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Lithium-ion batteries are widely used in many fields, and accurate prediction of their remaining useful 
life (RUL) was crucial for effective battery management and safety assurance. In order to solve the 
problem of reduced RUL prediction accuracy caused by the local capacity regeneration phenomenon 
during battery capacity degradation, this paper proposed a novel RUL prediction method, which 
combined complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) 
technique with an innovative hybrid prediction strategy that integrated the support vector regression 
(SVR) and the long short-term memory (LSTM) networks. First, CEEMDAN was used to decompose 
the battery capacity data into high-frequency and low-frequency components, thereby reducing 
the impact of capacity regeneration. Subsequently, the SVR model predicted the low-frequency 
component that characterized the main degradation trend, and the high-frequency component 
that contained capacity regeneration features was predicted using an LSTM network optimized by 
the sparrow search algorithm (SSA). Finally, the final RUL prediction was obtained by combining 
the predictions of the two models. Experimental results on NASA public datasets showed that the 
proposed hybrid method significantly outperformed existing methods: the RMSE of the methods 
proposed in this paper were all less than 0.0086 Ah, the MAE were all less than 0.0060 Ah, the R2 values 
were all higher than 0.96, and the RUL prediction errors were controlled within one cycle. This method 
gave full play to the complementary advantages of SVR and LSTM and provided an accurate and 
reliable solution for RUL prediction of lithium-ion batteries.
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regression, CEEMDAN, Sparrow search algorithm

With the advent of the new energy era, lithium-ion batteries have gained extensive applications across fields such 
as electric vehicles, aerospace, military communications, and distributed energy storage systems, owing to their 
lightweight design, high energy density, low self-discharge rate, large capacity, and long cycle life1,2. As usage 
time increases, lithium-ion batteries experience a slowdown in chemical reactions and degradation of electrode 
materials, leading to a reduction in capacity and an increase in internal resistance, which may result in faults 
or safety incidents3. Therefore, accurate prediction of the RUL of lithium batteries is of great significance for 
efficient battery management and avoidance of safety accidents4.

Currently, two main approaches are employed for predicting lithium-ion battery lifespan: model-based 
analysis methods and data-driven prediction methods5. Model-based analysis methods integrate the fundamental 
properties of battery materials, operating environmental conditions, detailed physicochemical changes, and the 
key mechanisms involved in the aging process6. Khodadadi Sadabadi et al. proposed an electrochemical model 
approach based on an enhanced single particle model for predicting the RUL of composite electrode lithium-
ion batteries7. Liu et al. proposed a particle filter framework based on an electrochemical model, incorporating 

1School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan 361000, China. 2Fujian 
Antong Electric Co., Ltd, Longyan 361000, China. 3School of Aerospace Engineering, Xiamen University, Xiamen 
361102, China. 4Yibiao Fan, Zhishan Lin, Fan Wang and Jianpeng Zhang contributed equally to this work. email: 
34520241151602@stu.xmu.edu.cn

OPEN

Scientific Reports |         (2025) 15:8161 1| https://doi.org/10.1038/s41598-025-92262-8

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-92262-8&domain=pdf&date_stamp=2025-3-9


battery aging mechanisms to predict the RUL of lithium-ion batteries8. The accuracy of predictions made by 
model-based analysis methods often depends on testing under laboratory conditions, which typically involve 
complex calculation processes and challenging parameter estimation.

Data-driven methods directly analyze collected data using various signal processing and analytical techniques 
to uncover hidden informationand link it to battery degradation trends, thereby establishing predictive models9. 
Currently, commonly used data-driven methods can be categorized into three types: artificial intelligence methods, 
statistical methods, and signal processing methods. Artificial intelligence methods are popular because of their 
ability to model complex nonlinear relationships in data. Especially machine learning algorithms such as support 
vector machine (SVM), random forest (RF), and deep learning (DL) techniques, can provide highly accurate 
and reliable predictions of battery RUL by learning from historical data, making it one of the most commonly 
used and promising tools in battery health management10. Yao et al. proposed a joint state of charge (SOC) and 
state of health (SOH) online estimation method based on multi-task learning and cross-stitch networks. The 
method improves the estimation accuracy by sharing information among different tasks and better captures the 
dynamic features of battery state changes through multi-scale data processing11. Kang et al. proposed a novel 
RUL prediction method combining fuzzy evaluation and gaussian process regression (GPR), which effectively 
improves the prediction accuracy and expresses the uncertainty of the prediction results12. Lin et al.proposed 
an adaptive adjustable hybrid radial basis function (RBF) network for SOH estimation. The network structure 
is adaptively adjusted by Brownian motion modeling and particle filter, so that the model achieves high SOH 
prediction accuracy13. Yao et al. proposed a multi-scale data-driven framework utilizing temporal convolutional 
networks and cross-scale self-attention for SOC estimation, which shows the importance of capturing and 
fusing features from different time scales14. Their work provides valuable insights into how multi-scale analysis 
can improve battery state estimation accuracy. Zhao et al. extracted the health indicators of batteries from the 
charging curves and employed LSTM neural networks to predict the trend of these indicators as the number 
of cycles increased, the predicted health indicators were then input into a GPR aging model to forecast the 
battery’s health status15. Chen et al. selected the equal voltage drop discharge time as a health indicator using the 
gray relational analysis method and developed a battery life prediction model based on a convolutional neural 
network (CNN)-LSTM16. The LSTM model has inherent advantages in handling time-series data; however, the 
capacity regeneration phenomenon and noise signal that may occur during the degradation of lithium batteries 
may interfere with the performance of the network model.

The application of signal decomposition technology to lithium battery capacity data can well reduce the 
influence of noise interference and capacity regeneration phenomenon17. Cheng et al. combined empirical mode 
decomposition (EMD) method and back propagation LSTM to develop battery RUL prediction, and processed 
battery data through EMD method to reduce the impact of capacity regeneration and other conditions18. Li 
et al. used the EMD algorithm to decompose the recorded battery capacity and cycle count data into multiple 
sub-layers and employed the LSTM network to predict the high-frequency sub-layers and the Elman network 
to predict the low-frequency sub-layers, yielding highly accurate prediction results19. Yang et al. proposed a 
RUL prediction method for lithium-ion batteries based on gray wolf optimization (GWO) and SVR combined 
with ensemble empirical mode decomposition (EEMD), aiming to improve the prediction accuracy of the SVR 
model by decomposing the battery capacity sequence through EEMD20. Although the SVR model is superior 
in dealing with nonlinear relationships, it still has limitations in capturing the high-frequency components of 
time series data21. EMD and EEMD methods are prone to modal aliasing during signal decomposition and are 
sensitive to noise in the data, which may lead to unstable decomposition results22. The CEEMDAN algorithm 
effectively mitigates mode mixing by adding white noise and performing iterative decomposition. By averaging 
multiple noise perturbations, it reduces noise interference, resulting in more stable intrinsic mode functions 
(IMF) components23.

In summary, CEMMDAN decomposes the battery capacity into data of different frequencies, which 
effectively reduces the influence of noise and capacity regeneration on the prediction accuracy. SVR model has 
good performance in dealing with nonlinear mapping, but its ability to deal with high frequency signals is weak. 
LSTM network has memory units and nonlinear activation functions, and is good at processing time series 
data with long-term dependence and nonlinear relationship, especially for high-frequency data. Therefore, this 
paper proposes a new lithium battery RUL prediction method, combined with CEEMDAN, SVR and LSTM. 
CEEMDAN is used to decompose the capacity data into multiple IMFs and a residual term. Each IMF represents 
a different frequency component in the original data, and the residual is the long-term trend part of the data. 
SVR is used to capture the low-frequency residual part of the data, and LSTM is used to capture the non-
linearity and long-term and short-term dependencies of the high-frequency components. In order to prevent the 
influence of manual adjustment of LSTM hyperparameters on prediction accuracy, sparrow search algorithm 
(SSA) is used for hyperparameter optimization. The proposed method is experimentally verified on the public 
data set of NASA Ames prediction center of excellence (PCOE). The results show that the prediction accuracy 
of the proposed method is higher than that of other mainstream methods, which verifies the effectiveness of the 
proposed method in accurately predicting battery RUL.

The remainder of this paper is organized as follows. Section “Relevant theoretical basis” presents the theory 
behind CEEMDAN, SSA,LSTM and SVR. Section “Experimental design” describes the dataset used and the 
whole process of training and prediction using the proposed method. Section “Experimental results and analysis” 
presents the experimental results and error analysis. Finally, Section “Conclusions” concludes the paper.
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Relevant theoretical basis
Definition of state of health
SOH is used to assess the comparison between the current state of the battery and its initial state, reflecting the 
extent of performance degradation. Currently, there are numerous definitions of battery SOH in the literature, 
with the most widely used approach defining SOH based on the degree of capacity degradation24. It is defined as:

	
SOH(t) = Ct

C0
× 100%� (1)

where C0 represents the battery’s capacity at the time of manufacture, and Ct denotes the battery’s capacity at 
time t. Generally, the end of the battery’s life is considered to occur when its capacity reaches 70% of its initial 
capacity. The RUL of a battery is defined as the number of charge-discharge cycles it can complete before its 
capacity declines to 70% of its initial value25.

Complete ensemble empirical mode decomposition with adaptive noise algorithm
The capacity sequence data of lithium batteries exhibit non-stationary and nonlinear characteristics. By 
decomposing the data with CEEMDAN, the non-stationarity of the capacity sequence data can be mitigated, 
enabling the capture of local features within the sequence26. The CEEMDAN algorithm is an improved version of 
the EMD algorithm. It adds white noise to the original data, making the decomposition more robust, effectively 
mitigating mode mixing issues and enhancing the stability of the decomposition results. Additionally, it offers 
faster computational speed27. The primary steps of the CEEMDAN algorithm are as follows: 

	(1)	� Add n white noise sequences to the signal x(t) to be decomposed, generating n new sequences, as follows: 

	 xi(t) = x(t) + αωi(t), i = 1, 2, · · · , n� (2)

�where xi(t) represents the sequence after adding the i-th white noise, α is the signal-to-noise ratio, and 
ωi(t) is the white noise sequence following a normal distribution.

	(2)	� Decompose the signal xi(t) using EMD to obtain the corresponding IMFi(t). By calculating the mean of 
IMFi(t), the first mode component IMF1(t) of the CEEMDAN decomposition is obtained. Then, sub-
tract IMF1(t) from x(t) to obtain the first residual component r1(t) as follows: 

	
IMF1(t) = 1

n

n∑
i=1

IMFi(t) � (3)

	 r1(t) =x(t) − IMF1(t) � (4)

	(3)	� Add the white noise ωi(t) to r1(t) to obtain ri(t).Perform EMD decomposition on ri(t) and iteratively 
apply the aforementioned steps until the termination criteria for EMD are no longer satisfied, yielding k 
components. The final residual component is denoted as R(t), and the original signal x(t) is expressed as: 

	
x(t) = R(t) +

K∑
k=1

IMFk(t)� (5)

Sparrow search algorithm
The sparrow search algorithm (SSA) is a swarm intelligence optimization technique recently proposed by Xue et 
al.28. Inspired by the foraging and anti-predation behaviors of sparrow flocks, SSA is designed to meet the needs 
of global optimization in complex search spaces. This algorithm has been widely applied for parameter tuning in 
complex systems, demonstrating efficient global search capabilities and fast convergence.

SSA divides the sparrow population into three roles: discoverers, followers, and scouts. Discoverers are 
responsible for exploring new solution areas across the global search space and guiding the population toward 
potential optimal solutions. Followers closely track the discoverers, thereby enhancing the accuracy of local 
searches, while scouts monitor potential threats to prevent the population from becoming trapped in local 
optima. The algorithm continuously updates the positions of these three types of individuals and evaluates the 
fitness values of all individuals in each iteration to approach the optimal solution29. The main iterative update 
steps are as follows:

Step 1: Population Initialization
Randomly generate the sparrow population, calculate the proportions of discoverers and followers, determine 

the number of scouts, and define the maximum number of iterations.
Step 2: Fitness Calculation
Calculate the fitness value for each sparrow, rank the individuals from best to worst based on their fitness 

values, and select the highest-performing individual as the reference point.
Step 3: Update Discoverer Positions
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Based on the alarm value R2 and safety threshold ST, determine if a predator is present. If a predator 
is detected(R2 ≥ ST ), the discoverers will lead the population to a new area. If no predator is detected 
(R2 < ST ), the discoverers will perform a wide-range search. As shown in the following equations:

	
Xt+1

i,j =
{

Xt
i,j · exp

(
−i

α·itermax

)
ifR2 < ST

Xt
i,j + Q · L ifR2 ≥ ST

� (6)

where, t denotes the current iteration, and j = 1, 2, . . . , d. Xt
i,j  represents the value of the j-th dimension 

for the i-th sparrow at iteration t. The parameter itermax is a constant that specifies the maximum number 
of iterations, and α ∈ (0, 1] is a randomly generated number. R2 and ST, with values in [0, 1] and [0.5, 1.0] 
respectively. Q is a normally distributed random variable, while L is a 1 × d matrix where each element is set 
to 1.

Step 4: Update Follower Positions
The followers update their positions according to the locations of the discoverers. Followers with lower fitness 

place greater emphasis on the current worst position, while those with higher fitness move towards the best 
position discovered by the discoverers. The position update formulas for the followers are provided as follows:

	
Xt+1

i,j =

{
Q · exp

(
Xt

worst−Xt
i,j

i2

)
if(i > n/2)

Xt+1
p +

∣∣Xt
i,j − Xt+1

p

∣∣ · A+ · L otherwise
� (7)

where XP denotes the optimal position found by the discoverer, while Xworst represents the current global 
worst position. A is a 1 × d matrix in which each element is randomly set to either 1 or -1, and A+ is defined 
as A+ = AT (AAT )−1. When i > n/2, this indicates that the i-th follower, with lower fitness, is more likely to 
be in a “starving” state.

Step 5: Update Scout Positions
When scouts are located at the periphery, they encounter potential danger. To mitigate this threat, they exhibit 

antipredatory behavior by rapidly relocating to a safer area. When scouts are near the center, they explore their 
surroundings by adjusting their position relative to the global worst position, thus improving their adaptability. 
As shown in the following equations:

	
Xt+1

i,j =

{
Xt

best + β · |Xt
i,j − Xt

best| iffi > fg

Xt
i,j + K ·

(
|Xt

i,j −Xt
worst|

(fi−fw)+ε

)
iffi = fg

� (8)

where Xt
best denotes the current global best position, and Xt

worst represents the current global worst position. 
The parameter fi indicates the fitness value of the i-th sparrow, with fg  and fw  representing the best and worst 
fitness values in the population, respectively. β and B are random variables that control the step size of position 
updates. ϵ is a small constant added to avoid division by zero. When fi > fg, the scout moves toward the global 
best position to avoid danger. When fi = fg, the scout adjusts its position relative to the global worst position 
to enhance search diversity.

Step 6: After updating the positions for each role, recalculate the fitness value of each sparrow, assess the 
overall state of the population, and update the current best and worst solutions.

Step 7: If the specified convergence criterion is satisfied, output the current best solution; otherwise, return 
to Step 2 and proceed with the iteration.

In this paper, SSA is employed to optimize the hyperparameters of the LSTM network. The global search 
capability of SSA helps mitigate the risk of local optima during hyperparameter tuning, while the role-based 
division of tasks facilitates efficient exploration of the complex parameter space to identify the optimal 
configuration.

Long short-term memory networks
The LSTM network was designed as a specialized type of recurrent neural network (RNN) to address the issues 
of gradient vanishing and gradient explosion encountered when processing long sequence data. The LSTM 
network addresses time series data by introducing memory cells and a gating mechanism. The memory cells 
function to retain long-term dependency information, while the gating mechanism, composed of the forget gate, 
input gate, and output gate, regulates the retention, updating, and final output of information30. Figure 1 shows 
the structural unit of the LSTM network. The core components of LSTM include: 

	(1)	� Forget Gate: Determines which information from the previous time step’s cell state, ct−1, should be discard-
ed. The calculation formula is as follows: 

	 ft = σ(Wf · [ht−1, xt] + bf )� (9)

�where ft is the forget gate activation at time t, σ is the sigmoid activation function, used to map values to 
the range (0, 1) . Wf  and bf  are the weight matrix and bias for the forget gate, ht−1 is the hidden state from 
the previous time step, xt is the input at the current time step.
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	(2)	� Input Gate: Determines which parts of new information should be updated in the cell state. The calculation 
formula is as follows: 

	 it = σ(Wi · [ht−1, xt] + bi)� (10)

�where it denotes the input gate activation at time t, and Wi and bi represent the weight matrix and bias 
associated with the input gate.

	(3)	� Candidate Cell State: Calculates the new candidate values to be added to the cell state. The calculation for-
mula is as follows: 

	 c̃t = tanh(Wc · [ht−1, xt] + bc)� (11)

�where c̃t represents the candidate cell state at time t, and Wc and bc denote the weight matrix and bias for 
generating the candidate state. The hyperbolic tangent function tanh ensures non-linearity and bounds the 
candidate values within a fixed range, aiding in the regulation of cell state updates.

	(4)	� Cell State Update: Updates the cell state by combining the previous cell state and new candidate values. The 
calculation formula is as follows: 

	 ct = ft · ct−1 + it · c̃t� (12)

�where ct represents the updated cell state at time t.

	(5)	� Output Gate: Determines the output from the cell, which will be used as the hidden state. The calculation 
formula is as follows: 

	 ot = σ(Wo · [ht−1, xt] + bo)� (13)

�where ot denotes the output gate activation at time t, and Wo and bo are the weight matrix and bias for the 
output gate.

	(6)	� Hidden State: Combines the output gate activation and the updated cell state to produce the hidden state. 
The calculation formula is as follows: 

	 ht = ot · tanh(ct)� (14)

�where ht represents the hidden state at time t.

Fig. 1.  LSTM network structure unit.
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Support vector regression
SVR, extended from SVM, is a powerful regression technique that aims to find a function with at most ε deviation 
from the target values while maintaining maximum margin31. 

	(1)	� Basic Principle: Given a training dataset (xi, yi)N
i=1, SVR seeks to find a linear function in the feature space 

through the following optimization problem: 

	 f(x) = wT ϕ(x) + b� (15)

�where ϕ(x) maps the input space to a high-dimensional feature space, w is the weight vector, and b is the 
bias term.

	(2)	� Optimization Problem: The primal form of SVR can be expressed as: 

	
min

w,b,ξ,ξ∗

1
2∥w∥2 + C

N∑
i=1

(ξi + ξ∗
i )� (16)

�subject to: 

	

yi − (wT ϕ(xi) + b) ≤ ε + ξi

(wT ϕ(xi) + b) − yi ≤ ε + ξ∗
i

ξi, ξ∗
i ≥ 0

� (17)

�where C is the penalty parameter, ε is the tube size, and ξi, ξ∗
i  are slack variables.

	(3)	� Final Solution: Using the kernel trick, the regression function takes the form: 

	
f(x) =

N∑
i=1

(αi − α∗
i )K(xi, x) + b� (18)

�where αi, α∗
i  are Lagrange multipliers and K(xi, x) is the kernel function.

Experimental design
Introduction of the experimental dataset
In this paper, the original dataset on lithium battery cyclic aging was obtained from the NASA Ames Research 
Center. Four batteries, numbered B0005, B0006, B0007, and B0018, were selected to validate the effectiveness 
of the proposed method. All tests on the batteries were conducted at a constant ambient temperature of 24 °C. 
The specific charge-discharge protocol is as follows: In the charging phase, a constant current (CC) of 1.5 A was 
initially applied until the battery voltage reached 4.2 V, after which it switched to a constant voltage (CV) mode 
until the charging current decayed to 20 mA, marking the end of charging. The discharging process involved a 
constant current (CC) of 2 A until the battery voltage dropped to the cutoff voltages specific to each battery: 2.7 
V for battery B0005, 2.5 V for batteries B0006 and B0018, and 2.2 V for battery B0007, completing the discharge 
process, and Table 1 also lists other key parameters including discharge current (DC), discharge voltage (DV), 
and battery failure threshold (TS). In this paper, experimental validation was conducted using capacity data 
preprocessed from the original dataset. The end of life (EOL) of a battery was defined as when the capacity 
dropped to 70% of the rated capacity (1.4 Ah). However, for battery B0007, which does not reach 1.4 Ah, the 
EOL was set at 72% of the rated capacity (1.45 Ah). Figure 2 shows the capacity degradation trend of the NASA 
lithium battery.

Results of CEEMDAN decomposition
In this paper, the CEEMDAN algorithm was directly applied to decompose lithium-ion battery capacity data, 
resulting in multiple IMF. Compared to the decomposition of lithium-ion battery current and voltage data, this 
approach offers faster processing speed, higher accuracy, and reduced computational complexity. The selection 
of the mode number k significantly impacts the decomposition performance. When k is too small, essential 

Battery number CV (V) DV (V) CC (A) DC (A) TS (AH)

B0005 4.2 2.7 1.5 2.0 1.4

B0006 4.2 2.5 1.5 2.0 1.4

B0007 4.2 2.2 1.5 2.0 1.4

B0018 4.2 2.5 1.5 2.0 1.4

Table 1.  Experimental parameters of battery degradation.
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Fig. 3.  IMF obtained from the CEEMDAN decomposition: (a) B0005 IMF component, (b) B0006 IMF 
component, (c) B0007 IMF component and (d) B0018 IMF component.

 

Fig. 2.  NASA lithium battery capacity degradation trend.
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information in the original signal may be lost, whereas a larger k can lead to frequency mixing. Various k values 
were tested, and by examining the corresponding center frequencies, it was observed that when k = 5, the center 
frequencies were well-dispersed. Therefore, k was set to 5 for this paper. Figure 3 shows the IMF obtained from the 
decomposition of NASA lithium battery capacity data using the CEEMDAN algorithm. In the figure, each IMF 
reveals distinct characteristics of the lithium-ion battery data. High-frequency IMFs (IMF1 to IMF3) primarily 
capture short-term variations and rapid fluctuations, although resembling random noise, it can still provide 
insights into subtle changes in battery performance. IMF4 highlights the capacity regeneration phenomenon 
observed in certain cycles, suggesting a partial recovery pattern. IMF5 represents the primary trend, reflecting 
the overall capacity degradation over time. This decomposition enables a clear analysis, distinguishing between 
transient fluctuations, periodic features, and the main degradation trend.

Experimental procedure
In this paper, we preprocess the original data set and extract the battery capacity as the direct health index (HI) 
for battery RUL prediction. The change of capacity is directly related to the SOH of the battery, which can clearly 
and stably reflect the degradation process of the battery. Compared to indirect HIs (such as constant-voltage 
charging time, constant-voltage charging energy, discharge temperature peak, etc.), capacity is more stable under 
varying usage conditions, with lower data noise, leading to improved stability and accuracy of the predictive 
model.

The CEEMDAN algorithm is used to decompose the capacity data to obtain five IMF components with 
different frequencies. Among them, IMF1-IMF4 are high-frequency components, which reflect short-term and 
rapid fluctuations in capacity data and also contain information about capacity regeneration.IMF5 is a low-
frequency component, which reflects the long-term declining trend of capacity data.

SVR shows a unique advantage in dealing with low-frequency components, which mainly stems from 
the natural match between its algorithmic properties and the low-frequency signal characteristics32. The ε
-insensitive loss function of SVR can effectively filter out the influence of high-frequency noise, and at the 
same time accurately capture the main trends of the signal. This feature makes SVR particularly suitable for 
dealing with low-frequency gradient features in the system, which has been validated in the study of minimum 
frequency prediction in power systems, and shows higher prediction accuracy and better generalization ability 
compared with the traditional methods33. Based on the characteristics of LSTM networks, they have a natural 
advantage in processing high-frequency data. As Song et al pointed out, LSTM is able to effectively capture the 
fast fluctuations and nonlinear features in high-frequency data through its unique memory cells and gating 
mechanism34. Rundo’s study further verified that LSTM is particularly suitable for processing high-frequency 
data containing frequent jumps and non-smooth nature, which is mainly attributed to its strong nonlinear 
modeling ability and adaptive learning of time-series data properties35. These studies show that LSTM can 
naturally adapt to the characteristics of high-frequency data due to the advantages of its network structure. 
These theoretical analyses show that the intrinsic properties of SVR are naturally compatible with low-frequency 
signal prediction, while the architectural advantages of LSTM make it particularly suitable for capturing high-
frequency components, which provides a solid theoretical basis for our hybrid model design. Considering the 
small amount of battery capacity data and the relatively smooth curve, the SVR model uses RBF (Radial Basis 
Function) as the kernel function, with a penalty coefficient C = 10, which is used to control the model’s tolerance 
to the training error, and a loss function parameter ε = 0.005, which defines the width of the insensitive region 
of the SVR. The parameter settings take full account of the characteristics of the dataset while maintaining the 
predictive accuracy of the model and avoiding the overfitting problem. Taking the B0005 battery as an example, 
the first 80 data points of the low-frequency component IMF5 are selected to train the model, and the last 88 
data points are used as the test set. The prediction results of the SVR model are shown in Fig. 4. The prediction 

Fig. 4.  SVR predictions for IMF5 component of B0005 battery.
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accuracy of the whole test set is very high, indicating that the SVR model is very effective for the accurate 
prediction of low frequency components.

LSTM network parameters directly affect the prediction accuracy of the model and the generalization ability 
of unknown capacity data. However, existing parameter selection approaches often lack effective personalized 
solutions, and manual tuning can be time-consuming. This paper employs the SSA algorithm to optimize these 
primary hyperparameters of the network architecture. The process of using SSA to optimize LSTM network 
hyperparameters is shown in Fig. 5 The SSA parameters adopted are shown in Table 2, and the range of LSTM 
hyperparameter optimization is provided in Table 3. The decision to apply the SSA optimization exclusively 
to the LSTM, rather than to both the LSTM and SVR, was made because of the different characteristics of 

Hidden units Learning rate Maximum epochs Dropout rate

[300, 500] [0.001, 0.002] [400, 800] [0.4, 0.6]

Table 3.  LSTM hyperparameter search range.

 

Number of populations Number of iterations Warning threshold Dim

30 5 0.8 4

Table 2.  SSA parameter setting.

 

Fig. 5.  SSA optimized LSTM network hyperparameter flowchart.
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these models. SVR is used to simulate the low-frequency component, IMF5, which exhibits a smoothed decay 
trend. The SVR employs an RBF kernel, with a C-value of 10 and ε-value of 0.005, which provides a robust 
performance with such smoothed time-series data. The SVR has a higher sensitivity to parameter variations 
than the LSTM and SVR. SVR contains fewer hyperparameters and is less sensitive to parameter variations when 
modeling smoothing trends. In contrast, LSTM networks involve multiple interconnected layers with numerous 
parameters, which has a critical impact on their ability to capture complex time dependencies in the high-
frequency components. Our experimental results show that excellent predictive performance and computational 
efficiency can be achieved by optimizing the LSTM parameters through SSA while keeping the SVR parameters 
fixed.

In the process of using the LSTM network to predict the high-frequency components, an iterative method 
is used, where the first n capacity data points were used as input features, and the (n + 1)-th data point served 
as the target label. By using a sliding window technique, the subsequent actual capacity value was employed as 
a new feature to continue predicting forward. In this paper,n was set to 3. In order to reduce the complexity 
of the iterative process of the algorithm, a single-layer LSTM was configured, followed by a Dropout layer, a 
Dense layer, and a final activation layer to output the predicted battery capacity. This setup takes into account 
the small size of the dataset and the characteristic of capacity regeneration. Taking B0005 battery as an example, 
the prediction results of high frequency components by using SSA optimized LSTM network are shown in 
Fig. 6. The LSTM network can capture the fluctuation of the capacity regeneration component, showing a good 
prediction result for the high frequency component.

The final prediction result is obtained by combining the predictions from SVR and LSTM models. The 
mathematical formulation for the integration can be expressed as:

	
C(t) = CIMF 5(t) +

4∑
i=1

CIMF i(t)� (19)

where C(t) represents the final predicted capacity at time t, CIMF 5(t) is the SVR prediction for the low-frequency 
component (IMF5), and CIMF i(t) represents the LSTM predictions for high-frequency components (IMF1-
IMF4). This integration strategy effectively leverages the complementary advantages of both models, as SVR 
captures the overall degradation trend through IMF5 while LSTM accurately models the capacity regeneration 

Fig. 6.  LSTM network predictions for IMF1-IMF4 component of B0005 Battery: (a) IMF1, (b) IMF2, (c) IMF3 
and (d) IMF4.
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and local fluctuations through IMF1-IMF4. The combination of these two models enables accurate tracking of 
both long-term degradation trends and short-term capacity fluctuations, thereby enhancing the overall accuracy 
of RUL prediction. The prediction results were subsequently analyzed using evaluation metrics. The schematic 
diagram of the whole experimental process is shown in Fig. 7.

Evaluation metrics
To evaluate the performance of the proposed method, the root mean square error (RMSE), mean absolute error 
(MAE), mean relative error (MRE), and the coefficient of determination R2 were selected as evaluation metrics. 
The closer the RMSE, MAE, or MRE are to zero, the higher the accuracy of the proposed method. The closer R2 
is to 1, the more closely the predicted capacity values match the actual capacity values, indicating a better model 
fit. The specific calculation formulas are as follows:

	

RMSE =

√√√√ 1
n

n∑
i

(ŷi − yi)2 � (20)

	
MAE = 1

n

n∑
i

|ŷi − yi| � (21)

	
R2 =1 −

∑n

i=1(yi − ŷi)2
∑n

i=1(yi − ȳi)2 � (22)

	
MRE = 1

n

n∑
i

|ŷi − yi|
yi

× 100% � (23)

where ŷ represents the predicted capacity value, y represents the actual capacity value, and i denotes the cycle 
number.

Additionally, the error between the predicted and actual cycle count when the lithium-ion battery capacity 
declines to the failure threshold is defined as follows:

	 Er =|PRUL − RRUL| � (24)

	
P Er = |PRUL − RRUL|

RRUL
× 100% � (25)

where PRUL and RRUL represent the predicted and actual values of RUL. Er  and P Er  denote the absolute 
error and relative error between the two values.

Fig. 7.  Prediction process diagram.
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Experimental results and analysis
Comparison of battery RUL prediction results of different methods
In order to prove the effectiveness of the SVR-LSTM hybrid method proposed in this paper in accurately 
predicting the RUL direction of the battery, the method is compared with the non-hybrid model. The method 
proposed in this paper is denoted as M1, the CEEMDAN-SVR method is denoted as M2, the CEEMDAN-
SSA-LSTM method is denoted as M3, the single SVR method is denoted as M4 and the single LSTM network 
prediction method is denoted as M5. The above five methods are applied to B0005, B0006, B0007 and B0018 
battery data for experimental verification. The first 80 data points of the data set are selected to train the model, 
and then the last 88 data are predicted. Because B0018 battery has only 132 data points, the first 60 data points 
are selected as the training set. The results predicted by the five methods are shown in Fig. 8.

Observation of Fig.  8 shows that the predicted capacity curves of the hybrid SVR and LSTM model 
proposed in this paper are closer to the actual capacity curves as compared to the other methods. The SVR 
model captures the overall attenuation trend of battery capacity, but the fluctuation of the prediction curve is 
insufficient, indicating that it has limitations in describing the phenomenon of battery capacity regeneration. 
This observation is consistent with the inherent characteristics of SVR as it is mainly good at modeling linear and 
smooth time series data. The LSTM model shows better ability in capturing regenerative phenomena and local 
fluctuations in battery capacity. However, it deviates slightly from the actual degradation trend. In contrast, the 
proposed hybrid approach takes advantage of the complementary strengths of the two models: the low-frequency 
component representing the dominant degradation trend (IMF5) is efficiently modeled by SVR, while the SSA-
optimized LSTM accurately captures the high-frequency component characterizing capacity regeneration and 
local variations (IMF1-IFM4) This decomposition-based ensemble strategy significantly enhances the model ’s 
ability to predict global trends and local fluctuations in battery capacity degradation.

In order to quantitatively assess the prediction performance, four evaluation metrics, RMSE, MAE, MRE 
and R2, were used for a comprehensive comparison, as shown in Fig. 9a-d, and the specific values are shown 
in Table 4. The proposed hybrid method M1 shows excellent performance in all metrics and test cases, with 
significant improvements over other models. As shown in Fig. 9a, the red bar representing the M1 RMSE value 
is significantly shorter than the other colored bars for all batteries tested, ranging from 0.0066 to 0.0086 Ah, 
which is an average reduction of 66.41% compared to the traditional SVR model M5. For the B0018 battery with 
large fluctuations in capacity data, the RMSE of M1 is 0.0086 Ah, which is 79.43% lower than the RMSE of M5 
of 0.0418 Ah, indicating that the proposed method effectively captures the capacity degradation characteristics.

Fig. 8.  Prediction results of different methods under 80 training data: (a) B0005, (b) B0006, (c) B0007 and (d) 
B0018.
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Similarly, in the MAE comparison, M1 consistently shows the shortest bars and maintains a low error 
between 0.0031 and 0.0065 Ah, with an average decrease of 71.74% compared to M5. The MRE results shown 
in Fig. 9c, where M1 has significantly shorter red bars, exhibit excellent stability, with errors consistently below 
0.45% and an average reduction of 72.45% compared to the other models. In the line graph of R2 values, the 
curve for M1 clearly maintains the highest position across all test cases, with coefficients consistently above 0.97. 
This excellent performance is most evident in battery B0018, where M1 maintains a high R2 value of 0.9786, 
while the curves for the other models show a clear downward trend, especially for M5 which drops significantly 
to 0.5012. In addition, the absolute error between the proposed method and the actual value of the battery RUL 
prediction is less than one cycle, and the relative error is also lower than other methods compared.

A comprehensive evaluation shows that the proposed hybrid approach successfully integrates the 
complementary advantages of SVR and LSTM models while effectively addressing their respective limitations. 
Comparison of the errors in the prediction results of various methods confirms the effectiveness of the proposed 
method in accurately predicting capacity and RUL.

To further validate the effectiveness and robustness of the proposed hybrid model, we extended our 
experiments by increasing the training dataset size. The previous analysis used 80 capacity cycles as training 
data, and now we want to check the performance of the model when training on 100 cycles (B0018 is 60 cycles). 
The results of the five methods of prediction are shown in Fig. 10, and the specific values of the four evaluation 
metrics are shown in Table 6. Analyzing Fig. 10, it can be seen that for the three batteries B0005, B0006 and 
B0007, the addition of training data makes the prediction curves smoother, especially at the early stage of 
prediction when the fluctuation of each method is significantly reduced. For battery B0018, although there are 
large fluctuations in its capacity decay curve, the M1 method still tracks this nonlinear change characteristic 
better, while the other methods show different degrees of divergence in the late prediction period. This indicates 
that adding training data further improves the prediction stability and robustness of the proposed method. From 
Table 6, it can be seen that the hybrid method (M1) proposed in this paper achieves the best performance in all 
evaluation metrics. For the B0005 battery, the RMSE of M1 is 0.0044 Ah, which is 71.24% lower than M5, and for 
the more fluctuating B0018 battery, the RMSE of M1 is 0.0086 Ah, which is 61.43 lower than M5. The R2 values 
of the M1 method for all the tested batteries are all above 0.96, and the RUL prediction error is 0 or 1 cycle, which 
validates the proposed method’s prediction accuracy and stability of the proposed method.

Fig. 9.  Evaluation metrics for different prediction methods with 80 training data: (a) RMSE, (b) MAE, (c) 
MRE and (d) R2.

 

Scientific Reports |         (2025) 15:8161 13| https://doi.org/10.1038/s41598-025-92262-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 10.  Prediction results of different methods under 100 training data: (a) B0005, (b) B0006, (c) B0007 and 
(d) B0018.

 

Battery Method RMSE MAE MRE (%) R2 Er P Er  (%)

B5

M5 0.0170 0.0129 0.93 0.9599 2 4.55

M4 0.0146 0.0077 0.54 0.9704 4 9.09

M3 0.0137 0.0111 0.81 0.9737 2 4.55

M2 0.0123 0.0079 0.56 0.9787 1 2.27

M1 0.0066 0.0046 0.32 0.9939 0 0

B6

M5 0.0248 0.0174 1.30 0.9396 1 3.45

M4 0.0227 0.0135 1.01 0.9494 0 0

M3 0.0162 0.0120 0.92 0.9743 0 0

M2 0.0162 0.0079 0.57 0.9742 1 3.45

M1 0.0083 0.0057 0.42 0.9932 0 0

B7

M5 0.0159 0.0110 0.73 0.9441 5 7.94

M4 0.0176 0.0143 0.95 0.9320 5 7.94

M3 0.0123 0.0094 0.63 0.9666 5 7.94

M2 0.0124 0.0074 0.49 0.9660 2 3.17

M1 0.0066 0.0031 0.20 0.9904 0 0

B18

M5 0.0418 0.0395 2.80 0.5012 24 64.86

M4 0.0262 0.0239 1.68 0.8043 5 13.51

M3 0.0209 0.0188 1.33 0.8756 3 8.11

M2 0.0206 0.0187 1.31 0.8784 4 10.81

M1 0.0086 0.0065 0.45 0.9586 1 2.72

Table 4.  Error comparison between this method and other methods under 80 training data.
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Through comparative experiments, we verified the effectiveness of using SVR for low-frequency components 
and LSTM for high-frequency components. As shown in Tables 4 and 6, the hybrid method M1 consistently 
outperforms M2 (CEEMDAN-SVR) and M3 (CEEMDAN-SSA-LSTM). In the case of cell B0005 (100 training 
cycles), for example, the RMSE of M1 was 0.0044 Ah, which is significantly lower than M2’s 0.0091 Ah (using 
SVR only) and M3’s 0.0071 Ah (using LSTM only). The excellent performance of all test cells suggests that our 
hybrid strategy effectively utilizes the capabilities of SVR in capturing smooth trends and the advantages of 
LSTM in simulating complex temporal patterns.

Performance comparison with other existing methods
To further validate the effectiveness of the proposed method in RUL prediction, the results of this paper’s method 
compared with other methods using the same NASA B0005 battery dataset are given in Table 5. As can be seen 
from the table, the method proposed in this paper achieves better performance in all evaluation metrics: the 
RMSE is 0.0044 Ah, the MAE is 0.0026 Ah, and the R2 reaches 0.994 when using 100 training data. Compared 
with the existing methods, the prediction accuracy of the proposed method has been significantly improved, 
which verifies the CEEMDAN decomposition-based SVR-LSTM hybrid strategy is superior in battery RUL 
prediction.

Conclusions
In this paper, a RUL prediction method for lithium-ion batteries based on CEEMDAN decomposition and 
combining SVR and SSA-LSTM networks is proposed. The method firstly employs CEEMDAN to decompose 
the battery capacity sequence into high-frequency and low-frequency components, and then uses SVR and 
SSA-optimized LSTM networks to predict the different frequency components, respectively. The validity of the 
proposed method is verified using NASA public dataset and the main contributions are as follows: 

Battery Method RMSE MAE MRE (%) R2 Er P Er  (%)

B5

M5 0.0153 0.0139 1.02 0.9303 3 12.50

M4 0.0133 0.0086 0.63 0.9474 1 4.17

M3 0.0071 0.0062 0.46 0.9851 1 4.17

M2 0.0091 0.0060 0.44 0.9754 0 0

M1 0.0044 0.0026 0.19 0.9942 0 0

B6

M5 0.0161 0.0137 1.06 0.9592 1 11.11

M4 0.0152 0.0118 0.92 0.9638 0 0

M3 0.0093 0.0078 0.61 0.9866 0 0

M2 0.0106 0.0083 0.64 0.9823 1 11.11

M1 0.0055 0.0044 0.35 0.9952 0 0

B7

M5 0.0116 0.0103 0.70 0.9428 4 9.30

M4 0.0104 0.0090 0.61 0.9540 3 6.98

M3 0.0103 0.0090 0.62 0.9554 4 9.30

M2 0.0082 0.0052 0.35 0.9718 1 2.33

M1 0.0045 0.0033 0.23 0.9916 1 2.33

B18

M5 0.0223 0.0154 1.09 0.5475 1 5.88

M4 0.0233 0.0116 0.81 0.8182 1 5.88

M3 0.0121 0.0075 0.53 0.8881 1 5.88

M2 0.0179 0.0117 0.83 0.8799 1 5.88

M1 0.0086 0.0060 0.43 0.9628 1 5.88

Table 6.  Error comparison between this method and other methods under 100 training data.

 

Model RMSE MAE R2

IHSSA-LSTM-TCN36 0.0111 0.0816 –

PSO-LSTM37 0.0162 0.0095 0.9136

SVR-MC38 0.0063 – 0.9920

PF-SVR39 0.0146 0.1200 –

Differential Voltage-ELM40 0.0051 0.0043 –

PCA-CNN-BiLSTM41 0.0114 0.0090 –

Model of this paper 0.0043 0.0026 0.9941

Table 5.  Comparison of prediction results of different methods based on B0005 battery.

 

Scientific Reports |         (2025) 15:8161 15| https://doi.org/10.1038/s41598-025-92262-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	(1)	� Aiming at the problem of prediction accuracy degradation caused by capacity regeneration during lithi-
um-ion battery degradation, a CEEMDAN decomposition method is proposed to decompose the degra-
dation curve into high-frequency and low-frequency IMF components. Among them, the high frequency 
component captures the capacity fluctuation and regeneration characteristics, and the low frequency com-
ponent maintains the overall degradation trend of the battery. The decomposition strategy not only effec-
tively alleviates the noise interference caused by capacity regeneration, but also improves the stability of the 
data, thereby enhancing the prediction accuracy of the model.

	(2)	� A hybrid SVR-LSTM-based prediction strategy was designed. The low-frequency components characteriz-
ing the main degradation trends are modeled using the SVR model, and the LSTM network is employed to 
capture the nonlinear and long- and short-term dependent features in the high-frequency components. The 
two models complement each other’s strengths and significantly improve the prediction of capacity degra-
dation trends and local fluctuations. The experimental results show that the RMSE of the proposed method 
is reduced by 66.41% on average, and the R2 value remains above 0.96.

	(3)	� The SSA algorithm is introduced to optimize the LSTM network, and a comprehensive prediction model 
is proposed. This method adopts intelligent search strategy, which not only reduces the workload and in-
efficiency of manual parameter adjustment, but also effectively prevents the model from falling into local 
optimum in the training process, thus improving the overall prediction accuracy.

The experimental results show that the proposed hybrid method has higher prediction accuracy and stability 
than the existing methods. On the B0005 battery data set, when 100 training data are used, the RMSE of the 
method is 0.0044 Ah, the MAE is 0.0026 Ah, and the R2 reaches 0.994, which verifies the effectiveness of the 
method. This method provides a reliable solution for RUL prediction of lithium-ion batteries.

Data availibility
The data that support the findings of this study are available on request from the corresponding author, JP.Z, 
upon reasonable request.
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