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Abstract: Understanding the capabilities of quantum computer devices and computing

the required resources to solve realistic tasks remain critical challenges associated with

achieving useful quantum computational advantage. We present a study aimed at reducing

the quantum resource overhead in quantum chemistry simulations using the variational

quantum eigensolver (VQE). Our approach achieves up to a two-orders-of magnitude

reduction in the required number of two-qubit operations for variational problem-inspired

ansatzes. We propose and analyze optimization strategies that combine various methods,

including molecular point-group symmetries, compact excitation circuits, different types

of excitation sets, and qubit tapering. To validate the compatibility and accuracy of these

strategies, we first test them on small molecules such as LiH and BeH2, then apply the

most efficient ones to restricted active-space simulations of methylamine. We complete our

analysis by computing the resources required for full-valence, active-space simulations of

methylamine (26 qubits) and formic acid (28 qubits) molecules. Our best-performing opti-

mization strategy reduces the two-qubit gate count for methylamine from approximately

600,000 to about 12,000 and yields a similar order-of-magnitude improvement for formic

acid. This resource analysis represents a valuable step towards the practical use of quantum

computers and the development of better methods for optimizing computing resources.

Keywords: quantum computing; quantum chemistry; variational algorithms; vqe;

variational ansatz

1. Introduction

An accurate description of the electronic structure of molecular ground and excited

states is fundamental to progress in areas such as catalysis and the design of functional

materials [1]. However, the computational complexity of exact quantum chemistry sim-

ulations for many relevant situations grows exponentially with the system size [2]. This

problem has stimulated the development of classical approaches that capture relevant chem-

ical properties [3], yet the simplifications used in such approaches may hinder underlying

electronic correlation effects that can play an important role in various systems.

To overcome these limitations and address the problem of growing computational

demands, the quantum computing paradigm presents a promising solution [4–6]. By lever-

aging the principles of quantum physics, quantum computing devices offer the potential

to efficiently solve complex quantum–chemical problems that are intractable for classical

computers [5,6].

In this context, several quantum hardware paradigms have been explored for quan-

tum chemistry applications. First, special-purpose quantum devices can be used [7]. In

particular, boson sampling [8], analog quantum simulators [9], and quantum annealing

Quantum Rep. 2025, 7, 21 https://doi.org/10.3390/quantum7020021

https://doi.org/10.3390/quantum7020021
https://doi.org/10.3390/quantum7020021
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com
https://doi.org/10.3390/quantum7020021
https://www.mdpi.com/article/10.3390/quantum7020021?type=check_update&version=1


Quantum Rep. 2025, 7, 21 2 of 16

devices [10] have been used to solve various chemical problems; however, the encoding of

chemical problems into the setting of special-purpose quantum computers may hinder the

potential quantum computational advantage [11,12]. Second, universal quantum comput-

ing models—specifically, gate-based quantum computers—have the potential to be used

for quantum chemistry simulations [4–6]. In order to encode electronic states of molecules

into qubits, one uses a basis of predefined spin orbitals, i.e., quantum states that can be

occupied by individual electrons. Each qubit in the quantum register represents one such

spin orbital, with its value (0 or 1) determining whether this spin orbital is occupied or

not. The molecular state is then a superposition of multiple occupancy configurations. A

quantum computing device is then used, e.g., to find the lowest energy state of molecules.

However, a full quantum simulation using gate-based quantum computers requires

prohibitively large amounts of resources—specifically, the number of two-qubit opera-

tions [5,6]. The ability to implement two-qubit operations in existing quantum comput-

ing devices is limited by the amount of errors due to the effects related to interactions

with the environment. In this context, the variational quantum eigensolver (VQE) ap-

proach [13–16] is of interest, since this algorithm can be implemented with the use of

existing noisy intermediate-scale quantum (NISQ) devices. VQE has shown its ability to

calculate molecular ground states and energy spectra with chemical accuracy in a number

of studies [7,15–17].

In this work, we analyze the resources that are required to simulate certain molecules

on a medium-scale quantum computer with the use of the VQE approach, taking into

account possible optimization. Specifically, we combine the use of molecular point-group

symmetries (symmetry adaptation), compact excitation circuits (qubit excitation-based),

several types of excitation sets, and the qubit tapering method. As we demonstrate,

these optimizations allow for a significant reduction in computational requirements while

ensuring convergence to the required energies. First, we apply these combinations to small

molecules, such as LiH and BeH2, to evaluate their compatibility, accuracy, and potential

applicability to larger problems. We then simulate the methylamine molecule within

its restricted active space using the best-performing optimization strategies. Finally, we

complete our analysis by computing the resources required for full-valence, active-space

simulations of methylamine and formic acid molecules, which, using our best optimization

strategy, would require around 10,000–15,000 two-qubit gates. Both the two-qubit gate

count and circuit depth are improved by nearly two orders of magnitude compared to the

naive approach. Our results demonstrate that these optimization strategies perform well

and can make such simulations more feasible for near-term quantum computers.

The paper is organized as follows. In Section 2, we formulate the VQE approach

to solve quantum–chemical problems. In Section 3, we review recent related studies. In

Section 4, we take into account possible optimization techniques that can be used to reduce

the computational cost of VQE-based quantum–chemical simulations. Our results are

summarized in Section 5, alongside an analysis of the quantum resources required to

simulate methylamine and formic acid molecules. In Section 6, we analyze the reasons

for the efficiency of our proposed optimization strategies. Conclusions are presented in

Section 7.

2. VQE Formalism

During the last decade, a large variety of modifications of the VQE approach have

been proposed [15], the majority of which are based on the Ritz variational principle. The

Ritz principle involves choosing a certain parameterized combination of wave functions or

state vectors, i.e., the ansatz, and minimizing the functional defined on this parameterized

combination. Choosing the right ansatz should take into account the specifics of the problem
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and its boundary conditions. In other words, the ansatz represents a linear combination of

some known functions, which are parameterized by some unknown coefficients:

Ψ = ∑
i

θiψi. (1)

Let H be the Hamiltonian of a certain physical system, with its spectrum of eigen-

values bounded from below by the minimum eigenvalue (E0). Assuming that the state

vector (|Ψ⟩) can be described using a set of variable parameters (θ = {θ1, θ2, . . . , θi}) simi-

larly to Equation (1), we can approximate the ground-state energy of the Hamiltonian by

minimizing the following functional, which is expressed with the following inequality:

E0 ≤
⟨Ψ(θ)|H|Ψ(θ)⟩

⟨Ψ(θ)|Ψ(θ)⟩
. (2)

The ansatz always gives an expected value that is greater than or equal to the ground-

state energy. However, if the chosen ansatz is a wave function orthogonal to the ground-

state wave function, then this method would give an estimate for one of the excited states

of the system.

The general idea behind all VQE-type algorithms boils down to the following. As

a first step, it is necessary to define a target function (C) that encodes the solution to the

problem. Then, one has to choose a suitable ansatz depending on a discrete or continuous

set of parameters (θ). After that, one needs to perform optimization of the target cost

function using a classical computer:

θ
∗ = arg min

θ

C(θ) (3)

Considering the molecular ground-state estimation problem, it is necessary to map

the molecular Hamiltonian to the qubit Hamiltonian. Under the Born–Oppenheimer ap-

proximation, the molecular Hamiltonian is usually expressed in its second quantized form:

H =
M

∑
p,q=1

hpqa†
paq +

1

2

M

∑
p,q,r,s=1

gpqrsa†
pa†

r asaq, (4)

where a†
p(ap) is the fermionic creation (annihilation) operator and M is the total number

of spin orbitals. Coefficients hpq and gpqrs are called one- and two-electron integrals,

respectively, and can be computed classically.

To transform fermionic operators into qubit operators, several mappings, such as

Jordan–Wigner, parity, and Bravyi–Kitaev mappings, can be used. After the transformation

is realized, one obtains a qubit Hamiltonian in the following form:

H = ∑
i

βiPi, with Pi =
N
⊗

k=1

σ
(i)
k , (5)

where each σ
(i)
k ∈ {I, X, Y, Z} is a Pauli operator, N is the number of qubits, and Pi are

Pauli strings. Each Pauli string can then be measured individually or in commutative

groups using additional post-rotation gates, preceded by the same ansatz circuit for every

Pauli string.

The parameterized ansatz can be chosen based on a completely heuristic approach or

on physical intuition. In the case of quantum chemistry, we can adopt the well-known Uni-

tary Coupled Cluster (UCC) ansatz, which can recover a portion of the electron correlation
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energy by evolving the Hartree–Fock initial wave function. Using the Hartree-Fock state as

a reference, we can write the following expression:

|Ψ(θ)⟩ = Û(θ)|ψHF⟩ = eT̂(θ)−T̂†(θ)|ψHF⟩, (6)

where T̂(θ) is a parameterized cluster operator and Û(θ) represents the corresponding uni-

tary ansatz. Usually, only single-electron and double-electron excitations are considered, so

T̂(θ) = T̂1(θ) + T̂2(θ) = ∑
i

θiPi. (7)

The algorithm for the classical optimization part of VQE should be chosen based on

the specifics of the convergence, resource requirements, and noise tolerance for a certain

problem. For instance, gradient-based optimizers like BFGS and L-BFGS are often preferred

for smooth parameter landscapes due to their fast convergence [18], while derivative-free

methods such as Constrained Optimization BY Linear Approximations (COBYLA) [19] and

Simultaneous Perturbation Stochastic Approximation (SPSA) [20] may better handle noisy

quantum hardware at the cost of increased circuit evaluations. Additionally, the choice

must balance computational overhead with the scale of the problem, as iterative algorithms

such as Adaptive Moment Estimation (ADAM) [15] can adaptively adjust learning rates but

may struggle with high-dimensional parameter spaces typical in large molecular systems.

3. Related Work

While Section 1 outlines the broader motivation for quantum computing in chemistry,

here, we focus on the on recent advances that have shaped VQE-based methods and related

hybrid quantum algorithms.

Variational approaches based on VQE have been used to analyze small molecules such

as hydrogen (H2) [18,21,22], lithium hydride (LiH) [22], beryllium hydride (BeH2) [18],

and water (H2O) [23], as well as to simulate diazene isomerization [24] and carbon monox-

ide oxidation [16]. An overview of the VQE developments, showcasing its adaptability

and potential for complex quantum systems, is presented in Ref. [7]. For example, a recent

study [17] highlighted methodological advancements and best practices in applying VQE to

quantum chemistry problems, emphasizing its versatility for a variety of molecular systems.

VQE has also been used in benchmarking studies with different hardware platforms and

molecular configurations [25,26] and in specialized tasks such as sophisticated Hamilto-

nian corrections for molecular simulations and the computation of magnetic properties of

rare-earth ions [27,28].

Making VQE tractable on near-term hardware typically involves circuit depth opti-

mization, error mitigation, or factorization-based resource reduction [29,30]. Large-scale im-

plementations of VQE on high-performance supercomputers, which highlight the method’s

scalability for difficult systems, were studied in Ref. [31]. All of this research supports

the idea that VQE is an attractive option for addressing quantum–chemical challenges

beyond the capabilities of classical computing, givenfurther algorithmic improvements and

better quantum hardware. Meanwhile, broader families of variational hybrid algorithms

go beyond quantum chemistry. Examples include the quantum approximate optimization

algorithm (QAOA) [32–34], which targets combinatorial optimization tasks, and the vari-

ational spin-squeezing algorithm (VSSA) [35–37], focusing on generating spin-squeezed

states for metrological applications. Recently, there has been growing interest in com-

bining machine learning strategies with both classical and quantum algorithms. In the

classical domain, robust local–global modeling and domain-adaptation techniques have

been proposed to handle uncertain or noisy data [38,39]. At the same time, in quantum
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computing, machine learning-based methods have been explored for the acceleration of

VQE optimization and the enhancement of ansatz expressiveness. For instance, neural

network ansatzes have shown promise as a flexible representation of many-electron wave

functions [40–42], paving the way for more compact and efficient VQE simulations on

near-term quantum hardware.

Alternative methods for constructing the variational ansatz, such as the use of adaptive

ansatzes [16,43] or evolutionary algorithms [44], aim to reduce computational overhead

by incrementally building the circuit. In the adaptive approach, excitation operators are

selected one by one based on their energy-gradient contributions, allowing the ansatz to

grow in a problem-specific and compact manner.

Collectively, these lines of research—from small-molecule studies and benchmark

tasks to circuit optimization, adaptive ansatz construction, and machine learning-based

strategies—highlight the growing sophistication of VQE-based methods and their ex-

panding potential to address larger and more complex chemical systems on near-term

quantum hardware.

4. Molecular Setup and Optimization Techniques

In this section, we describe the molecular systems under study and outline the op-

timization techniques employed to reduce the quantum resource requirements for their

simulation within the VQE framework.

Methylamine (CH3NH2) and formic acid (CH2O2), also known as methanoic acid, are

both simple yet fundamental organic compounds in chemistry and biochemistry. Methy-

lamine, an amine related to ammonia, is crucial in manufacturing pesticides, pharmaceuti-

cals, and solvents and constitutes an amino acid, which are building blocks of protein [45].

Formic acid, the simplest carboxylic acid, is found in insect stings and is utilized industrially

in making leather and textiles and as a feed preservative. Both play significant roles in

biological systems [46], with formic acid also acting as a key metabolic agent and a strong

solvent. More precise understanding of their properties and the features of compounds

on their basis may provide valuable information for various problems in chemistry and

life sciences. We now turn to evaluating the quantum resources required to simulate

these molecules.

As discussed in Section 2, considering fermionic transformations and the minimal

Slater-type orbital basis set with three Gaussians (STO-3G), each spin orbital can be en-

coded with one qubit. Thus, the total number of qubits is equal to the number of spin

orbitals: Nq = M. For formic acid and methylamine, we have 17 and 15 molecular orbitals

correspond to 34 and 30 spin orbitals, respectively, and, thus, to the number of qubits

required for each system. The number of qubits can be reduced by employing the frozen

core approximation, where the inner 1s orbitals of carbon and oxygen in the formic acid

molecule and carbon and nitrogen in the methylamine molecule are kept frozen. This step

reduces the required number of qubits by six for formic acid and by four for methylamine.

Additionally, by applying a technique known as qubit tapering [47], one can exploit sym-

metries of the system to find a unitary transformation (U) that acts on the Hamiltonian (5)

such that

H′ = UHU† = ∑
i

β′
iP

′
i , (8)

where H′ has the same eigenvalues as H. After this transformation, there are operators

acting trivially in each Pauli string (P′
i ) of the transformed Hamiltonian. In other words,

the Pauli strings have either the identity operator (I) or the same Pauli operator (e.g., X)

at specific qubit positions across all H′ terms. These operators can be replaced by their

eigenvalues, and the corresponding qubits can be effectively removed from the simulation.
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In general, if there are m independent Z2 symmetries, the number of active qubits is

reduced by m. In the case of formic acid and methylamine molecules, we can eliminate

three additional qubits from our simulation for both molecules, resulting in final qubit

counts of 25 and 23, respectively.

Table 1. Calculated atomic coordinates for methylamine (CH3NH2) and formic acid (CH2O2) in

angstroms. The coordinates are sourced from the CCCBDB database [48] and optimized at the

CCSD(T) level of theory with the Def2TZVPP basis set.

Molecule Atom X (A) Y (A) Z (A)

Methylamine

C 0.0519020 0.7064670 0.0000000
N 0.0519020 −0.7615000 0.0000000
H −0.9428060 1.1684160 0.0000000
H 0.5906740 1.0624810 0.8789330
H 0.5906740 1.0624810 −0.8789330
H −0.4566340 −1.1008410 −0.8075530
H −0.4566340 −1.1008410 0.8075530

Formic Acid

C 0.0000000 0.3858930 0.0000000
O −0.8988900 −0.6261750 0.0000000
O 1.1799510 0.1951720 0.0000000
H −0.4628290 1.3844990 0.0000000
H −1.7856570 −0.2518330 0.0000000

Utilizing the coordinates in Table 1 allows us to derive the qubit form of the molecular

Hamiltonian (5) and ascertain the number of terms it contains. For molecular Hamiltonians,

it scales with the number of electrons (N) as O(N4). This plays a central role in defining the

required number of quantum circuits to be measured at each iteration and represents one of

the major bottlenecks in VQE implementation for complex molecules. To partially overcome

this problem, one can adopt more sophisticated grouping methods for Pauli terms, such as

qubit-wise and general methods. These methods use the commutative properties of Pauli

terms to notably decrease the number of necessary measurements, scaling as ∼ O(N4/30)

for large Hamiltonians. We can say that two Pauli strings commute qubit-wise if, at each

index, the corresponding two Pauli operators commute, for instance, Pauli strings like

{YY, YI, IY, I I}. In the case of general commutativity, two Pauli strings commute if and only

if they do not commute on an even number of indices, for example, {XX, YY, ZZ} [49]. Such

sets can be measured simultaneously with a single circuit, leveraging their commutativity.

In considering the Unitary Coupled-Cluster Singles and Doubles (UCCSD) variational

ansatz and employing first-order Suzuki–Trotter decomposition, we aim to quantify the

number of electronic excitations, the depth of the parameterized quantum circuit, and the

total number of gates within these circuits. If we consider a system with N electrons and

define the number of single excitations as NS = N(M − N) and the number of double

excitations as

ND =
N(N − 1)

2

(M − N)(M − N − 1)

2
, (9)

then the total number of one-qubit and two-qubit gates in the ansatz circuit can be approxi-

mately estimated as follows:

N1-qubit = αS NS + αD ND,

N2-qubit = βS NS + βD ND.
(10)

where αS (βS) is the average number of one-qubit (two-qubit) gates per single excitation

and αD (βD) is the average number of one-qubit (two-qubit) gates per double excitation.
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The total circuit depth can be estimated in a similar way:

d = γS NS + γD ND, (11)

where γS and γD are the contributions to the circuit depth from single and double exci-

tations, respectively. The coefficients from Equations (10) and (11) depend on the actual

definition of excitation sub-circuits in the ansatz, the fermionic transformation used, and the

number of qubits. Standard implementations of Pauli string exponentials (6) and (7) in

quantum circuits typically rely on sequences of single-qubit rotations and cascades of

two-qubit CNOT-gates (or CX-gates) arranged in a ladder-like structure. Recent papers

have presented optimal ways of constructing such circuits with fewer entangling oper-

ations [50–52]. One approach is to use qubit excitations, which always require a fixed

number of these gates. However, it remains unclear whether they can adequately account

for the electronic correlation contribution, as they ignore the anticommutation of fermions

by excluding Pauli Z products from the operator exponent.

A naive implementation of the UCCSD ansatz leads to excessive resource requirements

because the circuit depth (11) is proportional to the number of double excitation operators,

which scales as O(N4). However, one can employ several techniques to reduce the number

of these operators. One of them is the k-UpCCGSD (for brevity, k-UpGSD) [53,54] ansatz,

where k represents the number of ansatz repetitions, each with a new set of variational

parameters; p refers to paired excitations; and G denotes the inclusion of generalized

excitations. The main difference from UCCSD is that it includes only two-body terms,

which shift pairs of opposite-spin electrons from fully occupied to completely unoccupied

spatial orbitals, making sure there are no singly occupied states described. The depth of

the ansatz circuit can be reduced because the number of paired generalized excitations is

typically significantly smaller than the number of double excitation operators in standard

UCCSD, which are the primary contributors to circuit depth.

Another way to optimize the number of operators in the UCCSD ansatz is to filter

out the excitations based on their irreducible representations [55]. In other words, one

should retain only those operators whose irreducible representations coincide with the

irreducible representation of the initial state (Hartree–Fock determinant). In the case of

doubly occupied molecular orbitals we can write the following:

∀Γ
(

eT̂−T̂†
|ψHF⟩

)

= Γ(|ψHF⟩) : eT̂−T̂†
= 1, (12)

where Γ denotes the irreducible representation of the corresponding wave function, ensur-

ing that only excitations preserving the symmetry of the reference state (|ψHF⟩) are valid in

the UCCSD ansatz.

Leveraging these methods, we now apply their various combinations in constructing

parameterized quantum circuits for several molecules and analyze their impact on quantum

resource requirements.

5. Results

We begin with two components: (1) qubit excitations (denoted as “Q”) and (2) irre-

ducible representation filtering (denoted as “s”). These are combined with the UCCSD and

k-UpGSD ansatzes to create hybrid UCCSDQ, UCCSDQs, and k-UpGSDQ ansatzes (see

Figure 1).
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Figure 1. Hybrid quantum–classical VQE workflow used in this work. The diagram highlights the

optimization techniques deployed and how they are combined. The green dashed box represents the

methods used in the UCCSDQ ansatz, while the blue box corresponds to the k-UpGSDQ ansatz.

Additionally, we estimate the resources required for UCCSD and k-UpGSD ansatzes in

combination with qubit tapering and compare the results with those of other optimization

strategies. In all estimates, we use qubit-wise grouping of Pauli strings and a quantum chem-

istry library developed in-house for the efficient implementation of variational quantum

algorithms [56].

Table 2. Estimated resources for the VQE computation of CH3NH2 and CH2O2 molecules. The num-

ber of qubits is calculated using the frozen core approximation and the qubit tapering procedure.

The number of circuits is based on qubit-wise operator grouping. The parameters for the k-UpGSD

and k-UpGSDQ ansatzes are estimated with k = 1. To obtain estimates for higher values of k, the ta-

ble values should be multiplied by the corresponding scaling factor. The best-performing method

in terms of the trade-off between required resources and VQE convergence to the FCI energy is

highlighted in bold.

CH3NH2

Parameter UCCSD k-UpGSD UCCSDQs k-UpGSDQ

Circuit depth 514,379 14,758 5766 473
Qubits 23 23 26 26
Total gates 631,022 18,526 11,558 2822
Two-qubit gates 457,800 12,896 4130 1014
Pauli terms 20,908 20,908 20,908 20,908
Circuits 4144 4144 4144 4144
Double excitations 2394 78 314 78
Tapering Yes Yes No No

CH2O2

Circuit depth 563,722 15,026 7563 514
Qubits 25 25 28 28
Total gates 682,524 19,466 14,610 3294
Two-qubit gates 510,426 13,520 5221 1183
Pauli terms 30,423 30,423 30,423 30,423
Circuits 5103 5103 5103 5103
Double excitations 2745 91 397 91
Tapering Yes Yes No No
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To verify that the chosen ansatz construction methods and optimization strategies

work as expected, we test them on two relatively simple molecules, LiH and BeH2, both

with a small number of spin orbitals. The minimal STO-3G basis is employed for both

molecules. For LiH, we consider freezing the inner 1s orbital, which results in 10 qubits in

the non-tapered regime and 6 in the tapered regime. For BeH2, we initially have 14 qubits.

The frozen core method reduces this to 12 qubits in the non-tapered regime and 7 qubits with

tapering. We then compute their ground-state energies using the VQE algorithm combined

with the proposed optimization strategies. For both molecules, we use a noiseless state

vector simulator in combination with the BFGS algorithm for classical optimization and

Jordan–Wigner fermionic transformation.

The results of the VQE calculations for the LiH molecule are presented in Figure 2.

The plot shows how the energy converges over iterations for various ansatz types, such

as UCCSD and its generalized version, UCCGSD; 2-UpGSD; 2-UpGSDQ; UCCSDQ;

and UCCSDQs. The dashed black line represents the exact Full Configuration Interac-

tion (FCI) energy, which we use as a reference. The shaded area around it shows the

chemical accuracy threshold of ±0.0016 Hartree. Among all the ansatz types, UCCSDQs

demonstrates the best performance: it achieves the lowest circuit depth (137) and two-qubit

gate count (86) while still maintaining chemical accuracy.

Figure 2. VQE calculation for the LiH molecule using various types of ansatzes and optimization

methods. The plot compares the convergence of energy values with the FCI energy as a reference

and indicates the chemical accuracy threshold, and Ncx represents the number of two-qubit gates.

The inset illustrates convergence behavior during the first 10 optimization steps.

In Figure 3, we present the same analysis for the BeH2 molecule. Again, one can see

how the energy curve for each ansatz converges to the ground-state energy. The k-UpGSDQ

ansatz requires four circuit repetitions to achieve convergence. As in the case of the LiH

simulation, UCCSDQs proves to be the most resource-efficient, as it requires the fewest

resources (circuit depth of 279 and a two-qubit gate count of 190) while staying within the
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chemical accuracy range. The energy curves initially decrease rapidly, then stabilize as they

approach the exact FCI value, highlighting the efficiency of these methods for BeH2.

Figure 3. VQE calculation for the BeH2 molecule using various types of ansatzes and optimization

methods. The plot compares the convergence of energy values with the FCI energy as a reference

and indicates the chemical accuracy threshold, and Ncx represents the number of two-qubit gates.

The inset illustrates convergence behavior during the first 10 optimization steps.

We also simulate the methylamine molecule with a restricted number of spin orbitals.

We take an active space of 6 electrons and 6 spin orbitals from the full 15-spin-orbital space

and show the energy difference for this choice in Figure 4, which presents different active

space configurations and their corresponding energies. This choice of active space allows

us to reduce the number of qubits required to simulate the molecule down to 12. However,

as seen in Figure 4, as the number of spin orbitals decreases, the calculated energy moves

away from the reference coupled-cluster energy with single and double excitations (CCSD)

and approaches the Hartree–Fock result. Chemical accuracy is achieved only when the core

1s orbitals are frozen. For the (6e, 6o) active space configuration of methylamine, we use

the UCCSDQ and UCCSDQs ansatzes in the VQE calculation and the same minimal-basis

STO-3G. As shown in Figure 5, the energy converges to the restricted active-space FCI value

for both ansatzes. This result demonstrates that for the 12-qubit methylamine active space,

the VQE algorithm, combined with the aforementioned ansatzes, can achieve chemical

accuracy within a small number of iterations. Other types of ansatzes were not tested due

to higher computational costs.
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Figure 4. Ground-state energies for different active spaces of the methylamine molecule are shown.

The green diamond marks the active space configuration used in the VQE calculation. The dash–dot

black line indicates the Hartree–Fock energy, while the dashed red line corresponds to the restricted

CCSD energy. The pink shaded region represents chemical accuracy around the CCSD reference.

The black arrow points to the region where only the core (1s) orbitals are frozen.

Figure 5. VQE calculation for the CH3NH2 molecule in (6e, 6o) active space using UCCSDQ and

UCCSQs ansatzes. The black dash–dot line indicates the Hartree–Fock energy, while the dashed red

line corresponds to the active-space FCI energy. The pink shaded region represents chemical accuracy

around the FCI reference. Ncx represents the number of two-qubit gates.
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Overall, these results show that the optimization strategies we use perform well for

calculating ground-state energies of small molecules like LiH and BeH2, as well as the

methylamine molecule in reduced active space. They also highlight how different ansatz

types can affect the balance between accuracy and resource needs. To better understand

the origin of this performance and the trade-offs involved, we now turn to a more detailed

discussion of convergence mechanisms and the behavior of different ansatz constructions.

6. Discussion

We begin our discussion with the choice of the k parameter in the k-UpGSD and

k-UpGSDQ ansatzes, which directly affects both convergence and expressiveness. The

value of k is chosen heuristically for each molecule by incrementally increasing k until

the algorithm converges to the correct energy. The 1-UpGSD configuration has multiple

nonphysical local minima due to the absence of orbital invariance in the pCCD-based

(paired) double excitations [53]. Hence, with each additional exponential factor (see

Equation (6)), one introduces an independent set of variational amplitudes. Consequently,

the ansatz becomes more flexible and can capture more correlation effects, as observed in

our simulations for LiH and BeH2.

Another strategy demonstrating strong performance combines qubit excitations with

irreducible representation filtering. There are several reasons why this combination per-

forms better than other optimization strategies. First, the irreducible representation filtering

removes excitations that do not coincide with the irreducible representation of the ground

state. This decrease in the variational space dimensionality and the energy landscape

becomes more simple: it has fewer local minima. Second, in conventional UCCSD, each

fermionic excitation includes a string of Z operators to enforce anti-commutation, which

introduces complex phase relationships into the circuit. While this makes the ansatz more

physically accurate, it also tends to complicate the energy landscape locally. In contrast,

qubit excitations avoid these phase strings, acting more like localized Pauli exponen-

tials, which can lead to steeper initial gradients and faster energy reduction in early VQE

iterations—a behavior similarly observed in the k-UpGSDQ ansatz.

However, scaling these optimization strategies to larger molecules represents a signifi-

cantly greater challenge. Indeed, as shown in Table 2, the computational demands become

significant. Even with the STO-3G minimal-basis set, the required circuit depth and the

number of qubits for these molecules are far beyond what current quantum hardware

can efficiently handle. The use of more complex bases that provide a better description of

valence orbitals or account for polarization effects and electron correlations in molecules,

such as 6-31G, 6-31G*, or cc-pVDZ, is associated with similar difficulties. All of them

imply that significantly more qubits are required compared to the minimal-basis case. For

instance, simulating the H4 molecule using the cc-pVDZ basis would require 40 qubits [57].

To simulate the H2O molecule in the 6-31g basis, 50 qubits are needed. For methylamine

and formic acid molecules, the number of qubits exceeds 60. Recent studies [58,59] have

investigated various ways to enable the simulation of relatively large systems with limited

computational resources. A commonly used approach in these works is highest occupied

molecular orbital–lowest unoccupied molecular orbital (HOMO-LUMO) approximation,

which restricts the active space to a subset of orbitals of a molecule, as we do in the

case of methylamine. This method results in a more compact qubit representation of the

molecular system, making simulations more feasible. However, this reduction in active

space introduces additional approximation errors, which can impact accuracy, as shown in

Figure 4.

The VQE calculation for the formic acid molecule in a reduced active space, similar to

the one performed for methylamine, does not converge well to the expected ground-state
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energy. The explanation likely resides in stronger electronic correlations between carbon

and oxygen atoms in the formic acid molecule, which cannot be adequately captured by

circuits based on qubit excitations. It is possible that effective fermionic excitation circuits,

as proposed in Ref. [50], could achieve better performance. Nevertheless, this comes at the

cost of an increased two-qubit gate count. As a possible direction for future work, adaptive

VQE methods could be explored using our UCCSDQs operator pool and compared with

the minimal complete pool used in Ref. [16].

Moreover, all our optimization strategies include double excitation operators, which

means they could face a fundamental challenge with barren plateaus under random pa-

rameter initialization and for a sufficiently large system size. As recent theoretical results

indicate [60], once a variational ansatz includes two-body or generalized excitations, the ex-

pressiveness grows but may induce exponential gradient concentration. Empirically, one

checks this by monitoring gradient variance over random initializations—exponential de-

cay with the number of qubits signifies a barren plateau. This represents another potential

direction for future research into the UCCSDQs ansatz types. Combining UCCSDQs with

the qubit tapering procedure may offer additional resource savings; however, it requires a

more careful analysis of the connection between Z2 symmetries and the representation of

the excitation operator circuits.

Finally, we should emphasize the importance of testing our optimization strategies

in error-prone simulations. We expect that a reduced circuit depth and fewer variational

parameters will lead to significant improvements in optimization results.

7. Conclusions

In this study, we analyzed the computational resources required for VQE when mod-

eling organic molecules such as formic acid and methylamine under various optimization

strategies. Our goal was to identify how best to reduce circuit depth and gate counts while

maintaining high accuracy in capturing electron correlation.

By implementing and testing different ansatzes, including qubit excitations filtered by

irreducible representations (UCCSDQs), we demonstrated a significant reduction in the

number of two-qubit gates required. This optimization allows us to recover most of the

correlation energy while using fewer quantum resources, which is especially important,

since low two-qubit gate fidelity is still a major limitation of current quantum devices.

Our resource estimates for full valence active-space simulations in molecules like

methylamine and formic acid confirm that UCCSDQs achieves a favorable balance between

circuit depth and algorithmic convergence. Nevertheless, real-world implementations still

face hardware-level limitations, especially with respect to gate noise and qubit coherence

times. To make VQE useful for real-world chemistry, we still need better ansatzes, more

reliable quantum gates, and stronger error correction. We believe our work can support

future research and help bring theoretical methods closer to today’s quantum computers.
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