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Einleitung

Der abstrakteste Kontext, in dem der Hauptsatz dieser Dissertation formuliert
werden kann, vereinigt zwei Konzepte aus der Lie Theorie: das einer Wurzel-
raumzerlegung einer (komplexen) zerfillbaren Lie-Algebra, und das einer adjun-
gierten Wirkung einer reellen Lie-Gruppe.

Sei G zunichst eine Lie-Gruppe mit der Eigenschaft, dass ihre Lie-Algebra
g := L(G) eine maximale abelsche Unteralgebra h c g enthélt, deren Komple-
xifizierung hC := h @ ih in g€ := gD ig zerfillend ist. Im endlichdimensionalen
Fall heifit das, wenn V' den topologischen Dualraum eines Vektorraums V be-
zeichnet, und

go = {zeg: (Vheh)|h z] = a(h)z} mit ae (hC)
die Wurzelrdume sind, und

A= A(g,h) == {a e h'\{0} : ga # {0}}

das Wurzelsystem ist, dass es eine entsprechende Wurzelraumzerlegung gibt:
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In dem unendlichdimensionalen Szenario, an dem wir hauptséchlich interessiert
sind, ist g eine topologische Lie-Algebra, d.h. g ist ein topologischer Vektorraum
mit stetiger Lie Klammer. Wurzelrdume sind hier genauso definiert, aber die
Wurzelraumzerlegung ist topologisch zu verstehen in dem Sinn, dass
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als Unteralgebra dicht in g€ liegt. Man beachte, dass diese Zerlegung eine
natiirliche Einbettung von (h®)" in (g*)’ erméglicht, als den Unterraum der
Funktionale, die alle Wurzelrdume auf 0 abbilden.

Zusétzlich zu den bisherigen Annahmen miissen wir fordern, dass Jalg i = ggg Ng
eine unitdre reelle Form von ggg ist; dieser Begriff ist eine direkte Verallgemei-
nerung des Begriffes einer kompakten reellen Form einer endlichdimensionalen
komplexen halbeinfachen Lie-Algebra auf die Klasse der komplexen zerfallbaren
quadratischen Lie-Algebren. Sie ist definiert als die reelle Unteralgebra von Fix-
punkten einer antilinearen Involution  : g(a:l g g((a:lg, die mit der Wurzelraum-
zerlegung und einer invarianten symmetrischen Bilinearform im folgenden Sinn
vertraglich ist:

(i) a(x) e R fur alle Wurzeln a € A und © = z* € g((a:lg.
(ii) (g%)* = ¢C,, fiir alle a € A.
(i) k(z*,y*) = Kk(x,y) fir alle z,y € ggg.

Dies impliziert insbesondere, dass alle Wurzeln in A auf h rein imagindre Werte
annehmen.



Fine Wurzel wird als integrierbar bezeichnet, wenn Elemente z, € g, und
T_q € g_qo existieren, so dass a([zq,2-a]) # 0 und ad(x+y) lokal nilpotent
sind, d.h. fiir jedes y € ggg die Folge (ad(z+q)"y)neny nur endlich viele Glieder
ungleich 0 hat.

Die integrierbaren Wurzeln A; < A < ih sind bijektiv mit Kowurzeln assoziiert.
Dabei handelt es sich um bestimmte Elemente & € ih mit a(&) = 2, so dass die
linearen Abbildungen

oo i — b, oa(N) = A= A&)a

Spiegelungen auf dem topologischen linearen Dualraum b’ von ih sind. Die
Menge dieser Spiegelungen erzeugt die Weyl-Gruppe W := (W(A), die mit der
Wurzelraumzerlegung von g& beziiglich h® assoziiert ist.

Um auf die Lie-Gruppe G und ihrer adjungierten Wirkung Ad : G —~ g
zuriickzukommen, betrachten wir die entsprechende koadjungierte Wirkung,
welche fiir alle x € g durch

Ad* G~ g, Ad*(9)(N)(2) == MAd(g7") (@)

definiert ist, und komplex linear auf (g€) =~ ¢’ @ ig’ erweiterbar ist. Dieser

Dualraum ist mit der schwach-* Topologie ausgestattet, welche als die Initial-
topologie beziiglich der Evaluationsmorphismen ev, : (gC) — C,ev,(\) := A(2)
fir z € g€ definiert ist.

Weiterhin schreiben wir konvexe Abschliisse (d.h. Abschliisse konvexer Hiillen)
von Teilmengen S < ¢’ beziiglich der schwach-+ Topologie als conv(S) und die
koadjungierte Bahn von ¢ € (g©)’ als ©O¢ und setzen

O¢lip := {7 € ih': (I e Ox\)xlin = &}

Doppelerweiterungen von Hilbert-Schleifenalgebren bilden eine Klasse von Lie-
Algebren, die alle obengenannten Bedingungen erfiillen. Das Hauptziel dieser
Dissertation ist, diese Lie-Algebren und damit assoziierten Lie-Gruppen ausrei-
chend detailliert zu beschreiben, um zeigen zu koénnen, dass

O, |ip < conv(W.\) (0.1)

fiir ,,die meisten“ Funktionale \ € ih’ < ig’.

Konkret ist eine Doppelerweiterung (Kc @, a) x Kd einer Lie-Algebra a iiber
einem Korper K (normalerweise R or C) eine direkte Summe von Vektorrdumen
Kc @ a @ Kd mit der Klammer

[sz€ + x0 + tod, sy€ + yo + tyd] := w(xo, yo)c + [w0, yo] + t2d(yo) — tyd(x0),

wobei d : @ — a eine derivation, c ein zentrales Element, und w ein 2-Kozykel
ist, d.h. eine alternierende bilineare Abbildung a x a — K, welche die Bedingung

w(z, [y, z]) + w(z, [z, y]) + w(y, [z,2]) =0 fir alle z,y,z€ g (0.2)

erfiillt. Mit dieser Definition kann die Einschrinkung der der Gewichte A in
(0.1) zu ,A(ic) # 0“ konkretisiert werden.
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Im ersten Kapitel werden Doppelerweiterungen von Lie-Algebren und Lie-
Gruppen eingefiihrt, zunéchst fiir allgemeine Lie-Algebren, dann fiir die wichtige
Unterklasse derjenigen topologischen Lie-Algebren, die ein invariantes inneres
Produkt tragen, d.h. eine invariante, symmetrische, positiv definite Bilinear-
form. Im Kontext von Lie Algebren bedeutet , Invarianz®“ einer symmetrischen
Bilinear- (oder Hermite-) form auf a, dass die Operatoren

ad(z) : a - a,ad(x)(y) := [z, y]

fiir alle x € a beziiglich dieser Form schiefadjungiert sind.

Im Abschnitt wird die Definition von Doppelerweiterungen vorbereitet, in-
dem zentrale Erweiterungen und semidirekte Produkte von Lie-Algebren und
Lie-Gruppen definiert werden. Grundlegende Eigenschaften von beiden wer-
den hergeleitet, zusammen mit Beziehungen zwischen den jeweiligen Erweite-
rungen der Lie-Gruppen und ihrer Lie-Algebren. Doppelerweiterungen werden
dann mittels einer Kompatibilitdtsbedingung definiert, die notwendig und hin-
reichend dafiir ist, dass eine zentrale Erweiterung und ein semidirektes Produkt
eine Doppelerweiterung ergeben. Grundlegende Eigenschaften dieser Doppeler-
weiterungen werden dann auf die entsprechenden Eigenschaften der zugrunde-
liegenden Erweiterungen zuriickgefiihrt. Ein besonders wichtiger Aspekt, der
iiber einen groflien Teil dieser Dissertation regelméflig verwendet wird, ist die
Definition einer bestimmten Wirkung: wenn K eine 1-zusammenhéngende Lie-
Gruppe ist, und g eine Doppelerweiterung von ¢ := L(K), dann gibt es eine
adjungierte Wirkung von K auf g, unabhéngig davon, ob eine Lie-Gruppe G
mit g = L(G) existiert.

Abschnitt untersucht Doppelerweiterungen, die durch eine Kombination aus
einem invarianten inneren Produkt auf einer Lie-Algebra und einer schiefadjun-
gierten dufleren Derivation entstehen. Diese Doppelerweiterungen sind mit einer
invarianten Lorentz-Form

k:((Re@®y, a) x Rd) x (Re®, a) x Rd) — R,

k((c1,x1,t1), (c2, 22, t2)) := (z1,m2) — c1t2 — caty

ausgestattet. Zusammen mit ihren assoziierten invarianten Lorentzschen For-
men bilden diese doppelerweiterten Lie-Algebren die Klasse der Lorentzschen
Doppelerweiterungen, und alle doppelerweiterten Lie-Algebren, die in dieser
Dissertation behandelt werden, gehoren zu dieser Klasse.

Auf jeder Lorentzschen Doppelerweiterung kann eine Familie von invarianten
Lorentz-Formen konstruiert werden. Diese Familie wird von den reellen Zahlen
parametrisiert und hat die Eigenschaft, dass jedes Element der doppelerweiter-
ten Lie-Algebra, bis auf eine bestimmte Hyperebene, in einem offenen Lorentz-
kegel enthalten ist, der von einer invarianten Lorentz-Form definiert wird. Dies
gibt einen ersten Einblick in die invariante konvexe Geometrie, welche die ad-
jungierte Wirkung auf einer Lorentzschen Doppelerweiterung erzeugt.

Das zweite Kapitel beschreibt die adjungierte Wirkung von Hilbert-Schleifen-
gruppen auf Doppelerweiterungen ihrer korrespondierenden Hilbert-Schleifen-
algebren im Detail.
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Abschnitt gibt eine detaillierte Konstruktion dieser Objekte an. Zur Vor-
bereitung von Schleifengruppen und Schleifenalgebren, werden Hilbert—Lie-Al-
gebren und Hilbert—Lie-Gruppen kurz vorgestellt, ebenso die kompakt-offene
C*-Topologie auf C*(M,N) fiir k € Ny U {00} und C*¥-Mannigfaltigkeiten M
und N. Informationen aus [GN20] werden verwendet, um zu zeigen, dass fiir jede
Lie-Gruppe H das punktweise Produkt und die kompakt-offene C*-Topologie
LH:=C%®S' H) zu einer Lie-Gruppe mit Lie-Algebra L := C*(S', h) ma-
chen, wobei b := L(H) und die Lie Klammer die punktweise Klammer und die
Topologie die kompakt-offene C*-Topologie ist.

Es gibt auch eine getwistete Version von Schleifengruppen, die man mit einem
Automorphismus von H von endlicher Ordnung N und r := %’T durch die De-
finition

Cer(R,H):={feC(R,H): (VteR) f(t+r)=(f(t))}

erhilt. Die natiirliche Injektion von 2m-periodischen Funktionen R — H in die
Menge der Funktionen S! — H macht Ly H := Cg (R, H) zu einer Untergrup-
pe von L H. Eine Lie-Gruppen Topologie auf L' H erhélt man dann folgender-
mafen:

Es gibt einige Methoden aus dem Kontext der endlichdimensionalen Lie-Theorie,
die nicht allgemein auf das unendlichdimensionale Szenario iibertragbar sind. Im
Fall von lokal-exponentiellen Lie-Gruppen, siehe [GN20], kann ein grofier Teil
davon wiederhergestellt werden. Hilbert—Lie-Gruppen sind lokal-exponentiell,
und L H ist lokal exponentiell, wenn H lokal exponentiell ist. Dieser Begriff
wird verwendet, um eine Lie-Gruppen Topologie auf Lo H einzufithren, indem
man sie als eine Fixpunkt-Untergruppe von JL'H unter einem bestimmten Au-
tomorphismus begreift.

In Abschnitt werden Doppelerweiterungen von Hilbert-Schleifenalgebren
konstruiert. Diese sind Lorentzsche Doppelerweiterungen, wobei das invariante
innere Produkt durch Integration iiber den Einheitskreis aus dem invarianten
inneren Produkt der zugrundeliegenden Hilbert—Lie-Algebra konstruiert wird,
und die schiefadjungierte Derivation ist die Ableitung glatter Kurven.

Die Familie invarianter Lorentz-Formen wird verwendet, um folgende Formel fiir
die adjungierte Wirkung der Identitétskomponente einer Hilbert-Schleifengruppe
auf einer Doppelerweiterung ihrer Lie-Algebra herzuleiten:

Proposition 0.1. Wenn K eine Hilbert-Lie-Gruppe ist, ¢ = L(K) und
g:= (Rc@, L, t) x Rd

eine doppelerweiterte Schleifenalgebra, dann ist die adjungierte Wirkung von
L3K mit o = L(P) gegeben durch

Ad(g)(a,o,t) = (a —(6"(g),w0) — %(y(g), 6"(9)), Ade(g)(z0) — t0"(9), t),

wobei 6" (g) = ¢g'g~" die rechte logarithmische Ableitung der Kurve g ist.

Abschnitt beschlielt das zweite Kapitel mit einem Thema, das in en-
gem Zusammenhang mit Konvexitéitssidtzen steht. Die grundlegende Idee ist
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die folgende: angenommen, fiir eine Lie-Algebra g mit einer maximalen abel-
schen Unteralgebra b so, dass g€ iiber hC zerfillt, gibt es einen Konvexitéitssatz
der Form py(OQ,) < conv(W.z) fiir alle z € h, wobei O, die Bahn von x unter
der adjungierten Wirkung einer passenden Lie-Gruppe bezeichnet, und pj die
lineare Projektion auf h entlang der Wurzelraumzerlegung von g€ beziiglich h.
Dann kann dieser Satz auch auf alle Elemente y € g, die Oy nh # J erfiillen, an-
gewendet werden in dem Sinn, dass py(©,) < conv(W.z) fiir alle z € Oy nh. Um
Elemente y € g mit dieser Eigenschaft zu finden, wenn g eine doppelerweiterte
Hilbert-Schleifenalgebra ist, wird eine Klassifikation von unendlichdimensiona-
len einfachen Hilbert—Lie-Algebren verwendet. Nach dem Satz von Schue, siehe
[Sc60] und [Sc61], sind diese alle realisierbar als die Lie-Algebren der schiefad-
jungierten Hilbert—Schmidt Operatoren auf einem Hilbertraum iiber R, C oder
H; entsprechend sind alle unendlichdimensionalen Hilbert—Lie-Gruppen reali-
siert als Schnitte der isometrischen Automorphismen von # und den Hilbert—
Schmidt Stoérungen der Identitét auf €, d.h.

Proposition 0.2. Wenn K eine einfache Hilbert—Lie-Gruppe ist, dann existiert
ein Hilbertraum # diber R, C oder H, so dass

K ~Uy(#) := U(F) n (idg + gly(#)),
wobei gly(#) fiir die Menge der Hilbert—Schmidt-Operatoren auf # steht.

Damit werden wohlbekannte Spektralsdtze anwendbar, wodurch folgender
Satz abgeleitet werden kann:

Proposition 0.3. Wenn K ~ Us(#) eine einfache Hilbert—Lie-Gruppe ist, #
ein komplexer oder quaternionischer Hilbertraum, x € ¢ = L(K), die Unteral-
gebra b < € mazximal abelsch, und O, die Bahn von x unter Aut(€)y bezeichnet,
dann ist O, N h # .

Wenn statt dessen # ein reeller Hilbertraum ist, bilden die mazximal abelschen
Unteralgebren von € unter Aut(€)g zwei Konjugationsklassen.

Analoge Aussagen sind wahr wenn g die Lorentzsche Doppelerweiterung der
Schleifenalgebra £ ¢ mit ¢ = L(®) € Aut(¥) ist, und eine der beiden folgenden
Bedingungen erfiillt ist:

e Entweder ist K endlichdimensional, und folglich kompakt, dann ist LK
die passende Gruppe, die durch Adjunktion auf g wirkt, und das ent-
scheidende Konjugationstheorem kann von einem Konjugationstheorem
fiir nicht-zusammenhéngende kompakte Lie-Gruppen aus [Se68] abgelei-
tet werden.

e Oder K ist eine einfache, unendlichdimensionale Hilbert-Lie-Gruppe, und
® = idg. In diesem Fall ist die passende Lie-Gruppe LK x K, wobei
F = Aut(K)o.

In beiden Fillen verwendet der Beweis die Aquivarianzeigenschaft einer Holo-
nomieabblidung Hol : L8 — K, um ein Konjugationstheorem von K auf die
Schleifenalgebra zuriickzuziehen.



Kapitel 3 konzentriert sich auf die rechte Seite der Inklusion . Es beginnt
mit der formalen Einfiihrung der Wurzelraumzerlegung durch eine zerfillende
Cartan-Unteralgebra und dem wichtigen Konzept von integrierbaren Wurzeln.
In zerfdllbaren quadratischen Lie-Algebren werden diese Begriffe mit invarian-
ten, symmetrischen, nicht-ausgearteten Bilinearformen zusammengebracht; die
wichtigsten Eigenschaften werden zur Referenz aufgefiihrt. Lokal endliche Wur-
zelsysteme werden definiert, und Ergebnisse von John R. Schue und Nina Stum-
me werden zitiert, welche diese als die Wurzelsysteme von Komplexifizierungen
von Hilbert—Lie-Algebren identifizieren. Das heifit, die Komplexifizierung je-
der einfachen Hilbert—Lie-Algebra hat eine Wurzelraumzerlegung beziiglich ei-
nes lokal endlichen Wurzelsystems, und jede komplexe zerfillbare Lie-Algebra
mit einem lokal endlichen Wurzelsystem kann topologisch zu einer Hilbert—Lie-
Algebra vervollstandigt werden; dieser Kontext umfasst auch eine Klassifikation
dieser Wurzelsysteme in Begriffen von realisierungen von Hilbert—Lie Algebren
als Algebren von schiefadjungierten Hilbert—Schmidt-Operatoren.

Diese Identifikation liefert die Notation, die benétigt wird, um eine Bedingung
anzugeben, unter der Doppelerweiterungen von (getwisteten) Schleifenalgebren
zu glatten Doppelerweiterungen von korrespondierenden Schleifengruppen in-
tegriert werden konnen.

Abschnitt beschreibt die Wurzelraumzerlegung einer gegeben doppelerwei-
terten Schleifenalgebra im Detail. Dies gipfelt in der Folgerung, dass das Wur-
zelsystem einer Komplexifizierung einer doppelerweiterten Schleifenalgebra ein
lokal affines Wurzelsystem ist, was impliziert, dass g€ eine dichte lokal affine
Lie-Algebra gg’lg enthilt. Dies erméglicht es, eine dichte Unteralgebra gg, < g
mit einer Familie (g, ),en von doppelerweiterten Schleifenalgebren tiber kompak-
ten Lie-Algebren auszuschopfen. Diese Familie hat die Eigenschaft, dass jedes
Glied g, eine zerfillende Cartan-Unteralgebra b, hat, so dass die gerichtete
Vereinigung dieser b, eine Cartan-Unteralgebra von gg, ausschopft.

Am Ende dieses Kapitels wird die Weyl-Gruppe zu einer Wurzelraumzerlegung
einer lokal affinen Lie-Algebra und einer doppelerweiterten Schleifenalgebra de-
finiert.

Im ersten Abschnitt von Kapitel 4 wird die Geometrie konvexer Abschliisse
von Bahnen von Weyl-Gruppen im Kontext einer doppelerweiterten Schleifenal-
gebra iiber einer einfachen kompakten, d.h. endlichdimensionalen Hilbert—Lie
Algebra untersucht. Dies wird vorbereitet, indem gezeigt wird, dass die Cartan-
Unteralgebra mit ihrer Weyl Gruppe als lineares Cozxeter System aufgefasst
werden kann. Diese linearen Coxeter Systeme werden axiomatisch eingefiihrt.
Cozeter-Gruppen, die Fundamentalkammer, der Tits-Kegel, Wurzeln und Ko-
wurzeln werden definiert, letztere a priori unabhéngig vom homonymen Begriff
aus dem Kontext von Wurzelraumzerlegungen. Im néchsten Schritt werden
einfache Systeme in den Wurzelsystemen von Doppelerweiterungen von get-
wisteten Wurzelalgebren identifiziert. Diese ermoglichen es, den Begriff einer
Coxeter-Gruppe auf diesen Kontext zu iibertragen und zu zeigen, dass die-
se Wurzelraumzerlegungen zu linearen Coxeter Systemen fithren, wobei die
Coxeter-Gruppe mit der entsprechenden Weyl-Gruppe identisch ist und eine
Fundamentalkammer durch den Dualkegel eines einfachen Systems von Wur-
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zeln gegeben ist.
Das wichtigste Resultat, das auf diese Weise auf Wurzelraumzerlegungen und
Weyl-Gruppen angewendet werden kann, ist [HN14, Theorem 2.7], welches im-
pliziert, dass fiir jedes v aus der Fundamentalkammer eines linearen Coxeter
Systems gilt:
conv(W.w) < ﬂ o(v—Cs), (0.3)
oel

wobei C'g ein abgeschlossener, spitzer Kegel ist, der von v unabhingig ist. Dies
kann auf alle inneren Elemente des Tits Kegels angewendet werden, denn die
Coxeter-Gruppe konjugiert jedes solche Element in die Fundamentalkammer.
Der grofiere Teil dieses Abschnitts beschéftigt sich in der Folge damit, die Inklu-
sion zu einer Gleichheit zu verfeinern, was in einem Theorem erreicht wird,
welches sicherstellt, dass der konvexe Abschluss von /.0 mit (), o o(v — Cs)
identisch ist. Dies kann wieder auf alle inneren Punkte des Tits Kegels ange-
wendet werden.

Im letzten Abschnitt werden die Themen aus den vorangegangen Abschnitten
zusammengetragen, um folgenden Konvexitéitssatz zu beweisen:

Theorem. Wenn g eine doppelerweiterte Schleifenalgebra iber einer einfachen
Hilbert-Lie-Algebra € ist, und X € ity ein Gewicht mit \(c) # 0, dann ist

@/\’itg o= @()\)

Der grundlegende Ansatz zu diesem Beweis ist, einen Konvexitétssatz fiir

eine Teilmenge der imagindren Gewichte auf einer Cartan-Unteralgebra ty ei-
ner doppelerweiterten Hilbert-Schleifenalgebra zu zeigen, und diesen dann auf
immer groflere Teilmengen auszuweiten, bis er auf alle imagindren Gewichte
verallgemeinert ist, die auf dem Zentrum nicht verschwinden.
Die erste Version dieses Konvexitéitssatzes gilt fiir das Gitter der ganzzahli-
gen Gewichte, also den Gewichten, die ganzzahlige Werte auf den Kowurzeln
annehmen (und auf dem Zentrum nicht verschwinden); es ist abgeleitet von
der unitdren Darstellungstheorie von lokal affinen Lie-Algebren, die in [Nel0)]
entwickelt worden ist. Um dies vorzubereiten, werden die relevanten Begriffe
von unitdren und integrierbaren Darstellungen von zerfiallbaren Lie-Algebren
mit unitéren reellen Formen definiert. Eine unitére, integrierbare Darstellung
O : ggg —~ Lag(A) von hochstem Gewicht A wird definiert, die insbesonde-
re die Eigenschaft hat, dass die Wirkung von tg c ggg auf dem komplexen
pré-Hilbertraum L,jg(A) durch das Gewichtssystem

Py = conv(W.\) N (A +spany(A)) < (tg)/ (0.4)
diagonalisiert wird.
Die Methode der holomorphen Induktion, nach der Formulierung in [JN18|

Proposition 8.6], wird verwendet um p) zu einer unitéren Darstellung einer
Lie-Gruppe G mit g = L(G) auf der Hilbertraum-Vervollstandigung #) von

vii



Lig (M) zu integrieren. Anschlieflend, mit der Notation #3° < #€y fiir den dich-
ten Unterraum von Vektoren mit glatten Bahnen, wird die Impulsabbildung

O, P(HY) > g, Pr([v])(x):= —iw fir zeg
(v, v)

verwendet, um die gewiinschte Konvexitétseigenschaft von herzuleiten.
Im néchsten Schritt wird dieser Konvexitétssatz fiir den Fall einer Schleifen-
gruppe iiber einer kompakten Lie-Gruppe zu allen Gewichten A € ity (die auf
dem Zentrum nicht verschwinden) verallgemeinert. Der Beweis verallgemeinert
die Konvexititseigenschaft zunéchst auf die dichte Untermenge der rationalen
Gewichte und verwendet dann Ergebnisse aus dem 3. Kapitel iiber die konvexe
Coxeter Geometrie auf ity, um ein Approximationsargument zu ermoglichen.
Die allgemeinste Version des Konvexitétstheorems setzt nur voraus, dass g ei-
ne doppelerweiterte Schleifenalgebra iiber einer einfachen Hilbert—Lie-Algebra
ist, und dass das Gewicht \ € it’g wiederum auf dem Zentrum nicht verschwin-
det. Der Beweis verwendet eine Ausschopfung von g durch doppelerweiterte
Schleifenalgebren iiber kompakten Lie-Algebren, welche in Kapitel 3 vorberei-
tet worden ist. Dies erlaubt ein Approximationsargument aus dem kompakten
Kontext.
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Introduction

The most abstract setting in which the main theorem of this thesis can be
formulated brings together two concepts of Lie theory: that of a root space
decomposition of a (complex) split Lie algebra, and that of the adjoint action
of a real Lie group.

To start with, let G be a Lie group with the property that its Lie algebra
¢ := L(G) contains a maximal abelian subalgebra b < g such that its complexi-
fication hC := h @ i is splitting in g€ := g @ ig. In the finite-dimensional case
this means that, if V'’ denotes the topological dual space of a topological vector
space V', and

go = {xeg: (Vhebh)[h z] = a(h)z} with ae (hC)
are root spaces of, and

A= A(g,h) == {a e h'\{0} : ga # {0}}

is the root system, then we have a root space decomposition:

“ =" P
acA

In the infinite-dimensional scenario we are mostly interested in, g is a topological
Lie algebra, i.e. carries a topology such that the Lie bracket is continuous. Here,
root spaces and the root system are defined the same way, but the root space
decomposition is to be understood in a topological way in the sense that

gglg = b(c S @ gg
aceA

is a dense subalgebra of g*. Note that this decomposition provides a natural
way of injecting (h*)’ into (g€)’ as the subspace of functionals which send all
root spaces to 0.

In addition to the preceding assumptions, one has to assume that g, := g((a:lg Ng
is a unitary real form of ggg; this notion is a straightforward generalisation of
the notion of a compact real form of a finite-dimensional complex semisimple
Lie algebra to the class of complex split quadratic Lie algebras. It is defined as
the real fixed point subalgebra of an antilinear involution = : ggg — ggg which
is compatible with the root space decomposition and an invariant symmetric
bilinear form x on ggg in the following sense:

(i) a(x) € R for all roots v € A and x = z* € ggg.
(ii) (g%)* = g€, for all a € A.
(iii) k(z*,y*) = k(z,y) for all z,y € ggg.

It implies in particular that all roots in A take purely imaginary values on §.
A root « is called integrable, if there exist z, € go and x_, € g_n, such that
a([za,x—a]) # 0 and ad(z+q) are locally nilpotent, i.e. for every y € ggg the
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sequence (ad(Z+q)"Y)nen has only finitely many non-zero members.
The integrable roots A; € A < ih have coroots associated to them bijectively,
which are particular elements & € ih with a(&) = 2 so that the linear maps

oo i —ib, ou(N) = A= Ad)a

are reflections on the topological linear dual space ih" of ih. The set of these
reflections generates the Weyl group W := W (A) associated to the root space
decompositions of g€ with respect to hC.

Returning to the Lie group G and its adjoint action Ad : G —~ g, we consider
the corresponding coadjoint action, which is defined by

Ad*: G —~ g, Ad*(9)(N\)(z) := M(Ad(g~Y)(z)) forall z e g,
and extends complexly linear to (g€)’ ~ g’ ®4g’. This dual space carries the
weak-+ topology, which is the initial topology with respect to the family of
evaluation morphisms ev, : (§€) — C,ev,(\) := \(z) for z € g©.

We further write convex closures (i.e. closures of convex hulls) of subsets S < ¢’
with respect to the weak-* topology as conv(S) and the coadjoint orbit of any
¢ e (g%) as O, and set

Oclin := {y € ib": (Ix € Ox)xl|iy = &}

Double extensions of Hilbert loop algebras form a class of Lie algebras which
satisfy all the conditions above. The main goal of this thesis is to describe these
Lie algebras and their associated Lie groups in sufficient detail to show that

@)\|ib - COHV(W.)\) (01)

for “most” functionals \ € i’ < ig’.

Concretely, a double extension (Kc @®,, a) x Kd of a Lie algebra a over a field
K (usually R or C) is the direct vector space sum Kec @ a @ Kd endowed with
the bracket

[sz€ + @0 + tod, sy€ + yo + tyd] := w(wo,yo)c + [w0, yo] + t2d(yo) — tyd(0),

where d : @ — a is a derivation, c is a central element, and w is a 2-cocycle, i.e.
an alternating bilinear map a x a — K satisfying

w(z, [y, z]) + w(z, [z,y]) + w(y, [2,2]) =0 for all z,y,z € g. (0.2)

With this definition, the constraint on the weight A in (0.1)) is expressed by the
assumption that A(ic) # 0.

In the first chapter, double extensions of Lie algebras and Lie groups are
introduced, first for Lie algebras in general, then for the important subclass of
those topological real Lie algebras which carry an invariant inner product, i.e.
an invariant, symmetric, positive definite bilinear form. In the context of Lie
algebras, “invariance” of a symmetric bilinear (or hermitian) form means that,
with respect to this form, a Lie algebra acts on itself via the adjoint action as



skew-adjoint operators.

In Subsection the definition of double extensions is prepared by defining
central extensions and semidirect products of both Lie algebras and Lie groups.
Basic properties of both are derived, along with relations between the respective
extensions of Lie groups and their Lie algebras. Double extensions are defined
by means of a compatibility condition which is necessary and sufficient for a
central extension and a semidirect product to give rise to a double extension.
Basic properties of the resulting double extension are reduced to corresponding
properties of the underlying extensions. A particular important aspect of this,
which will frequently be applied throughout a major part of this thesis, is the
definition of a certain adjoint action: if K is a 1-connected Lie group, and g a
double extension of £ := L(K), then there exists an adjoint action of K on g,
regardless of whether a Lie group G with g = L(G) exists.

Subsection [[.2] examines double extensions which arise from the combination of
an invariant inner product on a Lie algebra and a skew-adjoint outer derivation.
These doubly extended Lie algebras can be equipped with the invariant Lorentz
form

k:((Re@®y a) xRd) x (Re@®, a) x Rd) — R,

K,((Cl,l‘l,tl), (CQ,CCQ,tQ)) = (£1,5L‘2) — Cth — CQtl. (03)

These doubly extended Lie algebras, together with their associated invariant
Lorentz forms, form the class of Lorentzian double extensions, and the double
extensions of loop algebras which are studied in this thesis belong to this class.
On every Lorentzian double extension, a family of invariant Lorentz forms can
be constructed. This family is parametrised by the real numbers, and has the
property that every point of the doubly extended Lie algebra, excluding one
specific hyperplane, is contained in the open Lorentzian double-cone defined by
an invariant Lorentz form. This gives a first insight into the invariant convex
geometry which the adjoint action generates on a Lorentzian double extension.

The second chapter describes the adjoint action of Hilbert loop groups on
double extensions of their corresponding Hilbert loop algebras in depth.
Subsection [2.1| provides a detailed construction of the objects in question. To
prepare the definition of loop groups and loop algebras, Hilbert—Lie algebras
and Hilbert—Lie groups are introduced shortly, as well as the compact open
C*-topology on C¥(M, N) for k € Ng U {00} and C*-manifolds M and N. Infor-
mation from [GN20] is used to show that, for any Lie group H, the pointwise
product and the compact open C®-topology turn L H := C*(S!, H) into a Lie
group with Lie algebra L := C*(S!, ), where b := L(H), and the Lie bracket
is the pointwise bracket and the topology is the compact open C*-topology.
There is also a twisted version of loop groups, which is obtained using an auto-
morphism ® of H of finite order N and defining

Cer(R,H):={feC(R,H): (VteR) f(t+r)=(f(t))}

for r := QW” The natural injection of 2w-periodic maps R — H into the set of
maps S' — H turns Lo H := CEL (R, H) into a subgroup of L H. A Lie group
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topologiy on Lo H is then obtained as follows:

There is a wide range of methods from finite-dimensional Lie theory, which are
not generally available in the infinite-dimensional setting. A large part of these
can be re-established in the case of locally exponential Lie groups, see |[GN20].
Hilbert-Lie groups are locally exponential, and .L'H is locally exponential for
locally exponential H. This notion is then applied to establish a Lie group
topology on Lo H by regarding it as a fixed point subgroup of L H under a
certain automorphism.

In Subsection double extensions of Hilbert loop algebras are constructed.
These are Lorentzian double extensions, where the invariant inner product
comes from the invariant inner product of the underlying Hilbert—Lie algebra
by integration over the circle, and the skew-adjoint derivation is the derivative
of smooth curves.

The family of invariant Lorentz forms is used to derive the following formula
for the adjoint action of the identity component of a Hilbert loop group on a
double extension of its Lie algebra:

Proposition 0.1. If K is a Hilbert-Lie group, ¢ = L(K), and
g:= (Rc@®, L,t) x Rd

is a doubly extended loop algebra, then the adjoint action of L3 K with ¢ = L(®P)
s given by
Ad(g)(a,z0,1) = (a — (5"(9). 20) — 5(57(9). 5" (9)), Adel(g) (o) — " (g),t).

1s the right-logarithmic derivative of the curve g.

t
2
where 6" (g) = ¢'g~*

Subsection concludes the second chapter with a topic that is closely re-
lated to convexity theorems. The basic idea is the following: suppose that, for
some Lie algebra g with a maximal abelian subalgebra b such that hC — g©
is splitting, there is a convexity theorem of the form py(©,) < conv(#W.z) for
all x € b, where O, denotes the orbit of x under the adjoint action of some
appropriate Lie group, and py denotes the linear projection onto fh along the
root space decomposition of g€ with respect to hC. Then this theorem can
also be applied to all elements y € g which satisfy O, n'h # J in the sense
that py(©,) < conv(i.z) for any z € O, n h. To find elements y € g with this
property when g is a double extension of a Hilbert loop algebra, a classifica-
tion of the infinite-dimensional simple Hilbert-Lie algebras is employed. By
Schue’s Theorem, see [Sc60] and [Sc61], all of these appear as the Lie algebras
of skew-adjoint Hilbert—Schmidt operators on some Hilbert space # over R, C
or H; accordingly, infinite-dimensional simple Hilbert—Lie groups are generally
(isomorphic to) the intersections of the group of isometric automorphisms of #
with the group of Hilbert—Schmidt perturbations of the identity on #, i.e.:

Proposition 0.2. If K is a simple Hilbert—Lie group, then there exists a Hilbert
space #H over R, C or H, so that

K ~ Uy (#) := U(#) n (idg + gly(#)),
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where gly(#) denotes the set of Hilbert-Schmidt operators on #.

This makes well-known spectral theorems applicable, from which the follow-
ing proposition can be derived:

Proposition 0.3. If K ~ Uy(#) is a simple Hilbert—Lie group, # is a complex
or quaternionic Hilber space, x € ¢ = L(K) and b € is maximal abelian, and
O, denotes the orbit of x under Aut(t)y, then O, Nl # .

If, instead, # is a real Hilbert space, the maximal abelian subalgebras in & under
Aut(€)g form two conjugacy classes.

Analogous statements hold if g is the Lorentzian double extension of the loop
algebra Lt with ¢ = L(®) € Aut(£), and if one of the following two conditions
is satisfied:

e Either K is finite-dimensional and therefore compact. Then the appro-
priate group acting on g by the adjoint action is LK, and the relevant
conjugacy theorem can be derived from a conjugacy theorem for non-
connected compact Lie groups from [Se6§].

e Or K is a simple, infinite-dimensional Hilbert-Lie group, and ® = idk-.
In this case, the appropriate Lie group is LK x K, where K = Aut(K)y.

In both cases, the proof employs an equivariance property of a holonomy map
Hol : L, — K to pull back a conjugacy theorem from K to the loop algebra.

Chapter 3 focuses on the right hand side of the inclusion . It starts
out by formally introducing a root space decomposition by a splitting Cartan
subalgebra and the important concept of integrable roots. These notions are
combined with invariant, symmetric, non-degenerate bilinear forms in the split
quadratic Lie algebras, and important properties of these are listed for refer-
ence. Locally finite root systems are defined and results from John R. Schue
and Nina Stumme are used to identify them as the root systems of (complexi-
fied) Hilbert—Lie algebras, which means that every complexification of a simple
Hilbert—Lie algebra has a root space decomposition with respect to a locally
finite root system, and every complex split Lie algebra with a locally finite root
system can be topologically completed to a Hilbert-Lie algebra. This context
also includes a classification of these root systems in terms of realisations of
Hilbert-Lie algebras as algebras of skew-adjoint Hilbert—Schmidt operators.
This identification provides the notation needed to give a condition for a double
extension of a (twisted) Hilbert loop algebra to integrate to a smooth double
extension of a corresponding loop group.

Subsection describes the root space decomposition of a given double ex-
tended loop algebra in detail. This culminates in the conclusion that the root
system of a complexification of a double extended Hilbert loop algebra g is a
locally affine root system, which implies that g€ contains a dense locally affine
Lie algebra ggg. This allows to exhaust a dense subalgebra gg, < g with a fam-
ily (gn)nen of double extended loop algebras over compact Lie algebras. This
family has the property that every member g, has a splitting Cartan subalgebra
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by such that the directed union of these b, exhausts a given Cartan subalgebra
of Hfin-

At the end of this chapter, the Weyl group corresponding to the root space
decomposition of a locally affine Lie algebra and of a double extended loop
algebra is defined.

In the first subsection of Chapter 4, the geometry of convex closures of the
orbits of the Weyl group are studied in the context of a double extended loop
algebra over a simple compact Lie algebra, i.e. the finite-dimensional case of
a simple Hilbert—Lie algebra. This is prepared by showing that the Cartan
subalgebra together with its Weyl group action can be seen as a linear Cozeter
system. These linear Coxeter systems are defined by a list of axioms. Cozeter
groups, the fundamental chamber, Tits cone, roots and coroots are defined, the
latter a priory independently from the homonymous notion in the context of
root space decompositions. Simple systems are identified in the root systems of
double extensions of twisted loop algebras. These allow to transfer the notion
of a Coxeter group to this context, and to show that these root space decompo-
sitions give rise to linear Coxeter systems, where the Coxeter group is identical
with the respective Weyl group, and a fundamental chamber is given as the
dual cone of any simple system of roots.

The most important result which can be applied to root space decompositions
and Weyl groups in this way is [HN14, Theorem 2.7], which implies that, for
any v in the fundamental chamber of a linear Coxeter system,

conv(W.w) € (] o(v—Cs), (0.4)
ol

where Cy is a closed pointed cone which is independent of v. This can be applied
to all inner elements of a Tits cone, because the Coxeter group conjugates every
such element to some element of the fundamental chamber.

The larger part of this subsection then deals with sharpening inclusion ((0.4))
to an equality, which is finally achieved in a Theorem which asserts that the
convex closure of W.v equals (), ¢ o (v — Cs). Again, this can be applied to all
inner points of the Tits cone.

In the final subsection, the topics prepared in the previous sections are
brought together to derive the following convexity theorem:

Theorem. If g is a doubly extended loop algebra over some simple Hilbert—Lie
algebra €, and \ € ity a weight with A(c) # 0, then

QA’itg < @()\)

The basic approach is to show a convexity theorem for a subset of the imag-
inary weights on the Cartan subalgebra t; of a double extended Hilbert loop
algebra g and then extend it to increasingly larger subsets, until it is generalised
to all imaginary weights on t; not vanishing on the centre.

The first version of the convexity theorem holds for the grid of integral weights,
i.e. those weights that take integral values on the coroots (and do not vanish
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on the centre); it is derived from the unitary representation theory of locally
affine Lie algebras developed in [NelQ]. To prepare this, the relevant notions
of unitary and integrable representations of split Lie algebras with a unitary
real form are defined. A unitary, integrable representation py : g€ — Lajg(A) of
highest weight A is defined, which has the property that the action of tg c g©
on the complex Hilbert space L,ig(A) is diagonalised by the weight system

Py = conv(#W.\) N (A + spany(A)) < (tg)’. (0.5)

The method of holomorphic induction, in the formulation from [JN18, Propo-
sition 8.6], is used to integrate p) to a unitary representation of a Lie group
G with g = L(G) on the Hilbert space completion #) of Lag(A). Then, with
HY < # denoting the dense subspace of vectors with smooth orbit map, the
momentum map

O P(HL) - g, O([v])(x) = —iw for x € g;
(v, v)

is used to derive the desired convexity property from .
In the next step, this convexity theorem is generalised to all weights A € it
(not vanishing on the centre) in the case of a loop group over a compact Lie
group. The proof first generalises the convexity property to the dense subset
of rational weights, then employs the results from Chapter 3 about the convex
Coxeter geometry on ity to allow an approximation argument.
The most general version of the convexity theorem only requires g to be a
double extended loop algebra over a simple Hilbert—Lie algebra, and, again, the
weight \ € itg to not vanish on the centre. The proof employs an exhaustion
of g by double extended loop algebras over compact Lie algebras, which has
been prepared in Chapter 3. This allows an approximation argument from the
compact context.
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Preface

The interest in invariant convex sets in the topological dual of Lie algebras
stems from the unitary representation theory of Lie groups, and this correla-
tion will be outlined in the following.

Right now, we cannot hope to develop a satisfying general theory of unitary
representations of infinite-dimensional Lie groups, but the situation becomes
more manageable if we focus on representations that satisfy appropriate reg-
ularity conditions. In this regard, semiboundedness is particularly promising.
It is closely related to the physical concept of a “Hamiltonian”, which is, ab-
stractly spoken, an essentially self-adjoint operator whose spectrum is bounded
from below. Every semibounded unitary representation of a Lie group G with
Lie algebra g := L(G) contains such operators in idn(g), and in many cases
the converse statement is true, i.e., under certain assumptions on the group
in question, the existence of a “Hamiltonian” implies the semiboundedness of
a given representation. This is in particular the case for representations of
finite-dimensional Lie groups, groups with Kac—-Moody algebras and Hilbert
loop groups (see [Neld]).

For a unitary Lie group action 7 : G —~ # and v € #, let 7 : G — # denote
the orbit map; then 7 is said to be smooth if the subspace of smooth vectors
HP :={ved  :m"eC®(G,H#)} is dense in #. A smooth unitary representa-
tion is called semibounded if there exists an open subset of the topological Lie
algebra g := L(G) on which the convex functional

Sz g — (—00,+0w0], =z — sup(Spec(—idn(z)))
is bounded. Then the interior of the domain of s, can be written as
B :={z € g : (3 neighbourhood U 3 z,r € R) s,(U) < (—o0,r)}.

This is an open convex cone invariant under the adjoint action of G, and s, is
continuous on this cone [Ne(O8a].
The function s, coincides with the support functional

g— (—OO, +OO]7 T — Sup(lrr(l'))

of the closed convex momentum set I, < g, which is defined as the weak-x
convex closure of the image of the momentum mapping

O P(H™) > ¢, Dp([v])() = —iW for z € g;

see [Mi90] for general properties of this map. Subsets X of the topological
dual V' of a real vector space V which exhibit the property that their support
functional is bounded on an open subset of V' are called semi-equicontinuous.
Considering the coadjoint action

Ad* G —~yg, Adj(N):=XoAd,,
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we find that ®, is equivariant with respect to the actions 7 and Ad* of G on
#¢ and g’, so the momentum set is invariant under Ad*.
This means that, in the case of a semibounded representation m, information
about the spectral bounds of the operators idn(x),z € g is encoded in the in-
variant convex set I, g’ and the invariant open convex cone B, < g. This can
be employed to study various classes of unitary representations of Lie groups for
which the invariant convex geometry of the dual of their Lie algebras is known;
for example, one could easily determine whether all semibounded representa-
tions are bounded (which is the case for compact Lie groups, as follows from
the linear version of Kostant’s convexity theorem [Ko73]) or that non-trivial
semibounded representations do not exist.
Early general results about invariant convex cones in semisimple (finite-dimen-
sional) Lie algebras include works of Kostant and Segal [Se76], Vinberg [Vin80]
and Paneitz [Pa81], [Pa83]. They will be summarised here very briefly:
If a simple Lie algebra g contains non-trivial invariant cones, it contains a unique
(up to sign) minimal one Cyyiy, which is itself contained in a maximal one Cpax.
The minimal cone Clhyy, is generated by a half-line which is invariant under the
action of a maximal compactly embedded subgroup of inner automorphisms,
and

Chax = {z € g : sup k(Chin, ) < 0},

where k denotes the Cartan-Killing form.
Further, every invariant convex cone in a semisimple Lie algebra g is uniquely
determined by its intersection with the Cartan subalgebra t of a maximal com-
pact subalgebra ¢ — g (the one corresponding to the subgroup of inner au-
tomorphisms just mentioned). These intersections are convex cones invariant
under the natural action of the Weyl group W corresponding to the root space
decomposition of € with respect to t. If g is compact, the relation between
Adg-invariant subsets of g and #/-invariant convex sets in t can be described
explicitly using the projection p¢ : g — t with respect to the root space decom-
position:

p(Adg(x)) = conv(W.x) for all x € t. (0.1)

This leads to a complete classification of invariant open convex cones in g
[HHLS9).

In [KP84], Kac and Peterson achieved a very similar result for Kac—Moody
algebras, which are a close infinite-dimensional analogon of finite-dimensional
split Lie algebras, i.e. those Lie algebras which admit a root space decom-
position with respect to a maximal abelian subalgebra. As has already been
known from [Ka83, Theorem 8.5], these are (up to isomorphism) exactly the
complexifications of Lie algebras of algebraic loops into compact Lie algebras.

In this Thesis, we derive a convexity theorem along the lines of for a large
class of loop algebras over Hilbert—Lie algebras, along with related conjugation
theorems.
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1 Double extensions and invariant Lorentz cones

Invariant Lorentz cones are maybe the most “obvious” class of cones that appear
in Lie algebras and their dual spaces; they emerge whenever a real Lie algebra is
equipped with an invariant Lorentzian form. These can always be constructed
as double extensions of Lie algebras with an invariant inner product. Any such
Lorentzian form leads to a convenient description of the adjoint and coadjoint
orbits, as well as a classification of invariant convex semi-equicontinuous sets.

In this chapter, double extensions will be defined and constructed in a setting
appropriate for later application to loop groups. First, some basic facts about
central extensions and semidirect products will be gathered separately, then
those will be put together to draw the first, rough picture of the invariant
convex geometry of Lorentzian double extensions.

1.1 Construction of Lie algebra extensions

In this subsections, the “building blocks” of double extensions of Lie algebras
are constructed, namely central extensions and extensions by derivation. In the
last step, these are put together in the construction of double extensions, and
the basic properties of these will be reduced to properties of the underlying
extensions. This includes their relation to appropriate extensions of Lie groups,
and the interplay of the extension structures with the smooth structure of any
related Lie group.

Definition 1.1. ([HN12, p.201]) A central extension of a Lie algebra g by a
Lie algebra a is a short exact sequence

a—>g§—>g
such that the image of a lies in the center of g.

Note that this implies that a is abelian.

Definition 1.2. ([HN12| pp.195 ff]) For Lie algebras g and a, the latter assumed
to be abelian, a Lie algebra 2-cocycle is a bilinear alternating mapw : gxg — a
with the property:

Vo,y,z € 9wz, [y, 2]) +wlz [z, 9]) + w(y, [2,2]) = 0. (1.1)
If g and a are topological Lie algebras, then we denote the set of all continuous

2-cocycles by Z%(g, a).

This definition quite directly leads to an explicit construction of central ex-
tensions:

Proposition 1.3. In the situation of Definition the Lie algebra g, defined
as the vector space a ® g with the Lie bracket

[(a,2), (b,y)] := (w(z,y), [2,9]) for a,bea,z,yeq, (1.2)



gives rise to a central extension a — g — g by (a,z) — = for all x € g and
aeEa.

If g and a are topological Lie algebras, and w is continuous, then the prod-
uct topology makes § into a topological Lie algebra. In this case, we use the
designation “topological central extension”.

We denote the Lie algebra obtained this way by a @, g, and also call it a
“central extension of g by a”.

The proof is just a quick calculation to verify axioms, with the obvious homo-
morphisms. More interesting is the fact that there is also a reverse construction,
which enables a description of isomorphism classes of central extensions in terms
of cohomology.

Definition 1.4. A continuous central extension a@®,, g is called trivial, if there
is a continuous isomorphism ¥ : a®,, g — a@®g such that the following diagram
commutes:

ady, g

SN

a \ 14 / g
adg
Proposition 1.5. For every continuous central extension

s ~ ¢
a—g—g,

which admits a continuous linear section o1 of t, there exists a continuous
cocycle wy € Z(g,a) such that § ~ a@®,, g.

Furthermore, two continuous central extensions a@®,, g and a®,,, g are equivalent
if and only if wi = we + o[-, -] for some linear map | : g — a, which then is
automatically continuous.

Proof. We define
c1igx g — B e1(@y) = [o1(0), o1 (y)] — o1 ([, v)). (13)
From t being a homomorphism and o7 a section of ¢ follows that
Im(e;) < Ker(t) = Im(s),

which allows to define w; := s ! oe;. The following calculation shows that 1

and, therefore, wy fulfil the Jacobi identity:

1w, [y, 2]) + a1z, [=,9]) + a1 (y, [2,2])
=lo1(2), o1(ly, 2] + [o1(2), o1([2, y D] + [01(y), o1 ([ 2, 2])]
— (o1l [y, 21D) + o1 [z [z, 9]]) + o1((y, [2, 2]1))



[o1(2), o1([y, 2])] + [o1(2), 01 (
[o1(2), [01(y), 01(2)] — €1y, 2)
[o1(y), [01(2), o1(2)] — e1(z, )]

= —[o1(z),e1(y, 2)] — [01(2), e1(z, y)] — [01(y), e1(2,2)] = 0

z,y|)] + [o1(y), o1 ([, z])]
+ [01(2), [o1(x), 01(y)] — e1(7, y)]

[
]

)

_|_

for x,y,z € g, where in the last line we used that Im(e;) < Ker(¢), which lies
in the center of g.

An isomorphism ¢1 : a @y, g — ¢ is then given by ¢1((a,z)) := s(a) + o1(x).
Now, for wy € Z2(g,a) and an isomorphism 5 : a @, g — § we get a section
o9 of t by defining lp : g — a @y, ¢,lo(x) := (0,2) and o9 := @3 o .

Thus we can rewrite ws in analogy to wy as wy = s~ ! 0 g9 with

52(1‘,y) = [02(x)702(y)] - 02([$,y]).

Because o1 and o9 are both sections of ¢, there exists a linear [y : g — Ker(t)
such that o1 = o9 + [y, and we get

e1(z,y) =o2([z,y]) +lo([2,y]) — [o2(2) + lo(2), 02(y) + lo(y)]
=aa([z,y]) + lo([7,y]) — [02(x), 02(y)] = ea(z,y) + lo([z, y]).

Applying s~! on both sides yields w; = ws + o [,-] with [ := s7! 0 ly; the
later is once again defined because Im(lp) < Ker(t) = Im(s). This shows that
wi =wyt o[, ]ifa®,, g~ ad,, g

To prove the reverse implication, we start with w; € Z(g,a), [ € Lin(g, a)
and wy = w; + Lo [,-]. Then ¢(a,z) := (a + l(x),z) is an isomorphism
a®uw; § — 0 Dw, 9- O

This proposition implies in particular that a continuous central extension
a@®, g is trivial if and only if w = [ o [+, -] for some continuous linear [ : g — a.

Definition 1.6. A 2-cocycle of Lie algebras w : g x g — a is called trivial or a
coboundary, if w =l o [-,-] for some [ € Lin(g, a).

Two 2-cocycles w1, ws € Z2(g, a) are called equivalent or cohomologous if there
exists a linear [ : g — a such that wy =way + 1o [-].

The set of all trivial 2-cocycles is denoted by B?(g, a), and the set of cohomology
classes is denoted by

H2(g7 Cl) = 22(97 a)/B2(97 Cl).

In the special case of finite-dimensional semisimple Lie algebras, this gives an
exhaustive answer to the question for a classification of the central extensions:

Proposition 1.7 (Whitehead Lemma). [HN12, Lemma 7.5.27] If g is a
finite dimensional, semisimple Lie algebra over F = R or F = C, then every
2-cocycle w € Z*(g,F) is trivial.



For the notion of central extensions to work well on the Lie group level,
an additional smoothness assumption is convenient; it is closely related to the
continuity assumption regarding Lie brackets.

Definition 1.8. Let ao: H —~ M be a smooth right action of the Lie group H
on the smooth manifold M; then, a surjective morphism p : M — N of smooth
manifolds is called an H-principal bundle, if for every = € N, there exists a
neighbourhood U, 3 x with a local trivialization ¢y : p~1(U) — U x H which
is equivariant to o and the natural right action H —~ U x H, (y,h).g := (y, hg).

Definition 1.9. A central extension of a group G by an abelian group A is a
short exact sequence

ASGHG (1.4)

such that the image of A lies in the center of G.
If this short exact sequence is defined in the category of Lie groups, and (|1.4))
defines an A-principal bundle G, it is called a smooth central extension.

Definition 1.10. For a group G and an abelian group A, a group 2-cocycle is
amap ¢ : G x G — A with the following properties for all g, h,a € G:

©(9,1) = ¢(1,9) =1, (1.5)

©(g, h)p(gh,a) = (g, ha)p(h,a). (1.6)

If G and A are Lie groups, and there exists an open neighbourhood U of 1 € G
such that ¢|yxy is smooth, it is called a locally smooth cocycle.

@ is said to be trivial or a coboundary, if there exists a map e : G — A with
©o(g,h) = e(gh)e(g)~te(h)~! for all g,h e G.

Just as in the Lie algebra case, the set of all group 2-cocycles G x G — A is
called Z%(G, A), and the trivial cocycles are denoted by B?(G, A). These sets
inherit an abelian group structure from A, so we can define the cohomology
classes as H?(G, A) := Z?(G,A)/B%*(G,A). If G and A are Lie groups, this
notation always refers to the respective sets of locally smooth cocycles.

The following lemma goes without proof, because that is just verifying axioms
through the obvious calculations:

Lemma 1.11. Let G and A be groups, the latter abelian, and ¢ € Z*(G, A).
The product

(aag) : (bv h) = (So(gv h’)aba gh) fOT all gah € Ga (l,b € A7 (17)

makes the set A x G into a group, which we denote by A x, G.
Then, the short exact sequence

A% Ax, 65 G

with o,(a) := (a,1) and 17,((a,g)) := g is a central extension.



Remark 1.12. Let us consider any central extension as in , and a section
: G — G of 7 which maps 1 € G to 1€ G In close analogy to the proof

of Propos1t10n we define € : G x G — G, e(g,h) = t(g)t(h)t(gh)™L, and

accordingly find that Im(e) < Im(o).

This implies in particular that all elements of the image of ¢ commute with

anything in C:’, so that for all g, h,a € G we get:

e(g,h)'e(h,a) =t(gh)t(h) " e(h, a)t(g)~"
t(gh)t(a)t(ha) "t(g)~"
t(gh)t(a)t(gha)™ 1t(gha) (ha)~'t(g)"
e(gh, a)e(g, ha)™!,

which is (again by commutativity) equivalent to

e(g,h)e(gh, a) = e(g, ha)e(h, a).
The cocycle condition ([1.6)) now follows immediately for

= o loe.

I

The condition ((1.5)) is verified by a quick calculation using the supposition that
t(1) = 1.

With this procedure, we can obviously for all central extensions A <% G5 G
and sections t of 7 get a cocycle ¢ such that G~ A x, G. By the Axiom
of Choice, there exists a “wild” section for every surjective map, so we can
find such a cocycle for every central extension; however, “wild” means that it
will not be generally compatible with any additional structure imposed on the
groups in question and be rather useless without additional information.

The following proposition, which is essentially quoted from [Ne02, Proposition
4.2], sums up the relation between smooth central extensions of Lie groups and
locally smooth cocycles.

Proposition 1.13. Let G be a connected, and A an abelian Lie group; then

i) for any locally smooth cocycle 1 € Z*(G, A) as in Definition the
group A x, G from Lemma admits a Lie group structure such that
the short exact sequence

AS A%, GG
with o(a) := (a,1) and 7((a,g)) := g is a smooth central extension of Lie
groups.

i1) If a short exact sequence
T2

ABG =G,
is a smooth central extension, then there exists a locally smooth 2-cocycle
2 : G x G — A and an isomorphism of Lie groups f : G — A x, G
satisfying f(o2(A)) = o(A).



Remark 1.14. There are examples of central extensions of Lie groups which
are not principal bundles, but those won’t be discussed here. Since “being
smooth” is necessary and sufficient for a central extension to be expressed in
terms of locally smooth cocycles, which is, in turn, necessary to relate those to
continuous Lie algebra cocycles, all central extensions of Lie groups are assumed
to be smooth from here on.

Definition 1.15. Let V and W be vector spaces, and let the Lie group H act
linearly on V. A map a: H x V — W is called a cocycle if it is linear in the
second argument and satisfies

agn(z) = ap(z) + ag(h.x) (1.8)

for all g,he H and z € V.

The next proposition helps us lifting smooth group actions on Lie algebras
to given central extensions; see also [MNO3, Corollary V.10] for more general
results on this topic.

Proposition 1.16. Let g and a be Lie algebras, a abelian, w € Z*(g,a), and
R : H —~ g an automorphic action of a Lie group H on g. The action R lifts to
a smooth action R of H on the central extension a®,, g which fizes a point-wise
if and only if there exists a smooth cocycle o : H x g — a with

w(g-z,9.y) = w(,y) + ag([z,y]) (1.9)
for all x,y € g and g € H; then the lift is obtained by

g.(a,x) := Rg(a,:c) = (a + ay4(x),9.x). (1.10)

Proof. We denote the natural injection a < a @, g by s. If Ris a lift of R to
a @, g which is trivial on a, we set

a:Hxg—a, oagz)=s" (EQ(O,SL') — (0, Ry())).
Smoothness of « follows directly from the smoothness of R and E, and linearity
implies
Ry(a,x) = Ry(a,0) + Ry(0,2) = (a + ay(x), g.z).

It is immediate that « is linear in the second argument, and the cocycle property
follows by evaluating Rgyp(a, ) two times, which yields:

(a+ ap(z) + ag(h.x), (gh).x) = (a + agn(x), (gh).x).
Formula ([1.9) encodes the automorphism property of }NBg for every g€ H, i.e.:

Ry(w(z,y), [2.y]) = [(ay(2), 9.2), (ag(y), 9.)]



for z,y € g.
On the other hand, starting with a map « meeting the requirements ((1.9)) and
(1.8), the same calculations show that

~

Ry(a,x) := (a + ay4(x), g.x)

defines an automorphic action on a@®,, g fixing a and interwined with R via the
natural projection a @, g — g. O

Corollary 1.17. If, in addition to the prerequisites of Proposition the
2-cocycle w is invariant under the action of H, we may take as = 0 for all
s€ H, and Rs(a,z) = (a,s.x) defines a lift of the action H ~ g to a®,, g.

Lemma 1.18. Let f € Z?(G, A) for a connected Lie group G and an abelian
Lie group A be locally smooth, and g := L(G),a := L(A); then:

(i) The formula for the conjugation action c: A x;G —~ A x¢ G is:
Clag) (0, 1) = (bf (9, 1) f(ghg™", 9)~", ghg™). (1.11)

(ii) There is a cocycle 0 : G x g — a such that:

Ad(gg)(r,z) = (1 + 04(x), Ady 7). (1.12)

(iii) The bilinear map w : L(G) ® L(G) — L(A) defined by

w(z,y) == d*f(1,1)(z,y) — d*f(1,1)(y, ) (1.13)

is a continuous Lie algebra cocycle and L(A x§ G) ~ a@®,, g.

Proof. The first two statements are taken from [Ne02, p.1390], and the proof
can be found there.
For the last statement, we apply [Ne04, Theorem B.6] with n = 2. O

Alas, the reverse statement does not generally hold, i.e. for Lie groups G and

A and a Lie algebra cocycle w € Z2(L(G),L(A)) we cannot generally expect
to find a Lie group cocycle f € Z?(G, A) such that w(z,y) = Df(1,1)(y,x) —
Df(1,1)(z,y). This implies that there are central extensions of Lie algebras
L(A) ®, L(G) which do not correspond to any central extension of Lie groups
A xy G. The details can be found in [Ne02], but see also [EK64].
However, in the case such a central extension exists, A lies in its centre, which
in turn is the kernel of Ad : A x; G — Aut(a @ g). In this sense, the A-factor
does not actually act on L(A) @, L(G) at all, and the adjoint action is rather
dependent on the crossed homomorphism € alone, as in .

Proposition 1.19. For a connected Lie group G, g := L(G) and an abelian Lie
algebra a, let 0 : Gxg — a be a smooth cocycle, and let df(z,y) := d(1,y)(z,0)
denote the derivative in the first argument in the direction x € g for all y € g.
Then, w: g x g — a, w(x,y) :=dO(x)(y) is a Lie algebra cocycle.



Proof. Because 0 is required to be a smooth cocycle, the map
R:Gx(gxa)—gxa, Ry(ya):=(Ady(y),a+b0,4(y))

is a smooth linear action of G. Thus it induces a linear action L(R) of g on
g x a, which can be expressed as

L(A)(2)(y, a) = (ad(2)(y),db(z,y)) = ([z,y],w(z,y)). H

These considerations, together with Proposition lead to the conclu-
sion, that an adjoint action of a Lie group G can be defined on a central
extension of Lie algebras a @, L(G) if there exists a crossed homomorphism
9 € Z'(G,Lin(g,a)) such that df is antisymmetric, even if a corresponding
central extension of Lie groups does not exist. To make this precise:

Definition 1.20. Let G be a Lie group, and a @, L(G) a central extension
of Lie algebras, such that there exists a smooth cocycle 6 : G x g — a with
w(x,y) = dO(x)(y) for all z,y € g. The adjoint action Ad:G ~a@, L(G) is
defined by

Ady(r,z) := (r + 0y(z), Ad, z)

for all g € G,r € a,x € L(G).

In the case where a@®, g = L(A x ; G) for some f € Z?(G, A), the subgroup
A lies in the kernel of the action

Ad:Ax;G ~a®y, 9,

so Lemma [1.18 means that the above definition is equivalent to factoring out
A C ker(Ad).

The following lemma means that we can quite generally use Definition to
construct an adjoint group action for a given central extension of Lie algebras;
it is stated without proof, which can be found in [Ne02), Corollary 7.7].

Lemma 1.21. Let G be a 1-connected Lie group with g := L(G), and a be a
sequentially complete locally convex vector space. Then, for every w € Z2(g,a),
there exists a smooth cocycle 0 : G x g — a such that w(x,y) = df(y)(x) for all

T,Y € Q.
When we proceed to studying the coadjoint action
Ad": G~ (@@, 0), Ad,(N) := Ao Ad, 1,

we quickly find the following formula for every A = A + Ay € (a @, g)" and
(a,x) ead®, g

Ad,(N)(a,7) = M(a + 0,1 (2), Ady1 7)) = Aa(a + 0,1 (x)) + Ad? Ag(2),

which leads to the conclusion:



Proposition 1.22. For every A\, € d, the coadjoint action Ad” induces an
affine action of G on the invariant affine subspace {\} D¢ < (a Dy g)'.

Now we turn to the other side of the double extensions, the semidirect prod-
ucts, which respect a specific Lie algebra or Lie group action.

¢
We say that a Lie algebra extension f <> g — b splits if there exists a subalgebra
ho < g and an isomorphism u : ) — hg which is a section of ¢. This situation is
described by the following;:

Definition 1.23. Let f,h be Lie algebras and p : f x h — b a continuous action
by derivations. Then, the vector space h @ f, equipped with the Lie bracket

[(z,7), (y,8)] == ([z,y] + p(r)y — p(s)z, [r,d])

for all z,y € h, r,s € § is called a semidirect product of Lie algebras. It is
denoted by b x, f; the “p” may be omitted if it is clear from the context.
Obviously, b is an ideal in b x, f.

Proposition 1.24. [GN20, Proposition 4.2.8] When considering semidirect
products of Lie groups, H xr F', we always assume the map R: F x H — H to
be smooth, so that H xgr F is itself a Lie group.
This definition corresponds to semidirect products of Lie algebras via the Lie
functor, i.e.

L(H xr F) ~ L(H) gy L(F), (1.14)

where

L(R)(z,y) :==dR(1pg,1p)(x,y) for x € L(H) and y € L(F).

Proposition 1.25. Let G xp A be a semidirect product of Lie groups, and A be
abelian. With g := L(G) and a := L(A), the adjoint action Ad : GxpA —~ gx,a
reads:

Ad(g,a) (2, 7) = (Adg(pa(2)) + (g(r), 7), (1.15)

where pq(x) := L(Ry)(x) denotes the induced Lie algebra morphism for all
a€ A, and ( : G — Lin(a, g) is a cocycle with respect to the action

G x Lin(a, g) — Lin(a, g),! — Adgol.

Proof. The formula for the conjugation action of G x g A is:
c(ga)(h:b) = (9.a)(h,0)(Ry-1(97"),a™") = (9Ra(R)Ry(g7"), b).
Differentiating this at (1,1) € G x g A in the direction (x,0) € g @ a yields
Ad(g,0)(,0) = (Adg(pa(2)),0).
To calculate the differential in the direction (0,r) € g ® a we note

C(g,a)(lvb) = C(g,l)(17b) = (gRb(g_l)vb)’



and thus
Ad(g,a) (07 T) = (Cg(7">7 7“)-

The cocycle property of ¢ follows by evaluating Ad(, 1) o Ad,1)(0,7) two times
for a,be A, g,h € G:

Adgn,1)(0,7) =(Cgn(r),7),
Ad(gzl)(gh(r>v T) :(Adg(gh(r)) + <g(r>7 T)- O

Remark 1.26. A special form of a split extension is the “extension by a deriva-
tion”, which, for a K-Lie algebra g and d € Der(g) is denoted by g xq K and
defined as the semidirect product of g by Kd < Der(g).

Starting with a smooth automorphic action R of the circle group T on a Lie
group G, by taking the Lie functor L(Ry) at each point s € T, we get a smooth
action of T on L(G); we denote this action by p.

By taking derivatives of the orbit maps p* : T — g,t — pi(z) at 1 € T,
we get a derivation dr on g; we call this derivation the infinitesimal genera-
torinfinitesimal generator of R.

Now that all building blocks are described in sufficient detail, we can define
and describe double extensions of Lie algebras. We will find that the properties
of both, central extensions and semidirect products, can be conferred to the
complete scenario rather directly. This includes a definition of an adjoint action
of an appropriate Lie group.

Definition 1.27. [Nel4, Definition 2.3] Let go be a K-Lie algebra, w € Z%(go, K),
and d € Der(gp) such that there exist a linear map ¢ : go — R with

5([,y]) = w(d(@),y) + w(z,d(y)) for all =,y € go; (L.16)

then,

~

d: K@, g0 > K®, g0, d(rz):=(5(z),d(z))
is a derivation, and
[(r,2, 1), (s, 9, u)] := (w(z, y) + t6(y) — ud(x), [z,y] + td(y) — ud(x),0), (1.17)

defines a Lie bracket on the vector space K@® go @ K. The resulting Lie algebra
is called a double extension and usually denoted by

g:= (K@, go) ©3 K.
In the case 6 = 0, the condition on w simplifies to w(dx,y) + w(z,dy) = 0 for

all x,y € g. A 2-cocycle w with this property is said to be d-invariant. In this
case we write

g:= (K&, go) » Kd.
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Remark 1.28. In the definition above, instead of using ¢ to extend d € Der(go)
to d € Der(K @, go), one can also extend w € Z2(go,K) to & € Z2(go xq K, K)
by setting

for t,u € K and z,y € go. This defines an isomorphism
(K@w go) xg K~ K@ (g0 xa K).

This allows to apply results about both central and split extensions to double
extensions.

Remark 1.29. When referring to double extensions, we will often use the
notational convention

c:=(1,0,0) e g = (K@ go) x7K.

We further write d* for the linear functional on g that sends d = (0,0, 1) to 1
and all of (Kc @, g) to zero; likewise, ¢*(c) := 1 and c¢*(gg) = c*(Kd) := {0}.
In this notation, the topological dual g’ decomposes as Kc* @ gj, ® Kd*.

Remark 1.30. A double extension of Lie groups could be defined in the fol-
lowing way:
Let R: T —~ G be a smooth automorphic action, and f : Gg — T be a locally
smooth cocycle. If there exists a lift R:T ~Tx ¢ Go of R, then the semidirect
product

(T Xf Go) X B T

is a double extension of Gg; in this case, successively applying Proposition
and Lemma shows that this definition is compatible with the definition of
double extensions of Lie algebras in [I.27]

It is a nontrivial task to determine whether any such lift R exists, but to study
the adjoint action of this group, it is sufficient to consider only the action of
Go xg T, by applying Remark Then, for

g:=(R ®L(s) L(Go)) “L(R) R

the adjoint action
Ad: (GyxgT)—~g

is already covered by the formulas (1.10), (1.12)) and (1.15). For some applica-

tions, this allows us to avoid the question of whether a lift R exists.

1.2 Lorentzian double extensions
In this subsection, our setting will get narrowed down to a class of Lie algebras

which already exhibit an important part of the geometric properties we later
want to study in the double extensions of loop algebras.
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Definition 1.31. A continuous bilinear form x : g x g — K on a topological
Lie algebra g is called invariant if k([x,y],z) = —k(y, [z, 2]) for all x,y,z € g.
If k is, in addition, non-degenerate and symmetric, then g is called a symmetric
Lie algebra.

Because of the non-degeneracy assumption, the continuous linear map

big—g, 2(y):=ky, )

is injective, and therefore has an inverse g° — g, which we write as A — AL
This defines a pull-back:

g x g > K, kF () = sV 4.

Example 1.32. Let g be a Lie algebra, and d € Der(gg) be skew-adjoint with
respect to an invariant symmetric bilinear form 5. Then,

w:goxgo— R, w(z,y):= B(zx,dy) (1.18)

is a 2-cocycle. This follows from

OJ(SL’,y) = B(m,dy) = B(dy,x) = —ﬁ(y,dl’) = _w(yal‘)

and

w(lz,y], 2) = = B(d[z,y], 2) = =B([dz, y], 2) - B[z, dy], 2)
= —B(dz, [y, 2]) + B(dy, [z, 2]) = —w(y, 2], 2) — w([z, 2], y)

for all z,y,z € go. Also, d-invariance of w follows directly from d being skew-
adjoint, and thus we get a double extension for every pair (3, d) of an invariant
symmetric bilinear form and a skew-adjoint derivation on gg.

Definition 1.33. A Lorentzian space is a pair (V, k) of a real topological vector
space V and a Lorentzian form k, which is defined as a continuous symmetric
bilinear form on V for which there exists a vector v € V such that x(v,v) <0
and k|,L . is positive definite.

The set C of all vectors v € V such that x(v,v) < 0 for some Lorentzian
form x on V is a double cone. For an arbitrary vg from the interior of C, i.e.
k(vg, vp) < 0, the cone {v e C : k(v,vg) < 0} is called a Lorentz cone.

One of our more important tools are invariant Lorentz forms on Lie algebras.
They have first been intensively studied in [MR85]; however, our results here
are derived independently from that article.

Proposition 1.34. Let gg be a real Lie algebra endowed with an invariant inner
product (-,-), d € Der(go) be skew-symmetric and w € Z*(go,R) be defined as
n with respect to the invariant inner product on gog. Then, the bilinear
map k:gxg— R,

R((Cl,iﬂl,tl), (CQ,IEQ,tQ)) = (ﬂ?l,xg) — Cth - Cgtl (119)

on the associated double extension g = (R®, go) x¢R is an invariant Lorentzian
form.
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Proof. We have to show that
k(ad(Z)y1, y2) = —K(Y1,ad(2)72) (1.20)

for z = (b,z,s),71 = (c1,y1,t1), 92 = (c2,y2,t2) € g, and we do so by splitting
the formula by linearity:

Central elements of g, specifically Z = ¢, just send both sides to 0, and for
elements of the form T = sd we get:

ﬁ([*%v (y\l]v @\2) :ﬂ((ov Sd(yl)v 0)7 (627 Y2, t2))
= — (sd(y1), y2) = (y1,5d(y2)) = —£(Y1, [Z, 52])

by applying (1.17)). The calculation for the case z = (0, z,0) is similar:

&([2, 71, 92) = 6((w(z,11), [z, 11] — t1d(2),0), (c2, Y2, t2))
= y1] — t1d(z), y2) — tow(x, y1)
y1lsy2) — ta(z, d(y)1) — ti(d(2), v2
= —(y1, [7,y2]) + t1(x, d(y)2) + t2(d(z), 1) = —K(Y1, [T, J2])-

To see that x is Lorentzian, we insert v := (1,0,1) € g and get k(v,v) = —2;
further, v+ = gy ® wR, where w = (1,0,—1) € g, and & is obviously positive
definite on this subspace. ]

Corollary 1.35. With the prerequesites from Proposition and a € R, the
bilinear map kq : g X g — R,

Ka((8z, 0, tz), (5y7 Yo, ty)) = K((8z, 0, tz), (Sy7 Yo, ty)) — algty

s also an invariant Lorentzian form.

Proof. From formula we conclude that, if z € [g, g], then ¢, = 0, and
if y € g, g], then t, = 0, so in both cases at;t, = 0, so the invariance follows
directly from the invariance of .

To show that k, is Lorentzian, we set v := (0,0,1) and w := (a,0,—1). Then
ka(V,v) = —a, Kq(w,w) = a, and go, v and w are orthogonal to each other. If
a > 0, then k, is negative definite on Rv and positive on g@®Rw, and for a < 0,
the roles of v and w are switched. O

This justifies the following definition:

Definition 1.36. We call a Lie algebra g := (R@®,, go) X Rd a Lorentzian dou-
ble extension if gg is a real topological Lie algebra equipped with a continuous
invariant inner product, d € der(gp) is skew-symmetric and w(z,y) := (z,dy)
for all z,y € go.

Every Lorentzian double extension comes equipped with the invariant Lorentzian
form x from Proposition
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Proposition 1.37. Let x = (s,x0,t) € g and a,b € R; let further (kq)qer be the
family of invariant Lorentzian forms on a Lorentzian double extension g of go.
Then the corresponding open and closed Lorentzian double cones

Co:={reg:kryr,z) <0} and C, = {x € g: Ke(z,2) <0}
have the following properties:
(i) Ift # 0, then the map R — R : a — kq(z,x) is surjective.
(i)
(i) Nyes Ca = Re
(iv) If x = (s,x0,t) € g with t # 0, then x € | J g Ca-

Ift # 0, then ko(z,x) =0 for a = —% + 7(%{2:”0).

Proof. (i) is obvious.
(ii) is proven by a simple computation.

(iii) Kq4(c,c) = 0 for all @ € R, and thus ¢ € (,cg Ca- If t = 0, then either
xo = 0 and therefore x € Rc, or, by (i), there exists an a € R with
kaq(z,z) > 0, which means that = ¢ C, and thus z ¢ (),cg Ca-

(iv) is another application of (i).

O]

Remark 1.38. If z = (s;,x0,t;) € g with ¢, # 0 and k,(x,z) = 0, then the
adjoint orbit ©, is contained in the parabolic conic section

a(ja N {(Svy(ht) €g: t= tx}v

and thus lo2 2
0 —at
)= % for every y = (Syayoatft) € O.
xT

Likewise, with a cocycle ¢ : Go — Lin(R, go) ~ go as in Proposition we
find that kq((Sy, Y0, tz), (Sy, Yo,tz)) = 0 for

|zo|? — 284t
t2

T

yo = Ad(g)(zo) + t2¢(g9) and a =

If Gg is connected, then s, can be directly computed by inserting a and yo,
taking into account that |zo|? = || Ad(g)(z0)|?. This allows us to spell out the
formula for the adjoint action of Gy on g:

Ad(g)(sz,xo,tz)
= (52— (Ad(9)(w0),¢(9)) = Z1¢(0) I Ad(g)(x0) + :C(9), ).

We are going to extend this Lorentzian geometry to the topological dual
g’; this will also lead to a sufficient criterion for an element A € g’ to have a
semi-equicontinuous orbit.
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Remark 1.39. We consider the injection b : g — g’ of a Lorentzian double
extension into its dual space via its invariant Lorentzian form. Explicitly, for
x = (8z,%0,tz) and y := (sy, yo,ty) € g, we have

yb(x) = “((Sxa Zo, t:r:)y (Sy, Yo, ty)) = (x07 yO) - Sxty - Sytz = y(b)(l“o) - 3xty - Sytx,
so comparing coefficients shows
Y = (sy, 0, ty) = tyc™ + Yy + sy

in the notation of Remark In particular, b sends ¢ to d* and d to c*.

Definition 1.40. If gg is a topological Lie algebra with an invariant inner
product, we write g, for the completion of gg with respect to the topology
induced by its invariant inner product norm.

If g := (Rc@®, go) x Rd is a Lorentzian double extension, then we set

§:= Rc®g, ®Rd.

This space inherits the Lorentzian forms k, for a € R. If we are talking about
“the” Lorentzian space g, then we always refer to the space equipped with
K = RQ.

Note that gy is a Hilbert space, but, in general, neither g, nor g is a Lie
algebra. However:

Proposition 1.41. The adjoint action Gog —~ g on a Lorentzian Lie algebra
constructed from go = L(Go) extends to an action of Go on §. This action
is smooth in the sense that the set §° of smooth vectors, i.e. elements with
smooth orbit maps, is dense in g.

Proof. To see that there is a continuous extension of the adjoint action, we
look at Remark and find that there is only to show that Ad : Gy —~ go
extends to gy. For every g € Gy, the operator Ad(g) is unitary and thus auto-
matically norm-continuous. So it maps Cauchy sequences to Cauchy sequences,
and therefore g to itself.

The smoothness statement is then obvious, because g < g* is dense in g by
definition. O

Remark 1.42. g inherits the invariant Lorentzian form x, and thus the injec-
tion b : § — g’. By applying the invariance of x to the coadjoint action on
elements 1’ € §°, we find

Ad(9)*(y")(z) =1’ (Ad(g™")z) = k(z, Ad(g)y) = (Ad(g9)y)’ (x),

for all z € g, so from the preceding proposition follows that the coadjoint action
Ad* : Gy — ¢’ normalises the subspace § — g’. Now Remark implies that
the coadjoint and the extended adjoint action on g are basically the same.
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It is more natural to refer to it as the coadjoint action, as it arises directly
from duality. In particular, for every a € R, the coadjoint action respects the
Lorentzian form r, in the sense that x4 (Ad(g)*\,v) = ke(A, Ad(g~1)*y) for all
ge Ggand A\, y€eg.

Proposition 1.43. Let A = sd* + \g + tc* € g with A\o(d) = Ao(c) = 0 and
a,b € R; let further C, < g be an open Lorentzian cone with respect to the
Lorentzian form kg on'g and C, be its closure. Then:

(i) Ift # 0, then the map R — R : a — ko (A, A) is surjective.
(i) Ift # 0, then Ke(A,\) =0 for a = —275 + 7()‘052)‘0).
(iii) (Nyer Ca = RA*
(iv) Ift # 0, then A € | g Ca

Proof. Every single item here is a reformulation of the respective item from
Proposition with that in mind, (i) through (iii) follow because they are
stable under applying closures in the topology of g, and (iv) follows from (i). O

Proposition 1.44. For every A € g < ¢ with A(c) # 0, the coadjoint orbit
Ad(G)*\ = O, is semi-equicontinuous.

Proof. We pick a € R such that k,(A, A\) < 0 and consider the cones
Dy :={y€7:Ka(7,7) <0,ka(y,A) <0} and
E,:=Di ng={xeg:relz,z) <0,\x) <0},
see Remarks and For any y € E,, we have
OA(y) = r(Ada(y), ) = A(Ad(Go) (1)),

and, because E, is invariant, A(Ad(g)(y)) < 0 for all g € G, which is just what
we had to show because F, is open in g. O
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2 Conjugacy theorems in Hilbert loop algebras

Kostant’s convexity theorem and theorems generalising or resembling it (see
[Ko73], [KP84], [Neu0Q]) are built around the concept of projecting a Lie al-
gebra g onto a maximal abelian subalgebra h and describing the action of the
normaliser of h in the inner automorphisms of g, as in Equation .

In the original context of compact Lie groups K, the Kostant convexity theo-
rem could easily be applied to arbitrary elements of the Lie algebra ¢ := L(K).
Because every x € £ is conjugate to some element of any Cartan subalgebra t,
the projection of O, onto t¢ can always be determined by conjugating = into t;
and then applying Kostant’s convexity theorem.

We are interested in extending this concept to (twisted) Hilbert loop algebras;
this means that we have to determine the elements of g that are conjugate
to some element x € t; under the adjoint action. We refer to propositions
describing such elements and their orbits as ‘conjugacy theorems”.

2.1 The construction of loop groups and loop algebras

The following subsection contains a collection of definitions and basic properties,
establishing the setting in which the findings from Section [1| will be applied and
refined.

Compact, simply connected Lie groups correspond bijectively with semisimple
complex Lie algebras, which makes both very accessible and leads to a rich
theory; similar results about Hilbert—Lie groups will be quoted shortly.

The set C*(M, K) of smooth maps from a compact manifold M into a Lie
group K is itself a Lie group. In the case of the circle M = S' and a Hilbert—
Lie group K, this group inherits quite some properties from K.

For compact K, these “loop groups” are closely related to the class of affine
Kac—Moody algebras. Extensive disquisitions about both the loop groups and
Kac—Moody algebras can be found in [PS86] and [Ka&3].

[AP83] and [KP84] both describe the projections of adjoint orbits of (doubly
extended) loop groups to Cartan subalgebras in terms of convex geometry,
though they do so from different points of view. The following definitions treat
the compact Lie algebras as a subclass of the Hilbert—Lie algebras as often as
possible and only deviate from this approach in non conferrable details.

Definition 2.1. A Hilbert-Lie algebra is a pair of a (real or complex) topologi-
cal Lie algebra £ and an invariant inner product which induces the topology of £.

Accordingly, a Hilbert-Lie group is defined as a Lie group K whose Lie
algebra t is a Hilbert—Lie algebra. If K is connected, then the invariance of the
inner product immediately implies that K acts on £ by isometries.

Definition 2.2. As we are going to talk about Hilbert spaces a lot, it is cus-
tomary to fix the following notation: for any family (#;),es of Hilbert spaces

17



over some field in {R, C,H}, we denote the direct Hilbert space sum by

D= {o =Dy a8, Y sl <o}

jeJ jeJ jeJ

Definition 2.3. We call a Hilbert—Lie algebra ¢ semisimple if it is a direct
Hilbert space sum of simple ideals.

We call a Lie algebra reductive if it is the direct sum of a semisimple and an
abelian Lie algebra.

Any compact Lie algebra is reductive, and by [Sc60], the same is true for
general Hilbert—Lie algebras. As an abelian summand in a direct sum only
contributes a central factor to any associated Lie group, the (co)adjoint action
of this factor is trivial, as is the action of the whole group on any abelian ideal
in the Lie algebra. Therefore, as we aim at a description of orbits and invariant
sets of the (co)adjoint action, we can safely ignore the abelian summands and
factors and restrict our attention to semisimple Lie algebras.

Definition 2.4. For a locally convex Lie group H, an automorphism
® : H — H, and some constant r > 0, the set

Cor(R,H):={fe C*(R,H): (VteR) f(t+r) =D(f(t)}
becomes a group with the point-wise multiplication

(gh)(t) := g(t)h(t) for g,h e Cg, (R, H),teR.

Analogously, for a (real or complex) locally convex Lie algebra b and
v € Aut(h), we define a Lie algebra as

Cg?T(]R, h) :={xe CP(R,p): (VteR) z(t +71) = @(x(t))},
endowed with the point-wise defined Lie bracket

[z, 9](2) := [x(t),y(1)] for z,y e CF,(R,b).

In the following, we consider the case of an automorphism ® of order N € Ny
and, for r := 27/N endow the group C%}(R, H) with a group topology which
makes it into a Lie group with Lie algebra C7,(R,b), where ¢ := L(®) and
b := L(H).

Definition 2.5. |[GN20, Definition 3.5.1] For two topological spaces X and Y,
the compact open topology on C'(X,Y) is the topology generated by all sets of
the form

P(L,O):={feC(X,Y): f(L) c O}
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for L ¢ X compact and O € Y open.
When M, N are C*-manifolds, then on the set of k-times continuously differ-
entiable maps C*(M, N) the compact open C*-topology is defined as the initial
topology with respect to the injection

k
CHM,N) = [[C(@"M,T"N), f— (T"flo<r<s-
r=0

Here, T denotes the tangent functor applied iteratively r times.
If M and N are actually smooth manifolds, one can consider the common refine-
ment of the compact open C*-topologies for all k € Ny on C®, i.e. the topology
generated by the union of all compact open C*-topologies. This topology is
called the compact open C®-topology.

Theorem 2.6. [GN20, Theorem 4.4.2] Let H be a Lie group with Lie algebra b,
M a compact smooth manifold, and k € Ny u {o0}. Then the compact open Ck-
topology makes C*(M, H) into a Lie group with Lie algebra C*(M,}), endowed
with the pointwise bracket.

Definition 2.7. [GN20, Definition 4.6.1] For a Lie group H, a smooth map
expy : L(H) — H is called exponential map if R — H,t — expy(tx) is a
smooth one-parameter-group and

d

Ao expy (tz) = x for all = € L(H).

Note that this implies To(expy) = idy,(z)-

H is called locally exponential if an exponential map expy; exists and restricts
to a diffeomorphism on some neighbourhood of 0 € L(H).

Proposition 2.8. [GN20, Proposition 4.6.12] If ¢ : G — H is a morphism of
Lie groups with an exponential map, then the following diagram commutes:

G —2—H

expGT epoT

L
L(G) 22 L)
In terms of category theory, this property is called naturality.
Proposition 2.9. If ® is a Lie group automorphism of a locally exponential
Lie group H, then the group of fized points, H®, is a locally exponential Lie
subgroup of H with Lie algebra L(H)L@), the subalgebra of fixed points of the

induced automorphism of a topological Lie algebra.

Proof. We consider the subalgebra

L¢(H?®) := {zx € L(H) : expy(Rz) ¢ H®}.
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Using the naturality of the exponential map, we find that L¢(H®) = L(H)™“(®);
this implies that, if U 3 0 is an open neighbourhood in L(H), we have

expy (LE(H®) nU) = H® n expy (U).

Now [GN20, Proposition 8.3.11] applies, which tells us that H? is a Lie subgroup
of H, and [GN20, Lemma 8.3.8] allows us to canonically identify L¢(H?®), and
therefore L(H)™“®) with L(H®). O

Theorem 2.10. |[GN20, Theorem 4.4.2] Let H be a Lie group and M a compact
smooth manifold. Then, the compact open C*-topology makes C* (M, H) into
a Lie group with Lie algebra C*(M,L(H)).

Remark 2.11. By [GN20, Example 4.6.7], if H admits an exponential map
expyy, then there exists an exponential map expge (7, 7); it is given by

expoo gy - C7 (M, L(H)) — C*(M, H), expeor,m)(®) := expy oz.

By [GN20, Example 6.1.4 (b)], if H is locally exponential, then C* (M, H) is
locally exponential.

Corollary 2.12. The compact open C®-topology makes Cfi%(R, H) into a Lie
group with Lie algebra C%, (R,L(H)).
If H is locally exponential, then so is CS,QW(R, H).

Proof. C%, (R, H) can be identified with C*(S!, H), so that Theorem m
and Remark apply.

Lemma 2.13. If X and Y are topological spaces, and p : X — X a homeo-
morphism, then the translation operation

TP:C(va)_)C(Xay)v Tp(f) = fop

18 continuous in the compact open topology.

Proof. By Definition it suffices to show that the preimage under 7, of
every subset of the form P(L,0) c C(X,Y) with compact L < X and open
O c Y is open. Clearly, T;l(P(L,O)) = P(p~1(L),0), which is open in the
compact open topology. O

Lemma 2.14. For smooth manifolds M and N, and a diffeomorphism p of M,
the corresponding translation operation

75 : CP(M,N) — C*(M,N), 7,(f):=fop

is continuous in the compact open C®-topology.
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Proof. For every k € Ny, by functoriality of T', we have
T*(7,(f)) = TFf o T*p for all fe C*(M,N).

By Definition the compact open C*®-topology is generated by sets of the
form (T%)~1(Py), where Py := P(Ly, Oy) with compact Ly = T*M and open
O, € N. We have to show that the preimage Tp_l((Tk)_l(Pk)) is open for every
such set. So:

N (TF) 7N (Pr)) = {f € CP(M,N) : T"(7,(f)) € P(Ly, Ox)}
—{feC®(M,N):TFfoT*pe P(Ly, O)}
= {feC*(M,N):T"f e P(T*(p"")(Lk), Ox)}
= (TN (P(T*(p~")(Li), Ok));

Y

I

because p, and thus T%p, is a diffeomorphism, T*(p~1) (L) = M is compact,
which means that P(T*(p~!)(L),Oz) is open in the compact open topology
on C®(T*M,T*N), and finally the rightmost term references an open set in
the compact open C®-topology on C*(M, N) by Definition O

Lemma 2.15. For topological spaces X, Y, and a continuous map g:Y — Y,
the map
FQC<X?Y)_)C(X7Y)7 Fg(f) ::gof

18 continuous w.r.t. the compact open topology.

Proof. The preimage F, '(P(L,0)) of the open set P(L,0) with compact
L < X and open O < Y is P(L,g %(0)), which is again open. Because sets
of the form P(L, O) generate the compact open topology, this shows that F} is
continuous. O

Lemma 2.16. If M and N are smooth manifolds, and g : N — N a diffeo-
morphism, then

Fg:COO(M7N)_)COO(M7N)7 Fg(f) i=gof

is continuous in the compact open C*-topology.

Proof. For k € Ny, let Ly, € TFM be compact, O € T*M be open, and
Py, := P(Lg, Og) as in Definition Considering the injection

Tk . C®°(M,N) — C*(T*M,T*N),

the compact open C®-topology is generated by sets of the form (T*)~1(P).
So, we have to show that the preimage Fg_l((Tk)_l(Pk)) is open. We do this
by applying the functoriality of T" repeatedly, i.e.

TH(E,(f)) = TFgoT*f for all fe C®(M,N),
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thereby obtaining
F (TR 7HB) = {f € CF(M,N) : T*g(T" f(Ly)) < Ok}
= {f e C¥(M,N) : T"f(Ly) = T"(g™")(On)}
= (T") " (P(Li, T"(g7")(OR)))-
Analysing the rightmost term, we find that 7%¢ is continuous by assumption,
so that T*%(g~1)(Oy) c Y is open, and thus P(Ly, T*(¢g~")(Oy)) is open in the

compact open topology on C®(T*M,T*N), so that its preimage in C* (M, N)
is open by definition. O

Lemma 2.17. For a locally exponential Lie group H and ® € Aut(H) of finite
order, the map

O CF (R H) — CF o (R H),  (z)(t) = 7 (a(t +7)) forall te R

1

1s a Lie group automorphism.

Proof. The purely algebraic automorphism property is easy to see. Because
H is assumed to be locally exponential, [GN20, Theorem 6.2.4] applies to &),
asserting that it is smooth if it is continuous. Because d is the composition of
the translation operation

Te {’C‘f’%(R, H) — C%D’QW(R, H), 7.(x)(t):=x(t+r) forall te R

1

and the pointwise application of ®~!, we can show continuity of P by showing
continuity of both of these operations; this is done by directly applying Lemmas
[2.14] and [2.16] above, which completes the proof. O

Proposition 2.18. For a locally exponential Lie group H, an automorphism
® of H of finite order N € N and r := 27/N, the group CE, (R, H) from Defi-
nition is a locally exponential Lie group with Lie algeb;’a C;O’T(R, t), where
¢ :=L(®) and t .= L(K).

Proof. By Lemma the map
O OF o, (R,H) — CF o (R,H),  B(f)(t) := 1 (f(t+7)) forall teR

is a Lie group automorphism, so Proposition applies, which asserts that
C%, (R, H)® is a Lie subgroup, with Lie algebra C%, (R,L(H))“(®). Using
the naturality of the exponential map, Proposition m;it is easy to see that the
tangent Lie algebra automorphism of P is given by

L(®) : CF 5 (R, L(H)) — Cf 5 (R, L(H)),
L(®)(z)(t) := L(® ) (x(t + r)) for all tcR.
With this, the identities

io(iZW(Rv H)q) = C‘%O,r(R7 H)
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and

% e (R, L(H)M® = CF (R, L(H))

are immediate, which gives us the asserted Lie group structure on C(%c’r (R, H).
O

Corollary and Proposition justify the following definition:

Definition 2.19. For a Lie group H, we call the group io(i% (R, H), equipped
with the Lie group structure associated to the compact open C*-topology, the
(untwisted) loop group over H and denote it by L H.
If H is locally exponential, ® an automorphism of H of order N € N, and
r:= 27/N, we call the group Cg (R, H), equipped with the Lie group structure
induced by 7

id : C‘%?T(R, H) — iﬁ%(R, H)

the ®-twisted loop group over H and denote it by Lo K.

Likewise, for a topological Lie algebra h and ¢ € Aut(h) of finite order N, we
define the untwisted loop algebra over b as L'h := CJ,. (R, bh), equipped with
the compact open C'®-topology, and the ¢-twisted loop algebra as

Loh = CJ(R,h),
equipped with the topology induced by the natural injection

id: CF,(R,h) — CF (R, b).

2.2 Double extensions of loop algebras and the adjoint action

In the following, Definition [1.36]is applied to the case of a Hilbert loop algebra
to construct a Lorentzian double extension on it.

Definition 2.20. Let £ be a Hilbert—Lie algebra with invariant inner product
(+,-)e. This can be extended to a continuous invariant inner product on L't by

1 27

(x,y) := (z(s),y(s))eds for z,y e L (2.1)

2 Jo
as (+,-)e and (-, ) coincide on the constant loops ¢ <— L ¢, only the notation (-, -)
will be used henceforth.

Note that any twisted loop algebra L € < L't inherits this invariant inner
product.

We are now ready to define the double extensions of loop groups and algebras,
which are needed to obtain an interesting representation theory and convex
geometry.
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Definition 2.21. We identify the circle group T with R/277Z and, accordingly,
write its group multiplication as “+7.
Let K be a locally exponential Lie group, ¢ := L(K), and ® a finite-order-
automorphism of K. Then, the rotation action R : T x L€ — Lt on the loop
algebra is defined via

Ri(x)(s) :==z(s+1t)

for x € L€ and s,t € T. The rotation action R : T x LK — L3 K is defined
the same way:

Ri(g)(s) :=g(s + 1)
for ge LK and s,t e T.

Proposition 2.22. The rotation actions of T on Lt and LK have the fol-
lowing properties:

(i) Both, R:T x Lt — Lyt and R: T x Lo K — LK, are smooth maps.
(ii) R, oexpp,x = expr, i ol for allreT.

(i) The rotation on Lt is induced by the rotation on Lo K via the Lie func-
tor.

(iv) The infinitesimal generator d := L(R) € der(Lyt) of the rotation action
R : T —~ Lt is the differentiation x — z' of smooth curves.

Proof. i) is from [MNO3, Lemma VI.1], ii) follows directly from the description
of the exponential function in Remark (2.11)), and (iii) follows from (ii).
For the last point, we can calculate L(R) directly as differential:

L(R)(z)(s) = % _ F(@)(s) = }ig%t_l(fﬂ(S) —2(s +t)) = 2'(s)
for all z € Li,€ and s € T. O]

Corollary 2.23. Considering the semidirect product Lo K xr T for a finite-
order-automorphism ® of K, the associated Lie algebra is

L(LoK xgpT) = Lt xg R,
where dz := 2, so that the bracket on Ly xgq R, with ¢ := L(®) reads
[(z,8), (y, )] == ([=,y] + sy’ —ta', 0) (2.2)
for all x,y € Lt and s,t € R.

With this, we have collected all necessary “building blocks” to finally define
the most important objects of our studies:

Definition 2.24. For £ compact or Hilbert, let us recall the invariant symmetric
bilinear form ({2.1)) on -£,,¢; integration by parts shows that the derivation d is
skew-adjoint, so that

w(z,y) := (z,dy) for all z,ye Lt
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defines a Lie algebra cocycle L, x L, — R, and
g:= Lyt := (R@, Lyt) n3y R

is a Lorentzian double extension as by Definition [1.36] equipped with the in-
variant Lorentzian form x from Proposition [1.34l The Lie bracket of g reads

[(G,ZC, 3)7 (bv yat)] = (w(:):, y): [l‘,y] + Sy/ - t$/70)

for all a,b,s,t € R and z,y € L t.

When dealing with central extensions of Lie algebras, the question whether a

corresponding Lie group exists arises naturally. However, because the answer to
that question requires knowledge about root space decompositions of Hilbert—
Lie algebras, this subject will be postponed to the next chapter.
As long as we are only interested in the Lie group corresponding to g as far as its
adjoint action is concerned, we may ignore the central extension of LK xp T
even if it exists, because central group elements are invisible in the adjoint
action. In this sense, Lemma [1.21| allows us to evade the existence question
when dealing with the adjoint action on central extensions.

Definition 2.25. For a Lie group K, ¢ := L(K) and a differentiable curve
f R — K, the curve

O(f):R—t, & (f)t):= f(t).f(&) (2.3)

is called the right logarithmic derivative of f. Analogously, the left logarithmic
derivative §'(f) is defined as f~1.f".

With the use of this notation, the full formula for the adjoint action of the
identity component (LoK)p on g = (Re x, L t) xq R reads

2 (9):57(9)), Ade(g)(m0) 19" (), ) (2.4

Ad(g)(a,0,t) = (a=(5" (9), 20)
Modulo the centre, this can be shown by directly computing the induced action
Lt —~ L x Rd; the central component is then obtained by inserting into the
formula given in Remark with ((g) = —d"(9).

In this context, also note that d'(g) = —6" (g~ 1).

2.3 Twisted conjugation and adjoint orbits

Every compact Lie algebra ¢ contains a maximal abelian subalgebra t, and every
corresponding compact Lie group K contains a maximal torus 7' = exp (t); in
fact, every x € £ is contained in some maximal abelian subalgebra, and all these
subalgebras are conjugate under the adjoint action of K, see [HN14, Theorem
12.2.2].

In the case of Hilbert—Lie algebras, the situation is very similar:
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Definition 2.26. Let # be an infinite-dimensional real, complex or quater-
nionic Hilbert space. We denote the space of linear self-maps on & of Hilbert—
Schmidt class, endowed with the commutator bracket, by gly(#), and set

GLy(#) := {g e GL(%) : g — idy € gly(9C)}.

For continuous operators g on a Hilbert space there is always a well-defined
adjoint ¢ — ¢g*, and with this we further write

U#) :={ge GL(#) : g* = g~} and w(#) := {x e gl(#) : z* = —x}.

If # is real, we also use the notation

O(#) :=U(#) and o(#) := u(¥),
and if # is quaternionic we put

Sp(#) :=U(#) and sp(#) := u(#)
for the orthogonal and symplectic groups and Lie algebras. At last, we set

Oz(H) := O(H) N GLo(#), Ux(#) := U(H) n GL2(#) and
Spa(#) := Sp(#H) N GLo(H),
as well as
03(H) := 0(#) N gla (), ux(H) := w(#) N gly(#) and
5pa(#) := sp(#) N gla(#).

Theorem 2.27 (Schue’s Theorem). [Nel4, Chapter 1.1] Every infinite-

dimensional simple real Hilbert-Lie algebra is isomorphic to uy(#) for a real,
complex or quaternionic Hilbert space #, with the natural inner product

() tug(#) x ug(#) - R, (z,y) := Tr(zy™).

Remark 2.28. There are spectral theorems for all cases of K € {R, C, H} which
state that for any normal, compact operator x on #k, which includes normal
Hilbert—Schmidt operators, there exists an ONB B of #x which, in a sense,
diagonalises .

The case K = C is the most well-known and in some form included in virtually
all textbooks on functional analysis, e.g. [Ru73, Theorem 12.22]; in this case,
we have the “usual” notion of diagonalisation, i.e. x acts on the Hilbert space

He(®) = {f € Map(®,C) : Y |f () < o0}
be®B

of square-summable maps as a multiplication operator. Operators which are
diagonal with respect to the same ONB form a maximal abelian subalgebra of
uz(#c), which means that:
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(CD) For any complex Hilbert space #¢, the maximal abelian subalgebras of
ug(#) correspond bijectively to the ONB’s of #¢.

The quaternionic case, K = H, is a slight variation of the previous, details
can be looked up in [Vis71l, Theorem 3.4]. A “diagonal” operator = in this
case is a multiplication operator on the space #g(B) < Map(®B,H) such that
x commutes with all operators of the form #y(B) — Hu(B), f — lf, where
l € {i,j,k} is one of the fundamental quaternion units. This implies that,

(QD) for any quaternionic Hilbert space #p, the maximal abelian subalgebras
in sp,(#) correspond bijectively to pairs (8,1) of an ONB and a funda-
mental quaternion unit.

In [Bab69], ua(#) and spy(#) are called standard L*-algebras of types A and C,
in that paper it is shown that

(QC) All maximal abelian subalgebras of us(#c) and sp,(#p) are conjugate
under the conjugation action of U(# ) or Sp(#m), respectively.

Remark 2.29. In the case K = R, the situation is more complicated; the clos-
est we get to a spectral theorem is the following statement, which is transcribed
from [AK94, Theorem 2.7]: for any x € 09(#r), there exists an z-invariant de-
composition of #Hg into either mutually orthogonal planes, or, if ker(x) is of
finite and odd dimension, into mutually orthogonal planes and exactly one line,
which then lies in the kernel. x then acts on every plane by an antisymmetric
matrix.

To make this more formal, let (PJQ) jeJ, denote an orthogonal Hilbert space de-
composition of #g into planes, i.e. (P]Q) jeJo is a family of mutually orthogonal,
2-dimensional subspaces of #g such that

Hr = @ P]Q;

Jj€Jo

let further v; € #r denote any one vector and (le)je J, denote an orthogonal
Hilbert space decomposition of Uf‘ c #r into 2-dimensional planes, i.e.

Hr =Ru1 @ P Pj.
JjeJ1

Writing the set of real antisymmetric operators on a plane as o(R?), equipped
with the norm |As := Tr(AA*) for all A € o(R?), an operator = € oa(#g) is
diagonal with respect to the decomposition (P]Q)jE Jo if it respects this decom-
position, and hence can be represented by a map & : Jo — o(R?) satisfying:

z(w) = 2 &o0(J)(w;) for all w = Z wj € Hr,

Jj€Jo jeJo

and 3 6(5)13 < .

Jj€Jo
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Likewise, an operator y € o2(#g) is diagonal with respect to the decomposition
(Roy, (le) jeqy) if it respects (le) jes,) and annihilates vi, so that we have a
map & @ J; — 0(R2) with

Z{l (wy) forallw—rvl—i-ije%R,

JjeJ1 Jjen

and ) [61(5)]3 < .

JjeJ1

Similarly, such a decomposition exists for every g € O2(#R); for a decomposition
of the form (P]0>jeJ0, the operator g is diagonal if there is a map g : Jo — O(R?)
such that

270 (wy) forallw—ijeé‘fR,

Jj€Jo Jje€Jo

and ) |y0(j) —idge |3 < o0,

Jj€Jo

and for the case of a decomposition (Ruy, (le )jeti), an operator h € Oa(#R) is
diagonal if we have a map 7 : J; — O(R?) satisfying

—Tv1+2’yl (w;) forallw—rvl—FZw]E?{’R,
je1 je1

and Y () — idgs [§ < o0,
JjeJ1
In addition, we get a conjugacy theorem from [Ba69|, where the Lie algebras
02(#r) are called standard L*-algebras of type B. We summarise these findings
so far:

(RD) For every x € og(c%R) and every g € Oy(#r), there is a decomposition
of g of the form (P ) jeso or (Roy, (le) jes;) which diagonalises x or g,
respectively.

(RC) There are two conjugation classes of maximal abelian subalgebras in
02(#r) under the conjugation action of O(#g), corresponding to the
two types of decompositions above.

Our goal in this chapter is to study the extent to which conjugation theorems
like these can be transferred to loop algebras over Hilbert—Lie algebras.

Convention 2.30. From here on, in this chapter we will use the conventions
that K denotes a semisimple Hilbert—Lie group and ¢ = L(K) its Lie algebra,
as well as g := (Rec@,, L) x Rd a double extended loop algebra with twist ¢
of order N.

Remark 2.31. The fixed point algebra €7 is Hilbert if ¢ is, and if £ is compact,
then so is £€°. As such, they contain maximal abelian subalgebras tg, and it is
evident that subalgebras of g of the form

tg ;= Re @ty ® Rd.

are maximal abelian.
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To prove conjugation theorems in loop algebras over compact Lie algebras,
a concept from gauge theory will be adopted, namely the holonomy. For a
Hilbert—Lie group K and ¢ := L(K), it will yield maps from loop spaces over
£ to the group K which are equivariant with respect to certain actions of loop
groups over K on the loop algebras and K itself. It is introduced here in a very
specific form which, admittedly, is not very evocative of its gauge-theoretic
origin.

Definition 2.32. By [GN20,, Definition 5.1.1], a Lie group H is called regular,
if for every smooth f : [0,27] — L(H), the initial value problem

o'(y) = f, ~(0)=1

has a solution ;. By [GN20, Theorem 5.3.4], every Banach-Lie group is reg-
ular, which in particular includes all Hilbert—Lie groups. This justifies the
following definition:

For every x € JL,t, we call the value
HO](CE) = ’}/x(277/0rd(<p)) e K

the holonomy of x.

As ty contains Rc, the central component of x € g is irrelevant to the question
whether the adjoint orbit O, < g intersects tg. Also taking into account the
invariance of the coefficient of d, see Formula after Definition we can
focus on the setting described by the following definition:

Definition 2.33. By factoring out the central component and restricting Ad
to LK and the invariant affine hyperplane £i,€ 4+ d, we get an affine action

w1 Lo —~ Lt gxa = Ad(g)(r+d) —d;

From Formula (2.4]) for the adjoint action of loop groups, see Definition m
we obtain the more explicit formula g * 2 = Ad(g)z + 6'(g71).

Remark 2.34. It can be concluded from its appearance in the formula for the
affine action that ¢’ has to satisfy a cocycle property; this could also be proven
by direct calculation and explicitly reads

0'(gh) = Ad(h=")(8'(9)) + &' (R)
for all g,h € Lo K.

Definition 2.35. Let ® be an automorphism of some group H; then we call the
following (non-automorphic) action of H on itself the ®-twisted conjugation:

¢®:H ~H, cg)(h) = gh®(g71).

Note that this action is smooth if H is a Lie group and ® a Lie group automor-
phism.
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Lemma 2.36. The holonomy Hol : Lt — K has the following equivariance
property with respect to the affine action * : LK —~ Lyt and the twisted
conjugation ¢® : K —~ K :

Hol(y = z) = C:};(o) (Hol(z)). (2.5)

Lemma 2.37. The fibres of Hol : Lot — K coincide with the affine orbits
Qo K + x < Ly, where

Qq;.K = {g eLoK : g(O) = 1}

denotes the normal subgroup of loops based in 1.
Proof. Both Lemmas are implications of [Nel4, Proposition 2.14]. ]

These Lemmas allow to classify the affine L K-orbits in £, by means of an
1-to-1 correspondence with “twisted conjugation classes” in K, if we are able
to provide a classification of these. This has been done in [Se68] for compact
K, and we will cite and employ this classification in the following. However,
the proof given by Segal uses fixed point index theory and is therefore not
transferable to the infinite dimensional scenario.

Definition 2.38. A topological group S is called topologically cyclic, if there
exists an s € S such that the subgroup

Zs:={s"e€eG:nel}={_s)
is dense in .S. Such an element is called a topological generator.

Definition 2.39. A Segal-Cartan subgroup of a compact Lie group is a topo-
logically cyclic subgroup that has finite index in its normaliser.

Remark 2.40. In [Se68, Definition 1.1], G. Segal called subgroups like this just
Cartan subgroups, and also already noted that there exists a conflicting notion
of Cartan subgroups; as there are currently at least three non-equivalent such
notions in use, it makes sense to refer to Segal "s version as defined above.

Note also that, a priory, this definition is independent from the notion of
a Cartan subalgebra, and is designed to work especially well in the context of
non-connected compact Lie groups, which is the application we have in mind
here.

Before getting to the twisted conjugation theorem, we have to show that this
notion is actually applicable to our setting:

Lemma 2.41. Let K be compact and connected, ® € Aut(K) of finite order

N, and P < Aut(K), P :={(®) ~ Zy. If Ts is a mazimal torus subgroup of
K?®, then S := T x P is a Segal-Cartan subgroup of K x P.
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Proof. By [Se68|, Proposition 1.2], there is a Segal-Cartan subgroup Q < K x P
containing ¢ and topologically generated by some ¢; in the coset Qo®. Its
identity component Qg is a torus subgroup of K®, which is also compact; if
To ¢ K ® is a maximal torus containing Qp, then every t € T commutes
with both & and )y, hence with the topological generator q; € Qo®, and
thus Tg © Nk (Q). Because Ng(Q)/Q is finite by definition, this shows that
Qo = T is already maximal in K 2

Now, by [[IN12, Theorem 12.2.2], there exists k € K® such that Ts = cx(Qo),
and, because ¢ and ® commute, S = ¢x(Q). Thus,

N (5)/8 = er(Nk(Q))/cr(Q) ~ Nk (Q)/Q

is finite, and, for any topological generator s € @, the element c(s) is a topo-
logical generator of S, so S is a Segal-Cartan subgroup. O

Proposition 2.42. [Se68, Proposition 1.4] If C' is a compact Lie group, and
S a Segal-Cartan subgroup generated by s, then every h € Cys is conjugate to
an element of S by some g € Cy.

Remark 2.43. Note that, in the last proposition, the compact group C' is not
assumed to be connected.

Lemma 2.44. If K is compact and connected, and T < K® a mazimal torus,
then every orbit of the twisted conjugation action intersects T'.

Proof. [JN18, Appendix 2] With N := ord(®), we set P := (&) ~ Zy and
consider the compact group
C:= K x P;

for g, h € K we then have
(9.id ) (h, ®)(g,idg) ™" = (gh® (g7 "), @), (2:6)

so that the K-conjugacy classes in the coset K ® correspond 1-to-1 to the twisted
conjugacy classes in K. By Lemma [2.41

S =TxP

is a Segal-Cartan subgroup. Thus, Proposition applies to S < C, and (2.6))
now shows that every k € K is ®-twisted conjugate to some t € T'. O

Theorem 2.45. If K is compact and connected, then for every x € L € the
affine orbit LK = x intersects any maximal abelian subalgebra ty < €.

Proof. If N :=ord(®) and y € L K is a constant loop, then

2T

Hol(y) = fyy(ﬁ) = eXPg (y);
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this applies in particular to all elements of tg < €%, so that the maximal torus
Ty := expk (to) = K?® is contained in the image of Hol.

By Lemma @ the element Hol(z) is twisted-conjugate to some g € Ty, so
that, by Lemma @ the affine orbit of x intersects the fibre Hol™*({g}). This,
in turn, intersects to, and from Lemma [2.37] it follows that LK * z contains
Hol !({g}), and therefore intersects . O]

It has already been mentioned that not all of these methods are available in
the infinite-dimensional Hilbert space setting. However, they do apply to the
untwisted case, where ® = idg.

In this context, recall Definition [2:26] Theorem [2.27] and the relevant spectral
theorems from the beginning of this subsection. By [Neld, Theorem 1.15], if €
is infinite-dimensional and simple, all automorphisms of K and € can be written
as conjugation with elements from O(#g), AU (Hc) or Sp(#mu), where AU (H¢)
denotes the group of linear and antilinear unitary operators.

Note also that, for K defined as O(#g), U(Hc) or Sp(#y) respectively, the
affine action * : L' K —~ Lt extends to an affine action

s LK XK ~ Lt (g,k)*x:= Ad(gk)z + ' (g7).

Lemma 2.46. If K is simple and ® = idg, then Hol : L'¥* — K is equivariant
with the affine action of LK x K on Lt and its conjugation action on K.

Proof. Considering any k € K as a constant curve, we can calculate in the
ambient Banach space of bounded operators on some appropriate Hilbert space
as follows:

O (kvek™) = kv Yokt = k6l () k! = kak !

for any = € L'¢, and with that the assertion follows from Definition [2.32] O

Lemma 2.47. The exponential functions eXPrr, (9c) up(#He) — Us(He) and
eXP gy (#) * SP2(Hm) — Sp2(Fm) are surjective.

Proof. We only prove the lemma for exp := eXPyy, (#.): Pecause the proof for
the quaternionic case is literally the same.

We already know that every g € Us(H) is diagonalisable, i.e., for some ONB
(bj)jer of Hc we have g = diag((gn)nes) with g, € C and |g,| = 1 for all n € J.
From the surjectivity of exp : iR — S! follows that g, = exp(y,) for some
family (yn)nes < iR, so we have to show that we can choose (yn)nes so that
y 1= diag((yn)nes) € u2(#c), i.e. that (yn)nes is square-summable.

For this, we note that the restriction exp : i(—m, 7] — S! is bijective, so that
we can choose every y,, from i(—m,7]. Now we consider the function

fil-m7m] =R, f(t):=]|exp(it) —1|* = 2(1 — cos(t))

and its derivative: for all t € [0, 7] we have 2t < m2sin(t) = 7 f'(t) and, because
f(0) = 0, this implies t? < wf(t); both sides are symmetric around 0, so this
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inequality holds for all ¢ € [, 7], and from this we get

Z ’yn|2< ZW‘QXP(?JH)_H2:7"Z ’971_1’2<OO' o

neJ neJ neJ

Lemma 2.48. The exponential function expo,(se) @ 02(#r) — O2(Hr)o is
surjective.

Proof. W.l.o.g., we may assume that g € O2(#Rr) does not have a finite-
dimensional fixed point space in #g, lest the restriction of g to that space
is already trivially diagonal and we can proceed to study the restriction of g to
(gqi)l CZ?%R.

So, by (RD) in Remark there is a g-invariant orthogonal decomposition
of R into planes, on which g acts by 2 x 2 rotation matrices:

SO(R?) — {(C?’S(t) _Sm“)) cO(R?):te (—7r,7r]}

sin(t)  cos(t)

and note that the map

o (3] = SO, o) - (Sl 40

is a bijection. We also define

as: (—m, 7] — o(R2), as(t):= (0 ),
t 0
so that we have the following commuting, bijective correspondences:

SO(R?)

/ e

(—m, 7] <%= im(as) < o(R?).

Thus, if we write g as a family (g, )nes of rotation matrices g, = rot(t,) with
tn € (—m,m] for all n € J, then we obtain a corresponding family (as(ty))nes
satisfying g, = expog2)(as(tn)). We compare the functions f : [-m, 7] — R,

f(t) = |las(t)|* = Tr(as(t)*as(t)) = 2t*
and h: [-m, 7] — R,
h(t) := |lrot(t) — idge |* = Tr((rot(t) — idg2)* (rot(t) — idgz)) = 4(1 — cos(t));

Their derivatives are f/(t) = 4t and h'(t) = 4sin(t), so we have f’ < wh' on
[0, 7], and further f(0) = h(0) = 0 and symmetry around 0, so we conclude
that f < wh on [—m,7]. With that,

2 las(t)® < Y wlrot(ty) —idge [ = 7 ) gn —idg2 | < o0

neJ neJ neJ

follows, so that y := diag,c;(as(t,)) € 02(#R), the diagonal operator defined
by (as(tn))nes, satisfies expog(%R)(y) = g. d
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Theorem 2.49. If K is a simple connected Hilbert-Lie group, then for every
affine orbit Op < Lt of LK x K, there exists a mazximal abelian subalgebra of
t — Lt intersecting Oy.

Remark 2.50. If K ~ U(#¢) or K ~ Spy(#y) for a complex or quaternionic
Hilbert space, then this implies that every affine orbit in L't intersects every
maximal abelian subalgebra in £ < JL'¢; in the case K ~ Oo(# ), every affine
orbit intersects all maximal abelian subalgebras of one of the two conjugacy
classes, see (RC) from Remark [2.29]

Proof. It is immediate from Definition that Hol(z) is contained in the
identity component Ky c K. For any given x € L, we employ the appropriate
spectral theorem, i.e. (RD), (CD) or (QD) from Remarks and to
diagonalise Hol(z), which gives us a maximal torus subgroup Ty < Ky con-
taining Hol(z). From the lemmas and we know that there exists an
y € to := L(T)) < ¢ with expg(2my) = Hol(z), and from Lemma it follows
that y € O,. O
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3 The locally affine structure of Hilbert loop algebras

For finite-dimensional Lie algebras, there is already a well-developed structure
theory of invariant convex cones ([HHL89]), complemented by a classification
of Lie algebras containing pointed generating invariant convex cones ([Ne94]).
This theory revolves mainly around maximal compactly embedded subgroups,
the maximal abelian subalgebras in their Lie algebras, and the associated root
space decompositions.

To ensure that these methods can be applied in an infinite-dimensional context,
we focus on infinite-dimensional Lie algebras with particularly “well-behaved”
root space decompositions. The starting point for appropriate generalisations
is the compact Lie algebras and the (semi)simple complex Lie algebras. The
close tie between these types of objects is standard: every compact Lie group
K has a reductive Lie algebra, and a semisimple Lie algebras if the centre of
K does not contain a torus, and the complexification of a real semisimple Lie
algebra is again semisimple.

These concepts have been generalised in two directions: first, by “keeping”
the invariant inner product as in compact Lie algebras, but forfeiting any re-
strictions to dimensionality, one obtains the category of Hilbert—Lie algebras
([Sc60]); second, the notion of a root decomposition can be systematically ex-
tended, which leads to the category of “extended affine Lie algebras” (JAA97]),
of which the Kac-Moody algebras ([Ka83]) are the most well-studied subclass
due to the completeness of their classification and their accessible representation
theory. For us, their important feature is the existence of certain isomorphisms
with an algebraic version of loop algebras, to be expounded later.

From the perspective of representation theory, these two concepts exhibit sim-
ilarities which have been made rigorous in [Nel0]; the key notion for this re-
unification of concepts is that of a locally affine Lie algebra, which is in turn a
special case of a locally extended affine Lie algebra, which has been introduced
in [MYO06].

3.1 Integrable roots and locally finite root systems

This subsection briefly introduces the elemental concepts of root space decom-
positions; integrable roots correlate to subalgebras isomorphic to s[(C?) and to
real subalgebras isomorphic to su(C?), which makes the representation theory
of these Lie algebras available as a tool to study Hilbert loop algebras. The
description of locally finite root systems comes mainly as an example; they
are of interest because they correspond to the Hilbert—Lie algebras which are
the starting point of our construction, and also represent the subalgebras of
constant loops.

Definition 3.1. [Neld] A subalgebra h of a Lie algebra g is called a splitting
Cartan subalgebra if it is maximal abelian and the representation
ad |y : h —~ g is diagonalisable.

A Lie algebra g which contains a splitting Cartan subalgebra is called a split
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Lie algebra, and it has a root space decomposition

=8P ga; (3.1)

aeA

here, A := A(g,h) < H'\{0}, the subspaces
6 = {z € g: (Vhe b)[hz] = alh)a)

are the root spaces, and

Ag,b) == {or e b'\{0} : ga # {0}

is called the root system.

A root « is called integrable, if there exist x, € go and x_, € g_q, such
that a([zq, 2_a]) # 0 and ad(z44) are locally nilpotent, i.e. for every y € g the
sequence (ad(Z+q)"Y)nen has only finitely many non-zero members.

The set of integrable roots is usually denoted by A; < A.

Lemma 3.2. For every integrable root o of the split Lie algebra g, the root
spaces giq are 1-dimensional.

The proof for this can be found in [NeOObl, Proposition I.6].

Definition 3.3. Thus we obtain a subalgebra g(a) := [ga;8—a] ® ga D 9—a
which is isomorphic to sls. Further, for a set of integrable roots II < A;, let
g(IT) denote the subalgebra generated by the union of g(«), « € II.

The unique element & € [gq, §—q] Which satisfies a(&) = 2 is called the coroot
of a.

A; is called connected if, for every pair o, € A,;, there exists a subset
{ag : k€ {0,1...,m}} ¢ A; such that oy = @, 0, =  and a_1(a}) # 0 for
all ke {1...,m}.

The subalgebra g. := g(A;) < g is called the core of g, and a split Lie algebra
whose root spaces are all generated by the root spaces of integrable roots, i.e.
g="b+g., is called coral.

Definition 3.4. A pair (g,x) of a Lie algebra g and an invariant symmetric
non-degenerate bilinear form x on g is called a quadratic Lie algebra.

Remark 3.5. [Nel4] We list some fundamental algebraic properties of the root
systems of split quadratic Lie algebras: Let g be a split Lie algebra and s be an
invariant symmetric non-degenerate bilinear form on g. Let further «, 8 € A.

(1) For xz € g,y € g and h € b, we get

a(h)r(z,y) = K([h, x],y) = —r(x, [k, y]) = =B(h)k (2, y),
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so either « = —f or k(x,y) = 0. If we consider another element hg € b,
then the analogous calculation yields

a(ho)k(x,h) = —k(x, [he, h]) = 0,

which implies x(z, h) = 0. Thus, the root spaces g, and gg are orthogonal
if @ + 8 # 0, and all root spaces are orthogonal to b.

In particular, k|yy is non-degenerate, and g, is non-degenerately paired
with g_q.

(2) For every h € h and non-zero x, € g, and x_, € g_, we get
a(h)k(Ta,2—a) = k([h, za], 2-0) = K(h, [Ta, T—a]),

and because of (1)} we have r := k(zq,2_a) # 0, so that a(h) can be
expressed as k(h,z), where x = r~![z4,2_4] € b, which, together with
the non-degeneracy of «, implies a € §” and

[ZTa, o] = K(Ta, T_o)aF.

(3) Note that the preceding paragraph implies that, for all 8 € A;, the con-
ditions a(f) # 0 and (a,3) # 0 are equivalent. So, if A; and Ay are
distinct connected components in A;, then (a, 8) = 0 for a € Ay, B € Ag.
Conversely, if A; = Ay U Ag, and we assume that ag € A1 and a,, € Ay
are connected, we conclude that the connecting chain «y,..., o, has an
index 0 < k < n with ag € Ay and a1 € Ag, and therefore

0 # (g, aps1) € (A1, Ag).

In particular, A; is connected if and only if it is not decomposable into
non-empty mutually orthogonal subsets.

Definition 3.6. Let V be a real topological vector space, o € V' a continuous
linear functional and = € V such that a(x) = 2. Then the reflection on the
hyperplane ker(«) in the direction z is defined as o(v) := v — a(v)z for all
veV.

If, in the above definition, V' carries a symmetric bilinear form (-,-) satisfying

(x,z) # 0 and a(v) = 2&3 for all v € V| then the reflection is denoted by o.

Definition 3.7. [LN04, Definition 3.3] A pair (V,A) consisting of a real pre-
Hilbert space V' and a subset A < V satisfying the conditions

(i) oa(A) = A,

(ii)
(iii) spang(A) =V,
(iv) Ran A = {a, —a},

A(&) < Z, where & = o)’
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for all o € A is called a locally finite root system.

Note that in [LN04] the condition [(iv)] was not required for all locally finite root
systems and those satisfying it were called reduced locally finite root systems.

If A is finite (equivalently, if V' is finite-dimensional) then (V,A) is called a
finite root system.

Example 3.8. Let £ be a compact semisimple Lie algebra, and £© := € @it its
complexification; then there exists a maximal abelian subalgebra t€ < €€ such
that t := £ n t€ is maximal abelian in £ and a root space decomposition of £©
with respect to t© and some root system A < (t©)*.

In this situation, it = spang(A) carries an inner product pushed forward from
t, and the pair (it’; A) is a finite root system.

£C is simple if and only if A does not decompose into two proper mutually
orthogonal subsets.

Accessible proofs of these claims can be found in [HN12, Chapters 6.3, 6.4 and
12.2]. By Serre’s Theorem, this example actually exhausts the class of finite
root systems, see [HN12, Chapter 7.2.3 ].

In [Sc60] and [Sc61], John R. Schue has shown that all separable simple
Hilbert—Lie algebras contain a dense simple split subalgebra, and has classi-
fied these subalgebras by their root decompositions. In [St99], this has been
extended to all Hilbert—Lie algebras. To summarise these findings, we recall
Definition [2.26 and Theorem for the classification of Hilbert—Lie groups as
groups of orthogonal, unitary or symplectic operators.

Remark 3.9. For a (skew-) field K € {R,C,H}, let B := (ej)jes be an or-
thonormal Hilbert space basis of a K-Hilbert space #x and consider the Lie
algebra g, of skew-adjoint J x J matrices with only finitely many nonzero
entries; its complexification Egn admits a root space decomposition

Egn = tgn @ @ Ea?
aEA

where tg,, are the diagonal matrices in £g,. Note that €5, is a dense subalgebra
of the real Hilbert-Lie algebra £ := us(#xk) of skew-adjoint Hilbert—Schmidt
operators. Thus Egn and tgn are also dense in £ respectively € with respect to
the complex Hilbert space structure obtained as the hermitian extension of the
inner product from ¢.

In the case of K = C or K = H, t c uy(#k) is the subalgebra of skew-adjoint
diagonal operators on #x with respect to B, see (CD) and (QD) in Remark
and for every j € J we can define ¢; : t© — C as the unique linear
functional satisfying

z(ej) = j(x)e; for all z e €.

On the other hand, in the case K = R, t consists of the block-diagonal operators
with skew-symmetric 2 x 2-blocks. There still exists a basis B := (f;);es of
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Wﬁ% which simultaneously diagonalises t©. With this, we can define functionals
g; as above on t C uy(#R) satisfying

w(fi) = ej(@) fj-

Then, the root system A equals one of the following (see [Nel4, Examples 1.10,
1.12 and 1.13)):

AJ2= {Ej—&‘k:j,kej,jsﬁk},

By .= {i‘éj,i‘éji€k:j,k€J,j7&k},
Cy:={tejter:jkelJ},
Dj:={tejtep:j kel j+k}

(3.2)

The root systems of the form A correspond to unitary Lie algebras, i.e. K = C,
type C; to symplectic Lie algebras (the case K = H), and By and D; both
to orthogonal Lie algebras of operators on real Hilbert spaces. The difference
between D; and By is that, in the latter case, t has a nontrivial (1-dimensional)
common kernel in #p.

Remark 3.10. Together with Theorem [2.27] the previous remark implies that
every semisimple Hilbert-Lie algebra has a dense subalgebra which admits a
root space decomposition; the Cartan subalgebra is the direct sum of the Cartan
subalgebras of its simple ideals, and its root system the disjoint union of their
root systems.

This classification allows us to single out a specific inner product for any
Hilbert—Lie algebra, which in the following will be employed to obtain Lie groups
corresponding to double extensions of Hilbert loop algebras.

Definition 3.11. (see [Nel4l Definition 3.3 and Remark |) For a simple Hilbert—
Lie algebra ¥, the normalized inner product is defined as the inner product with
(&, @) = 2 for all long roots a € A(EC, %), i.e. the roots with minimal (&, &).
Specifically, if € = uy or € = sp,, then tre(zy*) for all z,y € €€ defines the
normalized inner product, and %tr@(azy*) defines the normalized inner product
in the case &€ = o09.

Theorem 3.12. [Nelj, Theorem 3.4] Let K be a 1-connected simple Hilbert—
Lie group and let (-,-) be the normalized inner product on € := L(K). Then the

cocycle
1 21

w(z,y) = o ) (2'(t),y(t))dt for all z,ye Lyt

integrates to a locally smooth Lie group cocycle Q) : Lo K x LK — T such
that the smooth central extension T @q LK is locally exponential and satisfies
Re @y, Lt = L(T ®q L3 K).

Proposition 3.13. For a 1-connected Hilbert-Lie group K and a normalized
inner product on £ = L(K), and with R := exp(iRd) ~ T and the cocycle
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QN LK x LK — T from Theorem[3.12, the smooth double extension of Lie
groups
G:=(T@®qLK)xR

satisfies L(G) = g = (Re @y, L) x Rd.

Proof. By [MN03, Thmeorem V.9], the rotation action of R on LK lifts to a
smooth action on the central extension T ®q L K. O]

3.2 Root space decomposition of loop algebras

With the basic notions and properties of the locally finite root systems of
Hilbert—Lie algebras established, we are now going to apply them to describe
the structure and classification of twisted Hilbert loop algebras.

In the course of this section, the root systems of Hilbert loop algebras will
be described and linked to their algebraic counterparts, the affine and locally
affine root systems; these provide sufficient information for their application to
convex and, in particular, Cozeter geometry.

Convention 3.14. Any automorphism of finite order N € N of a complex
vector space V' is diagonalisable and there exists a primitive N-th root of unity
o :=e~ e T such that every eigenvalue is of the form o* for some k € Z. With
that in mind, all eigenvalues of finite-order automorphisms will be denoted by o*
from here on, and the corresponding eigenspaces by Vi, := {x € V : p(z) = o¥x}.
Note that of = o**™N for all m € Z, and thus Vi, = Viymn, so the indices
denote congruence classes rather than integers in this context.

Definition 3.15. We will use the abbreviation
er =R —S!, en(t) := e for ke Z;

because these maps are l/k-periodic, we will mostly interpret them as maps
S' — S! and use them to write “trigonometric monomials”.

A loop x € L%, where £ is a Hilbert—Lie algebra, is called a trigonometric
polynomial if there exists a number n € N and a tuple (yx)_n<k<n < € such
that

n

x(t) = Z er(t)yx for all teR.
k=—n

The set of all trigonometric polynomials with values in € is denoted by LP°l;
we also write I&;OIE 1= Lt N LPOl.

Lemma 3.16. For a complex Hilbert-Lie algebra & and ¢ € Aut(t) of finite
order, ££°1E is dense in L t.

Proof. As smooth functions, x € Lt and all its derivatives are particularly of
bounded variation, and ¢ is in particular a Banach space, so the corollary on
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[Ka04l p.62] applies, which means that = can be approximated uniformly in all
derivatives by trigonometric polynomials z,,(t) = 37_  ex(t)yx, where yj € €C.
With N := ord(y) and r := 27/N, we specify an automorphism @ of Lt by

G(x)(t) := ¢ Y (z(t + 7)) for all teR. (3.3)

Obviously, (L)% = L, it is also clear that a monomial egyy, is invariant under
¢ if and only if yi € € (see Convention , and that ¢ does not change the
degree of any monomial. Thus a polynomial p € L€, p := Y_  expy is invariant
if and only if all its monomials are, i.e. p € P, (erts).

According to the last theorem on [Ka04l p.103], the convergence of the Fourier
series is absolute at every point ¢ € R, so §(x) = Y07 P(exck)-

Therefore, every partial sum of the Fourier series of a p-invariant z € L€ is
itself @-invariant, which proves the claim. O

Definition 3.17. A real form a® a of a complex Lie algebra a is a real subal-
gebra of a such that a = a® @ ia®.

An antilinear involution is a map * : a — a, x — x™* which, for all a € C and
x,y € a, satisfies

(i) (ax +y)* =ax™ + y*,
(ii) [z, y]* = —[2*,y*], and
(iii) %2 = idg.
R

Remark 3.18. Every real form a™ in a gives rise to an antilinear involution
by writing elements z € a as z ~ (z,iy) € a® @ ia® and defining

x:a—a, (r+iy)*:=—x+1y.
This satisfies a® = {z € a : 2* = —2z}. Vice versa, every antilinear involution
defines a real form a® c aas a® ;= {zea:2* = —2}.

Now if we start with some real Lie algebra v, and * is the antilinear involution
associated to the real form ¢ of the complexification t© := t@it, then * extends
pointwise to an antilinear involution of L (x*), with fixed point set Lapt.

This means that the complexification of a loop algebra Lgt over a real Lie
algebra t is the loop algebra L (x*).

Definition 3.19. ([Nel0), Definition 3.17]) Let s be a complex split quadratic
Lie algebra with root system A and bilinear form &; then an antilinear involution
on s and its corresponding real form s® are called a wunitary real form if:

(i) a(z) € R for all roots a € A and z = z* € 5.

(i) (50)* = 5_q for all a € A.

(iii) k(x*,y*) = k(z,y) for all z,y € 5.
Proposition 3.20. If £€ is the complexification of a Hilbert-Lie algebra with
a root space decomposition with respect to A := A(EC, (%), then the antilinear

involution * from Remark[3.18 and the bilinear extension of the inner product
from € to ¥ are a unitary real form of €.
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Proof. (i) This is because the ad-invariance of x implies that the elements
of t act as skew-symmetric operators, and thus have only imaginary eigen-
values. The elements satisfying z = x* are the ones in it, therefore having
real eigenvalues.

(ii) For all h e tand x € 5 we have

[h, a*] = —[h*, 2]" = [h,2]" = a(h)z¥,
and if, instead, h € it then [h,z*] = —a(h)z*, so that ii) follows from 1i).
(iii) For 2 = xg + iz1 and y = yo + iy € £* we get

k(z*,y*) = k(—xo + ix1, —yo + iy1)

= r(z0,0) — K(w1,91) — i(K(z0,y1) + K(71,%0)) = K(z,y). O

Remark 3.21. For any semisimple Hilbert—Lie algebra ¢ and ® € Aut(¢) of
finite order N, the subalgebra ¢y = £ is non-trivial ([Nel4, Lemma D.1]). For
every maximal abelian subalgebra ty c 9, its centraliser t := 3¢(ty) is maximal
abelian in ¢ ([Nel4, Lemma D.2]).

Because ad(tg) and ® commute, they can be diagonalised simultaneously over
£, which means that ¢© has a simultaneous weight space decomposition with

respect to t§ and ® (Convention [3.14)):
“-o @ (D)
0<k<N—1 ‘aely

Here, the sets of weights Ay are subsets of A := A(¥, t)|t‘g v {0}, defined by

Ap:i={aeA: S e #{0}} for 1<k<N -1 and
Ag:={aeA:a#0,t e #{0}}

According to [Neld, Appendix D], the weight spaces E(g N ’E(IS are 1-dimensional.

Convention 3.22. From here on, we resume to use Convention [2.30] in partic-
ular ¢ denotes a semisimple real Hilbert-Lie algebra, and g := (Rc@®,, L,,) x Rd
a double extended loop algebra with twist ® of order IV over ¢.

We further denote any maximal abelian subalgebra of g which contains d by
ty. It equals Re @ to @ Rd for a maximal abelian subalgebra ty < €.

Proposition 3.23. The complezification g€ has a root space decomposition
with respect to tg. With the notation of the preceding remark and 6 € Cd*
defined by 6(d) := 1, the subset of integrable roots A; < A equals:

A; = U (Ag + kd),
keZ
and A = A;U(Z\{0})d. The root decomposition then reads:
gC = tg: @ @ ekégk
a+kdeA

and all root spaces are 1-dimensional.
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Proof. Forall (o, k) € A with « % 0, the subspaces ekfg ;. are the weight spaces

tCn E(,S from the preceding remark, multiplied with the periodic maps satisfying
e, = ikey, making them into root spaces with respect to Cc @ tg @ Cd.
In [Nel4, Appendix D], shortly before Lemma D.3, is shown that

(a+ ko) ([x,y]) # 0

for all roots a + kd € A; and non-zero elements x € ekégk and y € e_kP(Ea e

and that the root space ek{?gk is 1-dimensional. Further, from [Nel4, Lemma
D.2], we know that t€ := 3,c(t§) is maximal abelian in €. It is obvious that
the roots with a = 0 are not integrable.
To show that ad(z) is locally nilpotent, we consider another root 5+ 10 € A,
and expressions of the form (8+16) +m(a+kd) and RS,, := B+ma for m € N;
clearly, if the latter is not a root in A(£C, £5), then neither is (3+10) +m(a+kd)
a root in A(gc,t(gc). If B =0, then [z,b] € ek+lkg,(k+l) for all b € E(,B:,l’ SO we
can replace § + [0 = 16 with a + (k 4+ 1)d. Thus we can w.l.o.g. assume that
B # 0. We further consider preimages of the restriction operation (t©) — (t§)’;
for v € A(EC,€5) < (), let

Py = {7 e AES5) € (9 : Ale = 7).
to ko
at most N elements, and the same is true for Pg. This leaves us with at most N 2
combinations of roots &, 3 e A(t%, %) such that B + ma restricts to RS,,. The
root system A(€C, €) is locally finite, so, for every one of these combinations,
there exists a maximal m; e N, 1 < j < N? such that 3 + mja is a root in
A(€C,(C), and if we define M := maxy ;< n2 My, then 8+ (M + 1)a is not in
A(E5, 1§ ), and thus (8 +16) + (M + 1)(a + ké) ¢ A(g", t5). From

(C . . . (C _ . .
Because eyt ; is 1-dimensional, and Ea,(k N) = the preimage P, contains

ad (85 )" G ) S €y (0,0 4w = 10)

it now follows that ES i acts on the dense subalgebra

C C C
ty @ @ €k{5a,k cg
a+kdeA

by locally nilpotent operators. Thus, the roots of the form « + kd with o # 0
are integrable. This completes the characterisation of the integrable roots in
A, which was the last part we had left to show. O

Corollary 3.24. The integrable roots B € A(gc,tg) for a double extended loop
algebra g are exactly the ones satisfying By, # 0, which is also equivalent to
K(B,B) # 0.

Lemma 3.25. g n g(a) ~ su(C?) for every integrable root a € A(gC, tg).

Proof. This follows from [Neldl Appendix D] and [Neld, Lemma 1.8]. O
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Proposition 3.26. For the double extended Hilbert loop algebra g, the invo-
lution % : g¢ — g© from Remark and the bilinear extension ryc of the
invariant Lorentzian form to g€ are a unitary real form of gC.

Proof. We want to show that g€ and Kkge inherit the list of properties from
Definition from the underlying Hilbert—Lie algebra and its complexification
£C, so we are going through the list:

(i) We write any root as a + nd € A(gc,tg) < ity @ Ré and see that « is
a restriction of an element in A(£C, (%), so it takes imaginary values on
t? < t. The other summand, nd, is imaginary on d by definition (in

Proposition |3.23]).
(ii) This follows from (i) as in the proof of [3.20

(iii) is immediate. O

Now that the root systems of double extended Hilbert loop algebras are
described in sufficient detail, they can be linked to the purely algebraic concept
of locally affine Lie algebras, which will provide a detailed representation theory
and exhaustion arguments.

Definition 3.27. [Nel0l Definition 2.4] Let V' be a rational vector space with a
symmetric positive semidefinite bilinear form (-,-), and R < V. Then (V, R, (-,-))
is called a locally affine root system, in short LARS, if, for all a, 8 € R, the
following conditions are satisfied:

(i) (a,a) # 0.

(i) (23 ez,

(iii) If o, e R and 04, : V — V,04(v) := v — 229 then oa(B) € R.

(a,@)

(iv) R is connected in the sense that there exists a finite sequence of elements
ar € R,0< k <nwitha = ap, 8= a,and (ag,ari1) #0for0 < k <n.

(v) The subspace of degenerate elements VO := {v e V : (v,V) = {0}} inter-
sects spany(R) in a non-trivial cyclic group.

A LARS is called reduced, if it satisfies
(vi) Ra n R = {+a}.

Definition 3.28. [Nel0l cf. Definitions 1.2 and 3.1] We consider a split quadratic
Lie algebra (a, b, k) and its root system A := A(a, h); we further recall Remark
(2), which implies that of := b~'(a) exists for all roots o € A, and thus
every root can be assigned a length |a| := 1/k(a¥, af).

The split quadratic Lie algebra (a,bh, k) is called a locally extended affine Lie
algebra, in short LEALA, if its set of integrable roots, A;, is connected, and all
roots a € A satisfying |« # 0 are integrable.
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With V' := spang(4;), it is called a locally affine Lie algebra , in short LALA,
if (V,A;,k|y) is a locally affine root system.

In order to apply these notions to the root decomposition of twisted Hilbert—
Lie algebras, we need to prepare an appropriate quadratic form on

ity ® RS = spang(A;).

It is most convenient to define it on all of it’g first, pointing out its relation to
the split-quadratic structure of gC.

Definition 3.29. As in Definition[I.31] the Lorentz-form x on g can be regarded
as an injective homomorphism g — g’. Its image is dense, and its restriction to
ty is an isomorphism to t;. We consider the push-forward of x to t; and denote
its hermitian extension by 7 : (tg)’ X (tg)’ — C.

Note that the restriction of this hermitian form to both t; and ity ~ (it); are
Lorentz-forms. We will also denote them by 7 and it will be clear from the
context which types of arguments are considered.

Proposition 3.30. Let t be a simple Hilbert—Lie algebra with complexification
tC, and V = spang (4;), which is a dense rational subspace of itg @ RS. Then
(V, Ai,nly) with A; = A from Proposition[3.23 is a reduced LARS.

Proof. We are verifying the list from Definition [3.27] point by point:
(i) is proven in [Nel4], between the Lemmas D.2 and D.3.

(ii) We consider (¢€°)?, which is a Hilbert-Lie algebra, and write any two roots
a,B e as

a=ap+nedand 3= By+ngd e Cc*@t%@@d*.
Then the corresponding coroots have the form

& = (84, ¢, 0) and [ = (sB,BO,O) € Cc@t%@@d.

Thus, (o, B) = (v, Bo) = ,88(040), and the property ‘22) € Z follows from

(a,0)
(a0,00) o Z, which can be derived from the explicit description of the root

(c0,00)
systems of Hilbert-Lie algebras in Equation (3.2]) in Remark using
BO = u2 i /88

(/80’180)

(iii) follows from the construction of the root system A(g®, tg) from the sub-
systems (Ag)o<k<ord(p)—1 in Remark and Proposition

(iv) is equivalent to the irreducibility proven in [Nel4, Lemma D.4].
(v) is an application of The set of degenerate roots equals (Z\{0})d.
(vi) follows from [NeOOb, Proposition I1.6]. O
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Corollary 3.31. We consider the dense subspace
tgg .= spang(A,d) tg
and the dense subalgebra

C C C C
galg:: talge—)@ga gg .
aceA

Then, g(glg 1s a locally affine Lie algebra.

Lemma 3.32. Ift is separable and simple, then there exists a strictly ascending
sequence (gn)neN of subalgebras of g such that

(1) gin := U, e On is dense in g,

(i) every gy is isomorphic to a double extended loop algebra over some com-
pact Lie algebra ,,

(ili) the abelian subalgebras t, := g, Nty are Cartan subalgebras of the g,.

Proof. This is a direct translation of [Nel(, Proposition 3.3(ii)] to the setting
of loop algebras. That proposition asserts the existence of an exhaustion of A;
by an ascending sequence of affine root systems A, for n € N, which correspond
to affine Kac—Moody algebras a, := g(A,) @ Cd. The theory of affine Kac—
Moody algebras is fully developed in [Ka83], the only part we need here is
[Ka83, Theorem 8.5], according to which a,, is isomorphic to a double extended
Lie algebra of polynomial loops over some complex finite-dimensional simple
Lie algebra s,, i.e. a, = (Cc®, efglesn) x Cd for an appropriate automorphism
. Now, to get back to real Lie algebras, we note that intersecting a,, with g is
the same as taking the unitary real form aX of a, which corresponds to g  g=.
As in Remark this equals (Re @, a[‘gslfn) x Rd for a suitable real form ¢,
of s,,.

Recalling the latest corollary, we find that ggg = g(A) ® Cd, and from this it
becomes clear that the a,, exhaust g((a:lg. Thus, the real forms ait exhaust ggg ng,
and all that is left to do is to define the g, as the Fréchet completions of the
al. Now (i) follows from | J,,c gn containing ggg N g, which is dense in g, (ii) is
the definition of the g, and (iii) follows from the construction out of A, < A;,
which determines the Cartan subalgebra of g,. O

Locally finite and locally affine root systems exhibit their own convex geome-
tries, which are invariant under the action of their respective Weyl groups:

Definition 3.33. The Weyl group of a LARS (V, R, (+,-)) is defined as
W(R) :={oq : € R).

Remark 3.34. Recall the LARS (V,A;,n|y) from Proposition In this
case, the reflections o, generating the associated Weyl group #(A;) are of the

form
n(\, @)

Oa(A) := X — 277(&’ o)

a for all )\chit’g.
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Obviously, these generators, and thus the natural Weyl group action on V, im-
mediately extend to it’g, and can be pulled back to ity via the injection ity — it’g
defined by —k. This yields a faithful representation which we will identify with
W(A;).

47






4 Lowest weight representations and a convexity
theorem

The bridge we have established between Hilbert loop algebras and locally affine
root systems, and in particular the connection between the adjoint action and
the Weyl group, would already allow to prove a convexity statement

O,y, < conv(W.N)

for certain weights A € t;, by applying convexity theorems from the represen-
tation theory of locally affine Lie algebras, see [Nel(, Section 4]. We will come
to this in the second subsection of this chapter, but in order to generalise this
statement to as many weights as possible, which is all weights with A(c) # 0,
we first need to understand the #¥/-invariant convex geometry on tg.

4.1 Convex geometry of Weyl group orbits

At some point in the development of a convexity-theorem for coadjoint orbits,
we will need sharp information about the convex geometry which the Weyl
group action induces on t;. The main source for this information will be [HNT4].

For any subset £ — V of a locally convex real vector space, we write
E*:={AeV':(Vxe E)A\(z) = 0}, and B(E):={\e V' :sup(\(F)) < oo},
and for F < V"
F*:={xeV:(VAeV)\x) >0}, and B(F):={zeV :sup(F(z)) < o};

The cones E* and F* are called the dual cones of E and F'.

[HN14, Definition 1.1] With an arbitrary index set S, we consider a triple
(V, (@) ses, (dis)ses) of a finite-dimensional real vector space V', a family (o )ses
of linear functionals on V' and a family (és)ses of elements of V' with as(és) = 2
for all s € S. In this context, we denote the group generated by the reflections

os: VoV, ox):=x—asx)d

by #; the connection of these groups with the Weyl groups of Lie algebras will
become clear soon.
Such a triple is called a linear Cozeter system if it has the following properties:

(LCS1) The fundamental chamber, i.e. the convex cone
K:={xeV:(VseS)a(s) =0}

has inner points.
(LCS2) For all s e S, the functional oy is not contained in cone{a, : r # s}.

(LCS3) oK n K = (& for every o € W\{1}.
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If S is finite, then ¥ is called a Cozeter group.

Further important notions and notation from the context of convex and Cox-
eter geometry are:

(CG1) The convex cone T := W.K is referred to as the Tits cone.

(CG2) For the faithful dual action of ¥ on V'  in analogy to the coadjoint
action, we use the notation c*\ := Moo for all 0 € W, \ € V'. The
elements of R := | J,.q¢ W* o are called roots.

(CG3) If a = 0*as € R is a root, then & := ods is called the associated coroot;
the set of coroots is denoted by R, accordingly.

(CG4) Cg := cone{az e V':se S} and Cg := cone{ds eV : se S}.
(CGbH) Cy :=cone{a € R : a(x) > 0} for z € V and
C) := cone{d € R : A(@) > 0} for \e V'

In the following we show how these notions apply to the root space decompo-
sition with respect to A := A(g®, tg) of a double extended twisted loop algebra
g:= (Rec @, L, t) x Rd with compact simple €.

Definition 4.1. A simple system, also called root basis, is a linearly indepen-
dent, and therefore finite, subset II — A; such that for every a € A there exists
a family of roots (ag)se; < IT and a family of natural numbers (z5)se; € N with

either
o= Zzsas or o« = —Zzsas.

sel sel
To a simple system II ¢ A; we associate a fundamental chamber
K(I) := {z € ity : (Vo € M)ia(z) = 0}
and the Coxeter group
W(II) := {on € GL(ity) : v € IT); (4.1)

the definition of the Weyl group in [Ka83l §3.7] coincides with this definition,
which means that the Weyl group in [Ka83| is automatically a Coxeter group.
Furthermore:

Proposition 4.2. [Ka83, Proposition 3.12] If S — II,s — as is an indexing
of a simple system Il < A and V := ity, then (V,(as)ses, (Gs)ses) is a linear
Cozeter system.

In Definition we have defined the Weyl group ¥ (A;) without referring
to any simple system of A;, because in the locally affine case, these are not
well-behaved. As a consequence, we have to make sure that, in the affine case,
Definition is equivalent to . This has already been shown in [Ka80]
and summarised in [Ne0OOb, Theorem II1.7] for a larger class of Lie algebras, of
which the following is a direct application:
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Proposition 4.3. If A; ¢ A(gc,tg) for g :== (Re @, L,t) x Rd with compact
simple €, and Il € A; a simple systems as defined in Definition[{.1], then

(i) W(II) = W(A;) and
(i) W(ID).II = A;.
Definition 4.4. For a linear Coxeter system (V, (&s)ses, (@s)ses) we set
Cs := cone{d:s€ S} =V and Cg:= cone{ds:se S}c V.

With R and R denoting the roots and coroots of the Coxeter system as in
[((CG2)|and [(CG3)| for all v € V, we further define

C, :=cone{de R : a(v) >0} SV and C, :=cone{ae R : alv) >0} < V'

Remark 4.5. If a linear Coxeter system (V, (évs)ses, (@s)ses) comes from the
root space decomposition of an affine Lie algebra, then the members of (és)ses
and (as)ses are related via the non-degenerate symmetric form 7 from Defi-
nitionJ@7 specifically & = maﬁ, which implies that C' is pointed, and
thus C% is a fundamental chamber of another linear Coxeter system, namely
(V' (s)ses, ((s)ses), which shares its Weyl group with the first one.

Depending on a choice of sign, its Tits cone equals either

(V)¢ := {Ae V': \(ic) > 0} U iRd*
or —(V’)a“,

With Proposition 4.3 it has become clear that Coxeter geometry is directly
applicable to Cartan subalgebras and Weyl groups. We proceed to the inspec-
tion of the convex geometry of Weyl group orbits. By far the greater part of
this has been accomplished in [HN14], and the part of that paper which deals
with Coxeter systems culminates in the following Theorem:

Theorem 4.6. [HN14, Theorem 2.7] If (V, (ds)ses, (s)ses) is a linear Coxeter
system, then
Wocv—C, foral veT.

Corollary 4.7. Because conv(W.v) is W-invariant and oCy = Cyy is conver
for every o € W, we immediately get

conv(W.v) < ﬂ o(v—Cy).
oelW

In the following, this inclusion will be sharpened to the point where equality
holds. We will use the abbreviations

co(v) := conv(#W.v) and ¢o(v) := conv(¥W.v),
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as well as

oeW

Because we will not assume that the linear Coxeter system (V, (as)ses, (¢is)ses)
comes from the root space decomposition of a Lie algebra, we use the definition
A = Jyeg W*as for the set of roots, and A* := A n Cs.

Lemma 4.8. Let W, denote the stabilizer in W of some v € T'; we collect some
important properties of linear Cozeter systems:

(i) Cs = K* = cone{a € A : (Vz € K)a(z) > 0}.
(ii) C, < Cg for allve K. Equality holds if, and only if, ve K°.
(iii) C, is invariant under W,.
In the following, we assume that v e TO.
(iv) Cp = Nyey, 0Cs for allve K.
(v) sec(v) = (\,eq o(v — Cs) for allve K.
(vi) C, is closed.

Proof. (i) This follows from every a € A being either positive or negative
on K° [[ANT14, Remark 1.11].

(ii) For v € K, it follows from (i) that C, < Cg, with equality if and only
if v e K° and [INT4, Theorem 1.10] implies in particular that any root
satisfies a € Cg if and only if & € Cg.

(iii) If a(v) > 0, then for o € 1), we get (¢~ 1) *a(v) = a(ov) = a(v) > 0, so
the invariance follows from

o{aeA:alw)>0}={acA: (e H*a(v) > 0}.
(iv) Forve V we set S, := {s € S : as(v) = 0}; if « € AT, but & ¢ C,, i.e.

a(v) = 0, then @ € Cg, := cone{d, : s € S,}, so that Cs = C,, + Cs,. To
this, [NeO0Oal, Corollary V.2.10] (with x := 0) applies, yielding

ﬂ UC'S: ﬂ U(ésv+év)=év.

oWy oWy

(v) By applying (iv), we get

sec(v) = ﬂ ﬂ oo'(v—Cg) = ﬂ o(v—Cs). O

oW o’elf, ol

(vi) Because T = WK, we may assume that v € K. Further, Cg is a finitely

generated convex cone in a finite-dimensional vector space, so, by (iv), C,
is an intersection of closed sets.
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That C, is closed implies co(v) < sec(v). To prove a first version of the
reverse inclusion, we need two more technical lemmas:

Proposition 4.9. Let C # & be an open convex cone in a finite-dimensional
real vector space V., I' < GL(V) be a subgroup that stabilises C and satisfies
|det(A)| =1 for all AeT, and ve C. Then conv(I'.v) < C.

Proof. By [HN93, Theorem 1.8] there exists a smooth, and in particular con-
tinuous, convex I'-invariant function f : C' — (0,00) such that for every ¢ > 0
the sublevel set F, := {ve C : f(v) < c} is a convex subset of C which is closed
in V. Because f is I'-invariant, conv(I'.v) < F, for all v € C, and because F¢ is
closed, conv(I'.v) € F. < C as well. O

Corollary 4.10. If V is the vector space of a linear Cozeter system, then
co(v) < T for all v e T.

Lemma 4.11. Ifve T and w € C,, there exists € > 0 such that v —sw € co(v).

Proof. By definition, w = Z§:1 c;jdj for some k € N, ¢; > 0 and roots satisfying

aj(v) > 0. Obviously, 0a;(v) = v — a;j(v)d; € co(v), so for all combinations

d; >0W1th2 <landdy:=1- Z§=1dj we find
k
U—Zdaj —de—Zd (v —aj(v)@y) € co(v).
7=1

So, if we set vy := v — tw, then

k
vtzv—Ztcpoj Zt oz],
j=1

which, by the previous formula, is contained in co(v) if ¢ is small enough so that
k Cj
-1 tTZ?J) < 1. O

Theorem 4.12. Ifv e T, then @ (v) = sec(v).

Proof. The inclusion co(v)
4.8(vi)|this becomes ¢o(v) <
that v e K.

In an intermediate step, we show that K n (v — C,) < @ (v).
So, let u € K n (v — C,), and consider the line segment

< sec(v) is Corollary above, and with Lemma
sec(v). Further, because T' = WK, we may assume

v:[0,1] = K, ~(t) :=v+t(u—0);

then v~ 1(co(v)) = [0, 7] for some r € [0, 1], and we have to show that r = 1.
If a(v) > 0 for some a € A, then « € K*, which implies a(u) = 0. For 0 <t < 1,
this leads to a(y(t)) > 0 and thus C, < C’W(t).
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Suppose that < 1 and set v’ := ~(r) € e@0(v) = (1—7)v+cu; because u € v—C,
according to our assumption, v — u € C,,, and thus

W —u=(1-7r)(v—u)eC, < Cpy.

By Lemma there exists € > 0 such that v — e(u’ — u) € co(u’) < ¢o(v),
where the last inclusion comes from u' € ¢o(v). Now

w —e( —u)=v+ru—v)+el—r)(u—0)=Ar+el-r)),

which contradicts the maximality of r, so that we have shown r = 1 and thus
Kn(v—C,) Sco(v).

Again, because T' = WK, for every w € T n sec(v), there exists a o € ¥ such
that o(w) € K, and because w € 0! (v —C,) in particular, o(w) € K n (v—C,),
which shows that 7" n sec(v) € €o(v).

For the last step we note that ¢o(v) = T, so T'nsec(v) cannot intersect 07', and
because of connectedness, sec(v) = T°, which finally shows sec(v) < co(v). [

4.2 The convexity theorem for weights

Definition 4.13. Let a be a complex quadratic Lie algebra with a unitary real
form . A unitary representation of a is a complex pre-Hilbert space i with an
action p : a — B(#) such that, for every = € a, the adjoint operator of p(x)
exists and p(z*) = p(x)*.

This implies that the real subalgebra a® := {z € a : #* = —z} acts by skew-
symmetric operators, i.e. p(a®) C u(f), hence the name.

Definition 4.14. Let a be a split Lie algebra. Then an a-module L is called
split with respect to the splitting maximal abelian subalgebra b if h acts on L
by diagonalisable operators. We will generally denote the weight spaces by

Ly:={veL:(Vhehhv=Ah)v} for Aep’
and the set of weights (also called weight system) by
Pp={ e’ : Ly=#{0}}.

The module L is called integrable if for every integrable root a every = € a,
acts as a locally nilpotent operator.

Definition 4.15. [Nel(, Definition 4.4] If b is a splitting Cartan subalgebra of
some Lie algebra a, then a subset AT < A := A(a, h) is called a positive system
if

(i) A=AT0 - A" and

(ii) > ,ep @ # 0 for every finite subset F' < A*.
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Remark 4.16. For every positive system AT the subspaces

ng = (—B 0, and n_ := C—B 0o

acAt ae— AT

are subalgebras. If a = g© for a double extended Hilbert loop algebra g and,
accordingly, h = tg, then, for tgg as in Corollary ggg =n_& tg @®n,.

Definition 4.17. Let b be a splitting Cartan subalgebra of some Lie algebra a,
and At < A := A(a, ) be a positive system. An bh-split a- module is called a
module of highest weight A, if there exists a weight A € 1, such that the weight
space Ly satisfies ny (L)) = {0} and L) generates L.

Definition 4.18. If b is the splitting Cartan subalgebra of a Lie algebra a,
and A := A(a,b) the corresponding root system, then a weight A € b’ is called

integral if \(A;) € Z.

Proposition 4.19. For a simple Hilbert—Lie algebra €, we consider the double
extended loop algebra g := (Rc @, L) x Rd with root system A := A(g®, tg),
and recall from Corollary the dense subspace tgﬂlg .= spang (A, d) tg and
the dense locally affine subalgebra

C C C C
galg = tgalg @ @ ga < g .
aeA

Then, for every integral weight X\ € ity with A(c) # 0 and positive system
AT < A such that A\(&) = 0 for all o € A™, there exists a simple (i.e. not
containing any proper submodule) highest weight module Lqg(X, A™) of ggg.

Proof. For a locally affine Lie algebra as in [Nel(, Definition 3.1], such a
module is constructed in [Nel(), Definition 4.2].

From Proposition [3:30] and Corollary [3.31] we know that A; < A is a LARS and
ggg is a locally affine Lie algebra. O

Definition 4.20. According to [Nel(, Proposition 4.9], if A} and AJ are
positive systems satisfying the assumptions of Proposition then

Lalg()\a Aii_) = Lalg()‘a A;)

Hence, we will write Laig(X) for the ggg—module of highest weight A as in the
prerequisites of Proposition [£.19
We will denote the corresponding action by py : g& —~ Lag(N).

Proposition 4.21. L,;(\) has the following properties:
(i) Pr1=Pr,,(n) S A —spany(AT).
(il) Py = conv(W.\) N (A + spany(A)).

(ili) Lag(A) is a pre-Hilbert space, on which gae acts unitarily, i.e. by skew-
adjoint operators.
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Proof. (i) For any root space g$ gglg, weight space Ly C Lyjg(A) and non-
zero x € g§ and v € L., we have 2.v € L4, so (i) follows from Definition

417
(ii) follows from [Nel0, Theorem 4.10(b)], and
(iii) from [Nel0, Theorem 4.11]. O

Proposition 4.22. Let K be a 1-connected compact simple Lie group and
t = L(K) endowed with the appropriate normalized inner product, and G a
connected Lie group with L(G) = g = (Re@, L,t) x Rd as in Proposition[3.15
Let further X € ity be an integral weight with A(c) # 0 which is d-minimal in
the sense that A(—id) = min(W.\(—id)).

Then, there exists a unitary Lie group action wy : G —~ #) on the Hilbert space
completion #y := Lag(A\) such that the induced action

L(my) : g —~ #Y

on the dense subspace of smooth vectors #HY, i.e. those vectors whose orbit
map is smooth, satisfies

L(ﬂ-)\)|galg = p>\|galg'

Proof. Because A is d-minimal, by [HNI14, Corollary 2.6], we have A € —C},
where Cq = {& : a(—id) > 0}, and

Cq={yeity: (Vae A)a(—id) > 0= y(a) = 0},

ie. AM(@) <0 for all roots a with a(—id) > 0.

This implies that there is a positive system A* with A(A*) < Ny which contains
all roots with a(—id) > 0 and with respect to which the underlying module
Laig () © ) equals the highest weight module Lyig(A, A™).

By Proposition Py € A —spany(At), so A(~A+) € —N implies that the
spectrum of py(d) is negative for all o€ A¥.

Now, consider the Lie algebra £¥ := Rc @ £¥ @ Rd with the natural injection
(8)C — ¢%, and let S(\) © Lyjg(\) be the unitary (£2)“-module generated by
the weight space Ly C Laig(A).

This is a (E@)C—module of highest weight A with respect to the positive system

A= AT A A, 6).

From [HNI2| Proposition 7.3.14] follows that S()) is finite-dimensional, because
(£°)C is a direct sum of a semisimple and an abelian finite-dimensional Lie al-
gebra, and the abelian summand acts by scalar multiplications. This implies
that the action (8°)C ~ S()) integrates to a unitary action of the Lie group
K® = S!' x K® x S' « G, which is automatically bounded. We denote this
action by y : K® —~ S(N).

This and the aforementioned negativity of the spectrum make [JNI8, Propo-
sition 8.6] applicable, which implies that there exists a complex Hilbert space

56



# with an irreducible smooth unitary action ¥ : G —~ # and an injection
t: S(\) = # such that the following diagram commutes:

R® x S(\) 29X ¢ x 7

[ [

S(\) ——— .

By construction, the complex linear extension of the induced Lie algebra action
L(x) : €2 —~ S()) is identical with the restriction of py to (£2)C ggg. We also
consider the induced action L(?) : g —~ #*, where

HE ={ve#H :G— #H,g— g.vis smooth },

and its complex linear extension to g®, which we also denote by L(4).
With these, we get a corresponding commuting diagram for the complex linearly
extended induced actions on the smooth vectors:

~ idg x¢

() x S(\) —= ¢ x #>

ip,\ lL(ﬁ)

S(\) —— H.

Looking at the image t(vy) € #* of a generating weight vector vy € Ly < S()\),
we find that it generates a gC-module contained in #®, and thus, because #
is irreducible, it generates #®. This allows us to identify #* with #5°, and
thus to pull back the action ¥ of G on # to #). This completes the proof. [

Theorem 4.23. If G is a double extended loop group over a 1-connected, com-
pact, simple Lie group K and g = L(G), then, for every integral weight \ € it’g
with A(c) # 0, its coadjoint orbit Oy satisfies

(9)\|itg - @()\) (4.2)

Proof. Because A is assumed to be integral, [Nel4l Remark 4.5] applies, which
states that the orbit of A under the Weyl group contains a d-minimal element.
Thus, because our claim only deals with the Weyl group orbit of A\ instead of
A itself, we may w.l.o.g. assume that A is d-minimal, so that, by Proposition
4.221 we have a group action my of G on the ggg—module HY < ) of smooth
vectors.

On the projective space P(#5°) we consider the momentum map

(oa(z)v, v)
(v, v)

For a generating weight vector vy and any g € G, we may calculate

O, P(HY)—> g, Pr(v])(z):=—i for allz € g. (4.3)

PA([malg) (o)) (@) = —ilpa(z)mr(g)va, TA(g)VA)

] 1 . (4.4)
= —i{pA(Ad(g™")z)vr, va) = Px([va])(Ad(g™ " )x).
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By another direct calculation, for any weight v € &, (including A in particular)
and corresponding weight vector v, € L, < #}°, we find

= —iy(x) for all x e t(ca )
(Vy, Uy (vy, vy) fals

which means ®y([v,])], = —i7, so (4.4) implies that

P ([vy])(x) = _Z.<,0>\(113)U7,U7> _ _Z.<’Y(:U)v7,v7> _

@,\|{g - Im(q)m\”tg-

Next, we relate the right hand side to convexity; for this, we note that #€) has
an ONB of weight vectors so that every [vg] € P(#)) can be represented by a
normed vector v € #) satisfying v = Zye% ¢b with orthonormal basis vectors
by, coefficients g, € [0, 1] and ZWE.@M qu = 1. Thus, for every z € t;:

5 ([v0])(z) = —ip(z)v,0) = =i Y} ¢3r(a),

YEDPix
and therefore Im(®, )|, S —iconv(#;y). Proposition now implies that
conv(Py) = conv(W.\),

which completes the proof. O

Proposition 4.24. If t is finite-dimensional, then
(9)\|itg - @()\) (4.5)

for all weights X\ € it with A(c) # 0.
g

Proof. We choose a positive system AT < A; with A(A") < Ny, and from
that a family (as)ses such that {as : s € S} is a simple system of A;. Theorem
applies to it; and ¥/, which means that .y < v + C, for every v € it}
that satisfies sgn(vy(c)) = sgn(A(c)) # 0. If, in addition, v lies in the Tits cone
associated with (as)ses, then

WACy+CyCy+Cs. (4.6)

We denote the set of integral weights by Q and note that they form a lattice
generating i(ty + Rd*) < ity, which implies that

1
Qq := spang(Q) = NQ

is dense in i(t;, + Rd*). Note that Proposition and Remark imply that
Cs < i(ty + Rd*) has interior points, and thus A — C's has nonempty interior
relative to the affine hyperplane A + i(t, + Rd*). Note further that both the
prerequisites and conclusion of this proposition are stable under multiplication
with positive constants, so we can w.l.o.g. assume that A(c) is rational; from
this follows that there exists a sequence (v;)jen approximating A, such that
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vj € Qg N (A = Cg), and therefore v; — Cg = A — Cg for every j € N.
Because the inclusion (4.2) from Theorem is stable under multiplication
with positive constants, it also applies to v; for every j € N. Combining it with

(4.6) we get

(9,,]-|itg S v — C,/j c A—Cg,

and thus
O, |ty < sec(vj) < sec(N).

Now the right hand side is independent from j, and from the closedness of
sec(\) we conclude that, for every g € G,

lim (Ad™(g)v;)lit, € sec(A),
jmes

ie. Oyly, S sec(\), and by applying Theorem and Lemma this
becomes

(9/\|z'tg = @(}\) OJ

Theorem 4.25. If g is a double extended loop algebra over some simple Hilbert—

Lie algebra £, then
(9)\|it,3 c @()\)

for all weights X\ € it with A(c) # 0.
g

Proof. By there exists an ascending sequence (g;)jen of double extensions
of loop algebras such that ga, = | ey 85 1s dense in g. Then for every j € N we
set gjo0 := g; N L, t and obtain a decomposition g = g; @ tj, where t; := Qﬁo
with respect to the invariant inner product on £i,€. The orthogonality implies
that a(z) = (z,af) =0 for all @ € A; := A(g}c,tg N g(jc) and z € v; N tp, and
thus [z, g;] = {0}; we can use this to approximate adjoint and coadjoint orbits
via an exhaustion of Lie groups:

Every g; contains Re, the center of g, so we can define Lie groups G; < G
acting on g via the adjoint action as Gj := {(exp s, « 1(8;/Rc)).

Thus, for every z € g we can write z = y; + z; € g with y; € t; n g; and
zj € tg N tj, and get Ad(G;)(z) = Ad(G;)(y;) + z; for the adjoint orbit of x
under Gj.

A corresponding decomposition of g’ is obtained by A = p;+v; with p;(t;) = {0}
and v;(g;) = {0} for all Ae ¢’, i.e. ¢’ = g D).

These decompositions are compatible with the injection of t; into g’ correspond-
ing to k, and they extend linearly to the complexifications of g and g'. So for
every g € Gj and x = y; + z; € ity we have

AdEON)(2) = M(Ady 1 (2)) = MAdy 1 () + 25) = p(Ady 1 (7)) + v (2)),
which implies
Ad*(G5)(N)|ity = Ad*(Gj) (1) ity + v5 for all X € itg.
Now for every j € N, Proposition applies to G; and p; € igg-, SO
Ad*(G)(N)]igy < conv(W).p;) + vj < To(A),
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where ¥); := (A;) and the last inequality is due to #; < 1’ and v; being
invariant under ;. Now every g € G' can be approximated by some sequence
(9j)jen with g; € G, and we thus obtain our assertion. O
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