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1 Introduction

Analytic bootstrap methods have given a structural understanding of CFTs by leveraging
the analytic structure of four-point functions [1–12]. Typically such studies consider the
four-point function of scalar operators. This fact limits the data that can be accessed to
scalar/scalar/symmetric traceless (of spin J) OPE coefficients. However, it is important
to consider OPE coefficients between multiple spinning operators, of which an important
example is the OPE coefficient of three stress tensors [13, 14]. A possibility would be to
extend the analytic bootstrap to the four-point function of operators with spin, but this
approach is technically challenging and works mostly in a case by case basis. An alternative
is to consider higher-point functions of scalar operators, which through the OPE contains
information about operators of arbitrary spin [15, 16]. In this case the technical challenge
lies upon our knowledge of higher-point conformal blocks, which is still incomplete [16–19].

For the scalar four-point function, the lightcone bootstrap predicts the universal be-
haviour of scalar/scalar/spin J OPE coefficients at large spin, which are of mean field
type [1, 2]. Subsequent corrections, that include scaling dimensions and OPE coefficients,
are determined by the leading twist operators in the theory [1, 2]. This large spin expansion
is actually convergent up to a low spin value determined by the Regge behaviour of the
four-point function [20, 21]. A remarkable check of the accuracy of this method was done in
the 3D Ising model where the numerical bootstrap provided the data for comparison [3, 22]
(see also [23] for the O(2) model). Motivated by this success, our goal is to extend the
lightcone bootstrap to the case of higher-point functions and therefore access OPE data
involving spinning operators.

More concretely, we bootstrap five- and six-point functions. In the five-point case there
is an unique OPE topology which involves the exchange of two operators of spin J1 and
J2 and therefore includes the scalar/spin J1/spin J2 OPE coefficient, see (3.18) and (3.24).
In the six-point case we consider the snowflake OPE channel which involves the exchange
of three operators of spin J1, J2 and J3 and therefore includes the spin J1/spin J2/spin J3
OPE coefficient, see (3.38), (3.46) and (3.51). This bootstrap analysis is done in section 3,
which follows section 2 where we review the kinematics and derive the lightcone conformal
blocks for five- and six-point functions. Our results are tested in section 4 for the case of
generalized free theory and of theories with a cubic coupling, whose block decomposition
we determine explicitly. We conclude with a discussion of open problems in section 5.

Additional technical details are given in the appendices: appendix A gives more de-
tails on higher-point blocks, including some comments about the Euclidean expansion and
the Mellin representation; appendix B discusses higher-point D-functions based on AdS
techniques; appendix C presents new results on conformal harmonic analysis relevant for
higher-point functions and can be read mostly independently from the main text.

2 Kinematics and conformal blocks

It is a well known property that n-point correlation functions in a conformal field theory
depend nontrivially on n(n− 3)/2 conformal invariant variables for high enough spacetime
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dimension.1 The choice of conformal invariant cross-ratios usually depends on the problem
one is analysing. In a four-point function, that depends on two cross-ratios (say u and v),
there are several choices of cross-ratios used throughout the literature, for example

u = zz̄ = x2
12x

2
34

x2
13x

2
24
, v = (1− z)(1− z̄) = x2

14x
2
23

x2
13x

2
24
, (2.1)

or
s = |z| , ξ = cos θ = z + z̄

2|z| . (2.2)

This paper is focused on the analytic bootstrap of five- and six-point correlation func-
tions, and therefore we will need to use appropriate sets of cross-ratios. For the five-point
function it will be convenient to work with the five variables u1, . . . , u5 given by

u1 = x2
12x

2
35

x2
13x

2
25
, ui+1 = ui

∣∣
xj→xj+1

, (2.3)

where in this definition the subscript in xj is taken modulo 5 (for example x6 ≡ x1). For the
six-point function we introduce the nine cross-rations u1, . . . u6 and U1, . . . , U3 defined by

u1 = x2
12x

2
35

x2
13x

2
25
, ui+1 = ui

∣∣
xj→xj+1

, U1 = x2
13x

2
46

x2
14x

2
36
, Ui+1 = Ui

∣∣
xj→xj+1

, (2.4)

where the subscript in xj is now taken modulo 6.
We will be interested in the Lorentzian lightcone expansion of correlation functions.

The difference between the Lorentzian and Euclidean expansions can be easily understood
from the OPE of two operators. In the Euclidean case the operators are taken to be
coincident (xij → 0) while in the Lorentzian case the operators approach the lightcone of
each other (x2

ij → 0). As is well known, the Euclidean limit is dominated by the operators
with lowest scaling dimension, in contrast with the Lorentzian case that is dominated by
the operator with lowest twist τ = ∆ − J . This is evident from the leading term of the
formula for the OPE

φ(x1)φ(x2) ≈
∑
k

C12k
(x12 · Dz)JOk,J(x1, z)

(x2
12)

2∆φ−τk
2

+ . . . Euclidean (2.5)

φ(x1)φ(x2) ≈
∑
k

C12k

∫ 1

0
[dt] Ok,J(x1 + tx21, x12)

(x2
12)

2∆φ−τk
2

+ . . . Lorentzian (2.6)

where the . . . represent subleading terms in each expansion, z is a null polarization vector,

[dt] = Γ(∆k + J)
Γ2(∆k+J

2 )
(t(1− t))

∆k+J
2 −1dt , (2.7)

and Dz is the so-called Todorov operator [24]

Dz =
(
d

2 − 1 + z · ∂
∂z

)
∂

∂zµ
− 1

2z
µ ∂2

∂z · ∂z
. (2.8)

1There are relations between conformal invariant cross-ratios for low dimensions (d ≤ n − 2) such that
the number of independent variables is instead nd− (d+ 1)(d+ 2)/2.
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The formulae above are key in obtaining the conformal block expansion around both limits.
For example, in the four-point function case it is trivial to obtain the lightcone block
from (2.6), with the result

〈φ(x1) . . . φ(x4)〉 ≈
∑
k

C12k

(x2
12)

2∆φ−τk
2

∫
[dt] 〈Ok(x1 + tx21, x12)φ(x3)φ(x4)〉 (2.9)

=
∑
k

C2
12k

(x2
12x

2
34)

2∆φ−τk
2

∫ [dt] (x2
13x

2
24 − x2

14x
2
23)J

(x2
23t+ (1− t)x2

13)
∆k+J

2 (x2
24t+ (1− t)x2

14)
∆k+J

2

,

where we have changed variables t→ t/(t+ 1) and t→ tx2
24/x

2
14. The lightcone block for

the exchange of an operator Ok is defined by this leading term in the expansion

〈φ(x1) . . . φ(x4)〉 ≈ 1
(x2

12x
2
34)∆φ

∑
k

C2
12k (Gk(u, v) + . . . ) , (2.10)

where

Gk(u, v) = uτk/2(1− v)Jk 2F1

(∆k + Jk
2 ,

∆k + Jk
2 ,∆k + Jk, 1− v

)
≡ uτk/2gk(v) . (2.11)

We defined the function gk(v) for later convenience. Note that the expansion (2.10) is
merely schematic, since subleading terms in the lightcone limit of a lower twist block can
dominate with respect to the lightcone limit of a higher twist block.

2.1 Lightcone conformal blocks

Let us start with the lightcone expansion of the five-point conformal block. Applying twice
the OPE limit (2.6) we obtain

〈φ(x1) . . . φ(x5)〉 ≈
∑
ki

( 2∏
i=1

Cφφki

∫
[dti]

)
〈Ok1(x1 + t1x21, x12)Ok2(x3 + t2x43, x34)φ(x5)〉

(x2
12)

2∆φ−τk1
2 (x2

34)
2∆φ−τk2

2

.

(2.12)
The limits x2

12 → 0 and x2
34 → 0 correspond to u1 → 0 and u3 → 0, respectively. The three-

point function in the integrand involves the external scalar and two symmetric traceless
operators with arbitrary spin as depicted in the top-left part of figure 1. Our convention
for three-point functions of symmetric and traceless operators is [25]

〈Ok1(x1, z1) . . .Ok3(x3, z3)〉 =
∑
`i

C`1`2`3J1J2J3
V J1−`2−`3

1,23 V J2−`1−`3
2,31 V J3−`1−`2

3,12 H`3
12H

`2
13H

`1
23

(x2
12)

h1+h2−h3
2 (x2

13)
h1+h3−h2

2 (x2
23)

h2+h3−h1
2

,

(2.13)
where we used a null polarization vector zi to encode the indices of the operators, hi =
∆i + Ji and V and H are defined as

Vi,jk =
(zi · xij)x2

ik − (zi · xik)x2
ij

x2
jk

, Hij = (zi · xij)(zj · xij)−
x2
ij(zi · zj)

2 . (2.14)

The sum in `i ∈ {0, . . . ,min(Jk)} counts the possible tensor structures. In the five-point
case we have a three-point function of a scalar with two operators of spin J1 and J2,
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J1 J2 J1 J2

J3

J1 J2

1

2

3
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1
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5 6

1

2

5

6

3 4

CJ1J2O

CJ1J2J3

Figure 1. Schematic representation of the OPE channels for five- and six- point functions. In the
top left we have the snowflake decomposition of the five-point function, where we emphasize the OPE
coefficient involving two spinning operators. In the top right we have the snowflake decomposition of
the six-point function, emphasizing the OPE coefficient of three spinning operators. In the bottom,
we depict the comb channel expansion, which may involve mixed-symmetry tensors and which we
will not analyze in detail.

therefore the different structures are labelled by `3 ≡ ` and `1 and `2 vanish. After
doing simple and straightforward manipulations we arrive at the explicit expression for the
lightcone block defined by

〈φ(x1) . . . φ(x5)〉 ≈ 1
(x2

12x
2
34)∆φ

(
x2

13
x2

15x
2
35

)∆φ
2 ∑
k1,k2,`

Pk1k2` Gk1k2`(ui) , (2.15)

where

Gk1k2`(ui)=u
τ1
2

1 u
τ2
2

3 (1−u2)`u
∆φ
2

5

∫
[dt1][dt2] (2.16)

×
(
1−t1(1−u2)u4−u2u4

)J2−`(1−t2(1−u2)u5−u2u5
)J1−`

(
1−(1−u4)t2

)h2−τ1−2`+∆φ
2

(
1−(1−u5)t1

)h1−τ2−2`+∆φ
2

(
1−(1−t1)(1−t2)(1−u2)

)h1+h2−∆φ
2

.

The expansion (2.15) includes a product of three OPE coefficients that we denote by

Pk1k2` = Cφφk1Cφφk2C
(`)
φk1k2

. (2.17)
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Formula (2.16) is valid as long as one of the exchanged operators is not the identity. In
such a case the OPE instead simplifies to

φ(x1)φ(x2) ≈ CφφI

(x2
12)∆φ

I , (2.18)

which forces the other exchanged operator to be the same as the external one. When the
exchanged operator in the (12) OPE is the identity we have (in this case there is a single
` = 0 structure)

GI φ(ui) =
(
u3u5
u4

)∆φ
2
, (2.19)

on the other hand, when the identity is flowing in the (34) OPE, we have

Gφ I(ui) = u
∆φ
2

1 . (2.20)

For the lightcone expansion of the six-point conformal block we need to apply the OPE
limit (2.6) three times. We will choose the snowflake channel as illustrated in the top-right
of figure 1. In this choice the exchanged operators are always symmetric traceless tensors
of spin Ji. This gives

〈φ(x1) . . . φ(x6)〉 ≈ 1
(x2

12x
2
34x

2
56)∆φ

∑
ki,`i

Pki`iGki`i(ui, Ui) (2.21)

=
∑
ki

( 3∏
i=1

Cφφki

∫
[dti]

)
〈Ok1(x1 + t1x21, x12)Ok2(x3 + t2x43, x34)Ok3(x5 + t3x65, x56)〉

(x2
12)

2∆φ−τ1
2 (x2

34)
2∆φ−τ2

2 (x2
56)

2∆φ−τ3
2

.

Using the three-point function conventions (2.14) and defining T = ∑
i τi, L = ∑

i `i and
H = ∑

i hi we obtain

Gki`i(ui, Ui) ≡ u
τ1
2

1 u
τ2
2

3 u
τ3
2

5 gki`i(u2, u4, u6, Ui) (2.22)

=
3∏
i=1

u
τi
2

2i−1

∫
[dti]

u`i2i χ
`1−i
i (1− χi)`2−i−τ2−i+T /2(1− u2i)Ji+1+`i+1−LAJi+`i−Li

B`i−∆i−L+H/2
i

,

where we use the notation `i ≡ `i+3 and2

Ai = 1
(1−u2(i−1))

[
(1− ti−1)(1−χ1−i)

(
−1+u2(i−1)−(1− ti+1)u2(i−1)χ2−i+χ3−i

)
+ ti−1u2(i+1)(1−χ3−i)

(
−1+u2(i−1)−(1− ti+1)u2(i−1)χ2−i

)]
, (2.23)

Bi = 1−χ2−i− t1+i(1−u2i−χ2−i+(1− ti−1)u2iχ1−i) ,

with χi defined as χi = Ui−u2(2−i)
Ui

. A nice property of the χ variables is that the conformal
block factorizes in products of three 2F1 in the limit χi → 0. Another nice property is that
`i determines the leading power of χi, as can easily be seen in (2.22).

2The reader may have realized that due to the cyclic defining property of the cross-ratios we can for
example refer to the even cross-ratios u2, u4, u6 in the product as u2(i−1).
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When one of the exchanged operators is the identity, the remaining two are equal to
each other, which leads to the simplified expression

GkkI(ui, Ui) =
(
u1u3
U2

) τk
2
gk(u2/U1) , (2.24)

where gk(v) contains is the four-point block as defined in (2.11).

3 Snowflake bootstrap

Let us start by recalling the basic features of the lightcone bootstrap for four-point corre-
lators [1, 2]. A four-point function of local operators φ can be decomposed in the (12) or
(23) OPE channels

1
(x2

12x
2
34)∆φ

∑
Ok

C2
φφkGk(u, v) = 1

(x2
23x

2
14)∆φ

∑
k

C2
φφkGk(v, u) , (3.1)

where Gk(u, v) is the full conformal block in the (12) channel. This bootstrap equation
has been used to extract properties of conformal field theories following both analytic and
numerical approaches.

Low twist operators dominate in the lightcone x2
12 → 0 limit of the left hand side of

the bootstrap equation. Unitary CFTs obey the following bounds for the twist of operators

τ = 0 identity , τ ≡ ∆− J ≥

(d− 2)/2 scalar
d− 2 spin ,

(3.2)

and so the leading term on the left hand side of the bootstrap equation is given by
1

(x2
12x

2
34)∆φ

∑
k

C2
φφkGk(u, v) = 1

(x2
12x

2
34)∆φ

[
1 + C2

φφk∗u
τk∗
2 gk∗(v) + . . .

]
, (3.3)

where we have used that the conformal block behaves as Gk(u, v) → Gk(u, v) = u
τ
2 gk(v)

in the u → 0 limit. The assumption is that above the identity there is a unique operator
Ok∗ with leading twist. Next we take the limit of x2

23 → 0, which moves the point x2 to
the corner of the square made by the lightcones of points 1 and 3, which can be taken
respectively at 0 and 1 in the complex z-plane, as shown in figure 2. It is possible to take
this second limit, which corresponds to v small, and use the right hand side of (3.1).

Each term in the u → 0 limit will diverge at most logarithmically, which apparently
contradicts the power law divergence of the left hand side of the equation. The emergence
of the power law singularity was addressed in [1, 2] and it boils down to the contribution of
double-twist operators [φφ]0,J ∼ φ�0∂Jφ whose twist approaches 2∆φ at large spin. The
stronger divergence is recovered by performing the infinite sum over spin of these double-
twist families. In particular, this fixes the density of OPE coefficients for this family of
operators at large spin to be3

C2
φφ[φφ]0,J ∼

8
√
π

Γ(∆φ)222∆φ+J J
2∆φ−3/2 , (3.4)

which is the behaviour of OPE coefficients in Mean Field Theory.
3This differs from some conventions in the literature by a factor of 2J due to our conformal block

normalization.
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0 1

z

u→0

v→0

Figure 2. Schematic representation of the relevant lightcone limit in the z-plane. The point x2
first approaches the lightcone of the operator at the origin, as u→ 0. Subsequently, it approaches
the lightcone of the operator at x3 = (1, 0), which corresponds to taking v → 0.

Additionally, the leading twist operator above the identity in the direct-channel leads
to 1/J suppressed corrections to the OPE coefficients along with anomalous dimension
type corrections, which means the twist of these families behaves as

τ[φφ]0,J = 2∆φ + k

Jτ∗/2
. (3.5)

At this level the large spin expansion is merely asymptotic, and the OPE coefficients and
anomalous dimensions cannot be assigned to a single operator of a given spin. However, the
large spin expansion actually converges at least down to spin 2, and the OPE coefficients
are really associated to a unique operator at each spin, which follows from the fact that
the double-twist operators really sit in Regge trajectories that are analytic in spin. All
these remarkable facts were established through the Lorentzian inversion formula [20]. This
formula systematizes the large spin perturbation theory/lightcone-bootstrap and essentially
supersedes it as a computational tool [26–28]. In this work, however, we are interested
in higher-point functions which are much richer, and for which a Lorentzian inversion
formula is presently unavailable. Therefore we must resort to the more pedestrian large spin
perturbation theory. It would of course be interesting to develop higher-point Lorentzian
inversion formulae and reproduce and extend the results we will derive below.

3.1 Five-point function

Let us consider the more complicated case of the five-point function. We now have an
exchange of two operators, and their contribution is captured by the block expansion in a
given channel. We consider the (12)(34) and (23)(45) channels for the five-point function
〈φ(x1)φ(x2)φ(x3)φ(x4)φ(x5)〉,

(x2
13)

∆φ
2

(x2
12x

2
34)∆φ(x2

15x
2
35)

∆φ
2

∑
k1,k2,`

Pk1k2`G
12,34
k1k2`

(ui)= (x2
24)

∆φ
2

(x2
23x

2
45)∆φ(x2

12x
2
14)

∆φ
2

∑
n1,n2,`

Pn1n2`G
23,45
n1n2`

(ui).

(3.6)
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The limit x2
12, x

2
34 → 0 is dominated by low twist operators in the (12)(34) channel. The

natural candidate to lead this expansion is the identity operator, however it is not possible
to have two identities being exchanged at the same time, since that would imply a nonzero
three-point functions between two identities and the scalar operator φ(x5). It is however
possible to have one identity being exchanged in one OPE and another operator in the other
OPE. In this case the conformal blocks simplify considerably and the exchanged operator
must be the external one. The block simplifies to a product of a two- and three-point
function, check (2.19) and (2.20). Thus, we conclude that the first terms in the lightcone
limit in the channel (12)(34) are given by

CφφφGI φ(ui) + CφφφGφ I(ui) = Cφφφ

(u3u5
u4

)∆φ
2

+ u
∆φ
2

1

 . (3.7)

There is possibly another leading term from two exchanges of the leading twist operator
Ok∗ . This term has a lightcone limit in the channel (12)(34) given by

Cφφk∗Cφφk∗Ck∗k∗φGk∗k∗`(ui) . (3.8)

The term that dominates is determined by the rate at which u1 and u3 go to zero and
by the twist of φ and Ok∗ . Below we shall address both possibilities. We may then take
the other limits x2

23, x
2
45, x

2
15 → 0, corresponding to u2, u4, u5 → 0, which as we shall see,

are suitable for the expansion in the (23)(45) channel. The decomposition in this channel
takes the form (

u1u
2
3u5

u2
2u

2
4

)∆φ/2 ∑
n1,n2,`

Pn1n2` G
23,45
n1n2`

(ui) , (3.9)

where we collected here the prefactors on both sides of (3.6). The powers of u2, u4 in the
denominator of (3.9) impose constraints on the operators that need to be present in the
conformal block decomposition of the channel (23)(45).

3.1.1 Identity in the (12) OPE

Let us understand this in more detail. First consider the term

CφφφGI φ(ui) = Cφφφ

(
u3u5
u4

)∆φ
2
, (3.10)

where the identity is exchanged in the (12) OPE. The cross-ratios u2 and u4, when taken
to be small, control the twist of the exchanged operators in the cross-channel. We can use
this to infer what class of operators are contributing in the cross-channel where the blocks
behave as

G23,45
n1n2`

(ui) = u
τn1/2
2 u

τn2/2
4 gn1n2`(u1, u3, u5) . (3.11)

Combining these behaviours with the prefactor in (3.9) we can conclude that the opera-
tors n1 have a twist that approaches 2∆φ, and therefore correspond to the usual leading
double- twist operators. Moreover, in this case the operator n2 must have twist ∆φ. This
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corresponds to the exchange of the external operator itself. Therefore the cross-channel
OPE data is given by

P[φφ]0,J ,φ = Cφφ[φφ]0,JCφφφCφφ[φφ]0,J , (3.12)

from which we can see that the single-trace OPE coefficient cancels on both sides of the
crossing equation, and we are left with data that is known from the four-point bootstrap,
namely scalar/scalar/double-twist OPE coefficients.

Actually this case reduces to the crossing of the four-point function of φ and its descen-
dants. Firstly, in the direct-channel, since the five-point function factorizes into a product
of 2 and 3-pt functions, we can use the (45) OPE into the exchanged scalar operator φ,
which acts on the MFT 4-pt function of φ at points 1235. Secondly, in the cross-channel the
(45) OPE reduces the five-point block into an action on the four-point block with external
φ at points 1523 and double-twist exchange. This shows the problem reduces to that of
the four-point function.

Nevertheless it is instructive to check this result explicitly using the lightcone blocks
in (2.16) to describe the cross-channel contributions. In this case J2 = ` = 0 and ∆2 = ∆φ.
Additionally for large spin J1 the dimension of the exchanged operator approaches the
double-twist value ∆1 = 2∆φ + J1. This significantly simplifies the expression (2.16) for
the blocks. In practice, it is useful to expand the integrand using the binomial theorem and
performing the ti integrals, which leads to a representation in terms of an infinite sum of
hypergeometric functions. In fact, the sum is dominated by the region u1 ∼ J−2

1 , similarly
to the four-point case. This allows one to simplify the hypergeometric functions into Bessel
functions, so the large spin limit of the lightcone block reads

G23,45
[φφ]0,J1φ

(ui) ≈
∞∑
n=0

J
n+ 1

2
1 Γ

(∆φ+1
2

)
Γ
(2n+∆φ

2

)
u

∆φ+n
2

1 u
∆φ

2 (1− u3)nu
∆φ
2

4 Kn
(
2J1
√
u1
)

21−3∆φ−J1πΓ(n+ 1)Γ
(
n+ ∆φ

) .

(3.13)
Imposing the well-known large spin asymptotics of the scalar/scalar/double-twist OPE
coefficients (3.4), one can do the sum over J1 by approximating it as an integral. This
reproduces the correct power of u1 at fixed n. The correct power of u3 is then recovered
by doing the infinite sum over n.

We remark that one can then consider the related contribution where we swap the ex-
changed operators in the cross-channel, meaning we have On1 = φ and On2 = [φφ]0,J2 . This
obviously corresponds to a factorized correlator in a different channel which is subleading
in the lightcone limit here considered.

3.1.2 Identity in the (34) OPE

On the other hand, when we exchange the identity in the (34) OPE, the direct-channel
contribution is

Cφφφ u
∆φ
2

1 . (3.14)

Thus, since the leading powers of u2 and u4 in the cross-channel expression (3.9) are the
same, the operators that are exchanged in the cross-channel will both have the double-twist
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value 2∆φ. This allows us to probe the double-twist/double-twist/scalar OPE coefficient
on the cross-channel

P[φφ]0,J1 [φφ]0,J2`
= Cφφ[φφ]0,J1

Cφφ[φφ]0,J2
C

(`)
φ[φφ]0,J1 [φφ]0,J2

. (3.15)

It is important to notice that the double-twist/double-twist/scalar OPE coefficient depends
on the additional quantum number `, which encodes the tensor structure associated to spin-
spin-scalar three-point functions.

Since the scalar/scalar/double-twist coefficients are fixed from the four-point analysis,
matching to the direct-channel we immediately discover the remarkable non-perturbative
relation

C
(`)
φ[φφ]0,J1 [φφ]0,J2

∝ Cφφφ , (3.16)
which would be expected in a perturbative theory. With a more careful analysis, we will
now fix the large spin asymptotics of this OPE coefficient, along with its ` dependence.

We need to reproduce the power law behaviour in the variables u1, u3 and u5, which
will emerge from the infinite sum over J1, J2 and ` in the cross-channel. More specifically,
we consider the limit J1, J2 →∞ with u1J

2
1 and u5J

2
2 fixed. It is possible to approximate

the lightcone block in this regime by approximating the integrand in (2.16), so that one
finds integral representations of two Bessel functions,4

G23,45
[φφ]0,J1 [φφ]0,J2`

(ui) ≈
24∆φ+J1+J2

π
J

1/2
1 J

1/2
2 u

∆φ

2 u
∆φ

4 (1− u3)`

× u
1
4 (3∆φ+2`)
1 u

1
4 (∆φ+2`)
5 K

`+
∆φ
2

(
2J1u

1/2
1

)
K
`+

∆φ
2

(
2J2u

1/2
5

)
. (3.17)

It is not hard to see that for consistency with the u3 → 0 limit the power law behavior in
u1, u5 has to be reproduced term by term in the sum over `. This leads to the ansatz

P[φφ]0,J1 [φφ]0,J2`
≈ Cφφφ b` 2−J1−J2J

`+3(∆φ−1)/2
1 J

`+3(∆φ−1)/2
2 , (3.18)

which, upon performing the integrals over J1 and J2, reproduces the power law behavior
in u1 and u5. Since ` ∈ {0, . . . ,min(J1, J2)}, this leaves us with an infinite sum over ` to
perform, which will recover the power law behavior in u3. In particular, we need to zoom
in on the `→∞ region, with u3 approaching zero such that u3` is kept fixed. In this limit,
we can use the approximation (1 − u3)` ≈ e−u3`. Then, we can take the asymptotic large
` behaviour of the coefficient b` to be5

b` ≈
∆φΓ

(1+∆φ

2

)
23∆φ−3√π Γ(∆φ)2Γ

(
1 + ∆φ

2

) `−2`e2``−∆φ . (3.19)

4This procedure deserves a word of caution. Strictly speaking we should first take the limit of u1, u3 → 0,
keeping large spin contributions, and only then take u2, u4 → 0. In practice, since we use the lightcone block
expansion (2.16) in the cross-channel, we are swapping the order of limits. This is justified a posteriori since
the asymptotics of OPE coefficients at large spin that we obtain match the examples studied in section 4.

5The same result could be obtained by explicitly performing the sum over ` assuming b` ∝ 1
`!Γ(`+∆φ) .

However, this cannot be used to determine the form of the coefficients at finite ` since the leading singularity
in u3 → 0 only determines the asymptotic behaviour at `→∞. Remarkably this turns out to be the exact
form of the coefficients in the disconnected correlator in section 4.2.1. A similar situation also occurs for
the six-point case.

– 11 –



J
H
E
P
0
3
(
2
0
2
2
)
1
3
9

1
2

3

4

5

1
2

3

4

5

Figure 3. Witten diagrams corresponding to the leading order five-point function in a large N
theory. The black and red dashed lines correspond to the unitarity cuts in the direct and crossed
OPE channels, allowing us to infer what the exchanged operators are.

We can then approximate the sum over ` by an integral, which gives the correct power law
behaviour in u3 and finally reproduces the identity contribution in the direct-channel.

Both leading terms with an identity exchange are understood as a five-point function
which factorizes into a product of a two- and three-point functions. A simple example of
CFTs expected to present this behaviour are holographic theories with cubic couplings.
We can draw bulk Witten diagrams and look at their unitarity cuts to infer the exchanged
operators in the corresponding channel. This is presented in figure 3. Clearly, this picture
is consistent with the results obtained from the lightcone limit analysis.

3.1.3 Two non-trivial exchanges

The case of two non-trivial exchanges is more subtle. When the exchanged operators are
identical to the external ones, the lightcone limit of the block in the channel (12)(34) is
given by

C3
φφφ(u1u3u5)

∆φ
2

Γ(∆φ)2

Γ(∆φ

2 )4

(
ζ2 +lnu4 lnu5 +2S∆φ−2

2
(lnu4 +lnu5)+4S2

∆φ−2
2

−S(2)
∆φ−2

2

+ . . .

)
,

(3.20)
where S(n)

α denotes the degree-n harmonic number and the dots represent subleading terms
in u2, u4 and u5. The powers of u2 and u4 indicate that the exchanged operators in the
cross-channel should once again be of double-twist type. However, since the powers of u5
are the same for both block expansions in the small u5 limit, one cannot employ the usual
argument which ensures that operators with large spin J2 dominate the cross-channel.
This means that the information in this OPE is not universal. The leading power of u is
a constant, which can be achieved block by block in the cross-channel, and therefore the
usual argument for the necessity of large spin double-twist operators is not valid.

One can instead study the case where the two exchanged scalar operators Ok∗ are
different from the external one, but identical among themselves.

G12,34
k∗k∗

(ui) ≈ a∆∗∆φ
(u1u3u5)∆∗/2u

∆∗−∆φ
2

4 , (3.21)
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with

a∆∗∆φ
=
π4∆∗−1Γ

(∆∗+1
2
)2 csc2 (π(∆∗−∆φ

2 )
)

Γ
(∆∗−∆φ

2 + 1
)2 Γ

(∆φ

2
)2 . (3.22)

When ∆∗ < ∆φ this is the leading term. On the other hand, for ∆∗ ≥ ∆φ the leading
powers are instead integers and lead to the same limitation discussed above. Nevertheless,
the term (3.21) is still present and can also be bootstrapped.

Notably, the power of u4 will change the nature of the exchanged operators in the (45)
OPE. In particular, we now have that the operator must have dimension asymptoting to
∆∗+∆φ+J2. Thus we prove the existence of the double-twist operators [φO∗]0,J2 built out
of the external φ and the internal O∗. We see an asymmetry between the exchanges in the
cross-channel, since the operators in the (23) channel are still the double-twist composites
[φφ]0,J1 . This is similar to the case of identity exchange in the (12) channel which also
leads to an asymmetry in the cross-channel exchanges. In particular, swapping the cross-
channel exchanges in the (23) and (45) OPEs leads to a subleading contribution in the
direct-channel.

The calculation in the cross-channel is similar to that of the previous subsection. Both
families of double-twist operators must be in the large spin regime, which gives the following
approximation for the cross-channel conformal block

G23,45
[φφ]0,J1 [φO∗]0,J2`

(ui) ≈
23∆φ+∆∗+J1+J2

π
J

1/2
1 J

1/2
2 u

∆φ

2 u
(∆φ+∆∗)/2
4 (1− u3)` (3.23)

× u
1
4 (2∆φ+∆∗+2`)
1 u

1
4 (∆φ+2`)
5 K

`+ ∆∗
2

(
2J1u

1/2
1

)
K
`+

∆φ
2

(
2J2u

1/2
5

)
.

Once again the sum over large spins J1 and J2 must be done for fixed ` and we then sum
over `. The correct asymptotics for the OPE coefficients in this case is given by

P[φφ]0,J1 [φO∗]0,J2`
≈ q∆∗∆φ

2−J1−J2J
4∆φ−3+2`−∆∗

2
1 J

3∆φ−3+2`−2∆∗
2

2 `−2`e2``−∆φ , (3.24)

where
q∆∗∆φ

= PO∗O∗a∆∗,∆φ

25−3∆φ−∆∗

Γ(∆φ−∆∗
2 )Γ(∆φ − ∆∗

2 )2
. (3.25)

The factor of PO∗O∗ = C2
φφO∗CφO∗O∗ is needed to match the direct-channel.

3.1.4 Stress-tensor exchange

In a general CFT, the leading twist operators are usually scalars of scaling dimension less
than d− 2 or the stress tensor which has dimension d and spin 2, and therefore twist d− 2.
A spin 1 conserved current also has twist d − 2 but, since we are studying the OPE of
identical scalars, only even spin operators can be exchanged. Thus, we are only left to
consider the case of the stress tensor.6

In this case, the direct-channel contribution has three terms associated to the tensor
structures with ` = 0, 1, 2. In the cyclic lightcone limit, it turns out that the powerlaw

6Higher spin conserved currents also have twist d−2 but they only exist in free theories and we therefore
ignore them.
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behavior in u4 → 0 is suppressed by ` and therefore the tensor structure with ` = 0
dominates. The block behaves very similarly to the scalar case, with the role of ∆∗ being
played by the twist of the stress tensor d− 2, up to some extra prefactors. Concretely, the
direct-channel block contains the following term in the lightcone expansion

GTT `=0 ≈ aT,∆φ
(u1u3u5)(d−2)/2u

d−2−∆φ
2

4 , (3.26)

with

aT,∆φ
=
π4d−1Γ

(
d+3

2

)2
sec2

(
π

∆φ+3−d
2

)
Γ2
(∆φ+4

2

)
Γ2
(
d−∆φ

2

) . (3.27)

In the block expansion this term will come multiplied by the product of OPE coefficients
PTT `=0. Once again there are terms where the powers of u4 and u5 are constant and cannot
be reproduced by large spin double twist families in the cross-channel. The term in (3.26)
is the leading one for d − 2 − ∆φ < 0, but it remains in the expansion otherwise, so it
can be bootstrapped. The physics in the cross-channel is very similar to the scalar case
as well. The small u2 and u4 behavior is matched by operators of the form [φφ]0,J1 in the
(23) OPE and [φT ]0,J2 in the (45) OPE, with twists asymptoting to 2∆φ and d − 2 + ∆φ

at large J1 and J2, respectively. The large spin limit is needed to obtain the right power
law behavior in u1 and u5, and finally the large ` limit reproduces the small u3 behavior.
The cross-channel blocks and OPE coefficients are the same as in the scalar case with the
replacement ∆∗ → d− 2, up to the different prefactor which is fixed by the direct-channel
block. More concretely, the cross-channel block in the large spin limit becomes

G23,45
[φφ]0,J1 [φT ]0,J2`

≈ 23∆φ+d−2+J1+J2

π
J

1/2
1 J

1/2
2 u

∆φ

2 u
(∆φ+d−2)/2
4 (1− u3)` (3.28)

× u
1
4 (2∆φ+d−2+2`)
1 u

1
4 (∆φ+2`)
5 K`+ d−2

2

(
2J1u

1/2
1

)
K
`+

∆φ
2

(
2J2u

1/2
5

)
,

and the OPE coefficients

P[φφ]0,J1 [φT ]0,J2`
≈ qT∆φ

2−J1−J2J
1
2 (−1+2`−d+4∆φ)
1 J

1
2 (1+2`−2d+3∆φ)
2 `−2`e2``−∆φ , (3.29)

where
qT∆φ

= PTT`=0 aT∆φ

27−3∆φ−d

Γ
(∆φ−d+2

2

)
Γ
(
∆φ − d−2

2

)2 . (3.30)

3.2 Six-point function — snowflake

The six-point function is a richer object as it admits two very different OPE decompositions
that are usually denoted by snowflake and comb. One distinction between them is that
in the snowflake decomposition we do three OPEs in nonconsecutive pairs of points and
therefore all OPEs involve two external scalars. Therefore there will be an OPE coefficient
between three symmetric traceless operators of arbitrary spin, as can be seen in the top-
right of figure 1. On the other hand, in the comb channel the OPE involves consecutive pairs
of operators. Thus, after performing the OPE between two external scalars, the resulting
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Figure 4. A schematic form of the six-point snowflake bootstrap equation. The left hand side repre-
sents the (12)(34)(56) direct-channel expansion while the right hand side represents the (23)(45)(61)
cross-channel.

symmetric traceless operator will be fused with another external scalar and can produce a
mixed symmetry tensor operator, which in the mean field theory limit should correspond
to a triple-twist operator. The bottom part of figure 1 illustrates this structure. In this
paper we use the lightcone OPE between scalars (2.6) and therefore limit our analysis to
the snowflake channel, whose bootstrap equation we depict in figure 4.

We start by considering the block expansion in the direct (12)(34)(56) channel

〈φ(x1) . . . φ(x6)〉 = 1
(x2

12x
2
34x

2
56)∆φ

∑
ki,`i

Pki`iG
12,34,56
ki`i

(ui, Ui) . (3.31)

and take the lightcone limits x2
12 → 0, x2

34 → 0, x2
56 → 0, which correspond to u1 → 0,

u3 → 0, u5 → 0. The leading contributions in this limit come from the exchange of three
identities, one identity and two leading twists or three leading twists. For now we take the
leading twist to be a scalar, so that

〈O(x1) . . .O(x6)〉 ≈ 1
(x2

12x
2
34x

2
56)∆φ

[
PIIIGIII(ui, Ui) +

(
PIk∗k∗GIk∗k∗(ui, Ui) + perm

)
+ Pk∗k∗k∗Gk∗k∗k∗(ui, Ui)

]
=

= 1
(x2

12x
2
34x

2
56)∆φ

[
1 +

(
C2
φφk∗

(u1u3
U2

) τk∗
2
gk∗(u2/U1) + perm

)
(3.32)

+ C3
φφk∗Ck∗k∗k∗(u1u3u5)

τk∗
2 gk∗k∗k∗(u2i, Ui)

]
,

where ∆∗ is the dimension of the leading twist operator Ok∗ and the functions gk∗ and
gk∗k∗k∗ are defined from the four- and six-point lightcone blocks in (2.11) and (2.22), re-
spectively. Then we take the three distances x2

23, x2
45 and x2

16 to zero, or in cross-ratios
u2i → 0, which will be appropriate to study the OPE decomposition in the crossed channel
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(23)(45)(16) in the lightcone limit. The four-point conformal block gk∗ simplifies consider-
ably in this limit

gk∗(ui/Uj) ≈ −
Γ(∆∗ + J∗)
Γ2(∆∗+J∗

2 )

(
S∆∗+J∗−2

2
+ ln(ui/Uj)

)
+ . . . , (3.33)

where the . . . represent subleading terms in ui/Uj . However, after taking u2i → 0 the func-
tion gk∗k∗k∗(u2i, Ui) of the six-point conformal lightcone block is still a nontrivial function
of the cross-ratios Ui, so we take one further limit x2

24, x
2
26, x

2
46 → 0, or equivalently Ui → 0,

which we refer to as the origin limit [16]. Let us remark that we do this just to make the
problem technically simpler. With this extra limit one gets

gk∗k∗k∗(u2i, Ui) ≈ −
Γ3(∆∗)
Γ6(∆∗

2 )

[∏
i lnUi

3 + 2S∆∗−2
2

lnU1 lnU2 +
(

4S2
∆∗−2

2
− S(2)

∆∗−2
2

+ ζ2

)
lnU1

+ 2
3S∆∗−2

2

(
4S2

∆∗−2
2
− 3S(2)

∆∗−2
2

+ 3ζ2

)
+ . . .

]
+ perm , (3.34)

where the . . . represent subleading terms. We give the derivation os this result in ap-
pendix A. Notice that up to this order the correlator is polynomial of degree three in
the logarithm of the cross-ratios, which contrasts with the behavior in a planar gauge
theory [15].

3.2.1 Exchange of three identities

Given the crossing equation

∑
ki,`i

Pki`iG
12,34,56
ki`i

(ui, Ui) =
3∏
i=1

(
u2i−1
u2i

)∆φ ∑
ki,`i

Pki`iG
23,45,16
ki`i

(ui, Ui) , (3.35)

the limit taken above should be compatible with the cross-channel decompositions in the
channel (23)(45)(16). As we just described, the left hand side of this equation starts with
a one and then has subleading corrections in the cross-ratios uodd → 0, while on the right
hand side there is an aparent power law divergence in ueven in the prefactor. This implies
that the cross-channel decomposition involves operators with dimension approximately
equal to 2∆φ + J that cancel the prefactor u∆φ

2i in the denominator. Each individual
conformal block in the (23)(45)(16) channel is regular in the cross-ratios uodd as they
approach zero, which is not enough to cancel the prefactor u∆φ

2i−1 and recover the identity
contribution of the direct-channel.7 The solution is similar to that of the four- and five-
point correlators in the sense that the identity is recovered from the infinite sum of double-
twist operators with large spin. This can also be intuitively understood by looking at the
“unitarity cuts” of a disconnected Witten diagram as in figure 5.

We will now choose the kinematics where both uodd and Ui are sent to zero with the
same rate J−2, with `i fixed. This is not the choice we did in the direct-channel above, but

7This behavior is similar to that of scalar exchange in the direct-channel (3.34) and is given in appendix A
for general spin.

– 16 –



J
H
E
P
0
3
(
2
0
2
2
)
1
3
9

1 2

3

45

6

Figure 5. Witten diagrams corresponding to the leading order six-point function in a large N the-
ory. The black and red dashed lines correspond to the unitarity cuts in the direct and crossed OPE
channels, allowing us to read-off the exchanged identity and double-twist operators, respectively.

we will recover its kinematics by sending uodd/Ui → 0 afterwards. The conformal block
simplifies considerably in this limit and is given by a product of three Bessel functions

G23,45,16
ki`i

≈
3∏
i=1

2Ji+τiJ
1
2
i

π
1
2

u
τi
2

2i χ
`i
i K 2`i−1−2`i+1+τi+1−τi−1

2

(
2Ji
√
U2i−1

)
U

2`i−1+2`i+1+τi−1−τi+1
2

2i−1 ,

(3.36)
where we can see that the parameter `i controls the cross-ratio χi+1 = 1−u2i−1/U2i−1. The
direct-channel limit that we took above can be recovered in the cross-channel by studying
the limit where χi approaches 1, which in turn is controlled by the large `i region.8 We
can now use (3.36) in the crossing equation (3.35) to reproduce the identity exchange of
the direct-channel

1 ≈ 1
8

( 3∏
n=1

(
u2n−1
u2n

)∆φ
∫
dJnd`n

)
Pki`iG

23,45,16
ki`i

(ui, Ui) , (3.37)

where we transformed the sums in ki, `i in the crossing equation to integrals in Jn, `n
(including a factor of 1/2 because we are only summing over even spins). We can assume
that the product of OPE coefficients Pki`i has the large Ji power law behavior

Pki`i ≈ C
3∏

n=1
2−JnJann fn(`n) . (3.38)

Integrating over Ji we obtain

1 ≈
3∏
i=1

∏
ε=±

∫
d`if(`i)

22∆φu
∆φ

2i−1χ
`i
i

π
1
2

Γ
(3 + 2ai + 2ε(`i+1 − `i−1)

4

)
U

2(`i−1+`i+1)−2ai−3
4

2i−1 ,

(3.39)
8We stress that we made the choice of considering the limit Ui → 0 to simplify the expression for the

block. Alternatively, one could mimic the approach of [16] and keep these cross-ratios finite. We emphasize
however that our choice of taking the origin limit respects an order: Ui → 0 only after ui → 0. The latter
limit is dominated by large Ji and large `i, whereas the subsequent Ui → 0 imposes Ji � `i � 1.
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where we used that τi = 2∆φ to leading order in large Ji. Then we consider the limit where
uodd/Ui → 0. Remember that we need a power law divergence in uodd to kill the prefactor
in (3.37) and, as expected, this is generated by the tail of the sum in `i. In this regime we
can replace χ`ii by exp(−`iu2i−3/U2i−3), where we are keeping fixed the argument of the
exponential in the limit. The powers of Ui cannot depend on `i otherwise this would give
rise to a non-trivial in behavior Ui, which is not consistent with the left-hand side of (3.37),
so we conclude that

ai = r +

∑
j

`j

− `i , (3.40)

with r a constant that does not depend on `i. We can, at this point, take the large `i
behavior of the Γ functions in (3.39). The `i behavior of the expression suggests that for
large `i the function f(`i) has the following form

fi(`i) ≈ e2`i`g−2`i
i , (3.41)

with g and c constants. Putting everything together and after doing the `i integration we
obtain

1 ≈ C 26∆φΓ2
(3

2 + g + r

) 3∏
i=1

u
∆φ− 3

2−g−r
2i−1 U

3
4 +g+ r

2
i , (3.42)

which fixes both r, g and c to be

r = 4∆φ − 3
2 , g = −∆φ , C = 1

26∆φΓ3 (∆φ)
. (3.43)

This fixes the asymptotic form of Pki`i proposed in (3.38).

3.2.2 Exchange of one identity and two leading twist operators

So far we have only reproduced the contribution of the identity in the direct-channel OPE
decomposition (3.32). As we have seen subleading contributions depend non trivially on
the cross-ratios, even in the limit where all ui approach zero, cf. (3.33) and (3.34). One key
difference is that we will have to generate logs of the cross-ratios from the cross-channel
OPE decomposition. Some of these logs are generated by allowing a correction to the
dimension of the double-twist operators of the form

τi = 2∆φ + k

Jai
. (3.44)

The conformal block, in the large spin limit, depends on the twist of the exchanged op-
erator in an explicit way as can be seen in (3.36). It is easy to perturb the previous
computation, done to reproduce the contribution of the identity with the cross-channel
double-twist exchange, and include the correction to the dimension of these operators.
First we expand (3.36) at large Ji and keep the first subleading term in the series. Then,
performing the integrals in Ji and `i we obtain the following correction to the contribution
of the leading twist operators exchange

k
Γ2
(2∆φ−τ∗

2

)
Γ2(∆φ)

∑
j

ln
u2ju2j+3U

1
2

2j+1

(u2j−1u2j+1U3
2j−1) 1

2
− (S∆φ

− S∆ 2φ−a
2

)

(u2j−1u2j+1
U2j+1

)a
2

. (3.45)

– 18 –



J
H
E
P
0
3
(
2
0
2
2
)
1
3
9

This term has the correct power law behavior coming from the direct-channel contribution
of the identity and two leading twist operators, cf. (3.32) or (2.24). This fixes a = τ∗, in
agreement with the four-point function calculation. Moreover, it contains some of the logs
coming from the four-point block function gk∗ , but it also has some unexpected log terms.
It is precisely these terms that will allow us to fix the correction to the OPE coefficient
between three double-twist operators

Pki`i = PMFT
ki`i

1 +
∑
j

∑
k (cj,k ln Jk + bj,k ln `k) + vj

Jτ∗j
+ . . .

 , (3.46)

where ci,j , bi,j and vi are coefficients that we will fix. Upon inserting this in the cross-
channel conformal block decomposition, and integrating over Ji and `i, we obtain

∑
j

[
ln
(∏

i

u
−bj,i+1−

cj,i+cj,i−1
2

2i−1 U
bj,i+1+

cj,i−1
2

2i−1

)
− 2vj

k
−
(
S∆φ
−S∆ 2φ−τ∗

2

)](
u2j−1u2j+1

Ũj+1

) τ∗
2

.

(3.47)
The correct log behavior imposes that

bi,i = 0, bi,i+1 = bi,i+2 = k

2 , ci,i = 0, ci,i+1 = ci,i+2 = −k2 , v1 = kS τ+2J
2

k = −
C2
φφτ∗Γ2(∆φ)Γ(2J + τ∗)

22J∗−1Γ2(2∆φ−τ∗
2 )Γ2(2J+τ∗

2 )
. (3.48)

Thus, we see that we can reproduce exchanges in the direct-channel that include at least
one identity by taking into account the contribution of large spin double-twist operators
in the cross-channel. Moreover this procedure fixes the dimension and OPE coefficients
of these operators at large spin. The formula for the OPE coefficients is one of the main
results of this paper.

3.2.3 Exchange of three leading twist operators

Before analysing the contribution of the exchange of three leading twist operators in the
direct-channel, let us see what is the effect of dressing the large spin double-twist contribu-
tion in the cross-channel by a term of the form ∏3

i=1 J
qi
i `

ri
i . This can be used, for example,

to check what is the cross-ratio dependence of the corrections to the double-twist exchange
in the cross-channel at large spin

3∏
i=1

(
u2i−1
u2i

)∆φ
∫
dJid`iP

tree
Ji,`i

[ 3∏
j=1

J
qj
j `

rj
i

]
G23,45,16
ki`i

(ui, Ui) ∝
3∏
j=1

U
qj−1+2rj+1

2
2j−1

u
qj+qj−1

2 +rj+1
2j−1

. (3.49)

It follows that multiple corrections to the dimension of operators exchanged in the OPEs
(23)(45) and (23)(45)(16), where ri = 0 and two or three nonvanishing exponents qi equal
−τ∗, have, respectively, terms of the form(

u1u5
U2U3

) τ∗
2
uτ∗3

[
ln u2 ln u4 + . . .

]
,

(u1u3u5)τ∗

(U1U2U3)
τ∗
2

[
ln u2 ln u4 ln u6 + . . .

]
, (3.50)
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where the . . . stand for the contribution of log terms in other cross-ratios that are not
important for the present discussion. One important feature of these two results is that
at least one power of uodd is given by τ∗. This can be thought as coming from the direct-
channel contribution of a family of operators whose twist asymptotes to 2τ∗. Another
curious feature is that there is necessarily a dependence on ln ueven that cannot be generated
by the contribution of a single conformal block, as we can see from (3.34). This suggests
that this term comes from the contribution in the direct-channel of an infinite family of
operators with twist 2τ∗. This behavior was already observed in [3] for the case of the
four-point function from the existence of log2 v terms.

Now we are ready to reproduce the last term in (3.32) from the cross-channel de-
composition. Since the direct-channel contribution (3.34) does not have any ln ueven we
conclude from the analysis of the previous paragraph that this term does not come from
the correction of the dimension of double-twist operators. Therefore it must come solely
from the correction to the OPE coefficient, which we propose to have the form

PJi,`i = P tree
Ji,`i

1 +
∑
j

∑
k (cj,k ln Jk + bj,k ln `k) + vj

Jτ∗j
+ p(ln Jj , ln `j)∏

j J
τ∗
j `
− τ∗2
j

+ . . .

 . (3.51)

where the ci,j , bi,j and vi were already fixed in the previous section and p(ln Jj , ln `j) is a
polynomial function of the third degree9

p(lnJj ,ln`j)=c1−c2 ln J2
3

`1`2
ln J2

2
`1`3

ln J2
1

`2`3
+c3 ln J1J2J3

`1`2`3
+2c4

[
lnJ1 ln

(
J2J3
`1

)2 1
`2`3

+lnJ2 ln J2
3

`22`1`3
−lnJ3 ln`23`2`1+ 3(ln`1 ln`2`3+ln`2 ln`3)

2 + ln2`1+ln2`2+ln2`3
2

]
. (3.52)

This polynomial generates the terms

(∏i ui)
τ∗
2 Γ3

(2∆φ−τ∗
2

)
Γ3(∆φ)

[
8c1 +c2 lnU1 lnU2 lnU3−4c3 lnU1U2U3 +2c4

∑
i<j

lnUi lnUj
]
, (3.53)

upon integration in Ji and `i. A simple comparison with (3.34) fixes the values of ci to be

c2 = Pk∗k∗k∗
Γ(∆∗)Γ3(∆φ)

Γ2(∆∗
2 )Γ3

(2∆φ−∆∗
2

) , c3 = 1
4

(
S

(2)
∆∗−2

2
− 4S2

∆∗−2
2
− ζ2

)
c2 ,

c1 = 1
4 S∆∗−2

2

(
4S2

∆∗−2
2
− 3S(2)

∆∗−2
2

+ 3ζ2

)
c2 , c4 = S∆∗−2

2
c2 . (3.54)

9This ansatz is justified because the scalar conformal block is a polynomial of degree 3 in log of cross-
ratios.
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for a scalar leading twist operator and

c2 = Γ3(∆φ) P000 B
(3)
000

Γ3(2∆φ−τ∗
2 )

, c4 = Γ3(∆φ) P000 B
(2)
000

Γ3(2∆φ−τ∗
2 )

,

c1 = Γ3(∆φ)P000 B
(0)
000 + 3P001 B

(0)
001 + 3P002B

(0)
002

Γ3(2∆φ−τ∗
2 )

,

c3 = 2Γ3(∆φ)P000 B
(1)
000 + P001 B

(1)
001 + P002B

(1)
002

Γ3(2∆φ−τ∗
2 )

, (3.55)

for the exchange a stress tensor, where we used the block for stress-tensor exchange derived
in appendix A.2 and wrote P`1`2`3 ≡ PTTT`1`2`3 . We emphasize the absence of the OPE
coefficients associated with the structures where two or three of the `i’s are equal to 1. This
happens since such structures are subleading in the Ui → 0 limit. The constants B(m)

`1`2`3

are the coefficients multiplying the degree-m polynomial of lnUi in the block associated
to the tensor structure labeled by `1, `2 and `3. These coefficients can be read off from
equation (A.21) in appendix A.2. We remark that, as is well known, the OPE coefficients
of the stress tensor are not all independent and in fact satisfy

P011 = −2 8(P000 + P001) + d(d+ 2)P002
(d+ 4)(d− 2) , (3.56)

P111 = 32(2 + d)P000 + 8d(6 + d)P001 − 4d(d2 − 20)P002
(d− 2)2(d+ 2)(d+ 4) ,

since its correlation functions satisfy conservation equations [25]. This means that the
different OPE coefficients associated to the `i tensor structures are related to a set of three
independent numbers.

We end this section with a speculative holographic interpretation of our bootstrap
results which can be skipped by the more orthodox readers. In a four-point function,
radial quantization allows us to visualize a weak gravitational process in AdS where two
particles with large relative angular momentum come from the infinite past, interact, and
continue towards the infinite future. This picture can be generalized for the six-point
function in the comb channel, which instead corresponds to a three-body gravitational
interaction. However, in the snowflake OPE that we analyzed, one cannot assign a single
time coordinate which leads to the cylinder picture. Instead, this channel corresponds to a
gravitational process where the asymptotic states are defined with respect to distinct time
coordinates,10 where the underlying geometry is instead a “pair of pants”. The physical
process is more easily understood by inspecting figure 6.

4 Examples

Consistency conditions of the bootstrap equations for higher-point functions impose con-
straints on the behaviour of three point functions of spinning operators as we have seen in

10We thank Pedro Vieira for discussions on this point.
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Figure 6. Schematic representation of the gravitational processes dual to the six-point comb chan-
nel on the left and to the six-point snowflake channel on the right. In the comb case, three particles
come from the infinite past, interact weakly and continue towards future infinity. In the snowflake
case, the blue and red particles come from the past infinity of two different time coordinates, say
t1 and t2, respectively. The blue one travels to future infinity along t1 and the red one along t2. A
third, green particle comes from past infinity in the t1 direction and moves towards past infinity in
t2. The process can also be interpreted in other similar ways by permuting the role of the OPEs.

the previous sections. The goal of this section is to extract OPE coefficients of spinning
operators by performing an explicit conformal block decomposition of the generalized free
field theory correlator, as well as theories with cubic couplings, and confirm some of our
previous results.

4.1 Generalized free theory

The six-point function of operators φ in a generalized free field theory is given by

〈
6∏
i=1

φ(xi)〉MFT =
∑
perm
〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)〉〈φ(x5)φ(x6)〉 =

∑
perm

1
(x2

12x
2
34x

2
56)∆φ

, (4.1)

where we should sum over all permutations of operator positions. We can extract a pref-
actor (x2

12x
2
34x

2
56)∆φ to write everything just in terms of cross-ratios,

(x2
12x

2
34x

2
56)∆φ〈

6∏
i=1

φ(xi)〉MFT = 1 + (u1u3u5)∆φ

(
1 + (u2u4u6)−∆φ +

3∑
i=1

U
−∆φ

i

)

+
3∑
i=1

[(
u2i+1u2i+3
U2i−1

)∆φ

+
(
u2i−1u2i+1u2i+3
u2i+2U2i−1

)∆φ

+
(
u2i+1u2i+3U2i+1
u2i+2U2i−1

)∆φ
]
. (4.2)

The prefactor we have extracted is appropriate to analyze the OPE limit in the channel
(12)(34)(56). The first term in (4.2) corresponds to the exchange of three identity operators
and the others can contain one identity and two double-twist operators, or three double-
twist operators. A systematic analysis of the operators that are exchanged in the OPE in
these three channels can be done using the six-point conformal blocks [15] or the Casimir
differential operator together with the boundary condition of the block in the lightcone
limit [16]. We obtained for the OPE of three leading double-twist operators, which can not
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be extracted from the four-point function of φ, the result

PJi`i =
3∏
i=1

(
Ji + `i −

∑
j `j + 1

)
(
∑

j
`j)−`i

(∆φ)Ji
2

(∆φ)Ji

2`i−1Ji! `i! (∆φ)`i
(
Ji+2∆φ−1

2

)
Ji
2

. (4.3)

By taking first the large Ji and then the large `i limit we recover the asymptotic behav-
ior (3.38) derived from the lightcone bootstrap in the previous section.

Note that for a free theory with ∆φ = (d − 2)/2 this is the full set of OPE data that
can be extracted from this correlator. In a generalized free theory there are subleading
double-twist operators φ�n∂Jφ whose OPE coefficients could be extracted.

4.2 φ3 theory in d = 6 − ε

We now consider turning on a cubic coupling which will allow us to further test our predic-
tions involving, for example, the five-point function which vanishes for mean field theory.
The five-point function in φ3 theory is given by11

〈
5∏
i=1

φ(xi)〉 =
∑
perm
〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)φ(x5)〉+ 〈

5∏
i=1

φ(xi)〉
∣∣∣
conn

. (4.4)

This correlation function only has odd powers of ε as can be seen by drawing a few Feynman
diagrams or from the strucutre of perturbation theory around the Z2 symmetric free theory.
The leading term is a factorized correlator given by a product of a two-point function and
a three-point function. The two-point function starts at the free theory order, but the
three-point functions starts at order ε, with a tree level contact diagram. The connected
contribution starts at order ε3 and coexists with corrections to the factorized correlator.
To leading order in the ε expansion the connected contribution is given by

〈φ(x1) . . . φ(x5)〉
∣∣∣
conn

=
∑
perm

(
C

(1)
φφφ

)3
x2

12x
2
34

∫
d6x0

x2
10x

2
20x

2
30x

2
40(x2

50)2 . (4.5)

This six-dimensional integral is proportional to a D-function D11112 which we analyze in
appendix B.

4.2.1 Disconnected contribution to the five-point function

Let us write the block decomposition as

〈φ(x1) . . . φ(x5)〉(1) = x2
13

x4
12x

4
34x

2
15x

2
35

∑
k1,k2,`

P
(1)
k1k2`

G
(12)(34)
k1k2`

(ui) , (4.6)

where the superscript (1) indicates the order in the ε expansion. We used that ∆φ = 2+O(ε)
and that Pk1k2` starts at order ε. Our goal is to derive the spectrum and OPE coefficients of

11This result can be obtained easily with the method of skeleton expansions as presented in [29]. It would
be interesting to do conformal block decomposition for five- and six-point correlators in φ3 and see how the
respective spinning OPE coefficients compare with the ones in N = 4 SYM [16].
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the operators exchanged in the (12)(34) channel for the leading disconnected contribution
that is given by

〈
5∏
i=1

φ(xi)〉(1) =
C

(1)
φφφx

2
13

x4
12x

4
34x

2
15x

2
35

u∆φ
2

1 +
(
u3u5
u4

)∆φ
2

+
(
u1u3
u2u2

4u5

)∆φ
2
[(
u1u

2
4
)∆φ

2 +
(
u3u

2
5
)∆φ

2

+
(
u2u

2
4u

2
5
)∆φ

2
(
u

∆φ
2

1 +u
∆φ
2

3

)]
+
(
u2

1u
2
3

u2
2u4

)∆φ
2
[
1+(u2u4u5)

∆φ
2 +u

∆φ

2

(
u

∆φ
2

4 +u
∆φ
2

5

)] . (4.7)

To obtain the block decomposition we use two independent methods which serves as a cross-
check of the calculation. Firstly we consider the Euclidean expansion of the five-point block
discussed in appendix E of [18], and match it to the small u1 and u3 expansion of the corre-
lator. Using this we can obtain as many OPE coefficients as we desire. We can then conjec-
ture a general form for arbitrary J1, J2 and `, which we subsequently test by comparing to
the explicit higher order results. Alternatively, we can use a generalization of the technique
of [30] to higher-point correlators [16]. We act with the Casimir differential operators on
the correlator in terms of its small u1, u3 expansion. Since the conformal blocks are eigen-
functions of the Casimir operator, we can fix the OPE coefficients order by order in u1, u3
by acting recursively with the differential operators. Again, we can do this to arbitrarily
high order, guess the general form of the coefficients and check it to even higher order.

We find that depending on which pair of operators form the two-point function we have
different sets of operators being exchanged. When the two-point function is between points
x1 and x2, we have the identity in the (12) OPE and φ in the (34) OPE. The product of
OPE coefficients is simply given by P (1)

Iφ = C
(1)
φφφ. Similarly, when the two-point function is

between points x3 and x4, we have P (1)
φI = C

(1)
φφφ. When the two-point function is between

points x1 and x5, or between x2 and x5, the result is less trivial since it leads to an expansion
with an infinite number of operators. Adding up these two contributions, we find in the (12)
OPE the double-twist operators [φφ]0,J , with dimension 4+J and (even) spin J , along with
the operator φ in the (34) OPE. In this case we obtain P (1)

[φφ]0,Jφ = C
(1)
φφφC

2
φφ[φφ]0,J , where

C2
φφ[φφ]0,J = 2J+1Γ(J + 2)2Γ(J + 3)

Γ(J + 1)Γ(2J + 3) , (4.8)

which is the usual formula for the OPE coefficients of two scalar operators and a lead-
ing double-twist operator, which holds in MFT with ∆φ = 2. We may also consider the
factorised correlator with generic ∆φ.12 In this case we have several infinite towers of sub-
leading twist operators with dimension 2∆φ+2n+J and spin J . We checked that the OPE
coefficients are again given by the four-point MFT result. This can be easily understood
by using the convergent OPE in the (34) channel, as discussed in section 3.1.1. A similar
story holds when the two-point function is between points x3 and x5, or between x4 and x5,

Finally we can have a two-point function between x1 and x3, x1 and x4, x2 and x3, and
x2 and x4, which are the most non-trivial and interesting cases. Together they admit an

12For example studying φ3 theory in AdS with a massive scalar such that m2 = ∆φ(∆φ − d).
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expansion in terms of blocks where the exchanged operators are [φφ]0,J1 in the (12) OPE
and [φφ]0,J2 in the (34) OPE. Thus we access OPE coefficients with one scalar and two
spinning operators, which have the extra quantum number `. It is not hard to propose the
formula for the OPE coefficients in the case ` = 0, where the dependence in J1 and J2 turns
out to factorize due to the nature of the tensor structure of ` = 0. We find, for generic ∆φ,

P
(1)
[φφ]0,J1 [φφ]0,J2`=0 = π26−4∆φ

2∏
i=1

2−JiΓ
(
Ji + ∆φ

2

)
Γ (Ji + 2∆φ − 1)

Γ (Ji + 1) Γ
(∆φ

2

)
Γ (∆φ) Γ

(
Ji + ∆φ − 1

2

) , (4.9)

which for the ∆φ = 2 case drastically simplifies to

P
(1)
[φφ]0,J1 [φφ]0,J2`=0 =

π2−J1−J2−2Γ
(
J1 + 3

)
Γ
(
J2 + 3

)
Γ
(
J1 + 3

2

)
Γ
(
J2 + 3

2

) . (4.10)

For higher ` we find that the J1 and J2 dependence no longer factorizes. Instead, for ∆φ = 2
we find that the ratio P (1)

[φφ]0,J1 [φφ]0,J2`
/P

(1)
[φφ]0,J1 [φφ]0,J2`=0 is given by a symmetric polynomial

in J1 and J2, with maximum degree 2` in both variables combined and maximum degree
` in each variable separately. For example, the first few polynomials are given by

P`=1
P`=0

= 1
2
(
3 + (J1 + J2) + J1J2

)
,

P`=2
P`=0

= 1
12
(
J2

2J
2
1 + J2J

2
1 + J2

2J1 + 7J2J1 + 6(J1 + J2) + 18
)
, (4.11)

P`=3
P`=0

= 1
144

(
J3

2J
3
1 − (J2J

3
1 + J3

2J1) + 12J2
2J

2
1

+ 12(J2J
2
1 + J2

2J1) + 85J2J1 + 72(J1 + J2) + 216
)
,

where here we used the shorthand notation P`=i ≡ P
(1)
[φφ]0,J1 [φφ]0,J2`=i

. We can easily write
down these polynomials to a very high order.13 Unfortunately we did not find a closed
form at arbitrary `. Nevertheless, we could perform the simpler task of finding the large
J1, J2 at fixed ` behavior, which in fact we were able to do for generic ∆φ. We found that

P
(1)
[φφ]0,J1 [φφ]0,J2`

P
(1)
[φφ]0,J1 [φφ]0,J2`=0

≈ (J1J2)`
Γ(`+ 1)(∆φ)`

, (4.12)

Combining this result with the large spin behavior of the ` = 0 OPE coefficient, and then
taking the large ` limit, we find a perfect match with formula (3.18) obtained using the
lightcone bootstrap!

13We can also write down a few of them for general ∆φ. In this case there is also a simple additional
denominator.
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4.2.2 Comments on the six-point function

The six-point function of a scalar φ in the ε expansion is given by

〈
6∏
i=1

φ(xi)〉 =
∑
perm
〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)〉〈φ(x5)φ(x6)〉+

∑
perm
〈φ(x1)φ(x2)〉〈

6∏
i=3

φ(xi)〉
∣∣
conn

+
∑
perm
〈φ(x1)φ(x2)φ(x3)〉〈φ(x4)φ(x5)φ(x6)〉+ 〈

6∏
i=1

φ(xi)〉
∣∣
conn . (4.13)

The leading term is given by the mean field theory discussed above (with ∆φ = 2 +O(ε))
and is of order ε0. The partialy factorized terms (two-point function times four-point
function and three-point function times another three-point function) begin at order ε2.
These have subsequent corrections of order ε4, which is the order at which the connected
contributions begin. At leading order the latter is given by

〈
6∏
i=1

φ(xi)〉
∣∣
conn =C4

φφφ

(∫
d6x0

x2
12x

2
34x

2
56
∏6
i=1x

2
i0

+
∫

d6x7d
6x8

x2
12x

2
17x

2
27(x2

37)2x2
47x

2
48(x2

58)2(x2
68)2x2

78

)
+perm,

where the first integral is the same as the six-point D-function D111111, which we analyze
in appendix B. It would be nice to systematically study all these corrections and to match
the asymptotics of the OPE coefficients with the lightcone bootstrap results presented in
section (3.2).

5 Discussion

We have shown how to use the lightcone bootstrap for five- and six-point functions to de-
termine the large spin behaviour of some new OPE coefficients. For the five-point function,
in the case of a direct-channel identity exchange we determined the large J1, J2 and ` be-
haviour of the OPE coefficient C(`)

φ[φφ]0,J1 [φφ]0,J2
in the cross-channel. For the case of a leading

twist exchange in the direct-channel, including the possibility of the stress tensor exchange,
we determined the asymptotic behaviour of C(`)

φ[φφ]0,J1 [φO∗]0,J2
. For the six-point function, in

the case of a direct-channel identity exchange, we determined the large Ji and `i behaviour
of C(`i)

[φφ]0,J1 [φφ]0,J2 [φφ]0,J3
. Subleading corrections to this OPE coefficient due to the direct-

channel leading twist exchange were also bootstrapped. An interesting interpretation of
these results emerges in connection to the origin limit Ui → 0. In this limit we observed that
the correlation function diverges at most as logU3

i in contrast with the planar gauge the-
ory case where the divergences can be an arbitrary power of logUi [15, 16]. The difference
between these results follows from the existence or not of a twist gap in a CFT correlator.

Our knowledge of higher-point conformal blocks is still in its infancy. In particular,
our work was limited to the leading order expansion of the blocks in the lightcone limit.
In our notation this corresponds to the leading term in the limit uodd → 0 that defines the
lightcone blocks. It would be very interesting to study subleading corrections to the blocks
in this limit, which would allow us to bootstrap OPE coefficients with subleading double-
twist operators of the form [φφ]n,J and [φO∗]n,J . Additionally, to simplify our analysis,
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we often took the origin limit Ui → 0. It would also be interesting to compute subleading
terms in this expansion, which can be done using only the available lightcone blocks.

In this paper we only considered the lightcone blocks in the snowflake channel. For the
six-point function the comb channel block would lead to a different expansion involving
the exchange of mixed symmetry operators, which we expect to be of triple-twist type.
Such operators are expected to be degenerate at large spin, but this degeneracy should be
lifted at finite spin. It is a very interesting question whether the bootstrap would be able
to address this question in the large spin expansion. This could be a sign of analyticity in
spin for each triple-twist family.

Analyticity is also an open question regarding the new OPE coefficients whose large
spin behaviour we determined in this work. In this case, since there is a unique operator
at each spin and analyticity has been proven in the simpler case of the OPE coefficient
Cφφ[φφ]0,J , we could also expect analyticity to hold. However, the situation here is more
subtle because in this case we also have the label `i that parametrizes tensor structures and
is basis dependent. This is an interesting question since in the case of C(`i)

[φφ]0,J1 [φφ]0,J2 [φφ]0,J3
it would connect to the OPE coefficients of the low spin contributions of this family of
operators. In particular, for an appropriate choice of the external scalar operators, this
will connect to the OPE coefficient between three energy-momentum tensors C(`i)

TTT . In this
case one would hope to derive reliable predictions by including the contributions from the
first terms in the large J expansion.

Analyticity in spin is also important for Regge theory of higher-point functions. This is
clear since Conformal Regge Theory relies on the analytic continuation in spin [31]. In the
four-point case the Lorentzian inversion formula established such analyticity [20]. Thus,
deriving a Lorentzian inversion formula for higher-point functions would shed light in this
problem and, most likely, sistematize the calculations reported in this work.

A more ambitious problem is to set up the Euclidean numerical bootstrap for higher-
point functions, with obvious gains in the available CFT data. As it is well known positivity
is a key ingredient in the numerical bootstrap of four-point functions. In the case of the six-
point function it is possible to choose reflection positive kinematics, however such positivity
is not guaranteed term by term in the block expansion. The situation looks even worse
in the case of the five-point function, since this correlator can not be seen as a positive
norm of a state. One possibility would be to consider a positive semi-definite matrix whose
matrix elements would involve the four-, five- and six-point function. We hope to return
to these questions in the future.
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A Higher-point conformal blocks

A.1 Mellin amplitudes

The Mellin amplitude of a connected n-point function of scalar conformal correlators can
be defined as [34, 35]

〈O1 (x1) . . .On (xn)〉 =
∫

[dγ]M (γij)
∏

1≤i<j≤n
Γ (γij)

(
x2
ij

)−γij
, (A.1)

where [dγ] denotes an integration with the constraints
n∑
i=1

γij = 0 , γij = γji , γii = −∆i . (A.2)

It is a well known fact by now that the OPE implies that the Mellin amplitude is a
meromorphic function of the Mellin variables γij . For each exchange of a primary operator
with dimension ∆ and spin J there is an infinite set of poles in the Melllin amplitude,

M ≈ Qm
γLR − (∆− J + 2m) , m = 0, 1, 2, . . . , (A.3)

where

γLR = −
(

k∑
i=1

pi

)2

=
k∑
a=1

n∑
i=k+1

γai , (A.4)

with the pi defined such that pi ·pj = γij . The residue Qm is related to lower point functions
and conformal blocks [36]. The label m is associated to the contribution of higher twist
descendant operators.

In particular, the equivalence between (A.1) and conformal block decompositions (2.15)
and (2.21) imposes that the Mellin amplitude for the five and six-point correlator needs to
have the following poles

M5 ≈
∑
l C12J1C34J2C

(l)
5J1J2

Fl(γ)(
γ12 −

J1−∆J1+2∆φ

2

) (
γ34 −

J2−∆J2+2∆φ

2

) , (A.5)

M6 ≈
∑
li C12J1C34J2C56J3C

(li)
J1J2J3

Fl1l2l3(γ)(
γ12 −

J1−∆J1+2∆φ

2

) (
γ34 −

J2−∆J2+2∆φ

2

) (
γ56 −

J3−∆J3+2∆φ

2

) , (A.6)

where the functions Fl and Fl1l2l3 are computed by Mellin transforming the lightcone blocks
used in this paper and CXY Z are OPE coefficients. In the following we will determine the
form of Fl and Fl1l2l3 for some specific cases.14

14It would be interesting to repeat the analysis of appendix A.1 of [31] for higher-point functions.
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Let us start with the five-point lightcone conformal block (2.16) with identical scalar
operators Oi = φ, and write the numerator using the binomial formula

∑
i1,i2,j1,j2

(
J1 − l
i1

)(
i1
j1

)(
J2 − l
i2

)(
i2
j2

)∫ [dt1][dt2]ti2−j21 (1− t1)j2ti1−j12 (1− t2)j1(
1− (1− t2)u4

)∆2−∆1+J1+J2−2l+∆φ
2

(A.7)

× u
∆1−J1

2
1 u

∆2−J2
2

3 (1− u2)luj1+j2
2 ui15 u

i2
4(

1− (1− t1)(1− t2)(1− u2)
)∆1+∆2+J1+J2−∆φ

2
(
1− (1− t1)u5

)∆1−∆2+J1+J2−2l+∆φ
2

.

Next we introduce three Mellin variables s1, s2, s3 with respect to the cross-ratios u2, u4
and u5,

∑
i1,i2,j1,j2

(
J1 − l
i1

)(
i1
j1

)(
J2 − l
i2

)(
i2
j2

)
u

∆1−J1
2

1 u
∆2−J2

2
3 (1− u2)l

∫
ds1ds2ds3Γ(s1)Γ(s2)Γ(s3)

× u−s1+j1+j2
2 u−s2+i2

4 u
−s3+i1+

∆φ
2

5

(∆1 + J1 + ∆2 + J2 −∆φ

2

)
−s1

(A.8)

×
(∆2 −∆1 − 2l + J1 + J2 + ∆φ

2

)
−s2

(∆1 −∆2 − 2l + J1 + J2 + ∆φ

2

)
−s3
Bs1,s2,s3 ,

with the function Bs1,s2,s3 given by

Bs1,s2,s3 =
∫

[dt1][dt2](1− t1)i2−j2−s3t
∆2−∆1−J1−J2+2(s3−s1)+2l−∆φ+2j2

2
1 ti1−j1−s22 (A.9)

× (1− t2)
∆1−∆2−J1−J2+2l+2(s2−s1)+2j1−∆φ

2
(
1− t1(1− t2)

) 2s1−J1−J2−∆1−∆2+∆φ
2 .

For J1 = J2 = 0 the function Bs1,s2,s3 can be integrated to

Bs1,s2,s3 =
Γ(∆1)Γ(∆2)Γ

(∆1−∆φ+2(s2−s1)
2

)
Γ
(∆2−∆φ+2(s3−s1)

2
)
Γ
(2(s1−s2−s3)+∆φ

2
)

Γ2(∆1
2
)
Γ2(∆2

2
)
Γ
(∆1+∆2−2s1−∆φ

2
) . (A.10)

One of the advantages of this Mellin representation for the conformal block is that it makes
it easier to study certain limits. For example, to get the leading term in the u2, u4, u5 → 0
limit we just have to close each contour s1, s2, s3 to the left picking all the poles along the
way. Notice that Bs1,s2,s3 for generic spin can be written as a 3F2 hypergeometric series

Bs1,s2,s3 =
Γ
(
J1+∆1+1

2

)
Γ
(
J2+∆2+1

2

)
Γ
(
i2−j2 + J1

2 −s3 + ∆1
2

)
Γ
(
i1−j1 + J2

2 −s2 + ∆2
2

)
22−∆1−∆2−J1−J2πΓ

(
J1
2 + ∆1

2

)
Γ
(
J2
2 + ∆2

2

)
×

Γ
(
`+j1− J1

2 −s1 +s2 + ∆1
2 −

∆φ

2

)
Γ
(
`+j2− J2

2 −s1 +s3 + ∆2
2 −

∆φ

2

)
Γ
(
`+ i1− J1

2 + J2
2 −s1 + ∆1+∆2−∆φ

2

)
Γ
(
`+ i2 + J1

2 −
J2
2 −s1 + ∆1+∆2−∆φ

2

) (A.11)

×3F2

(
−∆φ

2 + τ1
2 +j1−s1 +s2 +` ,−∆φ

2 + τ2
2 +j2−s1 +s3 +` ,−∆φ

2 + h1
2 + h2

2 −s1

−∆φ

2 + ∆1
2 + ∆2

2 + i2 + J1
2 −

J2
2 −s1 +` ,−∆φ

2 + ∆1
2 + ∆2

2 + i1− J1
2 + J2

2 −s1 +`
;1
)
.

To find Fl one needs to relate the Mellin transform we have computed to the Mellin
amplitude definition in (A.1). We use the conditions (A.2) to write the Mellin amplitude in
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terms of five independent Mellin variables, namely:γ12, γ34, γ13, γ15, γ35. After computing
the integral in γ12 and γ34, we can relate the two sets of Mellin variables, si’s and γij , by
demanding the exponents of the cross-ratios to be the same on both expressions. To do so,
we first expand (1− u2)l = ∑

k

( l
k

)
(−u2)k. We find then the relation

s1 = 2j1 + 2j2 + 2k − J2 + ∆J2 − 2γ13 − 2γ35
2 , s3 = γ15 + i1 ,

s2 = 2i2 + J1 − J2 −∆J1 + ∆J2 + ∆φ − 2γ35
2 . (A.12)

This relation depends on indices that are summed over. Thus, performing the change of
variables in (A.8) leads us to finite sums of contour integrals. We would like to swap the
order of sums and integrals to be able to write Fl from those finite sums. This can be done
if we are allowed to move, without crossing any poles, all the contours to the same region.
Assuming this can be done,15 to find Fl is just simple algebra. For specific values of spin
and scaling dimension of the exchanged operators, it is easy to see that Fl defined in this
way is, as expected, a polynomial in the Mellin variables γ13, γ15, γ35 whose degree depends
on J1, J2, l.

It is possible to repeat the same analysis for the six-point conformal block in the
lightcone. Since the method is essentially the same we will just quote here the Mellin
transform of the block for the exchange of scalar operators

3∏
i=1

u
∆i
2

2i−1Γ(∆i)

Γ(
∑

j
∆j−2∆i

2 )Γ2(∆i
2 )

∫ 6∏
i=1

dsiΓ(si)
3∏
i=1

U2−i
u2iU−i

si

U
−s3+i
i Γ

(∆i − 2(si + s̄i)
2

)
(A.13)

× Γ
(∆21 − 2(s3 + s6 − s2)

2

)
Γ
(∆13 − 2(s2 + s4 − s1)

2

)
Γ
(∆32 − 2(s1 + s5 − s3)

2

)
,

where s̄1 = s5 + s6, s̄2 = s4 + s5, s̄3 = s4 + s6 and ∆ij = ∆i−∆j . To relate this to F000 we
repeat the analysis above. We write the usual Mellin amplitude definition (A.1) in terms
of 9 independent Mellin variables γij . After integrating in γ12, γ34 and γ56, it is easy to
relate the remaining γij to si’s by imposing the same power behaviour of the cross-ratios
on both Mellin representations. We find:

s1 = γ23 , s2 = γ45 , s3 = γ16 , s4 = γ46 , s5 = γ24 , s6 = γ26 . (A.14)

A simple computation shows that F000 is independent of γij as one would expect for
scalar exchanges.

A.2 Explicit computation of six-point blocks

In the following we compute the leading lightcone limit contribution for the exchange
of three minimal-twist operators in the snowflake channel of the six-point function. For

15To be rigorous one needs to study in detail the very complicated pole structure of the integrand. This
is particularly challenging due to the possible presence of fake poles. As discussed in [37], gamma functions
that depend on more than a single Mellin variable can naively suggest the presence of families of poles that
differ depending on the order of integration of the Mellin variables. These poles are fake.
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simplicity, let us first consider that the corresponding operators are scalars. It will be useful
to recall the definition of the block gk∗k∗k∗ (u2i, Ui) given in (2.22). This is a complicated
three-dimensional integral even in the simpler scalar case. One can show, however, that no
divergences appear from the limit u2i → 0,16 since the Ui’s act as regulators of those possible
divergences. This substantially simplifies our analysis. The situation for the spinning
operators is technically more involved but it is still free of divergences in the limit of u2i → 0.

As an example, consider the exchange of three leading-twist scalar operators with
dimension 2 in terms of the cross-ratios yu, yv, yw17 defined as

U1 = yu (1−yv)(1−yw)
(1−yuyv)(1−yuyw) , U2 = yv (1−yu)(1−yw)

(1−yvyu)(1−yvyw) , U3 = yw (1−yu)(1−yv)
(1−ywyu)(1−ywyv)

.

(A.15)
In these cross-ratios, the block becomes

g222 (0, Ui) =
3∏
i=0

∫ ∞
0

dti (yiyi+1 − 1)2

yi(yi+1 − 1)(yi−1 − 1) + ti(1 + ti+1)(yiyi+1 − 1)(yiyi−1 − 1) ,

(A.16)
where we have changed variables ti → ti/(ti + 1) and identified y1 = yv, y2 = yu and
y3 = yw. The subscripts should be understood mod 3. These cross-ratios appear to be
a more natural choice to compute these integrals, as the integrand factorizes into simpler
pieces. The integration can be done exactly and written in terms of hyperlogarithmic
functions as

g222(0,Ui)= (1−yuyw)(1−yvyw)(1−yuyv)
(1−yw)(1−yu)(1−yv)(yuyvyw−1)

(
H0(yu)

(
H0,1(yw)+H0,1(yv)−H0,y−1

w
(yv)

)
−H0(yv)

(
H0,y−1

w
(yu)+H0,(yvyw)−1(yu)−H0,1(yw)−H0,y−1

v
(yu)−H0,1(yu)

)
+2H0,(yvyw)−1,y−1

v
(yu)

+H0(yw)
(
H0,y−1

w
(yv)+H0,1(yv)+H0,y−1

w
(yu)−H0,y−1

v
(yu)+H0,1(yu)−H0,(yvyw)−1(yu)

)
+2H1(yv)

(
H0,y−1

w
(yu)−H0,(yvyw)−1(yu)

)
−2H0,y−1

w ,y−1
w

(yv)+H0,y−1
v ,0(yu)−H0,(yvyw)−1,0(yu)

+H0,y−1
w ,0(yv)+2(H0,1,1(yu)+H0,1,1(yv)+H0,1,1(yw))−2H0,(yvyw)−1,1(yu)−2H0,y−1

v ,y−1
v

(yu)

−
(
H0,1,0(yu)+H0,1,0(yv)+H0,1,0(yw)

)
+2Hy−1

w
(yv)

(
H0,(yvyw)−1(yu)−H0,1(yu)

)
+2H1(yw)

(
H0,y−1

v
(yu)−H0,(yvyw)−1(yu)

)
+2H0,(yvyw)−1,y−1

w
(yu)−2H0,y−1

w ,y−1
w

(yu)

+H0(yu)H0(yv)H0(yw)+H0,y−1
w ,0(yu)+ζ2

(
H0(yw)+H0(yu)+H0(yv)

))
. (A.17)

The hyperlogarithm functions H are defined recursively via the integral [32]

Hω1,ω2,...,ωn(z) =
∫ z

0

dt

t− ω1
Hω2,...,ωn(z), H0,0,...,0(z) = lnn z

n! , H(z) = 1. (A.18)

16This can be checked for example with the HyperInt package [32]. We find only logarithmic divergences
in Ui whenever Ui → 0.

17The appearance of these cross-ratios is not surprising given the duality between null polygon Wilson
loops and correlation functions, see [16] for recent development in this topic. In fact these cross-ratios have
appeared before in the study of WL/scattering amplitudes in N = 4 SYM [33].
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One can then check that in the limit where all yi → 0 (which corresponds to Ui → 0), the
integral (A.16) is given by

lim
yi→0

(A.16) ≈ − ln(yu) ln(yv) ln(yw)− ζ2 ln(yw)− ζ2 ln(yu)− ζ2 ln(yv) , (A.19)

which is consistent with the behaviour in (3.34). In fact, one can repeat this computation
for several even integer values of the dimension of the exchanged scalar operators. In
this class of examples, the integral can be performed with the HyperInt package. We use
several parameterizations of the block and guess its general form in the kinematic limit we
consider in this paper, namely u2i−1 → 0, followed by u2i → 0 and in last place Ui → 0.
This is (3.34). We will later confirm these results by using a Mellin representation which
we will define below.

For a stress tensor exchange, the form of the integrand is more complicated. Even for
specific values of the `i’s and of the space-time dimension d, we find that these computations
extend in time and therefore this procedure becomes less useful. It is however worth stating
that if we restrict ourselves to the case where yu = yv = yw these computations can be
performed very quickly in HyperInt. We use these results as a sanity check for the Mellin
method we now present.

In the kinematics relevant for the bootstrap calculation of section 3 we need to take
u2i → 0, in which case we can derive a simplified Mellin representation. For that we
consider the lightcone block (2.22), set u2i → 0 in the integrand18 and then we Mellin
transform with respect to the cross-ratios Ui. After some massaging we obtain

g`1`2`3k∗k∗k∗ =
3∏
i

∫
[dsi] Γ(si)

Γ(2J + τ)

2JΓ
(

2J+τ
2

)2
∑
ni,mi

(−1)miUmi+ni−si+`2−ii

×
(J−`2−i−`3−i

ni

)(J−ni+1−`1−i−`2−i
mi

)
Γ (si − ni − `2−i + `1−i)(

2J − si − `1−i − `3−i + τ
2
)
si

(
J +mi+1 + ni − si − si+1 + τ

2
)
si−ni−`2−i+`1−i

, (A.20)

in the case where all the operators have the same twist and spin. The sums over ni and mi

were introduced to reduce the binomials that appeared in the numerator into monomials
of Ui.

We would like to make an expansion in the limit Ui → 0. In Mellin language this is
simply done by closing the si contours to the left and picking the corresponding poles. At
leading order only some poles contribute. We will call these the leading poles. The leading
poles will only come from the gamma functions explicitly written above and which only
depend on one of the Mellin variables.

We observe that the position of the leading poles does not depend on the value of mi.
Therefore in the limit Ui → 0, the leading contributions have to come from the terms with
mi = 0. For fixed values of spin, twist and `i, we perform the sum over ni and pick the
residues of leading poles. These leading contributions are located at values of si such that
the exponent of the corresponding Ui becomes 0, which leads to the expected logarithmic

18This does not lead to any divergences as discussed above.
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behaviour when there is a double pole.19 If we use this mechanism in the case of scalar
minimal-twist exchange, we immediately reproduce the result of (3.34)! Moreover, we can
also check that this procedure for the leading poles nicely matches the results of direct
integration using HyperInt in the limit yu = yv = yw.

For a stress tensor exchange, we have three possible values of `i’s, namely 0,1 and 2.
If two or three `i’s take value 1, those contributions will be subleading by powers of Ui.
We thus list the results for the remaining cases

g000
TTT =− Γ(τ+4)3

64Γ
(
τ+4

2

)6

[ 3∏
i

lnUi
3 +

(
4
(
S τ

2 +1
)2
−S(2)

τ
2 +1 +

8
(
τ(τ+6)+2

)
τ(τ+2)(τ+4)(τ+6) +ζ2

)
lnU1

+2S τ
2 +1 lnU1 lnU2−

S τ
2 +1

3

(
8
(
S τ

2 +1
)2
−6S(2)

τ
2 +1

)
−
S τ

2 +1

(
8(τ(τ+6)+2)+ζ2

)
2τ(τ+2)(τ+4)(τ+6) +perm

]
,

g100
TTT =−

Γ(τ+4)3(τ(τ+6)+4
)

16Γ
(
τ+4

2

)6
τ(τ+2)(τ+4)(τ+6)

[
2S τ

2 +1 +lnU2
]

(A.21)

g200
TTT =− Γ(τ+4)3

4Γ
(
τ+4

2

)6
τ(τ+2)(τ+4)(τ+6)

[
2S τ

2 +1 +lnU2
]
,

where τ = d− 2 is the twist of the stress-tensor. Notice the result diverges for τ = 0. This
is not a problem since we are considering the case where there is a twist gap which happens
for d > 2. For other non-vanishing `i, the result is obtained by permuting the cross-ratios.

A.3 Euclidean expansion of six-point conformal blocks

The results of the main part of the paper were derived using the leading term of the confor-
mal blocks expanded around the lightcone. We will shift gears in this section and analyze
the conformal blocks expanded around the Euclidean OPE limit in a similar approach to
the one done for four- and five-point function conformal blocks [18, 38, 39].

The two key ingredients in the derivation of the blocks are that they satisfy the Casimir
differential equation [1

2
(
L

(i1)
AB + L

(i2)
AB

)2
− C∆,J

]
f∆,J(xi) = 0 , (A.22)

with
C∆,J = ∆(∆− d) + J(J + d− 2) , (A.23)

where LAB are the generators of the conformal group and their boundary condition coming
from the OPE

O(xi1)O(xi2) =
∑
k

Ci1i2k
xµ1
i1i2

. . . xµJi1i2

(x2
i1i2

)
∆i1+∆i2−∆k+Jk

2

Ok,µ1...µJ (xi2). (A.24)

19Other poles of the family will always contribute at subleading orders. In fact, if we have si smaller than
the required value, there will be a non-vanishing power Ui which leads to a subleading contribution. On the
other hand, if si is instead larger, there is no corresponding pole and the residue is 0. In other words, leading
poles are the rightmost poles of the family prescribed by the explicit gamma functions we wrote above.
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In the Euclidean OPE limit there are three cross-ratios that approach zero

s2
1 = u1 , s2

2 = u3 , s2
3 = u5 , (A.25)

and six others that remain fixed

ξ1 = U1 − u2U2
s1U1

, ξ2 = U3 − u4U1
s2U3

, ξ3 = U2 − u6U3
s3U2

,

ξ4 = (u2 − U1)U2
s1s2U1

, ξ5 = (u6 − U2)U3
s1s3U2

, ξ6 = (u4 − U3)U1
s2s3U3

, (A.26)

in a six-point correlation function and are analogous to the four-point cross-ratios written
in equation (2.2). The cross-ratios that remain fixed can be interpreted as measuring the
angles that the points 2, 4, 6 approach 1, 3, 5. It follows from the OPE (A.24) that the
conformal block should behave as

G∆i,Ji(si, ξi) =
3∏
j=1

s
∆j

j gJi(ξi) , si → 0 , (A.27)

where gJi(ξi)20 is a polynomial function of the cross-ratios ξi that satisfies three differential
equations coming from the Casimir of the channel (12) in the limit si → 0,

[
(4− ξ2

1)∂2
ξ1 + (4− ξ2

4)∂2
ξ4 + (4− ξ2

5)∂2
ξ5 − 2(2ξ2 + ξ1ξ4)∂ξ1∂ξ4

−2(2ξ2 + ξ1ξ4)∂ξ1∂ξ4 − 2(2ξ3 + ξ1ξ5)∂ξ1∂ξ5 + (1− d)(ξ1∂ξ1 + ξ4∂ξ4 + ξ5∂ξ5) (A.28)

+2(2ξ2ξ3 − ξ4ξ5 − 2ξ6)∂ξ4∂ξ5 + J1(J1 + d− 2)
]
gJi(ξi) = 0 ,

with similar equations for the channels (34) and (56). These three differential equations,
together with the boundary condition for λ→ 0,

gJi(ξi)→ ξJ1−`2−`3
1 ξJ2−`1−`3

2 ξJ3−`1−`2
3 ξ`34 ξ

`2
5 ξ

`1
6 , ξ1,2,3 →

ξ1,2,3
λ

, ξ4,5,6 →
ξ4,5,6
λ2 , (A.29)

fix completely the form of the function. It is possible (and easy) to get subleading correc-
tions of gJi(ξi) for any value of Ji and `i from the differential equations. By analyzing these
corrections we were able to check that the function gJi(ξi) satisfies relations of the type

ξk gJi,`i(ξi) =
1∑

il=−1
c

(k)
i1...i6

gJ1+i1,J2+i2,...,`3+i4,...`1+i6(ξi) , (A.30)

20This is the analogue of the Gengebauer polynomial that appears in the leading term of the OPE of a
four-point function conformal block. Let us also remark that this function appears in the definition of the
conformal block using the shadow formalism.
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that can be used to define it recursively. One example of these relations is21

c
(1)
−100000 = 4(J1 − `2 − `3)(J1 + `2 + `3)

(2J1 + d− 4)(2J1 + d− 2) , c
(1)
100000 = 1 , (A.31)

c
(1)
−100−100 = − 2`3(d+ 2(`2 + `3 − 2))

(2J1 + d− 4)(2J1 + d− 2) , c
(1)
−1000−10 = − 2`2(d+ 2(`2 + `3 − 2))

(2J1 + d− 4)(2J1 + d− 2) ,

c
(1)
−100−1−10 = − 4`2`3

(2J1 + d− 4)(2J1 + d− 2) , c
(1)
−100−1−11 = 4`2`3

(2J1 + d− 4)(2J1 + d− 2) .

Let us remark that there are similar relations for the Gegenbauer polynomial and for the
five-point analogue [18].

It is an interesting open problem to obtain a representation of the conformal block as
a series expansion in si, as was done for four and five points [18, 39].22

B D-functions

In this appendix we analyze five- and six-point D-functions using standard technology from
perturbation theory in AdS [42, 43].

B.1 Five points

We start from a five-point contact Witten diagram with a non-derivative interaction

W ctc
∆1,...,∆5(x1, . . . , x5) =

∫
AdSd+1

dd+1yK∆1(x1, y) . . .K∆5(x5, y) = D∆1,...,∆5 , (B.1)

where the bulk-boundary propagator is defined as

K∆(xi, y) =
(

z

(~xi − ~y)2 + z2

)∆
. (B.2)

We can expand this in five-point conformal blocks without knowing their explicit form,
using Harmonic analysis and the conformal partial waves. We will do this in the (12)(34)
channel, but other channels can be obtained with the same method. Start by introducing
auxiliary 1 =

∫
AdS dy

′δ(y′−y) and attach the bulk to boundary propagators to the auxiliary
points in the desired (12)(34) structure, i.e.

W ctc=
∫
dydy′dy′′K∆1(x1,y

′)K∆2(x2,y
′)K∆3(x3,y

′′)K∆4(x4,y
′′)K∆5(x5,y)δ(y′−y)δ(y′′−y).

(B.3)
Next, we use the spectral representation of the AdS delta function and the split represen-
tation of the harmonic function to obtain

δ(y1 − y2) =
∫
dx′

∫ +i∞

−i∞

dc

2πiρδ(c)Kh+c(x′, y1)Kh−c(x′, y2) , (B.4)

21The other relations as well as the definition of gJi,`i(ξi) in terms of a recurrence relation is provided in
a auxiliary file.

22It would also be interesting to see how the recent and new approaches to the conformal blocks [19, 40, 41]
can help in this problem.
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where c is the imaginary spectral parameter, h = d/2 and the spectral function for the
Dirac delta is

ρδ(c) =
Γ
(
d
2 + c

)
Γ
(
d
2 − c

)
2πdΓ(−c)Γ(c) . (B.5)

Now, all three bulk integrals can be performed, since they are of the AdS three-point
function type∫

dyK∆1(x1, y)K∆2(x2, y)K∆3(x3, y) = a∆1,∆2,∆3〈O1(x1)O2(x2)O3(x3)〉 , (B.6)

where
〈O1(x1)O2(x2)O3(x3)〉 = 1

x
∆12,3
12 x

∆23,1
23 x

∆13,2
13

(B.7)

is the kinematical three-point function without OPE coefficient, and

a∆1,∆2,∆3 =
π
d
2 Γ
(∆1+∆2−∆3

2
)
Γ
(∆1+∆3−∆2

2
)
Γ
(∆2+∆3−∆1

2
)

2Γ (∆1) Γ (∆2) Γ (∆3) Γ
(∆1 + ∆2 + ∆3 − d

2

)
. (B.8)

We are then left with two spectral integrals and two boundary integrals

W ctc =
∫

[dc′][dc′′]dx′dx′′ρδ(c′)ρδ(c′′)a∆1,∆2,h+c′ah−c′,∆5,h−c′′ah+c′′,∆3,∆4 (B.9)

×〈O1(x1)O2(x2)Oh+c′(x′)〉〈Oh−c′(x′)O5(x5)Oh−c′′(x′′)〉〈Oh+c′′(x′′)O3(x3)O4(x4)〉 ,

where [dc] = dc/2πi. The position space integrals precisely coincide with the definition of
the five-point conformal partial wave for the exchange of two scalar operators of dimension
h+ c′ and h+ c′′

Ψ∆1...∆5
h+c′,h+c′′(xi) =

∫
dxdx′〈O1O2Oh+c′(x′)〉〈Oh−c′(x′)O5Oh−c′′(x′′)〉〈Oh+c′′(x′′)O3O4〉 .

(B.10)
Thus, we find the partial have expansion for the five-point contact Witten diagram

W ctc =
∫

[dc′][dc′′]ρ̃5(c′, c′′)Ψ∆1...∆5
h+c′,h+c′′(xi) , (B.11)

with
ρ̃5(c′, c′′) = ρδ(c′)ρδ(c′′)a∆1,∆2,h+c′ah−c′,∆5,h−c′′ah+c′′,∆3,∆4 . (B.12)

To obtain the conformal block expansion we deform the contours towards the real axis
and pick up the physical poles. To do this we need the relation between the conformal
partial waves and the conformal blocks. Since they solve the same Casimir equations,
the conformal partial waves must be a linear combination of the blocks for the exchanged
operators and their shadows. We provide a detailed analysis of this relation in appendix C.
The coefficients can be obtained in the OPE limits and are given in terms of shadow factors
K (h− c appears since it is the shadow of h+ c)

Ψ∆1...∆5
h+c′,h+c′′(xi) = K∆5,h−c′′

h−c′ K∆5,h+c′
h−c′′ G∆1,...,∆5

h+c′,h+c′′(xi) + 3 shadow terms (B.13)
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With

K∆1,∆2
∆,J =

(
−1

2

)J π d2 Γ
(
∆− d

2
)

Γ(∆ + J − 1) Γ
( ∆̃+∆1−∆2+J

2
)

Γ
( ∆̃+∆2−∆1+J

2
)

Γ(∆− 1) Γ(d−∆ + J) Γ
(∆+∆1−∆2+J

2
)

Γ
(∆+∆2−∆1+J

2
) , (B.14)

which are related to the shadow factors S we will compute below by K∆1,∆2
∆,J =

(−1
2)JS∆1,∆2

∆,J . We will carefully describe these factors in appendix C. Note that since
we only exchange scalar operators we always have J = 0 so we suppress that label. We
now have the block expansion in contour integral form

W ctc =
∫

[dc′][dc′′]ρ5(c′, c′′)G∆1...∆5
h+c′,h+c′′(xi) , (B.15)

where
ρ5(c′, c′′) = 4K∆5,h−c′′

h−c′ K∆5,h+c′
h−c′′ ρ̃5(c′, c′′) (B.16)

and the factor of 4 comes from the shadow combinations. The function ρ5 contains three
families of poles corresponding to the exchanged operators. Introducing the notation ∆′ =
h+ c′, we have

Family 1: ∆′= ∆1 +∆2 +2n1 , ∆′′= ∆3 +∆4 +2m1 , (B.17)
Family 2: ∆′= ∆1 +∆2 +2n2 , ∆′′= ∆1 +∆2 +∆5 +2n2 +2m2 , (B.18)
Family 3: ∆′= ∆3 +∆4 +∆5 +2n3 +2m3 , ∆′′= ∆3 +∆4 +2m3 . (B.19)

Thus we can write the block expansion as

W ctc =
∞∑

n1,m1=0
P[12]n1 [34]m1

G∆1...∆5
[12]n1 ,[34]m1

+
∞∑

n2,m2=0
P[12]n2 [125]n2+m2

G∆1...∆5
[12]n2 ,[125]n2+m2

+
∞∑

n3,m3=0
P[345]n3+m3 [34]m3

G∆1...∆5
[345]n3+m3 ,[34]m3

, (B.20)

where [ij]n denotes the scalar double-twist [OiOj ]n with n laplacians, and similarly for the
triple-twists [ijk]n+m. The Pab are related to the OPE coefficients through (2.17) with
` = 0. Finally, we specify how to obtain the Pab from the residues of ρ5

P[12]n1 [34]m1
= Res∆′′=∆3+∆4+2m1Res∆′=∆1+∆2+2n1ρ5(∆′,∆′′) ,

P[12]n2 [125]n2+m2
= Res∆′′=∆1+∆2+∆5+2n2+2m2Res∆′=∆1+∆2+2n2ρ5(∆′,∆′′) ,

P[345]n3+m3 [34]m3
= Res∆′′=∆3+∆4+2m3Res∆′=∆′′+∆5+2n3ρ5(∆′,∆′′) . (B.21)

Some comments on this block expansion are in order:

• We have exchange of both double-twist and triple-twist operators. Unlike the double-
twist operators, of which there is only one of a given dimension, triple-twist operators
are degenerate at leading order in 1/N . Since we have operators of dimension ∆1 +
∆2 + ∆5 + 2(n+m), and we sum over both n and m this means that there are p+ 1
triple-twist operators of dimension ∆1 + ∆2 + ∆5 + 2p.
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• Large N counting determines that a connected five-point function has a leading be-
haviour ∼ 1/N3. (One can have factorized three-point × two-point functions at
order 1/N but let’s ignore those). We can check this large N behaviour in the OPE
coefficients. For family 1 we have

P[12]n1 [34]m1
= C12[12]n1

C[12]n15[34]m1
C[34]m134 (B.22)

where the first and last OPE coefficient are the MFT ones, so we are accessing the
1/N3 information in C[12]n15[34]m1

. For the second family we have

P[12]n2 [125]n2+m2
= C12[12]n2

C[12]n25[125]n2+m2
C[125]n2+m234 , (B.23)

where now the first two OPE coefficients are MFT (although the second one
is single-twist/double-twist/triple-twist), and the 1/N3 data we are probing is
C[125]n2+m234.The third family is similar to the second one.

• For generic dimensions we have an expansion in terms of blocks, however when the ex-
changed operators in different families have dimensions that differ by an even integer,
we find that the OPE coefficients naively diverge. This happens when

∆1 + ∆2 + ∆5 −∆3 −∆4 = 2p or ∆1 + ∆2 −∆5 −∆3 −∆4 = 2q (B.24)

for some p, q ∈ Z. By carefully regulating the external dimensions and taking the
limit, one finds that the divergences in OPE coefficients cancel, and we get instead
derivatives of the blocks with respect to the exchanged dimension. This is the tell-
tale sign of anomalous dimensions for the exchanged operators. We will see this
explicitly in the D11112 example that we will analyze below. Equivalently, we can
take the integer separated dimensions at the level of the spectral function, which
will then have double poles. Picking their residues also leads to the derivatives of the
blocks. In particular, recall that the D functions which admit a closed form expression
are the ones where the total dimension is an even integer. This means that either
∆1 +∆2 +∆5 and ∆3 +∆4 are both odd or both even. In any case, their difference is
an even number, and will therefore satisfy the above condition. Therefore, we learn
that explicitly computable D-functions must always contain derivatives of blocks.

B.1.1 The case of D11112

The simplest computable (in terms of ladder integrals) five-point D-function is D11112. As
argued above, this D-function contains blocks and derivatives of blocks corresponding to
anomalous dimensions in its expansion. Following the limiting procedure described in the
previous section, the coefficients in the expansion can be read off. We can organize the
sum into two integers corresponding to the two exchanged operators. It is actually more
convenient to pick the two integers to parametrize the dimension of one of the operators and
the difference between the two. We separate the cases with same dimension and positive
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difference, since they are qualitatively different. Therefore we write

W ctc=
∞∑

n1=0

Γ2n1+1Γ2
n1+1Γ2

− d2 +n1+2Γ− d2 +2n1+3

(
1−3δ0,n1

4

)
2π−d/2Γ2

2n1+2Γ2
− d2 +2n1+2

G2+2n1,2+2n1 (B.25)

+
∞∑

n1=0,δ=1

 πd/2δΓn1+1Γδ+n1+1Γδ+2n1+1Γ− d2 +n1+2Γ− d2 +δ+n1+2

Γ−1
− d2 +δ+2n1+3Γ2n1+2Γ− d2 +2n1+2Γ2(δ+n1+1)Γ2(δ+n1+1)− d2

∂∆1G2+2(n1+δ),2+2n1

+

δ
(
S− d2 +δ+n1+1+S− d2 +δ+2n1+2−2

(
S− d2 +2δ+2n1+1+S2δ+2n1+1

)
+Sδ+n1+Sδ+2n1

)
+1

2π−d/2Γ2n1+2Γ− d2 +2n1+2Γ2(δ+n1+1)Γ2(δ+n1+1)− d2

×Γn1+1Γ− d2 +n1+2Γδ+n1+1Γδ+2n1+1Γ− d2 +δ+n1+2Γ− d2 +δ+2n1+3G2+2(n1+δ),2+2n1

+(∆1↔∆2)
)
,

where we introduced the shorthand notation Γa ≡ Γ(a). Specializing for concreteness to
the case d = 4 and explicitly writing the block expansion for the first few operators, we
have

8W ctc = 4π2G2,2−
10
9 π

2G2,4−
134
675π

2G2,6−
10
9 π

2G4,2 + 4
9π

2G4,4−
16
225π

2G4,6−
134
675π

2G6,2

− 16
225π

2G6,4 + 4
225π

2G6,6 + 4
3π

2G2,4
(0,1) + 8

45π
2G2,6

(0,1) + 2
15π

2G4,6
(0,1) (B.26)

+ 4
3π

2G4,2
(1,0) + 8

45π
2G6,2

(1,0) + 2
15π

2G6,4
(1,0) +higher dimension operators ,

which has the expected left-right symmetry. On the other hand, D11112 admits an explicit
position space expression in terms of a linear combination of products of rational functions
of the five cross-ratios and one-loop ladder functions Φ(z, z̄) with the arguments being all
possible five-point cross-ratios. In practice, we have to invert to the variables u, v and use

Φ(u,v) = 2Li2(1−v)+log(u) log(v)
1−v (B.27)

+ u(2(v+1)Li2(1−v)+log(u)(−2v+v log(v)+log(v)+2)+2(v+v log(v)−1))
(1−v)3 +O(u2) .

Using the radial expansion for the five-point blocks described in [18]

G∆′,∆′′ =
∑
n′,n′′

an′,n′′s
∆′+n′
1 s∆′′+n′′

2 Hn′,n′′(χ1, χ2, χ3) , (B.28)

Where an′,n′′ are kinematically fixed coefficients, s1, s2 are radial variables which are small
in the double (12)(34) OPE limit andH is a polynomial in the χ1, χ2, χ3 angular variables,23

which are fixed in this limit. As an example we have:

G2,2=s2
2s

2
1+s2

2s
3
1χ1−s3

2s
2
1χ2+1

3s
2
2s

4
1

(
4χ2

1−1
)
+1

2s
3
2s

3
1(χ3−2χ1χ2)+1

3s
4
2s

2
1

(
4χ2

2−1
)
+O(s7).

(B.29)
Using the explicit blocks and the expression in terms of ladder functions, we can form an
expansion in the small s1, s2 limit, and we precisely reproduce the block expansion derived
through harmonic analysis in the previous section.

23We have 2χ1 = ξ1,2χ2 = ξ3 and −2χ3 = ξ1 in terms of the ξi variables introduced in [18].
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B.2 Six points

It is not hard to generalize the previous analysis to the six-point D-function. We will
consider the expansion in terms of the snowflake partial wave

Ψsf
A,B,C =

∫
dx7,8,9〈O1O2OA(x7)〉〈O3O4OB(x8)〉〈O5O6OC(x9)〉〈Õ†A(x7)Õ†B(x8)Õ†C(x9)〉 ,

(B.30)
A similar analysis to the five-point case leads to the spectral function

ρ̃6(c1, c2, c3) = ρδ(c1)ρδ(c2)ρδ(c3)a∆1,∆2,h+c1a∆3,∆4,h+c2a∆5,∆6,h+c3ah−c1,h−c2,h−c3 . (B.31)

Using the OPE limits discussed in appendix C, we can then determine the proportionality
factor between the partial wave and the block

Ψh+c1,h+c2,h+c3(xi)=Kh−c2,h−c3
h−c1 Kh+c1,h−c3

h−c2 Kh+c1,h+c2
h−c3 Gh+c1,h+c2,h+c3(xi)+7 shadow terms

(B.32)
Such that we can represent the six-point function by

W ctc =
∫

[dc1,2,3]ρ6(c1,2,3)Gh+c1,h+c2,h+c3(xi) , (B.33)

with
ρ6(c1,2,3) = 8Kh−c2,h−c3

h−c1 Kh+c1,h−c3
h−c2 Kh+c1,h+c2

h−c3 ρ̃6(c1,2,3) . (B.34)

This spectral function leads to the following families of exchanged operators

1: ∆A = ∆1 + ∆2 + 2n1 , ∆B = ∆3 + ∆4 + 2n2 , ∆C = ∆5 + ∆6 + 2n3 , (B.35)
2: ∆A = ∆3 + ∆4 + ∆5 + ∆6 + 2mt , ∆B = ∆3 + ∆4 + 2m2 , ∆C = ∆5 + ∆6 + 2m3 ,

3: ∆A = ∆1 + ∆2 + 2p1 , ∆B = ∆1 + ∆2 + ∆5 + ∆6 + 2pt , ∆C = ∆5 + ∆6 + 2p3 ,

4: ∆A = ∆1 + ∆2 + 2q1 , ∆B = ∆3 + ∆4 + 2q2 , ∆C = ∆1 + ∆2 + ∆3 + ∆4 + 2qt ,

where mt = m1 +m2 +m3 and similarly for the other indices. Note that we identify double-
and quadruple-twist operator families in the spectrum.

B.2.1 The case of D111111

Once again we consider integer valued D-functions, the simplest of which has all dimensions
equal to 1. They are particularly useful in the study of φ3 theory in 6− ε dimensions. On
the lightcone (12)(34)(56), the D-function D111111 has been computed in [44]. The fact
that all dimensions are identical and furthermore integer, leads to the usual degeneracies,
and pole collisions, which are responsible for generating derivatives of blocks, and therefore
tree level anomalous dimensions.

Note that for poles to collide, we must have that some double-twist operators in family
1 have the same dimension as a quadruple trace operator in families 2,3 or 4. Therefore, the
sum of operators naturally organizes in terms of a triangle function. If the three dimensions
satisfy the triangle inequality, then there are no pole collisions, and the contributions can
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only come from family 1. If the triangle inequality is violated by some exchanged operator
(and of course this can only happen to one operator at a time), then we must consider the
poles in family 1 along with the family who has that operator as a quadruple trace (e.g. if
∆A ≥ ∆B + ∆C then we take family 2). We write

W ctc=
∞∑

n1,n2,n3=0

πd/2

2 Γ3− d2 +n1+n2+n3

3∏
i=1

Γni+1Γ2− d2 +n1
Γ1−ni+nj+nk

Γ2+2niΓ2− d2 +2ni
G2+2n1,2+2n2,2+2n3+

+

 ∞∑
n1,n2,δ

Γn1+1Γn2+1Γ− d2 +n1+2Γ− d2 +n2+2Γδ+2n1+1Γδ+2n2+1

Γ2n1+2Γ2n2+2Γ− d2 +2n1+2Γ− d2 +2n2+2

×
πd/2Γ− d2 +nt+2Γnt+1Γ− d2 +δ+2n1+2n2+3

ΓδΓ2(nt+1)Γ− d2 +2nt+2
∂∆3G2+2n1,2+2n2,2+2nt

+
∞∑

n1,n2,δ

−ψ− d2−δ+2nt+3−ψ− d2 +nt+2+2ψ− d2 +2nt+2+ψδ−ψδ+2n1+1+2ψ2nt−ψδ+2n2+1−ψnt+1

Γ−1
n2+1Γ−1

− d2 +n1+2Γ−1
− d2 +n2+2Γ−1

δ+2n1+1ΓδΓ2n1+2Γ2n2+2Γ− d2 +2n1+2Γ− d2 +2n2+2Γ2(nt+1)

×
−πd/2Γn1+1Γnt+1Γ− d2−δ+2nt+3

2Γ− d2 +2nt+2Γ−1
δ+2n2+1Γ−1

− d2 +nt+2
G2+2n1,2+2n2,2+2nt+(∆3↔∆1)+(∆3↔∆2)

, (B.36)

where nt = n1 + n2 + δ and ψa = Sa − a−1 − γE .

C Higher-point correlators and harmonic analysis

Harmonic analysis of the conformal group leads to the Euclidean inversion formula, which
extracts the CFT data from the full correlator. This tool is available even for higher-point
functions, but is generically not a useful apparatus for computations. A notable exception
is the case of MFT correlators where the inversion can be performed rather explicitly in
the case of four-pt functions [45]. In this appendix we derive some of the results needed to
generalize this procedure to higher-point functions.

C.1 MFT six-point function from harmonic analysis

We will study the six-point function of identical real scalar operators φ of dimension ∆φ

presented previously in (4.1). Before moving on, it is important to point out that depending
on the OPE channel (snowflake vs comb), we can have different amounts of identity operator
exchanges which must be accounted separately in the conformal partial wave expansion,
since they are non-normalizable with respect to the Euclidean inversion formula. To analyze
this we recall the definition of the six-point partial waves. The snowflake partial wave is

Ψsf,1...6,abcd
A,B,C =

∫
7,8,9
〈O1O2OA(x7)〉a〈O3O4OB(x8)〉b〈O5O6OC(x9)〉c〈Õ†A(x7)Õ†B(x8)Õ†C(x9)〉d,

(C.1)
where we introduced the notation

∫
i,j,... =

∫
dxidxj . . . to make the equations more com-

pact, a, b, c, d are tensor structure labels and the daggers denote the dual representation,
meaning the indices of the A,B,C exchanged operators are contracted. We can now iden-
tify the problematic identity exchanges. The 12 − 34 − 56 contraction corresponds to the
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exchange of three identity operators, which is non-normalizable but can trivially be writ-
ten as the conventional prefactor times 1. We can also have the exchange of one identity
operator and two non-trivial double-twists. This will be the case, for example in the Wick
contraction 12− 35− 46. Pulling out the prefactor, we will be able to expand this in a fac-
torized form, as a two-point function times a four-point function, and of course the block
expansion of the four-pt function will be the non-trivial, but well-known MFT one. In
total, we have one wick contraction with three identities and six with one identity. Below,
we will therefore focus on the eight remaining non-trivial ones. On the other hand, we
have the comb channel partial wave:

Ψc,1...6,abcd
A,B,C =

∫
7,8,9
〈O1O2OA(x7)〉a〈Õ†A(x7)O3OB(x8)〉b〈Õ†B(x8)O4OC(x9)〉c〈Õ†C(x9)O5O6〉d .

(C.2)
We can now have two identity exchanges (which is again a factor of 1 with the conventional
prefactor choice), or one identity exchange (four choices). We must account for 15−34−26
and 16− 34− 25 Wick contractions which exchanged an identity in the snowflake channel,
but do not do so in the comb channel. The remaining eight non-trivial contractions are
the same as before.

To obtain the OPE coefficients, we will be using the euclidean inversion formula, which
amounts to integrating the euclidean correlator multiplied by an appropriate conformal
partial wave. This works because of the orthogonality property of partial waves. The
appropriate inner product is given by(

〈O1 · · ·On〉 , 〈Õ†1 · · · Õ
†
n〉
)

=
∫

ddx1 · · · ddxn
vol SO(d+ 1, 1) 〈O1 · · ·On〉 〈Õ†1 · · · Õ

†
n〉 . (C.3)

C.1.1 Snowflake channel

For the snowflake partial waves we find the orthogonality property(
Ψsf,1...6,abcd
ABC ,Ψsf,1̃†...6̃†,efgh

Ã′†B̃′†C̃′†

)
= δA,A′δB,B′δC,C′

µ(∆A, JA)µ(∆B, JB)µ(∆C , JC) (C.4)

×
(
〈12A〉a, 〈1̃†2̃†Ã†〉e

) (
〈34B〉b, 〈3̃†4̃†B̃†〉f

) (
〈56C〉c, 〈5̃†6̃†C̃†〉g

) (
〈Ã†B̃†C̃†〉d, 〈ABC〉h

)
,

where δX,X′ = 2πδ(νX − νX′)δJX ,JX′ and we adopted the shorthand notation X ≡ OX .
The snowflake partial wave expansion is given by

〈O1 . . .O6〉 =
∑

JA,JB ,JC

∫
dνAdνBdνCI

sf
abcd(νA, JA, νB, JB, νC , JC)Ψsf,1...6

A,B,C(xi) , (C.5)

and we invert this with the orthogonality relation

Iefgh ≡
(
〈O1 . . .O6〉,Ψsf,1̃†...6̃†,efgh

Ã′†B̃′†C̃′†

)
= Isf

abcd(νA, JA, νB, JB, νC , JC)
µ(∆A, JA)µ(∆B, JB)µ(∆C , JC) (C.6)

×
(
〈12A〉a, 〈1̃†2̃†Ã†〉e

) (
〈34B〉b, 〈3̃†4̃†B̃†〉f

) (
〈56C〉c, 〈5̃†6̃†C̃†〉g

) (
〈Ã†B̃†C̃†〉d, 〈ABC〉h

)
Taking identical real scalars Oi = O = O†, this reduces the calculation of the spectral
function to the calculation of the integral on the left hand side of the above equation,
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which is given by

Ia =
∫
dx1,...,9
Vol 〈Õ(x1)Õ(x2)Õ†A(x7)〉〈Õ(x3)Õ(x4)Õ†B(x8)〉〈Õ(x5)Õ(x6)Õ†C(x9)〉

× 〈OA(x7)OB(x8)OC(x9)〉a〈O(x1) . . .O(x6)〉MFT . (C.7)

As discussed above, the MFT correlator consists of fifteen triplets of Wick contractions.
Clearly, when either of the pairs are 12, 34 or 56, we can integrate one of the vari-
ables, and this will shadow transform one of the three-point functions. However, we
will then have a three-point function with two coincident points, integrated over this
point, which is badly divergent. This is the reason why such contributions are non-
normalizable and need to be accounted for separately. Therefore, we henceforth focus
on a representative contribution, and the remaining ones can be obtained in an identical
manner (in fact some of them give a manifestly equal result). Let us take for concreteness
〈O(x1)O(x3)〉〈O(x2)O(x5)〉〈O(x4)O(x6)〉 ⊂ 〈O(x1) . . .O(x6)〉MFT Performing the integra-
tion over x3,5,6 applies shadow transforms on the 3-pt functions:

Ia =
∫
dx1,2,4,7,8,9

Vol 〈Õ(x1)Õ(x2)Õ†A(x7)〉〈S[Õ](x1)Õ(x4)Õ†B(x8)〉〈S[Õ](x2)S[Õ](x4)Õ†C(x9)〉

× 〈OA(x7)OB(x8)OC(x9)〉a , (C.8)

with the shadow transform for the scalar defined as

〈S[O](x) . . . 〉 =
∫
dy〈Õ(x)Õ(y)〉〈O(y) . . . 〉 . (C.9)

We also define the shadow factor for the three-point functions, which is the fundamental
building block for the following calculations

〈S[O]OIOJ〉a = S([O]OIOJ)ab〈ÕOIOJ〉b . (C.10)

We can now write the spectral function as

Ia =
∫
dx1,2,4,7,8,9

Vol 〈Õ(x1)Õ(x2)Õ†A(x7)〉〈O(x1)Õ(x4)Õ†B(x8)〉〈O(x2)O(x4)Õ†C(x9)〉

× S([Õ]ÕÕ†C)S(O[Õ]Õ†C)S([Õ]ÕÕ†B)〈OA(x7)OB(x8)OC(x9)〉a . (C.11)

Let us make a few comments. First note that there is some freedom in choosing what
operators we actually shadow transform, and in the case where we transform two in the
same three-point function, we can also choose the order. This leads to apparently different
expressions, which presumably give the same result in the end. We should also point out
that independently of these choices, the shadow factors only include one spinning operator
and are therefore known in closed form for any J and d. Additionally, it is clear that each
three-point function has exactly one point in common with the other ones, and therefore
the position space integrals remain non-trivial.

To address this, we note that an integral of two three-point functions integrated by a
common point is just a four-point partial wave, which admits well-known crossing relations,
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whose kernel are the 6j symbols of the conformal group. There is now some freedom
in choosing over what integration point to perform crossing. Crossing over the scalar
corresponds to a 6j symbol with three spinning operators. Crossing over a spinning one
will lead to a similar result. Let us first define the 6j symbol24 through the crossing relation

Ψ3214,ab
∆′,J ′ (x3, x2, x1, x4) =

∑
J

∫
[d∆]

{
[∆1, J1] [∆2, J2] [∆′, J ′]
[∆3, J3] [∆4, J4] [∆, J ]

}abcd
Ψ1234,cd

∆,J (x1, x2, x3, x4) .

(C.12)
Let us cross through the scalar at x4 using∫

dx4〈Õ†C(x9)O(x2)O(x4)〉〈Õ(x4)O(x1)Õ†B(x8)〉 =
∑
J ′

∫
[d∆′] (C.13)

×
{

∆ ∆ ∆
[∆̃C , JC ] [∆̃B, JB] [∆′, J ′]

}b ∫
dx4〈O(x1)O(x2)O′(x4)〉〈Õ′†(x4)Õ†C(x9)Õ†B(x8)〉b .

With this, we can easily perform the x1, x2 integrals using the bubble integral formula∫
dx1,2〈Õ(x1)Õ(x2)Õ†A(x7)〉〈O(x1)O(x2)O′(x4)〉= δA,O′

µ(∆A,JA)δ(x74)
(
〈ÕÕÕ†A〉,〈OOOA〉

)
.

(C.14)
The delta function between operators OA and O′ removes the auxiliary spectral integral,
and the position space delta function gives a final pairing between A,B,C three-point
functions. Collecting everything, we obtain

Ia = S([Õ]ÕÕ†C)S(O[Õ]Õ†C)S([Õ]ÕÕ†B)
{

∆ ∆ ∆
[∆̃C , JC ] [∆̃B, JB] [∆A, JA]

}b

×

(
〈ÕÕÕ†A〉, 〈OOOA〉

)
µ(∆A, JA)

(
〈Õ†AÕ

†
BÕ
†
C〉

b, 〈OAOBOC〉a
)
. (C.15)

Note that we have a 6j symbol with three spinning operators. When one or two of these
operators are scalars, this should be related to well-known 6j symbols through the tetra-
hedral S4 symmetry. Otherwise, this is a non-trivial object to be obtained either through
weight-shifting operators, or more directly from the Euclidean inversion formula applied
to the cross-channel partial wave with the appropriate tensor structures.

C.1.2 Comb channel

In the comb channel we have slight modifications to the orthogonality properties. The
orthogonality relation now reads

(
Ψc,1...6,abcd
ABC ,Ψc,1̃†...6̃†,efgh

Ã′†B̃′†C̃′†

)
= δA,A′δB,B′δC,C′

µ(∆A, JA)µ(∆B, JB)µ(∆C , JC) (C.16)

×
(
〈12A〉a, 〈1̃†2̃†Ã†〉e

) (
〈Ã†3B〉b, 〈A3̃†B̃†〉f

) (
〈B̃†4C〉c, 〈B4̃†C̃†〉g

) (
〈C̃†56〉d, 〈C5̃†6̃†〉h

)
,

24Our convention for the 6j symbol differs from others in the literature by a normalization factor.
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from which the spectral function now follows from the Euclidean inversion integral

Iefgh ≡
(
〈O1 . . .O6〉,Ψc,1̃†...6̃†,efgh

Ã′†B̃′†C̃′†

)
= Ic

abcd(νA, JA, νB, JB, νC , JC)
µ(∆A, JA)µ(∆B, JB)µ(∆C , JC) (C.17)

×
(
〈12A〉a, 〈1̃†2̃†Ã†〉e

) (
〈Ã†3B〉b, 〈A3̃†B̃†〉f

) (
〈B̃†4C〉c, 〈B4̃†C̃†〉g

) (
〈C̃†56〉d, 〈C5̃†6̃†〉h

)
,

Once again, we specialize to the case of identical external scalars O, such that the spectral
function can be obtained from the integral

Iab =
∫
dx1,...,9
Vol 〈Õ(x1)Õ(x2)Õ†A(x7)〉〈OA(x7)Õ(x3)Õ†B(x8)〉a〈OB(x8)Õ(x4)Õ†C(x9)〉b

× 〈OC(x9)Õ(x5)Õ(x6)〉〈O(x1) . . .O(x6)〉MFT . (C.18)

34 identity. As discussed above, in the Comb channel there are two qualitatively different
types of terms without an identity exchange. The non-trivial contractions in the snowflake
channel are also non-trivial in the comb channel. However, the 〈O(x3)O(x4)〉 Wick con-
traction, which is an identity exchange in the snowflake OPE, now becomes a non-trivial
contribution. Let us take the 15− 34− 26 contraction. This gives a contribution

Iab⊃
∫
dx1,2,3,7,8,9

Vol 〈Õ(x1)Õ(x2)Õ†A(x7)〉〈OA(x7)Õ(x3)Õ†B(x8)〉a〈OB(x8)S[Õ](x3)Õ†C(x9)〉b

×〈OC(x9)S[Õ](x1)S[Õ](x2)〉 . (C.19)

Note that there is again a lot of freedom in what operator to take the shadow transform,
and in the subsequent steps. However, it is unavoidable to obtain a shadow transform on
a three-point function with two spinning operators, which gives a complicated (matrix)
shadow factor

Iab ⊃
∫
dx1,2,3,7,8,9

Vol 〈Õ(x1)Õ(x2)Õ†A(x7)〉〈OA(x7)Õ(x3)Õ†B(x8)〉a〈OB(x8)O(x3)Õ†C(x9)〉c

× S(OC [Õ]Õ)S(OCO[Õ])S(OB[Õ]ÕC)bc〈OC(x9)O(x1)O(x2)〉 . (C.20)

We can now apply the bubble integral formula for the x1,2 integrals. This imposes a delta
function between operators A and C, and also on their positions, x7 − x9. In the end, we
obtain

Iab ⊃ δA,C
µ(∆A, JA)S(OC [Õ]Õ)S(OCO[Õ])S(OB[Õ]ÕC)bc

(
〈ÕÕÕA〉, 〈OAOO〉

)
×
(
〈OAÕÕB〉a, 〈OBOÕA〉c

)
. (C.21)

We again emphasize that this depends on a non-trivial shadow factor.

Non-trivial contractions: one point in common. Now, we have to consider again
the eight non-trivial Wick contractions, which contain no identity operators in any channel.
There are two further classes of Wick contractions, ones which will induce two common
points between two pairs of three-point functions, and ones where all three-point functions
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will have one point in common with each other. A representative example of the second
type is the Wick contraction 14−25−36. Its contribution to the spectral function is given by

Iab ⊃
∫
dx1,...,9
Vol 〈Õ(x1)Õ(x2)Õ†A(x7)〉〈OA(x7)Õ(x3)Õ†B(x8)〉a〈OB(x8)Õ(x4)Õ†C(x9)〉b

× 〈OC(x9)Õ(x5)Õ(x6)〉〈O(x1)O(x4)〉〈O(x2)O(x5)〉〈O(x3)O(x6)〉 . (C.22)

As usual we have some freedom in what operators to shadow transform. In this case, this
is particularly relevant, since out of the three shadow factors, we can have either zero, one
or two “difficult” shadow factors, depending on what operators we transform. Sticking to
the easiest possibility, we inevitably get only one common point per three-point function,
which means that once again we need to use crossing relations or 6j symbols to proceed
with the position space integrals. It is convenient to cross through OA(x7) and then do
the x2,3 integrals using the bubble formula. In the end we get

Iab ⊃
{

∆ [∆̃B, JB] [∆A, JA]
∆̃ ∆̃ [∆C , JC ]

}ac
S([Õ]ÕÕA)S(OC [Õ]Õ)S(OCO[Õ]) (C.23)

×

(
〈ÕÕÕ†C〉, 〈OOOC〉

)
µ(∆C , JC)

(
〈OÕ†BOC〉

c, 〈ÕOBÕ†C〉
b
)

There is just one more class of Wick contractions to analyze.

Non-trivial contractions: two points in common. We can also have two-point func-
tions connecting the adjacent three-point functions of the partial wave. A representative
example for this case is the Wick contraction 16−23−45. The contribution to the spectral
function is given by

Iab ⊃
∫
dx1,...,9
Vol 〈Õ(x1)Õ(x2)Õ†A(x7)〉〈OA(x7)Õ(x3)Õ†B(x8)〉a〈OB(x8)Õ(x4)Õ†C(x9)〉b

× 〈OC(x9)Õ(x5)Õ(x6)〉〈O(x1)O(x6)〉〈O(x2)O(x3)〉〈O(x4)O(x5)〉 . (C.24)

Once again, we have the freedom to perform the shadow transforms, and we can get either
zero, one or two hard factors. Let us get all simple factors by making the choice

Iab ⊃
∫
dx1,...,9
Vol 〈Õ(x1)O(x3)Õ†A(x7)〉〈OA(x7)Õ(x3)Õ†B(x8)〉a〈OB(x8)Õ(x4)Õ†C(x9)〉b

× S(OC [Õ]Õ)S(OCO[Õ])S(Õ[Õ]ÕA)〈OC(x9)O(x4)O(x1)〉 . (C.25)

There are now two possible approaches. We can try to do, for example the x3, x7 integrals,
which would involve a bubble integral with a spinning operator integrated over∫

3,7
〈Õ(x1)O(x3)Õ†A(x7)〉〈OA(x7)Õ(x3)Õ†B(x8)〉a =

δÕB ,Oδ(x1−x8)
µ(∆,0)

(
〈ÕOÕA〉,〈OÕOA〉

)
.

(C.26)
This would mean that the operator exchanged at OB(x8) would need to be the same as
the external operator. It is not hard to argue that this is possible in MFT. We are then
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able to do the final three-point pairing and obtain

I ⊃ S(OC [Õ]Õ)S(OCO[Õ])S(Õ[Õ]ÕA)

(
〈ÕOÕA〉, 〈OÕOA〉

)
µ(∆, 0)

(
〈ÕÕÕC〉, 〈OOOC〉

)
.

(C.27)
Note that the tensor structure indices went away, since OB became a scalar operator, and
therefore all tensor structures became unique.

C.2 Partial wave decompositon and conformal blocks

In the previous section we formally derived the partial wave decomposition of MFT six-
point functions. However, to obtain the actual CFT data, we need to write down the confor-
mal block decomposition and read-off the OPE coefficients. In this subsection, we establish
a relation between the partial wave decomposition and the conformal block expansion. We
quickly review the case of the four-point function which can be expanded in partial waves as

〈O1O2O3O4〉 =
∑
ρ

∫ d
2 +i∞

d
2

d∆
2πiIab(∆, ρ)ΨOi(ab)O (xi) + discrete . (C.28)

Here discrete is associated with possible additional isolated contributions, notably includ-
ing the identity. The partial wave is defined in terms of a conformally-invariant integral
involving two three-point structures

ΨOi(ab)O (xi) =
∫
ddx〈O1O2O(x)〉(a)〈O3O4Õ†(x)〉(b) . (C.29)

In order to relate the partial wave decomposition to conformal blocks we follow the
strategy of [45]. The partial wave in (C.29) is a solution of the Casimir equation and there-
fore one can establish its relation to conformal blocks by uniquely estimating its form in the
OPE limit x1 → x2. Obviously the Euclidean OPE limit cannot be taken simply inside the
integral as the integrand probes regions where the OPE in the pair (12) is no longer valid.
However, understanding the leading behaviour outside this region is enough to match those
contributions to a given conformal block. For concreteness, consider the replacement

〈O1O2O(x)〉(a) → C
(a)
12O〈O

†(x2)O(x)〉 , (C.30)

where C
(a)
12O encodes leading terms in the OPE O1 × O2. With this replacement the

integral in (C.29) becomes a shadow transform of Õ†,

ΨOi(ab)O ∼ C(a)
12O〈O3O4S[Õ†]〉(b) = S(O3O4[Õ†])bcC

(a)
12O〈O3O4O†〉(c) . (C.31)

On the other hand, the conformal block G(ab)
O is a solution of the Casimir equation, which

in the OPE limit of O1 ×O2 behaves as

G
(ab)
O ∼ C(a)

12O〈O3O4O†〉(b) , (x1 → x2) . (C.32)

It is thus clear that the partial wave must contain a term

ΨOi(ab)O ⊃ S(O3O4[Õ†])bcG
(ac)
O . (C.33)
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Similarly, if one performs an OPE on O3 × O4 instead, it is straightforward to show that
the partial wave contains a term

ΨOi(ab)O ⊃ S(O1O2[O])acG
(cb)
Õ

. (C.34)

Putting everything together we conclude that

ΨOi(ab)O = S(O3O4[Õ†])bcG
(ac)
O + S(O1O2[O])acG

(cb)
Õ

, (C.35)

which reflects the fact that the Casimir equation is invariant under ∆→ d−∆. Inserting
this relation on (C.28), extending the integration region along the entire imaginary axis
and using shadow symmetry, allows us to write

〈O1 . . .O4〉 =
∑
ρ

∫ d
2 +i∞

d
2−i∞

d∆
2πiCac(∆, ρ)G(ac)

O , (C.36)

where Cac(∆, ρ) ≡ Iab(∆, ρ)S(O3O4[Õ†)bc. As usual we can then deform the contour inte-
gration away from the principal series and pick up poles of Cac(∆, ρ) on the real line, which
have residues that encode CFT data. For a particular exchanged operator O∗, we have

C12∗C34∗ = −Res∆=∆∗C(∆, ρ∗) . (C.37)

This formalism can straightforwardly be adapted to the case of higher-point functions.
For five-point functions, the discussion has already been presented in [43], but we also
review it here. We consider the partial wave

ΨOi(abc)A,B (xi) =
∫
ddxAd

dxB〈O1O2OA〉(a)〈Õ†AO5Õ†B〉
(b)〈OBO3O4〉(c) (C.38)

where OA,B are exchanged operators. A five-point function can be decomposed in terms
of this partial wave

〈O1 . . .O5〉 =
∑
ρA,ρB

∫ d
2 +i∞

d
2

d∆A

2πi

∫ d
2 +i∞

d
2

d∆B

2πi Iabc(∆A, ρA; ∆B, ρB)ΨOi(abc)A,B (xi) . (C.39)

To expand this partial wave in terms of conformal blocks we again consider OPE limits.
In particular, we take x1 → x2 and x3 → x4 at the level of the integrand and we observe
that the partial wave must contain the term

ΨOi(abc)A,B (xi) ⊃ C(a)
12AC

(c)
34B〈S[Õ†A]O5S[Õ†B]〉(b) = (S5B̃

Ã
)bd(SA5

B̃
)de C

(a)
12AC

(c)
34B〈O

†
AO5O†B〉

(e)︸ ︷︷ ︸
∝G(aec)

AB

,

(C.40)
where we have used the shorthand notation SBCA = S([OA]OBOc) and recognized the
leading behaviour of the conformal block G(aec)

AB in the OPE limits x1 → x2 and x3 → x4.
As above, we notice that the partial wave ΨOi(abc)A,B (xi) is a solution of the Casimir equations,
one for each OPE exchange, and therefore it enjoys the invariance ∆ ↔ d − ∆. We can
then propose the decomposition

ΨOiA,B(xi) = R1GAB(xi) +R2GÃB(xi) +R3GAB̃(xi) +R4GÃB̃(xi) , (C.41)
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where, as we have seen, R1
a
b = (S5B̃

Ã
)ac (SA5

B̃
)cb. In order to find the remaining Ri’s we explore

the symmetry of the partial wave:

ΨOi(abc)A,B (xi)=
∫
ddxAd

dxB〈O1O2OA〉(a)〈Õ†AO5Õ†B〉
(b)〈OBO3O4〉(c)

=
∫
ddxAd

dx′Ad
dxB((S5B̃

A )−1)bd〈O1O2OA〉(a)〈Õ†AÕA′〉〈O
†
A′O5Õ†B〉

(d)〈OBO3O4〉(c)

=
∫
ddxAd

dxB(S12
A )ad((S5B̃

A )−1)be〈O1O2ÕA〉(d)〈O†AO5Õ†B〉
(e)〈OBO3O4〉(c)

=(S12
A )ad((S5B̃

A )−1)beΨ
Oi(dec)
Ã,B

(xi). (C.42)

Performing an OPE expansion on the ΨOi(abc)
Ã,B

(xi), we observe

ΨOi(abc)
Ã,B

(xi) ⊃ (S5B̃
A )bd(SÃ5

B̃
)deG

(aec)
ÃB

(xi) , (C.43)

from which follows that
R2

ab
de = (S12

A )ad(SÃ5
B̃

)be . (C.44)
Similarly, one can show that

R3 = S5B̃
Ã
S34
B , R4 = S12

A S
34
B . (C.45)

Just as we have shown in the 4-point case, one can use the shadow symmetry of Iabc to
extend the region of integration such that

〈O1 . . .O5〉 =
∑
ρA,ρB

∫ d
2 +i∞

d
2−i∞

d∆A

2πi

∫ d
2 +i∞

d
2−i∞

d∆B

2πi Iabc(∆A, ρA; ∆B, ρB)(S5B̃
Ã

)bd(SA5
B̃

)deGaecAB .

(C.46)
The exact same techniques can be applied to six-point functions. Here, we focus

on the snowflake decomposition which admits the partial wave expansion (C.5), where the
snowflake partial wave is defined in (C.1). In a completely analogous procedure as discussed
above, we can relate this partial wave to conformal blocks. In particular, from the shadow
invariance of the Casimir equations it is natural to expand the partial wave as

ΨOiA,B,C(xi) = R1GABC +R2GÃBC +R3GAB̃C +R4GABC̃

+R5GÃB̃C +R6GAB̃C̃ +R7GÃBC̃ +R8GÃB̃C̃ , (C.47)

where

R1 =SB̃C̃
Ã

SAC̃
B̃
SAB
C̃

, R2 =S12
A S

ÃC̃
B̃
SÃB
C̃

, R3 =S34
B S

B̃C̃
Ã

SAB̃
C̃

, R4 =S56
C S

B̃C̃
Ã

SAC̃
B̃

,

R5 =S12
A S

34
B S

ÃB̃
C̃

, R6 =S34
B S

56
C S

B̃C̃
Ã

, R7 =S12
A S

56
C S

ÃC̃
B̃

, R8 =S12
A S

34
B S

56
C . (C.48)

The computation of these coefficients exactly mimics the computations in (C.42) and be-
low. One can now insert (C.47) on the partial wave expansion and extend the region of
integration to the whole imaginary axis, keeping only one term which reads

〈O1 . . .O6〉 =
∑

ρA,ρB ,ρC

∫ d
2 +i∞

d
2−i∞

d∆A

2πi
d∆B

2πi
d∆C

2πi Iabcd(∆A, ρA; ∆B, ρB; ∆C , ρC)

× SB̃C̃
Ã

d

e
SAC̃
B̃

e

f
SAB
C̃

f

g
G

(abcg)
ABC . (C.49)
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C.3 Direct computation of spinning shadow coefficients

In the previous subsections, we have repeatedly come across shadow coefficients involving
multiple spinning operators but the computation of these shadow coefficients is an im-
portant question on its own. In this subsection, we will derive some of them using the
shadow formalism. In [45] some of these coefficients were computed using weight-shifting
operators from which recursion relations were derived [46]. Here, we extend these results
and compute directly the explicit integration involved in the definition of these coefficients.
We can write the shadow transform of an operator in a three-point structure as

〈O1O2S[O3]〉(a) =
∫
ddx0〈Õ3Õ†0〉〈O1O2O0〉(a) , (C.50)

where we have an implicit contraction of indices. Here we only consider symmetric and
traceless representations of the conformal group and so the two- and three-point structures
can be written in terms of the two fundamental building blocks [25] that appeared in (2.14).
In particular we choose the normalization of the two-point structure to take the form

〈O(x1, z1)O(x2, z2)〉 = HJ
12

x∆+J
12

. (C.51)

On the other hand, the three-point structure is given by (2.13) once we omit the OPE
coefficients. As in the main text, we use here the index-free notation of [25, 47]. In
particular, in what follows we will use the formula

(a · Dz)J(b · z)J = (J !)2

2J (a2b2)
J
2Ch−1

J

(
a · b

(a2b2) 1
2

)
, (C.52)

where Ch−1
J is a Gegenbauer polynomial and h = d/2.

Before moving on to more complicated examples, let us, as a warm-up, compute the
shadow integral for three scalar operators. In this case, we can use the well-known star-
triangle formula [48]∫

ddx0
1

(x2
10)a(x2

20)b(x2
30)c = πhΓ(h− a)Γ(h− b)Γ(h− c)

Γ(a)Γ(b)Γ(c)︸ ︷︷ ︸
≡G(a, b, c)

1
(x2

12)h−c(x2
13)h−b(x2

23)h−a ,

(C.53)
with a+ b+ c = 2h to get

〈φ∆1φ∆2S[φ∆3 ]〉 =
∫
ddx0

1
x

2(d−∆3)
30

1
(x2

12)
∆1+∆2−∆3

2 (x2
10)

∆1−∆2+∆3
2 (x2

20)
−∆1+∆2+∆3

2

=
πhΓ(∆3 − h)Γ( ∆̃3+∆1−∆2

2 )Γ( ∆̃3+∆2−∆1
2 )

Γ(2h−∆3)Γ(∆3+∆1−∆2
2 )Γ(∆3+∆2−∆1

2 )
〈φ∆1φ∆2φ∆̃3

〉 ,
(C.54)

from which we can easily read the shadow coefficient S(φ∆1φ∆2 [φ∆3 ]).
In [45] the authors computed the shadow coefficients for the case where two of the

operators were scalars and one of them had spin J . Here we compute the coefficients
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corresponding to two spinning operators and a scalar and we shall recover their results as
a restriction. Let us take the operators at x1 and x3 to be spinning operators whereas the
operator at x2 is a scalar. In this case the three-point structure simplifies and we are left
just with the label `2 = `. We first do a shadow transform of the operator at x3

〈O∆1,J1φ∆2S[O∆3,J3 ]〉(`) =

=
∫
ddx0〈Õ∆3,J3(x3, z3)Õ†∆3 µ1...µJ3

(x0)〉〈O∆1,J1(x1, z1)φ∆2(x2)Oµ1...µJ3
∆3

(x0)〉(`) ,
(C.55)

where the indices to be contracted are explicitly shown. In light of the results of [25],
this contraction can be simply done in terms of encoding polynomials that depend on
the buildings blocks Hij and Vi,jk. By doing so, one immediately recognizes that the
term associated with the two-point function is already of the desired form (a · Dz0)J3 with
aµ = (x03 ·z3)xµ03− 1

2x
2
03z

µ
3 .25 The terms in the three-point structure require some additional

care. It is easy to see however that the z0-dependent terms can be completed to a binomial
of degree J3 of form (b · z0)J3 , as appears in (C.52). After using this equation, one then
needs to expand back the binomial and collect only the term we have started with. The
computation is straightforward and leads to the following expression for our integral

∫
ddx0

(x2
12)− 1

2 (∆1+J1+∆2−∆3+J3−2`)

2J3(x2
01) 1

2 (∆1+J1−∆2+∆3−J3)(x2
02) 1

2 (−∆1−J1+∆2+∆3−J3+2`)(x2
03)∆̃3+J3

×

× V J1−`
1,20 (V3,01 + V3,20)J3−` (V3,01(x01 · z1)−H0,3,1

)`
, (C.56)

where for compactness we defined Hi,j,k = (xij · zj)(xkj · zk)− 1
2(zj · zk)x2

ij .
After performing the expansion of the integrand, one observes that all the terms to be

integrated take the simple form

(x01 · z1)α(x03 · z3)β
(x2

01)a(x2
02)b(x2

03)c . (C.57)

The terms in the numerator can be found from taking derivatives of the denominator as

(zj · ∂xj )α(x2
ij)−a = 2αΓ(a+ α)

Γ(a)
(xij · zj)α
(x2
ij)a+α . (C.58)

It is then easy to integrate the terms in (C.57) by swapping the order of integration and
differentiation∫

ddx0
(x01 · z1)α(x03 · z3)β
(x2

01)a(x2
02)b(x2

03)c = Γ(a− α)
2αΓ(a)

Γ(c− β)
2βΓ(c) G(a− α, b, c− β)× (C.59)

× (z1 · ∂x1)α (z3 · ∂x3)β (x2
12)c−h−β(x2

13)b−h(x2
23)a−h−α ,

where a+ b+ c = 2h+ α+ β and G(a, b, c) was defined in (C.53).
25Notice that a2 = 0. We may then just keep the term k = 0 in the series definition of the Gegenbauer

polynomial, CλJ (z) =
∑b J2 c

k=0
(−1)k(λ)J−k(2z)J−2k

k!(J − k)! .
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We can use a conformal transformation to fix the position of the scalar operator x2 at
infinity. For a scalar, this can be safely done without loss of information. Indeed, there is
only one nonzero `i which controls both z1 and z3 and there is no z2-dependence. If one
does so, the integrand simplifies and the x2

i2 drop out. The action of the derivatives can
then be given in terms of known functions,

(z1 ·∂x1)α (z3 ·∂x3)β (x2
13)b−h = 2α2β Γ(h+α+β−b)

Γ(h−b) (x31 ·z1)α(x13 ·z3)β(x2
13)b−h−α−β×

× 2F1

(
−α,−β,b+1−h−α−β; z1 ·z3x

2
13

2x13 ·z3x13 ·z1

)
. (C.60)

Putting everything together, we find

〈O∆1,J1φ∆2S[O∆3,J3 ]〉(`)=

=
J3−`∑
p=0

∑̀
q=0

`−q∑
s=0

p∑
t=0

q∑
r=0

∞∑
w=0

s+w∑
m=0

(
J3−`
p

)(
`

q

)(
`−q
s

)(
p

t

)(
q

r

)(
s+w
m

)

×(−1)J3+r+s+t+2w−m2−J3
πhΓ

(
J1+J3+2r−2s+2t+∆1−∆2+∆̃3

2

)
Γ
(
J1−J3+2p−2t−∆1+∆2+∆̃3

2

)
Γ
(
J1+J3−2p−2q+2r−2s+2t+∆1−∆2+∆3

2

)
Γ
(
J1−J3+2p−2t−∆1+∆2+∆3

2

)
× Γ(∆3−h)

Γ(1+w)Γ
(
p+q+∆̃3

) (−p−q)w(−J1+q−r+s)w(
2−J1−J3−2r+2s−2t−∆1+∆2−∆̃3

2

)
w

Hm
13V

J1−m
1,23 V J3−m

3,12

(x2
13)

∆1+J1−∆2+∆̃3+J3
2︸ ︷︷ ︸

〈O∆1,J1φ∆2O∆̃3,J3
〉(m)

, (C.61)

from which we can easily read the shadow coefficients associated with each possible three-
point structure. One can check that this expression reproduces the results of [45] as a
special case.26 It is worth stating that all the sums here have indeed a finite number of
terms. This can be seen from the expression above by noticing that for sufficiently large w
the Pochhammer symbols in the numerator will vanish.

One could have wanted to do instead the shadow transform of the scalar operator.
That case is simpler as there is no need to deal with the contractions of indices as we did in
the beginning of this subsection. Keeping x2 at infinity, we have the following integral to do

∫
ddx0

(x2
13)
−∆1−J1+∆2−∆3−J3

2

(x2
01)

∆1+J1+∆2−∆3−J3
2 (x2

03)
−∆1−J1+∆2+∆3+J3

2

V J1−`
1,03 V J3−`

3,10 H`
13 , (C.62)

which can be integrated in the exact same way as before. This is a straightforward

26Strictly speaking there is a 2−J3 difference which follows from a different normalization of the two-point
function.
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computation and we find

〈O∆1,J1S[φ∆2 ]O∆3,J3〉
(`)

=
J1−`∑
p=0

J3−`∑
q=0

∑̀
r=0

∞∑
s=0

`+s−r∑
m=0

(
J1 − `
p

)(
J3 − `
q

)(
`

r

)(
`+ s− r

m

)
(−1)J1+J3−p+q−r+2s+`−m

×
πhΓ (J1 + J3 − p− q − 2`+ ∆2 − h) Γ

(
−J1+J3+∆1+∆̃2−∆3

2

)
Γ
(
J1−J3−∆1+∆̃2+∆3

2

)
Γ (1 + s) Γ

(
∆̃2
)

Γ
(
J1+J3−2p−2`+∆1+∆2−∆3

2

)
Γ
(
J1+J3−2q−2`−∆1+∆2+∆3

2

)
× (−J1 + p+ `)s(−J3 + q + `)s

(1 + h+ p+ q + 2`− J1 − J3 −∆2)s
Hm

13V
J1−m

1,23 V J3−m
3,12

(x2
13)

∆1+J1−∆̃2+∆3+J3
2︸ ︷︷ ︸

〈O∆1,J1φ∆̃2
O∆3,J3〉(m)

. (C.63)

The shadow coefficients computed in this way also reproduce the known results of [45] in
the appropriate restriction.

Lastly, let us comment on the more generic situation where all operators have spin,
which is, of course, more complicated. Note that we were only able to write the action of
the derivatives in such a compact form because we fixed x2 to infinity. In the more general
case, we are no longer able to naively set x2 to infinity since we would lose control of `1 and
`3. On the other hand, we can still successfully integrate the shadow transform in a case-
by-case basis, but this becomes cumbersome for large values of spin. For completeness, let
us write down the integral that remains after having dealt with the contraction of indices∫
ddx0

(−1)`1+`2(x2
12)
−∆1−J1−∆2−J2+∆3−J3+2`2

2

2J3(x2
01)

∆1+J1−∆2−J2+∆3+J3
2 (x2

02)
−∆1−J1+∆2+J2+∆3−J3+2`2

2 (x2
03)∆̃3+J3−`2(x2

13)`2(x2
23)J3−`1

×H`3
12V

J1−`2−`3
1,20 V J2−`1−`3

2,01

(
V3,02

(
V2,01x

2
01−x12·z2x

2
02

)
+H0,3,2x

2
12

)`1
×

×
(
V1,03

(
V3,02x

2
02x

2
13+V3,21x

2
03x

2
12−x13·z3x

2
03x

2
23

)
+H0,1,3x

2
13x

2
23

)`2
×

×
(
V3,21x

2
03x

2
12+V3,02

(
x2

02x
2
13−x2

01x
2
23

))J3−`1−`2
, (C.64)

where we assume that the shadow transform is done in the operator at x3. One can easily
see that all the terms can be integrated in the same way as before∫

ddx0
(x01 · z1)α(x02 · z2)β(x03 · z3)γ

(x2
01)a(x2

02)b(x2
03)c = Γ(a− α)

2αΓ(a)
Γ(b− β)
2βΓ(b)

Γ(c− γ)
2γΓ(c) G(a− α, b− β, c− γ)

× (z1 · ∂x1)α (z2 · ∂x2)β (z3 · ∂x3)γ (x2
12)c−h−γ(x2

13)b−h−β(x2
23)a−h−α , (C.65)

where a+ b+ c = 2h+ α+ β + γ.
This is all we need to successfully compute any shadow coefficient of a three-point func-

tion of three operators in spin Ji representation, but we did not manage to find a simple and
compact formula for the action of derivatives in the above expression. While one can use
this formalism to compute the shadow coefficients of three spinning operators, in practice
the procedure becomes too computationally expensive at large spin. It would be interesting
to investigate if the weight-shifting formalism of [45] offers a more efficient alternative.
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