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The best that most of us can hope to achieve in physics is simply to misunderstand at a deeper
level.

Wolfgang Ernst Pauli.

Yahaha! You found me!

Anonymous Korok seed.
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Foreword

Throughout the thesis, the works to which I contributed are cited in orange while other references
are cited in green. For instance I contributed to [Mai21] but not to [Bor14].

This thesis presents some of the work I did during my time as a Ph.D. student in École Normale
Supérieure de Paris, between September 2018 and September 2021, under the supervision of
Florent Krzakala (and very often also Lenka Zdeborová). It is divided into three parts, each
taking a distinctive view on high-dimensional inference and learning problems.

Organization of the manuscript and summary of contributions

In Part I we introduce a large set of tools, mostly originated from the statistical physics of dis-
ordered systems, that are designed to study the fundamental properties of inference problems.
Chapter 1 is quite introductory and pedagogical. While it does not present any novel results,
it gives a detailed introduction to the statistical physics of inference problems as a whole, and
introduces many concepts and definitions that will be used throughout the thesis. It also re-
calls some important historical connections between statistical physics, probability, learning and
random matrix theory. Chapters 2 and 3 present the main results of two publications:

[MFC+19] High-temperature expansions and message-passing algorithms. Antoine Maillard,
Laura Foini, Alejandro Lage Castellanos, Florent Krzakala, Marc Mézard and Lenka
Zdeborová. Journal of Statistical Mechanics: Theory and Experiment 2019 (11),
113301.

[MFK+21] Towards exact solution of extensive-rank matrix factorization. Antoine Maillard,
Laura Foini, Florent Krzakala, Marc Mézard and Lenka Zdeborová. In preparation
(2021).

The approach of these chapters is in essence an “old-school” strategy of statistical physics for dis-
ordered systems, namely the derivation of the TAP equations via high-temperature expansions.
In Chapter 2 we show how such expansions are related to modern approximations and algo-
rithms in inference problems, while in Chapter 3 we use them to derive systematic corrections
to previous incorrect approximations that aimed to solve extensive-rank matrix factorization.

Part II is divided intro three chapters, each presenting a detailed study of the fundamental limits
(both information-theoretic and algorithmic) of different high-dimensional inference and learning
problems, leveraging many of the tools introduced in Part I. Beyond the heuristic techniques of
statistical physics, we also provide proofs of their predictions, and detailed algorithmic studies.
In particular we discuss the existence of computational-to-statistical gaps (also known as hard
phases) in which a problem can be solved information-theoretically but not with any polynomial-
time algorithm. In Chapter 4 we discuss learning in a model of two-layers neural network known
as the committee machine. It is based on the following publication:

[AMB+19] The committee machine: Computational to statistical gaps in learning a two-layers
neural network. Benjamin Aubin, Antoine Maillard, Jean Barbier, Florent Krza-
kala, Nicolas Macris and Lenka Zdeborová. Journal of Statistical Mechanics: The-
ory and Experiment 2019 (12), 124023.
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In Chapter 5, we show how the knowledge of data structure can be used to enhance recovery
of signals in a generic inference problem known as spiked matrix estimation. It gives a detailed
account of the main results of:

[ALM+20] The spiked matrix model with generative priors. Benjamin Aubin, Bruno Loureiro,
Antoine Maillard, Florent Krzakala and Lenka Zdeborová. IEEE Transactions
on Information Theory, 2020.

Finally, Chapter 6 focuses on phase retrieval, a particularly relevant problem for inference and
optimization, and which possesses many applications across different scientific fields. We add
to our study of the fundamental limits of phase retrieval a constructive derivation of a class of
optimal spectral methods. This chapter allows to put many previous results of the literature
into a common framework, and its conclusions are published in the following references.

[MLKZ20] Phase retrieval in high dimensions: Statistical and computational phase transitions.
Antoine Maillard, Bruno Loureiro, Florent Krzakala and Lenka Zdeborová. Ad-
vances in Neural Information Processing Systems, 33 (2020).

[MKLZ21] Construction of optimal spectral methods in phase retrieval. Antoine Maillard,
Florent Krzakala, Yue M. Lu and Lenka Zdeborová. Mathematical and Scientific
Machine Learning, 2021.

Part III, the last one of the thesis, takes a somehow more direct approach to the problem of
learning and optimization in high dimensions. It develops a framework based on the Kac-Rice
formula, an important tool of random differential geometry, to understand the topology of the
high-dimensional landscapes that are optimized by learning algorithms. Chapter 7 presents a
work done in collaboration with Profs. Ben Arous (NYU) and Biroli (ENS) in which we derive
explicit formulas for the complexity of these landscapes, i.e. the statistics of their number of
critical points.

[MBAB20] Landscape complexity for the empirical risk of generalized linear models. Antoine
Maillard, Gérard Ben Arous and Giulio Biroli. Mathematical and Scientific Ma-
chine Learning 287-327, 2020.

We end this thesis in Chapter 8 with a more direct excursion into the realm of random matrix
theory. We study the large deviations of the extreme eigenvalues of a large class of random
matrices, with direct applications to the topological approach to high-dimensional landscapes
described above. It is based on the letter:

[Mai21] Large deviations of extreme eigenvalues of generalized sample covariance matrices.
Antoine Maillard. EPL (Europhysics Letters) 133 (2), 20005, 2021.

Topics not covered in this dissertation

The present manuscript does not cover one of my PhD publications:

[BMMK18] The mutual information in random linear estimation beyond iid matrices. Jean
Barbier, Nicolas Macris, Antoine Maillard and Florent Krzakala. 2018 IEEE
International Symposium on Information Theory (ISIT), 1390-1394.

In this contribution we study linear estimation problems. We go beyond the restrictive i.i.d.
matrix assumption and discuss the formula proposed by [TUK06] and later by [TCVS13] who
used the heuristic replica method of statistical physics (that we shall encounter several times in
this thesis). Using an adaptive interpolation method and random matrix theory, we prove this
formula for a relevant large sub-class of rotationally invariant matrices. The techniques used
in this work share similarities with the ones of [AMB+19, MLKZ20], and we introduce most of
them in Chapters 4 and 6. For this reason, their application to random linear estimation is not
presented in this thesis.
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Notations and abbreviations

Index of abbreviations

AMP Approximate Message Passing
BP Belief Propagation
CDF Cumulative Distribution Function
EC Expectation Consistency
EP Expectation Propagation
ERM Empirical Risk Minimization
ESD Empirical Spectral Distribution
GAMP Generalized Approximate Message Passing
GLM Generalized Linear Model
GOE/GUE Gaussian Orthogonal/Unitary Ensemble
LDP Large Deviation Principle
LSD Limiting Spectral Distribution
MCMC Monte Carlo Markov Chain
MLE Maximum Likelihood Estimator
MMSE Minimum Mean Squared Error
MSE Mean Squared Error
PCA Principal Component Analysis
PDE Partial Differential Equation
PDF Probability Density Function
PGY Plefka-Georges-Yedidia
RS Replica Symmetric
(k−)RSB (k-th level of) Replica Symmetry Breaking
F-RSB Full Replica Symmetry Breaking
SE State Evolution
SK Sherrington-Kirkpatrick
TAP Thouless-Anderson-Palmer
(G-)VAMP (Generalized) Vector Approximate Message Passing
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Mathematical notations

An important remark – Following standard notation in random matrix theory, we will
often define a parameter β = 1 for real variables (and then denote K = R) and β = 2 for
complex variables (with K = C). This β parameter must not be confused with the
inverse temperature in statistical physics notations1, for which we will rather use
the notation η. When we consider real variables (i.e. β = 1) without any possible ambiguity,
we will often remove the β and K indications.

x,x,Φ Scalar, vector, matrix.
x · y or x⊺y Dot product between x and y.
‖x‖ l2 norm of x ∈ K

n, ‖x‖2 =
∑n

i=1 |xi|2.
‖Q‖F Frobenius norm of the matrix Q, ‖Q‖2F =

∑
i,j |Qij |2.

R+, R⋆
+ Set of non-negative and strictly positive reals.

C+ Complex numbers with strictly positive imaginary part.
x = Θ(y) Two variables of the same order, i.e. x = O(y) and y = O(x).
In The identity matrix of size n.
1n The vector in R

n with all components equal to 1.
E Expectation with respect to all involved random variables.
EX,Y Expectation with respect to X,Y only.
〈·〉 Expectation with respect to the Gibbs-Boltzmann measure.

a
d= b Shortcut for a and b having same probability distribution.

d→, p→, a.s.→ Limit in the weak, probability, almost sure sense.
S

n−1
β Unit sphere in K

n.
S

n−1
β (R) Sphere in K

n of radius ‖x‖ = R.
Nβ(µ, σ2) Gaussian distribution on K such that Ez = µ and E|z − µ|2 = σ2.

If β = 2 (complex variables), we also impose E(z − µ)2 = 0.
M+

1 (E) Set of probability measures on E.
DKL(µ|ν) Kullback-Leibler divergence (or relative entropy) of µ, ν ∈M+

1 (E).
Hn(K) or Sn(K) Set of symmetric (K = R) or Hermitian (K = C) matrices of size n.
H+

n (K) or S+
n (K) Positive symmetric (K = R) or Hermitian (K = C) matrices of size n.

Uβ(n) The (compact) group of orthogonal/unitary matrices.
Sν , Rν , · · · Transforms of the probability measure ν (e.g. Sν(x) ≡ ∫ ν(dt)/(t− x)).
SΦ, RΦ, · · · Transforms of the ESD of Φ ∈ Hn(K).
ReLU Rectified Linear Unit, i.e. ReLU(x) = max(0, x).

1We will always clarify possible ambiguities between these concepts.
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Introduction
An unexpected journey

This thesis is an incursion between the theory of computation and theoretical physics. Computa-
tion theory aims at understanding the capabilities and limitations of computers and algorithms,
not through the analysis of the performance of actual machines, but in the fundamental sense: it
studies the mathematical structure of problems, in order to discern which problems are solvable
and which are not, and to design algorithms capable of solving them in the most efficient possible
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Figure 1: Number of operations needed by
Euclid’s algorithm to compute the greatest common

divisor of two integers.

way. The ever-growing impact of computa-
tion on our modern world has led computation
theory, and theoretical computer science as a
whole, to become a field of scientific research
that can not be overlooked. Historically, the
first well-known example of an actual algorith-
mic procedure is perhaps the one described by
Euclid in Book VII of his Elements, which is
still taught in elementary mathematics as the
canonical way to find the greatest common di-
visor of two integers. The performance of Eu-
clid’s algorithm is elementary to compute for
relatively small numbers, see Fig. 1, but un-
derstanding it for random or very large num-
bers is much more demanding. Understanding
the fundamental limits of computational problems (e.g. “is it possible to find the greatest com-
mon divisor of two integers ?” – the answer is obviously positive here with Euclid’s algorithm)
and of the algorithms themselves (e.g. “what is the best algorithm to do so, and what is its
performance?”1) are the two questions that guide this thesis, in the context of the inference
problems described below.

Physics, on the other hand, seeks to grasp some bribes of the laws of nature, from the cos-
mological evolution to the structure of subatomic particles. In particular, statistical physics,
the branch of physics to which this thesis belongs (and perhaps one of the least-known to the
general audience), deals with the fundamental properties of systems composed of a huge number
of simple individual elements, whose interaction can give rise to fascinating collective behavior.
Initially motivated by the study of gases, the field was developed in the 19th century by the com-
bined genius of Boltzmann, Maxwell, and Gibbs [Max60, Bol98, Gib02]. For a non-specialist
audience, a statistical physicist studying computation theory might look somehow out-of-place:
what could the physics of gases have to do with the fundamental limits of computational prob-
lems? This brief introduction aims at providing an intuitive description, accessible to a general
audience, of this surprising association.

Entropy – A first intuition on the existence of this connection can be grasped by considering the
notion of entropy. It is indeed foundational in both fields, albeit being formalized by Boltzmann
in the 1870s in statistical mechanics and by Shannon in 1948 in theoretical computer science

1The answer to this question is much harder, but the original algorithm of Euclid is not optimal in terms of
computational time.
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[Sha48]. From the statistical mechanics point of view, since the numbers of elements is too large
to follow the individual evolution of each one (e.g. molecules in the example of a gas), we rather
describe the probability of a global configuration of the system. Denoting C the ensemble of
all possible configurations, each configuration i is assigned with a probability pi of appearance.
The entropy of the system is then defined as:

S = −
∑

i∈C
pi ln pi. (1)

As shown by Boltzmann, the entropy represents the amount of uncertainty present in the system.
To picture it, let’s imagine a single molecule which has two possible configurations A and B.
If the molecule is certain to be in one of the two configurations (let’s say A) then pA = 1 and
pB = 0, which leads to S = 0. On the other hand, if both configurations are equiprobable,
S = −(2/2) ln 1/2 = ln 2 > 0: the entropy is higher because the system is less “ordered”!

In the first half of the 20th century, Shannon realized that eq. (1) was also suited to quantify the
notion of information in computational problems. Taking the example of data communication,
he wanted to understand if a receiver could exactly identify a message X from an observation
Y that was possibly corrupted, or truncated. If possible, this allows for instance to send com-
pressed messages much smaller than the originals without loosing any information, or to “clean”
messages that were corrupted by noise. Because of the noise or compression, the observation Y
obtained by the receiver can take many values {Yi}, each with probability pi. The entropy of
eq. (1), now applied to these probabilities, is known as the Shannon entropy2. Leveraging this
definition, Shannon showed a foundational theorem: he proved that the entropy is related to the
absolute mathematical limit of how much one can compress a message without loosing any in-
formation. Starting from a physical concept, we somehow described the fundamental limits of a
computational problem! Based on this fundamental result, Shannon’s work laid the foundations
of the field of information theory.

Statistical physics of inference and learning – The connection between statistical physics
and information theory, which inspired much of this thesis, did not end at the definition of
entropy. It also inherits from diverse perspectives, whose main lines can be understood from the
point of view of Bayesian inference. In this general framework, the observer wishes to estimate
a set of parameters x = (x1, · · · , xn) from the observations of some data Y = (Y1, · · · , Ym)
(which might contain noise), while having some prior knowledge on the parameters (for instance
we may know that they must correspond to a word). The Bayesian statistician then asks the
question: “Given the data Y that I observed, what is the probability that it was generated from
some given parameters (x1, · · · , xn)”? A key realization is that, when stated this way, many
problems of Bayesian inference can be seen as statistical physics models! In this transposition,
the parameters (x1, · · · , xn) play the role of particles, which are interacting with each other.
These interactions of the physical model are shaped by the knowledge acquired through the
observation of the data Y in the original inference task. Moreover, like in statistical mechanics,
the important quantities are macroscopic: when the number of parameters is very large, we
care about the fraction of the message that we can recover, rather than the recovery of every
single parameter xi. When stating the problem in this way, we can harness much of the power
of statistical physics to tackle Bayesian inference.

Looking closer, Bayesian inference problems have a somehow unusual feature compared to classi-
cal statistical physics models. As we mentioned, the observations Y play the role of interactions
between the particles x; however in practical inference procedures these observations are usually

2Shannon named it entropy after receiving a famous advice from von Neumann: “You should call it entropy, for
two reasons. In the first place your uncertainty function has been used in statistical mechanics under that name,
so it already has a name. In the second place, and more important, no one really knows what entropy really is,
so in a debate you will always have the advantage.”
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affected by some random noise: translated into our statistical physics model, this would imply
a stochastic interaction between particles! While this does not make much sense in terms of
gases, such models of random interactions between particles are called spin glasses in physics,
and they arise in a variety of situations (we will discuss further the origin of these models and
their physical description in Section 1.2).

A canonical example of this representation of a statistical estimation procedure as a spin glass
model was described by Gardner and Derrida in the late 1980s [GD89], for an elementary
algorithm known as the perceptron. After physicists realized that the theory of spin glasses –
that was rapidly developing since the 1970s – could be leveraged to tackle many open problems in
information theory, the way was open for decades of fruitful collaborations between communities
of theoretical physicists, computer scientists, and probabilists.

Figure 2: Example of a rugged
landscape in dimension two. Picture

taken from [LXT+18].

For instance, spin glasses provide an intuitive under-
standing of the possible hardness of inference problems.
Indeed, in many cases solving an inference task trans-
lates into minimizing the energy of the corresponding
spin glass model. However, because of the random in-
teractions between particles the energy landscape of a
spin glass is generally very rugged, see Fig. 2. Unfortu-
nately, practical algorithms used to minimize the energy
are local: they generally start at a random point, and
then try to guess the position of the minimum, while
they can only see the portion of the landscape infinitely
close to their current position. A natural strategy would be to go down for as long as possi-
ble: but given the form of the landscape this surely means that the algorithm will end up in
a small well, very far from the actual minimum that solves the estimation problem. Worse,
the algorithm will then have no way of knowing if it found the lowest point or not! With this
picture in mind, one can get an idea of why solving the original estimation problem might be
computationally hard. This is just a tiny glimpse of the incredible amount of intuition offered
on inference problems by the physics of spin glasses, these “unicorns” that the prolific physicist
Sam Edwards was chasing3.
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Figure 3: A computational gap (or hard phase) in
learning in a two-layers neural network. The full

line is the theoretical optimal error, while the
dashed line is the error achieved by the best-known

algorithm. When the number of data divided by
the number of parameters exceeds a threshold

(around 7.5) all algorithms are incapable of
reaching the information-theoretic optimum in

reasonable (i.e. polynomial) time (see Chapter 4).

From the physics of spin glasses and their
connections to theoretical computer science,
we are now reaching the scientific questions
that drive this thesis. Namely, this disserta-
tion will discuss the following general question
through the prism of the statistical physics of
spin glasses:

How do statistical estimation problems
behave in very high dimension ?

Here, “very high dimension” means that there
are many parameters to infer, but we also
have access to comparably many data. As we
will detail in Section 1.1 this is the relevant
hypothesis to analyze recent artificial intelli-
gence algorithms, such as the celebrated deep
learning techniques. These modern methods
rely on the optimization of a very large

3in the words of Pierre-Gilles de Gennes [GEG+05].
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number of internal parameters (organized in what is called a neural network in the case of deep
learning) using the gigantic amounts of data provided by our evermore inter-connected world,
and are currently achieving state-of-the-art (and often super-human) performance for tasks as
diverse as image classification, natural language processing, or speech recognition. In this thesis,
we will be harnessing theoretical tools developed in spin glass theory to understand the funda-
mental limitations of a variety of learning and inference procedures in this high-dimensional
limit, and we show an example of such results in Fig. 3. In a time in which the theory of learn-
ing and inference is an increasingly active and debated area of research, the variety of approaches
developed in the spin glass and statistics literature allows to explore very diverse directions, and
the three parts of this dissertation reflects some of these distinct perspectives.

Some further reading – The book of C. Moore and S. Mertens [MM11] proposes an amazing
scientific journey through the theory of computation in general, and is a must-read for the
audience interested in this field. The curious reader can also refer to the introduction of [Abb20]
(for a short introduction accessible to a general public) or the general reviews [ZK16, Gab20] (for
more technical and completes descriptions), which are all great presentations of the foundations
of the field.
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Chapter 1

The statistical physics toolbox

“[. . . ] briefly, and in its most concrete form, the object of statistical methods is the reduction
of data. A quantity of data, which usually by its mere bulk is incapable of entering the mind, is
to be replaced by relatively few quantities which shall adequately represent the whole, or which,
in other words, shall contain as much as possible, ideally the whole, of the relevant information
contained in the original data.”

R. A. Fisher, On the Mathematical Foundations of Theoretical Statistics (1922).

Disclaimer – This first chapter defines important notions of the theory of statistical estimation.
Most importantly, we introduce several theoretical tools and concepts that mainly originated in
the statistical physics literature, starting from the 1970s with the seminal works on disordered
systems of Edwards & Anderson [EA75] and Sherrington & Kirkpatrick [SK75]. It will provide
us with a diversified toolbox to tackle the fundamental properties of inference problems in high
dimension. The last Section 1.5 is more mathematical in nature, and presents several results on
random matrices and large deviations theory that will prove useful throughout this dissertation.

Bibliographical note – Let us start by mentioning a few important references on the statistical
physics approach to disordered systems and high-dimensional inference, for the curious reader
who might finish this introductory chapter with more questions than answers. [MPV87] is an
ageless work that focuses on models of disordered systems known as spin glasses and introduces
several methods used in this thesis, e.g. the replica theory or the Thouless-Anderson-Palmer
equations. Several important works followed and focused on the links between the physics of
spin glasses and estimation models. Let us mention a few particularly impacting ones: [Nis01],
which presents a detailed derivation of the methods, [MM09] with a point of view perhaps more
adapted to theoretical computer scientists and information theorists, or [ZK16] with a specific
focus on the physics approach to Bayesian inference. Finally, [Gab20] is a recent review of
the theoretical understanding of learning in the context of neural networks, using a variety of
“mean-field” techniques that originated in the statistical physics literature.

1.1 Elements of Bayesian statistical inference

1.1.1 A motivating example: classifying data

Before diving into more technical details, we first motivate the theoretical study of inference by
the important example of binary classification of data.

Imagine a medical student in neuroradiology, which has seen during her long studies thousands
of brain MRI images, belonging both to patients with a brain tumor and to healthy ones. One
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Y= +1

Y= 1 ?

Figure 1.1: Classifying data points in R
2 among two sets, represented as red and blue points.

(Left) Linearly separable data, we draw a possible decision boundary learned by the perceptron.
(Middle) We add a yet unseen point, for which the algorithm now predicts the label Y = −1.

(Right) Non-linearly separable data, impossible to fit perfectly with the perceptron algorithm.

day she is for the first time confronted to the brain image of an undiagnosed patient, and must
deduce by herself alone1 if he is affected by a tumor. How can she minimize the risk of a mistake?
This problem enters the category of “binary classification”, and arises in several areas of statistics
and computer science. A natural and systematic idea would be to classify all the images she has
seen before into two categories – cancerous and non-cancerous – and to compare the new image
to all these known diagnostics. After having looked through all of them, she finds the past image
which is the most similar to the new one, and then takes a decision based on the category to
which this known image belongs to. While very naive, this decision process is a simple instance
of the k-nearest neighbors algorithm [CH67], which solves the binary classification problem by
assigning a new data point to the label of its closest known examples.

Unfortunately the nearest-neighbor approach is quite limited, especially as it is very sensitive
to noisy data or to outliers: if a few cancerous pictures are very atypical they could greatly
compromise the output of the procedure! To circumvent some of these limitations we describe
in the following two strategies for binary classification based on models of neural networks.

The perceptron – One of the historically most important techniques used to perform binary
classification of data is the perceptron algorithm, introduced by Rosenblatt in 1957 [Ros57].
Given a set of weights W ∈ R

n and a bias b ∈ R, it predicts the classification Y ∈ {−1,+1} of
a data point z ∈ R

n as follows:

Y = sign
( n∑

i=1

Wizi + b
)
. (1.1)

In mathematical terms, the perceptron cuts the space Rn in two regions at the decision boundary,
i.e. the hyperplane characterized by the equation

∑n
i=1Wizi + b = 0. The perceptron algorithm

then consists in using labeled points (i.e. a set of m values {zµ, Yµ}) to train the algorithm, that
is to learn W, b such that eq. (1.1) matches “as best as possible” the vectors zµ to the labels Yµ.
The hope is that it will then allow to predict the class of a new point previously unseen in the
training procedure, as the algorithm will have “learned” how to differentiate the two types of
data points. Importantly, the perceptron algorithm can only perfectly fit a training set {zµ, Yµ}
which is linearly separable, i.e. that can be separated in two by a decision hyperplane. We
summarize this discussion in Fig. 1.1. Note that the perceptron algorithm can also be adapted
to solve regression tasks, in which the labels are not discrete like in the present example, but
continuous: one simply replaces the sign function in eq. (1.1) by a smooth function ϕ.

Multi-layer neural networks – In order to classify data of increasing complexity, such as
natural images (which will surely not be linearly separable), a variety of subsequent algorithms

1(a hopefully unrealistic situation)
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Figure 1.2: Classification of cats and dogs images by a fully-connected neural network. We take
the training images randomly in a large set of labeled pictures (left). Note that it contains a very
small number of misclassified examples (labeled in red), which we will discuss in Section 1.1.2. We

use it to train a fully-connected neural network of the form of eq. (1.2) (middle). We then use
eq. (1.2) with the trained weights to predict the label of an unseen image (right).

were developed. Fully-connected neural networks, also called multi-layer perceptrons, are among
them. In these models, the input data z is propagated among a number L ≥ 1 of layers, adding
a non-linearity ϕl component-wise in each layer, which results in the observation:

Y = ϕL(WLϕL−1(· · ·ϕ1(W1z))). (1.2)

For classifying data in two categories we simply have ϕL : R → {−1, 1}. By use of training
algorithms (discussed at a later point of this chapter) on samples of data {zµ, Yµ}, we infer the
value of the weight vectors {Wl}, so that eq. (1.2) is able to accurately predict the category
of an unseen data point. The procedure is illustrated in Fig. 1.2, and we will study a neural
network of this category in Chapter 4. While the introduction of the multi-layer perceptron
dates back to the late 60s [MP69], it took many more years for a practical training algorithm,
called backpropagation, to be developed [RHW86]. Even then, the available computing power
was not sufficient to train these networks, and it was especially during the past decade that
the dramatic increase of available computing power allowed to finally train networks with many
layers and nodes, a strategy known as deep learning. Actual modern neural networks are actually
much more refined than multi-layer perceptrons, and the growing range of their applications has
led to a whole zoology of deep neural nets, such as convolutional neural networks (CNNs)
which are particularly used in computer vision, or recurrent neural networks (RNNs) with many
applications in natural language processing [LBH15]. A general theory of the learning procedure
in deep neural networks however still appears beyond reach [Gab20, Zde20].

Fundamental limits of inference and learning – These sophisticated neural networks are
just a particular class of inference procedures, which consist in extracting information (e.g. the
values of the weights {Wl} in a neural network, cf. eq. (1.2)) from the analysis of data samples.
Such inference procedures appear all over the scientific spectrum, as they can be applied to
artificial intelligence methods, to medicine (e.g. recognizing tumors by medical imaging analysis
as we discussed), self-driving systems or quantitative finance, among many. In this thesis, we
consider the fundamental limits of inference procedures. Our main interest will therefore be to
study the following question, which essentially sums up the task given to our medical student:

How much information is it possible to extract from a given set of data ?

This question of optimal performance is in a sense two-dimensional: one can consider both a
statistical version (“How much information can we extract in principle ?”) and an algorithmic
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one (“How to extract this information? Can it be done efficiently?”), and this dissertation is
concerned with both aspects. Importantly, we will consider these questions in the framework
of the current “big data” age, in which computing systems have access to effectively unlimited
data material, and use it to estimate a gigantic number of internal parameters.

1.1.2 Inference problems in high dimension and the Bayes-optimal setting

Worst-case and typical inference

A large part of statistical learning theory has focused on obtaining uniform bounds for the perfor-
mance achieved by various estimation methods, using tools such as the Rademacher complexity
or the Vapnik–Chervonenkis dimension [Vap13, AAKZ20]. Although very powerful and generic,
such uniform bounds can be vacuous in the presence of very rare events, or structured data dis-
tributions. Indeed one would ideally want to understand the optimal achievable performances
for typical realizations of the data, which are more likely to accurately describe real-world ap-
plications. The notion of typicality is natural, as one generally has access to data generated
from an unknown underlying probability distribution: atypical events would then correspond to
very rare realizations of the data, which we can (quite naively) illustrate by the red labels in
Fig. 1.2. This has motivated another approach, that aimed at understanding the performance
of said methods in the typical case, and which will be a key setting of this dissertation.

Bayes’ theorem

To study typical inference, we will take the point of view of Bayesian estimation, which originates
from the works of Bayes and Laplace in the 18th century [Bay63, Lap74]. This approach to
inference is centered around Bayes’ rule: when trying to infer a vector x from a set of data Y
we can write

P(x|Y) =
P(Y|x)
P(Y)

P(x). (1.3)

The left-hand side of this equation is called the posterior distribution of x given Y. The proba-
bility P(x) is known as the prior : it quantifies the knowledge we have of x before receiving any
data. Finally, P(Y|x) is the channel distribution: it describes how the data is generated given
the parameters x.

Denoising a vector – To illustrate these concepts, imagine that we observe a real vector
Y = X∗ +

√
∆Z with Z ∼ N (0, In): we wish to “denoise” the vector and recover X∗. Our

prior knowledge on X∗ (independently of the observation of any data) is modeled by the prior
distribution P(X∗). Given a set of observations Y generated by an unknown vector X∗, the
probability that it was actually generated by x is:

P(x|Y) =
1

P(Y)

exp
{
− 1

2∆‖Y− x‖2
}

(2π∆)n/2
P(x).

Bayesian inference consists in leveraging P(x|Y) to recover information about the unknown
“ground-truth” vector X∗. In the Bayesian point of view, the notion of typicality discussed
above is therefore very natural: we will describe the performance of inference procedures with
high probability under the distributions of X∗ and Y, effectively discarding the very rare events
that might influence a worst-case analysis.
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Bayes-optimal setting and the Nishimori identity

An important concept that we will sometimes use to simplify the theoretical analysis is Bayes-
optimality:

Definition 1.1 (Bayes-optimal setting, informal)

Let us consider an inference problem in which the observer wishes to recover a ground-truth
vector X∗ ∈ K

n through a set of observations {Yµ}mµ=1 ∈ R
m which depend on X∗. Such a

problem is said to be Bayes-optimal if she/he knows the probabilistic models used to generate
the vector X∗ (called the prior distribution, P(x) in eq. (1.3)), and to generate the observations
{Yµ} given X∗ (called the channel distribution, P(Y|x) in eq. (1.3)).

Therefore, in the Bayes-optimal setting the observer knows the density of the posterior distribu-
tion P(x|Y) by eq. (1.3)2. We will see that this knowledge allows to simplify a lot the theoretical
analysis of estimation procedures. Although it may not seem a realistic assumption, we will see
in the analyses of Part II that many results derived under a Bayes-optimality hypothesis transfer
to more realistic setups in which the underlying distribution of the data is unknown.

In the Bayes-optimal setting, one can use a very important property called the Nishimori iden-
tity. Indeed, at fixed data samples Y we will often consider independent samples x1, · · · ,xk

drawn from the posterior distribution P(x|Y) of eq. (1.3): such samples are called replicas.
Physically speaking, the Nishimori identity shows that the planted solution X⋆ behaves like
another replica of the system.

Proposition 1.1 (Nishimori identity)

Let (X,Y ) ∈ R
n1 ×R

n2 be a couple of random variables. Let k ≥ 1 and let X(1), . . . , X(k) be
k i.i.d. samples (given Y ) from the conditional distribution P(X = · |Y ). Let us denote 〈−〉
the expectation operator w.r.t. P(X = · |Y ) and E the expectation w.r.t. (X,Y ). Then, for all
continuous bounded function g we have

E〈g(Y,X(1), . . . , X(k))〉 = E〈g(Y,X(1), . . . , X(k−1), X)〉 .

Proof of Proposition 1.1 – This is a simple consequence of Bayes’ formula. It is equivalent to
sample the couple (X,Y ) according to its joint distribution or to sample first Y according to its
marginal distribution and then to sample X conditionally to Y from its conditional distribution
P(X = · |Y ). Thus the (k+1)-tuple (Y,X(1), . . . , X(k)) is equal in law to (Y,X(1), . . . , X(k−1), X).
This proves the proposition. �

Inference in high dimension

Modern algorithms which rule increasing parts of our lives, notably thanks to progress in deep
learning, are mainly data-driven: they manage to learn a great number of parameters using com-
parably large numbers of data points. For instance, a classical neural network called GoogLeNet,
introduced in 2015 for image classification [SLJ+15] and which achieved at the time state-of-the-
art performance, possesses around 5 millions of internal parameters, and is trained on a dataset
of more than one million images!

Our theory will focus on such inference procedures, in which the dimension of the internal
parameters learned by algorithms is very large, while the number of data points available to
the algorithm is also going to infinity, and both numbers are comparable. Anticipating on the
connection with statistical physics, we call this setting the thermodynamic limit:

2Of course sampling from this high-dimensional distribution might still be very hard even when knowing its density.
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Definition 1.2 (Thermodynamic limit in inference models)

Consider an inference (or learning) problem, in which one has to optimize over a set of pa-
rameters x ∈ K

n. In order to do so, we are given a number m of observations, or data samples
in the context of learning. We will generically study a high-dimensional limit that we call
thermodynamic, in which n and m both go to ∞, but their ratio remains finite m/n→ α > 0.

1.1.3 Generalized Linear Models

Generalized Linear Models (GLMs) are a particularly important class of supervised learning
models [NW72, McC18] that we will often take as example in the rest of Chapter 1, and that
can be seen as broad generalizations of the perceptron algorithm of eq. (1.1). Their precise
definition is the following:
Model 1.1 (Generalized Linear Model (GLM))

Let m,n ≥ 1. We are given a data, or sensing, matrix F ∈ K
m×n. Given F, data samples

{Yµ} are generated as:

∀µ ∈ {1, · · · ,m}, Yµ ∼ Pout

(
·
∣∣∣

1√
n

(FX∗)µ

)
,

in which X∗ ∈ K
n is the vector we will try to recover. X⋆ is drawn with i.i.d. coordinates

from a prior PX , and Pout is a fixed probabilistic channel. Compressive sensing corresponds
to a Gaussian channel distribution Pout with zero mean and variance ∆ > 0.

In this sense, GLMs generalize the usual linear regression by allowing the output function to
be non-linear and possibly stochastic. They arise in many different areas of statistics, such as
compressed sensing, phase retrieval [Fie82], or logistic regression. GLMs can also be thought of
as the building blocks of fully-connected neural networks [LBH15], and we refer to [BKM+19]
for a review of their numerous applications.

1.1.4 Gibbs-Boltzmann measure and the free entropy

Gibbs measure and posterior distribution – Let us briefly forget about inference and
recall some basic elements of statistical mechanics. Consider a model of n particles xi with
i.i.d. distribution PX , which interact via an energy function – or Hamiltonian – H(x) at inverse
temperature η = T−1 > 0. The probability of a configuration x under the Gibbs distribution is
proportional to the Boltzmann weight:

P(x) =
1
Zn

exp{−ηH(x)}
n∏

i=1

PX(xi). (1.4)

As we will see in a more mathematical way in Section 1.5, the Gibbs-Boltzmann measure de-
scribed in eq. (1.4) arises naturally as the maximal-entropy distribution at a given temperature.
The factor that ensures the proper normalization of the distribution is called the partition func-
tion, while its normalized logarithm is called the free entropy3:

Zn ≡
∫

dx
n∏

i=1

PX(xi) exp{−ηH(x)}, fn ≡
1
n

lnZn. (1.5)

Very interestingly, all these notions are naturally transposed to the realm of inference models
under a Bayesian point of view. To illustrate it, let us consider a GLM in the Bayes-optimal

3In this thesis we will mainly use this convention, while many physics works rather consider the negative of the
free entropy, usually called free energy.
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setting (cf. Definition 1.1 and Model 1.1), so that Pout and PX are known. By Bayes’ rule, the
posterior distribution of x reads:

P(x|Y,F) =
P(x)P(Y|x,F)

P(Y|F)
=

1
Zn(Y,F)

n∏

i=1

PX(xi)
m∏

µ=1

Pout

[
Yµ

∣∣∣
1√
n

(Fx)µ

]
. (1.6)

It is clear that the distribution of eq. (1.6) can be easily mapped to the Boltzmann distribution
of eq. (1.4), with η = 1 and energy given by:

H(x) ≡ −
m∑

µ=1

lnPout

[
Yµ

∣∣∣
1√
n

(Fx)µ

]

The partition function is given by Zn(Y,F) = P(Y|F), and it will be instrumental in our
asymptotic description of this problem. Note that in inference models the Gibbs distribution is
a conditional distribution: it is parametrized by the observations Y (which implicitly contain
the distribution of X∗) and the input data (or sensing matrix) F.

Notations – In general, we will denote 〈·〉 the average with respect to the posterior distribution
P(x|Y), or the Gibbs distribution in statistical physics, while the symbol E will be used for
average with respect to the other variables, e.g. Y,F,X∗ in the GLM.

Free energy and mutual information – The average free entropy of an estimation model in
the random setting is closely related to the mutual information between the observations and
the signal, an important notion of information theory. Let us again illustrate it in the case of
the GLM:

1
n
I(X∗; Y|F) ≡ 1

n
EY,X∗,F ln

P(Y,X∗|F)
P(X∗)P(Y|F)

=
1
n
E ln

P(Y|F,X∗)
Zn(Y,F)

,

= − 1
n
E lnZn(Y,F) +

1
n
E lnP(Y|F,X∗). (1.7)

Therefore the mutual information and the free energy are equal up to an additive constant.

Energy-entropy competition – The Gibbs measure and the free entropy quantify the com-
petition between entropy and energy in high-dimensional models, which is parametrized by the
temperature parameter. Indeed, even if the minimizers of H(x) have very low energy, their mass
under the “entropic” contribution to the measure (e.g. the term

∏
i PX(xi) in eq. (1.4)) might

be extremely small. In particular, at high temperature η−1 → ∞, we expect for this reason
the entropic contribution to dominate the physical state of the system. On the other hand, as
T = η−1 ↓ 0 the energetic contribution prevails, and the Gibbs measure concentrates on the
actual minima of the Hamiltonian H(x).

1.1.5 Estimators

In order to gauge the performance of a procedure, we need a definition of the quantity we try
to optimize. Let us describe two common estimators, again in the case of the GLM:

• MMSE estimator – The Minimal Mean Squared Error estimator X̂MMSE minimizes the L2

distance between the estimator and the ground-truth signal. As we do not have access to X∗,
this distance is estimated using the posterior distribution, so that (recall that ρ ≡ EP0 [X2]):

X̂MMSE ≡ arg min
x

1
nρ

E

∫
dx′

P(x′|Y,F)‖x− x′‖2. (1.8)
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As the MSE is a quadratic function, it is easy to see from eq. (1.8) that X̂MMSE = E[x|Y,F] =
〈x〉, that is the marginal under the posterior distribution. The achieved MMSE is:

MMSE =
1
nρ

E‖X∗ − 〈x〉‖2 = ρ− q, (1.9)

with q ≡ E{n−1∑n
i=1X

∗
i 〈xi〉}. Eq. (1.9) follows from the Nishimori identity (Proposition 1.1)

which gives E{‖〈x〉‖2} = E{X∗ · 〈x〉} = nq.

• MAP estimator – The Maximum A Posteriori estimator maximizes directly the posterior
distribution:

X̂MAP ≡ arg max
x

P(x|Y,F). (1.10)

In this thesis, we will usually favor the MMSE estimator over the MAP one. A first reason
is that the MMSE provides directly a way to gauge the statistical significance of an estimate.
Other reasons are the presence of overfitting in the MAP estimator in high dimensions, and
the possibility that maximizing the posterior might be a very non-convex optimization problem,
while the Bayes-optimal MMSE estimation is often easier to access with the tools we will develop.
For more details and the introduction of other estimators in our framework we refer to [ZK16].

1.2 Intuitions from the physics of spin glasses

1.2.1 Why spin glasses?

What is a spin glass ? – Spin glasses are a very peculiar class of physical states that were first
observed in dilute magnetic alloys [Ste89]. While classical magnetic materials can be classified
into two main categories known as ferromagnetic (when all magnetic moments align in the same
direction) or paramagnetic (when all magnetic moments rapidly evolve with no global order),
spin glasses are characterized by frozen disorder. In this phase the orientation of the magnetic
spins shows no global order, but it evolves very slowly so that it is effectively frozen on short time
scales. In 1975, Edwards and Anderson [EA75] introduced a statistical model of spins on the n-
dimensional regular lattice which was found to exhibit such a glassy phase at low temperatures,
paving the way for a theory of spin glasses. This model is very similar to the celebrated Ising
model, and its interactions are described by the Hamiltonian:

HEA(σ) =
∑

(i,j)

Jijσiσj , σi = ±1 (1.11)

where the sum runs over nearest-neighbors sites on a regular square lattice with n sites. In order
to model the frozen disorder exhibited by spin glasses, Edwards and Anderson assumed that
the interactions between sites were random, and took them to be Gaussian random variables
Jij

i.i.d.∼ N (J0/n, J
2/n). Depending on the values of J0, J and the temperature T , they found

that the system exhibited either paramagnetic, ferromagnetic, or glassy behavior, see Fig. 1.3.

It is important to stress that the randomness of the interactions is the critical feature that allows
such models to exhibit glassy phases. In this dissertation, following a long line of theoretical
work [MPV87], we thus usually call spin glasses statistical models with random disordered
interactions.

Spin glasses and inference models – The correspondence between estimation problems and
disordered systems in high dimensions is actually very natural. To illustrate it, let us consider
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(a) A low-temperature ferromagnetic state
in which all spins are aligned in a common

direction.

(b) A spin glass state: the spins are frozen
in random directions due to the randomness

of the interactions.

Figure 1.3: Schematic representation of a ferromagnetic and a spin glass state in a 3-dimensional
model with sites on a cube.

a flagship problem of statistics called spiked matrix estimation. The goal is to recover a signal
vector X∗ generated uniformly in {±1}n from the observation of the “spiked” matrix

Y ≡W +
√
λX∗(X∗)⊺, (1.12)

in which W is a random “noise” matrix, which we will consider here to be a standard Gaussian
i.i.d. symmetric matrix, with EW 2

ij = 1 + δij . The posterior probability of x is

P(x = σ|Y) =
P(Y|x = σ)P(x = σ)

P(Y)
=

1
2nP(Y)

exp
{
− 1

4
Tr
[(

Y−
√
λσσ⊺

)2]}
,

∝ exp{
√
λ

2

∑

i,j

Yijσiσj}. (1.13)

The probability of eq. (1.13) is easily seen to be the Gibbs measure of a very simple disordered
system at temperature T = λ−1/2 with Hamiltonian:

Hn(σ) ≡ 1
2

∑

i,j

Yijσiσj .

As the interactions are given by the random matrix Y, this Hamiltonian indeed describes a
disordered model (note its similarity with eq. (1.11)). Therefore, studying the Gibbs measure
of this long-range spin glass model with interaction matrix given by eq. (1.12) is equivalent to
solving the spiked matrix estimation problem! More generally, many inference and learning tasks
can be formulated as a statistical physics problem: the random interactions in spin glasses are
mapped to the random quantities that parametrize the inference model (e.g. the noise matrix
W in eq. (1.12) or the data matrix F in Model 1.1).

The wide extent of applications of spin glasses across the physical sciences was foreseen in
[And89], an amazing two-page letter written in 1989 in which Anderson anticipated the perti-
nence of the rough high-dimensional landscapes of spin glasses in computer science and complex-
ity theory. In fact, some of his interrogations on finding the ground state of the Sherrington-
Kirkpatrick model (cf. Model 1.2) were only very recently answered [Mon21]. The general
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connection of disordered systems with inference and optimization problems was first made ex-
plicit by Hopfield in [Hop82] for a simple model of neural networks, and by E. Gardner and
coauthors for the perceptron algorithm [GD89]. Since then, it has been an extremely fruitful
line of research (see e.g. [ZK16] for a review), and is an important guideline of this thesis. While
the reader will find some basics of spin glass theory in this dissertation, she/he should refer e.g.
to [MPV87] for more details, or to [CC05] for a classical introduction to spin glasses aimed at
newcomers to the field.

1.2.2 Important concepts of spin glass theory

Annealed versus quenched, and self-averaging

An important concept in spin glass theory (and in high-dimensional probability) is the distinction
between annealed and quenched averages4. It formalizes the difference between typical and
average quantities for highly-fluctuating random variables. Let us illustrate this distinction first
on a very simple example.

A toy example – Let X be a real random variable taking value e3n with probability e−n, and
en with probability 1 − e−n. Because limn→∞ P[X = en] = 1, the “typical” value of X is en.
Since X is in the exponential scale, it is natural to rather consider the random variable n−1 lnX.
Its expectation is n−1

E lnX = 2e−n + 1− e−n = 1 + On(1): this average therefore describes well
the typical behavior of X in the n→∞ limit, and it is trivial to check that the random variable
n−1 lnX indeed concentrates on its mean. We call this limit the quenched average of X.

One could be tempted however to rather use EX to describe the typical behavior of X, as is
common for non-fluctuating random variables. It is also exponentially large, and its leading
order is given by n−1 lnEX = n−1 ln(e3n−n + en − 1) = 2 + On(1). This is what we call the
annealed average of X, and it turns out here to be very different from the quenched one.

Where does this disparity come from? Actually, as the fluctuations of X are both very rare
and very large, they dominate the naive average EX! Annealed and quenched averages are here
different because the annealed average is influenced by exponentially rare events to which the
quenched average is immune.

Concentration: the blessing of dimensionality – In principle, the properties of a system
depend on the realization of the disorder: e.g. the free entropy n−1 lnZn(Y,F) of the GLM in
eq. (1.6) depends on Y,F. As this partition function Zn is in general a highly-fluctuating random
variable which scales exponentially in n, we define the annealed and quenched free entropies as:





fannealed ≡ lim
n→∞

1
n

lnEZn,

fquenched ≡ lim
n→∞

1
n
E lnZn.

(1.14)

However, in high dimensions the fluctuations of intensive quantities often vanish, so that said
quantities concentrate around their mean: this phenomenon is called self-averaging in statistical
physics, and is particularly relevant for spin glasses. This is in particular the case of the free
entropy n−1 lnZn of many disordered systems, which is an intensive quantity that will self-
average around its mean. This motivates our interest in fquenched rather than fannealed, as the
first one characterizes the typical behavior of the system by the concentration of the free entropy:

1
n

lnZn
P−→

n→∞ fquenched. (1.15)

4This nomenclature comes from the name of metallurgic treatments.
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Figure 1.4: Average magnetization as a function of the temperature T = η−1 for the Curie-Weiss
model of eq. (1.17) with infinitely small external field h ↓ 0.

Annealed approximation at high temperature – Note that by Jensen’s inequality the
annealed average of a random variable is always an upper bound of its quenched counterpart:

E lnX ≤ lnEX. (1.16)

At high temperature the partition function Zn should not be dominated by rare events which are
“smoothed out” by temperature, so that we expect the annealed average to be an informative
approximation of the quenched free entropy in this regime. However it is very hard to control the
accuracy of eq. (1.16) in general, and to gauge the significance of annealed results. Their main
interest lies in the relative facility of their computation: as opposed to the quenched averages,
they are often exactly computable by straightforward calculations.

“Quenched” variables – Besides the “quenched-annealed” terminology introduced above for
asymptotic quantities, we will also call the variables on which we average in eq. (1.14) quenched
variables: these are the “frozen” variables which parametrize the Gibbs distribution, e.g. the
random interactions in a spin glass model. In the context of statistical estimation, the quenched
variables will encompass several quantities, such as the planted solution X⋆, the observations
Y, and the sensing matrix F in the case of the GLM, cf. Model 1.1.

Order parameters and phase transitions

The whole field of statistical physics is built around the idea that a complex system of infinitely
many particles interacting with each other can be efficiently described on the macroscopic scale
by a few simple quantities. Such quantities are called order parameters, and they can take
many forms. For the sake of the presentation, let us focus on a non-disordered model called the
Curie-Weiss model, at inverse temperature η > 0, and with a small external field h > 0 [Nis01]:

Pη(σ) ≡ 1
Zn(η)

exp
{
− η

n

∑

i<j

σiσj − h
n∑

i=1

σi

}
. (1.17)

In the Curie-Weiss model, as in non-disordered magnetic systems, the order parameter describing
the macroscopic state of the system is the average magnetization m ≡ n−1∑n

i=1〈σi〉. Note that
the Hamiltonian of eq. (1.17) favors aligned spins: the minimal energy is reached when all σi = 1.
In Fig. 1.4 we show the evolution of m with the temperature T = η−1, clearly describing the
transition between a paramagnetic (m = 0) phase at high temperature, in which the entropic
contribution to the free entropy dominates, and a ferromagnetic (m > 0, cf. Fig. 1.3a) phase, in
which the spins are aligned to minimize the energy. The change between the two, called a phase
transition, happens at the critical temperature Tc = 1.
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In systems with a random disorder, such as spin glasses, the magnetization is however not a
good order parameter in general. This can be intuitively understood by Fig. 1.3b: while all the
local spins are “frozen” in specific directions – due to the randomness of the interactions – there
is no global orientation of the spins, and the total magnetization will always be equal to zero.
In this class of models, one must turn to another order parameter: the overlap5, also called the
Edwards-Anderson order parameter [EA75]:

qEA ≡
1
n

n∑

i=1

E[〈σi〉2]. (1.18)

The overlap will be non-zero as soon as all local magnetizations are non-zero, even if they do
not share a global direction. It will be instrumental in describing phase transitions arising in
spin glasses and inference models in this thesis.

1.2.3 Some classical spin glass models

To conclude this rapid presentation of spin glasses let us define three important models that will
be of interest in several parts in this manuscript. In order to define the first one we anticipate a
bit on our introduction of random matrices, and describe a first random matrix ensemble known
as the Gaussian Orthogonal (or Unitary) Ensemble.

Definition 1.3 (Gaussian Orthogonal/Unitary Ensemble)

We say that a matrix J ∈ Hn(K) is drawn from the Gaussian Orthogonal Ensemble (if K = R)
or Gaussian Unitary Ensemble (if K = C), and we write J ∼ GOE(n) (resp. J ∼ GUE(n)), if
we have Jij ∼ Nβ(0, (1 + δij)/n) for i ≤ j, and all {Jij}i≤j are independent.

This allows to define a spin glass model, introduced by Sherrington and Kirkpatrick in [SK75],
which played a cardinal role in the history of the field.

Model 1.2 (Sherrington-Kirkpatrick)

Let n ≥ 1 and J ∼ GOE(n). The Sherrington-Kirkpatrick Hamiltonian is defined as:

Hn,J(σ) ≡
∑

i<j

Jijσiσj , σ ∈ {±1}n. (1.19)

Another important class of spin glasses that has received tremendous attention since the 1990s
is the class of p-spin models. The simplest instance of this class is known as the pure p-spin,
and we define it here on the high-dimensional sphere.

Model 1.3 (Pure spherical p-spin)

Let n ≥ 1 and p ≥ 2. The pure p-spin model Hamiltonian is defined as:

Hn,p(σ) ≡ 1

n
p−1

2

∑

i1,··· ,ip

Ji1,··· ,ipσi1 · · ·σip , σ ∈ S
n−1(
√
n), (1.20)

with Ji1,··· ,ip

i.i.d.∼ N (0, 1). Hn,p is therefore a Gaussian random field with zero mean and
covariance E[Hn,p(σ)Hn,p(σ′)] = n(σ · σ′/n)p.

In mathematical terms, the spherical pure p-spin corresponds to the simplest example of a
random function: a homogeneous polynomial of degree p with Gaussian coefficients. We can
generalize the model further, to what is known as the mixed p-spin.

5It is called overlap as it corresponds to the scalar product of the magnetization vectors of two independent
“replicas” of the system which share the same quenched disorder.



Chapter 1. The statistical physics toolbox 18

Model 1.4 (Mixed spherical p-spin)

Let n ≥ 1 and a real sequence (cp)p≥2 with
∑

p≥2 c
2
p <∞. The mixed p-spin model Hamiltonian

is defined as:

Hn(σ) ≡
∞∑

p=2

cpHn,p(σ), σ ∈ S
n−1(
√
n). (1.21)

Equivalently, Hn is a Gaussian random field with zero mean and covariance E[Hn(σ)Hn(σ′)] =
nξ(σ · σ′/n), with the mixture function ξ(t) ≡∑∞

p=2 c
2
pt

p.

By a classical result of Schoenberg [Sch42], the mixed p-spin models span all stationary isotropic
Gaussian random fields on the sphere S

n−1(
√
n). Note that Models 1.3 and 1.4 can easily be

generalized to a variety of prior distributions different from the spherical one, e.g. one can
consider Ising spins on the hypercube σ ∈ {±1}n, as in the SK model 1.2.

1.3 Static approximations to the free energy

1.3.1 Replica theory and replica symmetry breaking

As we emphasized in Section 1.2, one of our most important tasks will be to compute quenched
averages, which (as opposed to annealed ones) are representative of the typical behavior of a
high-dimensional system. Unfortunately, quenched quantities are in general much harder to
compute than their annealed counterparts, and the replica method was developed precisely to
tackle this difficulty. Its first application to disordered systems goes back to Edwards & Anderson
[EA75], and since then it has achieved tremendous success in the study of spin glasses, but also
of inference problems. More precise introductions to the beautiful field of replica theory can be
found in [MPV87, Nis01, CC05, MM09].

For the sake of the presentation, let us focus on the Sherrington-Kirkpatrick Hamiltonian
(Model 1.2). In the context of inference models the calculations are similar, and we refer the
reader to Appendix B which precisely details two replica computations in high-dimensional es-
timation. As we detailed above, in order to characterize the typical behavior of the model, our
goal will be to compute the quenched free energy at inverse temperature η > 0:

Φ(η) ≡ lim
n→∞

1
n
EJ lnZn, with Zn ≡

∑

x∈{±1}n

exp
{
− η√

n

∑

i,j

Jijxixj

}
. (1.22)

Note that we rescaled the interaction variables Jij by a factor
√
n so that EJ2

ij = 1 + δij .

The replica trick to compute quenched averages

The difficulty in computing the quenched average in eq. (1.22) is the expectation of the logarithm
of a highly-fluctuating quantity. In [EA75], Edwards & Anderson proposed an informal way,
now known as the replica trick, to compute such averages. It is based on the following identity:

EJ lnZn = lim
p↓0

1
p

lnEJ[Zp
n]. (1.23)

While such an identity is a priori correct, the hope of the replica method is to compute the RHS
of eq. (1.23) for integer p (i.e. the moments of Zn) and to analytically expand this expression for
arbitrary p > 0, before taking the limit p ↓ 0. The actual replica method relies on an additional
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heuristic inversion of the p ↓ 0 and n→∞ limits, so that we will refine eq. (1.23) by

Φ(η) ≡ lim
n→∞

1
n
EJ lnZn = lim

p↓0
lim

n→∞
1
np

lnEJ[Zp
n]. (1.24)

Let us apply this identity to the SK model. We obtain by direct Gaussian integration:

1
n

lnEJ[Zp
n] =

1
n

ln
∫ ∏

i≤j

dJij
e

− 1
4

∑
i,j

J2
ij

(2π)
n(n−1)

4 (4π)n/2

p∏

a=1

∑

xa∈{±1}n

exp
{
− η

2
√
n

p∑

a=1

∑

i,j

Jijx
a
i x

a
j

}
,

=
1
n

ln
p∏

a=1

∑

xa∈{±1}n

exp
{
n
η2

4

∑

1≤a,b≤p

( 1
n

n∑

i=1

xa
i x

b
i

)2}
. (1.25)

Let us denote Q ∈ Sp(R) the overlap matrix that appears in eq. (1.25):

Qab ≡ 1
n

n∑

i=1

xa
i x

b
i . (1.26)

Note in particular that Qaa = 1. Introducing Q in eq. (1.25) and using the exponential repre-
sentation of the delta function we reach:

1
n

lnEJ[Zp
n] = (1.27)

1
n

ln
∫ ∏

1≤a,b≤p

dQabdQ̂abe
n
2

∑
a,b

[
η2

2
(Qab)2+QabQ̂ab

][ ∑

x1,··· ,xp=±1

e
− 1

2

∑
a,b

Q̂abxaxb

]n

+ On(1).

Replica symmetric assumption

When looking at eq. (1.27), one can make wo important remarks:

• In eq. (1.27) we can apply, as n→∞, Laplace’s method on the variables {Qab, Q̂ab}. Indeed,
the number of these variables is On(1).

• The application of Laplace’s method tells us that the overlaps Qab are critical in characterizing
the thermodynamical state of the system. For this reason these variables are called order
parameters, see Section 1.2.2.

Nevertheless, Laplace’s principle in eq. (1.27) is quite hard to formulate. Recall indeed that, in
order to apply the replica method, we need the LHS of eq. (1.27) as an analytical function of p!
This leads us to rely on physical arguments to deduce the correct form of Q, Q̂ at the solution
of Laplace’s method. When confronted with this problem the first solution that comes to mind
is very natural: as all replicas should be equivalent, the matrix Q at the solution should have a
replica-symmetric form

Qab = q0 + (1− q0)δab. (1.28)

We assume a similar form of Q̂ab = −q̂0(1 − δab). This was the assumption of Sherrington &
Kirkpatrick [SK75] who proposed a first solution to this model. After some straightforward
calculations6 we obtain from eq. (1.27) an analytic expression in p:

1
n

lnEJ[Zp
n] =

η2p

4
+ η2 p(p− 1)

4
q2

0 −
p(p− 1)

4
q0q̂0 −

pq̂0

2
+
∫
Dξ{2 cosh(

√
q̂0ξ)

}p + On(1).

6Using in particular the identity ex2/2 =
∫

Dξ eξx.
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Recall that Dξ is the standard Gaussian law N (0, 1). Applying then the replica method in the
form of eq. (1.24) we reach finally the replica-symmetric free entropy for the SK model:

Φ =
η2(1− q2

0)
4

+
q0q̂0

4
− q̂0

2
+
∫
Dξ ln

{
2 cosh(

√
q̂0ξ)

}
. (1.29)

In this equation one should extremize with respect to the set of variables (q0, q̂0). We can make
several remarks from eq. (1.29) (details can be found in [SK75] or [Nis01]):

• There exists a transition point ηc = 1. For η ≤ ηc, the solution that maximizes eq. (1.29)
is q0 = 0, while q0 > 0 for η > ηc. Recall that from eq. (1.26) one can easily see that
q0 = n−1∑

i〈xi〉2 is the Edwards-Anderson order parameter. This implies that at Tc = η−1
c = 1

there is a transition from a paramagnetic phase (in which q0 = 0) to a spin glass phase (in
which q0 > 0). Moreover, in both phases the average magnetization m ≡ n−1∑

i〈xi〉 = 0.

• However very puzzling behaviors happen when T = η−1 approaches zero. Let us cite [SK75]:
"The entropy S [...] goes to a negative limit at T = 0. We speculate that this unphysical
behavior has its origin in the interchange of limits n→∞ and p ↓ 0, but that the consequences
are confined to low temperatures."

This second remark implies that one of our assumptions breaks down at sufficiently low temper-
atures. However the intuition of [SK75] was not really exact: what happens actually is that at
T < Tc the replica-symmetric solution of eq. (1.28) is not stable in overlap space when applying
Laplace’s method in eq. (1.27), so that the actual maximum is reached in a point that breaks
the symmetry between the replicas...

A word on replica symmetry breaking

In a series of beautiful papers [Par79, Par80a, Par80b], Giorgio Parisi proposed with a spark of
genius the solution to the issue mentioned above. What he understood was that the overlap q
between two replicas of the system with the same interactions, i.e. the order parameter of the
system, could have a very non-trivial behavior when n → ∞. More precisely, its probability
distribution P (q) is in general involved, and can not be characterized by a single q0 as we
assumed in the replica-symmetric ansatz. Without diving into details (which the reader will
find e.g. in [CC05] or [MPV87]), one brilliant realization was the mapping of a generic P (q) to
a point in replica space, i.e. a Qab that generalized the replica-symmetric form of eq. (1.28).

First of all, note that the replica-symmetric ansatz corresponds to a distribution P (q) = δ(q−q0):
in probabilistic terms, replica symmetry is equivalent to the concentration (or self-averaging) of
the overlap, an important intuition to keep in mind at several points of this thesis. In the SK
model detailed above the overlap is not concentrating for T < Tc, and the RS solution has to
be discarded7. The next step is to consider a P (q) made of two delta peaks. One can show that
in the limit p ↓ 0, it corresponds to the following overlap matrix:

P (q) = xδ(q − q0) + (1− x)δ(q − q1)⇐⇒ Q =




1 q1 q1

q1 1 q1 · · · q0 · · ·
q1 q1 1

. . .

1 q1 q1

· · · q0 · · · q1 1 q1

q1 q1 1




. (1.30)

7Note however that it allows to predict the correct paramagnetic - spin glass transition at Tc = ηc = 1.
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Figure 1.5: The different forms of the Parisi measure P (q) corresponding to replica symmetry
(left), k-th level of replica symmetry breaking (center), and full replica symmetry breaking (right).

The inner blocks with off-diagonal term q1 have size x ∈ {1, · · · , p} (here we show x = 3). How-
ever (another oddness of the replica method which contradicts all usual mathematical intuitions)
since we eventually take the limit p ↓ 0, the parameter x will lie in the interval [0, 1] so that the
parameterization of P (q) above is well-defined. Going further, one can iterate the hierarchical
structure of the overlap matrix in eq. (1.30) to create an arbitrary number of delta peaks in P (q),
called the replica symmetry breaking (RSB) level (e.g. the distribution of eq. (1.30) is 1-RSB).
When k →∞, we say that the system is in a full replica symmetry breaking (FRSB) phase, and
the support of P (q) is continuous. We illustrate the different possible shapes of P (q) depending
on the level of RSB in Fig. 1.5. In the SK model we considered above, it was shown by Parisi
[Par79] that for η ≥ ηc the system is in a FRSB phase, and that the overlap distribution P (q)
(also called the Parisi measure) has a continuous support [0, q∗(η)]. The FRSB picture solved
the negative-entropy problem, and after decades of mathematical works the Parisi solution for
the SK model was eventually proven by Talagrand [Tal06], putting on firm ground one of the
most important predictions of the physics of disordered systems.

RSB and the form of the Gibbs measure – Roughly speaking, 1-RSB corresponds to a space
of local minima of the free energy which is organized into exponentially many clusters. Inside
each cluster two solutions typically have overlap q1, while solutions belonging to two different
clusters have a typical overlap q0. This hierarchy can be iterated inside each cluster, which gives
rise to the 2-RSB structure. Iterating even further, the level of RSB corresponds to the depth of
this hierarchical structure of clusters, which is known as an ultrametric structure. Ultrametricity
and RSB is an incredibly beautiful mathematical representation of the free energy landscape of
spin glass models, which also allows to create efficient algorithms, something which was only
understood very recently [AMS20, AM20, Sub21, Mon21]. Unfortunately, a precise description
would be beyond the scope of this dissertation (and would surely require an additional chapter),
and we refer instead to [MPV87] for more details on this subject.

Final remarks

Our discussion of replica theory was very brief, as our main goal was to introduce the ideas behind
the method, without diving too much into its physical consequences, which are extensively
discussed in the literature mentioned above. To conclude this part, as we focused a lot on spin
glasses, let us make two remarks on the application to estimation models.

Application to inference problems – In high-dimensional Bayesian inference (e.g. in the
Generalized Linear Model, cf. Section 1.1), the role of the quenched interactions Jij is played
by the data samples (the matrix F in the GLM). Leveraging on this analogy we can apply
the replica method to these models to compute the quenched free entropy, characteristic of
typical realizations of the data. As in spin glasses, the order parameter governing the state
of the system in the high-dimensional limit is the overlap q between two replicas, to which
we must add the overlap m between a replica and the planted solution X⋆. As we saw in
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Section 1.1 this overlap is related to the asymptotic MMSE. Historically, the first applications
of the replica method to the optimal performance in inference models date back to studies of
the perceptron [GD89, Gyö90, STS90]. The reader interested in more concrete applications of
the replica method to inference problems should refer to Appendix B in which we detail two
replica calculations, in a model of neural networks and in phase retrieval.

No replica symmetry breaking in Bayes-optimal problems – An important property
that we will use several times throughout this thesis is that in Bayes-optimal inference (see Sec-
tion 1.1), replica symmetry is never broken. This was shown in several ways and can intuitively
be understood as follows. By Bayes-optimality the planted signal X∗ can just be seen as an
additional replica (that we will index as x0 = X⋆), which, combined with the Nishimori identity,
implies that the couple of replicas (0, a) and (a, b) should be equivalent for all a, b, i.e. the system
is replica-symmetric. For more details on this argument, we refer the reader to [ZK16].

1.3.2 Thouless-Anderson-Palmer approach

Pure states and TAP free energy

We present here a derivation, first performed by Thouless, Anderson and Palmer [TAP77] for the
SK model, of what is now known as the TAP free energy. Note that the replica method described
in Section 1.3.1 only allows to access the average free energy. However at finite temperature we
would also like to access properties of a specific instance of the system: we will achieve this feat
by characterizing the position of what is known as pure states.

Indeed, Thouless Anderson and Palmer [TAP77] understood that at a given η ≥ 0 the Gibbs
measure typically concentrates all its mass on a large number of small regions of the landscape.
These regions are characterized by their barycenter (also called magnetization) m ∈ R

n, and they
are known as pure states. When the temperature approaches zero, these pure states approach
the global minima of the original Hamiltonian. To summarize, we can decompose the mean of
every observable O at inverse temperature η as:

〈O〉 =
∑

α

wα〈O〉α, (1.31)

in which 〈·〉α is the average over a single pure state, and wα are the weights of each pure state
under the Gibbs measure. We illustrate this in an informal way in Fig. 1.6. Note that this
description has very recently partially been put on rigorous ground for spin glass models in the
mathematics literature [FMM21, CPS21].

We wish to build a free entropy corresponding to the decomposition into pure states, focusing on
the SK model for introducing the method. Stated differently, what we want is a function of the
local magnetization m, whose local maxima are the pure states of the system. In order to achieve
this, we will tilt the original Gibbs measure of the system (see eq. (1.22)) in order to constraint
〈xi〉 = mi. The idea is that the free entropy associated to this constrained Gibbs measure
will be maximal when m belongs to the pure states on which the Gibbs measure decomposes.
This function is what we call the Thouless-Anderson-Palmer (TAP) free entropy. Introducing
Lagrange multipliers {λi} to enforce the constraints 〈xi〉 = mi, it reads:

ΦTAP(η,m) ≡ 1
n

n∑

i=1

λimi +
1
n

ln
∑

x∈{±1}n

exp
{
−

n∑

i=1

λixi −
η

2
√
n

∑

i,j

Jijxixj

}
, (1.32)

in which we implicitly extremize over the {λi}. In particular, when m is a global maximum
of ΦTAP, ΦTAP(m) should be the actual free entropy of the system, that we can compute e.g.
with the replica method, cf. Section 1.3.1. The behavior of the TAP free energy landscape gave
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Figure 1.6: (Left) A generic “rough” landscape f(x, y) with several deep minima in dimension 2.
(Right) Slices z = f(x, y), shown as planes in the left picture. For z high enough (high energy, or
high temperature by the microcanonical-canonical equivalence in the thermodynamic limit) the

slices are well-defined by a single “pure state”. As the energy decreases the slices get disconnected,
and for low enough energy they are concentrated around the location of the deep minima of f(x, y).
This low-dimensional view is merely an intuition and should not be considered as anything more.

rise to a rich literature, both from the physics and mathematics perspective, and we refer to
Chapter 2 for more details on the TAP approach.

The TAP free entropy of eq. (1.32) can be computed in different ways: the perhaps simplest
route is through a low-η expansion, introduced by Plefka [Ple82] and later made systematic in
[GY91]. We will make extensive use of these expansions in Chapters 2 and 3, so that we do not
detail their application to the SK model and leave the derivation of the following equation to
the reader:

ΦTAP(η,m) = − 1
n

n∑

i=1

{1 +mi

2
ln

1 +mi

2
+

1−mi

2
ln

1−mi

2

}

+
η

2n3/2

∑

i,j

Jijmimj +
η2

4n2

∑

i,j

J2
ij(1−m2

i )(1−m2
j ) + On(1). (1.33)

Let us briefly discuss the different terms of eq. (1.33) and their physical consequences.

First order: naive mean-field

Truncating the series of eq. (1.33) at order 1 in η yields what is known as the mean-field
approximation:

ΦMF(η,m) = − 1
n

n∑

i=1

{1 +mi

2
ln

1 +mi

2
+

1−mi

2
ln

1−mi

2

}
+

η

2n3/2

∑

i,j

Jijmimj . (1.34)

It is instructive to consider the maximization equations of this mean-field free entropy. They read
mi = tanh

(
η
∑n

j=1 Jijmj/
√
n
)
, that is 〈xi〉 = tanh

(
η
∑n

j=1 Jij〈xj〉/
√
n
)
. However, the actual

exact equations that one can easily derive from eq. (1.32) read 〈xi〉 =
〈

tanh
(
η
∑n

j=1 Jijxj/
√
n
)〉

.
We therefore see quite clearly the approximation: it neglects the fluctuations of the effective field∑

j Jijxj felt by the spin xi, and replaces it with its mean (hence the name “mean-field”).

Mean-field as a variational approximation – The mean-field approximation can be re-
covered by a different avenue, namely by a variational principle. Indeed, let us denote µη the
Gibbs measure at inverse temperature η ≥ 0. Then minimizing the Kullback-Leibler divergence
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DKL(ν|µη) can be tractable provided that we minimize it on an appropriate set of measures. The
mean-field approximation neglects correlations between variables, and therefore corresponds to
minimizing over the set of factorized measures, parametrized by their mean mi:

dν
dx

=
n∏

i=1

{
miδ(x− 1) + (1−mi)δ(x+ 1)

}
.

For the detailed variational derivation of the mean-field approximation, and how it yields back
eq. (1.34), one can refer to [Gab20].

Higher orders and Onsager correction

The naive mean-field approximation can be exact provided the interactions are long-ranged
and weak enough, e.g. in the Curie-Weiss model. While the SK model 1.2 is long-ranged, its
interactions are not weak enough, so that the actual TAP free entropy of eq. (1.33) contains an
additional term with respect to the mean-field, which is of order η2 and is called the Onsager
reaction term. Let us write the complete maximization equations of eq. (1.33) (called the TAP
equations), that one has to solve in order to find the pure states of the system. For use in a
further argument, we also add an external field

∑
i himi to the Hamiltonian, which does not

affect the free entropy of eq. (1.33) beyond the mean-field term. In the end, the TAP equations
read:

mi = tanh

(
η√
n

n∑

j=1

Jijmj + ηhi −
[
η2

n

n∑

j=1

J2
ijm

2
j

]
mi

)
. (1.35)

The last term in the RHS of eq. (1.35) is a reaction term: indeed, we saw that the site i affects
its neighboring sites j by an effective field Jijmj . This effective field therefore modifies the
value of mj by δmj = χjjJijmi, in which χjj ≡ ∂mj/∂hj is the susceptibility of the site j. By
eq. (1.35) we have χjj = η(1−m2

j ), so that mj is modified by an amount δmj = ηJijmi(1−m2
j ).

The Onsager reaction term then arises to cancel the retro-action of this modified value of mj

on mi. Indeed, by our arguments, the field sent by δmj in the direction of mi is equal to
Jijδmj = ηJ2

ij(1 − mj)2mi. Summing these corrections over all the neighbors of i yields the
Onsager reaction term of eq. (1.35). Roughly speaking, this term amounts to remove the effect
of the retro-action of mi on itself, which was wrongfully taken into account in the mean-field
approximation.

Orders k ≥ 3 – Note that in the TAP free entropy of the SK model, cf. eq. (1.33), there is no
contributions of terms of order ηk with k ≥ 3. However, in spin glass or inference models with
non-Gaussian interactions one needs in general to compute the whole perturbation series at any
order in η, which complicates drastically the reaction terms. We will analyze such models in
Chapter 2, and in particular we will show how to compute these reaction terms using the free
cumulants of the interaction matrix, an important object of random matrix theory defined in
the following Section 1.5.

1.4 From physics to algorithms

In Section 1.3 we focused on different approaches to compute the free energy (or free entropy), or
to characterize the pure states of disordered systems. This leaves unanswered many important
questions: if we are given a practical instance of the problem, are there efficient ways to find
an approximate global minimum of the Hamiltonian? Can we sample in polynomial time from
the Gibbs-Boltzmann distribution? Can we compute the asymptotic free entropy? All these
considerations fall within the scope of algorithmic studies.
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In this part we present a class of algorithms, known under the umbrella of message-passing, and
which will allow us to study optimal performances in a variety of high-dimensional estimation
problems.

A note on gradient-descent algorithms – While they will not be investigated directly here,
let us mention another popular class of procedures that are also related to the physics point of
view. The perhaps most natural approach to design an algorithm minimizing an energy function
is to consider a local gradient-descent algorithm (or one of its refinements – e.g. stochastic
gradient descent), a strategy which is naturally transposed to inference problems. For instance,
in supervised learning a classical procedure is empirical risk minimization (ERM): we wish to
learn a predictor function h(x) : X → Y, and we are given a set of input-output data points
{xµ, yµ}mµ=1 ∈ (X ×Y)m. In ERM one chooses a loss function l : Y ×Y → R and minimizes the
empirical risk over the given space of predictors h:

R̂m(h, {xµ, yµ}) ≡
1
m

m∑

µ=1

l(yµ, h(xµ)). (1.36)

Empirical risk minimization with local gradient-descent algorithms has known tremendous suc-
cess in the past decade, so that these methods are now widely used in the field of machine
learning [Bot03], and they are a major ingredient of the current success of deep neural networks
[Zde20]. From the physics point of view, such methods are related to the celebrated Langevin
dynamics, whose performances have been analyzed for spherical spin glasses [CK93, BADG06].
This analysis has recently been generalized to the context of inference, for a class of spiked
matrix-tensor spherical models [SMBC+19, SMKUZ19, SMBC+20b], and the construction of a
theoretical framework for tracking the performance of gradient-based algorithms in learning is a
very dynamic line of research [GAS+20, SMBC+20a, MKUZ20, MUZ21]. Finally, gradient-based
optimization will motivate the topological analysis undertook in Part III of this dissertation.

The Generalized Linear Model – For the sake of the presentation, we will focus in Sec-
tions 1.4.1 and 1.4.2 on the Generalized Linear Model (Model 1.1), in which the sensing matrix
F is generated i.i.d. from the Gaussian distribution Nβ(0, 1). For simplicity we will also consider
the real case β = 1, while the generalization to the complex case is straightforward, see e.g.
[Sch16]. The derivation of BP and AMP in this context is quite classic, and the reader can also
find them e.g. in [KMS+12, Gab20].

1.4.1 Belief propagation (BP)

Assume we have access to a high-dimensional probability distribution P (x) with x ∈ X n. We
would like to compute some important quantities related to this distribution (e.g. the free en-
tropy, as we did in Section 1.3), or to be able to sample in a reasonable computational time. A
naive approach of exhausting configurations would require an exponential number of operations
|X |n, which makes it intractable in practice. Belief propagation (BP) was introduced precisely
to answer these questions in a tractable time – i.e. polynomial in the dimension n. Before diving
into the details, let us mention that Chapter D of [MM09] is a very complete introduction to
the belief propagation equations that the reader interested in these topics should read.

Factor graph representation

A particularly useful tool to represent high-dimensional probability distributions is factor graphs:
they are undirected bipartite graphs with two types of nodes, variable and factor nodes. To fix
the ideas, let us consider such a graph G with a set V of variable nodes, F of factor nodes, and
let E be the set of edges. Each variable node i ∈ V represents one of the variables to infer, while
each factor node a ∈ F represents one of the interactions present in the probability distribution.
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Figure 1.7: Representation of a factor graph (Fig. 1.7a) and of the updates of the generic BP
equations (1.38) (Figs. 1.7b and 1.7c).

As the graph is bipartite, edges only connect variable and factor nodes, so that the neighbors
∂a ⊆ V of the factor node a are all the variable nodes arising in the interaction term represented
by a. All in all, if we denote ψa(x∂a) the interaction represented by a factor node a, a generic
factor graph represents the probability distribution

P (x) =
1
Zn

∏

a∈F

ψa(x∂a). (1.37)

Notation – Throughout this description we will generically use the notations xA for A ⊆ V to
designate the subset of variables {xi}i∈A.

Conversely, when given an arbitrary probability distribution, one can write it in the form of
eq. (1.37), which allows then to draw the corresponding factor graph. As an example, the factor
graph representation of the posterior distribution of the GLM (eq. (1.6)) is given in Fig. 1.7a.

Belief propagation equations

Let us consider G a tree factor graph (i.e. with no loops of any size). The Belief Propagation
(BP) algorithm is an inference procedure that aims as computing marginals of the underlying
distribution P (x), cf. eq (1.37). As we saw, these marginals characterize the MMSE estimator
in Bayes-optimal inference problems, see Section 1.1. The BP algorithm uses a set of auxiliary
distributions (called messages), one for each edge of the graph, that are propagated using precise
update rules. Roughly speaking, a message (e.g. m̂a→i(xi), as depicted in Fig. 1.7) communicates
the belief (hence the name of the procedure) that a variable node i takes value xi, based on all
the nodes already visited along the tree. More precisely, the belief propagation update rule is
the following8:





m̂t
a→i(xi) =

1
Za→i

∑

x∂a\i

ψa(x∂a)
∏

j∈∂a\i

mt
j→a(xj),

mt+1
i→a(xi) =

1
Zi→a

∏

b∈∂j\a

m̂t
b→i(xi).

(1.38)

8Eq. (1.38) is sometimes called the sum-product update rule, in contrast with the (equivalent) max-sum formalism
sometimes used, which corresponds in essence to a zero-temperature limit of the BP equations, see [MM09].
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Algorithm 1: Sampling procedure using BP iterations [MM09].
Result: A sample x ∼ P (x).
Input: The factor graph G representing P (x), with variable node set V ;
Initialize U = ∅;
for t ∈ {1, · · · , n} do

Run BP iterations (1.38) until convergence;
Pick i ∈ V \U ;
Compute the marginal mi(xi) by eq. (1.40);
Draw x∗

i according to mi(xi);
Add a factor 1{xi = x∗

i } in the factor graph ;
U ← U ∪ {i}

end
Return x ≡ (x∗

1, · · · , x∗
n);

The BP updates of eq. (1.38) are represented in Fig. 1.7b and 1.7c. Note that the sum over
configurations naturally becomes an integral in the continuous setting. On tree factor graphs,
the BP equations provably describe the probability distribution P (x):

Theorem 1.2 (Exactness of BP on trees [Pea82, MM09])

If the factor graph G is a tree with maximal distance t∗ between two variable nodes, then the
BP iterations (1.38) provably converge to a stationary point in at most t∗ iterations, whatever
the initialization. This stationary point is unique, and is an exact representation of the
probability distribution P (x) (e.g. for sampling, marginalization and free entropy computation,
see below).

The idea behind Theorem 1.2 is that in the updates of eq. (1.38), all the incoming messages are
independent from each other (i.e. all the nodes on the top of Figs. 1.7b,c are not connected to
each other). In particular, if we remove the node a in Fig. 1.7c, then all the {xj}j∈∂a become
independent under the new factor graph.

Application to the GLM – Even though the factor graph of Fig. 1.7a is clearly not a tree, let
us forget this for a moment and apply the BP update (1.38) to the GLM. It yields the following
iterative equations:





m̂t
µ→i(xi) =

1
Zµ→i

∫ { ∏

j( 6=i)

dxj m
t
j→µ(xj)

}
Pout

(
yµ

∣∣∣
1√
n

n∑

k=1

Fµkxk

)
,

mt+1
i→µ(xi) =

1
Zi→µ

P0(xi)
∏

ν( 6=µ)

m̂t
ν→i(xi).

(1.39)

Three applications of the BP algorithm

The belief propagation updates of eq. (1.38) define an iterative algorithm able to solve three
important tasks for tree graphical models.

(i) Marginalization – At their converging point, the BP iterations allow to compute efficiently
the marginal distributions of each variable xi as:

mi(xi) =
1
Zi

∏

a∈∂i

m̂a→i(xi). (1.40)
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(ii) Sampling – The BP algorithm also allows to sample from the probability distribution of
eq. (1.37), leveraging the computation of the marginals for a fixed set of variables xU with
U ⊆ V . This is summarized in Algorithm 1.

(iii) The Bethe free entropy – Finally, the BP messages can also be used to compute the
free entropy of the model (i.e. the average of the log-normalization factor in eq. (1.37)), as a
function of the messages. This function is called the Bethe free entropy and is expressed as
(see [MM09] for the derivation):

ΦBethe ≡
∑

i∈V

ln

{
∑

xi

∏

a∈∂i

m̂a→i(xi)

}
+
∑

a∈F

ln

{
∑

x∂a

ψa(x∂a)
∏

i∈∂a

mi→a(xi)

}

−
∑

(i,µ)∈E

ln

{
∑

xi

mi→a(xi)m̂a→i(xi)

}
. (1.41)

Loopy Belief Propagation

As we saw, the BP iterations provably provide access to many important features of the dis-
tribution P (x), in polynomial time. However, a priori this only stands for tree factor graphs,
which limits a lot the range of applicability of this algorithm. As we saw, this limitation arises
as the incoming messages in the updates (cf. Fig. 1.7) must be independent. All the rigorous
mathematical analysis of BP falls down when the factor graph contains loops, e.g. in Fig. 1.7a
representing the GLM.

However, one can still iterate eqs. (1.38), despite the lack of theoretical guarantees. This strategy
is generically known as loopy belief propagation, and a general theory of it is still missing. Nev-
ertheless, various studies demonstrated that loopy BP could provide very good approximations
to the marginals and the free entropy in a variety of loopy factor graphs. For instance, if all
loops in the graph are long, the graph will effectively be locally tree-like, and the BP iteration
then provide accurate approximations. Loopy BP has also been used in infinite-range inference
models [ZK16], and we will focus on this kind of models in the following. Moreover, the BP
fixed points can be shown to be related to the stationary points of the Bethe free entropy of
eq. (1.41) for any type of factor graph [MM09].

In particular, applying BP to the GLM, the updates of eq. (1.39) are an attractive tool to e.g.
sample from the posterior distribution of eq. (1.6), or to compute the asymptotic free entropy via
eq. (1.41). As we will see, in the large-n limit these updates will turn out to yield the optimal
performance achievable in polynomial time in GLMs, even though the graph of Fig. 1.7a is
extremely far from a tree!

1.4.2 Approximate Message Passing (AMP): derivation and consequences

Although easy to write, the BP equations of eq. (1.38) are still computationally very heavy,
since one needs to compute the messages for any value of the variables, and that they are Θ(n2)
messages in long-range models such as the GLM. In [DMM09], the authors proposed a novel
algorithm, that they named Approximate Message Passing (AMP), for compressed sensing with
Gaussian matrices. This algorithm is derived from BP, and it can be seen as a way to make the
BP equations tractable, using two features:

• The high-dimensional limit n→∞, which we will allow us to use “central limit theorem”-type
results.
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• The projection of the BP messages on a parametrized family of distributions (here Gaussians),
reducing the computation of each message to the one of a few scalar quantities. This projection
is justified using the high-dimensional limit mentioned above.

This algorithm was later generalized to the GLM of Model 1.1 with Gaussian matrices and
arbitrary outputs [Ran11], and later to more generic ensembles of matrices [SRF16, RSF17]. We
follow here a very classical route to derive the AMP algorithm from the BP equations, see also
the presentations of [ZK16, Gab20]9.

Relaxed belief propagation

The first step of the procedure is to write what is called relaxed belief propagation equations,
which were derived in [Ran10]. Let us focus on the GLM, that is eq. (1.39). We start by the first
equation. Under the statistics of

∏
j( 6=i) dxjmj→µ(xj), and conditioned on the value of xi, the

variable
∑

k( 6=i) Fµkxk is approximately Gaussian in the large n limit, with mean and variance
given by:

ωt
µ→i ≡

1√
n

∑

j( 6=i)

Fµja
t−1
j→µ and V t

µ→i ≡
1
n

∑

j( 6=i)

F 2
µjv

t−1
j→µ, (1.42)

in which aj→µ, vj→µ are the mean and variance of xj under the message mj→µ. The first equation
of eq. (1.39) can then be simplified into

m̂t
µ→i(xi) ∝

∫
dzµPout(yµ|zµ) exp

{
−

(zµ − ωt
µ→i − Fµixi/

√
n)2

2V t
µ→i

}
. (1.43)

Expanding the exponential in eq. (1.43) as n → ∞, we reach that m̂t
µ→i(xi) is approximately

Gaussian in this limit, with variance 1/At
µ→i and mean Bt

µ→i/A
t
µ→i given by:

Bt
µ→i =

1√
n
Fµigout(yµ, ω

t
µ→i, V

t
µi) and At

µ→i = − 1
n
F 2

µi∂ωgout(yµ, ω
t
µ→i, V

t
µi), (1.44)

in which we defined:

gout(y, ω, V ) ≡ 1
V

∫
dz (z − ω) e− (z−ω)2

2V Pout(y|z)
∫

dz e− (z−ω)2

2V Pout(y|z)
. (1.45)

Finally, we focus on the second equation of eq. (1.39). Using the approximate Gaussianity of
the messages yields that this equation reduces to:

at
i→µ = fx

( ∑

ν( 6=µ)

At
ν→i,

∑

ν( 6=µ)

Bt
ν→i

)
and vt

i→µ = ∂Bfx

( ∑

ν( 6=µ)

At
ν→i,

∑

ν( 6=µ)

Bt
ν→i

)
, (1.46)

with the auxiliary function:

fx(B,A) ≡
∫
P0(dx)x e− A

2
x2+Bx

∫
P0(dx) e− A

2
x2+Bx

. (1.47)

Eqs. (1.42),(1.44),(1.46) define the relaxed BP updates.

9This algorithm is sometimes called Bayes-AMP to distinguish it from a broader class of methods also called AMP
algorithms. Bayes-AMP has been shown to be optimal in this category of algorithms [CMW20].
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Algorithm 2: GAMP for the Generalized Linear Model [Ran11].
Result: The estimator x̂
Input: Observations Y ∈ R

m and sensing matrix F ∈ R
m×n;

Initialize x̂, ĉ,ω,V randomly;
while not converging do
• Estimation of the mean and variance of z ≡ Fx̂/

√
n;

ωt
µ =

1√
n

∑

µ,i

Fµix̂
t
i −

1
n
gout(yµ, ω

t−1
µ , V t−1

µ )
∑

i

F 2
µic

t
i and V t

µ =
1
n

∑

µ,i

F 2
µic

t
i ;

• Mean and variance of x estimated from the channel observations;

At
i = − 1

n

∑

µ

F 2
µi ∂ωgout(yµ, ω

t
µ, V

t
µ) and Bt

i = At
ix̂

t
i +

1√
n

∑

µ

Fµi gout(yµ, ω
t
µ, V

t
µ) ;

• Update of the estimated marginals with the prior information;
x̂t+1

i = fx(Bt
i , A

t
i) and ĉt+1

i = ∂Bfx(Bt
i , A

t
i);

t = t+ 1;
end

From relaxed BP to Approximate Message-Passing

The relaxed BP equations can be simplified further in the n→∞ limit. This is detailed in [ZK16]
and essentially reduces to show that all eqs. (1.42),(1.44),(1.46) can be written as a function of
the averages over the “output” nodes (e.g. ωµ ≡ n−1∑

i ωµ→i and Ai ≡ m−1∑
µAi→µ). One

must however be careful when replacing the messages with these averages, to take properly into
account all terms of leading order in n. Carrying out this procedure yields Algorithm 2.

Note that there are corrections in Algorithm 2 with what a “naive” average of the r-BP equa-
tions (1.42),(1.44),(1.46) would give. These corrections are similar to the Onsager reaction terms
arising the TAP approach in Section 1.3.2, and we will see actually that they are completely
equivalent to them. Algorithm 2 was first described in this form by Sundeep Rangan in [Ran11],
and is a generalization of the original AMP algorithm written by Donoho, Maleki and Montanari
for compressed sensing in [DMM09].

Connection with the TAP equations – Let us examine the stationary limit of Algorithm 2.
It yields that any fixed point of GAMP must satisfy:




ωµ =
1√
n

∑

µ,i

Fµix̂i −
1
n
gout(yµ, ωµ, Vµ)

∑

i

F 2
µici and Vµ =

1
n

∑

µ,i

F 2
µici,

Ai = − 1
n

∑

µ

F 2
µi ∂ωgout(yµ, ωµ, Vµ) and Bi = Aix̂i +

1√
n

∑

µ

Fµi gout(yµ, ωµ, Vµ),

x̂i = fx(Bi, Ai) and ĉi = ∂Bfx(Bi, Ai).

(1.48)

In fact, eq. (1.48) are exactly the TAP equations for the GLM, that we introduced in Sec-
tion 1.3.2 for the SK model. Generalizing the TAP picture from the SK model to the GLM,
and subsequently obtaining eq. (1.48), is not very involved and we will detail it in a much more
general context in Chapter 2, so that we leave this computation aside.

On a historical note, while the TAP equations have been used by physicists since the 1970s
[TAP77], the AMP algorithm (because it is derived from BP) provides an explicit (and non-
trivial!) iteration scheme of these equations. This is of the utmost importance: the iteration of
the TAP equations in disordered systems is a long-lasting challenge of theoretical physics (see
e.g. [Bol14, OCW16] for discussions on the SK model and on more generic Ising models), and
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has led to a significant literature [TAP77, Méz89, OW96, BBBZ07, Kab08a]10. This issue was
solved for a large class of inference models by AMP algorithms. The Bethe free entropy (1.41),
applied at the fixed point of the AMP algorithm, can also be shown to be equal to the TAP free
entropy introduced in Section 1.3.2, and we will detail this correspondence further in Chapter 2.

State evolution and connection to the replica method

An extremely important characteristic of AMP algorithms is that they can be analyzed in the
high-dimensional limit. More precisely, we can compute their asymptotic performance via State
Evolution (SE) equations (as named by [DMM09] for compressed sensing). The most natural
way to derive them is to start from the relaxed-BP equations (1.42),(1.44),(1.46). Using the
assumption of independence of incoming messages in the BP approach, one can use the central
limit theorem to reduce the equations to the evolution of the mean and variances of the sums of
many random variables. Tracking the iterations of these means and variances yields the state
evolution equations, and a detailed derivation following these lines can be found in [KMS+12].
In the context of the GLM with arbitrary output channel, the SE equations were proven in
[JM13], so that we present them here as a theorem. In order to precisely state them, we first
describe the results of the replica theory (cf. Section 1.3.1) for the GLM with Gaussian matrices.

Replica formula for the free entropy – As we mentioned in Section 1.3.1, the replica method,
initially developed for disordered systems, has proven to be a very powerful tool as well for the
analysis of inference models. In particular, the replica-symmetric formula for Bayes-optimal
generalized linear models with Gaussian sensing matrices builds on early physics analysis of the
perceptron [GD89, Gyö90, STS90], and was derived in [KMS+12]. The formula was eventually
proven in [BKM+19], confirming the physics conjecture, so that we refer to this work for the
following theorem.

Theorem 1.3 (RS formula for Gaussian GLMs, informal [BKM+19])

Assume that:

• The signal X∗ ∈ R
n is generated from an i.i.d. prior distribution P0, with zero mean and

variance EP0 [X2] = ρ > 0.

• The matrix F has i.i.d. elements from N (0, 1).

• We are in the Bayes-optimal setting, i.e. the channel and prior used in the posterior distri-
bution of eq. (1.6) are the ones used to generate the data Yµ and the signal X∗.

Then the free entropy of the posterior distribution of eq. (1.6) converges to:

Φ ≡ lim
n→∞

1
n
E lnZn(Y,F) = sup

q∈[0,ρ]
inf
q̂≥0

fRS(q, q̂) = sup
q,q̂

fRS(q, q̂), (1.49)

with the replica-symmetric potential defined as11:

fRS(q, q̂) ≡ ψ0(q̂) + αΨout(q)−
q̂q

2
, (1.50)





ψ0(q̂) ≡
∫
DZP0(dX∗) exp

{
− q̂

2
(X∗)2 +

√
q̂X∗Z

}
ln
∫
P0(dx) exp

{
− q̂

2
x2 +

√
q̂xZ

}
,

Ψout(q) ≡
∫

dYDVDW ∗Pout(Y |
√
qV +

√
ρ− qW ∗) ln

∫
DwPout(Y |

√
qV +

√
ρ− qw).

10Note that an iteration scheme very close to the AMP algorithm, and derived as well from the BP equations, was
first proposed in [KU04].
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Figure 1.8: (Left) Replica-symmetric potential fRS(q) for ρ = 1 and different values of the
sampling ratio α. We plot the global minimum as a circle and the local minimum closest to q = 0

(if different) as a square. The replica potential picture is merely a representation and not an
accurate picture. (Right) Mean squared error ρ− q achieved in the sign retrieval problem with

Gaussian matrices. We compare the global maximum of fRS (information-theoretic MMSE) to the
local maximum closest to q = 0 (GAMP asymptotic error). We confirm our predictions with

finite-size simulations of GAMP. The qualitative behavior of the replica-symmetric potential in
each of the four colored areas is given by the curve of the left figure with the corresponding color.

State evolution of AMP – We can now state the SE equations for the GAMP algorithm.

Theorem 1.4 (Bayes-optimal State Evolution of GAMP, informal [BM11, JM13])

Let x̂t be the estimator of GAMP (Algorithm 2), and X∗ the solution to infer. We define two
asymptotic quantities known as overlaps

qt
AMP ≡ lim

n→∞
1
n

n∑

i=1

(x̂t
i)

2 and mt
AMP ≡ lim

n→∞
1
n

n∑

i=1

x̂t
iX

∗
i . (1.51)

Then these two quantities are well-defined, and moreover by the Nishimori identity (Proposi-
tion 1.1) one has mt

AMP = qt
AMP along the trajectory of GAMP. We introduce another variable

q̂AMP ≡ 2αΨout(qAMP). Then at all iteration times t ≥ 0, (qAMP, q̂AMP) is a solution of the
State Evolution (SE) equations:

q̂t
AMP = 2αΨout(qt

AMP) and qt+1
AMP = 2ψ0(q̂t

AMP). (1.52)

Moreover, for a random initialization of GAMP we have qt=0
AMP = q̂t=0

AMP = 0.

Optimality of AMP – Theorem 1.4 clarifies the link between AMP and the replica method.
It shows precisely that, in the Bayes-optimal setting, the replica potential fRS describes both
the information-theoretic optimal performance (via its global maximum, cf. Theorem 1.3) and
the asymptotic performance of AMP, via the SE equations (1.52). Note that these equations
correspond to a local optimization algorithm of fRS starting from the point q = q̂ = 0. Basically,
combining the replica method and message-passing algorithms allowed us to reduce the study
of the fundamental limits of a high-dimensional inference problem to the investigation of the
landscape of a simple scalar potential, as illustrated in Fig. 1.8 (see Chapter 6 for more details
on the specific problem of phase/sign retrieval illustrated in this figure). Importantly, the link
between the state evolution of AMP and the replica-symmetric potential is actually very general,
and has several crucial consequences:

• When fRS has a unique maximum in a Bayes-optimal inference model, AMP (here GAMP)
achieves the information-theoretic optimal error. However when it is not the case (e.g. the

11Recall that D is the generic notation for the standard Gaussian measure N (0, 1).
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green region in Fig. 1.8-right), Theorem 1.4 leads to the conjecture that AMP should achieve
the optimal performance (i.e. the optimal overlap, or MSE) over all “local” polynomial-time
algorithms. Indeed, any such algorithm should start at the un-informative point q = 0, and
would not be able to cross the “barrier” in the replica-symmetric potential in polynomial time.
Of course this argument is very far from rigorous and such a wild statement should not be
taken as is. There indeed exists problems for which this statement is not correct, notably the
famous XOR-SAT problem for which all local search algorithms (including AMP) fail, while
the problem can be solved in polynomial time by Gaussian elimination using a well-designed
mapping [RTWZ01, BHL+02, JMS04]. In an effort to put the conjectured optimality of AMP
on more precise grounds, the authors of [CMW20] have shown that AMP is optimal in a very
large class of inference problems among all general first order methods, which includes e.g. all
gradient-based optimization methods. This result covers in particular the GLM, and it proves
that Fig. 1.8 indeed describes the fundamental statistical and algorithmic performances in
real Gaussian phase retrieval among general first order methods.

• To summarize, the replica formula (here Theorem 1.3) gives access to the information-theoretic
optimal error, while the class of AMP algorithms provides the (conjectured) algorithmic opti-
mal error, and this error is also characterized by the replica formula (see here Theorem 1.4).
This allows to study computational-to-statistical gaps (also called hard phases) merely by an-
alyzing the replica-symmetric potential, a simple function of a few scalars! Leveraging this
statistical physics toolbox to study computational gaps in inference is an important line of
research, see e.g. [KMS+12, DJM13, DM15, ZK16, BPW18, BKM+19] (without any aim of
exhaustivity), and a significant fraction of Part II of the present thesis will be devoted to the
investigation of such gaps.

Final remarks on AMP algorithms

AMP for spin glass optimization – AMP algorithms have recently been adapted as opti-
mization algorithms in a variety of spin glass models with full replica symmetry breaking (see
Section 1.3.1). In this context they were called Incremental AMP, and they have solved long-
lasting open problems on the optimization of the SK model and a wide class of FRSB spin glass
models satisfying a “no-overlap-gap” property [AMS20, AM20, Sub21, Mon21, Sel21].

The cavity method – In our presentation of methods which originated in statistical physics,
we did not detail a very important technique known as the cavity method. It was introduced by
Mézard and coauthors in [MPV86] as a way to obtain the “replica solution without replicas”
for the SK model. The basis of the cavity method for generic graphical models described by
eq. (1.37) is to study the original model along with a modified version in which one removed
a single variable node: as these two systems must be equivalent in the thermodynamic limit
this yields self-consistent equations on the order parameters of the system. For the case of the
GLM, these self-consistent equations are exactly the state evolution of Theorem 1.4! The cavity
method has actually been shown generically to be equivalent to the replica computations12, and
can be generalized to an arbitrary number of replica symmetry breaking levels. As we will not
discuss the cavity computations in this thesis, the reader interested in learning more should refer
to [MM09, Méz15].

The mismatched case – The BP equations (1.39) and the GAMP algorithm 2 do not use the
knowledge of the true prior and channels, so that they are easily generalized to the non-Bayes-
optimal (or “mismatched”) case. The state evolution (Theorem 1.4) can also be generalized to
this more general case, and is again equivalent to the replica-symmetric computation. However,

12However cavity computations are often easier to prove mathematically than their replica counterpart, as they rely
on less heuristic methods.
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out of Bayes-optimality, the replica-symmetric computation generally does not yield the correct
asymptotic free entropy of the system, so that we have no guarantee of any kind of optimality of
AMP algorithms. However as we will illustrate in Chapter 6, these algorithms can still achieve
very good performance in the mismatched case. As we will most often need the Bayes-optimal
version of the AMP algorithm in this dissertation we do not present here the mismatched state
evolution, which the reader can find e.g. in [KMS+12] or [Gab20].

1.4.3 Three approximations for non-Gaussian inference problems

In this section, inspired by [MFC+19], we introduce three different approximation schemes for
disordered systems that can also be applied to many inference problems, when the underlying
interactions are more structured than simply Gaussian. Let us briefly recap their history:

• The adaptive TAP (adaTAP) scheme was developed and presented in 2001 in [OW01b,
OW01a, OS01], for systems close to the SK model.

• The same year, Thomas Minka’s Expectation Propagation (EP) approach was presented
[Min01]. Opper and Winther used an alternative view of local-consistency approximations
of the EP–type which they call Expectation Consistent (EC) approximations in [OW05a,
OW05b], effectively re-deriving their adaTAP scheme from this new point of view.

• The Vector Approximate Message-Passing (VAMP) approach is more recent [SRF16, RSF17],
and is again another EP approach, for Generalized Linear Models (GLMs). Compared with
other EP-like approaches it has the advantage that it leads to both a practical converging
algorithm, and a rigorous treatment of its time evolution.

The connection between these different approaches was hinted several times for SK-like problems,
see e.g. [OCW16, ÇO19], and we establish it clearly in the remaining of Section 1.4.3, along
with a detailed presentation of these three approximations.

Expectation Consistency approximation

Consider a model in which the probability distribution of a vector x ∈ R
n is of the generic form:

P (x) =
1
Zn

P0(x)PJ(x). (1.53)

As we saw above, such distributions typically appear in Bayesian approaches to inference prob-
lems, and as emphasized in Section 1.1, our goal will be to compute lnZn for large values of n.
We will use the Bayesian language and denote P0 as a prior distribution on x, which will be
typically factorized (i.e. all the components of x are independent under P0). The distribution
PJ is responsible for the interactions between the {xi}: we will often be interested in pairwise
interactions, i.e. when lnPJ is a quadratic form in the {xi} variables. An example of such a
model is the infinite-range Ising model at inverse temperature η ≥ 0, with external field h (i.e.
a SK model with external field and non-Gaussian couplings):





P0(x) =
n∏

i=1

{ 1
2 cosh(ηhi)

(
δ(xi − 1)e−ηhi + δ(xi + 1)eηhi

)}
,

PJ(x) = exp
{η

2

∑

i,j

Jijxixj

}
.

(1.54)

Each of the two distributions P0 and PJ allows for tractable computations of physical quantities
(e.g. averages), but the difficulty arises when considering their product. The idea behind EC is
to simultaneously approximate P0 and PJ by a tractable family of distributions. For the sake
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of the presentation we will consider Gaussian probability distributions, although this can be
generalized to different families, as detailed in [OW05a]. We define the first approximation as:

µ0(x) ≡ 1
Z0(Γ0,λ0)

P0(x)e− 1
2

x⊺Γ0x+λ⊺

0x,

with Γ0 ∈ S+
n (R) and λ0 ∈ R

n. We will denote 〈·〉0 the averages with respect to µ0. We can
write the trivial identity:

Zn = Zn ×
Z0(Γ0,λ0)
Z0(Γ0,λ0)

= Z0(Γ0,λ0)〈PJ(x) e
1
2

x⊺Γ0x−λ⊺

0x〉0.

When computing the average 〈PJ(x) e
1
2

x⊺Γ0x−λ⊺

0x〉0, we can replace the distribution µ0 by an
approximate Gaussian distribution:

µS(x) ≡ 1
ZS

e− 1
2

x⊺(ΓJ +Γ0)x+(λ0+λJ )⊺x.

This yields the Expectation-Consistency (EC) approximation to the free entropy:

lnZEC(Γ0,ΓJ ,λ0,λJ) = ln
[ ∫

dxP0(x)e− 1
2

x⊺Γ0x+λ⊺

0x
]

+ ln
[ ∫

dxPJ(x)e− 1
2

x⊺ΓJ x+λ⊺

J x
]

− ln
[ ∫

dx e− 1
2

x⊺(Γ0+ΓJ )x+(λ0+λJ )⊺x
]
. (1.55)

Note that all three parts of this free entropy are tractable. In order to symmetrize the result we
can define a third measure µJ with average 〈·〉J :

µJ(x) ≡ 1
ZJ(ΓJ ,λJ)

PJ(x)e− 1
2

x⊺ΓJ x+λ⊺

J x.

The final free entropy should not depend on the values of the parameters, so we expect that
the optimal values for Γ0,ΓJ ,λ0,λJ make ZEC stationary. This is a strong hypothesis, and the
reader can refer to [OW05a] for more details and justifications. These stationarity equations
yield the Expectation Consistency (EC) conditions, giving their name to the procedure:

{
〈xi〉0 = 〈xi〉J = 〈xi〉S ,
〈xixj〉0 = 〈xixj〉J = 〈xixj〉S .

(1.56)

Adaptive TAP approximation

The adaptive TAP (adaTAP) approximation [OW01a, OW01b] provides an equivalent way to
derive the free entropy of eq. (1.55) for models with pairwise interactions. Let us briefly sketch
its derivation and the main arguments behind it. Again, for the sake of the presentation we
consider the infinite-range Ising model of eq. (1.54). As we saw in Section 1.3.2, the free entropy
ΦJ ≡ n−1 lnZn at fixed values of the magnetizations mi = 〈xi〉 and vij = 〈xixj〉 can be written
using Lagrange multipliers (λ,Γ):

ΦJ(η,m,v) = extr
λ∈Rn

Γ∈S+
n (R)

[
− λ⊺m +

∑

i,j

Γij

2
(vij +mimj) + ln

∫
dxP0(x) e

η
2

x⊺Jx− 1
2

x⊺Γx+λ⊺x
]
.
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The adaTAP approximation consists in writing:

nΦJ(η,m,v) = ΦJ(0,m,v) +
∫ η

0
dl
∂ΦJ(l,m,v)

∂l
,

≃ ΦJ(0,m,v) +
∫ η

0
dl
∂Φ(Gauss.)

J (l,m,v)
∂l

,

≃ ΦJ(0,m,v) + Φ(Gauss.)
J (η,m,v)− Φ(Gauss.)

J (0,m,v). (1.57)

In this expression Φ(Gauss.)
J (η,m,v) denotes the free entropy of the same system, but in which

the spins have Gaussian statistics. The idea behind the adaTAP approximation is that in
∂lΦJ(l,m,v) = (2n)−1∑

ij Jij〈xixj〉 it is reasonable to assume that the underlying variables
were Gaussian, as we consider the expectation of a sum of a large number of variables. The
assumptions of adaTAP, although reasonable, are a priori hard to justify more rigorously and
systematically. Note that the free entropy (1.57) of adaTAP is equivalent to the one derived
using Expectation Consistency in eq. (1.55). Indeed, using additional Lagrange multipliers we
can write the three terms of eq. (1.57) as:

nΦadaTAP
J (η,m,v) = extr

λ0,Γ0

[
ln
{∫

dxP0(x) e− 1
2

x⊺Γ0x+λ⊺

0x
}
− λ⊺

0m +
1
2

∑

i,j

(Γ0)ij(vij +mimj)

]

+ extr
λJ ,ΓJ

[
ln
{∫

dxPJ(x) e− 1
2

x⊺ΓJ x+λ⊺

J x
}
− λ⊺

Jm +
1
2

∑

i,j

(ΓJ)ij(vij +mimj)

]

− extr
λS ,ΓS

[
ln
{∫

dx e− 1
2

x⊺ΓSx+λ⊺

Sx
}
− λ⊺

Sm +
1
2

∑

i,j

(ΓS)ij(vij +mimj)
]
.

Once written in this form, the extremization over m and v of the free entropy implies that
ΓS = Γ0 + ΓJ and λS = λ0 + λJ . It is then clear that we found back lnZEC of eq. (1.55).

Vector Approximate Message Passing approximation

The Vector Approximate Message Passing (VAMP) algorithm [RSF17, SRF16] extends previ-
ous message-passing approaches, such as the AMP algorithm that we saw in Section 1.4.2 for
Gaussian interactions, to a class of correlated interaction matrices that satisfy a right-rotation
invariance property, that we will define more precisely in Section 1.5. The algorithm itself can
be derived in several ways: here we will use a method based on the belief propagation equations
on a “duplicated” factor graph, and their Gaussian projection. As we shall see, the Bethe free
entropy of this model is then equivalent to the Expectation-Consistency free entropy. For the
sake of the presentation we consider again the infinite-range Ising model of eq. (1.54). The idea
behind VAMP is to “duplicate” the model as follows:

ΦJ ≡
1
n

ln
∫

dxP0(x)PJ(x) =
1
n

ln
∫

dx1 dx2 P0(x1)PJ(x2) δ(x1 − x2).

This partition function can be represented as a duplicated factor graph involving two vector
nodes, as shown in Fig. 1.9. One then writes the BP equations for this problem, as we saw in
Section 1.4.1, in terms of two “messages” m0(x2) and mJ(x1). These equations can be obtained
by the stationarity conditions of the Bethe free entropy defined in eq. (1.41), and which reads
here:

ΦBethe ≡ ln
∫

dxP0(x) mJ(x) + ln
∫

dxPJ(x) m0(x)− ln
∫

dx m0(x) mJ(x). (1.58)
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x1 x2δx1,x2P0 PJ

m0 mJ

Figure 1.9: Duplicated factor graph for the VAMP approximation. Circles represent vector
nodes and squares factor nodes. We represent the two messages m0 and mJ in terms of which we

write the full BP equations.

As the factor graph of Fig. 1.9 is a tree, the BP equations are an exact representation of the
original problem, but they are in general intractable. In order to make the computation possible
one can make a Gaussian approximation, which is at the core of the VAMP algorithm: the
messages m0 and mJ are assumed to be Gaussian, and thus are fully characterized by their first
two moments:

m0(x) ∝ e− 1
2

x⊺Γ0x+λ⊺

0x, mJ(x) ∝ e− 1
2

x⊺ΓJ x+λ⊺

J x. (1.59)

Writing the BP update rule with this assumption yields the VAMP iterations:




Γt
0 =

[
〈xx⊺〉t−1

0 − 〈x〉t−1
0 〈x⊺〉t−1

0

]
− Γt−1

J ,

λt
0 = (Γt

0 + Γt−1
J )〈x〉t−1

µ0
− λt−1

J ,

Γt
J =

[
〈xx⊺〉tJ − 〈x〉tJ〈x⊺〉tJ

]
− Γt

0,

λt
J = (Γt

0 + Γt
J)〈x〉tµJ

− λt
0,

(1.60)

with the measures µ0(x) ∝ P0(x)mJ(x) and µJ(x) ∝ PJ(x)m0(x). Note that plugging the
ansatz of eq. (1.59) into eq. (1.58) immediately gives back the EC free entropy of eq. (1.55).
Moreover, the stationary limit of the BP equations of eq. (1.60) (i.e. when removing the time
indices) is identical to the Expectation-Consistency conditions of eq. (1.56).

Conclusion

We introduced three approximation schemes to compute the free entropy of disordered systems,
that have natural extensions in inference problems: Expectation Consistency, adaptive TAP,
and Vector Approximate Message Passing. As we detailed, they all rely on the same underlying
Gaussian approximations, and therefore yield equivalent expressions for the free entropy. As a
final note, an important advantage of the VAMP approach is that it naturally provides an iter-
ative scheme to solve the fixed point equations. These iterations form a very efficient algorithm
[RSF17], which is intuitive as they were derived directly from the belief propagation equations.

1.5 Some rudiments of probability and random ma-

trix theory

Theoretical physics and random matrix theory share a long history that dates back to Wigner
[Wig55], and that powered progress in various areas ranging from disordered systems [EA75,
SK75] to quantum chaos [BGS84], quantum chromodynamics [VW00], or superconductivity
[Bah96]. The growing interplay of physics and statistics [ZK16, Gab20, Zde20], which is the
subject of this thesis, further strengthened this connection. In this section, the last one of
Chapter 1, we review some important techniques and models from random matrix theory, as
well as a few probabilistic tools that will be useful for the rest of the thesis. Apart from
some specific arguments, it is written in a fashion closer to mathematical standards, as a large
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part of its content originated in the mathematics literature. For more details and advanced
results in random matrix theory, one can refer for instance to [Meh04] and [AGZ10] for classical
references of theoretical physics and mathematics. On a less advanced level, [LNV18] provides a
comprehensive introduction to techniques of random matrix theory used in theoretical physics.

1.5.1 Random matrix ensembles and asymptotic spectra

Recall that M+
1 (R) is the set of probability measures on R.

Spectral distributions – Consider a (random) symmetric matrix M ∈ Hn(K), with (real)
eigenvalues {λi}ni=1. The Empirical Spectral Distribution (ESD) of M is defined as:

νn ≡
1
n

n∑

i=1

δλi
. (1.61)

For many random matrices considered in this thesis, the (random) probability measure νn will
converge almost surely and in the weak sense to a deterministic probability measure ν ∈M+

1 (R)
as n→∞. In this case, we will call ν the Limiting Spectral Distribution (LSD) of M.

A few random matrix ensembles

Wigner matrices – In the 1950s, Wigner introduced a class of random matrices to study the
nuclei of heavy atoms [Wig55]. This led to what is now known as Wigner matrices, which are
Hermitian/symmetric random matrices J ∈ Hn(K) such that:

(i) All {Jij}i<j are i.i.d. with zero mean and E|Jij |2 = 1.

(ii) All {Jii}ni=1 are i.i.d. with zero mean, independent of {Jij}i<j , and E|Jii|2 = 2.

Note that if the distribution of the elements is Gaussian, then Wigner matrices are (up to a
rescaling) the GOE/GUE matrices of Definition 1.3. The LSD of Wigner matrices is given in
Theorem 1.6 and was first investigated in [Wig55]: it can be considered as the beginning of the
field of random matrix theory.

(Generalized) Wishart matrices – Wishart matrices, introduced in [Wis28], are a model
of sample covariance matrices. More precisely, let x1, · · · ,xm ∈ R

n be i.i.d. vectors drawn from
a zero-mean distribution Px ∈M+

1 (Rn). Their sample covariance matrix is

W ≡ 1
m

m∑

µ=1

xµx⊺
µ ∈ Sn.

At fixed n, when the number m of data samples gets large, W approaches the covariance
EPx [xx⊺] of the distribution, by the law of large numbers. However the situation is much more
complex in a high-dimensional regime, in which both n and m gets large in the same scale, that
is m/n → α > 0, a limit which we referred to as the thermodynamic limit, cf. Definition 1.2.
Let us assume that Px is a Gaussian distribution with covariance matrix Σ ∈ S++

n (R). As

xµ
d=
√

Σzµ, with zµ
i.i.d.∼ N (0, In), we reach

W
d=
√

Σ

{
1
m

m∑

µ=1

zµz⊺µ

}√
Σ. (1.62)

Eq. (1.62) defines the random matrix ensemble of Wishart matrices. Under suitable assump-
tions on Σ their asymptotic spectra was first studied by Marchenko and Pastur in [MP67], see
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Theorem 1.7. In Chapter 8 we will consider an extension of Wishart matrices, that we call
generalized sample covariance matrices.

Rotationally-invariant matrices – Roughly speaking, when we refer to rotational invari-
ance, we mean a complete delocalization of eigenvectors: they are distributed according to the
Haar measure on the orthogonal group Uβ(n), with no privileged direction. Throughout the
manuscript, we will use two assumptions that we will both refer to as rotation invariance.

Model S (Hermitian/Symmetric rotationally invariant matrix)

Let n ≥ 1. The random matrix J ∈ Hn(K) is said to be rotationally invariant if:

(i) For any O ∈ Uβ(n), J
d= OJO†.

(ii) The empirical spectral distribution (ESD) of J: ρn ≡ 1
n

∑n
i=1 δλi(J) converges (almost

surely and in the weak sense) as n → ∞ to a probability distribution ρ with compact
support, called the Limiting Spectral Distribution (LSD) of J.

(iii) The smallest and largest eigenvalue of J converge (almost surely) to the infimum and
supremum of the support of ρ.

Model R (Rectangular rotationally invariant matrix)

Let n ≥ 1, and m = m(n) ≥ 1 such that m/n→ α > 0 as n→∞.

• The random matrix L ∈ R
m×n is said to be right-rotationally invariant if J ≡ L†L

is rotationally invariant, according to Model S.

• In the same way, L is left-rotationally invariant if J ≡ LL† is a symmetric rotationally
invariant matrix.

Note that in both models we added additional hypotheses to the complete delocalization of
eigenvectors, more precisely on the asymptotic behavior of the spectral distribution and on
the existence of outliers in the spectrum. These hypotheses have been added for convenience
as we will use them repeatedly in this manuscript. Note that a strong form of eigenvectors
delocalization can also be proven for non-rotationally invariant random matrices, e.g. the Wigner
matrices with generic i.i.d. distribution [ESY09].

Examples of rotationally-invariant ensembles –

• The GOE/GUE (cf. Definition 1.3) satisfies Model S, with LSD given by the Wigner semicircle
law as detailed in Theorem 1.6.

• The Wishart ensemble of eq. (1.62) with Σ = In and ratio α > 0. This ensemble satisfies
Model S, with LSD given by the Marchenko-Pastur law as shown in Theorem 1.7.

• Standard Gaussian i.i.d. matrices L ∈ K
m×n satisfy Model R and are left and right-rotationally

invariant.

• Matrices generated via a potential V (x), i.e. J ∈ Hn(K) generated with a probability density
proportional to exp{−nTr[V (J)]}. Given some natural hypotheses on the behavior of the
potential V (x), such matrices satisfy Model S.

Useful transforms of probability measures

We now introduce a few transforms of probability measures that are especially useful in the
context of random matrix theory. Let C+ = {z ∈ C, Im z > 0}. We let ν ∈ M+

1 (R), and
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we denote supp(ν) ⊆ R its support. We define (tmin, tmax) as the infimum and supremum of
supp(ν). For any z such that z ∈ C+ or z ∈ R\supp(ν), we define the Stieltjes transform of ν
(or resolvent) as13:

Sν(z) ≡
∫
ν(dt)

1
t− z . (1.63)

Note that Sν(z) is a one-to-one mapping of C+ on itself. The Stieltjes transform has proven to be
a very useful tool in particular in random matrix theory [AGZ10]. Importantly, the knowledge
of the Stieltjes transform of a probability measure above the real line allows to characterize it
completely, via the Stieltjes-Perron inversion formula (see Theorem X.6.1 of [DS67]):

Theorem 1.5 (Stieltjes-Perron inversion formula)

Let ν ∈M+
1 (R). Then for all a < b, we have

ν((a, b)) = lim
δ↓0

lim
ǫ↓0

1
2iπ

∫ b−δ

a+δ
[Sν(x+ iǫ)− Sν(x− iǫ)]dx.

In particular, if ν has a continuous density with respect to the Lebesgue measure then:

∀x ∈ R,
dν
dx

= lim
ǫ↓0

1
π

ImSν(x+ iǫ).

Let us now assume that tmax < ∞, so that the support of ν is bounded from above. On
(tmax,+∞), Sν induces a strictly increasing C∞ diffeomorphism Sν : (tmax,∞) →֒ (−∞, 0), and
we denote its inverse S−1

ν . It is easy to see that the same property holds as well on (−∞, tmin).
One can then introduce the R-transform of ν as:

Rν(s) ≡ S−1
ν (−s)− 1

s
. (1.64)

Rν(s) is defined for −s ∈ Sν [(tmin, tmax)c], and one can show that it admits an analytical
expansion around s = 0, see e.g. [TV04]. We can write this expansion as:

Rν(s) =
∞∑

k=0

ck+1(ν) sk. (1.65)

The elements {ck(ν)}k≥1 are called the free cumulants of ν. They are analogous to the usual
cumulants since the R-transform is analogous to the cumulant generating function in the context
of random matrix theory. This relation was shown in detail in [GM05] and we will detail
many results of this work in the following. In particular, one verifies that c1(ν) = Eν [X] and
c2(ν) = Eν [X2]− (EνX)2. The free cumulants can be recursively computed from the moments
of the measure using the so-called free cumulant equation:

∀k ∈ N
∗, Eν [Xk] =

k∑

m=1

cm(ν)
∑

{ki}i∈[|1,m|]
s.t
∑

i
ki=k

m∏

i=1

Eν [Xki−1]. (1.66)

The free cumulants naturally arise from the theory of free probability, which is the study of
non-commutative random variables [VDN92]. This field has very strong connections with ran-
dom matrix theory, and many of the results we will mention can be understood from the free

13At different points in this thesis we will use the different notations gν(z) = Sν(z) and Gν(z) = −Sν(z).
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probability point of view.

Limit spectra of random matrices

As we mentioned, one of the first object of studies of random matrix theory was the limit spectra
of different random matrix ensembles. Naturally, the first one to be studied was the Wigner
ensemble that we defined above. Its LSD was shown in [Wig55], using a moments method, to
be equal to the now-celebrated semicircle distribution.

Theorem 1.6 (Wigner’s semicircle law, [Wig55])

Let J ∈ Hn(K) be a Wigner matrix (see the definition above). Then as n → ∞, the ESD of
J/
√
n a.s. tends (in the weak sense) to the semicircle law σs.c. with density

σs.c.(x) =

√
4− x2

2π
1{|x| ≤ 2}. (1.67)

The proof of Theorem 1.6 was performed in [Wig55] using the calculation of all moments of
a Wigner matrix. This proof was then much simplified by use of the Stieltjes transform of
eq. (1.63), using arguments very similar to the cavity method of statistical physics. These
different approaches are detailed in [AGZ10], and we will apply the Stieltjes transform method
to other kinds of random matrices in Chapter 5 of this thesis. Finally, we will also present in
Section 1.5.2 a third way to prove Theorem 1.6, using a Coulomb Gas representation of the
eigenvalues. As we will see, this method grants access not only to the convergence of the ESD
but also to its large deviations away from its expected value.

Semicircle law and free probability – Intuitively, the semicircle law plays in free probability
a role analogous to the one of the normal distribution in classical probability. Indeed its free
cumulants ck (cf. eq (1.65)) satisfy ck = 0 for k ≥ 3, much like the cumulants of the Gaussian
distribution are zero for orders greater or equal to 3.

A second very natural class of random matrices to study are the Wishart matrices of eq. (1.62).
As we mentioned, this was done first in [MP67], while some generalizations and precisions were
brought after, e.g. in [SB95]. Note first that the matrix of eq. (1.62) has the same spectrum,
up to zeros, as Z†ΣZ/m (with Z ∈ R

n×m an i.i.d. Gaussian matrix) so that we will study this
matrix in the following. We state here the main result of [MP67] in the form of Theorem 1.1 of
[SB95], naming it the Marchenko-Pastur equation.

Theorem 1.7 (Marchenko-Pastur equation [MP67])

Let p, k → ∞ with p/k → α > 0. Let W ∈ K
p×k a matrix whose elements are drawn i.i.d.

from Nβ(0, 1). Let Tp ∈ Hp(K) be a random Hermitian matrix, independent of W, such that
the ESD of Tp converges weakly (and a.s.) to a measure νT . Then, almost surely, the ESD
of Bk ≡W†TpW/k converges in law to µB ∈M+

1 (R), whose Stieltjes transform satisfies, for
every z ∈ C+:

SµB (z) = −
[
z − α

∫
νT (dt)

t

1 + tSµB (z)

]−1
. (1.68)

Moreover, for every z ∈ C+, there is a unique solution to eq. (1.68) such that SµB (z) ∈ C+.
This equation thus characterizes uniquely the measure µB.

Theorem 1.7 is proven by means of the cavity method. We refer the reader to the random matrix
proofs of Chapter 5, where we will re-derive Theorem 1.7. Note that eq. (1.68) can be written
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as an explicit formula in terms of the R-transform of eq. (1.64):

RµB (s) = α

∫
νT (dt)

t

1− ts .

The Marchenko-Pastur equation has been generalized further, e.g. by considering non-linear
transformations of the elements of a Wishart matrix [BP19, PW19, PS21]. To conclude, let us
mention the most celebrated application case of Theorem 1.7, when Tp = Ip. This corresponds
to Wishart matrices with identity covariance, and in this case the LSD is called the Marchenko-
Pastur distribution µB = µMP,α. Its density ρMP,α is given by:

ρMP,α(x) = max(0, 1− α)δ(x) +

√
(λ+(α)− x)(x− λ−(α))

2πx
1{λ−(α) < x < λ+(α)}, (1.69)

with λ±(α) ≡ (1±√α)2.

1.5.2 Large deviations

Large deviations theory is a set of probabilistic techniques, heavily used in mathematical physics,
that focuses on the study of extremely rare events. A large part of statistical mechanics can
actually be understood as a consequence of large deviations properties.

References – Our description of large deviations theory and its results will be extremely far
from complete, as we simply aim at introducing a few important definitions and theorems. We
refer the reader to e.g. [DZ98, Kle13] for more complete mathematical discussions.

To introduce large deviation principles, let us consider a sequence (Xi)n
i=1 of i.i.d. random

variables, with common mean m and variance σ2. By the strong law of large numbers we know

Sn ≡
1
n

n∑

i=1

Xi
a.s.→

n→∞ m. (1.70)

The goal of large deviations theory is to understand the speed of this convergence, which is
equivalent to understand large deviations of Sn from its limit value. Note that while the central

limit theorem gives that
√
n(Sn − m)

weakly→
n→∞ N (0, σ2), large deviations theory focuses on very

rare events in which the deviation Sn −m is of order O(1) rather than in the scale n−1/2. For
all x ≥ m and t ≥ 0 we can write using Chernoff’s inequality that

1
n

lnP[Sn ≥ x] ≤ −tx+
1
n

lnE

[
e
∑n

i=1
tXi

]
≤ −tx+ lnE

[
etX].

So we reach easily that

1
n

lnP[Sn ≥ x] ≤ − sup
t∈R

{
tx− lnE

[
etX]}. (1.71)

Actually, as first shown by Cramér [Cra38], the bound of eq. (1.71) is tight as n → ∞. The
perhaps easiest way to prove this is to use a tilting of the measure, a technique that we will use
again in Chapter 8 in a random matrix context, and the reader can refer to e.g. [Kle13] for a
detailed proof. In the end, we reach:

lim
n→∞

1
n

lnP[Sn ≥ x] = − sup
t∈R

{
tx− lnE

[
etX]}. (1.72)
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Eq. (1.72) exactly describes what we call a large deviation principle, here in the scale n: it
details the exponential tail of the probability of a random variable. It motivates the following
general definition, stated here in a precise mathematical language.

Definition 1.4 (Large deviations of real variables)

Let {µn}n≥1 be a sequence of Borel probability measures on R and {an}n≥1 a sequence of
positive reals such that limn→∞ an = +∞. The sequence {µn}n≥1 satisfies a large deviation
principle (LDP) with speed {an} if for any Borel measurable set E ⊆ R

14:

− inf
x∈Eo

I(x) ≤ lim inf
n→∞

1
an

lnµn(E) ≤ lim sup
n→∞

1
an

lnµn(E) ≤ − inf
x∈E

I(x), (1.73)

with a lower semi-continuous I : R→ R+ ∪ {+∞} called the rate function.

Note in particular that if the random variables concentrate, as n → ∞, to a limit value m (as
in eq. (1.70)), then I(m) = 0 is the global minimum of the rate function.

The physics language – In theoretical physics, LDPs are usually stated in a much simpler,
informal, way. We consider a sequence Pn of PDFs, and we state the LDP of Definition 1.4 as

1
n

lnPn(x) ≃ −I(x), or Pn(x) ≃ e−nI(x). (1.74)

Eq. (1.72) can then be turned into what is known as Cramér’s theorem:

Theorem 1.8 (Cramér’s theorem, [Cra38])

Let (Xi)n
i=1 be a sequence of i.i.d. real random variables such that Λ(t) ≡ lnE[exp(tX)] is

finite for all t ∈ R. Let Λ∗(u) ≡ supt∈R[tu − Λ(t)] its Legendre transform. Then the law of
the random variables Sn ≡ (1/n)

∑n
i=1Xi satisfies a large deviation principle, in the scale n,

with rate function Λ∗.

Another seminal large deviations result, that will prove useful in Chapter 7 of this thesis, is the
LDP for the empirical measure of a set of i.i.d. variables, known as Sanov’s theorem:

Theorem 1.9 (Sanov’s theorem, [San58])

Let (Xn)n≥1 be a sequence of i.i.d. real random variables with common law µ. We let νn ≡
n−1∑n

i=1 δXi the (random) empirical measures of the sequence. Then the law of νn satisfies,
as n→∞, a large deviation principle in the scale n, with rate function given by the Kullback-
Leibler divergence15:

I(ν) ≡ DKL(ν|µ) =





∫
dν ln

dν
dµ

if ν ≪ µ,

+∞ otherwise.

One of the most important applications of large deviation principles is the ability to use them to
compute the exponential limit of some high-dimensional integrals, by use of Varadhan’s lemma
(named after one of the most prolific mathematicians in large deviations theory, who obtained
in 2007 the Abel Prize for its contributions to the field):

14Recall that Eo and E are the interior and adherence of E.
15Recall that ν ≪ µ means absolute continuity of ν with respect to µ, i.e. for any measurable set A we have

µ(A) = 0 ⇒ ν(A) = 0. By the Radon-Nikodym theorem [Nik30], we know that ν ≪ µ is equivalent to the
existence of the Radon-Nikodym derivative dν/dµ such that ν(A) =

∫
A

(dν/dµ)dµ.
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Lemma 1.10 (Varadhan’s lemma, [DZ98])

Let (Xn)n≥1 be a sequence of real random variables that satisfies a large deviation principle
with rate function I(x). Let ϕ : R→ R be a continuous function, and assume that one of the
two following conditions hold:





lim
A→∞

lim sup
n→∞

1
n

lnE
[
exp{nϕ(Xn)}1[φ(Xn) ≥ A]

]
= −∞, or

lim sup
n→∞

1
n

lnE
[
exp{nγ ϕ(Xn)}] <∞ for some γ > 1.

Then

lim
n→∞

1
n

lnE
[
exp{nϕ(Xn)}] = sup

x∈R

[ϕ(x)− I(x)]. (1.75)

How physicists say it – Note that theoretical physicists usually do not refer to Varadhan’s
lemma. As the large deviation principle is stated in the form of eq. (1.74), we can write:

1
n

ln
∫

dxPn(x) enϕ(x) ≃ 1
n

ln
∫

dx en(ϕ(x)−I(x)) ≃ sup
x∈R

[ϕ(x)− I(x)], (1.76)

which is usually mentioned as an application of Laplace’s method.

Application I: the Gibbs-Boltzmann measure and the canonical ensemble – Sanov’s
theorem 1.9 is intimately related to asymptotic quantities described in statistical mechanics.
It formalizes one of the most important physical properties of statistical systems: when given
a set of thermodynamical constraints, the distribution of a system will maximize the entropy
while satisfying these constraints. Indeed, let us consider a set of n i.i.d. real random variables
{Xi} (representing e.g. the position or velocity of particles), with a common law µ. Directly
applying Sanov’s theorem then tells us about the microcanonical description of the ensemble: as
n→∞, the distribution of the particles will concentrate on the distribution ν∗ that maximizes
the entropy, i.e. that minimizes DKL(ν|µ). Trivially, this distribution is ν∗ = µ, and this result
is intimately related to the fundamental postulate of statistical physics: in an isolated system
at equilibrium, all microstates are equally probable.

Let us now assume to have access to an (intensive) energy function E({Xi}) = n−1∑n
i=1E(Xi),

which is thus a function of the empirical measure νn ≡ n−1∑n
i=1 δXi (e.g. the kinetic energy

Ekin = (m/2)
∑

i v
2
i if the variables Xi represent the velocity of particles). We want to study the

distribution of the {Xi} for a fixed value E of the total intensive energy. By Sanov’s theorem 1.9,
we know that the asymptotic distribution of {Xi} will concentrate as n→∞ to the maximum-
entropy distribution satisfying the constraint:

ν(E) ≡ arg min
ν∈M+

1 (R)

s.t.
∫

ν(dx)E(x)=E

[DKL(ν|µ)]. (1.77)

The solution to this variational problem is quite easy. We introduce a Lagrange multiplier η
(our choice of notation will become clear very soon) to enforce the constraint, and we reach that

ν(E) = νη(E) ≡ arg min
ν∈M+

1 (R)

[η
∫
ν(dx)E(x) +DKL(ν|µ)], (1.78)



Chapter 1. The statistical physics toolbox 45

with η = η(E) chosen such that
∫
νη(E)(dx)E(x) = E . It is straightforward to solve eq. (1.78)

and we reach:

ν(E)(dx) =
µ(dx)e−ηE(x)

Z , (1.79)

with Z chosen to ensure normalization of the distribution. Eq. (1.79) is precisely the Gibbs-
Boltzmann measure of statistical physics we introduced in Section 1.1.4: it is the distribution
that maximizes entropy at a fixed energy level. In statistical physics, the canonical ensemble
consists in studying the dual problem: we fix a η > 0 (usually called inverse temperature), and
we study the distribution of eq. (1.79). This description is dual (and thus equivalent) to the
path we took here, with the energy given by E = Z−1

∫
µ(dx)E(x) e−ηE(x).

Application II: large deviations and the semicircle law – Large deviations are well-
suited to describe asymptotic phenomena that frequently appear in the physics literature. A
good example is the derivation of Theorem 1.6 when the entries of the Wigner matrix are i.i.d.
Gaussian (real or complex). Indeed, let us consider a Gaussian Wigner matrix J ∈ Hn(K).
In this case, the eigenvalues {λi}ni=1 of J are independent of the eigenvectors (which are Haar
distributed). It is then easy to see by a change of variables of the original Gaussian matrix
measure to the eigenvalues that (see e.g. Proposition 4.1.1 of [AGZ10]):

P(dλ1, · · · ,dλn) =
1
Zn

∏

i<j

|λi − λj |βe− βn
4

∑n

i=1
λ2

i

n∏

i=1

dλi. (1.80)

As we saw in Section 1.5.1, a particularly important quantity to study in random matrix theory
is the empirical spectral distribution (ESD) νn ≡ n−1∑n

i=1 δλi
. Eq. (1.80) can be interpreted as

the Gibbs-Boltzmann measure (at temperature T = 1) of an interacting gas of particles, subject
to a logarithmic repulsion potential and a confining parabolic potential, resulting in the energy:

1
n2
E({λi}) ≡

β

4

∫
νn(dx)x2 − β

2

∫∫

x 6=y
νn(dx)νn(dy) ln |x− y|.

Because of the logarithmic repulsion potential, this representation is usually called in the physics
literature a Coulomb gas. Let us wear a physicist’s hat for a moment to state an informal
argument that will allow us to derive the large deviations of νn from the previous description.
As we know from Sanov’s theorem 1.9, we can write, with ρn(x) the density of νn:

∫ n∏

i=1

dλi δ
[
ρn(x)− 1

n

n∑

i=1

δ(x− λi)
]
≃ exp

{
− n

∫
dx ρn(x) ln ρn(x)

}
. (1.81)

Therefore we reach from eqs. (1.80) and (1.81):

P [νn] ≃ 1
Zn

e
−n2

[
β
4

∫
dx ρn(x) x2− β

2

∫∫
x6=y

dx dy ρn(x)ρn(y) ln |x−y|
]

−n
∫

dx ρn(x) ln ρn(x)
. (1.82)

Note that as the large deviations described by Sanov’s theorem 1.9 are in the scale n while the
energy E({λi}) scales as n2, this latter term will be the only contribution to the large deviations
at leading order! In physics terms, the free energy of this Coulomb gas is dominated solely by
the energetic component at leading order, while we can discard the entropic contribution. This
informal argument derived from eq. (1.82) leads to the conjecture thaw the law of νn satisfies a
large deviation principle, in the scale n2, with rate function:

I(ν) ≡ −β
4

∫
ν(dx)x2 +

β

2

∫∫
ν(dx)ν(dy) ln |x− y| − C, (1.83)
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with C chosen such that infν∈M+
1 (R) I(ν) = 016. This statement is indeed rigorous, and its proof

is done in [BAG97]. By a straightforward computation left to the reader (done e.g. in [LNV18],
or in [BAG97]), one can check that

σs.c. = arg min
ν∈M+

1 (R)

I(ν), and I(σs.c.) = 0, (1.84)

and that this minimum is unique. Therefore we have re-derived Theorem 1.6 as a simple corollary
of our large deviations result! Our result is actually much stronger, as we showed that the
convergence of the spectral measure happens in the scale eΘ(n2).

1.5.3 High-dimensional “spherical” integrals

In this section we introduce quantities known as spherical integrals, which can be seen as the
equivalent of Laplace/Fourier transforms in the context of random matrices. Precisely, we
consider integrals of the type (DO is the Haar measure on the compact group Uβ(n))

In(A,B) ≡
∫

Uβ(n)
DO exp{nTr[AOBO†]}, (1.85)

in which A,B are Hermitian/symmetric random matrices, and we are interested in the large-n
behavior of In. Applications of high-dimensional spherical integrals in statistical physics and
random matrix theory are numerous. They have been studied in the context of 2-spin glass
models [KTJ76, MPR94b, PP95], and they allow e.g. to derive the density of the eigenvalue
distribution of random matrices [Zub18, CMZ19] or the large deviations of the eigenvalues
[BG20, GH20, Hus20, BGH20, AGH21, McK21b, GH21] (see also Chapter 8 of this thesis).

Closed formula at any n – For the unitary group, Harish-Chandra [HC57], followed by
Itzykson and Zuber [IZ80], derived explicit formulas for these integrals, valid for any dimen-
sion17. For this reason we will generally refer to integrals of the type of eq. (1.85) as Harish-
Chandra-Itzykson-Zuber (HCIZ) integrals. However these formulas are quite involved functions
of determinants, and can not easily be used to compute the high-dimensional asymptotics.

We now present results on the high-dimensional limit of different classes of HCIZ integrals. We
give references to the literature in which these statements were derived or proven.

Rank-one HCIZ integrals

We start by the simplest case in which one of the two matrices A,B of eq. (1.85) has rank one.
This class of spherical integrals will be important in different approaches taken in this thesis,
especially in Chapters 2 and 8.

Theorem 1.11 (Rank-one HCIZ integral [GM05])

Let J ∈ Hn(K) be a matrix such that the Empirical Spectral Distribution (ESD) of J: ρn ≡
n−1∑n

i=1 δλi(J) converges a.s. (in the weak sense) as n→∞ to a distribution ρ with compact
support. We also assume that the largest eigenvalue λmax(J) converges a.s. as n → ∞ to
x ∈ R. Let θ ≥ 0, and µn be the uniform measure on S

n−1
β . Then

I(θ) ≡ lim
n→∞

1
n

ln
∫
µn(de) exp

{βθn
2

e†Je
}

=
β

2
inf

γ≥θx

[
γ −

∫
ρ(dλ) ln(γ − θλ)

]
− β

2
. (1.86)

16This constant comes from the normalization factor Zn and ensures that the probability of the limit spectral
density approaches 1 as n → ∞.

17Note that such an explicit formula does not exist in the real orthogonal case.
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Proof of Theorem 1.11 – We give here a simple heuristic derivation of the theorem. Its
mathematical proof follows essentially the same lines, and can be found in [GM05]. Let us
denote In(θ) the LHS of eq. (1.86) before taking the limit n→∞. We renormalize it as:

In(θ) =
1
n

ln
∫
µn(de) exp

{βθn
2

e†Je
}

=
1
n

ln

∫
de δ(‖e‖2 − n) exp

{
βθ
2 e†Je

}

∫
de δ(‖e‖2 − n)

.

We can then introduce a Lagrange multiplier γ to enforce the condition ‖e‖2 = n. At leading
order, one obtains:

In(θ) =
1
n ln

∫
dγ
∫
Kn dx e

βθ
2

x†Jx+ βγ
2

(n−
∑

i
|xi|2)

1
n ln

∫
dγ
∫
Kn dx e

βγ
2

(n−
∑

i
|xi|2)

= inf
γ

{
1
n

ln
∫

dx e
βθ
2

x†Jx+ βγ
2

(n−
∑

i
|xi|2)

exp{βn
2 (1 + ln 2π))}

}
,

= inf
γ

[βγ
2
− β

2n
ln det

(
γIn − θJ

)]− β

2
. (1.87)

Indeed, one checks easily that the extremum over the Lagrange multiplier γ actually corresponds
to an infimum, and this infimum is made over all γ such that γIn − θJ is positive definite, i.e.
γ > θλmax(J). Since λmax(J)→ x by hypothesis, we obtain from the n→∞ limit of eq. (1.87):

I(θ) ≡ lim
n→∞ In(θ) = inf

γ>θx

[βγ
2
− β

2

∫
ρ(dλ) ln(γ − θλ)

]
− β

2
.

Recall indeed that ρ is the LSD of J. This ends the proof. �

Phase transition in rank-one HCIZ integrals

Let us make a few remarks on the form of Theorem 1.11, which will be particularly useful in
Chapter 8 when applying these results to derive large deviations of the eigenvalues of random
matrices. We denote γ(θ) the solution to the infimum in eq. (1.86). If this infimum arises for
γ(θ) > θx, then it satisfies the saddle-point equation

∫
ρ(dλ)

γ(θ)− θλ = 1. (1.88)

Eq. (1.88) then has the solution γ(θ) = θS−1
ρ (−θ), as long as −Sρ(x) ≥ θ, where Sρ is the

Stieltjes transform of ρ, introduced in Section 1.5.118. If rather θ > −Sρ(x) then γ “sticks” to
the solution γ = θx. In the end, we can compute In(θ) in the small-θ (or high-temperature in
the physics language) phase θ ≤ θc(x) ≡ −Sρ(x):

I(θ) =
βθ

2
Rρ(θ)− β

2

∫
ρ(dλ) ln[1 + θRρ(θ)− θλ],

in which Rρ(x) ≡ S−1
ρ (−x) − x−1 is the R-transform of ρ, cf. Section 1.5.1. By taking the

derivative of this last expression with respect to θ it is easy to show that it simplifies to:

I(θ) =
β

2

∫ θ

0
Rρ(u)du. (1.89)

In the “low-temperature” phase θ ≥ θc(x) = −Sρ(x) one rather has

I(θ) =
β

2

[
− 1 + θx− ln θ −

∫
ρ(dλ) ln(x− λ)

]
. (1.90)

18If x is the right edge of the bulk of ρ, we denote Sρ(x) ≡ limz↓x Sρ(z).
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Note that in both phases it is clear that I(θ) is concentrating (or “self-averaging” in the physics
language), as it only depends on J via its ESD and its largest eigenvalue, which we assumed
converge a.s. Moreover its series expansion around θ = 0 is related to the free cumulants of ρ,
cf. eq. (1.65):

I(θ) =
β

2

∞∑

p=1

cp(ρ)
p

θp, (1.91)

which is valid in the high-temperature phase θ ≤ θc(x).

Finite-rank k ≥ 1

Let us now assume that one of the two matrices A,B in eq. (1.85) has finite rank k ≥ 1 as
n→∞. Then one can state very natural generalizations of the previous results to this setting.
Informally, the integral in this case behaves at leading order as k decoupled rank-one integrals
described by Theorem 1.11, which is shown in detail in the following theorem.

Theorem 1.12 (Finite-rank HCIZ integral [GM05, CŚ07])

Let J ∈ Hn(K) as in Theorem 1.11. Let θ1, · · · , θk ≥ 0, and e1, · · · , ek be the first k columns
of a Haar-distributed matrix O ∈ Uβ(n). Then

Ik(θ1, · · · , θk) ≡ lim
n→∞

1
nk

lnE

[
exp

{ k∑

a=1

βθan

2
e†

aJea

}]
=

1
k

k∑

a=1

I1(θa), (1.92)

in which the expectation is done over {e1, · · · , ek} and I1 is the asymptotic of the rank-one
case given in Theorem 1.11.

Rectangular spherical integrals

Interestingly, the asymptotic results we described so far on spherical integrals can be generalized
to a class of “rectangular” spherical integrals. We state this generalization for rank-one integrals,
but it can be written for finite-rank integrals along the same lines we described for usual spherical
integrals. These rectangular HCIZ integrals will be useful at several points in this thesis, in very
different contexts, e.g. in Chapters 2, 6 and 8.

Theorem 1.13 (Rank-one “rectangular” HCIZ integral [Kab08a, Kab08b, BG11])

Let L ∈ K
m×n, such that J ≡ L†L satisfies hypothesis (ii) of Model S. We assume that

n,m → ∞ with m/n → α > 0. Assume moreover that λmax(J) converges a.s. as n → ∞ to
x ≥ 0. Let θ ≥ 0, and µn be the uniform measure on S

n−1
β . Then

Irect.(θ) ≡ lim
n→∞

1
n

ln
∫
µm(de)µn(df) exp

{
β
√
αθn(e†Lf)

}

=
β

2

{
inf

γe,γf >0

γeγf ≥θ2x

[
γf + αγe − (α− 1) ln γe −

∫
ρ(dλ) ln(γeγf − θ2λ)

]
− 1 + α

2

}
.

The function Irect.(θ) is closely related to the rectangular R-transform introduced in [BG11].
While we do not detail the definitions of this function, in analogy with eq. (1.91) we define a
set of coefficients Γp(α, ρ) (analogous to the free cumulants in this rectangular context) by the
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analytical expansion around θ = 0:

Irect.(θ) =
β

2

∞∑

p=1

Γp(α, ρ)
p

θ2p. (1.93)

As in the symmetric case, the function Irect.(θ) might admit phase transitions corresponding to
a “saturation” of the Lagrange multipliers γe, γf at the largest eigenvalue, i.e. when γeγf = θ2x.
Such transitions will be derived and used in Chapter 8.

Diverging rank k →∞
If one of the two matrices A,B has extensive rank in n while the other one has a diverging
rank k = k(n) → ∞ as n → ∞, the computations become a priori more complicated. While
we will not directly use these results in this dissertation, solutions have been found in different
regimes of k(n) and the resulting picture is quite simple. Indeed, for k = O(n), the HCIZ integral
behaves as in the finite-rank case: its limit is given by k decoupled rank-one integrals. This was
first shown in [GM05] for k(n) = O(n1/2−ǫ) (for arbitrary ǫ > 0), and later generalized in [CŚ07]
to any k(n) = O(n).

Theorem 1.14 (Slowly-diverging-rank HCIZ integral [GM05, CŚ07])

Let J ∈ Hn(K) as in Theorem 1.11 and k = k(n) such that limn→∞ k(n) = +∞ and k(n) =
O(n). Let θ1, · · · , θk ≥ 0 such that k−1∑k

a=1 δθa converges weakly to µ ∈ M+
1 (R), and we

assume that there exists C > 0 that uniformly bounds θa ≤ C. We consider e1, · · · , ek the
first k columns of a Haar-distributed matrix O ∈ Uβ(n). Then

I(µ) ≡ lim
n→∞

1
nk(n)

lnE

[
exp

{ k(n)∑

a=1

βθan

2
e†

aJea

}]
=
∫
µ(dθ)I1(θ), (1.94)

in which the expectation is done over {e1, · · · , ek} and I1 is the asymptotic of the rank-one
integral given in Theorem 1.11.

On the other hand the case k(n) = Θ(n) is much more involved and can not be reduced to the
rank-one case. It was first studied by Matytsin [Mat94] and later proven in [GZ02].

Theorem 1.15 (Extensive-rank HCIZ integral [Mat94, GZ02])

Let n ≥ 1, and A,B ∈ Hn(K). We assume that the ESDs of A and B both converge a.s. as
n→∞ (in the weak sense) to probability measures µA, µB ∈M+

1 (R). Then:

lim
n→∞

1
n2

ln
∫

Uβ(n)
DO exp

{βn
2

Tr[AOBO†]
}

=
β

2

[
− 3

4
+ J(µA) + J(µB)− 1

2
inf
ρ,m

{∫ 1

0

∫
dt dx

(mt(x)2

ρt(x)
+
π2

3
ρt(x)3

)}]

Let us denote the measure-valued process µt(dx) ≡ ρt(x)dx. The infimum in the above
equation is done over m, ρ satisfying the Euler continuity equation ∂tρt(x)+∂xmt(x) = 0, and
the boundary conditions µ0 = µA and µ1 = µB. This result assumes finally that J(µA) and
J(µB) are finite, where for any µ ∈M+

1 (R) we define:

J(µ) ≡ 1
2

∫
µ(dx)x2 − 1

2

∫∫
µ(dx)µ(dy) ln |x− y|.
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Chapter 2

Revisiting high-temperature
expansions

“One of the principal objects of theoretical research in my department of knowledge is to find
the point of view from which the subject appears in its greatest simplicity.”

J. Willard Gibbs, Proceedings of the American Academy of Arts and Sciences (1881).

Disclaimer – In this chapter, we revisit one of the oldest theoretical tools of the statistical physics
of disordered systems: high-temperature expansions, initiated by Plefka [Ple82] and refined by
Georges and Yedidia [GY91]. This chapter is based on the published work [MFC+19], and
serves both as a presentation of its results and as a pedagogical introduction to high-temperature
expansions, which will prove useful in particular to tackle the involved problem of extensive-rank
matrix factorization in Chapter 3.

2.1 Organization of the chapter and main results

Beyond i.i.d. couplings – As we saw in Chapter 1, the statistical physics approach, combining
the TAP free energy and message-passing algorithms, is especially powerful when the coupling
constants in the underlying statistical model are distributed as i.i.d. variables. This is, of course,
a strong limitation and many strategies have been designed to improve on it, and we introduced
some of them in Section 1.4.3: the adaptive TAP (adaTAP) method [OW01a, OW01b], ap-
proximation schemes such as Expectation Consistency (EC) [Min01, OW05a] and the recent
improvements of AMP such as Vector Approximate Message Passing (VAMP) and its many
variants [SRF16, OCW16, COFW16, MP17, RSF17]. Given these different strategies, one may
wonder when they actually lead to asymptotically exact inference. In this chapter, we address
this question using high-temperature expansions.

A short history of high-temperature expansions – High-temperature expansions at fixed
order parameters, denoted in this thesis as Plefka or Plefka-Georges-Yedidia (PGY) expansions,
have historically been an important tool of the study of disordered systems. In the context of
spin glass models they have been introduced by Plefka [Ple82] for the Sherrington-Kirkpatrick
(SK) model, and have been subsequently generalized by Georges and Yedidia [GY91]. This latter
paper provides a systematic way to compute high-temperature (or high-dimensional) expansions
of the TAP free entropy, which is defined for a fixed value of the order parameters.

Our goal – One important aim of the present chapter is to apply this method to a general class
of inference problems with pairwise interactions, in which the coupling constants are not i.i.d.,
but rather possess correlations, satisfying a rotational invariance property. This encapsulates
many widely studied models, such as Restricted Boltzmann Machines (RBMs) or Generalized
Linear Models (GLMs) with correlated data matrices, introduced in Section 1.1. In particu-
lar, we generalize earlier and inspirational work by Parisi and Potters [PP95], who computed
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the self-consistent equations for the marginals in Ising models with orthogonal couplings via a
resummation of the infinite series given by the high-temperature expansion. In our general set-
ting, we shall show that a similar resummation yields the EC, adaTAP and VAMP formalisms:
they are all equivalent as we saw in Section 1.4.3, and we conjecture that they are exact in the
thermodynamic limit in the replica symmetric phases. On the way to these conclusions we will
uncover diagrammatical results in connection with free probability and random matrix theory.

Organization of the chapter and main results –

• Spherical models with rotationally-invariant couplings – We first provide a pedagog-
ical introduction to “high-temperature” PGY expansions, inspired by the work of Georges-
Yedidia [GY91] for Ising models, adding some new results on the diagrammatics of the expan-
sions. This yields a general framework that encapsulates many known properties of systems
sharing this pairwise structure. In the corresponding section 2.2, we focus on spherical models
and we generalize the seminal works of [MPR94a, MPR94b, PP95]. While these works studied
Ising models with orthogonal couplings, we consider spherical models with more general rota-
tionally invariant couplings. We examine two types of models: “symmetric” models with an
interaction of the type x⊺Jx , in which J follows Model S, and “bipartite” models with interac-
tions of the type h⊺Fx, in which F follows Model R. This encapsulates orthogonal couplings,
but can also be applied to other random matrix ensembles such as the Gaussian Orthogonal
Ensemble (GOE), the Wishart ensemble, and many others. Using diagrammatic results that
we derive with random matrix theory, we conjecture a resummation of the PGY expansion
giving the Gibbs free entropy in these models. Our results are in particular consistent with
the findings of classical works for Gaussian couplings [Ple82] and orthogonal couplings [PP95].

• PGY expansion for statistical models with correlated couplings – Section 2.3.1 is
devoted to the description of the Plefka expansion for different statistical models and inference
problems which possess a coupling or data matrix that has rotation invariance properties. We
consider e.g. models similar to the spherical models of Section 2.2, but with generic prior
distributions on the underlying variables. Our main conjecture for this part can be stated as
the following:

Conjecture 2.1 (Informal)

For statistical models of symmetric or bipartite interactions with coupling matrices that
satisfy respectively Model S or Model R (left and right rotation-invariance), the three equiv-
alent approximations introduced in Section 1.4.3: Expectation Consistency, adaptive TAP
and Vector Approximate Message Passing (generically referred to as EC approximations),
are exact in the large size limit in the high temperature phase.

We believe that the validity of the above conjecture extends beyond the high temperature
phase. In particular that it is correct for inference problems in the Bayes-optimal setting, and
more generally anytime the system is in a replica symmetric phase as defined in Chapter 1.

The approximation behind EC approximations can be checked order by order using our PGY
expansion and its resummation. Using diagrammatic results, we show that the EC approxi-
mations are exact for these models in the large size limit. We then apply our generic results
to different situations, e.g. the Hopfield model [Hop82], compressive sensing, and a very broad
class of bipartite models, which includes the Generalized Linear Models (GLMs) with corre-
lated data matrices. We emphasize that we are able to derive the free entropy of all these
models using very generic arguments relying only on the rotational invariance of the problem.

• The TAP equations and message-passing algorithms – In Section 2.3.2, we show that
the TAP equations that we derived by PGY expansion in rotationally invariant models can
be understood as the fixed point equations of message-passing algorithms. In the converse
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way, many message-passing algorithms can be seen as an iteration scheme of these TAP equa-
tions. While this was known in several models in which the underlying data matrix was
assumed to be i.i.d. (cf. Chapter 1), using our diagrammatic results we are able to generalize
these correspondences to correlated models. We argue that the stationary limit of the Vec-
tor Approximate Message Passing (VAMP) algorithm [RSF17] for compressed sensing with
correlated matrices gives back our TAP equations derived via PGY expansion. Even more
generally, the Generalized Vector Approximate Passing (G-VAMP) algorithm [SRF16], de-
fined for the very broad class of Generalized Linear Models with correlated matrices, yields
fixed point equations that are equivalent to our PGY-expanded TAP equations.

• Diagrammatics of the expansion – Our results are largely based on a precise control
on the diagrammatics of the PGY expansion for rotationally invariant matrices, which are
presented in Section 2.4. In particular, we leverage mathematical results on HCIZ integrals
(cf. Section 1.5.3) to argue that only a very specific class of diagrams contributes to the
expansion.

Some technicalities or generalizations will be deferred to Appendix A.

Additional notation – In this chapter we will sometimes write An ≃ Bn to denote that

1
n

lnAn =
1
n

lnBn + On(1).

2.2 Plefka-Georges-Yedidia expansion step-by-step

2.2.1 Pedagogical derivation for a spherical SK-like model

In this section n ≥ 1, σ > 0, and we define the following pairwise interaction Hamiltonian on
S

n−1(σ
√
n), the n-th dimensional sphere of radius σ

√
n:

HJ(x) ≡ −1
2

x⊺Jx = −1
2

∑

1≤i,j≤n

Jijxixj , x ∈ S
n−1(σ

√
n). (2.1)

The coupling matrix J is a n×n symmetric random matrix, assumed to be rotationally invariant
in the sense of Model S. The interest of this simple “toy” model (which is a spherical “SK-like”
model) is that, as we will see, its free energy can be computed exactly so that we can easily
control the steps of the expansion by comparison with the exact solution.

Direct free entropy computation

The Gibbs measure associated to the energy of eq. (2.1) at inverse temperature η ≥ 0, and the
corresponding free entropy, are1:

Gη,J(dx) ≡ 1
Zη,J

e
η
2

∑
i,j

Jijxixjδ(‖x‖2 − nσ2)dx, ΦJ(η) ≡ lim
n→∞

1
n

lnZη,J. (2.2)

The partition function of the model can directly be written as a function of the spherical HCIZ
integrals we studied in Section 1.5.3. We use more precisely Theorem 1.12, and the expression
of the spherical integral in the two phases, eqs. (1.89) and (1.90). We reach that in the high

1We used physicists’ convention, introducing a delta constraint on ‖x‖2, while mathematicians usually prefer
employing the uniform measure on the sphere S

n−1(
√

σn), cf. e.g. Theorem 1.12. These conventions are equivalent
and only differ by an irrelevant global factor in the partition function.
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temperature phase η ≤ ηc ≡ −σ−2Sρ(λmax) the free entropy can be expressed as:

ΦJ(η) =
1 + ln 2πσ2

2
+

1
2

∫ ησ2

0
Rρ(x)dx,

in which Rρ(x) ≡ S−1
ρ (−x)−x−1 is the R-transform of ρ, cf. Section 1.5. In the low temperature

phase η ≥ ηc = −σ−2Sρ(λmax) one rather has

ΦJ(η) =
1
2

[
ln 2π + λmaxησ

2 − ln η −
∫
ρ(dλ) ln(λmax − λ)

]
.

Note that in both phases the free entropy can formally be expressed as:

ΦJ(η) =
1
2

ln 2π +
1
2

inf
γ≥ηλmax

[
γσ2 −

∫
ρ(dλ) ln(γ − ηλ)

]
, (2.3)

a formulation which is more compact and easier to implement algorithmically.

Plefka expansion and the Georges-Yedidia formalism

A more generic way to compute the free entropy is to follow the formalism of [GY91] to perform
a high-temperature Plefka expansion [Ple82]. The principle is simple: expand the TAP free
entropy of the Gibbs measure of eq. (2.2) at low η, in the high temperature phase. More precisely
we will compute the free entropy imposing constraints on the first two moments2 〈xi〉η = mi

and 〈x2
i 〉η = vi +m2

i . A set of parameters {mi, vi} will thus determine a free entropy value, and
the comparison with the direct calculation will be made by maximizing the free entropy with
respect to {mi, vi}. The spherical constraint ‖x‖2 = nσ2 thus becomes:

σ2 =
1
n

n∑

i=1

[vi +m2
i ]. (2.4)

All-in-all, we wish to expand at low η the free entropy at a given realization of the disorder (also
called single-graph free entropy)

ΦJ(η,m,v) ≡ 1
n

n∑

i=1

[
λimi +

γi

2
(vi +m2

i )
]

+
1
n

ln
∫
e

−ηHJ(x)−
∑n

i=1

[
λixi+

γi
2

x2
i

]

dx, (2.5)

in which we implicitly extremize over the Lagrange multipliers {λi} and {γi} (for lightness of
the notations we will keep their dependency on η explicit only when needed).

The Georges-Yedidia operator – In order to perform the expansion we introduce the oper-
ator U , defined in [GY91]:

U(η,J) ≡ HJ − 〈HJ〉η +
n∑

i=1

∂ηλi(η)(xi −mi) +
1
2

n∑

i=1

∂ηγi(η)[x2
i − vi −m2

i ]. (2.6)

Note that by definition we have 〈U〉η = 0. One can easily check the following relation for any
observable O, which is the main property of the operator U :

∂〈O〉η
∂η

=
〈∂O
∂η

〉

η
− 〈OU〉η.

2The notation 〈·〉η indicates an average over the Gibbs measure at inverse temperature η.
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Therefore since the magnetizations {mi} and variances {vi} do not depend on η this implies:

{
0 = ∂η〈xi〉η = −〈xiU〉η = −〈(xi −mi)U〉η,
0 = ∂η〈x2

i 〉η = −〈x2
iU〉η = −〈(x2

i − vi −m2
i )U〉η.

Considering the previous results one can easily compute the derivative of U :

∂U

∂η
= 〈U2〉η +

n∑

i=1

∂2
ηλi(η)(xi −mi) +

1
2

n∑

i=1

∂2
ηγi(η)[x2

i − vi −m2
i ].

Equipped with all the previous relations we can compute the successive derivatives of the TAP
free entropy ΦJ(η,m,v). The reader can easily check that for any η ≥ 0:





n∂ηΦJ = −〈HJ〉η, (2.7a)

n∂2
ηΦJ = 〈HJU〉η = 〈U2〉η, (2.7b)

n∂3
ηΦJ = −〈U3〉η, (2.7c)

n∂4
ηΦJ = 〈U4〉η − 3〈U2〉2η − 3

n∑

i=1

{
∂2

ηλi〈U2(xi −mi)〉η +
∂2

ηγi

2
〈U2[x2

i − vi −m2
i ]〉η

}
. (2.7d)

In principle one can push this strategy up to arbitrary order p ≥ 1. Unfortunately, as already no-
ticed in [GY91], we do not know of any closed expression for the order-p derivative. Nevertheless,
we are now ready to compute the first orders of the high-temperature (or small-η) expansion of
the free entropy. Note that in this expansion the Lagrange parameters {λi(η), γi(η)} will always
be considered at η = 0.

First orders of the expansion – First of all, taking η = 0 one easily reaches from eq. (2.5):

ΦJ(η = 0) =
1
2

ln 2π +
1
n

n∑

i=1

[γi

2
(vi +m2

i )− 1
2

ln γi + λimi +
λ2

i

2γi

]
.

After extremization over the Lagrange multipliers {λi, γi} this yields:

ΦJ(η = 0) =
1 + ln 2π

2
+

1
2n

n∑

i=1

ln vi.

At order 1 we have from eq. (2.7):

(
∂ηΦJ

)

η=0
= − 1

n
〈HJ〉η=0 =

1
2n

∑

i,j

Jijmimj +
1

2n

n∑

i=1

Jiivi. (2.8)

For any η, we can write the Maxwell-type relations:
{
γi(η) = n∂viΦJ(η),

miγi(η) + λi(η) = n∂miΦJ(η).
(2.9)

These relations plugged in eq. (2.8) lead to ∂ηγi(η = 0) = Jii and ∂ηλi(η = 0) =
∑

j( 6=i) Jijmj .
We then obtain the U operator at η = 0 from eq. (2.6):

U(η = 0,J) = −1
2

∑

i6=j

Jij(xi −mi)(xj −mj). (2.10)



Chapter 2. Revisiting high-temperature expansions 55

• •

•

•

••

••

(a) A simple cycle of
order p = 8.

• • •
•

•

•

•

•

•

(b) A diagram at order p = 12.

Figure 2.1: Diagrammatic representation of the perturbative terms. Each vertex represents an
index iα and carries a factor viα

, while each edge is a factor Jij . Each connected component of the
diagram carries a global factor n−1.

We can then directly apply eq. (2.7) to reach the order 2:

1
2

(
∂2

ηΦJ

)

η=0
=

1
2n
〈U2〉η=0 =

1
4n

∑

i6=j

J2
ijvivj . (2.11)

At order 3 we obtain:

1
3!

(
∂3

ηΦJ

)

η=0
= − 1

6n
〈U3〉η=0 =

1
6n

∑

i,j,k

JijJjkJkivivjvk + On(1),

in which the sum is made over pairwise distinct i, j, k indices. At order 4 we reach3

1
4!

(
∂4

ηΦJ

)

η=0
=

1
8n

∑

i,j,k,l

JijJjkJklJlivivjvkvl + On(1),

where again, i, j, k, l are pairwise distinct indices.

Larger orders – As we mentioned, the PGY expansion can not give analytic results for arbitrary
perturbation orders. Nevertheless, our results up to order 4 lead to the natural conjecture:

ΦJ(η) =
1 + ln 2π

2
+

1
2n

n∑

i=1

ln vi +
η

2n

∑

i6=j

Jijmimj (2.12)

+
1
n

∞∑

p=1

ηp

2p

∑

i1,··· ,ip

pairwise distinct

Ji1i2Ji2i3 · · ·Jip−1ipJipi1

p∏

α=1

viα .

Note that in order to obtain this formula, we took the n → ∞ limit at every perturbation
order in η, which is part of the implicit assumptions of the PGY expansion. The terms of this
perturbative expansion can be represented diagrammatically as simple cycles of order p, see
Fig. 2.1a.

Elementary diagrammatics – Generically, at any order in the expansion one can construct
a diagrammatic representation of the contributing terms, as shown in Fig. 2.1. While we will
extensively discuss these diagrammatics in Section 2.4, let us note that the only remaining terms
in eq. (2.12) correspond to simple cycles, as depicted in Fig. 2.1a. For the case of orthogonal
couplings, this dominance of simple cycles was already noted in [PP95]. Note that many other
diagrams may not be negligible in the limit n → ∞ (e.g. the “cactus” diagram of Fig. 2.1b),
however as we will detail in Section 2.4, they will cancel out in the free entropy calculation4.

3For pedagogical purposes we detail this calculation in Appendix A.1.
4At order 4, this was shown explicitly in Appendix A.1.
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Comparison with the exact solution – In the high temperature phase, the solution to the
maximization of eq. (2.12) under m is the paramagnetic solution m = 0. Furthermore, we expect
that the {vi} that maximize the free entropy of eq. (2.12) are homogeneous, that is ∀i, vi = v.
The spherical constraint of eq. (2.4) thus gives v = σ2. We can compare the result of the
resummation of simple cycles, eq. (2.12) with the exact results of eq. (2.3) in the paramagnetic
phase. For these two results to agree, we need the generating function for simple cycles to be
related to the R-transform of ρ by:

E

[
1
n

∞∑

p=1

ηpσ2p

2p

∑

i1,··· ,ip

pairwise distinct

Ji1i2Ji2i3 · · ·Jip−1ipJipi1

]
=

1
2

∫ ησ2

0
Rρ(x)dx+ On(1), (2.13)

in which the outer expectation is with respect to the distribution of J. In particular, an order-
by-order comparison yields that the free cumulants {cp(ρ)}p∈N⋆ , defined in Section 1.5, satisfy:

∀p ∈ N
⋆, cp(ρ) = lim

n→∞E

[
1
n

∑

i1,··· ,ip

pairwise distinct

Ji1i2Ji2i3 · · ·Jip−1ipJipi1

]
. (2.14)

Using rigorous results of [GM05], we can prove a stronger version of eq. (2.14), namely conver-
gence in L2 norm, that we give as a theorem:

Theorem 2.2 (Simple cycles and free cumulants)

For any matrix J ∈ Sn generated by Model S and any p ∈ N
⋆, one has:

lim
n→∞E

∣∣∣∣∣
1
n

∑

i1,··· ,ip

pairwise distinct

Ji1i2Ji2i3 · · ·Jip−1ipJipi1 − cp(ρ)

∣∣∣∣∣

2

= 0.

We postpone the proof of this result, along with a much more detailed analysis of the diagram-
matics, to Section 2.4. Assuming that we can invert the summation over p and the n → ∞
limit, Theorem 2.2 implies we have a stronger version eq. (2.13) with L2 convergence, for small
enough η:

1
n

∞∑

p=1

ηpσ2p

2p

∑

i1,··· ,ip

pairwise distinct

Ji1i2Ji2i3 · · ·Jip−1ipJipi1

L2

−−→
n→∞

1
2

∫ ησ2

0
Rρ(x)dx. (2.15)

This identity is a “resummation” of the single-graph free entropy of eq. (2.12)! As a final note
we can use eq. (2.3) to write the resummation in an alternative form (dropping On(1) terms):

1
n

∞∑

p=1

ηpσ2p

2p

∑

i1,··· ,ip

pairwise distinct

Ji1i2 · · ·Jipi1 =
1
2

inf
γ≥ηλmax

[
γσ2 −

∫
ρ(dλ) ln(γ − ηλ)

]
− 1 + ln σ2

2
. (2.16)

Note that this is true a priori only in the high temperature phase η < ηc, so that both sides are
analytic functions of η. In the next paragraph, we will investigate this discontinuity and show
that it coincides with the instability of the paramagnetic solution in the TAP free entropy.
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Stability of the paramagnetic phase

We can check the stability of the paramagnetic solution for η ≤ ηc ≡ −σ−2Sρ(λmax). Recall
that we must satisfy the norm constraint v = σ2 − (1/n)

∑
im

2
i . Solely as a function of m the

free entropy therefore reads, up to On(1) terms:

ΦJ(η,m) =
1 + ln 2π

2
+

1
2

ln
[
σ2 − 1

n

n∑

i=1

m2
i

]
+

η

2n

∑

i6=j

Jijmimj +Gρ

(
η
[
σ2 − 1

n

n∑

i=1

m2
i

])
,

in which Gρ is the integrated R-transform of ρ, defined for all 0 ≤ x ≤ −Sρ(λmax):

Gρ(x) ≡ 1
2

∫ x

0
duRρ(u). (2.17)

The Hessian of the extensive free entropy nΦJ at the paramagnetic solution m = 0 is thus:

Hessn(η) ≡ n
(

∂2ΦJ

∂mi∂mj

)

m=0

= −δij

σ2
[1 + ησ2Rρ(ησ2)] + ηJij + On(1).

The paramagnetic solution is stable as long as the Hessian is negative. This is true as long as
η < ηc, at which point the spectrum of Hessn(ηc) touches zero by definition of ηc. Our PGY
expansion allows thus to compute the free entropy in the high temperature phase (which is
paramagnetic), coherently with the direct computation results. More generically, as shown by
Plefka [Ple82] in the SK model, Hessn(η) is related to the inverse susceptibility matrix of the
system, and thus the singularity of the Hessian implies a singularity of the free entropy (i.e. a
phase transition).

Validity of the expansion and stability of the replica symmetric solution – Beyond
the paramagnetic regime, it is an open question to relate the range of validity ηc of the Plefka
expansion and the de Almeida-Thouless condition that characterizes the local stability of the
replica symmetric solution (see [DAT78] for its original derivation, and [Kab08a, SK08] for
examples of its applications in inference problems). The equivalence of these two conditions
was shown in the seminal paper of Plefka [Ple82] in the Sherrington-Kirpatrick model. It is
tedious but straightforward to generalize this conclusion to a model with Ising spins xi = ±1
and a Hamiltonian given by eq. (2.1) with a rotationally-invariant coupling matrix J. However,
investigating the relation between these two conditions in general models appears to be an open
problem, and does not enter the scope of this thesis.

The free cumulant series – We performed an expansion of ΦJ(η) close to η = 0, which
implies that this expansion is thus valid in the region (0, ηc), in which ηc = −σ−2Sρ(λmax) is
the first non-analyticity of ΦJ(η), see eq. (2.3) and the discussion above. However there exists
spectrums for which the function Rρ(x) can be analytically extended beyond xc ≡ −Sρ(λmax),
e.g. Wigner’s semicircle for which Rs.c.(x) = x and xc = 1. Yet, one has to be careful that
this does not imply that the free entropy ΦJ(η) is analytic beyond ηc, and even in this case our
Plefka expansion is a priori only valid up to η = ηc.

2.2.2 Generalization to a bipartite model

In this section n,m ≥ 1, σx, σh > 0, and we will consider the thermodynamic limit in which
n,m→∞ with m/n→ α > 0. We define the following bipartite Hamiltonian:

HL(h,x) ≡ −h⊺Lx = −
m∑

µ=1

n∑

i=1

Lµihµxi, h ∈ S
m−1(σh

√
m), x ∈ S

n−1(σx

√
n). (2.18)
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The coupling matrix L ∈ R
m×n is assumed to be rotationally-invariant in the sense of Model R.

Direct free entropy computation

The calculation for this bipartite case is very similar to the direct calculation of Section 2.2.1, and
we introduced in Section 1.5.3 the corresponding “rectangular” HCIZ integrals, cf. in particular
Theorem 1.13. We obtain that for all values of η the free entropy can be expressed as:

ΦL(η) ≡ lim
n→∞

1
n

ln
∫
µm(dh)

∫
µn(dx) eηh⊺Lx, (2.19)

=
1 + α

2
ln 2π +

1
2

inf
γh,γx>0

γhγx≥η2λmax

[
αγhσ

2
h + γxσ

2
x − (α− 1) ln γh −

∫
ρ(dλ) ln(γxγh − η2λ)

]
,

where ρ is the asymptotic eigenvalue distribution of L⊺L (see Model R).

Plefka-Georges-Yedidia expansion

The PGY expansion for this model is very similar to the symmetric model we just studied.
We constraint the first and second moments as 〈hµ〉 = mh

µ, 〈xi〉 = mx
i , 〈h2

µ〉 = vh
µ + (mh

µ)2

and 〈x2
i 〉 = vx

i + (mx
i )2. The spherical constraints impose σ2

h = (1/m)
∑m

µ=1[vh
µ + (mh

µ)2] and
σ2

x = (1/n)
∑n

i=1[vx
i +(mx

i )2]. As in Section 2.2.1 one can study the diagrams that appear in the
Plefka expansion. We show again the L2 concentration of the simple cycles, and the negligibility
of all other diagrams in the expansion. We state in more details these results for the bipartite
case in Section 2.4.5. We obtain the following result, a counterpart to eq. (2.12) for bipartite
models:

ΦL(η) =
1 + α

2
[1 + ln 2π] +

α

2m

m∑

µ=1

ln vh
µ +

1
2n

n∑

i=1

ln vx
i +

η

n

m∑

µ=1

n∑

i=1

Lµim
h
µm

x
i (2.20)

+
1
n

∞∑

p=1

η2p

2p

∑

µ1,··· ,µp

pairwise distinct

∑

i1,··· ,ip

pairwise distinct

Lµ1i1Lµ1i2Lµ2i2 · · ·LµpipLµpi1

p∏

α=1

vh
µα
vx

iα
+ On(1),

in which indices {µl} run from 1 to m and indices {il} run from 1 to n. Assuming uniform
variances at the maximum: vh

µ = vh, vx
i = vx, and comparing to eq. (2.19) in the paramagnetic

phase, we obtain the correspondence, in the high temperature phase:

α ln σ2
h + ln σ2

x

2
+

1
n

∞∑

p=1

η2pσ2p
h σ

2p
x

2p

∑

µ1,··· ,µp

pairwise distinct

∑

i1,··· ,ip

pairwise distinct

Lµ1i1Lµ1i2Lµ2i2 · · ·LµpipLµpi1

= −1 + α

2
+

1
2

inf
γh,γx

[
αγhσ

2
h + γxσ

2
x − (α− 1) ln γh −

∫
ρ(dλ) ln(γhγx − η2λ)

]
. (2.21)

Again, the n→∞ limit is implicit, and the equality then holds in the sense of L2 convergence.

2.3 PGY expansion for inference models

In this section we perform Plefka (or PGY) expansions for generic models of pairwise interac-
tions, both symmetric and bipartite, and discuss the iterations of the resulting fixed point equa-
tions. First, let us recall the important different approximation schemes studied in Section 1.4.3,
namely Expectation-Consistency (EC), adaptive TAP (adaTAP) and Vector Approximate Mes-
sage Passing (VAMP). These three schemes (that we showed to be equivalent) allow to compute
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the free entropy of the inference models we will consider, and will be crucial in our discussion.
Indeed, one goal of this chapter is to provide a precise justification for the exactness of these
schemes by leveraging random matrix theory. Let us briefly describe our strategy:

• In Section 2.3.1 we generalize the PGY expansion of Section 2.2 to inference models and
highlight the main differences and assumptions of our method. This yields a precise and
systematic justification of the TAP equations for rotationally invariant models. We apply
these results to retrieve the TAP free entropy of the Hopfield model, compressed sensing, as
well as Generalized Linear Models (GLMs), flagship high-dimensional inference models that
we defined in Section 1.1.

• One then needs to maximize this free entropy, which yields fixed point equations: the cele-
brated TAP equations. Iterating them is in itself a challenge since different choices for the
iteration scheme can lead to drastically different convergence properties. In Section 2.3.2 we
relate message-passing algorithms, which have proven to be very successful both numerically
and for theoretical studies, to the approximation schemes mentioned above, and to the PGY
expansion. More precisely, we show that the stationary limit of the message-passing equations
yields the TAP equations obtained by the PGY expansion.

2.3.1 PGY expansion in generic models of pairwise interactions

Models of symmetric pairwise interactions

A symmetric model with generic priors – Let us first consider a slight generalization of
the model of eq. (2.1): the vector x is now drawn with independent components, each xi with
distribution Pi. They interact via a pairwise interaction (with a rotationally-invariant coupling
matrix J), and are subject to an external field h. At a given inverse temperature η ≥ 0 and a
fixed realization of J, the Gibbs-Boltzmann distribution of the spins is given as:

Pη,J(dx) ≡ 1
ZJ(η)

n∏

i=1

Pi(dxi) exp
{η

2

∑

i,j

Jijxixj − η
∑

i

hixi

}
. (2.22)

As before, we compute the large n limit of the free entropy ΦJ(η) ≡ n−1 lnZJ(η) at fixed values
of the magnetizations mi = 〈xi〉 and variances vi = 〈(xi −mi)2〉, using a PGY expansion. We
impose these constraints with Lagrange multipliers {λi} and {γi}. Clearly the zero-th order
term in η is different from the spherical case, and is given by:

ΦJ(0) =
1
n

∑

i

λimi +
1

2n

∑

i

γi(vi +m2
i ) +

1
n

ln
∫ ∏

i

Pi(dxi) e− 1
2

∑
i

γix
2
i −
∑

i
λixi . (2.23)

At order 1 in η we obtain at leading order:

(∂ΦJ

∂η

)

η=0
=

1
2n

∑

i,j

Jijmimj +
1

2n

∑

i

Jiivi −
1
n

∑

i

himi.

The operator U of Georges-Yedidia, defined in eq. (2.6), is the same as in the spherical case, that
is eq. (2.10). This implies that many of the results obtained for the spherical case will transfer
here directly. For instance the second order term is identical and given in eq. (2.11). At third
order we obtain:

1
3!

(∂3ΦJ

∂η3

)

η=0
=

1
6n

∑

i1,i2,i3
pairwise distincts

Ji1i2Ji2i3Ji3i1vi1vi2vi3 +
1

6n

∑

i6=j

J3
ijκ

(3)
i κ

(3)
j . (2.24)
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In this equation, we denoted κ
(p)
i the cumulant of order p of xi at η = 0. By the rotation

invariance of Model S, the term
∑

i6=j J
3
ij gives a negligible contribution to the free entropy. We

shall therefore assume that the second part of the RHS of eq. (2.24) is negligible as n → ∞.
This is correct provided that the possible correlations of the third order cumulants κ(3)

i with J
do not drastically change the scaling of this term to make it thermodynamically relevant. This
will be the case at all orders, as argued in Section 2.4: the cumulants of order p ≥ 3 will not
contribute to the asymptotic free entropy! The first term of eq. (2.24) corresponds to a simple
cycle of order 3 and is the same term that appeared in the spherical case.

We carry on the computation of the derivatives ∂p
ηΦJ(η = 0). Given our remark above on high-

order cumulants, we conjecture that the higher-order terms are different from the spherical model
only in terms which are sub-leading in n. We will give more detail on the precise hypothesis
behind this conjecture in Section 2.4.4. In the end, we reach the following conjecture for ΦJ:

ΦJ(η) = ΦJ(0) +
η

2n

∑

i,j

Jijmimj −
η

n

∑

i

himi +
1
n

∞∑

p=1

ηp

2p

∑

i1,··· ,ip

pairwise distincts

Ji1i2 · · ·Jipi1

p∏

α=1

viα . (2.25)

For the remainder of this section we assume that the maximum of the free entropy of eq. (2.25)
is attained for variables {vi} such that vi = v. This hypothesis can be argued as reasonable for
many models, and we postpone this argumentation to the specific models we will consider. We
obtain a resummation of the Plefka free entropy using the correspondence of eq. (2.15):

ΦJ(η) = ΦJ(0) +
η

2n

∑

i,j

Jijmimj −
η

n

∑

i

himi +
1
2

∫ ηv

0
Rρ(u) du. (2.26)

Recall that ΦJ(0) is given in eq. (2.23). As discussed in the spherical case, we expect this
expansion of the free entropy to hold for η < ηc, in which ηc ≡ −v−1 Sρ(λmax).

The PGY expansion to justify EC approximations – The result of the PGY expansion
in eq. (2.25) provides a systematic way to show the exactness of the EC approximations (cf.
Section 1.4.3) for rotationally invariant models. For instance, as we saw in eq. (1.57), adaTAP
amounts to assuming that at every order p ≥ 1 of perturbation in η, one can perform the
calculation as if the statistics of the variables were Gaussian. This statement, which generalizes
the Parisi-Potters result [PP95], is exactly what we argued to obtain eq. (2.25), using the
diagrammatic analysis of Section 2.4. As such, our analysis provides a clear meaning to the
EC approximations, by detailing which diagrams are negligible in the n → ∞ limit. This also
justifies that the EC approximations are actually exact asymptotically for rotationally invariant
models in the high temperature phase, which we summarized in Conjecture 2.1. We believe
that this asymptotic exactness extends beyond the high temperature phase to any model in
the replica symmetric phase, and the diagrammatic analysis provides a route to proving this
statement.

Application to the Hopfield model – As a first application of our framework, we consider
the Hopfield model [Hop82]. We let binary spins x ∈ {±1}n and the coupling matrix J is
constructed out of p patterns, which are spin configurations ξl ∈ {±1}n, for l ∈ {1, · · · , p}:

{
Jij = 1

n

∑p
l=1 ξ

l
iξ

l
j (i 6= j),

Jii = 0.
(2.27)

We assume that the {ξl
i} are i.i.d. variables with equal probability in {±1}, so that EJij = 0

and EJ2
ij = p/n2. We study this system in the limit in which both p, n → ∞ with a fixed

ratio p/n → α. The derivation of the TAP free energy for these models has been performed in
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[NT97, Méz17] via the Plefka expansion, and via the cavity method in [MPV87]. If the random
matrix ensemble of eq. (2.27) is a priori not rotationally invariant, one can show that since the
variables {ξl

i} are i.i.d., only the first and second moment of their distributions will contribute
to the thermodynamic limit of the free entropy, so that we can assume that they are standard
centered Gaussian variables without changing the free entropy. The ensemble of eq. (2.27) is thus
for our purposes essentially a Wishart matrix model in which the diagonal has been removed.
From Section 1.5, we know that its R-transform reads:

RJ(x) =
α

1− x − α =
αx

1− x. (2.28)

Note that because xi ∈ ±1 the variance is given by v = 1− n−1∑
im

2
i = 1− q, with q the spin

glass order parameter. From eq. (2.26) and eq. (2.28), we reach:

ΦJ(η) = − 1
n

∑

i

[1 +mi

2
ln

1 +mi

2
+

1−mi

2
ln

1−mi

2

]
+
η

2

∑

i,j

Jijmimj

− αη(1− q)
2

− α

2
ln[1− η(1− q)] + On(1).

Maximizing it over the magnetizations {mi} yields the TAP equations for the Hopfield model:

η−1 tanh−1(mi) =
∑

j( 6=i)

Jijmj − αη
1− q

1− η(1− q)mi.

This is in agreement with the findings of [MPV87, NT97, Méz17]. However, our framework and
results allowed us to treat this kind of model in a very fast and generic way.

Models of bipartite pairwise interactions

A bipartite model with generic priors – As in the symmetric setting, we extend the
bipartite model of eq. (2.18) by considering a generic prior on the variables rather than a
spherical constraint. More precisely, the fields h and x are assumed to follow prior distributions
PX(dx) =

∏
i Pi(dxi) and PH(dh) =

∏
µ Pµ(dxµ). For a fixed η ≥ 0 and a realization of the

coupling matrix L we define the Gibbs-Boltzmann distribution:

Pη,L(h,x) ≡ 1
Zη,L

m∏

µ=1

Pµ(dhµ)
n∏

i=1

Pi(dxi) exp
{
η
∑

µ,i

Lµihµxi

}
.

As in the symmetric case we compute the large n limit of the free entropy ΦL(η) ≡ n−1 lnZη,L.
Recall that we take the limit n,m → ∞ with m/n → α > 0. We constraint the first and
second moments of {xi} and {hµ} under the Gibbs measure to be 〈xi〉 = mx

i , 〈hµ〉 = mh
µ,

〈(xi −mx
i )2〉 = vx

i , 〈(hµ −mh
µ)2〉 = vh

µ. The Lagrange multipliers introduced to enforce these
conditions are λx

i , λ
h
µ, γ

x
µ, γh

µ. At order 0, we obtain easily:

ΦL(η = 0) =
1
n

n∑

i=1

[
λx

i m
x
i +

1
2
γx

i (vx
i + (mx

i )2)
]

+
1
n

m∑

µ=1

[
λh

µm
h
µ +

1
2
γh

µ(vh
µ + (mh

µ)2)
]

+
1
n

ln
∫ ∏

µ

Pµ(dhµ)
∏

i

Pi(dxi) e
−
∑

i
[λx

i xi+
1
2

γx
i x2

i ]−
∑

µ
[λh

µhµ+ 1
2

γh
µh2

µ]
. (2.29)
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The calculations at the first orders are very similar to the ones we already performed. We obtain:





(∂ΦL

∂η

)

η=0
=

1
n

∑

µ,i

Lµim
h
µm

x
i ,

1
2

(∂2ΦL

∂η2

)

η=0
=

1
2n

∑

µ,i

L2
µiv

h
µv

x
i ,

1
3!

(∂3ΦL

∂η3

)

η=0
=

1
6n

∑

µ,i

L3
µiκ

(3,h)
µ κ

(3,x)
i ,

1
4!

(∂4ΦL

∂η4

)

η=0
=

1
8n

∑

µ1 6=µ2

∑

i1 6=i2

Lµ1i1Lµ1i2Lµ2i2Lµ2i1v
h
µ1
vh

µ2
vx

i1
vx

i2
+ On(1).

(2.30)

Recall that κ(p,x)
i , κ

(p,h)
µ are the p-th order cumulant of xi, hµ at η = 0. The discussion on the

higher orders in perturbation is very similar to the one we just made in the symmetric case: we
only retain the simple cycles made of matrix elements {Lµi}. We will detail more the extension
of the diagrammatics to the bipartite case and the handling of the higher-order cumulants in
Section 2.4.5. We obtain the free entropy at leading order in n:

ΦL(η) = ΦL(0) +
η

n

∑

µ,i

Lµim
h
µm

x
i +

1
n

∞∑

p=1

η2p

2p

∑

µ1,··· ,µp

i1,··· ,ip

Lµ1i1Lµ1i2 · · ·LµpipLµpi1

p∏

α=1

vh
µα
vx

iα
. (2.31)

In the summation above all indices µ1, · · · , µp are pairwise distinct, and so are i1, · · · , ip. As
in the symmetric case, we now assume that the maximum of the free entropy of eq. (2.31) is
attained for variables {vh

µ, v
x
i } such that vh

µ = vh and vx
i = vx. Using eq. (2.21), the free entropy

can be resummed:

ΦL(η) =ΦL(0) +
η

n

∑

µ,i

Lµim
h
µm

x
i −

1 + ln vx

2
− α

{1 + ln vh

2

}

+
1
2

inf
ζx,ζh

[
αζhvh + ζxvx − (α− 1) ln ζh −

∫
ρ(dλ) ln(ζxζh − η2λ)

]
, (2.32)

where ρ is the LSD of L⊺L, and recall that ΦL(0) is given by eq. (2.29). As in the symmetric
case, the diagrammatic study (performed in Section 2.4.5) plays a decisive role in our analysis.

Compressed Sensing: a first inference problem – Compressed sensing [Don06] is a text-
book inference problem with numerous applications, which can be seen as a particular case of
GLMs. It can be formulated as the inference of the vector X, generated from a prior PX , from:

Yµ =
n∑

i=1

FµiXi +
√

∆zµ. (2.33)

In this equation we modeled the noise by zµ ∼ N (0, 1), and the noise value is ∆ > 0. We follow
[KMS+12], in which the authors considered i.i.d. matrices F. Defining J = −F⊺F and using
Bayes’ rule we can write the posterior distribution of x as:

PF(x|Y) =
1

ZY,F
PX(x) exp

{ 1
2∆

∑

i,j

Jij xixj +
1
∆

∑

µ,i

FµiYµxi

}
.
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Defining η ≡ ∆−1 this distribution can be matched to the one of eq. (2.22) with hi ≡ −
∑

µ FµiYµ.
Using this correspondence we can use eq. (2.32) to directly obtain:

ΦY,F = ΦY,F(∆ =∞)− 1
2∆n

∑

i,j

(F⊺F)ijmimj +
1
n∆

∑

µ,i

FµiYµmi +
1
2

∫ v∆−1

0
RJ(u)du. (2.34)

We postpone the analysis of the corresponding fixed point equations to our algorithmic discussion
in Section 2.3.2.

Generalized Linear Models with correlated matrices – GLMs are of primary importance
in a very wide variety of scientific and engineering fields, as we underlined in Section 1.1. Con-
sider m,n ≥ 1 both going to infinity with a ratio m/n → α > 0. We are given a left and right
rotationally invariant measurement matrix F ∈ R

m×n, as defined in Model R. Given F, data
samples {Yµ} are generated as:

∀µ ∈ {1, · · · ,m}, Yµ ∼ Pout
( ·
∣∣(FX)µ

)
, (2.35)

in which X ∈ R
n is the vector we try to recover (drawn with i.i.d. coordinates from a prior PX),

and Pout is a fixed probabilistic channel. Compressed sensing (2.33) corresponds to a Gaussian
channel distribution with zero mean and variance ∆. Recall that we consider the Bayes-optimal
setting: Pout and PX are known, so we can use them in the posterior distribution

P (x|Y) =
1

Z(Y,F)

n∏

i=1

PX(xi)
m∏

µ=1

Pout
[
Yµ

∣∣(Fx)µ
]
.

While in compressed sensing η = ∆−1 played naturally the role of an inverse temperature, in
the general setting of eq. (2.35) there is a priori no way to perform a Plefka expansion. As it
turns out, there is a way to introduce an auxiliary parameter in terms of which we will perform
the expansion, similarly to what is done in [AFP16, Alt18]. Introducing the usual Lagrange
parameters to fix the means and variances of {xi}, we obtain the free entropy:

ΦY,F ≡
1
n

∑

i

λimi +
1

2N

∑

i

γi(vi +m2
i ) +

1
n

ln
∫

Rn
dx e−S[x],

in which we introduced an action S[x]:

S[x] ≡
∑

i

λixi +
1
2

∑

i

γix
2
i −

∑

µ

lnPout

(
Yµ

∣∣∣
∑

i

Fµixi

)
−
∑

i

lnPX(xi).

Letting h ≡ Fx and using the Fourier transform of the Dirac distribution we reach:

ΦY,F = −α ln 2π +
1
n

∑

i

λimi +
1

2n

∑

i

γi(vi +m2
i ) +

1
n

ln
∫

dx dh dh̃ e−Seff [x,h,h̃],

with a new effective action Seff :

Seff ≡
∑

i

[λixi +
1
2
γix

2
i − lnPX(xi)]−

∑

µ

[lnPout(Yµ|hµ) + hµ(ih̃µ)] +
∑

µ,i

(ih̃µ)Fµixi. (2.36)

The key idea is to treat x and ih̃ as two independent non-Gaussian fields that interact via the
last (quadratic) term of eq. (2.36) and to perform a PGY expansion in terms of this effective
Hamiltonian, which is exactly the bipartite Hamiltonian of eq. (2.18). We again denote η the
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inverse temperature, that is in eq. (2.36) we substitute:
∑

µ,i

Fµi xi (ih̃µ)→ η
∑

µ,i

Fµi xi (ih̃µ),

and at the end of the expansion we will set η = 1. Similarly as for the field x we will fix the
first and second moments of the field ih̃ as 〈ih̃µ〉η = gµ and 〈(ih̃µ)2〉η = −rµ + g2

µ, conditions
that will be enforced by new Lagrange parameters {ωµ, bµ}. Although a bit tedious, this is
straightforward, and we obtain a free entropy in which we will perform a low-η expansion:

ΦY,F(η) = −α ln 2π+
1
n

∑

i

λimi +
1

2n

∑

i

γi(vi +m2
i ) +

1
n

∑

µ

ωµgµ −
1

2n

∑

µ

bµ(−rµ + g2
µ)

+
1
n

ln
{∫

dx dh dh̃ e−Seff [x,h,h̃]
}
.

The effective action and Hamiltonian are expressed as follows:

Seff [x,h, h̃] ≡
∑

i

λixi +
1
2

∑

i

γix
2
i +

∑

µ

ωµ(ih̃µ)

− 1
2

∑

µ

bµ(ih̃µ)2 −
∑

i

lnPX(xi)−
∑

µ

lnPout(Yµ|hµ)−
∑

µ

hµ(ih̃µ) + η

Heff [x,h̃]︷ ︸︸ ︷∑

µ,i

Fµi xi (ih̃µ) . (2.37)

From this equation it is clear that the priors on the variables {xi} and {(ih̃µ)} decouple. The
prior on xi is PX(xi), while the prior distribution on (ih̃)µ is related to the Fourier transform of
the channel distribution:

PH̃(ih̃µ) ≡
∫

dh
2π
eihh̃µPout(Yµ|h).

Using our previous result (2.31) on the PGY expansion for bipartite systems, we conjecture:

ΦY,F(η) = ΦY,F(0)− η

n

∑

µi

Fµigµmi (2.38)

+
1
n

∞∑

p=1

(−1)pη2p

2p

∑

µ1,··· ,µp

pairwise distincts

∑

i1,··· ,ip

pairwise distincts

Fµ1i1Fµ2i1 · · ·FµpipFµ1ip

p∏

α=1

rµαviα + On(1).

We again assume that the maximum of the free entropy of eq. (2.38) will be attained for variance
variables {vi, rµ} that are homogeneous: they satisfy vi = v and rµ = r. Using the resummation
of eq. (2.32), this leads to a simplified expression:

ΦY,F(η) = ΦY,F(0)− 1
n

∑

µi

Fµigµmi − α
1 + ln r

2
− 1 + ln v

2
(2.39)

+
1
2

inf
ζ,ζ′

{
αζr + ζ ′v − (α− 1) ln ζ − 1

n
ln det[ζζ ′In + F⊺F]

}
+ On(1).

We will study the fixed point equations corresponding to the free entropy of eq. (2.39) in the
following Section 2.3.2.
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2.3.2 High-temperature expansions and message-passing algorithms

Several iterations schemes for the TAP equations have been studied in the past literature, and
the reader can refer for instance to [OCW16, COFW16]. On a parallel point of view, message-
passing algorithms have been extensively studied in the statistical physics literature, as we
mentioned in Section 1.4. For i.i.d. matrices it is well understood that the stationary limit
of the message-passing iterations is directly related to the fixed point equations of the TAP
free entropy. In this section, we extend this correspondence to generic rotationally-invariant
matrices and the G-VAMP algorithm [SRF16]. We focus on Generalized Linear Models (GLMs)
with matrices F that satisfy right-rotation invariance, cf. Model R. We first derive the TAP
equations from the PGY expansion we performed in Section 2.3.1, before comparing them to
the stationary limit of the G-VAMP algorithm.

The TAP equations from the PGY expansion

Following the assumptions of the VAMP and G-VAMP algorithms [SRF16, RSF17] we assume
that the variances {vi, rµ} are homogeneous, that is rµ = r and vi = v. We can then use the
resummed expression of the Plefka free entropy expressed in eq. (2.39). We first extremize this
expression with respect to the Lagrange multipliers {λi, γi, ωµ, bµ}:





mi = EPX(λi,γ)[x],

vi = EPX(λi,γ)[(x−mi)2],

gµ = −gout(yµ, ωµ, b),

r = − 1
m

∑m
µ=1 ∂ωgout(yµ, ωµ, b).

(2.40)

We defined PX and gout as:




PX(λi, γi)(x) ∝ PX(x)e− 1
2

γix
2−λix,

gout(y, ω, b) ≡ 1
b

∫
dz Pout(y|z) (z − ω) e− (z−ω)2

2b

∫
dz Pout(y|z) e− (z−ω)2

2b

.
(2.41)

The remaining equations are obtained by maximizing eq. (2.39) with respect to the physical
parameters. We make use of the Jacobi formula for a symmetric positive definite matrix J:
∂Jij [ln det J] = (J−1)ij . We reach:





λi = −γmi +
∑

µ

Fµigµ, (2.42a)

ωµ = gµb+
∑

i

Fµimi, (2.42b)

ζSF⊺F(−ζζ ′) = v, (2.42c)

ζ ′SF⊺F(−ζζ ′) = αr − α− 1
ζ

, (2.42d)

γ =
1
v
− ζ ′, (2.42e)

b =
1
r
− ζ. (2.42f)

Additive Gaussian channel – In the case of an additive Gaussian channel with variance ∆ we
find r = (∆ + b)−1, which gives ζ = ∆ and γ = RF⊺F/∆(−v). One can check from this that we
recover the TAP equations for the compressed sensing problem obtained from eq. (2.34), even
though these equations were derived with a “naive” PGY expansion in η ≡ ∆−1.
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The G-VAMP algorithm

With a similar reasoning that we used to derive the VAMP algorithm for a symmetric pairwise
model in Section 1.4.3, we can write a VAMP algorithm for a bipartite model. We do not
describe its full derivation here, and we simply report the G-VAMP algorithm for the GLM as
stated in [SRF16]. We define a set of functions:




F̃m(r, γ) ≡
∫

dxPX(x)x e− 1
2

γ(x−r)2

∫
dxPX(x) e− 1

2
γ(x−r)2

, (2.43a)

F̃v(r, γ) ≡
∫

dxPX(x)x2 e− 1
2

γ(x−r)2

∫
dxPX(x) e− 1

2
γ(x−r)2

− (F̃m(r, γ))2, (2.43b)

F̃z(ω, τ) ≡
∫

dzPout(y|z) z e− 1
2

τ(z−ω)2

∫
dzPout(y|z) e− 1

2
τ(z−ω)2

= gout(y, ω, τ−1)τ−1 + ω, (2.43c)

F̃κ(ω, τ) ≡
∫

dzPout(y|z) z2 e− 1
2

τ(z−ω)2

∫
dzPout(y|z) e− 1

2
τ(z−ω)2

− (F̃z(ω, τ))2 = ∂ωgout(y, ω, τ−1)τ−2 + τ−1. (2.43d)

The full algorithm then amounts to iterate the following equations:

mt
1i = F̃m((rt

J)i, γ
t
J), vt

1 =
1
n

∑

i

F̃v((rt
J)i, γ

t
J), (2.44a)

rt
0 =

(mt − γt
Jv

trt
J)

(1− γt
Jv

t)
, γt

0 =
1
vt
− γt

J , (2.44b)

zt
1µ = F̃z((ωt

J)µ, τ
t
J), κt

1 =
1
n

∑

µ

F̃κ((ωt
J)µ, τ

t
J), (2.44c)

ωt
0 =

(zt − τ t
Jκ

tωt
J)

(1− τ t
Jκ

t)
, τ t+1

0 =
1
κt

1

− τ t
J , (2.44d)

mt
2 =

1
τ t+1

0 F⊺F + γt
0

(γt
0rt

0 + F⊺τ t
0ω

t
0), vt

2 =
1
n

Tr
1

τ t
0F⊺F + γt

0

, (2.44e)

rt+1
J =

(mt
2 − γt

0v
t
2rt

0)
(1− γt

0v
t
2)

, γt+1
J =

1
vt

2

− γt
0, (2.44f)

zt
2 = F

1
τ t

0F⊺F + γt
0

(γt
0rt

0 + F⊺τ t
0ω

t
0), κt

2 =
1
n

Tr
{
F⊺F

1
τ t

0F⊺F + γt
0

}
, (2.44g)

ωt+1
J =

(zt
2 − τ t

0κ
t
2ω

t
0)

(1− τ t
0κ

t
2)

, τ t+1
J =

1
κt

2

− τ t
0. (2.44h)

TAP equations and fixed points of G-VAMP

We want to see if the stationary limit of G-VAMP, i.e. eq. (2.44) without time indices, is related
to the TAP equations we derived with a PGY expansion. At the fixed points of the G-VAMP
algorithm, one has in particular the following: m1 = m2 = m, z1 = z2 = z, v1 = v2 = v and
κ1 = κ2 = κ. We start from the TAP equations (2.40) and eq. (2.42), and we map them to
eq. (2.44):

• From eq. (2.42f) and eq. (2.43d) we can write

1
b

=
1
κ
− 1
ζ
, (2.45)

which can be identified with eq. (2.44h), with b = τ−1
J and ζ = τ−1

0 .



Chapter 2. Revisiting high-temperature expansions 67

• Using eq. (2.43d) we write eq. (2.42d) as

r

ζ ′ = − κ

ζ ′b2
+

1
ζ ′b

=
1
n

Tr
[ 1
ζζ ′ + F⊺F

]
+

1− α−1

ζ ′ζ
.

Finally from eq. (2.45) we obtain

κ

ζ
=

1
α
− 1
m

Tr
ζζ ′

ζζ ′ + F⊺F
,

which is compatible with the second part of eq. (2.44g), with ζ = τ−1
0 and ζ ′ = γ0.

• Eq. (2.42c) and eq. (2.42e) are equivalent to the second parts of eq. (2.44e) and eq. (2.44f),
with ζ ′ = γ0, ζ = τ−1

0 and γ = γJ .

• We write eq. (2.44e) as

(τ0F⊺F + γ0)m = (γ0r0 + F⊺τ0ω0),

and using that z = Fm, as well as eq. (2.44b) and eq. (2.44d), we arrive at

γJrJ = γJm + τJF⊺(z− ωJ),

which is exactly eq. (2.42a) with ω = ωJ , λ = −rJγJ and τJ = b−1.

• Finally we note that eq. (2.42b) at the fixed point is nothing but z = Fm, which gives
eq. (2.44g).

This shows in detail the equivalence between the stationary limit of the G-VAMP algorithm of
[SRF16] and the TAP maximization equations that we derived with our PGY expansion!

2.4 Diagrammatics and free cumulants

The goal of this section is to precise how the different diagrams arising in our Plefka expansions
can be computed. Recall that for symmetric random matrices J we construct diagrams as
described in Fig. 2.1. For instance the diagram depicted in Fig. 2.1b is:

• • •
•
•
•
•

•• =
1
n

∑

i1,··· ,i9
pairwise distinct

(Ji1i2Ji2i3Ji3i4Ji4i1)(Ji3i5Ji5i6Ji6i7Ji7i3)J2
i6i8

J2
i2i9

.

The perturbation order of any diagram is equal to its number of edges, since each of them
represents a factor Jij . The structure of the section is the following:

• In Section 2.4.1 we prove a first rigorous result on the ‘simple cycles’ arising in the Plefka
expansion: we study these diagrams in expectation over J and show a weaker version of
Theorem 2.2.

• In Section 2.4.2 we extend this study to all possible diagrams, in expectation over J.

• In Section 2.4.3 we show how the results of Section 2.4.1 and Section 2.4.2 can be extended
to study the second moments of these diagrams, and use it to show concentration results.
This will in particular imply the full statement of Theorem 2.2.

• In Section 2.4.4 we explain how to handle the higher-order moments that can appear as
additional factors in these diagrams for the statistical models studied in Section 2.3.
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• In Section 2.4.5 we explain how to generalize all these techniques and results to diagrams
made of rectangular matrices, that arise in the Plefka expansion for bipartite models.

• Finally, in Section 2.4.6 we show that if one considers an i.i.d. coupling matrix, all the
diagrams of order greater than 3 will not contribute in the thermodynamic limit and that
one can effectively consider the distribution of the matrix elements to be Gaussian.

Some technicalities, as well as side results and generalizations of these diagrammatics for Her-
mitian matrices and diverging-size diagrams, which are not directly useful for our expansions,
are given in Appendix A.

2.4.1 Expectation of simple cycles and free cumulants

In the following, J ∈ Sn is a rotationally-invariant random matrix, cf. Model S. Recall that
we defined the free cumulants cp(ρ) of a distribution ρ in Section 1.5. We first show a weaker
version of Theorem 2.2:

Theorem 2.3 (Expectation of simple cycles and free cumulants)

For any p ≥ 1, and any set of pairwise distinct indices i1, · · · , ip ∈ N
p:

lim
n→∞E[np−1Ji1i2Ji2i3 · · ·Jip−1ipJipi1 ] = cp(ρ). (2.46)

Actually, we only need to average over O to obtain the result:

np−1
∫

O(n)
DO

[(
OJO⊺)

i1i2

(
OJO⊺)

i2i3
· · · (OJO⊺)

ipi1

]
a.s.−→

n→∞ cp(ρ). (2.47)

Writing J = ODO⊺ with D diagonal, the expectation over O of the simple loops considered in
the Plefka expansion is an immediate consequence of Theorem 2.3:

∀p ∈ N
⋆, EO

[
1
n

∑

i1,··· ,ip

pairwise distinct

Ji1i2Ji2i3 · · ·Jip−1ipJipi1

]
a.s.−→

n→∞ cp(ρ).

Proof of Theorem 2.3 – A first pedestrian way to show eq. (2.47) for small values of p is to
use explicit integration of polynomials over the Haar measure of the orthogonal or unitary group.
This was first studied by Weingarten [Wei78] and later greatly extended, see for instance [CŚ06].
Performing asymptotic expansions of the resulting so-called Weingarten functions could allow
to prove Theorem 2.3, and perhaps even to extend it further, e.g. by a precise description of the
rate of the convergence of the simple cycles to the free cumulants. We choose here a different
(and arguably simpler) path, leveraging the finite-rank “HCIZ” integrals [HC57, IZ80, GM05]
analyzed in Section 1.5.3. Let:

L(n)
p ≡ np−1

∫

O(n)
DO[(OJO⊺)i1i2(ODO⊺)i2i3 · · · (ODO⊺)ipi1 ]. (2.48)

To simplify the calculation, we assume that (i1, · · · , ip) = (1, · · · , p): by rotation invariance L(n)
p

does not depend on the particular choice of indices, so this does not remove any generality. The
case p ∈ {1, 2} is trivial, so we will assume p ≥ 3 in the following. One can rewrite eq. (2.48) as:

L(n)
p =

1
n

p∏

l=1

∂

∂bl

[ ∫

O(n)
DO e

n
2

Tr [M(b)OJO⊺]

]

b=0

,
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in which b ≡ (b1, · · · , bp) and M(b) ∈ Sn is the following symmetric block matrix of rank p:

M(b) ≡
(

M1(b) (0)
(0) (0)

)
, with M1(b) ≡




0 b1 0 · · · 0 bp

b1 0 b2 · · · 0 0
0 b2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 bp−1

bp 0 0 · · · bp−1 0




.

We now apply Theorem 1.12. and we reach (limits are taken a.s. with respect to the law of J):

lim
n→∞L(n)

p = lim
n→∞

1
n

[ p∏

l=1

∂

∂bl

]
{Z(b)}b=0, with Z(b) ≡ exp

{
n

2

∞∑

k=1

ck(ρ)
k

Tr [M(b)k]

}
. (2.49)

Note that differentiating Z(b) with respect to b1 yields by cyclicity of the trace:

1
Z(b)

∂

∂b1
Z(b) =

n

2

∞∑

k=1

ck(ρ)Tr [E12M(b)k−1], (2.50)

with elementary symmetric matrices (Eab)ll′ ≡ δl,aδl′,b+δl′,aδl,b. These matrices satisfy EabEcd =
0 if {c, d} ∩ {a, b} = ∅. The only way to obtain a matrix of non-zero trace with a product of
matrices {Eab} is thus to have a cycle structure in the indices of the matrices. For instance:

Tr [E2
12E13E23E12] = Tr [E12E21E13E32E21] 6= 0, while Tr [E2

12E24E23E12] = 0.

Using this along with M(0) = 0, it is easy to see that the only term that will survive after taking
all the successive derivatives and letting b = 0 will be the derivatives of the right-hand-side of
eq. (2.50), and not other derivatives of Z(b). Let us analyze what differentiating this term
yields. As we saw, differentiating with respect to b1 yields a matrix E12. When differentiating
with respect to b2 this yields a matrix E23. Note that a priori, one has:

∂

∂b2
Tr[E12M(b)k−1] = Tr [E12

k−2∑

l=0

M(b)lE23M(b)k−2−l]. (2.51)

However, the following differentiations with respect to b3, · · · , bp will never yield a matrix of the
type E2a. Therefore in eq. (2.51) only two terms, the term l = 0 and l = k − 2, will yield a
non-zero contribution. In the end, after taking all the p successive derivatives, only two terms
will remain, which correspond to the two possible orientations of the simple cycle:

lim
n→∞L(n)

p =
1
2

∞∑

k=p

ck(ρ)Tr[(E12E23 · · ·Ep1 + E1pEpp−1 · · ·E32E21) M(0)k−p] = cp(ρ),

since M(0) = 0. This finishes the proof. �

2.4.2 The expectation of generic diagrams

Following [GY91, PP95] we can define three disjoint categories of connected diagrams:

T.1 Non-Eulerian diagrams – By definition, a diagram is Eulerian if one can construct a cyclic
path in the graph that goes through each edge exactly once. It is a classic result of graph
theory (the Euler–Hierholzer theorem [Eul41, HW73]) that these graphs are exactly the
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•

•

•

•
(a) A non-Eulerian diagram.

•

•

•

•
(b) An Eulerian strongly

irreducible diagram.

• • •
•

•

•

•

•

•

(c) A cactus diagram.

Figure 2.2: Cactus and non-cactus connected diagrams. Each vertex represents an index i over
which we sum, and each edge is a factor Jij . Each diagram carries a global factor n−1.

connected graphs with even degree in each vertex. For instance, the graph depicted in
Fig. 2.2a is not Eulerian, whereas the one of Fig. 2.2b is Eulerian.

T.2 Eulerian diagrams that are strongly irreducible but not simple cycles – By strongly irre-
ducible [GY91], we mean that one can not make it disconnected by removing any single
vertex. E.g. Fig. 2.2b is strongly irreducible, whereas Fig. 2.2c is not.

T.3 Cactus diagrams – These diagrams, like the one of Fig. 2.2c, are trees made of simple
cycles joining at their vertices. Among them are of course the simple cycles.

As generically argued in [GY91], only strongly irreducible diagrams will appear in the PGY
expansions. This is an important hypothesis of the Plefka expansion, somehow a bit hidden by
the formalism. We give precise descriptions of the large n limit of the expectation of all these
diagrams in the following5. More precisely, we will show:

(i) All non-Eulerian diagrams (type T.1) have vanishing expectation in the n→∞ limit.

(ii) All diagrams of type T.2 also have vanishing expectation in the n→∞ limit.

(iii) By Theorem 2.3, the expectation of a simple cycle of size p converges to the p-th free
cumulant of ρ. We show that the expectation of a cactus diagram converges to the product
of the expectations of all its constituent simple cycles. For instance, for the diagram C of
Fig. 2.2c we obtain that its expectation converges to:

lim
n→∞E C = c2(ρ)2c4(ρ)2. (2.52)

In the remaining of Section 2.4.2, we justify all these claims.

Eulerian diagrams, strongly irreducible diagrams and simple cycles

Let us consider a connected diagram G with V vertices and E edges. We show here that:

• If G is not Eulerian, then EG →
n→∞ 0

• If G is Eulerian and strongly irreducible but not a simple cycle, then EG →
n→∞ 0 as well.

As we average over orthogonal matrices the permutation invariance of the indices allows to write:

EG = nV −1[1 + On(1)]
∫

O(n)
DO

∏

1≤l<l′≤V

(ODO⊺)ǫll′
ll′ ,

5By “expectation” we mean here expectation over O in J = ODO⊺, by rotation invariance.
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• • ; •

•

•

• •

•

•
;

•

•

•

Figure 2.3: Two possible decompositions of the diagram of Fig. 2.2b into simple cycles.

in which the ǫll′ are positive integers such that
∑

l<l′ ǫll′ = E. We can now use the results of
[GM05], as we did in Section 2.4.1, to write this diagram as:

EG = nV −E−1[1 + On(1)]
[ ∏

l<l′

∂ǫll′

∂b
ǫll′
ll′

][
exp

{
n

2

∞∑

k=1

ck(ρ)
k

Tr [M(b)k]

}]

b=0

. (2.53)

Here Mll′(b) = Ml′l(b) ≡ bll′ for l < l′, and Mll(b) = 0. Exactly as in Section 2.4.1, the
elementary matrices {Ell′} will appear in eq. (2.53) by successive derivatives of the exponential,
using the fact that ∂bll′ M(b) = Ell′ and that M(0) = 0. As we explained in Section 2.4.1, a
trace of the products of the {Ell′} matrices will only be non-zero if and only if the indices in
the products form a cycle. Moreover, as is clear in eq. (2.53), the terms corresponding to the
decomposition of EG into the maximum number of such cycles will dominate in the large n
limit, as each derivation of the exponential term adds a multiplicative factor n6. These two
facts together imply that:

• If G is not Eulerian (e.g. Fig. 2.2a) its expectation will be 0 in the limit n → ∞, as by
definition it is not possible to decompose it into disjoint cycles.

• If G is Eulerian, strongly irreducible, but not a simple cycle, the dominant contribution
to EG in eq. (2.53) will arise from decomposing G into simple cycles, as this decompo-
sition maximizes the number of cycles, and we already showed that each simple cycle
has a non-negligible contribution. For the graph of Fig. 2.2b, we show two such possible
decompositions in Fig. 2.3.

Given the remarks above we assume now that G is Eulerian and strongly irreducible. Let us
denote P the maximal number of simple cycles in such a decomposition of the graph G. Then
one can easily see that the scaling of eq. (2.53) will be:

EG ∼ nV +P −E−1.

By elementary graph theory, for a strongly irreducible diagram G we have V + P − E − 1 ≤ 0,
and we have equality iff G is a simple cycle. This implies that all strongly irreducible diagrams
that are not simple cycles will not contribute in the n→∞ limit. This fully justifies claims (i)
and (ii) above.

Cactus diagrams

As a side result, although it’s not directly useful for our PGY expansion, we show that we can
compute the large n limit of any “cactus” [PP95] diagram (like the one of Fig. 2.2c) as a function
of the free cumulants of ρ. The argument is straightforward and uses the same technique as in
the previous paragraph. Consider a cactus diagram G with V vertices and E edges: one can
write exactly eq. (2.53). it is easy to see that there is only one maximal decomposition of EG,

6There might be a confusion, so we emphasize that this “decomposition” of EG is a decomposition of the graph

representing EG.
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which corresponds to its natural decomposition into its constituent simple cycles, and that the
number of such cycles is P = E + V − 1. Let us denote {r1, · · · , rP } the number of vertices
in each of these P simple cycles. The dominant contribution corresponds to differentiating P
times inside the exponential of eq. (2.53). Using exactly the argument of Section 2.4.1 for each
of the P simple cycles we finally obtain the claim (iii) above:

EG = nP +V −E−1
P∏

α=1

crα(ρ) + On(1) =
P∏

α=1

crα(ρ) + On(1).

2.4.3 Concentration of the diagrams: a second moment analysis

Using the limits of the first moments derived in Sections 2.4.1,2.4.2, we will show:

(A) If Cp is the simple cycle of order p, then Cp
L2

→
n→∞ cp(ρ), which ends the proof of Theorem 2.2.

Moreover, if G is a cactus diagram then it converges in the L2 sense to the products of
the free cumulants corresponding to its constituent simple cycles.

(B) If G is of the type T.1 or T.2 then EG2 →
n→∞ 0: G will be negligible in the n→∞ limit.

As we already mentioned, only strongly irreducible diagrams will appear in the PGY expansion.
Together with point (B) this justifies why only the simple cycles contribute in our PGY expan-
sion, as we noticed in Section 2.2.1. In order to show (A) and (B) we will first establish the
following fact. Consider a diagram G with V vertices and E edges, of any of the types T.1, T.2,
or T.3. Then one has:

EG2 = (EG)2 +
1
n

∑

α

E Cα + On(1). (2.54)

In this formula, the sum
∑

α Cα represents all the possible diagrams Cα that one can obtain by
‘gluing’ together two replicas of the diagram G. Let us first see why it implies (A) and (B):
all diagrams Cα have a negligible expectation by the first moment analysis we performed in
Sections 2.4.1,2.4.2. So for every kind of diagram we considered we have EG2 = (EG)2 + On(1).
Given our previous computations of the first moments this implies results (A) and (B).
To conclude our argument, we now show eq. (2.54). One can write any diagram G as:

G =
1
n

∑

i1,··· ,iV
pairwise distinct

∏

1≤l<l′≤V

J
ǫll′
ilil′

,

in which the integers ǫll′ satisfy
∑

l<l′ ǫll′ = E. Thus one has:

EG2 = E

[
1
n2

∑

i1,··· ,iV
pairwise distinct

∑

j1,··· ,jV
pairwise distinct

∏

1≤l<l′≤V

J
ǫll′
ilil′

J
ǫll′
jljl′

]
.

In this expression, one can see that two types of terms have to be taken into account:

• Terms for which all indices {i1, · · · , iV , j1, · · · , jV } are pairwise distinct. Diagrammati-
cally, this corresponds to a graph with two disconnected components that are identical
and equal to G. Using the exact same arguments as in Section 2.4.2 and since all the in-
dices are distinct, the decomposition of this diagram into the maximum number of simple
cycles will be two copies of the maximal decomposition of G. This shows that the total
contribution of these terms behaves asymptotically as (EG)2.
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•
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•

•

•

•
+ 6E

•

•

•

}

Figure 2.4: Second moment decomposition of the simple cycle of order 3. We detail the
combinatorial factors.

• Terms for which there is at least one equality of the type il = jl′ for 1 ≤ l, l′ ≤ V . Such a
term thus corresponds to a diagram with a single connected component and constructed
by “gluing” some of the vertices of two identical copies of G. Since these diagrams have
a single connected component, they carry a single n−1 factor, which explains the term
n−1∑

α E Cα in eq. (2.54), denoting denote Cα the “glued” diagrams.

This ends our justification of eq. (2.54). We give a schematic representation of this decomposition
for G a simple cycle in Fig. 2.4.

2.4.4 Higher-order moments in the diagrammatics

All the diagrammatic results we just derived were valid for diagrams solely made out of the
matrix elements {Jij}, without any additional factors. However in the PGY expansion for
non-spherical models there are possible factors that are the cumulants (or the moments) of the
variables at η = 0, as we pointed out in Section 2.3. As an example, let us consider the simple
symmetric model of eq. (2.1), but assuming that xi are independent variables (rather than
spherical), with κ

(p)
i the cumulant of order p of xi. For instances, two possible contributions to

the free entropy at order 6 would be:





n−1∑
i1,i2,i3

pairwise distinct
Ji1i2Ji2i3Ji3i4Ji4i1J

2
i1i3

v2
i1
vi2v

2
i3
vi4 ,

n−1∑
i1,i2,i3

pairwise distinct
Ji1i2Ji2i3Ji3i4Ji4i1J

2
i1i3

κ
(4)
i1
vi2κ

(4)
i3
vi4 .

(2.55)

Both these contributions are represented by the diagram of Fig. 2.2b! One can see that in order
to apply our diagrammatic results to the PGY expansion, we need some additional assumptions:

A.1 By construction of the diagrams, odd cumulants of order greater or equal to 3 only appear
in non-Eulerian graphs. By the results of Section 2.4.3 we know that such diagrams,
without the moments or cumulants as factors, are negligible. We assume that the possible
correlations of the cumulants of xi with the matrix elements {Jij} are not strong enough
to yield thermodynamically relevant corrections to the free entropy.

A.2 We showed that Eulerian strongly irreducible diagrams that are not simple cycles are
negligible. We assume that the higher order moments that appear as additional factors do
not change their scaling, so that they remain negligible in the thermodynamic limit.

For instance, A.2 implies that the contributions of both terms in eq. (2.55) are negligible in the
n→∞ limit, as the diagram of Fig. 2.2b is strongly irreducible but is not a simple cycle.

2.4.5 Extension to bipartite models

We detail here how we can treat the diagrams that arise in the Plefka expansion of bipartite
models with pairwise interactions. The structure of this section is the following:

• We show first how we can generalize all the techniques and results we developed in the sym-
metric setting to diagrams constructed from a rotationally-invariant rectangular matrix L
satisfying Model R.
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•
• •

•
• •

Figure 2.5: A diagram constructed from F. Each blue vertex is an index µ, each red vertex an
index i. Each edge is a factor Fµi, and each connected component of the diagram carries a global

factor n−1. Note that there can only be edges between red and blue vertices.

• We then transpose the assumptions of Section 2.4.4 to this bipartite case, to deal with the
higher-order moments of the fields that can arise in the PGY expansion.

Generalization of the previous results to rectangular matrices

Consider a left and right rotationally-invariant random matrix F ∈ R
m×n, i.e. satisfying Model R.

We are interested in the limitm,n→∞ with a finite ratiom/n→ α > 0. In the PGY expansions
performed for bipartite models (e.g. in Section 2.2.2) there appears quantities that we represent
as diagrams, as explained in Fig. 2.5. The diagram depicted in this figure represents the quantity:

1
n

∑

µ1,µ2,µ3
pairwise distinct

∑

i1,i2,i3
pairwise distinct

Fµ1i1Fµ1i2Fµ2i2Fµ2i3Fµ3i3Fµ3i1F
2
µ1i3

.

Recall the rectangular transforms and spherical integrals of Section 1.5, in particular the co-
efficients Γp(α, ρ) of eq. (1.93). We let F = UΣV⊺, with U,V ∈ O(m) × O(n) two matrices
drawn from the Haar measure of their respective group. We can state the counterpart of all our
previous results in this rectangular setting:

R.1 Consider a simple cycle of size 2p. Then it converges in L2 to Γp(α, ρ) as n→∞:

EU,V

∣∣∣∣∣
1
n

∑

µ1,··· ,µp

pairwise distinct

∑

i1,··· ,ip

pairwise distinct

Fµ1i1Fµ1i2 · · ·FµpipFµpi1 − Γp(α, ρ)

∣∣∣∣∣

2
a.s.−→

n→∞ 0. (2.56)

R.2 Any non-Eulerian diagram G has vanishing first and second moments: lim
n→∞EG2 = 0.

R.3 Any strongly irreducible diagram G (i.e. it can not be disconnected by removing a single
vertex) that is not a simple cycle (e.g. Fig. 2.5) also has vanishing first and second moments.

R.4 If G is a cactus, i.e. a tree made of r simple cycles of sizes (2p1, · · · , 2pr) joining at vertices:

lim
n→∞E

∣∣∣G−
r∏

l=1

Γpl
(α, ρ)

∣∣∣
2

= 0.

Since every argument to show R.1 to R.4 is straightforwardly given by slightly modifying what
we did in the symmetric case, we will focus on R.1, and leave the remaining points for the reader.

Justifying R.1 – As in Section 2.4.1, we begin by a first-moment analysis and we show:

E

[
1
n

∑

µ1,··· ,µp

pairwise distinct

∑

i1,··· ,ip

pairwise distinct

Fµ1i1Fµ1i2Fµ2i2 · · ·FµpipFµpi1

]
= Γp(α, ρ) + On(1). (2.57)
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Indeed, by rotation invariance we can remove the summations in the LHS of eq. (2.57), and we
obtain at leading order in n:

αpn2p−1
E[F11F12F22 · · ·FppFp1] =

1
n

∂2p

∂b1 · · · ∂bp∂c1 · · · ∂cp

[ ∫
DUDVe

√
αnTr [M(b,c)⊺UΣV⊺]

]

b,c=0
,

with M(b, c) a block matrix of rank p defined as:

M(b, c) =

(
M1(b, c) (0)

(0) (0)

)
, with M1(b, c) ≡




b1 c1 0 · · · 0 0
0 b2 c2 · · · 0 0
0 0 b3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · bp−1 cp−1

cp 0 0 · · · 0 bp




.

Using Theorem 1.13 we obtain:

αpn2p−1
E[F11F12F22 · · ·FppFp1] = (2.58)

1
n

∂2p

∂b1 · · · ∂bp∂c1 · · · ∂cp

[
exp

{
n

∞∑

k=1

Γk(α, ρ)
2k

Tr [(M(b, c)⊺M(b, c))k]
}]

b,c=0
+ On(1),

Recall the symmetric elementary matrices (Eab)ij = δaiδbj + δbiδaj . As in the symmetric case,
the dominant terms in eq. (2.58) will be given by the maximum number of differentiations
of the exponential term. Moreover, one easily shows ∂2

b1,c1
[M(b, c)⊺M(b, c)] = E12. Note

that the exponential can only be differentiated once: since M(0, 0) = 0, one would need to
create cycles with the matrices Eab, and such a cycle can only appear if one derives a single
time the exponential term. As in Section 2.4.1, there are two cycles that are created by the
successive derivatives: E12E23 · · ·Ep1 and E21E1p · · ·E32. These two cycles yield the dominant
contribution:

αpn2p−1
E[F11F12F22 · · ·FppFp1]

=
∞∑

k=p

Γk(α, ρ)
2

Tr [(E12E23 · · ·Ep1 + E21E1p · · ·E32)(M(0, 0)⊺M(0, 0))k−p] + On(1),

=
1
2

Γp(α, ρ)Tr [E12E23 · · ·Ep1 + E21E1p · · ·E32] + On(1) = Γp(α, ρ) + On(1).

This shows eq. (2.57). The exact same arguments as the ones used in Section 2.4.3 show that
we have L2 concentration, which concludes our justification of R.1.

The higher order moments and their influence on the diagrammatics

The assumptions we need to make in order to deal with the higher-order moments for rectangular
non-spherical models are very similar to A.1 and A.2 (for the symmetric case), and we state
them here for completeness:

B.1 From the construction of the diagrams, odd moments of order greater or equal to 3, like
κ(3,x), only appear in non-Eulerian graphs. By R.2 we know that these diagrams (without
the moments as factors) are negligible. We assume that the possible correlations of the
higher order moments with the matrix elements {Fµi} are not strong enough to yield
thermodynamically relevant corrections to the free entropy.
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B.2 Eulerian strongly irreducible diagrams that are not simple cycles are negligible by R.3.
We assume that the higher order moments that appear as additional factors do not change
their scaling, so that they remain negligible in the thermodynamic limit.

2.4.6 A note on i.i.d. matrices

We finish this section by a comment on i.i.d. rectangular matrices. We consider a random
matrix F ∈ R

m×n whose elements {Fµi} are taken i.i.d., such that
√
nFµi is drawn from a given

probability measure ρ, with zero mean and finite moments of all orders. These matrices appear
e.g. in the GAMP algorithm in Section 1.4. If ρ is not a Gaussian probability measure, the
matrix F does not satisfy the rotation invariance of Model R. However, one can still derive
strong results on its diagrammatics. Keeping assumptions B.1 and B.2, it is easy to see that
because the {Fµi} are uncorrelated, all diagrams with order p ≥ 3 are negligible in the n → ∞
limit. The only diagram that does contribute is:

• • =
1
n

∑

µ,i

F 2
µiv

h
µv

x
i . (2.59)

In particular, all our PGY expansion formalism remains valid in this case.

Conclusion of Chapter 2

This chapter presented a step-by-step application of the formalism of Georges-Yedidia [GY91]
to a wide class of inference problems. It can be seen as a classical example of how “old” methods
from statistical mechanics (the TAP formalism and the Plefka expansion were introduced in the
70s and 80s [TAP77, Ple82]) can often provide surprisingly deep and modern results. Our main
result is arguably Conjecture 2.1, which we derived in a precise and systematic way by the means
of PGY expansions. The diagrammatic results of Section 2.4, as well as the precise forms of the
TAP free entropies of Section 2.3, are also of interest, as to the best of our knowledge we did
not see in the previous literature such an analysis relating the free cumulants of rotationally-
invariant matrices to the diagrams we presented. In the following chapter, we will leverage all
the formalism of PGY expansions introduced here to tackle the very involved, and yet open,
problem of extensive-rank matrix factorization.

A significant part of the results of [MFC+19] were not developed here, and the interested reader
might find there for instance an adaptation of all the techniques of the PGY expansion to study
a replicated system, i.e. several instances of the system that are correlated through an overlap
matrix. This allows to relate the results of the PGY expansion to the ones of the replica method,
and to explicit how these two different approaches yield equivalent results. We also describe
the connection between AMP equations and the Plefka expansion in the context of generalized
linear models with i.i.d. matrices, retrieving the GAMP algorithm [Ran11] and the statistical
mechanics analysis of [KMS+12].

Finally, we underline in [MFC+19] a possible important limitation of EC approximations and
the PGY expansion with respect to the VAMP approach. Namely, the VAMP approach differs
from other EC approximations in the sense that it provides a natural iteration scheme for the
equations. This is an important benefit, as iterating these equations is in general a very involved
task. For instance, when considering compressive sensing, we showed in Section 2.3 that we could
recover the stationary limit of VAMP by a PGY expansion in terms of the inverse noise ∆−1.
However, we show in [MFC+19] that there is no clear iteration scheme of the TAP equations
that gives back the VAMP algorithm: as physicists have known since forty years, iterating the
TAP equations is often itself a hard problem.
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Chapter 3

Towards exact solution of
extensive-rank matrix factorization

“But there’s no sense crying over every mistake,
You just keep on trying till you run out of cake.”

GLaDOS, Portal (2007).

Disclaimer – This chapter is devoted to an exciting and involved problem: factorization of
extensive-rank matrices. It plays a peculiar role in this thesis, as it is the only chapter solely
based on yet unpublished work. For this reason, we will only focus on a very small subset of
results, which are on firm enough ground to be presented. While this will leave many open unan-
swered questions, many of them will be addressed in the upcoming [MFK+21]. We nevertheless
provide important results, notably strong arguments disproving several previous approaches
to this problem, either based on the replica method [KKM+16] or message-passing algorithms
[PSC14a, PSC14b, ZZY20], and we lay out a potential path to correct them.

3.1 Introduction

3.1.1 Definition of extensive-rank matrix factorization

In this chapter we consider the matrix factorization problem in the extensive-rank setting, a
problem sometimes referred to as dictionary learning. Our approach has similarities with the
one of [KKM+16], and an important result of this chapter is a correction to the predictions of
this paper. More precisely, we will study the following inference problem:

Model FX (Extensive-rank matrix factorization)

Consider n,m, p ≥ 1. Extensive-rank matrix factorization is defined as the inference of the
matrices F⋆ ∈ R

m×n and X⋆ ∈ R
n×p from the observation of Y ∈ R

m×p, generated as:

Yµl ∼ Pout

(
·
∣∣∣

1√
n

n∑

i=1

F ⋆
µiX

⋆
il

)
, 1 ≤ µ ≤ m, 1 ≤ l ≤ p.

We also assume that the matrix elements of F⋆ and X⋆ are both generated as i.i.d. random
variables, with respective prior distributions PF and PX , both having zero mean and finite
moments of all order.

In order to estimate F⋆ and X⋆ the statistician can use the posterior distribution, also referred
to as Gibbs measure (see Section 1.1 for reminders on these notions)1:

PY,n(dF,dX) ≡ 1
ZY,n

∏

µ,i

PF (dFµi)
∏

i,l

PX(dXil)
∏

µ,l

Pout

(
Yµl

∣∣∣
1√
n

∑

i

FµiXil

)
. (3.1)

1In this chapter, we will generically use greek indices µ, ν for indices between 1 and m, while latin i, j, k indices
will run from 1 to n, and the l index between 1 and p.
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We assume that she/he has access to the distributions Pout, PF , PX : this is known as the Bayes-
optimal setting: it is then known that the mean under the posterior distribution of eq. (3.1) is
the information-theoretically optimal estimator.

We consider this inference problem in the high-dimensional (or thermodynamic) limit, i.e. we
assume n,m, p → ∞ with finite limit ratios m/n → α > 0 and p/n → ψ > 0. In this limit, we
can define the single-graph free entropy ΦY,n

2 of the system as:

ΦY,n ≡
1

n(m+ p)
ln
[ ∫ ∏

µ,i

PF (dFµi)
∏

i,l

PX(dXil)
∏

µ,l

Pout

(
Yµl

∣∣∣
1√
n

∑

i

FµiXil

)]
. (3.2)

The averaged limit free entropy is denoted Φ ≡ limn→∞ EY ΦY,n. We shall also consider a
symmetric version of this problem:

Model XX⊺ (Symmetric extensive-rank matrix factorization)

Consider n,m ≥ 1. Symmetric extensive-rank matrix factorization is defined as the inference
of the matrix X⋆ ∈ R

m×n from the observation of Y generated as:

Yµν ∼ Pout

(
·
∣∣∣

1√
n

n∑

i=1

X⋆
µiX

⋆
νi

)
, 1 ≤ µ < ν ≤ m.

We also assume that the elements of X⋆ are generated i.i.d. from a prior distribution PX .

As in the non-symmetric case, we can define both the posterior distribution of X and the free
entropy of the system as3:





PY,n(dX) ≡ 1
ZY,n

∏

µ,i

PX(dXµi)
∏

µ<ν

Pout

(
Yµν

∣∣∣
1√
n

∑

i

XµiXνi

)
, (3.3a)

ΦY,n ≡
1
nm

ln
[ ∫ ∏

µ,i

PX(dXµi)
∏

µ<ν

Pout

(
Yµν

∣∣∣
1√
n

∑

i

XµiXνi

)]
. (3.3b)

The Gaussian setting – In this chapter, we denote Gaussian setting the specific models (both
symmetric and non-symmetric) in which all the prior distributions and the channel distributions
are zero-mean Gaussians, with variances to be precised.

Possible symmetries of the problem – Assuming that Px is a zero-mean gaussian distribu-
tion, Model XX⊺ has a huge symmetry group: namely one can never distinguish X from XO,
for any O ∈ O(n). A similar symmetry can also arise in Model FX provided that both PF and
PX are zero-mean Gaussians. This symmetry is present as well in the finite-rank case, which
was analyzed in [LKZ17]. Note that the zero-mean Gaussian is the only prior to satisfy such
a property, being the only i.i.d. rotationally invariant distribution in R

m×n. This implies that
specifically for this prior, the set of solutions to the TAP equations should possess the same type
of symmetry group.

3.1.2 Organization of the chapter and summary of the results

Let us now describe the structure of the rest of Chapter 3.

• We begin in Section 3.2 by a critical analysis of previous approaches to this problem, in the
Bayes-optimal setting. In particular, we show that the approach taken in [KKM+16] (as well

2We normalize the free entropy by the total number n(m + p) of variables to infer, while the normalization of
[KKM+16] is n2.

3Note that one can include the diagonal terms µ = ν in these equations without changing the large n limit of the
free entropy.
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as many subsequent works) is neglecting some crucial correlations of the variables. We provide
direct evidence for the influence of these correlations in both the replica calculation and the
algorithmic (message-passing) approaches. This implies that adapting these methods (and
especially the replica method) for this model is still an open problem.

• In Section 3.3, we tackle the problem using the high-temperature expansion techniques de-
scribed in Chapter 2. This allows for a systematic computation of the corrections to the results
of [KKM+16]. While we restrict here to presenting clear evidence of the existence of such cor-
rections, a final formula for the TAP free entropy of extensive-rank matrix factorization is
beyond the scope of this chapter, and will be addressed in [MFK+21].

3.2 Critical treatment of previous approaches

In this section, we briefly sketch the computation of [KKM+16], and detail which approximations
used in this work are actually not valid in the thermodynamic limit. The authors derived the
free entropy of this problem, in the Bayes-optimal setting, in two different ways, namely via the
replica method and via belief propagation (BP) equations. We believe that both their approaches
are based on incorrect assumptions.

These wrong hypotheses are also at present in the derivation of the BiGAMP (and BiG-VAMP)
algorithm (cf. [PSC14a, PSC14b, ZZY20] among others). We therefore believe that these algo-
rithms are also not able to give exact asymptotic computation of the marginal probabilities in
this problem.

Let us now describe both approaches taken in [KKM+16], and explain how the assumptions
behind them fail. We focus primarily on the replica analysis, and briefly describe the message-
passing approach.

The replica analysis

We focus first on the replica analysis performed in Section V.B of [KKM+16]. As we have
introduced in Section 1.3.1, the main idea behind the replica method is to compute the quenched
free entropy from the evaluation of the moments of the partition function, using the relation:

lim
n→∞

1
n2

EY lnZY,n =
∂

∂r

[
lim

n→∞
1
n2

lnEYZ
r
Y,n

]

r=0
.

The computation of the quenched free entropy thus reduces to the evaluation of the integer
moments of the partition function. When expanding EYZ

r
Y,n, there naturally appears (r + 1)

replicas of the system, that interact via the channel distribution term, as represented in the
following equation:

EYZ
r
Y,n =

∫
dY
[ r∏

a=0

PF (dFa)PX(dXa)
] r∏

a=0

[∏

µ,l

Pout

(
Yµl

∣∣∣
1√
n

∑

i

F a
µiX

a
il

)]
.

A key step in the calculation of [KKM+16] is the assumption that

Za
µl ≡

1√
n

∑

i

F a
µiX

a
il (3.4)

are multivariate Gaussian random variables. However, although {Fa} and {Xa} follow statis-
tically independent distributions, with zero mean and finite variances, this is not enough to
guarantee the gaussianity of the Za

µl variables in the high-dimensional limit. Indeed, there is a
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number O(n2) of variables Za
µl, and therefore classical central limit results can not conclude on

the asymptotic gaussianity of the joint distribution of such variables. In general, this gaussianity
is actually false, as can be seen e.g. by considering the following quantity, for a single replica:

L4 ≡ lim
n→∞E

[
1
n3

∑

µ1 6=µ2

∑

l1 6=l2

Zµ1l1Zµ1l2Zµ2l2Zµ1l2

]
.

Let us assume that both PF and PX are standard Gaussian distributions for the simplicity of
the argument. The computation of L4 is then straightforward and yields L4 = α2ψ2. However,
should the joint distribution of the {Zµl} converge to a multivariate (zero-mean) Gaussian
distribution, such a distribution would satisfy by definition

E[Zµ1l1Zµ2l2 ] =
1
n

∑

i,j

E[Fµ1iFµ2j ]E[Xl1iXl2j ] = δµ1µ2δl1l2 .

And using the diagrammatic results of Section 2.4, we know that then L4 = 0 by eq. (2.56) for
Gaussian matrices. There is therefore an inconsistency: this argument illustrates the error made
(we believe) in [KKM+16] (and many subsequent works) when considering the joint distribution
of {Za

µl}. To conclude on the replica analysis, we did not find a way to correct the calculation, as
many of the usual tricks and tools used in the replica method do not transfer here. In particular,
the nature of the physical order parameter governing the problem is not clear yet.

The message-passing approach

Another approach to the problem are the Belief Propagation (BP) equations4, or the cavity
method. The goal of BP is to compute the marginal distributions of each variable in the system,
by solving iterative equations involving probability distributions over each single variable. These
probability distributions are called messages in the BP language, and the fixed point of the
iterative equations yields an estimate of the marginal distributions. A detailed treatment of the
BP derivation of [KKM+16] is beyond the scope of this chapter, however we believe that the
same hidden assumption of Gaussianity is also present in the BP approach, as it neglects the
structure of the correlations of some variables.

We will see very precisely in the following Section 3.3 which terms are (wrongly) neglected in the
message-passing approach of [KKM+16], and how this is related to neglecting the correlation
structure of the variables of eq. (3.4), as in the replica approach.

3.3 TAP equations and PGY expansion

In this section, we detail the Plefka-Georges-Yedidia (PGY) expansion applied to extensive-
rank matrix factorization. We mainly focus on detailing the method and its results for the
non-symmetric Model FX. In Sections 3.3.1 to 3.3.3 we describe the PGY expansion approach
to deriving the TAP equations, and we discuss their relation with the previous approaches
described in Section 3.2. We end this chapter by Section 3.3.4, in which we generalize our
findings to the symmetric Model XX⊺.

3.3.1 Sketch of the computation

Rather than the replica method, a more pedestrian way to compute the free entropy of this
problem is to perform a perturbative PGY expansion, following the formalism we described in

4Recall that we discussed the BP equations on a general factor graph, and their simplifications into approximate
message-passing algorithms and their relation with the replica method, in Section 1.4.
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Chapter 2. Let us consider the most general Model FX. In order to place our problem in a
formalism suited for high-temperature expansions, we introduce an auxiliary field h ≡ FX/

√
n

in eq. (3.2), and use the Fourier transform of the resulting delta functions5. Introducing delta
functions in eq. (3.2), we reach:

en(m+p)ΦY,n =
∫ ∏

µ,i

PF (dFµi)
∏

i,l

PX(dXil)
∏

µ,l

dĤµlPout(Yµl|Ĥµl)δ
(
Ĥµl −

1√
n

∑

i

FµiXil

)
.

Using the Fourier transform of the delta function δ(x) = (2π)−1
∫

dh eihx, we reach an effective
free entropy in terms of three fields F,X,H, with H of size m× p:

ΦY,n ≡
1

n(m+ p)
ln
∫ ∏

µ,l

Pµl
H (dHµl)

∏

µ,i

PF (dFµi)
∏

i,l

PX(dXil)e−Heff [F,X,H], (3.5)

in which we introduced an effective Hamiltonian Heff [F,X,H] and un-normalized probability
distributions {Pµl

H } defined as:

Heff [F,X,H] ≡ 1√
n

∑

µ,i,l

(iH)µl FµiXil,

Pµl
H [dH] ≡

∫
dH̃
2π

eiHH̃Pout(Yµl|H̃). (3.6)

As we have seen in Chapter 2, the formalism of [GY91] allows to compute the free entropy of
the system, constraining the means and variances of each variable {Fµi, Xil, Hµl} by “tilting”
the Gibbs measure of eq. (3.5). More formally, we impose:





〈Fµi〉 = mF
µi, 〈Xil〉 = mX

il ,

〈F 2
µi〉 = vF

µi + (mF
µi)

2, 〈X2
il〉 = vX

il + (mX
il )2,

〈(iH)µl〉 = −gµl, 〈(iH)2
µl〉 = −rµl + g2

µl.

(3.7)

Recall that 〈·〉 denotes an average over the (now tilted) Gibbs measure. The resulting free
entropy is a function of these means and variances {mF ,mX ,vF ,vX ,g, r}, on which we will
then have to maximize. The conditions of eq. (3.7) will be imposed via Lagrange multipliers,
which we denote respectively by {λF ,γF ,λX ,γX ,ω,b}. The free entropy can now be expressed
as a function of all these parameters (we still denote it ΦY,n, with a slight abuse of notations):

n(m+ p)ΦY,n =
∑

µ,i

[
λF

µim
F
µi +

γF
µi

2

(
vF

µi + (mF
µi)

2
)]

+
∑

i,l

[
λX

il m
X
il +

γX
il

2

(
vX

il + (mX
il )2

)]
(3.8)

+
∑

µ,l

[
− ωµlgµl −

bµl

2

(
− rµl + g2

µl

)]
+ ln

∫
PH(dH)PF (dF)PX(dX) e−Seff [F,X,H],

in which we introduced an effective action Seff :

Seff [F,X,H] ≡
∑

µ,i

[
λF

µiFµi +
γF

µi

2
F 2

µi

]
+
∑

i,l

[
λX

il Xil +
γX

il

2
X2

il

]
(3.9)

+
∑

µ,l

[
ωµl(iH)µl −

bµl

2
(iH)2

µl

]
+Heff [F,X,H].

5Note that we used the same representation for generalized linear models in Section 2.3.
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Similarly as what we did in Section 2.3.1 for Generalized Linear Models, the idea of the expansion
is to introduce a parameter η > 0 in front of the interaction Hamiltonian, i.e. to replace Heff →
ηHeff in eq. (3.9), and then take η = 1 after performing a small-η expansion. We denote
the corresponding free entropy ΦY,n(η). Note that at η = 0, all the fields {Fµi, Xil, Hµν} are
independent. In order to make the PGY expansion tractable in this model, we introduce the
following hypotheses on the scaling of the parameters:

H.1 At their physical value, the variables {mF
µi,m

X
il } should be uncorrelated, in coherence with

the fact that the elements of F and X are drawn i.i.d. Importantly, this is not true for
H: although the elements Hµl are independent by eq. (3.6), their distribution depends
on µ, l and therefore their statistics might be correlated, e.g. the variables gµl might be
correlated, through the correlation of the variables Yµl.

H.2 Recall that gµl is the average of (iH)µl, the conjugate variable to Zµl ≡
∑

i FµiXil/
√
n.

We therefore assume that the correlations of the elements {gµl} scale as the ones of {Zµl},
that is the correlations of the g = {gµl} scale similarly as the product of two independent
matrices that have i.i.d. zero-mean components6.

Assuming H.1 and H.2, we derive in Appendix A.3 the following result7:

Result 3.1 (First orders of the PGY expansion for Model FX)

We have, at leading order as n→∞:

n(m+ p)[ΦY,n(η)− ΦY,n(0)] =
η√
n

∑

µ,i,l

gµlm
F
µim

X
il −

η2

2n

∑

µ,i,l

rµl[vF
µi(m

X
il )2 + (mF

µi)
2vX

il ]

+
η2

2n

∑

µ,ν,i

(g2
µl − rµl)vF

µiv
X
il +

η4

4n2

∑

µ1,µ2

∑

l1,l2

gµ1l1gµ2l1gµ2l2gµ1l2v
F
µ1iv

F
µ2iv

x
il1v

x
il2 +O(η5).

Recall moreover that ΦY,n(0) is given by

n(m+ p)ΦY,n(0) =
∑

µ,i

[
λF

µim
F
µi +

γF
µi

2

(
vF

µi + (mF
µi)

2
)

+ ln
∫

df PF (f) e−
γF

µi
2

f2−λF
µif
]

(3.10)

+
∑

i,l

[
λX

il m
X
il +

γX
il

2

(
vX

il + (mX
il )2

)
+ ln

∫
dxPX(x) e− γX

il
2

x2−λX
il x
]

+
∑

µ,l

[
− ωµlgµl −

bµl

2

(
− rµl + g2

µl

)
+ ln

∫
dz

e
− 1

2bµl
(z−ωµl)

2

√
2πbµl

Pout(Yµl|z)
]
,

in which one has to extremize with respect to all Lagrange multipliers.

It is enlightening to consider the fixed point equations that result from the extremization of the
free entropy of Result 3.1. Note that the Lagrange multipliers only appear in the η = 0 part
of the free entropy (this is a general consequence of the formalism of [GY91], that we noticed
already in Chapter 2), so we can easily write the maximization over these parameters:





mF
µi = EPF (λF

µi,γ
F
µi)

[F ], vF
µi = EPF (λF

µi,γ
F
µi)

[(F −mF
µi)

2],

mX
il = EPX(λX

il
,γX

il
)[X], vX

il = EPX(λX
il

,γX
il

)[(X −mX
il )2],

gµl = gout(Yµl, ωµl, bµl), rµl = −∂ωgout(Yµl, ωµl, bµl).

(3.11)

6Accounting for such correlations was missing in the previous computations we mentioned in Section 3.2.
7We make extensive use of the technicalities of the PGY expansion that we derived in Chapter 2.
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We defined PF (λ, γ), PX(λ, γ) and gout in eq. (2.41) in the previous chapter. We now focus on
the equations obtained from the maximization over the “physical” parameters.

3.3.2 The series at order 2 and the approximation of [KKM+16]

We first examine the very first orders of the perturbation series of Result 3.1. E.g. at order 2 in
η, the free entropy is:

n(m+ p)[ΦY,n(η)− ΦY,n(0)] =
η√
n

∑

µ,i,l

gµlm
F
µim

X
il −

η2

2n

∑

µil

rµl[vF
µiv

X
il + vF

µi(m
X
il )2 + (mF

µi)
2vX

il ]

+
η2

2n

∑

µ,i,l

g2
µlv

F
µiv

X
il +O(η3). (3.12)

Since they are taken at η = 0, the fixed point equations of eq. (3.11) are unchanged. The
maximization over the physical parameters can be done and yields (we indicate on the right of
the equation the corresponding parameter over which we maximized):





bµl = η2

n

∑
i[v

F
µiv

X
il + vF

µi(m
X
il )2 + (mF

µi)
2vX

il ], (rµl)

ωµl = η√
n

∑
im

F
µim

X
il − gµl[bµl − η2

n

∑
i v

F
µiv

X
il ], (gµl)

γF
µi = η2

n

∑
l[rµlv

X
il + rµl(mX

il )2 − g2
µlv

X
il ], (vF

µi)

λF
µi = − η√

n

∑
l gµlm

X
il +mF

µi[−γF
µi + η2

n

∑
l rµlv

X
il ], (mF

µi)

γX
il = η2

n

∑
µ[rµlv

F
µi + rµl(mF

µi)
2 − g2

µlv
F
µi], (vX

il )

λX
il = − η√

n

∑
µ gµlm

F
µi +mX

il [−γX
il + η2

n

∑
µ rµlv

F
µi]. (mX

il )

(3.13)

The reader can check easily that the combined equations (3.11) and (3.13) are actually com-
pletely equivalent to the GAMP equations derived in [KKM+16], taking η = 1 and replacing
the notations of the variables following the dictionary:

bµl → Vµl ωµl → ωµl gµl → gout(Yµl, ωµl, Vµl) rµl → −∂ωgout(Yµl, ωµl, Vµl)

γF
µi → Z−1

µi λF
µi → −

Wµi

Zµi
mF

µi → f̂µi vF
µi → sµi

γX
il → Σ−1

il λX
il → −

Til

Σil
mX

il → x̂il vX
il → cil

In conclusion, our PGY expansion truncated to order η2 gives back exactly the stationary limit of
the GAMP algorithm of [KKM+16]! However, as we will see below, the higher order corrections
of order η4 (and beyond) cannot be neglected: this shows explicitly how the GAMP equations of
[KKM+16] (and we believe as well as the BiGAMP equations of e.g. [PSC14a, PSC14b, ZZY20],
which are based on the same approximation) are missing important correlations of the problem.

3.3.3 Going to higher orders: open directions

While the order η2 truncation of Result 3.1 yields back the approximation of [KKM+16], we
have computed via our PGY expansions the order η4, which we recall:

1
4!n(m+ p)

∂4ΦY,n

∂η4
(η = 0) =

1
4n2

∑

i

∑

µ1,µ2

∑

l1,l2

gµ1l1gµ2l1gµ2l2gµ1l2v
F
µ1iv

F
µ2iv

x
il1v

x
il2 + On(1) (3.14)

A crucial observation is that in general, under the natural hypothesis H.2, the term of eq. (3.14) is
not negligible as n→∞! This can be easily seen using our diagrammatic results of Chapter 2,



Chapter 3. Towards exact solution of extensive-rank matrix factorization 84

more precisely eq. (2.56). Indeed, assuming e.g. that the variances are all equal vF
µi = vF ,

vX
il = vX , we have:

1
4!n(m+ p)

∂4ΦY,n

∂η4
(η = 0) =

ψ

α+ ψ

(vF )2(vX)2

4
Γ2

(α
ψ
,
g⊺g

n

)
+ On(1).

in which recall that the coefficients Γp are functions of the spectrum of the matrix, and were
introduced in Section 1.5. They play a role very similar to the free cumulants for symmetric
random matrices. Therefore, assuming that the bulk of eigenvalues of g⊺g/n stays of order 1
as n → ∞ (which is a natural scaling given Hypothesis H.2), the order 4 term gives a non-
negligible contribution to the free entropy! This shows in detail how the approximation of
[KKM+16] breaks down in this case.

However, our computation does not give all the orders of perturbation, as Result 3.1 is limited
to order η4. As we saw in Chapter 2 this is an intrinsic limitation of the PGY method: there
is no generic expression for an arbitrary order of perturbation. However, one can use the first
orders to conjecture the form of the higher-order terms. The precise analysis of all these terms
is still under investigation, and will be a subject of [MFK+21]. We end this discussion by a few
remarks on the results presented here:

• Similarity with finite-rank problems – The watchful reader would have noticed that the
first orders of Result 3.1 are very similar the the TAP free entropy of GLMs that we derived
in Chapter 2, more precisely eq. (2.38). A crucial difference is that here the role of the sensing
matrix is played by −g, which is itself a parameter of the TAP free entropy. While we do not
yet have an expression for the higher orders in Result 3.1, this similarity is already striking.
Importantly, the resummation of eq. (2.39) then suggests that the fully-expanded free entropy
might be expressed solely in terms of the singular value distribution of g/

√
n.

• Nature of the order parameter – In the Gaussian setting, one can perform exact calcula-
tions that leverage extensive-rank HCIZ integrals (cf. Section 1.5.3). While these calculations
are still under investigation on our part, and are therefore not presented in this thesis, they
suggest that the order parameter governing the state of the model is a spectral density. This
corroborates our intuition (cf. the previous remark) that the full TAP free entropy might be
expressed in terms of the singular value distribution of g/

√
n. This is an important difference

from the finite-rank case: for rank-k matrix factorization (or in general for rank-k recovery
problems), the state of the system is governed by a k × k overlap matrix. For instance, such
a matrix order parameter will be crucial to understand simple neural networks in Chapter 4.

• Iterating the equations – As we discussed in Section 2.3, the TAP equations are in general
not sufficient to obtain an algorithm with good convergence properties. A classical example
is given by the Generalized Vector Approximate Passing algorithm (G-VAMP) [SRF16], for
which the corresponding TAP equations are derived in Section 2.3.1. As highlighted there, the
TAP equations correspond to the stationary limit of G-VAMP, however there is no obvious
iterative resolution scheme of the TAP equations that gives the GVAMP algorithm. This
indicates that even if one obtains all the orders of perturbations in Result 3.1, turning them
into an efficient algorithm will pose a serious challenge. We will discuss further these points
in [MFK+21].

3.3.4 Symmetric matrix factorization

Performing the Plefka-Georges-Yedidia expansion for Model XX⊺ is extremely similar to the
calculation done in previous sections for Model FX: one can introduce a field h = XX⊺/

√
n,

and then performs the same calculations via the Fourier transform of the delta function. In
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the following of Section 3.3.4, we give the results of our derivation, while more details are given
in Appendix A.4. We adopt similar notations to the ones of Section 3.3.1, removing the X,F
subscripts. More precisely, we impose the first and second moment constraints, for µ < ν and
i = 1, · · · , n:

{
〈Xµi〉 = mµi, 〈X2

µi〉 = vµi +m2
µi,

〈(iH)µν〉 = −gµν , 〈(iH)2
µν〉 = −rµν + g2

µν .
(3.15)

Note that we will sometimes symmetrize the quantities involved, e.g. we write gµν ≡ gνµ for
µ > ν, and moreover we adopt the convention gµµ = rµµ = 0.

First orders of the PGY expansion

Similarly to Result 3.1, we obtain the first orders of the free entropy as:

Result 3.2 (First orders of the PGY expansion for Model XX⊺)

At leading order as n,m→∞:

nm[ΦY,n(η)− ΦY,n(0)] =
η√
n

∑

µ<ν
i

gµνmµimνi −
η2

2n

∑

µ<ν
i

rµν [vµivνi + vµim
2
νi +m2

µivνi]

+
η2

4n

∑

µ,ν,i

g2
µνvµivνi +

η3

6n3/2

∑

i

∑

µ1,µ2,µ3
pairwise distinct

gµ1µ2gµ2µ3gµ3µ1vµ1ivµ2ivµ3i

+
η4

8n2

∑

i

∑

µ1,µ2,µ3,µ4
pairwise distinct

gµ1µ2gµ2µ3gµ3µ4gµ4µ1vµ1ivµ2ivµ3ivµ4i +O(η5).

Recall that the term ΦY,n(0) contains the dependency on the channel and priors contributions,
as well as the Lagrange multipliers introduced to enforce the conditions of eq. (3.15). Its precise
form can be easily deduced from its counterpart in the non-symmetric case, eq. (3.10).

Higher-order terms, and breakdown of previous approximations

One can check that the approximation of [KKM+16, PSC14a, PSC14b, ZZY20] can be adapted
easily to Model XX⊺, and as in Section 3.2, this approximation amounts to truncating the
perturbation series of Result 3.2 at order η2. However, as in Section 3.3.3, the higher-order
terms in Result 3.2 are in general non-negligible. Under a similar hypothesis as H.2, they are
actually related to the free cumulants of g/

√
n. This is a consequence of Theorem 2.2, so that

assuming e.g. vµi = v, we have at η = 0:





1
3!nm

∂3
ηΦY,n =

v3

6n3/2m

∑

µ1,µ2,µ3
pairwise distinct

gµ1µ2gµ2µ3gµ3µ1 =
v3

6
c3

( g√
n

)
+ On(1),

1
4!nm

∂4
ηΦY,n =

v4

8n2m

∑

µ1,µ2,µ3,µ4
pairwise distinct

gµ1µ2gµ2µ3gµ3µ4gµ4µ1 =
v4

8
c4

( g√
n

)
+ On(1).

(3.16)

Again, in general these free cumulants are non-negligible in the limit n→∞: our PGY expansion
allowed us to precisely point out the breakdown of previous approximations.
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Conclusion of Chapter 3

In this chapter, we presented an application of the very generic formalism of high-temperature
PGY expansions (introduced in Chapter 2) to the problem of extensive-rank matrix factoriza-
tion. Our main finding is that the previous statistical-physics-based approaches to this problem
[KKM+16, PSC14a, PSC14b, ZZY20] rely on an approximation that fails in this setting. Via
the PGY expansions, we are able to derive systematic corrections to this approximation. While
the present chapter does not provide a complete investigation of our corrected equations, these
results already raise several important possible generalizations or extensions:

• Of course, the most natural open question is to generalize Results 3.1,3.2 to arbitrary orders
of perturbation. Let us focus on Model XX⊺ for the sake of this argument. One could be
tempted to generalize eq. (3.16) to any order in perturbation by conjecturing that the order k
is related to the k-th free cumulant of g/

√
n. The resulting expansion is then very similar to

the finite-rank series of eq. (2.12), with g playing the role of the coupling matrix. However,
justifying such a wild conjecture (provided it is correct, which is far from obvious) is quite
involved, and will be one of the main subjects of [MFK+21].

• In the Gaussian setting, using the results of Matytsin [Mat94] presented in Section 1.5.3, one
can perform exact calculations of the free entropy. Although these exact calculations are here
very involved, they would be an important check of our PGY expansion. We have already
advanced significantly on this line of work, and it will be an important part of [MFK+21].

• It would also be interesting to perform a perturbative calculation (for instance in the symmet-
ric model XX⊺), with a slowly-diverging rank r = n/m (expanding the free entropy in powers
of r). Similarly to the PGY expansion, this could provide another systematic correction to
the results of [KKM+16], with a different point of view than the one presented in this chapter.
Such a calculation is related to an important open problem in random matrix theory, that is
a sharp description of the transition between the low-rank spherical HCIZ integral of Theo-
rem 1.14 and the extensive-rank case described in Theorem 1.15. Solving this later problem
would help to describe the transition between low-rank and extensive-rank results in the PGY
expansion.

• Another interesting open problem is to relate the PGY-expanded free entropy described in Sec-
tion 3.3 to other approximation schemes. Indeed, as we discussed in Chapter 2, in finite-rank
problems these expansions are equivalent to other techniques, e.g. the Expectation Consis-
tency or adaptive TAP approaches. This equivalence does not seem to easily transfer to the
extensive-rank case: understanding how to apply these approaches here is another interesting
direction of research.
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Part II

Physics joins probability: all you
need for optimal estimation

A selection of high-dimensional problems
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Chapter 4

The physics of learning in a
two-layers neural network

“Do you remember the question that caused the creators to attack us, Tali’Zorah?
Does this unit have a soul?”

Legion, Mass Effect 3 (2012).

Disclaimer – In this chapter, we begin our tour of high-dimensional problems by a simple model
of neural networks. More precisely, we will unveil and rigorously prove phase transitions in
the algorithmic and information-theoretic optimal performances in a two-layers neural network
known as the committee machine in the statistical physics literature. We leverage the replica
method, and we put the replica results on rigorous grounds using sophisticated probabilistic
interpolation techniques. We will also apply our message-passing toolbox to design an AMP
algorithm for this problem, that achieves the optimal performance among a large class of iterative
algorithms. All in all, this chapter can be considered as a textbook application of a large part of
the statistical physics machinery that we introduced in Chapter 1. It is based on the published
work [AMB+19].

4.1 Introduction: the committee machine

While the traditional approach to learning and generalization follows the Vapnik-Chervonenkis
[Vap98] and Rademacher [BM02, AAKZ20] worst-case type bounds, there has been a consid-
erable body of theoretical work on calculating the generalization ability of neural networks
for data arising from a probabilistic model. Such settings fit well within the framework of
statistical mechanics, and the 1990s saw a burst of such studies applied to neural networks
[SST92, WRB93, MZ95a, MZ95b, EVdB01]. As the modern success of neural networks has only
increased the need to understand their effectiveness [ZBH+16], it is of interest to revisit the re-
sults that have emerged thanks to the physics perspective. This direction has been experiencing
an important revival in the past years, see e.g. [BJSG+18, BKM+19, CCS+19, Gab20], and this
thesis as a whole inscribes itself in this line of work.

As we discussed in Section 1.1, the physics approach is particularly suited to study these models
in the so-called teacher-student setting. Precisely, labels are generated by feeding i.i.d. random
samples to a neural network architecture (the teacher) and are then presented to another neural
network (the student) that is trained using these data. Early studies computed the information
theoretic limitations of the supervised learning abilities of the teacher weights by a student
who is given m independent n-dimensional examples with α ≡ m/n = Θ(1) and n → ∞
[SST92, WRB93, EVdB01]. These works relied on non-rigorous heuristic approaches, such as
the replica and cavity methods, cf. Sections 1.3.1 and 1.4. Additionally no provably efficient
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algorithm was provided to achieve the predicted learning abilities, and it was thus difficult to
test those predictions, or to assess the computational difficulty.

Recent developments in statistical estimation and information theory —in particular of message-
passing algorithms (cf. [DMM09, Ran11, BM11, JM13] and Section 1.4), and a rigorous proof of
the replica formula for the free entropy [BKM+19]— allowed to settle these two missing points
for single-layer neural networks (i.e. without any hidden variables).

In the present chapter we leverage many of these works, and provide rigorous asymptotic pre-
dictions and corresponding message-passing algorithm for a wide class of two-layers networks.
While our results hold for a rather large class of non-linear activation functions, we illustrate our
findings on a case considered most commonly in the early literature: the committee machine.
This is possibly the simplest version of a two-layers neural network where all the weights in the
second layer are fixed to unity, and we illustrate it in Fig. 4.1. Denoting Yµ the label associated
with a n-dimensional sample Xµ, and W ∗

il the weight connecting the i-th coordinate of the input
to the l-th node of the hidden layer, it is defined by:

Yµ = sign
[ K∑

l=1

sign
( n∑

i=1

XµiW
∗
il

)]
. (4.1)

{(Xµi)n
i=1}mµ=1

m samples in R
n

W ∗
il ∈ R

n×K

Yµ

W(2) ∈ R
K

f (1)

f (1)

f (1)

f (2)

K hidden units

output

Figure 4.1: The committee machine is one of the simplest models of two-layers neural networks.
Both activation functions are sign functions f (1), f (2) = sign and the second-layer weights W(2) are

all fixed to 1. Here we represent a generic two-layers neural network with K = 3.

In our teacher-student scenario, the teacher generates i.i.d. data samples Xµi ∼ N (0, 1), then
she/he generates the associated labels Yµ using a committee machine as in eq. (4.1), with weights
W ∗

il which are unknown to the student. The goal of the student is to learn the weights W ∗
il from

the available examples (Xµ, Yµ)m
µ=1 in order to reach the smallest possible generalization error

(i.e. to be able to predict the label the teacher would generate for a new sample not present in
the training set).

4.1.1 Classical physics predictions

There have been several studies of this model within the non-rigorous statistical physics approach
in the limit where α ≡ m/n = Θ(1), K = Θ(1) and n → ∞. In particular, the committee
machine attracted a lot of interest during the 1990s, and the reader may refer e.g. to the following
series of works: [Sch93, SH92, SH93, MP92, MZ95b, EVdB01]. A particularly interesting result
in the teacher-student setting is the specialization of hidden neurons (see Sec. 12.6 of [EVdB01],
or [SS95] in the context of online learning). These works predicted that for α < αspec (where
αspec is a certain critical value of the sample complexity), the permutational symmetry between
hidden neurons remains conserved even after an optimal learning, and the learned weights of
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each of the hidden neurons are identical. For α > αspec, however, this symmetry gets broken as
each of the hidden units correlates strongly with one of the hidden units of the teacher. Another
remarkable result obtained in this early literature is the calculation of the optimal generalization
error as a function of α.

4.1.2 Main contributions of this chapter

In this chapter we will go beyond the mentioned literature in two main directions. Our first
contribution consists in a proof of the replica-symmetric formula for the free entropy, which
was conjectured in the statistical physics literature. This proof uses an adaptive interpolation
method [BM19a, BKM+19], that allows to put several of these results on a rigorous basis.
Secondly, we design an Approximate-Message-Passing-type algorithm (recall that we introduced
such algorithms in Section 1.4) that is able to achieve the optimal generalization error for a
wide range of parameters. The study of AMP —that is widely believed to be optimal among
all polynomial-time algorithms in the above setting [DJM13, DM15, ZK16, BPW18]— unveils,
in the case of the committee machine with a large number of hidden neurons, the existence
a large hard phase. In this phase, learning is information-theoretically possible, leading to a
generalization error decaying asymptotically as O(K/α) (in the α = Θ(K) regime), but where
AMP fails and provides only a poor generalization that does not go to zero when increasing
α. This strongly suggests that no efficient algorithm exists in this hard region and therefore
that there is a computational gap in learning in such neural networks. In other problems where
a hard phase was identified its study boosted the development of algorithms that are able to
match the predicted thresholds, and we hope that this study will contribute in this regard.

4.2 Main theoretical results

4.2.1 General probabilistic model

Our theoretical analysis is performed for a class of models much broader than the specific
committee machine of eq. (4.1). Namely we consider

Model 4.1 (“Generalized” committee machine, Bayes-optimal setting)

The observer is given m input samples {(Xµi)n
i=1}mµ=1

i.i.d.∼ N (0, 1) and a probabilistic output
channel Pout(y|z). Our aim is to recover a set of teacher weights W⋆ ∈ R

n×K , generated i.i.d.
from a prior distribution P0, from the observations

Yµ ∼ Pout

(
·
∣∣∣
{ 1√

n

n∑

i=1

XµiW
∗
il

}K

l=1

)
.

We assume that P0 has zero mean, and we denote ρ ≡ E[W0W
⊺
0 ] its covariance matrix. As we

know, in the Bayes-optimal setting, the best strategy for the student is to learn W∗ from the
data (Xµ, Yµ)m

µ=1 by computing the marginal means of the posterior probability distribution.

A word on notations – In this chapter, we will often manipulate quantities that live either in
R

K or in R
K×K . To lighten the notations, we do not use bold symbols for vectors and matrices

of size K, while we keep bold symbols for quantities that have diverging size with n.

Alternative view – Another equivalent way to generate the observations is via

Yµ = ϕout

({ 1√
n

n∑

i=1

XµiW
∗
il

}K

l=1
, Aµ

)
, (4.2)
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where ϕout : R
K × R → R is a generic functions, and (Aµ)m

µ=1 are i.i.d. real valued random
variables with known distribution PA, that form the probabilistic part of the model, generally
accounting for noise.

Different scenarii fit into the general framework of Model 4.1. Among those, the committee
machine of eq. (4.1) is obtained when choosing ϕout(h) = sign(

∑K
l=1 sign(hl)). Another renowned

model is the parity machine, which corresponds to ϕout(h) =
∏K

l=1 sign(hl), see e.g. [EVdB01].
We will not investigate this last model in this chapter, but the interested reader can refer to
[AMB+19] in which we conducted this analysis. A number of layers beyond two has also been
considered in specific regimes in [MP92]. Using other activation functions ϕout, one can describe
many more problems, e.g. compressed pooling [EARK+18, ARK+19] or multi-vector compressed
sensing [ZBK16].

4.2.2 Picking from the toolbox

Now that we fixed our model of interest, we can pick our favorite tool from the statistical physics
toolbox to study optimal learning. In this chapter, we leave aside the TAP approach (the reader
interested in the latter can refer to Chapters 2 and 3) and we focus instead on two other methods.

• First, we leverage the replica method that we introduced in Section 1.3.1. Recall that the
aim of this method is the compute the large n limit of the free entropy fn of Model 4.1,
i.e. the log-normalization of the posterior that is written in eq. (4.5). It allows to obtain an
explicit (conjectural) expression of fn in the high-dimensional limit n,m→∞ with α = m/n
fixed, called the replica-symmetric (RS) formula. One can then naturally ask: can we prove
said conjecture? While proving the replica method itself seems out of reach, in this chapter
we manage to prove its prediction by use of probabilistic methods: this is summarized by
Theorem 4.1, which is the main theoretical result of this chapter. For this reason, while we
first derived the results of Theorem 4.1 with the replica method, we focus in this chapter on
its probabilistic proof, while the replica computation is detailed in Appendix B.1.

• The second tool, complementary to the first, is the use of message-passing algorithms to
assess the optimal algorithmic (among a large class of first-order methods, see Section 1.4.2)
performance. We introduced these approaches in Section 1.4, and we will extend them to the
present setting in Section 4.3.

We hope that this chapter will illustrate to the reader that by leveraging our toolbox one can gain
a precise understanding of the computational and statistical optimal performances in a broad
class of inference models, and that it can be instrumental in gaining a deeper comprehension of
learning in neural networks.

4.2.3 Main theorem: the replica-symmetric formula

Some notation – Recall that S+
K is the set of semi-definite positive real symmetric K × K

matrices. For any M ∈ S+
K , we can uniquely define its square root

√
M = M1/2. Let us define

for N ∈ S+
K(R), the set S+

K(N) ≡ {M ∈ S+
K s.t. N−M ∈ S+

K}. Note that S+
K(N) is both convex

and compact.

Two auxiliary inference problems

Stating the RS formula requires introducing two simpler K-dimensional estimation problems:

• The first one is a function of the prior P0 of Model 4.1. It consists in retrieving aK-dimensional
vector W0 ∼ P0 from the K-dimensional observations Y0 = r1/2W0 + Z0, with Z0 ∼ N (0, IK)
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and the “channel gain” matrix r ∈ S+
K . The posterior distribution on w is given by

P(w|Y0) =
1
ZP0

P0(w)eY ⊺

0 r1/2w− 1
2

w⊺rw , (4.3)

and the associated free entropy is given by ψP0(r) ≡ E lnZP0 .

• The second problem is a function of the channel Pout of Model 4.1. We consider K-dimensional
i.i.d. vectors V,U∗ ∼ N (0, IK) where V is considered to be known and one has to retrieve U∗

from the observation of

Ỹ0 ∼ Pout( · |q1/2V + (ρ− q)1/2U∗),

with q ∈ S+
K(ρ) known as the overlap matrix, for reasons which will become clear later on.

The associated posterior is

P(u|Ỹ0, V ) =
1
ZPout

e− 1
2

u⊺u

(2π)K/2
Pout

(
Ỹ0|q1/2V + (ρ− q)1/2u

)
, (4.4)

and the free entropy reads this time Ψout(q; ρ) ≡ E lnZPout .

In Appendix C.2 (more precisely Lemmas C.2 and C.3), we prove regularity and convexity
properties of ψP0 and Ψout which will be useful for our analysis.

The free entropy

As we know from Section 1.1, the central object to study optimal performances is the posterior
distribution of the weights:

P(w|X,Y) =
1
Zn

n∏

i=1

P0(wi)
m∏

µ=1

Pout

(
Yµ

∣∣∣
{ 1√

n

n∑

i=1

Xµiwil

}K

l=1

)
, (4.5)

The expected free entropy is by definition fn ≡ (1/n)E lnZn. Recall that we consider the
thermodynamic limit n,m → ∞ with m/n → α > 0. The main theoretical result of this
chapter is a rigorous proof of the free entropy formula predicted by the replica method, using a
probabilistic interpolation method developed in [Gue03, Tal03, BM19a].

We define the replica symmetric (RS) potential as

fRS(q, r) ≡ ψP0(r) + αΨout(q; ρ)− 1
2

Tr(rq), (4.6)

where α ≡ m/n, and Ψout(q; ρ) and ψP0(r) are the free entropies of the two simpler K-
dimensional estimation problems (4.3) and (4.4). We moreover assume the following:

H.1 The prior P0 has bounded support in R
K . Recall that ρ = EP0 [W0W

⊺
0 ].

H.2 The activation ϕout : RK ×R→ R is a bounded C2 function with bounded first and second
derivatives w.r.t. its first argument.

H.3 Xµi
i.i.d.∼ N (0, 1).
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Theorem 4.1 (Replica formula)

Suppose H.1, H.2 and H.3. The asymptotic free entropy is:

lim
n→∞ fn ≡ lim

n→∞
1
n
E lnZn = sup

r∈S+
K

inf
q∈S+

K(ρ)

fRS(q, r) .

Theorem 4.1 is an extension of the results of [BKM+19] which studied usual generalized linear
models (GLMs), i.e. the case K = 1 of this chapter. Our proof is based on an adaptive interpola-
tion method developed in [BM19a], and is outlined in Section 4.4. We conclude the presentation
of the theorem by two remarks.

Remark 4.1 (Regularization)

Theorem 4.1 actually stands under the addition of an (arbitrarily small) Gaussian regulariza-
tion noise to the model (4.2), which thus becomes (with ∆ > 0, Zµ ∼ N (0, 1))

Yµ = ϕout

({ 1√
n

n∑

i=1

XµiW
∗
il

}K

l=1
, Aµ

)
+
√

∆Zµ.

In general this regularizing noise is needed for the free entropy limit to exist in noiseless
scenarios. Some exceptions exist, such as the case of discrete outputs (e.g. in the committee
machine of eq. (4.1)), for which we can safely take ∆ = 0. The reader can refer to [BKM+19]
for more details on this technical point.

Remark 4.2 (Relaxing the hypotheses)

Following similar approximation arguments as in [BKM+19], H.1 can be relaxed to the exis-
tence of the second moment of the prior, thus covering e.g. the Gaussian prior case. H.2 can
moreover be dropped (so that our results include the committee machine (4.1)), and H.3 can
be extended to X having i.i.d. entries of zero mean, unit variance and finite third moment.

Optimal generalization error

As we know, in the Bayes-optimal setting the estimator Ŵ that minimizes the mean-square
error with the ground-truth W∗ is given by the expected mean of the posterior distribution of
eq. (4.5). Denoting q∗ the extremizer in the replica formula of Theorem 4.1, we expect from the
replica method that with high probability over the quenched variables, Ŵ

⊺
W∗/n

p→ q∗. This
phenomenon is known as overlap concentration, and will be discussed in the proof of Theorem 4.1.

From the overlap matrix q∗, one can compute the Bayes-optimal generalization error when the
student tries to classify a new, yet unseen, sample Xnew ∈ R

n. Indeed, the estimator of the new
label Ŷnew that minimizes the mean-squared error with the true label is given by the posterior
mean of ϕout(X⊺

neww). The Bayes-optimal generalization error is then

1
2
EX,W∗

{(
Ew|X,Y

[
ϕout(X⊺

neww)
]− ϕout(X⊺

newW∗)
)2
}
−−−→
n→∞ ǫg(q∗), (4.7)

where w is distributed according to the posterior measure of eq. (4.5)1. In particular, when the
distribution of X is rotationally invariant, the asymptotic generalization error only depends on
the overlap matrix w⊺W∗/n

p→ q∗. In specific cases (e.g. when K = 2 or in the limit K → ∞
as we will see), one can derive explicit formulas for the function ǫg(q⋆).

1The Bayes-optimal error differs from the Gibbs generalization error by a factor 2, as detailed in Appendix D.1.
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In Appendix D.1 we give more details on possible definitions of the generalization error, and
derive its expression for K = 2. The analytical treatment of the limit K → ∞ in ǫg(q∗) is
detailed in Appendix D.2, which is devoted to this limit.

4.3 Investigating computational-to-statistical gaps

4.3.1 Approximate Message-Passing

In order to investigate optimal algorithmic performances in this model, we pick the appropri-
ate tool from our toolbox. As we discussed in Section 1.4, the natural candidate to design an
algorithm that is optimal among a very wide class of polynomial-time algorithms is Approxi-
mate Message-Passing (AMP). While AMP was initially developed to solve random instances
of generalized linear models with Gaussian data matrices [DMM09, Ran11], here we adapt the
algorithm for the committee machine, and more generically for models described by eq. (4.2).
As in generalized linear models, in the Bayes-optimal setting AMP is strongly conjectured to
perform the best among all polynomial algorithms (and shown to be optimal among the large
class of general first order methods [CMW20]), in terms of achieved overlap. It thus gives us
a tool to evaluate both the intrinsic algorithmic hardness of learning and the performance of
existing algorithms with respect to the optimal one.

Algorithm 3: Approximate Message-Passing iterations for the committee machine
Input : A vector Y ∈ R

m, a data matrix X ∈ R
m×n

Output: An estimator Ŵ ∈ R
n×K

Initialize variables randomly;

while ‖Ŵt − Ŵ
t−1‖ > ǫ do

Update of the mean ωµ ∈ R
K and covariance Vµ ∈ S+

K :

ωt
µ =

n∑
i=1

(Xµi√
n
Ŵ t

i −
X2

µi

n

(
Σt−1

i

)−1
Ĉt

i Σ
t−1
i gt−1

out,µ

) | V t
µ =

n∑
i=1

X2
µi

n Ĉt
i ;

Update of gout,µ ∈ R
K and ∂ωgout,µ ∈ S+

K :
gt

out,µ = gout(ωt
µ, Yµ, V

t
µ) | ∂ωg

t
out,µ = ∂ωgout(ωt

µ, Yµ, V
t

µ);
Update of the mean Ti ∈ R

K and covariance Σi ∈ S+
K :

T t
i = Σt

i

( m∑
µ=1

Xµi√
n
gt

out,µ −
X2

µi

n ∂ωg
t
out,µŴ

t
i

)
| Σt

i = −
( m∑

µ=1

X2
µi

n ∂ωg
t
out,µ

)−1
;

Update of the estimated marginals Ŵi ∈ R
K and Ĉi ∈ S+

K :
Ŵ t+1

i = fw(Σt
i, T

t
i ) | Ĉt+1

i = fc(Σt
i, T

t
i );

t = t+ 1;
end

The AMP algorithm for generalized committee machines is summarized in Algorithm 3. The
update functions used in this algorithm are defined as:

• The functions fw(Σ, T ) and fc(Σ, T ) are respectively the mean and variance under the poste-
rior distribution of the auxiliary model of eq. (4.3), when r → Σ−1 and Y0 → Σ1/2T .

• gout(ωµ, Yµ, Vµ) is related to the mean of posterior of the second auxiliary model, i.e. eq. (4.4).
More precisely one can define it as:

gout(ω, y, V ) ≡ 1
V

∫
RK (z − ω)e− 1

2
(z−ω)⊺V −1(z−ω)Pout(y|z)dz

∫
RK e− 1

2
(z−ω)⊺V −1(z−ω)Pout(y|z)dz

. (4.8)
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The detailed derivation of Algorithm 3 from loopy belief propagation is quite tedious. While we
do not detail it in this thesis, the interested reader may refer to [AMB+19]. After convergence,
Ŵ estimates the weights of the teacher neural network. A demonstration code of the algorithm
is available on GitHub [AMB+18].

Let us briefly recall some properties of AMP that we highlighted in Section 1.4. A major strength
of AMP is that its performance can be tracked rigorously in the asymptotic limit n → ∞, via
a procedure known as State Evolution (SE) [JM13]. In the present model, SE allows to track

the value of the overlap between the teacher weights W∗ and the AMP estimate Ŵ
t
, defined as

qt
AMP ≡ limn→∞(Ŵ

t
)⊺W∗/n, via the iteration of the following equations:

qt+1
AMP = 2∇ψP0(rt

AMP) , rt+1
AMP = 2α∇Ψout(qt

AMP; ρ) . (4.9)

A crucial property of State Evolution (that is trivial to derive from definition) is that its fixed
points exactly correspond to the critical points of the replica-symmetric potential of eq. (4.6).
This allows to treat both the information-theoretic optimal performance (via Theorem 4.1) and
the AMP performance (via eq. (4.9)) in a single framework. We will illustrate the power of this
correspondence in the following Section 4.3.2.

On the convergence of the algorithm – In the large n limit, and if all functions are
computed without errors, the algorithm is guaranteed to converge. This is a consequence of
the Bayes-optimal setting, as detailed in [AMB+19]. In practice, of course, n is finite and K-
dimensional integrals need to be approximated. In that case convergence is not guaranteed, but
is robustly achieved in all the cases presented in this chapter. We also expect (by experience
with the single layer case) that if the input-data matrix X has more structure than simply
i.i.d. then the AMP described here would encounter convergence issues. Such issues could
however be fixed by moving to refined variants of the algorithm, such as Vector Approximate
Message-Passing (VAMP) [RSF17], cf. Section 1.4 for an introduction to the VAMP algorithm.
Studying a “VAMP”-like algorithm in the context of the committee machine with structured
data is however not in the scope of this chapter.

4.3.2 From two to more hidden neurons, and the specialization transition

A network with two hidden neurons

Let us now discuss how the above results (i.e. Theorem 4.1 and the AMP algorithm) can be
used to study optimal learning in a simple (yet non-trivial) two-layers neural network with two
hidden neurons. Concretely, we consider the following special case of Model 4.12:

Yµ = sign
[
sign

( n∑

i=1

XµiW
∗
i1

)
+ sign

( n∑

i=1

XµiW
∗
i2

)]
.

In Fig. 4.2 we illustrate our results for this model. In the left panel the weights are Gaussian
(i.e. P0 = N (0, 1)), while in the right panel they are binary (or Ising/Rademacher, i.e. P0 =
(δ−1 + δ1)/2). We plot in Fig. 4.2 several quantities:

• In black we show the generalization error. Full lines are obtained as global maximizers of the
replica potential of eq. (4.6), while dashed lines are obtained from the fixed point of the State
Evolution (SE) of the AMP algorithm (i.e. eq. (4.9)). Note that it corresponds to the local
maximizer of the replica-symmetric potential of eq. (4.6), when iterating the SE equations
starting at q = 0. Dots are finite-size simulations of the AMP algorithm.

2We adopt the convention sign(0) = 0.
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Figure 4.2: Generalization error and overlap matrix elements for a committee machine with two
hidden neurons (K = 2) with Gaussian weights (left) and binary/Rademacher weights (right), as a

function of the sampling ratio α = m/n. q00 and q01 denote diagonal and off-diagonal overlaps,
and their values are given by the labels on the far-right of the figure.

• In blue and orange we show the diagonal and off-diagonal element of the matrix overlap q
achieved by AMP. Solid lines are obtained again using the SE equations (4.9), while dots
are simulations of AMP. Finally, in green dashed-dot line we show the specialization point at
which the diagonal and off-diagonal overlaps start differing.

We ran the AMP algorithm with n = 104 until convergence, and averaged over 10 instances with
different random initial conditions. As expected by our theory we observe excellent agreement
between the SE and AMP. Let us now comment further on our results.

Specialization – In both panels of Fig. 4.2 we observe the so-called specialization phase tran-
sition. Indeed eq. (4.9) has two types of fixed points: a non-specialized fixed point where every
matrix element of the K ×K order parameter q is the same (so that both hidden neurons learn
the same function), and a specialized fixed point where the diagonal elements of the order pa-
rameter are different from the non-diagonal ones. We checked for other types of fixed points
for K = 2 (one where the two diagonal elements are not the same), but have not found any.
In terms of weight-learning, this means for the non-specialized fixed point that the estimators
for both W1 and W2 are the same, whereas in the specialized fixed point the estimators of the
weights corresponding to the two hidden neurons are different: the network “figured out” that
the data is better described by a model that is not linearly separable. The specialized fixed point
is associated with lower error than the non-specialized one (as one can see in Fig. 4.2). The
existence of such a phase transition was previously discussed in the statistical physics literature,
see e.g. [SH92, SS95]. Interestingly, one can show that specialization is absent (for arbitrary K)
when the activations are linear, as detailed in [AMB+19]. The non-linearity of the activation
functions is therefore an essential ingredient in order to observe a specialization transition.

Gaussian weights – For Gaussian weights (Fig. 4.2 left), the specialization phase transition
arises continuously at αG

spec(K = 2) ≃ 2.04. This means that for α < αG
spec(K = 2) the number

of samples is too small, and the student network is not able to learn that two different teacher-
vectors W1 and W2 were used to generate the observed labels. For α > αG

spec(K = 2), however,
it is able to distinguish the two different weight-vectors and the generalization error decreases
fast to low values.

Binary weights – The right part of Fig. 4.2 depicts the case of binary weights. We observe
two phase transitions in the performance of AMP in this case: (a) the specialization phase
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transition at αB
spec(K = 2) ≃ 1.58, and for slightly larger sample complexity a transition to-

wards perfect generalization (beyond which the generalization error is asymptotically zero) at
αB

perf(K = 2) ≃ 1.99. The binary case with K = 2 differs from the Gaussian one in the fact that
perfect generalization is achievable at finite α. While the specialization transition is continuous
here, the error has a discontinuity at the transition of perfect generalization. This discontinuity
is associated with a 1st order phase transition (in the physics nomenclature), leading to a gap be-
tween algorithmic performance and information-theoretically optimal performance. To quantify
said optimal performance we need to evaluate the global maximum of the replica free entropy
(not the local one reached by the state evolution). In doing so that we discover that information-
theoretically there is a single discontinuous phase transition towards perfect generalization at
αB

IT(K = 2) ≃ 1.54.

Computational-to-statistical gap – While the information-theoretic and specialization phase
transitions were partially discussed in the physics literature on the committee machine [SH92,
SH93, SST92, WRB93], the gap between the information-theoretic performance and the perfor-
mance of AMP —that is conjectured to be optimal among polynomial-time algorithms— was not
previously discussed for such neural networks. Indeed, even its understanding in simpler models
than those discussed here, such as the single layer case, is quite recent [DMM09, DJM13, ZK16].
The existence of similar gaps (or their absence) will also be among the core results of Chapters 5
and 6.

K ≫ 1: when more is different

It becomes increasingly difficult to study the replica formula for larger values of K as it involves
(at least) K-dimensional integrals. Quite interestingly, it is however possible to work out the
solution of the replica formula in the large K limit (taken after the large n limit). Indeed, when
the activations functions of all hidden units are identical, it is natural to look for solutions of the
replica formula of the form q = qdIK + (qa/K)1K1⊺

K , with the unit vector 1K = (1)K
l=1. Such

solutions are what we call committee symmetric. To simplify the argument, we assume that the
prior P0 has covariance ρ = IK . Since both q and ρ − q are positive, the committee-symmetry
assumption implies that 0 ≤ qd ≤ 1 and 0 ≤ qa + qd ≤ 1 in the large-K limit.

In Appendix D.2, we detail the corresponding large K expansion of the free entropy for the
teacher-student scenario with Gaussian weights, and sign activation functions (the model of
eq. (4.1)). While the information-theoretically optimal generalization error was previously com-
puted [Sch93], we concentrated on the analysis of the performance of AMP by tracking the state
evolution equations. In doing so, we unveil a large computational gap.

Description of our results – Our results at largeK are presented in Fig. 4.3. In the right panel
we show the fixed point values of the two overlaps q00 = qd+qa/K and q01 = qa/K. The resulting
generalization error is plotted in the left panel. As shown in Appendix D.2 it can be written as
ǫg = arccos[2(qa + arcsin qd)/π]/π. The information-theoretic specialization transition arises for
α = Θ(K), so we define α̃ ≡ α/K. Contrary to the case K = 2, specialization is here a 1st order
phase transition, meaning that the specialization fixed point first appears at α̃G

spinodal ≃ 7.17
but the free entropy global extremizer remains the one of the non-specialized fixed point until
α̃G

spec ≃ 7.65. This has interesting implications for the optimal generalization error that gets
towards a plateau of value εplateau ≃ 0.28 for α̃ < α̃G

spec and then jumps discontinuously down.
For large α̃, the Bayes-optimal error decays asymptotically as 1/α̃, i.e. ǫITg (α̃) = Θ(1/α̃).

A large computational gap – As we have already discussed throughout this thesis, AMP is
conjectured to be optimal among a wide class of polynomial-time algorithms [CMW20], and thus
analyzing its state evolution sheds light on possible computational gaps, that come hand in hand
with 1st order phase transitions. In the regime α = O(K2) for large K, we find in Appendix D.2
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Figure 4.3: (Left) Bayes-optimal and AMP generalization errors and (right) diagonal and
off-diagonal overlaps q00, q01 for a committee machine with a large number of hidden neurons K
and Gaussian weights, as a function of the rescaled parameter α̃ = α/K. Solutions corresponding
to global and local maxima of the replica free entropy are respectively represented with full and

dashed lines. The dotted line marks the spinodal transition at α̃G
spinodal ≃ 7.17, i.e. the apparition

of a local minimum in the replica free entropy, associated to a solution with specialized hidden
units. The dotted-dashed line shows the first order specialization transition at α̃G

spec ≃ 7.65, at
which the specialized fixed point becomes the global minimum. For α̃ < α̃G

spec, AMP reaches the
Bayes-optimal generalization error and overlaps, corresponding to a non-specialized solution.

However, for α̃ > α̃G
spec, the AMP algorithm does not follow the optimal specialized solution and is

stuck in the non-specialized solution plateau, represented with dashed lines. Hence it unveils a
large computational gap (yellow area).

that the non-specialized fixed point is always stable, implying that AMP will not be able to give
a lower generalization error than εplateau corresponding to a non-specialized solution. However,
information-theoretically a specialization transition arises in the scale α = Θ(K): this implies
a large gap between the performance that can be reached information-theoretically and the one
reachable tractably, see the yellow area in Fig. 4.3. Such large computational gaps have been
previously identified in a range of inference problems —most famously in the planted clique
problem [DM15]— but the committee machine is the first model of a multi-layer neural network
with realistic non-linearity that presents such a large gap.

4.4 Proof of the replica formula: adaptive interpola-

tion

In this section, we sketch the proof of Theorem 4.1 by doing a small excursion closer to the realm
of probability. We use an adaptive interpolation method, based on an original idea of Guerra
[Gue03], and refined by Barbier and collaborators, see [BM19a] for a review on this technique.
In this regard, the interested reader can also consider this section as an introduction to this
powerful technique, in a quite involved context3. Details of proof will often be postponed to
Appendix C, as we focus on describing the method.

3For applications of this method to simpler models, one can refer to [BM19b] for e.g. the spiked Wigner model, or
to [BKM+19] for GLMs.
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All along this section we assume H.1, H.2 and H.3, and all our statements will implicitly assume
these hypotheses. We also define a few quantities for the remaining of this section:

• For µ = 1, . . .m, let Vµ, U
∗
µ be two vectors drawn from N (0, IK).

• Let sn ∈ (0, 1/2] an arbitrary sequence s.t. sn →
n→∞ 0.

• Let M be the compact subset of positive definite matrices in SK with all eigenvalues in the
interval [1, 2]. In particular, for all M ∈ (snM), we have (2snIK −M) ∈ S+

K .

4.4.1 Interpolating estimation problem

Let ǫ = (ǫ1, ǫ2) ∈ (snM)2. Let q : [0, 1] → S+
K(ρ) and r : [0, 1] → S+

K be two “interpolation
functions” (that will eventually depend on ǫ), and

R1(t) ≡ ǫ1 +
∫ t

0
r(v)dv , R2(t) ≡ ǫ2 +

∫ t

0
q(v)dv . (4.10)

For t ∈ [0, 1], define the K-dimensional vector (using the matrix square root):

St,µ ≡
√

1− t
n

n∑

i=1

XµiW
∗
i +

√
R2(t)Vµ +

√
tρ−R2(t) + 2snIK U∗

µ. (4.11)

We will interpolate between our original problem, and auxiliary problems related to the ones of
eqs. (4.3),(4.4). More precisely, the interpolating estimation problem is given by the following
observation model, with two types of t-dependent observations:

{
Yt,µ ∼ Pout( · |St,µ), 1 ≤ µ ≤ m,
Y ′

t,i =
√
R1(t)W ∗

i + Z ′
i ∈ R

K , 1 ≤ i ≤ n,
(4.12)

where for each i, Z ′
i ∼ N (0, IK). Recall that in our notation the “∗-variables” have to be

retrieved, while other random variables are fixed (they are quenched variables in the statistical
physics language). Define now st,µ by a similar expression to eq. (4.11):

st,µ ≡
√

1− t
n

n∑

i=1

Xµiwi +
√
R2(t)Vµ +

√
tρ−R2(t) + 2snIK uµ. (4.13)

The posterior of the interpolating problem is given by:

Pt,ǫ(w,u|Yt,Y
′
t,X,V) =

1
Zn,ǫ(t)

n∏

i=1

P0(wi)e−
‖Y ′

t,i
−

√
R1(t)wi‖2

2

m∏

µ=1

e− ‖uµ‖2

2

(2π)K/2
Pout(Yt,µ|st,µ). (4.14)

The free entropy “at time t” is by definition (recall that D is the standard Gaussian measure)

fn,ǫ(t) ≡
1
n
E ln

∫
Du

n∏

i=1

dwiP0(wi)e
− 1

2
‖Y ′

t,i−
√

R1(t)wi‖2
m∏

µ=1

Pout(Yt,µ|st,µ), (4.15)

At t = 0, the free entropy of eq. (4.15) is very close to the free entropy fn of the original
problem (cf. the statement of Theorem 4.1), a difference arising from the presence of the small
“perturbation” ǫ. We first show that this perturbation does not change the asymptotic free
entropy:
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Lemma 4.2 (Perturbation of the free entropy)

There exists a constant C > 0 such that for all ǫ ∈ (snM)2 we have

|fn,ǫ(0)− fn,ǫ=(0,0)(0)| ≤ Csn.

Proof of Lemma 4.2 – One can compute easily4:

∇ǫ1fn,ǫ(0) = −1
2
[
ρ− E〈Q〉n,0,ǫ

]
,

where the overlap matrix Q ∈ SK is defined below by eq. (4.18). Therefore, ‖∇ǫ1fn,ǫ(0)‖F is
bounded (using H.1). We define uy(x) ≡ lnPout(y|x). We can also compute (by calculations
very similar to the ones used in the proof of the following Proposition 4.3, so that we leave them
for the reader):

∇ǫ2fn,ǫ(0) =
1

2n

m∑

µ=1

E

[
∇uYt,µ(St,µ)

〈
∇uYt,µ(st,µ)

〉

n,0,ǫ

]
.

Note that the r.h.s. of the above equation is symmetric by the Nishimori Proposition 1.1, and
it is bounded by Hypothesis H.2. By the mean value theorem we obtain then directly that (for
some constants C1 and C2) |fn,ǫ(0)−fn,ǫ=(0,0)(0)| ≤ ‖∇ǫ1fn,ǫ(0)‖F ‖ǫ1‖F +‖∇ǫ2fn,ǫ(0)‖F ‖ǫ2‖F ≤
C1 maxi ‖ǫi‖ ≤ C2sn. �

Let us now precisely relate the extremal values {fn,ǫ(0), fn,ǫ(1)} to our original problem. Using
Lemma 4.2 , and continuity and boundedness properties of ψP0 and Ψout stated in Lemmas C.2
and C.3, one can easily verify from the very definition of fn,ǫ(t):





fn,ǫ(0) = fn −
K

2
+ On(1)

fn,ǫ(1) = ψP0

( ∫ 1

0
r(t)dt

)
+ αΨout

( ∫ 1

0
q(t)dt; ρ

)
− 1

2

∫ 1

0
Tr[ρ r(t)]dt− K

2
+ On(1) .

(4.16)

Here On(1) is meant uniformly in t, q, r, ǫ.

4.4.2 Overlap concentration and fundamental sum rule

Notice from (4.16) that at t = 1 the interpolating estimation problem constructs part of the RS
potential (4.6), while at t = 0 it is the free entropy of the original model (4.2) (up to a constant).
In order to compare these boundary values, we use the identity

fn = fn,ǫ(0) +
K

2
+ On(1) = fn,ǫ(1)−

∫ 1

0

dfn,ǫ(t)
dt

dt+
K

2
+ On(1). (4.17)

The next obvious step is therefore to compute the free entropy variation along the interpolation
path. This is summarized in the following Lemma, which is proven in Appendix C.4:

4or directly obtain by the I-MMSE formula for vector channels [RPD18]
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Proposition 4.3 (Free entropy variation)

Denote by 〈−〉n,t,ǫ the (Gibbs) expectation w.r.t. the posterior Pt,ǫ given by (4.14). Set
uy(x) ≡ lnPout(y|x). Then for all t ∈ [0, 1] we have

dfn,ǫ(t)
dt

= −1
2
E

〈
Tr
[( 1
n

m∑

µ=1

∇uYt,µ(st,µ)∇uYt,µ(St,µ)⊺ − r(t)
)(
Q− q(t))

]〉

n,t,ǫ

+
1
2

Tr[r(t)(q(t)− ρ)] + On(1).

Again On(1)→ 0 is meant uniformly in t, q, r, ǫ. The K ×K overlap matrix Q is defined as

Qll′ ≡
1
n

n∑

i=1

W ∗
ilwil′ . (4.18)

We will then plug the expression of Proposition 4.3 into eq. (4.17). In order to simplify it we
need the following crucial proposition, which states that the overlap concentrates. As we have
discussed in Chapter 1, this property is equivalent to what we know as replica symmetry.
Proposition 4.4 (Overlap concentration - Replica symmetry)

Assume that for any t ∈ (0, 1) the transformation ǫ ∈ (snM)2 7→ (R1(t, ǫ), R2(t, ǫ)) is a C1

diffeomorphism with a Jacobian determinant greater or equal to 1. Then one can find a
sequence sn going to 0 slowly enough such that there exists a constant C > 0 depending only
on ϕout, P0, K and α, and a constant γ > 0 such that:

1
Vol(snM)2

∫

(snM)2
dǫ
∫ 1

0
dtE

〈∥∥Q− E〈Q〉n,t,ǫ

∥∥2

F

〉
n,t,ǫ
≤ C

nγ
.

Proof of Proposition 4.4 – The proof of this concentration result can be directly taken from
[Bar19], which is entirely devoted to proving overlap matrix concentration. Using the results
of [Bar19] is straightforward assuming that ǫ 7→ R(t, ǫ) is a C1 diffeomorphism with a Jacobian
determinant greater or equal to 1. The reader can also refer to [AMB+19] for more details. �

Combining eq. (4.17) with Propositions 4.3 and 4.4, we can deduce the following fundamental
sum rule which is at the core of the proof:
Proposition 4.5 (Fundamental sum rule)

Assume that the interpolation functions r and q are such that the map ǫ = (ǫ1, ǫ2) 7→ R(t, ǫ) =
(R1(t, ǫ), R2(t, ǫ)) given by (4.10) is a C1 diffeomorphism whose Jacobian determinant is greater
or equal to 1. Assume that for all t ∈ [0, 1] and ǫ ∈ (snM)2 we have q(t) = q(t, ǫ) = E〈Q〉n,t,ǫ ∈
S+

K(ρ). Then

fn =
1

Vol(snM)2

∫

(snM)2
dǫ
{
ψP0

( ∫ 1

0
r(t)dt

)
+ αΨout

( ∫ 1

0
q(t, ǫ)dt; ρ

)

− 1
2

∫ 1

0
Tr[q(t, ǫ)r(t)]dt

}
+ On(1) .

In Proposition 4.5 we already see what we mean by adaptive interpolation: indeed, in order to
apply this identity, we need q(t), which is a parameter of the model, to be equal to the (averaged)
overlap of said model: this will create a self-consistent condition on q(t).

Proof of Proposition 4.5 – Let us denote Vn ≡ Vol(snM)2. In the following, the integral
over ǫ is always over (snM)2. Consider the first term, i.e. the Gibbs bracket, in the free entropy
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derivative given by Proposition 4.3. By the Cauchy-Schwarz inequality we have

(
E

〈
Tr
[( 1
n

m∑

µ=1

∇uYt,µ
(st,µ)∇uYt,µ

(St,µ)⊺ − r(t)
)(
Q− q(t)

)]〉

n,t,ǫ

)2

≤ 1
Vn

∫
dǫ
∫ 1

0

dtE
〈∥∥∥

1
n

m∑

µ=1

∇uYt,µ
(st,µ)∇uYt,µ

(St,µ)⊺ − r(t)
∥∥∥

2

F

〉

n,t,ǫ
× 1
Vn

∫
dǫ
∫ 1

0

dtE〈‖Q− q(t)‖2
F 〉n,t,ǫ.

The second term of this product is bounded by Cn−γ by Proposition 4.4, since we assumed
that for all ǫ ∈ (snM)2 and all t ∈ [0, 1] we have q(t) = q(t, ǫ) = E〈Q〉n,t,ǫ. The first term can
itself be shown to be bounded by some constant C ′ that only depend on ϕout and α. This is
shown in Lemma C.5 in Appendix C.5. In the end, applying Proposition 4.3 we obtain

1
Vn

∫
dǫ
∫ 1

0

dfn,ǫ(t)
dt

dt =
1

2Vn

∫
dǫ
∫ 1

0
Tr
[
q(t, ǫ)r(t)− r(t)ρ]dt+ On(1). (4.19)

Again, the term On(1) is uniform w.r.t. to the choice of q and r. When replacing eq. (4.19) in
eq. (4.17) and combining it with eq. (4.16) we reach the claimed identity. �

4.4.3 A technical lemma and an assumption

We give here a technical lemma used in the rest of the proof, and which allows us to detail the
assumption on which we rely to prove Theorem 4.1.

Lemma 4.6 (Technical lemma)

Recall that E〈Q〉n,t,ǫ is a function of (n, t, R(t, ǫ)). Let F (1)
n (t, R(t, ǫ)) ≡ 2α∇Ψout(E〈Q〉n,t,ǫ)

and F
(2)
n (t, R(t, ǫ)) ≡ E〈Q〉n,t,ǫ. Fn ≡ (F (1)

n , F
(2)
n ) is defined on the set:

Dn =
{

(t, r1, r2) ∈ [0, 1]× S+
K × S+

K

∣∣∣(ρt− r2 + 2snIK) ∈ S+
K

}
.

Fn is a continuous function from Dn to S+
K ×S+

K(ρ). Moreover, Fn admits partial derivatives
with respect to R1 and R2 on the interior of Dn. For every (t, R(t, ǫ)) for which they are
defined, they satisfy:

K∑

l≤l′

∂(F (1)
n )ll′

∂(R1)ll′
≥ 0. (4.20)

Proof of Lemma 4.6 – The fact that the image domain of Fn is S+
K ×S+

K(ρ) is a consequence
of Lemma C.1. The continuity and differentiability of Fn follow from standard theorems of
continuity and derivation under the integral sign (recall that we are working at finite n). Indeed,
the domination hypotheses are easily satisfied since we work under H.1 and H.2. Let us now
prove (4.20). We write the formal differential of F (1)

n with respect to R1 as DR1F
(1)
n , which is

a 4-tensor, and our goal is to prove that Tr[DR1F
(1)
n ] ≥ 0, the trace of a 4-tensor A(ij)(kl) over

SK being Tr[A] ≡∑i≤j A(ij)(ij). Then one can write Tr[DR1F
(1)
n ] = 2αTr[∇∇⊺Ψout(E〈Q〉n,t,ǫ)×

∇R1E〈Q〉n,t,ǫ]. We know from Lemmas C.1 and C.3 that ∇∇⊺Ψout(E〈Q〉n,t,ǫ) is a positive linear
operator over SK . Moreover, it is a known result that the derivative∇R1E〈Q〉n,t,ǫ is also positive,
since R1 is the “matrix snr” of a linear channel (see e.g. [RPD18]). Since the product of two
symmetric positive matrices (here linear operators on SK) has always positive trace, this shows
that Tr[DR1F

(1)
n ] ≥ 0. �
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We can now state a technical assumption on which we rely, and which essentially allows us to
derive that the map ǫ 7→ R(t, ǫ) is a C1 diffeomorphism with a Jacobian determinant greater or
equal to 1 as will become clear in the next section:
Hypothesis 4.1 (Technical assumption)

With the notations of Lemma 4.6,

K∑

l≤l′

∂(F (2)
n )ll′

∂(R2)ll′
≥ 0.

An unnecessary hypothesis – Note that when [AMB+19] first came out, the proof was relying
on the unproven Hypothesis 4.1. Since then, the work of Barbier & Reeves [BR20] has shown
that this hypothesis is not necessary if one uses a slightly more involved interpolation path than
the one of eq. (4.12), so that Theorem 4.1 stands without the need for Hypothesis 4.1. However,
since this technicality significantly lengthens our proof without adding any new physical insight,
in this thesis we chose to detail our original approach, assuming Hypothesis 4.1.

4.4.4 Matching bounds: adapting the interpolation path

We can now turn to proving the final result. We will use two different adaptive interpolation
paths, to obtain respectively lower and upper bounds on the free entropy.
Proposition 4.7 (Lower bound)

Under Assumption 4.1, the free entropy associated to the posterior of eq. (4.5) verifies

lim inf
n→∞ fn ≥ sup

r∈S+
K

inf
q∈S+

K(ρ)

fRS(q, r).

Proof of Proposition 4.7 – Choose first r(t) = r ∈ S+
K a fixed matrix. Then R(t) =

(R1(t), R2(t)) can be fixed as the solution to the first order Cauchy problem:

d
dt
R1(t) = r ,

d
dt
R2(t) = E〈Q〉n,t,ǫ , and R(0) = ǫ . (4.21)

We denote this (unique) solution R(t, ǫ) = (rt + ǫ1,
∫ t

0 q(v, ǫ; r)dv + ǫ2). It is possible to check
that this ODE satisfies the hypotheses of the parametric Cauchy-Lipschitz theorem, and that
by the Liouville formula the determinant Jn,ǫ(t) of the Jacobian of ǫ 7→ R(t, ǫ) satisfies (see
Lemma C.4 for details on the Liouville formula)

Jn,ǫ(t) = exp
( ∫ t

0

K∑

l≥l′

∂E〈Qll′〉n,s,ǫ

∂(R2)ll′
(s,R(s, ǫ)) ds

) (a)

≥ 1, (4.22)

in which (a) is a consequence of Assumption 4.1. Moreover by eq. (4.21), q(t, ǫ; r) = E〈Q〉n,t,ǫ,
which is in S+

K by Lemma C.1. The fact that the map ǫ 7→ R(t, ǫ) is a C1 diffeomorphism is
easily verified by its bijectivity (from the positivity of Jn,ǫ(t)) combined with the local inversion
theorem. All the assumptions of Proposition 4.5 are verified which then implies (recall the RS
potential of eq. (4.6)):

fn =
1

Vol(snM)2

∫

(snM)2
dǫ fRS

( ∫ 1

0
q(v, ǫ; r)dv, r

)
+ On(1).

Since this is true for any r ∈ S+
K , this easily implies the lower bound. �
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Proposition 4.8 (Upper bound)

Under Assumption 4.1, the free entropy associated to the posterior of eq. (4.5) verifies

lim sup
n→∞

fn ≤ sup
r∈S+

K

inf
q∈S+

K(ρ)

fRS(q, r).

Proof of Proposition 4.8 – We now fix R(t) = (R1(t), R2(t)) as the solution R(t, ǫ) =
(
∫ t

0 r(v, ǫ)dv + ǫ1,
∫ t

0 q(v, ǫ)dv + ǫ2) to the following Cauchy problem:

d
dt
R1(t) = 2α∇ΨPout(E〈Q〉n,t,ǫ) ,

d
dt
R2(t) = E〈Q〉n,t,ǫ , and R(0) = ǫ.

We denote this equation as ∂tR(t) = Fn(t, R(t)), R(0) = ǫ. It is then possible to verify that
Fn(R(t), t) is a bounded C1 function ofR(t), and thus a direct application of the Cauchy-Lipschitz
theorem implies that R(t, ǫ) is a C1 function of t and ǫ. The Liouville formula (Lemma C.4) for
the Jacobian determinant of the map ǫ ∈ (snM)2 7→ R(t, ǫ) gives this time

Jn,ǫ(t) = exp
( ∫ t

0

K∑

l≥l′

{∂(Fn,1)ll′

∂(R1)ll′
(s,R(s, ǫ)) +

∂(Fn,2)ll′

∂(R2)ll′
(s,R(s, ǫ))

}
ds
) (a)

≥ 1 . (4.23)

Equality (a) follows again from the positivity of this sum of partials, see Lemma 4.6 and As-
sumption 4.1. Eq. (4.23) implies the bijectivity of ǫ 7→ R(t, ǫ) which, combined with the local
inversion theorem, makes it a diffeomorphism. Since E〈Q〉n,t,ǫ and ρ−E〈Q〉n,t,ǫ are positive ma-
trices (see Lemma C.1) we also have that q(t, ǫ) ∈ S+

K(ρ) and since by the differential equation
we have r(t, ǫ) = 2α∇Ψout(q(t, ǫ)), we also have r(t, ǫ) ∈ S+

K by Lemma C.3. We have everything
needed to apply Proposition 4.5 again which gives in this case

fn =
1

Vol(snM)2

∫
dǫ
{
ψP0

( ∫ 1

0
r(v, ǫ)dv

)
+ αΨout

( ∫ 1

0
q(v, ǫ)dv; ρ

)

− 1
2

Tr
∫ 1

0
q(v, ǫ)r(v, ǫ)dv

}
+ On(1).

Then by convexity of ψP0 and Ψout (see Lemmas C.2 and C.3) and Jensen’s inequality:

fn ≤
1

Vol(snM)2

∫
dǫ
∫ 1

0
dv
{
ψP0(r(v, ǫ)dv) + αΨout(q(v, ǫ); ρ)− 1

2
Tr[q(v, ǫ)r(v, ǫ)]

}
+ On(1),

=
1

Vol(snM)2

∫
dǫ
∫ 1

0
dv fRS(q(v, ǫ), r(v, ǫ)) + On(1) .

We now remark that

fRS[q(v, ǫ), r(v, ǫ)] = inf
q∈S+

K(ρ)
fRS[q, r(v, ǫ)].

Indeed, for every r ∈ S+
K , the function gr : q ∈ S+

K(ρ) 7→ fRS(q, r) is convex (by Lemma C.3), and
moreover ∇gr(q) = α∇Ψout(q) − r/2. Thus ∇gr(v,ǫ)(q(v, ǫ)) = 0 by definition of r(v, ǫ). Since
S+

K(ρ) is convex, the minimum of gr(v,ǫ)(q) is necessarily achieved at q = q(v, ǫ). Therefore:

fn ≤
1

Vol(snM)2

∫

(snM)2
dǫ
∫ 1

0
dv inf

q∈S+
K(ρ)

fRS(q, r(v, ǫ)) + On(1) ≤ sup
r∈S+

K

inf
q∈S+

K(ρ)

fRS(q, r) + On(1),

which concludes the proof of Proposition 4.8. �
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Combining the two matching bounds of Propositions 4.7 and 4.8 ends the proof of Theorem 4.1.

Conclusion of Chapter 4

This chapter aimed at presenting how the different elements of the toolbox introduced in Chap-
ter 1 can be combined to study optimal learning in a large class of two-layers neural networks.

One of its main contributions is the design of an AMP-type algorithm that is able to achieve
Bayes-optimal learning in the high-dimensional limit. For the committee machine with a large
number of hidden neurons we uncover regimes in which a low generalization error is information-
theoretically achievable while the AMP algorithm fails to deliver it; strongly suggesting that no
efficient algorithm exists for those cases, and unveiling a large computational gap. These hard
phases are associated to first-order phase transitions in the solution of the model.

Importantly, we studied the Bayes-optimal setting in which the student network has the same
architecture as the teacher. However, the replica method can be generalized to a case in which
the teacher and students have different architectures, as was done for compressive sensing, see
e.g. [KMS+12]. It is an interesting subject for future work to leverage the replica method to
study how the hard phase evolves under e.g. over-parametrization. Note that since the writing of
[AMB+19], works have studied the influence of under and over-parametrization in the committee
machine on the performance of stochastic gradient descent, see e.g. [GAS+20].

Even though we focused in this chapter on a two-layers neural network, the analysis and algo-
rithm can be extended to a multi-layer setting, following e.g. the lines of [MP92], as long as the
number of layers as well as the number of hidden neurons in each layer is Θn(1), and as long as
one only learns the first-layer weights. Indeed, such models still belong to the class of Model 4.1,
so that Theorem 4.1 applies. The numerical evaluation of the phase diagram would be more
challenging than the cases presented in this chapter, as multiple integrals would appear in the
corresponding formulas. Going even further, one could study the case in which the weights of all
layers are learned. A possible strategy to tackle this setting (still assuming a number Θn(1) of
hidden neurons) would be to combine our AMP algorithm for the first layer with Expectation-
Maximization procedures to learn the remaining layers. Similar ideas were already implemented
in simpler settings than neural networks, see e.g. [KMS+12, KRFU14].

Let us make a final comment that will shed light on some of our motivation for the upcoming
Part III. There exists a complex line of work that studies the loss-function landscape of neural
networks. While a range of works show under various assumptions that spurious local minima
are absent in neural networks, others show under different conditions that they do exist, see
e.g. [SS18]. In the models we studied here, the regime of parameters that is hard for AMP must
have spurious local minima, but the converse is not true in general5: this motivates a precise
study of the loss landscape of neural networks, that will be the subject of Part III.

5Indeed it might be that there are spurious local minima, yet the AMP approach succeeds.
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Chapter 5

Generative models, or how to exploit
the structure in the data

“Data! Data! Data! . . . I can’t make bricks without clay!”

Sir Arthur Conan Doyle, Adventures of Sherlock Holmes (1892).

Disclaimer – While Chapter 4 illustrated well the power of our statistical physics toolbox to
study optimal learning, it was restricted to i.i.d. data. In this chapter, we go further in this
regard by investigating a crucial element to understand learning in practice: the structure in
the data. In order to study theoretically such structure, we leverage generative models: more
precisely, the data will be taken as the output of a (random) neural network. This will allow to
model synthetic data sets that possess very non-trivial correlations arising from the structure of
the generative model1, and to understand how such structure can affect learning. We will focus
on a rather simple inference problem to recover said data, namely spiked matrix estimation.
This chapter is mainly based on the published work [ALM+20], and will illustrate the flexibility
of the toolbox of Chapter 1, as we will adapt it to study the influence of data structure on the
feasibility of learning. It also contains a detailed random matrix analysis in Section 5.4, which
is inspired by the famous “BBP” transition [BBAP05].

5.1 Generative models for spiked matrix estimation

5.1.1 Introduction: exploiting data structure

Taking advantage of specific structures to enhance signal reconstruction is a central endeavour
in modern signal processing. Notable technological advances - such as e.g. JPEG and MP3
compression - stem from the fact that images and sound admit a sparse representation in wavelet
and Fourier bases. In a series of seminal works, see e.g. [CRT06], Candès, Romberg and Tao
have shown that underparametrized linear systems can be inverted if the signal is assumed to
be sparse. This opened the door for novel sub-Nyquist sampling strategies leveraged by sparsity
which are at the heart of compressed sensing [Don06]. But interest in sparse representations
reaches far beyond compressed sensing, and similar results have been derived for other signal
processing tasks, such as sparse coding and sparse principal component analysis (PCA). Despite
the remarkable success of these results, they broadly assume the latent sparse representation is
given, thus relying on expert knowledge for signal pre-processing.

On the other hand, recent progress in deep learning has witnessed a surge of interest in neural
network-based generative models. Opposed to sparsity, generative networks are trained to learn
a latent representation of the structured signal. The expressiveness of neural networks allied with

1Understanding the influence of data structure in learning through synthetic generative models has recently received
a burst of attention from some closes collaborators, see e.g. [GMKZ20, ALB+20, GLK+20, GRM+20].
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the capacity to capture hierarchical representations led to impressive results in signal modelling,
the most notable perhaps being Generative Adversarial Networks (GANs), which can be trained
to generate realistic images of human faces [GPAM+14]. An important and natural question
to ask is whether signals from generative models enjoy the same aforementioned interesting
properties as sparse signals in reconstruction tasks. A series of recent results indeed suggest
that the latent structure in generative models can be leveraged to improve signal reconstruction,
see e.g. [TMC+16, BJPD17, HV18, HLV18, GMKZ20] among many other works. These suggest
indeed that, in the words of [Vil18], “Generative models are the new sparsity”.

This chapter is a further step in this direction: we analyze a class of random-neural generative
priors in an unsupervised task: rank-one matrix factorization. Given a “data” matrix Y ∈ R

n×p,
the problem consists in finding two vectors (known as spikes) u ∈ R

n,v ∈ R
p such that Y can

be factorized as Y = uv⊺ +
√

∆ξ, where ξ is an i.i.d. noise matrix of unit variance. This
model is widely studied as a prototype for principal component analysis (PCA), since for small
noise (∆ < 1) and Gaussian spikes u,v, the optimal estimator is given by the leading principal
component of Y [BBAP05]. Optimality relies on the assumption of unstructured spikes, and
no longer holds if one of the spikes is sparse. In a similar spirit to compressed sensing, the
investigation of sparse spikes in this model resulted into bespoke algorithms widely studied
under the umbrella of sparse-PCA, see e.g. [JOB10].

An important conclusion of the aforementioned works is the existence of an algorithmic gap for
sparse signal reconstruction: even if signal reconstruction is information-theoretically possible,
no polynomial-time algorithm is known. For spiked-matrix factorization, this means that even
though the best known sparse-PCA algorithm performs better than “vanilla” PCA, it doesn’t
reach the optimal threshold set by the theoretical Bayesian estimator. As we will show, this
is in sharp contract to the class of neural generative models we study, for which we provide a
polynomial time algorithm reaching the optimal theoretical performance. Our line of work has
been continued by collaborators to study generative models in the phase retrieval problem, see
[ALB+20].

5.1.2 Inference model: spiked matrix estimation

We will focus on the following two models, which are widely studied in the sparse-PCA literature
[RF12, DM14a, LKZ15, PWBM16, BDM+16, Mio17, LM19] (note that they are as well very
natural random matrix theory problems):

Model 5.1 (Spiked Wigner model vv⊺)

Consider an unknown vector (the spike) v⋆ ∈ R
p drawn from a distribution Pv on R

p; we
observe a matrix Y ∈ R

p×p with a symmetric noise term ξ ∈ Sp and ∆ > 0:

Y =
1√
p

v⋆v⋆⊺ +
√

∆ξ, (5.1)

where ξ/
√
p ∼ GOE(p), i.e. ξij

i.i.d.∼ N (0, 1 + δij) for i ≤ j. The aim is to find back the spike
v⋆ from Y (up to a global sign).
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Model 5.2 (Spiked Wishart/covariance model uv⊺)

Consider two unknown vectors u⋆ ∈ R
n and v⋆ ∈ R

p drawn from distributions Pu and Pv and
let ξ ∈ R

n×p with ξµi
i.i.d.∼ N (0, 1), and ∆ > 0. We observe

Y =
1√
p

u⋆v⋆⊺ +
√

∆ξ, (5.2)

and the goal is to find back the spikes u⋆ and v⋆ from Y ∈ R
n×p.

The high-dimensional limit that we consider (the thermodynamic limit) is p, n → ∞ while
τ ≡ n/p = Θ(1), and the noise variance is ∆ = Θ(1). The prior Pv is representing the spike
v⋆ ∈ R

p via a k-dimensional parametrization with α ≡ p/k = Θ(1). Note that in sparse
estimation, k is the number of non-zeros components of v⋆, while in generative models k is the
number of latent variables. As in Chapter 4, we assume a Bayes-optimal setting (introduced in
Section 1.1): the priors and the noise ∆ > 0 are known to the observer.

5.1.3 Generative models for the data

Multivariate Gaussian prior

The simplest non-separable prior Pv that one can consider is the Gaussian model with a covari-
ance matrix Σ, that is Pv = N (0,Σ). While this prior is not compressive, it captures some
structure and can be simply estimated from data via the empirical covariance. This prior is very
elementary, and we introduce it here as we will use it later to produce Fig. 5.5.

Multi-layer generative prior

To exploit the practically observed power of generative models, one would ideally consider models
trained on datasets of examples of possible spikes, e.g. GANs, variational auto-encoders, or
restricted Boltzmann machines. Such training, however, leads to strong correlations between
the weights of the underlying neural networks, for which the theoretical part of the present
chapter can not be applied readily. To allow for tractable theoretical analysis we focus on multi-
layer generative models where all the weight matrices W(l) (1 ≤ l ≤ L) are fixed, independent,
and generated i.i.d. from N (0, 1). Let v ∈ R

p be the output of such a generative model:

v = ϕ(L)
( 1√

kL
W(L) . . . ϕ(1)

( 1√
k

W(1)z
))
, (5.3)

with z ∈ R
k a latent variable drawn from separable distribution Pz, with zero mean and variance

ρz. The ϕ(l) are element-wise activation functions that can be either deterministic or stochastic.
It will be useful to define the hidden variables h(l) ∈ R

kl obtained from the output of layer l−1:

h(l+1) = ϕ(l)
( 1√

kl
W(l)h(l)

)
⇔ h(l+1) ∼ P (l)

out

(
·
∣∣∣

1√
kl

W(l)h(l)
)
.

We naturally let h(1) ≡ z and h(L+1) ≡ v. We wrote in the last equation an equivalent
parametrization in terms of channel densities P (l)

out over Rkl+1 , that are also applied element-wise,
and that parametrize the input/output relationship at each layer of the generative network. For
instance, a deterministic layer l with non-linearity ϕ(l) is fully characterized by the scalar density
P

(l)
out(x|z) = δ(x− ϕ(l)(z)).

Recall that the observer has access to the generative prior Pv, i.e. she/he knows the matrices
W(l) ∈ R

kl+1×kl and non-linearities ϕ(l). In the case of Model 5.2, she/he has similarly access to
the details of Pu. The spike v∗ is generated using a ground-truth value of the latent variable z∗.
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The spike is then estimated from the knowledge of the data matrix Y, and the known form of
the spiked-matrix model and of the generative prior. Only the spike v∗ (and u∗ for Model 5.2)
and the latent vector z∗ are unknown, and are to be inferred.

For concreteness and simplicity, the generative model that will be analyzed in the majority of
examples given in this chapter is the single-layer case, i.e. eq. (5.3) with L = 1. In this case we
define the total compression ratio of the generative prior as α ≡ p/k. In what follows we will
illustrate our results for ϕ being linear, sign and ReLU functions.

5.1.4 Summary of main results

Before diving into the details let us briefly summarize the main results of this chapter.

• We first conduct an asymptotic analysis for the performance of the optimal estimators (both
information-theoretic and algorithmic) for the spiked-matrix Models 5.1 and 5.2. This analysis
is based on a rigorous expression for the mutual information between the matrix Y and
a general spike v⋆ drawn from an arbitrary distribution Pv in R

p. As in Chapter 4, this
expression can be obtained by use of the replica method, but we will focus in this chapter
on its rigorous derivation. Evaluating this expression on the generative priors discussed in
Section 5.1.3, we obtain the threshold ∆c ≡ ∆Algo below which the spike v⋆ can be partially
(or weakly) reconstructed in polynomial time.

• In order to understand the algorithmic limits of this problem, we derive an approximate
message-passing (AMP) algorithm for Model 5.1 and 5.2. For all the generative architectures
we analyze, we show that is attains the information-theoretic optimal performance.

• Finally, we propose a simple spectral method derived from our AMP algorithm, and we argue
that it reaches the same weak-recovery threshold ∆c. Remarkably, in certain cases we are able
to rigorously analyze this spectral method independently of AMP using only random matrix
theory tools.

Our main findings are in stark contrast to the known results for sparse PCA, and we therefore
emphasize two important conclusions of our analysis:

(i) No algorithmic gap with generative priors – Sharp and detailed results are known
in the thermodynamic limit (as defined above) when the spike v⋆ ∈ R

p is sampled from
a separable distribution Pv. A detailed account of several examples can be found in
[LKZ17]. The main finding for sparse priors Pv with k non-zero components is that when
the sparsity ρ = k/p = 1/α is large enough then there exist optimal algorithms [DM14a],
while for small enough ρ there is a striking gap between statistically optimal performance
and the one of best known algorithms [LKZ15]. These conclusions are consistent with
the well-known results for exact recovery of the support of v⋆ [AW09a, BR13], which is
one of the best-known cases in which gaps between statistical and best-known algorithmic
performance were described.

Our analysis of the spiked-matrix models with generative priors reveals that in this setting,
iterative algorithms are able to obtain asymptotically optimal performance even when the
compression factor is important, i.e. α ≫ 1. It therefore suggests that generative priors
are “better than sparsity” in the sense that they lead to algorithmically easier problems2.

(ii) Spectral algorithms reaching statistical threshold – Arguably the most basic
algorithm used to solve a spiked-matrix model is based on the leading singular vectors of

2Analogous conclusions about the lack of algorithmic gaps for the problem of phase retrieval under a generative
prior can be found in [HLV18, ALB+20].
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the matrix Y. We will generically refer to this strategy as PCA. Previous works on spiked-
matrix models [PWBM16, LKZ17] established that for separable priors, PCA reaches the
optimal (among polynomial-time algorithms) weak-recovery threshold ∆c, below which it
is able to provide positive correlation between its estimator and the ground-truth spike.
While for sparse priors positive correlation is statistically reachable for values ∆ > ∆c,
no efficient algorithm beating the PCA threshold is known3.

In the case of generative priors we find that well-chosen spectral methods can improve on
canonical PCA. We design a spectral method, called LAMP, that reaches the statistically
optimal threshold, meaning that for larger values of noise variance no other (even expo-
nential) algorithm is able to reach positive correlation with the spike. This is another
striking difference with sparse separable priors, making the generative priors algorithmi-
cally more attractive. We moreover demonstrate the performance of LAMP on real data,
and show considerable improvement over canonical PCA, even though real data does not
arise from a random generative prior.

Section 5.2 is dedicated to the analysis of information-theoretic and algorithmic optimal estima-
tion, while Section 5.3 focuses on the spectral methods and our random matrix theory analysis.
Section 5.4 is devoted to the proofs of the random matrix analysis.

5.2 Analysis of optimal estimation

5.2.1 Mutual information: the replica method rigorous once again

For conciseness, the following information-theoretic results are given for the Wigner model 5.1.
They can be fully generalized to the Wishart case, and we refer the reader to [ALM+20] for
more details on this regard.

From an optimization perspective, the problem we want to solve is to find the estimator v⋆ that
minimizes the mean squared error (MSE)

mse(∆) ≡ E||v̂− v⋆||22. (5.4)

Since the information about the generative model Pv of the spike is given, we know from Sec-
tion 1.1 that the estimator minimizing eq. (5.4) is given by the mean of the posterior distribution
of the spike P(v|Y), which we can write from Bayes’ rule as

P(v|Y) =
1

P(Y )
Pv(v)

∏

1≤i<j≤p

1√
2π∆

e
− 1

2∆

(
Yij− vivj√

p

)2
p∏

i=1

1√
4π∆

e
− 1

4∆

(
Yii−

v2
i√
p

)2

. (5.5)

The expression above is written in full generality, and for the time being we have not assumed
anything about Pv. The naive approach of estimating v̂opt from exact sampling of the posterior
is intractable numerically, especially in the large-dimensional limit p→∞ of interest. However,
it is still possible to track the performance of the optimal estimator without direct sampling,
through the I-MMSE theorem connecting the minimal mean squared error (MMSE) to a deriva-
tive of the mutual information between the signal and the data [GSV05]. Note that this is
completely equivalent to studying the free entropy in the statistical physics language.

Following this rationale, our first main result is a rigorous expression for the mutual information
between the ground-truth spike v⋆ and the observation Y, valid in the thermodynamic limit
p→∞. We state it informally, while a full technical statement can be found in [ALM+20]:

3This result holds for sparsity ρ = Θ(1). A line of work shows that when the sparsity k scales as O(p), there exists
algorithm that can outperform PCA in terms of weak recovery [AW09a, DM14b].
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Theorem 5.1 (Mutual information for Model 5.1 with structured spike, informal)

Assume that the spike v⋆ comes from a sequence (of growing dimension p) of structured priors
Pv on R

p. We define the mutual information as I(Y; v⋆) ≡ DKL(P(v⋆,Y)|Pv⋆PY). Then

lim
p→∞ ip ≡ lim

p→∞
I(Y ; v⋆)

p
= inf

qv∈(0,ρv)
iRS(∆, qv),

with iRS(∆, qv) ≡ (ρv − qv)2

4∆
+ lim

p→∞

I(v; v +
√

∆
qv

w)

p
. (5.6)

Here, w ∼ N (0, Ip), and ρv ≡ lim
p→∞EPv [v⊺v]/p.

The proof for this theorem can be found in [ALM+20]. It uses interpolation techniques, but as
opposed to the proof of the replica prediction in Chapter 4, interpolation is here not adaptive,
and the arguments are therefore significantly simpler. The subscript of iRS denotes replica
symmetry, acknowledging that this prediction is first obtained by the replica method before
being put on rigorous ground.

Let us first draw the consequences of Theorem 5.1. It connects the asymptotic mutual informa-
tion of the spiked model with generative prior Pv to the mutual information between v taken
from Pv and its noisy version, I(v; v +

√
∆/qvw). As mentioned before, the mutual informa-

tion is connected to the performance of the optimal estimator, and one can prove that for the
spiked-matrix model (cf. [EAK18]) the MMSE on the spike v⋆ is asymptotically given by:

MMSEv = ρv − q⋆
v , (5.7)

where q⋆
v is the minimizer of iRS(∆, qv) that appears in Theorem 5.1. Computing iRS is itself a

high-dimensional task, hard in full generality, but it can be done for a range of non-trivial Pv:

• The simplest tractable case is when the prior Pv is separable, then it yields back exactly the
previously known formula from [KXZ16, BDM+16, LM19].

• For the correlated Gaussian generative model Pv = N (0,Σ), one can easily compute I(v; v +√
∆/qvw) = Tr[ln(Ip + qvΣ/∆)]/2.

• More interestingly, let us consider the multi-layer generative prior with random weights from
eq. (5.3). The single-layer formula (i.e. when L = 1) for iRS has been derived and proven in
[BKM+19]. For the multi-layer L ≥ 1 case the mutual information formula has been derived
in [MKMZ17, Ree17] and proven for the case of two layers in [GML+19]. In [ALM+20], we
showed that these previous works yield the following formula for the spiked Wigner Model 5.1
with multi-layer generative prior given by eq. (5.3):

iRS(∆, qv) =
ρ2

v + q2
v

4∆
+

1
α

extr
{q̂l,ql}

[1
2

L∑

l=1

αlq̂lql −
L∑

l=1

αl+1Ψ(l)
out(q̂l+1, ql)−Ψz(q̂z)

]
. (5.8)

where αl = kl/k (in particular α1 = 1 and αL+1 = α). We also defined q̂L+1 ≡ qv/∆, qz = q1,
q̂z = q̂1, and the functions Ψz,Ψout are defined by





Ψz(x) ≡ Eξ[Zz(x1/2ξ, x) ln(Zz(x1/2ξ, x))],

Ψ(l)
out(x, y) ≡ Eξ,η[Z(l)

out(x
1/2ξ, x, y1/2η, ρl − y)× ln(Z(l)

out(x
1/2ξ, x, y1/2η, ρl − y))],
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with ξ, η ∼ N (0, 1), ρl is the second moment of the hidden variable hl and Zz, Z(l)
out are the

normalizations of the following two denoising scalar distributions:




Qz(z; γ,Λ) ≡ Pz(z)e− Λ
2

z2+γz

Zz(γ,Λ)
,

Q
(l)
out(v, x;B,A, ω, V ) ≡ P

(l)
out(v|x)e− A

2
v2+Bv

Z(l)
out(B,A, ω, V )

e− (x−ω)2

2V√
2πV

.

(5.9)

5.2.2 Optimal performance and statistical thresholds: phase diagrams

As many results of the replica method, Theorem 5.1 combined with eq. (5.8) is remarkable in
that it connects the asymptotic mutual information of a high-dimensional model with a simple
scalar formula that can be easily evaluated. Moreover, it fully characterizes the statistical and
algorithmic performance of the optimal estimators, allowing us to readily identify the thresh-
olds separating the region between possible and impossible inference of the spike. Let us now
draw some of its consequences for common activations. Taking the extremization over qv and
(q̂l, ql)1≤l≤L in eq. (5.8), we obtain the following system of coupled equations:





qv = 2∂xΨ(L)
out(qv/∆, qL)

qL = 2∂xΨ(L−1)
out (q̂L, qL−1)

...

ql = ∂xΨ(l−1)
out (q̂l, ql−1)

...

qz = 2Ψ′
z(q̂z)





q̂L = 2 α
αL
∂yΨ(L)

out(qv/∆, qL)

q̂L−1 = 2 αL
αL−1

α̃L−1∂yΨ(L−1)
out (q̂L, qL−1)

...

q̂l = 2αl+1

αl
∂yΨ(l)

out(q̂l+1, ql)
...

q̂z = 2α2
α1
∂yΨ(1)

out(q̂2, qz)

, (5.10)

As previously discussed, the set of solutions of these equations provides all the information
about the performance of the Bayes-optimal estimator through eq. (5.7), and of the optimal
algorithmic estimator as we will see. We shall refer to them (with a bit of anticipation) as the
state evolution (SE) equations.

Weak-recovery threshold

An important first question that can be answered from eq. (5.10) is weak recovery, i.e. when is it
possible to perform better than a random guess from the prior distribution Pv. For instance, we
intuitively expect that when the prior is not biased towards a particular direction in R

p and for
very high noise ∆ ≫ 1 weak recovery is impossible. In terms of fixed points of eq. (5.10), this
situation corresponds to the existence of the non-informative fixed point q⋆

v = 0 (i.e. maximum
MSEv = ρv, or zero overlap with the spike). Evaluating the right-hand side of eqs. (5.10) at
qv = 0, we can see that q⋆

v = 0 is a fixed point iff

EPz [z] = 0 and E
Q

(l),0
out

[v] = 0, (5.11)

where Q(l),0
out (v, x) ≡ Q(l)

out(v, x; 0, 0, 0, ρl) from eq. (5.9). Note that for multi-layer networks with
deterministic channels and ϕ(l) ≡ ϕ for all l, the second condition is equivalent to ϕ being an
odd function.

When the condition of eq. (5.11) holds, (qv, qL, q̂L, . . . , q̂z, qz) = (0, 0, 0, . . . , 0, 0) is a fixed point
of eq. (5.10). In [ALM+20] we perform a detailed linear stability analysis of this fixed point.
This gives a generic way to compute the weak-recovery threshold ∆c. Note that as we use a
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Figure 5.1: (Spiked Wigner model) MMSEv as a function of noise to signal ratio ∆/ρ2
v, and

single-layer generative prior with compression ratio α for linear (left), sign (center), and ReLU
(right) activations. Dashed white lines mark the transition ∆c for odd activation. Dotted white

lines mark the weak-recovery transition of canonical PCA.

local analysis of the uninformative fixed point, ∆c corresponds to the algorithmic weak-recovery
threshold: indeed, the performance of message-passing algorithms will be given by a local descent
on iRS starting from q = 0, as we will see in Section 5.2.34, while there might exists another
global minimum of iRS which does not arise from local instability of the q = 0 point. However,
in all cases we investigated this situation did not occur, so that ∆c corresponded both to the
information-theoretic and the algorithmic weak-recovery threshold.

Single-layer generative prior

We first consider a single-layer generative prior L = 1. Fix Pz = N (0, 1) and P
(1)
out(v|x) = δ(v −

ϕ(x)), for ϕ ∈ {linear, sign,ReLU}. The first two choices of nonlinearity are odd, and therefore
in these cases we expect a sharp weak-recovery transition as discussed above. This transition
can be computed from the Jacobian (details of this computation are given in [ALM+20]) as
we mentioned. We obtain ∆c = 1 + α for linear activation and ∆c = 1 + 4α/π2 for sign
activation. In both cases, since α > 0, it is clear that knowledge of the generative prior improves
reconstruction, as the weak-recovery threshold of canonical PCA is ∆PCA = 1. Moreover, the
larger α (i.e. the smaller the latent dimension with respect to the signal dimension), the better
the reconstruction.

Fig. 5.1 summarizes this discussion. We numerically solve eq. (5.10), and plot the MMSE
obtained from the solution in a heat map, for the linear, sign and ReLU activations. The white
dashed line marks the threshold ∆c obtained analytically as mentioned above. The property
that we find the most striking is that in these three evaluated cases, for all values of ∆ and α
that we analyzed, we always found that eq. (5.10) has a unique stable solution. Thus we have
not identified, in the physics terminology, any first order phase transition. Figure 5.2 shows
examples of numerical MMSE curves for three activations discussed, and different values of α.
The fixed point equations were solved iteratively from uncorrelated initial condition, and from
initial condition corresponding to the ground truth signal, and we found that both lead to the
same solution, illustrating the absence of computational gap.

Deeper generative priors

This observation generalizes to deeper L > 1 generative priors. Consider Pz = N (0, 1) and
layer-wise constant activation P (l)

out(v|x) = δ(v−ϕ(x)). For the previous odd activation functions

4This is an important and generic property of AMP algorithms and their state evolution, that is also discussed in
Chapters 4 and 6.
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Figure 5.2: (Spiked Wigner model) MMSEv as a function of noise ∆ for L = 1 and a wide range
of compression ratios α ∈ {0, 1, 10, 100, 1000}, for linear (left), sign (center), and ReLU (right)

activations. For the linear and sign functions, we show in dotted lines the weak-recovery transition
∆c. In all cases we find a unique solution for eq. (5.10).
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Figure 5.3: (Spiked Wigner model) MMSEv as a function of noise ∆ for L = 1, 2, 3 with constant
compressive ratio α1 = α2 = α3 = 1, for linear (left), sign (center), and ReLU (right) activations.
The second moment of v for L = 1, 2, 3 is ρ(L)

v = 1 for linear and sign activations, while for ReLU
ρ

(L)
v = 1/2L. For linear and sign functions, we plot in dotted line the weak-recovery transition ∆c.

discussed, we find that

• Linear activation – For ϕ(x) = x the leading eigenvalue of the Jacobian becomes one at

∆c ≡ 1 +
L∑

l=1

α

αl
. (5.12)

Note in particular that for L = 1 and in the limit α = 0 we recover the transition of PCA
∆c = 1 known from the case with separable prior [LKZ17]. For α > 0, we have ∆c > 1
meaning the spike can be estimated more efficiently when its structure is accounted for. In
particular, the deeper the generative network for the spike, the easier estimation becomes.

• Sign activation – For ϕ(x) = sign(x) the leading eigenvalue of the Jacobian becomes one at

∆c = 1 +
L∑

l=1

( 4
π2

)l α

αl
. (5.13)

As in the linear case, we recover the threshold of canonical PCA for α = 0, while for α > 0
we can estimate the spike for larger noise values than in the separable case, and depth also
improves estimation.

Fig. 5.3 illustrates our results for the multi-layer case. Note that we also didn’t observe first
order transitions for deeper networks, at least in the first-to-come-in-mind cases that we have
investigated, i.e. deterministic deep networks with ϕ(l) ≡ ϕ ∈ {linear, sign,ReLU}. However, we
do not expect this behavior to be completely general neither. One can engineer a situation, for
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Algorithm 4: AMP for the spiked Wishart model 5.2 with single-layer generative prior.
Result: The estimators û, v̂, ẑ
Input: Observation Y ∈ R

n×p and weight matrix W ∈ R
p×k;

Initialize to zero: (g, û, v̂,Bv, Av,Bu, Au)t=0;
Initialize: ût=1, v̂t=1, ẑt=1 ∼ N (0, σ2), ĉt=1

u = 1n, ĉt=1
v = 1p, ĉt=1

z = 1k;
while not converging do

Spiked layer ;

Bt
u = 1

∆
Y√

p v̂t − 1
∆

1⊺

pĉt
v

p Inût−1 and At
u = 1

∆
‖v̂t‖2

2
p ;

Bt
v = 1

∆
Y⊺√

p ût − 1
∆

1⊺

nĉt
u

p Ipv̂t−1 and At
v = 1

∆
‖ût‖2

2
p ;

Generative layer ;
V t = 1

k (1⊺
kĉt

z) and ωt = 1√
k
Wẑt − V tgt−1 and gt = fout(Bt

v, A
t
v,ω

t, V t) ;

Λt = 1
k‖gt‖22 and γt = 1√

k
W⊺gt + Λtẑt;

Update of the estimated marginals;
ût+1 = fu(Bt

u, A
t
u) and ĉt+1

u = ∂Bfu(Bt
u, A

t
u);

v̂t+1 = fv(Bt
v, A

t
v,ω

t, V t) and ĉt+1
v = ∂Bfv(Bt

v, A
t
v,ω

t, V t);
ẑt+1 = fz(γt,Λt) and ĉt+1

z = ∂γfz(γt,Λt) ;
t = t+ 1;

end

instance with a very shifted ReLU on the last layer, and a very large intermediate layer, so that
the spike v becomes effectively sparse with weakly correlated, almost independent, components,
thus recovering the classical algorithmic gap [LKZ17].

So far we have only discussed the performance of the information theoretic optimal estimator
- averting the question of estimating the signal itself. In the next section we close this gap by
mean of an approximate message-passing (AMP) algorithm, again originating in our statistical
physics toolbox.

5.2.3 Algorithmic optimal estimation

In this section we state and analyze an AMP algorithm tailored for spiked matrix estimation
with generative priors. Its derivation from the belief propagation equations is fairly technical,
and detailed in [ALM+20]. As we have discussed already in this thesis, AMP has two great
virtues in this type of Bayes-optimal models: firstly, it achieves the best MSE among a wide
class of general first order methods [CMW20], and secondly we can derive state evolution (SE)
equations to track the MSE of AMP in the thermodynamic limit. As we will see, this MSE
coincides with the optimal performance discussed in Section 5.2, even for large α. This result is
particularly interesting when compared to the known performance of message-passing algorithms
for sparse-PCA, for which AMP is not able to reach optimal statistical performance in the small
sparsity regime [LML+17].

As underlined in [ALM+20], one can combine two AMPs for independent inference problems into
a single one for a structured problem mixing the two. In particular, this applies to spiked-matrix
estimation with single-layer generative prior, which can be seen as the combination of a rank-one
matrix factorization problem [LKZ17] with a generalized linear model (GLM, cf. Section 1.1).
Note that the multi-layer case can be derived by iterating this procedure, and the interested
reader can refer to [ALM+20] for more details on this regard. We give the AMP algorithm for
the spiked Wishart model 5.2 in Algorithm 4, with a single-layer generative prior.

We defined some auxiliary functions:
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• fu and fz are the means of the distributions Qu and Qz, defined as

Qu(u;B,A) ≡ Pu(u)e− 1
2

Au2+Bu

Zu(B,A)
and Qz(z; γ,Λ) ≡ Pz(z)e− Λ

2
z2+γz

Zz(γ,Λ)
. (5.14)

• fv is the mean of v, and fout is the mean of V −1(x− ω), both with respect to

Qout(v, x;B,A, ω, V ) ≡ e− 1
2

Av2+BvPout(v|x)
Zout(B,A, ω, V )

e− (x−ω)2

2V . (5.15)

The AMP algorithm for the spiked Wigner model 5.1 is very similar and can be readily obtained
by imposing at each time step (ût, ĉt

u) = (v̂t, ĉt
v) and removing the redundant equations in

Algorithm 4.

5.2.4 State evolution equations

Perhaps the most important virtue of AMP-type algorithms is that their asymptotic performance
(here the MSE) can be tracked exactly via a set of scalar equations called state evolution (SE).
This has been proven for a range of models including the spiked matrix models with separable
priors in [JM13], and with non-separable priors in [BMN20]. Adapting the steps of these works,
we now derive the state evolution equations for our structured model. As for the algorithm, we
state the equations for the Wishart model 5.2, from which the Bayes-optimal state evolution
equations for the Wigner model 5.1 can be readily obtained.

We simply state the SE equations obtained by an asymptotic analysis of AMP. The SE gives
the evolution of the following order parameters under Algorithm 4:





qt
u ≡ Eu⋆ lim

n→∞
(ût)⊺ût

n
= Eu⋆ lim

n→∞
(ût)⊺u⋆

n
≡ mt

u,

qt
v ≡ Ev⋆ lim

p→∞
(v̂t)⊺v̂t

p
= Ev⋆ lim

p→∞
(v̂t)⊺v⋆

p
≡ mt

v,

qt
z ≡ Ez⋆ lim

k→∞
(ẑt)⊺ẑt

k
= Ez⋆ lim

k→∞
(ẑt)⊺z⋆

k
≡ mt

z.

(5.16)

Note that we used the Nishimori proposition 1.1, itself a consequence of Bayes-optimality, to
deduce the equality between q and m. From this definition, it is clear that computing qu, qv, qz

is enough to access the asymptotic MSE achieved by the AMP algorithm. We can now state
the closed set of AMP state evolution equations for the Wishart model 5.2:





qt+1
u = Eu⋆,ξ

[
fu

(qt
v

∆
u⋆ +

√
qt

v

∆
ξ,
qt

v

∆

)2]
, (5.17a)

qt+1
v = Ev⋆,ξ,η

[
fv

(τqt
u

∆
v⋆ +

√
τqt

u

∆
ξ,
τqt

u

∆
,
√
qt

zη, ρz − qt
z

)2]
, (5.17b)

q̂t
z = αEv⋆,ξ,η

[
fout

(τqt
u

∆
v⋆ +

√
τqt

u

∆
ξ,
τqt

u

∆
,
√
qt

zη, ρz − qt
z

)2]
, (5.17c)

qt+1
z = Ez⋆,ξ[fz(q̂t

zz
⋆ +

√
q̂t

zξ, ρz − qt
z)2]. (5.17d)

Note that we introduced an additional auxiliary variable q̂z, and recall that τ ≡ n/p, α = p/k
and the definitions of the auxiliary functions in eqs. (5.14),(5.15). In the expectations, the
variables ξ, η are taken independently from N (0, 1), and u∗, v∗, z∗ are drawn from Pu, Pv, Pz.
For a detailed derivation of eq. (5.17) the reader should refer to [ALM+20].
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Figure 5.4: Comparison between PCA, LAMP and AMP for linear (left) and sign (center)
activations, at compression ratio α = 2. Full lines correspond to the asymptotic performances

obtained from the SE equations, while dots correspond to simulations. We use k = 104 for LAMP,
k = 5.103 for AMP. (Right) Illustration of the spectral phase transition in the matrix Γvv

p of
eq. (5.21) at α = 2 with informative leading eigenvector with eigenvalue equal to 1 out of the bulk
for ∆ ≤ 1 + α. We show the bulk spectral density µ(α,∆) and the two leading eigenvalues (inset).

State evolution equations in the Wigner model

The state evolution equations for the Wigner model 5.1 are obtained as a particular case of
the above by simply restricting qt

u = qt
v and τ = 1. In the end (after performing a change of

variables) this leaves us with only three coupled equations:





qt+1
z = Eξ[{Zz × f2

z }(
√
q̂t

zξ, q̂
t
z)] = 2∂q̂z Ψz(q̂t

z), (5.18a)

q̂t
z = αEξ,η

[
{Zout × f2

out}
(
√
qt

v

∆
ξ,
qt

v

∆
,
√
qt

zη, ρz − qt
z

)]
= 2α∂qz Ψout

(qt
v

∆
, qt

z

)
, (5.18b)

qt+1
v = Eξ,η

[
{Zout × f2

v }
(
√
qt

v

∆
ξ,
qt

v

∆
,
√
qt

zη, ρz − qt
z

)]
= 2∂qv Ψout

(qt
v

∆
, qt

z

)
. (5.18c)

We initialize these iterations as qt=0
v = ε, qt=0

z = ε, with a small ε > 05. We notice immediately
that eq. (5.18) is identical to the fixed point equations related to the Bayes-optimal estimation,
eq. (5.10) with specific time-indices and initialization, but crucially the same fixed points. Thus
the analysis of fixed points in Section 5.2.2 applies straightforwardly here. In particular, since
in all cases analyzed we found the stable fixed point of eq. (5.10) to be unique, we conclude that
our AMP algorithm reaches asymptotically optimal performance in these cases.

We further check our results by numerically comparing the runs of AMP on finite size instances
with the state evolution curves already presented in Fig. 5.2, also giving an idea of the amplitude
of the finite size effects (which are found to be fairly small). This experiment is illustrated in
Fig. 5.4, together with a curve for PCA and for LAMP, a spectral method we derive from AMP
in the next section. A code for reproducing this experiment is provided in a GitHub repository
[ALM+19].

5This is necessary as, by symmetry of the problem, the point qv = qz = 0 is always a fixed point of the SE.
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5.3 LAMP: a spectral algorithm for generative priors

Spectral algorithms are arguably the most popular and simplest methods for solving the spiked
matrix estimation problem. A seminal result from Baik, Ben Arous and Péché (BBP) [BBAP05]
shows that the leading eigenvector of Y (i.e. PCA) is correlated with the signal if and only if
the signal-to-noise ratio satisfies ρ2

v/∆ > 1. For sparse separable priors (with ρ2
v = Θ(1)),

∆PCA = ρ2
v is also the threshold for AMP and it is conjectured that no polynomial algorithm

can improve upon it [LKZ17]. In contrast, in Section 5.2 we have developed an AMP algorithm
(Algorithm 4) that has consistently better performance than PCA for structured priors, and in
particular achieves the optimal weak recovery threshold.

Despite all its virtues, AMP is unarguably a convoluted algorithm. It would be desirable to
design a simple spectral algorithm that still takes into account the structured nature of the
prior. In this section we design such a spectral algorithm, hereafter named L-AMP, and we
show that it matches the optimal weak-recovery threshold. Our derivation follows a strategy
pioneered in [KMM+13], consisting on analyzing the AMP equations linearized around the non-
informative fixed point. In this section, the discussion is framed on the Wigner model, the
Wishart case being a straightforward generalization, given in [ALM+20]. We also focus on the
single-layer generative prior, and we will describe how multi-layer generalizations can be made.

We discussed in Section 5.2 the existence condition of the uninformative fixed point in the Bayes-
optimal SE equations. Not surprisingly, since the SE of AMP is identical to the Bayes-optimal
one, the same conditions can be obtained independently from the AMP equations by analyzing
when v̂ = 0, and we find back eq. (5.11):

(v̂, ẑ) = (0,0) is a fixed point of AMP iff {EQ0
out

[v] = 0 and EPv [z] = 0}. (5.19)

5.3.1 Linearizing the AMP equations

The linearization of Algorithm 4 around the uninformative fixed point under eq. (5.19) is fairly
straightforward, and the interested reader can find it in [ALM+20]. In the end, dropping time
indices, we obtain an equation v̂ = Γvv

p v̂ where the LAMP operator Γvv
p is given by

Γvv
p ≡

1
∆

(
(a− b)Ip + b

WW⊺

k
+ c

1p1⊺
k

k

W⊺

√
k

)( Y√
p
− aIp

)
, (5.20)

where the parameters are simply the moments of distributions Pz and Q0
out

a ≡ EQ0
out

[v2] = ρv, b ≡ ρ−1
z EQ0

out
[vx]2, c ≡ 1

2
ρ−3

z EPz [z3]EQ0
out

[vx2]EQ0
out

[vx].

Note that in most of the cases we studied, the parameter c, taking into account the skewness of
the variable z, is zero, simplifying considerably the structured matrix. Moreover, for the specific
examples already discussed in Section 5.2, the LAMP operator Γvv

p is very simple. For instance,
for Gaussian z and Pout(v|x) = δ(v − sign(x)), we have (a, b, c) = (1, 2/π, 0). Instead, for linear
activation we get (a, b, c) = (1, 1, 0). In this latter case, the LAMP operator can be written as

Γvv
p =

1
∆

Kp [
Y√
p
− Ip] with Kp =

[WW⊺]
k

≃ Σ ≡ 1
n

∑

α

vα(vα)⊺ , (5.21)

or, in other words, Kp is the covariance matrix of the structured spike v. The same observation
holds for the sign activation function. Interestingly, the covariance matrix Σ can be empirically
estimated directly from samples of spikes, without the knowledge of the generative model (ϕ,W )
itself, suggesting a simple practical implementation of LAMP. With this in mind, we use a more
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Algorithm 5: LAMP (Linearized AMP) spectral algorithm

Input: Observed matrix Y ∈ Sp, prior Pv on v ∈ R
p;

Take the leading eigenvector v̂ ∈ R
p of Γvv

p ≡ Kp [ Y√
p − Ip] with Kp = EPv [vv⊺];

generic definition for LAMP as Algorithm 5. LAMP can therefore be interpreted as a refined
version of PCA that takes into account the structure of the prior by incorporating the non-trivial
correlations through Kp into the spectral estimation. In particular taking Pv = N (0, Ip), we
obtain Γvv

p = [Y/
√
p− Ip]/∆ and recognize the vanilla PCA operator (up to a shift).

State evolution for LAMP in the linear case – Analogously to the state evolution for AMP,
the asymptotic performance of both PCA and LAMP can be evaluated in a closed form for the
spiked Wigner model with single-layer generative prior with linear activation. The corresponding
expressions are derived in Appendix D.4 and plotted in the left panel of Fig. 5.4.

A note on normalization – Note that the spectral methods and AMP use different normal-
izations. In order to compare them fairly in Fig. 5.4, we renormalized the spectral estimators
to match the AMP estimator norm. We detail the reasons behind this renormalization in Ap-
pendix D.4.

5.3.2 Random matrix perspective on the spectral methods

Remarkably, the performance of the spectral method described in Algorithm 5 can be investi-
gated independently of AMP using solely random matrix theory, for a linear generative prior.
An analysis of the random matrix of eq. (5.21) shows that a spectral phase transition takes place
as ∆c = 1 + α (as for AMP). This transition is analogous to the well-known BBP transition
[BBAP05], but for the non-GOE random matrix of eq. (5.21).

For the spiked Wigner models with linear generative prior we prove two detailed theorems
describing the behavior of the supremum of the bulk spectral density, the transition of the
largest eigenvalue and the correlation of the corresponding eigenvector. The interested reader
can find natural extensions of these theorems for spiked Wishart models in our work [ALM+20].
We assume in the following that ρv = 1 to simplify the analysis (without any loss of generality).
Recall that we have α = p/k and

Γvv
p ≡

[1
k

WW⊺
] [ 1√

∆p
ξ +

1
∆

vv⊺

p
− 1

∆
Ip

]
. (5.22)

Here ξij
i.i.d.∼ N (0, 1 + δij). Note that v also depends on W via the generative prior, so that

the spike in eq. (5.22) is correlated with the unspiked matrix, as opposed to the classical case
of [BBAP05]. We first describe the behavior of the bulk of Γvv

p .
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Theorem 5.2 (Bulk of the spectral density of Γvvp )

For any α,∆ > 0, as p → +∞, the spectral measure of Γvv
p converges almost surely and in

the weak sense to a well-defined and compactly supported probability measure µ(α,∆), and
we denote supp µ its support. We separate two cases:

(i) If ∆ ≤ 1/4, then supp µ ⊆ R−.

(ii) Assume now ∆ > 1/4 and denote z1(∆) ≡ −∆−1 +2∆−1/2 > 0. Let ρ∆ be the probability
measure on R with density

ρ∆(dt) =

√
∆

2π

√

4−∆
(
t+

1
∆

)2
× 1

{
|t+

1
∆
| ≤ 2√

∆

}
dt. (5.23)

The following equation admits a unique solution for s ∈ (−z1(∆)−1, 0):

α

∫
ρ∆(dt)

( st

1 + st

)2
= 1. (5.24)

We denote this solution as sedge(α,∆) (or simply sedge). The supremum of the support of
µ(α,∆) is denoted λmax(α,∆) (or simply λmax). It is given by:

λmax =





α

∫
ρ∆(dt)t

1 + sedget
− 1
sedge

if α ≤ 1,

max
(
0, α

∫
ρ∆(dt)t

1 + sedget
− 1
sedge

)
if α > 1.

As a function of ∆, λmax has a unique global maximum, reached exactly at the point
∆ = ∆c(α) = 1 + α. Moreover, λmax(α,∆c(α)) = 1.

We turn now to the description of the transition in the spectrum:

Theorem 5.3 (Transition of the largest eigenvalue of Γvvp )

Let α > 0. We denote λ1 ≥ λ2 the first and second eigenvalues of Γvv
p .

• If ∆ ≥ ∆c(α), then as p→∞ we have a.s. λ1 → λmax and λ2 → λmax.

• If ∆ ≤ ∆c(α), then as p→∞ we have a.s. λ1 → 1 and λ2 → λmax.

Further, denoting ṽ a normalized (‖ṽ‖2 = p) eigenvector of Γvv
p with eigenvalue λ1, then a.s.

|ṽ⊺v⋆|2/p2 → ǫ(∆) a.s., where ǫ(∆) = 0 for all ∆ ≥ ∆c(α), ǫ(∆) > 0 for all ∆ < ∆c(α) and
lim∆↓0 ǫ(∆) = 1.

Theorems 5.2 and 5.3 are illustrated in the right panel of Fig. 5.4.

As we will see, the proof gives the value of ǫ(∆), which coherently leads to the MSE of Fig. 5.4
in the linear case. The proofs of Theorems 5.2 and 5.3 are given in Sections 5.4.1 and 5.4.2. The
method of proof of Theorem 5.3 is inspired by [BGN11]6, and allows us to compute the squared

6Note that while all the calculations are justified, refinements would be needed in order to be completely rigorous.
These refinements would follow exactly some proofs of [SB95] and [BGN11], so we will refer precisely to them
when necessary.
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Figure 5.5: Illustration of canonical PCA (top line) and LAMP (bottom line) spectral methods
on the spiked Wigner model. The covariance Σ is estimated empirically from the FashionMNIST
database. The estimation of the spike is shown for two images from FashionMNIST, with (from

left to right), noise variance ∆ = 0.01, 0.1, 1, 2, 10.

correlation ǫ(∆). It is given, for all ∆ < ∆c(α), as

ǫ(∆) =
1
α

[S(2)(1)]2

S(1,2)(1)
.

The functions S(1,2) and S(2) are defined in the following Lemma 5.5, and formulas are also given
that allow to compute them numerically. A Mathematica demonstration notebook is provided
in a GitHub repository [ALM+19].

Non-linear activation – In the non-linear case the random matrix analysis is harder to per-
form. Indeed, in the matrix Γvv

p , the Wishart matrix WW⊺/k is replaced by aI+bWW⊺/k with
a, b ≥ 0. It is thus not possible to relate the spectrum of Γvv

p to the one of a symmetric matrix
of the type WZW⊺ with W a gaussian i.i.d. matrix (a generalized sample covariance matrix as
defined in Section 1.5). Techniques from free probability allow for a detailed treatment of the
spectral transition in this case, but such an analysis is not performed in this thesis.

5.3.3 Application to real data recovery

Remarkably, the LAMP operator in eq. (5.21) only depends on the generative prior through its
covariance. An interesting exercise is therefore to apply LAMP to recover real data by simply
using the empirical covariance for n samples of the spikes {vα}nα=1.

As an illustration we perform the following experiment: the spikes v⋆ are drawn from the
Fashion-MNIST dataset [XRV17], and are used to generate the spiked matrix Y according
to eq. (5.1). We then apply LAMP (Algorithm 5) to reconstruct the spikes, repeating this
experiment for different noise values ∆. In Fig. 5.5 we compare the reconstruction by LAMP with
standard PCA over Y. In principle, we have no theoretical guarantees about the performance of
LAMP, since the Fashion-MNIST images are not drawn from the generative class studied above.
Nevertheless, it is striking to observe that LAMP greatly outperforms PCA. A demonstration
notebook illustrating this experiment is provided in a GitHub repository [ALM+19].

5.4 Random matrix analysis of the transition

In this section we present the proofs of Theorems 5.2 and 5.3.

5.4.1 The bulk of eigenvalues: proof of Theorem 5.2

Proof of Theorem 5.2 (ii) – We begin by treating the more involved case (ii), that is
we assume ∆ > 1/4. Note first that by basic linear algebra, the spectrum of Γvv

p is, up to 0
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eigenvalues, the same as the spectrum of the following matrix Γvv
k :

Γvv
k ≡

1
k

W⊺[
1√
∆p
ξ +

1
∆

vv⊺

p
− 1

∆
Ip]W ∈ Sk. (5.25)

More precisely, if p ≥ k we have Sp (Γvv
p ) = Sp (Γvv

k ) ∪ {0}p−k, and conversely if k > p. These
additional zero eigenvalues in the case α > 1 explain the max(0, ·) term in the expression of
λmax in Theorem 5.2.

For the remainder of the proof we consider Γvv
k instead of Γvv

p given the remark above. Moreover,
for simplicity we will drop the vv exponent in those matrices, and just denote them Γk,Γp.

The bulk of Γk can be studied using standard random matrix theory results. Indeed, by the
celebrated results of Wigner [Wig55], the spectral distribution of the matrix ξ/

√
∆p − Ip/∆

converges in law (and almost surely) as p → ∞ to ρ∆, given by eq. (5.23). Moreover, Γk

is precisely a generalized sample covariance matrix that we introduced in Section 1.5. Let us
define ν(α,∆) as the LSD of Γk, and gν(z) its Stieltjes transform. The main quantity of interest
to us is zedge, defined as the supremum of the support of ν(α,∆). It is easy to see that gν

induces a strictly increasing diffeomorphism gν : (zedge,+∞) → (limz↓zedge
gν(z), 0), so that we

can define its inverse g−1
ν and from Theorem 1.7, it satisfies for every s ∈ (limz↓zedge

gµ(z), 0):

g−1
ν (s) = −1

s
+ α

∫
ρ∆(dt)

t

1 + st
. (5.26)

From the remarks above, µ(α,∆) and ν(α,∆) only differ by the addition of a delta distribution.
If zedge ≥ 0, then it will also be the supremum of the support of µ(α,∆), and thus equal to λmax.

In order to compute zedge from eq. (5.26), we use a result of Section 4 of [SC95], also stated for
instance in [LS16], that describes the form of the support of ν(α,∆). It can be stated in the
following way. Recall that since ∆ > 1/4, z1(∆) > 0 is the maximum of the support of ρ∆. Let
sedge be the unique solution in (−z1(∆)−1, 0) of the equation (g−1

ν )′(s) = 0, that is by eq. (5.26):

α

∫
ρ∆(dt)

( st

1 + st

)2
= 1. (5.27)

Indeed, it is straightforward to show that the left-hand side of eq. (5.27) tends to 0 as s ↑ 0, to
+∞ as s ↓ −z1(∆)−1, and is a strictly decreasing and continuous function of s. Then (see for
instance eqs. (2.13) and (2.14) of [LS16]) zedge is given by

zedge = lim
s↓sedge

g−1
ν (s) = − 1

sedge
+ α

∫
ρ∆(dt)

t

1 + sedget
.

This ends the proof of (ii). �

Let us make a final remark that will be useful in our future analysis. Note that z1(∆) > 1 for
all ∆ > 1. Moreover, for all ∆ > 1, we have by an explicit computation:

α

∫
ρ∆(dt)

( t

1− t
)2

=
α

∆− 1
.

By the argument above, this yields the following result, that we state as a lemma:

Lemma 5.4

Assume ∆ > 1. If ∆ < ∆c(α), then sedge > −1. Conversely, if ∆ > ∆c(α), then sedge < −1.
And moreover for ∆ = ∆c(α), sedge = −1.
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Proof of Theorem 5.2 (i) – Assume now ∆ ≤ 1/4, so that supp(ρ∆) ⊂ R−. Since 0 ∈ R−,
we can use again the remark we made in the proof of (ii) to study Γk instead of Γp. Moreover,
Theorem 1.7 still applies here so that we have the Marchenko-Pastur equation (5.26). By the
Stieltjes-Perron inversion formula (Theorem 1.5) it is enough to check that for every z > 0,
there exists a unique s < 0 such that g−1

ν (s) = z. Indeed, this will yield that s = gν(z) ∈ R, so
that limǫ↓0 Im gν(z + iǫ) = 0. As this holds for every z > 0, it implies supp(ν) ⊆ R− and thus
supp(µ) ⊆ R−. From eq. (5.26) and the fact that supp(ρ∆) ⊆ R−, we easily obtain

lim
s→−∞

g−1
ν (s) = 0, and lim

s→0−
g−1

ν (s) = +∞.

Moreover, g−1
ν (s) is a strictly increasing continuous function of s, so that the existence and

uniqueness of s = gν(z) < 0 for any z > 0 is immediate, which ends the proof. �

We now prove the final statement of Theorem 5.2, on the behavior of λmax with ∆, at fixed α.
Proof of the behavior of λmax with ∆ – Recall that zedge = −(1/sedge) + α

∫
ρ∆(dt)t/(1 +

sedget). Then we know that λmax = zedge if α ≤ 1 and λmax = max(0, zedge) if α > 1. Let us
make a few remarks:

• We already showed that, if ∆ ≤ 1/4 then zedge ≤ 0.

• It is trivial by the form of Γk that, as ∆→ +∞, zedge → 0.

It is easy to see that zedge is a continuous and differentiable function of ∆, so that if we show
the two following facts for any ∆ ≥ 1/4:

dzedge

d∆
= 0⇔ ∆ = ∆c(α) = 1 + α, (5.28)

zedge(∆c(α)) = 1, (5.29)

this would end the proof as zedge would then have a unique global maximum, located in ∆ =
∆c(α), in which we have λmax = 1. We thus prove eq. (5.28) and eq. (5.29) in the following. �

Proof of eq. (5.28) – By the chain rule:

dzedge

d∆
=
∂zedge

∂∆
+
∂sedge

∂∆
∂zedge

∂sedge
=
∂zedge

∂∆
.

Indeed one can check ∂zedge/∂sedge = 0 from eq. (5.27) and the Marchenko-Pastur equation.
Given the explicit form of ρ∆, one can compute easily:

∂zedge

∂∆
= − α

2s3
edge

[ sedge + 2s2
edge −∆

√
s2

edge − 2sedge(1 + 2sedge)∆ + ∆2
+ 1

]
.

It is then simple analysis to see that since sedge < 0, ∂zedge/∂∆ = 0 iff sedge = −1 and ∆ > 1.
By Lemma 5.4, this is equivalent to ∆ = ∆c(α) = 1 + α. �

Proof of eq. (5.29) – By Lemma 5.4, we know that for ∆ = ∆c(α) we have sedge = −1. Given
the definition of ρ∆ in eq. (5.23), it is straightforward to compute:

zedge(∆c(α)) = −1 + α

∫
ρ∆c(α)(dt)

t

1− t = 1.

�
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5.4.2 BBP-like transition: proof of Theorem 5.3

Transition of the largest eigenvalue and corresponding eigenvector – This part is
a detailed outline of the proof. Some parts of the calculation are not fully rigorous, however
they can be justified more precisely by following exactly the lines of [BGN11] and [SC95]. We
will emphasize when such refinements have to be made. Recall that we have by eq. (5.22) the
following decomposition of Γvv

p (denoted Γp for simplicity):

Γp =
[1
k

WW⊺
] [ 1√

∆p
ξ − 1

∆
Ip

]

︸ ︷︷ ︸
Γ

(0)
p

+
1
∆

WW⊺

k

vv⊺

p︸ ︷︷ ︸
rank-1 perturbation

. (5.30)

Theorem 5.2, along with its proof, already describes in great detail the LSD of Γ(0)
p . Note that

for any λ ∈ R that is not an eigenvalue of Γ(0)
p one can write:

det(λIp − Γp) = det
(
Ip − (λIp − Γ(0)

p )−1 1
∆

WW⊺

k

vv⊺

p

)
det(λIp − Γ(0)

p ).

In particular, this implies immediately that λ is an eigenvalue of Γp and not an eigenvalue of
Γ(0)

p if and only if 1 is an eigenvalue of (λIp−Γ(0)
p )−1WW⊺vv⊺/(∆kp). Since this is a rank-one

matrix, its only non-zero eigenvalue is equal to its trace, so it is equivalent to:

1 = Tr [(λIp − Γ(0)
p )−1 1

∆
WW⊺

k

vv⊺

p
]. (5.31)

Recall that by definition, v is constructed as v = Wz/
√
k, with z ∼ N (0, Ik). For any matrix

A, we have the classical concentration z⊺Az/k = TrA/k with high probability as k → ∞. In
eq. (5.31), this yields at leading order as p→∞:

∆ =
1
p

Tr
[
(λIp − Γ(0)

p )−1
(WW⊺

k

)2]
. (5.32)

For practicality, we will prefer to use k × k matrices. We use the simple linear algebra identity,
for any p× p symmetric matrix A, and any integer q ≥ 1:

Tr
[(
λIp −

WW⊺

k
A
)−1(WW⊺

k

)q]
= Tr

[(
λIk −

1
k

W⊺AW
)−1(W⊺W

k

)q]
.

This can be derived for instance by expanding both sides in powers of λ−1 and using the cyclicity
of the trace. Using this along with eq. (5.32) we can state that the eigenvalues of Γp that are
outside of the spectrum of Γ(0)

p must satisfy, as k →∞:

α∆ =
1
k

Tr
[
(λIk − Γ

(0)
k )−1

(W⊺W

k

)2]
, (5.33)

with

Γ
(0)
k ≡ 1

k
W⊺

[ 1√
∆p
ξ − 1

∆
Ip

]
W.

We will now make use of two important lemmas, at the core of our analysis. They will also
prove to be useful in the eigenvector correlation analysis.
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Lemma 5.5 (Hierarchy of S(r)
k functions)

Recall that ν is the limit eigenvalue distribution of Γ
(0)
k , that the supremum of its support is

λmax, and its Stieltjes transform is gν . For every integer r ≥ 0, we define:

S
(r)
k (λ) ≡ 1

k
Tr
[
(Γ(0)

k − λIk)−1
(W⊺W

k

)r]
.

For r ∈ {0, 1, 2, 3}7and every λ > λmax, as k → ∞, S(r)
k (λ) converges almost surely to a well

defined limit S(r)(λ). This limit is given by:





S(0)(λ) = gν(λ),

S(1)(λ) = gν(λ)[α− (1 + λgν(λ))],

S(2)(λ) = gν(λ)[α(1 + α)− (1 + 2α)(1 + λgν(λ)) + (1 + λgν(λ))2],

S(3)(λ) = gν(λ)[(α+ 3α2 + α3) + (2 + 3α)(1 + λgν(λ))2

−(1 + 5α+ 3α2)(1 + λgν(λ))− (1 + λgν(λ))3].

We define similarly for every integers r, q ≥ 0:

S
(r,q)
k (λ) ≡ 1

k
Tr
[
(Γ(0)

k − λIk)−1
(W⊺W

k

)r
(Γ(0)

k − λIk)−1
(W⊺W

k

)q]
.

Note that S(r,q)
k = S

(q,r)
k and that S(r,0)

k (λ) = ∂zS
(r)
k (λ). For every λ > λmax, S(1,1)

k (λ) and

S
(1,2)
k (λ) converge a.s. as k →∞ to well-defined limits, that satisfy the following equations:

S(1,1)(λ) = gν(λ)S(2)(λ)− [1 + λgν(λ)]∂λS
(1)(λ)

+ αgν(λ)[gν(λ) + S(1)(λ)]
∫

ρ∆(dt)t
(1 + tgν(λ))2

[t ∂λS
(1)(λ)− gν(λ)],

S(1,2)(λ) = −[1 + λgν(λ)][S(1,1)(λ) + (1 + α)∂λS
(1)(λ)] + gν(λ)S(3)(λ)

+ αgν(λ)[(1 + α)gν(λ) + S(1)(λ) + S(2)(λ)]
∫

ρ∆(dt)t
(1 + tgν(λ))2

[t ∂λS
(1)(λ)− gν(λ)].

Lemma 5.6 (Properties of S(r))

Let α,∆ > 0. We focus mainly on S(2)(λ). We have:

(i) For every r, S(r)(λ) is a strictly increasing function of λ, and limλ→∞ S(r)(λ) = 0.

(ii) For every λ > λmax, S(2)(λ) = −α∆ iff ∆ ≤ ∆c(α) and λ = 1.

(iii) For every ∆ > ∆c(α), limλ↓λmax S
(2)(λ) ∈ (−α∆, 0).

Let us first see how item (ii) of Lemma 5.6 and eq. (5.33) end the proof of the eigenvalue
transition. First, note that by the celebrated Weyl’s interlacing inequalities [Wey49], we have:

lim inf
p→∞ λ1 ≥ λmax and lim sup

p→∞
λ2 ≤ λmax.

This implies that because the perturbation of the matrix is of rank one, at most one outlier
eigenvalue will exist in the limit p → ∞. By eq. (5.33), this outlier λ1 exists if and only if it

7The almost sure convergence can be extended to all r ∈ N
⋆ but we will only use these values of r in the following.
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satisfies, in the large p → ∞ limit, the equation S(2)(λ1) = −α∆. By item (ii) of Lemma 5.6,
this is the case only for λ1 = 1 and ∆ ≤ ∆c(α), which ends the proof. �

A completely rigorous treatment of the previous arguments requires to state more precisely
concentration results. Such a treatment has been made in [BGN11] in a close case (from which
all the arguments transpose), and we refer to it for more details. Lemma 5.5, which is at the core
of our proof, is proven in the following. We postpone the proof of Lemma 5.6 to Appendix D.3.1.

Proof of Lemma 5.5 – The essence of the computation originates from the derivation of
Theorem 1.7 in [SB95], and is in essence a cavity computation, see Section 1.4. Note that
S

(0)
k (λ) converges a.s. to the Stieltjes transform gν(λ) as k → ∞ by Theorem 1.7. For every

1 ≤ i ≤ p, wi denotes the i-th row of W. We denote y = ξ/
√

∆p−Ip/∆. Since W is independent
of y, we can denote y1, · · · , yp the eigenvalues of y, and their empirical distribution converges
a.s. to ρ∆ as we know. We have in distribution:

Γ
(0)
k =

1
k

W⊺ y W
d=
α

p

p∑

i=1

yi wi w⊺
i .

For every i, we denote Γ
(0)
k,i ≡ (α/p)

∑p
j( 6=i) yj wj w⊺

j . Note that Γ
(0)
k,i is independent of wi. We

start from the (trivial) decomposition, for every λ:

− 1
λ

= (Γ(0)
k − λIk)−1 − 1

λ

W⊺ y W

k
(Γ(0)

k − λIk)−1. (5.34)

We will make use of the Sherman-Morrison formula that gives the inverse of a matrix perturbed
by a rank-one change:

(B + tωω⊺)−1 = B−1 − t

1 + tω⊺B−1ω
B−1ωω⊺B−1. (5.35)

Using it in eq. (5.34) yields:

− 1
λ

= −α
λ

1
p

p∑

i=1

yi

wiw
⊺
i (Γ(0)

k,i − λIk)−1

1 + yi
k w⊺

i (Γ(0)
k,i − λIk)−1wi

+ (Γ(0)
k − λIk)−1. (5.36)

Taking the trace of eq. (5.36), using the independence of wi and Γ
(0)
k,i , and the concentration

(1/k)w⊺
i Awi = (1/k)TrA with high probability for large k, we obtain the following equation:

− 1
λ

= gν(λ)− gν(λ)
α

λ

∫
ρ∆(dt)

t

1 + tgν(λ)
. (5.37)

This is exactly Theorem 1.7! In the following, we will use very similar identities. A completely
rigorous derivation of these would, however, require many technicalities to ensure in particular
the concentration of all the involved quantities. It would exactly follow the proof of [SB95], and
thus we do not repeat all the technicalities here. We can multiply eq. (5.36) by W⊺W/k, and
take the trace:

− 1
λ

1
k

Tr
[WW⊺

k

]
= S

(1)
k (λ)− α

λ

1
p

∑

i

yi

w⊺

i√
k
(Γ(0)

k,i − λIk)−1( 1
k

∑
j

wjw⊺
j ) wi√

k

1 + yi
k w⊺

i (Γ(0)
k,i − λIk)−1wi

.
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This implies that S(1)
k (λ) converges as p, k →∞ to a limit S(1)(λ), which satisfies:

−α
λ

= S(1)(λ)− α

λ

[ ∫
ρ∆(dt)

t

1 + tgν(λ)

]
(gν(λ) + S(1)(λ))

Using finally eq. (5.37), it is equivalent to:

S(1)(λ) = gν(λ)[α− (1 + λgν(λ))].

Multiplying eq. (5.36) by (W⊺W/k)2 or (W⊺W/k)3 yields, by the same analysis:

S(2)(λ) = [α(1 + α)− (1 + 2α)(1 + λgν(λ)) + (1 + λgν(λ))2]gν(λ),

S(3)(λ) = [(α+ 3α2 + α3)− (1 + 5α+ 3α2)(1 + λgν(λ)) + (2 + 3α)(1 + λgν(λ))2

− (1 + λgν(λ))3]gν(λ).

The convergence of S(1,1)
k (λ) and S(1,2)

k (λ) follows from the same analysis, as well as the equations
they satisfy. We detail the derivation of the equation on S(1,1)(λ) and leave the derivation of the
second equation for the reader. We multiply eq. (5.36) by W⊺W/k. To simplify the calculations,
we make use of concentrations, and denote Fi ≡ (W⊺W − wiw

⊺
i )/k, which is independent of

wi. We obtain at leading order as p→∞:

−W⊺W

kλ
= (Γ(0)

k − λIk)−1 W⊺W

k
− α

λ

1
p

p∑

i=1

yigν(λ)wiw
⊺
i

1 + yigν(λ)

− α

λ

1
p

p∑

i=1

yi

1 + yigν(λ)
wiw

⊺
i (Γ(0)

k,i − λIk)−1Fi.

We multiply this equation by (Γ(0)
k − λIk)−1 and use eq. (5.35) in the form:

(Γ(0)
k − λIk)−1 = (Γ(0)

k,i − λIk)−1 − (Γ(0)
k,i − λIk)−1 yiwiw

⊺
i

1 + yigν(λ)
(Γ(0)

k,i − λIk)−1.

Using again simple concentration, this yields at leading order:

− W⊺W

kλ
(Γ(0)

k − λIk)−1 =

(Γ(0)
k − λIk)−1 W⊺W

k
(Γ(0)

k − λIk)−1 − α

λ

1
p

p∑

i=1

yiwiw
⊺
i (Γ(0)

k,i − λIk)−1Fi(Γ
(0)
k,i − λIk)−1

1 + yigν(λ)

+
∂λS

(1)(λ)
λ

α

p

p∑

i=1

y2
i wiw

⊺
i (Γ(0)

k,i − λIk)−1

(1 + yigν(λ))2
− α

λ

1
p

p∑

i=1

yigν(λ)wiw
⊺
i (Γ(0)

k,i − λIk)−1

(1 + yigν(λ))2
.

We finally multiply this equation by W⊺W/k and take the trace. Using again usual concentra-
tions we reach:

−S
(2)(λ)
λ

= S(11)(λ)− α

λp

p∑

i=1

yi[S(11)(λ) + ∂λS
(1)(λ)]

1 + yigν(λ)
(5.38)

+
∂λS

(1)(λ)
λ

α

p

p∑

i=1

y2
i [gν(λ) + S(1)(λ)]
(1 + yigν(λ))2

− α

λ

1
p

p∑

i=1

yigν(λ)
(1 + yigν(λ))2

[gν(λ) + S(1)(λ)].
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We now take the limit p→∞ and use Theorem 1.7 in the form:

α

λ

∫
ρ∆(dt)

t

1 + tgν(λ)
= 1 +

1
λgν(λ)

.

Inserting this into eq. (5.38) along with some trivial algebra yields the sought identity:

S(1,1)(λ) = gν(λ)S(2)(λ)− [1 + λgν(λ)]∂λS
(1)(λ)

+ αgν(λ)[gν(λ) + S(1)(λ)]
∫

ρ∆(dt)t
(1 + tgν(λ))2

[t ∂λS
(1)(λ)− gν(λ)],

which is what we aimed to show. Performing the same analysis for S(1,2)(λ) ends the proof. �

The proof of correlation of the leading eigenvector is derived on the same principles, and is given
in Appendix D.3.2. All together, this ends the proof of Theorem 5.3.

On the nature of the transition – As was already noticed in previous works (see e.g. a related
remark in [BGN11]), the existence of a transition in the largest eigenvalue and the corresponding
eigenvector for a large matrix of the type M + θP (with P of finite rank and θ > 0) depends
on the decay of the asymptotic spectral density of M at the right edge of its bulk. For a
power-law decay, there can be either no transition, a transition in the largest eigenvalue and the
corresponding eigenvector, or a transition in the largest eigenvalue but not in the corresponding
eigenvector. The situation in our setting is somewhat more involved, as both the bulk and the
spike depend on the parameter ∆, and they are not independent (they are correlated via the
matrix W). However, this intuition remains true: if we do not show and use it explicitly, the
decay of the density of µ(α,∆) at the right edge is of the type (λmax−λ)1/2, which is the hidden
feature that is responsible for a transition both in the largest eigenvalue and the corresponding
eigenvector that what we show in Theorem 5.3.

Perspectives on Chapter 5

This chapter presented a detailed analysis of the influence of data structure on optimal learning
in the spiked-matrix model. We modeled the data structure by generative priors, and were
motivated by comparing our findings to the case of sparse data, for which the underlying struc-
ture induces computational gaps. We detailed the two main conclusions of our analysis in
Section 5.1.4: first, in contrast to the sparse case, there is no algorithmic gap with random gen-
erative priors. And secondly, we have designed a spectral algorithm (LAMP, Algorithm 5) that
reaches the optimal weak-recovery threshold and that we can analyze both using the asymptotic
analysis of AMP and random matrix theory.

While this chapter is based mainly on [ALM+20], part of the theoretical machine learning
community has very recently gained interest in understanding the role of data structure in
learning, especially in neural networks. As highlighted in [Zde20], data structure is one of the
three key elements needed to build a theory of neural network learning, along with the network
architecture and the optimization algorithms. It is therefore quite natural to see more and more
recent works in the same general line as this chapter. To name a few (from collaborators), the
reader can refer to [ALB+20] for the phase retrieval problem, or [GMKZ20] which introduced a
similar model called hidden manifold, that allowed to study the influence of structure in a very
flexible manner. While the majority of these works rely on synthetic (i.e. random) datasets,
recent theoretical and empirical studies are indicating that a large part of their results remains
valid for trained generative priors [GRM+20]. All these contributed to create an exciting and
rapidly growing line of work, and one aim of this chapter was to show that many tools of
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statistical physics applied to inference are particularly suited to build the premises of a theory
of the role of data structure in learning.
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Chapter 6

Phase retrieval: theoretical
transitions and efficient algorithms

“Quand les physiciens nous demandent la solution d’un problème, ce n’est pas une corvée qu’ils
nous imposent, c’est nous au contraire qui leur devons des remerciements.”

Henri Poincaré, La Valeur de la Science – Chapitre V: L’Analyse et la Physique (1911).

Disclaimer – We end our tour of high-dimensional inference problems by one of the most
renowned models in this class: phase retrieval. This dense chapter merges items from a large
part of our toolbox: the replica method and the means to prove its results, message-passing
algorithms to study hardness, but also the TAP picture, and the results of Chapter 2, to under-
stand spectral algorithms to solve phase retrieval. It is mainly based on two published works
[MLKZ20, MKLZ21], which focused respectively on the fundamental limits of phase retrieval,
and on the design of optimal spectral methods to solve it.

Recall our mathematical notation: we let β ∈ {1, 2} for respectively real (K = R) and complex
(K = C) variables.

6.1 The phase retrieval problem

Consider the reconstruction problem of a signal X∗ ∈ K
n from m observations of its modulus

Yµ =
∣∣∣

1√
n

n∑

i=1

ΦµiX
∗
i

∣∣∣, µ = 1, · · · ,m, (6.1)

where the m × n sensing matrix Φ ∈ K
m×n is known. More generally, measurements can be a

noisy function of the modulus, for example by an additive Gaussian noise, or by a Poisson noise
channel. This inverse problem, known in the literature under the umbrella of phase retrieval
arises in a large set of problems ranging from signal processing [Fie82, UE88, DLM+15] to
statistical estimation [CLS15b, JEH15], optics, X-ray crystallography, astronomy or microscopy
[SEC+15], where detectors can often only measure information about the amplitude of signals,
and lose all information about its phase, cf. Fig. 6.1. Phase retrieval is also a textbook example
of a learning problem with a highly non-convex loss landscape [NJS15, SQW18, HLV18]. It
moreover falls into the large category of generalized linear models (GLMs), that we introduced
in Section 1.1.

Phase retrieval and generalized linear models – Let us first precise the class of models
studied in this chapter. We assume that the (random) sensing matrix Φ satisfies right-rotation
invariance, in the sense of Model R. The observations are then generated by a Bayes-optimal
GLM similar to the ones we encountered in the previous chapters. Precisely, the signal X∗
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Figure 6.1: Schematic of a Coherent Modulation Imaging set-up, a typical optical experiment in
which one needs to retrieve measurements from the observation of the modulus of their projections

(here by a modulator), which can be modeled by eq. (6.2). Picture from [ZCM+16].

to recover is drawn using a factorized prior distribution P0 with zero mean and variance ρ ≡
EP0 [|x|2] > 0. The observations are generated as:

Yµ ∼ Pout

(
·
∣∣∣

1√
n

n∑

i=1

ΦµiX
⋆
i

)
, 1 ≤ µ ≤ m, (6.2)

and we assume that the prior P0 and the “channel” distribution Pout(y|z) are known. Eq. (6.2)
defines the very general class of Generalized Linear Models (GLMs), cf. Section 1.1. The present
chapters focuses on phase retrieval problems:

Definition 6.1 (Phase retrieval)

We generically denote as phase retrieval GLMs of the type of eq. (6.2) in which we assume
that Pout(y|z) is a function of |z|, and in which the prior distribution P0 is also symmetric:
P0(x) = P0(|x|).

For instance, for Gaussian additive noise one has Pout(y|z) = N1(y; |z|2,∆), while the noiseless
case corresponds to the limit ∆ ↓ 0 : Pout(y|z) = δ(y−|z|2). Finally, we consider a now-standard
high-dimensional (thermodynamic) limit, in which n,m→∞ with m/n→ α > 0. All in all, the
model we consider is very generic, and encompasses e.g. phase retrieval with unitary matrices
(and in some extent Fourier phase retrieval as we will see), or Gaussian phase retrieval.

Related literature – A great amount of work is present both in the statistical physics and in
the information theory literature for different assumptions on the matrix Φ. The asymptotic
optimal performances (both information-theoretic and algorithmic) of generic GLMs with right-
rotation invariance sensing matrices were conjectured using the non-rigorous replica method of
statistical physics in [Kab08a, TK20], and these results were proven for Gaussian matrices in
[BKM+19]. This analysis was later non-rigorously extended to the case of non-separable prior
distributions [ALB+20]. Specifically for the phase retrieval problem, the limits of weak-recovery
were analyzed for Gaussian matrices Φ in [MM19, LAL19, LL20], and for column-unitary Φ in
[DMM20, DBMM20, MDX+21]1. As we know, the Bayes-optimal estimation can be summarized
in the study of the posterior probability of x given the observations Y and the matrix Φ:

P(x|Y,Φ) ≡ 1
Zn(Y)

n∏

i=1

P0(xi)
m∏

µ=1

Pout

(
Yµ

∣∣∣
1√
n

n∑

i=1

Φµixi

)
. (6.3)

We will generically denote by 〈·〉 the average with respect to the posterior probability (6.3).

1All these works (and this chapter) consider random instances of phase retrieval, while there is another important
literature that studies injectivity of phase retrieval. For instance, the perfect recovery of an arbitrary (rather than
typical) signal in complex phase retrieval has been studied in [BCMN14], and the thresholds are very different.
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On the algorithmic side, the (generalized) vector approximate message-passing (G-VAMP) al-
gorithm [SRF16, RSF17] (cf. Section 1.4 and Chapter 2) has been conjectured to achieve the
optimal polynomial-time recovery for rotationally (unitarily) invariant matrices2. Despite its
properties, G-VAMP is a numerically very cumbersome algorithms. It is therefore of great in-
terest to investigate more robust and computationally cheaper algorithms that could achieve
similar performances. A natural class of such algorithms are spectral methods, i.e. methods
based on the leading eigenvector of a matrix constructed from the observations. Their output
can be used as informative initializations for local gradient-based optimization algorithms, and
can induce a jump in the accuracy achieved at a reasonable computational cost. Such tech-
niques have already been applied e.g. in optical systems [VDG21]. In the context of phase
retrieval, the performance of these spectral methods has been rigorously analyzed for Gaussian
[MM19, LAL19, MTV20, LL20] and unitary [DBMM20, DB20, MDX+21] sensing matrices.

Organization of the chapter and main contributions – The present chapter extends
all these past results by considering arbitrary matrices with orthogonal or unitary invariance
properties, encapsulating all the cases described above into a single framework. Our main
contributions are twofold:

(I) First, we derive sharp asymptotics for the lowest possible estimation error achievable sta-
tistically and algorithmically, locate the phase transitions for weak- and full-recovery as a
function of the singular values of the matrix Φ and also discuss the existence of a statistical-
to-algorithmic gap. Our main contributions on this matter are:

– In Section 6.2, we use the replica method to derive a unified single-letter formula for the
performance of the Bayes-optimal estimator for generic real or complex GLMs defined by
eq. (6.2) in the thermodynamic limit, and for right-rotationally invariant Φ. We then prove
this conjecture in two particular cases. First, when the distribution P0 is Gaussian and
Φ = WB is the product of a Gaussian matrix W with an “arbitrary” matrix B. Second,
for a Gaussian matrix Φ (real or complex) with any separable distribution P0. These are
non-trivial extensions of the the proofs of [BKM+19, BM19a] and [BMMK18]. We also
argue that message-passing algorithms, here G-VAMP, achieves the optimal performance
reachable in polynomial time among a large class of algorithms, and describe its iterations.

– In Section 6.3, we analytically characterize (as a function of the singular values distribution
of Φ) the algorithmic weak-recovery threshold αWR,Algo above which better-than-random
inference reconstruction of X∗ is possible in polynomial time. We also derive an explicit
formula for the information-theoretic full recovery threshold αFR,IT above which full recon-
struction of X∗ (i.e. perfect recovery up to the possible rank deficiency of Φ) is statistically
possible, as a function of the singular values distribution of Φ.

Our findings for the statistical and algorithmic thresholds are summarized in Table 6.1, for
different real and complex ensembles of Φ. Entries in bold emphasize new results obtained in
this chapter, filling a gap between the different previous works in the phase retrieval literature.

(II) Secondly, in Section 6.4 we design (conjecturally) optimal spectral methods for the phase
retrieval problem in the aforementioned limit, for the very generic class of right-rotationally
invariant sensing matrices. Most importantly, in contrast to previous works our approach is
completely automated, in the sense that our spectral methods are conjectured to be optimal,
and their derivation does not require optimization over any hyperparameter. The construc-
tiveness of our approach gives more weight to our optimality conjecture, as we do not restrict

2To test the performance of the G-VAMP algorithm, we used the TrAMP library [BAKZ20] that provides an
open-source implementation.
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Matrix ensemble and value of β αWR,Algo αFR,IT αFR,Algo

Real Gaussian Φ (β = 1) 0.5 [MM19, LAL19] 1 [CT06] ≃ 1.12 [BKM+19]

Complex Gaussian Φ (β = 2) 1 [MM19, LAL19] 2 ≃ 2.027
Real column-orthogonal Φ (β = 1) 1.5 1 [CT06] ≃ 1.584
Complex column-unitary Φ (β = 2) 2 [MP17, MDX+21] 2 ≃ 2.265
Φ = W1W2 (β = 1, aspect ratio γ) γ/(2(1 + γ)) [ALB+20] min(1, γ) [CT06] Thm. 6.2 [ALB+20]

Φ = W1W2 (β = 2, aspect ratio γ) γ/(1 + γ) min(2,2γ) Thm. 6.2

Φ, β ∈ {1, 2}, rk[Φ†Φ]/n = r Eq. (6.13) βr Conj. 6.1
Gauss. Φ, β ∈ {1, 2}, symm. P0, Pout Eq. (6.12) [MM19, LAL19] Thm. 6.2 Thm. 6.2

Φ, β ∈ {1, 2}, symm. P0, Pout Eq. (6.11) Conj. 6.1 Conj. 6.1

Table 6.1: Values of the algorithmic weak recovery, information-theoretic full recovery, and
algorithmic full recovery thresholds for several random matrix ensembles. When the ensemble of Φ

is not specified, we consider any right-orthogonally (unitarily) invariant ensemble in the sens of
Model R. The last two lines are given for any symmetric (cf Def. 6.1) prior P0 and channel Pout,
while all other results are for Gaussian P0 and a noiseless phase retrieval channel. We reference

results of this chapter when the value is not given by a closed-form expression, but can be
computed from the formulas herein. In some particular ensembles, we have numerically analyzed
these equations in Section 6.5. The new results of this chapter are written in bold blue, and we

give references to papers in which the previously known thresholds were computed.

to a specific family of spectral methods. In designing these methods, we unify three different
approaches: a “pedestrian” optimization of the preprocessing function (the approach of the
aforementioned previous works), the linearization of message-passing algorithms, and a Bethe
Hessian analysis.

Finally, in Section 6.5, we numerically investigate our two contributions. In particular, we
uncover interesting transition phenomena in the eigenvalues of the spectral methods, and we
numerically establish the existence or absence of a statistical-to-algorithmic gap for many en-
sembles of Φ in noiseless phase retrieval, for which such an analysis was lacking.

Important notation – Recall that for m ≥ n, a matrix A ∈ K
m×n is said to be column-

orthogonal (unitary) if A†A = In. For x, y ∈ K, we define a ‘dot product’ as x · y ≡ xy if K = R

and x · y ≡ Re[xy] if K = C. In particular x · x = |x|2. The Gaussian measure Nβ(0, 1) is
defined as Dβz ≡ (2π/β)−β/2 exp(−β|z|2/2) dz. ν will denote the asymptotic spectral density
of Φ†Φ/n and we designate 〈f(λ)〉ν ≡

∫
ν(dλ)f(λ) the linear statistics of ν.

6.2 Optimal estimation in GLMs with structured data

6.2.1 Replica free entropy and how to prove it

Recall that we placed ourselves in a setting known as Bayes-optimal: the statistically optimal
estimator X̂ minimizing the mean-squared error mse(X̂) ≡ ||X̂−X⋆||22 is therefore simply given
by the posterior mean X̂opt = 〈x〉, where the posterior distribution is given in eq. (6.3). As we
know, while exact sampling from the posterior is intractable for large values of n,m ∈ N

∗, the
replica method allows us to access important asymptotic quantities, such as the free entropy3.
It fully characterizes the asymptotic performance of the Bayes-optimal estimator X̂opt in high
dimensions via the I-MMSE theorem [GSV05].

3It is directly related to the mutual information between X∗ and Y, see Chapter 5 in which we adopted the
mutual-information convention
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The first result of this chapter is a single-letter formula for the asymptotic free entropy for right-
rotationally invariant sensing (or data) matrices Φ4, in the limit n,m→∞ with m/n→ α > 0.

Conjecture 6.1 (Replica-symmetric conjecture for generic GLMs)

Under the assumptions above, the asymptotic free entropy for the posterior distribution
defined in eq. (6.3) with right-orthogonally (unitarily) invariant sensing matrix Φ is:

lim
n→∞

1
n
EY,Φ lnZn(Y) = sup

qx∈[0,ρ]
sup

qz∈[0,Qz ]
[I0(qx) + αIout(qz) + Iint(qx, qz)], (6.4)

where




I0(qx) ≡ inf
q̂x≥0

[
− βq̂xqx

2
+ EξZ0(

√
q̂xξ, q̂x) lnZ0(

√
q̂xξ, q̂x)

]
,

Iout(qz) ≡ inf
q̂z≥0

[
− βq̂zqz

2
− β

2
ln(Q̂z + q̂z) +

βq̂z

2Q̂z

+Eξ

∫

R

dy Zout

(
y;

√
q̂z

Q̂z(Q̂z + q̂z)
ξ,

1

Q̂z + q̂z

)
lnZout

(
y;

√
q̂z

Q̂z(Q̂z + q̂z)
ξ,

1

Q̂z + q̂z

)]
,

Iint(qx, qz) ≡ inf
γx,γz≥0

[β
2

(ρ− qx)γx +
αβ

2
(Qz − qz)γz −

β

2
〈ln(ρ−1 + γx + λγz)〉ν

]

−β
2

ln(ρ− qx)− βqx

2ρ
− αβ

2
ln(Qz − qz)− αβqz

2Qz
.

We defined Qz ≡ ρ〈λ〉ν/α and Q̂z ≡ 1/Qz, ξ ∼ Nβ(0, 1) and the following auxiliary functions:

Z0(b, a) ≡
∫

K

dz P0(z)e− β
2

a|z|2+βb·z, Zout(y;ω, v) ≡ Ez[Pout(y|
√
vz + ω)], (6.5)

with z ∼ Nβ(0, 1). Moreover, the asymptotic MMSE achieved by the Bayes-optimal estimator
is equal to ρ− q∗

x, with q∗
x the solution of the above extremization problem:

lim
n→∞ MMSE = lim

n→∞
1
n
E‖X∗ − X̂opt‖2 = ρ− q∗

x. (6.6)

This formula is derived in Appendix B.2 using the heuristic (hence the conjecture) replica method
that we introduced in Section 1.3.1. Given its generality, the calculation of Appendix B.2 also
serves in this thesis as a textbook example of application of the replica method, along with the
one for the committee machine presented in Appendix B.1. It extends the formula from [TK20]
to complex signals X∗ and sensing matrices Φ. In particular, it also holds in the case of complex
matrices Φ and real signal X⋆, by adding a constraint on the imaginary part of X⋆ in P0. It
also encompasses the case of sparse signals, which is of wide interest in the compressive sensing
literature [Don06, DMM09, KMS+12, SR14, KMTZ14].

Proving Conjecture 6.1 is a challenging open problem. We provide a significant step by doing so
for a broad class of likelihoods Pout and in two settings: a restricted signal distribution P0 and
a broad class of real and complex likelihoods and sensing matrices Φ, or a broad class of prior
distribution P0 and (real or complex) Gaussian Φ. To state the theorem, we rewrite the model

4With respect to Model R we assume the following, which is (slightly) stronger: the large deviations of the spectral
density of Φ†Φ/n should happen in the scale n1+ǫ for an ǫ > 0. This condition was not precised in the replica
calculation of [TK20] for real matrices. In practice, in classical orthogonally (unitarily)-invariant random matrix
ensembles, we often have ǫ = 1.
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of eq. (6.2) as:

Yµ = ϕout

( 1√
n

n∑

i=1

ΦµiX
⋆
i , Aµ

)
, 1 ≤ µ ≤ m, (6.7)

where (Aµ)m
µ=1 ∈ K

m are i.i.d. random variables with (known) distribution PA accounting for a
possible noise, ϕout is the observation channel and Φ is a random matrix with elements in K.
Pout(·|z) is then the PDF associated to the stochastic function ϕout(z,A).

Theorem 6.2 (Replica-symmetric formula)

Let us define a set of hypotheses:

(H0) ϕout : K2 → R is C2, and (z, a) 7→ (ϕout(z, a), ∂zϕout(z, a), ∂2
zϕout(z, a)) is bounded.

(h1) P0 is a centered Gaussian distribution, without loss of generality P0 = Nβ(0, 1).

(h2) Φ is distributed as Φ
d= WB/

√
p, with W ∈ K

m×p an i.i.d. standard Gaussian ma-
trix, and B ∈ K

p×n an arbitrary matrix (random or deterministic), independent of W.
Moreover, as n→∞, p/n→ δ > 0.

(h3) The ESD of B†B/n weakly converges (a.s.) to a compactly-supported measure νB 6= δ0.
Moreover, there exists λmax > 0 such that a.s. λmax(B†B/n)→n→∞ λmax.

(h′1) P0 has a finite second moment, and Φµi
i.i.d∼ Nβ(0, 1).

Assume that all (H0),(h1),(h2),(h3) or that all (H0),(h′1) stand. Then Conjecture 6.1 holds
with ν the LSD of Φ†Φ/n5.

The proof is based on the adaptive interpolation method6. Its main strategy is sketched in the
following, and shares similarities with the committee machine that we studied in Chapter 4. In
particular, Theorem 6.2 allows to rigorously compute the asymptotic minimum mean-squared
error (MMSE) achieved by the Bayes-optimal estimator.

Remark 6.1 (Relaxing the hypotheses)

Following arguments of [BKM+19] and Chapter 4, (H0) can be relaxed to continuity a.e. and
the existence of moments of ϕout, so that our theorem also covers noiseless phase retrieval.

As with the previous high-dimensional models we studied in Part II, the replica formula reduces
the high-dimensional computation of the MMSE to a simple low-dimensional extremization
problem. The MMSE as a function of the sample complexity α can be readily computed from
eqs. (6.4) and (6.6) for a given signal distribution P0 (determining I0), likelihood Pout (deter-
mining Iout) and spectral density ν (determining Iint).

Proof strategy for Theorem 6.2

Let us work under (H0),(h1),(h2),(h3). We will simply sketch the main steps of the proof
strategy for the free energy. More details (e.g. going from the free entropy to the MMSE
characterization), as well as the extension to hypotheses (H0),(h′1), can be found in [MLKZ20].

First, we simplify the conjectured expression of the free entropy of Conjecture 6.1 using the
particular form of the prior P0 and of the sensing matrix Φ. Finally, using (h1),(h2),(h3) and a

5The rigorous statement on the limit of the MMSE requires adding a side information channel with arbitrarily
small signal, as is detailed in [MLKZ20].

6In Theorem 6.2, we rely on some Gaussianity, either in the prior or in the data matrix. This is a not specific to
our setting, but rather a fundamental limitation of the adaptive interpolation method used for the proof.
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proof similar to the one of [BKM+19, AMB+19], we give a rigorous derivation of this simplified
expression. Note that with respect to the analysis of [BKM+19, AMB+19], there are two main
novelties in our setting:

(i) The sensing matrix Φ is not i.i.d. but has a well-controlled structure, see (h2) and (h3).

(ii) The variables can be complex numbers. We will argue that the arguments generalize to this
case. The physical reason of this generalization is that even in the complex setting, the overlap
will concentrate on a real positive number, as a consequence of Bayes-optimality.

First, we note that we can simplify the replica conjecture under the considered hypotheses:

Proposition 6.3 (Simplified replica-symmetric formula)

Under (H0),(h1),(h2),(h3), the replica conjecture 6.1 for the free entropy fn ≡ n−1
E lnZn(Y)

is equivalent to:

lim
n→∞ fn = sup

q̂≥0
inf

q∈[0,Qz ]

[βq̂
2

(EνB [X]− δq)− β

2
EνB ln(1 + q̂X) + αΨout(q)

]
, (6.8)

with Qz = EνB [X]/δ and Ψout defined in terms of the auxiliary functions of eq. (6.5):

Ψout(q) ≡
∫

K

Dβξ

∫

R

dy Zout(y;
√
qξ,Qz − q) lnZout(y;

√
qξ,Qz − q).

The proof of Proposition 6.3 is quite technical and is detailed in [MLKZ20]. Proposition 6.3
presents the replica-symmetric formula in a manner closer to its usual statement for Gaussian
matrices (e.g. Theorem 4.1 for the committee machine), as a single supinf involving an order
parameter q playing the role of the overlap. To finish the proof of the free entropy statement of
Theorem 6.2, we therefore just need to show:

Lemma 6.4

Under the assumptions of Proposition 6.3, the limit of the free entropy fn ≡ n−1
E lnZn(Y)

is given by eq. (6.8).

Let us now briefly describe our strategy to prove Lemma 6.4. The main idea is to reduce the
problem to a Generalized Linear Model with a Gaussian sensing matrix, but a non-i.i.d. prior.
We make use of the “SVD” decomposition of B/

√
n = USV†, with U ∈ Uβ(p), V ∈ Uβ(n), and

S ∈ R
p×n a pseudo-diagonal matrix with positive elements. Leveraging on the gaussianity of

P0 (hypothesis (h1)), and that W is an i.i.d. Gaussian matrix independent of B, one can see
that our estimation problem is formally equivalent to an usual Generalized Linear Model with
m measurements, a signal of dimension p, and a Gaussian i.i.d. sensing matrix. A key feature
is that here the prior distribution on the data Z∗ ∈ K

p is defined as

• If δ ≤ 1, for every k ∈ {1, · · · , p}, Z∗
k is distributed as SkX

∗
k with X∗

k
i.i.d.∼ P0.

• If δ ≥ 1, for every k ∈ {1, · · · , n}, Z∗
k is distributed as SkX

∗
k with X∗

k
i.i.d.∼ P0, while for every

k ∈ {n+ 1, · · · , p}, Z∗
k is almost surely 0.

More precisely, we can define rigorously the prior P (S)
0 described above by its linear statistics.

For any continuous bounded function g : Kp → R, one has:

∫

Kp
P

(S)
0 (dz)g(z) ≡

∫

Kn

{ n∏

i=1

P0(dxi)
}
g({I[k ≤ n]Skxk}pk=1). (6.9)
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Algorithm 6: Generalized Vector Approximate Message Passing

Data: Sensing matrix Φ/
√
n = USV†, outputs {yµ}mµ=1, a number of iterations T .

Result: An estimate x̂ of X∗.
Randomly initialize all variables;
for t = 1, · · · , T do

(Denoising x) (Denoising z ≡ 1√
n

Φx)
x̂t

1 = gx1(Tt
1, γ

t
1) ẑt

1 = gz1(Rt
1, τ

t
1)

vt
1 = 1

βn

∑n
i=1 ∂Tigx1(Tt

1, γ
t
1) ct

1 = 1
βm

∑m
µ=1 ∂Rµgz1(Rt

1, τ
t
1)

Tt
2 = 1

vt
1
x̂t

1 −Tt
1 Rt

2 = 1
ct

1
ẑt

1 −Rt
1

γt
2 = 1

vt
1
− γt

1 τ t
2 = 1

ct
1
− τ t

1

(Estimation of x) (Estimation of z)
x̂t

2 = gx2(Tt
2,R

t
2, γ

t
2, τ

t
2) ẑt

2 = gz2(Tt
2,R

t
2, γ

t
2, τ

t
2)

vt
2 =

〈
1

τ t
2λ+γt

2

〉

ν
ct

2 = 1
α

〈
λ

τ t
2λ+γt

2

〉

ν
Tt+1

1 = 1
vt

2
x̂t

2 −Tt
2 Rt+1

1 = 1
ct

2
ẑt

2 −Rt
2

γt+1
1 = 1

vt
2
− γt

2 τ t+1
1 = 1

ct
2
− τ t

2

return x̂T
1 ;

Armed with this equivalent representation of our problem, we can then apply an adaptive in-
terpolation strategy to prove the replica-symmetric formula of Proposition 6.3. The strategy
is very similar to the detailed proof we presented in Chapter 4: we design a simpler interpo-
lating estimation problem whose free energy is precisely the one of Proposition 6.3, and that
is parameterized by the two parameters q, q̂. These parameters are then well-chosen along the
interpolation path, which allows to deduce the replica-symmetric formula. Since this proof is
very similar to the one of the committee machine presented in Chapter 4 we do not reproduce
it in this thesis, but the interested reader will find it in detail in [MLKZ20].

6.2.2 Algorithmic point of view: the G-VAMP algorithm

The majority of algorithms developed to solve phase retrieval are based either on semi-definite
programming relaxations [CLS15a, Wal18, GS18] or on more direct non-convex optimization
procedures, e.g. Wirtinger flow [CLS15b]. The class of approximate message-passing algorithms
has also been quite successful for specific instances of phase retrieval [SR14, MV21]. Leveraging
our usual toolbox, we describe here the most generic algorithm of this class, that allows to
tackle any right-rotationally invariant matrix Φ. It is denoted G-VAMP, and its general form
was first written in [SRF16]. Recall that we already studied G-VAMP in relation with the
TAP free entropy in Chapter 2. As for many similar problems, G-VAMP is the best-known
polynomial time algorithm for this problem in terms of achieved MSE. It makes use of the SVD
decomposition of Φ, that we write as Φ/

√
n = USV†. The full iterations of the algorithm are

detailed in Algorithm 6. We used some auxiliary functions, defined below:

gx1(T, γ)i ≡ EP0(γ,−Ti)[x], gx2(T,R, γ, τ) ≡ T

γ
+ VS⊺(γ

τ
+ SS⊺)−1(U†R

τ
− SV†T

γ

)
,

gz1(R, τ)µ ≡ E
Pout

(
yµ,

Rµ
τ

, 1
τ

)[z], gz2(T,R, γ, τ) ≡ USV†gx2(T,R, γ, τ).

P0(γ, λ) is the probability distribution with density proportional to P0(x)e− βγ
2

|x|2−βλi·x, and

Pout(yµ, ωµ, b) the one with density proportional to Pout(yµ|z)e− β|z−ωµ|2
2b .
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Statistical and algorithmic performance – Conjecture 6.1 and Theorem 6.2 show that
the global maximum of the potential in eq. (6.4) describes the performance of the statistically
optimal estimator X̂opt. Moreover eq. (6.4) also contains rich information about the algorithmic
aspects of this problem. Indeed, as for other message-passing algorithms analyzed in the previous
chapters, it has been shown that the asymptotic performance of G-VAMP corresponds to the
MSE achieved by running gradient descent on the potential in eq. (6.4) from the trivial initial
condition qx = qz = 0 [SRF16]. This allows to derive the thresholds characterizing the statistical
and algorithmic limitations of signal estimation solely from eq. (6.4).

State Evolution — The extrema of the potential in eq. (6.4) can be characterized by the
solutions of the following State Evolution (SE) equations, obtained by looking at the zero-
gradient points:





qx = EξZ0|f0|2, qz = 1
Q̂z+q̂z

[ q̂z

Q̂z
+ Eξ

∫
dy Zout|fout|2

]
, (6.10a)

q̂x =
qx

ρ(ρ− qx)
− γx, q̂z = qz

Qz(Qz−qz) − γz, (6.10b)

ρ− qx =
〈 1
ρ−1 + γx + λγz

〉

ν
, α(Qz − qz) =

〈
λ

ρ−1+γx+λγz

〉

ν
. (6.10c)

where f0(b, a) = ∂b lnZ0(b, a) and fout(y;ω, v) = ∂ω lnZout(y;ω, v) are evaluated at (b, a) =

(
√
q̂xξ, q̂x) and (ω, v) =

(√ q̂z

Q̂z(Q̂z+q̂z)
ξ, 1

Q̂z+q̂z

)
respectively. Note in particular that the two

equations in eq. (6.10c) have to be solved over (γx, γz) in order to be iterated.

6.3 Weak and perfect recovery transitions

Notation – We adopt the subscript IT for the thresholds related to the Bayes-optimal estimator
and Algo for the G-VAMP ones.

6.3.1 Weak recovery: beating a random guess

A natural question to ask is: what is the minimum sample complexity αWR,Algo ≥ 0 such that
for all α ≥ αWR,Algo we can algorithmically reconstruct X⋆ better than a trivial random draw
from the known signal distribution P0? Also known as the algorithmic weak-recovery threshold,
αWR,Algo can also be characterized in terms of the MSE achieved by G-VAMP:

αWR,Algo ≡ arg min
α≥0

{MSEGVAMP(α) < ρ}.

Note that we already encountered such weak-recovery transitions (in terms of noise level) in
the spiked matrix model of Chapter 5. Since the algorithmic performance is characterized by
precisely maximizing eq. (6.4) starting from the trivial point, the threshold αWR,Algo can be
analytically computed from a local stability analysis of this point. On a more general note, an
important algorithmic question is to characterize the class of polynomial-time algorithms that
can achieve weak recovery directly above the optimal threshold. Beyond G-VAMP, in Section 6.4
we will design simple spectral methods that achieve this feat.

Existence and location of the weak-recovery threshold – It is easy to verify that the state
evolution equations (6.10) admit a trivial fixed point in which qx = qz = q̂x = q̂z = γx = γz = 0
when P0 and Pout are symmetric in the sense of Definition 6.1. When it exists, the trivial
extremizer qx = qz = 0 correspond to either a linearly stable or unstable trivial fixed point
of the state evolution equations. The weak-recovery threshold can therefore be determined by
looking at the Jacobian around the trivial fixed point. The details of the stability analysis are
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given in Appendix D.5.1. The result is that a linear instability of the trivial fixed point appears
at α = αWR,Algo satisfying the equation:

αWR,Algo =
〈λ〉2ν
〈λ2〉ν

(
1 +

[ ∫

R

dy

∣∣∣
∫
K
Dβz (|z|2 − 1) Pout

(
y
∣∣
√

ρ〈λ〉ν

αWR,Algo
z
)∣∣∣

2

∫
K
Dβz Pout

(
y
∣∣
√

ρ〈λ〉ν

αWR,Algo
z
)

]−1)
. (6.11)

Note that the integrand and the averages 〈·〉ν depend on αWR,Algo, so that this is an implicit
equation on αWR,Algo. Eq. (6.11) is the most generic formula for the weak recovery threshold for
any rotationally-invariant data matrix Φ and phase retrieval channel Pout. As emphasized in the
following examples, it generalizes in particular several previously known formulas for different
channels and random matrix ensembles.

Gaussian matrix – For a Gaussian i.i.d. matrix, 〈λ〉ν = α and 〈λ2〉ν = α2 + α, so that

αWR,Algo =
[ ∫

R

dy
| ∫

K
Dβz (|z|2 − 1) Pout(y|√ρz)|2∫

K
Dβz Pout(y|√ρz)

]−1
, (6.12)

a result which was previously derived in [MM19] in the real and complex cases.

Noiseless phase retrieval – In noiseless phase retrieval one has Pout(y|z) = δ(y − |z|2). In
particular one can easily check that this implies:

αWR,Algo =
(
1 +

β

2

) 〈λ〉2ν
〈λ2〉ν

. (6.13)

This last formula allows to retrieve and generalize many results previously derived in the liter-
ature. For instance, for a Gaussian i.i.d. matrix, we find αWR,Algo = β/2 , which was derived
in [MM19, LAL19]. For an orthogonal or unitary column matrix, αWR,Algo = 1 + (β/2), which
was already known for β = 2[MM19] (but not for β = 1). For the product of p i.i.d. Gaussian
matrices with sizes k0, · · · , kp, with k0 = m and kp = n, and γl ≡ n/kl for 0 ≤ l < p, we have
αWR,Algo = (β/2)[1 +

∑p
l=1 γl]−1, which generalizes the previously-known real case [ALB+20].

Eq. (6.13) encapsulates all these results and goes beyond by considering an arbitrary spectrum
for the sensing matrix, while eq. (6.11) also considers arbitrary channels Pout.

The weak-recovery IT transition – We only considered the algorithmic weak-recovery
threshold. Extending our analysis to the information-theoretic threshold αWR,IT is an inter-
esting open direction, which requires understanding the appearance of a global maximum in the
replica-symmetric potential of eq. (6.4), but not necessarily continuously from the qx = qz = 0
solution. At the moment, we are not able to carry such an analysis.

6.3.2 Perfect recovery for Gaussian signals in noiseless phase retrieval

We consider here noiseless phase retrieval Pout(y|z) = δ(y − |z|2) and a prior P0 = Nβ(0, 1)7.

For high number of samples α ≫ 1, we expect the MMSE to plateau at a minimum achievable
reconstruction error MMSE0 ≡ infα MMSE(α), which is a function of the statistics of Φ. We
thus look for the information-theoretical full-recovery threshold αFR,IT as the smallest sample
complexity such that MMSE0 is attained. In Appendix D.5.2 we show that the full-recovery can
be perfect (MMSE0 = 0) or partial (MMSE0 > 0) depending on the rank of Φ and that

αFR,IT ≡ β(1− ν({0})). (6.14)

7We can take ρ = 1, as the scaling is irrelevant under a noiseless channel.
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Informally, ν({0}), the fraction of zeros in the spectrum of Φ†Φ/n, is the fraction of the signal
“lost” by the sensing matrix. The effect of rank deficiency is illustrated in Fig. 6.4-left, with
Φ given by a product of two Gaussian matrices. We emphasize that αFR,IT is in general not
well-defined for an arbitrary channel, which is why we restricted here to the noiseless case. Note
that in [BCMN14] it was conjectured that for column-unitary matrices, α = 4 measurements
were necessary to recover an arbitrary signal X⋆. Here we have shown that a typical X⋆ can
be perfectly recovered as soon as α = 2: such possible gaps between worst-case and typical
performances are important to keep in mind in a large part of this thesis.

6.3.3 Surprising consequences and open questions

We list here some interesting (and often surprising) consequences of our analysis of the transi-
tions. Since our rigorous results concern a subclass of orthogonally invariant matrices, proving
and/or interpreting these statements more generally is an interesting future direction.

• One sees from eq. (6.11) that maximizing αWR,Algo implies maximizing 〈λ〉2ν/〈λ2〉ν . The
highest ratio is reached when ν is a delta distribution: for any symmetric channel and prior
the ensemble that maximizes αWR,Algo is thus the one of uniformly-sampled column-orthogonal
(β = 1) or column-unitary (β = 2) matrices. Conversely, αWR,Algo can be made arbitrarily
small using a product of many Gaussian matrices, both in the real and complex cases.

• In complex noiseless phase retrieval the information-theoretic weak-recovery threshold for
column-unitary matrices is located at αWR,IT = 2 [MDX+21]. Our results (Table 6.1) imply
that this corresponds to an “all-or-nothing” transition located precisely at α = 2. Moreover,
our characterization of αWR,Algo and αFR,IT shows that for any complex matrix αWR,Algo =
2〈λ〉2ν/〈λ2〉ν ≤ αFR,IT = 2(1 − ν({0})), with the equality only being attained for ν a delta
distribution. Uniformly sampled column-unitary matrices are thus the only right-unitarily
invariant complex matrices which present an "all-or-nothing" transition in complex noiseless
phase retrieval (for a Gaussian prior). To the best of our knowledge, this is a first establishment
of such a transition in a “dense” problem (as opposed to a sparse setting [GZ17, RXZ19]).

• Consider again noiseless phase retrieval with Gaussian prior. For real orthogonal matrices,
one has αWR,Algo − αFR,IT = 1.5 − 1 > 0: information-theoretic perfect recovery is achieved
before algorithmic weak recovery! Since αWR,Algo is a smooth function of ν, we expect that
the inequality holds for many real random matrix ensembles. However, in the complex case,
by our previous point, αWR,Algo ≤ αFR,IT for all matrices: the gap thus only occurs in the
real setting.

6.4 Efficient algorithms: constructing optimal spec-

tral methods

6.4.1 Universality of the optimal method

In general, the different optimization methods used to solve phase retrieval (cf. Section 6.2.2)
require an “informed” initialization X̂, i.e. that is positively correlated with the signal X∗. The
privileged class of algorithms to obtain such initializations in a computationally cheap manner
is spectral methods, i.e. estimates given by the principal eigenvector of an appropriate matrix
constructed from the sensing matrix Φ and the observations {yµ}.
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In most previous approaches [MM19, LAL19, LL20, MDX+21], the design of spectral methods
for the phase retrieval problem was restricted to matrices of the type:

M(T ) ≡ 1
n

m∑

µ=1

T (yµ)ΦµiΦµj . (6.15)

These matrices are functions of a (bounded) preprocessing function T . It was previously
shown for Gaussian i.i.d. matrices Φ [LAL19, LL20] and for random column-unitary matri-
ces Φ [DBMM20, MDX+21] that the optimal transition and reconstruction errors in the class
of spectral methods described by eq. (6.15) is attained by the following functions:

T ∗
Gaussian(y) ≡ ∂ωgout(yµ, 0, ρ)

1 + ρ∂ωgout(yµ, 0, ρ)
, T ∗

Unitary(y) ≡ ∂ωgout(yµ, 0, ρ/α)
1 + ρ

α∂ωgout(yµ, 0, ρ/α)
. (6.16)

In eq. (6.16) we introduced the function gout, defined as8:

gout(yµ, ω, σ
2) ≡ 1

σ2

∫
K

dx e− β

2σ2 |x−ω|2 (x− ω) Pout(yµ|x)
∫
K

dx e− β

2σ2 |x−ω|2 Pout(yµ|x)
. (6.17)

The main result of this section is a conjecture that generalizes the above results and gives the
optimal spectral method for any phase retrieval problem of the type of eq. (6.2) with right-
rotation invariant Φ9.
Conjecture 6.5 (Optimal spectral method in phase retrieval)

For any right-rotationally (or unitarily) invariant matrix Φ (cf. Model R), the optimal (in
terms of both weak-recovery transition and achieved reconstruction error) spectral method
belongs to the class of eq. (6.15), and is attained by:

T ∗(y) ≡ ∂ωgout(yµ, 0, ρ〈λ〉ν/α)

1 + ρ〈λ〉ν

α ∂ωgout(yµ, 0, ρ〈λ〉ν/α)
.

Before detailing further our results, let us explicit two important consequences of Conjecture 6.5:

• Note that one can always assume the global scaling Tr[Φ†Φ]/n2 → 〈λ〉ν = α, as it can
be absorbed into the channel Pout

10. The optimal spectral method (in terms of weak-
recovery threshold and achieved correlation) is then given by T ∗(y) = ∂ωgout(yµ, 0, ρ)/(1 +
ρ∂ωgout(yµ, 0, ρ)). Remarkably, this optimal function does not depend on the spectrum of the
sensing matrix Φ, nor on the sampling ratio α. The universality of the method is striking
when one compares it to the replica result of Conjecture 6.1, which is heavily dependent on
the spectrum of Φ and on the sampling ratio α. Universality also has deep consequences for
phase retrieval practitioners: when using a spectral initialization, she/he does not have to
take into account the details of the correlations in Φ to construct an optimal spectral method!
Although this universality requires in theory right-rotation invariance, this assumption can
be loosened as numerically explored in Section 6.5.

• Conjecture 6.5 claims optimality of our method among all spectral methods that one can
construct from the data Φ and the observations {yµ}. It turns out that this optimal method
belongs to the class of eq. (6.15), but our derivation is fully constructive and did not assume

8In the complex case, ∂ωgout is the “Wirtinger” derivative ∂zf(z) ≡ (∂xf(z) − i∂yf(z))/2.
9Note that Conjecture 6.5 is compatible with the results of eq. (6.16). Indeed, for Gaussian i.i.d. matrices, one has
〈λ〉ν = α, while for random column-unitary matrices, 〈λ〉ν = 1.

10This scaling is chosen to match the one of Gaussian i.i.d. matrices.
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anything on the form of the spectral method. This is an important improvement with respect
to the previous analyses we mentioned, which always assumed the method to be in the class
of eq. (6.15). In this sense, this chapter also confirms the validity of this restriction.

Let us now briefly outline the remaining of this section. Its main purpose is to derive and
unify three different approaches to construct optimal spectral methods for the phase retrieval
problem. The first one, based on linearizing G-VAMP (Algorithm 6) is studied in Section 6.4.2.
In Section 6.4.3 we consider a second approach, based on the Bethe Hessian and intimately
connected with the TAP picture we derived in Chapter 2. A remarkable property of these two
spectral methods is that their derivation is automated. Nevertheless, as we show in Section 6.4.4,
for any channel distribution and sensing matrix Φ, the Bethe Hessian method coincides exactly
with a third approach, which consists in simply generalizing a spectral method that has been
proven to be optimal for Gaussian [LAL19] and unitary [DMM20] sensing matrices, see eq. (6.16).
We moreover relate the performance of these three different approaches, and show that they allow
to conjecture the optimal spectral method, summarized in Conjecture 6.5.

6.4.2 Linearized vector approximate message passing

This first approach arises as a linearization of G-VAMP (Algorithm 6). It is similar in essence
to the technique we used in Chapter 5 to develop spectral methods that leveraged the structure
of the signal. Here we apply this method to real and complex phase retrieval with a right-
rotationally invariant sensing matrix.

The trivial fixed point

In Algorithm 6, one can use the Nishimori identity to derive the following relation (see for
instance eq. (107) of [KKM+16]):

1
m

m∑

µ=1

E
Pout

(
yµ,

(Rt
1

)µ

τt
1

, 1

τt
1

)
[∣∣z − (Rt

1)µ

τ t
1

∣∣2
]

=
1
τ t

1

. (6.18)

Informally, eq. (6.18) expresses that the estimated variance of z, defined as τ t
1, is equal to the

mean square difference between z and the estimation of z (being Rt
1/τ

t
1) under the estimated

posterior. Using eq. (6.18) along with the symmetry assumptions of Def. 6.1, it is easy to see
that Algorithm 6 admits the following fixed point, that we call “trivial” as it is completely
uninformative:





γ1 = 0, γ2 = ρ−1, v1 = ρ, v2 = ρ
x̂1 = T1 = 0, x̂2 = T2 = 0, τ1 = α/(ρ〈λ〉ν), τ2 = 0
c1 = ρ〈λ〉ν/α, c2 = ρ〈λ〉ν/α, ẑ1 = R1 = 0, ẑ2 = R2 = 0.

(6.19)

Linearization around the fixed point

We can now linearize Algorithm 6 around the fixed point given by eq. (6.19). One can easily
check (see [MKLZ21] for details) that the first order variations of all the variances and inverse
variances parameters are negligible. This will greatly simplify our linearization around the trivial
fixed point, as we can focus solely on the vector parameters. For clarity, we restrict here to the
real case β = 1, while the publication [MKLZ21] also considered the complex case. We write
the linearization of Algorithm 6 as (all derivatives are taken at the fixed point of eq. (6.19)):

δx̂t
1 = ∇Tgx1δT

t
1, δẑt

1 = ∇Rgz1δR
t
1, δTt

2 = 1
ρδx̂

t
1 − δTt

1,

δx̂t
2 = ∇Tgx2δT

t
2 +∇Rgx2δR

t
2, δẑt

2 = ∇Tgz2δT
t
2 +∇Rgz2δR

t
2,

δRt
2 = α

ρ〈λ〉ν
δẑt

1 − δRt
1, δTt+1

1 = 1
ρδx̂

t
2 − δTt

2, δRt+1
1 = α

ρ〈λ〉ν
δẑt

2 − δRt
2.

(6.20)
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The derivatives of the auxiliary functions of G-VAMP at the trivial fixed point are:




∂Tj [(gx1)i] = ρ δij , ∂Tj [(gx2)i] = ρ δij , ∂Rν [(gz1)µ] = δµνEPout

(
yµ,0,

ρ〈λ〉ν
α

)[z2],

∂Rµ [(gx2)i] = ρ
(Φ†)iµ√

n
, ∂Ti [(gz2)µ] = ρ

Φµi√
n
, ∂Rν [(gz2)µ] = ρ

(ΦΦ†)µν

n .
(6.21)

Plugging eq. (6.21) in eq. (6.20) yields, with v(yµ) ≡ E
Pout

(
yµ,0,

ρ〈λ〉ν
α

)[z2]:
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1, δẑt
1 = Diag({v(yµ)})δRt
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(6.22)

In particular, these equations imply δTt
2 = 0. The equations can then simply be closed on δRt

1:

δRt+1
1 =

( α

〈λ〉ν
ΦΦ†

n
− Im

)[ α

ρ〈λ〉ν
Diag({v(yµ)})− Im

]
δRt

1. (6.23)

In the complex case, one obtains the same linearized equation. Interestingly, v(yµ) can be linked
to the function ∂ωgout of eq. (6.17): ∂ωgout(yµ, 0, σ2) = −σ−2 + σ−4v(yµ).

The LAMP spectral method

The Linearized-AMP (LAMP) spectral method is based on eq. (6.23), and consists in taking the
dominant eigenvalue and corresponding eigenvector of the m×m matrix:

M(LAMP) ≡ ρ〈λ〉ν
α

( α

〈λ〉ν
ΦΦ†

n
− Im

)
Diag(∂ωgout(yµ, 0, ρ〈λ〉ν/α)).

Note that M(LAMP) is not a Hermitian matrix, so “dominant” eigenvalue means here eigenvalue
of largest real part. If û is the eigenvector of M(LAMP) associated to this dominant eigenvalue,
then one can construct a corresponding estimate x̂ using the relations of eq. (6.22), as:

x̂ ≡
Φ†[ α

ρ〈λ〉ν
Diag({v(yµ)})− Im

]
û

∥∥∥Φ†[ α
ρ〈λ〉ν

Diag({v(yµ)})− Im
]
û
∥∥∥

√
nρ. (6.24)

Surprisingly, and as we will see in more details in the following, this spectral method achieves
the optimal weak-recovery threshold but only sub-optimal performance compared to M(T ∗)!
There is, however, a way to recover the optimal performance from M(LAMP) by considering an
eigenvalue “hidden” inside the bulk, as we will see in Proposition 6.6.

6.4.3 The Bethe Hessian: TAP revisited

Our second approach leverages the Thouless-Anderson-Palmer (TAP) formalism of statistical
physics [TAP77], and in particular the results of Chapter 2.

Let us first recall a few facts on the TAP formalism. It consists in studying a modified posterior
distribution with respect to eq. (6.3), which is tilted so that the first and second moments of all
xi are fixed. These moments become then variables of the TAP free energy associated with this
modified posterior distribution. When weak recovery of the signal is impossible, this free energy
possesses a global minimum in the completely uninformative point in which the estimator is
the vector m = 0. On the other hand, when weak recovery is possible, the optimal estimator
corresponds to the global minimum of the TAP free energy with m 6= 0. However as we will
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see the point m = 0 always remains a stationary point of the TAP free energy. Moreover, a
spectral method used for initializing a non-convex optimization algorithm can be based solely
on the observations (i.e. on Φ and {yµ}), and therefore can not exploit any physical information
other than the one present in the uninformative point. When this point is locally stable, we
therefore expect all polynomial-time algorithms not to be able to achieve weak recovery. On the
other hand, linear instability of the m = 0 point implies that there should exist a minimum of
the TAP free entropy with positive correlation with the signal. With this picture in mind, it is
natural to conjecture that the optimal spectral estimator is the dominant unstable direction of
the uninformative fixed point, i.e. the smallest eigenvalue of the Hessian at the uninformative
fixed point, also denoted Bethe Hessian11.

The TAP free entropy

We denote fTAP(Y,Φ,m, σ) the TAP free entropy (or negative free energy) of the model of
eq. (6.2). Of particular interest are its maxima, corresponding to pure states in the statistical
physics language. Recall that we showed in Chapter 2 that these pure states are in exact
correspondence with the fixed points of the G-VAMP algorithm. Let us now use the results of
Chapter 2 to compute fTAP, more specifically eq. (2.39), which yields up to On(1) terms:

fTAP(m) = sup
σ≥0

sup
g∈Km

r≥0

extr
ω∈Km

b≥0

extr
λ∈Kn

γ≥0

[β
n

n∑

i=1

λi ·mi +
βγ

2n
(
nσ2 +

n∑

i=1

|mi|2
)− β

n

m∑

µ=1

ωµ · gµ

− βb

2n
( m∑

µ=1

|gµ|2 − αnr
)

+
1
n

n∑

i=1

ln
∫

K

P0(dx)e− βγ
2

|x|2−βλi·x (6.25)

+
α

m

m∑

µ=1

ln
∫

K

dh
(

2πb
β

)β/2
Pout(yµ|h)e− β|h−ωµ|2

2b +
β

n

n∑

i=1

m∑

µ=1

gµ ·
(Φµi√

n
mi
)

+ βF (σ2, r)
]
.

The function F is defined as:
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One can write the saddle-point equations associated to eq. (6.25), called the TAP equations:

mi = EP0(γ,λi)[x], σ2 = 1
n

n∑
i=1

EP0(γ,λi)[|x−mi|2],

gµ = gout(yµ, ωµ, b), r = 1
m

m∑
µ=1

{
|gµ|2 + 1

b − EPout(yµ,ωµ,b)

[∣∣h−ωµ

b

∣∣2
]}
,

ωµ + bgµ =
n∑

i=1

Φµi√
n
mi, b = − 2

α∂rF (σ2, r), γ = −2∂σ2F (σ2, r).

(6.26)

The trivial stationary point

It is easy to see that the TAP equations (6.26) admit a trivial fixed point at m = 0 (corresponding
to a stationary point of fTAP). At this point, the parameters are σ2 = ρ, g = ω = λ = 0,
γ = r = 0, b = ρ〈λ〉ν/α. The derivation of the fixed point also uses the behavior of F (σ2, r) at
small r, computed in Appendix D.6.1:

F (σ2, r) = −〈λ〉νrσ
2

2
+
σ4r2

4α
[α〈λ2〉ν − (1 + α)〈λ〉2ν ] + σ6r3G(rσ2), (6.27)

with G(x) a continuous bounded function in x = 0.

11The Bethe Hessian has also been used as a spectral method e.g. in the context of community detection [SKZ14]
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The spectral method

As we argued, a natural way to design the optimal spectral method for this inference problem is
to consider the Hessian of −fTAP at this trivial fixed point, as we expect a descending informative
direction to appear in its spectrum at the weak recovery threshold. Computing the Hessian from
eq. (6.25) is quite lengthy, but poses no technical difficulties. For this reason we do not reproduce
its derivation here (it can be found in [MKLZ21]). In the end this procedure leads to consider
the n× n matrix:

M(TAP) ≡ −n
β
∇2fTAP(0) = −1

ρ
In +

1
n

m∑

µ=1

∂ωgout(yµ, 0, ρ〈λ〉ν/α)

1 + ρ〈λ〉ν

α ∂ωgout(yµ, 0, ρ〈λ〉ν/α)
ΦµiΦµj . (6.28)

6.4.4 Unifying the approaches

We detail here our main analytical results concerning the spectral methods we just derived.

The optimal spectral method and the Bethe Hessian

Very importantly, as opposed to previous approaches, our derivation is constructive: we start
from the fully-explicit expression of the TAP free entropy given in eq. (6.25) and simply compute
its Hessian at the trivial fixed point. As we argued, we expect from the statistical physics
literature that the optimal spectral method will be given by the largest eigenvalue (and associated
eigenvector) of this Hessian, given in eq. (6.28). Importantly, this implies that the optimal
spectral method that can be built from the data Φ and the observations {yµ} belongs to the
class of methods given by eq. (6.15). Our conjecture therefore also gives weight to many previous
analysis of spectral methods for phase retrieval, which only studied spectral methods of the type
of eq. (6.15) [MM19, LAL19, LL20, MDX+21].

Relating linearized-AMP and the Bethe Hessian

Our derivation of M(LAMP) is constructive as well, and in this sense fundamentally differs from
the L-AMP algorithms designed in [MDX+21] to assess the performance of other spectral meth-
ods. We can moreover relate the eigenpairs of our two methods:

Proposition 6.6 (Relating LAMP to the Bethe Hessian)

Without loss of generality, we assume 〈λ〉ν = α. Let zµ ≡ ∂ωgout(yµ, 0, ρ〈λ〉ν/α), and
(λLAMP,v) be an eigenpair of M(LAMP). Assume that λLAMP + ρzµ 6= 0 for all µ = 1, · · · ,m.
Then Φ†Diag(zµ)v 6= 0, and we let x̂ ∝ Φ†Diag(zµ)v with ‖x̂‖2 = n. Moreover:

{ 1
m

m∑

µ=1

ρzµ

λLAMP + ρzµ
ΦµΦ†

µ

}
x̂ = x̂.

Conversely, let x be an eigenvector of M(TAP) with norm ‖x‖2 = n, with associated eigenvalue
λTAP. We define u ≡ Diag[(1 + ρzµ)−1]Φx/

√
n. Then one has:

M(LAMP)u = u + ρλTAPDiag(1 + ρ∂ωgout(yµ, 0, ρ))u.

Moreover, if λTAP = 0, eq. (6.24) applied to u yields the same performance as the TAP
estimator.

This proposition is proven in Appendix D.6.2. By considering λLAMP = 1 and λTAP = 0, one
immediately deduces two important consequences of Proposition 6.6:
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• The appearance of an unstable direction, in the spectrum of M(TAP) (i.e. a positive eigenvalue)
and of M(LAMP) (i.e. an eigenvalue with real part greater than 1), occurs at a common
threshold, the weak-recovery threshold, given by eq. (6.11).

• An eigenvalue 0 appears in the spectrum of M(TAP) if and only if an eigenvalue 1 appears in
the spectrum of M(LAMP). These two eigenvalues therefore correspond to marginal stability
of the linear dynamics. Moreover, the two estimators associated to these eigenvalues are
identical, i.e. M(LAMP) contains the optimal estimator. However, this estimator is different
from the dominant eigenvector of M(LAMP), which reaches only suboptimal performance as
we will see in Section 6.5.

6.5 Statistical and algorithmic analysis: numerical ex-

periments

This section is devoted to a numerical investigation of all the theoretical claims of the previous
sections. In Section 6.5.1 we solve the state evolution equations (6.10) for different real and
complex ensembles of sensing matrix Φ, and compare it to numerical simulations of G-VAMP.
This allows to uncover the existence or absence of hardness depending on the structure of the
sensing matrix. In the following Section 6.5.2 we give the performance of the spectral methods we
derived in Section 6.4, for noiseless and Poisson-noise observations. Finally, in Section 6.5.3 we
apply both message-passing and spectral algorithms to the recovery of real images, illustrating
the relevance of our analysis for practical phase retrieval.

We also show in all these cases that the algorithms we present perform very well even by
allowing more structure in the sensing matrix than assumed in Model R, by considering for
example randomly subsampled DFT, Hadamard or DCT matrices12.

6.5.1 Optimal algorithms and computational gaps

While our results hold for any phase retrieval problem (in the sense of Def. 6.1), we focus for the
analysis of computational gaps on noiseless phase retrieval. We fix Pout(y|z) = δ(y − |z|2) and
take P0 = Nβ(0, 1). We can indeed consider ρ = 1, as the scaling is irrelevant under a noiseless
channel. The numerical code used to generate all simulations of the G-VAMP algorithm is
available in a Github repository [MLKZ20].

Real case

In Fig. 6.2, we illustrate the case of real Gaussian and real column-orthogonal sensing matrix Φ,
the latter not having been investigated previously in the literature. We compute the MMSE by
solving the State Evolution equations starting from an informed solution (close to full recovery).
The minimal mean-squared error achievable with the G-VAMP algorithm is computed using the
State Evolution equations starting from the uninformed qz = 0 solution. We compare these
predictions with numerical simulations of the G-VAMP algorithm on Gaussian matrices and
uniformly sampled orthogonal matrices, as well as randomly subsampled Hadamard matrices.
The simulations are in very good agreement with the prediction, and our results on Hadamard
matrices suggest that the curves of Fig. 6.5-right are valid for more general ensembles than
uniformly sampled orthogonal matrices, and that one can allow some controlled structure in the
matrix without harming the performance of the algorithm.

12The universality of linearized approximate message passing algorithms for a Gaussian prior and different ensembles
of column-orthogonal matrices was analyzed recently in [DB20].
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Figure 6.2: Comparison of the Bayes-optimal MSE and the G-VAMP algorithm, for an i.i.d. real
Gaussian (left) and a column-orthogonal (right) sensing matrix Φ (i.e. Φ⊺Φ/n = In), with a real

Gaussian prior. Dots correspond to finite size simulations of G-VAMP (the mean and std are
taken over 5 instances, with n = 8000 in the Gaussian case and m = 8192 in the orthogonal case),

while full lines are obtained from the state evolution. The vertical grey dashed lines denote the
algorithmic weak recovery threshold αWR,Algo. Note the presence of a statistical-to-algorithmic

gap in both ensembles, and that for column-orthogonal matrices αWR,Algo > αFR,IT.
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Figure 6.3: We show quantities identical to Fig. 6.2, but for an i.i.d. complex Gaussian (left) and
a column-unitary (right) sensing matrix Φ (i.e. Φ†Φ/n = In), with a complex Gaussian prior. We

used n = 5000 in the simulations of G-VAMP.

Complex case

Previous works on complex signals X∗ ∈ C
n have mainly focused on the study of the weak re-

covery threshold αWR, which was located for Gaussian matrices [MM19, LAL19] and uniformly
sampled column-unitary matrices [MP17, DBMM20]. We begin by extending the aforemen-
tioned results by identifying the full recovery threshold αFR,IT in these cases, and comparing the
performance of the G-VAMP algorithm to the Bayes-optimal solution. Fig. 6.3 illustrates our
results for these two ensembles. The algorithmic (i.e. G-VAMP) full-recovery threshold αFR,Algo

is found numerically from the state evolution equations and is in good agreement with finite
size simulations. The existence of a statistical-to-algorithmic gap ∆ = αFR,Algo − αFR,IT ≥ 0
reflects the hardness of phase retrieval in the real and complex case. However, it is interesting
to note that even though full-recovery in the complex case requires more data than in the real
case, the size of the statistical-to-algorithmic gap in the complex ensembles is smaller than in
their real counterparts. Again our conclusions transfer to partial DFT matrices, which were
introduced in [MYP14, MDX+21], and are column-unitary matrices obtained from the usual
DFT matrices. Namely, there are defined for m ≥ n as Φ/

√
n = FSP, with F ∈ C

m×m a DFT
matrix, S ∈ R

m×n containing n columns (randomly taken) of the identity matrix Im, and P a
diagonal of random phases.

In Fig. 6.4 we analyze the case of a product of two i.i.d. standard Gaussian matrices Φ =
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Figure 6.4: Mean squared error as a function of the measurement rate α, for a sensing matrix
Φ = W1W2 a product of two complex i.i.d. standard Gaussian matrices W1 ∈ C

m×p, W2 ∈ C
p×n

with aspect ratios γ = p/n ∈ {0.5, 1.0, 1.5}. Red curves denote the recovery on ΦX⋆/
√
n and blue

curves on X⋆. Cyan dashed lines denote the full reconstruction threshold αFR,IT. The G-VAMP
experiments were performed with n = 5000, and the mean and std are taken over 5 instances.

W1W2, with W1 ∈ C
m×p and W2 ∈ C

p×n for different aspect ratios γ ≡ p/n. We can
identify the presence of a threshold αWR,Algo = γ/(1 + γ) (computed in Section 6.3.1) that
delimits the possibility of weak recovery both information-theoretically and in polynomial time.
The information-theoretic full-recovery is achieved at αFR,IT = min(2, 2γ), in agreement with
eq. (6.14). Note that the full recovery algorithmic threshold is very close to the information-
theoretic one, and precisely equal for γ = 1, although the gap is too small to be visible in the
left and right parts of Fig. 6.4. Therefore, the performance of G-VAMP is exactly given by the
Bayes-optimal estimator, apart for γ 6= 1 in a very small range (αFR,IT, αFR,Algo), whose size
is of order 10−3 for γ ∈ {0.5, 1.5}. As γ → ∞, one recovers the statistical-to-algorithmic gap
present in the complex Gaussian case, which is again very small (around 0.027, cf Table 6.1).
Although this hard phase is very small, our results show its existence for all γ 6= 1.

6.5.2 Spectral methods: cheap and efficient

In this section, we numerically assess our predictions and compare the performances of the
spectral methods on various problems. The numerical code used to generate all figures related
to the spectral methods is available in a Github repository [MKLZ20].

Another spectral method – In the figures, we sometimes consider another spectral method,
denoted M(MM). It is obtained by naively considering the preprocessing function of [MM19],
which was shown to achieve the optimal transition for Gaussian sensing matrices. More precisely,
we have (assuming ρ = 1 and 〈λ〉ν = α):

TMM(y) ≡ ∂ωgout(y, 0, 1)√
2α
β + ∂ωgout(y, 0, 1)

.

In particular note that at α = β/2, we have TMM = T ∗, so that TMM indeed achieves the optimal
weak-recovery transition for Gaussian matrices, for which αWR,Algo = β/2.

Performance of the spectral methods – We show the performance of the spectral methods
to recover a random signal in three different cases, that we briefly describe:

• In Fig. 6.5, we consider noiseless real phase retrieval (i.e. sign retrieval), with uniformly
sampled column-unitary sensing matrices. We also show that our conclusions transfer to
randomly subsampled Hadamard matrices, validating the conclusions of [DB20].
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Figure 6.5: MSE achieved by our spectral methods and a naive version of the spectral method of
[MM19] for real column-orthogonal sensing matrices and a noiseless channel. We give the

performance on uniformly sampled column-orthogonal matrices as well as randomly subsampled
Hadamard matrices. The simulations were done using m = 8192, and the error bars are taken over

10 instances.

• In Fig. 6.6a we consider noiseless real phase retrieval when the sensing matrix is a product
of two Gaussian i.i.d. matrices. This setup can for instance be interpreted as Gaussian phase
retrieval in which the signal is drawn from a known generative prior, similarly to what we
analyzed in Chapter 5. Importantly, it is not covered by any previous analysis of the spectral
methods, emphasizing the generality of Conjecture 6.5.

• In Fig. 6.6b, we compare our results in noiseless and noisy settings. More precisely, we consider
complex phase retrieval with a Gaussian sensing matrix, and either a noiseless channel or a
Poisson observation channel with intensity Λ > 0:

Pout(y|z) = e−Λ|z|2
∞∑

k=0

δ(y − k)
Λk|z|2k

k!
.

This latter channel is particularly relevant for optical applications, in which the detector can
be modeled as being affected by a Poisson noise. In both cases, we find that all our conclusions
on the optimality of the M(TAP), and on the link between M(LAMP) and M(TAP), still hold.

Transition phenomena in the spectra – We illustrate the weak-recovery transition in the
spectra of the different methods. Precisely, we confirm the following claims of Section 6.4.4:

• Both M(LAMP) and M(TAP) have a dominant eigenvalue that detaches from the bulk for
α > αWR,Algo, given by eq. (6.11).

• In the regime in which weak-recovery is possible, the largest eigenvalue of M(TAP) approaches
0 as n→∞. The associated eigenvector achieves optimal correlation with the signal (among
spectral methods) as n→∞.

• M(LAMP) gives two estimators that are positively correlated with the signal for α > αWR,Algo.
The first one corresponds to its largest eigenvalue in real part, and achieves worse correlation
than the largest eigenvector of M(TAP). The second one corresponds to an eigenvalue inside
the bulk (but isolated from the other eigenvalues) that approaches 1 as n→∞, and achieves
the same optimal performance as the estimator given by M(TAP).

We verify these claims for different values of α, below and above the weak-recovery threshold,
in complex Gaussian phase retrieval with Poisson-noise, in Fig. 6.7. This analysis is extended in
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(a) Product of two real i.i.d. Gaussian sensing matrices with a size ratio γ ∈ {0.5, 1.0, 2.0}. The
simulations were done using m = 10000, and error bars are taken over 10 instances.

(b) Complex Gaussian matrix, in noiseless phase retrieval and in Poisson-noise phase retrieval with Λ = 1.
The simulations were done using m = 10000 (noiseless case), 12000 (Poisson case), and the error bars are

taken over 10 (noiseless case), 5 (Poisson case) instances.

Figure 6.6: MSE achieved by the different spectral methods in two different settings.

[MKLZ21], which contains similar results for other observation channels and sensing matrices.

Computational cost of the spectral methods – When weak recovery is possible the largest
eigenvalue of M(TAP) concentrates on 0 as we noticed. However, the spectrum of M(TAP) also
contains many very large negative eigenvalues. In practice, we use an inverse iteration method
to quickly estimate the associated eigenvector. We use a similar approach for M(LAMP), using
inverse iterations to estimate the eigenvector with eigenvalue 1, and usual power iterations for
the largest eigenvalue.

A puzzling open question – As we already said, the optimal estimator is always associated
with marginal stability, both in M(LAMP) and M(TAP). A clear understanding of this marginal
stability is still lacking. Moreover, the dominant eigenvector of the matrix M(LAMP) is associ-
ated to an unstable direction, thus dominating the dynamics of the linearized-AMP. However its
achieved correlation is smaller than the one achieved by the marginally stable, optimal, eigenvec-
tor. We also noticed that the eigenvectors of M(TAP) do not contain any information about this
suboptimal estimator13. This blindness of M(TAP) to the principal eigenvector of M(LAMP) is
very puzzling from a theoretical point of view. Indeed, as we showed in Chapter 2, the stationary
limit of G-VAMP (Algorithm 6) is in exact correspondence with the stationary point equations
of the TAP free entropy. One would therefore expect the two spectral methods M(LAMP) and
M(TAP) to contain the same physical information on the system. Moreover, the different quali-
tative behaviors of the two dynamics (instability of M(LAMP) a opposed to marginal stability of
M(TAP)) only deepens this puzzle.

13In particular, this is an important distinction between our L-AMP constructive derivation and the L-AMP algo-
rithms of [MDX+21], which are designed to match the spectral methods of the type M(T ): in the latter, it was
shown that the L-AMP estimator always matched the one of the spectral method.
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Figure 6.7: Transition in the spectra of M(LAMP) (left) and M(TAP) (right) for a complex
Gaussian Φ and a Poisson channel with Λ = 1. For α > αWR,Algo = 2, we indicate the

approximate overlap q corresponding to the the relevant eigenvalues.

Original image = 2.3, MSE = 0.0 = 2.2, MSE = 0.639 = 2.1, MSE = 0.81 = 2.0, MSE = 0.999

Figure 6.8: Performance of the G-VAMP algorithm for noiseless phase retrieval. We wish to
recover a 77x102 image (on the left), and we use a complex Gaussian prior to infer the signal. The

data matrix Φ is a randomly subsampled DFT matrix.

6.5.3 Real image reconstruction

Importantly, while the knowledge of the distribution of the true signal is required for our theo-
retical analysis, the G-VAMP algorithm and our spectral methods are also well-defined beyond
this scope, e.g. they can be used to infer natural images with Fourier matrices. Using a Gaussian
prior to infer the image can then actually be seen as the minimal assumption on the underly-
ing signal, as it amounts to simply fix its norm: in particular, our theory can thus predict the
performance of G-VAMP for any signal, structured or not.

Performance of G-VAMP

We conducted a simple experiment on a natural image with a randomly subsampled DFT matrix
Φ, described in Fig. 6.8. Although we are far from a Bayes-optimal setting, the achieved MSE
is very close to values of Fig. 6.3, for all values of α. In particular, we achieve perfect recovery
for α ≥ 2.3, just above αFR,Algo ≃ 2.27 which was derived for random unitary matrices, i.i.d.
data and in the Bayes-optimal setting!

Spectral initialization on real images

As a final analysis, we numerically investigate our spectral methods for the reconstruction of a
natural image. For comparability, we consider the image of The Birth of Venus already used
in [MM19, MDX+21]. Although this signal is not i.i.d., we will see that all the conclusions
that we numerically investigated in Section 6.5.2 transfer to this case. We consider a noiseless
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Figure 6.9: MSE achieved by the different spectral methods for the recovery of a natural image
in noiseless phase retrieval. We consider column-unitary matrices Φ (both uniformly sampled and
partial DFT matrices, left) and the product of two complex Gaussian matrices with aspect ratio
γ = 1 (right). We reduced each dimension of the original 1280× 820 image by a factor 20 (left) or

10 (right), and we average the MSE over 5 instances and the 3 RGB channels.

phase retrieval channel and different sensing matrices Φ: multiple ensembles of column-unitary
matrices (which partly reproduces the analysis of [MDX+21]) and a product of two complex
Gaussian matrices with aspect ratio γ = 1. In Fig. 6.9, we give the MSE obtained by the
different spectral methods and these two matrix ensembles. We also give examples of the images
recovered by the algorithms. Moreover, despite the fact that the signal (and possibly the matrix
as well) is structured, we still observe the same transition phenomena in the spectra of M(TAP)

and M(LAMP). Namely, we still observe that the optimal estimator is associated with marginal
stability of both spectral methods, while the dominant eigenvalue of M(LAMP) is associated to
a non-optimal estimator.

Let us finally illustrate how the optimal spectral method of Conjecture 6.5 can be combined with
a subsequent local optimization algorithm. We use the spectral estimator as the initialization
point to running vanilla gradient descent on the square loss

L(x) ≡ 1
2m

m∑

µ=1

{∣∣∣
(Φx)µ√

n

∣∣∣
2
−
∣∣∣
(ΦX∗)µ√

n

∣∣∣
2
}2

.

This allows to already obtain a perfect recovery of the image for α = 4, as shown in Fig. 6.10. In
[MKLZ21] we describe the obtained MSE curves in more details. In particular, we confirm that
combining the gradient descent with the spectral initialization allows to reach perfect recovery
at finite α, which is not possible with the “vanilla” spectral methods.

Conclusion of Chapter 6 and perspectives on Part II

In this last well-filled chapter on the statistical physics approach to optimal learning in inference
models we considered phase retrieval, one of the flagship models of theoretical computer science,
with a wide variety of applications across scientific fields (notably through optical experiments).
Our main findings can be briefly summarized as:

• As in Chapters 4 and 5, we leverage the replica method to derive a single-letter formula for
the asymptotic free entropy (or mutual information) of the system, which we then prove under
assumptions on the structure of the data matrix. Combined with message-passing algorithms,
which are known to be optimal among a large class of general first order methods [CMW20],
we uncovered the existence or absence of statistical-to-computational gaps in phase retrieval
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Figure 6.10: Reconstruction of a real image in noiseless phase retrieval with partial DFT
matrices. We reduce the image size from 1280× 820 to 128× 82. We compare, for three different
values of α, the estimators of M(T ∗) (top line) and the estimator obtained by running a gradient

descent procedure starting from the estimator of M(T ∗) (bottom line). We recover the 3 RGB
channels with independent instances of the sensing matrix.

depending on the structure of the sensing matrix. In particular, for the case of Fourier phase
retrieval, which is of particular interest to the practitioner, we uncover a significant hard
phase, while the IT performance shows an “all-or-nothing” transition, see Fig. 6.3. We also
conducted a precise theoretical analysis of the weak and full recovery thresholds, as a function
of the sampling ratio, in the wide class of phase retrieval problems characterized by Def. 6.1.
Recall that these results are summarized in Table 6.1.

• We presented an automated derivation of a generic spectral method, which we conjecture to be
optimal for the wide class of phase retrieval problems that satisfy Def. 6.1, cf. Conjecture 6.5.
Our derivation leverages the Bethe Hessian of the TAP free energy computed in Chapter 2,
and in particular, we show that our method achieves the optimal weak-recovery threshold,
and give numerical evidence for its optimality in terms of MSE.

• Finally, we gave numerical evidence for two generalizations of our results, regarding both
optimal learning and the spectral methods: first, the i.i.d. nature of the signal is not required
for our results to hold, as we show by recovering real structured images, see Figs. 6.8 and
6.9. Second, one can allow more structure in the data matrix than rotational invariance, as
illustrated in Figs. 6.2, 6.3, 6.8 and 6.9. In particular, we can consider randomly subsampled
Fourier matrices without harming any of our conclusions. Note that this random subsampling
is necessary, as we found that our conclusions did not transfer to “vanilla” Fourier matrices.

Proofs of replica formulas for inference: beyond Gaussianity – As we emphasized,
the adaptive interpolation method used at several points in Part II, while being highly ver-
satile and applied to a wide range of problems [BM19a, BM19b, BKM+19, Bar19, BR20,
BMDK20],[BMMK18], deeply relies on some Gaussianity in the problem, either in the sens-
ing matrix or the prior. Recent works by collaborators have taken a different path, leveraging
known results on the asymptotic performance of approximate message-passing algorithms, which
allows to indirectly prove the replica predictions [GAK20a, GAK20b]. This has allowed to put
on rigorous ground formulas for matrices without any Gaussianity (i.e. the generic rotationally-
invariant matrices described by Models S and R). Still these approaches also have limitations,
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e.g. requiring convexity of the loss, and an improvement in this regard, or a way to loosen the
Gaussianity assumptions in adaptive interpolation, would both be significant advancements in
putting the replica predictions in Bayes-optimal problems on rigorous grounds.

Additional references – Let us conclude by naming some references for the reader interested
in the ideas behind the whole Part II, and who wishes to know more. First and foremost, [MM09]
is an important introduction to the field of statistical physics applied to theoretical computer
science. It details many of the concepts that we introduced in this thesis, e.g. message-passing
algorithms, the cavity method or the appearance of replica symmetry breaking in inference
or constraint satisfaction problems. With a point of view more focused on statistical gaps in
inference problems, and close to the one we took in this thesis, [ZK16] gives a very detailed
description of how to apply the statistical physics toolbox to learning. The authors focus on
important examples particularly relevant to the theoretical computer science community, such
as compressed sensing and community detection. In the same vein, [BPW18] reviews some of the
statistical physics prediction on the existence of hard phases, and offers a very good introduction
to the field for the mathematics and theoretical computer science audience. Finally, closer to the
physics perspective, [Gab20] is a recent review on the mean-field approaches for learning in neural
networks, and highlights many very recent advances and perspectives. Beyond these reviews,
the reader will find many recent published works taking similar approaches (e.g. [BMMK18] by
the author), that one can regroup under the broad category of “statistical physics of learning”.
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Part III

Towards a topological approach to
high-dimensional optimization
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Chapter 7

The complexity of high-dimensional
landscapes

“As the light grew a little he saw to his surprise that what from a distance had seemed wide and
featureless flats were in fact all broken and tumbled. Indeed the whole surface of the plains of
Gorgoroth was pocked with great holes, as if, while it was still a waste of soft mud, it had been
smitten with a shower of bolts and huge slingstones. The largest of these holes were rimmed with
ridges of broken rock, and broad fissures ran out from them in all directions.”

J.R.R. Tolkien, The Lord of the Rings – Book VI (1955).

Disclaimer – In this chapter we present a method to obtain the average and the typical value
of the number of critical points of the empirical risk landscape for generalized linear estimation
problems and variants. This represents a substantial extension of previous computations which
restricted to Gaussian random functions. The new results in this chapter are mainly based
on [MBAB20], and the introductory Section 7.1 builds on a presentation given at the Kavli
Institute for Theoretical Physics during the winter of 2019 [Mai19]. Some proofs and details are
given in Appendix E. On a general note, the majority of this chapter is written in a style closer
to the mathematics literature than the other chapters in this thesis. It aims however at being
accessible to any reader from the statistical physics community.

7.1 Counting complexity: the Kac-Rice formula

7.1.1 How to “count” the complexity of a landscape?

Characterizing the landscape of the empirical risk is a key issue in several contexts. Indeed, many
current machine learning problems (such as the ones we encountered in the previous chapters)
are both non-convex and high-dimensional. In these cases the analysis of local optimization
algorithms, such as gradient descent and its stochastic variants, represents a very hard feat.
In recent years, there has been a series of works that developed a landscape-based approach
to tackle this challenge. The key idea is to study the statistical properties of the empirical
risk landscape, and to use these findings to obtain results on the performance of algorithms.
Without the aim of being exhaustive this research avenue includes analysis of the landscape
of neural networks, matrix completion, tensor factorization and tensor principal component
analysis (PCA) [Fyo04, FN12, Kaw16, SC16, GLM16, FB17, BNS16, PKCS17, DLT+18, GM17,
GJZ17, LK17, LXB19, BAMMN19, RBABC19, SMKUZ19, SMBC+19, BCRT20, BAGJ20]. The
majority of these works identifies the region of parameters where the landscape is “easy”, i.e.
it focuses on the regime where there shouldn’t be any bad local minima and it proves that
indeed there are none. However, gradient descent and other landscape-based algorithms are
used extensively in machine learning, and they are often observed to work even very far from
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(a) A “rough” optimization landscape, with
a great number of spurious local minima and

saddle points.
(b) A smooth landscape, intuitively easier to

optimize via local algorithms.

Figure 7.1: “Naive” representation of a rough (left) and smooth (right) optimization landscape.
Both landscapes have a global minimum with the same value. Pictures taken from [LXT+18].

the region described above where the landscape can be proved mathematically to be “easy”. A
possible reason is that the bounds obtained rigorously are not tight enough. Another, more
interesting, is that the landscape is “hard”, i.e. spurious minima are present, but their basins of
attraction are small and the dynamics is able to avoid them [SMKUZ19, SMBC+19].

In Chapters 4 and 6, we uncovered large hard phases in the learning of two-layers neural networks
and in the phase retrieval problem. This led us to the conclusion that, in the loss landscapes of
such models, there must exist a large number of spurious local minima (i.e. local minima with
loss value far from the global minimum), so that local optimization procedures (as well as all
polynomial-time algorithms) fail whenever the system is in a hard phase. The existence of many
such local minima is what we will generically describe as the complexity of a high-dimensional
landscape.

In Fig. 7.1 we describe the intuitive view of complexity of a landscape. Crucially, one must keep
in mind that such a picture can be very misleading, as almost all our usual low-dimensional
intuitions become incorrect when entering the realm of high dimensions1.

Counting critical points – In this chapter we develop a general method that allows to study
the “hard” regime, where the loss landscape may display a huge number of bad minima. Our
aim is to obtain explicit formulas for the number of critical points of the empirical risk land-
scape, and to characterize the Hessian associated to them. For a given problem, this will allow
to identify the topological transition where the landscape becomes “easy”, and to analyze very
precisely the “hard” regime by investigating the topology of its sublevel sets. In recent years,
there has been remarkable progress on this subject in the field of spin glasses and probability the-
ory [FSW07, FW07, BD07, ABA13, ABAČ13, Sub17a, Sub17b, SZ17, BAMMN19, RBABC19,
BASZ20] (this list being far from exhaustive, and we will refer to many other works adopting
similar or complementary approaches in specific paragraphs of this chapter). This line of re-
search has allowed to put on a firm ground results previously obtained in the physics literature
[BM80, Kur91, CS95, CGG99, Fyo04], and it has unveiled important relationships with random
matrix theory. Its main domain of application has been the study of the landscapes associated
to Gaussian random functions, and we will describe one of these analyses in Section 7.1.4. Its
extension to tackle non-Gaussian high-dimensional random functions is an open problem — one
that is crucial to address in order to characterize the landscape of the empirical risk.

Annealed and quenched complexity – One of the earliest and most important insights of
the physics analysis of spin glasses is that for random smooth functions in high dimensions, we
should expect the number of critical points to typically be in the scale eΘ(n) [BM80, Mon95].

1For instance, picture the unit sphere S
n−1 with a “North pole” en. As n → ∞ almost all its mass is concentrated

on the equator orthogonal to en, which is not intuitive when representing it in 3 dimensions!
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Therefore one must be particularly careful as how to consider its asymptotic value, as the number
of critical points may be highly fluctuating. In Section 1.1 we introduced two generic asymptotic
limits for such random variables, that we denoted as annealed and quenched, borrowing from
the physics jargon. We refer the reader to this section for a more precise description of these
two limits. We therefore define the annealed and quenched complexity of a random function fn

as:




Σannealed ≡ lim
n→∞

1
n

lnECrit(fn)

Σquenched ≡ lim
n→∞

1
n
E ln Crit(fn)

, (7.1)

Crit(fn) being the number of critical points of fn. In the following we will generalize this
definition, to count e.g. the local minima, or critical points with given value of the function.

Usually the annealed complexity is easier to compute than its quenched counterpart. However,
since Crit(fn) is in general exponentially large and strongly fluctuating, the quenched complexity
really describes the typical value of the number of critical points, and is truly representative of the
typical properties of the landscape, while the annealed complexity might be dominated by rare
instances, as e.g. in tensor PCA [BAMMN19, RBABC19]. Annealed and quenched complexities
are therefore usually different, with very few exceptions [CS95, Sub17a], one of them being the
pure p-spin model that we will see in detail in Section 7.1.4.

Our main tool to count the critical points of random functions will be the Kac-Rice formula
[Ric44]. In the following Sections 7.1.2 and 7.1.3 we describe its derivation and the intuition
behind it, before describing a step-by-step first application to a spin glass model in Section 7.1.4.

7.1.2 The area formula

The Kac-Rice formula is intuitively not derived from any involved probabilistic tool, but rather
is a consequence of a purely geometric result, called the area formula (itself a consequence of
the co-area formula), described in great generality by Federer [Fed59], and stated for instance
in [AW09b]. This formula is the generalization of the following non-rigorous intuition: for a
smooth function f : R → R, and T ⊆ R, denoting Nf (u, T ) the number of solutions to the
equation f(t) = u with t ∈ T , one would want to write informally:

Nf (u, T ) =
∫

f(T )
δ(v − u)dv =

∫

T
δ(f(t)− u)|f ′(t)|dt. (7.2)

The area formula generalizes and makes rigorous this intuition, by showing this last equality in
the weak sense. We follow here the statement of [AW09b].

Proposition 7.1 (Area formula, from [AW09b])

Let f : U → R
d be a C1 function defined on an open subset U of Rd. Assume that the set of

critical values2 of f has zero Lebesgue measure, and denote Nf (u, T ) the number of solutions
to the equation f(t) = u with t ∈ T . Then, for any Borel set T ⊆ R

d, and any g : Rd → R

continuous and bounded:
∫

Rd
g(u)Nf (u, T ) =

∫

T
|det f ′(t)| g(f(t)) dt.

Note that in a large part of the theoretical physics literature, the area formula (and subsequently
the Kac-Rice formula) is directly written in the form of eq. (7.2).

2i.e. points t for which f ′(t) is singular.
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7.1.3 The Kac-Rice formula

Consider a smooth compact manifoldM of dimension n (a practical example is the n-dimensional
unit sphere S

n−1), equipped with a Riemannian metric, and an associated volume measure µM.
We are given a random smooth function f : M → R and we want to use the area formula
(Prop. 7.1) to estimate the moments of the number of critical points of f , in order to compute
the complexity defined by eq. (7.1).

Given the assumptions of Proposition 7.1, a reasonable hypothesis is to assume that f is almost
surely a Morse function [MSWW63], i.e. that all its critical points are non-degenerate. SinceM
is compact, one easily deduces that the number of critical points of a Morse function is finite3.
For any k ∈ N and Borel set B ⊆ R, we define Critf,k(B) to be the number of critical points
x ∈ M of f such that f(x) ∈ B and such that the index of Hess f(x) (that is the number of
strictly negative eigenvalues of the Hessian) is equal to k. The informal area formula of eq. (7.2)
applied to grad f reads:

Critf,k(B) =
∫

M
dµM(x)δ(grad f(x))|det Hess f(x)|1[f(x) ∈ B, i(Hess f(x)) = k]

Taking the expectation of this equality, one directly obtains the Kac-Rice formula:

Proposition 7.2 (Kac-Rice formula, informal)

Let M be a smooth compact Riemannian manifold of dimension n, with volume measure
µM . Let f : M → R be a random function that is almost surely Morse, and that satisfies
some regularity properties (see the remark below). Denote ϕ(0) the density of grad f(x) with
respect to the Lebesgue measure on R

n−1, taken at 0. Then:

ECritf,k(B) =
∫

M
dµM(x)E

[|det Hess f(x)|1{f(x) ∈ B, iHess f(x) = k}
∣∣grad f(x) = 0

]
ϕ(0).

Let us make a few important remarks on this formula:

1. The rigorous derivation of the Kac-Rice formula is quite involved, as one has to start from
the weak equality of Proposition 7.1 and to use continuity arguments in order to obtain a
strong equality at u = 0. This proof is detailed e.g. in [AW09b]. This is the first reason for
which the formula has mostly been used for Gaussian random fields, since then continuity
arguments can be justified using simple hypotheses on the covariance of the random field. The
second reason is that in general, conditional expectations of non-Gaussian random variables
are intractable, making the Kac-Rice formula effectively useless since one has to know the
law of the Hessian conditioned by the gradient being zero. Under many heavy technical
conditions, one can however derive rigorous non-Gaussian versions of the Kac-Rice formula
(see for instance [AT09, AW09b]). We will apply such sophisticated results in Section 7.3.

2. The Kac-Rice formula transforms a random differential geometry problem into a random
matrix theory problem. The main difficulty in evaluating the Kac-Rice formula comes from
the distribution of the Hessian conditioned by the gradient being zero: even for Gaussian
random fields, this is in general a heavily correlated Gaussian random matrix, for which very
few results exist.

3. The Kac-Rice formula can be generalized to compute higher moments of Critf,k(B) as well (cf.
Theorem 6.3 of [AW09b]). Via Morse’s theory, it can also be used to compute the moments
of the Euler characteristic of the level sets of f , see [ABA13] for an example.

3The numbers of critical points of different indices (i.e. the number of strictly negative Hessian eigenvalues) of a
Morse function are constrained by the topology of M by the Morse inequalities [MSWW63].
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7.1.4 The complexity of the pure spherical p-spin model

To conclude our introduction to the Kac-Rice formula, we will describe its application in a
flagship model of disordered systems: the (pure) spherical p-spin, introduced in [CS92], and
that we defined in Model 1.3. This calculation was first performed by physicists [CS95, CGG99,
Fyo04, FSW07, FW07], and made rigorous in [ABAČ13] (and subsequent papers). We will follow
the derivation of the latter, and we will often refer to it for technicalities: the goal of this section
is not to present novel results, but rather to give the reader an intuition of the mechanisms of
the Kac-Rice method.

Statement of the problem

Consider n ≥ 1, p ≥ 3, and the following function fn,p on the unit sphere S
n−1:

fn,p(σ) ≡
∑

1≤i1,··· ,ip≤n

Ji1,···ipσi1 · · ·σip (σ ∈ S
n−1), (7.3)

in which Ji1,···ip

i.i.d.∼ N (0, 1). In the physics language, the Hamiltonian Hn,p of the pure spherical
p-spin defined in Model 1.3 is related to fn,p by fn,p(σ) = n−1/2Hn,p(

√
nσ). For any B ⊆ R, we

want to compute the large n limit of the expectation of the number of local minima σ of fn,p,
such that fn,p(σ) ∈ √nB, that we denote Crit0

n,p(B). One can apply the Kac-Rice formula 7.24:

ECrit0
n,p(B) =

∫

Sn−1
dµ(σ)ϕgrad fn,p(σ)(0) (7.4)

E

[
|det Hess fn,p(σ)|1{fn,p(σ) ∈ √nB, Hess fn,p(σ) ≥ 0

}∣∣∣grad fn,p(σ) = 0
]
,

in which µ is the usual surface measure on S
n−1. Note that here grad and Hess stand for the

Riemannian gradient and Hessian on the sphere, while we will denote ∇, ∇2 the Euclidean
gradient and Hessian.

The joint distribution of (fn,p(σ), grad fn,p(σ),Hess fn,p(σ))

Deriving the joint law of (fn,p(σ), grad fn,p(σ),Hess fn,p(σ)) is a necessary step in the Kac-Rice
method, as these three random variables appear in the conditional expectation.

We fix σ ∈ S
n−1. Note that (fn,p(σ), grad fn,p(σ),Hess fn,p(σ)) is a Gaussian centered random

variable since f is a Gaussian random field. We thus simply need to compute its correlations to
fully characterize the joint distribution. We will naturally identify the tangent space Tσ(Sn−1)
with R

n−1. If we denote P⊥
σ the orthogonal projector on {σ}⊥, one has:

grad fn,p(σ) = P⊥
σ ∇fn,p(σ),

Hess fn,p(σ) = P⊥
σ ∇2fn,p(σ)P⊥

σ − 〈σ,∇fn,p(σ)〉P⊥
σ .

For instance one can compute the covariance of the gradient:

E[grad fn,p(σ)grad fn,p(σ)⊺] = P⊥
σ E[∇fn,p(σ)∇fn,p(σ)⊺]P⊥

σ = pP⊥
σ .

4The proof that fn,p is almost surely a Morse function can be found in [ABAČ13]
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Using the same kind of simple algebraic calculations, one obtains the joint distribution:





fn,p(σ) d= Z,

grad fn,p(σ) d=
√
pg,

Hess fn,p(σ) d=
√

(n− 1)p(p− 1)Mn−1 − pZ Idn−1,

in which Z ∼ N (0, 1), g ∼ N (0, In−1), and Mn−1 ∼ GOE(n − 1) (recall that we defined the
GOE in Section 1.5) and the variables (Z,g,Mn−1) are pairwise independent. Let us make the
following important remarks:

• The joint distribution of (fn,p(σ), grad fn,p(σ),Hess fn,p(σ)) is independent of σ.

• The variables (fn,p(σ),Hess fn,p(σ)) are independent from grad fn,p(σ).

• From the gradient distribution, one easily obtains its density evaluated in 0:

ϕgrad fn,p(σ)(0) = e− n−1
2

ln(2πp).

Recalling that the volume of the unit sphere is V (Sn−1) = 2πn/2/Γ(n/2), one deduces from the
Kac-Rice formula (7.4) and the remarks above:

ECrit0
n,p(B) =

2πn/2

Γ(n/2)
e

n−1
2

ln
(n−1)(p−1)

2π E[|det Hn−1|1(Hn−1 ≥ 0, z ∈ √nB)], (7.5)

in which

Hn−1 ≡Mn−1 −
√

p

(n− 1)(p− 1)
zIn,

with z ∼ N (0, 1) and Mn−1 ∼ GOE(n − 1). It is now completely explicit that we reduced
our original random differential geometry problem (counting the number of critical points of a
random function) to a random matrix theory problem.

Simplification of the formula

It is clear from eq. (7.5) that the following lemma (from [ABAČ13]), which computes the average
absolute value of the determinant of shifted GOE matrices, will be crucial.

Lemma 7.3 (Expectation of the absolute determinant of a shifted GOE matrix)

Let G ⊆ R a Borel set, X ∼ N (0, t2) (for a t > 0) and Mn−1 ∼ GOE(n− 1). Then:

E[|det(Mn−1 −XIn−1)|1((Mn−1 −XIn−1) ≥ 0, X ∈ G)]

=
2

n
2 Γ(n/2)(n− 1)−n/2

√
πt2

EGOE(n)

[
e

− nλ2
0

4

(
2

(n−1)t2 −1

)

1

(
λ0 ∈

√
n− 1
n

G
)]
.

Here λ0 is the smallest eigenvalue of a random matrix from the GOE(n) ensemble.

Lemma 7.3 is a result obtained purely from random matrix theory, and is a particular case of
Lemma 3.3 of [ABAČ13]. We refer to this work for its proof.

Let us make a very important remark here. While the explicit calculation of Lemma 7.3 is
possible because of the GOE structure of the matrix, the appearance of the smallest eigenvalue
should not come as a surprise. We indeed wrote the Kac-Rice formula for the number of local
minima of the function fn,p, i.e. critical points with positive Hessian matrix. In order to condition
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Figure 7.2: Generic illustration of a large deviations event in which the smallest eigenvalue of a
random matrix (here a shifted GOE matrix) is macroscopically far from its expected value (here

1). ∆ is the shift of λmax from its expected value, at the left edge of the bulk. We emphasize that
while the smallest eigenvalue typically fluctuates in the scale n−2/3, as shown in the grey area
(these fluctuations are connected to the Tracy-Widom law [TW94]), large deviations instead

correspond to macroscopic fluctuations, which are exponentially rare in n (cyan area).

on this positivity, we have to understand the law of this smallest eigenvalue. More precisely,
we will see that we must understand rare events in which the smallest eigenvalue can be very
atypical, a regime called large deviations that we defined in Section 1.5.2 and that we illustrate
in Fig. 7.2.

Applying Lemma 7.3 to eq. (7.5) with t2 = p/[(n− 1)(p− 1)] and G = (t
√
n)B yields:

ECrit0
n,p(B) = 2

√
2
p

(p− 1)
n
2 EGOE(n)

[
e

−n p−2
4p

λ2
01

(
λ0 ∈

√
p

p− 1
B
)]
. (7.6)

The large n limit

We are interested here in the annealed complexity Σ0
p(B) ≡ limn→∞(1/n) lnECrit0

n,p(B), as a
first step towards understanding the landscape’s topology. As we noticed above, this requires
understanding the large deviations of the smallest eigenvalue of a GOE(n) matrix, cf. Fig. 7.2.
This is precisely given by Theorem A.1 of [ABAČ13]:

Lemma 7.4 (LDP of the smallest eigenvalue of a GOE matrix)

Let λ0 be the smallest eigenvalue of a GOE(n) matrix. The law of λ0 satisfies a large deviation
principle in the scale n, with rate function I(x):

I(x) ≡





+∞ if x ≥ −2,
∫ −x

2
dz

√
z2

4
− 1 otherwise.

.

In Chapter 8 we will specifically focus on the large deviations of the smallest eigenvalue of random
matrices, from an ensemble much larger than only the GOE. Using Lemma 7.4 alongside eq (7.6)
and Varadhan’s lemma 1.10 yields:

Σ0
p(B) =

1
2

ln(p− 1) + sup
x∈
√

p
p−1

B

[
− p− 2

4p
x2 − I(x)

]
. (7.7)
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Figure 7.3: The functions Θk for k ∈ 0, 1, 2, 10, 100, for two values of p.

Description of the results

Considering B = (−∞, u) (for u ∈ R) in eq. (7.7) amounts to count the local minima of the pure
p-spin Hamiltonian of extensive energy smaller than nu. In this case, the supremum in eq. (7.7)
can be analytically performed. Moreover, the calculation we sketched for local minima can be
generalized for critical points of any fixed index k ∈ N, and if we define:

Θk(u) ≡ lim
n→∞

1
n

lnECritk
n,p((−∞, u)),

there exists analytic expressions for all Θk(u) functions, given in eq (2.16) of [ABAČ13]. We
plot these functions for p = 3, 4 in Fig. 7.3. In particular, all these functions agree for u ≥ −E∞,
which is often referred to as the threshold energy

E∞ ≡ 2

√
p− 1
p

. (7.8)

We also denote −Ek the value at which the function Θk(u) becomes positive: Θk(−Ek) = 0, cf
Fig. 7.3. We end this description by a series of remarks that one can make from the figure:

(i) The local minima always dominate the complexity for all energies below −nE∞. For u ≥
−E∞, one can show that the complexity is dominated instead by critical points of diverging
index.

(ii) The value −E0 is the lowest energy of critical points, and corresponds to the ground state
of the original function. It can be indeed shown (cf. [ABAČ13]) that the global minimum
energy concentrates to a deterministic value as n→∞, and that this value is precisely −E0!

(iii) One can perform similar calculations for the complexity of critical points whose indices diverge
with n, see [ABA13] for the rigorous derivation.

To conclude our analysis, let us mention a few generalizations and extensions of the Kac-Rice
calculation for p-spin models that we described:

• Beyond the annealed complexity, one can also use the Kac-Rice formula for higher-order mo-
ments, in order to compute e.g. the second moment of the number of critical points. For the
pure spherical p-spin this is done in [Sub17a], which then shows by a second-moment method
that the number of local minima concentrates. The annealed and quenched complexities of
local minima are therefore identical for a pure spherical p-spin, which increases a lot the phys-
ical relevance of our previous discussion: we were describing the actual quenched complexity!
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This allows to describe very detailed properties of the Gibbs measure at low temperatures,
see e.g. [Sub17b, SZ17, BASZ20].

• Going further, one can even compute all the integer moments: this allows to perform heuristic
replica calculations to obtain the quenched complexity, as performed for Gaussian models in
[RBABC19].

• All the calculations we mentioned can be generalized to mixed spherical p-spins (cf. Model 1.4),
which was done on [ABA13, RBABC19], or to bipartite spherical models (both pure and
mixed) [McK21a].

• Our arguments relied quite strongly on the isotropy of the random field we are describing. Re-
cent works in the physics and mathematics literature derive important extensions of the Kac-
Rice approach to non-isotropic Gaussian model (e.g. the elastic manifold) [FLD20a, FLD20b,
BABM21b].

Let us emphasize once again that the Kac-Rice method we presented transforms our original
counting problem into a random matrix theory problem. Moreover, as we saw, counting critical
points of specific index requires knowing the large deviations of the corresponding eigenvalues of
the Hessian matrix. This last remark is important, as it will be one of the motivations behind
Chapter 8.

7.2 Kac-Rice for inference models: main results

In the rest of this chapter, based on [MBAB20], we present an extension of the Kac-Rice method
to compute the number of critical points of the empirical risk arising in generalized linear
estimation problems, i.e. the GLMs that we already encountered several times in this thesis.
We obtain a rigorous explicit variational formula for the annealed complexity (Theorems 7.5
and 7.6), that we then simplify and extend using a heuristic Kac-Rice replicated method, which
originated in theoretical physics. In this way we find an explicit variational formula for the
quenched complexity (Results 7.1 and 7.2), which allows to obtain the number of critical points
for typical instances up to exponential accuracy.

Let us first mention a recent line of work that generalized the Kac-Rice calculations of Section 7.1
to a class of inference models known as spiked matrix-tensor models [SMKUZ19, SMBC+19]. The
authors leveraged the Kac-Rice formula and a precise random matrix analysis of the Hessian
to gain precise insight into the landscape and the behavior of local optimization algorithms.
Crucially, the loss function considered is still a Gaussian random function (although much more
involved than the pure p-spin of eq. (7.3)), so that the random matrix problem resulting from
the application of Kac-Rice is essentially the analysis of a (spiked) GOE matrix. We refer to
[MZ20] for a review on this approach.

In this chapter we aim at going beyond this Gaussian setting, and we instead consider two classes
of high-dimensional random functions.

• The first one is a kind of energy that arises in a simple model of neural networks (the percep-
tron, cf. [EVdB01]) and in mean-field glass models [FP16]:

L1(x) ≡ 1
m

m∑

µ=1

φ(ξµ · x), (7.9)

where φ : R → R is a “smooth” (the precise sense will be given later) activation function,

x ∈ S
n−1 (the unit sphere in n dimensions) and ξµ

i.i.d.∼ N (0, In).
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• The second class of functions we will consider is related to the loss functions of generalized
linear models (GLMs), that we introduced in Section 1.1 and that we already investigated
many times in this thesis. In the current setting, an observer has to infer a hidden vector
x⋆ ∈ S

n−1 from the observation of the m-dimensional output vector Y = {φ(ξµ ·x⋆)}mµ=1
5. The

data (or measurement) matrix ξ is taken random, with an i.i.d. standard Gaussian distribution,
and we assume that the function φ and the data matrix ξ are given to the observer. This
naturally leads to the mean square loss L2:

L2(x) ≡ 1
2m

m∑

µ=1

[
φ(ξµ · x⋆)− φ(ξµ · x)

]2
. (7.10)

As we discussed in Section 7.1, we are interested in the statistics of the number of critical points
of the functions of eqs. (7.9),(7.10). To introduce the notations we focus on L2. For any open
intervals B ⊆ R+ and Q ⊆ (−1, 1), we consider the (random) number Critn,L2(B,Q) of critical
points of the function L2 with loss value in B and overlap with the signal q ≡ x · x⋆ in Q:

Critn,L2(B,Q) ≡
∑

x: grad L2(x)=0

1{L2(x) ∈ B, x · x⋆ ∈ Q}. (7.11)

Here grad is the Riemannian gradient on S
n−1. For L1 we define the similar quantity Critn,L1(B),

dropping the notion of overlap.

Our main results consist in explicit formulas for the annealed and quenched6 complexities for
L1 and L2. The annealed formula is obtained rigorously using the Kac-Rice formula, whereas
the quenched one is derived combining the Kac-Rice formula with the replica method, one of
the classical tools of our statistical physics toolbox, cf Section 1.3.1. The quenched calculation
leverages in particular important ideas of [RBABC19].

We consider the thermodynamic limit n,m → ∞ with m/n → α > 1. The condition α > 1 is
essential, as can be seen e.g. in eq. (7.9): if m < n, for each realization of {ξµ}, the function L1

has an infinite number of critical points in the set of vectors x orthogonal to all the {ξµ}, and
counting the critical points in this case is meaningless (or one would have to quotient the space
to lift the degeneracy).

Our results hold for many classical activation functions φ, such as e.g. the hyperbolic tangent,
the arctangent, the sigmoid, or a smoothed and leaky version of the ReLU activation function7.

For two probability measures µ, ν recall that we define the relative entropy (or Kullback-Leibler
divergence) as DKL(µ|ν) ≡ ∫ ln(dµ/dν)dµ if µ is absolutely continuous with respect to ν, and
+∞ otherwise. Finally, µG is a generic notation for the standard Gaussian measure on any R

k.

The annealed complexity

We can now present our main results for the annealed complexity.

5In general GLMs, the output function is stochastic. Here, we restrict to deterministic outputs.
6Recall that we discussed the difference between annealed and quenched complexities in Section 7.1, cf eq. (7.1).
7The precise hypotheses on the activation function φ are precised in Section 7.3.



Chapter 7. The complexity of high-dimensional landscapes 166

Theorem 7.5 (Annealed complexity of L1)

Let B ⊆ R a non-empty open interval and denote Mφ(B) the set of probability measures ν
on R such that

∫
ν(dt)φ(t) ∈ B. We define:

• Eφ(ν) ≡ ln
[ ∫

ν(dx)φ′(x)2
]
,

• tφ(ν) ≡ ∫ ν(dx)xφ′(x),

• Let z ∈ R
n×m an i.i.d. standard Gaussian matrix, and y ∈ R

m a vector with components
taken i.i.d. from a probability measure ν. Let D(ν) the diagonal matrix of size m with
elements D(ν)

µ = φ′′(yµ). We define µα,φ[ν] as the LSD of zD(ν)z⊺/m.

• κα,φ(ν, C) ≡ ∫ µα,φ[ν](dx) ln |x− C|,

Under a technical assumption (see the remark below), one has8:

lim
n→∞

1
n

lnE Critn,L1(B) =
1 + lnα

2
+ sup

ν∈Mφ(B)

{
− 1

2
Eφ(ν) + κα,φ(ν, tφ(ν))− αDKL(ν|µG)

}
.

A note on free probability – Interestingly, the measure µα,φ[ν] can be interpreted as the free
multiplicative convolution of the Marchenko-Pastur law (at ratio α) and the asymptotic spectral
distribution of the matrix D(ν), cf. e.g. [Voi87, AGZ10]9. We describe in Section 7.4 how to
explicitly compute the density of µα,φ[ν], or its linear spectral statistics (as e.g. κα,φ(ν, C)), via
the computation of its Stieltjes transform.

We turn to our second (quite heavy) annealed result:

8A fully rigorous statement would imply a lower and an upper bound given by a supremum over the adherence
and the interior of Mφ(B). For reasons of lightness and clarity of the presentation we write it in the simpler
presented form.

9Free multiplication is usually defined for positively-supported measures, however one can generalize it here by
explicitly separating the positive and negative parts of φ′′ (we can show freeness of the resulting two random
matrices).
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Theorem 7.6 (The annealed complexity of L2)

Let B ⊆ R+ and Q ⊆ (−1, 1) two non-empty open intervals. For q ∈ (−1, 1) we denote
Mφ(B, q) the set of probability measures ν on R

2 such that

{ ∫
ν(dx,dy) y φ′(x)[φ(qx+

√
1− q2y)− φ(x)] = 0,

∫
ν(dx,dy)[φ(qx+

√
1− q2y)− φ(x)]2 ∈ B.

Given the following definitions:

• Eφ(q, ν) ≡ ln
∫
ν(dx,dy)φ′(x)2

[
φ(qx+

√
1− q2y)− φ(x)

]2,

• tφ(q, ν) ≡ ∫ ν(dx,dy)xφ′(x)
[
φ(x)− φ(qx+

√
1− q2y)

]
,

• fq(x, y) ≡ φ′(x)2 − φ′′(x)
[
φ(qx+

√
1− q2y)− φ(x)

]
,

• Let z ∈ R
n×m an i.i.d. standard Gaussian matrix, and Y ∈ R

m×2 with components
taken i.i.d. from ν ∈ M+

1 (R2). Let D(ν,q) the diagonal matrix of size m with elements
D

(ν,q)
µ = fq(Yµ). We define µα,φ[q, ν] as the LSD of zD(ν,q)z⊺/m.

• κα,φ(q, ν) ≡ ∫ µα,φ[q, ν](dx) ln |x− tφ(q, ν)|.

Then one has10:

lim
n→∞

1
n

lnECritn,L2(B,Q) =
1 + lnα

2

+ sup
q∈Q

sup
ν∈Mφ(B,q)

[1
2

ln(1− q2)− 1
2
Eφ(q, ν) + κα,φ(q, ν)− αDKL(ν|µG)

]
.

The proof of Theorem 7.5 will be the main subject of Section 7.3.

Technical assumption – Our proof relies on an assumption given in eq. (E.16). Under Def-
inition 7.1 on the behavior of φ(x), we are currently working on proving this assumption by
leveraging the recent work of close collaborators [BABM21a]. However, note that eq. (E.16) can
also be considered as an hypothesis on φ(x), i.e. that there is no accumulation of eigenvalues
around 0 in the spectrum of the Hessian of L1(x). This assumption is quite natural, and we
found it to be satisfied for all relevant functions φ(x) we investigated, so that it does not limit
the reach of our results.

The proof of Theorem 7.6 is a straightforward generalization, and we will sketch it briefly in
Appendix E.2.5.

The variational problems in Theorems 7.5 and 7.6 are challenging, as they imply an optimization
on a set of measures, and they involve transforms of this measure that are very hard to access
numerically. In Section 7.4 we present a drastic simplification: a heuristic calculation that allows
one to reduce the supremum over the probability measure ν to a much simpler optimization over
a relatively small number of parameters.

The quenched complexity

As we have already stressed, the annealed complexity, although interesting in itself, is generically
not representative of the landscape corresponding to a given typical instance of the empirical
risk. In order to obtain the value of the quenched complexity we use the replicated Kac-Rice

10We use the same technical assumption
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method, which is an extension to non-Gaussian functions of the one developed in [RBABC19]. As
we know, although the replica method is non-rigorous it has been proven to give exact results for
both spin glasses and inference problems [Tal06, BKM+19] (and proving the replica conjectures
was one of the main aims of Part II of this thesis.). We have obtained an explicit formula11 for
the quenched complexity of L1 and L2 at fixed values of the empirical risk, and overlap with the
solution (in the L2 case).

For L1, using the notations of Theorem 7.5 we have:

Result 7.1 (Quenched complexity of L1)

Let B ⊆ R an open interval. Then:

lim
n→∞

1
n
E ln Critn,L1(B) =

lnα− α ln 2π
2

+ sup
ν∈Mφ(B)

q∈(0,1)

extr

{
κα,φ(ν, C) +

1− α
2

ln(1− q)

+
1− αq

2(1− q) −
∫
ν(dλ)g(λ)− AÂ− aâ

2
+ C(qĉ− Ĉ)− 1

2
ln[A− a]− a

2(A− a)
+ α

∫

R4

Dξ ln I(ξ)

}
.

Here ξ ≡ (ξq, ξa, ξc, ξ
′
c) and Dξ is the standard Gaussian probability measure on R

4. extr
denotes extremization with respect to all variables (A, Â, a, â, C, Ĉ, ĉ, {g(λ)}). We defined

I(ξ) ≡
∫

R

dλ e− λ2

2(1−q)
+

g(λ)
α

+ Â−â
2α

φ′(λ)2+ Ĉ−ĉ
α

φ′(λ)λ+
√

q

1−q
ξqλ+

√
â
α

ξaφ′(λ)+
√

ĉ
2α

[φ′(λ)(ξc+iξ′
c)+λ(ξc−iξ′

c)]
.

On the extremization –In this formula, the notation “extr” denotes that one should set the
partial derivatives with respect to the involved variables to zero. This notation arises from the
replica calculation, which mixes saddle-point computations with Lagrange multipliers associated
to certain constraints, and the precise meaning of this extremization (as a supremum or infimum)
would have to be clarified by a more rigorous method. On a numerical point of view, one would
have to solve the associated saddle-point equations, so that this precise meaning is not crucial
for applications.

We can state a very similar result for L2:

11We used a replica symmetric (RS) structure, which is correct in many cases, and a very good approximation in
others were replica symmetry has to be broken. See Section 1.3.1 for more discussion on the RS ansatz.
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Result 7.2 (Quenched complexity of L2)

Let B ⊆ R, Q ⊆ (−1, 1) two open intervals and define:

• For m ∈ (−1, 1), Mφ(B,m) is the set of ν ∈M+
1 (R2) such that:

{
1
2

∫
ν(dλ0,dλ)[φ(λ)− φ(λ0)]2 ∈ B,

∫
ν(dλ0,dλ)φ′(λ)[φ(λ)− φ(λ0)](λ0 −mλ) = 0.

• Let f(x, y) ≡ φ′′(y)[φ(y)−φ(x)] +φ′(y)2. Let z ∈ R
n×m an i.i.d. standard Gaussian matrix,

and Y ∈ R
m×2 with components taken i.i.d. from ν ∈ M+

1 (R2). Let D(ν) the diagonal
matrix of size m with elements D(ν)

µ = f(Yµ). We define µα,φ[ν] as the asymptotic spectral
measure of zD(ν)z⊺/m.

• χα,φ(ν, C) ≡ ∫ µα,φ[ν](dx) ln |x− C|.

One has:

lim
n→∞

1
n
E ln Critn,L2(B,Q) = sup

m∈Q
q∈(0,1)

sup
ν∈Mφ(B,m)

extr
{ lnα− α ln 2π

2
+ χα,φ(ν, C)

+
1− αq −m2

2(1− q) +
1− α

2
ln(1− q)− 1

2
ln(A− a)− a

2(A− a)
− AÂ

2
+
aâ

2

− C0Ĉ0 − CĈ + cĉ−
∫
ν(dλ0,dλ)g(λ0, λ) + α

∫

R4×R

DξDλ0 ln I(λ0, ξ)
}
.

The extremum is made over all variables (A, a,C0, C, c, Â, â, Ĉ, ĉ, Ĉ0, {g(λ0, λ)}). D is the
standard Gaussian measure, and the variables C0, c, C are related by the additional constraint

−m(1− q)C0 − (q −m2)C + (1−m2)c = 0.

I(λ0, ξ) is defined as (with ξ ≡ (ξq, ξa, ξc, ξ
′
c)):

I(λ0, ξ) ≡
∫

R

dλ e
m

1−q
λ0λ− λ2

2(1−q)
+

√
q−m2

1−q
ξqλ+

g(λ0,λ)
α

+
Ĉ0
α

φ′(λ)[φ(λ)−φ(λ0)]λ0+ Ĉ−ĉ
α

λφ′(λ)[φ(λ)−φ(λ0)]

e
Â−â

2α
φ′(λ)2[φ(λ)−φ(λ0)]2+

√
â
α

ξaφ′(λ)[φ(λ)−φ(λ0)]+
√

ĉ
2α

[
φ′(λ)[φ(λ)−φ(λ0)](ξc+iξ′

c)+λ(ξc−iξ′
c)
]
.

The derivation of Result 7.1 is given in Section 7.5. Similarly to the annealed case, Result 7.2
can be derived by a simple generalization of this computation, see Appendix E.2.5.

Tackling the variational problems

• As a sanity check of our results, the reader can analytically check by explicit solution that
for a linear activation function, the annealed complexity of L1 is null in Theorem 7.5. It is
again a tedious but straightforward computation to check that the annealed complexity of
L1 with a quadratic activation φ(x) = x2 is also null, as the number of critical points in this
case is linear with n. In both these cases, the measure µα,φ[ν] is indeed independent of ν,
which simplifies the problem drastically. Note that for L2 however, even the case of a linear
activation is non trivial (because of the spherical constraint), as shown in the recent analysis
of [FT20].

• However, for more generic activation functions, solving the variational problem of the previous
annealed and quenched calculations is a very involved task. We explain in Section 7.4 a route



Chapter 7. The complexity of high-dimensional landscapes 170

to make tractable theses variational problems, by reducing them to optimization problems
over a relatively small number of parameters.

• Apart from the simple cases described above, it is not clear to deduce from our results if the
quenched and annealed complexities are equal for given values of the loss function, or for a
given activation function. Such an equality is equivalent to the concentration of the number
of critical points, and its occurrence (or lack thereof) has deep physical consequences on our
understanding of these landscapes. Note that while this happens notably in the pure p-spin,
as shown by a second moment analysis in [Sub17a], it remains a very peculiar situation, not
satisfied e.g. by generic spherical p-spin “mixtures”, and in the context of generalized linear
models it would have to be investigated through an extensive numerical analysis of our results,
which is not presented in this thesis.

7.3 Proof of the annealed complexity

In this section we prove Theorem 7.5. Our technique leverages the Kac-Rice formula and Sanov’s
theorem 1.9 on the large deviations of the empirical measure of i.i.d. variables. First we precise
our hypotheses on φ, that we will take in the following set of “well-behaved” activation functions:

Definition 7.1 (Well-behaved activation function)

φ : R → R is “well-behaved” if it is of class C3 and if, for y ∼ N (0, 1), the random variable
a = φ′(y) admits a continuous probability density in a neighborhood of a = 0.

7.3.1 Applying the Kac-Rice formula

The first step is to apply the Kac-Rice formula to the random function L1:

Lemma 7.7 (Kac-Rice formula for L1)

For any x ∈ S
n−1, denote gradL1(x) and HessL1(x) the (Riemannian) gradient and Hessian

of L1 at the point x. Then gradL1(x) has a well defined density (on the tangent space
TxS

n−1 ≃ R
n−1) in a neighborhood of zero, that we denote ϕgrad L1(x). Denote µS the usual

surface measure on S
n−1. One has:

ECritn,L1(B) =
∫

Sn−1
ϕgrad L1(x)(0)E

[
1{L1(x) ∈ B}|det HessL1(x)|

∣∣gradL1(x) = 0
]
µS(dx).

This lemma is a direct application of Proposition 7.2 and uses necessary conditions for a random
function of the type of L1 to be a.s. Morse that are stated in [AW09b]. The details of the proof
are given in Appendix E.2.1.

7.3.2 The complexity at finite n

For y ∈ R
m, let Λ(y) ∈ Sm be

Λ(y) ≡
(
Im −

φ′(y)φ′(y)⊺

‖φ′(y)‖2
)
D(y)

(
Im −

φ′(y)φ′(y)⊺

‖φ′(y)‖2
)
, (7.12)

in which we denote φ′(y) ≡ (φ′(yµ))m
µ=1, and D(y) ∈ R

m×m the diagonal matrix with elements
D(y)µ = D(yµ) = nφ′′(yµ)/m. We aim at proving the following lemma:
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Lemma 7.8 (Complexity at finite n)

ECritn,L1(B) = Cn e
n 1+ln α

2 Ey

[
1 1

m

∑
µ

φ(yµ)∈B e
− n−1

2
ln

(
1
m

∑
µ

φ′(yµ)2

)

Ez

[
|det HΛ

n (y)|
]]
,

in which Cn is exponentially trivial, i.e. (1/n) ln Cn = On(1). The variable y ∈ R
m follows

N (0, Im), and z ∈ R
(n−1)×m has i.i.d. standard Gaussian matrix elements, independent of y.

HΛ
n (y) is a square matrix of size (n− 1) with the following distribution :

HΛ
n (y) d=

1
n

zΛ(y)z⊺ −
{ 1
m

m∑

µ=1

yµφ
′(yµ)

}
In−1. (7.13)

The rest of Section 7.3.2 is devoted to the proof of Lemma 7.8. First, the following proposition
specifies the joint distribution of (L1(x), gradL1(x),HessL1(x)), which will be useful to apply
Lemma 7.7.
Proposition 7.9 (Distribution of the gradient and Hessian)

Let x ∈ S
n−1. Then (L1(x), gradL1(x),HessL1(x)) follows the following joint distribution:





L1(x) d=
1
m

m∑

µ=1

φ(yµ), (7.14a)

gradL1(x) d=
1
m

m∑

µ=1

φ′(yµ)zµ, (7.14b)

HessL1(x) d=
1
m

m∑

µ=1

φ′′(yµ)zµz⊺µ −
{ 1
m

m∑

µ=1

yµφ
′(yµ)

}
In−1, (7.14c)

in which y = (yµ)m
µ=1 ∼ N (0, Im), (zµ)m

µ=1
i.i.d.∼ N (0, In−1), and all {yµ, zν} are independent.

We identified in these equations the tangent space Tx S
n−1 with R

n−1.

Proof of Proposition 7.9 – Denote P⊥
x the orthogonal projection on {x}⊥. For a smooth

function f : Sn−1 → R, ∇f and∇2f denote its Euclidean gradient and Hessian. The Riemannian
structure on S

n−1 induces the gradient and Hessian of f as grad f(x) = P⊥
x ∇f and Hess f(x) =

P⊥
x ∇2fP⊥

x − (x · ∇f(x))P⊥
x . Applying these formulas yields:





gradL1(x) =
1
m

m∑

µ=1

(P⊥
x ξµ)φ′(ξµ · x), (7.15a)

HessL1(x) =
1
m

m∑

µ=1

φ′′(ξµ · x)(P⊥
x ξµ)(P⊥

x ξµ)⊺ −
{ 1
m

m∑

µ=1

(ξµ · x)φ′(ξµ · x)
}
P⊥

x .(7.15b)

Letting yµ ≡ ξµ · x and zµ ≡ P⊥
x ξµ (identified to an element of Rn−1) yields the result. �

The joint distribution of eq. (7.14) does not depend on x, thus we can chose x to be the North pole
x = en = (δi,n)n

i=1. With ωn ≡ 2πn/2/Γ(n/2) the volume of Sn−1, we obtain from Lemma 7.7:

ECritn,L1(B) = ωnϕgrad L1(en)(0)E
[|det HessL1(en)|1L1(en)∈B

∣∣gradL1(en) = 0
]
. (7.16)

Removing the en indication and conditioning on the distribution of y, we reach:

ECritn,L1(B) = ωnEy

{
1 1

m

∑
µ

φ(yµ)∈B ϕgradL1|y(0)Ez
[|det HessL1|

∣∣gradL1 = 0,y
]}
.
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Once conditioned on y, eq. (7.14b) describes a Gaussian density so we can directly compute:

ωnϕgradL1|y(0) =
2πn/2

Γ(n/2)
exp

[
− n− 1

2
ln

(
2π
m2

m∑

µ=1

φ′(yµ)2

)]
,

= Cn exp

{
n

2
+
n

2
ln
m

n
− n− 1

2
ln

(
1
m

m∑

µ=1

φ′(yµ)2

)}
, (7.17)

in which ln Cn = On(n) (using Stirling’s formula). The conditioning of HessL1 by gradL1 = 0 at
fixed y reduces to a linear conditioning on z. One thus obtains by classical Gaussian conditioning:

Ez
[|det HessL1|

∣∣gradL1 = 0,y
]

= Ez
[|det HΛ

n (y)|], (7.18)

in which HΛ
n (y) is defined by eq. (7.13). This ends the proof of Lemma 7.8.

7.3.3 Concentration and large deviations

This section is devoted to the end of the proof of Theorem 7.5. We denote νm
y ≡ m−1∑m

µ=1 δyµ

the empirical distribution of y, and take the notations of Theorem 7.5 and Lemma 7.8. We first
state an important lemma on the concentration of Ez

[|det HΛ
n(y)|]12:

Lemma 7.10 (Concentration of the log-determinant)

There exists η > 0 such that for all t > 0:

lim
n→∞

1
n1+η

lnP

[∣∣∣
1
n

lnEz
[|det HΛ

n(y)|]− κα,φ(νm
y , tφ(νm

y ))
∣∣∣ ≥ t

]
= −∞.

The proof of Lemma 7.10 is detailed in Appendix E.2.2, and is the section of our proof that
requires to assume eq. (E.16). On a general note, we expect this result to be valid in the
whole range η ∈ (0, 1), as the large deviations of the spectral distribution of random matrices
is typically on the n2 scale [BAG97, HP98]. Note that very similar results on the concentra-
tion of determinants of very generic classes of random matrices have recently been analyzed in
[BABM21a] (see as well the companion papers [BABM21b, McK21a]). The following moment
condition, proven in Appendix E.2.3, will be important to apply Varadhan’s lemma 1.10:

Lemma 7.11

For every γ ∈ (1, α) we have:




lim sup
n→∞

1
n

lnEy

{
e

γn

[
− 1

2
ln
(

1
m

∑
µ

φ′(yµ)2
)

+κα,φ

(
νm

y ,tφ(νm
y )
)]}

< +∞, (7.19a)

lim sup
n→∞

1
n

lnEy

{
e

γn

[
− 1

2
ln
(

1
m

∑
µ

φ′(yµ)2
)

+ 1
n

lnEz

[
| det HΛ

n(y)|
]]}

< +∞. (7.19b)

We then conclude from Lemmas 7.8, 7.10 and 7.11, using Sanov’s principle (Theorem 1.9) and
Varadhan’s lemma 1.10. We finally reach the statement of Theorem 7.5:

lim
n→∞

1
n

lnECritn,L1(B) = sup
ν∈Mφ(B)

[1 + lnα
2

− Eφ(ν)
2

+ κα,φ(ν, tφ(ν))− αDKL(ν|µG)
]
. (7.20)

12In the proofs of this section we assume that xφ′(x) and φ′′(x) are bounded. As one can always smoothly truncate
the largest values of φ without affecting the complexity, this does not remove any generality to our results.
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The detailed proof of eq. (7.20) from the lemmas above is given in Appendix E.2.4.

7.4 Towards a numerical solution?

7.4.1 The logarithmic potential of µα,φ[ν]

Let ν ∈ M+
1 (R). As we have shown in the introduction to this thesis, cf. Theorem 1.7, the

Stieltjes transform g(z) ≡ ∫ µ(dt)(t − z)−1 of µα,φ[ν] is given by the unique solution in C+ to
the implicit Marchenko-Pastur equation:

∀z ∈ C+, g(z) = −
[
z − α

∫
φ′′(t)

α+ φ′′(t)g(z)
ν(dt)

]−1
. (7.21)

For any µ ∈M+
1 (R) and t ∈ R we define the logarithmic potential as U [µ](t) ≡ ∫ µ(dx) ln |x− t|.

It is well defined with values in R∪{±∞}, and the reader can refer to [Far14] for a review on this
subject. To numerically evaluate Theorem 7.5, we have to compute U [µ](t) for µ = µα,φ[ν] and
an arbitrary t ∈ R. For clarity, we will write µ = µα,φ[ν] for the remainder of this section. Let
us define G(z) ≡ ∫ µ(dx) ln(z − x) for any z ∈ C+. One sees directly that G(z) is holomorphic
on C+. Moreover, from Chapter II of [Far14], we know that U [µ](t) = limǫ↓0 ReG(t+ iǫ).

It is then clear that a way to compute the logarithmic potential is to evaluate G(z) for z ∈ C+.
Define, for z, g ∈ C+

13:

F (z, g) ≡ − ln(−g)− zg + α

∫
ν(dλ) ln(α+ φ′′(λ)g)− 1− α lnα. (7.22)

At any fixed z, F (z, g) is an holomorphic function of g on C+. Its Wirtinger derivative is:

∂F

∂g
(z, g) = −1

g
− z + α

∫
ν(dλ)

φ′′(λ)
α+ φ′′(λ)g

.

Thus g(z) (the Stieltjes transform of µ, cf. eq. (7.21)) is the only g ∈ C+ such that ∂gF (z, g) = 0.
Moreover, by definition g(z) is an holomorphic function on C+, with values in C+. We can thus
apply the usual composition of derivatives and obtain:

dF
dz

(z, g(z)) = −g(z).

Furthermore by definition dG/dz = −g(z). Computing the remaining constant by investigating
the limit Re[z] → ∞, the reader can easily check that G(z) = F (z, g(z)) for every z ∈ C+. We
thus have the crucial relation:

∀t ∈ R, U [µα,φ[ν]](t) = lim
ǫ↓0

ReF [t+ iǫ, g(t+ iǫ)]. (7.23)

This formula allows for an efficient numerical derivation of the logarithmic potential of µα,φ[ν],
for any value of t (including possibly inside the bulk of µα,φ[ν]), as we will detail below.

7.4.2 Heuristic derivation of simplified fixed point equations

We present here an heuristic derivation of scalar fixed point equations for the numerical reso-
lution of Theorem 7.5. This technique can be easily extended to Theorem 7.6 as well as the
quenched calculations presented afterwards, and we restrict to this simpler case for the sake of
the presentation.

13g ∈ C+, and (since α > 1) α + φ′′(λ)g ∈ C\(−∞, 1], thus we can use the principal determination of the logarithm.
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Expressing κα,φ(ν, t)

From eq. (7.23) we know that for every t ∈ R:

κα,φ(ν, t) = lim
ǫ↓0

Re
{− ln(−g(t+ iǫ))− (t+ iǫ)g(t+ iǫ) + α

∫
ν(dλ) ln[α+ φ′′(λ)g(t+ iǫ)]

− 1− α lnα
}
.

Recall that g(t+ iǫ) is the only solution in C+ to the partial derivative of the previous equation:

−1
g
− (t+ iǫ) + α

∫
ν(dλ)

φ′′(λ)
α+ φ′′(λ)g

= 0. (7.24)

So heuristically we can write for small enough ǫ:

κα,φ(ν, t) = extr
g∈C+

{
− ln |g| − tgr + ǫgi + α

∫
ν(dλ) ln |α+ φ′′(λ)g| − 1− α lnα

}
, (7.25)

with g = gr + igi (in practice one considers the two variables gr and gi to find the extremum).

Heuristic solution to Theorem 7.5

We start from the result of Theorem 7.5. For a function f , we write Eν [f(X)] ≡ ∫ ν(dt)f(t).
We introduce Lagrange multipliers to fix the conditions Eν [φ(X)] ∈ B, and we fix the values of
Eν [φ′(X)2] and Eν [Xφ′(X)]. We obtain:

lim
n→∞

1
n

lnECritn,L1(B) = sup
l∈B

ν∈M+
1 (R)

extr
λ0,λ1,λ2

sup
A,t

[1 + lnα
2

− 1
2

lnA+ λ0l + λ1A+ λ2t

+ κα,ν(ν, t)− αDKL(ν|µG)− λ0Eν [φ(X)]− λ1Eν [φ′(X)2]− λ2Eν [Xφ′(X)]
]
.

The supremum over ν is now unconstrained over the set M+
1 (R) of probability distributions.

We now make use of eq. (7.25) to write, with 2K(α) ≡ −1 + lnα− 2α lnα and a small ǫ > 0:

lim
n→∞

1
n

lnECritn,L1(B) = sup
l∈B

ν∈M+
1 (R)

extr
{λi},A,t
g∈C+

{
K(α)− 1

2
lnA+ λ0l + λ1A+ λ2t

− ln |g| − tRe[g] + ǫIm[g] + α

∫
ν(dλ) ln |α+ φ′′(λ)g| − αDKL(ν|µG)− λ0Eν [φ(X)]

− λ1Eν [φ′(X)2]− λ2Eν [Xφ′(X)]
}
.

For any function F : R → R, the maximum supν{Eν [F (X)] − αDKL(ν|µG)} is attained in ν∗

with density proportional to e−x2/2+F (x)/α, which is exactly the Gibbs measure of statistical
physics, see Section 1.5. This gives (D is the standard Gaussian measure on R):

sup
ν∈M+

1 (R)

{Eν [F (X)]− αDKL(ν|µG)} = α ln
∫

R

Dx eF (x)/α.
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Plugging this into our previous equation for the annealed complexity yields:

lim
n→∞

1
n

lnECritn,L1(B) = sup
l∈B

extr
{λi},A,t
g∈C+

{
K(α) + λ0l + λ1A+ λ2t−

lnA
2
− ln |g| − tRe[g] + ǫIm[g]

+ α ln
∫

R

Dx exp
{
− λ0φ(x) + λ1φ

′(x)2 + λ2xφ
′(x)

α
+ ln |α+ φ′′(x)g|

}}
.

This can be further simplified, as the extrema over A, t are trivially solved and give the value of
λ2 = Re[g] and λ1 = (2A)−1. Thus we obtain:

lim
n→∞

1
n

lnECritn,L1(B) = sup
l∈B

extr
{λ0,λ1}
g∈C+

{
K(α) + λ0l +

1 + ln 2
2

+
1
2

lnλ1 − ln |g|+ ǫIm[g]

+ α ln
∫

R

Dx exp
{
− λ0φ(x) + λ1φ

′(x)2 + Re[g]xφ′(x)
α

+ ln |α+ φ′′(x)g|
}}

. (7.26)

Let us now denote the measure:

〈· · · 〉λ0,λ1,g ≡
∫
R
Dx(· · · ) exp{−α−1[λ0φ(x) + λ1φ

′(x)2 + Re[g]xφ′(x)] + ln |α+ φ′′(x)g|}∫
R
Dx exp{−α−1[λ0φ(x) + λ1φ′(x)2 + Re[g]xφ′(x)] + ln |α+ φ′′(x)g|} ,

then the fixed point equations corresponding to the formula of eq. (7.26) can be written as:




l = 〈φ(x)〉λ0,λ1,g,

1
2λ1

= 〈φ′(x)2〉λ0,λ1,g,

−Re[g]
|g|2 =

〈
xφ′(x)− αφ′′(x)(α+ φ′′(x)Re[g])

|α+ φ′′(x)g|2
〉

λ0,λ1,g
,

ǫ− Im[g]
|g|2 = −

〈αφ′′(x)2Im[g]
|α+ φ′′(x)g|2

〉

λ0,λ1,g
.

(7.27)

These equations are to be iterated over λ0, λ1, g, and l (while enforcing the constraint l ∈ B).
From experience, the best procedure is to start from the solution of the unconstrained problem
(without any constraint on the loss value), before smoothly following the solution while adding
the constraint. In the case of L2(x), one would follow a similar procedure.

7.5 The quenched complexity and the replica method

In this section we detail the principle of the quenched calculation that gives rise to Results 7.1
and 7.2. For the sake of the presentation we restrict to Result 7.1, while Result 7.2 will be
discussed in Appendix E.2.5. As the very basis of this calculation is non-rigorous we present
this calculation in a fashion closer to theoretical physics standards, differently from Section 7.3
which was written in a more mathematical convention. Many technicalities will be postponed
to Appendix E.1.

7.5.1 Computing the p-th moment

If needed, the reader can refer to Section 1.3.1 for an introduction to the replica method, one
of the most important heuristic tools of theoretical statistical physics, that we already used
extensively throughout this thesis. The first step of the method is to compute the integer
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moments of the observable, here the number of critical points. Let B ⊆ R an open interval. The
Kac-Rice formula can then be stated for the p-th moment of the complexity [AW09b, AT09]:

ECritn,L1(B)p =
[ p∏

a=1

∫

Sn−1
µS(dxa)

]
1[{L1(xa) ∈ B}pa=1]ϕ{grad L1(xa)}p

a=1
(0)

× E

[ p∏

a=1

det HessL1(xa)|
∣∣∣{gradL1(xa)}pa=1 = 0

]
.

Here, ϕ{grad L1(xa)}p
a=1

(0) represents the joint density of the p gradients, taken at 0. Note that
the functions {L1(xa)}pa=1 only depend on the parameters ya

µ ≡ ξµ · xa, so we will abusively
write L1(ya) ≡ L1(xa). Proceeding as in the annealed case, we can rewrite the expectations by
conditioning over {ya}pa=1:

ECritn,L1(B)p =
[ p∏

a=1

∫
µS(dxa)

]
E{ya}

{
1[{L1(ya) ∈ B}pa=1]ϕ{grad L1(xa)}p

a=1

∣∣{ya}(0)

× E

[ p∏

a=1

|det HessL1(xa)|
∣∣∣{gradL1(xa) = 0,ya}pa=1

]}
. (7.28)

The gradient and Hessian at xa live in the tangent plane to the sphere at xa, identified with R
n−1.

Note that the {ya
µ} are Gaussian variables with zero mean and covariance E[ya

µy
b
ν ] = δµνqab, with

qab ≡ xa · xb the “overlap” between replicas a and b. We introduce the variables {qab} via delta
functions in eq. (7.28):

ECritn,L1(B)p =
[ p∏

a=1

∫
µS(dxa)

][ ∏

a<b

∫
dqabδ(qab − xa · xb)

]
E{ya}

{
1[{L1(ya) ∈ B}pa=1]

ϕ{grad L1(xa)}p
a=1

∣∣{ya}(0)E
[ p∏

a=1

|det HessL1(xa)|
∣∣∣{gradL1(xa) = 0,ya}pa=1

]}
. (7.29)

Since we fixed the {qab}, the distribution of the {ya} is fixed, as well as the joint distribution of
the loss, gradients and Hessians, as we will explicit in the following. As the number of overlap
variables is p(p− 1)/2 = On(1), we can apply Laplace’s method over the variables {qab} in the
thermodynamic limit. As we explained in Section 1.3.1, we can make a replica-symmetric ansatz:
It amounts to assume that, once Laplace’s method is performed, the extremizing {qab} satisfy
qaa = 1, qab = q for a 6= b. Assuming this structure of the overlap matrix allows to extend the
expression of the moments to arbitrary non-integer p, and then to take the p ↓ 0 limit as needed
in the replica method. Note that while the RS structure is correct in many cases, it is also a
very good approximation in others where replica symmetry is broken, which gives relevance to
our RS calculation even in this case. We now detail the computation of the three factors of
eq. (7.29), and their limit as p ↓ 0 and n→∞.

The phase volume factor

Let us first compute the phase space factor in eq. (7.29). More precisely, the term:

[ p∏

a=1

∫
µS(dxa)

][ ∏

a<b

δ(qab − xa · xb)
]

= n− p(p−1)
2

p∏

a=1

∫

Rn
dxa

∏

a≤b

δ(nqab − nxa · xb),
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in which we defined qaa = 1. As we detail in Appendix E.1.1 we reach, when p ↓ 0 and n→∞:

1
np

ln
p∏

a=1

∫

Rn
dxa

∏

a≤b

δ(nqab − nxa · xb) ≃ 1
2

ln
2π
n

+
1
2

[ 1
1− q + ln(1− q)

]
. (7.30)

The joint density of the gradients

We will now compute the joint density of the gradients at {xa}, conditioned on the values of
{ya}. This calculation is an extension of Sections V.C and V.E of [RBABC19]. We consider
two vectors xa and xb of overlap qab = q. It is easy to see that E[gradL(xa)|{yb}pb=1] = 0 from
eq. (7.14b), so we will focus on the covariance matrix E[gradL(xa)gradL(xb)⊺|{yc}pc=1]. After
some calculations detailed in Appendix E.1.2 we get the gradient density at leading exponential
order:

ϕ{grad L1(xa)}p
a=1|{ya}(0) ≃

∏

a 6=b

δ

[
1
m

m∑

µ=1

φ′(ya
µ)
(
zp(q)ya

µ + f0
p (q)yb

µ + fp(q)
∑

c( 6=a,b)

yc
µ

)]

× exp

{
np

2
ln
m

2π
− n

2
ln det

[( 1
m

m∑

µ=1

φ′(ya
µ)φ′(yb

µ)
)

1≤a,b≤p

]}
, (7.31)

in which the auxiliary functions (zp(q), fp(q), f0
p (q)) are explicit, and defined in eq. (E.3).

Factorization of the mean product of determinants

The argument of this section is very close to Section V.F of [RBABC19]. We consider the term:

E

[ p∏

a=1

|det HessL1(xa)|
∣∣∣{gradL1(xa) = 0,ya}pa=1

]
. (7.32)

We make two important remarks, which are straightforward transpositions of the arguments of
[RBABC19] to our problem, and we refer to this work for more extensive physical justifications.

• The conditioning over the gradients being zero, similarly to what we showed in the annealed
calculation, only gives a finite-rank change to the Hessians HessL1(xa) and thus does not
modify the behavior of the determinant in the scale eΘ(n). In this scale, the statistics of the
p matrices {HessL1(xa)}pa=1 are identical.

• For each a, the spectral measure of HessL1(xa) concentrates at a rate at least n1+ǫ for a
small enough ǫ > 0 (we expect that the actual rate is n2). This argument is very similar to
what we used to prove Lemma 7.10: this implies that at the order eΘ(n) the expectation value
factorizes over the replicas, and we can assume all the Hessians to be independent.

Before stating the consequences of such remarks, we give some definitions:

• µG,q is the Gaussian probability measure on R
p with zero mean and covariance E[XaXb] =

(1− q)δab + q. Note that {yµ}mµ=1 are i.i.d. variables distributed according to µG,q.

• We define νy as the empirical measure of (y1, · · · ,ym), that is νy ≡ (1/m)
∑

µ δyµ
. For every

a, we denote νa
y its marginal distribution: νa

y(dλa) ≡ ∫ ∏
b( 6=a) νy(dλ). Then νa

y is also the
empirical distribution of (ya

µ)m
µ=1.
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Our remarks show that we can use the results of the annealed calculation, and that the expec-
tation of the determinants factorizes at leading exponential order:

E

[ p∏

a=1

|det HessL1(xa)|
∣∣∣{gradL1(xa)}pa=1 = 0, {ya}

]
≃ en

∑p

a=1
κα,φ

(
νa

y,tφ(νa
y)
)
. (7.33)

As for the annealed case, the concentration behind eq. (7.33) has recently been shown for a very
large of class of random matrices by collaborators [BABM21a] (eq. (1.2) of this work is precisely
equivalent to our eq. (7.33)).

7.5.2 Decoupling replicas and the p ↓ 0 limit

We can then apply Sanov’s theorem 1.9 to the empirical measure νy ∈M+
1 (Rp). Recall that we

have constraints on this measure by the density of the gradient and the fixation of the energy
level. More precisely, we denote M(p)

φ (q,B) the set of probability measures on R
p that satisfy

the following:




∫
ν(dλ)φ(λa) ∈ B ∀1 ≤ a ≤ p, (7.34a)

∫
ν(dλ)φ′(λa)

[
zp(q)λa + f0

p (q)λb + fp(q)
∑

c( 6=a,b)

λc
]

= 0 ∀1 ≤ a 6= b ≤ p. (7.34b)

Recall that the functions (zp(q), f0
p (q), fp(q)) are defined in eq. (E.3). Leveraging from the results

of eqs. (7.30), (7.31) and (7.33), we obtain from Sanov’s theorem 1.9 and Varadhan’s lemma 1.10:

lim
n→∞

1
n

lnE [Critn,L1(B)p] =
p

2
lnα+ sup

q∈(0,1)
sup

ν∈M(p)
φ

(q,B)

[
p

2

( 1
1− q + ln(1− q)

)
(7.35)

− 1
2

ln det

[( ∫
ν(dλ)φ′(λa)φ′(λb)

)

1≤a,b≤p

]
+

p∑

a=1

κα,φ

(
νa, tφ(νa)

)− αDKL(ν|µG,q)

]
.

Recall that νa is the marginal distribution of ν for the variable λa. We can then decouple the
replicas under an assumption on the measure ν that amounts for replica symmetry. We stress
that this replica symmetric assumption in the Kac-Rice calculation actually corresponds to a
1-step replica symmetry breaking (1RSB) structure of the zero-temperature Gibbs measure, that
is an exponential number of single-point metastable states that all have the same two-point
overlap. While possibly not exact, this assumption should already yield a good approximation
to the landscape, and could be analytically checked by studying the stability of the replica-
symmetric ansatz within replica theory. This allows to take subsequently the p ↓ 0 limit, and
after some simplifications, we reach from eq. (7.35) the expression of Result 7.1. These steps
are fairly technical, and are postponed to Appendix E.1.3.

Discussion on Chapter 7

In this chapter, we obtained analytical results for the annealed and quenched complexities of
statistical models with non-Gaussian loss functions arising in generalized linear estimation and
simple models of glasses and neural networks. Our method is versatile and can be easily extended
to other cases, as we will discuss below.

Our results allow for a complete characterization of the empirical loss landscapes of generalized
linear models. The main issue ahead is determining for which class of functions φ and in
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which regimes (e.g. values of α), the annealed and quenched complexities become positive, i.e.
when the associated landscape is rough, and if they differ, i.e. if the number of critical points is
concentrating as the dimension grows large. These investigations will surely require a systematic
and extensive numerical evaluation of our results, and will allow to study the connection between
landscape properties and dynamics induced by local algorithms. In particular, it will shed light
on the relationship between the roughness of the empirical loss landscape and the existence of
“hard” phases in the learning of generalized linear models [BKM+19]. It will also provide an
interesting benchmark for obtaining the algorithmic thresholds of gradient descent (and variants)
only through the knowledge of the landscape properties [SMBC+19, SMBC+20b, BAGJ21].
Based on ongoing works, we can for instance conjecture the existence of a rough landscape for
small enough α in phase retrieval [LSL19] and retarded learning [EVdB01]. Addressing these
questions is an exciting direction of research, and a natural follow-up to this chapter that is
under investigation.

Counting the minima – Another important extension of this chapter consists in counting the
critical points of a fixed index (i.e. with a fixed number of negative directions in the spectrum
of the Hessian). This would provide additional interesting information, in particular it would
allow to differentiate local minima from the other critical points of the landscape, as we did for
the p-spin model in Section 7.1. As we mentioned in this spin glass calculation, such a counting
would require to understand the large deviations of the eigenvalues of the Hessian arising for
generalized linear models, i.e. random matrices of the type of eq. (7.13). Such a random matrix
problem is hard, but in Chapter 8 we present a technique that builds on recent developments
and that allows to compute the rate function of the large deviations of the smallest eigenvalue.
This allows then to use our Kac-Rice calculation to count solely minima of the loss!

Generalization to other models – Our calculations, both annealed and quenched, can be
generalized straightforwardly to many other loss functions and models. As is clear for instance
in the annealed computation of Section 7.3, the key features that must be present are:

1. A Gaussian distribution of the data ξµ.

2. A loss function L(x) that only depends on the data samples ξµ via their projection over a
few vectors (e.g. x for L1(x) and x,x⋆ for L2(x)).

We give thereafter three examples of models, that can be found in [EVdB01, MBM18], and in
which our calculations can be easily performed:

Model 7.1 (Binary linear classification)

Consider n,m ≥ 1 such that m/n → α > 1. Let σ : R → [0, 1] a smooth threshold function.
We are given m samples (yµ,xµ)m

µ=1 with yµ ∈ {0, 1} and xµ ∈ R
n. The elements of (yµ)m

µ=1

are generated according to P(Yµ = 1|Xµ = x) = σ(θ0 · x), and xµ
i.i.d.∼ N (0, In) . We want to

learn the vector θ0 ∈ S
n−1 by minimizing the following loss function:

L(θ) ≡ 1
2m

m∑

µ=1

[yµ − σ(θ · xµ)]2, θ ∈ S
n−1. (7.36)
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Model 7.2 (Mixture of two Gaussians)

Consider n,m ≥ 1 such that m/n → α > 1. We are given m samples yµ ∈ R
n, generated as

yµ
i.i.d.∼ ∑2

a=1 paN (θ0
a, In). The proportions p1, p2 are known, and we wish to recover θ0

1 and
θ0

2 by minimizing the maximum-likelihood estimator:

L(θ1,θ2) ≡ − 1
m

m∑

µ=1

ln
[1
2

∑

a=1,2

1√
2π

n exp
{
− 1

2
‖yµ − θa‖2

}]
. (7.37)

Model 7.3 (Simple unsupervised learning model)

Consider n,m ≥ 1 such that m/n → α > 1. Let φ : R → R a smooth activation function,
V : R → R+ a “potential”, and x0 ∈ S

n−1 a fixed vector. We assume that we are given i.i.d.
data samples {ξµ}mµ=1 ∈ R

n distributed such that their projection on x0 has a probability

density P (ξµ · x = h) ∝ e− 1
2

h2−V (h), and the other coordinates of ξµ are i.i.d. standard
Gaussian variables. We wish to recover the vector x0 by minimizing:

L(x) ≡ 1
m

m∑

µ=1

φ(ξµ · x), x ∈ S
n−1. (7.38)

For each of these three models one can easily replicate the annealed and quenched calculations
of Sections 7.3 and 7.5, under suitable technical hypotheses. As a final note, it is however an
open problem to generalize our methods to neural network models with many nodes and hidden
layers; the random matrix analysis of the Hessian in this case is a particularly exciting challenge.

A note on non-spherical priors – It is clear from the calculation of Appendix E.1 (particularly
Section E.1.1) that we can also generalize our techniques (at least on the heuristic level) to non-
spherical prior distributions on the vectors x. The most natural hypothesis that allows the
computation to be generalized is that the prior distribution takes the decoupled form P (dx) =∏

i P (dxi).

Going further: discrete systems – In a series of recent fascinating papers [Sub21, Mon21,
AMS20, AM20, Sel21], the authors developed polynomial-time algorithms that can provably
optimize a large class of discrete and continuous disordered systems (such as the p-spin on the
hypercube). However, the very notion of “critical points” is generally not well-defined in discrete
problems, thus preventing from using the Kac-Rice method as we did in this chapter. Looking
for topological invariants of the landscape to characterize the optimal algorithmic performance
in discrete models is therefore an open and exciting research direction. First explorations have
been performed using the Kac-Rice formula on the corresponding continuous TAP landscape
(cf. Section 1.3.2), cf. e.g. for Ising spins [CPS21, FMM21].

Erratum to the proof – Finally, note that the proof of Theorem 7.5 that we presented here
has a minor modification with respect to the one published in [MBAB20], as we uncovered a
small missing step in the proof. This addition will soon be present in the published version of
this work as well.
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Chapter 8

An excursion to large deviations in
random matrix theory

“On voit par cet Essai, que la théorie des probabilités n’est au fond, que le bon sens réduit
au calcul : elle fait apprécier avec exactitude ce que les esprits justes sentent par une sorte
d’instinct, sans qu’ils puissent souvent s’en rendre compte.”

Pierre-Simon de Laplace, Essai philosophique sur les probabilités (1814).

Disclaimer – In this chapter we present an analytical technique to compute the probability of rare
events in which the largest eigenvalue of a large class of random matrices, known as generalized
sample covariance matrices, is atypically large (i.e. the right tail of its large deviations). The
results also transfer to the left tail of the large deviations of the smallest eigenvalue. In particular,
these include the Hessian of the loss of the empirical risks L1 and L2 of eqs. (7.9),(7.10). As
we mentioned in Section 7.1, the calculation of these large deviations is primarily motivated by
the ability to compute the complexity of local minima in the class of inference models studied
in Chapter 7. Moreover we will detail below other strong motivations arising from theoretical
statistics to study these large deviations. This chapter is based on the published work [Mai21].
While it revolves around subjects very close to Chapter 7, it is written in a style much closer to
the theoretical physics literature; in particular, we will often not use theorems to designate our
results. However, given the nature of the technique we use, which originated in the mathematics
literature, we expect that a rigorous proof would follow exactly the steps taken here.

8.1 Why the large deviations of the eigenvalues?

8.1.1 The landscape of generalized linear models and variants

The first motivation behind our study naturally comes from our results of Chapter 7, and
the Kac-Rice formalism developed there. Recall that this chapter focused on the study of
the complexity of the empirical risk landscape of generalized linear models. One of the most
important extensions of this chapter would be to restrict the counting of critical points to local
minima, which are more representative of the actual roughness of the landscape from the point
of view of local optimization algorithms.

As the Kac-Rice formula turns the counting of the complexity into the random matrix analysis of
the Hessian, we saw that conditioning a critical point to be a local minimum naturally requires
to understanding very rare events in which the smallest eigenvalue of the Hessian has extremely
atypical value, i.e. its large deviations (as defined in Section 1.5.2). Exploring precisely these
inference landscapes is an important open problem for the disordered systems and statistical
learning communities, as the traditional methods have been limited to simpler Gaussian mod-
els (see e.g. [MBM18, SMBC+19, SMKUZ19, RBABC19] and many other references given in
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Chapter 7), and the large deviations results of the present chapter are an important step in this
exciting direction.

8.1.2 PCA for correlated data

On the other hand, a textbook example of the interplay between theoretical physics and statistics
(that fuels this thesis) is principal components analysis (PCA), a statistical estimation method
based on random matrix theory, and applied in fields as diverse as image compression [DF07,
ZDZS10, AW10, Fuk13], neurosciences [JFHK94, BBVS00], genetics [RPP08], or finance [BP00].
In Chapter 5 we studied variants of this problem through the prism of generative models.

To fix our ideas, let X ∈ R
m×n be the data matrix, whose columns {xi}ni=1 are observations

independently drawn from a Gaussian distribution N (0,Γ). PCA aims at discovering a “princi-
pal component” eigenspace of the covariance matrix Γ by studying the largest eigenvalue of the
sample covariance matrix Cn ≡

∑
i xix

⊺
i /n: indeed, a strong outlier eigenvalue in Γ typically

induces a corresponding outlier in Cn [EJ76, BBAP05, BGN11] (see as well Chapter 5).

Pioneering physics works addressed the general question “How good is PCA ?” [DM06, MV09].
Precisely, they wished to understand if an outlier can appear in Cn even if there is no structure
to uncover in Γ: this “null hypothesis” provides a way to gauge the significance of results
obtained on a real-world dataset. As we defined in Section 1.5.2, such atypical events are
known as large deviations, and the mentioned works, as well as subsequent ones, had to restrict
to uncorrelated data, in which Γ is the identity matrix (or a finite-rank perturbation of it)
[DM06, Mai07, VMB07, MV09, MS14, BG20]. Realistic data (e.g. a natural image) indeed
contain non-trivial correlations that the Coulomb gas analysis used in [DM06, MV09] is not
equipped to handle. While data structure is a key ingredient of learning and inference (see
[Zde20] and our discussion in Chapter 5), probing the statistical significance of PCA on correlated
data remained an open question. In this regard, the present chapter addresses and solves this
long-lasting problem for arbitrary Γ, i.e. PCA with correlated data.

8.1.3 Organization of the chapter

We begin in Section 8.2 by defining precisely the class of matrices we consider, and we recall some
known results on the behavior of its asymptotic spectrum. The main contribution of this chapter
is Result 8.1, which gives the rate function of the large deviations of the largest eigenvalue of
the class of matrices we consider. Our derivation is based on a tilting method, developed in
a series of recent mathematical works [BG20, GH20, Hus20, BGH20, AGH21, McK21b]. This
technique is more adaptable than a more traditional Coulomb gas analysis, as it does not require
the joint probability of the eigenvalues of the matrix, which is unknown here. Moreover, the
calculation does not rely on any heuristics, and we therefore expect it to be adaptable into
mathematically rigorous statements. In Section 8.3 we numerically probe our results using an
importance sampling Monte-Carlo approach, effectively simulating events with probability as
small as 10−100. Finally, Section 8.4 is devoted to the detailed derivation of the rate function,
i.e. of Result 8.1.

8.2 Large deviations of extreme eigenvalues of gener-

alized sample covariance matrices

8.2.1 Some formal definitions and assumptions

To state our main result, we need first to define some important mathematical concepts.
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Figure 8.1: The bulk σ(λ), and the functions Gσ, Gσ for α = 2 and ρ(t) the Marchenko-Pastur
law with ratio 1. In the box, we plot ρ(t) and the right edge dmax of its support. The black arrow
is an outlier in the spectrum of Hn, and ∆ is the gap between this outlier and the bulk σ(λ). As
we will see, the rate function of the large deviations of λmax(Hn) is directly proportional to the

area between Gσ and Gσ.

Bulk density and Marchenko-Pastur equation

Letting xi =
√

Γzi with zi ∼ N (0, In), one can see that Cn has the same eigenvalues (up to
possible zeros and a scaling factor) as Hn ≡ Z⊺ΓZ/m. The “bulk” of Hn – i.e. the large n limit
of its eigenvalue density, or LSD – is denoted σ(λ):

∫
dλσ(λ) f(λ) = lim

n→∞
1
n

n∑

i=1

f [λi(Hn)].

The LSD of Γ is in turn denoted ρ(t). We illustrate these different quantities in Fig. 8.1, when
ρ(t) is the Marchenko-Pastur law with ratio one. The other functions pictured in Fig. 8.1 will
be introduced later on.

Importantly, σ(λ) can be analytically derived using the Stieltjes transform of random matrix
theory, that we introduced in Section 1.5. Here we adopt a slightly different convention than in
the rest of this thesis, namely we will consider:

Gσ(x) ≡ −Sσ(x) =
∫

dλ
σ(λ)
x− λ.

Assuming that m/n → α, the Marchenko-Pastur equation [MP67] (Theorem 1.7) gives the
inverse of Gσ:

G−1
σ (ω) =

1
ω

+ α

∫
dtρ(t)

t

α− tω . (8.1)

The bulk density σ(λ) is then determined via the Stieltjes-Perron inversion formula (Theo-
rem 1.5). In particular, the support of σ(λ) and its right edge smax can be computed (analytically
or numerically) from eq. (8.1).
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Generalized sample covariance matrices

By rotation invariance of Z, one can diagonalize Γ, i.e. assume Γ = Diag({dµ}), with all dµ ≥ 0,
which implies that:

Hn ≡
1
m

m∑

µ=1

dµzµz†
µ, (8.2)

in which zµ
i.i.d.∼ N (0, In). This form leads us to further extend the random matrix model we

consider. More precisely, given a set of variables dµ ∈ R (not necessarily positive), we call
matrices of the type of eq. (8.2) generalized sample covariance matrices. We can furthermore
allow the zµ to be real or complex Gaussian variables, and recall that we consider the limit
n,m → ∞ with m/n → α > 0. The limit of the empirical distribution of {dµ}mµ=1 is denoted
ρ(t), and we define dmax ∈ R ∪ {+∞} the right edge of its support.

Importantly, the positivity (or negativity) of the matrix Hn is equivalent to the positivity (or
negativity) of all dµ. Coherently with our motivation, these matrices (with arbitrary dµ ∈
R) contain, up to a shift, the Hessian matrix of eq. (7.13) arising in the computation of the
complexity of the empirical risk of generalized linear models via the Kac-Rice formula.

Finally, we note that generalized sample covariance matrices are precisely the class of matrices
covered by the generic form of the Marchenko-Pastur equation (Theorem 1.7).

The functions Gσ, Gσ

By monotonicity arguments, it can easily be seen that the equation G−1
σ (ω) = x, with G−1

σ given
by eq. (8.1), can have more than one solution! More precisely, it can have exactly one other
solution ω = Gσ(x), sometimes referred to as the “second branch” of the Marchenko-Pastur
equation. In Fig. 8.1, we show an example of functions (Gσ, Gσ). These functions satisfy the
following properties1:

• Gσ is decreasing, while Gσ is non-decreasing.

• Gσ(x) ∼x→∞ x−1.

• limx↓smax Gσ(x) = limx↓smax Gσ(x).

• For dmax ∈ (0,+∞) (and therefore nonnegative Hn), let:

xc(ρ) ≡ d2
maxGρ(dmax) + (α−1 − 1)dmax ∈ (smax,+∞]. (8.3)

Here, Gρ(z) ≡ −Sρ(z) =
∫

dt ρ(t)/(z − t) is the (negative of the) Stieltjes transform of ρ(t).
If xc(ρ) < +∞, then the equation G−1

σ (ω) = x has a single solution for x > xc(ρ), which
is Gσ(x). In this case, we define Gσ(x) ≡ α/dmax for x ≥ xc(ρ). One can check that this
ensures that Gσ(x) is continuous in xc(ρ): we will say that Gσ saturates at the point xc(ρ).
An example of this saturation point is pictured in Fig. 8.1.

• If Hn is negative (i.e. dmax ≤ 0), then

lim
x↑0

Gσ(x) = +∞.

In this case, we set Gσ(x) = +∞ for x ≥ 0.

1The derivation of these properties is straightforward and left to the reader.
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8.2.2 Main result

From now on we will restrict to the study of λmax(Hn). Since we can always consider d′
µ = −dµ,

our analysis also applies to λmin(Hn), so that we do not lose any generality. As we know, the large
deviations regime corresponds to macroscopic changes in λmax(Hn), which are exponentially
rare, as opposed to the typical fluctuations, which are generically in the scale n−2/3 for such
random matrices [TW94, Joh01, DY20]: these two regimes are shown as cyan and grey regions
in Fig. 8.1. Crucially, we assume

Hypothesis 8.1 (“No outliers hypothesis”)

Recall that we denote ρ(t) the empirical distribution of {dµ}mµ=1, and dmax the right edge of
the support of ρ(t). We assume that dmax <∞, and moreover:

lim
m→∞ max

1≤µ≤m
dµ = dmax

In other words, there is no outlier in the list {dµ}.

Importantly, Hypothesis 8.1 ensures that λmax(Hn) converges to the right edge smax of the bulk
σ(λ). This implies that the set of {zµ} such that the spectrum of Hn has an outlier is very
atypical under the Gaussian distribution. Let us now state our main result.

We adopt a standard notation, used e.g. in Chapters 2,6: we let β ∈ {1, 2} for respectively real
and complex zµ, with the convention E|z|2 = 1 for a Gaussian standard random variable. We
state the following result under all aforementioned hypotheses.

Result 8.1 (Large deviations of the largest eigenvalue of Hn)

Recall that the variables {dµ} are given. Under the randomness of {zµ}mµ=1, the law of
λmax(Hn) satisfies a large deviation principle, in the scale n, with rate function I(x) given by:

I(x) =





+∞ if x < smax

β

2

∫ x

smax

[Gσ(u)−Gσ(u)]du if x ≥ smax.

Result 8.1 is the main result of this chapter, and will be derived in Section 8.4. In Fig. 8.2, we
show analytical computations of the rate function I(x) for different α and ρ(t). As we mentioned
in the introduction of this chapter, we state this LDP as a result rather than a theorem, as its
publication was made in a physics journal [Mai21]. As we will see however, we expect all
arguments to transfer into a rigorous proof without significant changes. Let us now draw some
first consequences of Result 8.1.

Consistency with previous results

Importantly, in the white Wishart case – i.e. ρ(t) = δ(t−1) – such large deviations were already
analyzed in e.g. [MV09, BG20]. Our result should therefore be consistent with their findings.
As detailed in Appendix E.3, Result 8.1 indeed reduces in this case to the previously-known
expression:

I(x) =
αβ

2

∫ x

λ+(α)

√
(u− λ+(α))(u− λ−(α))

u
du,

with λ+(α) ≡ (1 + α−1/2)2, and x ≥ λ+(α).
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Figure 8.2: The rate function I(x) for different values of α and two different distributions ρ, in
the real case. Full dots depict the right edge smax of the bulk, while empty dots (when present)

correspond to the transition xc(ρ). We draw the dotted line I(x) = 0.5 in the top plot for later use.

A phase transition in the rate function

Let us describe a first notable consequence of Result 8.1. We assume that dmax > 0 and that
xc(ρ) < +∞. For instance, this is true if ρ is the Marchenko-Pastur law, as shown in Figs. 8.1
and 8.2.

We saw that in this case Gσ(x) saturates at α/dmax for x ≥ xc(ρ). It is in general not smooth
at x = xc(ρ) and this singularity induces a phase transition in the rate function I(x). The order
of the transition – i.e. the order of the first discontinuous derivative of I(x) – can be computed
assuming the right tail of ρ(t) behaves as

ρ(t) ∼t↑dmax (dmax − t)η,

with η > 0, so that xc(ρ) < ∞. When η ≥ 1 and 1/2 ≤ η < 1 (e.g. the Marchenko-Pastur law,
for which η = 1/2) we show that the transition is respectively of second and third order2. The
details are given in Appendix E.4, and we conjecture generically the order of the transition to
be k + 1 if 1/k ≤ η < 1/(k − 1).

8.3 Monte-Carlo simulations

While Result 8.1 is in essence high-dimensional, this section is devoted to numerically probe its
predictions. As we will see, even at moderately large n we are able to recover the rate function we
computed analytically! While this regime is not directly relevant to the Kac-Rice computations
of Chapter 7 (which are analytical results in the large n limit), it is the appropriate regime to
investigate correlated data in PCA, which is our second main motivation for this study.

Importance sampling

Since we need (1/m)
∑

µ δ(t−dµ) to be very close to ρ(t) (and thus large enough m), we can not
perform simple histograms of λmax(Hn), as e.g. in [MV09], since the large deviations probability
decays exponentially in n. Instead, we will modify (or “tilt”) the law of z so that it favors large

2Note that a similar argument based on the vanishing exponent of the density was already used in the literature,
in the context of multi-critical matrix models [MS14].
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deviations, a technique which is known as importance sampling [Buc13]. This powerful Monte-
Carlo method allows to numerically access the tails of a given high-dimensional probability dis-
tribution and has been successfully applied to various problems across the physical sciences, from
random graphs [EMH04] to simulations of the height distribution in the Kardar–Parisi–Zhang
equation [HLDM+18], and random matrices [DM07, SIH10], as in this chapter. For a more
exhaustive description of the applications of importance sampling in physics, we refer the reader
to [HLDM+18].

Tilting the measure

Let us now detail our approach in detail. For the purpose of the presentation we will restrict
to the real case β = 1, while all subsequent arguments can straightforwardly be adapted to
the complex case. Recall that we denote Dz ≡ dz e−||z||2/2/(2π)n/2 the standard Gaussian
law. We will tilt this distribution by explicitly giving more weight to configurations having a
larger λmax(Hn), making them more probable. More precisely, we aim at sampling from the
distribution

Pt(z)dz ∝ Dz entλmax(Hn). (8.4)

For a given t ≥ 0, Result 8.1 and Laplace’s method imply that when sampling z under Pt, the
largest eigenvalue of Hn concentrates on

x⋆(t) ≡ arg min
x≥smax

[tx− I(x)]. (8.5)

One sees clearly now that sampling from the tilted distribution of eq. (8.4) gives information
about the Legendre transform of the large deviations function I(x).

The Monte-Carlo algorithm

We implement a classical Metropolis-Hastings algorithm in order to sample from Pt. The physical
(given) parameters are n,m, ρ, t, and we generate i.i.d. samples {dµ}mµ=1 from ρ. We pick two
hyperparameters ∆, βd > 0 (we will later detail how to fine-tune them). We initialize {zµ}mµ=1

as standard Gaussian vectors, and we sample from the move proposal distribution g(z′|z) as
follows:

(i) Pick a random index µ ∈ {1, · · · ,m} with probability P (µ) ∝ eβddµ .

(ii) Draw a uniform vector e ∈ S
n−1(
√
n), and draw L ≥ 0 from a truncated Gaussian distri-

bution centered in 1 and with variance ∆ > 0. Let z′
µ =
√
Le.

(iii) The new state is given by changing zµ → z′
µ.

We impose the detailed balance condition with stationary distribution Pt(z) and move proposal
distribution g(z′|z) in the MCMC. We measure the largest eigenvalue λmax(Hn), which we then
compare to x⋆(t). The parameters (βd,∆) are found to reduce greatly the equilibration time
of the Markov chain, and are adapted during a warmup phase to obtain an acceptance ratio in
the range [0.2, 0.3]. Physically, βd can be seen as favoring changes close to the right edge of the
bulk, while ∆ favors large norms of zµ, more likely to induce macroscopic changes in the largest
eigenvalue.

Results of the experiments

The code is available in a public Github repository [Mai21] and the results of the simulations
are given in Fig. 8.3 for four different choices of ρ(t). The agreement with Result 8.1 is excellent,
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Figure 8.3: The function x⋆(t) for ρ(t) = : (i) two peaks (δ1 + δ−1)/2, (ii) Wigner’s semicircle
law, (iii) the Marchenko-Pastur law with ratio 1, (iv) the uniform distribution in [−2,−1]. In all
cases α = 2 except for (ii), in which α = 1. Solid lines are analytical predictions. The different

Monte-Carlo runs (n = 500) are shown in green with their respective noise. The mean of the green
points is depicted as a red dot.

whether Hn is negative, positive, or neither. Even though the variability of the results naturally
increases with t, we are able to access very large values of x⋆(t), beyond the transition point
xc(ρ) when it exists (cf. cases (ii) and (iii)). For example, in (iii) we are able to sample up to
x⋆(t) ≃ 8. Comparing with Fig. 8.2, this implies that our simulations reach events which have
probability of order e−0.5n ∼ 10−109 under a naive sampling! We were therefore able to probe
Result 8.1 deep into the large deviations regime.

8.4 Derivation of the rate function

In this section, we derive Result 8.1. We will focus on the real case β = 1, and briefly describe
at the end how to generalize our arguments to the complex case.

8.4.1 General idea behind the method

Let x ≥ smax, and let us denote Pn(x) the PDF of λmax(Hn). Our aim is to compute the
asymptotics of n−1 lnPn(x), i.e. the probability of exponentially rare events in which λmax(Hn)
is close to x rather than to its typical value smax.

The main idea of the method is to tilt the probability measure of Hn so that having λmax(Hn) ≃ x
becomes a typical event, rather than an exponentially rare one. This new tilted law will be
parametrized by a number θ ≥ 0: for each θ, the largest eigenvalue will typically be close to a
value x(θ) as n gets large (very similarly to the importance sampling strategy used for Monte-
Carlo simulations, cf. eq. (8.4)). Conversely, each x ≥ smax will be associated to a θx ≥ 0, and
a tilting parametrized by θx will typically induce the largest eigenvalue to be close to x.

As we will see, these functions {x(θ), θx} contain all the information about the large deviations
we want to compute. To put it roughly, studying how much tilt we need to apply in order to
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push the largest eigenvalue from smax to x will give us information on what was the probability
that this eigenvalue was close to x in the first place. On a general note, the tilting strategy is a
privileged approach to prove many results in large deviations theory, e.g. Cramer’s theorem 1.8
[DZ98]. However, its adaptation to the random matrix context, using the spherical integrals
we introduced in Section 1.5.3, is very recent and was introduced by the series of mathematical
works mentioned above.

8.4.2 Tilting the measure: a first attempt

The tilted law of Hn

We start with a first simple use of the tilting method using spherical integrals3. The sim-
plest possible tilting of the measure, inspired by the aforementioned mathematical works, is an
exponential tilting. More precisely, we define the tilted distribution of z as4:

Pθ,e(z)dz ∝ Dz exp
{θn

2
e⊺Hne

}
, (8.6)

for a given vector e ∈ S
n−1 and a parameter θ ≥ 0. As we will see, this tilting induces a

macroscopic move of the largest eigenvalue. Moreover, by rotation invariance of the distribution
of Hn, this move only depends on θ, and not on the specific direction of e.

Let us now detail the distribution of Hn under the tilted law of eq. (8.6). Computing the
normalization factor, we reach:

Pθ,e(z) = exp
{1

2

m∑

µ=1

ln
(
1− θ

α
dµ

)
+

θ

2α

m∑

µ=1

dµ(e⊺zµ)2 − 1
2

m∑

µ=1

‖zµ‖2 −
nm

2
ln 2π

}
,

=
m∏

µ=1

exp
{
− 1

2
z⊺µ(In −

θ

α
dµee⊺)zµ −

n

2
ln 2π +

1
2

ln det
(
In −

θ

α
dµee⊺)}. (8.7)

The matrix In − (θ/α)dµee⊺ is a rank-one modification of the identity, so we easily compute

(
In −

θ

α
dµee⊺

)−1/2
= In +

(
(1− θdµ/α)−1/2 − 1

)
ee⊺. (8.8)

Changing variables to z′
µ ≡

(
In− θdµee⊺/α

)1/2
zµ in eq. (8.7) and using eq. (8.8) yields that Hn

is distributed under Pθ,e as:

H(e,θ)
n

d=
1
m

m∑

µ=1

dµ[In + κθ(dµ)ee⊺]zµz⊺µ[In + κθ(dµ)ee⊺], (8.9)

with κθ(t) ≡ (1− α−1θt)−1/2 − 1, and in which zµ are again i.i.d. standard Gaussian vectors.

Since H(e,θ)
n is a finite-rank change of Hn, its largest eigenvalue can be typically larger than smax.

Moreover, we see from the expression of H(e,θ)
n that as θ → α/dmax, some of the coefficients

κθ(dµ) will grow very large: we thus expect that for sufficiently large θ, an outlier eigenvalue
will pop out from the right edge of the “bulk”, as pictured as a black arrow in Fig. 8.1. We
denote x(θ) ≥ smax the typical value of this outlier eigenvalue (i.e. of λmax(Hn)), as n→∞. As
we mentioned, x(θ) does not depend on e by rotation invariance.

3The analysis of [BG20, BGH20] suggests a tilting which is function of An, with Hn = AnA⊺

n. However for
arbitrary dµ, An is not defined so that we use this simpler tilting. We shall later come back to this idea by
adapting the method to allow for complex-valued An.

4Recall that Dz ≡ dz e−||z||2/2/(2π)n/2 is the standard Gaussian law.
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Relating the tilting and the original problem

Let us now see how to relate the PDF Pn of λmax(Hn) to this tilted distribution. For any θ, we
can write the trivial identity:

Pn(x(θ)) =
∫
Dz δ(λmax(Hn)− x(θ)) =

∫
Dz δ(λmax(Hn)− x(θ))

∫
‖e‖2=1 de e

θn
2

e⊺Hne

∫
‖e‖2=1 de e

θn
2

e⊺Hne
,

=
∫

‖e‖2=1
de Dz δ(λmax(Hn)− x(θ))

e
θn
2

e⊺Hne

enJn(Hn,θ)
. (8.10)

We introduced the spherical integral

Jn(Hn, θ) ≡
1
n

ln
∫

‖e‖2=1
de e

nθ
2

e⊺Hne. (8.11)

In eq. (8.10), we almost see the tilted probability distribution of eq. (8.6) appearing. However
this is not exactly the case, as the term enJn(Hn,θ) depends on z via Hn. If this term would not
depend on z at leading exponential order in n, the law of z would be the tilted law of eq. (8.6),
and we could remove the δ term in eq. (8.10): indeed, the constraint λmax(Hn) ≃ x(θ) would
already be satisfied by the very definition of x(θ)!

The spherical integrals

Therefore, we study first Jn(Hn, θ). Let us introduce J1(θ, x), defined as the limit of Jn(Hn, θ),
assuming λmax(Hn) → x as n → ∞ (which we can safely assume because of the constraint
in eq. (8.10)). Adopting the language of statistical physics, we call J1 a quenched spherical
integral. More precisely, J1 belongs to a class of high-dimensional integrals known as Harish-
Chandra-Itzykson-Zuber (HCIZ) integrals [HC57, IZ80], that we already introduced and studied
in Section 1.5.3. In particular, Theorem 1.12 yields:

J1(θ, x) = inf
γ>θx

[γ
2
− 1

2

∫
duσ(u) ln(γ − θu)

]− 1
2
. (8.12)

Let us come back to eq. (8.10). We have at leading exponential order:

Pn(x(θ)) ≃
∫

‖e‖2=1
de Dz δ(λmax(Hn)− x(θ))

e
θn
2

e⊺Hne

enJ1(θ,x(θ))
,

≃ e−nJ1(θ,x(θ))
∫

‖e‖2=1
de Dz e

θn
2

e⊺Hne. (8.13)

As already argued, we removed the δ constraint in eq. (8.13) by definition of x(θ): under the
tilted law Pθ,e, the largest eigenvalue λmax(Hn) typically concentrates on x(θ), so this constraint
is superfluous. The expression of eq. (8.13) involves another integral, that we call annealed and
denote Fn(θ), borrowing again from the statistical physics jargon:

Fn(θ) ≡ 1
n

ln
∫
Dz

∫

‖e‖2=1
de e

θn
2

e⊺Hne.

Similarly to Jn, we denote by F1(θ) the limit of Fn(θ). If dmax > 0, we also impose θ < α/dmax

so that Fn(θ) is well-defined. We compute it by direct integration on z:

F1(θ) = −α
2

∫
dtρ(t) ln(1− α−1θt). (8.14)
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Combined with eq. (8.13), this implies

Pn(x(θ)) ≃ exp{−n[J1(θ, x(θ))− F1(θ)]}. (8.15)

Note that we imposed θ < θmax, with

θmax ≡
{
α/dmax if dmax > 0,

+∞ otherwise.

Conversely, this implies that eq. (8.15) can only be applied for smax ≤ x < xmax ≡ x(θmax). This
creates a possibly important limitation of the tilting we used, if xmax is finite: in this case, the
method does not give access to the large deviations for x ≥ xmax! We will precisely characterize
when such a limitation occurs in the following, relating it to the phase transition phenomenon
described in Section 8.2, and we will develop a second tilting to circumvent this issue.

Simplifying the rate function

First, let us focus on x < xmax and show that we find Result 8.1. We can rewrite eq. (8.15) as:

1
n

lnPn(x) ≃ −[J1(θx, x)− F1(θx)]. (8.16)

Recall that θx is chosen exactly to be able to remove the delta constraint in eq. (8.10). However,
for any θ′ ≥ 0, we can always write an equivalent to eq. (8.13), keeping the delta constraint:

Pn(x) ≃
∫

‖e‖2=1
de Dz δ(λmax(Hn)− x)

e
θ′n

2
e⊺Hne

enJ1(θ′,x)
.

From here, we can upper bound Pn(x) by discarding the delta constraint in this equation, which
gives at leading exponential order:

1
n

lnPn(x) / −[J1(θ′, x)− F1(θ′)].

Combining this with eq. (8.16), we see we can write the rate function I(x) ≃ n−1 lnPn(x) as:

I(x) = sup
θ∈[0,θmax)

[J1(θ, x)− F1(θ)]. (8.17)

We focus now on simplifying the rate function of eq. (8.17), to obtain Result 8.1. We need to
study the behavior of the quenched integral J1 of eq. (8.12). We recall here known results on
J1(θ, x), as we already studied the behavior of such a function, and the possible transitions in
it, in Section 1.5.3.

Cancelling the derivative with respect to γ in eq. (8.12) yields γ = γ⋆ ≡ θG−1
σ (θ). Plugging

back this solution in eq. (8.12), and using the Marchenko-Pastur equation (8.1) yields that
J1(θ, x) = F1(θ). We detail this derivation in Appendix E.5.1.

However, note that γ is constrained to be smaller than θx. Therefore, the infimum in eq. (8.12)
is reached in γ⋆ only for θ ≤ θc(x), with θc(x) ≡ Gσ(x). At θ = θc(x), J1(θ, x) undergoes a
transition, as γ “saturates” at its limit value θx for θ ≥ θc(x). All in all, we reach:

J1(θ, x) =





F1(θ) = −α
2

∫
dtρ(t) ln(1− α−1θt) if θ ≤ Gσ(x),

θx− 1− ln θ
2

− 1
2

∫
du σ(u) ln(x− u) if θ ≥ Gσ(x).

(8.18)
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Using eq. (8.18) in the result of eq. (8.17), it is then simple algebra to see that the maximum of
J1(θ, x)− F1(θ) is reached in θx = Gσ(x). Differentiating the resulting expression yields

I ′(x) =
Gσ(x)−Gσ(x)

2
,

which justifies Result 8.1 in this case. The whole computation we just described is detailed in
Appendix E.6.1.

Limitations of the tilting

As we mentioned, the tilting method we presented is not capable of predicting the large devia-
tions for x ≥ xmax = x(θmax). As we showed that θx = Gσ(x), we can separate two cases:

• If dmax ≤ 0, then θmax = +∞ by definition, and therefore xmax = 0 since limx↑0Gσ(x) = +∞.
For x ≥ 0, Gσ(x) = +∞ and so Result 8.1 is valid (indeed I(x) = +∞ since Hn is negative).
In the end, our tilting allowed to compute the large deviations rate function I(x) for any
x ≥ smax in this case.

• If dmax > 0, then θmax = α/dmax. Since Gσ(xc(ρ)) = α/dmax, this yields that xmax = xc(ρ),
given by eq. (8.3). Therefore, we see that in this case, the condition for the tilting to be
able to induce arbitrarily large outliers is xc(ρ) = +∞, i.e. Gρ(dmax) = +∞. As we saw, the
finiteness of Gρ(dmax) is exactly the existence condition of a phase transition in I(x), which
prevents the tilting from capturing all the large deviations.

8.4.3 Beyond the transition: a second tilting

Here, we briefly outline the method we use to go beyond the phase transition when dmax > 0,
to circumvent the limitation described above. As the method is extremely similar to the one we
just described in detail, we will focus primarily on the main steps and quantities, while leaving
some details to the reader. We change the tilt of eq. (8.6) to:

Pθ,e,f(z) dz ∝ Dz exp
{ θn√

m

∑

i,µ

√
dµeizµifµ

}
, (8.19)

with
∑

i e
2
i =

∑
µ f

2
µ = 1. When dµ ≤ 0, we define

√
dµ ≡ i

√−dµ so that the tilt is possibly
complex-valued. Eq. (8.19) corresponds to a simple additive shift of zµ, and the law of Hn under
the tilt of eq. (8.19) is:

H(θ,e,f)
n ≡ 1

m

m∑

µ=1

[
dµzµz⊺µ +

θ2m

α2
d2

µf
2
µee⊺ +

θ
√
m

α
1{dµ≥0}d

3/2
µ fµ(ez⊺µ + zµe⊺)

]
.

Let us give an intuitive view of the reasons why this new tilting manages to induce the largest
eigenvalue to be typically close to x, for any x ≥ smax:

• When θ = 0 the largest eigenvalue of the unspiked matrix naturally concentrates on smax.

• As θ ≫ 1, a spike proportional to θ2 will push the largest eigenvalue of H(θ,e,f)
n to +∞.
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By continuously varying θ, we see that the tilt should be able to induce any outlier x ≥ smax in
the spectrum. The annealed and quenched “HCIZ” integrals corresponding to this tilting are:

F2(θ) =
1
n

ln
∫
Dz

∫

‖e‖2=1
de

∫

‖f‖2=1
df exp

{ θn√
m

∑

i,µ

√
dµeizµifµ

}
,

J2(θ, x) =
1
n

ln
∫

‖e‖2=1
de

∫

‖f‖2=1
df exp

{ θn√
m

∑

i,µ

√
dµeizµifµ

}
.

In J2(θ, x), we assume that λmax(Hn) converges a.s. to x as n → ∞. Introducing Lagrange
multipliers in the spherical integrals, we find:

F2(θ) =
α

2
inf

γ≥dmax

[γθ2

α2
−
∫

dtρ(t) ln(γ − t)− 1− ln
θ2

α2

]
.

Similarly to our previous analysis of J1, we show that there is a transition in J2: for θ ≤ θc(x),
J2(θ, x) = F2(θ), while for θ ≥ θc(x) one reaches:

J2(θ, x) =





F2(θ) if θ ≤ θc(x),

α− 1
2

ln
[1− α+

√
(α− 1)2 + 4xθ2

2x

]
− 1 + α

2
− α

2
ln
θ2

α

+
1
2

√
(α− 1)2 + 4xθ2 − 1

2

∫
dλσ(λ) ln(x− λ) if θ ≥ θc(x),

with θc(x) ≡
√
xGσ(x)2 + (α− 1)Gσ(x). The details of the derivations of F2 and J2 are given

in Appendix E.5.2. Importantly, the very existence of the transition in J2(θ, x) relies on the
positivity of x, so that this tilting fails for negative matrices. This notably implies that the first
tilt of eq. (8.6) is still crucial to handle the case dmax ≤ 0.

We deduce from the tilting method, in the exact same way as in the first tilting, that

Pn(x) ≃ exp{−n sup
θ≥0

[J2(θ, x)− F2(θ)]}.

Using eq. (8.1) and the explicit expressions of F2 and J2 we derived, one shows that for all
x ≥ smax the supremum is attained in θx ≡ [xGσ(x)2 + (α − 1)Gσ(x)]1/2. We compute then
I ′(x) = [Gσ(x)−Gσ(x)]/2, which, together with I(smax) = 0, implies Result 8.1. These algebraic
calculations are detailed in Appendix E.6.2. This ends the derivation of Result 8.1 in all cases.

8.4.4 Going further: the complex case and the left tail of the large deviations

A remark on the complex case

We give an intuitive remark on how the factor β = 2 in the complex case arises in Result 8.1.
As we showed above, the method allows to write the large deviations rate function in the form
I(x) = supθ[J(θ, x) − F (θ)], with F and J annealed and quenched spherical integrals. This
result straightforwardly transfers to the complex setting, however the integrals F and J are now
defined over unit vectors on the complex unit sphere, i.e. they satisfy

∑
i |ei|2 = 1. It is known

that the asymptotic behavior of real and complex spherical integrals only differ by a factor 2
(i.e. the complex integral is twice the real one), a property known as “Zuber’s 1/2-rule”[ZJZ03]:
this explains the origin of the β factor in Result 8.1.
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The left tail of the large deviations

Importantly, we did not consider large deviations at the left of smax. Such an event requires
moving the whole bulk of eigenvalues, i.e. a number O(n) of eigenvalues, an event which has
probability in the scale exp{−n2} [DM06, VMB07, MV09]. Whether the method applied here
could be extended to study this left tail is an interesting open question. As we saw, the core
of the method is to create a tilt of the measure such that the largest eigenvalue is shifted in a
controllable manner: in this case, the tilting would need to induce a shift of the whole spectrum.
The perhaps most natural extension of the tilting of eq. (8.6) to this setting would be to consider
an extensive-rank change in the covariance of the zµ:

Dz→ Dz e
n
2

Tr[MnOHnO⊺],

with O an orthogonal matrix and Mn an arbitrary matrix (with extensive rank) that will
parametrize the tilting, similarly to the parameter θ in the calculation we performed. Provided
the mechanisms of the method we presented transfer to this case, this would give the large
deviations function in terms of involved extensive-rank “HCIZ” spherical integrals. The study
of these extensive-rank HCIZ integrals in the high-dimensional limit was conducted in [Mat94],
and rigorously proven in [GZ02], and we stated their main result in Theorem 1.15. The resulting
formulas are very tedious as they involve hydrodynamical PDEs, however in a very recent
analysis [BGH20] the authors managed to leverage this approach to prove large deviations in
several contexts, e.g. for the empirical measure of the sum of two freely independent random
matrices. This indicates that these extensive-rank spherical integrals might indeed be the most
natural path to analyse the left tail of the large deviations, a line of work that is however beyond
the scope of this chapter.

Discussion on Chapter 8

In this chapter we presented a generic technique to derive the right tail of the large deviations of
the largest eigenvalue of the large class of generalized sample covariance matrices. By symmetry,
this also transfers to the left tail of the large deviations of the smallest eigenvalue. Our main
result 8.1 significantly improves over the seminal works of [DM06, MV09] for sample covariance
matrices with identity covariance, and leverages a recent technique developed in a series of
mathematical works [BG20, GH20, Hus20, BGH20, AGH21, McK21b]. Thanks to the relative
simplicity of our main result, we will further investigate its consequences in particular for PCA
on real-world datasets. We also proposed importance sampling simulations, that allow to probe
our result and its consequences, e.g. the existence of a phase transition in the rate function
depending on the spectral density of a diagonal matrix involved in the definition of our model.

The Hessian matrix of inference landscapes – Recall that we motivated Result 8.1 in
particular by its application to the Kac-Rice formalism developed in Chapter 7. Our analytical
large deviations computation therefore paves the way toward a direct understanding of the
topology of the local minima in the landscape of complex inference models, since Hn is directly
related to the Hessian matrix of the models studied in Chapter 7! We are currently investigating
the derivation of a Kac-Rice formula similar to Theorem 7.5 but restricted to local minima, which
will contain the rate function of Result 8.1.

Universality of the large deviations – Very interestingly the tilting method used in this
chapter does not fundamentally rely on the Gaussianity of the variables zµi, and several works
have used this technique to investigate universality properties of the large deviations of the
extreme eigenvalues, e.g. for Wigner matrices [GH20, Hus20, AGH21]. This hints towards a
possible universality of the large deviations described in Result 8.1 as long as the variables zµi
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are independent, centered, have unit variance, and satisfy some properties, e.g. sub-Gaussianity
or if they are Rademacher/Ising variables. Proving or refuting this intuition in detail would be
an interesting follow-up to this chapter.

Other possible generalizations – An interesting result, which should be accessible, is to
generalize the large deviations of Result 8.1 to the k-th eigenvalue (not necessarily the smallest),
with fixed k as n→∞. In terms of the spherical integrals, which are at the heart of the tilting
techniques (cf. Section 8.4), this requires results on the asymptotics of rank-k HCIZ spherical
integrals, which are well-known, see Section 1.5.3. This venue has recently been investigated
for Wigner and Wishart matrices [GH21], and generalizing to the present context should follow
on the same lines. In the Kac-Rice formalism of Chapter 7, this would then allow to count
the critical points of any finite index (i.e. saddle points with a finite number of descending
directions). As a final note, the generalizations mentioned in the conclusion to Chapter 7 would
naturally create new random matrix challenges, e.g. understanding the large deviations of the
extremal eigenvalues of the Hessian of the loss for a neural network with multiple layers and
nodes, a random matrix problem that, to the best of our knowledge, is still open at the moment.
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Afterword

“Look at me still talking when there’s science to do”

GLaDOS, Portal (2007).

This dissertation aimed at leveraging diverse tools of statistical physics, statistics, information
theory and probability theory to tackle different questions on the fundamental limits of estima-
tion problems. In Part I we revisited high-temperature expansions, historically one of the first
theoretical methods developed to deal with disordered systems, to unify and justify different al-
gorithmic approaches for inference problems with rotationally-invariant data distributions. We
also used it to provide first hints at an exact solution to the extensive-rank matrix factorization
problem, which puts into the light the limitations of current theories, as we will further discuss
below. Part II places itself in the general line of work reviewed in [ZK16], and which combines
the heuristic replica method and message-passing algorithms to assess the optimal performances
in a wide class of high-dimensional estimation problems. We complete this approach with proba-
bilistic methods, notably an adaptive interpolation developed in [BM19a, BM19b], which allows
to put the replica predictions on rigorous grounds in quite general settings. This general venue
is applied to two-layers neural networks (Chapter 4), to study the influence of data structure on
the optimal performances (Chapter 5), and to analyze the phase retrieval problem with generic
right-rotationally invariant sensing matrices (Chapter 6). Finally, Part III considers a topolog-
ical point of view on the general question of high-dimensional optimization, and provides an
important step towards a mathematical characterization of the ruggedness of the landscapes of
empirical risk minimization for simple estimation models, with important connections to random
matrix theory.

Towards a global theory of learning? – Nonetheless, this dissertation touches upon impor-
tant limitations of the statistical physics approach to high-dimensional estimation. Crucially, as
the rest of “classical” approaches to machine learning, it fails to provide a clear theory of mod-
ern machine learning procedures based on deep neural networks, namely to answer the following
problems that remain open:

• Why do models with very large number of parameters (such as deep nets), often larger than
the number of data, not overfit? How do they manage to generalize well?

• Why do the optimization algorithms used in such models not get stuck on poor local minima?

These questions defy our statistical intuition, and as emphasized in [Zde20], answering them can
not be done by overlooking any of the three following key ingredients: the architecture of the
problem, the structure of the data, and the learning algorithms. In this thesis we were confronted
with each of these features, and an important long-term goal is to unify what statistical physics
taught us on each of them to obtain answers.

We can illustrate this strategy on the analysis of data structure: indeed, the consideration
of i.i.d. data samples has historically been one of the important limitations of the statistical
physics approach, but recent progress has been made on going beyond this restriction, either by
rotationally-invariant models or generative models as shown in Parts I and II, and in particular



Afterword 197

generative models of data are better and better understood using statistical physics techniques
[GRM+20, GMKZ20]. This is also the case of optimization algorithms: while physicists have
described the Langevin dynamics in continuous disordered models very precisely [CK93], this
description is not adapted to study actual optimization algorithms (e.g. stochastic gradient
descent) in machine learning procedures1. However, recent works in the same community strive
to create an analytical description of realistic optimization algorithms using statistical physics
approaches (let us mention e.g. [MKUZ20]), and combining these diverse ideas is an exciting
prospect.

The extensive-rank challenge – Let us conclude our discussion by what we believe is a
crucial challenge ahead for the statistical physics community interested in inference and learning:
the analysis of extensive-rank problems, to which we gave a brief introduction in Chapter 3.
Such models are especially instrumental in building a theory of actual deep neural networks
with both many layers and many nodes in each layer, and the tremendous attention received
by simple learning regimes in infinitely-wide networks [JGH18, GMMM21] demonstrates the
importance of these models to the community. However, the tools that have been developed
for fifty years by theoretical physicists and statisticians, such as the replica theory, are often
inadequate to tackle extensive-rank problems as we explained in Chapter 3, and new ideas must
be developed to expand them or to develop new ones. Finally, even though we focused in the
aforementioned chapter on the matrix factorization problem with i.i.d. Gaussian weights, this
model is an instrumental building block to move on to structured data and the design of efficient
algorithms, much like the perceptron with Gaussian weights in finite-rank problems. While this
very exciting research avenue is surely a very long-term goal, it is also a thrilling opportunity
to rethink many of our intuitions and to gather again various scientific communities in physics,
computer science, statistics, and probability.

1This illustrates the arguably greatest peril of our interdisciplinary approach: to perform careless transposition of
results from one scientific field to the other.



198

Bibliography

PhD publications

[ALM+20] Benjamin Aubin, Bruno Loureiro, Antoine Maillard, Florent Krzakala, and Lenka
Zdeborová. The spiked matrix model with generative priors. IEEE Transactions
on Information Theory, 2020.

[AMB+19] Benjamin Aubin, Antoine Maillard, Jean Barbier, Florent Krzakala, Nicolas Macris,
and Lenka Zdeborová. The committee machine: computational to statistical gaps
in learning a two-layers neural network. Journal of Statistical Mechanics: Theory
and Experiment, 2019(12):124023, 2019.

[BMMK18] Jean Barbier, Nicolas Macris, Antoine Maillard, and Florent Krzakala. The mu-
tual information in random linear estimation beyond iid matrices. In 2018 IEEE
International Symposium on Information Theory (ISIT), pages 1390–1394. IEEE,
2018.

[Mai19] Antoine Maillard. An introduction to the Kac-Rice formula. Notes of a short course
given at KITP, 2019.

[Mai21] Antoine Maillard. Large deviations of extreme eigenvalues of generalized sample
covariance matrices. EPL (Europhysics Letters), 133(2):20005, 2021.

[MBAB20] Antoine Maillard, Gérard Ben Arous, and Giulio Biroli. Landscape complexity
for the empirical risk of generalized linear models. In Mathematical and Scientific
Machine Learning, pages 287–327. PMLR, 2020.

[MFC+19] Antoine Maillard, Laura Foini, Alejandro Lage Castellanos, Florent Krzakala,
Marc Mézard, and Lenka Zdeborová. High-temperature expansions and message-
passing algorithms. Journal of Statistical Mechanics: Theory and Experiment,
2019(11):113301, 2019.

[MFK+21] Antoine Maillard, Laura Foini, Florent Krzakala, Marc Mézard, and Lenka Zde-
borová. Towards exact solution of extensive-rank matrix factorization. In prepara-
tion, 2021.

[MKLZ21] Antoine Maillard, Florent Krzakala, Yue M. Lu, and Lenka Zdeborová. Construc-
tion of optimal spectral methods in phase retrieval. In Mathematical and Scientific
Machine Learning. PMLR, 2021.

[MLKZ20] Antoine Maillard, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová. Phase
retrieval in high dimensions: Statistical and computational phase transitions. Ad-
vances in Neural Information Processing Systems, 33, 2020.



NUMERICAL CODES OF PHD PUBLICATIONS 199

Numerical codes of PhD publications

[ALM+19] Benjamin Aubin, Bruno Loureiro, Antoine Maillard, Florent Krzakala, and Lenka
Zdeborová. Demonstration codes - The spiked matrix model with generative priors.
https://github.com/benjaminaubin/StructuredPrior_demo, 2019.

[AMB+18] Benjamin Aubin, Antoine Maillard, Jean Barbier, Florent Krzakala, Nicolas Macris,
and Lenka Zdeborová. AMP implementation of the committee machine. https:

//github.com/benjaminaubin/TheCommitteeMachine, 2018.

[Mai21] Antoine Maillard. Demonstration codes - Large deviations of extreme eigenvalues
of generalized sample covariance matrices. https://github.com/AnMaillard/LD_

lmax_sample_covariance, 2021.

[MKLZ20] Antoine Maillard, Florent Krzakala, Yue M. Lu, and Lenka Zdeborová. Demonstra-
tion codes and notebooks. https://github.com/AnMaillard/Optimal_Spectral_

Methods_PR, 2020.

[MLKZ20] Antoine Maillard, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová.
Demonstration codes and notebooks. https://github.com/sphinxteam/

PhaseRetrieval_demo, 2020.

Other references

[AAKZ20] Alia Abbara, Benjamin Aubin, Florent Krzakala, and Lenka Zdeborová.
Rademacher complexity and spin glasses: a link between the replica and sta-
tistical theories of learning. In Mathematical and Scientific Machine Learning,
pages 27–54. PMLR, 2020.

[ABA13] Antonio Auffinger and Gérard Ben Arous. Complexity of random smooth functions
on the high-dimensional sphere. Annals of Probability, 41(6):4214–4247, 2013.

[ABAČ13] Antonio Auffinger, Gérard Ben Arous, and Jiří Černỳ. Random matrices and
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Appendix A

Technicalities of the
Plefka-Georges-Yedidia expansion

A.1 Order 4 of the expansion for a spherical model

We start from eq. (2.7d), that we consider at η = 0 :

n∂4
ηΦJ = 〈U4〉0 − 3〈U2〉20 − 3

n∑

i=1

∂2
ηλi〈U2(xi −mi)〉0 −

3
2

n∑

i=1

∂2
ηγi〈U2(x2

i −m2
i − vi)〉0. (A.1)

For simplicity we will denote x̃i ≡ (xi −mi), so that at η = 0 the {x̃i} variables are Gaussian
variables with mean 〈x̃i〉 = 0 and covariance 〈x̃ix̃j〉 = δijvi. In particular eq. (2.10) becomes:

U(η = 0,J) = −1
2

∑

i6=j

Jij x̃ix̃j .

From our calculation at order 2 we obtain the following relation that we can represent diagram-
matically:

−3〈U2〉20 = −3
4

[∑

i6=j

J2
ijvivj

]2
= −3n

4

[
• •

]2
. (A.2)

We now turn to the next term:

− 3
2

n∑

i=1

∂2
ηγi〈U2(x2

i −m2
i − vi)〉0 − 3

n∑

i=1

∂2
ηλi〈U2(xi −mi)〉0

= −3
2

n∑

i=1

∂2
ηγi〈U2(x̃2

i − vi)〉0 − 3
n∑

i=1

〈U2x̃i
(
∂2

ηλi +mi∂
2
ηγi
)〉0,

(a)
= −3

2

n∑

i=1

∂2
ηγi〈U2(x̃2

i − vi)〉0 − 3n
n∑

i=1

〈U2x̃i

∂
(
∂2

ηΦJ

)

∂mi
〉0

(b)
= −3

2

n∑

i=1

∂2
ηγi〈U2(x̃2

i − vi)〉0 + On(1).

In (a) we used the Maxwell equations (2.9), while in (b) we made use of the fact that the order
2 of the free entropy does not depend on the mi variables. We obtain for the remaining term:

−3
2

n∑

i=1

∂2
ηγi〈U2(x̃2

i − vi)〉0 =
3
2

[∑

i6=j

J2
ijvivj

]2
− 3

∑

i6=j

J2
ijvj〈U2x̃2

i 〉0,

in which we used the Maxwell relations (2.9) to compute ∂2
ηγi. To compute 〈U2x̃2

i 〉0, we expand:

〈U2x̃2
i 〉0 =

1
4

∑

i1 6=j1

∑

i2 6=j2

Ji1j1Ji2j2〈x̃2
i x̃i1 x̃j1 x̃i2 x̃j2〉0.



Appendix A. Technicalities of the Plefka-Georges-Yedidia expansion 223

• •
• •
• •
• •
(a)

• •
• •
• •
• •
(b)

Figure A.1: Different types of diagrams of indices appearing in 〈U4〉0.

We can then use Wick’s theorem to simplify the average. There are two types of contractions
(or pairings) that appear:

• Contractions that do not mix the indices i1, j1, i2, j2 with i. There are 2 such possible pairings

and they give rise to the diagram
[
n • •

]2
.

• Contractions that mix these indices with i. There are all equivalent and there are 8 of them,
each giving the diagram n • •• .

In the end, we reach:

〈U2x̃2
i 〉0 =

vi

2

∑

k 6=l

J2
klvkvl + 2

∑

k( 6=i)

J2
ikv

2
i vk.

We can finally compute the term we were seeking:

−3
2

n∑

i=1

∂2
ηγi〈U2(x̃2

i − vi)〉0 = −6n
∑

i,j,k
pairwise distincts

J2
ijJ

2
ikv

2
i vjvk = −6 • •• . (A.3)

Note that in this last equation we could add the hypothesis that j 6= k. Indeed the term j = k

would give rise to the diagram n • • , which is negligible, since for every i 6= j one has

Jij = O(n−1/2) as a consequence of rotational invariance (cf. Model S). We finally turn to the
computation of 〈U4〉0:

〈U4〉0 =
1
16

3∏

α=0

[ ∑

iα 6=jα

Jiαjα

] 〈 3∏

α=0

x̃iα x̃jα

〉

0
.

The possible contractions arising from Wick’s theorem yield several contributions, that we can
also represent by diagrams. Note that these diagrams are very different from the diagrams that
we described for instance in Fig. 2.1, and are merely a way to visualize the contractions in Wick’s
theorem. The first column contains the iα indices and the second contains the jα. Note that we
always have iα 6= jα. The two different types of contractions are represented as Fig. A.1a and
Fig. A.1b. They are 12 possible contractions of the type of Fig. A.1a and 48 of Fig. A.1b. We
also take into account that in the pairings of Fig. A.1b indices are not all necessarily pairwise
distinct. Discarding terms that are O(n), we finally reach:

〈U4〉0 =
3
4

[∑

i6=j

J2
ijvivj

]2
+ 6

∑

i,j,k
pairwise distincts

J2
ijJ

2
ikv

2
i vjvk + 3

∑

i0,i1,i2,i3
pairwise distincts

Ji0i1Ji1i2Ji2i3Ji3i0vi0vi1vi2vi3 ,

=
3
4

[
n • •

]2
+ 6n • •• .+ 3n ••

•

•
. (A.4)
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•

•

•

•
(a) A directed Eulerian diagram for

Hermitian matrices.

•

•

•

•
(b) A different Eulerian diagram,

but with the same undirected edges.

• • •
•

•

•

•

•

•

(c) An Eulerian directed cactus
diagram. A cactus diagram is

Eulerian if and only if all its simple
cycles are Eulerian.

Figure A.2: Diagrams similar to the ones of Fig. 2.2, but for Hermitian matrices. Note that the
diagrams of Fig. A.2a and Fig. A.2b are different because of the different directions of the edges,

but that both are Eulerian.

Finally, combining eqs. (A.2),(A.3),(A.4) to plug them into eq. (A.1), we reach:

1
4!
∂4ΦJ

∂η4
=

1
8n

∑

i0,i1,i2,i3
pairwise distincts

Ji0i1Ji1i2Ji2i3Ji3i0vi0vi1vi2vi3 + On(1) =
1
8

••
•

•
+ On(1),

which is what we wanted to show !

A.2 Generalizations of the diagrammatics

We detail here some extensions of the results of Section 2.4. First, in Sec. A.2.1, we explain
how to transpose these results to Hermitian matrix models, and in Sec. A.2.2 we show how to
extend some of them to diagrams of diverging size (as n→∞).

A.2.1 Hermitian matrix model

We can generalize the results of Sec. 2.4 to the Hermitian matrix model described by Model S,
i.e. when β = 2. Note that the diagrams for Hermitian matrices are directed, as Jij = Jji.
We describe examples of such diagrams in Fig. A.2. E.g. the diagrams of Fig. A.2a,A.2b are
respectively equal to:

1
n

∑

i1,··· ,i4
pairwise distincts

Ji1i2Ji2i3Ji3i4Ji4i1 |Ji2i4 |2 and
1
n

∑

i1,··· ,i4
pairwise distincts

Ji1i2Ji2i3Ji3i4Ji4i1J
2
i2i4

.

In the complex case, an Eulerian graph is defined as a graph in which one can construct a cyclic
path (following the directions of the edges) that visits each edge exactly once. Note that a simple
cycle is defined such that the arrows on its edges themselves form a cycle, like the constituent
cycles of Fig. A.2c. We describe the main results we get, using the same kind of techniques as
used in Sec. 2.4:

(i) Only Eulerian diagrams contribute in the n→∞ limit.
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(ii) Consider a simple cycle Cp with p vertices. Then this diagram converges as n → ∞, a.s.
and in L2 norm, to the free cumulant cp(ρ), as in the real case. More precisely:

lim
n→∞EU

∣∣∣∣∣
1
n

∑

i1,··· ,ip

pairwise distincts

(UDU†)i1i2(UDU†)i2i3 · · · (UDU†)ipi1 − cp(ρ)

∣∣∣∣∣

2

= 0.

(iii) Any Eulerian strongly irreducible diagram that is not a simple cycle will be negligible in
the n→∞ limit (in L2 norm).

(iv) Any Eulerian cactus diagram (like in Fig. A.2c) will converge in L2 to the products of the
free cumulants of ρ corresponding to each one of its constituent simple cycles.

These results are straightforward generalizations of the ones obtained for real matrices in
Sec. 2.4. For completeness, we describe how to show a weaker version of (ii), and leave
the other statements to the reader. As before, by unitary invariance we can assume that
(i1, · · · , ip) = (1, , · · · , p), and we can apply the results of [GM05] to obtain a similar equa-
tion to eq. (2.49):

Lp ≡ lim
n→∞np−1

EU [(UDU†)12 · · · (UDU†)p1],

= lim
n→∞

1
n

p∏

l=1

(
∂

∂bi
+ i

∂

∂ci

)[
exp

{
n

∞∑

n=1

cn(ρ)
n

Tr [M(b, c)n]
}]

b,c=0

, (A.5)

with now the matrix M(b, c) defined as:

M(b, c) ≡ 1
2




0 b1 + ic1 0 · · · 0 bp − icp

b1 − ic1 0 b2 + ic2 · · · 0 0
0 b2 − ic2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 bp−1 + icp−1

bp + icp 0 0 · · · bp−1 − icp−1 0




.

We have [∂bi
+ i∂ci ]M(b, c) = Fi+1,i, in which (Fa,b)ll′ ≡ δalδbl′ are elementary non-symmetric

matrices. In the exact same way as in Sec. 2.4.1, the dominant contribution in eq. (A.5) will
be given by differentiating a single time the exponential term, and creating a cycle with the
matrices Fi+1,i. Note that contrary to the symmetric case of Sec. 2.4.1, here only the directed
cycle will contribute, whereas both possible directions of the cycle contributed in eq. (2.49).
Indeed, the cycles in terms of the matrices {Fa,b} have to be directed in order to yield a non-
zero contribution:

Tr [F1,2F2,1F1,3F3,2F2,1] 6= 0, while Tr [F1,2F2,1F2,3F3,2F2,1] = 0.

Thus we reach:

Lp =
∞∑

k=p

ck(ρ)Tr [(F1,pFp,p−1 · · ·F2,1) M(0, 0)n−p] = cp(ρ).

In order to get L2 concentration of the simple cycle on the free cumulant, one can then exactly
repeat the arguments of Sec. 2.4.3.
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A.2.2 A note on the expectation of diagrams of diverging size

Although it is not directly useful in our PGY expansions, another side question one can ask on
the behavior of these diagrams is: how do diagrams that have a number of edges that diverges
with n behave in the n → ∞ limit ? In all of Sec. 2.4 we only considered diagrams of finite
size. The behavior of HCIZ-type integrals with a matrix with diverging rank (as opposed to the
finite-rank case) has first been analyzed rigorously in [GM05] for a rank O(n1/2−ǫ), and then
generalized in [CŚ07] for ranks O(n). We recall the main result of [CŚ07]:

Theorem A.1 (Collins-Śniadyc)

Let An,Bn be diagonal real matrices of size n. Assume that the rank m(n) of An is such
that m = m(n) = O(n), and denote a1,n ≥ · · · ≥ am,n the eigenvalues of An. Assume that the
spectral measure of Bn converges a.s. and in the weak sense to a probability measure ρB, and
that all elements of An are bounded by a constant independent of n. Then one has:

1
nm

ln
∫

U(n)
DU enTr[AnUBnU†] =

2
m

Tr[GρB (An)] + On(1).

A similar result holds for real orthogonal matrices:

1
nm

ln
∫

O(n)
DO e

n
2

Tr[AnOBnO⊺] =
1
m

Tr[GρB (An)] + On(1).

Recall that we defined the Gρ function in Sec. 1.5 in a variational form, and showed that it can
be related to the integral of the R-transform. Using Theorem A.1, the techniques of Sec. 2.4
generalize to this case.

To illustrate this last claim, we consider real symmetric matrices under Model S. We say that a
sequence {p(n)} satisfies the bounded free cumulant property if there exists C > 0 such that for
all n, |cp(n)(ρ)| < C. We state two of the results of Sec. 2.4 that can be easily generalized to the
diverging size case without changing any of the arguments:

(a) Consider a sequence p = p(n) = O(n) that satisfies the bounded free cumulant property.
Then one obtains the generalization of eq. (2.47):

np(n)−1
∫

O(n)
DO[(ODO⊺)12(ODO⊺)23 · · · (ODO⊺)p(n)1] = cp(n)(ρD) + On(1).

(c) Consider a cactus diagram G composed of p(n) simple cycles of size (r1(n), · · · , rp(n)(n)),

joining at vertices. Assume that
∑p(n)

i=1 ri(n) = On(n) and that all the sequences ri(n)
satisfy the bounded free cumulant property. Then one has:

EG =
[ p(n)∏

i=1

cri(n)(ρ)
]
(1 + On(1)).

Other results obtained in Sec. 2.4 for finite-size diagrams might also be applicable to the diverging
size case, but they are not investigated in this thesis.

A.3 PGY for extensive-rank matrix factorization

We describe here in more details the formalism we used to derive Result 3.1. Many parts of
the derivation are very similar to what we described in Chapter 2, and we will refer to it when
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necessary. We start from eqs. (3.8) and (3.9):

n(m+ p)ΦY,n(η) =
∑

µ,i

[
λF

µim
F
µi +

γF
µi

2
(vF

µi + (mF
µi)

2)
]

+
∑

i,l

[
λX

il m
X
il +

γX
il

2
(vX

il + (mX
il )2)

]
,

+
∑

µ,l

[
− ωµlgµl −

bµl

2
(−rµl + g2

µl)
]

+ ln
∫
PH(dH)PF (dF)PX(dX) e−Seff,η [F,X,H],

Seff,η[F,X,H] ≡
∑

µ,i

[
λF

µiFµi +
γF

µi

2
F 2

µi

]
+
∑

i,l

[
λX

il Xil +
γX

il

2
X2

il

]

+
∑

µ,l

[
ωµl(iH)µl −

bµl

2
(iH)2

µl

]
+

η√
n

∑

µ,i,l

(iH)µl FµiXil,

Heff [F,X,H] ≡ 1√
n

∑

µ,i,l

(iH)µlFµiXil.

A.3.1 Orders 1 and 2 in η

At order 1, we have directly:

(∂ΦY,n

∂η

)

η=0
= − 1

n(m+ p)
〈Heff〉0 =

1
n3/2(m+ p)

∑

µ,i,l

gµlm
F
µim

X
il . (A.6)

As in Chapter 2, we can then use “Maxwell” relations to compute the derivatives of the Lagrange
parameters at η = 0. For instance, for λF

µi and γF
µi they read:

λF
µi +mF

µiγ
F
µi = n(m+ p)

∂ΦY,n

∂mF
µi

, γF
µi = 2n(m+ p)

∂ΦY,n

∂vF
µi

. (A.7)

From it we reach easily ∂ηγ
F
µi(η = 0) = 0. Applying this technique to all Lagrange parameters,

we can compute the operator UY,0 (defined in eq. (2.6)). For clarity of the notation, we will
denote by lowercase letters centered variables, for instance xµi ≡ Xµi −mX

µi. We obtain:

UY,0 =
1√
n

∑

µ,i,l

[(ih)µlfµixil − gµlfµixil + (ih)µlm
F
µixil + (ih)µlfµim

X
il ]. (A.8)

One can then compute:

1
2

(∂2ΦY,n

∂η2

)

η=0
=

1
2n(m+ p)

〈U2〉0,

=
1

2n2(m+ p)

∑

µ,i,l

[−rµlv
F
µiv

X
il + g2

µlv
F
µiv

X
il − rµl(mF

µi)
2vX

il − rµlv
F
µi(m

X
il )2]. (A.9)

A.3.2 Order 3 in η

To describe the results at order 3, we need to introduce the third cumulants of the variables
{iHµl, Fµi, Xil} at η = 0 (all these variables are thus independent). These cumulants are denoted

{κ(3,H)
µl , κ

(3,F )
µi , κ

(3,X)
il }. Using the order 3 formula of eq. (2.7), one has:

1
3!

(∂3ΦY,n

∂η3

)

η=0
= − 1

6n(m+ p)
〈U3〉0
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Recall the form of the operator U at η = 0, i.e. eq. (A.8):

UY,0 =
1√
n

∑

µ,i,l

[
(ih)µlfµixil︸ ︷︷ ︸

A

+ (−gµlfµixil)︸ ︷︷ ︸
BH

+ (ih)µlm
F
µixil︸ ︷︷ ︸

BF

+ (ih)µlfµim
X
il︸ ︷︷ ︸

BX

]
. (A.10)

To compute 〈U3〉0, we decompose U = A + BH + BF + BX as in the equation above. Recall
that all the variables in the equation above are centered, so that we get easily:

〈A3 +B3
H +B3

F +B3
X〉0 (A.11)

=
1

n3/2

∑

µ,i,l

[κ(3,H)
µl κ

(3,F )
µi κ

(3,X)
il − g3

µlκ
(3,F )
µi κ

(3,X)
il + κ

(3,H)
µl (mF

µi)
3κ

(3,X)
il + κ

(3,H)
µl κ

(3,F )
µi (mX

il )3].

Using again the centering of the variables and the decomposition above, we get that the only
non-zero terms of the type 〈X2Y 〉0 with X,Y ∈ {A,BH , BF , BX} yield the contribution:

3〈A2(BH +BF +BX)〉0 = (A.12)
3

n3/2

∑

µ,i,l

[gµlrµlκ
(3,F )
µi κ

(3,X)
il + κ

(3,H)
µl mF

µiv
F
µiκ

(3,X)
il + κ

(3,H)
µl κ

(3,F )
µi mX

il v
X
il ].

Finally, the last contribution to 〈U3〉0 comes from the term:

6〈ABHBF +ABHBX +ABFBX +BHBFBX〉0 = (A.13)
6

n3/2

∑

µ,i,l

[gµlrµlm
F
µiv

F
µiκ

(3,X)
il + gµlrµlκ

(3,F )
µi mX

il v
X
il + κ

(3,H)
µl mF

µiv
F
µim

X
il v

X
il + gµlrµlm

F
µiv

F
µim

X
il v

X
il ].

Summing the contributions from eqs. (A.11),(A.12),(A.13) yields 〈U3〉0, which gives:

1
3!

(∂3ΦY,n

∂η3

)

η=0
=

−1
6n5/2(m+ p)

∑

µ,i,l

[κ(3,H)
µl κ

(3,F )
µi κ

(3,X)
il − g3

µlκ
(3,F )
µi κ

(3,X)
il + κ

(3,H)
µl κ

(3,F )
µi (mX

il )2

+ κ
(3,H)
µl (mF

µi)
3κ

(3,X)
il + 3gµlrµlκ

(3,F )
µi κ

(3,X)
il + 3κ(3,H)

µl mF
µiv

F
µiκ

(3,X)
il + 3κ(3,H)

µl κ
(3,X)
µi mX

il v
X
il

+ 6gµlrµlm
F
µiv

F
µiκ

(3,X)
il + 6gµlrµlκ

(3,F )
µi mX

il v
X
il + 6κ(3,H)

µl mF
µiv

F
µim

X
il v

X
il + 6gµlrµlm

F
µiv

F
µim

X
il v

X
il ].

Since all involved terms inside the sum are of order On(1), and given the global scaling factor,
it is clear that the third order is subdominant:

1
3!

(∂3Φn

∂η3

)

η=0
= On(1). (A.14)

On higher order moments – An important remark that one can already conjecture by
generalizing from these arguments is that at any given order of perturbation in η, only the
first two moments of the fields H,F,X will appear at dominant order. This conjecture arises
as a consequence of a scaling argument: in the terms remaining in the Plefka expansion, the
higher-order moments constraint too many indices, and thus the terms involving them can be
neglected. Note that we showed this property for a large class of inference models in Chapter 2.

A.3.3 Order 4 in η

This section describes the calculation of the order 4 perturbation of the free entropy. It is
particularly tedious and lengthy, but the techniques involved are not conceptually complicated.
We start with eq. (2.7d). For simplicity, we will not consider terms involving cumulants of order
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3 and 4 of the variables ihµl, fµi and xil. One can check that the combination of the terms
containing these moments would not give a thermodynamically relevant contribution. From the
equations (3.12) at order 2 and the Maxwell relations (e.g. eq. (A.7)) we obtain the derivatives
of the Lagrange multipliers, at leading order and at η = 0:





∂2
η ωµl = 2

ngµl
∑

i[(m
F
µi)

2vX
il + vF

µi(m
X
il )2],

∂2
η bµl = − 2

n

∑
i[v

F
µiv

X
il + (mF

µi)
2vX

il + vF
µi(m

X
il )2],

∂2
η λ

F
µi = 2

nm
F
µi

∑
l[rµl(mX

il )2 − g2
µlv

X
il ],

∂2
η γ

F
µi = − 2

n

∑
l[rµlv

X
il + rµl(mX

il )2 − g2
µlv

X
il ],

∂2
η λ

X
il = 2

nm
X
il

∑
µ[rµl(mF

µi)
2 − g2

µlv
F
µi],

∂2
η γ

X
il = − 2

n

∑
µ[rµlv

F
µi + rµl(mF

µi)
2 − g2

µlv
F
µi].

(A.15)

We can compute the following averages:

〈U2xil〉0 = − 2
n
mX

il v
X
il

∑

µ

rµlv
F
µi,

〈U2(x2
il + 2mX

il xil − vX
il )〉0 =

2(vX
il )2

n

∑

µ

[−rµlv
F
µi + g2

µlv
F
µi − rµl(mF

µi)
2]− 4

n
vX

il (mX
il )2

∑

µ

rµlv
F
µi.

From this and eq. (A.15), one can obtain the term involving the derivatives of the Lagrange
parameters λX and γX in eq. (2.7d):

−3
∑

i,l

[
∂2

ηλ
X
il 〈U2xil〉0 +

∂2
ηγ

X
il

2
〈U2(x2

il + 2mX
il xil − vX

il )〉0
]

= (A.16)

− 12
n2

∑

i,l

vX
il (mX

il )2
[∑

µ

rµlv
F
µi

]2
− 6
n2

∑

i,l

(vX
il )2

[∑

µ

[rµlv
F
µi + rµl(mF

µi)
2 − g2

µlv
F
µi]
]2
.

Doing similarly for (ih)µl and fµi, we obtain all the terms involving derivatives of the Lagrange
multipliers:

−3
∑

µ,i

[
∂2

ηλ
F
µi〈U2fµi〉0 +

∂2
ηγ

F
µi

2
〈U2(f2

µi + 2mF
µifµi − vF

µi)〉0
]

= (A.17)

− 12
n2

∑

µ,i

vF
µi(m

F
µi)

2
[∑

l

rµlv
X
il

]2
− 6
n2

∑

µ,i

(vF
µi)

2
[∑

l

[rµlv
X
il + rµl(mX

il )2 − g2
µlv

X
il ]
]2
,

−3
∑

µ,l

[
∂2

ηωµl〈U2(ih)µl〉0 +
∂2

ηbµl

2
〈U2((ih)2

µl − 2gµl(ih)µl + rµl)〉0
]

= (A.18)

12
n2

∑

µ,l

rµlg
2
µl

[∑

i

vF
µiv

X
il

]2
− 6
n2

∑

µ,l

r2
µl

[∑

i

[vF
µiv

X
il + (mF

µi)
2vX

il + vF
µi(m

X
il )2]

]2
.

The calculation at order 2 already gave:

−3〈U2〉20 = − 3
n2

∑

µ,i,l
µ′i′l′

[−rµlv
F
µiv

X
il + g2

µlv
F
µiv

X
il − rµl(mF

µi)
2vX

il − rµlv
F
µi(m

X
il )2] (A.19)

× [−rµ′l′v
F
µ′i′vX

i′l′ + g2
µ′l′v

F
µ′i′vX

i′l′ − rµ′l′(m
F
µ′i′)2vX

i′l′ − rµ′l′v
F
µ′i′(mX

i′l′)
2].

We finally have to compute 〈U4〉0, whose calculation is very tedious, but not conceptually
difficult. We again make use of the decomposition of eq. (A.10). A first simplification arises
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since the variables are centered and have negligible moments of odd order. This implies:

〈U4〉0 = 〈A4〉0︸ ︷︷ ︸
I1

+ 6〈A2(B2
H +B2

F +B2
X)〉0︸ ︷︷ ︸

I2

+ 〈(BH +BF +BX)4〉0︸ ︷︷ ︸
I3

+On(1).

We now compute the three terms I1, I2, I3 independently. An explicit calculation gives

I1 =
6
n2

∑

µ,i,l

r2
µl(v

F
µi)

2(vX
il )2 +

3
n2

∑

µ,i,l
µ′i′l′

rµlrµ′l′v
F
µiv

F
µ′i′vX

il v
X
i′l′ (A.20)

+
6
n2

∑

µ,i,l

rµlv
F
µiv

X
il

(∑

µ′
rµ′lv

F
µ′iv

X
il +

∑

i′
rµlv

F
µi′vX

i′l +
∑

l′
rµl′v

F
µiv

X
il′

)
+ On(1).

Importantly, here the indices are not supposed to be pairwise distinct unless explicitly stated
so. The terms I1, I2 can be explicitly computed as well, and are very lengthy:

I2 =
6
n2

∑

µ,i,l
µ′i′l′

rµlv
F
µiv

X
il [−g2

µ′l′v
F
µ′i′vX

i′l′ + rµ′l′v
F
µ′i′(mX

i′l′)
2 + rµ′l′(m

F
µ′i′)2vX

il ] (A.21)

+
12
n2

∑

µ,i,l

rµlv
F
µiv

X
il [−g2

µlv
F
µiv

X
il + rµlv

F
µi(m

X
il )2 + rµl(mF

µi)
2vX

il ]

+
12
n2

∑

µ,i,l

∑

µ′
rµlv

F
µiv

X
il [−g2

µ′lv
F
µ′iv

X
il + rµ′lv

F
µ′i(m

X
il )2 + rµ′l(m

F
µ′i)

2vX
il ]

+
12
n2

∑

µ,i,l

∑

i′
rµlv

F
µiv

X
il [−g2

µlv
F
µi′vX

i′l + rµlv
F
µi′(mX

i′l)
2 + rµl(mF

µi′)2vX
i′l]

+
12
n2

∑

µ,i,l

∑

l′
rµlv

F
µiv

X
il [−g2

µl′v
F
µiv

X
il′ + rµl′v

F
µi(m

X
il′)

2 + rµl′(m
F
µi)

2vX
il′ ] + On(1).

I3 =
3
n2

∑

µ,i,l
µ′i′l′

[g2
µlg

2
µ′l′v

F
µiv

F
µ′i′vX

il v
X
i′l′ + rµlrµ′l′(m

F
µi)

2(mF
µ′i′)2vX

il v
X
i′l′ + rµlrµ′l′v

F
µiv

F
µ′i′(mX

il )2(mX
i′l′)

2]

− 6
n2

∑

µ,i,l
µ′i′l′

[−rµlrµ′l′(m
F
µ′i′)2vF

µi(m
X
il )2vX

i′l′ + g2
µlrµ′l′(m

F
µ′i′)2vF

µiv
X
il v

X
i′l′ + g2

µlrµ′l′v
F
µ′i′vF

µi(m
X
i′l′)

2vX
il ]

− 12
n2

∑

µ,i,l

[∑

µ′
g2

µlrµ′l(m
F
µi)

2vF
µi(v

X
il )2 −

∑

i′
r2

µl(m
F
µi′)2vF

µi(m
X
il )2vX

i′l +
∑

l′
g2

µlrµl′(v
F
µi)

2(mX
il′)

2vX
il

]

+
6
n2

∑

µ,i,l

[∑

µ′,i′
mF

µim
F
µ′im

F
µ′i′mF

µi′rµlrµ′lv
X
il v

X
i′l +

∑

i′,l′
mX

il m
X
i′lm

X
i′l′m

X
il′v

F
µiv

F
µi′rµlrµl′

]
,

+
6
n2

∑

µ,i,l

[∑

µ′,l′
gµlgµ′lgµ′l′gµl′v

F
µiv

F
µ′iv

X
il v

X
il′

]
+ On(1). (A.22)

Many simplifications occur in the terms of eqs. (A.16) to (A.22). Two type of terms are for
instance negligible:

• Terms of the type n−4∑
µil Aµil, with Aµil typically of order 1. These terms are negligible

by a simple scaling argument.
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• Terms involving strongly irreducible diagrams of mF or mX . For instance, the term:
∑

µ

∑

i6=i′

∑

l 6=l′
mX

il m
X
il′m

X
i′l′m

X
i′lrµlrµl′v

F
µiv

F
µi′ .

By H.1, the variables mF ,mX behave like uncorrelated variables, so that all these diagrams
(including the simple loops) will be negligible. This is precisely the sort of terms that is
not negligible when involving gµl, as a consequence of H.2.

We can now sum all eqs. (A.16) to (A.22), simplifying the terms that are negligible by the
arguments above, and checking that almost all non-negligible terms are cancelling each other.
This is a lengthy but straightforwards calculation, and we reach:

1
4!

(∂4ΦY,n

∂η4

)

0
=

1
4n3(m+ p)

∑

i

∑

µ1 6=µ2

∑

l1 6=l2

gµ1l1gµ1l2gµ2l2gµ2l1v
F
µ1iv

F
µ2iv

X
il1v

X
il2 + On(1).

A.4 The expansion for symmetric extensive-rank ma-

trix factorization

For the symmetric Model XX⊺, we can perform a PGY expansion in a very similar way to the
case of Model FX that we just described in Section A.3. The majority of the calculation is
straightforwardly transposed, and we briefly outline its main steps here. Recall the free entropy
of eq. (3.3b):

ΦY,n ≡
1
nm

ln
∫ ∏

µ,i

PX(dXµi)
∏

µ<ν

Pout

(
Yµν

∣∣∣
1√
n

∑

i

XµiXνi

)
.

Introducing a field h ≡ XX⊺/
√
n, its Fourier conjugate H, and Lagrange multipliers to fix the

first and second moments of both X and H, we reach a very similar form to eq. (3.8):

nmΦY,n =
∑

µ,i

[
λµimµi +

γµi

2
(vµi + (mµi)2)

]
+
∑

µ<ν

[
− ωµνgµν −

bµν

2
(−rµν + g2

µν)
]

(A.23)

+ ln
∫
PH(dH)PX(dX) e−Seff [X,H],

in which we introduced the effective action:

Seff [X,H] =
∑

µ,i

[
λµiXµi +

γµi

2
X2

µi

]
+
∑

µ<ν

[
ωµν(iH)µν −

bµν

2
(iH)2

µν

]
(A.24)

+
1√
n

∑

µ<ν

∑

i

(iH)µνXµiXνi

︸ ︷︷ ︸
Heff

.

The (un-normalized) distribution over Hµν is given by the Fourier transform of the channel:

Pµν
H [dH] ≡

∫
dH̃
2π

eiHH̃Pout(Yµν |H̃).

Again, we introduce a factor η in front of Heff in eq. (A.24), and we expand the free entropy as a
function of η. Computing the first order of perturbation and the operator U of Georges-Yedidia
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is readily done exactly as in Section A.3.1, and we reach:

(∂ΦY,n

∂η

)

η=0
=

1
n3/2m

∑

i

∑

µ<ν

gµνmµimνi, (A.25)

UY,η=0 =
1√
n

∑

i

∑

µ<ν

[(ih)µνxµixνi − gµνxµixνi + (ih)µνmµixνi + (ih)µνxµimνi],

in which the lowercase variables again designate the centered variables. From the expression of
U we can obtain the following orders of perturbation:





1
2

(∂2ΦY,n

∂η2

)

η=0
=

1
2n2m

∑

i

∑

µ<ν

[−rµνvµivνi + g2
µνvµivνi − rµνm

2
µivνi − rµνvµim

2
νi],

1
3!

(∂3ΦY,n

∂η3

)

η=0
=

1
6n5/2m

∑

i

∑

µ1,µ2,µ3
pairwise distinct

gµ1µ2gµ2µ3gµ3µ1

3∏

a=1

vµai + On(1),

1
4!

(∂4ΦY,n

∂η4

)

η=0
=

1
8n3m

∑

i

∑

µ1,µ2,µ3,µ4
pairwise distinct

gµ1µ2gµ2µ3gµ3µ4gµ4µ1

4∏

a=1

vµai + On(1).

(A.26)

Here we symmetrized gνµ ≡ gµν , and we adopted the convention gµµ = 0.
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Appendix B

Details of replica computations

B.1 Replica calculation for the committee machine

Our goal here is to provide a heuristic derivation of the formula of Theorem 4.1 using the
replica method, a powerful non-rigorous tool from statistical physics of disordered systems. To
the best of our knowledge, this computation was first performed for a committee machine in
[Sch93]. Recall that we introduced the method in Section 1.3.1, and the reader can come back
to it to freshen her/his memory if necessary. As we know, in order to compute the asymptotic
free entropy with the replica method we need the moments of the partition function (given by
eq. (4.5)), for integer p:

EZp
n = E

{[∫

Rn×RK
dw

n∏

i=1

P0({wil}Kl=1)
m∏

µ=1

Pout

(
Yµ

∣∣∣
{ 1√

n

n∑

i=1

Xµiwil

}K

l=1

)]p}
,

= E

[ p∏

a=1

∫

Rn×RK
dwa

n∏

i=1

P0({wa
il}Kl=1)

m∏

µ=1

Pout

(
Yµ

∣∣∣
{ 1√

n

n∑

i=1

Xµiw
a
il

}K

l=1

)]
.

The outer expectation is done over Xµi ∼ N (0, 1), W⋆ and Y. Writing W⋆ as w0 we have:

EZp
n = EX

∫

Rm
dY

p∏

a=0

[ ∫

Rn×RK
dwa

n∏

i=1

P0({wa
il}Kl=1)

m∏

µ=1

Pout

(
Yµ

∣∣∣
{ 1√

n

n∑

i=1

Xµiw
a
il

}K

l=1

)]
.

To perform the average over X we notice that the variables {Za
µl}, defined by

Za
µl ≡

1√
n

n∑

i=1

Xµiw
a
il,

follow a multivariate Gaussian distribution with zero mean and covariance tensor:

EZa
µlZ

b
νl′ = δµνΣal

bl′
= δµνQ

al
bl′ , with Qal

bl′ ≡
1
n

n∑

i=1

wa
ilw

b
il′ .

For every a, b, Qa
b ∈ SK is the overlap matrix between replicas a and b. Introducing δ functions

to fix Q we arrive at :

E[Zp
n] =

∏

(a,r)

∫

R

dQar
ar

∏

{(a,r);(b,r′)}

∫

R

dQar
br′ [Iprior({Qar

br′})× Ichannel({Qar
br′})],
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with the two auxiliary integrals:

Iprior({Qar
br′}) ≡

p∏

a=0

[ ∫
dwaP0(wa)

][ ∏

{(a,l);(b,l′)}
δ
(
Qal

bl′ −
1
n

n∑

i=1

wa
ilw

b
il′

)]
,

Ichannel({Qar
br′}) ≡

∫
dY

p∏

a=0

∫
dZa

p∏

a=0

Pout(Y|Za)
exp

[
− 1

2

∑m
µ=1

∑
a,b

∑
l,l′ Z

a
µlZ

b
µl′(Σ

−1)al
bl′

]

(
(2π)K(p+1) det Σ

)m/2
.

By Fourier expanding the delta functions in Iprior and performing a saddle-point one obtains:

lim
n→∞

1
n

lnE[Zp
n] = extr

Q,Q̂
[H(Q, Q̂)], (B.1)

in which (recall m/n→ α > 0) :

H(Q, Q̂) ≡ 1
2

p∑

a=0

∑

l,l′
Qal

alQ̂
al
al −

1
2

∑

a 6=b

∑

l,l′
Qal

bl′Q̂
al
bl′ + ln I + α ln J, (B.2)

with the two functions:

I ≡
p∏

a=0

∫

RK
dwaP0(wa) exp

{
− 1

2

p∑

a=0

∑

l,l′
Q̂al

al′w
a
l w

a
l′ +

1
2

∑

a 6=b

∑

l,l′
Q̂al

bl′w
a
l w

b
l′

}
,

J ≡
∫

R

dy
p∏

a=0

∫

RK

dZa

(2π)K(p+1)/2

Pout(y|Za)√
det Σ

exp
{
− 1

2

p∑

a,b=0

K∑

l,l′=1

Za
l Z

b
l′(Σ

−1)al
bl′

}
.

Our goal is to express H(Q, Q̂) as an analytical function of p, in order to perform the replica
trick. To do so, we will assume that the extremum of H is attained at a point in Q, Q̂ space
such that a replica symmetry property is verified. More concretely, we assume:

{
∃Q0 ∈ SK s.t ∀a ∈ [|0, p|] ∀(l, l′) ∈ [|1,K|]2 Qal

al′ = Q0
ll′ ,

∃q ∈ SK s.t ∀(a < b) ∈ [|0, p|]2 ∀(l, l′) ∈ [|1,K|]2 Qal
bl′ = qll′ ,

(B.3)

and similarly for Q̂. Under the ansatz (B.3), we obtain from eq. (B.2):

H(Q0, Q̂0, q, q̂) =
p+ 1

2
Tr[Q0Q̂0]− p(p+ 1)

2
Tr[qq̂] + ln I + α ln J. (B.4)

Remains now to compute an expression for I and J that is analytical in p, in order to take the
limit p ↓ 0. This can be done using the identity, for any M ∈ S+

K and x ∈ R
K :

exp
(1

2
x⊺Mx

)
=
∫

RK
Dξ exp

(
ξ⊺M1/2x

)
,

in which Dξ is the standard Gaussian measure on R
K . We obtain, after a tedious algebraic

calculation that is left to the reader:




I =
∫

RK
Dξ
[ ∫

RK
dwP0(w) exp

[
− 1

2
w⊺(Q̂0 + q̂)w + ξ⊺q̂1/2w

]]p+1
,

J =
∫

R

dy
∫

RK
Dξ
[ ∫

RK
dZPout

{
y|(Q0 − q)1/2Z + q1/2ξ

}]p+1
.

(B.5)
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We now notice that the value of Q0 is actually constrained by the problem and the replica
symmetry. Indeed, our calculation must be consistent in the sense that if taking p = 0 in
eq. (B.1), we must find extrQ,Q̂[H(Q, Q̂)] = 0 at p = 0.

In the p ↓ 0 limit, one easily gets J = 1 and I =
∫
RK dwP0(w) exp[−w⊺Q̂0w0/2]. Extremizing

over Q0, Q̂0 implies that they satisfy Q̂0 = 0 and Q0 = ρ (the covariance matrix of P0). We can
now plug in these values in eq. (B.5), and then take the p ↓ 0 limit of H(q, q̂)/p in eq. (B.4).
In the end, by eq. (B.1) and the famous “replica trick” we obtain the final formula for the free
entropy:

lim
n→∞

1
n
E lnZn = extr

q,q̂

{− 1
2

Tr[qq̂] + IP + αIC

}
, (B.6)

wih the two functions:

IP ≡
∫

RK
Dξdw0P0(w0)e− 1

2
(w0)⊺q̂w0+ξ⊺q̂1/2w0

ln
∫

RK
dwP0(w)e− 1

2
w⊺q̂w+ξ⊺q̂1/2w,

IC ≡
∫

dy
∫

RK
DξDZ0 Pout{y|(Q0 − q)1/2Z0 + q1/2ξ} ln

∫

RK
DZ Pout{y|(Q0 − q)1/2Z + q1/2ξ}.

A known ambiguity of the replica method is that its result is given as an extremum, here over
the set S+

K(ρ). Assuming that this extr is realized as a supq̂ infq, one can easily see that eq. (B.6)
yields back the claim of Theorem 4.1. Our rigorous proof, sketched in Section 4.4, will allow to
lift the ambiguity of the extremum.

B.2 Replica computation for generic GLMs

In this section, we perform the step-by-step replica calculation that gives Conjecture 6.1.

B.2.1 Setting and strategy

We let n,m→∞ with m/n→ α > 0. Recall that we are interested in the partition function:

Zn(Y) ≡
∫

Kn

n∏

i=1

P0(dxi)
m∏

µ=1

Pout

(
Yµ

∣∣∣
1√
n

n∑

i=1

Φµixi

)
.

Here Φ is a matrix that is left and right-orthogonally (unitarily) invariant, meaning that for all

O,U ∈ Uβ(m) × Uβ(n), Φ
d= OΦU. Compared to Conjecture 6.1, we added a left-invariance

hypothesis. However the analysis of G-VAMP [SRF16, RSF17] shows that this left invariance
is actually not needed for the result, and thus we state Conjecture 6.1 for matrices that are
only right-invariant, but we use the left invariance to simplify the following (heuristic) calcula-
tion. Moreover, we assume that the LSD ν of Φ†Φ/n is well-defined, and that the eigenvalue
distribution of Φ†Φ/n has large deviations in a scale at least n1+η for an η > 0.

Recall that the replica trick introduced in Section 1.3.1 consists in computing the p-th moment
of the partition function for arbitrary integer p, before extending this expression analytically to
any p > 0 and using the replica trick:

lim
n→∞

1
n
EΦ,Y lnZn(Y) = lim

p↓0
lim

n→∞
1
np

lnEΦ,Y[Zn(Y)p].

This method is obviously heuristic given the inversion of limits p ↓ 0 and n→∞, as well as the
analytic continuation to arbitrary p > 0 of the p-th moment.
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B.2.2 Computing the p-th moment of the partition function

Thanks to Bayes-optimality, we can easily write the average of Zn(Y)p as an average over p+ 1
replicas of the system, by considering X⋆ as the replica of index 0. We obtain for any p ≥ 1:

E[Zn(Y)p] = EΦ

∫

Rm
dY

p∏

a=0

{[ ∫

K

n∏

i=1

P0(dxa
i )
∫

K

m∏

µ=1

dza
µPout(Yµ|za

µ)
]
δ
(
za − Φxa

√
n

)}
. (B.7)

The first step is to decompose eq. (B.7) into three terms, corresponding to the prior P0, the
channel Pout, and the “delta” term. Note that the matrix Φ only appears in the last “delta”
term. By left and right invariance of Φ, the quantity

EΦ

[ p∏

a=0

δ
(
za − 1√

n
Φxa

)]

is completely determined by the overlaps Qz ≡ {(za)†zb/m}pa,b=0 and Qx ≡ {(xa)†xb/n}pa,b=0,
which are positive Hermitian matrices. As is standard in such replica calculations, we will
constraint the terms in eq. (B.7) by the value of these overlaps, before performing a Laplace
method on the resulting function of the overlaps. By An ≃ Bn, we will mean (lnAn)/n =
(lnBn)/n+ On(1). We introduce in eq. (B.7) the term:

1 ≃
∫ ∏

0≤a≤b≤p

dQx
ab dQz

ab

[ ∏

a≤b

δ(nQx
ab − (xa)†xb)

][ ∏

a≤b

δ(mQz
ab − (za)†zb)

]
.

We can use a Fourier transformation of the delta terms, which allows in the end to transform
eq. (B.7) into the product of three independent terms. Performing then Laplace’s method on
Qx,Qz we obtain:

lim
n→∞

1
n

lnEY,Φ[Zn(Y)p] = sup
Qx,Qz

[I0(p,Qx) + αIout(p,Qz) + Iint(p,Qx,Qz)],

in which the supremum is made over positive symmetric (Hermitian) matrices, and I0, Iout and
Iint are functions whose calculation will be detailed below.

The prior term I0(p,Qx)

We have after Fourier transformation of the delta terms:

I0(p,Qx) ≃ 1
n

ln
∫ ∏

0≤a≤b≤p

dQ̂x
ab

∫

K

p∏

a=0

n∏

i=1

P0(dxa
i )e− β

2

∑p

a,b=0
Q̂x

ab(
∑

i
xa

i xb
i −nQx

ab)
,

≃ inf
Q̂x

[β
2

∑

a,b

Qx
abQ̂

x
ab + ln

∫

K

p∏

a=0

P0(dxa)e− β
2

∑
a,b

Q̂x
abxaxb]

.

The infimum is again over positive symmetric (Hermitian) matrices. We also made use of the
fact that the prior P0 is i.i.d. over the elements of x.

A very important assumption that one can then use is replica symmetry: it amounts to assume
that all the (p+ 1) replicas are equivalent, and that this symmetry is not broken by the system
at the solution of the variational principle on Q, Q̂. It has been shown that for an inference
problem in the Bayes-optimal setting (as is the present case), replica symmetry is never broken
[ZK16]. For more details on replica symmetry, the reader can refer to Section 1.3.1. We therefore
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assume a replica symmetric form of Qx, Q̂
x

at the point at which the extremum is reached:

Qx =




Qx qx · · · qx

qx Qx · · · qx

...
...

. . .
...

qx qx · · · Qx



, Q̂

x
=




Q̂x −q̂x · · · −q̂x

−q̂x Q̂x · · · −q̂x

...
...

. . .
...

−q̂x −q̂x · · · Q̂x



. (B.8)

Note that we have Qx, qx, Q̂x, q̂x ∈ R. After a simple Gaussian transformation of the squared
term using the general identity exp(β|x|2/2) =

∫
K
Dβξ exp(βx · ξ) we reach the final expression:

I0(p,Qx, qx) = (B.9)

inf
Q̂x,q̂x

{β(p+ 1)
2

QxQ̂x −
βp(p+ 1)

2
qxq̂x + ln

∫

K

Dβξ
[ ∫

K

P0(dx)e− β(Q̂x+q̂x)
2

|x|2+β
√

q̂xx·ξ
]p+1}

.

The channel term Iout(p,Qz)

This term is very similar to the prior term we just detailed. We use completely similar replica
symmetric assumptions for the overlaps Qz to the ones on Qx described in eq. (B.8). We reach:

Iout(p,Qz, qz) = inf
Q̂z ,q̂z

{β(p+ 1)
2

QzQ̂z −
βp(p+ 1)

2
qz q̂z +

β(p+ 1)
2

ln(2π/(βQ̂z)) (B.10)

+ ln
∫

R

dy
∫

K

Dβξ
[ ∫

K

dz
( 2π

βQ̂z

)−β/2
Pout(y|z) e−β Q̂z+q̂z

2
|z|2+β

√
q̂zz·ξ

]p+1}
.

We normalized the integrals so that in the limit p ↓ 0, the term inside the logarithm goes to 1,
which will be a useful remark.

The “delta” term Iint(p,Qx,Qz)

We now turn to the computation of the “delta” term:

Iint(p,Qx,Qz) ≡ lim
n→∞

1
n

lnEΦ

[ p∏

a=0

δ
(
za − 1√

n
Φxa

)]
, (B.11)

assuming that Qx,Qz are known. Computing this term is central in this replica calculation. We
use, as is done in [TK20], the identity:

1
n

lnEΦ

[ p∏

a=0

δ
(
za − 1√

n
Φxa

)]
= lim

ǫ↓0

1
n

lnEΦ

[exp
{− β

2ǫ

∑
a

∥∥za − 1√
n

Φxa
∥∥2}

(2πǫ/β)
βm(p+1)

2

]
, (B.12)

and we invert the n → ∞ and the ǫ ↓ 0 limit. Let us rewrite the RHS of eq. (B.12). As Φ is
orthogonally (unitarily) invariant, we can write it as:

EΦ

[exp
{− β

2ǫ

∑
a

∥∥za − 1√
n

Φxa
∥∥2}

(2πǫ/β)
βm(p+1)

2

]
= EΦ,O,U

[exp
{
− β

2ǫ

∑
a

∥∥Oza − 1√
n

ΦUxa
∥∥2
}

(2πǫ/β)
βm(p+1)

2

]
, (B.13)

in which (O,U) is uniformly sampled over Uβ(m) × Uβ(n). Note that when U is uniformly
distributed over Uβ(n), the set of vectors {Uxa}pa=0 is uniformly distributed over the set of
(p+ 1) vectors in K

n with overlap matrix Qx. There is a completely similar result for z as well.
The consequence is that we can replace in eq. (B.13) the average over O,U by an average over
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the vectors satisfying this constraint:

Iint(p,Qx,Qz) (B.14)

≃ 1
n

lnEΦ

∫
K

∏
a dxa dza

[∏
a≤b δ(nQ

x
ab − (xa)†xb)δ(mQz

ab − (za)†zb)
]

e
− β

2ǫ

∑
a

‖za− 1√
n

Φxa‖2

(2πǫ/β)βm(p+1)/2

∫
K

∏
a dxa dza

[∏
a≤b δ(nQ

x
ab − (xa)†xb)δ(mQz

ab − (za)†zb)
] .

The numerator and the denominator correspond to two terms, that we denote Iint(p,Qx,Qz) =
I

(n)
int (p,Qx,Qz)− I(d)

int (p,Qx,Qz). We can introduce the Fourier-transform of the delta distribu-
tion to compute both terms, as in the previous sections. Let us start with the denominator. It
reduces after Fourier-transformation to a Gaussian integral involving a block-diagonal matrix:

I
(d)
int (p,Qx,Qz) ≃ β

2
inf

Γx,Γz

[
Tr[QxΓx] + αTr[QzΓz]− ln det

βΓx

2π
− α ln det

βΓz

2π

]
,

with symmetric (Hermitian) positive matrices Γx,Γz of size (p + 1). The infimum is readily
solved by Γx = (Qx)−1 and Γz = (Qz)−1, which yields:

I
(d)
int (p,Qx,Qz) ≃ β(α+ 1)(p+ 1)

2
(1 + ln

2π
β

) +
β

2
ln det Qx +

αβ

2
ln det Qz. (B.15)

Let us now compute the numerator with the same technique. We obtain:

I
(n)
int (p,Qx,Qz) ≃ β(p+ 1)

2
ln

2π
βǫα

+
β

2
inf

Γx,Γz

[
Tr[QxΓx] + αTr[QzΓz]− 1

n
ln det Mn

]
, (B.16)

with a Hermitian block-matrix Mn that we write here in the tensor product form:

Mn ≡



(Γz + 1
ǫ Ip+1)⊗ Im

1
ǫ Ip+1 ⊗ Φ√

n
1
ǫ Ip+1 ⊗ Φ†√

n
Γx ⊗ In + 1

ǫ Ip+1 ⊗ Φ†Φ
n


 .

Using the block-matrix determinant calculation

det

(
A B
C D

)
= detA× det(D − CA−1B),

we reach:

1
n

ln det Mn = α ln det
(
Γz +

1
ǫ

Ip+1

)

+
1
n

ln det
(
Γx ⊗ In +

1
ǫ

Ip+1 ⊗
Φ†Φ
n
− 1
ǫ2

(
Γz +

1
ǫ

Ip+1

)−1
⊗ Φ†Φ

n

)
,

= (α− 1) ln det
(
Γz +

1
ǫ

Ip+1

)
+

1
n

ln det
(
ΓxΓz ⊗ In +

1
ǫ

Γx ⊗ In +
1
ǫ

Γz ⊗ Φ†Φ
n

)
,

= (α− 1) ln det
(
Γz +

1
ǫ

Ip+1

)
+
〈

ln det
(
ΓxΓz +

1
ǫ

(Γx + λΓz)
)〉

ν
+ On(1),

with λ distributed according to ν, the LSD of Φ†Φ/n. This allows to write I(n)
int from eq. (B.16)

and to take the ǫ ↓ 0 limit, keeping the terms that do not vanish:

I
(n)
int (p,Qx,Qz) ≃ β

2
inf

Γx,Γz
[Tr[QxΓx] + αTr[QzΓz]− 〈ln det(Γx + λΓz)〉ν ]. (B.17)
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Finally, we again consider a replica-symmetric assumption for Γx,Γz, in the form:

Γx =




Γx −γx · · · −γx

−γx Γx · · · −γx

...
...

. . .
...

−γx −γx · · · Γx



, Γz =




Γz −γz · · · −γz

−γz Γz · · · −γz

...
...

. . .
...

−γz −γz · · · Γz



.

Again, by hermiticity, we have γx, γz ∈ R. Combining eqs. (B.15) and (B.17) and using the
replica symmetric assumption, we finally obtain the cumbersome expression:

2
β
Iint(p,Qx,Qz) = inf

Γx,γx,Γz ,γz

[(p+ 1)QxΓx − p(p+ 1)qxγx + α(p+ 1)QzΓz − αp(p+ 1)qzγz

− p〈ln(Γx + γx + λΓz + λγz)〉ν − 〈ln[Γx − pγx + λ(Γz − pγz)]〉ν ]− (α+ 1)(p+ 1) ln 2πe/β

+ (p+ 1) ln
2π
β
− p ln(Qx − qx)− ln(Qx + pqx)− αp ln(Qz − qz)− α ln(Qz + pqz). (B.18)

A note on quenched and annealed averages – Importantly, we did not consider the average
over Φ to compute Iint. Indeed, the result only depends on the eigenvalue distribution of Φ†Φ/n,
which (by hypothesis) has large deviations in a scale at least n1+η with η > 0. Since we are
looking at a scale exponential in n, we can thus consider that this eigenvalue distribution is equal
to its limit value ν. However, one must be careful that this argument breaks down if our result
starts to be sensitive to the extremal eigenvalues of Φ†Φ/n. Since these variables typically have
large deviations in the scale n (for instance for Wigner or Wishart matrices [DM06]), this could
invalidate our calculation. This phenomenon is well-known in the study of “HCIZ” spherical
integrals, and we gave an example of it in Section 1.5.3. We argue in Section B.2.4 that this
possible issue, not discussed in [TK20], never arises for physical values of the overlaps.

Expressing the p-th moment

Combining the three previous results we finally obtain:

lim
n→∞

1
n

lnEZn(Y)p = sup
Qx,qx
Qz ,qz

[I0(p,Qx, qx) + αIout(p,Qz, qz) + Iint(p,Qx, qx, Qz, qz)], (B.19)

in which the three terms are given by eqs. (B.9),(B.10),(B.18).

B.2.3 The p ↓ 0 limit

One can easily see that the RHS of eq. (B.19) is analytic in p. The next step of the replica
method is to analytically extend this expression to arbitrary p > 0, before considering the limit
p ↓ 0.

Consistency of the limit

One must be careful that, when extending our expression to arbitrarily small p > 0, we satisfy
the trivial condition limp↓0 lnEZp

n = 0. As we will see, this will yield constraints on the diagonals
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of the overlap matrices. Taking the limit p ↓ 0 in the three terms of eq. (B.19) yields:




I0(0, Qx, qx) = inf
Q̂x

{β
2
QxQ̂x + ln

∫

K

P0(dx)e− βQ̂x
2

|x|2
}
,

Iout(0, Qz, qz) = inf
Q̂z

{β
2
QzQ̂z +

β

2
ln
( 2π

βQ̂z

)}
,

Iint(0, Qx, qx, Qz, qz) = inf
Γx,Γz

[β
2
QxΓx +

αβ

2
QzΓz −

β

2
〈ln[Γx + λΓz]〉ν

]

−β(α+ 1)
2

(1 + ln
2π
β

) +
β

2
ln

2π
β
− β

2
lnQx −

αβ

2
lnQz.

One can easily solve the saddle point equations on Qz, Q̂z, they give Γz = 0 and Q̂z = 1/Qz.
One can then find all the remaining variables easily: Qx = ρ, Q̂x = 0, Γx = ρ−1, Qz = ρ〈λ〉ν/α,
Q̂z = 1/Qz, Γz = 0. This yields (we drop the vacuous dependency on qx, qz):





I0(0, Qx = ρ) = 0,

Iout

(
0, Qz =

ρ〈λ〉ν
α

)
=
β

2
+
β

2
ln
(2πρ〈λ〉ν

βα

)
,

Iint

(
0, Qx = ρ,Qz =

ρ〈λ〉ν
α

)
= −βα

2

(
1 + ln

2π
β

)
− αβ

2
ln
ρ〈λ〉ν
α

.

(B.20)

Recall that we have

lim
p↓0

lim
n→∞

1
n

lnEZn(Y)p = I0 + αIout + Iint,

so that we obtain from eq. (B.20) that indeed the limit is consistent.

The replica-symmetric result

Using eq. (B.19) for the p-th moment and the consistency conditions we just derived, we obtain
after using the replica trick:

lim
n→∞

1
n
E lnZn(Y) = sup

qx,qz

[I0(qx) + αIout(qz) + Iint(qx, qz)], (B.21)

with the auxiliary functions:

I0(qx) ≡ inf
q̂x≥0

[
− βq̂xqx

2
+
∫

K

DβξP0(dx)e− βq̂x
2

|x|2+β
√

q̂xx·ξ ln
∫

K

P0(dx)e− βq̂x
2

|x|2+β
√

q̂xx·ξ
]
,

Iout(qz) ≡ inf
q̂z≥0

{
− βq̂zqz

2
− β

2
ln(Q̂z + q̂z) +

βq̂z

2Q̂z

+
∫

dyDβξ J(q̂z, y, ξ) ln J(q̂z, y, ξ)
}
,

Iint(qx, qz) ≡ inf
γx,γz≥0

[β
2

(ρ− qx)γx +
αβ

2
(Qz − qz)γz −

β

2
〈ln(ρ−1 + γx + λγz)〉ν

]

− β

2
ln(ρ− qx)− βqx

2ρ
− αβ

2
ln(Qz − qz)− αβqz

2Qz
,

with Qz ≡ ρ〈λ〉ν/α and Q̂z = 1/Qz. Moreover, the domain of the supremum is qx ∈ [0, ρ] and
qz ∈ [0, Qz]. The function J(q̂z, y, ξ) appearing in the expression of Iout is defined as:

J(q̂z, y, ξ) ≡
∫

K

DβzPout

(
y
∣∣∣

z√
Q̂z + q̂z

+

√
q̂z

Q̂z(Q̂z + q̂z)
ξ

)
.
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Note that compared to the calculation presented in the previous sections, we moved a term
(βα/2)(1 + ln 2π/β) between Iout and Iint, and we also made a few straightforward change of
variables in the expression of Iout. This is exactly the result given in Conjecture 6.1!

B.2.4 Concentration of the spectrum of Φ†Φ/n and the absence of saturation

As emphasized during the computation of Iint, our calculation assumed that the extremization
equations on (γx, γz) always admitted a solution. Moreover, we assumed that this solution is
not sensitive to the extremal eigenvalues of Φ†Φ/n. If this assumption is indeed true, the rate
of the large deviations of the spectrum of Φ†Φ/n was assumed to be large enough to justify our
calculation. This important condition can be phrased by saying that for all physical values of
(qx, qz), we must not “touch” the edge of the spectrum in the variational expression of Iint:

1
ρ

+ γx + γzλmin(ν) > 0. (B.22)

We justify here eq. (B.22) for all physical values of (qx, qz). We will combine three arguments:

(i) In the computation of Iint the matrix Γz is assumed to be Hermitian positive in the p ↓ 0
limit. Since Γz = 0, this implies that we must have λz ≥ 0.

(ii) The saddle point equation on qx yields1:

q̂x =
qx

ρ(ρ− qx)
− γx. (B.23)

(iii) Finally, we will derive a lower bound on qx. As one can see from the computation of I0, qx is
the optimal overlap achievable in the following scalar inference problem [BKM+19]:

Y0 =
√
q̂xX

⋆ + Z, (B.24)

in which one observes Y0, and the noise Z is distributed according to Nβ(0, 1). The optimal
estimator is given by the average of x under the posterior distribution, whose density is
proportional to P0(x)e− β

2
|y−√

q̂xx|2 . If this is untractable for generic P0, we can consider a
suboptimal estimation by using a Gaussian prior with variance ρ in the estimation procedure
(so that the problem is mismatched). This yields the bound:

qx ≥
∫
Dβξ

[ ∫
K
P0(dx) x e− βq̂x

2
|x|2+β

√
q̂xx·ξ

]
·
[ ∫

K
dx x e− β|x|2

2ρ e− βq̂x
2

|x|2+β
√

q̂xx·ξ
]

∫
K

dx e− β|x|2
2ρ e− βq̂x

2
|x|2+β

√
q̂xx·ξ

.

This can easily be simplified by performing the Gaussian integral, and yields the bound:

qx ≥
ρ2q̂x

1 + ρq̂x
. (B.25)

Combining (ii) and (iii) gives:

qx ≥ ρ−
ρ− qx

1− γx(ρ− qx)
.

1This relation is valid even if λx would “saturate” to a constant value that does not depend on (qx, qz).
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Since qx ∈ [0, ρ], this implies in particular that γx ≥ 0. Using this along with (i), we reach:

1
ρ

+ γx + γzλmin(ν) ≥ 1
ρ
> 0,

which is what we wanted to show.
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Appendix C

Proving the replica formula: details
in the committee machine

C.1 Positivity of some matrices

We first prove the following lemma which provides basic properties of the overlap matrix:

Lemma C.1 (Positivity of some matrices)

The matrices ρ, E〈Q〉 and ρ− E〈Q〉 are all positive semi-definite, i.e. in S+
K .

Proof of Lemma C.1 – The statement for ρ follows from its very definition. Note for further
use that we have ρ = n−1∑n

i=1 E[W ∗
i (W ∗

i )⊺]. Since by definition Q = n−1∑n
i=1W

∗
i w

⊺
i , by the

Nishimori identity (Proposition 1.1), we have

E〈Q〉 =
1
n

n∑

i=1

E〈W ∗
i w

⊺
i 〉 =

1
n

n∑

i=1

E[〈wi〉〈w⊺
i 〉],

which is obviously in S+
K . Finally we note that

ρ− E[〈Q〉] =
1
n

n∑

i=1

(
E[W ∗

i (W ∗
i )⊺]− E[〈wi〉〈w⊺

i 〉]
)

=
1
n

n∑

i=1

E[(W ∗
i − 〈wi〉)((W ∗

i )⊺ − 〈w⊺
i 〉)]

where the last equality follows again from the Nishimori identity. This last expression is obviously
in S+

K , i.e. E〈Q〉 ∈ S+
K(ρ). �

C.2 Properties of the auxiliary channels

Lemma C.2 (Properties of ψP0
)

Recall that ψP0 is the free entropy of the auxiliary channel of eq. (4.3). More precisely we
have, for any r ∈ S+

K :

ψP0(r) ≡ E ln
∫

RK
dwP0(w) eY ⊺

0 r1/2w− 1
2

w⊺rw.

Then ψP0 is convex and differentiable on S+
K , and moreover ∇ψP0(r) ∈ S+

K for any r ∈ S+
K .

Proof of Lemma C.2 – One can easily compute (either directly, or by the I-MMSE theorem for
vector channels [RPD18]) ∇ψP0(r) = (ρ− E[〈w〉〈w〉⊺])/2. Using the Nishimori Proposition 1.1,
we can write it as ∇ψP0(r) = E[(w − 〈w〉)(w − 〈w〉)⊺]/2, which is clearly a positive matrix. By
a very similar computation (see for instance Lemma 4 of [RPD18]), one can check that ∇2ψP0

is a positive operator on S+
K × S+

K , so that ψP0 is convex, which ends the proof. �
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Lemma C.3 (Properties of Ψout)

Recall that Ψout is the free entropy of the auxiliary channel of eq. (4.4). More precisely, for
q ∈ S+

K(ρ), we have:

Ψout(q) ≡ E ln
∫

RK
dw

e− 1
2

‖w‖2

(2π)K/2
Pout

(
Ỹ0|q1/2V + (ρ− q)1/2w

)
.

Then Ψout is continuous and convex on S+
K(ρ), and twice differentiable inside S+

K(ρ). Moreover,
for all q ∈ S+

K(ρ), one has ∇Ψout(q) ∈ S+
K .

Proof of Lemma C.3 – The continuity and differentiability of Ψout is easy, and the reader
can simply follow the proof of Proposition 18 of [BKM+19]. It follows from H.2 which allows
to use continuity and differentiation under the expectation, as all usual domination hypotheses
are then easily verified.
One can compute the gradient and Hessian matrix of Ψout(q), for q inside S+

K(ρ), using Gaussian
integration by parts and the Nishimori identity 1.1. The calculation is tedious and essentially
follows the steps of Proposition 11 of [BKM+19]. Recall that u

Ỹ0
(x) ≡ lnPout(Ỹ0|x). We define

the average 〈−〉sc (where sc stands for “scalar channel”) as

〈g(w)〉sc ≡
∫
RK DwPout(Ỹ0|(ρ− q)1/2w + q1/2V )g(w)
∫
RK DwPout(Ỹ0|(ρ− q)1/2w + q1/2V )

.

Using this definition, one arrives at:

∇Ψout(q) =
1
2
E

〈
∇u

Ỹ0

(
(ρ− q)1/2W ∗ + q1/2V

)∇u
Ỹ0

(
(ρ− q)1/2w + q1/2V

)⊺〉

sc
.

Note that this gradient is actually a symmetric matrix of size K, as q is itself a matrix of size
K. The Hessian ∇∇⊺Ψout with respect to q is thus a 4-tensor that can be computed similarly:

∇∇⊺Ψout(q) =
1
2
E

[(〈∇∇⊺Pout(Ỹ0|(ρ− q)1/2w + q1/2V )

Pout(Ỹ0|(ρ− q)1/2w + q1/2V )

〉

sc

−
〈
∇u

Ỹ0

(
(ρ− q)1/2W ∗ + q1/2V

)∇u
Ỹ0

(
(ρ− q)1/2w + q1/2V

)⊺〉

sc

)⊗2]
.

In this expression, ⊗2 means the “tensorized square” of a matrix, i.e. for any matrix M of size
K ×K, M⊗2 is a 4-tensor with indices M⊗2

l0l1l2l3
= Ml0l1Ml2l3 . From this expression, it is clear

that the Hessian of Ψout is always positive, when seen as a matrix with rows and columns in
SK , and thus Ψout is convex, which ends the proof. �

C.3 Setting in the Hamiltonian language

In this section, we set up some notations which will be useful in the following Section C.4.
Let uy(x) ≡ lnPout(y|x). Here x ∈ R

K and y ∈ R. We will denote by ∇uy(x) the K-
dimensional gradient w.r.t. x, and ∇∇⊺uy(x) the K ×K Hessian w.r.t. x. Moreover ∇Pout(y|x)
and ∇∇⊺Pout(y|x) also denote the K-dimensional gradient and Hessian w.r.t. x. We will also
use the matrix identity

∇∇⊺uYµ(x) +∇uYµ(x)∇⊺uYµ(x) =
∇∇⊺Pout(Yµ|x)
Pout(Yµ|x)

. (C.1)
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Finally we will use the matrices w ∈ R
n×K , u ∈ R

m×K , Yt ∈ R
m, Y′

t ∈ R
n×K , X ∈ R

m×n,
V ∈ R

m×K , W∗ ∈ R
n×K and U∗ ∈ R

m×K . It is convenient to reformulate the expression of the
free entropy fn,ǫ(t) in the Hamiltonian language. We introduce an interpolating Hamiltonian:

Ht(w,u; Yt,Y
′
t,X,V) ≡ −

m∑

µ=1

uYt,µ(st,µ) +
1
2

n∑

i=1

‖Y ′
t,i −R1(t)1/2wi‖22, (C.2)

where we recall that st,µ is defined in eq. (4.13). The expression of Ht(W∗,U∗; Yt,Y
′
t,X,V) is

similar to eq. (C.2), but with w replaced by W∗ and st,µ replaced by St,µ given by eq. (4.11).
The average free entropy at time t (cf eq. (4.15)) then reads

fn,ǫ(t) ≡
1
n
E ln

∫

Rn×K
dwP0(w)

∫

Rm×K
Du e−Ht(w,u;Yt,Y′

t,X,V).

Note that to develop the calculations it is sometimes fruitful to represent the expectations over
W∗,U explicitly as:

fn,ǫ(t) =
1
n
EX,V,Yt,Y′

y

∫
dP0(W∗)DU∗e−Ht(W∗,U;Yt,Y′

t,X,V) ln
∫

dP0(w)Du e−Ht(w,u;Yt,Y′
t,X,V).

C.4 Free entropy variation: Proof of Proposition 4.3

The proof provided here follows very closely the one in [BKM+19] for the case K = 1, so that
we will sometimes refer to this paper for more details. We first prove that for all t ∈ (0, 1):

dfn,ǫ(t)
dt

=− 1
2
E

〈
Tr
[( 1
n

m∑

µ=1

∇uYt,µ(st,µ)∇uYt,µ(St,µ)⊺ − r(t)
)( 1
n

n∑

i=1

W ∗
i w

⊺
i − q(t)

)〉

n,t,ǫ

+
1
2

Tr[r(t)(q(t)− ρ)]− An

2
, (C.3)

where

An ≡ E

[
Tr
[ 1√

n

m∑

µ=1

∇∇⊺Pout(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

( 1√
n

n∑

i=1

(W ∗
i (W ∗

i )⊺ − ρ)
)] 1
n

lnZn,ǫ(t)
]
.

Once we will have proven eq. (C.3), we show that An goes to 0 as n→∞ uniformly in t ∈ [0, 1]
in order to conclude the proof of Proposition 4.3. Recall that the Hamiltonian was defined in
eq. (C.2). Its t-derivative evaluated at the ground-truth matrices is given by

dHt

dt
(W∗,U∗; Yt,Y

′
t,X,V)

= −
m∑

µ=1

∇⊺uYt,µ(St,µ)
dSt,µ

dt
−

n∑

i=1

(dR1(t)1/2

dt
W ∗

i

)⊺
(Y ′

t,i −R1(t)1/2W ∗
i ),

= −
m∑

µ=1

Tr
[dSt,µ

dt
∇⊺uYt,µ(St,µ)

]
−

n∑

i=1

Tr
[(dR1(t)1/2

dt

)⊺
(Y ′

t,i −R1(t)1/2W ∗
i )W ∗⊺

i

]
. (C.4)
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The t-derivative of fn,ǫ(t) thus reads, for t ∈ (0, 1):

dfn,ǫ(t)
dt

= (C.5)

− 1
n
E

[dHt

dt
(W∗,U∗; Yt,Y

′
t,X,V) lnZn,ǫ(t)

]

︸ ︷︷ ︸
T1

− 1
n
E

〈dHt

dt
(w,u; Yt,Y

′
t,X,V)

〉

n,t,ǫ︸ ︷︷ ︸
T2

.

First, we note that T2 = 0 by the Nishimori identity, Proposition 1.1:

T2 =
1
n
E

〈dHt

dt
(w,u; Yt,Y

′
t,X,V)

〉

n,t,ǫ
=

1
n
E

dHt

dt
(W∗,U∗; Yt,Y

′
t,X,V) = 0 .

We now compute T1. We start from eq. (C.4) and we consider for the moment the first term
(recall also the expression (4.11) for St,µ):

E

{
Tr
[dSt,µ

dt
∇⊺uYt,µ(St,µ)

]
lnZn,ǫ(t)

}
= E

[
Tr
[{
−
∑n

i=1XµiW
∗
i

2
√
n(1− t)

+
d
dt

√
R2(t)Vµ +

d
dt

√
tρ−R2(t) + 2snIK U∗

µ

}
∇⊺uYt,µ(St,µ)

]
lnZn,ǫ(t)

]
. (C.6)

We then compute the first term of the right-hand side of eq. (C.6). By Gaussian integration by
parts w.r.t. Xµi (recall hypothesis H.3), and using eq. (C.1), we find after some algebra

− 1
2
√
n(1− t)E

[
Tr
[ n∑

i=1

XµiW
∗
i ∇⊺uYt,µ(St,µ)

]
lnZn,ǫ(t)

]

= −1
2
E

[
Tr
[ 1
n

n∑

i=1

W ∗
i W

⊺
i

∇∇⊺Pout(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

]
lnZn,ǫ(t)

]

− 1
2
E

〈
Tr
[ 1
n

n∑

i=1

W ∗
i w

⊺
i∇uYt,µ(St,µ)∇⊺uYt,µ(st,µ)

]〉

n,t,ǫ
. (C.7)

For the remaining terms of the right hand side of (C.6), we use again Gaussian integrations by
parts but this time w.r.t. Vµ, U

∗
µ which have i.i.d. N (0, 1) entries. This calculation has to be

done carefully using the cyclicity and linearity of the trace, and with the help of the identity

d
dt
M(t) =

√
M(t)

d
√
M(t)
dt

+
d
√
M(t)
dt

√
M(t) (C.8)

for any M(t) ∈ S+
K . Applying eq. (C.8) to

∫ t
0 q(s)ds and

∫ t
0(ρ − q(s))ds, as well as the identity

of eq. (C.1), we reach after some algebra

E

[
Tr
[( d

dt

√
R2(t)Vµ +

d
dt

√
tρ−R2(t) + 2snIK U∗

µ

)
∇⊺uYµ(Sµ,t)

]
lnZn,ǫ(t)

]

=E

[
Tr
[
ρ
∇∇⊺Pout(Yt,µ|Sµ,t)
Pout(Yt,µ|Sµ,t)

]
lnZn,ǫ(t)

]
+ E

〈
Tr
[
q(t)∇uYt,µ(Sµ,t)∇⊺uYt,µ(sµ,t)

]〉

n,t,ǫ
. (C.9)

This completes the computation of the terms of eq. (C.6). It now remains to compute the second
term of the right hand side of eq. (C.4). Recall that Y ′

t,i −
√
R1(t)W ∗

i = Z ′
i ∼ N (0, IK). Using

Gaussian integration by parts as well as eq. (C.8) one obtains

E

[
Tr
[(d

√
R1(t)
dt

)⊺
(Y ′

t,i −
√
R1(t)W ∗

i )W ∗⊺
i

]
lnZn,ǫ(t)

]
= Tr

[√
R1(t)

(
E〈W ∗

i w
⊺
i 〉n,t,ǫ − ρ

)]
. (C.10)
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Finally the term T1 is obtained by putting together eqs. (C.6), (C.7), (C.9) and (C.10).

This ends the derivation of eq. (C.3). It now remains to check that An → 0 as n → +∞
uniformly in t ∈ [0, 1]. The proof from [BKM+19] can easily be adapted so we give here just a
few indications for the ease of the reader. First one notices that

E

[∇∇⊺Pout(Yt,µ|St,µ)
Pout(Yµ|St,µ)

∣∣∣W∗, {St,µ}mµ=1

]
=
∫

dYµ∇∇⊺Pout(Yt,µ|St,µ) = 0,

so that by the tower property of the conditional expectation one gets

E

{
Tr
[ 1√

n

m∑

µ=1

∇∇⊺Pout(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

( 1√
n

n∑

i=1

(W ∗
i (W ∗

i )⊺ − ρ)
)]}

= 0. (C.11)

Next, one shows by standard second moment methods that E[(lnZn,ǫ(t)/n − fn,ǫ(t))2] → 0
as n → +∞ uniformly in t ∈ [0, 1] (see [BKM+19] for the proof at K = 1, that generalizes
straightforwardly for any finite K). Then, using this last fact together with (C.11), and under
hypotheses H.1, H.2, H.3, an easy application of the Cauchy-Schwarz inequality implies An → 0
as n→ +∞ uniformly in t ∈ [0, 1]. This ends the proof of Proposition 4.3.

C.5 A few technical lemmas

Lemma C.4 (Cauchy-Lipschitz Theorem and Liouville Formula)

Let

F :

∣∣∣∣∣
[0, 1]× (0,+∞)d → [0,+∞)d

(t, z) 7→ F (t, z)

be a continuous bounded function. Assume that F admits continuous partial derivatives
∂F/∂zi (i = 1, . . . , d) on its domain of definition. Then, for all ǫ ∈ (0,+∞)d, the Cauchy
problem

y(0) = ǫ and y′(t) = F
(
t, y(t)

)
(C.12)

admits a unique solution t 7→ y(t, ǫ). For all t ∈ [0, 1], the mapping zt : ǫ 7→ y(t, ǫ) is a
diffeomorphism of class C1, from (0,+∞)d to zt

(
(0,+∞)d

)
. Moreover the determinant J(zt)(ǫ)

of the Jacobian of zt at ǫ verifies

J(zt)(ǫ) = det
((∂yi

∂ǫj

)

i,j

)
= exp

( ∫ t

0

d∑

i=1

∂Fi

∂zi

(
s, y(s, ǫ)

)
ds
)
. (C.13)

Thus, in particular, if in addition
∑d

i=1(∂Fi/∂zi) ≥ 0 then J(zt)(ǫ) ≥ 1 for all ǫ.

Proof of Lemma C.4 – The existence and uniqueness of the solution of (C.12) follows from
the classical Cauchy-Lipschitz Theorem. The solution is indeed defined on all the segment [0, 1]
because F is bounded. Theorem 3.1 from Chapter 5 in [Har82] gives that y admits continuous
partial derivatives ∂ǫiy for i = 1, . . . , d, and Corollary 3.1 from Chapter 5 in the same reference
states the Liouville formula (C.13). It remains to show that zt is a C1 diffeomorphism. By the
Cauchy-Lipschitz theorem, two solutions of y′(t) = F

(
t, y(t)

)
that are equal at some t ∈ [0, 1]

are equal everywhere. This implies that the mapping zt : ǫ 7→ y(t, ǫ) is injective, for all t ∈ [0, 1].
Since y admits continuous partial derivatives in ǫi, i = 1, . . . , d, we obtain that zt is of class C1

on (0,+∞)d. Now, the equation (C.13) gives that J(zt)(ǫ) > 0 for all ǫ ∈ (0,+∞)d. The local
inversion theorem gives then that zt is a C1 diffeomorphism. �
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Lemma C.5 (Boundedness of an overlap fluctuation)

Recall that for the sake of the proof we added (cf. Remark 4.1) a small Gaussian noise of
variance ∆ > 0 to the observations. Under hypothesis H.2 one can then find a constant
C(ϕ,K,∆) < +∞ (independent of n, t, ǫ) such that for any Rn ∈ S+

K we have

E

〈∥∥∥
1
n

m∑

µ=1

∇uYt,µ(st,µ)∇uYt,µ(St,µ)⊺ −Rn

∥∥∥
2

F

〉

n,t,ǫ
≤ 2Tr(R2

n) + α2C(ϕ,K,∆). (C.14)

We note that the constant remains bounded as ∆→ 0, and diverges as K → +∞.

Proof of Lemma C.5 – It is easy to see that for symmetric matrices A, B we have Tr(A−B)2 ≤
2(TrA2 + TrB2). Therefore

E

〈∥∥∥
1
n

m∑

µ=1

∇uYt,µ(st,µ)∇uYt,µ(St,µ)⊺ −Rn

∥∥∥
2

F

〉

n,t,ǫ

≤ 2Tr(R2
n) + 2E

〈
Tr
( 1
n

m∑

µ=1

∇uYt,µ(st,µ)∇uYt,µ(St,µ)⊺
)2〉

n,t,ǫ
.

In the rest of the argument we bound the second term of the right hand side of this last inequality.
Using the triangle inequality and then Cauchy-Schwarz we obtain

E

〈∥∥∥
1
n

m∑

µ=1

∇uYt,µ(st,µ)∇uYt,µ(St,µ)⊺
∥∥∥

2

F

〉

n,t,ǫ
≤ E

〈 1
n2

( m∑

µ=1

‖∇uYt,µ(st,µ)∇uYt,µ(St,µ)⊺‖F
)2〉

n,t,ǫ

≤ E

〈 1
n2

( m∑

µ=1

‖∇uYt,µ(st,µ)‖2‖∇uYt,µ(St,µ)⊺‖2
)2〉

n,t,ǫ
. (C.15)

Recall the random representation of the transition kernel:

uYt,µ(s) = lnPout(Yt,µ|x) = ln
∫

dPA(aµ)
1√

2π∆
e− 1

2∆
(Yt,µ−ϕ(x,aµ))2

,

and thus

∇uYt,µ(x) =
∫

dPA(aµ)(Yt,µ − ϕ(x, aµ))∇ϕ(x, aµ)e− 1
2∆

(Yt,µ−ϕ(x,aµ))2

∫
dPA(aµ)e− 1

2∆
(Yt,µ−ϕ(x,aµ))2

,

where ∇ϕ is the K-dimensional gradient w.r.t. the first argument x ∈ R
K . From the observation

model we get |Yt,µ| ≤ sup |ϕ| +
√

∆|Zµ|, where the supremum is taken over both arguments of
ϕ, and thus we immediately obtain for all s ∈ R

K

‖∇uYt,µ(x)‖ ≤ (2 sup |ϕ|+
√

∆|Zµ|) sup ‖∇ϕ‖ . (C.16)

From eqs. (C.15) and (C.16) we see that it suffices to check that

m2

n2
E
[(

(2 sup |ϕ|+ |Zµ|)2(sup ‖∇ϕ‖)2)2] ≤ C(ϕ,K,∆),

where C(ϕ,K,∆) < +∞ is a finite constant depending only on ϕ, K, and ∆. This is easily seen
by expanding all squares and using that m/n→ α. This ends the proof of Lemma C.5. �
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Appendix D

Technical results of Part II

D.1 Generalization error in the committee machine

D.1.1 Bayes-optimal and Gibbs generalization error

We detail here two different possible definitions of the generalization error, and how they are
related. Recall that we wish to estimate W∗ from the observation of ϕout(XW∗). In the
following, we denote E for the average over the (quenched) teacher weights W∗ and the data X,
and 〈−〉 for the Gibbs average over the posterior distribution of W. we can define two notions of
generalization error, namely the Gibbs generalization error and the Bayes-optimal generalization
error (which is the one considered in eq. (4.7)) as:





ǫGibbs
g ≡ 1

2
E
〈
[ϕout(XW)− ϕout(XW∗)]2

〉
,

ǫBayes
g ≡ 1

2
E
[(〈ϕout(XW)〉 − ϕout(XW∗)

)2]
.

(D.1)

Using the Nishimori identity 1.1, one can show that:

ǫBayes
g =

1
2
E[ϕout(XW∗)2] +

1
2
E[〈ϕout(XW)〉2]− E〈ϕout(XW∗)ϕout(XW)〉,

=
1
2
E[ϕout(XW∗)2]− 1

2
E〈ϕout(XW∗)ϕout(XW)〉. (D.2)

Using again the Nishimori identity one can write:

ǫGibbs
g = E[ϕout(XW∗)2]− E〈ϕout(XW∗)ϕout(XW)〉,

which shows that ǫGibbs
g = 2ǫBayes

g , and relates the two definitions of the generalization error.

D.1.2 The generalization error at K = 2 with committee symmetry

In this subsection alone, we consider the K = 2 case. From the definition of the generalization
error that we saw in Section D.1.1, one can obtain an explicit expression in the K = 2 case.
Recall that we assume committee symmetry, which here reads

q =

(
qd + qa

2
qa

2
qa

2 qd + qa

2

)
.
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For concision, we denote here sign(x) = σ(x). One obtains from eq. (D.2):

1
2
− 2ǫBayes,K=2

g =
∫

R4
Dxσ[σ(x1) + σ(x2)] (D.3)

× σ
{
σ
[
(
qa

2
+ qd)x1 +

qa

2
x2 + x3

√

1− q2
a

2
− qaqd − q2

d

]

+ σ
[qa

2
x1 + (

qa

2
+ qd)x2 − x3

qa(qd + qa

2 )
√

1− q2
a
2 − qaqd − q2

d

+ x4

√√√√(1− q2
d)(1− (qa + qd)2)

1− q2
a
2 − qaqd − q2

d

]}
.

These integrals were then computed using Monte-Carlo methods to obtain the generalization
error in Fig. 4.2.

D.2 Large K limit in the committee machine

We consider the large K limit1 for a sign activation function, and for different priors on the
weights. We also consider a noiseless channel. We assume a committee symmetric solution, i.e.
the matrices q and q̂ (q and r in the notations of Theorem 4.1) are of the type q = qdIK +
qa1K1⊺

K/K, with the unit vector 1K ≡ (1)K
l=1, and similarly for q̂.

In the large K limit, this scaling of the order parameters is natural. Indeed, assume that the
covariance of the prior is ρ = IK . Since both q and (ρ− q) are assumed to be positive matrices,
it is easily shown to imply that 0 ≤ qd ≤ 1 and 0 ≤ qa + qd ≤ 1, so that these variables stay of
order O(1).

In the following of this section we take notations arising from the replica calculation of Sec-
tion B.1. In particular, we note Q0 = ρ, and we will take eq. (B.6) as the expression of the free
entropy (recall that it is equivalent to Theorem 4.1, so that this expression is mathematically
rigorous).

D.2.1 Limit of the channel integral

In the following, we consider Q0 = σ2IK . We are interested here in computing the leading order
term in the “channel” integral IC of eq. (B.6). Note that replacing σ2 by 1 in this equation only
amounts to replacing q by q/σ2, so we can assume σ2 = 1 without loss of generality. We write
IC as IC =

∑
y=±1

∫
RK Dξ IC(y, ξ) ln IC(y, ξ), with the definition

IC(y, ξ) ≡
∫

RK
DZPout{y|(Q0 − q)1/2Z + q1/2ξ}.

Recall that we consider a sign activation function and no noise. Moreover, we assume com-
mittee symmetry (see the remark above). Note that this implies q1/2 =

√
qdIK + (

√
qa + qd −√

qd)1K1⊺
K/K and (Q0− q)1/2 =

√
1− qdIK + (

√
1− qa − qd−

√
1− qd)1K1⊺

K/K. All together,
this yields the following expression for IC(y, ξ) :

IC(y, ξ)

=
∫

RK
DZ δ

{
y − sign

[ 1√
K

K∑

l=1

sign
[√

1− qdZl + (
√

1− qa − qd −
√

1− qd)
1⊺

KZ

K
+ (q1/2ξ)l

]]}
.

1Note that a similar limit has been derived in the context of coding with sparse superposition codes [BK17].
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We introduce a new variable w ≡ 1⊺
KZ/
√
K as well as another variable u being the argument

of the outer sign function in the previous equations. Using the Fourier transform of the Dirac
distribution one obtains:

IC(y, ξ) =
∫

R

dwdŵ
2π

dudû
2π

eiwŵ+iuûδy,sign(u)

×
K∏

l=1

∫

R

Dze−iŵ z√
K e

− iû√
K

sign

[
z+

(√
1−qa−qd

1−qd
−1

)
w√
K

+ 1√
1−qd

(q1/2ξ)l

]

.

We denote

λl(w, ξ) ≡
[√

1− qa − qd

1− qd
− 1

]
w√
K

+
1√

1− qd
(q1/2ξ)l.

For 1 ≤ l ≤ K, one can rewrite the factorized integral in IC(y, ξ) as:

IC(y, ξ) =
∫

R

dwdŵ
2π

dudû
2π

eiwŵ+iuûδy,sign(u)

K∏

l=1

J(λl(w, ξ), ŵ, û), (D.4)

in which we defined

J(λl(w, ξ), ŵ, û) ≡ e− λ2
l

2
+iλl

ŵ√
K

∫

R

Dzez(λl−i ŵ√
K

)
e

− iû√
K

sign[z]
. (D.5)

We (abusively) dropped the dependency of λl on (w, ξ). Note the following identity:
∫

R

Dz eαz+iβ sign(z) = eα2/2[cosβ + i sin βĤ(α)], (D.6)

with Ĥ(x) = erf(x/
√

2). Using eq. (D.6) in eq. (D.5) we obtain:

J(λl, ŵ, û) = e− 1
2K

ŵ2
[

cos
( û√

K

)
− i sin

( û√
K

)
Ĥ
(
λl − i

ŵ√
K

)]
.

By our committee-symmetry assumption, we have λl(w, ξ) = λl,0(ξ) + λ1(w, ξ)/
√
K, with λl,0

and λ1 typically of order 1 when K →∞ and given by:




λl,0(ξ) ≡
√

qd

1− qd
ξl,

λ1(w, ξ) ≡
[√1− qa − qd

1− qd
− 1

]
w +

[√qa + qd

1− qd
−
√

qd

1− qd

]1⊺
Kξ√
K
.

(D.7)

Expanding J(λl, ŵ, û) as K →∞, we obtain using the asymptotic development of erf(x):

J(λl, ŵ, û) = e− 1
2K

ŵ2
{

1− û2

2K
− iĤ[λl,0(ξ)]

û√
K
− i û[λ1(w, ξ)− iŵ]

K

√
2
π
e− λl,0(ξ)2

2 +O(K−3/2)
}
.

This yields:

K∏

l=1

J [λl(w, ξ), ŵ, û)] = e− 1
2

ŵ2− û2

2
−iûS1−i

√
2
π

û(λ1−iŵ)Γ0+ 1
2

û2S2+O(K−1/2), (D.8)
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in which we defined the following quantities, that only depend on ξ (recall eq. (D.7))

wξ(ξ) ≡ 1√
K

K∑

l=1

ξl, Γ0(ξ) ≡ 1
K

K∑

l=1

e− 1
2

λl,0(ξ)2
,

S1(ξ) ≡ 1√
K

K∑

l=1

Ĥ(λl,0(ξ)), S2(ξ) ≡ 1
K

K∑

l=1

Ĥ(λl,0(ξ))2.

A detailed calculation actually shows that the previous expansion of eq. (D.8) is valid up to
O(K−1), and not only O(K−1/2). Recall also eq. (D.4), in which one can now readily perform the
integration over all variables w, ŵ, u, û to obtain (dropping the ξ dependency in wξ,Γ0, S1, S2):

IC(y, ξ) = H

[
− y

S1 +
√

2
πwξΓ0

√
qd+qa−√

qd√
1−qd√

1− S2 − 2
π Γ2

0
qa

1−qd

]
+O(K−1), (D.9)

in which H(x) ≡ ∫∞
x Dz = [1− erf(x/

√
2)]/2. Note that all quantities wξ,Γ0, S1, S2 only depend

on ξ via its empirical measure: this remark is what will make the integration over ξ ∈ R
K

tractable. We compute it in the following, using theoretical physics methods. We denote the
quantity that appears in eq. (D.9) as a function of wξ,Γ0, S1, S2:

G(y, wξ,Γ0, S1, S2) ≡ H
[
− y

S1 +
√

2
πwξΓ0

√
qd+qa−√

qd√
1−qd√

1− S2 − 2
π Γ2

0
qa

1−qd

]
.

Introducing once again delta functions and their Fourier transforms for wξ,Γ0, S1, S2, we write,
starting from eq. (D.9):

IC =
∑

y=±1

∫

RK
DξIC(y, ξ) ln IC(y, ξ),

=
∑

y=±1

∫
dwξdŵξ

2π
dΓ0dΓ̂0

2π
dS1dŜ1

2π
dS2dŜ2

2π
eiwŵ+iΓ0Γ̂0+iS1Ŝ1+iS2Ŝ2 G(y, wξ,Γ0, S1, S2)

× lnG(y, wξ,Γ0, S1, S2)
[ ∫

RK
Dξe−iŵwξ(ξ)−iΓ̂0Γ0(ξ)−iŜ1S1(ξ)−iŜ2S2(ξ)

]
+O(K−1). (D.10)

The integral over ξ in eq. (D.10) can be computed in the limit K →∞:

Λ ≡
∫

RK
Dξ e−iŵwξ(ξ)−iΓ̂0Γ0(ξ)−iŜ1S1(ξ)−iŜ2S2(ξ)

=

{∫

R

Dξ exp
[
− i ŵξ√

K
− i Γ̂0e

− qd
2(1−qd)

ξ2

K
− i

Ŝ1Ĥ
[√

qd
1−qd

ξ
]

√
K

− i
Ŝ2Ĥ

[√
qd

1−qd
ξ
]2

K

]}K

The large K expansion of this expression yields

Λ = exp

{
− 1

2
ŵ2 − iΓ̂

√
1− qd − Ŝ1ŵE

[
ξĤ
(√ qd

1− qd
ξ
)]

− Ŝ2
1 + iŜ2

2
E

[
Ĥ
(√ qd

1− qd
ξ
)2]
}

+O(K−1).



Appendix D. Technical results of Part II 253

The expectations are taken with respect to a real variable ξ ∼ N (0, 1). They are known prop-
erties of the error function:

E

[
Ĥ
(√ qd

1− qd
ξ
)2]

=
2
π

arcsin qd, and E

[
ξĤ
(√ qd

1− qd
ξ
)]

=

√
2qd

π
.

One can now compute the integrals over the “hat” variables in eq. (D.10). Denote Γf
0 ≡

√
2(1−qd)

π ,

and Sf
2 ≡ 2

π arcsin qd. This yields:

IC =
∫

R2
DwDS1G

(
y, w,Γf

0 ,

√
2(arcsin qd − qd)

π
S1 + w

√
2qd

π
, Sf

2

)

× lnG
(
y, w,Γf

0 ,

√
2(arcsin qd − qd)

π
S1 + w

√
2qd

π
, Sf

2

)
. (D.11)

Note that

G
(
y, w,Γf

0 ,

√
2(arcsin qd − qd)

π
S1 + w

√
2qd

π
, Sf

2

)
= H

[
− y

√
2
π

√
arcsin qd − qdS1 + w

√
qd + qa√

1− 2
π (qa + arcsin qd)

]
.

Making the change of variable Snew
1 = S1 + w

√
qd+qa√

arcsin qd−qd
in eq. (D.11), and defining γ ≡

2
π (qa + arcsin qd), one reaches:

IC =
∑

y=±1

∫

R

DxH
[
yx

√
γ

1− γ
]

lnH
[
yx

√
γ

1− γ
]

+O(K−1).

The two values y = ±1 contribute in the same way, which finally yields:

IC = 2
∫

R

DxH
[
x

√
γ

1− γ
]

lnH
[
x

√
γ

1− γ
]

+O(K−1). (D.12)

Note that the parameter γ is naturally bounded to the interval [0, 1] by the conditions 0 ≤ qd ≤ 1
and 0 ≤ qa + qd ≤ 1.

D.2.2 Limit of the prior integral

The prior part IP of the free entropy of eq. (B.6) is very easy to evaluate in the Gaussian
prior setting. Recall that we consider a prior with covariance matrix Q0 = IK . Performing the
Gaussian integration in IP yields:

IP =
K

2
q̂d +

1
2
q̂a −

K − 1
2

ln(1 + q̂d)− 1
2

ln(1 + q̂d + q̂a). (D.13)

D.2.3 Limit of the State Evolution

From the definition of the free entropy in eq. (B.6) and the expansions for IP and IC obtained
in (D.12) and (D.13), one obtains the fixed point equations after having extremized over q̂d and
q̂a (recall that α ≡ m/n):

{
∂qa [IG(qd, qa) + αIC(qd, qa)] = 0,

∂qd
[IG(qd, qa) + αIC(qd, qa)] = 0,

(D.14)
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with IG, Ic defined as:

IG(qd, qa) ≡ 1
2

[qa +Kqd] +
K − 1

2
ln[1− qd] +

1
2

ln[1− qa − qd],

IC(qd, qa) ≡ 2
∫

R

DxH
[
x

√
γ

1− γ
]

lnH
[
x

√
γ

1− γ
]
,

and recall that γ ≡ 2
π (qa + arcsin qd). The fixed point equations (D.14) have different behavior

depending on the scaling of α with the hidden layer size K. We detail them in the following
paragraphs.

Regime α = OK→∞(K)

In this regime (which in particular contains the case in which α stays of order 1 when K →∞),
the fixed point equations (D.14) can be simplified as:

{
qd = 0,

qa = 2α(1− qa)∂IC
∂qa

.
(D.15)

Regime α = ΘK→∞(K)

In this regime, we naturally define α̃K ≡ α/K, such that α̃ will remain of order 1. One can
show that the solutions of the fixed point equations (D.14) must satisfy the following scaling:
qa + qd = 1− χ/K, with χ ≥ 0 reaching a finite value when K →∞. The fixed point equations
in terms of χ and qd read:




qd = 2(1− qd)

(
1√

1−q2
d

− 1
)
α̃∂IC

∂qa
,

χ−1 = 2α̃∂IC
∂qa

.
(D.16)

Note that the State Evolution (SE) computation of Figure 4.2 was performed by solving the
fixed point equations (D.15) and (D.16) (depending on the regime of α).

Stability of the qd = 0 non-specialized solution

It is easy to show that eq. (D.16) always admits what we call a non-specialized solution, i.e. a
solution with qd = 0. This solution stops to be globally optimal in term of the free entropy at
a finite α̃spec ≃ 7.65. However, one can show that this solution will remain linearly stable for
every α̃. We can actually show that it is linearly stable in the much broader regime α = O(K2).
Let us now justify this statement. Going back to the initial formulation of the fixed point
equations (D.14), and adding the correct time indices to iterate them, one obtains:

qt+1
d =

F (qt
d, q

t
a)

1 + F (qt
d, q

t
a)
, (D.17)

qt+1
a =

G(qt
d, q

t
a)

(1 + F (qt
d, q

t
a))(1 + F (qt

d, q
t
a)G(qt

d, q
t
a))

, (D.18)

with F and G defined as:

F (qd, qa) ≡ 2α
K − 1

[∂qd
IC − ∂qaIC ], (D.19)

G(qd, qa) ≡ 2αK
K − 1

[∂qaIC −
1
K
∂qd

IC ]. (D.20)
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We focus on the behavior of (D.17) around qd = 0. Given our previous expansion of IC in
the K → ∞ limit (cf. eq. (D.12)), and eq. (D.19), one easily sees that for α = OK→∞(K2),
then ∂qd

F (qd = 0) →K→∞ 0, which means the qd = 0 solution always remains linearly stable.
However, assume now that α = Θ(K2). Performing a similar calculation to the one described
in Sec. D.2.1, one can show the following expansion:

IC(qd, qa) = I
(0)
C (qd, qa) +

1
K
I

(1)
C (qd, qa) +O

( 1
K2

)
.

The term of ∂qd
F (qd = 0) arising from I

(1)
C will thus have a possibly non-zero contribution in

the K →∞ limit as soon as α/K2 is no longer negligible, as seen from eq. (D.19).

To summarize, the non-specialized solution always remains linearly stable in the large K limit
at least for α ≪ K2. This implies that in this regime, Approximate Message Passing can not
escape the non-specialized fixed point, as seen in Fig. 4.3. For α of order larger than K2, one
would have to explicitly compute I(1)

C in order to check that ∂qd
F (qd = 0) 6= 0, to show that

the non-specialized solution is indeed linearly unstable. This verification of actual instability for
α ∼ K2 is not done in this thesis, and remains to be conducted.

D.2.4 The generalization error at large K

Recall the definition of the generalization error in eq. (D.1). Having this definition in mind,
and recalling that this generalization error only depends on the asymptotic overlap, one can
compute it at large K by applying the same techniques used to compute the channel integral
IC in Sec. D.2.1. One obtains after a tedious (but straightforward) calculation:

ǫBayes
g =

1
π

arccos
[ 2
π

(qa + arcsin qd)
]

+O(K−1). (D.21)

This expression is the one used in the computation of the generalization error in the left panel
of Fig. 4.3.

D.3 RMT analysis of the spiked matrix model

D.3.1 Proof of Lemma 5.6

Point (i) is trivial by definition of S(r)
k (λ) and the result of Lemma 5.5. We turn to points (ii)

and (iii). Let us denote the following function:

T (2)(s) ≡ s[α(1 + α)− (1 + 2α)(1 + sg−1
ν (s)) + (1 + sg−1

ν (s))2].

By Lemma 5.5, we have T (2)(s) = S(2)(g−1
ν (s)), so T (2)(s) < 0 for s ∈ (sedge, 0) by negativity of

S(2)(λ). Therefore, point (ii) is equivalent to:

∀s ∈ (sedge, 0), T (2)(s) = −α∆⇔ s = gν(1) and ∆ ≤ ∆c(α), (D.22)

while point (iii) means that for every ∆ > ∆c(α),

∀s ∈ (sedge, 0), T (2)(s) > −α∆. (D.23)

The condition s > sedge arises naturally as the counterpart of z ≥ λmax. Recall that by Theo-
rem 5.2, we have λmax ≤ 1 for all ∆. As g−1

ν (s) is here completely explicit by eq. (5.26), and
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recalling the form of ρ∆ in eq. (5.23), it is easy to show by an explicit computation that:

∀s 6= −1, T (2)(s) = −α∆ + α[g−1
ν (s)− 1]

s−∆− 2s∆ +
√
s2 − 2s(1 + s)∆ + ∆2

2(1 + s)
,

T (2)(−1) =

{
−α(1 + α) if ∆ ≥ 1,

−α∆(1 + α∆) if ∆ ≤ 1.

It is then easy to see that the only possible solution to T (s) = −α∆ with s ∈ (sedge, 0) is
s = gν(1), if gν(1) 6= −1. However, by Lemma 5.4, for any ∆ > ∆c(α) we have sedge < −1.
Moreover, in this case, one computes very easily (all expressions are explicit) g−1

ν (−1) = 1.
Given the identity above, there is therefore no solution to T (2)(s) = −α∆ in (sedge, 0). By
continuity of T (2)(s), and since lims→0 T

(2)(s) = 0, this implies T (2)(s) > −α∆ for s ∈ (sedge, 0),
which proves point (iii).

Assume now ∆ ≤ ∆c(α). Note that the case ∆ = ∆c(α) is easy, as sedge = −1 is the unique
solution to T (2)(s) = −α(1 + α). For ∆ < ∆c(α), by Lemma 5.4 we obtain −1 < sedge. In
particular, gν(1) > sedge > −1, and we thus have that s = gν(1) is a solution (and the only
one) to T (2)(s) = −α∆ by the identity shown above. This shows (ii) and ends the proof of
Lemma 5.6.

D.3.2 Proof of correlation of the leading eigenvector

We now turn to the study of the leading eigenvector in the claim of Theorem 5.3. Let ṽ be an
eigenvector associated with the largest eigenvalue λ1, normalized such that ‖ṽ‖2 = p. We have:

(λ1Ip − Γ(0)
p )ṽ =

1
∆

WW⊺

k

v⊺ṽ

p
v. (D.24)

By normalization of ṽ, we obtain:

ṽ =
√
p

(λ1Ip − Γ(0)
p )−1 WW⊺

k v
√

v⊺ WW⊺

k AWW⊺

k v
, with A ≡ (λ1Ip − (Γ(0)

p )⊺)−1(λ1Ip − Γ(0)
p )−1.

Therefore:

1
p2
|ṽT v|2 =

1
p

[v⊺(λ1Ip − Γ(0)
p )−1 WW⊺

k v]2

v⊺ WW⊺

k AWW⊺

k v
.

Using v = Wz/
√
k and the concentration of z⊺Mz/k on Tr M/k, we reach as p, k →∞:

1
p2
|ṽT v|2 ≃

[
1
pTr {(λ1Ip − Γ(0)

p )−1(WW⊺

k )2}
]2

1
pTr {A(WW⊺

k )3}
. (D.25)

The numerator is equal to [α−1S
(2)
k (λ1)]2, (recall that S(r)

k is defined in Lemma 5.5). Let us
compute the denominator. Recall that we can write Γ(0)

p = WW⊺M/k, with a symmetric
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matrix M that is independent of W. For any z large enough, we can expand:

Tr
{

(zIp − (Γ(0)
p )⊺)−1(zIp − Γ(0)

p )−1
(WW⊺

k

)3}

=
∞∑

a=0

∞∑

b=0

z−a−b−2 Tr
{(

M
WW⊺

k

)a(WW⊺

k
M)

)b(WW⊺

k

)3}
,

(a)
=

∞∑

a=0

∞∑

b=0

z−a−b−2 Tr
{(W⊺MW

k

)a W⊺W

k

(W⊺MW

k

)b(W⊺W

k

)2}
,

= Tr
{

(zIk − Γ
(0)
k )−1 W⊺W

k
(zIk − Γ

(0)
k )−1

(W⊺W

k

)2}
= kS

(1,2)
k (z),

where in (a) we used the cyclicity of the trace. Given the last statement of Theorem 5.2, we
know lim infp→∞ λ1 ≥ λmax, so we can use the above calculation to write from eq. (D.25):

ǫ(∆) = lim
λ↓λ1

lim
k→∞

1
α

[S(2)
k (λ)]2

S
(1,2)
k (λ)

. (D.26)

As in the eigenvalue transition proof, to make this fully rigorous one would need to use more
precisely concentration results, and would follow exactly the lines of [BGN11]. We now use the
(already proven) transition of the leading eigenvalue, that gives us the value of λ1.

• For ∆ < ∆c(α), we know that λ1 converges almost surely to 1. Consequently:

ǫ(∆) =
1
α

[S(2)(1)]2

S(1,2)(1)
.

By Lemma 5.6, we know that S(2)(1) = −α∆. Moreover λmax < 1 by Theorem 5.2. This
implies that S(1,2)(1) is finite and strictly positive, from its very definition. Therefore for
every ∆ < ∆c(α), ǫ(∆) > 0.

• For ∆ = ∆c(α), we have λmax = 1 and limλ→1 S
(2)(λ) = −α∆ as we have shown. For every r, q,

let us define the functions T (r) and T (r,q) by S(r)(λ) = T (r)[gν(λ)] and S(r,q)(λ) = T (r,q)[gν(λ)].
By Lemma 5.5 and the chain rule, we have for all s(sedge, 0):

T (1,2)(s) = sT (3)(s)− [1 + sg−1
ν (s)]

[
T (1,1)(s) + (1 + α)

∂sT
(1)(s)

∂sg
−1
ν (s)

]
(D.27)

+ αs[(1 + α)s+ T (1)(s) + T (2)(s)]
∫

ρ∆(dt)t
(1 + ts)2

[
t
∂sT

(1)(s)
∂sg

−1
ν (s)

− s
]
.

Recall that g−1
ν (s) is explicit by eq. (5.26) and sedge = limλ↓λmax gν(λ). It moreover satisfies (cf.

Theorem 5.2) ∂sg
−1
ν (sedge) = 0. For ∆ = ∆c(α), by Lemma 5.4 we have gν(1) = −1 = sedge. It

is then only trivial algebra to verify from eq. (D.27) and the remaining relations of Lemma 5.5
that T (1,2)(−1) = +∞, which implies ǫ(∆c(α)) = 0.

• We investigate here the ∆→ 0 limit. In this limit, we know from eq. (D.26) and the analysis
in the case ∆ < ∆c(α) above that

lim
∆→0

ǫ(∆) = lim
∆→0

α∆2

S(1,2)(1)
.
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It is again heavy but straightforward algebra to verify from eq. (D.27) and the remaining
relations of Lemma 5.5 that as ∆→ 0 and for any s ∈ (sedge, 0):

T (1,2)(s) = α∆2 +O(∆3).

This yields lim∆→0 ǫ(∆) = 1.

• Finally, we consider ∆ > ∆c(α). By eq. (D.26) and item (iii) of Lemma 5.6, to obtain
ǫ(∆) = 0 we only need to prove that limλ→λmax S

(1,2)(λ) = +∞. Equivalently, we must show
lims→sedge

T (1,2)(s) = +∞. Recall that ∂sg
−1
ν (sedge) = 0 and that since sedge is finite, all

T (r)(sedge) for r = 0, 1, 2, 3 are finite as well by Lemma 5.5. It thus only remains to check
that lims→sedge

T (1,2)(s)∂s g
−1
ν (s) > 0. This would imply that lims→sedge

T (1,2)(s) = +∞. We
put this statement as a lemma, actually stronger than what we need:

Lemma D.1 (Lower bound on T (1,2))

For every α > 0 and ∆ > 1, we have lim infs→sedge
T (1,2)(s)∂sg

−1
ν (s) > 0.

We prove this for every ∆ > 1, while only the case ∆ > ∆c = 1 + α is needed in our analysis.
As already argued, this lemma ends the proof of the eigenvector correlation in Theorem 5.3.

Proof of Lemma D.1 – The idea is to lower bound S(1,2)(λ) by ∂λgν(λ), for every λ > λmax.
We separate three cases:

• First, assume α > 1. Then W⊺W/k has full rank. In particular, by the classical results of
[MP67], its lowest eigenvalue, denoted ζmin, converges almost surely to (1−α−1/2)2. Moreover,
for any two symmetric positive square matrices A and B, we know that Tr [AB] ≥ 02. This
implies immediately that if a0 is the smallest eigenvalue of A, then Tr [AB] ≥ a0Tr [B], as
A− a0I is positive. We can use this to write, for any λ > λmax:

S
(1,2)
k (λ) =

1
k

Tr
[
(Γ(0)

k − λIk)−1
(W⊺W

k

)
(Γ(0)

k − λIk)−1
(W⊺W

k

)2]
,

≥ ζ2
min

1
k

Tr
[
(Γ(0)

k − λIk)−1
(W⊺W

k

)
(Γ(0)

k − λIk)−1],

≥ ζ3
min

1
k

Tr [(Γ(0)
k − λIk)−2].

Taking the limit k →∞ in this last inequality, we obtain:

S(1,2)(λ) ≥ (1− α−1/2)6∂λgν(λ).

Taking the limit λ→ λmax (or equivalently s→ sedge) yields the sought result:

lim inf
s→sedge

T (1,2)(s)∂sg
−1
ν (s) ≥ (1− α−1/2)6 > 0. (D.28)

• Assume now α < 1. We do the same reasoning, as WW⊺/k has now full rank, and its smallest
eigenvalue, also denoted ζmin, converges a.s. as k → ∞ to (1 −√α)2. We know that we can
rewrite S(1,2)

k (λ) as the trace of a p× p matrix:

S
(1,2)
k (λ) =

1
k

Tr [((Γ(0)
p )⊺ − λIp)−1(Γ(0)

p − λIp)−1
(WW⊺

k

)3
],

≥ ζ3
min

1
k

Tr [((Γ(0)
p )⊺ − λIp)−1(Γ(0)

p − λIp)−1] ≥ ζ3
min

1
k

Tr [(Γ(0)
p − λIp)−2],

2Indeed, there exists a positive square root of A, and Tr [AB] = Tr[A1/2BA1/2] ≥ 0.
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in which the last inequality comes from Tr [AA⊺] ≥ Tr [A2] for any positive square matrix A.
Once again, taking the limit k →∞, and then the limit λ→ λmax, this yields

lim inf
s→sedge

T (1,2)(s)∂sg
−1
ν (s) ≥ (1− α1/2)6 > 0. (D.29)

• Finally, we treat the α = 1 case. In this case, we can not use easy bounds as in the two
previous cases, since the support of the Marchenko-Pastur distribution touches 0. However,
recall that everything is explicit here : ρ∆ is given by eq. (5.23), g−1

ν (s) is given by eq. (5.26)
and Lemma 5.5 gives all the T (r) and T (r,q) in terms of g−1

ν and ρ∆. We can moreover use
what we proved in Theorem 5.2:

∂sg
−1
ν (sedge) =

1
s2
− α

∫
ρ∆(dt)

t2

(1 + tsedge)2
= 0.

This can be used to simplify the term ∂sT
(1)(s) and the term

∫
ρ∆(dt)[t/(1 + ts)]2. Some

heavy but straightforward algebra yields from these relations that the following limit is finite,
and is given by:

lim
s→sedge

T (1,2)(s) ∂sg
−1
ν (s) = h(sedge),

with

h(s) =
h1(s)2 × h2(s)

4s6
, and

{
h1(s) = −∆ +

√
∆2 + s2 − 2∆(2s+ 1)s+ s,

h2(s) = 3∆− 3
√

∆2 + s2 − 2∆(2s+ 1)s+ s(4s− 3).

It is then very simple algebra (solving quadratic equations and using ∆ > 1) to see that there
is no real negative solution to h(s) = 0, and that h(s) > 0 for all s ∈ (−∞, 0). This implies
that h(sedge) > 0, which ends the proof.

�

D.4 State evolution of spectral methods with genera-

tive prior

As we have already mentioned in Section 5.2.4, one of the greatest virtues of AMP is being able
to track its asymptotic performance through a set of simple scalar state evolution equations.
Note that for the noiseless linear channel Pout(v|x) = δ(v − x), Algorithm 4 is already linear!
As a consequence, the state evolution equations associated to the spectral method are simply
dictated by the set of AMP state evolution equations eq. (5.18).

However, it is worth stressing that as LAMP returns a normalized estimator, the LAMP MSE
is not given by the AMP mean squared error. We now compute the overlaps and mean squared
error performed by this spectral algorithm.

MSE achieved by LAMP – Recall that mv and qv are the parameters defined in eq. (5.16),
respectively measuring the overlaps between the ground truth v⋆ and the estimator v̂, and the
norm of the estimator. In the general case, the MSE of eq. (5.7) becomes:

MSEv = ρv + Ev⋆ lim
p→∞

1
p
‖v̂‖22 − 2Ev⋆ lim

p→∞
1
p

v̂⊺v⋆ = ρv + qv − 2mv , (D.30)
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However the LAMP spectral method computes the normalized leading eigenvector of the struc-
tured matrix Γvv

p . Hence the norm of the LAMP estimator is ‖v̂‖2LAMP = qv,LAMP = 1, while the
Bayes-optimal AMP estimator is not normalized, and satisfies ‖v̂‖2AMP = q⋆

v,AMP = m⋆
v,AMP 6= 1,

with q⋆
vAMP solution of eq. (5.18). As the non-normalized LAMP estimator follows the AMP

state evolution in the linear case, the overlap with the ground truth is thus given by:

mv,LAMP ≡ Ev⋆ lim
p→∞

1
p

v̂⊺
LAMPv⋆ = Ev⋆ lim

p→∞
1
p

(
v̂AMP

‖v̂‖AMP
)⊺v⋆ =

m⋆
v,AMP

(q⋆
v,AMP)1/2

= (m⋆
v,AMP)1/2 .

Therefore the mean squared error performed by the LAMP method is easily obtained from the
optimal overlap reached by the AMP algorithm and yields

MSEv,LAMP = ρv + 1− 2(q⋆
v,AMP)1/2 . (D.31)

MSE achieved by PCA – The respective result for PCA can be obtained from the observation
that for the linear case, the α = 0 LAMP operator reduces exactly to the matrix Y. Therefore
we can simply state that the mean squared error performed by PCA is computed using the
optimal overlap reached by AMP at α = 0:

MSEv,PCA = ρv + 1− 2(q⋆
v,AMP|α=0)1/2 . (D.32)

Comparing AMP with spectral methods – In order to fairly compare PCA, LAMP and
AMP in Fig. 5.4, instead of showing the MSE corresponding to the normalized PCA and LAMP
estimators (i.e. eqs. (D.31) and (D.32)), we rescale these spectral estimators by the optimal
normalization (q⋆

v,AMP)1/2 (obtained from AMP). This is the convention used in Fig. 5.4, both
in the linear and non-linear cases.

D.5 Derivation of thresholds in phase retrieval

D.5.1 Weak recovery

We detail here the derivation of the algorithmic weak-recovery threshold αWR,Algo. As discussed
in Section 6.3.1, the weak-recovery threshold can be identified as the sample complexity for
which the trivial fixed point qx = qz = q̂x = q̂z = γx = γz = 0 of the state evolution equations
becomes linearly unstable. We repeat here the detailed state evolution for convenience:





qx =
∫

K

Dβξ

∣∣ ∫
K
P0(dx) x e− β

2
q̂x|x|2+β

√
q̂xx·ξ∣∣2

∫
K
P0(dx) e− β

2
q̂x|x|2+β

√
q̂xx·ξ

,

qz =
1

Q̂z + q̂z

[ q̂z

Q̂z

+
∫

dy Dβξ

∣∣∣
∫ Dβz z Pout

(
y
∣∣∣ z√

Q̂z+q̂z

+
√

q̂z

Q̂z(Q̂z+q̂z)
ξ
)∣∣∣

2

∫ DβzPout

(
y
∣∣∣ z√

Q̂z+q̂z

+
√

q̂z

Q̂z(Q̂z+q̂z)
ξ
)

]
,

q̂x =
qx

ρ(ρ− qx)
− γx,

q̂z =
qz

Qz(Qz − qz)
− γz,

ρ− qx =
〈 1
ρ−1 + γx + λγz

〉

ν
,

α(Qz − qz) =
〈 λ

ρ−1 + γx + λγz

〉

ν
.

(D.33)
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Letting qx = qz = q̂x = q̂z = γx = γz = 0, it is clear that the equations are satisfied if the signal
distribution P0 and the likelihood Pout satisfy the symmetry conditions of Def. 6.1. Assuming
these conditions hold, we are interested in studying the linear stability of this local maximum.
Recalling that Qz = ρ〈λ〉ν/α, the first, third and fourth equations of (D.33) can be linearized:

δqx = ρ2δq̂x, δq̂x =
δqx

ρ2
− δγx, δq̂z =

α2δqz

ρ2〈λ〉2ν
− δγz. (D.34)

The second equation in (D.33) can be linearized to give:

δqz =
ρ2〈λ〉2ν
α2

δq̂z

(
1 +

∫

R

dy

∣∣∣
∫
K
Dβz (|z|2 − 1) Pout

(
y
∣∣
√

ρ〈λ〉ν

α z
)∣∣∣

2

∫
K
Dβz Pout

(
y
∣∣
√

ρ〈λ〉ν

α z
)

)
. (D.35)

Finally, it remains to compute the infinitesimal variation for δγx, δγz:




δγx =
〈λ2〉ν

ρ2[〈λ2〉ν − 〈λ〉2ν ]
δqx −

α〈λ〉ν
ρ2[〈λ2〉ν − 〈λ〉2ν ]

δqz,

δγz = − 〈λ〉ν
ρ2[〈λ2〉ν − 〈λ〉2ν ]

δqx +
α

ρ2[〈λ2〉ν − 〈λ〉2ν ]
δqz.

(D.36)

Combining eqs. (D.34),(D.35),(D.36), we can simplify the system to a closed set equations over
only (δqx, δq̂x, δqz, δq̂z). Given the usual heuristics of the replica method and its link with
message-passing algorithms [ZK16, TK20], one can easily check that the following time iteration
of these equations corresponds to the state evolution of the G-VAMP algorithm:





δqt+1
x = ρ2δq̂t

x,

δqt+1
z =

ρ2〈λ〉2ν
α2

δq̂t
z

(
1 +

∫

R

dy

∣∣∣
∫
K
Dβz (|z|2 − 1) Pout

(
y
∣∣
√

ρ〈λ〉ν

α z
)∣∣∣

2

∫
K
Dβz Pout

(
y
∣∣
√

ρ〈λ〉ν

α z
)

)
,

δq̂x
t = − 〈λ〉2ν

ρ2[〈λ2〉ν − 〈λ〉2ν ]
δqt

x +
α〈λ〉ν

ρ2[〈λ2〉ν − 〈λ〉2ν ]
δqt

z,

δq̂z
t =

〈λ〉ν
ρ2[〈λ2〉ν − 〈λ〉2ν ]

δqt
x + [

α2

ρ2〈λ〉2ν
− α

ρ2[〈λ2〉ν − 〈λ〉2ν ]
]δqt

z.

(D.37)

From these equations, one can easily see that a linear instability of the trivial fixed points
appears at α = αWR,Algo satisfying eq. (6.13). Indeed at α = αWR,Algo, the modulus of all the
eigenvalues of the size-4 matrix of the linear system (D.37) cross 1.

D.5.2 Perfect recovery

In this section, we assume a Gaussian standard prior P0 = Nβ(0, 1) and a noiseless phase
retrieval channel, and we show that information-theoretic full recovery is achieved exactly at
α = αFR,IT ≡ β(1 − ν({0})). We can assume without loss of generality that 〈λ〉ν = α, as
this amounts to a simple rescaling of Φ, irrelevant under the noiseless channel. This implies in
particular that Qz = Q̂z = 1.
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The state evolution equations

Since we assumed a Gaussian prior we have, with Pout(y|z) = δ(y − |z|2):




qz =
1

1 + q̂z

[
q̂z +

∫
dy
∫

K

Dβξ

∣∣∣
∫
K
Dβz z Pout

(
y
∣∣∣ z√

1+q̂z
+
√

q̂z

1+q̂z
ξ
)∣∣∣

2

∫
K
DβzPout

(
y
∣∣∣ z√

1+q̂z
+
√

q̂z

1+q̂z
ξ
)

]
, (D.38a)

q̂x =
qx

1− qx
, (D.38b)

q̂z =
qz

1− qz
− γz, (D.38c)

qx = αγz(1− qz), (D.38d)

α(1− qz) =
〈 λ

1 + λγz

〉

ν
. (D.38e)

Comparing these equations to Conjecture 6.1, one can see that in particular we have γx = 0, a
straightforward consequence of the Gaussian prior.

Noisy phase retrieval with small variance

We wish to show that the free entropy of the full recovery solution is the global maximum of
the free entropy potential for α > αIT, while it is never the case for α < αIT. However, under a
noiseless channel, the free entropy potential might diverge in this point, which indicates towards
a regularization procedure. Therefore we consider a noisy Gaussian channel with noise ∆ > 0,
i.e. Pout(y|z) = (2π∆)−1/2 exp{−(y − |z|2)2/(2∆)}. We will compute the limit, as ∆ ↓ 0, of the
free entropy of the “almost perfect” recovery fixed point. We look for a solution close to the
point which corresponds to the best possible recovery, that is qz = 1 and qx = 1−ν({0}). Indeed
it is easy to see that qx ≤ 1− ν({0}) since rk[Φ†Φ] ∼ n(1− ν({0})). We are thus looking for a
fixed point of the state evolution equations (D.38) that satisfies:

{
qx = 1− ν({0}) + O∆(1), qz = 1 + O∆(1),

q̂−1
x = ν({0})/(1− ν({0})) + O∆(1), q̂−1

z = O∆(1).
(D.39)

Let us now precise the asymptotics of these quantities as ∆ ↓ 0. By eq. (D.38d), we find easily:

γz ∼
1− ν({0})
α(1− qz)

. (D.40)

Then from eq. (D.38c), we also have:

q̂z ∼
α− 1 + ν({0})
α(1− qz)

. (D.41)

Note that if α ≤ 1, then necessarily ν({0}) ≥ 1 − α, so that the quantity in the numerator is
always positive. We now turn to eq. (D.38a). We assume the scaling q̂−1

z = c∆ + O∆(∆). We
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have by Gaussian integration by parts and using the specific form of Pout:

∫
dyDβξ

∣∣∣
∫ Dβz z Pout

(
y
∣∣∣ z√

1+q̂z
+
√

q̂z

1+q̂z
ξ
)∣∣∣

2

∫ DβzPout

(
y
∣∣∣ z√

1+q̂z
+
√

q̂z

1+q̂z
ξ
)

=
1

(1 + q̂z)

∫
dyDβξ

∣∣∣
∫ Dβz P

′
out

(
y
∣∣∣ z√

1+q̂z
+
√

q̂z

1+q̂z
ξ
)∣∣∣

2

∫ DβzPout

(
y
∣∣∣ z√

1+q̂z
+
√

q̂z

1+q̂z
ξ
) ∼ 4

∆(1 + q̂z)
∼ 4c.

Note that in the complex case the derivative P ′
out is here taken over z considered as an element of

R
2: it is not the Wirtinger derivative of complex analysis. This yields 1−qz = ∆c(1−4c)+O∆(1).

Combining this result with eq. (D.41), we have

c(1− 4c) = c
[α− 1 + ν({0})

α

]
.

This implies c = (1 − ν({0}))/(4α), and we finally obtain the leading order asymptotics of
qz, q̂z, γz as ∆ ↓ 0:





q̂z =
4α

(1− ν({0}))∆ + O∆(∆−1),

1− qz =
(1− ν({0})(α− 1 + ν({0}))

4α2
∆ + O∆(∆),

γz =
4α

∆(α− 1 + ν({0})) + O∆(∆−1).

(D.42)

We then compute the asymptotics of the three auxiliary functions of Conjecture 6.1. Using
eq. (D.42) and the specific form of the channel, we reach:

I0(qx) + Iint(qx, qz) ∼ −β(α− 1 + ν({0}))
2

ln ∆,

Iout(qz) ∼ (β − 1)
2

ln ∆.

Therefore when considering the total free entropy we have

I0(qx) + Iint(qx, qz) + αIout(qz) ∼ β(1− ν({0}))− α
2

ln ∆.

This implies that the full recovery point has a free entropy of −∞ for α < αFR,IT ≡ β(1−ν({0})),
and +∞ for α > αFR,IT. Thus this point is always the global maximum of the free entropy for
α > αFR,IT, while it is never the case for α < αFR,IT, which ends our argument.
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D.6 Details of the spectral methods analysis for phase

retrieval

D.6.1 The expansion of F (x, y) around y = 0

We describe here the behavior of F (x, y) defined in eq. (6.25) as x > 0 and y ↓ 0. Let us write
the equations satisfied by ζx, ζy:

〈 ζy

ζxζy + λ

〉

ν
= x,

α− 1
ζy

+
〈 ζx

ζxζy + λ

〉

ν
= αy. (D.43)

As y ↓ 0, this implies necessarily that ζy → +∞, and one finds easily that ζy ∼ 1/y, ζx ∼ 1/x.
We now turn to the next order variations, that we write as:

ζy = y−1 + c1 +O(y), ζx =
1
x

+ c2y +O(y2).

We use eq. (D.43) to compute c1 = −x〈λ〉ν/α and c2 = −〈λ〉ν . We can then develop:

1
2
〈ln(ζxζy + λ)〉ν = −1

2
ln y − 1

2
ln x− x

2α
〈λ〉νy +O(y2).

Developing the other terms involved in F (x, y) is straightforward and yields:

F (x, y) = −xy
2
〈λ〉ν +O(y2). (D.44)

One can push this analysis to the next order, and finds in the exact same way, from eq. (D.43):

ζy =
1
y
− x〈λ〉ν

α
+
x2

α2

[
α〈λ2〉ν − (1 + α)〈λ〉2ν

]
y +O(y2),

ζx =
1
x
− 〈λ〉νy +

x

α

[
α〈λ2〉ν − (1 + α)〈λ〉2ν

]
y2 +O(y3).

This yields for F (x, y):

F (x, y) = −〈λ〉ν
2
xy +

x2

4α
[
α〈λ2〉ν − (1 + α)〈λ〉2ν

]
y2 +O(y3),

which concludes our analysis.

D.6.2 Proof of Proposition 6.6

Let us recall the two spectral methods M(TAP), M(LAMP). Without loss of generality, we assume
〈λ〉ν = α. Recall that we defined zµ ≡ ∂ωgout(yµ, 0, ρ). We let Z ≡ Diag(zµ). We can thus write:

M(LAMP) = ρ
(ΦΦ†

n
− Im

)
Z and M(TAP) = −1

ρ
In +

1
n

Φ† Z

Im + ρZ
Φ.

We start by the first claim. By definition of (λLAMP,v), we have

ρ
ΦΦ†

n
Zv = (ρZ + λLAMP)v. (D.45)
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Since we assumed λLAMP + ρzµ 6= 0 for all µ, this implies that Φ†Zv 6= 0, and we thus let

x̂ ≡ Φ†Zv

‖Φ†Zv‖
√
n.

Multiplying eq. (D.45) by Φ†Z(λLAMP+ρZ)−1 on both sides, we directly reach the sought result:

{ 1
n

Φ† ρZ

λLAMP + ρZ
Φ
}

x̂ = x̂.

We move on to the second claim. Let x ∈ K
n be an eigenvector of M(TAP) with norm ‖x‖2 = n,

with associated eigenvalue λTAP. We let:

u ≡ Im

Im + ρZ

Φ√
n

x.

And we can then easily compute:

M(LAMP)u = ρ
(ΦΦ†

n
− Im

) Z

Im + ρZ

Φ√
n

x =
ρΦ√
n

[
M(TAP) +

1
ρ

In

]
x− ρZu,

= ρλTAP
Φ√
n

x +
Φ√
n

x− ρZu = u + ρλTAP(Im + ρZ)u. (D.46)

At α = αWR,Algo, the largest eigenvalue of M(TAP) concentrates on 0, which corresponds to
the onset of marginal instability of the trivial local maximum. As one can see from eq. (D.46),
this implies that M(LAMP) also possesses an eigenvalue equal to 1 at α = αWR,Algo, indicating
marginal instability as well. To put it shortly, the two spectral methods have the same weak
recovery threshold. Moreover, eq. (D.46) implies that for any α ≥ αWR,Algo, if M(TAP) has en
eigenvalue that concentrates on 0 as n → ∞, then M(LAMP) has a corresponding eigenvalue
concentrating on 1, and with the same performance. Indeed, as described in eq. (6.24), the
estimator associated to M(LAMP) will be given by:

x̂LAMP ∝
Φ†
√
n

Zu =
Φ†
√
n

Z

Im + ρZ

Φ√
n

x̂TAP,

in which x̂TAP is an eigenvector of M(TAP) with eigenvalue 0. Therefore, we reach that x̂LAMP ∝
x̂TAP, and these two vectors are thus equal as they are both normalized.
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Appendix E

Details of the topological approach

E.1 The quenched complexity calculation

E.1.1 The phase volume factor

Introducing the Fourier transform of the deltas, we reach at leading exponential order in n:

1
n

ln
p∏

a=1

∫

Rn
dxa

∏

a≤b

δ
(
nqab − nxa · xb) ≃ p

2
ln

2π
n

+
1
2

sup
{q̂ab}

[∑

a,b

qabq̂ab − ln det q̂
]
.

The replica symmetric assumption can also be made on the variables q̂ that achieve this supre-
mum : q̂aa = q̂0 and q̂ab = −q̂ for a 6= b. This leads to det q̂ = (q̂0 + q̂)p−1(q̂0 − (p − 1)q̂), and
after taking the p ↓ 0 limit, we reach:

1
np

ln
p∏

a=1

∫

Rn

dxa
∏

a≤b

δ
(
nqab − nxa · xb

)
≃ 1

2
ln

2π
n

+
1
2

sup
q̂0,q̂

[
q̂0 + qq̂ − ln(q̂0 + q̂) +

q̂

q̂0 + q̂

]
.

The diverging term −(lnn)/2 will be canceled out by the joint density of the gradients as we
will see later. The solution of the supremum is easy to carry out, and we finally reach eq. (7.30).

E.1.2 The joint density of the gradients

We denote S = Span ({xa}pa=1) ⊂ R
n. Following [RBABC19], for every 1 ≤ a ≤ p we can

construct an orthonormal basis of S, denoted (ea
b )1≤b≤p for which xa is the first vector, that is

ea
a = xa. This basis is convenient, since {xa}⊥ ∩ S = Span ({ea

b}b( 6=a)). We can also chose an
arbitrary orthonormal basis (ep+1, · · · , en) of S⊥. With this choice of basis, we can see that the
gradient gradL(xa) is identified with the vector in R

n−1 with components:

gradL(xa) =
({∇L(xa) · ea

i }a−1
i=1 , {∇L(xa) · ea

i }pi=a+1, {∇L(xa) · ei}ni=p+1

)
. (E.1)

Recall that ∇L(xa) = (1/m)
∑

µ ξµ φ
′(ya

µ). Let us make a few remarks:

• For every a, the Gram matrix of the basis (ea
b )p

b=1 is only a function of the values of the
overlaps {qab}.

• We consider the joint density of the gradients conditioned by the value of {ya}. In particular,
this means that for every a 6= b, ∇L(xa) · ea

b is fixed by the values of {yc}pc=1 and the overlaps
qab. In particular, the first (p−1) components of eq. (E.1) are deterministic, thus their density
will yield delta functions that are constraints on {ya} and {qab}.

• The last n−p components of eq. (E.1) are (at fixed {ya}) zero mean Gaussian random variables
with covariance given by E[gradL(xa)i gradL(xb)j ] = (δij/m

2)
∑

µ φ
′(ya

µ)φ′(yb
µ). Their joint
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density taken at 0 is thus at leading exponential order in n:

exp

{
np

2
ln
m

2π
− n

2
ln det

[(
1
m

m∑

µ=1

φ′(ya
µ)φ′(yb

µ)

)

1≤a,b≤p

]}
. (E.2)

Given these remarks and eq. (E.2), in order to complete the calculation of the joint gradient
density we need to compute the quantities (∇L(xa)·ea

b ) for every a 6= b as a function of {ya
µ} and

{qab}. In order to simplify the calculation, we will already make use of the replica-symmetric
assumption on q, that is we assume qaa = 1 and qab = q for a 6= b. Let us now describe a possible
construction for the basis (ea

b )p
b=1. We introduce three auxiliary quantities that are functions of

q and p:





f0
p (q) ≡ 1

p− 1

[ p− 2√
1− q +

1√
1 + (p− 2)q − (p− 1)q2

]
,

fp(q) ≡ 1
p− 1

[
− 1√

1− q +
1√

1 + (p− 2)q − (p− 1)q2

]
,

zp(q) ≡ − q√
1 + (p− 2)q − (p− 1)q2

.

(E.3)

Using these definitions, we can consider:
{

ea
a ≡ xa,

ea
b ≡ zp(q)xa + f0

p (q)xb + fp(q)
∑

c( 6=a,b) xc, (b 6= a).
(E.4)

It is straightforward to check from eq. (E.4) that we have for all a, b, c that ea
b · ea

c = δbc. We
can now see that the delta term of the joint density of the gradients taken at 0 is:

∏

a 6=b

δ[∇L1(xa) · ea
b ] =

∏

a 6=b

δ

[
1
m

m∑

µ=1

φ′(ya
µ)
(
zp(q)ya

µ + f0
p (q)yb

µ + fp(q)
∑

c( 6=a,b)

yc
µ

)]
. (E.5)

The product of eq. (E.2) and eq. (E.5) gives eq. (7.31).

E.1.3 Decoupling replicas, and the p ↓ 0 limit

Replica symmetry and decoupling

In order to apply the replica method, we need to be able to take the p ↓ 0 limit, by analytically
extending eq. (7.35) to all p > 0. The main idea is that we expect replica symmetry to influence
the measure ν that solves the supremum in eq. (7.35). More precisely, we expect that for all
permutation π of {1, · · · , p}, we have ν(dλ1, · · · ,dλp) = ν(dλπ(1), · · · ,dλπ(p)). Let us see how
this hypothesis simplifies the calculation. We separate in eq. (7.35) the marginals of ν, in the
following way:

sup
ν∈M(p,q)

→ sup
{µa}p

a=1∈M+
1 (R)

sup
ν∈M(p,q)

s.t. {νa=µa}

(E.6)

In this last expression, the replica symmetric assumption leads us in particular to assume that
µa = µ for all a. In order to make the remaining calculation tractable we will also need to fix
some linear statistics of ν via Lagrange multipliers:



Appendix E. Details of the topological approach 268

• For every a ≤ b, we fix the linear statistics
∫
ν(dλ)φ′(λa)φ′(λb) = Aab, with Lagrange multi-

pliers Âab. Note that by replica symmetry, we can assume that Aab = a for a 6= b and Aaa = A
(and similarly for the Lagrange multipliers).

• For all a, b we fix the linear statistics
∫
ν(dλ)φ′(λa)λb = Bab, with Lagrange multipliers B̂ab.

By replica symmetry, we assume that Baa = B and Bab = b (and similarly for B̂ab).

Combining these remarks, we reach that the ν-dependent term of eq. (7.35) is equal to:

sup
µ∈Mφ(B)

sup
A,a
B,b

extr
Â,â

B̂,b̂

sup
ν∈M+

1 (Rn)
s.t. {νa=µ}

{
pκα,φ[µ, tφ(µ)]− 1

2
ln det[{Aab}]−

∑

a,b

[1
2
AabÂab +BabB̂ab

]

+
∑

a,b

[1
2
Âab

∫
ν(dλ)φ′(λa)φ′(λb) + B̂ab

∫
ν(dλ)φ′(λa)λb

]
− αDKL(ν|µG,q)

}
. (E.7)

Note that here we did not always explicit the replica-symmetry assumption on all the variables
to obtain more compact expressions. The supremum over B, b is moreover constrained by the
following condition of eq. (7.34b): ∀a 6= b, zp(q)Baa + f0

p (q)Bab + fp(q)
∑

c( 6=a,b)Bac = 0. Under
the replica symmetric assumption, this becomes:

zp(q)B + f0
p (q)b+ fp(q)(p− 2)b = 0. (E.8)

Again, we introduce Lagrange multipliers Cab to fix these conditions, that reduce to Cab = C
because of replica symmetry. Finally, in order to fix the marginal distributions of ν, we will have
to introduce “functional” Lagrange multipliers ga(λa). Again, by replica symmetry, we expect
all of them to be equal to g(λa). In the end, we obtain from eq. (E.7):

sup
µ∈Mφ(B)
ν∈M(Rn)

sup
A,a
B,b

extr
C,Â,â

B̂,b̂,{g(λ)}

{
pκα,φ[µ, tφ(µ)]− 1

2
ln det[{Aab}]−

∑

a,b

[1
2
ÂabAab + B̂abBab

]
(E.9)

− p
∫
µ(dλ)g(λ) + p(p− 1)C

[
Bzp(q) + b{f0

p (q) + (p− 2)fp(q)}]− αDKL(ν|µG,q)

+
∑

a,b

[Âab

2

∫
ν(dλ)φ′(λa)φ′(λb) + B̂ab

∫
ν(dλ)φ′(λa)λb

]
+
∑

a

∫
ν(dλ)g(λa)

}
.

We can now solve exactly the supremum over ν. By a classical Gibbs measure calculation that
we already detailed in Section 7.3 we obtain (recall that Q ∈ Sp is the overlap matrix):

sup
ν∈M(Rn)

{∫
ν(dλ)

[∑

a,b

(Âab

2
φ′(λa)φ′(λb) + B̂abφ

′(λa)λb
)

+
∑

a

g(λa)
]
− αDKL(ν|µG,q)

}

= α ln
∫

Rp

dλ√
2π

p√
det Q

e

∑
a,b

(
− 1

2
(Q−1)abλaλb+

Âab
2α

φ′(λa)φ′(λb)+
B̂ab

α
φ′(λa)λb

)
+
∑

a

g(λa)
α . (E.10)

To completely decouple the replicas, we will make use of two classical identities, for any x, y:

e
x2

2 =
∫
Dξ eξx , exy =

∫
DξDξ′ e

x√
2

(ξ+iξ′)+ y√
2

(ξ−iξ′)
.
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Thanks to replica symmetry, we can compute Q−1 and det Q as:




det Q = (1− q)p−1[1 + (p− 1)q],

Q−1
ab =

1 + (p− 1)q
1 + (p− 2)q − (p− 1)q2

δab −
q

(1− q)(1 + (p− 1)q)
.

We define




d0,p(q) ≡ 1 + (p− 1)q
1 + (p− 2)q − (p− 1)q2

,

dp(q) ≡ q

(1− q)(1 + (p− 1)q)
.

Using all the above, we can now simplify eq. (E.10):

α ln
∫

Rp

dλ√
2π

p√
det Q

e

∑
a,b

(
− 1

2
(Q−1)abλaλb+

Âab
2α

φ′(λa)φ′(λb)+
B̂ab

α
φ′(λa)λb

)
+
∑

a

g(λa)
α

= −αp
2

ln 2π − α(p− 1)
2

ln(1− q)− α

2
ln[1 + (p− 1)q] + α ln

∫

R4
DξIp(ξ)p, (E.11)

in which we defined ξ ≡ (ξq, ξa, ξb, ξ
′
b) and

Ip(ξ) ≡
∫

dλ e
g(λ)

α
−

d0,p(q)λ2

2 + Â−â
2α

φ′(λ)2+ B̂−b̂
α

φ′(λ)λ+
√

dp(q)ξqλ+
√

â
α

ξaφ′(λ)+
√

b̂
2α

[φ′(λ)(ξb+iξ′

b)+λ(ξb−iξ′

b)].

Although the involved expressions are very cumbersome, we have successfully decoupled the
replicas.

The p ↓ 0 limit, and the final result

We begin by a remark on eq. (E.11). Note that limp↓0(1/p) ln
∫ Dξ Ip(ξ)p =

∫ Dξ ln I0(ξ). Thus,
after multiplication by (1/p), the p ↓ 0 limit of eq. (E.11) will yield:

− α

2
ln 2π − α

2
ln(1− q)− αq

2(1− q) + α

∫
Dξ ln I(ξ), (E.12)

in which I(ξ) is defined in Result 7.1. We can wrap up the calculation. We make two remarks.
First the condition of eq. (E.8) reduces, in the p ↓ 0 limit, to b = qB, so that we will be able
to simplify the terms involving the Lagrange multiplier C. Secondly, the variable B is equal to
tφ(µ), defined in Theorem 7.5. We combine now eqs. (7.34a),(7.35),(E.9) and (E.12) with the
two remarks above. Changing notations from µ to ν and B to C, we obtain finally the conclusion
of Result 7.1.

E.2 Details of proof for the annealed complexity

E.2.1 Proof of Lemma 7.7

We will apply the Kac-Rice machinery in the form of the remark made in Paragraph 6.1.4 of
[AW09b]. We recall it as a theorem:
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Theorem E.1 (Azais-Wschebor)

Let k, d ∈ N
⋆. Let Z : U → R

d be a random field, in which U is an open subset of Rd. Assume
that for every t ∈ U , we can write Z(t) = H[Y (t)], such that:

(i) {Y (t), t ∈ U} is a Gaussian random field with values in R
k, C1 paths, and such that for

every t ∈ U , the distribution of Y (t) is non-degenerate.

(ii) H : Rk → R
d is a C1 function.

(iii) For all t ∈ U , Z(t) has a density ϕZ(t)(x) which is a continuous function of (t, x) ∈ U×Rd.

(iv) P[∃ t ∈ U s.t. Z(t) = 0 and det∇Z(t) = 0] = 0.

For every compact set B ⊆ U , we let N(Z,B) the (finite) number of zeros of Z in B. Then:

E[N(Z,B)] =
∫

B
E
[|det∇Z(t)|

∣∣Z(t) = 0
]
ϕZ(t)(0)dt.

We wish to apply this theorem to Z(x) = gradL1(x). Verifying its hypotheses will end the proof
of Lemma 7.7. We denote ξ ∈ R

n×m the matrix {ξiµ} = {(ξµ)i}, ∇L1 the Euclidean gradient of
L1, and P⊥

x the orthogonal projection on TxS
n−1. Since gradL1(x) = P⊥

x ∇L1(x) we have:

gradL1(x) =
1
m

m∑

µ=1

(P⊥
x ξµ)φ′(ξµ · x). (E.13)

We will apply Theorem E.1 with d = n − 1 and k = m × n. The Gaussian random field

Y (x) ∈ R
n×m is defined as Y (x) ≡

(
P⊥

x ξ1 · · · P⊥
x ξm

ξ1 · x · · · ξm · x

)
. Since Y (x) is just ξ written in an

orthonormal basis of Rn whose last vector is x, its distribution is non-degenerate for every x.
H : Rn×m → R

n−1 is defined as:

∀1 ≤ i < n, H(Y )i ≡
1
m

m∑

µ=1

Yi,µφ
′(Yn,µ), (Y ∈ R

n×m).

Since φ is C2, H is C1. This verifies (i) and (ii). We turn our attention to verifying (iii). One

can write the distribution of the gradient of eq. (E.13) as gradL1(x) d= (1/m)
∑m

µ=1 φ
′(yµ)zµ, in

which yµ
i.i.d.∼ N (0, 1), zµ

i.i.d.∼ N (0, In−1), and all {yµ, zν} are independent. Since the distribution
of gradL1(x) does not depend on x, it is enough to check that its density exists and is a con-
tinuous function. To do so, we will show that its characteristic function ϕ̂gradL1(x) ∈ L1(Rn−1).
We denote ϕ̂a the characteristic function of the random variable a ≡ φ′(y), and one obtains:

‖ϕ̂gradL1(x)‖1 =
∫

Rn−1
dt
∣∣∣Ez∼N (0,In−1) ϕ̂a

(t · z
m

)∣∣∣
m

=
∫

Rn−1
dt
∣∣∣Ez∼N (0,1) ϕ̂a

(‖t‖z
m

)∣∣∣
m
,

=
2π

n−1
2 mn−1

Γ
(

n−1
2

)
∫ ∞

0
dq qn−2|Ez ϕ̂a(qz)

∣∣m.

Since α > 1, if qEz ϕ̂a(qz) = Oq→∞(1) we can conclude that ‖ϕ̂gradL1(x)‖1 <∞. And:

q Ez ϕ̂a(qz) =
∫

R

dz√
2π
e

− z2

2q2 ϕ̂a(z) =
∫

R

dz√
2π

E

[
e

− z2

2q2 eiaz
]

=
1
q
E

[
e− q2a2

2

]
,
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by Fubini’s theorem. Therefore q Ez ϕ̂a(qz) →
q→∞ ϕa(0) by continuity of ϕa around a = 0

(Definition 7.1), so ‖ϕ̂gradL1(x)‖1 <∞. Thus gradL1(x) admits the following probability density:

ϕgradL1(x)(u) =
1

(2π)n−1

∫

Rn−1
dt eiu·t

[
Ez

{
ϕ̂a

(‖t‖z
m

)}]m
, (E.14)

which is a continuous function of u, since ϕ̂gradL1(x) ∈ L1(Rn−1). This shows (iii). In order to
show (iv), we will use Proposition 6.5 of [AW09b], that we recall here:

Lemma E.2 (Azais-Wschebor)

Let d ∈ N
∗, and U a compact subset of R

d. Consider Z : U → R
d a random field, such

that (a): The paths of Z are of class C2, and (b): There exists C > 0 such that for all
t ∈ U and all u in a neighborhood of 0, the density ϕZ(t) of Z verifies ϕZ(t)(u) ≤ C. Then
P[∃t ∈ U s.t. Z(t) = 0 and detZ ′(t) = 0] = 0.

Since φ is assumed to be of class C3, hypothesis (a) is verified for Z = gradL1. Notice then that
we can fix C > 0 such that |Ez∼N (0,1) ϕ̂a(qz)| ≤ C/(1+q) for all q ≥ 0. Starting from eq. (E.14):

|ϕgradL1(x)(u)| ≤ Cn

∫ ∞

0
dq

qn−2

(1 + q)m
≤ Dn,

with Cc, Dn constants depending only on n, using that m ≥ n (α > 1). This shows (b), so by
Lemma E.2, hypothesis (iv) of Theorem E.1 follows. This ends the proof of Lemma 7.7.

E.2.2 Proof of Lemma 7.10

The proof is done in several parts, and is inspired by arguments of [Sil95, SB95, SC95, BS10].

Technicalities on the Hessian

We begin by a technical lemma on Λ(y), defined in eq. (7.12).

Lemma E.3 (Low-rank perturbation)

Since the distributions of z and y are independent, by rotation invariance we can assume that
Λ(y) is a diagonal matrix with elements Λµ(y). There exists a constant, denoted ||D||∞, such
that for all n, y, |D(y)| ≤ ||D||∞. Then we have:

(i) supy∈Rm sup1≤µ≤m |Λµ(y)| ≤ 4||D||∞.

(ii) Let Z ∈ R
(n−1)×m be i.i.d. variables with zero mean and unit variance. We denote µ(n)

D

and µ(n)
Λ the ESDs of ZD(y)Z⊺/n and ZΛ(y)Z⊺/n respectively. Then for all η ∈ (0, 1),

{nη
Ez[µ(n)

D − µ(n)
Λ ]} →

n→∞ 0 weakly and uniformly in y ∈ R
m.

Proof of Lemma E.3 – Recall that |D(y)| = (n/m)|φ′′(y)|. Since m/n → α > 1 and φ′′ is
bounded, |D(y)| is bounded (uniformly over n,y) by a constant that we denote ||D||∞. Note
that sup

1≤µ≤m
|Λµ(y)| = sup

||u||=1
u⊺Λ(y)u. Using eq. (7.12) with v(y) ≡ φ′(y)/||φ′(y)|| we reach

sup
‖u‖=1

u⊺Λ(y)u ≤ ||D||∞ + sup
‖u‖=1

[
|v⊺Dv|(u⊺v)2 + 2(u⊺v)|v⊺Du|

]
,

≤ 2||D||∞ + 2 sup
||u||=1

[(u⊺v)|v⊺Du|] ≤ 4‖D‖∞,
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in which we used the uniform boundedness of |D(yµ)|, and the Cauchy-Schwarz inequality. This
proves (i). We note that zΛ(y)z⊺/n and zD(y)z⊺/n differ by a rank-2 matrix. (ii) is thus an
immediate application of the following result (Lemma 2.5 of [Bor19]):

Lemma E.4 (Low-rank perturbation and empirical spectral distribution)

Let n ≥ 1, and A,B two symmetric matrices of size n, such that the rank of A − B is r.
Denote FA (resp. FB) the CDF of the empirical spectral distribution of A (resp. B). Then

sup
t∈R

|FA(t)− FB(t)| ≤ r

n
.

This ends the proof of Lemma E.3. �

Proof of Lemma E.4 – We note λ1(A) ≥ · · · ≥ λn(A) the eigenvalues of A (and similarly
for B). Recall the weak Weyl’s interlacing inequalities [Wey12]: for every 1 ≤ i ≤ n, λi+r(A) ≤
λi(B) ≤ λi−r(A) (we use the convention λ1−i = +∞ and λn+i = −∞ for i ≥ 1). Let t ∈ R, and
i, j be the smallest indices such that λi(A) ≤ t and λj(B) < t. By the interlacing inequalities,
|i− j| ≤ r. And n|FA(t)− FB(t)| = |(n+ 1− i)− (n+ 1− j)| ≤ r. �

We have some control of the boundedness of the Hessian, summarized in two subsequent lemmas:

Lemma E.5 (Moment bound)

For all γ > 0, one has:

lim sup
n→∞

sup
y∈Rm

1
n

lnEz
{|det HΛ

n (y)|γ} < +∞.

Proof of Lemma E.5 – We begin by bounding the extremal eigenvalues λmin, λmax of HΛ
n (y)

(denoted H for lightness):

λmax = sup
‖u‖2=1

[u⊺Hu] = − 1
m

m∑

µ=1

yµφ
′(yµ) + sup

‖u‖2=1

[ 1
n

m∑

µ=1

Λµ(y)(z⊺u)2
µ

]
,

≤ ‖xφ′(x)‖∞ + 4‖D‖∞ × λmax

[ 1
n

zz⊺
]
.

We used (i) of Lemma E.3. Note that this bound is independent of y. In the same way we can
bound λmin, and we reach:

max(−λmin, λmax) ≤ ‖xφ′(x)‖∞ + 4‖D‖∞ × λmax

[ 1
n

zz⊺
]
,

Using this identity, we have the bound:

1
n

lnEz
{|det HΛ

n (y)|γ} ≤ 1
n

lnEz exp
{
nγ ln

(
‖xφ′(x)‖∞ + 4‖D‖∞λmax(zz⊺/n)

)}
(E.15)

It is then a very classical result of random matrix theory that the largest eigenvalue of a Wishart
matrix zz⊺/n satisfies a large deviation principle in the scale n. This is stated e.g. in Theorem 2.4
of [BG20], or as a particular case of Chapter 8 of the present thesis (Result 8.1), which gives
moreover the behavior of the rate function I(x). We recall some of its properties:

• I(x) = +∞ if x < smax ≡ (1 + α−1/2)2.

• I(x) : [smax,+∞)→ R+ is continuous and increasing.
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• I(x) ∼x→∞ x/2.

In particular, by Varadhan’s lemma 1.10 it implies that for any C,D, γ > 0:

lim sup
n→∞

1
n

lnEz exp
{
nγ ln

[
C +Dλmax(zz⊺/n)

]}
< +∞.

Combining this inequality with eq. (E.15) ends the proof of Lemma E.5. �

Lemma E.6 (Properties of µα,φ)

Denote ρn(y) the spectral radius of HΛ
n (y). There exists C > 0 such that:

(i) With probability 1, lim supn→∞ supy∈Rm ρn(y) < C.

(ii) The support of µα,φ[νm
y ] is included in (−C,C) uniformly over y and n.

(iii) For all y ∈ R
m, µα,φ[νm

y ] has a well-defined and continuous density outside x = 0.

Proof of Lemma E.6 – Points (ii) and (iii) are consequences of Theorem 1.1 of [SC95], while
(i) follows from the boundedness of Λ(y) and the one of xφ′(x), as in Lemma E.5. �

The cut-off and the logarithmic potential

For any ǫ > 0, define lnǫ : x ∈ R
⋆
+ 7→ ln(max(x, ǫ)), then x 7→ lnǫ |x| is a ǫ−1-Lipschitz function

on R. Let δ ∈ (0, 1). In this section, we show that a cut-off ǫn = n−δ on the eigenvalues closest
to 0 does not perturb the logarithmic potential at the thermodynamical scale. As we mentioned
in Section 7.2 we rely on a technical assumption on φ(x). Precisely, for any δ ∈ (0, 1), we assume
that there exists η > 0 such that for all t > 0:





lim
n→∞

1
n1+η

lnP

[∣∣∣∣∣
1
n

∑

λ∈Sp(HΛ
n (y))

ln |λ|1{|λ| ≤ n−δ}
∣∣∣∣∣ ≥ t

]
= −∞, (E.16a)

lim
n→∞

1
n1+η

lnP

[ ∫

|x−tφ(νm
y )|≤n−δ

µα,φ[νm
y ](dx) ln

∣∣x− tφ(νm
y )
∣∣ ≤ −t

]
= −∞. (E.16b)

Physically, this makes explicit that, with large probability, there should not be enough eigenval-
ues of HΛ

n (y) around zero so that they contribute macroscopically to the logarithmic potential.
This is a consequence the natural fluctuations and repulsion of the eigenvalues of HΛ

n (y), and we
are working to prove it under Definition 7.1 by adapting the arguments of [BABM21a]. Denote
{λi}n−1

i=1 the (sorted) eigenvalues of HΛ
n (y). We can now state:

Lemma E.7 (Effect of the cut-off on the expected determinant)

There exists η > 0 such that for all K > 0:

lim
n→∞

1
n1+η

lnP

[∣∣∣
1
n

lnE|det HΛ
n (y)| − 1

n
lnE e

∑n−1

i=1
lnǫn |λi|

∣∣∣ ≥ K
]

= −∞.

Proof of Lemma E.7 – We consider η given by eq. (E.16a). Let t > 0. We denote A(n)
t the

event

A
(n)
t ≡

{∣∣∣
1
n

n−1∑

i=1

ln |λi|1{|λi| ≤ n−δ}
∣∣∣ ≥ t

}
.
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We have for all y and t > 0 (Ā(n)
t being the complementary event to A(n)

t ):

1
n

lnEz e
∑n−1

i=1
ln |λi| ≥ 1

n
lnEz

{
e
∑n−1

i=1
ln |λi|1[Ā(n)

t ]
}
≥ −t+

1
n

lnEz

{
e
∑n−1

i=1
lnǫn |λi|1[Ā(n)

t ]
}
.

So that (using lnǫn(x) ≥ ln(x) for all x > 0):

0 ≤ 1
n

lnE e
∑n−1

i=1
lnǫn |λi| − 1

n
lnE|det HΛ

n (y)| ≤ t− 1
n

ln

[
1−

Ez

{
e
∑n−1

i=1
lnǫn |λi|1[A(n)

t ]
}

Ez

{
e
∑n−1

i=1
lnǫn |λi|

}
]
.

We know lnǫn |x| ≥ −δ ln(n). By Lemma E.5, for all γ > 0:

lim sup
n→∞

sup
y∈Rm

1
n

lnEz

[
eγ
∑n−1

i=1
lnǫn |λi|

]
< +∞.

Fixing γ > 1 and using Hölder’s inequality, there exists therefore C > 0 such that for all K > 0
and t ∈ (0,K):

lim sup
n→∞

1
n1+η

lnPy

[∣∣∣∣∣
1
n

lnEz|det HΛ
n (y)| − 1

n
lnEz e

∑n−1

i=1
lnǫn |λi|

∣∣∣∣∣ ≥ K
]

≤ lim sup
n→∞

1
n1+η

lnPy

[
Pz[A(n)

t ]1/γ ≥ e−n(δ ln(n)+C)
[
1− en(t−K)

]]
,

(a)

≤ lim sup
n→∞

1
n1+η

ln

{
P[A(n)

t ]
e−γn(δ ln(n)+C)[1− en(t−K)]γ

}
(b)
= −∞,

in which we used the Markov inequality in (a) and eq. (E.16a) in (b). � For

simplicity we will often abusively denote in the following lnǫn |det HΛ
n (y)| ≡ ∑n−1

i=1 lnǫn |λi| and

lnǫn E|det HΛ
n (y)| ≡ lnE e

∑n

i=1
lnǫn |λi|.

Concentration of the logarithmic potential with a cut-off

We show here that discarding the eigenvalues of the Hessian that are close to 0 using a cut-off
ǫn ≡ n−δ, we have concentration of the logarithmic potential.

Proposition E.8 (Concentration of the logarithmic potential)

Let us fix δ < 1/2 and recall that ǫn = n−δ. Then:

∀t > 0, lim sup
n→∞

sup
y∈Rm

1
n2(1−δ)

lnPz

[
1
n

∣∣∣∣∣ lnǫn |det HΛ
n (y)| − Ez lnǫn |det HΛ

n (y)|
∣∣∣∣∣ ≥ t

]
< 0.

Proof of Proposition E.8 – We will try to use traditional Lipschitz concentration bounds (cf
e.g. [AGZ10]). We will study under which conditions the function G(z) ≡ (1/n) lnǫn |det H̃

Λ
n (y)|

is a Lipschitz function of z ∈ R
(n−1)×m (for fixed y). We will do it by bounding ‖∇zG‖∞. Let

fn(x) ≡ lnǫn |x| for x ∈ R. We have:

n−1∑

i=1

m∑

µ=1

(
∂G(z)
∂ziµ

)2

=
1
n4

n−1∑

i=1

m∑

µ=1

[
Tr
{
f ′

n

( 1
n

zΛ(y)z⊺
)
∆iµ

}]2

,
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in which ∆iµ ∈ R
(n−1)×(n−1) with (∆iµ)jk ≡ Λµ(y)(δijzkµ + δikzjµ). So one shows easily:

n−1∑

i=1

m∑

µ=1

(
∂G(z)
∂ziµ

)2

=
4
n3

Tr

[(
f ′

n

( 1
n

zΛ(y)z⊺
))2(

1
n

zΛ(y)2z⊺
)]
. (E.17)

Let us recall the Hoffman-Wielandt inequality [HW03]:

Lemma E.9 (Hoffman-Wielandt inequality for the L2 norm)

Let k ∈ N
⋆, and A,B ∈ Sk(R) be two symmetric matrices with respective eigenvalues λ1(A) ≤

· · · ≤ λk(A) and λ1(B) ≤ · · · ≤ λk(B). Then
∑k

i=1[λi(A)− λi(B)]2 ≤ ‖A−B‖22.

In particular if A and B are positive matrices one has Tr[AB] ≤ ∑i λi(A)λi(B). We use this
in eq. (E.17) along with the nδ-Lipschizity of fn:

n−1∑

i=1

m∑

µ=1

(
∂G(z)
∂ziµ

)2

≤ 4n2δ

n4
Tr
[
zΛ(y)2z⊺

] ≤ 43n2δ‖D‖2∞
n4

m∑

µ=1

n−1∑

i=1

z2
iµ, (E.18)

in which we used Lemma E.3. We denote A the event

A ≡
{ 1
n2

m∑

µ=1

n∑

i=1

z2
iµ ≥ 1 + α

}
.

It is a classical concentration result (cf e.g. Chapter 3.1 of [Ver18]) that there exists c > 0 such
that:

Pz

[∣∣∣

√√√√ 1
n2

∑

µ,i

z2
µi −
√
α
∣∣∣ ≥ t

]
≤ 2e−cn2t2

.

In particular, this implies

Pz[A] ≤ 2e−cn2(
√

1+α−√
α)2
. (E.19)

Let us now show that it suffices to prove the bound of Proposition E.8 assuming that A does
not occur. Indeed, n−2(1−δ) lnPz[A] ≤ −cn2δ for a constant c > 0, and:

lim sup
n→∞

sup
y∈Rm

1
n2(1−δ)

lnPz

[
1
n

∣∣∣∣∣ lnǫn |det HΛ
n (y)| − Ez lnǫn |det HΛ

n (y)|
∣∣∣∣∣ ≥ t

∣∣∣∣∣A
]

≤ lim sup
n→∞

sup
y∈Rm

1
n2(1−δ)

lnPz

[∣∣∣ det HΛ
n (y)|

∣∣∣ ≥ ent+Ez lnǫn | det HΛ
n (y)|

∣∣∣∣∣A
]
,

(a)

≤ lim sup
n→∞

sup
y∈Rm

{ 1
n2(1−δ)

lnEz

[
|det HΛ

n (y)|
∣∣∣A
]
− 1
n2(1−δ)

(
nt+ Ez lnǫn |det HΛ

n (y)|
)}
,

(b)
< +∞.

We used Markov’s inequality in (a). The inequality (b) can be obtained by very similar arguments
than the one used to prove Lemma E.5: by rescaling z by ‖z‖, it is easy to see that the event
A will not change the scaling of the large deviations of the largest eigenvalue of the Wishart
matrix zz⊺/n, so that the bound of Lemma E.5 will also apply when conditioning by the event
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A. All in all,

lim sup
n→∞

sup
y∈Rm

{
1

n2(1−δ)
lnPz

[
1
n

∣∣∣∣∣ lnǫn |det HΛ
n (y)| − Ez lnǫn |det HΛ

n (y)|
∣∣∣∣∣ ≥ t

∣∣∣∣∣A
]
Pz[A]

}
= −∞.

Using the law of total expectation, we can safely ignore the occurrence of A when showing
Proposition E.8. Assuming that A is not occurring yields:

n−1∑

i=1

m∑

µ=1

(
∂G(z)
∂ziµ

)2

≤ 43(1 + α)n2δ‖D‖2∞
n2

. (E.20)

Recall the Lipschitz concentration of independent variables with laws satisfying the logarithmic
Sobolev inequality with a uniform constant c (see for instance [AGZ10] for a proof and an
introduction to the logarithmic Sobolev inequalities):

Lemma E.10 (Herbst)

Let n ∈ N
⋆ and P be a probability distribution on R

n satisfying the Logarithmic Sobolev
Inequality with constant c > 0. Let G be a Lipschitz function on R

n with Lipschitz constant
‖G‖L. Then for all t > 0, P[|G− EG| ≥ t] ≤ 2 exp[−t2/(2c‖G‖2L)].

It is easy to check that the Gaussian standard law of z, conditioned by the (extremely probable)
event A, satisfies the Logarithmic Sobolev Inequality with constant c = 1 + On(1). Applying
Lemma E.10 alongside eq. (E.20) finishes the proof. �

The logarithmic potential of the asymptotic measure

In this part we relate the expected logarithmic potential to the logarithmic potential of the
measure µα,φ[νm

y ], cf Theorem 7.5.

Proposition E.11 (Limit of the expected logarithmic potential)

There exists η > 0 such that for all t > 0:

lim
n→∞

1
n1+η

lnPy

[∣∣∣Ez
1
n

lnǫn |det HΛ
n (y)| − κα,φ

(
νm

y , tφ(νm
y )
)∣∣∣ ≥ t

]
= −∞.

Proof of Proposition E.11 – The proof goes in two parts. First, we show that there exists
η1 > 0 such that1:

lim
n→∞

[
nη1 sup

y∈Rm

∣∣∣Ez
1
n

lnǫn |det HΛ
n (y)| −

∫

R

lnǫn |x− tφ(νm
y )|µα,φ[νm

y ](dx)
∣∣∣
]

= 0. (E.21)

We will then conclude by showing that there exists η2 > 0 such that for all t > 0:

lim
n→∞

1
n1+η2

Py

[∣∣∣
∫

R

lnǫn |x− tφ(νm
y )|µα,φ[νm

y ](dx)− κα,φ

(
νm

y , tφ(νm
y )
)∣∣∣ ≥ t

]
= −∞. (E.22)

1Note that this result is uniform over y, and thus stronger than what is needed to show Proposition E.11.
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We begin by eq. (E.22). We take η2 given by eq. (E.16b). We have, since lnǫ(x) ≥ ln(x):

0 ≥
∫

R

lnǫn |x− tφ(νm
y )|µα,φ[νm

y ](dx)− κα,φ(νm
y , tφ(νm

y ))

= −δ ln(n)µα,φ[νm
y ](tφ(νm

y )− ǫn, tφ(νm
y ) + ǫn)−

∫ tφ+ǫn

tφ−ǫn

ln |x− tφ(νm
y )|µα,φ[νm

y ](dx),

≥ −2
∫ tφ+ǫn

tφ−ǫn

ln |x− tφ(νm
y )|µα,φ[νm

y ](dx).

Therefore

lim sup
n→∞

1
n1+η2

P

[∣∣∣
∫

R

lnǫn |x− tφ(νm
y )|µα,φ[νm

y ](dx)− κα,φ(νm
y , tφ(νm

y ))
∣∣∣ ≥ t

]

≤ lim sup
n→∞

1
n1+η2

P

[ ∫ tφ+ǫn

tφ−ǫn

ln |x− tφ(νm
y )|µα,φ[νm

y ](dx) ≤ − t
2

]
,

and using eq. (E.16b), we reach eq. (E.22). Let us show eq. (E.21). Its proof is based on the
following lemma, a consequence of the analysis of [SB95, BS10]:

Lemma E.12 (Convergence of the Stieltjes transform)

Denote gn(z) the Stieltjes transform of zΛ(y)z⊺/n, and gα,φ[νm
y ](z) the one of µα,φ[νm

y ], for
z ∈ C+. Then there exists η ∈ (0, 1) such that for all z ∈ C+:

lim
n→∞{ sup

y∈Rm
nη|Ez(gn(z))− gα,φ[νm

y ](z)|} = 0. (E.23)

The proof follows quite closely [SB95], using cavity method arguments for random matrices that
we used as well in Chapter 5. The interested reader can refer to the Appendix of [MBAB20] for
the detailed proof. Let us fix η given by Lemma E.12. As stated for instance in Theorem 2.4.4
of [AGZ10], a consequence of the Stieltjes-Perron inversion (Theorem 1.5) is that for every Borel
set E ⊆ R:

lim
n→∞ sup

y∈Rm
[nη|Eµn(E)− µα,φ[νm

y ](E)|] = 0, (E.24)

in which µn is the ESD of zΛ(y)z⊺/n. Fix η1 < η. We have, uniformly over y:

nη1

∣∣∣Ez
1
n

lnǫn |det HΛ
n (y)| −

∫

R

lnǫn |x− tφ(νm
y )|µα,φ[νm

y ](dx)
∣∣∣

≤ nη1

∫

|x−tφ(νm
y )|>1

ln |x− tφ(νm
y )|[Eµn − µα,φ[νm

y ]](dx) (E.25)

+ δ ln(n)nη1

∫

|x−tφ(νm
y )|<1

[Eµn − µα,φ[νm
y ]](dx).

Let us fix C > 0 given by item (i) of Lemma E.6. We can bound tφ(νm
y ) by ||xφ′||∞. This gives

that for n large enough the RHS of eq. (E.25) is bounded (uniformly over y) by:

nη1 [ln(C + ||xφ′||∞) + δ ln(n)]{[Eµn − µα,φ[νm
y ]](−C,C)}.

Since η1 < η we can use eq. (E.24), which shows eq. (E.21). �
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Conclusion of the proof

Let us conclude the proof of Lemma 7.10 from all our results of Section E.2.2. We fix δ > 0 such
that δ < 1/2. Note that Proposition E.8 is a uniform result on y, much stronger than what we
required. Since it shows that the concentration (as a function of z) of the log-determinant is in
a scale n1+ǫ with ǫ > 0, it implies that there exists η > 0 such that for all t > 0:

lim
n→∞

1
n1+η

lnP

[∣∣∣
1
n

lnǫn Ez|det HΛ
n (y)| − 1

n
Ez lnǫn |det HΛ

n (y)|
∣∣∣ ≥ t

]
= −∞. (E.26)

Combining this identity with Lemma E.7 and Proposition E.11, we reach the conclusion of
Lemma 7.10.

E.2.3 Proof of Lemma 7.11

Let γ ∈ (1, α). We fix C > 0 given by Lemma E.6. Then for all y ∈ R
m:

κα,φ(νm
y , tφ(νm

y )) ≤
∫
µα,φ[νm

y ](dx) ln(1 + |x|) + ln(1 + |tφ(νm
y )|),

≤ ln(1 + ‖xφ′(x)‖∞) + ln(1 + C).

By Lemma E.5 we have:

lim sup
n→∞

sup
y∈Rm

[ 1
n

lnE|det HΛ
n (y)|

]
< +∞.

Therefore, in order to prove Lemma 7.11, it only remains to show that

lim sup
n→∞

1
n

lnEy

[
exp

{
− γn

2
ln
( 1
m

m∑

µ=1

φ′(yµ)2
)}]

<∞. (E.27)

Let us now prove eq. (E.27). We denote v ≡ Ey∼N (0,1)[φ′(y)2] and A ≡ ‖φ′‖2∞ . Since A < ∞,
we can apply Cramer’s theorem to S ≡ (1/m)

∑
µ φ

′(yµ)2, so that we have:

lim sup
n→∞

1
n

lnEy

[
exp

{
− γn

2
ln
( 1
m

m∑

µ=1

φ′(yµ)2
)}]
≤ sup

S∈(0,A)
[−γ

2
lnS − αΛ⋆(S)], (E.28)

in which Λ⋆(S) is defined as the Legendre transform of the moment generating function of φ′(y)2:

Λ⋆(S) ≡
{

supθ≥0{θS − lnEy∼N (0,1)[eθφ′(y)2
]} if S ≥ v,

supθ≥0{−θS − lnEy∼N (0,1)[e−θφ′(y)2
]} if S ≤ v.

By continuity of the involved functions, in order to conclude from eq. (E.28) we just need to be
able to show that (i) : lim supS↑A(−Λ⋆(S)) < ∞ and (ii) : lim supS↓0[−γ

2 lnS − αΛ⋆(S)] < ∞.
Point (i) is trivial since Λ⋆(S) ≥ 0 for all S ∈ (0, A) (it is a rate function). To show (ii), we use
the fact that for all S ∈ (0, v) and θ ≥ 0 we have Λ⋆(S) ≥ −θS − lnE[e−θφ′(y)2

]. In particular,
for θ = S−1 we have Λ⋆(S) ≥ −1− lnE[e−S−1φ′(y)2

]. Since a = φ′(y) has a density ϕa continuous
around 0 (Def. 7.1), we fix a0 > 0 such that ϕa is continuous in [−a0, a0]. For every θ > 0:

lnE[e−θφ′(y)2
] ≤ ln

[
E(e−θa2

1|a|≤a0
) + e−θa2

0

]
≤ ln

[
( sup
|a|≤a0

|ϕa(a)|)
√
π√
θ

+ e−θa2
0

]
,
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and thus lnE[e−θφ′(y)2
] ≤ C−(1/2) ln θ with a constant C > 0. Using this bound and the remark

before we reach

−γ
2

lnS −Λ⋆(S) ≤ α− γ
2

lnS + α(1 + C).

Since α − γ > 0, we have limS↓0[−γ
2 lnS − αΛ⋆(S)] = −∞, which obviously implies point (ii),

which in turn shows eq. (E.27).

E.2.4 Proof of eq. (7.20)

Let t > 0, and fix η > 0 given by Lemma 7.10. We define E(t)
n , An, Bn:





E(t)
n ≡

{∣∣∣
1
n

lnEz[|det HΛ
n (y)|]− κα,φ(νm

y , tφ(νm
y ))

∣∣∣ ≥ t
}
,

An ≡ 1
n

lnE

[
1{L1(y) ∈ B}e− n

2
ln( 1

m

∑
µ

φ′(yµ)2)
E|det HΛ

n (y)|
]
,

Bn ≡ 1
n

lnE

[
1{L1(y) ∈ B}e− n

2
ln( 1

m

∑
µ

φ′(yµ)2)+nκα,φ(νm
y ,tφ(νm

y ))
]
.

(E.29)

An is related to the complexity by Lemma 7.8, and by Lemma 7.11 we can apply Varadhan’s
lemma 1.10 to Bn, which yields

lim
n→∞Bn = sup

ν∈Mφ(B)
[−1

2
Eφ(ν) + κα,φ(ν, tφ(ν))− αDKL(ν|µG)] ∈ [−∞,+∞). (E.30)

The factor α in front of the relative entropy arises as we consider the empirical distribution of
m i.i.d. variables. For all t > 0, we have by definition of An, Bn:




An −Bn ≥ −t+
1
n

ln
[
1−

E[1
L1(y)∈B;E

(t)
n
e

− n
2

ln( 1
m

∑
µ

φ′(yµ)2)+nκα,φ(νm
y ,tφ(νm

y ))]

E[1L1(y)∈B e
− n

2
ln( 1

m

∑
µ

φ′(yµ)2)+nκα,φ(νm
y ,tφ(νm

y ))]

]
,

An −Bn ≤ t+
1
n

ln
[
1 + e−nt

E[1
L1(y)∈B;E

(t)
n
e

− n
2

ln( 1
m

∑
µ

φ′(yµ)2)
E|det HΛ

n (y)|]

E[1L1(y)∈Be
− n

2
ln( 1

m

∑
µ

φ′(yµ)2)
E|det HΛ

n (y)|]

]
.

(E.31)

Using Hölder’s inequality and Lemma 7.11, there exists therefore γ > 1 and a constant C > 0
such that:

−t+
1
n

ln
[
1− P[E(t)

n ]
1
γ

enBn−nC

]
≤ An −Bn ≤ t+

1
n

ln
[
1 +

P[E(t)
n ]

1
γ

ent+nAn−nC

]
. (E.32)

Assume that limBn = −∞ and lim supAn > −∞. Let us fix a lower-bounded sub-sequence
Aϕ(n) of An, so that lim[Aϕ(n) − Bϕ(n)] = +∞. However, by eq. (E.32) and Lemma 7.10, we

have lim sup[Aϕ(n) −Bϕ(n)] ≤ t, as (1/n) lnP[E(t)
n ]→ −∞. So we showed that limBn = −∞⇒

limAn = −∞, which shows eq. (7.20) in this case.

Let us now assume that limBn > −∞. Using the left inequality of eq. (E.32) and Lemma 7.10,
we reach in the same way that lim inf[An − Bn] ≥ −t, which implies that lim inf An > −∞.
Thus we can use the right inequality of eq. (E.32) to show similarly that lim sup[An −Bn] ≤ t.
Taking the t→ 0 limit finishes the proof of eq. (7.20).
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E.2.5 Annealed and quenched calculations for L2

We give here a sketch of the generalization of our annealed and quenched calculations to L2,
yielding Theorem 7.6 and Result 7.2. We restrict here to the annealed calculation (the gen-
eralization of the quenched calculation is completely similar). The majority of the arguments
being identical to the L1 case, we will only highlight the main differences and give the important
intermediary results.

In the Kac-Rice formula, one has to integrate over the overlap q ≡ x · x⋆ as well. Moreover, we
condition over the joint values of aµ ≡ ξµ · x and bµ ≡ (1− q2)−1/2[(ξµ · x⋆)− qaµ], rather than
just ξµ · x (as we did for L1). Note that (aµ, bµ) follows a joint standard Gaussian distribution.
Using these definitions we can obtain the counterpart of Lemma 7.8 for L2:

ECritn,L2(B,Q) = Cn

∫

Q

dq e
n(1+ln α+ln(1−q2))

2 Ea,b[δ(Pn(a,b))1L2(a,b)∈Be
−nEn(a,b)

Ez|det Hn(a,b)|],

in which Cn is exponentially trivial, and we defined:




Pn(a,b) ≡ 1
m

m∑

µ=1

bµφ
′(aµ)[φ(qaµ +

√
1− q2bµ)− φ(aµ)],

En(a,b) ≡ 1
2

ln
{ m∑

µ=1

φ′(aµ)2[φ(qaµ +
√

1− q2bµ)− φ(aµ)]2
}
,

Hn(a,b) ≡ 1
m

m∑

µ=1

[
φ′(aµ)2 − θ′′(aµ)[φ(

√
1− q2bµ + qaµ)− φ(aµ)]

]
zµz⊺

µ

−
( 1
m

m∑

µ=1

aµφ
′(aµ)[φ(aµ)− φ(qaµ +

√
1− q2bµ)]

)
In−2.

Here z ∈ R
(n−2)×m is an i.i.d. standard Gaussian matrix. The condition Pq(a,b) = 0 arises

from the conditioning on the nullity of the gradient in the linear subspace of {x}⊥ spanned
by x⋆, and En(a,b) from the density of the gradient in the subspace orthogonal to {x,x⋆}. A
crucial feature of this equation is that the joint distribution of (L2(x), gradL2(x),HessL2(x))
only depends on x via the overlap q = x · x⋆ with the “true” solution. Once conditioned over
the values of q, it thus becomes clear why the calculations made for L1 will generalize here.

As in Section 7.3.3, one can then show the concentration of the empirical logarithmic potential on
the functional κα,φ(q, νm

a,b), in which νm
a,b ∈M+

1 (R2) is now the empirical measure of {aµ, bµ}mµ=1.
We obtain the counterpart of Lemma 7.10: there exists η > 0 such that for all t > 0:

lim
n→∞

1
n1+η

lnP

[∣∣∣
1
n

lnEz|detHn(a,b)| − κα,φ(q, νm
a,b)

∣∣∣ ≥ t
]

= −∞. (E.33)

Thanks to this result, we apply then Laplace’s method on the overlap q and the empirical
measure ν ∈ M(R2), using Sanov’s theorem 1.9 and Varadhan’s lemma 1.10. This yields the
result of Theorem 7.6.

As a final note, there exists similar results to the one presented in Section 7.4 that allow to
compute the density (and the logarithmic potential) of µα,φ[q, ν], via the computation of its
Stieltjes transform.
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E.3 The large deviations in the white Wishart case

In the white Wishart case, we have ρ(t) = δ(t− 1), and the density σ(λ) is explicitly known, it
is the Marchenko-Pastur distribution [MP67]:

σ(λ) =
α

2π

√
(λ+(α)− λ)(λ− λ−(α))

λ
I{λ−(α) < λ ≤ λ+(α)}, (E.34)

with λ±(α) ≡ (1± α−1/2)2. One can also explicitly solve the Marchenko-Pastur equation (8.1)
(it is just a quadratic equation in this case) and obtains for x ≥ λ+(α):





Gσ(x) =
1− α+ αx− α

√
(x− λ+(α))(x− λ−(α))

2x
,

Gσ(x) =
1− α+ αx+ α

√
(x− λ+(α))(x− λ−(α))

2x
.

By Result 8.1, this implies that the rate function I(x) satisfies for every x ≥ λ+(α):

I(x) =
αβ

2

∫ x

λ+(α)

√
(u− λ+(α))(u− λ−(α))

u
du. (E.35)

On the other hand, direct calculations using the joint law of eigenvalues of a Wishart matrix give
the following expression of the rate function (see e.g. Theorem 2.4 of [BG20]) for x ≥ λ+(α):

I(x) = β
{αx

2
− α− 1

2
ln x−

∫
dλσ(λ) ln(x− λ)− 1

2

[
1 +

1
α

+ lnα
]}
. (E.36)

The logarithmic potential of the Marchenko-Pastur law is known analytically, as stated in Propo-
sition II.1.5 of [Far14]. More precisely, we have for all x ≥ λ+(α):

∫
dλσ(λ) ln(x− λ)

=
αx

2
− α− 1

2
ln x− 1

2

[
1 +

1
α

+ lnα
]
− α

2

∫ x

λ+(α)

√
(u− λ+(α))(u− λ−(α))

u
du.

It is then immediate to see that eq. (E.35) and eq. (E.36) are equivalent, validating Result 8.1
in this simple (yet important) case.

E.4 The phase transition in the rate function

In this section, we investigate possible discontinuities in the derivatives of the rate function I(x),
when dmax > 0 and xc(ρ) is finite. In this case, the function Gσ(x) is constant and equal to
α/dmax for x ≥ xc(ρ). Recall that if smax ≤ x ≤ xc(ρ), Gσ(x) is the second branch to the
Marchenko-Pastur equation (8.1). This equation can be written as Fσ(G) = x, with

Fσ(G) =
1
G

+ α

∫
dtρ(t)

t

α− tG. (E.37)

By differentiating the relation Fσ(Gσ(x)) = x, we find

G
′
σ(x) = 1/F ′

σ(Gσ(x)).

Let us assume that ρ(t) ∼ (dmax − t)η with η > 0 and t close to dmax.
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If η ≥ 1, we have G′
ρ(dmax) <∞, so that F ′

σ(α/dmax) <∞, and thus G′
σ(x)→ 1/F ′

σ(α/dmax) > 0

as x ↑ xc(ρ). The transition in I(x) is thus of second order in this case, as G′
σ(x) is discontinuous.

If we now assume that η < 1, we have G′
ρ(dmax) = +∞. By eq. (E.37), this implies that

G
′
σ(x) → 0 as x ↑ xc(ρ). Thus in this case both Gσ and G

′
σ are continuous in x = xc(ρ). We

can differentiate the relation Fσ(Gσ(x)) = x once more, and we find easily:

G
′′
σ(x) = − F

′′
σ (Gσ(x))

F ′
σ(Gσ(x))3

. (E.38)

From eqs. (E.37), (E.38), one can show that G′′
σ(x) → 0 as x ↑ xc(ρ) if and only if η < 1/2. In

particular, for any 1/2 ≤ η < 1, the transition in I(x) is of third order.

Differentiating three times, one can show in a similar way that the transition is of fourth order if
and only if η ∈ [1/3, 1/2). Generalizing this to any order, we conjecture that I(x) is smooth at
any point x 6= xc(ρ), and that the first discontinuous derivative of the rate function at x = xc(ρ)
is I(k+1)(x), with η ∈ [1/k, 1/(k − 1)) (with the convention 1/0 = +∞).

E.5 Technicalities on spherical integrals

E.5.1 Simplifying J1(θ, x)

In this section, we simplify the expression of J1(θ, x) when θ ≤ θc(x) ≡ Gσ(x). We start from
eq. (8.12):

J1(θ, x) = inf
γ>θx

[γ
2
− 1

2

∫
duσ(u) ln(γ − θu)

]− 1
2
. (E.39)

When θ ≤ Gσ(x) the infimum is reached in γ⋆ = θG−1
σ (θ). This implies

J1(θ, x) =
θG−1

σ (θ)
2

− 1
2

ln θ − 1
2

∫
duσ(u) ln(G−1

σ (θ)− u)
]− 1

2
.

Let us differentiate this expression with respect to θ:

∂θJ1(θ, x) =
G−1

σ (θ)
2

+
θ

2G′
σ(G−1

σ (θ))
− 1

2θ
− Gσ(G−1

σ (θ))
2G′

σ(G−1
σ (θ))

=
G−1

σ (θ)
2

− 1
2θ
.

Using now the Marchenko-Pastur equation (8.1) we can simplify this into:

∂θJ1(θ, x) = α

∫
dt ρ(t)

t

α− tθ = F ′
1(θ).

Since J1(0, x) = F1(0) = 0, this implies that for every θ ≤ θc(x) we have J1(θ, x) = F1(θ), which
justifies the claim made in the main text.

E.5.2 Derivations of F2(θ) and J2(θ, x)

The derivation of F2(θ)

We start from the definition of F2(θ):

F2(θ) = lim
n→∞

{
1
n

ln
∫
Dz

∫

‖e‖2=1
de

∫

‖f‖2=1
df e

θn√
m

∑
i,µ

√
dµeizµifµ

}
.
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Integrating over z yields:

F2(θ) = lim
n→∞

{
1
n

ln
∫

‖f‖2=1
df e

θ2n2

2m

∑
µ

dµf2
µ
}

= lim
n→∞

{
1
n

ln
∫

df δ(||f||2 −m) e
θ2n2

2m2

∑
µ

dµf2
µ

∫
df δ(||f||2 −m)

}
.

We introduce a Lagrange multiplier γ to fix the norm of f. This yields (recall α = m/n):

F2(θ) = inf
γ≥θ2dmax/α2

{αγ
2
− 1

2n
ln det

(
γIm −

θ2

α2
Dm

)}
− α

2
+ On(1).

The condition γ ≥ θ2dmax/α
2 arises as the matrix inside the determinant must be positive.

Changing variables by letting γ = θ2γ′/α2 we arrive at:

F2(θ) =
α

2
inf

γ≥dmax

[θ2γ

α2
−
∫

dt ρ(t) ln(γ − t)
]
− α

2
ln
θ2

α2
− α

2
.

This ends the derivation of the expression of F2(θ) given in the main text.

Computing J2(θ, x)

The goal of this section is to compute J2(θ, x). More precisely, we will first show eq. (E.42),
which will then be simplified, precisely showing the transition phenomenon described in the
main text.

We start from the definition of J2(θ, x) (we omit the writing of the n→∞ limit):

J2(θ, x) =
1
n

ln
∫

‖e‖2=1
de

∫

‖f‖2=1
df exp

{ θn√
m

∑

i,µ

√
dµeizµifµ

}
,

=
1
n

ln

∫
de
∫

df δ(||e||2 − n) δ(||f2|| −m) exp
{
θ

√
n

m

∑
i,µ

√
dµeizµifµ

}

∫
de
∫

df δ(||e||2 − n) δ(||f2|| −m)
.

We introduce two Lagrange multipliers to fix the norms of e and f. Let us start with the
computation of the denominator:

1
n

ln
∫

de

∫
df δ(||e||2 − n)δ(||f2|| −m)

≃ inf
Λe,Λf ≥0

[Λe

2
+
αΛf

2
− 1

2
ln Λe −

α

2
ln Λf +

(1 + α)
2

ln 2π
]
.

The positivity constraint on Λe,Λf arises naturally for the Gaussian integral to be well-defined.
This is easily solved by Λe = Λf = 1, and we arrive at:

1
n

ln
∫

de

∫
df δ(||e||2 − n) δ(||f2|| −m) ≃ (1 + α)

2
(1 + ln 2π). (E.40)

We use the same method to compute the numerator:

1
n

ln
∫

de

∫
df δ(||e||2 − n) δ(||f2|| −m) exp

{
θ

√
n

m

∑

i,µ

√
dµeizµifµ

}

≃ inf
Λe,Λf ≥0

[Λe

2
+
αΛf

2
− 1

2n
ln det

(
ΛeIn

θ√
α

z⊺√
m

√
Dm

θ√
α

√
Dm

z√
m

Λf Im

)
+

(1 + α)
2

ln 2π
]
.
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We can compute the determinant of the block matrix easily, and we arrive at:

1
n

ln
∫

de

∫
df δ(||e||2 − n) δ(||f2|| −m) exp

{
θ

√
n

m

∑

i,µ

√
dµeizµifµ

}

≃ inf
Λe,Λf ≥0

[Λe

2
+
αΛf

2
− α− 1

2
ln Λf −

1
2n

ln det
(
ΛeΛf In −

θ2

α
Hn
)

+
(1 + α)

2
ln 2π

]
.

Note that the matrix inside the log-det must be positive, which constrains ΛeΛf ≥ θ2x/α, as
we assumed λmax(Hn) ≃ x. All in all, we have, taking n→∞:

1
n

ln
∫

de

∫
df δ(||e||2 − n) δ(||f2|| −m) exp

{
θ

√
n

m

∑

i,µ

√
dµeizµifµ

}
(E.41)

≃ inf
Λe,Λf ≥0

s.t. αΛeΛf ≥θ2x

[Λe

2
+
αΛf

2
− α− 1

2
ln Λf −

1
2

∫
dλσ(λ) ln

(
ΛeΛf −

θ2

α
λ
)

+
(1 + α)

2
ln 2π

]
.

Combining eqs. (E.40) and (E.41) yields the general formula for J2:

J2(θ, x) (E.42)

=
1
2

inf
Λe,Λf ≥0

s.t. αΛeΛf ≥θ2x

[
Λe + αΛf − (α− 1) ln Λf −

∫
dλσ(λ) ln

(
ΛeΛf −

θ2

α
λ
)]− 1 + α

2
.

The transition in J2(θ, x)

We start from the expression of J2(θ, x) of eq. (E.42). The variational parameters Λe,Λf can
saturate, which is associated to a phase transition. At this point J2(θ, x) will become sensitive
to the largest eigenvalue of Hn (assumed to be equal to x).

Given the infimum in eq. (E.42), this phase transition occurs for θ = θc(x) such that the
corresponding values of Λe,Λf satisfy αΛeΛf = θc(x)2x. From this equation and the equations
on Λe,Λf obtained by making the derivative inside the infimum equal to 0 (which is valid for
θ ≤ θc(x)), it is easy to obtain

θc(x) =
√
xGσ(x)2 + (α− 1)Gσ(x).

The case θ ≤ θc(x) – In this case J2(θ, x) is not sensitive to the value of x, and we can use a
very useful expression derived in Chapter 7 (more precisely eq. (7.23)) for the log-potential of
σ(λ). For any x ≥ smax:

∫
dλσ(λ) ln(x− λ) = inf

0<g<Gσ(smax)

[
− ln g + zg + α

∫
dt ρ(t) ln(α− tg)

]
− 1− α lnα.

This infimum is attained at g = Gσ(x), as it is the unique zero of the derivative of the expression
above in the interval (0, Gσ(smax)), by eq. (8.1). We can then write eq. (E.42) as:

J2(θ, x) = −α(1− lnα)
2

− 1
2

ln
θ2

α
+

1
2

inf
0<g<Gσ(smax)

inf
Λe,Λf ≥0

(αΛeΛf ≥θ2x)

[
Λe + αΛf (E.43)

− (α− 1) ln Λf + ln g − αΛeΛf

θ2
g − α

∫
dt ρ(t) ln(α− tg)

]
.
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Since we are in the “no-saturation” regime, we can use the zero-gradient equations on Λe,Λf :

{
Λf = θ2/(αg),

Λe = θ2/g − (α− 1).

Plugging this back into eq. (E.43) we obtain:

J2(θ, x) =
1
2

inf
0<g<Gσ(smax)

[θ2

g
+ α ln g − α ln

θ2

α
− α

∫
dt ρ(t) ln(α− tg) + α(lnα− 1)

]
.

Changing variables γ = α/g, we reach:

J2(θ, x) =
α

2
inf

γ≥α/Gσ(smax)

[γθ2

α2
−
∫

dtρ(t) ln(γ − t)
]
− α

2

(
1 + ln

θ2

α2

)
. (E.44)

In order to map J2(θ, x) to F2(θ), we must only show that the Lagrange multiplier γ in eq. (E.44)
does not “saturate” for θ ≤ θc(x). This is easily shown using the Marchenko-Pastur equa-
tion (8.1). Indeed since θ ≤ θc(x) we have θ ≤ θc(smax), and thus:

θ2 ≤ smaxGσ(smax)2 + (α− 1)Gσ(smax) ≤ αGσ(smax)
[
1 +Gσ(smax)

(smax

α
− 1
αGσ(smax)

)]
,

≤ αGσ(smax)
[
1 +Gσ(smax)

∫
dt ρ(t) t

α− tGσ(smax)

]
≤ α2

∫
dt ρ(t)

α/Gσ(smax)− t .

This precisely means that the infimum in eq. (E.44) will be attained for a point γ which is a
critical point of the functional inside the infimum:

θ2

α2
=
∫

dt ρ(t)
1

γ − t ,

i.e. there is no saturation in both J2 and F2, and therefore we have J2(θ, x) = F2(θ) in this case.

The case θ ≥ θc(x) – In this case, we have a “saturation” in the infimum of eq. (E.42). More
precisely, the Λe,Λf attaining the infimum satisfy αΛeΛf = θ2x. One can solve the infimum
over Λe,Λf constrained by this equality. Introducing a Lagrange parameter ρ, we reach:

J2(θ, x) = −1 + α

2
− 1

2
ln
θ2

α
− 1

2

∫
dλσ(λ) ln(x− λ)

+
1
2

inf
Λe,Λf ≥0

extr
ρ

[
Λe + αΛf − (α− 1) ln Λf − ρ

(
ΛeΛf −

θ2x

α

)]
.

The extr notation denotes solving the associated zero-gradient equation, as is standard with
Lagrange multipliers. One can now solve the infimum over Λe,Λf easily, and we reach:

J2(θ, x) =
1
2

extr
ρ

[α
ρ

+ (α− 1) ln ρ+
ρθ2x

α
− ln

θ2

α
−
∫

dλσ(λ) ln(x− λ)
]
− 1 + α

2
.

This can also be solved easily, and finally we have, for θ ≥ θc(x):

J2(θ, x) =
1
2

[
− (1 + α)− α ln

θ2

α
− (α− 1) ln(2x) +

√
(α− 1)2 + 4xθ2

+ (α− 1) ln
[
1− α+

√
(α− 1)2 + 4xθ2

]−
∫

dλσ(λ) ln(x− λ)
]
.

This ends the argument by justifying all the expressions given for J2(θ, x) in the main text.
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A remark on the case dmax ≤ 0 – In this case smax ≤ 0, and the transition we described
does not take place, as Λe,Λf ≥ 0 can not satisfy αΛeΛf = θ2x < 0. The difference between
the quenched and annealed integrals in this case has, as far as we know, not been investigated
before, and it remains an open question. Importantly, in this setting the first tilting allowed to
derive the large deviations, as emphasized in the main text, so that solving this question is not
crucial for our purpose.

E.6 Simplifying the rate function

E.6.1 When x < xmax, in the first tilting

The goal of this section is to show, for all x < xmax:

I(x) = sup
θ∈(0,θmax)

[J1(θ, x)− F1(θ)] =
1
2

∫ x

smax

[Gσ(u)−Gσ(u)]du,

and that the maximum in θ is reached in θx = Gσ(x). Recall eq. (8.18):

J1(θ, x) =





F1(θ) = −α
2

∫
dtρ(t) ln(1− α−1θt) if θ ≤ Gσ(x),

θx− 1− ln θ
2

− 1
2

∫
dλ σ(λ) ln(x− λ) if θ > Gσ(x).

Differentiating with respect to θ, we reach:

∂θ[J1(θ, x)− F1(θ)] =





0 if θ ≤ Gσ(x),
θx− 1

2θ
− α

2

∫
dt ρ(t)

t

α− θt if θ > Gσ(x).

So the supremum supθ∈(0,θmax)[J1(θ, x)− F1(θ)] is attained for θ = θx > Gσ(x) that satisfies:

x =
1
θ

+ α

∫
dtρ(t)

t

α− θt .

Note that this is exactly the Marchenko-Pastur equation (8.1), so that θx is precisely the second
“branch” θx = Gσ(x). Moreover, we know that I(smax) = 0, and we conclude by noticing that:

I ′(x) = ∂x[J1(θx, x)− F1(θx)] =
θx

2
− 1

2

∫
dλσ(λ)
x− λ =

1
2
[
Gσ(x)−Gσ(x)

]
.

E.6.2 The second tilting

Our objective is to show, for all x ≥ smax:

I(x) = sup
θ≥0

[J2(θ, x)− F2(θ)] ?=
1
2

∫ x

smax

[Gσ(u)−Gσ(u)]du. (E.45)
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Recall the functions J2 and F2 (with θc(x) =
√
xGσ(x)2 + (α− 1)Gσ(x)):

J2(θ, x) =





F2(θ) =
α

2
inf

γ≥dmax

[γθ2

α2
−
∫

dtρ(t) ln(γ − t)− 1− ln
θ2

α2

]
if θ ≤ θc(x),

α− 1
2

ln
[1− α+

√
(α− 1)2 + 4xθ2

2x

]
− 1 + α

2
− α

2
ln
θ2

α

+
1
2

√
(α− 1)2 + 4xθ2 − 1

2

∫
dλσ(λ) ln(x− λ) if θ ≥ θc(x).

We perform the change of variable θ(τ, x)2 ≡ xτ2 +(α−1)τ . At the critical value θc(x), we have
τc(x) = Gσ(x). We obtain the expression of the rate function as I(x) = supτ≥Gσ(x) I(x, τ), with
I(x, τ) = J(τ, x)− F (τ, x), in which we naturally defined:

J(τ, x) ≡ 1
2

{
− 2− α ln

[τx
α

+ 1− 1
α

]
− ln(τ) + 2xτ −

∫
dλσ(λ) ln(x− λ)

}
.

Similarly, we have the following expression for F (τ, x):

F (τ, x) ≡




α

2

∫ θ(τ,x)2/α2

0

[
G−1

ρ (u)− 1
u

]
du if θ(τ, x)2 ≤ α2Gρ(dmax),

α

2

[dmaxθ(τ, x)2

α2
−
∫

dtρ(t) ln(dmax − t)− 1− ln
θ(τ, x)2

α2

]
if θ(τ, x)2 ≥ α2Gρ(dmax).

Using these expressions for J and F , we then compute τx ≡ arg maxτ≥Gσ(x)[J(τ, x)− F (τ, x)]:

∂τ [J(τ, x)− F (τ, x)] = (E.46)




(2τx+ α− 1)
2ατ

(α− τG−1
ρ [θ(τ, x)2/α2]) if θc(x)2 ≤ θ(τ, x)2 ≤ α2Gρ(dmax),

(2τx+ α− 1)
2ατ

(α− τdmax) if θ(τ, x)2 ≥ α2Gρ(dmax).

For all smax ≤ x ≤ xc(ρ) ≡ dmaxGρ(dmax)2 + (α−1− 1)dmax, the equation α = τG−1
ρ [θ(τ, x)2/α2]

is again the Marchenko-Pastur equation (8.1), with ω = τ . Since τx > Gσ(x), it is easy to
check from eq. (E.46) that the supremum must be attained in τx = Gσ(x). This is true even
if x > xc(ρ), as then the maximum is attained in τ = α/dmax = Gσ(x), again from eq. (E.46).
Moreover we can compute (from the first equality in eq. (E.45)):

I ′(x) = ∂x(J − F )(τx, x) + (∂xτx) ∂τ (J − F )(τx, x)
︸ ︷︷ ︸

=0

= ∂x[J − F ](τx, x) =
1
2

[τx −Gσ(x)].

Since I(smax) = 0 and τx = Gσ(x), this implies eq. (E.45).



RÉSUMÉ

Le déluge croissant de données qui a rythmé la dernière décennie a donné naissance à des techniques modernes
dans le domaine de l’intelligence artificielle. Ces méthodes sont basées sur l’optimisation d’un très grand nombre de
paramètres par l’exploitation d’une quantité gargantuesque de données, et ces algorithmes sont désormais l’état de l’art
pour des tâches aussi diverses que la classification d’images, le traitement automatique des langues, ou la reconnais-
sance vocale, et leurs performances excèdent régulièrement les capacités humaines. En conséquence, de nombreuses
recherches se sont concentrées sur la construction d’une théorie mathématique qui pourrait expliquer l’efficacité de ces
algorithmes, créant un fort gain d’intérêt pour les statistiques en haute dimension, où la quantité de données et le nom-
bre de paramètres sont tous deux très grands. Nous analysons ici quelques pièces de cet immense puzzle à travers
le prisme de la physique statistique, en empruntant également aux probabilités et à la théorie des matrices aléatoires.
Ces outils nous permettent de proposer trois approches au problème de l’apprentissage statistique en haute dimension.
Dans la première nous revisitons un classique de la physique statistique, les expansions de haute température. Nous
expliquons comment cette méthode est liée à des algorithmes modernes, et nous l’utilisons pour proposer les prémices
d’une théorie exacte de la factorisation de matrices à rang extensif. Pour cela nous exploitons la connection forte qui
relie la physique des systèmes désordonnés et les statistiques en grande dimension, un sujet de recherche qui suscite
un intérêt croissant depuis les années 1990. Dans une seconde partie nous poussons cette correspondance plus loin
et utilisons des outils heuristiques de physique théorique, comme la méthode des répliques, associés à des outils prob-
abilistes et des algorithmes de passage de message, pour décrire les limites fondamentales d’une grande catégorie de
problèmes d’apprentissage. Nous appliquons cette analyse à des réseaux de neurones, à l’extraction de phase, ainsi
que pour étudier l’influence de la structure des données sur les procédures d’inférence. Enfin nous proposons une di-
rection alternative, une approche topologique au problème d’inférence en haute dimension: en utilisant des outils de
géométrie différentielle stochastique et de matrices aléatoires, nous prouvons des formules exactes décrivant la structure
des paysages d’énergie optimisés par les algorithmes d’apprentissage.

MOTS CLÉS

Physique statistique, Apprentissage automatique, Statistiques en haute dimension, Théorie de l’information,
Théorie des matrices aléatoires, Optimisation non convexe.

ABSTRACT

The past decade saw an intensification of the deluge of data available to learning algorithms, which allowed for the de-
velopment of modern artificial intelligence techniques. These methods rely on the optimization of a very large number
of internal parameters using gigantic amounts of data, and now provide state-of-the-art algorithms for tasks as diverse
as image classification, natural language processing, or speech recognition, and regularly achieve super-human perfor-
mances. This exacerbated research efforts to build a mathematically sound theory of data science able to explain the
extraordinary efficiency of these procedures, and has led to a surge of interest for high-dimensional statistics (i.e. when
the amount of data and the number of parameters are both very large). In this dissertation we analyze a few pieces of this
immense puzzle through the prism of statistical physics, borrowing also often from probability and random matrix theory,
and we propose three approaches to the high-dimensional learning problem. In the first one we revisit high-temperature
expansions, an archetypal method of statistical physics. We show how this classical approach is related to modern algo-
rithms, and use it to pave the way towards an exact theory of extensive-rank matrix factorization. Our theory leverages
the intimate relation between the statistical physics of disordered systems and high-dimensional statistics, a connection
which has been a growing subject of research since the 1990s. Our second approach pushes further this correspon-
dence as we leverage heuristic tools of theoretical physics such as the replica method, along with modern probabilistic
methods and message-passing algorithms, to describe the fundamental limits of a wide class of high-dimensional learn-
ing problems. We apply our analysis to neural networks, phase retrieval, and to study the influence of data structure on
the optimal learning procedures. In a third part we take an alternative route and consider a topological approach to the
problem of learning in high dimension. Using tools of random differential geometry and random matrix theory we prove
exact formulas describing the structure of the high-dimensional landscapes optimized by learning algorithms.

KEYWORDS

Statistical physics, Machine learning, High-dimensional statistics, Information theory, Random matrix theory,
Non-convex optimization.
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