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1 Introduction

Analytic bootstrap methods have given a structural understanding of CF'Ts by leveraging
the analytic structure of four-point functions [1-12]. Typically such studies consider the
four-point function of scalar operators. This fact limits the data that can be accessed to
scalar/scalar /symmetric traceless (of spin J) OPE coefficients. However, it is important
to consider OPE coeflicients between multiple spinning operators, of which an important
example is the OPE coefficient of three stress tensors [13, 14]. A possibility would be to
extend the analytic bootstrap to the four-point function of operators with spin, but this
approach is technically challenging and works mostly in a case by case basis. An alternative
is to consider higher-point functions of scalar operators, which through the OPE contains
information about operators of arbitrary spin [15, 16]. In this case the technical challenge
lies upon our knowledge of higher-point conformal blocks, which is still incomplete [16-19].

For the scalar four-point function, the lightcone bootstrap predicts the universal be-
haviour of scalar/scalar/spin J OPE coefficients at large spin, which are of mean field
type [1, 2]. Subsequent corrections, that include scaling dimensions and OPE coefficients,
are determined by the leading twist operators in the theory [1, 2]. This large spin expansion
is actually convergent up to a low spin value determined by the Regge behaviour of the
four-point function [20, 21]. A remarkable check of the accuracy of this method was done in
the 3D Ising model where the numerical bootstrap provided the data for comparison [3, 22]
(see also [23] for the O(2) model). Motivated by this success, our goal is to extend the
lightcone bootstrap to the case of higher-point functions and therefore access OPE data
involving spinning operators.

More concretely, we bootstrap five- and six-point functions. In the five-point case there
is an unique OPE topology which involves the exchange of two operators of spin J; and
Ja and therefore includes the scalar/spin J; /spin Jo OPE coefficient, see (3.18) and (3.24).
In the six-point case we consider the snowflake OPE channel which involves the exchange
of three operators of spin Jy, Jo and J3 and therefore includes the spin J; /spin J3/spin J3
OPE coefficient, see (3.38), (3.46) and (3.51). This bootstrap analysis is done in section 3,
which follows section 2 where we review the kinematics and derive the lightcone conformal
blocks for five- and six-point functions. Our results are tested in section 4 for the case of
generalized free theory and of theories with a cubic coupling, whose block decomposition
we determine explicitly. We conclude with a discussion of open problems in section 5.

Additional technical details are given in the appendices: appendix A gives more de-
tails on higher-point blocks, including some comments about the Euclidean expansion and
the Mellin representation; appendix B discusses higher-point D-functions based on AdS
techniques; appendix C presents new results on conformal harmonic analysis relevant for
higher-point functions and can be read mostly independently from the main text.

2 Kinematics and conformal blocks

It is a well known property that n-point correlation functions in a conformal field theory
depend nontrivially on n(n —3)/2 conformal invariant variables for high enough spacetime



dimension.! The choice of conformal invariant cross-ratios usually depends on the problem
one is analysing. In a four-point function, that depends on two cross-ratios (say u and v),
there are several choices of cross-ratios used throughout the literature, for example

2 9 2 .9
w=zr= 25— (1)1 - z) = T8 (2.1)
L13To4 T13L24
or 43
z+z
s =lz|, £ZCOSH:M. (2.2)

This paper is focused on the analytic bootstrap of five- and six-point correlation func-
tions, and therefore we will need to use appropriate sets of cross-ratios. For the five-point

function it will be convenient to work with the five variables u1, ..., us given by
2 .2
L1235
U] = Ujp1 = Uj 2.3
' 23523 i Z|90j%ﬂ"fj+1 ’ (2:3)

where in this definition the subscript in z; is taken modulo 5 (for example xg = 21). For the

six-point function we introduce the nine cross-rations u1,...ug and Uy, ..., Us defined by
2 .2 2 .2
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where the subscript in x; is now taken modulo 6.

We will be interested in the Lorentzian lightcone expansion of correlation functions.
The difference between the Lorentzian and Euclidean expansions can be easily understood
from the OPE of two operators. In the Euclidean case the operators are taken to be
coincident (x;; — 0) while in the Lorentzian case the operators approach the lightcone of
each other (CCZQJ — 0). As is well known, the Euclidean limit is dominated by the operators
with lowest scaling dimension, in contrast with the Lorentzian case that is dominated by
the operator with lowest twist 7 = A — J. This is evident from the leading term of the
formula for the OPE

(212 - D) O (21, 2)

(1) p(2) ~ Z Crak iy + ... Euclidean (2.5)
k (35) >
L) + txo1,
d(z1) P(2) ~ ZCI%/ [dt] ks (21 QAZE}'I@ 712) + ... Lorentzian (2.6)
k 0 (35) >
where the ... represent subleading terms in each expansion, z is a null polarization vector,
. F(Ak -+ J) Ak+J_1
[dt] = W(t(l —t))" 2 dt , (2.7)

and D, is the so-called Todorov operator [24]

d 0 0 1 0?
= — — e — — — M
b (2 L= 82) 920 27 920z (28)

!There are relations between conformal invariant cross-ratios for low dimensions (d < n — 2) such that
the number of independent variables is instead nd — (d + 1)(d + 2)/2.



The formulae above are key in obtaining the conformal block expansion around both limits.

For example, in the four-point function case it is trivial to obtain the lightcone block
from (2.6), with the result

C
(0a1).-0lwa)) = Y — P [0 (Oulor + tam, ) ()0 w) (29)
ko (21y) 72
Cla [dt] (a%5234 — 2T4233)
28—, Aptd

¢~k / AptJ
ko(xp23,) 2 (w35t + (1 = t)afs) "2 (23t + (1 —t)afy) "2

J

where we have changed variables t — ¢/(t + 1) and ¢ — tz3,/2%,. The lightcone block for
the exchange of an operator Oy is defined by this leading term in the expansion

1
(@2,22,)5% Xk: Otk (Gre(u,v) +...) (2.10)

(@(x1) ... p(xa)) =

where

Ap+J Ap+Ji
2 ’ 2

Gr(u,v) = u™/2(1 —v)’* oy ( A T, 1 — v) =u™ g, (v). (2.11)

We defined the function gg(v) for later convenience. Note that the expansion (2.10) is
merely schematic, since subleading terms in the lightcone limit of a lower twist block can
dominate with respect to the lightcone limit of a higher twist block.

2.1 Lightcone conformal blocks

Let us start with the lightcone expansion of the five-point conformal block. Applying twice
the OPE limit (2.6) we obtain

2
(6(o1) . 9las) ~ 3 (1:1 Coos, [ [dti]> O 1+ 101, 012)Ora (0 F Tt 751)010s).

ki (23y) 2z (23,) 2

(2.12)
The limits 23, — 0 and 23, — 0 correspond to u; — 0 and ug — 0, respectively. The three-
point function in the integrand involves the external scalar and two symmetric traceless
operators with arbitrary spin as depicted in the top-left part of figure 1. Our convention
for three-point functions of symmetric and traceless operators is [25]
Clrusy Vitss Vs T Vity T Hi I Hyg
(Ok, (z1,21) - .. Oy (3, 23)) = Z hiFhy=hg —,  Bifhg=hy hoFhg—h| )
¢ (x12)” 2 (213)” 2 (w33)
(2.13)

where we used a null polarization vector z; to encode the indices of the operators, h; =
A;+ J; and V and H are defined as

(zi - i), — (2 Tig) T, 222 - )
Vijk = . 5 Sl , Hij = (2 - @i5) (25 - x45) — S 5 . (2.14)
Ty
The sum in ¢; € {0,...,min(J;)} counts the possible tensor structures. In the five-point

case we have a three-point function of a scalar with two operators of spin J; and Js,



Figure 1. Schematic representation of the OPE channels for five- and six- point functions. In the
top left we have the snowflake decomposition of the five-point function, where we emphasize the OPE
coefficient involving two spinning operators. In the top right we have the snowflake decomposition of
the six-point function, emphasizing the OPE coefficient of three spinning operators. In the bottom,
we depict the comb channel expansion, which may involve mixed-symmetry tensors and which we
will not analyze in detail.

therefore the different structures are labelled by f3 = ¢ and ¢; and ¢5 vanish. After
doing simple and straightforward manipulations we arrive at the explicit expression for the
lightcone block defined by

)
2

2
(p(w1) ... p(x5)) ~ (96%2;%4)% <x£§§5> kl%;,épklkzz Grikoe(ui) (2.15)
where
Granne (1) = i (1—p) / (dt1][dts)] (2.16)
y (1—t1(1—ug)m—712u4)‘]2_£(1—tg(l—7UL2)U5—u2u5)Jl_Z

hg—T1—20+A, hq—Tg—20+A, hithy—Ay

(1-QQ-ug)tz) 2 (A-(-us)ty) 2 (1-(1-t)(I-t2)(1-uz))

The expansion (2.15) includes a product of three OPE coefficients that we denote by

¢
Prikae = Coory C¢¢k20é,31k2 : (2.17)



Formula (2.16) is valid as long as one of the exchanged operators is not the identity. In
such a case the OPE instead simplifies to

Coopz

(235)20

P(x1)P(z2) ~ (2.18)

which forces the other exchanged operator to be the same as the external one. When the
exchanged operator in the (12) OPE is the identity we have (in this case there is a single
¢ = 0 structure)

)
Gr(ui) = <u3u5> o (2.19)
Ug
on the other hand, when the identity is flowing in the (34) OPE, we have
2
Goz(ui) = uy” (2.20)

For the lightcone expansion of the six-point conformal block we need to apply the OPE
limit (2.6) three times. We will choose the snowflake channel as illustrated in the top-right
of figure 1. In this choice the exchanged operators are always symmetric traceless tensors
of spin J;. This gives

1
2 .2 2 \A, Z Pkifigkﬂi (uiv Ui) (2.21)
(%%2$§4$%6)A¢ ki 0

(p(z1) ... B(w6)) ~

B > (O, (z1 + t1221, 212) Oy (23 + t2x43, 34) Oy (T5 + 3765, T56))

- Z H C¢¢kz [dtl] 9 2A¢—7'1 9 2A¢—7‘2 9 2A¢—7'3
& \i=1 (x19) 7z (w34) " 2 (w5g) " 2

Using the three-point function conventions (2.14) and defining 7 = >, 7, L = Y, ¢; and

H =3, h; we obtain

1 72 73

Grit; (uiy Us) = up® ug’ ug’ grye, (ua, us, ue, U) (2.22)
3 . s g o _ o -l
= H Us; [ [dEi] li—N—L+H/2 ’
i=1 B,

where we use the notation ¢; = £;, 3 and?

1
= = 1=t D (1=vi (=1 o — (1=t : » »
A; = [( tic1)(1—=x1-i) (= 14ug_1) — (1 = tip1)ug—1)X2—i +X3-i)

+ti1Ug(iy1) (1= x3-) (= T+ g1y — (1= tig1)ugi—1yx2—i) |, (2.23)

Bi=1—x2—i—t14i(1 —ugi —x2—i+ (1 —ti—1)u2ix1-4),

with x; defined as x; = UZLi(Q_” A nice property of the x variables is that the conformal
block factorizes in products of three oF} in the limit x; — 0. Another nice property is that

¢; determines the leading power of x;, as can easily be seen in (2.22).

2The reader may have realized that due to the cyclic defining property of the cross-ratios we can for
example refer to the even cross-ratios uz, us, us in the product as us;;—1)-



When one of the exchanged operators is the identity, the remaining two are equal to
each other, which leads to the simplified expression

Tk
uius

Grrr(ui, Us) = ( 0, )QQk(uz/Uﬂ, (2.24)

where gi(v) contains is the four-point block as defined in (2.11).

3 Snowflake bootstrap

Let us start by recalling the basic features of the lightcone bootstrap for four-point corre-
lators [1, 2]. A four-point function of local operators ¢ can be decomposed in the (12) or
(23) OPE channels

1 1

—_— Cc? Gr(u,v) = ———— C? Gr(v,u), (3.1)
(zfya3,) R %,; v0 (2332,) zk: »0

where Gp(u,v) is the full conformal block in the (12) channel. This bootstrap equation
has been used to extract properties of conformal field theories following both analytic and
numerical approaches.

Low twist operators dominate in the lightcone 22, — 0 limit of the left hand side of
the bootstrap equation. Unitary CFTs obey the following bounds for the twist of operators

d—2)/2 scalar
7=0 identity, T=A—-J> ( )/ (3.2)
d—2 spin ,
and so the leading term on the left hand side of the bootstrap equation is given by
1 1 Tkx
e Y CuCiu0) = ——— 14 G T g )+ ], (33)
(23523,)" zk: o0 (23513,) [ POk }

where we have used that the conformal block behaves as G (u,v) — Gi(u,v) = u2 g(v)
in the u — 0 limit. The assumption is that above the identity there is a unique operator
Oy
the corner of the square made by the lightcones of points 1 and 3, which can be taken

. with leading twist. Next we take the limit of 22; — 0, which moves the point 3 to
respectively at 0 and 1 in the complex z-plane, as shown in figure 2. It is possible to take
this second limit, which corresponds to v small, and use the right hand side of (3.1).

Each term in the v — 0 limit will diverge at most logarithmically, which apparently
contradicts the power law divergence of the left hand side of the equation. The emergence
of the power law singularity was addressed in [1, 2] and it boils down to the contribution of
double-twist operators [¢p¢]o s ~ ¢[1°97 ¢ whose twist approaches 2A, at large spin. The
stronger divergence is recovered by performing the infinite sum over spin of these double-
twist families. In particular, this fixes the density of OPE coefficients for this family of
operators at large spin to be?

8/ B
2 2A4—3/2
Coslodlos ™ WJ oI, (3.4)

which is the behaviour of OPE coeflicients in Mean Field Theory.

3This differs from some conventions in the literature by a factor of 27 due to our conformal block
normalization.
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Figure 2. Schematic representation of the relevant lightcone limit in the z-plane. The point x5
first approaches the lightcone of the operator at the origin, as u — 0. Subsequently, it approaches
the lightcone of the operator at x5 = (1,0), which corresponds to taking v — 0.

Additionally, the leading twist operator above the identity in the direct-channel leads
to 1/J suppressed corrections to the OPE coefficients along with anomalous dimension
type corrections, which means the twist of these families behaves as

k

Tloglo,s = 2086 T gz (3.5)
At this level the large spin expansion is merely asymptotic, and the OPE coefficients and
anomalous dimensions cannot be assigned to a single operator of a given spin. However, the
large spin expansion actually converges at least down to spin 2, and the OPE coefficients
are really associated to a unique operator at each spin, which follows from the fact that
the double-twist operators really sit in Regge trajectories that are analytic in spin. All
these remarkable facts were established through the Lorentzian inversion formula [20]. This
formula systematizes the large spin perturbation theory/lightcone-bootstrap and essentially
supersedes it as a computational tool [26-28]. In this work, however, we are interested
in higher-point functions which are much richer, and for which a Lorentzian inversion
formula is presently unavailable. Therefore we must resort to the more pedestrian large spin
perturbation theory. It would of course be interesting to develop higher-point Lorentzian
inversion formulae and reproduce and extend the results we will derive below.

3.1 Five-point function

Let us consider the more complicated case of the five-point function. We now have an
exchange of two operators, and their contribution is captured by the block expansion in a
given channel. We consider the (12)(34) and (23)(45) channels for the five-point function

(d(x1)p(x2)P(x3)P(24)P(5)),
(2% )% (23 )%
12,34 23,45
- A¢ Z Pklk?Ethzf(ui): = Ay Z PmanGmnzé(ui)‘
(2F0234) ¢ (25235) 2 bkt (235235) 50 (23522,) 2 ninat

(3.6)



The limit 23,5, 23, — 0 is dominated by low twist operators in the (12)(34) channel. The
natural candidate to lead this expansion is the identity operator, however it is not possible
to have two identities being exchanged at the same time, since that would imply a nonzero
three-point functions between two identities and the scalar operator ¢(xs). It is however
possible to have one identity being exchanged in one OPE and another operator in the other
OPE. In this case the conformal blocks simplify considerably and the exchanged operator
must be the external one. The block simplifies to a product of a two- and three-point
function, check (2.19) and (2.20). Thus, we conclude that the first terms in the lightcone
limit in the channel (12)(34) are given by

A
U3Us = %
Cooo01 (i) + CoooGoz(ti) = Coss | (= =) +w® | (3.7)
There is possibly another leading term from two exchanges of the leading twist operator
Ok, . This term has a lightcone limit in the channel (12)(34) given by

Cook. Codh Choer Gkt (U5) - (3.8)

The term that dominates is determined by the rate at which u; and w3 go to zero and
by the twist of ¢ and Op,. Below we shall address both possibilities. We may then take
the other limits 235, 735, 225 — 0, corresponding to ug, us,us — 0, which as we shall see,
are suitable for the expansion in the (23)(45) channel. The decomposition in this channel
takes the form

U1U§U5 Be/2 23,45
< u3u? ) Z Posnat Gnnpe (i) (3.9)
274 ni,na,l
where we collected here the prefactors on both sides of (3.6). The powers of ug, us in the
denominator of (3.9) impose constraints on the operators that need to be present in the
conformal block decomposition of the channel (23)(45).

3.1.1 Identity in the (12) OPE

Let us understand this in more detail. First consider the term
Ay

usu 2
Cop Gz o(ui) = C¢¢¢< 345> ; (3.10)

where the identity is exchanged in the (12) OPE. The cross-ratios uz and w4, when taken
to be small, control the twist of the exchanged operators in the cross-channel. We can use
this to infer what class of operators are contributing in the cross-channel where the blocks
behave as

Tn, /2 Tn 2
gi?fj@(uz) = Ug 1/ 2/ gn1n2€(u17u37u5) (311)

Combining these behaviours with the prefactor in (3.9) we can conclude that the opera-
tors ny have a twist that approaches 2A4, and therefore correspond to the usual leading
double- twist operators. Moreover, in this case the operator ny must have twist A,. This



corresponds to the exchange of the external operator itself. Therefore the cross-channel
OPE data is given by

Pioglo.s.0 = Coplodlo.s CooeCoslodle s » (3.12)

from which we can see that the single-trace OPE coefficient cancels on both sides of the
crossing equation, and we are left with data that is known from the four-point bootstrap,
namely scalar/scalar/double-twist OPE coefficients.

Actually this case reduces to the crossing of the four-point function of ¢ and its descen-
dants. Firstly, in the direct-channel, since the five-point function factorizes into a product
of 2 and 3-pt functions, we can use the (45) OPE into the exchanged scalar operator ¢,
which acts on the MFT 4-pt function of ¢ at points 1235. Secondly, in the cross-channel the
(45) OPE reduces the five-point block into an action on the four-point block with external
¢ at points 1523 and double-twist exchange. This shows the problem reduces to that of
the four-point function.

Nevertheless it is instructive to check this result explicitly using the lightcone blocks
in (2.16) to describe the cross-channel contributions. In this case Jo = ¢ =0 and Ay = Ay.
Additionally for large spin J; the dimension of the exchanged operator approaches the
double-twist value Ay = 2A4 + J;. This significantly simplifies the expression (2.16) for
the blocks. In practice, it is useful to expand the integrand using the binomial theorem and
performing the t; integrals, which leads to a representation in terms of an infinite sum of
hypergeometric functions. In fact, the sum is dominated by the region u; ~ J;° 2 similarly
to the four-point case. This allows one to simplify the hypergeometric functions into Bessel
functions, so the large spin limit of the lightcone block reads

1 Botn B¢
o0 JIH?F(A"’ZH)F(Z”—EA“’)ulTu2A¢(l — ug)"uy® Ky (2J1/u1)
217386~ Nal(n + 1) (n + Ay)

Giilo sy (i) ~

n=0

(3.13)

Imposing the well-known large spin asymptotics of the scalar/scalar/double-twist OPE

coefficients (3.4), one can do the sum over .J; by approximating it as an integral. This

reproduces the correct power of uq at fixed n. The correct power of ug is then recovered
by doing the infinite sum over n.

We remark that one can then consider the related contribution where we swap the ex-

changed operators in the cross-channel, meaning we have O, = ¢ and Oy, = [¢¢]o j,. This

obviously corresponds to a factorized correlator in a different channel which is subleading

in the lightcone limit here considered.

3.1.2 Identity in the (34) OPE

On the other hand, when we exchange the identity in the (34) OPE, the direct-channel
contribution is

B¢
2

C¢¢¢ Uq (3.14)

Thus, since the leading powers of uy and wuy in the cross-channel expression (3.9) are the
same, the operators that are exchanged in the cross-channel will both have the double-twist

~10 -



value 2A,. This allows us to probe the double-twist/double-twist/scalar OPE coefficient
on the cross-channel

_ 0)
Bloglo s, 16610,1,¢ = Cosloslo.r, Coolodlo,r, Collo.s, [66l0.s, (3.15)

It is important to notice that the double-twist/double-twist /scalar OPE coefficient depends
on the additional quantum number ¢, which encodes the tensor structure associated to spin-
spin-scalar three-point functions.

Since the scalar/scalar/double-twist coefficients are fixed from the four-point analysis,
matching to the direct-channel we immediately discover the remarkable non-perturbative

relation
€
C¢[¢¢]0,Jl [#¢]0, 75 x Cggg , (3.16)

which would be expected in a perturbative theory. With a more careful analysis, we will
now fix the large spin asymptotics of this OPE coefficient, along with its £ dependence.
We need to reproduce the power law behaviour in the variables w1, us and wus, which
will emerge from the infinite sum over Ji, Jo and ¢ in the cross-channel. More specifically,
we consider the limit Ji, Jy — oo with uyJZ and usJ3 fixed. It is possible to approximate
the lightcone block in this regime by approximating the integrand in (2.16), so that one
finds integral representations of two Bessel functions,*
24A¢+J1+J2

23,45

1/2 71/2 Ay A ,
Gioalo s, (6610, e(11) Jy Ty T ug Py (1 — ug)

L(8A4+20) 1(A4g+20) 1/2 1/2
uj BT a S K, s (21 )KH% (20u5%) . (317)

It is not hard to see that for consistency with the us — 0 limit the power law behavior in
u1, us has to be reproduced term by term in the sum over £. This leads to the ansatz

Ji— gy H3(Ag—1)/2 0+3(Ay—1)/2
Pigslo, s, (66101t = Cosg be 2 T2y 00T TS HIE, (3.18)

which, upon performing the integrals over J; and Jz, reproduces the power law behavior
in uw; and us. Since ¢ € {0,...,min(Jy,J2)}, this leaves us with an infinite sum over ¢ to
perform, which will recover the power law behavior in uz. In particular, we need to zoom
in on the £ — oo region, with us approaching zero such that usf is kept fixed. In this limit,

we can use the approximation (1 — u;:,)f ~ e ust, Then, we can take the asymptotic large
¢ behaviour of the coefficient by to be®
1+A
Ayl (H2)

—20 20 p)—A
)~ (22 (3.19)
23808 /T T(Ag)2T (1+ 52)

4This procedure deserves a word of caution. Strictly speaking we should first take the limit of uy, uz — 0,
keeping large spin contributions, and only then take ua,us — 0. In practice, since we use the lightcone block
expansion (2.16) in the cross-channel, we are swapping the order of limits. This is justified a posteriori since
the asymptotics of OPE coefficients at large spin that we obtain match the examples studied in section 4.

5The same result could be obtained by explicitly performing the sum over ¢ assuming by o m.
However, this cannot be used to determine the form of the coefficients at finite £ since the leading singularity
in ug — 0 only determines the asymptotic behaviour at £ — co. Remarkably this turns out to be the exact
form of the coefficients in the disconnected correlator in section 4.2.1. A similar situation also occurs for
the six-point case.
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Figure 3. Witten diagrams corresponding to the leading order five-point function in a large N
theory. The black and red dashed lines correspond to the unitarity cuts in the direct and crossed
OPE channels, allowing us to infer what the exchanged operators are.

We can then approximate the sum over ¢ by an integral, which gives the correct power law
behaviour in u3 and finally reproduces the identity contribution in the direct-channel.

Both leading terms with an identity exchange are understood as a five-point function
which factorizes into a product of a two- and three-point functions. A simple example of
CFTs expected to present this behaviour are holographic theories with cubic couplings.
We can draw bulk Witten diagrams and look at their unitarity cuts to infer the exchanged
operators in the corresponding channel. This is presented in figure 3. Clearly, this picture
is consistent with the results obtained from the lightcone limit analysis.

3.1.3 Two non-trivial exchanges

The case of two non-trivial exchanges is more subtle. When the exchanged operators are
identical to the external ones, the lightcone limit of the block in the channel (12)(34) is
given by

3 ﬁF(AwQ 2 (2)
C¢¢¢(U1U3u5) 2 I‘(A¢)4 (o —|—IDU4IDU5+28A¢2—2(1HU4+1DU5)—|—45A¢Q,2 —S%,2 +. ],
T 2

(3.20)
where S&n) denotes the degree-n harmonic number and the dots represent subleading terms
in ug, ug and us. The powers of uy and uy indicate that the exchanged operators in the
cross-channel should once again be of double-twist type. However, since the powers of us
are the same for both block expansions in the small us limit, one cannot employ the usual
argument which ensures that operators with large spin Jo dominate the cross-channel.
This means that the information in this OPE is not universal. The leading power of u is
a constant, which can be achieved block by block in the cross-channel, and therefore the
usual argument for the necessity of large spin double-twist operators is not valid.

One can instead study the case where the two exchanged scalar operators Oy, are
different from the external one, but identical among themselves.

A*7A¢
2,34
gi*;ﬂ* (ul) ~ QA*A¢(U1U3U5)A*/2U4 2 ) (321)
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with A A
7T4A*_1F(A*2+1)2CSC2 (7r( *g ¢))
As—A 2 Agpy\2
(=52 +1)"T'(5")
When A, < Ay this is the leading term. On the other hand, for A, > A, the leading

powers are instead integers and lead to the same limitation discussed above. Nevertheless,

apn.A, = (3.22)

the term (3.21) is still present and can also be bootstrapped.

Notably, the power of u4 will change the nature of the exchanged operators in the (45)
OPE. In particular, we now have that the operator must have dimension asymptoting to
A+ Ay +Jo. Thus we prove the existence of the double-twist operators [¢O]o, s, built out
of the external ¢ and the internal O,. We see an asymmetry between the exchanges in the
cross-channel, since the operators in the (23) channel are still the double-twist composites
[¢plo,s,- This is similar to the case of identity exchange in the (12) channel which also
leads to an asymmetry in the cross-channel exchanges. In particular, swapping the cross-
channel exchanges in the (23) and (45) OPEs leads to a subleading contribution in the
direct-channel.

The calculation in the cross-channel is similar to that of the previous subsection. Both
families of double-twist operators must be in the large spin regime, which gives the following
approximation for the cross-channel conformal block

23A¢+A*+J1+J2
23.45 N 1/2 11/2 Ay (Ap+AL)/2 ¢
[60lo.s, [(;5(9*]0"]2@(11”') I~ —7'(‘ ‘]1/ J2/ Ug ¢u4 @ (1 — Ug) (323)

$(205+A0.+420) F(Ap+20 1/2 5/
xSRI s (200?) K s (20257)
2

Once again the sum over large spins J; and Jo must be done for fixed ¢ and we then sum
over £. The correct asymptotics for the OPE coefficients in this case is given by

4A¢—3+2€—A* 3A¢—3+2£—2A*

P[¢¢]0,J1 (600, ~ qA*A¢2_J1_J2 Jl 2 J2 2 f_%e%E_Ad’ , (3.24)

where
25—3A¢ —A*

aa.a, = Po.o.an,.a, Bo—Beyp(Ay — 4:)2

T (3.25)

The factor of Pp,p, = C§¢O* Cy0.0, is needed to match the direct-channel.

3.1.4 Stress-tensor exchange

In a general CFT, the leading twist operators are usually scalars of scaling dimension less
than d — 2 or the stress tensor which has dimension d and spin 2, and therefore twist d — 2.
A spin 1 conserved current also has twist d — 2 but, since we are studying the OPE of
identical scalars, only even spin operators can be exchanged. Thus, we are only left to
consider the case of the stress tensor.’

In this case, the direct-channel contribution has three terms associated to the tensor

structures with ¢ = 0,1,2. In the cyclic lightcone limit, it turns out that the powerlaw

SHigher spin conserved currents also have twist d—2 but they only exist in free theories and we therefore
ignore them.
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behavior in uy — 0 is suppressed by ¢ and therefore the tensor structure with £ = 0
dominates. The block behaves very similarly to the scalar case, with the role of A, being
played by the twist of the stress tensor d — 2, up to some extra prefactors. Concretely, the
direct-channel block contains the following term in the lightcone expansion
d727A¢
Gr70=0 = aT,A¢(U1U3U5)(d72)/2U4 S (3.26)

with )
4411 (#) sec? (WL’Z?’_d)

R

(3.27)
2

In the block expansion this term will come multiplied by the product of OPE coefficients
Prry—g. Once again there are terms where the powers of u4 and us are constant and cannot
be reproduced by large spin double twist families in the cross-channel. The term in (3.26)
is the leading one for d — 2 — Ay < 0, but it remains in the expansion otherwise, so it
can be bootstrapped. The physics in the cross-channel is very similar to the scalar case
as well. The small uy and us behavior is matched by operators of the form [¢¢]g s, in the
(23) OPE and [¢T]o,, in the (45) OPE, with twists asymptoting to 2A4 and d — 2 + A,
at large Ji and Ja, respectively. The large spin limit is needed to obtain the right power
law behavior in u; and us, and finally the large £ limit reproduces the small ug behavior.
The cross-channel blocks and OPE coefficients are the same as in the scalar case with the
replacement A, — d — 2, up to the different prefactor which is fixed by the direct-channel
block. More concretely, the cross-channel block in the large spin limit becomes

9304 +d—2+T1 472

23,45 - 1/2 71/2 Ay (Ap+d—2)/2 )
QW]O,JI [6T)0,55¢ ~ - ) A S Tha g T (1 —ug) (3.28)
LA +d—2420) L(A4+20) 1/2 1/2
uf ¢ ug ¢ K€+% <2J1u1/ )K@r% (2J2u5/ ) s

and the OPE coeflicients

1 1
gy A (—1420-dHan,) L(14+20—-2d43A4) _
Ploglo. s, [6Tho.st = 470,27 7727 I3 PR (3.29)
where
27—3A¢—d ( )
ara, = Prre=oara, 5 - 3.30
Ay—d+2 d—2
D Oty
3.2 Six-point function — snowflake

The six-point function is a richer object as it admits two very different OPE decompositions
that are usually denoted by snowflake and comb. One distinction between them is that
in the snowflake decomposition we do three OPEs in nonconsecutive pairs of points and
therefore all OPEs involve two external scalars. Therefore there will be an OPE coefficient
between three symmetric traceless operators of arbitrary spin, as can be seen in the top-
right of figure 1. On the other hand, in the comb channel the OPE involves consecutive pairs
of operators. Thus, after performing the OPE between two external scalars, the resulting
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Figure 4. A schematic form of the six-point snowflake bootstrap equation. The left hand side repre-
sents the (12)(34)(56) direct-channel expansion while the right hand side represents the (23)(45)(61)
cross-channel.

symmetric traceless operator will be fused with another external scalar and can produce a
mixed symmetry tensor operator, which in the mean field theory limit should correspond
to a triple-twist operator. The bottom part of figure 1 illustrates this structure. In this
paper we use the lightcone OPE between scalars (2.6) and therefore limit our analysis to
the snowflake channel, whose bootstrap equation we depict in figure 4.

We start by considering the block expansion in the direct (12)(34)(56) channel

(800) - 800) = o s 3 Pt Gl e U). (3:31)

(951295343756

and take the lightcone limits 22, — 0, 1‘%4 — 0, x§6 — 0, which correspond to u; — 0,
ug — 0, us — 0. The leading contributions in this limit come from the exchange of three
identities, one identity and two leading twists or three leading twists. For now we take the
leading twist to be a scalar, so that

1
(O(z1) ... O(6)) = —5—5 5 | Przz9z72 (Wi, Ui) + ( Pri,k. 97,k (Wi, Ui) + perm
(39234736) 2 [ ( )
+ Pr, kol O bk (Wi U@')} =
1 uiu3z e
_ 1+ (2 ’ U ) 3.32
Ty [1 (Cn () 7 o /) +perm) 332

Thy

2 Ghuks (24, Ui)‘| )

+ C:ZM* Chokok, (U1u3Us5)

where A, is the dimension of the leading twist operator Oy, and the functions g, and
Jk.k.k, are defined from the four- and six-point lightcone blocks in (2.11) and (2.22), re-
spectively. Then we take the three distances x3;, 23; and z34 to zero, or in cross-ratios
ug; — 0, which will be appropriate to study the OPE decomposition in the crossed channel
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(23)(45)(16) in the lightcone limit. The four-point conformal block g, simplifies consider-
ably in this limit

LA+ Jy)

k. (ui ) U;) = ~Taags) (SM;H +In(ui /U;)) + .., (3.33)
2

where the ... represent subleading terms in w;/U;. However, after taking us; — 0 the func-
tion gk, k.k. (w2, U;) of the six-point conformal lightcone block is still a nontrivial function
of the cross-ratios U;, so we take one further limit 23,, 235, 235 — 0, or equivalently U; — 0,
which we refer to as the origin limit [16]. Let us remark that we do this just to make the
problem technically simpler. With this extra limit one gets

ik ks (u2ia Uz) ~ —

3(Ay) [Hi In U;

2 (2)
FG(A;) 3 + 2SL*2—2 Uy InUs + (4SA*22 —Saiot C2> In Uy

2

2
+ gSA*2—2 (452 —2 — 35&23_2 + 3(2) + .. ] + perm, (3.34)
2

2

where the ... represent subleading terms. We give the derivation os this result in ap-
pendix A. Notice that up to this order the correlator is polynomial of degree three in
the logarithm of the cross-ratios, which contrasts with the behavior in a planar gauge
theory [15].

3.2.1 Exchange of three identities

Given the crossing equation

3 o\ A
Z Pre; Gllcfé?4756(ui7 Ui) = H (U2z—1) Z Py, GIQc?lf&m (wi, U’i) ) (3'35)
kil =1 N Y2i kil

the limit taken above should be compatible with the cross-channel decompositions in the
channel (23)(45)(16). As we just described, the left hand side of this equation starts with
a one and then has subleading corrections in the cross-ratios u,qq — 0, while on the right
hand side there is an aparent power law divergence in ueyen in the prefactor. This implies
that the cross-channel decomposition involves operators with dimension approximately
equal to 2A4 + J that cancel the prefactor u%"’ in the denominator. Each individual
conformal block in the (23)(45)(16) channel is regular in the cross-ratios ueqq as they
approach zero, which is not enough to cancel the prefactor ui“il and recover the identity
contribution of the direct-channel.” The solution is similar to that of the four- and five-
point correlators in the sense that the identity is recovered from the infinite sum of double-
twist operators with large spin. This can also be intuitively understood by looking at the
“unitarity cuts” of a disconnected Witten diagram as in figure 5.

We will now choose the kinematics where both uyqq and U; are sent to zero with the
same rate J 2, with ¢; fixed. This is not the choice we did in the direct-channel above, but

"This behavior is similar to that of scalar exchange in the direct-channel (3.34) and is given in appendix A
for general spin.
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Figure 5. Witten diagrams corresponding to the leading order six-point function in a large N the-
ory. The black and red dashed lines correspond to the unitarity cuts in the direct and crossed OPE
channels, allowing us to read-off the exchanged identity and double-twist operators, respectively.

we will recover its kinematics by sending uoqq/U; — 0 afterwards. The conformal block
simplifies considerably in this limit and is given by a product of three Bessel functions

1
3 oJi+Tij2 7 2014204 1+7i—1—Tit1

23,45,16 L E b >
Gt~ 1 Ut X Koty =20, 1 +7i 01— (2Ji\/U2i71) Usgiq )
2

i=1 7 :
(3.36)
where we can see that the parameter ¢; controls the cross-ratio x;4+1 = 1 —u9;—1/Uz;—1. The

direct-channel limit that we took above can be recovered in the cross-channel by studying
the limit where y; approaches 1, which in turn is controlled by the large ¢; region.® We
can now use (3.36) in the crossing equation (3.35) to reproduce the identity exchange of
the direct-channel

1 (3 [uon1\2¢ 23,45,16
1~ = = dJndly | Pro. G2 (ug, Us) 3.37
(I (52)7 o) s, oo

where we transformed the sums in k;, ¢; in the crossing equation to integrals in J,, ¢,
(including a factor of 1/2 because we are only summing over even spins). We can assume
that the product of OPE coefficients Py, has the large J; power law behavior

3
Py~ C [ 277 T fultn) - (3.38)

n=1

Integrating over J; we obtain

3 20, Do 4 2(8;_14€;11)—2a;—3

2482¢ ) : 3+2 +2 2 —{ i—1T%41 i

1~ | I I | /d&f(ﬁi) U2£71Xz F( il ii (AR S 1)) Uy, *
i=1e=+ T2

)

(3.39)

8We stress that we made the choice of considering the limit U; — 0 to simplify the expression for the
block. Alternatively, one could mimic the approach of [16] and keep these cross-ratios finite. We emphasize
however that our choice of taking the origin limit respects an order: U; — 0 only after u; — 0. The latter
limit is dominated by large J; and large ¢;, whereas the subsequent U; — 0 imposes J; > £; > 1.
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where we used that 7; = 2A to leading order in large J;. Then we consider the limit where
todd/U; — 0. Remember that we need a power law divergence in uqq to kill the prefactor
in (3.37) and, as expected, this is generated by the tail of the sum in ¢;. In this regime we
can replace Xfi by exp(—f;uzi—3/Us2i—3), where we are keeping fixed the argument of the
exponential in the limit. The powers of U; cannot depend on ¥¢; otherwise this would give
rise to a non-trivial in behavior U;, which is not consistent with the left-hand side of (3.37),
so we conclude that

a; =1+ (Z €j> —4;, (3.40)

with r a constant that does not depend on ¢;. We can, at this point, take the large ¢;
behavior of the I" functions in (3.39). The ¢; behavior of the expression suggests that for
large ¢; the function f(¢;) has the following form

fills) m g7 (3.41)
with ¢ and ¢ constants. Putting everything together and after doing the ¢; integration we
obtain

68,72 (3 S Ap-dogor Bigis
1%C2¢F<2+g+011%if urttre (3.42)
i=1

which fixes both 7, g and ¢ to be

C4A, -3 1

- _A C=—" 3.43

r

This fixes the asymptotic form of Py, proposed in (3.38).

3.2.2 Exchange of one identity and two leading twist operators

So far we have only reproduced the contribution of the identity in the direct-channel OPE
decomposition (3.32). As we have seen subleading contributions depend non trivially on
the cross-ratios, even in the limit where all w; approach zero, cf. (3.33) and (3.34). One key
difference is that we will have to generate logs of the cross-ratios from the cross-channel
OPE decomposition. Some of these logs are generated by allowing a correction to the
dimension of the double-twist operators of the form

k

J—ia :

The conformal block, in the large spin limit, depends on the twist of the exchanged op-

erator in an explicit way as can be seen in (3.36). It is easy to perturb the previous
computation, done to reproduce the contribution of the identity with the cross-channel
double-twist exchange, and include the correction to the dimension of these operators.
First we expand (3.36) at large J; and keep the first subleading term in the series. Then,
performing the integrals in J; and ¢; we obtain the following correction to the contribution
of the leading twist operators exchange

r (2%%) UzjU2; 3U%~ unj 1y ) 2
RN N R i P A R 7 2 S N N (2312J+1> . (3.45)
2(Ag) z]: (uj-1t2j 11U, )7 ’ e U2j+1
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This term has the correct power law behavior coming from the direct-channel contribution
of the identity and two leading twist operators, cf. (3.32) or (2.24). This fixes a = 7, in
agreement with the four-point function calculation. Moreover, it contains some of the logs
coming from the four-point block function g, , but it also has some unexpected log terms.
It is precisely these terms that will allow us to fix the correction to the OPE coefficient
between three double-twist operators

cikInJy + b Inly) 4 v;
P, :Pii\z/[.efT 1+ZZk( ik I Jg + bjg In f) + v + (3.46)

— A
J 7

where ¢; j, b; ; and v; are coefficients that we will fix. Upon inserting this in the cross-
channel conformal block decomposition, and integrating over J; and ¢;, we obtain

Tx
A+c_1 L'L—l 7
—bj 41— DAL 2 bjir14+-25 2v; U25—1U2j5+1
> [hl <H“2z‘1 Usita — % S S I T
; 2
(2

j Ujt1
(3.47)
The correct log behavior imposes that
k k
bi; =0, biit1 = biiy2 = 5 cii=0, Ciiy1=Ciit2= 5 n1= ks%w
C?, T2(AHI(2J + 7
k= — GPT* ( (25) ( ) . (348)

22J*711"2( 2A¢2_T* )FQ ( 2J—2&—T* )

Thus, we see that we can reproduce exchanges in the direct-channel that include at least
one identity by taking into account the contribution of large spin double-twist operators
in the cross-channel. Moreover this procedure fixes the dimension and OPE coefficients
of these operators at large spin. The formula for the OPE coefficients is one of the main
results of this paper.

3.2.3 Exchange of three leading twist operators

Before analysing the contribution of the exchange of three leading twist operators in the
direct-channel, let us see what is the effect of dressing the large spin double-twist contribu-
tion in the cross-channel by a term of the form H?zl J#¢7". This can be used, for example,
to check what is the cross-ratio dependence of the corrections to the double-twist exchange
in the cross-channel at large spin

95—11+27541
S (ugi1\ 2 > 23,45,16 S Usiy?
i— t qj 4rj 45, j—
H( - ) / dide; Py | TT T 67 |G, (e Un) o< [T 4 (3.49)
i=1 2 j=1 =y 3 i1

It follows that multiple corrections to the dimension of operators exchanged in the OPEs
(23)(45) and (23)(45)(16), where r; = 0 and two or three nonvanishing exponents ¢; equal
—Tx, have, respectively, terms of the form

uUius 77* - (U1U3U5)T* [
s | Iy 1 | AEsYs) iy Tnug ] s 3.50
<U2U3> ug { nug lnug + } Ol E nug Inug Inug + (3.50)
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where the ... stand for the contribution of log terms in other cross-ratios that are not
important for the present discussion. One important feature of these two results is that
at least one power of uyqq is given by 7. This can be thought as coming from the direct-
channel contribution of a family of operators whose twist asymptotes to 27,. Another
curious feature is that there is necessarily a dependence on In teyven, that cannot be generated
by the contribution of a single conformal block, as we can see from (3.34). This suggests
that this term comes from the contribution in the direct-channel of an infinite family of
operators with twist 27,. This behavior was already observed in [3] for the case of the
four-point function from the existence of log? v terms.

Now we are ready to reproduce the last term in (3.32) from the cross-channel de-
composition. Since the direct-channel contribution (3.34) does not have any Inueven We
conclude from the analysis of the previous paragraph that this term does not come from
the correction of the dimension of double-twist operators. Therefore it must come solely
from the correction to the OPE coefficient, which we propose to have the form

Py = Piee (1+ZZI<; C]kank;—ngklnﬁk)+v] (an],lni) +) (3.51)
J I JJT*EJ

where the ¢; j, b; j and v; were already fixed in the previous section and p(In J;,In¢;) is a
polynomial function of the third degree?

J3 o JF . J? JyJoJs JoJ3 1
InJ; . Inf;)=ci—coln—>-1 In—1 451 QPJI( )
p(InJj,Int;)=c1 @na@na@ Gty T 0ty A ) ot
2 InlyInlols+Inlslnls)  In%l;+1nly+1n%¢
+mbmﬂi€ mhm@@&+anln2;+n2n3t%n1+n2ﬁ“13} (3.52)
1£3

This polynomial generates the terms

(IT i) 3 1% (224 )
I3(Ag)

hwmmmm@mmwmmmm%w@mem@}@w)
1<j

upon integration in J; and ¢;. A simple comparison with (3.34) fixes the values of ¢; to be

F(A*)F?’(A¢) 1 (2)
c2 = Pr k. k., A AN c3 = — (SA*Q A* 2 Cz) 2,
AQ* )F?)( ¢2 ) 4 2
1
c1 = 1 Sa,—2 (452 35(&2 5 + 3{2> c2, c4=Sna,—20C. (3.54)
2 2

9This ansatz is justified because the scalar conformal block is a polynomial of degree 3 in log of cross-
ratios.
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for a scalar leading twist operator and

(3) (2)
Pooo Bgo 3 Pooo Byoo
02:F3(A ) A ey =T (Ay) —5x >
3 Pooo Bigh + 3Poo1 Big) + 3Poo2Bio
1 = r <A¢) 37 2084—Tx* ’
3 (=%—)
(1) (1) (1)
Pyoo B Py B PyooB
¢3 = 203 (A ) 2000 Po00 + Foo1 Bogr + £002B002 , (3.55)

F3(2A¢2—T* )

for the exchange a stress tensor, where we used the block for stress-tensor exchange derived
in appendix A.2 and wrote Py, ¢,0, = Prrre,e,e,- We emphasize the absence of the OPE
coefficients associated with the structures where two or three of the ¢;’s are equal to 1. This
happens since such structures are subleading in the U; — 0 limit. The constants IB%XZ 05
are the coefficients multiplying the degree-m polynomial of In U; in the block associated
to the tensor structure labeled by ¢1, 5 and f3. These coefficients can be read off from
equation (A.21) in appendix A.2. We remark that, as is well known, the OPE coefficients

of the stress tensor are not all independent and in fact satisfy

8(Pooo + Poo1) + d(d + 2) Pooa

(d+4)(d—2) ’
32(2 + d) Pooo + 8d(6 + d) Pyo1 — 4d(d* — 20) Py
(d—2)%(d+2)(d+4) ’

Py11 = -2

(3.56)

P =

since its correlation functions satisfy conservation equations [25]. This means that the
different OPE coefficients associated to the ¢; tensor structures are related to a set of three
independent numbers.

We end this section with a speculative holographic interpretation of our bootstrap
results which can be skipped by the more orthodox readers. In a four-point function,
radial quantization allows us to visualize a weak gravitational process in AdS where two
particles with large relative angular momentum come from the infinite past, interact, and
continue towards the infinite future. This picture can be generalized for the six-point
function in the comb channel, which instead corresponds to a three-body gravitational
interaction. However, in the snowflake OPE that we analyzed, one cannot assign a single
time coordinate which leads to the cylinder picture. Instead, this channel corresponds to a
gravitational process where the asymptotic states are defined with respect to distinct time
coordinates,'? where the underlying geometry is instead a “pair of pants”. The physical
process is more easily understood by inspecting figure 6.

4 Examples

Consistency conditions of the bootstrap equations for higher-point functions impose con-
straints on the behaviour of three point functions of spinning operators as we have seen in

10yWe thank Pedro Vieira for discussions on this point.
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Figure 6. Schematic representation of the gravitational processes dual to the six-point comb chan-
nel on the left and to the six-point snowflake channel on the right. In the comb case, three particles
come from the infinite past, interact weakly and continue towards future infinity. In the snowflake
case, the blue and red particles come from the past infinity of two different time coordinates, say
t1 and to, respectively. The blue one travels to future infinity along ¢; and the red one along t5. A
third, green particle comes from past infinity in the ¢; direction and moves towards past infinity in
to. The process can also be interpreted in other similar ways by permuting the role of the OPEs.

the previous sections. The goal of this section is to extract OPE coefficients of spinning
operators by performing an explicit conformal block decomposition of the generalized free
field theory correlator, as well as theories with cubic couplings, and confirm some of our
previous results.

4.1 Generalized free theory

The six-point function of operators ¢ in a generalized free field theory is given by

6
(IT o@mer = D (d(@1)¢(x2))(d(23)p(24)) (d(x5)B(w6)) = > !

T 4.1)
i=1 perm perm 1243456

i

where we should sum over all permutations of operator positions. We can extract a pref-
actor (27522,225)2¢ to write everything just in terms of cross-ratios,

6 3
_ A
(235254226) 2 ([ [ o(z0))mpr = 1 + (urugus) ™ <1 + (upugug) ¢ + > U, d’)
i—1 i—1
Uit 1u2it3 ) ¢ Usj—1U2i+1U2i+3 | ¢ Uit 1u2i43U2i 41\
+ Z ( > + ( ) + ( ) . (4.2)
Uszi—1 u2i4+2U2—1 ugi+2U2i 1

The prefactor we have extracted is appropriate to analyze the OPE limit in the channel
(12)(34)(56). The first term in (4.2) corresponds to the exchange of three identity operators
and the others can contain one identity and two double-twist operators, or three double-
twist operators. A systematic analysis of the operators that are exchanged in the OPE in
these three channels can be done using the six-point conformal blocks [15] or the Casimir
differential operator together with the boundary condition of the block in the lightcone
limit [16]. We obtained for the OPE of three leading double-twist operators, which can not
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be extracted from the four-point function of ¢, the result
3 (Ji +4 =>4+ 1) 5,4 (Adv) (Ag);
Pre, = _
z':l_ll 21,1 05! (Ay), (%) "
%

Ji
2

(4.3)

By taking first the large J; and then the large ¢; limit we recover the asymptotic behav-
ior (3.38) derived from the lightcone bootstrap in the previous section.

Note that for a free theory with Ay = (d — 2)/2 this is the full set of OPE data that
can be extracted from this correlator. In a generalized free theory there are subleading
double-twist operators ¢p[1"9”7 ¢ whose OPE coefficients could be extracted.

4.2 ¢3 theoryind =6 —¢

We now consider turning on a cubic coupling which will allow us to further test our predic-
tions involving, for example, the five-point function which vanishes for mean field theory.
The five-point function in ¢ theory is given by'!

5 5

([T o(z)) = > (d(a1)d(x2)){b(x3)d(xa)p(ws)) + (]| o(x:))

i=1 perm =1

(4.4)

conn

This correlation function only has odd powers of € as can be seen by drawing a few Feynman
diagrams or from the strucutre of perturbation theory around the Zy symmetric free theory.
The leading term is a factorized correlator given by a product of a two-point function and
a three-point function. The two-point function starts at the free theory order, but the
three-point functions starts at order e, with a tree level contact diagram. The connected
contribution starts at order €3 and coexists with corrections to the factorized correlator.

To leading order in the € expansion the connected contribution is given by

(o(x1) ... p(x5))

_ (Cé2¢) / d®zg ' (4.5)

2 2 .2 .2 .2 (2 \2
conn - perm 9512$34 150 230T10(250)

This six-dimensional integral is proportional to a D-function D1i112 which we analyze in
appendix B.

4.2.1 Disconnected contribution to the five-point function

Let us write the block decomposition as

(D(1)... plas))D = S P GE (wy), (4.6)

9512%433159535 Fer oo

where the superscript (1) indicates the order in the € expansion. We used that Ay = 24+0(¢)
and that Py, 1,/ starts at order e. Our goal is to derive the spectrum and OPE coefficients of

" This result can be obtained easily with the method of skeleton expansions as presented in [29]. Tt would
be interesting to do conformal block decomposition for five- and six-point correlators in ¢> and see how the
respective spinning OPE coefficients compare with the ones in N' =4 SYM [16].
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the operators exchanged in the (12)(34) channel for the leading disconnected contribution
that is given by

1) 2
<ﬁ¢<xi>><l>=io¢¢¢“3 U% +<u3u5>
=1

1,4 .2 .2
L12T34T15%35
5 o 29
ujug \
+| =

To obtain the block decomposition we use two independent methods which serves as a cross-

check of the calculation. Firstly we consider the Euclidean expansion of the five-point block
discussed in appendix E of [18], and match it to the small u; and u3 expansion of the corre-
lator. Using this we can obtain as many OPE coeflicients as we desire. We can then conjec-
ture a general form for arbitrary Ji, Jo and ¢, which we subsequently test by comparing to
the explicit higher order results. Alternatively, we can use a generalization of the technique
of [30] to higher-point correlators [16]. We act with the Casimir differential operators on
the correlator in terms of its small w1, u3 expansion. Since the conformal blocks are eigen-
functions of the Casimir operator, we can fix the OPE coefficients order by order in wuq, ug
by acting recursively with the differential operators. Again, we can do this to arbitrarily
high order, guess the general form of the coefficients and check it to even higher order.
We find that depending on which pair of operators form the two-point function we have
different sets of operators being exchanged. When the two-point function is between points
z1 and z2, we have the identity in the (12) OPE and ¢ in the (34) OPE. The product of
OPE coefficients is simply given by Pz((lﬁ) = Cé%. Similarly, when the two-point function is
between points x3 and x4, we have PQ(SI) = C’é?(z). When the two-point function is between
points x1 and x5, or between x5 and x5, the result is less trivial since it leads to an expansion
with an infinite number of operators. Adding up these two contributions, we find in the (12)
OPE the double-twist operators [¢¢]o, 7, with dimension 4+.J and (even) spin J, along with

the operator ¢ in the (34) OPE. In this case we obtain P[E;q)b]o 6= ¢(>2¢C§>¢>[¢>¢>}o ,» Where
27H(J +2)°T(J + 3)
2
_ 4,
Cooloclo. O(J+ 12 +3) (48)

which is the usual formula for the OPE coefficients of two scalar operators and a lead-
ing double-twist operator, which holds in MFT with A, = 2. We may also consider the
factorised correlator with generic Ay.'? In this case we have several infinite towers of sub-
leading twist operators with dimension 2A4+2n+-J and spin J. We checked that the OPE
coefficients are again given by the four-point MFT result. This can be easily understood
by using the convergent OPE in the (34) channel, as discussed in section 3.1.1. A similar
story holds when the two-point function is between points x3 and x5, or between x4 and x5,

Finally we can have a two-point function between x1 and z3, x1 and x4, 2 and x3, and
2o and x4, which are the most non-trivial and interesting cases. Together they admit an

12For example studying ¢* theory in AdS with a massive scalar such that m? = Ay(Ay — d).
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expansion in terms of blocks where the exchanged operators are [¢¢]o s, in the (12) OPE
and [¢¢@]o, s, in the (34) OPE. Thus we access OPE coefficients with one scalar and two
spinning operators, which have the extra quantum number ¢. It is not hard to propose the
formula for the OPE coefficients in the case £ = 0, where the dependence in J; and Jo turns
out to factorize due to the nature of the tensor structure of £ = 0. We find, for generic Ay,

2 —Ji 4 B } _
P o= R ] 2 (JZ T ) Fhi+28 1) (4.9)
(9610, 194l0,s¢=0 ST+ DT (52)T (AT (Ji+ 2 — 3)
which for the Ay = 2 case drastically simplifies to
P(l) o _ 7T2_J1_J2_2P(J1 + 3)F(J2 + 3) ‘ (410)
[6¢lo,.7, [#Plo, 75 b= T (Jl + %) T (J2 + %)

For higher £ we find that the J; and J> dependence no longer factorizes. Instead, for Ay = 2

. (1) (1) o . .
we find that the ratio P[ 68l0.7, [66l0.1, ¢ / P[ 6101, [66lo0., £=0 15 B1veD by a symmetric polynomial
in J; and Jo, with maximum degree 2¢ in both variables combined and maximum degree
{ in each variable separately. For example, the first few polynomials are given by

Py _ 1

a1 CRA RO TR

Py _ 1

b= (B4 DI+ BT+ TIadi + 6(J1 + J2) + 18), (4.11)
=0

Py _ 1

ﬁ - m(Jng’ — (JoJ} + J30) + 12023

F12(JoJ? + J2J1) + 8501 + T2(J1 + Jo) + 216),

where here we used the shorthand notation Py—; = pY We can easily write
[#9)o,., [#9]

O’JQZZi‘
down these polynomials to a very high order.'® Unfortunately we did not find a closed
form at arbitrary £. Nevertheless, we could perform the simpler task of finding the large
J1, J2 at fixed ¢ behavior, which in fact we were able to do for generic A,. We found that

(1)
P[¢¢]0,J1 [#dlo,75¢ (J1<]2)Z

6 TTU+1D)(Ay)e
Fl6810.1, 16810, 1,=0 (E+1)(A)e

(4.12)

Combining this result with the large spin behavior of the £ = 0 OPE coefficient, and then
taking the large ¢ limit, we find a perfect match with formula (3.18) obtained using the
lightcone bootstrap!

13We can also write down a few of them for general Ag. In this case there is also a simple additional
denominator.
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4.2.2 Comments on the six-point function

The six-point function of a scalar ¢ in the € expansion is given by

6 6
([T o)) = Y (d(@1)p(x2)){p(3)d(xa))(d(x5)d(w6)) + D (d(x1)d(x2)[] ¢(@))] o
i=1 perm perm i=3
6
+ > (d(a1)d(x2)d(x3)) (d(za)$(w5)d(z6)) + ([T &) | o (4.13)
perm =1

The leading term is given by the mean field theory discussed above (with Ay =2+ O(¢))

and is of order €

. The partialy factorized terms (two-point function times four-point
function and three-point function times another three-point function) begin at order €2.
These have subsequent corrections of order e*, which is the order at which the connected

contributions begin. At leading order the latter is given by

6

d6-%'0 d6$7d6$8
L6 o = (/ +f
1':1_11 /! Jeonn 000 x%ﬂ%ﬂgﬁn?:ﬂ?o I%233%795%7($§7)233z217$4218($§8)2(35%8)21’%8

+perm,

where the first integral is the same as the six-point D-function Di11111, which we analyze
in appendix B. It would be nice to systematically study all these corrections and to match
the asymptotics of the OPE coefficients with the lightcone bootstrap results presented in
section (3.2).

5 Discussion

We have shown how to use the lightcone bootstrap for five- and six-point functions to de-
termine the large spin behaviour of some new OPE coefficients. For the five-point function,

in the case of a direct-channel identity exchange we determined the large Ji, Jo and ¢ be-

haviour of the OPE coefficient Cé% Slo.s, (06101,

twist exchange in the direct-channel, including the possibility of the stress tensor exchange,

in the cross-channel. For the case of a leading

we determined the asymptotic behaviour of Cé% 4] . For the six-point function, in

the case of a direct-channel identity exchange, we %gt[gfrﬁﬁﬁgd the large J; and ¢; behaviour
of C[Eﬁjzﬁ)]o,h [66l0.15 [6l0.1, " Subleading corrections to this OPE coefficient due to the direct-
channel leading twist exchange were also bootstrapped. An interesting interpretation of
these results emerges in connection to the origin limit U; — 0. In this limit we observed that
the correlation function diverges at most as log U? in contrast with the planar gauge the-
ory case where the divergences can be an arbitrary power of log U; [15, 16]. The difference
between these results follows from the existence or not of a twist gap in a CF'T correlator.

Our knowledge of higher-point conformal blocks is still in its infancy. In particular,
our work was limited to the leading order expansion of the blocks in the lightcone limit.
In our notation this corresponds to the leading term in the limit u,qq — 0 that defines the
lightcone blocks. It would be very interesting to study subleading corrections to the blocks
in this limit, which would allow us to bootstrap OPE coefficients with subleading double-

twist operators of the form [¢¢], ; and [¢O.], ;. Additionally, to simplify our analysis,
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we often took the origin limit U; — 0. It would also be interesting to compute subleading
terms in this expansion, which can be done using only the available lightcone blocks.

In this paper we only considered the lightcone blocks in the snowflake channel. For the
six-point function the comb channel block would lead to a different expansion involving
the exchange of mixed symmetry operators, which we expect to be of triple-twist type.
Such operators are expected to be degenerate at large spin, but this degeneracy should be
lifted at finite spin. It is a very interesting question whether the bootstrap would be able
to address this question in the large spin expansion. This could be a sign of analyticity in
spin for each triple-twist family.

Analyticity is also an open question regarding the new OPE coefficients whose large
spin behaviour we determined in this work. In this case, since there is a unique operator
at each spin and analyticity has been proven in the simpler case of the OPE coefficient
Cyglpd)o.,» We could also expect analyticity to hold. However, the situation here is more
subtle because in this case we also have the label ¢; that parametrizes tensor structures and
is basis dependent. This is an interesting question since in the case of C[Eﬁ;)]o,h (6¢l0,, [6610. 1,
it would connect to the OPE coefficients of the low spin contributions of this family of
operators. In particular, for an appropriate choice of the external scalar operators, this
will connect to the OPE coefficient between three energy-momentum tensors Cj(f})T. In this
case one would hope to derive reliable predictions by including the contributions from the
first terms in the large J expansion.

Analyticity in spin is also important for Regge theory of higher-point functions. This is
clear since Conformal Regge Theory relies on the analytic continuation in spin [31]. In the
four-point case the Lorentzian inversion formula established such analyticity [20]. Thus,
deriving a Lorentzian inversion formula for higher-point functions would shed light in this
problem and, most likely, sistematize the calculations reported in this work.

A more ambitious problem is to set up the Euclidean numerical bootstrap for higher-
point functions, with obvious gains in the available CFT data. As it is well known positivity
is a key ingredient in the numerical bootstrap of four-point functions. In the case of the six-
point function it is possible to choose reflection positive kinematics, however such positivity
is not guaranteed term by term in the block expansion. The situation looks even worse
in the case of the five-point function, since this correlator can not be seen as a positive
norm of a state. One possibility would be to consider a positive semi-definite matrix whose
matrix elements would involve the four-, five- and six-point function. We hope to return
to these questions in the future.
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A Higher-point conformal blocks

A.1 Mellin amplitudes

The Mellin amplitude of a connected n-point function of scalar conformal correlators can
be defined as [34, 35]

(©O1 (@) On(an)) = [ M (i) TT Tlg) (7). (A1)

1<i<j<n

where [dy] denotes an integration with the constraints
n
Z%‘j =0, vij=7i =4 (A.2)
i=1

It is a well known fact by now that the OPE implies that the Mellin amplitude is a
meromorphic function of the Mellin variables ~;;. For each exchange of a primary operator
with dimension A and spin J there is an infinite set of poles in the Melllin amplitude,

Om
vor — (A —J+2m)’

M ~ m=0,1,2,..., (A.3)

where
2

k k n
VLR = — (Zm) =3 > Yais (A.4)
i=1 a=1i=k+1

with the p; defined such that p;-p; = v;;. The residue Q,, is related to lower point functions
and conformal blocks [36]. The label m is associated to the contribution of higher twist
descendant operators.

In particular, the equivalence between (A.1) and conformal block decompositions (2.15)
and (2.21) imposes that the Mellin amplitude for the five and six-point correlator needs to
have the following poles

!
31 C12.0,C4, Cé}uzFl(V)

Ms =~ T—Ay 128 oA 2R (A.5)
(712 - %) (734 - %Jrﬂ
(L)
Mg ~ 221, C120,C340,C56.05C ), g, g, Flatots (V) (A6)

JlfAJI +2A¢ JQ*AJ2 +2A¢ JngJS +2A¢. ?
’)/12_# 734_f 756_f

where the functions Fj and Fj,;,;, are computed by Mellin transforming the lightcone blocks
used in this paper and Cxyyz are OPE coefficients. In the following we will determine the

form of Fj and Fj,;,;, for some specific cases.

17Tt would be interesting to repeat the analysis of appendix A.1 of [31] for higher-point functions.
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Let us start with the five-point lightcone conformal block (2.16) with identical scalar
operators O; = ¢, and write the numerator using the binomial formula

2 <J1 ] l) ( ) <J2 . l) <22> / dh]ldialty (1 - 0P A —t)
— i1 J1 i9 o B BiHN T R A,

11,12,J1,72 (1 - (1 - tg)U4>

A{—J; Ag—J
12 ! 22 2 1, J1itjz2, i1, 2
(1 — UQ)

UR Us Us' Uy
x A +Ag+i+I—Ay A=A+ +J—20+A, *
(1= (1 —t1)(1 —t2)(1 — ug)) 2 (1—(1—t1)us) 2
Next we introduce three Mellin variables si, s2, s3 with respect to the cross-ratios wuo, u4
and us,
Jp—1 Jo—1\[1 Ap—=Jy Ag—Jy
3 ( ! ) < ) ( 2 ) (’?>u1 7wy 2 (1— UQ)Z/d81d52d33f(51)F(32)F(83)
11,92,J1,J2 i J b2 J2
o et A+ T+ Ao+ Ty — A
% u2—81+31+J2uZS2+12u5 s3t+i1+ 3 ( 1+ J1+ 22 + J2 ¢>) (A.8)
—s
Ay — Ay =2l 4+ J1 + Jo + Ay Ay —Ag =2l4+J1+ J2 + Ay
X 2 2 651732753 ?
—s9 —s3
with the function By, s, s, given by
Ag—A1—J;—Jg+2(s3—s1)+21— A¢+2]2 )
Buynss = [ldta]dta](1 = 1), : AT (A)
Ay —ADg—J1—Jo+204+2(sg—s1)+2j1 —Ay 251—J1—Ja—A1—Ag+Ay
x (1 — t2) 2 (1—t:1(1—t2)) .
For J; = J = 0 the function By, 4,5, can be integrated to
F(Al)F(AQ)F(A1—A¢-‘;2(52—S1))F(AQ—A¢22(S3—51))F(2(81—52553)+A¢)
B, 55,53 = (A.10)

[2(41)02(42) D (R 2t

One of the advantages of this Mellin representation for the conformal block is that it makes
it easier to study certain limits. For example, to get the leading term in the uo, ug, us — 0
limit we just have to close each contour si, s9, s3 to the left picking all the poles along the
way. Notice that B, s, s, for generic spin can be written as a 3F5 hypergeometric series

D (D) D (2 D (g — o+ G —sa+ 51 )T (i1 —j1 + F — 5o+ 52)

851,82,83 = 22—A1—A2—J1—J27TI‘ (ﬂ + %) T (ﬁ + ﬁ)
<€+j1—*—81+82+f—ﬁ) (€+j2———31+53+f—%>
XF(£+i1——+J2 51+ SR D (i 4 = B — sy 4 S1IEER00) (A1)

. A . A
¥ 3 Fy —7¢+%+j1—81+52+f,—7¢+%+32—81+83+5, St 1
e PR T I e S ] —%+%—sl+£

To find F; one needs to relate the Mellin transform we have computed to the Mellin
amplitude definition in (A.1). We use the conditions (A.2) to write the Mellin amplitude in
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terms of five independent Mellin variables, namely:vyi2, v34, Y13, V15, Y35 After computing
the integral in y12 and 34, we can relate the two sets of Mellin variables, s;’s and ;;, by
demanding the exponents of the cross-ratios to be the same on both expressions. To do so,
we first expand (1 —ug)! = > (]lg)(—UQ)k We find then the relation

_ 201422+ 2k — o+ Ay — 2713 — 2935
2 b)

 2ig+J1—Ja— Ay + Ay + Ay — 2735

_ : ]

51 83 = 15 + 11,

52 (A.12)

This relation depends on indices that are summed over. Thus, performing the change of
variables in (A.8) leads us to finite sums of contour integrals. We would like to swap the
order of sums and integrals to be able to write Fj from those finite sums. This can be done
if we are allowed to move, without crossing any poles, all the contours to the same region.
Assuming this can be done,'® to find Fj is just simple algebra. For specific values of spin
and scaling dimension of the exchanged operators, it is easy to see that F; defined in this
way is, as expected, a polynomial in the Mellin variables v13, v15, 735 whose degree depends
on J 1, JQ, l.

It is possible to repeat the same analysis for the six-point conformal block in the
lightcone. Since the method is essentially the same we will just quote here the Mellin
transform of the block for the exchange of scalar operators

A

3 3 6 3 , B
(A e ER— i —2(8 + 5
=1 F( J ; ’ )I‘Q(%) i=1 i=1 U2 U —j
x T <A21 _ 2(832+ 56 — 32)) T (A13 - 2(322+ S4 — 31)) r <A32 - 2(312—|— S5 — 33)> |

where 51 = s5 + 56,52 = 54 + 85,53 = 54+ 56 and A;; = A; — Aj. To relate this to Fyog we
repeat the analysis above. We write the usual Mellin amplitude definition (A.1) in terms
of 9 independent Mellin variables 7;;. After integrating in 712,734 and 7se, it is easy to
relate the remaining v;; to s;’s by imposing the same power behaviour of the cross-ratios
on both Mellin representations. We find:

§1 =723, S2=745, 83 =716, S4=746, S5 =724, S6 = 726: (A'14)

A simple computation shows that Fyo is independent of ;; as one would expect for
scalar exchanges.
A.2 Explicit computation of six-point blocks

In the following we compute the leading lightcone limit contribution for the exchange
of three minimal-twist operators in the snowflake channel of the six-point function. For

5To be rigorous one needs to study in detail the very complicated pole structure of the integrand. This
is particularly challenging due to the possible presence of fake poles. As discussed in [37], gamma functions
that depend on more than a single Mellin variable can naively suggest the presence of families of poles that
differ depending on the order of integration of the Mellin variables. These poles are fake.
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simplicity, let us first consider that the corresponding operators are scalars. It will be useful
to recall the definition of the block gruksk« (w2, U;) given in (2.22). This is a complicated
three-dimensional integral even in the simpler scalar case. One can show, however, that no
divergences appear from the limit ug; — 0,'6 since the U;’s act as regulators of those possible
divergences. This substantially simplifies our analysis. The situation for the spinning
operators is technically more involved but it is still free of divergences in the limit of ug; — 0.

As an example, consider the exchange of three leading-twist scalar operators with
dimension 2 in terms of the cross-ratios yu, yu, yuw ' defined as

_ yu(l_yv) (1_yw) Y (1_yu) (1_yw) _ Yw (1_yu) (1_yv)
U= , U= , Us= :
(1_yuyv) (1_yuyw) (1_yvyu) (1_yvyw) (1_ywyu) (1_ywyv)
(A.15)
In these cross-ratios, the block becomes
3 2
o0 dti (Yiyit1 — 1)
9222 (0, U;) = / ;
0.0 E) 0 YilYirr — V(i1 — 1) + (1 + tiv1) (Wivier — D (viyi-1 — 1)

(A.16)
where we have changed variables t; — t;/(t; + 1) and identified y1 = ¥y, y2 = y, and
Y3 = Yw- The subscripts should be understood mod 3. These cross-ratios appear to be
a more natural choice to compute these integrals, as the integrand factorizes into simpler
pieces. The integration can be done exactly and written in terms of hyperlogarithmic
functions as

o (1_yuyw)(1_yvyw)(1_yuyv)
9222(0,U;) = (=) (1= (L —0) (Gatotm—1) (Ho(yu) (Ho,l(yw) +Ho1(yo) —Hy -1 (yy))

—~Ho(ye) (Ho o1 (4) +Ho, )1 () —Ho 1 (yr) = Hy =1 (3) —Ho,1 (3 )
+ZH(L(yuyw)*l4;51 ()

+Ho (yw) (o 1 (90) +Ho 1 (yo) +H =1 (3) — Hy o1 () + Hot () = Ho, 1)1 (4 )
+2H () (Hy o1 () = Ho, (g, )1 (W) ) = 2Hg oo (50) HHy 1 0(5) = Ho, )10 (00)
+Hy -1 0(%0) +2(Ho,1,1 (yu) +Ho1,1 (y0) +Ho,1,1 (Yw)) —2Ho, (g -1,1 (%) —2Hg -1 =1 (y)
— (Ho,1,0 () + Ho,1.0 () + Ho,1 0 () ) +2H, 1 (40) (o gy, )1 (4) —Ho (3) )

+2H1 (yw) (Ho,y;1 (¥u) =Ho,(goyu) 1 (y“)) F2Hy (o)t (Gu) =2Hg o1 o1 (yu)

+Ho(yu)Ho(yo)Ho(yw) +Hg -1 o (yu) +C2 (Ho(yw)+Ho(yu)+Ho(yv))) : (A.17)

The hyperlogarithm functions H are defined recursively via the integral [32]

Hw1,w2,---,wn(2) = /

0 t—uwp

zdt In"™ 2
Hu,, .. wn(2),  Hop, . 0(2) = , H(z)=1 (A.18)

n!

16This can be checked for example with the HyperInt package [32]. We find only logarithmic divergences
in U; whenever U; — 0.

"The appearance of these cross-ratios is not surprising given the duality between null polygon Wilson
loops and correlation functions, see [16] for recent development in this topic. In fact these cross-ratios have
appeared before in the study of WL/scattering amplitudes in A’ =4 SYM [33].
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One can then check that in the limit where all y; — 0 (which corresponds to U; — 0), the
integral (A.16) is given by

lim (A.16) & ~ In(y.) In(y) () — G Inlya) — Golnl) = Gln(w) . (A19)
which is consistent with the behaviour in (3.34). In fact, one can repeat this computation
for several even integer values of the dimension of the exchanged scalar operators. In
this class of examples, the integral can be performed with the Hyperlnt package. We use
several parameterizations of the block and guess its general form in the kinematic limit we
consider in this paper, namely ug;—1 — 0, followed by u9; — 0 and in last place U; — 0.
This is (3.34). We will later confirm these results by using a Mellin representation which
we will define below.

For a stress tensor exchange, the form of the integrand is more complicated. Even for
specific values of the £;’s and of the space-time dimension d, we find that these computations
extend in time and therefore this procedure becomes less useful. It is however worth stating
that if we restrict ourselves to the case where y, = v, = ¥y these computations can be
performed very quickly in HyperInt. We use these results as a sanity check for the Mellin
method we now present.

In the kinematics relevant for the bootstrap calculation of section 3 we need to take
ug; — 0, in which case we can derive a simplified Mellin representation. For that we
consider the lightcone block (2.22), set up; — 0 in the integrand'® and then we Mellin
transform with respect to the cross-ratios U;. After some massaging we obtain

3
I'2J+r ; i+ni—si+la_;
ity = T1 [ lasi v 22T S (gt
7 2‘]F (2‘]%) ng,m;
(Ji@}i;&*i) (Jimﬂinfifﬁé%i)r (si —mni—Vla_i+Ll1_;)

X
(2] —si—li—i—lzi+ %) (J+mig1+ni—si—sip1+75)

Si si—n;—Lo—i+li—;

. (A.20)

in the case where all the operators have the same twist and spin. The sums over n; and m;
were introduced to reduce the binomials that appeared in the numerator into monomials
of Uz

We would like to make an expansion in the limit U; — 0. In Mellin language this is
simply done by closing the s; contours to the left and picking the corresponding poles. At
leading order only some poles contribute. We will call these the leading poles. The leading
poles will only come from the gamma functions explicitly written above and which only
depend on one of the Mellin variables.

We observe that the position of the leading poles does not depend on the value of m;.
Therefore in the limit U; — 0, the leading contributions have to come from the terms with
m; = 0. For fixed values of spin, twist and ¢;, we perform the sum over n; and pick the
residues of leading poles. These leading contributions are located at values of s; such that
the exponent of the corresponding U; becomes 0, which leads to the expected logarithmic

8This does not lead to any divergences as discussed above.
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behaviour when there is a double pole.!? If we use this mechanism in the case of scalar
minimal-twist exchange, we immediately reproduce the result of (3.34)! Moreover, we can
also check that this procedure for the leading poles nicely matches the results of direct
integration using HyperInt in the limit y, = ¥, = Yw.

For a stress tensor exchange, we have three possible values of ¢;’s, namely 0,1 and 2.
If two or three ¢;’s take value 1, those contributions will be subleading by powers of U;.
We thus list the results for the remaining cases

(r+4)3 3 InU; 2 L@ 8(7(7+6)+2)
000 _ . _g¢
T ()] [H 3+ (40550) =St e )

Sz (8(7'(7'—1-6) +2) +<2)

+2S: U InUs — 5341 (8 (Sz+1>2 — 65 ) - +perm
: 3 U\ 7)) T2+ (7 +6) |
T+ T+6)+4
gy = —— LU +6) ) (255 41 +In05] (A.21)
16T (i*) (742)(7+4)(1+6)
I'(rt+4
97T =" ] 25541+l

4F(%)6r(r+2)(¢+4)(r+6)

where 7 = d — 2 is the twist of the stress-tensor. Notice the result diverges for 7 = 0. This
is not a problem since we are considering the case where there is a twist gap which happens
for d > 2. For other non-vanishing ¢;, the result is obtained by permuting the cross-ratios.

A.3 Euclidean expansion of six-point conformal blocks

The results of the main part of the paper were derived using the leading term of the confor-
mal blocks expanded around the lightcone. We will shift gears in this section and analyze
the conformal blocks expanded around the Euclidean OPE limit in a similar approach to
the one done for four- and five-point function conformal blocks [18, 38, 39].

The two key ingredients in the derivation of the blocks are that they satisfy the Casimir
differential equation

B (2§ )—i—L(”)) _CA’J} fas(@) =0, (A.22)

with
Cag=AA-d)+J(J+d-2), (A.23)

where L zp are the generators of the conformal group and their boundary condition coming
from the OPE

le Ky

O(w4,)O(i,) Z Ciyigk 5 lliil+Ai2ZleQk+Jk Okpiy..piy (745)- (A.24)

(xilig 2

190ther poles of the family will always contribute at subleading orders. In fact, if we have s; smaller than
the required value, there will be a non-vanishing power U; which leads to a subleading contribution. On the
other hand, if s; is instead larger, there is no corresponding pole and the residue is 0. In other words, leading
poles are the rightmost poles of the family prescribed by the explicit gamma functions we wrote above.
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In the Euclidean OPE limit there are three cross-ratios that approach zero
s =, 53 =gz, 52 = us, (A.25)

and six others that remain fixed

5 . U1 — UQUQ € N U3 — U4U1 f . U2 — u6U3
= 81U1 ’ 2= 82U3 ’ 37 S3U2
(’LL2 — Ul)UQ (uﬁ — Uz)Ug (U4 — U3)U1
_ _ — AT Pl A.26
54 5152U1 ) 55 8183U2 P 56 8283U3 ) ( )

in a six-point correlation function and are analogous to the four-point cross-ratios written
in equation (2.2). The cross-ratios that remain fixed can be interpreted as measuring the
angles that the points 2,4,6 approach 1,3,5. It follows from the OPE (A.24) that the
conformal block should behave as

EINFACRIES Hs 9,(&), 50, (A.27)

where g7, (&)?" is a polynomial function of the cross-ratios &; that satisfies three differential
equations coming from the Casimir of the channel (12) in the limit s; — 0,

(4= )02 + (A—€0)02, + (4 — E3)9E, — 2(2&2 + &1€4) ¢, O,
—2(282 + &164)0g, O, — 2(283 + £185) 0%, Og, + (1 — d)(&10¢, + &a0g, +E50:,)  (A.28)
+2(28283 — §4&5 — 286) 0, Os + J1(J1 +d —2) | g4, (&) =0,

with similar equations for the channels (34) and (56). These three differential equations,
together with the boundary condition for A — 0,

e o o £1,2,3 45,6
90,(&) — & gl ibglsch el 51,2,3HT, §456 — 2 (A.29)

fix completely the form of the function. It is possible (and easy) to get subleading correc-
tions of gy, (&) for any value of J; and ¢; from the differential equations. By analyzing these
corrections we were able to check that the function gy, (&;) satisfies relations of the type

1
k
gk g.]i,fi (gl) - Z cgl_),_ing1+i1,J2+i2,...,£3+i4,...€1+i6 (f’b); (ABO)

i=—1

20This is the analogue of the Gengebauer polynomial that appears in the leading term of the OPE of a
four-point function conformal block. Let us also remark that this function appears in the definition of the
conformal block using the shadow formalism.
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that can be used to define it recursively. One example of these relations is?!

1) A=l — ) (J1 A+ b+ L) m
€_100000 = 2J +d—4)2h +d—2) C100000 = 1 (A.31)
) _ 23(d+2(la+ 63— 2)) A ___2(d+2(l+ 13- 2)
—~100-100 (2] +d—4)(2J, +d—2)’  —1000-10 (2 +d—4)2J, +d—2)’

§o _ 4t A _ A6l
~100—1-10 2J1 +d—4)2J, +d—2) TR T o0 pd—4)(2J+d—-2)°

Let us remark that there are similar relations for the Gegenbauer polynomial and for the
five-point analogue [18].

It is an interesting open problem to obtain a representation of the conformal block as
a series expansion in s;, as was done for four and five points [18, 39].22

B D-functions

In this appendix we analyze five- and six-point D-functions using standard technology from
perturbation theory in AdS [42, 43].

B.1 Five points

We start from a five-point contact Witten diagram with a non-derivative interaction
ng,...,A5 (l’l, e ’:L‘5) = /.:4d5' dd+1yKA1 (le? Z/) cee KA5 ($55 y) = DAl,...,Ag, ’ (Bl)
d+1

where the bulk-boundary propagator is defined as

Py A
Kalzsy) = o——=—— . B.2
)= (=7 2) )
We can expand this in five-point conformal blocks without knowing their explicit form,
using Harmonic analysis and the conformal partial waves. We will do this in the (12)(34)
channel, but other channels can be obtained with the same method. Start by introducing
auxiliary 1 = [, 45 dy’'0(y' —y) and attach the bulk to boundary propagators to the auxiliary
points in the desired (12)(34) structure, i.e.

wete= / dydy'dy" K, (21,9 ) Ky (22,9 ) Ky (23,9 ) Ka, (4,9") K, (25,9)0(y'—y) 0 (y" —y).

(B.3)
Next, we use the spectral representation of the AdS delta function and the split represen-
tation of the harmonic function to obtain

+ico e
S =) = [do' [ s sela y) Kol ) (B.4)

—ico 2

*'The other relations as well as the definition of g, ¢, (&) in terms of a recurrence relation is provided in
a auxiliary file.

22Tt would also be interesting to see how the recent and new approaches to the conformal blocks [19, 40, 41]
can help in this problem.
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where ¢ is the imaginary spectral parameter, h = d/2 and the spectral function for the

d d
RO CR s

p5(c) - 27TdF(—C)F(C) . ( . )
Now, all three bulk integrals can be performed, since they are of the AdS three-point

Dirac delta is

function type

/dyKAl(Il,y)KAz (22, Y) K a, (23, Y) = an,,00,05(01(21)O2(22) Os(x3)) | (B-6)
where 1
<(’)1(;1;1)(’)2(x2)(’)3(1’3)> T A2z Dozt Aise (B-7)
Tip TTog Xz

is the kinematical three-point function without OPE coefficient, and

s, = TTCEETRI) 6 bat ) g
A1z Az 2T (A1) T (A2) T (As) 2 o

We are then left with two spectral integrals and two boundary integrals

WCtC:/[dc’] [dc"]d$’dx”p5(c')p5(c")aAlAz,hﬂ/ah,c/7A5,h,cuah+cu7A3,A4 (B.9)

X (O1(21)O2(22) Opteer (2")) (O — e (") O5(25) Op— e (2" )} (Opgrorr (2" ) O3 (0:3) O (24) )

where [dc] = dec/2mi. The position space integrals precisely coincide with the definition of
the five-point conformal partial wave for the exchange of two scalar operators of dimension
h+c and h+ ¢’

Wyt e (@) = / dzdz'(010201¢(2'))(Oh—c (2") O5Oh—c(2")){Oprer (27) O304) -
(B.10)
Thus, we find the partial have expansion for the five-point contact Witten diagram

wete = [aede V(s VUL i) (B.11)

with

ﬁ5 (Clv C//) = pd(C,)Pd (C,/)G‘Al,Ag,h+clah*C’,A5,h*C”ah+C”,A3,A4 . (B12)

To obtain the conformal block expansion we deform the contours towards the real axis
and pick up the physical poles. To do this we need the relation between the conformal
partial waves and the conformal blocks. Since they solve the same Casimir equations,
the conformal partial waves must be a linear combination of the blocks for the exchanged
operators and their shadows. We provide a detailed analysis of this relation in appendix C.
The coefficients can be obtained in the OPE limits and are given in terms of shadow factors
K (h — c appears since it is the shadow of h + ¢)

Aj...A5 _ As,h—c" 1-As,h+c’ ~A1,...,A5
Uyt (@) = K200 K2 Gy () + 3 shadow terms (B.13)
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With

é A — A —
KAl,A2 _ (_1>J 7T2F(A — %) F(A +J— 1)F(A+A12A2+J) F(A+A22 A1+J) (B 14)
A,J 2 (A —1)T(d— A+ J)T(At8izfet]) p(Athe—fatdy :
which are related to the shadow factors S we will compute below by KﬁleQ =

(—%)J SﬁleQ. We will carefully describe these factors in appendix C. Note that since
we only exchange scalar operators we always have J = 0 so we suppress that label. We
now have the block expansion in contour integral form

Wete — / [de|[de"|ps (¢, )Gt en (i) (B.15)
where
ps (&, ") = AR KRl (! e (B.16)

and the factor of 4 comes from the shadow combinations. The function ps contains three
families of poles corresponding to the exchanged operators. Introducing the notation A’ =
h+ ¢, we have

Family 1: A'=A;+Ay+2n, A'"=As+ Ay +2mq, (B.17)
Family 2: A/:Al + Ag+2ns9, A”:Al—}—Ag + A5+ 2n9+2mo, (B18)
Family 3: A= Az+Ay+Ag+2n3+2ms3, A= As+Ay4+2mg3. (B.lg)

Thus we can write the block expansion as

o [o.¢]
te Ar.A ArA
wee =y Playy, 341, Gz 34, + > P20, 1255 4m5 G201y 125 5y
nlymlzo nz,mgzo
S ArA
D P35y B4y C 15, g By (B.20)
n3,m3=0

where [ij],, denotes the scalar double-twist [O;O;],, with n laplacians, and similarly for the
triple-twists [ijk|p4+m. The Py, are related to the OPE coefficients through (2.17) with
£ = 0. Finally, we specify how to obtain the P, from the residues of ps

/ "
P[12]n1 (34)m; = Resar—ag+a,+2m ReSa=a,+a, 120, p5(A7, A7)
/ "
Pl19),, 125y 4y = RESAY=A +As+As+2n0+2ms RESA=A £ A, 420,05(A7, A7)

/ "
P[345]n3+m3 [34)mg Resar—pz4+a4+2m; ReSA’ZA”+A5+2n3p5(A ,A"). (B.21)
Some comments on this block expansion are in order:

e We have exchange of both double-twist and triple-twist operators. Unlike the double-
twist operators, of which there is only one of a given dimension, triple-twist operators
are degenerate at leading order in 1/N. Since we have operators of dimension A; +
Ao + As +2(n+m), and we sum over both n and m this means that there are p+ 1
triple-twist operators of dimension A + Ay + As + 2p.
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e Large N counting determines that a connected five-point function has a leading be-
haviour ~ 1/N3. (One can have factorized three-point x two-point functions at
order 1/N but let’s ignore those). We can check this large N behaviour in the OPE
coefficients. For family 1 we have

Plo,, 384m, = Cr2p12),, Cl12)n, 5340m, Cl34]m, 34 (B.22)

where the first and last OPE coeflicient are the MFT ones, so we are accessing the
1/N? information in C[12]n15[34]m1. For the second family we have

P9l 1251 tmy = C1201200y Cl12110, 5112510y 4 my CT125]ny my34 5 (B.23)

where now the first two OPE coefficients are MFT (although the second one
is single-twist /double-twist /triple-twist), and the 1/N® data we are probing is
0[125]n2 o 34-The third family is similar to the second one.

e For generic dimensions we have an expansion in terms of blocks, however when the ex-
changed operators in different families have dimensions that differ by an even integer,
we find that the OPE coefficients naively diverge. This happens when

A1+A2—|—A5—A3—A4:2p or A1+A2—A5—A3—A4:2q (B24)

for some p,q € Z. By carefully regulating the external dimensions and taking the
limit, one finds that the divergences in OPE coefficients cancel, and we get instead
derivatives of the blocks with respect to the exchanged dimension. This is the tell-
tale sign of anomalous dimensions for the exchanged operators. We will see this
explicitly in the Di1112 example that we will analyze below. Equivalently, we can
take the integer separated dimensions at the level of the spectral function, which
will then have double poles. Picking their residues also leads to the derivatives of the
blocks. In particular, recall that the D functions which admit a closed form expression
are the ones where the total dimension is an even integer. This means that either
A1+ Ao+ Ag and Az + Ay are both odd or both even. In any case, their difference is
an even number, and will therefore satisfy the above condition. Therefore, we learn
that explicitly computable D-functions must always contain derivatives of blocks.

B.1.1 The case of Di1112

The simplest computable (in terms of ladder integrals) five-point D-function is Di1112. As
argued above, this D-function contains blocks and derivatives of blocks corresponding to
anomalous dimensions in its expansion. Following the limiting procedure described in the
previous section, the coefficients in the expansion can be read off. We can organize the
sum into two integers corresponding to the two exchanged operators. It is actually more
convenient to pick the two integers to parametrize the dimension of one of the operators and
the difference between the two. We separate the cases with same dimension and positive
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difference, since they are qualitatively different. Therefore we write

350 n
Do i T2 T2 r (1— : 1)
”rctc: i 2ni+1tni+1 —%+n1+2 —%+2n1+3 4

27.‘-7d/2r2 2F2

G2y2n 242n (B.25)

n1=0 2n1+ 7%+2n1+2
d/2
o0 T / 5Fn1+1F5+n1+1F5+2n1+1F_%+n1+21“_g+5+n1+2
+ ) T T T T T On, Goya(ny+6),242n
n1=0,6=1 \" —&4542n; 43 2MH+20 —g42n1 427 200411417 2(5+n1 +1)— ¢

0 S—g+6+n1+1+5—§+5+2n1+2_2 (S—g+26+2n1+1+s26+2n1+1) +S5+n +S5+2n1) +1

_|_

—d/2
2m /F%l+2F—g+2n1+2r2(6+n1+1)F2(5+n1+1)7%

XUyl olstmtilotonm 11500 0l d 5000, 03G9 46) 242m

+(A1<—>A2)>,

where we introduced the shorthand notation I';, = I'(a). Specializing for concreteness to
the case d = 4 and explicitly writing the block expansion for the first few operators, we

have
10 134 10 4 16 134
W =4n2Go g — —T2Gog— ——7°Gop— —m>Gao+ ~T2Gaa— ——1°Gup— —1°G
G2 9 TG4 6757T 2677 ™ 4,2+97T 44 2257r 4,6 6757T 6,2
16 , 4 5 4 9 01, 8 2~ (01, 2 2~ (01
- - _ ) _ ) _ ) B.2
2257‘(’ G674+2257T G6,6—|—37r Ga4 —|—457T Gag + 157T Gag (B.26)

4 8 2
+ §7T2G4,2(1’0) + £7T2G672(1’0) + 1—57726?674(1’0) + higher dimension operators,

which has the expected left-right symmetry. On the other hand, D11112 admits an explicit
position space expression in terms of a linear combination of products of rational functions
of the five cross-ratios and one-loop ladder functions ®(z, z) with the arguments being all
possible five-point cross-ratios. In practice, we have to invert to the variables u, v and use

_ 2Lis(1—v)+log(u)log(v)

®(u,v) . (B.27)
—v
u(2(v+1)Lig(1 —v) +log(u)(—2v +vlog(v) +log(v) +2) +2(v+wvlog(v) — 1)) 9
+ +O0(u”).
(1-v)?
Using the radial expansion for the five-point blocks described in [18]
GA’,A” = Z an’,n”SlAl+nl32Al/+n”Hn’,n”(Xb X2, X3) s (B28)

n/7nll
Where a,, ,,» are kinematically fixed coefficients, s, sp are radial variables which are small

in the double (12)(34) OPE limit and H is a polynomial in the 1, 2, X3 angular variables,?3
which are fixed in this limit. As an example we have:

Goo=5357+5353 X1 —s%s%xg—i—és%s‘f (4)(%—1) —i—%s%’s?(xg—QXlxz)—kés%sf (4)(%—1) +0(s").
(B.29)
Using the explicit blocks and the expression in terms of ladder functions, we can form an
expansion in the small s, so limit, and we precisely reproduce the block expansion derived
through harmonic analysis in the previous section.

ZWe have 2x1 = £1,2x2 = & and —2x3 = £ in terms of the & variables introduced in [18].
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B.2 Six points

It is not hard to generalize the previous analysis to the six-point D-function. We will
consider the expansion in terms of the snowflake partial wave

Vi po = /dx7,8,9<@1020A(9€7)><O3O4OB(SU8)>(0506(90($9)><@,T4(567)@2(908)@2(339»a
(B.30)
A similar analysis to the five-point case leads to the spectral function

pe(c1,c2,c3) = ps(c1)ps(€2)ps(C3)an, Ao hter @Az, Ay htcs A5, Ag,htes Ch—cy h—cah—cy - (B-31)

Using the OPE limits discussed in appendix C, we can then determine the proportionality
factor between the partial wave and the block

h—ca,h—cs 7-htec1,h—cs p-htci,h
Uherhtestes (1) =, o2 RGNS KRG gy hyes (10)+T shadow terms
(B.32)

Such that we can represent the six-point function by
wete = /[d01,2,3]P6(01,2,3)Gh+c1,h+cz,h+c3 (@3) , (B.33)

with
h—ca,h—cs 7-hte1,h—cs p-hdci,htes ~

p6(01,2,3) = 8Kh—sl2 chhi-cc; C3Kh—_’—§; 62p6(0172’3) . (B34)

This spectral function leads to the following families of exchanged operators

1. Ajg=A14+A0+2n1, Ag=As+ Ay +2n9, Ac = As + Ag + 2n3, (B.35)
2: Ap=A3+ A4 +A5+Ag+2my, Ag = A3+ Ay +2mo, Ac = Ay + Ag + 2ms3,
3 Aa=A1+Ax+2p1, Ap = A1+ Do+ A5+ A + 2pr, Ac = As + Ag + 2p3,

4 Ap=A1+ A8 +2q1, Ap = A3+ Ay +2q2, Ac = A1 + Ao + Az + Ay + 2¢;,

where m; = m1+ms+mg and similarly for the other indices. Note that we identify double-
and quadruple-twist operator families in the spectrum.

B.2.1 The case of Di11111

Once again we consider integer valued D-functions, the simplest of which has all dimensions
equal to 1. They are particularly useful in the study of ¢ theory in 6 — ¢ dimensions. On
the lightcone (12)(34)(56), the D-function Djj1111 has been computed in [44]. The fact
that all dimensions are identical and furthermore integer, leads to the usual degeneracies,
and pole collisions, which are responsible for generating derivatives of blocks, and therefore
tree level anomalous dimensions.

Note that for poles to collide, we must have that some double-twist operators in family
1 have the same dimension as a quadruple trace operator in families 2,3 or 4. Therefore, the
sum of operators naturally organizes in terms of a triangle function. If the three dimensions
satisfy the triangle inequality, then there are no pole collisions, and the contributions can
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only come from family 1. If the triangle inequality is violated by some exchanged operator
(and of course this can only happen to one operator at a time), then we must consider the
poles in family 1 along with the family who has that operator as a quadruple trace (e.g. if
Aj > Ap + A then we take family 2). We write

Wctc > 7Td/2 T 3 Fm+1r2—%+n1 F17m+nj+nk G
— Z T 37%+n1+n2+n3 T . . 242n1,242n9,24+2n5 1
ni,n2,n3=0 i=1 24-2n; 2— 94 12m;

i Pn1+1Fn2+1F,g+n1+2F,%+n2+2r5+2n1+lr(5+2n2+1

X

ny,m2,0 F2"1+2F2n2+2r—4+2n1+2F—é+2n2+2

/2
/’r d+nt+2Fnt+1F 445+2n142n2+3
X T T OnsG242n, 242002420,
0% 2(ne+1)* — 4 4on, 42

—¢_,_5+2m+3 w_,+nt+2+2¢ d+2nt+2+'¢5 ¢6+2n1+1+2¢2nt ¢6+2n2+1—¢nt+1

Ly =

n1,n2,8 nz+1F dyng+2 ——+n2+2r5+2n1+1F5F2n1+2112”2+2rf%+2m+2F74+2n2+2r (ne+1)

—md2T, Tl 4 §4om,43

1
2F —442m, +2F5+2n2+lr 4 n 42

Go42n1 242002420+ (A3 A1) +(AzAg) |, (B.36)

where ny = ny +no+d and ¥, = S, —a~! — vg.

C Higher-point correlators and harmonic analysis

Harmonic analysis of the conformal group leads to the Euclidean inversion formula, which
extracts the CF'T data from the full correlator. This tool is available even for higher-point
functions, but is generically not a useful apparatus for computations. A notable exception
is the case of MFT correlators where the inversion can be performed rather explicitly in
the case of four-pt functions [45]. In this appendix we derive some of the results needed to
generalize this procedure to higher-point functions.

C.1 MFT six-point function from harmonic analysis

We will study the six-point function of identical real scalar operators ¢ of dimension A
presented previously in (4.1). Before moving on, it is important to point out that depending
on the OPE channel (snowflake vs comb), we can have different amounts of identity operator
exchanges which must be accounted separately in the conformal partial wave expansion,
since they are non-normalizable with respect to the Euclidean inversion formula. To analyze
this we recall the definition of the six-point partial waves. The snowflake partial wave is

VEE =] (010,04(0) (0s0105(2)) (050600 (2))" (O (27) Ol (5) Ol 29))",

o (C.1)
where we introduced the notation fz o = Jdxidxj ... to make the equations more com-
pact, a,b, c,d are tensor structure labels and the daggers denote the dual representation,
meaning the indices of the A, B, C' exchanged operators are contracted. We can now iden-
tify the problematic identity exchanges. The 12 — 34 — 56 contraction corresponds to the
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exchange of three identity operators, which is non-normalizable but can trivially be writ-
ten as the conventional prefactor times 1. We can also have the exchange of one identity
operator and two non-trivial double-twists. This will be the case, for example in the Wick
contraction 12 — 35 — 46. Pulling out the prefactor, we will be able to expand this in a fac-
torized form, as a two-point function times a four-point function, and of course the block
expansion of the four-pt function will be the non-trivial, but well-known MFT one. In
total, we have one wick contraction with three identities and six with one identity. Below,
we will therefore focus on the eight remaining non-trivial ones. On the other hand, we
have the comb channel partial wave:

ke = [ (01020420 (0} (27)0:08(x5)) (Oh () 040c (@) (O (29) 0506)".

- (C.2)
We can now have two identity exchanges (which is again a factor of 1 with the conventional
prefactor choice), or one identity exchange (four choices). We must account for 15 —34 — 26
and 16 — 34 — 25 Wick contractions which exchanged an identity in the snowflake channel,
but do not do so in the comb channel. The remaining eight non-trivial contractions are
the same as before.

To obtain the OPE coefficients, we will be using the euclidean inversion formula, which
amounts to integrating the euclidean correlator multiplied by an appropriate conformal
partial wave. This works because of the orthogonality property of partial waves. The
appropriate inner product is given by

~ ~ dx .. dxn —~ —~
(<01-~~0n>,<01---og>):/Vflscl)(dju) (010 (01 -0y (C.3)

C.1.1 Snowflake channel

For the snowflake partial waves we find the orthogonality property

(\Ijsf,l.‘.ﬁ,abcd \Ijsf,ﬂ..fff,efgh) da,40B,B'0C,C" (C.4)

ABC R aipiet ) T (A, I (A, Jp)p(Ac, Jo)

x ((124), (1121 AT)) ((34B)", (3T2TB)) ((56C)°, (561 CN) ((ATBICT), (aBC)") |
where 6x x/ = 276(vx — vx/)dsy,7,, and we adopted the shorthand notation X = Ox.
The snowflake partial wave expansion is given by

(01...06) = Y [ dvadvpdvcIipeg(va, Ja,vs, Jp,ve, Jo) W 5 o(),  (C.5)
JA7JB7']C

and we invert this with the orthogonality relation

it 6 ISf (VA JA vp JB vo Jc')
199" = ((0y ... Og), WL Blefoh) — _abedlVA> ZA VB, 7B, VC, C.6
(< 1 6>7 At BItCrt ) M(AA7JA)M(AB7JB)M<A07JC) ( )

x ((124), (1121 4T)) ((34B)", (372TBT)T) ((56C)°, (5161CT)7) ((ATBTCT)?, (ABC)")

Taking identical real scalars O; = O = OF, this reduces the calculation of the spectral
function to the calculation of the integral on the left hand side of the above equation,
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which is given by

1 = [ 0 0(1)0(0) O (7)) (O(w) O (1) Ol (a3)) (Ola2) D) O )
X (Oa(27)0p(28)Oc(29))*(O(1) . .. O(w6 ) )mr - (C.7)

As discussed above, the MFT correlator consists of fifteen triplets of Wick contractions.
Clearly, when either of the pairs are 12, 34 or 56, we can integrate one of the vari-
ables, and this will shadow transform one of the three-point functions. However, we
will then have a three-point function with two coincident points, integrated over this
point, which is badly divergent. This is the reason why such contributions are non-
normalizable and need to be accounted for separately. Therefore, we henceforth focus
on a representative contribution, and the remaining ones can be obtained in an identical
manner (in fact some of them give a manifestly equal result). Let us take for concreteness
(O(21)O(3))(O(x2)O(x5)) (O(24)O(x6)) C (O(x1)...O(x6))mrr Performing the integra-
tion over x3 5 ¢ applies shadow transforms on the 3-pt functions:

10 = [TA2AI83 65 1) O () Oy () {S10] 1) O 2Oy () {1022 SO 4) O )

X (O4(27)Op(258)Oc(w9))" , (C.8)

with the shadow transform for the scalar defined as
(S[0)(z)...) = /dy<@(fv)@(y)><0(y) N E (C.9)

We also define the shadow factor for the three-point functions, which is the fundamental
building block for the following calculations

(8101010,)* = S([0]010)3(00;05)". (C.10)

We can now write the spectral function as

¢ :/W<@(CE1)@($2)@L($7)> O($1)@($4)@TB($8)><O($2)O($4)@g(:€9)>

{
x S([0]00L)S(01010L)S([0100L) (O (27)Op(258)Oc (x9)) " (C.11)

Let us make a few comments. First note that there is some freedom in choosing what
operators we actually shadow transform, and in the case where we transform two in the
same three-point function, we can also choose the order. This leads to apparently different
expressions, which presumably give the same result in the end. We should also point out
that independently of these choices, the shadow factors only include one spinning operator
and are therefore known in closed form for any J and d. Additionally, it is clear that each
three-point function has exactly one point in common with the other ones, and therefore
the position space integrals remain non-trivial.

To address this, we note that an integral of two three-point functions integrated by a
common point is just a four-point partial wave, which admits well-known crossing relations,
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whose kernel are the 65 symbols of the conformal group. There is now some freedom
in choosing over what integration point to perform crossing. Crossing over the scalar
corresponds to a 65 symbol with three spinning operators. Crossing over a spinning one
will lead to a similar result. Let us first define the 65 symbol?* through the crossing relation

abed
Ay, J1] [Ag, Jo] [AY, ] 1234,cd
gB21d.ab _ /dA A1, 1 ) ; pl23de ‘
o205 21, 20 zJ: A (A3, J3] [Ag, Ja] [A,J] A )

(C.12)
Let us cross through the scalar at x4 using

[ d24(0L(@9)0(a2)0(a2)) (O (a2)O(w1) Oy (as)) = 3 [ a2 (€13
7

{A A A
“1

b
/ Al AT AT
AC,JC] [ABw]B] [A,,J’]} /dl‘4<0($1)0(l‘2)0 ($4)><OT(x4)OC(m9)OB(x8)>b'

With this, we can easily perform the x1, x5 integrals using the bubble integral formula

[d212(0(21)0 ()0l (7)) (O(@1)O(w2) O (w0)) = maxm) ((0001,),(0004)) .
(C.14)

The delta function between operators O4 and O’ removes the auxiliary spectral integral,
and the position space delta function gives a final pairing between A, B, C' three-point
functions. Collecting everything, we obtain

b
I = S(|0]00f)S(0[010}) S([0]00)) { : ACAJC] [ABAJB] [AAAJA] }
((000}), (0004)) , . )
x AT ({04,050, (040500)°) . (C.15)

Note that we have a 65 symbol with three spinning operators. When one or two of these
operators are scalars, this should be related to well-known 65 symbols through the tetra-
hedral Sy symmetry. Otherwise, this is a non-trivial object to be obtained either through
weight-shifting operators, or more directly from the Euclidean inversion formula applied
to the cross-channel partial wave with the appropriate tensor structures.

C.1.2 Comb channel

In the comb channel we have slight modifications to the orthogonality properties. The
orthogonality relation now reads

~ ~ 5 /5 /5 ’
(\I,c,l...G,abcd \I,c,lf.‘.ﬁf,efgh) A,A'B,B'0C,C (C.16)

ABC 2 RABCt ) T (A, Ta)p(Ag, T)i(Ac, Jc)

x ((124)7, (1121 Af)) ((Af3B)", (A31BT)T) ((Bac)e, (BITCT)?) ((CTs6), (C5T6M)") |

240ur convention for the 6j symbol differs from others in the literature by a normalization factor.
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from which the spectral function now follows from the Euclidean inversion integral

L JC (VA Ja,vp,JB, Vo JC)
Jefah = oll..6Tefgh) _ _‘abed\VA>7As VB, /B, VO, 1
(<01 O6): Vi i ) (Aa, Ja) (A, Jg)u(Ac, Jo) 1

x ((12A>“, <1T§T;ﬂ>e) (<AT3B>’>, <A3T3T>f) (<J§T40>c, <BZHC*T>9) (<éf56>d, <05T6T>h) ,

Once again, we specialize to the case of identical external scalars O, such that the spectral
function can be obtained from the integral

1= dxvlol (O(1)O(w3) Ol (27))(O 4 (w7)O(w3) O}y () (O () D4 O ()
X <Oc($9)@($5)@($6)><0(1‘1) PN O($6)>MFT . (0.18)

34 identity. As discussed above, in the Comb channel there are two qualitatively different
types of terms without an identity exchange. The non-trivial contractions in the snowflake
channel are also non-trivial in the comb channel. However, the (O(z3)O(z4)) Wick con-
traction, which is an identity exchange in the snowflake OPE, now becomes a non-trivial
contribution. Let us take the 15 — 34 — 26 contraction. This gives a contribution

15 [ SR 6(11)O(02)0 (27)) (O (1) Ols) Oy )" (O 5)SIO) ) O )
).

Vol
X (Oc(9)S[0)(21)S[O) () (C.19)

Note that there is again a lot of freedom in what operator to take the shadow transform,
and in the subsequent steps. However, it is unavoidable to obtain a shadow transform on
a three-point function with two spinning operators, which gives a complicated (matrix)
shadow factor

105 [ LSS 6(01)0(2y) O (1)) (O (27) D) Ol ) (O 5) O() O o))
x S(0c[0]0)S(OcO[0))S(OB[O)OC) (O (x9)O(x1)O(x2)) . (C.20)

We can now apply the bubble integral formula for the x; o integrals. This imposes a delta
function between operators A and C', and also on their positions, 7 — xg. In the end, we
obtain

oA,
w(Aa,Ja)
x ((04008)", (05004)°) . (C.21)

15 8(0c[0)0)S(0c0O))S(O5[0)0c)". ((000.), (0400))

We again emphasize that this depends on a non-trivial shadow factor.

Non-trivial contractions: one point in common. Now, we have to consider again
the eight non-trivial Wick contractions, which contain no identity operators in any channel.
There are two further classes of Wick contractions, ones which will induce two common
points between two pairs of three-point functions, and ones where all three-point functions
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will have one point in common with each other. A representative example of the second
type is the Wick contraction 14—25—36. Its contribution to the spectral function is given by

15 [ B2216(01)0(22) O} (40))(0a(2)Olw5) Ol ) (O 25) O() O 29))”
% (Oc(29)0(23)0(6)) (O(21)O(1) (O (@2) Olws)(O(a)Olas)) (c22)

As usual we have some freedom in what operators to shadow transform. In this case, this
is particularly relevant, since out of the three shadow factors, we can have either zero, one
or two “difficult” shadow factors, depending on what operators we transform. Sticking to
the easiest possibility, we inevitably get only one common point per three-point function,
which means that once again we need to use crossing relations or 65 symbols to proceed
with the position space integrals. It is convenient to cross through O4(z7) and then do
the x93 integrals using the bubble formula. In the end we get

J {2 [ABA,JB] ﬁgﬁ} S([0]004)S(0c[0]0)S(Oc0[0)) (C.23)
(000}, (000¢))
(

X
w(Ac, Jo)

((00L00)°, (0050})")
There is just one more class of Wick contractions to analyze.

Non-trivial contractions: two points in common. We can also have two-point func-
tions connecting the adjacent three-point functions of the partial wave. A representative
example for this case is the Wick contraction 16 —23 —45. The contribution to the spectral
function is given by

15 [ EL2(6(01)002) Ol (1)) (O (27)Olw) Ol 45)" (O (25) Ofa) O 29))”
X (00 (9)O(5)O(w6)(O(21) O(w6)) (O(2) O (3)) (O(24) O (5)) - (C.24)

Once again, we have the freedom to perform the shadow transforms, and we can get either
zero, one or two hard factors. Let us get all simple factors by making the choice

1% 5 [ P (6(1) O (5) O () (O a (7) O i) Oy (25)) (O () D) Ol (o))
0)s

(O[0]0A){(Oc(20)O(4) O (1)) - (C.25)

There are now two possible approaches. We can try to do, for example the x3, x7 integrals,
which would involve a bubble integral with a spinning operator integrated over

~ N ~ - 0p. 00(x1— ~ ~
/ (0(1)0(w)0k(w7)(Oa(a7)O(a) Ol a3))" = 03’2(&;) 2 (10004, 0004)) .

(C.26)

This would mean that the operator exchanged at Op(xg) would need to be the same as

the external operator. It is not hard to argue that this is possible in MFT. We are then
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able to do the final three-point pairing and obtain

((0004),(0004))
1(A,0)

15 S(0c]0)0)S(0c0[0])S(O[0)0 4 ((000¢), (000¢)) .

(C.27)
Note that the tensor structure indices went away, since Op became a scalar operator, and
therefore all tensor structures became unique.

C.2 Partial wave decompositon and conformal blocks

In the previous section we formally derived the partial wave decomposition of MFT six-
point functions. However, to obtain the actual CF'T data, we need to write down the confor-
mal block decomposition and read-off the OPE coefficients. In this subsection, we establish
a relation between the partial wave decomposition and the conformal block expansion. We
quickly review the case of the four-point function which can be expanded in partial waves as

+zoo A @
(010:0504) = Z / d o(A, p) TS (1) + discrete . (C.28)

Here discrete is associated with possible additional isolated contributions, notably includ-
ing the identity. The partial wave is defined in terms of a conformally-invariant integral
involving two three-point structures

WG w,) = [ d12(0,0,0(2) (030101 (1) . (©.29)

In order to relate the partial wave decomposition to conformal blocks we follow the
strategy of [45]. The partial wave in (C.29) is a solution of the Casimir equation and there-
fore one can establish its relation to conformal blocks by uniquely estimating its form in the
OPE limit 1 — x2. Obviously the Euclidean OPE limit cannot be taken simply inside the
integral as the integrand probes regions where the OPE in the pair (12) is no longer valid.
However, understanding the leading behaviour outside this region is enough to match those
contributions to a given conformal block. For concreteness, consider the replacement

(010,0(2))@ — Cl51 (01 (22)O(x)) | (C.30)

where CSZQ encodes leading terms in the OPE O; x Q. With this replacement the
integral in (C.29) becomes a shadow transform of OT,

U ~ Clop (05048(01) V) = S(03040M)C {5 (030,01 (C.31)

On the other hand, the conformal block ng) is a solution of the Casimir equation, which
in the OPE limit of O7 x Oy behaves as

GSY ~ 0l (050,000 (2 — 1) (C.32)
It is thus clear that the partial wave must contain a term

51 5 5050401064 (C.33)
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Similarly, if one performs an OPE on O3 x Oy instead, it is straightforward to show that
the partial wave contains a term

vo' ™ 5 S(0,05[0)) G (C.34)
Putting everything together we conclude that
UG = S(0s040MEGE + S(0105[0))2GEY (C.35)

which reflects the fact that the Casimir equation is invariant under A — d — A. Inserting
this relation on (C.28), extending the integration region along the entire imaginary axis
and using shadow symmetry, allows us to write

Oy Z/

where Cue(A, p) = Ip(A, p)S(O304]ON8. As usual we can then deform the contour inte-
gration away from the principal series and pick up poles of Cy.(A, p) on the real line, which

2 g +ioo dA

—100

2B, )G57 (C-36)

have residues that encode CFT data. For a particular exchanged operator O,, we have
C12+C344« = —Respa—a,C(A, py) . (C.37)

This formalism can straightforwardly be adapted to the case of higher-point functions.
For five-point functions, the discussion has already been presented in [43], but we also
review it here. We consider the partial wave

WGt () = / d 4 d42 (010,04 @(OF,0505) (0 5030,)©) (C.38)
where Oy p are exchanged operators. A five-point function can be decomposed in terms
of this partial wave

+zoo dA 2+zoo dAB O; (abc)
A A v i) . }
O 0= = [T [T S B A p U ) (€39

PAPB

To expand this partial wave in terms of conformal blocks we again consider OPE limits.
In particular, we take 1 — x2 and x3 — x4 at the level of the integrand and we observe
that the partial wave must contain the term

O;(abc a c N N c
P (1) o O Ol (SIO110sS[OL) ) = (538)3(54%)¢ 1), 015, (0,050)© |

O(GE:E,C)

(C.40)
where we have used the shorthand notation S{¢ = S([04]OpO.) and recognized the

leading behaviour of the conformal block GEZEC) in the OPE limits z1 — x9 and x3 — 4.

O; (abc) (

As above, we notice that the partial wave ¥, x;) is a solution of the Casimir equations,

one for each OPE exchange, and therefore 1t enjoys the invariance A < d — A. We can
then propose the decomposition

U5 (2:) = RiGap(wi) + RoG 7 5(wi) + RsG y5(wi) + RaGrz(i) (C.41)

48 —



where, as we have seen, R = (S 5B)a )¢ (S 45)¢. In order to find the remaining R;’s we explore
the symmetry of the partial wave:

W () = /ddxAdda:B<(’)1(’)2(’)A>(“)<@L(’)5@E>(b)((’)3(’)3(’)4>(c)
—/dd{L'Addw dde((S ) )Z<0102OA>(G)<6TA@A/><OL,O56TB>(CI)<OB(93O4>(C)

/d 248z 5(S3)4((S5F) 201050 4) D (01, 0501) ) (050504

= (SR)((SF) w3, (C.42)
Performing an OPE expansion on the \I/(zij(;bc) (x;), we observe
O;(abc B A aec
U @) 2 (SN PNCS @) (C.43)
from which follows that B
Rofl = (SI)4(SE0)2. (C.44)
Similarly, one can show that
Ry =5S8!, Ry =SiESH (C.45)

Just as we have shown in the 4-point case, one can use the shadow symmetry of I, to
extend the region of integration such that

+1i00 dA 4 2+zoo dAp y
. " /—wo 2i /é_wo o2 (B pas Mg, pi) (SVU(S AV IGH,
PAPB " 2 g
(C.46)

The exact same techniques can be applied to six-point functions. Here, we focus

on the snowflake decomposition which admits the partial wave expansion (C.5), where the
snowflake partial wave is defined in (C.1). In a completely analogous procedure as discussed
above, we can relate this partial wave to conformal blocks. In particular, from the shadow
invariance of the Casimir equations it is natural to expand the partial wave as

\Ilil),iB,C(xl) Ri1Gapc + RQGABC + R3GA§C + R4GAB§

+ R5G = + RgGG 4+ R7;G+,~+ RsG~

The (C.47)

ABC ABC ABC”

where
Ry =SBO5AC5A8 Ry = 51254058 Ry= 53 SBOGAB | R, =53 5BC5AC,
Rs=SY2S% SAB Re=S% 556530 R7:S},2526S§C . Rg=S125318%5. (C.48)
The computation of these coefficients exactly mimics the computations in (C.42) and be-

low. One can now insert (C.47) on the partial wave expansion and extend the region of
integration to the whole imaginary axis, keeping only one term which reads

Z / 'HOO dA 4 dAp dAC
4 _jco 2w 2w 2me

(O1...06) =

Ioped(Aa, pas Ag, pB; Ac, pc)

PAPBPC

y SgcesgcngB;”nggccg) . (C.49)
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C.3 Direct computation of spinning shadow coefficients

In the previous subsections, we have repeatedly come across shadow coefficients involving
multiple spinning operators but the computation of these shadow coefficients is an im-
portant question on its own. In this subsection, we will derive some of them using the
shadow formalism. In [45] some of these coefficients were computed using weight-shifting
operators from which recursion relations were derived [46]. Here, we extend these results
and compute directly the explicit integration involved in the definition of these coefficients.
We can write the shadow transform of an operator in a three-point structure as

(010,8[05])@ = / (D305 (010,00)@ (C.50)

where we have an implicit contraction of indices. Here we only consider symmetric and
traceless representations of the conformal group and so the two- and three-point structures
can be written in terms of the two fundamental building blocks [25] that appeared in (2.14).
In particular we choose the normalization of the two-point structure to take the form
HJ
<O($1,Z1)O(.ﬁ62722)> AfJ (C.51)
T12

On the other hand, the three-point structure is given by (2.13) once we omit the OPE
coefficients. As in the main text, we use here the index-free notation of [25, 47]. In
particular, in what follows we will use the formula

(a-D.)"(b-2)" = (‘;92( 2p2)zCh1 ((;éb)é) , (C.52)

where CS‘_I is a Gegenbauer polynomial and h = d/2.

Before moving on to more complicated examples, let us, as a warm-up, compute the
shadow integral for three scalar operators. In this case, we can use the well-known star-
triangle formula [48]

/dd:c 1 _ 7"T(h — a)T'(h— b)L'(h —c) 1
" (@30)* (23 (a3)° T(a)L (BT (c) (a35)"—(a3y) PP (ads) e
=G(a,b,c)
(C.53)
with a +b+ ¢ = 2h to get
p 1 1
<¢A1¢A28[¢A3]> - /d o 2(d—A3) A1+85—Ag A1—Ag+A3 —A1+Ax+A3
T30 (15) 2 (z3o) 2 (%30) 2 (C.54)
WhF(Ag _ h)F(A3+A21fA2)F(A3+A2 A1> ’
<¢A1¢A2¢A3>

F(?h _ A3)F(A3+A21—A2 )F(A3+A22 )

from which we can easily read the shadow coefficient S(¢pa, da,[PA,])-
In [45] the authors computed the shadow coefficients for the case where two of the
operators were scalars and one of them had spin J. Here we compute the coeflicients
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corresponding to two spinning operators and a scalar and we shall recover their results as
a restriction. Let us take the operators at x1 and x3 to be spinning operators whereas the
operator at xo is a scalar. In this case the three-point structure simplifies and we are left
just with the label ¢ = ¢. We first do a shadow transform of the operator at x3

<OA17J1 ¢A28[0A37J3]>(£) =

N R (C.55)
= /dd$0<0A3,J3($3723)OTASHI,,,NJ3 (20))(On, ., (1, 21) B, (22) Oy (wo)) )

where the indices to be contracted are explicitly shown. In light of the results of [25],
this contraction can be simply done in terms of encoding polynomials that depend on
the buildings blocks H;; and V; j;. By doing so, one immediately recognizes that the
term associated with the two-point function is already of the desired form (a - D,,)”* with
a* = (xo3-23) T3 — lxogzg 25 The terms in the three-point structure require some additional
care. It is easy to see however that the zp-dependent terms can be completed to a binomial
of degree J3 of form (b- zo)‘]3, as appears in (C.52). After using this equation, one then
needs to expand back the binomial and collect only the term we have started with. The

computation is straightforward and leads to the following expression for our integral

/dd (x%Q)—%(A1+J1+A2—A3+J3—2€) y
2J3 ) (A1+J1 A2+A3—J3)(x%2)%(—A1—J1+A2+A3—J3+2€)(xgs)Ag—i-Jg
y4
X Vl,zo E (Va1 + Va20) " (Va1 (201 - 21) — Hoza)' s (C.56)

where for compactness we defined H; ;= (24 - 2j)(wrj - 21) — 5(2; - zk)x?j.
After performing the expansion of the integrand, one observes that all the terms to be
integrated take the simple form

(zo1 - 21)*(wo3 - 23)°
(231 (23,)" (235)° (C.57)

The terms in the numerator can be found from taking derivatives of the denominator as

F(a + Oé) (xij . Zj)a
M) @

(2 Oa))* ()~ = 2° (C.58)

It is then easy to integrate the terms in (C.57) by swapping the order of integration and

differentiation
a. (w01 -21)*(z03 - 23)° _ T(a—a)(c—p)
/d (z3))2(xdy)(235)c  2°T(a) 2°T(c) G(a—a,b,c—p)x (C.59)

< (21 00)° (- 02)” ()" ) e e

where a + b+ c=2h+ a+  and G(a,b,c) was defined in (C.53).

ZNotice that a? = 0. We may then just keep the term k& = 0 in the series definition of the Gegenbauer
J (=D (N)s—r(22)"*
ENJ — k)!

polynomial, C7( Z .
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We can use a conformal transformation to fix the position of the scalar operator xs at
infinity. For a scalar, this can be safely done without loss of information. Indeed, there is
only one nonzero #; which controls both z; and z3 and there is no zo-dependence. If one
does so, the integrand simplifies and the 22, drop out. The action of the derivatives can

then be given in terms of known functions,

anpl (h+a+B-0)
22 )

<Ry (oAb +1-h-a-p

(21 0y)* (23 8y (a35)0 7" = (w31-21)* (w13 23)7 (275)" "7 F x

2
z1- Z3 .%'13

) . (C.60)

2713+ 23713 - 21

Putting everything together, we find

<OA1,J1 ¢A2S[0A3 J3]>(é) =

gxrennGy I 6]Clv

hF J1+J3+2T—28+2t+A1—A2+Z3 T J1—J3+2p—2t—A1+A2+Z3
T 2 2

% (_ 1)]3 +r+s+t+2w—m2—J3

T ( J1+J3—2p—2¢+2r—25+2t+A1 —Ag+A3 ) T ( J1—J3+2p—2t— A1+ Ao+ A3 )
2 2

T(As—h —p—9),(—Ji+q— Hi3Viiss "Vt "
(Asz—h) (—p—q),,(=J1+q—1+5),, 131,23 V312 ’ (C.61)

F(1+w)1“(p+q+£3> (2—J1—J3—2r+252—2t—A1+A2—Z3) (x%?))w

X

w

(On1,0,02,0%, ;)™

from which we can easily read the shadow coeflicients associated with each possible three-
point structure. One can check that this expression reproduces the results of [45] as a
special case.?S It is worth stating that all the sums here have indeed a finite number of
terms. This can be seen from the expression above by noticing that for sufficiently large w
the Pochhammer symbols in the numerator will vanish.

One could have wanted to do instead the shadow transform of the scalar operator.
That case is simpler as there is no need to deal with the contractions of indices as we did in
the beginning of this subsection. Keeping x2 at infinity, we have the following integral to do

—A1=J1+Ag—A3—-J3

2
/ddxo 5 ) 2 Vits Vilio  His, (C.62)
Lo1

Aj+J1+Ag—-A3—J3 9 —A1-J1+A0+A3+J3
2 (253) 2

which can be integrated in the exact same way as before. This is a straightforward

268trictly speaking there is a 2773 difference which follows from a different normalization of the two-point
function.
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computation and we find

(On1,7, 862,105,501

Z“i > iuz . ( ) (J3 - z) <z) <e+ 5 — 1") (1) dompha-rizs o

p=0 ¢=0 r=0s=0 m=0 q r m
ahT (Jl +Js—p—q— 2+ Ay — h) T <J1+J3+A21+52A3> T <J1J3A21+KQ+A3)
I(1+s)T (52> T (J1+J3—2p—262+A1+A27A3> T <J1+J372q7262—A1+A2+A3)
Ji—my,J3—
« (—i+p+0)s(—J3+q+10)s HEV 53" V3™
(1+h+p+q+2€—J1—J3—A2)S 9
(z13)

(O, 0%, 005,050

The shadow coefficients computed in this way also reproduce the known results of [45] in

X

(C.63)

Aj+J]—Ag+Asz+J3
2

the appropriate restriction.

Lastly, let us comment on the more generic situation where all operators have spin,
which is, of course, more complicated. Note that we were only able to write the action of
the derivatives in such a compact form because we fixed x5 to infinity. In the more general
case, we are no longer able to naively set x5 to infinity since we would lose control of £; and
£3. On the other hand, we can still successfully integrate the shadow transform in a case-
by-case basis, but this becomes cumbersome for large values of spin. For completeness, let
us write down the integral that remains after having dealt with the contraction of indices

— A —J]—Ag—Jy+Ag—J3+20o
2

( 1)51+€2( )
/ddx() A1+J1-Ag—Jy+A3+J3 —A1—J1+Ag+Jo+Ag3—J3+20o po
25w : (o32) 2 () Bt (12, )f2 (3,

x H3 Vs 2= Ve =0 (Vs 00 (V2 +H "
12 120 3,02 2013301 x12- Z2$02 0323312

2 2 2 2 2 2 2 2\
X (‘/1,03 (‘/53,0233029013"“/?5,2190033?12—9013'235503»””23) "‘7'[0,1,333139023) X
J3—01—42
2 2 2 2 2 2
X (‘/3’»,2133033712"'%,02 (95023313—95013723)) ; (C.64)

where we assume that the shadow transform is done in the operator at x3. One can easily
see that all the terms can be integrated in the same way as before

/dd (o1 - 21)* (w02 - 22)7 (wo3 - 23)7 _ T(a— ) T(b— B) I(c—7)
(1) ()" (255)° 2¢T(a) 2°T(b) 2'T(c)
X (21 00y)* (22 - O0y)" (23 Oay)7 (ad) "7 ()"~ P (a35) 7, (C.65)

where a +b+c=2h+a+ 3 +1.
This is all we need to successfully compute any shadow coefficient of a three-point func-

G(a—a,b—B,c—7)

tion of three operators in spin J; representation, but we did not manage to find a simple and
compact formula for the action of derivatives in the above expression. While one can use
this formalism to compute the shadow coefficients of three spinning operators, in practice
the procedure becomes too computationally expensive at large spin. It would be interesting
to investigate if the weight-shifting formalism of [45] offers a more efficient alternative.
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