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OPEN A hybrid approach for lithium-

ion battery remaining useful
life prediction using signal
decomposition and machine
learning

Yibiao Fan', Zhishan Lin%*, Fan Wang** & Jianpeng Zhang>***

Lithium-ion batteries are widely used in many fields, and accurate prediction of their remaining useful
life (RUL) was crucial for effective battery management and safety assurance. In order to solve the
problem of reduced RUL prediction accuracy caused by the local capacity regeneration phenomenon
during battery capacity degradation, this paper proposed a novel RUL prediction method, which
combined complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)
technique with an innovative hybrid prediction strategy that integrated the support vector regression
(SVR) and the long short-term memory (LSTM) networks. First, CEEMDAN was used to decompose
the battery capacity data into high-frequency and low-frequency components, thereby reducing

the impact of capacity regeneration. Subsequently, the SVR model predicted the low-frequency
component that characterized the main degradation trend, and the high-frequency component

that contained capacity regeneration features was predicted using an LSTM network optimized by
the sparrow search algorithm (SSA). Finally, the final RUL prediction was obtained by combining

the predictions of the two models. Experimental results on NASA public datasets showed that the
proposed hybrid method significantly outperformed existing methods: the RMSE of the methods
proposed in this paper were all less than 0.0086 Ah, the MAE were all less than 0.0060 Ah, the R? values
were all higher than 0.96, and the RUL prediction errors were controlled within one cycle. This method
gave full play to the complementary advantages of SVR and LSTM and provided an accurate and
reliable solution for RUL prediction of lithium-ion batteries.

Keywords Li-ion batteries, Remaining useful life prediction, Long short-term memory, Support vector
regression, CEEMDAN, Sparrow search algorithm

With the advent of the new energy era, lithium-ion batteries have gained extensive applications across fields such
as electric vehicles, aerospace, military communications, and distributed energy storage systems, owing to their
lightweight design, high energy density, low self-discharge rate, large capacity, and long cycle lifel2. As usage
time increases, lithium-ion batteries experience a slowdown in chemical reactions and degradation of electrode
materials, leading to a reduction in capacity and an increase in internal resistance, which may result in faults
or safety incidents®. Therefore, accurate prediction of the RUL of lithium batteries is of great significance for
efficient battery management and avoidance of safety accidents®.

Currently, two main approaches are employed for predicting lithium-ion battery lifespan: model-based
analysis methods and data-driven prediction methods®. Model-based analysis methods integrate the fundamental
properties of battery materials, operating environmental conditions, detailed physicochemical changes, and the
key mechanisms involved in the aging process®. Khodadadi Sadabadi et al. proposed an electrochemical model
approach based on an enhanced single particle model for predicting the RUL of composite electrode lithium-
ion batteries’. Liu et al. proposed a particle filter framework based on an electrochemical model, incorporating
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battery aging mechanisms to predict the RUL of lithium-ion batteries®. The accuracy of predictions made by
model-based analysis methods often depends on testing under laboratory conditions, which typically involve
complex calculation processes and challenging parameter estimation.

Data-driven methods directly analyze collected data using various signal processing and analytical techniques
to uncover hidden informationand link it to battery degradation trends, thereby establishing predictive models’.
Currently, commonly used data-driven methods can be categorized into three types: artificial intelligence methods,
statistical methods, and signal processing methods. Artificial intelligence methods are popular because of their
ability to model complex nonlinear relationships in data. Especially machine learning algorithms such as support
vector machine (SVM), random forest (RF), and deep learning (DL) techniques, can provide highly accurate
and reliable predictions of battery RUL by learning from historical data, making it one of the most commonly
used and promising tools in battery health management!?. Yao et al. proposed a joint state of charge (SOC) and
state of health (SOH) online estimation method based on multi-task learning and cross-stitch networks. The
method improves the estimation accuracy by sharing information among different tasks and better captures the
dynamic features of battery state changes through multi-scale data processing!!. Kang et al. proposed a novel
RUL prediction method combining fuzzy evaluation and gaussian process regression (GPR), which effectively
improves the prediction accuracy and expresses the uncertainty of the prediction results'2. Lin et al.proposed
an adaptive adjustable hybrid radial basis function (RBF) network for SOH estimation. The network structure
is adaptively adjusted by Brownian motion modeling and particle filter, so that the model achieves high SOH
prediction accuracy'®. Yao et al. proposed a multi-scale data-driven framework utilizing temporal convolutional
networks and cross-scale self-attention for SOC estimation, which shows the importance of capturing and
fusing features from different time scales'*. Their work provides valuable insights into how multi-scale analysis
can improve battery state estimation accuracy. Zhao et al. extracted the health indicators of batteries from the
charging curves and employed LSTM neural networks to predict the trend of these indicators as the number
of cycles increased, the predicted health indicators were then input into a GPR aging model to forecast the
battery’s health status!®. Chen et al. selected the equal voltage drop discharge time as a health indicator using the
gray relational analysis method and developed a battery life prediction model based on a convolutional neural
network (CNN)-LSTM'®. The LSTM model has inherent advantages in handling time-series data; however, the
capacity regeneration phenomenon and noise signal that may occur during the degradation of lithium batteries
may interfere with the performance of the network model.

The application of signal decomposition technology to lithium battery capacity data can well reduce the
influence of noise interference and capacity regeneration phenomenon!”. Cheng et al. combined empirical mode
decomposition (EMD) method and back propagation LSTM to develop battery RUL prediction, and processed
battery data through EMD method to reduce the impact of capacity regeneration and other conditions'®. Li
et al. used the EMD algorithm to decompose the recorded battery capacity and cycle count data into multiple
sub-layers and employed the LSTM network to predict the high-frequency sub-layers and the Elman network
to predict the low-frequency sub-layers, yielding highly accurate prediction results'®. Yang et al. proposed a
RUL prediction method for lithium-ion batteries based on gray wolf optimization (GWO) and SVR combined
with ensemble empirical mode decomposition (EEMD), aiming to improve the prediction accuracy of the SVR
model by decomposing the battery capacity sequence through EEMD?’. Although the SVR model is superior
in dealing with nonlinear relationships, it still has limitations in capturing the high-frequency components of
time series data?!. EMD and EEMD methods are prone to modal aliasing during signal decomposition and are
sensitive to noise in the data, which may lead to unstable decomposition results*>. The CEEMDAN algorithm
effectively mitigates mode mixing by adding white noise and performing iterative decomposition. By averaging
multiple noise perturbations, it reduces noise interference, resulting in more stable intrinsic mode functions
(IMF) components®,

In summary, CEMMDAN decomposes the battery capacity into data of different frequencies, which
effectively reduces the influence of noise and capacity regeneration on the prediction accuracy. SVR model has
good performance in dealing with nonlinear mapping, but its ability to deal with high frequency signals is weak.
LSTM network has memory units and nonlinear activation functions, and is good at processing time series
data with long-term dependence and nonlinear relationship, especially for high-frequency data. Therefore, this
paper proposes a new lithium battery RUL prediction method, combined with CEEMDAN, SVR and LSTM.
CEEMDAN is used to decompose the capacity data into multiple IMFs and a residual term. Each IMF represents
a different frequency component in the original data, and the residual is the long-term trend part of the data.
SVR is used to capture the low-frequency residual part of the data, and LSTM is used to capture the non-
linearity and long-term and short-term dependencies of the high-frequency components. In order to prevent the
influence of manual adjustment of LSTM hyperparameters on prediction accuracy, sparrow search algorithm
(SSA) is used for hyperparameter optimization. The proposed method is experimentally verified on the public
data set of NASA Ames prediction center of excellence (PCOE). The results show that the prediction accuracy
of the proposed method is higher than that of other mainstream methods, which verifies the effectiveness of the
proposed method in accurately predicting battery RUL.

The remainder of this paper is organized as follows. Section “Relevant theoretical basis” presents the theory
behind CEEMDAN, SSA,LSTM and SVR. Section “Experimental design” describes the dataset used and the
whole process of training and prediction using the proposed method. Section “Experimental results and analysis”
presents the experimental results and error analysis. Finally, Section “Conclusions” concludes the paper.
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Relevant theoretical basis

Definition of state of health

SOH is used to assess the comparison between the current state of the battery and its initial state, reflecting the

extent of performance degradation. Currently, there are numerous definitions of battery SOH in the literature,

with the most widely used approach defining SOH based on the degree of capacity degradation?. It is defined as:
SOH() = ¢ x 100% (1)

Co

where Cp represents the battery’s capacity at the time of manufacture, and C; denotes the battery’s capacity at

time . Generally, the end of the battery’s life is considered to occur when its capacity reaches 70% of its initial

capacity. The RUL of a battery is defined as the number of charge-discharge cycles it can complete before its

capacity declines to 70% of its initial value®>.

Complete ensemble empirical mode decomposition with adaptive noise algorithm

The capacity sequence data of lithium batteries exhibit non-stationary and nonlinear characteristics. By
decomposing the data with CEEMDAN, the non-stationarity of the capacity sequence data can be mitigated,
enabling the capture of local features within the sequence?®. The CEEMDAN algorithm is an improved version of
the EMD algorithm. It adds white noise to the original data, making the decomposition more robust, effectively
mitigating mode mixing issues and enhancing the stability of the decomposition results. Additionally, it offers
faster computational speed?’. The primary steps of the CEEMDAN algorithm are as follows:

(1) Add n white noise sequences to the signal z(t) to be decomposed, generating n new sequences, as follows:

zi(t) = xz(t) + awi(t), i =1,2,--- ,n (2)

where z;(t) represents the sequence after adding the i-th white noise, « is the signal-to-noise ratio, and
w;(t) is the white noise sequence following a normal distribution.

(2) Decompose the signal z; (¢) using EMD to obtain the corresponding I M F;(¢). By calculating the mean of
IMF;(t), the first mode component I M F (t) of the CEEMDAN decomposition is obtained. Then, sub-
tract IM Fi (t) from z(t) to obtain the first residual component 1 (¢) as follows:

IMF () :% i IMFy(t) 3)
T1 (t) :.T(t) - IMF1 (t) (4)

(3) Add the white noise w;(¢) to 71(t) to obtain r;(t).Perform EMD decomposition on r;(t) and iteratively
apply the aforementioned steps until the termination criteria for EMD are no longer satisfied, yielding k
components. The final residual component is denoted as R(#), and the original signal x(f) is expressed as:

(t) = R(t) + Y IMFy(t) (5)
k=1

Sparrow search algorithm

The sparrow search algorithm (SSA) is a swarm intelligence optimization technique recently proposed by Xue et
al.?%. Inspired by the foraging and anti-predation behaviors of sparrow flocks, SSA is designed to meet the needs
of global optimization in complex search spaces. This algorithm has been widely applied for parameter tuning in
complex systems, demonstrating efficient global search capabilities and fast convergence.

SSA divides the sparrow population into three roles: discoverers, followers, and scouts. Discoverers are
responsible for exploring new solution areas across the global search space and guiding the population toward
potential optimal solutions. Followers closely track the discoverers, thereby enhancing the accuracy of local
searches, while scouts monitor potential threats to prevent the population from becoming trapped in local
optima. The algorithm continuously updates the positions of these three types of individuals and evaluates the
fitness values of all individuals in each iteration to approach the optimal solution?. The main iterative update
steps are as follows:

Step I: Population Initialization

Randomly generate the sparrow population, calculate the proportions of discoverers and followers, determine
the number of scouts, and define the maximum number of iterations.

Step 2: Fitness Calculation

Calculate the fitness value for each sparrow, rank the individuals from best to worst based on their fitness
values, and select the highest-performing individual as the reference point.

Step 3: Update Discoverer Positions
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Based on the alarm value R and safety threshold ST, determine if a predator is present. If a predator
is detected(R2 > ST'), the discoverers will lead the population to a new area. If no predator is detected
(R2 < ST), the discoverers will perform a wide-range search. As shown in the following equations:

Xl X;j-exp (a'it;’:n]ax) ifR2 < ST (6)
WS UXL QL ifRs > ST
where, ¢ denotes the current iteration, and 7 = 1,2,...,d. Xf, ; represents the value of the j-th dimension

for the i-th sparrow at iteration ¢. The parameter itermax is a constant that specifies the maximum number
of iterations, and « € (0, 1] is a randomly generated number. R2 and ST, with values in [0, 1] and [0.5, 1.0]
respectively. @ is a normally distributed random variable, while L is a 1 x d matrix where each element is set
to 1.

Step 4: Update Follower Positions

The followers update their positions according to the locations of the discoverers. Followers with lower fitness
place greater emphasis on the current worst position, while those with higher fitness move towards the best
position discovered by the discoverers. The position update formulas for the followers are provided as follows:

Q thuorstixf,] f( > /2)
X;:;lz exp I B 1] (2 n (7)

Xi 4 ’Xit,j - X;+1| -AT.L otherwise

where Xp denotes the optimal position found by the discoverer, while Xworst represents the current global
worst position. A isa 1 x d matrix in which each element is randomly set to either 1 or -1, and A" is defined
as At = AT(AAT)™!. When i > n/2, this indicates that the i-th follower, with lower fitness, is more likely to
be in a “starving” state.

Step 5: Update Scout Positions

When scouts are located at the periphery, they encounter potential danger. To mitigate this threat, they exhibit
antipredatory behavior by rapidly relocating to a safer area. When scouts are near the center, they explore their
surroundings by adjusting their position relative to the global worst position, thus improving their adaptability.
As shown in the following equations:

X]f)est + ﬁ : |X'Lt, - )Skt)est‘ lffl > fg

t+1
= |x7

i i~ Xworst ) (8)
K Xf,ﬁK'(W) ifi=1Is

where X{..; denotes the current global best position, and X{,.,«; represents the current global worst position.
The parameter f; indicates the fitness value of the i-th sparrow, with fy and f., representing the best and worst
fitness values in the population, respectively. 5 and B are random variables that control the step size of position
updates. € is a small constant added to avoid division by zero. When f; > fg, the scout moves toward the global
best position to avoid danger. When f; = f,, the scout adjusts its position relative to the global worst position
to enhance search diversity.

Step 6: After updating the positions for each role, recalculate the fitness value of each sparrow, assess the
overall state of the population, and update the current best and worst solutions.

Step 7: If the specified convergence criterion is satisfied, output the current best solution; otherwise, return
to Step 2 and proceed with the iteration.

In this paper, SSA is employed to optimize the hyperparameters of the LSTM network. The global search
capability of SSA helps mitigate the risk of local optima during hyperparameter tuning, while the role-based
division of tasks facilitates efficient exploration of the complex parameter space to identify the optimal
configuration.

Long short-term memory networks

The LSTM network was designed as a specialized type of recurrent neural network (RNN) to address the issues
of gradient vanishing and gradient explosion encountered when processing long sequence data. The LSTM
network addresses time series data by introducing memory cells and a gating mechanism. The memory cells
function to retain long-term dependency information, while the gating mechanism, composed of the forget gate,
input gate, and output gate, regulates the retention, updating, and final output of information. Figure 1 shows
the structural unit of the LSTM network. The core components of LSTM include:

(1) Forget Gate: Determines which information from the previous time step’s cell state, c;—1, should be discard-
ed. The calculation formula is as follows:

fe=0(W;y - [ht—1,2¢] + by) 9

where f is the forget gate activation at time ¢, o is the sigmoid activation function, used to map values to
the range (0, 1) . Wy and by are the weight matrix and bias for the forget gate, h:_1 is the hidden state from
the previous time step, ¢ is the input at the current time step.

Scientific Reports |

(2025) 15:8161 | https://doi.org/10.1038/s41598-025-92262-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

(‘!—l

tanh

hey

Fig. 1. LSTM network structure unit.

(2) Input Gate: Determines which parts of new information should be updated in the cell state. The calculation
formula is as follows:

it = o(W; - [ht—1, z¢] + bs) (10)

where i; denotes the input gate activation at time ¢, and W; and b; represent the weight matrix and bias
associated with the input gate.

(3) Candidate Cell State: Calculates the new candidate values to be added to the cell state. The calculation for-

mula is as follows:

¢ = tanh(We - [hi—1, x¢] + be) (11)

where ¢; represents the candidate cell state at time t, and W, and b. denote the weight matrix and bias for
generating the candidate state. The hyperbolic tangent function tanh ensures non-linearity and bounds the
candidate values within a fixed range, aiding in the regulation of cell state updates.

(4) Cell State Update: Updates the cell state by combining the previous cell state and new candidate values. The
calculation formula is as follows:
¢t = fr-ci—1+ 0t G (12)
where c; represents the updated cell state at time ¢.
(5) Output Gate: Determines the output from the cell, which will be used as the hidden state. The calculation

formula is as follows:

ot = (W« [he—1, @] + bo) (13)

where o; denotes the output gate activation at time ¢, and W, and b, are the weight matrix and bias for the
output gate.

(6) Hidden State: Combines the output gate activation and the updated cell state to produce the hidden state.
The calculation formula is as follows:

ht = Ot * tanh(ct) (14)

where h; represents the hidden state at time ¢.
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Support vector regression
SVR, extended from SVM, is a powerful regression technique that aims to find a function with at most € deviation
from the target values while maintaining maximum margin?'.

(1) Basic Principle: Given a training dataset (x;, yi)f.v:l, SVR seeks to find a linear function in the feature space
through the following optimization problem:

fl@)=w'¢(z)+b (15)

where ¢(x) maps the input space to a high-dimensional feature space, w is the weight vector, and b is the
bias term.

(2) Optimization Problem: The primal form of SVR can be expressed as:

N
o1 *
,in §HWH2+C E (& + &) (16)

i=1
subject to:

Yi — (quﬁ(xi) +b)<e+&
(who(zi) +b) —ys <e+ & (17)
&, >0

where C is the penalty parameter, ¢ is the tube size, and §;, &; are slack variables.

(3) Final Solution: Using the kernel trick, the regression function takes the form:
N
f(@) =Y (i —a])K(wi,x) + b (18)
i=1

where a;, o are Lagrange multipliers and K (x;, x) is the kernel function.

Experimental design

Introduction of the experimental dataset

In this paper, the original dataset on lithium battery cyclic aging was obtained from the NASA Ames Research
Center. Four batteries, numbered B0005, B0006, B0007, and B0018, were selected to validate the effectiveness
of the proposed method. All tests on the batteries were conducted at a constant ambient temperature of 24 °C.
The specific charge-discharge protocol is as follows: In the charging phase, a constant current (CC) of 1.5 A was
initially applied until the battery voltage reached 4.2 V, after which it switched to a constant voltage (CV) mode
until the charging current decayed to 20 mA, marking the end of charging. The discharging process involved a
constant current (CC) of 2 A until the battery voltage dropped to the cutoff voltages specific to each battery: 2.7
V for battery B0005, 2.5 V for batteries BO006 and B0018, and 2.2 V for battery B0007, completing the discharge
process, and Table 1 also lists other key parameters including discharge current (DC), discharge voltage (DV),
and battery failure threshold (TS). In this paper, experimental validation was conducted using capacity data
preprocessed from the original dataset. The end of life (EOL) of a battery was defined as when the capacity
dropped to 70% of the rated capacity (1.4 Ah). However, for battery B0007, which does not reach 1.4 Ah, the
EOL was set at 72% of the rated capacity (1.45 Ah). Figure 2 shows the capacity degradation trend of the NASA
lithium battery.

Results of CEEMDAN decomposition

In this paper, the CEEMDAN algorithm was directly applied to decompose lithium-ion battery capacity data,
resulting in multiple IMFE. Compared to the decomposition of lithium-ion battery current and voltage data, this
approach offers faster processing speed, higher accuracy, and reduced computational complexity. The selection
of the mode number £ significantly impacts the decomposition performance. When k is too small, essential

Battery number | CV (V) | DV (V) | CC(A) | DC(A) | TS (AH)
B0005 4.2 2.7 1.5 2.0 1.4
B0006 4.2 2.5 1.5 2.0 1.4
B0007 4.2 2.2 1.5 2.0 1.4
B0018 4.2 2.5 1.5 2.0 1.4

Table 1. Experimental parameters of battery degradation.
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Fig. 2. NASA lithium battery capacity degradation trend.
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Fig. 3. IMF obtained from the CEEMDAN decomposition: (a) B0005 IMF component, (b) BO006 IMF
component, (c) B0007 IMF component and (d) B0018 IMF component.
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information in the original signal may be lost, whereas a larger & can lead to frequency mixing. Various k values
were tested, and by examining the corresponding center frequencies, it was observed that when k = 5, the center
frequencies were well-dispersed. Therefore, k was set to 5 for this paper. Figure 3 shows the IMF obtained from the
decomposition of NASA lithium battery capacity data using the CEEMDAN algorithm. In the figure, each IMF
reveals distinct characteristics of the lithium-ion battery data. High-frequency IMFs (IMF1 to IMF3) primarily
capture short-term variations and rapid fluctuations, although resembling random noise, it can still provide
insights into subtle changes in battery performance. IMF4 highlights the capacity regeneration phenomenon
observed in certain cycles, suggesting a partial recovery pattern. IMF5 represents the primary trend, reflecting
the overall capacity degradation over time. This decomposition enables a clear analysis, distinguishing between
transient fluctuations, periodic features, and the main degradation trend.

Experimental procedure

In this paper, we preprocess the original data set and extract the battery capacity as the direct health index (HI)
for battery RUL prediction. The change of capacity is directly related to the SOH of the battery, which can clearly
and stably reflect the degradation process of the battery. Compared to indirect HIs (such as constant-voltage
charging time, constant-voltage charging energy, discharge temperature peak, etc.), capacity is more stable under
varying usage conditions, with lower data noise, leading to improved stability and accuracy of the predictive
model.

The CEEMDAN algorithm is used to decompose the capacity data to obtain five IMF components with
different frequencies. Among them, IMF1-IMF4 are high-frequency components, which reflect short-term and
rapid fluctuations in capacity data and also contain information about capacity regeneration.IMF5 is a low-
frequency component, which reflects the long-term declining trend of capacity data.

SVR shows a unique advantage in dealing with low-frequency components, which mainly stems from
the natural match between its algorithmic properties and the low-frequency signal characteristics®>. The ¢
-insensitive loss function of SVR can effectively filter out the influence of high-frequency noise, and at the
same time accurately capture the main trends of the signal. This feature makes SVR particularly suitable for
dealing with low-frequency gradient features in the system, which has been validated in the study of minimum
frequency prediction in power systems, and shows higher prediction accuracy and better generalization ability
compared with the traditional methods®®. Based on the characteristics of LSTM networks, they have a natural
advantage in processing high-frequency data. As Song et al pointed out, LSTM is able to effectively capture the
fast fluctuations and nonlinear features in high-frequency data through its unique memory cells and gating
mechanism*. Rundo’s study further verified that LSTM is particularly suitable for processing high-frequency
data containing frequent jumps and non-smooth nature, which is mainly attributed to its strong nonlinear
modeling ability and adaptive learning of time-series data properties®. These studies show that LSTM can
naturally adapt to the characteristics of high-frequency data due to the advantages of its network structure.
These theoretical analyses show that the intrinsic properties of SVR are naturally compatible with low-frequency
signal prediction, while the architectural advantages of LSTM make it particularly suitable for capturing high-
frequency components, which provides a solid theoretical basis for our hybrid model design. Considering the
small amount of battery capacity data and the relatively smooth curve, the SVR model uses RBF (Radial Basis
Function) as the kernel function, with a penalty coefficient C = 10, which is used to control the model’s tolerance
to the training error, and a loss function parameter € = 0.005, which defines the width of the insensitive region
of the SVR. The parameter settings take full account of the characteristics of the dataset while maintaining the
predictive accuracy of the model and avoiding the overfitting problem. Taking the B0005 battery as an example,
the first 80 data points of the low-frequency component IMF5 are selected to train the model, and the last 88
data points are used as the test set. The prediction results of the SVR model are shown in Fig. 4. The prediction
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Fig. 4. SVR predictions for IMF5 component of BO005 battery.

Scientific Reports |

(2025) 15:8161 | https://doi.org/10.1038/s41598-025-92262-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Data | mitialize LSTM
Normalization > .
Processing Model Training
X
\ 4
Initialize Sparrow
Training Population Size, Number
Dataset of Iterations, Upper and
Lower Boundaries

A 4

Calculate Population
Fitness and Update
Sparrow Population

Size

A 4

Save Global Optimal NO
Position

Maximum
Number of
Iterations

YES

Obtain Optimal Parameters
for the LSTM Network

v

Output

Fig. 5. SSA optimized LSTM network hyperparameter flowchart.

Number of populations | Number of iterations | Warning threshold | Dim
30 5 0.8 4

Table 2. SSA parameter setting.

Hidden units | Learning rate | Maximum epochs | Dropout rate
[300, 500] [0.001, 0.002] | [400, 800] [0.4,0.6]

Table 3. LSTM hyperparameter search range.

accuracy of the whole test set is very high, indicating that the SVR model is very effective for the accurate
prediction of low frequency components.

LSTM network parameters directly affect the prediction accuracy of the model and the generalization ability
of unknown capacity data. However, existing parameter selection approaches often lack effective personalized
solutions, and manual tuning can be time-consuming. This paper employs the SSA algorithm to optimize these
primary hyperparameters of the network architecture. The process of using SSA to optimize LSTM network
hyperparameters is shown in Fig. 5 The SSA parameters adopted are shown in Table 2, and the range of LSTM
hyperparameter optimization is provided in Table 3. The decision to apply the SSA optimization exclusively
to the LSTM, rather than to both the LSTM and SVR, was made because of the different characteristics of
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these models. SVR is used to simulate the low-frequency component, IMF5, which exhibits a smoothed decay
trend. The SVR employs an RBF kernel, with a C-value of 10 and e-value of 0.005, which provides a robust
performance with such smoothed time-series data. The SVR has a higher sensitivity to parameter variations
than the LSTM and SVR. SVR contains fewer hyperparameters and is less sensitive to parameter variations when
modeling smoothing trends. In contrast, LSTM networks involve multiple interconnected layers with numerous
parameters, which has a critical impact on their ability to capture complex time dependencies in the high-
frequency components. Our experimental results show that excellent predictive performance and computational
efficiency can be achieved by optimizing the LSTM parameters through SSA while keeping the SVR parameters
fixed.

In the process of using the LSTM network to predict the high-frequency components, an iterative method
is used, where the first n capacity data points were used as input features, and the (n + 1)-th data point served
as the target label. By using a sliding window technique, the subsequent actual capacity value was employed as
a new feature to continue predicting forward. In this paper,n was set to 3. In order to reduce the complexity
of the iterative process of the algorithm, a single-layer LSTM was configured, followed by a Dropout layer, a
Dense layer, and a final activation layer to output the predicted battery capacity. This setup takes into account
the small size of the dataset and the characteristic of capacity regeneration. Taking B0005 battery as an example,
the prediction results of high frequency components by using SSA optimized LSTM network are shown in
Fig. 6. The LSTM network can capture the fluctuation of the capacity regeneration component, showing a good
prediction result for the high frequency component.

The final prediction result is obtained by combining the predictions from SVR and LSTM models. The
mathematical formulation for the integration can be expressed as:

4
C(t) =Crurs(t) + Z Cruri(t) (19)
i=1

where C(t) represents the final predicted capacity at time t, Cras 75 (t) is the SVR prediction for the low-frequency
component (IMF5), and Carri(t) represents the LSTM predictions for high-frequency components (IMF1-
IMF4). This integration strategy effectively leverages the complementary advantages of both models, as SVR
captures the overall degradation trend through IMF5 while LSTM accurately models the capacity regeneration
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Fig. 6. LSTM network predictions for IMF1-IMF4 component of B0005 Battery: (a) IMF1, (b) IMF2, (c) IMF3
and (d) IMF4.
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Fig. 7. Prediction process diagram.

and local fluctuations through IMF1-IMF4. The combination of these two models enables accurate tracking of
both long-term degradation trends and short-term capacity fluctuations, thereby enhancing the overall accuracy
of RUL prediction. The prediction results were subsequently analyzed using evaluation metrics. The schematic
diagram of the whole experimental process is shown in Fig. 7.

Evaluation metrics

To evaluate the performance of the proposed method, the root mean square error (RMSE), mean absolute error
(MAE), mean relative error (MRE), and the coefficient of determination R? were selected as evaluation metrics.
'The closer the RMSE, MAE, or MRE are to zero, the higher the accuracy of the proposed method. The closer R?
is to 1, the more closely the predicted capacity values match the actual capacity values, indicating a better model
fit. The specific calculation formulas are as follows:

(20)
MAE—lzn:r-— | 21
= ‘ Yi —Yi (21)

n a2
R?=1- 72371(‘% ?fl)z (22)

Zi:l(yi - yl)

_1 - |9 — il

MRE =~ Z L X 100% (23)

where ¢ represents the predicted capacity value, y represents the actual capacity value, and i denotes the cycle
number.

Additionally, the error between the predicted and actual cycle count when the lithium-ion battery capacity
declines to the failure threshold is defined as follows:

E. =|Prur — RruL| (24)
PE, :M % 100% (25)
Rrur

where Pryr and Rrur represent the predicted and actual values of RUL. E, and PE, denote the absolute
error and relative error between the two values.
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Experimental results and analysis

Comparison of battery RUL prediction results of different methods

In order to prove the effectiveness of the SVR-LSTM hybrid method proposed in this paper in accurately
predicting the RUL direction of the battery, the method is compared with the non-hybrid model. The method
proposed in this paper is denoted as M1, the CEEMDAN-SVR method is denoted as M2, the CEEMDAN-
SSA-LSTM method is denoted as M3, the single SVR method is denoted as M4 and the single LSTM network
prediction method is denoted as M5. The above five methods are applied to B0005, B0006, B0007 and B0018
battery data for experimental verification. The first 80 data points of the data set are selected to train the model,
and then the last 88 data are predicted. Because B0018 battery has only 132 data points, the first 60 data points
are selected as the training set. The results predicted by the five methods are shown in Fig. 8.

Observation of Fig. 8 shows that the predicted capacity curves of the hybrid SVR and LSTM model
proposed in this paper are closer to the actual capacity curves as compared to the other methods. The SVR
model captures the overall attenuation trend of battery capacity, but the fluctuation of the prediction curve is
insufficient, indicating that it has limitations in describing the phenomenon of battery capacity regeneration.
This observation is consistent with the inherent characteristics of SVR as it is mainly good at modeling linear and
smooth time series data. The LSTM model shows better ability in capturing regenerative phenomena and local
fluctuations in battery capacity. However, it deviates slightly from the actual degradation trend. In contrast, the
proposed hybrid approach takes advantage of the complementary strengths of the two models: the low-frequency
component representing the dominant degradation trend (IMF5) is efficiently modeled by SVR, while the SSA-
optimized LSTM accurately captures the high-frequency component characterizing capacity regeneration and
local variations (IMF1-IFM4) This decomposition-based ensemble strategy significantly enhances the model ’s
ability to predict global trends and local fluctuations in battery capacity degradation.

In order to quantitatively assess the prediction performance, four evaluation metrics, RMSE, MAE, MRE
and R?, were used for a comprehensive comparison, as shown in Fig. 9a-d, and the specific values are shown
in Table 4. The proposed hybrid method M1 shows excellent performance in all metrics and test cases, with
significant improvements over other models. As shown in Fig. 9a, the red bar representing the M1 RMSE value
is significantly shorter than the other colored bars for all batteries tested, ranging from 0.0066 to 0.0086 Ah,
which is an average reduction of 66.41% compared to the traditional SVR model M5. For the B0018 battery with
large fluctuations in capacity data, the RMSE of M1 is 0.0086 Ah, which is 79.43% lower than the RMSE of M5
of 0.0418 A, indicating that the proposed method effectively captures the capacity degradation characteristics.
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Fig. 8. Prediction results of different methods under 80 training data: (a) B0005, (b) B0006, (c) B0007 and (d)
B0018.
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Fig. 9. Evaluation metrics for different prediction methods with 80 training data: (a) RMSE, (b) MAE, (c)
MRE and (d) R?.

Similarly, in the MAE comparison, M1 consistently shows the shortest bars and maintains a low error
between 0.0031 and 0.0065 Ah, with an average decrease of 71.74% compared to M5. The MRE results shown
in Fig. 9¢, where M1 has significantly shorter red bars, exhibit excellent stability, with errors consistently below
0.45% and an average reduction of 72.45% compared to the other models. In the line graph of R? values, the
curve for M1 clearly maintains the highest position across all test cases, with coefficients consistently above 0.97.
'This excellent performance is most evident in battery B0018, where M1 maintains a high R? value of 0.9786,
while the curves for the other models show a clear downward trend, especially for M5 which drops significantly
to 0.5012. In addition, the absolute error between the proposed method and the actual value of the battery RUL
prediction is less than one cycle, and the relative error is also lower than other methods compared.

A comprehensive evaluation shows that the proposed hybrid approach successfully integrates the
complementary advantages of SVR and LSTM models while effectively addressing their respective limitations.
Comparison of the errors in the prediction results of various methods confirms the effectiveness of the proposed
method in accurately predicting capacity and RUL.

To further validate the effectiveness and robustness of the proposed hybrid model, we extended our
experiments by increasing the training dataset size. The previous analysis used 80 capacity cycles as training
data, and now we want to check the performance of the model when training on 100 cycles (B0018 is 60 cycles).
The results of the five methods of prediction are shown in Fig. 10, and the specific values of the four evaluation
metrics are shown in Table 6. Analyzing Fig. 10, it can be seen that for the three batteries B0005, BO006 and
B0007, the addition of training data makes the prediction curves smoother, especially at the early stage of
prediction when the fluctuation of each method is significantly reduced. For battery B0018, although there are
large fluctuations in its capacity decay curve, the M1 method still tracks this nonlinear change characteristic
better, while the other methods show different degrees of divergence in the late prediction period. This indicates
that adding training data further improves the prediction stability and robustness of the proposed method. From
Table 6, it can be seen that the hybrid method (M1) proposed in this paper achieves the best performance in all
evaluation metrics. For the B0005 battery, the RMSE of M1 is 0.0044 Ah, which is 71.24% lower than M5, and for
the more fluctuating B0018 battery, the RMSE of M1 is 0.0086 Ah, which is 61.43 lower than M5. The R? values
of the M1 method for all the tested batteries are all above 0.96, and the RUL prediction error is 0 or 1 cycle, which
validates the proposed method’s prediction accuracy and stability of the proposed method.
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Battery | Method | RMSE | MAE | MRE (%) | g2 E, | PE, (%)
M5 0.0170 | 0.0129 | 0.93 0.9599 | 2 4.55
M4 0.0146 | 0.0077 | 0.54 0.9704 | 4 9.09
B5 M3 0.0137 | 0.0111 | 0.81 0.9737 | 2 4.55
M2 0.0123 | 0.0079 | 0.56 0.9787 | 1 227
M1 0.0066 | 0.0046 | 0.32 0.9939 | 0 0
M5 0.0248 | 0.0174 | 1.30 0.9396 | 1 3.45
M4 0.0227 | 0.0135 | 1.01 0.9494 | 0 0
B6 M3 0.0162 | 0.0120 | 0.92 0.9743 | 0 0
M2 0.0162 | 0.0079 | 0.57 09742 | 1 3.45
M1 0.0083 | 0.0057 | 0.42 0.9932 | 0 0
M5 0.0159 | 0.0110 | 0.73 0.9441 | 5 7.94
M4 0.0176 | 0.0143 | 0.95 0.9320 | 5 7.94
B7 M3 0.0123 | 0.0094 | 0.63 0.9666 | 5 7.94
M2 0.0124 | 0.0074 | 0.49 0.9660 | 2 3.17
M1 0.0066 | 0.0031 | 0.20 0.9904 | 0 0
M5 0.0418 | 0.0395 | 2.80 0.5012 | 24 | 64.86
M4 0.0262 | 0.0239 | 1.68 0.8043 | 5 13.51
B18 M3 0.0209 | 0.0188 | 1.33 0.8756 | 3 8.11
M2 0.0206 | 0.0187 | 1.31 0.8784 | 4 10.81
M1 0.0086 | 0.0065 | 0.45 0.9586 | 1 272

Table 4. Error comparison between this method and other methods under 80 training data.
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Fig. 10. Prediction results of different methods under 100 training data: (a) B0005, (b) B0006, (c) B0007 and
(d) BOO1S.
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Model RMSE | MAE | g2
IHSSA-LSTM-TCN? 0.0111 | 0.0816 |-
PSO-LSTM*” 0.0162 | 0.0095 |0.9136
SVR-MC* 0.0063 | - 0.9920
PF-SVR¥ 0.0146 | 0.1200 | -
Differential Voltage-ELM** | 0.0051 | 0.0043 | -
PCA-CNN-BiLSTM*! 0.0114 |0.0090 | -
Model of this paper 0.0043 | 0.0026 | 0.9941

Table 5. Comparison of prediction results of different methods based on B0005 battery.

Battery | Method | RMSE | MAE | MRE (%) | g2 E, | PE, (%)
M5 0.0153 | 0.0139 | 1.02 0.9303 | 3 12.50
M4 0.0133 | 0.0086 | 0.63 09474 | 1 4.17
B5 M3 0.0071 | 0.0062 | 0.46 0.9851 |1 4.17
M2 0.0091 | 0.0060 | 0.44 0.9754 | 0 0
M1 0.0044 | 0.0026 | 0.19 0.9942 | 0 0
M5 0.0161 | 0.0137 | 1.06 0.9592 | 1 11.11
M4 0.0152 | 0.0118 | 0.92 0.9638 | 0 0
B6 M3 0.0093 | 0.0078 | 0.61 0.9866 | 0 0
M2 0.0106 | 0.0083 | 0.64 0.9823 | 1 11.11
M1 0.0055 | 0.0044 | 0.35 0.9952 |0 0
M5 0.0116 | 0.0103 | 0.70 0.9428 | 4 9.30
M4 0.0104 | 0.0090 | 0.61 0.9540 | 3 6.98
B7 M3 0.0103 | 0.0090 | 0.62 0.9554 | 4 9.30
M2 0.0082 | 0.0052 | 0.35 09718 | 1 233
M1 0.0045 | 0.0033 | 0.23 0.9916 | 1 233
M5 0.0223 | 0.0154 | 1.09 0.5475 | 1 5.88
M4 0.0233 | 0.0116 | 0.81 0.8182 | 1 5.88
B18 M3 0.0121 | 0.0075 | 0.53 0.8881 | 1 5.88
M2 0.0179 | 0.0117 | 0.83 0.8799 | 1 5.88
M1 0.0086 | 0.0060 | 0.43 0.9628 | 1 5.88

Table 6. Error comparison between this method and other methods under 100 training data.

Through comparative experiments, we verified the effectiveness of using SVR for low-frequency components
and LSTM for high-frequency components. As shown in Tables 4 and 6, the hybrid method M1 consistently
outperforms M2 (CEEMDAN-SVR) and M3 (CEEMDAN-SSA-LSTM). In the case of cell BO005 (100 training
cycles), for example, the RMSE of M1 was 0.0044 Ah, which is significantly lower than M2’s 0.0091 Ah (using
SVR only) and M3’ 0.0071 Ah (using LSTM only). The excellent performance of all test cells suggests that our
hybrid strategy effectively utilizes the capabilities of SVR in capturing smooth trends and the advantages of
LSTM in simulating complex temporal patterns.

Performance comparison with other existing methods

To further validate the effectiveness of the proposed method in RUL prediction, the results of this paper’s method
compared with other methods using the same NASA B0005 battery dataset are given in Table 5. As can be seen
from the table, the method proposed in this paper achieves better performance in all evaluation metrics: the
RMSE is 0.0044 Ah, the MAE is 0.0026 Ah, and the R? reaches 0.994 when using 100 training data. Compared
with the existing methods, the prediction accuracy of the proposed method has been significantly improved,
which verifies the CEEMDAN decomposition-based SVR-LSTM hybrid strategy is superior in battery RUL
prediction.

Conclusions

In this paper, a RUL prediction method for lithium-ion batteries based on CEEMDAN decomposition and
combining SVR and SSA-LSTM networks is proposed. The method firstly employs CEEMDAN to decompose
the battery capacity sequence into high-frequency and low-frequency components, and then uses SVR and
SSA-optimized LSTM networks to predict the different frequency components, respectively. The validity of the
proposed method is verified using NASA public dataset and the main contributions are as follows:
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(1

2

3)

Aiming at the problem of prediction accuracy degradation caused by capacity regeneration during lithi-
um-ion battery degradation, a CEEMDAN decomposition method is proposed to decompose the degra-
dation curve into high-frequency and low-frequency IMF components. Among them, the high frequency
component captures the capacity fluctuation and regeneration characteristics, and the low frequency com-
ponent maintains the overall degradation trend of the battery. The decomposition strategy not only effec-
tively alleviates the noise interference caused by capacity regeneration, but also improves the stability of the
data, thereby enhancing the prediction accuracy of the model.

A hybrid SVR-LSTM-based prediction strategy was designed. The low-frequency components characteriz-
ing the main degradation trends are modeled using the SVR model, and the LSTM network is employed to
capture the nonlinear and long- and short-term dependent features in the high-frequency components. The
two models complement each other’s strengths and significantly improve the prediction of capacity degra-
dation trends and local fluctuations. The experimental results show that the RMSE of the proposed method
is reduced by 66.41% on average, and the R? value remains above 0.96.

The SSA algorithm is introduced to optimize the LSTM network, and a comprehensive prediction model
is proposed. This method adopts intelligent search strategy, which not only reduces the workload and in-
efficiency of manual parameter adjustment, but also effectively prevents the model from falling into local
optimum in the training process, thus improving the overall prediction accuracy.

The experimental results show that the proposed hybrid method has higher prediction accuracy and stability
than the existing methods. On the B0005 battery data set, when 100 training data are used, the RMSE of the
method is 0.0044 Ah, the MAE is 0.0026 Ah, and the R? reaches 0.994, which verifies the effectiveness of the
method. This method provides a reliable solution for RUL prediction of lithium-ion batteries.

Data availibility
The data that support the findings of this study are available on request from the corresponding author, JP.Z,
upon reasonable request.
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