield maps from loop spaces over
k to the group K which are equivariant with respect to certain actions of loop
groups over K on the loop algebras and K itself. It is introduced here in a very
specific form which, admittedly, is not very evocative of its gauge-theoretic
origin.

Definition 2.32. By [GN20, Definition 5.1.1], a Lie group H is called regular ,
if for every smooth f : r0, 2πs Ñ LpHq, the initial value problem

δlpγq “ f, γp0q “ 1

has a solution γf . By [GN20, Theorem 5.3.4], every Banach–Lie group is reg-
ular, which in particular includes all Hilbert–Lie groups. This justifies the
following definition:

For every x P Lϕk, we call the value

Holpxq :“ γxp2π{ordpϕqq P K

the holonomy of x.

As tg contains Rc, the central component of x P g is irrelevant to the question
whether the adjoint orbit Ox Ă g intersects tg. Also taking into account the
invariance of the coefficient of d, see Formula (2.4) after Definition 2.25, we can
focus on the setting described by the following definition:

Definition 2.33. By factoring out the central component and restricting Ad
to LΦK and the invariant affine hyperplane Lϕk` d, we get an affine action

˚ : LΦK ñ Lϕk, g ˚ x :“ Adpgqpx` dq ´ d;

From Formula (2.4) for the adjoint action of loop groups, see Definition 2.25,
we obtain the more explicit formula g ˚ x “ Adpgqx` δlpg´1q.

Remark 2.34. It can be concluded from its appearance in the formula for the
affine action that δl has to satisfy a cocycle property; this could also be proven
by direct calculation and explicitly reads

δlpghq “ Adph´1qpδlpgqq ` δlphq

for all g, h P LΦK.

Definition 2.35. Let Φ be an automorphism of some group H; then we call the
following (non-automorphic) action of H on itself the Φ-twisted conjugation:

cΦ : H ñ H, cΦ
g phq :“ ghΦpg´1q.

Note that this action is smooth if H is a Lie group and Φ a Lie group automor-
phism.
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Lemma 2.36. The holonomy Hol : Lϕk Ñ K has the following equivariance
property with respect to the affine action ˚ : LΦK ñ Lϕk and the twisted
conjugation cΦ : K ñ K:

Holpγ ˚ xq “ cΦ
γp0qpHolpxqq. (2.5)

Lemma 2.37. The fibres of Hol : LΦk Ñ K coincide with the affine orbits
ΩΦK ˚ x Ă Lϕk, where

ΩΦK :“ tg P LΦK : gp0q “ 1u

denotes the normal subgroup of loops based in 1.

Proof. Both Lemmas are implications of [Ne14, Proposition 2.14].

These Lemmas allow to classify the affine LΦK-orbits in Lϕk by means of an
1-to-1 correspondence with “twisted conjugation classes” in K, if we are able
to provide a classification of these. This has been done in [Se68] for compact
K, and we will cite and employ this classification in the following. However,
the proof given by Segal uses fixed point index theory and is therefore not
transferable to the infinite dimensional scenario.

Definition 2.38. A topological group S is called topologically cyclic, if there
exists an s P S such that the subgroup

Zs :“ tsn P G : n P Zu “ xsy

is dense in S. Such an element is called a topological generator .

Definition 2.39. A Segal–Cartan subgroup of a compact Lie group is a topo-
logically cyclic subgroup that has finite index in its normaliser.

Remark 2.40. In [Se68, Definition 1.1], G. Segal called subgroups like this just
Cartan subgroups, and also already noted that there exists a conflicting notion
of Cartan subgroups; as there are currently at least three non-equivalent such
notions in use, it makes sense to refer to Segal´s version as defined above.

Note also that, a priory, this definition is independent from the notion of
a Cartan subalgebra, and is designed to work especially well in the context of
non-connected compact Lie groups, which is the application we have in mind
here.

Before getting to the twisted conjugation theorem, we have to show that this
notion is actually applicable to our setting:

Lemma 2.41. Let K be compact and connected, Φ P AutpKq of finite order
N , and P Ă AutpKq, P :“ xΦy » ZN . If TS is a maximal torus subgroup of
KΦ, then S :“ TS ˆ P is a Segal–Cartan subgroup of K ¸ P .
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Proof. By [Se68, Proposition 1.2], there is a Segal–Cartan subgroup Q Ă K¸P
containing Φ and topologically generated by some q1 in the coset Q0Φ. Its
identity component Q0 is a torus subgroup of KΦ, which is also compact; if
TQ Ă KΦ is a maximal torus containing Q0, then every t P TQ commutes
with both Φ and Q0, hence with the topological generator q1 P Q0Φ, and
thus TQ Ă NKpQq. Because NKpQq{Q is finite by definition, this shows that
Q0 “ TQ is already maximal in KΦ.
Now, by [HN12, Theorem 12.2.2], there exists k P KΦ such that TS “ ckpQ0q,
and, because ck and Φ commute, S “ ckpQq. Thus,

NKpSq{S “ ckpNKpQqq{ckpQq » NKpQq{Q

is finite, and, for any topological generator s P Q, the element ckpsq is a topo-
logical generator of S, so S is a Segal–Cartan subgroup.

Proposition 2.42. [Se68, Proposition 1.4] If C is a compact Lie group, and
S a Segal–Cartan subgroup generated by s, then every h P C0s is conjugate to
an element of S by some g P C0.

Remark 2.43. Note that, in the last proposition, the compact group C is not
assumed to be connected.

Lemma 2.44. If K is compact and connected, and T Ă KΦ a maximal torus,
then every orbit of the twisted conjugation action intersects T .

Proof. [JN18, Appendix 2] With N :“ ordpΦq, we set P :“ xΦy » ZN and
consider the compact group

C :“ K ¸ P ;

for g, h P K we then have

pg, idKqph,Φqpg, idKq
´1 “ pghΦpg´1q,Φq, (2.6)

so that theK-conjugacy classes in the cosetKΦ correspond 1-to-1 to the twisted
conjugacy classes in K. By Lemma 2.41,

S :“ T ˆ P

is a Segal–Cartan subgroup. Thus, Proposition 2.42 applies to S Ă C, and (2.6)
now shows that every k P K is Φ-twisted conjugate to some t P T .

Theorem 2.45. If K is compact and connected, then for every x P Lϕk the
affine orbit LΦK ˚ x intersects any maximal abelian subalgebra t0 Ă kϕ.

Proof. If N :“ ordpΦq and y P LΦK is a constant loop, then

Holpyq “ γy

´2π

N

¯

“ expK

´

y
¯

;
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this applies in particular to all elements of t0 Ă kϕ, so that the maximal torus
T0 :“ expKpt0q Ă KΦ is contained in the image of Hol.
By Lemma 2.44, the element Holpxq is twisted-conjugate to some g P T0, so
that, by Lemma 2.36, the affine orbit of x intersects the fibre Hol´1ptguq. This,
in turn, intersects t0, and from Lemma 2.37 it follows that LΦK ˚ x contains
Hol´1ptguq, and therefore intersects t0.

It has already been mentioned that not all of these methods are available in
the infinite-dimensional Hilbert space setting. However, they do apply to the
untwisted case, where Φ “ idK .
In this context, recall Definition 2.26, Theorem 2.27, and the relevant spectral
theorems from the beginning of this subsection. By [Ne14, Theorem 1.15], if k
is infinite-dimensional and simple, all automorphisms of K and k can be written
as conjugation with elements from OpHRq, AUpHCq or SppHHq, where AUpHCq

denotes the group of linear and antilinear unitary operators.
Note also that, for K defined as OpHRq, UpHCq or SppHHq respectively, the
affine action ˚ : LK ñ Lk extends to an affine action

˚ : LK ¸K ñ Lk, pg, kq ˚ x :“ Adpgkqx` δlpg´1q.

Lemma 2.46. If K is simple and Φ “ idK , then Hol : LkÑ K is equivariant
with the affine action of LK ¸K on Lk and its conjugation action on K.

Proof. Considering any k P K as a constant curve, we can calculate in the
ambient Banach space of bounded operators on some appropriate Hilbert space
as follows:

δlpkγxk
´1q “ kγ´1

x γ1xk
´1 “ kδlpγxqk

´1 “ kxk´1

for any x P Lk, and with that the assertion follows from Definition 2.32.

Lemma 2.47. The exponential functions expU2pHCq : u2pHCq Ñ U2pHCq and
expSp2pHHq : sp2pHHq Ñ Sp2pHHq are surjective.

Proof. We only prove the lemma for exp :“ expU2pHCq, because the proof for
the quaternionic case is literally the same.
We already know that every g P U2pHCq is diagonalisable, i.e., for some ONB
pbjqjPJ of HC we have g “ diagppgnqnPJq with gn P C and |gn| “ 1 for all n P J .
From the surjectivity of exp : iR Ñ S1 follows that gn “ exppynq for some
family pynqnPJ Ă iR, so we have to show that we can choose pynqnPJ so that
y :“ diagppynqnPJq P u2pHCq, i.e. that pynqnPJ is square-summable.
For this, we note that the restriction exp : ip´π, πs Ñ S1 is bijective, so that
we can choose every yn from ip´π, πs. Now we consider the function

f : r´π, πs Ñ R, fptq :“ | exppitq ´ 1|2 “ 2p1´ cosptqq

and its derivative: for all t P r0, πs we have 2t ď π2 sinptq “ πf 1ptq and, because
fp0q “ 0, this implies t2 ď πfptq; both sides are symmetric around 0, so this
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inequality holds for all t P r´π, πs, and from this we get
ÿ

nPJ

|yn|
2 ď

ÿ

nPJ

π| exppynq ´ 1|2 “ π
ÿ

nPJ

|gn ´ 1|2 ă 8.

Lemma 2.48. The exponential function expO2pHRq : o2pHRq Ñ O2pHRq0 is
surjective.

Proof. W.l.o.g., we may assume that g P O2pHRq does not have a finite-
dimensional fixed point space in HR, lest the restriction of g to that space
is already trivially diagonal and we can proceed to study the restriction of g to
pH

g
Rq
K Ă HR.

So, by (RD) in Remark 2.29, there is a g-invariant orthogonal decomposition
of HR into planes, on which g acts by 2ˆ 2 rotation matrices:

SOpR2q “

"ˆ

cosptq ´ sinptq
sinptq cosptq

˙

P OpR2q : t P p´π, πs

*

and note that the map

rot : p´π, πs Ñ SOpR2q, rotptq :“

ˆ

cosptq ´ sinptq
sinptq cosptq

˙

is a bijection. We also define

as : p´π, πs Ñ opR2q, asptq :“

ˆ

0 ´t
t 0

˙

,

so that we have the following commuting, bijective correspondences:

SOpR2q

p´π, πs impasq Ă opR2q.

exp

as

rot

Thus, if we write g as a family pgnqnPJ of rotation matrices gn “ rotptnq with
tn P p´π, πs for all n P J , then we obtain a corresponding family pasptnqqnPJ
satisfying gn “ expOpR2qpasptnqq. We compare the functions f : r´π, πs Ñ R,

fptq :“ }asptq}2 “ Trpasptq˚asptqq “ 2t2

and h : r´π, πs Ñ R,

hptq :“ }rotptq ´ idR2 }
2 “ Trpprotptq ´ idR2q

˚protptq ´ idR2qq “ 4p1´ cosptqq;

Their derivatives are f 1ptq “ 4t and h1ptq “ 4 sinptq, so we have f 1 ď πh1 on
r0, πs, and further fp0q “ hp0q “ 0 and symmetry around 0, so we conclude
that f ď πh on r´π, πs. With that,

ÿ

nPJ

}asptnq}
2 ď

ÿ

nPJ

π}rotptnq ´ idR2 }
2 “ π

ÿ

nPJ

}gn ´ idR2 }
2 ă 8

follows, so that y :“ diagnPJpasptnqq P o2pHRq, the diagonal operator defined
by pasptnqqnPJ , satisfies expO2pHRqpyq “ g.
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Theorem 2.49. If K is a simple connected Hilbert–Lie group, then for every
affine orbit Ox Ă Lk of LK ¸K, there exists a maximal abelian subalgebra of
k ãÑ Lk intersecting Ox.

Remark 2.50. If K » U2pHCq or K » Sp2pHHq for a complex or quaternionic
Hilbert space, then this implies that every affine orbit in Lk intersects every
maximal abelian subalgebra in k ãÑ Lk; in the case K » O2pHCq0, every affine
orbit intersects all maximal abelian subalgebras of one of the two conjugacy
classes, see (RC) from Remark 2.29.

Proof. It is immediate from Definition 2.32 that Holpxq is contained in the
identity component K0 Ă K. For any given x P Lk, we employ the appropriate
spectral theorem, i.e. (RD), (CD) or (QD) from Remarks 2.28 and 2.29, to
diagonalise Holpxq, which gives us a maximal torus subgroup T0 Ă K0 con-
taining Holpxq. From the lemmas 2.48 and 2.47, we know that there exists an
y P t0 :“ LpT0q Ă k with expKp2πyq “ Holpxq, and from Lemma 2.46 it follows
that y P Ox.
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3 The locally affine structure of Hilbert loop algebras

For finite-dimensional Lie algebras, there is already a well-developed structure
theory of invariant convex cones ([HHL89]), complemented by a classification
of Lie algebras containing pointed generating invariant convex cones ([Ne94]).
This theory revolves mainly around maximal compactly embedded subgroups,
the maximal abelian subalgebras in their Lie algebras, and the associated root
space decompositions.
To ensure that these methods can be applied in an infinite-dimensional context,
we focus on infinite-dimensional Lie algebras with particularly “well-behaved”
root space decompositions. The starting point for appropriate generalisations
is the compact Lie algebras and the (semi)simple complex Lie algebras. The
close tie between these types of objects is standard: every compact Lie group
K has a reductive Lie algebra, and a semisimple Lie algebras if the centre of
K does not contain a torus, and the complexification of a real semisimple Lie
algebra is again semisimple.
These concepts have been generalised in two directions: first, by “keeping”
the invariant inner product as in compact Lie algebras, but forfeiting any re-
strictions to dimensionality, one obtains the category of Hilbert–Lie algebras
([Sc60]); second, the notion of a root decomposition can be systematically ex-
tended, which leads to the category of “extended affine Lie algebras” ([AA97]),
of which the Kac–Moody algebras ([Ka83]) are the most well-studied subclass
due to the completeness of their classification and their accessible representation
theory. For us, their important feature is the existence of certain isomorphisms
with an algebraic version of loop algebras, to be expounded later.
From the perspective of representation theory, these two concepts exhibit sim-
ilarities which have been made rigorous in [Ne10]; the key notion for this re-
unification of concepts is that of a locally affine Lie algebra, which is in turn a
special case of a locally extended affine Lie algebra, which has been introduced
in [MY06].

3.1 Integrable roots and locally finite root systems

This subsection briefly introduces the elemental concepts of root space decom-
positions; integrable roots correlate to subalgebras isomorphic to slpC2q and to
real subalgebras isomorphic to supC2q, which makes the representation theory
of these Lie algebras available as a tool to study Hilbert loop algebras. The
description of locally finite root systems comes mainly as an example; they
are of interest because they correspond to the Hilbert–Lie algebras which are
the starting point of our construction, and also represent the subalgebras of
constant loops.

Definition 3.1. [Ne14] A subalgebra h of a Lie algebra g is called a splitting
Cartan subalgebra if it is maximal abelian and the representation
ad |h : h ñ g is diagonalisable.
A Lie algebra g which contains a splitting Cartan subalgebra is called a split
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Lie algebra, and it has a root space decomposition

g “ h‘
à

αP∆

gα; (3.1)

here, ∆ :“ ∆pg, hq Ă h1zt0u, the subspaces

gα :“ tx P g : p@h P hqrh, xs “ αphqxu

are the root spaces, and

∆pg, hq :“ tα P h1zt0u : gα ‰ t0uu

is called the root system.

A root α is called integrable, if there exist xα P gα and x´α P g´α, such
that αprxα, x´αsq ‰ 0 and adpx˘αq are locally nilpotent, i.e. for every y P g the
sequence padpx˘αq

nyqnPN has only finitely many non-zero members.

The set of integrable roots is usually denoted by ∆i Ă ∆.

Lemma 3.2. For every integrable root α of the split Lie algebra g, the root
spaces g˘α are 1-dimensional.

The proof for this can be found in [Ne00b, Proposition I.6].

Definition 3.3. Thus we obtain a subalgebra gpαq :“ rgα, g´αs ‘ gα ‘ g´α
which is isomorphic to sl2. Further, for a set of integrable roots Π Ă ∆i, let
gpΠq denote the subalgebra generated by the union of gpαq, α P Π.

The unique element α̌ P rgα, g´αs which satisfies αpα̌q “ 2 is called the coroot
of α.

∆i is called connected if, for every pair α, β P ∆i, there exists a subset
tαk : k P t0, 1 . . . ,muu Ă ∆i such that α0 “ α, αm “ β and αk´1pα̌kq ‰ 0 for
all k P t1 . . . ,mu.

The subalgebra gc :“ gp∆iq ă g is called the core of g, and a split Lie algebra
whose root spaces are all generated by the root spaces of integrable roots, i.e.
g “ h` gc, is called coral.

Definition 3.4. A pair pg, κq of a Lie algebra g and an invariant symmetric
non-degenerate bilinear form κ on g is called a quadratic Lie algebra.

Remark 3.5. [Ne14] We list some fundamental algebraic properties of the root
systems of split quadratic Lie algebras: Let g be a split Lie algebra and κ be an
invariant symmetric non-degenerate bilinear form on g. Let further α, β P ∆.

(1) For x P gα, y P gβ and h P h, we get

αphqκpx, yq “ κprh, xs, yq “ ´κpx, rh, ysq “ ´βphqκpx, yq,
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so either α “ ´β or κpx, yq “ 0. If we consider another element h2 P h,
then the analogous calculation yields

αph2qκpx, hq “ ´κpx, rh2, hsq “ 0,

which implies κpx, hq “ 0. Thus, the root spaces gα and gβ are orthogonal
if α` β ‰ 0, and all root spaces are orthogonal to h.
In particular, κ|hˆh is non-degenerate, and gα is non-degenerately paired
with g´α.

(2) For every h P h and non-zero xα P gα and x´α P g´α we get

αphqκpxα, x´αq “ κprh, xαs, x´αq “ κph, rxα, x´αsq,

and because of (1), we have r :“ κpxα, x´αq ‰ 0, so that αphq can be
expressed as κph, xq, where x “ r´1rxα, x´αs P h, which, together with
the non-degeneracy of κ, implies α P h5 and

rxα, x´αs “ κpxα, x´αqα
7.

(3) Note that the preceding paragraph implies that, for all β P ∆i, the con-
ditions αpβ̌q ‰ 0 and pα, βq ‰ 0 are equivalent. So, if ∆1 and ∆2 are
distinct connected components in ∆i, then pα, βq “ 0 for α P ∆1, β P ∆2.
Conversely, if ∆i “ ∆1

.
Y∆2, and we assume that α0 P ∆1 and αn P ∆2

are connected, we conclude that the connecting chain α0, . . . , αn has an
index 0 ď k ď n with αk P ∆1 and αk`1 P ∆2, and therefore

0 ‰ pαk, αk`1q P p∆1,∆2q.

In particular, ∆i is connected if and only if it is not decomposable into
non-empty mutually orthogonal subsets.

Definition 3.6. Let V be a real topological vector space, α P V 1 a continuous
linear functional and x P V such that αpxq “ 2. Then the reflection on the
hyperplane kerpαq in the direction x is defined as σpvq :“ v ´ αpvqx for all
v P V .
If, in the above definition, V carries a symmetric bilinear form p¨, ¨q satisfying

px, xq ‰ 0 and αpvq “ 2 pv,xq
px,xq for all v P V , then the reflection is denoted by σx.

Definition 3.7. [LN04, Definition 3.3] A pair pV,∆q consisting of a real pre-
Hilbert space V and a subset ∆ Ă V satisfying the conditions

(i) σαp∆q “ ∆,

(ii) ∆pα̌q Ă Z, where α̌ “ 2α
pα,αq ,

(iii) spanRp∆q “ V ,

(iv) RαX∆ “ tα,´αu,
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for all α P ∆ is called a locally finite root system.
Note that in [LN04] the condition (iv) was not required for all locally finite root
systems and those satisfying it were called reduced locally finite root systems.
If ∆ is finite (equivalently, if V is finite-dimensional) then pV,∆q is called a
finite root system.

Example 3.8. Let k be a compact semisimple Lie algebra, and kC :“ k‘ ik its
complexification; then there exists a maximal abelian subalgebra tC Ď kC such
that t :“ k X tC is maximal abelian in k and a root space decomposition of kC

with respect to tC and some root system ∆ Ă ptCq˚.
In this situation, it1 “ spanRp∆q carries an inner product pushed forward from
t, and the pair pit1,∆q is a finite root system.
kC is simple if and only if ∆ does not decompose into two proper mutually
orthogonal subsets.
Accessible proofs of these claims can be found in [HN12, Chapters 6.3, 6.4 and
12.2]. By Serre’s Theorem, this example actually exhausts the class of finite
root systems, see [HN12, Chapter 7.2.3 ].

In [Sc60] and [Sc61], John R. Schue has shown that all separable simple
Hilbert–Lie algebras contain a dense simple split subalgebra, and has classi-
fied these subalgebras by their root decompositions. In [St99], this has been
extended to all Hilbert–Lie algebras. To summarise these findings, we recall
Definition 2.26 and Theorem 2.27 for the classification of Hilbert–Lie groups as
groups of orthogonal, unitary or symplectic operators.

Remark 3.9. For a (skew-) field K P tR,C,Hu, let B :“ pejqjPJ be an or-
thonormal Hilbert space basis of a K-Hilbert space HK and consider the Lie
algebra kfin of skew-adjoint J ˆ J matrices with only finitely many nonzero
entries; its complexification kCfin admits a root space decomposition

kCfin “ tCfin ‘
à

αP∆

kα,

where tfin are the diagonal matrices in kfin. Note that kfin is a dense subalgebra
of the real Hilbert–Lie algebra k :“ u2pHKq of skew-adjoint Hilbert–Schmidt
operators. Thus kCfin and tCfin are also dense in kC respectively tC with respect to
the complex Hilbert space structure obtained as the hermitian extension of the
inner product from k.
In the case of K “ C or K “ H, t Ă u2pHKq is the subalgebra of skew-adjoint
diagonal operators on HK with respect to B, see (CD) and (QD) in Remark
2.28, and for every j P J we can define εj : tC Ñ C as the unique linear
functional satisfying

xpejq “ εjpxqej for all x P tC.

On the other hand, in the case K “ R, t consists of the block-diagonal operators
with skew-symmetric 2 ˆ 2-blocks. There still exists a basis B1 :“ pfjqjPJ of
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HC
R which simultaneously diagonalises tC. With this, we can define functionals

εj as above on t Ă u2pHRq satisfying

xpfjq “ εjpxqfj .

Then, the root system ∆ equals one of the following (see [Ne14, Examples 1.10,
1.12 and 1.13]):

AJ :“ tεj ´ εk : j, k P J, j ‰ ku,

BJ :“ t˘εj ,˘εj ˘ εk : j, k P J, j ‰ ku,

CJ :“ t˘εj ˘ εk : j, k P Ju,

DJ :“ t˘εj ˘ εk : j, k P J, j ‰ ku.

(3.2)

The root systems of the form AJ correspond to unitary Lie algebras, i.e. K “ C,
type CJ to symplectic Lie algebras (the case K “ H), and BJ and DJ both
to orthogonal Lie algebras of operators on real Hilbert spaces. The difference
between DJ and BJ is that, in the latter case, t has a nontrivial (1-dimensional)
common kernel in HR.

Remark 3.10. Together with Theorem 2.27, the previous remark implies that
every semisimple Hilbert–Lie algebra has a dense subalgebra which admits a
root space decomposition; the Cartan subalgebra is the direct sum of the Cartan
subalgebras of its simple ideals, and its root system the disjoint union of their
root systems.

This classification allows us to single out a specific inner product for any
Hilbert–Lie algebra, which in the following will be employed to obtain Lie groups
corresponding to double extensions of Hilbert loop algebras.

Definition 3.11. (see [Ne14, Definition 3.3 and Remark ]) For a simple Hilbert–
Lie algebra k, the normalized inner product is defined as the inner product with
pα̌, α̌q “ 2 for all long roots α P ∆pkC, tCq, i.e. the roots with minimal pα̌, α̌q.
Specifically, if k “ u2 or k “ sp2, then trCpxy

˚q for all x, y P kC defines the
normalized inner product, and 1

2 trCpxy
˚q defines the normalized inner product

in the case k “ o2.

Theorem 3.12. [Ne14, Theorem 3.4] Let K be a 1-connected simple Hilbert–
Lie group and let p¨, ¨q be the normalized inner product on k :“ LpKq. Then the
cocycle

ωpx, yq :“
1

2π

ż 2π

0
px1ptq, yptqqdt for all x, y P Lϕk

integrates to a locally smooth Lie group cocycle Ω : LΦK ˆ LΦK Ñ T such
that the smooth central extension T‘Ω LΦK is locally exponential and satisfies
Rc‘ω Lϕk “ LpT‘Ω LΦKq.

Proposition 3.13. For a 1-connected Hilbert-Lie group K and a normalized
inner product on k “ LpKq, and with R :“ exppiRdq » T and the cocycle
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Ω : LΦK ˆLΦK Ñ T from Theorem 3.12, the smooth double extension of Lie
groups

G :“ pT‘Ω LKq ¸R

satisfies LpGq “ g “ pRc‘ω Lϕkq ¸ Rd.

Proof. By [MN03, Thmeorem V.9], the rotation action of R on LΦK lifts to a
smooth action on the central extension T‘Ω LK.

3.2 Root space decomposition of loop algebras

With the basic notions and properties of the locally finite root systems of
Hilbert–Lie algebras established, we are now going to apply them to describe
the structure and classification of twisted Hilbert loop algebras.
In the course of this section, the root systems of Hilbert loop algebras will
be described and linked to their algebraic counterparts, the affine and locally
affine root systems; these provide sufficient information for their application to
convex and, in particular, Coxeter geometry.

Convention 3.14. Any automorphism of finite order N P N of a complex
vector space V is diagonalisable and there exists a primitive N -th root of unity
σ :“ e

2π
N P T such that every eigenvalue is of the form σk for some k P Z. With

that in mind, all eigenvalues of finite-order automorphisms will be denoted by σk

from here on, and the corresponding eigenspaces by Vk :“ tx P V : ϕpxq “ σkxu.
Note that σk “ σk`mN for all m P Z, and thus Vk “ Vk`mN , so the indices
denote congruence classes rather than integers in this context.

Definition 3.15. We will use the abbreviation

ek :“ RÑ S1, ekptq :“ eikt for k P Z;

because these maps are 1{k-periodic, we will mostly interpret them as maps
S1 Ñ S1 and use them to write “trigonometric monomials”.

A loop x P Lk, where k is a Hilbert–Lie algebra, is called a trigonometric
polynomial if there exists a number n P N and a tuple pykq´nďkďn Ă k such
that

xptq “
n
ÿ

k“´n

ekptqyk for all t P R.

The set of all trigonometric polynomials with values in k is denoted by Lpolk;
we also write L

pol
ϕ k :“ LϕkXLpolk.

Lemma 3.16. For a complex Hilbert–Lie algebra k and ϕ P Autpkq of finite

order, Lpol
ϕ k is dense in Lϕk.

Proof. As smooth functions, x P Lk and all its derivatives are particularly of
bounded variation, and k is in particular a Banach space, so the corollary on
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[Ka04, p.62] applies, which means that x can be approximated uniformly in all
derivatives by trigonometric polynomials xnptq “

řn
k“´n ekptqyk, where yk P k

C.
With N :“ ordpϕq and r :“ 2π{N, we specify an automorphism pϕ of Lk by

pϕpxqptq :“ ϕ´1pxpt` rqq for all t P R. (3.3)

Obviously, pLkqpϕ “ Lϕk; it is also clear that a monomial ekyk is invariant under
pϕ if and only if yk P kk (see Convention 3.14), and that pϕ does not change the
degree of any monomial. Thus a polynomial p P Lk, p :“

řn
k“m ekpk is invariant

if and only if all its monomials are, i.e. p P
À

kPZpekkkq.
According to the last theorem on [Ka04, p.103], the convergence of the Fourier
series is absolute at every point t P R, so pϕpxq “

ř8
k“´8 pϕpekckq.

Therefore, every partial sum of the Fourier series of a pϕ-invariant x P Lk is
itself pϕ-invariant, which proves the claim.

Definition 3.17. A real form aR a of a complex Lie algebra a is a real subal-
gebra of a such that a “ aR ‘ iaR.
An antilinear involution is a map ˚ : a Ñ a, x Ñ x˚ which, for all a P C and
x, y P a, satisfies

(i) pax` yq˚ “ ax˚ ` y˚,

(ii) rx, ys˚ “ ´rx˚, y˚s, and

(iii) ˚2 “ ida.

Remark 3.18. Every real form aR in a gives rise to an antilinear involution
by writing elements z P a as z » px, iyq P aR ‘ iaR and defining

˚ : aÑ a, px` iyq˚ :“ ´x` iy.

This satisfies aR “ tz P a : z˚ “ ´zu. Vice versa, every antilinear involution
defines a real form aR Ă a as aR :“ tz P a : z˚ “ ´zu.
Now if we start with some real Lie algebra r, and ˚ is the antilinear involution
associated to the real form r of the complexification rC :“ r‘ ir, then ˚ extends
pointwise to an antilinear involution of LΦpr

Cq, with fixed point set LΦr.
This means that the complexification of a loop algebra LΦr over a real Lie
algebra r is the loop algebra LΦpr

Cq.

Definition 3.19. ([Ne10, Definition 3.17]) Let s be a complex split quadratic
Lie algebra with root system ∆ and bilinear form κ; then an antilinear involution
on s and its corresponding real form sR are called a unitary real form if:

(i) αpxq P R for all roots α P ∆ and x “ x˚ P s.

(ii) psαq
˚ “ s´α for all α P ∆.

(iii) κpx˚, y˚q “ κpx, yq for all x, y P s.

Proposition 3.20. If kC is the complexification of a Hilbert–Lie algebra with
a root space decomposition with respect to ∆ :“ ∆pkC, tCq, then the antilinear
involution ˚ from Remark 3.18 and the bilinear extension of the inner product
from k to kC are a unitary real form of kC.
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Proof. (i) This is because the ad-invariance of κ implies that the elements
of t act as skew-symmetric operators, and thus have only imaginary eigen-
values. The elements satisfying x “ x˚ are the ones in it, therefore having
real eigenvalues.

(ii) For all h P t and x P kCα we have

rh, x˚s “ ´rh˚, xs˚ “ rh, xs˚ “ αphqx˚,

and if, instead, h P it then rh, x˚s “ ´αphqx˚, so that ii) follows from i).

(iii) For x “ x0 ` ix1 and y “ y0 ` iy1 P k
C we get

κpx˚, y˚q “ κp´x0 ` ix1,´y0 ` iy1q

“ κpx0, y0q ´ κpx1, y1q ´ ipκpx0, y1q ` κpx1, y0qq “ κpx, yq.

Remark 3.21. For any semisimple Hilbert–Lie algebra k and Φ P Autpkq of
finite order N , the subalgebra k0 “ kϕ is non-trivial ([Ne14, Lemma D.1]). For
every maximal abelian subalgebra t0 Ă k0, its centraliser t :“ zkpt0q is maximal
abelian in k ([Ne14, Lemma D.2]).
Because adpt0q and Φ commute, they can be diagonalised simultaneously over
kC, which means that kC has a simultaneous weight space decomposition with
respect to tC0 and Φ (Convention 3.14):

kC “ tC0 ‘
à

0ďkďN´1

´

x

à

αP∆k

kCα,k

¯

.

Here, the sets of weights ∆k are subsets of ∆ :“ ∆pk, tq|tC0
Y t0u, defined by

∆k :“ tα P ∆ : kCα X kCk ‰ t0uu for 1 ď k ď N ´ 1 and

∆0 :“ tα P ∆ : α ‰ 0, kCα X kCk ‰ t0uu

According to [Ne14, Appendix D], the weight spaces kCα X kCk are 1-dimensional.

Convention 3.22. From here on, we resume to use Convention 2.30, in partic-
ular k denotes a semisimple real Hilbert–Lie algebra, and g :“ pRc‘ωLϕkq¸Rd
a double extended loop algebra with twist Φ of order N over k.
We further denote any maximal abelian subalgebra of g which contains d by
tg. It equals Rc‘ t0 ‘ Rd for a maximal abelian subalgebra t0 Ă kϕ.

Proposition 3.23. The complexification gC has a root space decomposition
with respect to tCg . With the notation of the preceding remark and δ P Cd˚

defined by δpdq :“ i, the subset of integrable roots ∆i Ă ∆ equals:

∆i “
9
Ť

kPZ
p∆k ` kδq,

and ∆ “ ∆i 9YpZzt0uqδ. The root decomposition then reads:

gC “ tCg ‘
x

à

α`kδP∆

ekk
C
α,k

and all root spaces are 1-dimensional.
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Proof. For all pα, kq P ∆ with α ‰ 0, the subspaces ekk
C
α,k are the weight spaces

kCαXkCk from the preceding remark, multiplied with the periodic maps satisfying
e1k “ ikek, making them into root spaces with respect to Cc‘ tC0 ‘ Cd.
In [Ne14, Appendix D], shortly before Lemma D.3, is shown that

pα` kδqprx, ysq ‰ 0

for all roots α ` kδ P ∆i and non-zero elements x P ekk
C
α,k and y P e´kk

C
´α,´k,

and that the root space ekk
C
α,k is 1-dimensional. Further, from [Ne14, Lemma

D.2], we know that tC :“ zkCpt
C
0 q is maximal abelian in kC. It is obvious that

the roots with α “ 0 are not integrable.
To show that adpxq is locally nilpotent, we consider another root β ` lδ P ∆,
and expressions of the form pβ` lδq`mpα`kδq and RSm :“ β`mα for m P N;
clearly, if the latter is not a root in ∆pkC, tC0 q, then neither is pβ`lδq`mpα`kδq
a root in ∆pgC, tCg q. If β “ 0, then rx, bs P ek`lk

C
α,pk`lq for all b P kCβ,l, so we

can replace β ` lδ “ lδ with α ` pk ` lqδ. Thus we can w.l.o.g. assume that
β ‰ 0. We further consider preimages of the restriction operation ptCq1 Ñ ptC0 q

1;
for γ P ∆pkC, tC0 q Ă pt

C
0 q
1, let

Pγ :“ tpγ P ∆pkC, tCq Ă ptCq1 : pγ|tC0
“ γu.

Because ekk
C
α,k is 1-dimensional, and kCα,pk`Nq “ kCα,k, the preimage Pα contains

at most N elements, and the same is true for Pβ. This leaves us with at most N2

combinations of roots pα, pβ P ∆pkC, tCq such that pβ `mpα restricts to RSm. The
root system ∆pkC, tCq is locally finite, so, for every one of these combinations,
there exists a maximal mj P N, 1 ď j ď N2 such that pβ ` mjpα is a root in
∆pkC, tCq, and if we define M :“ max1ďjďN2 mj , then β ` pM ` 1qα is not in
∆pkC, tC0 q, and thus pβ ` lδq ` pM ` 1qpα` kδq R ∆pgC, tCg q. From

adpkCα,kq
M`1kCβ,l Ď kCpβ`pM`1qαq,plpM`1q`kq “ t0u

it now follows that kCα,k acts on the dense subalgebra

tCg ‘
à

α`kδP∆

ekk
C
α,k Ă gC

by locally nilpotent operators. Thus, the roots of the form α ` kδ with α ‰ 0
are integrable. This completes the characterisation of the integrable roots in
∆, which was the last part we had left to show.

Corollary 3.24. The integrable roots β P ∆pgC, tCg q for a double extended loop
algebra g are exactly the ones satisfying β|t0 ‰ 0, which is also equivalent to
κpβ, βq ‰ 0.

Lemma 3.25. gX gpαq » supC2q for every integrable root α P ∆pgC, tCg q.

Proof. This follows from [Ne14, Appendix D] and [Ne14, Lemma 1.8].
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Proposition 3.26. For the double extended Hilbert loop algebra g, the invo-
lution ˚ : gC Ñ gC from Remark 3.18 and the bilinear extension κgC of the

invariant Lorentzian form to gC are a unitary real form of gC.

Proof. We want to show that gC and κgC inherit the list of properties from
Definition 3.19 from the underlying Hilbert–Lie algebra and its complexification
kC, so we are going through the list:

(i) We write any root as α ` nδ P ∆pgC, tCg q Ă it1g ‘ Rδ and see that α is

a restriction of an element in ∆pkC, tCq, so it takes imaginary values on
tΦ Ă t. The other summand, nδ, is imaginary on d by definition (in
Proposition 3.23).

(ii) This follows from (i) as in the proof of 3.20.

(iii) is immediate.

Now that the root systems of double extended Hilbert loop algebras are
described in sufficient detail, they can be linked to the purely algebraic concept
of locally affine Lie algebras, which will provide a detailed representation theory
and exhaustion arguments.

Definition 3.27. [Ne10, Definition 2.4] Let V be a rational vector space with a
symmetric positive semidefinite bilinear form p¨, ¨q, and R Ă V . Then pV,R, p¨, ¨qq
is called a locally affine root system, in short LARS, if, for all α, β P R, the
following conditions are satisfied:

(i) pα, αq ‰ 0.

(ii) pα,βq
pα,αq P Z.

(iii) If α, β P R and σα : V Ñ V, σαpvq :“ v ´ 2 pv,αq
pα,αqα, then σαpβq P R.

(iv) R is connected in the sense that there exists a finite sequence of elements
αk P R, 0 ď k ď n with α “ α0, β “ αn and pαk, αk`1q ‰ 0 for 0 ď k ă n.

(v) The subspace of degenerate elements V 0 :“ tv P V : pv, V q “ t0uu inter-
sects spanZpRq in a non-trivial cyclic group.

A LARS is called reduced, if it satisfies

(vi) RαXR “ t˘αu.

Definition 3.28. [Ne10, cf. Definitions 1.2 and 3.1] We consider a split quadratic
Lie algebra pa, h, κq and its root system ∆ :“ ∆pa, hq; we further recall Remark
3.5(2), which implies that α7 :“ 5´1pαq exists for all roots α P ∆, and thus
every root can be assigned a length }α} :“

a

κpα7, α7q.
The split quadratic Lie algebra pa, h, κq is called a locally extended affine Lie
algebra, in short LEALA, if its set of integrable roots, ∆i, is connected, and all
roots α P ∆ satisfying }α} ‰ 0 are integrable.
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With V :“ spanQp∆iq, it is called a locally affine Lie algebra , in short LALA,
if pV,∆i, κ|V q is a locally affine root system.

In order to apply these notions to the root decomposition of twisted Hilbert–
Lie algebras, we need to prepare an appropriate quadratic form on

it10 ‘ Rδ “ spanRp∆iq.

It is most convenient to define it on all of it1g first, pointing out its relation to

the split-quadratic structure of gC.

Definition 3.29. As in Definition 1.31, the Lorentz-form κ on g can be regarded
as an injective homomorphism gÑ g1. Its image is dense, and its restriction to
tg is an isomorphism to t1g. We consider the push-forward of κ to t1g and denote

its hermitian extension by η : ptCg q
1 ˆ ptCg q

1 Ñ C.
Note that the restriction of this hermitian form to both t1g and it1g » pitq

1
g are

Lorentz-forms. We will also denote them by η and it will be clear from the
context which types of arguments are considered.

Proposition 3.30. Let k be a simple Hilbert–Lie algebra with complexification
kC, and V :“ spanQp∆iq, which is a dense rational subspace of it1g ‘ Rδ. Then
pV,∆i, η|V q with ∆i Ă ∆ from Proposition 3.23 is a reduced LARS.

Proof. We are verifying the list from Definition 3.27 point by point:

(i) is proven in [Ne14], between the Lemmas D.2 and D.3.

(ii) We consider pkCqϕ, which is a Hilbert–Lie algebra, and write any two roots
α, β P ∆i as

α “ α0 ` nαδ and β “ β0 ` nβδ P Cc˚ ‘ tC0 ‘ Cd˚.

Then the corresponding coroots have the form

α̌ “ psα̌, α̌0, 0q and β̌ “ psβ̌, β̌0, 0q P Cc‘ tC0 ‘ Cd.

Thus, pα, βq “ pα0, β0q “ β70pα0q, and the property pα,βq
pα,αq P Z follows from

pα0,β0q

pα0,α0q
P Z, which can be derived from the explicit description of the root

systems of Hilbert–Lie algebras in Equation (3.2) in Remark 3.23 using
β̌0 “

2

pβ70,β
7
0q
β70.

(iii) follows from the construction of the root system ∆pgC, tCg q from the sub-
systems p∆kq0ďkďordpϕq´1 in Remark 3.21 and Proposition 3.23.

(iv) is equivalent to the irreducibility proven in [Ne14, Lemma D.4].

(v) is an application of 3.23: The set of degenerate roots equals pZzt0uqδ.

(vi) follows from [Ne00b, Proposition I.6].
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Corollary 3.31. We consider the dense subspace

tCalg :“ spanCp∆̌,dq Ă tCg

and the dense subalgebra

gCalg :“ tCalg ‘
à

αP∆

gCα Ď gC.

Then, gCalg is a locally affine Lie algebra.

Lemma 3.32. If k is separable and simple, then there exists a strictly ascending
sequence pgnqnPN of subalgebras of g such that

(i) gfin :“
Ť

nPN gn is dense in g,

(ii) every gn is isomorphic to a double extended loop algebra over some com-
pact Lie algebra kn,

(iii) the abelian subalgebras tn :“ gn X tg are Cartan subalgebras of the gn.

Proof. This is a direct translation of [Ne10, Proposition 3.3(ii)] to the setting
of loop algebras. That proposition asserts the existence of an exhaustion of ∆i

by an ascending sequence of affine root systems ∆n for n P N, which correspond
to affine Kac–Moody algebras an :“ gp∆nq ‘ Cd. The theory of affine Kac–
Moody algebras is fully developed in [Ka83], the only part we need here is
[Ka83, Theorem 8.5], according to which an is isomorphic to a double extended
Lie algebra of polynomial loops over some complex finite-dimensional simple
Lie algebra sn, i.e. an “ pCc‘ωL

pol
ϕn snq¸Cd for an appropriate automorphism

ϕn. Now, to get back to real Lie algebras, we note that intersecting an with g is
the same as taking the unitary real form aRn of an which corresponds to g Ă gC.
As in Remark 3.18, this equals pRc‘ω L

pol
ϕn knq ¸Rd for a suitable real form kn

of sn.
Recalling the latest corollary, we find that gCalg “ gp∆q ‘ Cd, and from this it

becomes clear that the an exhaust gCalg. Thus, the real forms aRn exhaust gCalgXg,
and all that is left to do is to define the gn as the Fréchet completions of the
aRn . Now (i) follows from

Ť

nPN gn containing gCalgXg, which is dense in g, (ii) is
the definition of the gn, and (iii) follows from the construction out of ∆n Ă ∆i,
which determines the Cartan subalgebra of gn.

Locally finite and locally affine root systems exhibit their own convex geome-
tries, which are invariant under the action of their respective Weyl groups:

Definition 3.33. The Weyl group of a LARS pV,R, p¨, ¨qq is defined as

WpRq :“ xσα : α P Ry.

Remark 3.34. Recall the LARS pV,∆i, η|V q from Proposition 3.30. In this
case, the reflections σα generating the associated Weyl group Wp∆iq are of the
form

σαpλq :“ λ´ 2
ηpλ, αq

ηpα, αq
α for all λ P V Ă it1g.
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Obviously, these generators, and thus the natural Weyl group action on V , im-
mediately extend to it1g, and can be pulled back to itg via the injection itg Ñ it1g
defined by ´κ. This yields a faithful representation which we will identify with
Wp∆iq.
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4 Lowest weight representations and a convexity
theorem

The bridge we have established between Hilbert loop algebras and locally affine
root systems, and in particular the connection between the adjoint action and
the Weyl group, would already allow to prove a convexity statement

Oλ|tg Ď convpW.λq

for certain weights λ P t1g, by applying convexity theorems from the represen-
tation theory of locally affine Lie algebras, see [Ne10, Section 4]. We will come
to this in the second subsection of this chapter, but in order to generalise this
statement to as many weights as possible, which is all weights with λpcq ‰ 0,
we first need to understand the W-invariant convex geometry on t1g.

4.1 Convex geometry of Weyl group orbits

At some point in the development of a convexity-theorem for coadjoint orbits,
we will need sharp information about the convex geometry which the Weyl
group action induces on t1g. The main source for this information will be [HN14].

For any subset E Ă V of a locally convex real vector space, we write

E‹ :“ tλ P V 1 : p@x P Eqλpxq ě 0u, and BpEq :“ tλ P V 1 : suppλpEqq ă 8u,

and for F Ă V 1:

F ‹ :“ tx P V : p@λ P V 1qλpxq ě 0u, and BpF q :“ tx P V : suppF pxqq ă 8u;

The cones E‹ and F ‹ are called the dual cones of E and F .

[HN14, Definition 1.1] With an arbitrary index set S, we consider a triple
pV, pαsqsPS , pα̌sqsPSq of a finite-dimensional real vector space V , a family pαsqsPS
of linear functionals on V and a family pα̌sqsPS of elements of V with αspα̌sq “ 2
for all s P S. In this context, we denote the group generated by the reflections

σs : V Ñ V, σpxq :“ x´ αspxqα̌

by W; the connection of these groups with the Weyl groups of Lie algebras will
become clear soon.
Such a triple is called a linear Coxeter system if it has the following properties:

(LCS1) The fundamental chamber , i.e. the convex cone

K :“ tx P V : p@s P Sqαpsq ě 0u

has inner points.

(LCS2) For all s P S, the functional αs is not contained in conetαr : r ‰ su.

(LCS3) σK0 XK0 “ H for every σ PWzt1u.
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If S is finite, then W is called a Coxeter group.

Further important notions and notation from the context of convex and Cox-
eter geometry are:

(CG1) The convex cone T :“W.K is referred to as the Tits cone.

(CG2) For the faithful dual action of W on V 1, in analogy to the coadjoint
action, we use the notation σ˚λ :“ λ ˝ σ for all σ P W, λ P V 1. The
elements of R :“

Ť

sPS W
˚αs are called roots.

(CG3) If α “ σ˚αs P R is a root, then α̌ :“ σα̌s is called the associated coroot ;
the set of coroots is denoted by Ř, accordingly.

(CG4) CS :“ conetαs P V
1 : s P Su and ČS :“ conetα̌s P V : s P Su.

(CG5) Cx :“ conetα P R : αpxq ą 0u for x P V and

Čλ :“ conetα̌ P Ř : λpα̌q ą 0u for λ P V 1.

In the following we show how these notions apply to the root space decompo-
sition with respect to ∆ :“ ∆pgC, tCg q of a double extended twisted loop algebra
g :“ pRc‘ω Lϕkq ¸ Rd with compact simple k.

Definition 4.1. A simple system, also called root basis, is a linearly indepen-
dent, and therefore finite, subset Π Ă ∆i such that for every α P ∆ there exists
a family of roots pαsqsPI Ă Π and a family of natural numbers pzsqsPI Ă N with
either

α “
ÿ

sPI

zsαs or α “ ´
ÿ

sPI

zsαs.

To a simple system Π Ă ∆i we associate a fundamental chamber

KpΠq :“ tx P itg : p@α P Πqiαpxq ě 0u

and the Coxeter group

WpΠq :“ xσα P GLpitgq : α P Πy; (4.1)

the definition of the Weyl group in [Ka83, §3.7] coincides with this definition,
which means that the Weyl group in [Ka83] is automatically a Coxeter group.
Furthermore:

Proposition 4.2. [Ka83, Proposition 3.12] If S Ñ Π, s Ñ αs is an indexing
of a simple system Π Ă ∆ and V :“ itg, then pV, pαsqsPS , pα̌sqsPSq is a linear
Coxeter system.

In Definition 3.33, we have defined the Weyl group Wp∆iq without referring
to any simple system of ∆i, because in the locally affine case, these are not
well-behaved. As a consequence, we have to make sure that, in the affine case,
Definition 3.33 is equivalent to (4.1). This has already been shown in [Ka80]
and summarised in [Ne00b, Theorem II.7] for a larger class of Lie algebras, of
which the following is a direct application:
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Proposition 4.3. If ∆i Ă ∆pgC, tCg q for g :“ pRc‘ω Lϕkq ¸ Rd with compact
simple k, and Π Ă ∆i a simple systems as defined in Definition 4.1, then

(i) WpΠq “Wp∆iq and

(ii) WpΠq.Π “ ∆i.

Definition 4.4. For a linear Coxeter system pV, pα̌sqsPS , pαsqsPSq we set

ČS :“ conetα̌s : s P Su Ď V and CS :“ conetα̌s : s P Su Ď V 1.

With R and Ř denoting the roots and coroots of the Coxeter system as in
(CG2) and (CG3), for all v P V , we further define

Čv :“ conetα̌ P Ř : αpvq ą 0u Ď V and Cv :“ conetα P R : αpvq ą 0u Ď V 1.

Remark 4.5. If a linear Coxeter system pV, pα̌sqsPS , pαsqsPSq comes from the
root space decomposition of an affine Lie algebra, then the members of pα̌sqsPS
and pαsqsPS are related via the non-degenerate symmetric form η from Defi-
nition 3.29, specifically α̌ “ 2

ηpα,αqα
7, which implies that ČS is pointed, and

thus Č‹S is a fundamental chamber of another linear Coxeter system, namely
pV 1, pαsqsPS , pα̌sqsPSq, which shares its Weyl group with the first one.
Depending on a choice of sign, its Tits cone equals either

pV 1q`0 :“ tλ P V 1 : λpicq ą 0u Y iRd˚

or ´pV 1q`0 .

With Proposition 4.3 it has become clear that Coxeter geometry is directly
applicable to Cartan subalgebras and Weyl groups. We proceed to the inspec-
tion of the convex geometry of Weyl group orbits. By far the greater part of
this has been accomplished in [HN14], and the part of that paper which deals
with Coxeter systems culminates in the following Theorem:

Theorem 4.6. [HN14, Theorem 2.7] If pV, pα̌sqsPS , pαsqsPSq is a linear Coxeter
system, then

W.v Ă v ´ Čv for all v P T.

Corollary 4.7. Because convpW.vq is W-invariant and σČv “ Čσv is convex
for every σ PW, we immediately get

convpW.vq Ď
č

σPW

σpv ´ Čvq.

In the following, this inclusion will be sharpened to the point where equality
holds. We will use the abbreviations

copvq :“ convpW.vq and copvq :“ convpW.vq,
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as well as

secpvq :“
č

σPW

σpv ´ Čvq.

Because we will not assume that the linear Coxeter system pV, pαsqsPS , pα̌sqsPSq
comes from the root space decomposition of a Lie algebra, we use the definition
∆ :“

Ť

sPS W
˚αs for the set of roots, and ∆` :“ ∆X CS .

Lemma 4.8. Let Wv denote the stabilizer in W of some v P T ; we collect some
important properties of linear Coxeter systems:

(i) CS “ K‹ “ conetα P ∆ : p@x P K0qαpxq ą 0u.

(ii) Čv Ď ČS for all v P K. Equality holds if, and only if, v P K0.

(iii) Čv is invariant under Wv.

In the following, we assume that v P T 0.

(iv) Čv “
Ş

σPWv
σČS for all v P K.

(v) secpvq “
Ş

σPW σpv ´ ČSq for all v P K.

(vi) Čv is closed.

Proof. (i) This follows from every α P ∆ being either positive or negative
on K0, [HN14, Remark 1.11].

(ii) For v P K, it follows from (i) that Cv Ď CS , with equality if and only
if v P K0, and [HN14, Theorem 1.10] implies in particular that any root
satisfies α P CS if and only if α̌ P ČS .

(iii) If αpvq ą 0, then for σ P Wv we get pσ´1q˚αpvq “ αpσvq “ αpvq ą 0, so
the invariance follows from

σtα̌ P ∆̌ : αpvq ą 0u “ tα̌ P ∆̌ : pσ´1q˚αpvq ą 0u.

(iv) For v P V we set Sv :“ ts P S : αspvq “ 0u; if α P ∆`, but α̌ R Čv, i.e.
αpvq “ 0, then α̌ P ČSv :“ conetα̌s : s P Svu, so that ČS “ Čv ` ČSv . To
this, [Ne00a, Corollary V.2.10] (with x :“ 0) applies, yielding

č

σPWv

σČS “
č

σPWv

σpČSv ` Čvq “ Čv.

(v) By applying (iv), we get

secpvq “
č

σPW

č

σ1PWv

σσ1pv ´ ČSq “
č

σPW

σpv ´ ČSq.

(vi) Because T “ WK, we may assume that v P K. Further, ČS is a finitely
generated convex cone in a finite-dimensional vector space, so, by (iv), Čv
is an intersection of closed sets.
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That Čv is closed implies copvq Ď secpvq. To prove a first version of the
reverse inclusion, we need two more technical lemmas:

Proposition 4.9. Let C ‰ H be an open convex cone in a finite-dimensional
real vector space V , Γ Ă GLpV q be a subgroup that stabilises C and satisfies
|detpAq| “ 1 for all A P Γ, and v P C. Then convpΓ.vq Ă C.

Proof. By [HN93, Theorem 1.8] there exists a smooth, and in particular con-
tinuous, convex Γ-invariant function f : C Ñ p0,8q such that for every c ą 0
the sublevel set Fc :“ tv P C : fpvq ď cu is a convex subset of C which is closed
in V . Because f is Γ-invariant, convpΓ.vq Ď Fc for all v P C, and because Fc is
closed, convpΓ.vq Ď Fc Ă C as well.

Corollary 4.10. If V is the vector space of a linear Coxeter system, then
copvq Ă T 0 for all v P T 0.

Lemma 4.11. If v P T and w P Čv, there exists ε ą 0 such that v´εw P copvq.

Proof. By definition, w “
řk
j“1 cjα̌j for some k P N, cj ą 0 and roots satisfying

αjpvq ą 0. Obviously, σαj pvq “ v ´ αjpvqα̌j P copvq, so for all combinations

dj ą 0 with
řk
j“1 dj ď 1 and d0 :“ 1´

řk
j“1 dj we find

v ´
k
ÿ

j“1

djαjpvqα̌j “ d0v `
k
ÿ

j“1

djpv ´ αjpvqα̌jq P copvq.

So, if we set vt :“ v ´ tw, then

vt “ v ´
k
ÿ

j“1

tcjα̌j “ v ´
k
ÿ

j“1

t
cj

αjpvq
αjpvqα̌j ,

which, by the previous formula, is contained in copvq if t is small enough so that
řk
j“1 t

cj
αjpvq

ď 1.

Theorem 4.12. If v P T 0, then copvq “ secpvq.

Proof. The inclusion copvq Ď secpvq is Corollary 4.7 above, and with Lemma
4.8(vi) this becomes copvq Ď secpvq. Further, because T “WK, we may assume
that v P K.
In an intermediate step, we show that K X pv ´ Čvq Ď copvq.
So, let u P K X pv ´ Čvq, and consider the line segment

γ : r0, 1s Ñ K, γptq :“ v ` tpu´ vq;

then γ´1pcopvqq “ r0, rs for some r P r0, 1s, and we have to show that r “ 1.
If αpvq ą 0 for some α P ∆, then α P K‹, which implies αpuq ě 0. For 0 ď t ă 1,
this leads to αpγptqq ą 0 and thus Čv Ď Čγptq.
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Suppose that r ă 1 and set u1 :“ γprq P copvq “ p1´rqv`cu; because u P v´Čv
according to our assumption, v ´ u P Čv, and thus

u1 ´ u “ p1´ rqpv ´ uq P Čv Ď Ču1 .

By Lemma 4.11, there exists ε ą 0 such that u1 ´ εpu1 ´ uq P copu1q Ď copvq,
where the last inclusion comes from u1 P copvq. Now

u1 ´ εpu1 ´ uq “ v ` rpu´ vq ` εp1´ rqpu´ vq “ λpr ` εp1´ rqq,

which contradicts the maximality of r, so that we have shown r “ 1 and thus
K X pv ´ Čvq Ď copvq.
Again, because T “ WK, for every w P T X secpvq, there exists a σ P W such
that σpwq P K, and because w P σ´1pv´Čvq in particular, σpwq P KXpv´Čvq,
which shows that T X secpvq Ď copvq.
For the last step we note that copvq Ă T 0, so TXsecpvq cannot intersect BT , and
because of connectedness, secpvq Ă T 0, which finally shows secpvq Ď copvq.

4.2 The convexity theorem for weights

Definition 4.13. Let a be a complex quadratic Lie algebra with a unitary real
form ˚. A unitary representation of a is a complex pre-Hilbert space h with an
action ρ : a Ñ Bphq such that, for every x P a, the adjoint operator of ρpxq
exists and ρpx˚q “ ρpxq˚.
This implies that the real subalgebra aR :“ tx P a : x˚ “ ´xu acts by skew-
symmetric operators, i.e. ρpaRq Ď uphq, hence the name.

Definition 4.14. Let a be a split Lie algebra. Then an a-module L is called
split with respect to the splitting maximal abelian subalgebra h if h acts on L
by diagonalisable operators. We will generally denote the weight spaces by

Lλ :“ tv P L : p@h P hqh.v “ λphqvu for λ P h1

and the set of weights (also called weight system) by

PL :“ tλ P h1 : Lλ ‰ t0uu.

The module L is called integrable if for every integrable root α every x P aα
acts as a locally nilpotent operator.

Definition 4.15. [Ne10, Definition 4.4] If h is a splitting Cartan subalgebra of
some Lie algebra a, then a subset ∆` Ă ∆ :“ ∆pa, hq is called a positive system
if

(i) ∆ “ ∆` 9Y´∆` and

(ii)
ř

αPF α ‰ 0 for every finite subset F Ă ∆`.

54



Remark 4.16. For every positive system ∆` the subspaces

n` :“
à

αP∆`

aα and n´ :“
à

αP´∆`

aα

are subalgebras. If a “ gC for a double extended Hilbert loop algebra g and,
accordingly, h “ tCg , then, for tCalg as in Corollary 3.31, gCalg “ n´ ‘ tCg ‘ n`.

Definition 4.17. Let h be a splitting Cartan subalgebra of some Lie algebra a,
and ∆` Ă ∆ :“ ∆pa, hq be a positive system. An h-split a- module is called a
module of highest weight λ, if there exists a weight λ P PL such that the weight
space Lλ satisfies n`pLλq “ t0u and Lλ generates L.

Definition 4.18. If h is the splitting Cartan subalgebra of a Lie algebra a,
and ∆ :“ ∆pa, hq the corresponding root system, then a weight λ P h1 is called
integral if λp∆̌iq Ď Z.

Proposition 4.19. For a simple Hilbert–Lie algebra k, we consider the double
extended loop algebra g :“ pRc‘ω Lϕkq ¸ Rd with root system ∆ :“ ∆pgC, tCg q,

and recall from Corollary 3.31 the dense subspace tCgalg
:“ spanCp∆̌,dq Ă tCg and

the dense locally affine subalgebra

gCalg :“ tCgalg
‘

à

αP∆

gCα Ď gC.

Then, for every integral weight λ P it1g with λpcq ‰ 0 and positive system
∆` Ă ∆ such that λpα̌q ě 0 for all α P ∆`, there exists a simple (i.e. not
containing any proper submodule) highest weight module Lalgpλ,∆

`q of gCalg.

Proof. For a locally affine Lie algebra as in [Ne10, Definition 3.1], such a
module is constructed in [Ne10, Definition 4.2].
From Proposition 3.30 and Corollary 3.31 we know that ∆i Ă ∆ is a LARS and
gCalg is a locally affine Lie algebra.

Definition 4.20. According to [Ne10, Proposition 4.9], if ∆`
1 and ∆`

2 are
positive systems satisfying the assumptions of Proposition 4.19, then

Lalgpλ,∆
`
1 q » Lalgpλ,∆

`
2 q.

Hence, we will write Lalgpλq for the gCalg-module of highest weight λ as in the
prerequisites of Proposition 4.19.
We will denote the corresponding action by ρλ : gC ñ Lalgpλq.

Proposition 4.21. Lalgpλq has the following properties:

(i) Pλ :“ PLalgpλq Ď λ´ spanNp∆
`q.

(ii) Pλ “ convpW.λq X pλ` spanZp∆qq.

(iii) Lalgpλq is a pre-Hilbert space, on which galg acts unitarily, i.e. by skew-
adjoint operators.
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Proof. (i) For any root space gCα Ă gCalg, weight space Lγ Ă Lalgpλq and non-

zero x P gCα and v P Lγ , we have x.v P Lγ`α, so (i) follows from Definition
4.17.

(ii) follows from [Ne10, Theorem 4.10(b)], and

(iii) from [Ne10, Theorem 4.11].

Proposition 4.22. Let K be a 1-connected compact simple Lie group and
k “ LpKq endowed with the appropriate normalized inner product, and G a
connected Lie group with LpGq “ g “ pRc‘ωLϕkq¸Rd as in Proposition 3.13.
Let further λ P it1g be an integral weight with λpcq ‰ 0 which is d-minimal in
the sense that λp´idq “ minpW.λp´idqq.
Then, there exists a unitary Lie group action πλ : G ñ Hλ on the Hilbert space
completion Hλ :“ Lalgpλq such that the induced action

Lpπλq : g ñ H8
λ

on the dense subspace of smooth vectors H8
λ , i.e. those vectors whose orbit

map is smooth, satisfies

Lpπλq|galg
“ ρλ|galg

.

Proof. Because λ is d-minimal, by [HN14, Corollary 2.6], we have λ P ´C‹d,
where Cd “ tα̌ : αp´idq ą 0u, and

C‹d “ tγ P it
˚
g : p@α P ∆qαp´idq ą 0 ñ γpα̌q ě 0u,

i.e. λpα̌q ď 0 for all roots α with αp´idq ą 0.
This implies that there is a positive system ∆` with λp∆̌`q Ă N0 which contains
all roots with αp´idq ą 0 and with respect to which the underlying module
Lalgpλq Ă Hλ equals the highest weight module Lalgpλ,∆

`q.
By Proposition 4.21, Pλ Ď λ´ spanNp∆

`q, so λp´∆̌`q Ď ´N0 implies that the
spectrum of ρλpα̌q is negative for all α P ∆`.
Now, consider the Lie algebra pkϕ :“ Rc ‘ kϕ ‘ Rd with the natural injection
ppkϕqC ãÑ gC, and let Spλq Ă Lalgpλq be the unitary ppkϕqC-module generated by
the weight space Lλ Ă Lalgpλq.

This is a ppkϕqC-module of highest weight λ with respect to the positive system

∆`
s :“ ∆` X∆ppkϕqC, tC0 q.

From [HN12, Proposition 7.3.14] follows that Spλq is finite-dimensional, because
ppkϕqC is a direct sum of a semisimple and an abelian finite-dimensional Lie al-
gebra, and the abelian summand acts by scalar multiplications. This implies
that the action ppkϕqC ñ Spλq integrates to a unitary action of the Lie group
pKΦ “ S1 ˆ KΦ ˆ S1 Ă G, which is automatically bounded. We denote this
action by χ : pKΦ ñ Spλq.
This and the aforementioned negativity of the spectrum make [JN18, Propo-
sition 8.6] applicable, which implies that there exists a complex Hilbert space
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H with an irreducible smooth unitary action ϑ : G ñ H and an injection
ι : Spλq ãÑ H such that the following diagram commutes:

pKΦ ˆ Spλq GˆH

Spλq H.

idGˆι

χ ϑ

ι

By construction, the complex linear extension of the induced Lie algebra action
Lpχq : pkϕ ñ Spλq is identical with the restriction of ρλ to ppkϕqC Ă gCalg. We also
consider the induced action Lpϑq : g ñ H8, where

H8 “ tv P H : GÑ H, g Ñ g.v is smooth u,

and its complex linear extension to gC, which we also denote by Lpϑq.
With these, we get a corresponding commuting diagram for the complex linearly
extended induced actions on the smooth vectors:

ppkϕqC ˆ Spλq gC ˆH8

Spλq H.

idgˆι

ρλ Lpϑq

ι

Looking at the image ιpvλq P H
8 of a generating weight vector vλ P Lλ Ă Spλq,

we find that it generates a gC-module contained in H8, and thus, because H

is irreducible, it generates H8. This allows us to identify H8 with H8
λ , and

thus to pull back the action ϑ of G on H to Hλ. This completes the proof.

Theorem 4.23. If G is a double extended loop group over a 1-connected, com-
pact, simple Lie group K and g “ LpGq, then, for every integral weight λ P it1g
with λpcq ‰ 0, its coadjoint orbit Oλ satisfies

Oλ|itg Ď copλq. (4.2)

Proof. Because λ is assumed to be integral, [Ne14, Remark 4.5] applies, which
states that the orbit of λ under the Weyl group contains a d-minimal element.
Thus, because our claim only deals with the Weyl group orbit of λ instead of
λ itself, we may w.l.o.g. assume that λ is d-minimal, so that, by Proposition
4.22, we have a group action πλ of G on the gCalg-module H8

λ Ă Hλ of smooth
vectors.
On the projective space PpH8

λ q we consider the momentum map

Φλ : PpH8
λ q Ñ g1, Φλprvsqpxq :“ ´i

xρλpxqv, vy

xv, vy
for allx P g. (4.3)

For a generating weight vector vλ and any g P G, we may calculate

Φλprπλpgqpvλqsqpxq “ ´ixρλpxqπλpgqvλ, πλpgqvλy

“ ´ixρλpAdpg´1qxqvλ, vλy “ ΦλprvλsqpAdpg´1qxq.
(4.4)
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By another direct calculation, for any weight γ P Pλ (including λ in particular)
and corresponding weight vector vγ P Lγ Ă H8

λ , we find

Φλprvγsqpxq “ ´i
xρλpxqvγ , vγy

xvγ , vγy
“ ´i

xγpxqvγ , vγy

xvγ , vγy
“ ´iγpxq for all x P tCgalg

,

which means Φλprvγsq|tg “ ´iγ, so (4.4) implies that

Oλ|tg Ď ImpΦπΛq|tg .

Next, we relate the right hand side to convexity; for this, we note that Hλ has
an ONB of weight vectors so that every rv0s P PpHλq can be represented by a
normed vector v P Hλ satisfying v “

ř

γPPλ
qγbγ with orthonormal basis vectors

bγ , coefficients qγ P r0, 1s and
ř

γPPiλ
q2
γ “ 1. Thus, for every x P tg:

Φλprv0sqpxq “ ´ixρpxqv, vy “ ´i
ÿ

γPPiλ

q2
γγpxq,

and therefore ImpΦλq|tg Ď ´iconvpPiλq. Proposition 4.21(ii) now implies that

convpPλq “ convpW.λq,

which completes the proof.

Proposition 4.24. If k is finite-dimensional, then

Oλ|itg Ď copλq (4.5)

for all weights λ P it1g with λpcq ‰ 0.

Proof. We choose a positive system ∆` Ă ∆i with λp∆`q Ď N0, and from
that a family pαsqsPS such that tαs : s P Su is a simple system of ∆i. Theorem
4.6 applies to it1g and W, which means that W.γ Ď γ ` Cγ for every γ P it1g
that satisfies sgnpγpcqq “ sgnpλpcqq ‰ 0. If, in addition, γ lies in the Tits cone
associated with pαsqsPS , then

W.γ Ď γ ` Cγ Ď γ ` CS . (4.6)

We denote the set of integral weights by Q and note that they form a lattice
generating ipt10 ` Rd˚q ãÑ it1g, which implies that

QQ :“ spanQpQq “
1

N
Q

is dense in ipt10 ` Rd˚q. Note that Proposition 4.2 and Remark 4.5 imply that
CS Ă ipt10 ` Rd˚q has interior points, and thus λ ´ CS has nonempty interior
relative to the affine hyperplane λ ` ipt10 ` Rd˚q. Note further that both the
prerequisites and conclusion of this proposition are stable under multiplication
with positive constants, so we can w.l.o.g. assume that λpcq is rational; from
this follows that there exists a sequence pνjqjPN approximating λ, such that
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νj P QQ X pλ´ CSq, and therefore νj ´ CS Ď λ´ CS for every j P N.
Because the inclusion (4.2) from Theorem 4.23 is stable under multiplication
with positive constants, it also applies to νj for every j P N. Combining it with
(4.6) we get

Oνj |itg Ď νj ´ Cνj Ď λ´ CS ,

and thus
Oνj |itg Ď secpνjq Ď secpλq.

Now the right hand side is independent from j, and from the closedness of
secpλq we conclude that, for every g P G,

lim
jÑ8

pAd˚pgqνjq|itg P secpλq,

i.e. Oλ|itg Ď secpλq, and by applying Theorem 4.12 and Lemma 4.8(v) this
becomes

Oλ|itg Ď copλq.

Theorem 4.25. If g is a double extended loop algebra over some simple Hilbert–
Lie algebra k, then

Oλ|itg Ď copλq

for all weights λ P it1g with λpcq ‰ 0.

Proof. By 3.32, there exists an ascending sequence pgjqjPN of double extensions
of loop algebras such that gfin “

Ť

jPN gj is dense in g. Then for every j P N we

set gj,0 :“ gj XLϕk and obtain a decomposition g “ gj ‘ rj , where rj :“ gKj,0
with respect to the invariant inner product on Lϕk. The orthogonality implies
that αpzq “ pz, α7q “ 0 for all α P ∆j :“ ∆pgCj , t

C
g X gCj q and z P rj X t0, and

thus rz, gjs “ t0u; we can use this to approximate adjoint and coadjoint orbits
via an exhaustion of Lie groups:
Every gj contains Rc, the center of g, so we can define Lie groups Gj Ă G
acting on g via the adjoint action as Gj :“ xexpLΦK¸RTpgj{Rcqy.
Thus, for every x P g we can write x “ yj ` zj P g with yj P tg X gj and
zj P tg X rj , and get AdpGjqpxq “ AdpGjqpyjq ` zj for the adjoint orbit of x
under Gj .
A corresponding decomposition of g1 is obtained by λ “ µj`νj with µjprjq “ t0u
and νjpgjq “ t0u for all λ P g1, i.e. g1 “ g1j ‘ r1j .
These decompositions are compatible with the injection of t1g into g1 correspond-
ing to κ, and they extend linearly to the complexifications of g and g1. So for
every g P Gj and x “ yj ` zj P itg we have

Ad˚g pλqpxq “ λpAdg´1pxqq “ λpAdg´1pyjq ` zjq “ µpAdg´1pyjqq ` νjpzjq,

which implies

Ad˚pGjqpλq|itg “ Ad˚pGjqpµjq|itg ` νj for all λ P it1g.

Now for every j P N, Proposition 4.24 applies to Gj and µj P ig
1
j , so

Ad˚pGjqpλq|itg Ď convpWj .µjq ` νj Ď copλq,
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where Wj :“ Wp∆jq and the last inequality is due to Wj Ď W and νj being
invariant under Wj . Now every g P G can be approximated by some sequence
pgjqjPN with gj P Gj , and we thus obtain our assertion.

60



References

[AK94] N.S. Agrawal and S. Kulkarni, A spectral theorem for a normal operator
on a real Hilbert space, Acta Scientiarum Mathematicarum 59 (1994),
441-451

[AA97] B. Allison, S. Azam, S. Berman, Y. Gao and A. Pianzola, Extended
affine Lie algebras and their root systems, Memoirs of the American
Mathematical Society 603 (1997)

[AP83] M.F. Atiyah and A.N. Pressley, Convexity and Loop Groups, Arithmetic
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