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Abstract

In this thesis a new formulation is presented of the low energy, supergravity limit of type

II string theory and M theory, including fermions to leading order. This is performed by

utilising the language of generalised geometry, which is shown to be the natural setting for

these theories.

The core idea behind generalised geometry – an extension of ordinary differential ge-

ometry – and what makes it such a powerful tool for analysing supergravity, is that it recasts

all the bosonic fields of the manifold as the natural geometric symmetries of an enlarged

tangent space. There are two versions of generalised geometry which are of particular in-

terest, namely O(d, d) generalised geometry which will be used to formulate the NSNS

sector of type II theories, and Ed(d) generalised geometry (also known as exceptional gen-

eralised geometry) which enables the description of eleven-dimensional supergravity. For

both cases, this work will show how one can introduce generalised connections to study the

differential structure of the extended tangent spaces and define novel notions of generalised

curvature. Specifying extra local structure defines a generalised notion of the Riemannian

metric tensor, which contains all the relevant bosonic fields in a single, unified object.

With these tools one can then reformulate the supergravity equations very naturally,

as they become simply the generalised geometry analogue of Einstein gravity. One thus

obtains a formalism which is automatically fully covariant under all the bosonic symmetries

of supergravity. Furthermore, generalised connections are shown to be intimately related to

supersymmetry, with important consequences for future applications. As an example, in the

concluding chapter it will be shown how the classic problem of solving the Killing spinor

equations of supersymmetric compactifications can be equivalently recast as the statement

that the background possesses the generalised analogue of special holonomy.
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Chapter 1

Introduction

The foundations of modern physics rest on two major pillars, two theoretical constructs

which have been validated empirically to an extraordinary degree, general relativity and the

quantum field theory of the standard model. Yet these two are mutually inconsistent – di-

rect quantisation of Einstein-Hilbert gravity fails miserably due to its non-renormalisability.

And while it could have been the case that there were no situations in the Universe where

both theories need be applied, so that they could coexist peacefully, we are aware of phe-

nomena in nature where they must, such as astronomical black holes and the early universe.

Thus if physics is to provide a complete description of reality then one needs to find a new

theory which replaces the two current standards while still being able to recover them at the

appropriate limits, a theory-of-everything(-that-we-are-currently-aware-of). At the time of

writing, the leading candidate for such a theory is string theory.

String theory is a quantum field theory (of one-dimensional objects, as opposed of

point-like objects) which contains Einstein-Hilbert gravity at its lowest level in perturba-

tion theory (and with several corrections at higher level as should be expected). Since it

was originally formulated in the late 1960s, it has been established that string theory has

to satisfy certain internal consistency conditions in order to obtain a proper quantum the-

ory, which result in some very non-trivial consequences. These requirements include the

absence of negative norm states, which can be attained by formulating the theory at the

appropriate critical spacetime dimension, or a lack of tachyons in its physical spectrum,

which results from positing worldsheet supersymmetry (or equivalently, supersymmetry in
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the target spacetime) and forces the critical dimension to be ten1. There are in fact five dif-

ferent string theories which satisfy these properties, type IIA, IIB, type I, SO(32)-heterotic

and E8 × E8-heterotic. The low energy limit of these theories is a particular supergravity

theory in ten-dimensions, respectively, type IIA, type IIB and type I coupled to different

super Yang-Mills theories, and it is by considering the supergravity limits that we can study

several of the properties of the string theories, especially if we are to have any hope of re-

lating them to any phenomenology. The fact that there exist five different string theories

might seem problematic but in 1995 [1, 2] it was realised that this is not really an issue – all

five theories are in fact describing the same reality, just “interpreting” it differently, in the

sense that, for example, a solution to SO(32)-heterotic in a small coupling constant limit is

the same as a solution to type I in the large coupling constant limit (and vice-versa). This

is known as a duality transformation and when they are all put together they form a web

of relations connecting all the string theories, with a surprising corollary of their existence

being the discovery of a sixth theory, namely M theory, which does not contain strings but

is nonetheless dual to the string theories. M theory is formulated on an eleven-dimensional

spacetime and its low energy limit is eleven-dimensional supergravity.

Supergravity in eleven-dimensions, first constructed in [3], is special – it is uniquely

determined by the requirement that the graviton multiplet does not contain fields of spin

higher than two (a traditional requirement as there is no known way of formulating a con-

sistent interacting theory with a finite number of fields with spin higher than two2), or

equivalently, a maximum of 32 supercharges. Since generic spinors of Cliff(10, 1) contain

32 components (and are non-chiral), the minimum amount of supercharges allowed is pre-

cisely 32 and N = 1 supergravity is the only possibility left for constructing a consistent

theory. For dimensions higher than eleven spinors always have more than 32 components,

making eleven dimensional supergravity the highest possible dimension on which one can

formulate a consistent theory.

One can then descend from eleven dimensions to ten. If one does this while preserv-

1Note that in this regard string theory is one of very few examples of physical theories which actually are
able to predict a dimension for spacetime, as opposed to taking it as an initial input or axiom.

2To clarify, consistent theories with an infinite number of fields with arbitrarily high spin have been
constructed [4, 5] and are currently subject of intensive research.
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ing the 32 supersymmetries one then obtains one of the two maximal supergravities in

D = 10, type IIA, and then by performing a duality transformation one gets the other max-

imal supergravity, type IIB. Further, if one wishes to study the properties of other maximal

supergravities, then one should be able to describe reductions down to D = 11− d dimen-

sions and, indeed, if we wish to relate string/M theory to our observed four-dimensional

reality, we better be able to account for the cases at least up to d ≤ 7. In fact one of

the main uses for eleven-dimensional supergravity was to study the properties of maximal

N = 8 supergravity in four dimensions. In the late 1970s Cremmer and Julia [6, 7, 8]

toroidally reduced eleven-dimensional supergravity down to D = 4 and discovered that

it contains a large group of hidden symmetries – a global, non-compact E7(7) and a local

SU(8) group. Subsequently it was shown that reducing to 11 − d dimensions leads to a

a global, non-compact Ed(d) and a local symmetry group which is the maximal compact

subgroup Hd ⊂ Ed(d). As we will see, generalised geometry will allow us to describe a

much broader class of backgrounds than rectangular tori.

First some historical background. Generalised geometry (also known as O(d, d) gen-

eralised geometry, to distinguish from other versions that were introduced later) was in-

troduced by Hitchin to provide a unified description of complex manifolds and symplectic

manifolds, with an ultimate goal of generalising the notion of Calabi-Yau manifolds [9].

Instead of looking at structures defined on the tangent space TM of a manifold M , Hitchin

proposed considering “generalised structures” on the bundle TM⊕T ∗M . For a d-dimensional

manifold, this bundle comes automatically equipped with a global O(d, d) metric η and ad-

mits a generalisation of the Lie bracket, the Courant bracket [10]. The Courant bracket

possesses extra symmetries, it is invariant not just under diffeomorphisms but also under

B-shifts, i.e. transformations by a closed two-form field B. Gualtieri expanded the formal-

ism [11, 12], introducing the generalised metric – the natural object that arises when one

introduces the local maximal compact subgroup O(d) × O(d) ⊂ O(d, d) and which uni-

fies the ordinary Riemannian metric with the B gauge field – and generalised connections,

which allow one to define covariant derivatives on the generalised tangent space. These are

the basic tools that we will be making use of in this thesis.

All together, generalised geometry can be seen as a mechanism for covariantising the

two-form Kalb-Rammond field B of the NSNS sector of string theory. For physicists, the
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formalism thus provided a systematic way of studying supersymmetric compactifications

that went beyond Calabi-Yau by including the NSNS fluxes H = dB. This has permitted

the classification of entire new classes of solutions (for example in [13, 14, 15, 16, 17, 18,

19, 20]), with applications to, for instance, the AdS/CFT correspondence (see for exam-

ple [21, 22, 23, 24, 25, 26]). It has in addition, been able to shed some light in the problem

of non-geometric backgrounds.

Non-geometry is an intrinsic part of string theory, a result of its non-local version of

quantum gravity. It can show up when one attempts to make a generic duality transfor-

mation away from a known background, resulting in a theory which no longer possesses

a spacetime which can be described by the usual tools of differential geometry. U-duality,

in its more narrow sense, is a non-pertubative symmetry that arises when one toroidally

reduces a string theory down to 11−d dimensions, with d ≤ 8. The resulting theory is then

invariant under Ed(d)(Z) transformations [1]. The moduli of solutions of the low energy

limit of this theory, that is, maximal 11 − d-dimensional supergravity, is thus described

by the coset Ed(d)(Z)\Ed(d)(R)/Hd . A subset of the U-duality transformations that has

been extensively studied is T-duality, which is given by the O(d, d;Z) ⊂ Ed(d)(Z) sub-

group. Unlike generic U-dualities which are non-perturbative, T-duality invariance hold at

each level of perturbation theory and in certain cases it can be interpreted in a very intu-

itive geometric picture from the point of view of the target space of the string worldsheet

– for instance, if the background is a fluxless compactification on a circle of radius R, T-

duality exchanges that with a compactification on a circle of radius 1/R, and, for closed

strings, the winding modes around the circle get exchanged with momentum modes. Non-

geometry can be observed in the case where one starts with a d-dimensional torus bundle

background with NSNS flux along the torus fibres. Performing a first T-duality along one

of those directions results in a new background with a different topology due to presence of

so-called geometric fluxes (see for instance [27, 28]). The map between the two spaces is

by now well understood, especially so in the context of generalised geometry [29]. If one

T-dualises again, now along a different direction of flux, then one finds that, while it is still

possible to describe the resulting space locally in terms of generalised geometry [30], there

is no longer a well defined global picture in that language. In [31] Hull proposed that for

those cases one instead consider what he called T-folds – briefly, these are spaces with local
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patches which look like ordinary manifolds, but are glued together by O(d, d;Z) T-duality

transformations instead of just diffeomorphisms. T-folds can be constructed by defining

a new “doubled torus” bundle, of dimension 2d, and then specifying a d-dimensional (no

longer geometric) subspace with those transition functions. The different T-dual configu-

rations are then particular examples of allowed “slicings” of the doubled torus.

There have been other attempts at attaining a deeper understanding of T-duality, and

early attempts at making those symmetries more manifest include [32, 33, 34]. A some-

what similar approach that has recently received quite a bit of attention is Double Field

Theory (DFT), introduced in 2008 by Hull and Zweibach [35]. Inspired by the doubled

torus example, in DFT fields live in a doubled manifold with “winding coordinates” (i.e.

canonically conjugate to winding modes on a torus) which are dual to the usual coordinates

(i.e. conjugate to momentum modes), with this duality being formalised by postulating the

existence of the flatO(d, d) metric η globally defined on the doubled manifold. This results

in a theory that closely mirrors the earlier work of Siegel [36, 37] on “two-vierbein formal-

ism”, where he builds a gravitational theory based on local GL(d;R)×GL(d;R) doubled

frames. The reason the two formulations match can be traced to the fact that Siegel also

demands compatibility of his two-vierbein-connections with the O(d, d) metric, thus re-

ducing the structure group to the common subgroup of O(d, d) and GL(d;R)×GL(d;R),

that is, O(d)× O(d) which is precisely the same local structure in DFT. A more extensive

comparison of Siegel’s work and that of Hull and Zweibach can be found in [38].

DFT has more peculiarities. There exists a constraint, imposed by considering the

closed string worldsheet perspective, that the fields are not allowed a completely general

dependence on the coordinates of the doubled manifold, rather they must satisfy the so-

called weak constraint: any field A must satisfy ∂2A = 0. In subsequent work [39, 40]

it was realised that in order to formulate a completely background independent theory one

must borrow several of the concepts of generalised geometry, which is possible since the

tangent space of the doubled manifold coincides in many respects the O(d, d) generalised

tangent space. Indeed, it turns out that as a requirement to make the theory consistent –

in particular for it to be diffeomorphism and gauge invariant – one must impose an even

stronger constraint, also known as a section condition, that effectively forces the fields

to depend only on half the coordinates of the doubled manifold. One can then always
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use the O(d, d) symmetry to rotate locally this surviving set of coordinates so that they

match the usual momentum coordinates – thus “undoubling” the theory. This means that

under the strong constraint, DFT produces no new solutions as compared to the generalised

geometrical description, at least locally. Nonetheless the formalism has been extensively

developed [41, 42, 38, 43, 44, 45, 46, 47, 48, 49, 50, 51], and while originally the DFT

version of the NSNS action was formulated in terms of first-order derivatives of doubled

objects, new constructions [49] based on the DFT analogues of generalised connections

have appeared which have enabled the construction of full DFT Riemann-like tensors. In

particular, the work of Jeon, Lee and Park [52, 53, 54, 55, 56] in terms of “semi-covariant”

derivatives on the doubled space has culminated in a full rewriting of the type II actions,

matching the results obtained in [57].

Differences between generalised geometry and DFT can therefore only potentially arise

in respect to global considerations or by relaxing the strong constraint. Recent work has

moved in this direction by shifting the focus from the worldsheet perspective to looking

directly at the closure of the symmetry algebras in DFT. In particular backgrounds one

is able to leverage additional symmetries in order to formulate a consistent DFT which

does not respect the strong constraint, and these constructions have been used to describe

non-geometric backgrounds associated to gauged supergravities [46, 47, 45, 50, 58].

In this thesis we will actually consider a broader class of “generalised geometries”, as

we are interested not just in the NSNS sector of the type II theories, but also in the gauge

fields of eleven-dimensional supergravity. In 1986 de Wit and Nicolai [59] showed that

the hidden symmetries of N = 8, D = 4 supergravity discovered by Cremmer and Julia

– the global E7(7) and local SU(8) – can in fact be realised at the D = 11 level. By par-

tially gauge fixing the tangent space structure to Spin(3, 1)× Spin(7) ⊂ Spin(10, 1), they

demonstrated that one can enhance this local group to obtain eleven-dimensional super-

gravity, to first order in fermions, with a manifest Spin(3, 1)×SU(8) symmetry. The other

groups that appear in toroidal reductions (all the way down to two dimensions) have also

been shown to exist in eleven-dimensions, see for instance [60, 61, 62, 63]. The Ed(d)×R+

formalism we will present in thesis should be seen as the natural geometrisation of these

results.

Ed(d)×R+ generalised geometry was initially developed independently by Hull [64]
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and Waldram and Pacheco [65], who named it exceptional generalised geometry. Like

Hitchin’s original O(d, d) version, the key concept here is the introduction of an enlarged

tangent space whereupon one covariantises the gauge transformations of eleven-dimensional

supergravity as an intrinsic part of the geometry. And just like in the original version, one is

able to introduce a generalised version of the Lie bracket, which was called the exceptional

Courant bracket in [65]. It turns out that Gualtieri’s formalism for generalised connections

and generalised metric (now obtained by specifying the local Hd ⊂ Ed(d) subgroup) also

translates over almost verbatim.

There are other constructs inspired by the appearance of the Ed(d) hidden symmetry

groups in eleven-dimensional supergravity reductions. In particular, West in 2001 pro-

posed that the full underlying symmetry of M theory should be described by E11 [66].

Recall that E11, sometimes also denoted E+++
8 , is the infinite-dimensional Kac-Moody al-

gebra obtained from triple extending the E8 Dynkin diagram. Similarly to the DFT idea, in

West’s model spacetime is enlarged [67] (now by an infinite number of extra dual coordi-

nates), such that its tangent space transforms as an E11 representation. A field theory was

then constructed based on non-linear realisations of E11 over its local (also infinite dimen-

sional) maximally compact subgroup [68, 69, 70]. Evidence for this conjecture had been

found by decomposing E11 into one of its Ed subalgebras, and then truncating all the extra

coordinates while keeping the part of the enlarged tangent space which transforms under

Ed [71, 72, 73]. A line of research that was originally developed independently of the E11

programme is the one of Berman and Perry [74], which essentially reinterpreted the much

earlier work of [75] from the perspective of DFT. In [75] Duff and Lu built upon [32] to

provide an explanation for the existence of the Ed(d) and Hd hidden symmetries of toroidal

reductions (for d < 5) by showing that they can be realised directly in the worldvolume

theory of (what is now known as) the M2 brane of M theory. Based on that result, Berman

and Perry proposed that, just like in DFT, one should introduce a larger manifold with extra

coordinates which here correspond to M2 wrapping modes instead of the string’s winding

modes. However, in order to produce a consistent theory (with diffeomorphism and gauge

invariance) they again needed to reduce down to momentum coordinates. The mechanism

for performing this reduction was called the “section condition”, and it is essentially the

Ed(d) version of the strong constraint of DFT. Just like in that case, the resulting setup
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ends up matching very closely that of exceptional generalised geometry [76, 77]. This

model has been expanded in [78, 79, 80] and the whole construction was incorporated

into the E11 formalism in [73]. In that paper the authors succeed in providing expressions

for Lagrangians based on this method for all d < 8 (in this thesis we also consider just

those dimensions), though the “curvature” scalars they built were only first-order deriva-

tives of fields, and thus the resulting actions are equivalent to the usual supergravity ones

only up to total derivatives. Additionally, most of these constructions stop short of includ-

ing fermions. One notable exception is the work of Hillmann [81, 82], who, picking up

West’s E11 non-realisations, focused on the d = 7 case and introduced a sixty dimensional

spacetime (4+56, 56 being the dimension of the smallest nontrivial representation of E7).

By using “generalised E7(7) coset dynamics” and demanding that, upon truncating to 4+7

dimensions, the theory possess Diff(7) invariance, the author managed to show that the

construction reproduces the results of [59]. This dimensional truncation, which mirrors the

effects of the section condition, implies that again the enlarged tangent space of Hillmann

is precisely the exceptional generalised tangent space of [65]. The geometrical objects he

constructs, together with the fermion fields, can then be directly mapped to the ones we

obtain in the d = 7 section of [83].

One can thus see that a lot of the success of these different approaches is a direct result

of their several points of contact with generalised geometry. This is no coincidence, as

we hope the reader will come to agree by the end of this thesis. Generalised geometry is

the natural language to formulate supergravities. Its relation to their bosonic symmetries

is precisely the same as that between Riemannian geometry and Einstein gravity. We will

demonstrate this by proceeding as follows.

In the next chapter we will review type II and eleven-dimensional supergravities, estab-

lishing conventions and the expressions we intend to recover from generalised geometry.

A word of caution to the reader – we try to provide formulations which strike a balance

between the typical conventions of these supergravities and the ones which arise more nat-

urally in generalised geometry. It is therefore possible that some steps we take in that

chapter might seem unusual, as their reason will only become clear later in the thesis. This

treatment of the supergravities was described in [57, 83].

In chapter three we review O(d, d) × R+ generalised geometry. This is a very similar
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construction to that originally provided by Gualtieri. We examine the properties of the gen-

eralised tangent space, its differential structure and introduce generalised connections. The

existence of a localO(p, q)×O(q, p) structure allows us to construct all the analogues of fa-

miliar objects of (pseudo-)Riemannian geometry such as metric and curvature. These tools

allow us to geometrise the NSNS sector of ten-dimensional type II supergravity theories

in chapter four and obtain a reformulation with the O(9, 1) × O(1, 9) symmetry manifest.

These chapters follow from our work in [57].

To geometrise the RR fields we have to move to Ed(d)×R+ generalised geometry with

a local Hd symmetry, which we introduce in chapter six. We proceed in similar fashion

to the O(d, d) × R+ chapter, though the analysis here is more involved as, on the face of

it, each dimension d would have to be considered separately. However, by constructing

the relevant groups in terms of their GL(d) and SO(d) subgroups and introducing some

new notation, we manage to maintain the discussion completely generic. The generalised

metric, generalised connections and their curvatures are all then constructed in completely

analogous ways to those of chapter three. Indeed, the method we use in this chapter is

kept so general that it should be possible to adapt it directly to other kinds of generalised

geometries, not just those based on Ed(d)×R+. Most of the content in this chapter was first

given in [76].

We are then able to rewrite dimensional reductions of eleven-dimensional supergrav-

ity in chapter seven. Here, in addition to providing the generic description for all d,

we also study in explicit detail two cases: d = 4, corresponding to compactifications

to D = 11 − d = 7 dimensions, which is a relatively simple case with a local group

H4 = SO(5); and the more complex d = 7, local group H7 = SU(8)/Z2, which, since it

describes compactifications to four dimensions, is arguably the most important formulation

of Ed(d)×R+ generalised geometry. These results were first presented in [83].

In the conclusion we review the results and discuss their potential applications, with a

particular emphasis on supersymmetric backgrounds, and possible extensions.
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Chapter 2

Type II and eleven-dimensional

supergravity theories

In this chapter we briefly review the usual formulations of ten-dimensional type II super-

gravity and eleven-dimensional supergravity. These will provide us with the expressions

that we will try to reproduce in the latter chapters based on generalised geometry.

2.1 Type II supergravity

Our basic conventions are given in appendix A and for the Cliff(9, 1;R) Clifford alge-

bra conventions see appendix C.4. We essentially follow those of the democratic formal-

ism [84], with the only difference which is not purely notational being that we take the

opposite sign for the Riemann tensor, as discussed in appendix B. We consider only the

leading-order fermionic terms. We introduce a slightly unconventional notation in a few

places in order to match more naturally with the underlying generalised geometry. It is

also helpful to considerably rewrite the fermionic sector, introducing a particular linear

combination of dilatini and gravitini, to match more closely what follows.

The type II fields are denoted

{gµν , Bµν , φ, A
(n)
µ1...µn

, ψ±µ , λ
±}, (2.1)
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where gµν is the metric, Bµν the two-form potential, φ is the dilaton and A(n)
µ1...µn are the RR

potentials in the democratic formalism, with n odd for type IIA and n even for type IIB. In

each theory there is also a pair of chiral gravitini ψ±µ and a pair of chiral dilatini λ±. Here

our notation is that± does not refer to the chirality of the spinor but, as we will see, denote

generalised geometrical subspaces. Specifically, in the notation of [84], for type IIA they

are the chiral components of the gravitino and dilatino

ψµ = ψ+
µ + ψ−µ where γ(10)ψ±µ = ∓ψ±µ

λ = λ+ + λ− where γ(10)λ± = ±λ±.
(2.2)

(Note that ψ+
µ and λ+, and similarly ψ−µ and λ−, have opposite chiralities.) For type IIB, in

the notation of [84] one has two component objects

ψµ =

(
ψ+
µ

ψ−µ

)
where γ(10)ψ±µ = ψ±µ

λ =

(
λ+

λ−

)
where γ(10)λ± = −λ±.

(2.3)

and again the gravitini and dilatini have opposite chiralities.

In what follows, it will be very useful to consider the quantities

ρ± := γµψ±µ − λ±, (2.4)

instead of λ±. These are the natural combinations that appear in generalised geometry and

from now on we will use ρ± rather than λ±.

The bosonic “pseudo-action” takes the form

SB =
1

2κ2

∫ √
−g
[
e−2φ

(
R+ 4(∂φ)2 − 1

12
H2
)
− 1

4

∑
n

1
n!

(F
(B)
(n) )2

]
, (2.5)

where H = dB and F (B)
(n) is the n-form RR field strength. Here we will use the “A-basis”,
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where the field strengths, as sums of even or odd forms, take the form1

F (B) =
∑
n

F
(B)
(n) =

∑
n

eB ∧ dA(n−1), (2.6)

where eB = 1 +B+ 1
2
B∧B+ . . . . This is a “pseudo-action” because the RR fields satisfy

a self-duality relation that does not follow from varying the action, namely,

F
(B)
(n) = (−)[n/2] ∗ F (B)

(10−n), (2.7)

where [n] denotes the integer part and ∗ ω denotes the Hodge dual of ω. The fermionic ac-

tion, keeping only terms quadratic in the fermions, can be written after some manipulation

as

SF = − 1

2κ2

∫ √
−g
[
e−2φ

(
2ψ̄+µγν∇νψ

+
µ − 4ψ̄+µ∇µρ

+ − 2ρ̄+ /∇ρ+

− 1
2
ψ̄+µ /Hψ+

µ − ψ̄+
µH

µνλγνψ
+
λ − 1

2
ρ+Hµνλγµνψ

+
λ + 1

2
ρ+ /Hρ+

)
+ e−2φ

(
2ψ̄−µγν∇νψ

−
µ − 4ψ̄−µ∇µρ

− − 2ρ̄− /∇ρ−

+ 1
2
ψ̄−µ /Hψ−µ + ψ̄−µH

µνλγνψ
−
λ + 1

2
ρ−Hµνλγµνψ

−
λ − 1

2
ρ− /Hρ−

)
− 1

4
e−φ
(
ψ̄+
µ γ

ν /F
(B)
γµψ−ν + ρ+ /F

(B)
ρ−
)]
.

(2.8)

where∇ is the Levi–Civita connection.

To match what follows it is useful to rewrite the standard equations of motion in a partic-

ular form. For the bosonic fields, with the fermions set to zero, one takes the combinations

1Note that in type IIA one cannot write a potential for the zero-form field strength, which must instead be
added by hand in (2.6). Note also that in [84] these field strengths are denoted G.
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that naturally arise from the string β-functions, namely

Rµν − 1
4
HµλρHν

λρ + 2∇µ∇νφ− 1
4
e2φ
∑
n

1
(n−1)!

F
(B)
µλ1...λn−1

F (B)λ1...λn−1
ν = 0,

∇µ
(
e−2φHµνλ

)
− 1

2

∑
n

1
(n−2)!

F
(B)
µνλ1...λn−2

F (B)λ1...λn−2 = 0,

∇2φ− (∇φ)2 + 1
4
R− 1

48
H2 = 0,

dF (B) −H ∧ F (B) = 0,

(2.9)

where the final Bianchi identity for F follows from the definition (2.6). Keeping only terms

linear in the fermions, the fermionic equations of motion read

γν
[(
∇ν ∓ 1

24
Hνλργ

λρ − ∂νφ
)
ψ±µ ± 1

2
Hνµ

λψ±λ
]
−
(
∇µ ∓ 1

8
Hµνλγ

νλ
)
ρ±

= 1
16

eφ
∑
n

(±)[(n+1)/2]γν /F
(B)
(n) γµψ

∓
ν ,(

∇µ ∓ 1
8
Hµνλγ

νλ − 2∂µφ
)
ψµ± − γµ

(
∇µ ∓ 1

24
Hµνλγ

νλ − ∂µφ
)
ρ±

= 1
16

eφ
∑
n

(±)[(n+1)/2] /F
(B)
(n) ρ

∓,

(2.10)

The supersymmetry variations are parametrised by are pair of chiral spinors ε± where,

again, in the notation of [84], for type IIA, we have

ε = ε+ + ε− where γ(10)ε± = ∓ε±, (2.11)

while for type IIB we have the doublet

ε =

(
ε+

ε−

)
where γ(10)ε± = ε±. (2.12)

Again keeping only linear terms in the fermions field, the supersymmetry transformations
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for the bosons read

δeaµ = ε̄+γaψ+
µ + ε̄−γaψ−µ ,

δBµν = 2ε̄+γ[µψ
+
ν] − 2ε̄−γ[µψ

−
ν],

δφ− 1
4
δ log(−g) = −1

2
ε̄+ρ+ − 1

2
ε̄−ρ−,(

eB ∧ δA
)(n)

µ1...µn
= 1

2

(
e−φψ̄+

ν γµ1...µnγ
νε− − e−φε̄+γµ1...µnρ

−)
∓ 1

2

(
e−φε̄+γνγµ1...µnψ

−
ν + e−φρ̄+γµ1...µnε

−) ,
(2.13)

where eµ is an orthonormal frame for gµν and in the last equation the upper sign refers to

type IIA and the lower to type IIB. For the fermions one has

δψ±µ =
(
∇µ ∓ 1

8
Hµνλγ

νλ
)
ε± + 1

16
eφ
∑
n

(±)[(n+1)/2] /F
(B)
(n) γµε

∓,

δρ± = γµ
(
∇µ ∓ 1

24
Hµνλγ

νλ − ∂µφ
)
ε±.

(2.14)

2.2 Eleven-dimensional supergravity

We now briefly review the usual formulation of eleven-dimensional N = 1 supergravity

and its restrictions to d dimensions. This will provide us with the expressions we will try

to reproduce in chapter 4 based on generalised geometry.

2.2.1 N = 1, D = 11 supergravity

Let us start by reviewing the action, equations of motion and supersymmetry variations of

eleven-dimensional supergravity, to leading order in the fermions, following the conven-

tions of [85] (see also appendices A and C).

The fields are simply

{gMN ,AMNP , ψM}, (2.15)

where gMN is the metric, AMNP the three-form potential and ψM is the gravitino. We use

M,N, . . . for eleven-dimensional coordinate indices to distinguish from the external space
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indices µ, ν, . . . we will need for the next subsection. The bosonic action is given by

SB =
1

2κ2

∫ (√
−gR− 1

2
F ∧ ∗F − 1

6
A ∧ F ∧ F

)
, (2.16)

whereR is the Ricci scalar and F = dA. This leads to the equations of motion

RMN − 1
12

(
FMP1P2P3F P1P2P3

N − 1
12
gMNF2

)
= 0,

d ∗ F + 1
2
F ∧ F = 0,

(2.17)

whereRMN is the Ricci tensor.

Taking ΓM to be the Cliff(10, 1;R) gamma matrices, the fermionic action, to quadratic

order in ψM , is given by

SF =
1

κ2

∫ √
−g
(
ψ̄MΓMNP∇NψP + 1

96
FP1...P4ψ̄MΓMP1...P4NψN

+ 1
8
FP1...P4ψ̄

P1ΓP2P3ψP4

)
,

(2.18)

the gravitino equation of motion is

ΓMNP∇NψP + 1
96

(
ΓMNP1...P4FP1...P4 + 12FMN

P1P2ΓP1P2
)
ψN = 0. (2.19)

The supersymmetry variations of the bosons are

δgMN = 2ε̄Γ(MψN),

δAMNP = −3ε̄Γ[MNψP ],
(2.20)

while the supersymmetry variation of the gravitino is

δψM = ∇Mε+ 1
288

(
ΓM

N1...N4 − 8δM
N1ΓN2N3N4

)
FN1...N4ε, (2.21)

where ε is the supersymmetry parameter.
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2.2.2 Restricted action, equations of motion and supersymmetry

We will be interested in “restrictions” of eleven-dimensional supergravity where the space-

time is assumed to be a warped product R10−d,1 × M of Minkowski space with a d-

dimensional spin manifold M , with d ≤ 7. The metric is taken to have the form

ds2
11 = e2∆ds2(R10−d,1) + ds2

d(M), (2.22)

where ds2(R10−d,1) is the flat metric on R10−d,1 and ds2
d(M) is a general metric on M . The

warp factor ∆ and all the other fields are assumed to be independent of the flat R10−d,1

space. In this sense we restrict the full eleven-dimensional theory to M . We will split

the eleven-dimensional indices as external indices µ = 0, 1, . . . , c− 1 and internal indices

m = 1, . . . , d where c+ d = 11.

In the restricted theory, the surviving fields include the obvious internal components

of the eleven-dimensional fields (namely the metric g and three-form A) as well as the

warp factor ∆. If d = 7, the eleven-dimensional Hodge dual of the 4-form F can have a

purely internal 7-form component. This leads one to introduce, in addition, a dual six-form

potential Ã on M which is related to the seven-form field strength F̃ by

F̃ = dÃ− 1
2
A ∧ F. (2.23)

The Bianchi identities satisfied by F = dA and F̃ are then

dF = 0,

dF̃ + 1
2
F ∧ F = 0.

(2.24)

With these definitions one can see that F and F̃ are related to the components of the eleven

dimensional 4-form field strength F by

Fm1...m4 = Fm1...m4 , F̃m1...m7 = (∗F)m1...m7
, (2.25)

where ∗F is the eleven-dimensional Hodge dual. The field strengths F and F̃ are invariant
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under the gauge transformations of the potentials given by

A′ = A+ dΛ,

Ã′ = Ã+ dΛ̃− 1
2
dΛ ∧ A,

(2.26)

for some two-form Λ and five-form Λ̃. There is an intricate hierarchy of further coupled

gauge transformations of Λ and Λ̃, discussed in more detail in section 5.1 (see also [65])

and which formally defines a form of “gerbe” [86].

In order to diagonalise the kinetic terms in the fermionic Lagrangian, one introduces

the standard field redefinition of the external components of the gravitino

ψ′µ = ψµ + 1
c−2

ΓµΓmψm. (2.27)

We then denote its trace as

ρ = c−2
c

Γµψ′µ, (2.28)

and allow this to be non-zero and dependant on the internal coordinates (this is the partner

of the warp factor ∆). Although the restriction to d-dimensions breaks the Lorentz symme-

try to Spin(10−d, 1)×Spin(d) ⊂ Spin(10, 1), we do not make an explicit decomposition

of the spinor indices under Spin(10−d, 1)×Spin(d). Instead we keep expressions in terms

of eleven-dimensional gamma matrices. This is helpful in what follows since it allows us

to treat all dimensions in a uniform way.

In summary, the surviving degrees of freedom after the restriction to d dimensions are

{gmn, Amnp, Ãm1...m6 ,∆;ψm, ρ}. (2.29)

One can then define the internal space bosonic action

SB =
1

2κ2

∫
√
g ec∆

(
R+ c(c− 1)(∂∆)2 − 1

2
1
4!
F 2 − 1

2
1
7!
F̃ 2
)
, (2.30)
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where the associated equations of motion

Rmn − c∇m∇n∆− c(∂m∆)(∂n∆)− 1
2

1
4!

(
4Fmp1p2p3Fn

p1p2p3 − 1
3
gmnF

2
)

−1
2

1
7!

(
7F̃mp1...p6F̃n

p1...p6 − 2
3
gmnF̃

2
)

= 0,

R− 2(c− 1)∇2∆− c(c− 1)(∂∆)2 − 1
2

1
4!
F 2 − 1

2
1
7!
F̃ 2 = 0,

d ∗ (ec∆F )− ec∆F ∧ ∗F̃ = 0,

d ∗ (ec∆F̃ ) = 0,

(2.31)

are those obtained by substituting the field ansatz into (2.17). Similarly, to quadratic order

in fermions, the action for the fermion fields is

SF = − 1

κ2(c− 2)2

∫
√
g ec∆

[
(c− 4)ψ̄mΓmnp∇nψp

− c(c− 3)ψ̄mΓn∇nψm − c
(
ψ̄mΓn∇mψ

n + ψ̄mΓm∇nψ
n
)

− 1
4

1
2!

(2c2 − 5c+ 4)ψ̄mF
mn

pqΓ
pqψn + 1

4
c(c− 3)ψ̄m /Fψ

m

+ 1
2

1
3!
cψ̄mF

m
pqrΓ

npqrψn + 1
4

1
4!

(c− 4)ψ̄mFp1...p4Γmnp1...p4ψn

− 1
4

1
5!

(2c2 − 5c+ 4)ψ̄mF̃
mn

p1...p5Γp1...p5ψn

+ 1
4

1
6!
c(c− 1)ψ̄mF̃

m
p1...p6Γnp1...p6ψn

+ c(c− 1)
(
ψ̄m∇mρ− ρ̄∇mψm

)
+ c
(
ψ̄mΓmn∇nρ− ρ̄Γmn∇mψn

)
− c(c− 1)(c− 2)ψ̄m(∂m∆)ρ− c(c− 2)ψ̄mΓmn(∂n∆)ρ

+ 1
2

1
3!
c(c− 1)ρ̄Fm

pqrΓ
pqrψm − 1

2
1
4!
cρ̄Γmp1...p4F

p1...p4ψm

− 1
2

1
6!
c(c− 1)ψ̄mF̃

m
p1...p6Γp1...p6ρ

+ c(c− 1)
(
ρ̄Γm∇mρ+ 1

4
ρ̄ /Fρ− 1

4
ρ̄ /̃Fρ

)]
.

(2.32)
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This action leads to the equation of motion for ψm,

0 = (c− 4)Γm
np
(
∇n + c

2
∂n∆

)
ψp − c(c− 3)Γn

(
∇n + c

2
∂n∆

)
ψm

− cΓn
(
∇m + c

2
∂m∆

)
ψn − cΓm

(
∇n + c

2
∂n∆

)
ψn)

− 1
4
(2c2 − 5c+ 4) 1

2!
FmnpqΓ

pqψn + 1
4
c(c− 3)/Fψm

+ 1
2

1
3!
cF(m

p1p2p3Γn)p1p2p3ψ
n + 1

4
1
4!

(c− 4)Γmn
p1...p4Fp1...p4ψ

n

− 1
4

1
5!

(2c2 − 5c+ 4)F̃mnp1...p5Γp1...p5ψn + 1
4

1
6!
c(c− 1)F̃(m

p1...p6Γn)p1...p6ψ
n

+ cΓm
n (∇n + ∂n∆) ρ+ c(c− 1) (∇m + ∂m∆) ρ

+ 1
4

1
3!
c(c− 1)Fmp1p2p3Γp1p2p3ρ+ 1

4
1
4!
cΓmp1...p4F

p1...p4ρ

− 1
4

1
6!
c(c− 1)F̃mn1...n6Γn1...n6ρ,

(2.33)

and the equation of motion for ρ,

0 =
[
/∇+ c

2
(/∂∆) + 1

4
/F − 1

4
/̃F
]
ρ

−
[
∇m + (c− 1)∂m∆

]
ψm − 1

c−1
Γmn

[
∇m + (c− 1)∂m∆

]
ψn

+ 1
4

1
3!
Fm

p1p2p3Γp1p2p3ψm − 1
4

1
4!

1
c−1

Γmp1...p4F
p1...p4ψm

+ 1
4

1
6!
F̃m

p1...p6Γp1...p6ψm.

(2.34)

Turning to the supersymmetry transformations, we find that the variations of the fermion

fields are given by

δρ =
[
/∇− 1

4
/F − 1

4
/̃F + c−2

2
(/∂∆)

]
ε,

δψm =
[
∇m + 1

288
Fn1...n4 (Γm

n1...n4 − 8δm
n1Γn2n3n4)− 1

12
1
6!
F̃mn1...n6Γn1...n6

]
ε,

(2.35)

and the variations of the bosons by

δgmn = 2ε̄Γ(mψn),

(c− 2)δ∆ + δ log
√
g = ε̄ρ,

δAmnp = −3ε̄Γ[mnψp],

δÃm1...m6 = 6ε̄Γ[m1...m5ψm6].

(2.36)
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This completes our summary of the reduced theory.

In chapter 6 the fermionic fields will be reinterpreted as representations of larger sym-

metry groups H̃d ⊃ Spin(d). To mark that distinction, the fermions that have appeared in

this section will be denoted by εsugra, ρsugra and ψsugra. Absent this label, the fields are to be

viewed as “generalised” objects transforming under H̃d
2.

2Note that this is not necessary in the type II case as the generalised objects required there can be treated
within the usual notation (the index structure, for example, is comparatively simple).
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Chapter 3

O(d, d)× R+ generalised geometry

We would like to define the generalised geometric analogues of each of the ingredients in

the construction of the Levi–Civita connection1. In the first section we review the gener-

alisations of the frame bundle, the Lie derivative, connections, torsion and curvature. In

the following section we discuss the notion of a generalised metric and the analogue of the

Levi–Civita connection.

One way to view generalised geometry is as a formalism for “geometrising” the bosonic

structures that appear in supergravity. In the context of the NSNS sector this means first

combining the symmetry algebra of diffeomorphisms and B-field gauge transformations

into an algebra of “generalised” Lie derivatives. This structure is known as an “exact

Courant algebroid” in the mathematics literature [87, 88] and, on a d-dimensional man-

ifold, defines a bundle with a natural O(d, d) action. Combining g, B and φ into a single

geometrical object introduces an additional refinement of the structure, defining a gener-

alised geometry [9, 11]. The only slight, though important, extension we will require here

is to promote the O(d, d) action to O(d, d)× R+ [30, 17].

3.1 The O(d, d)× R+ generalised tangent space

We start by recalling the generalised tangent space and defining what we will call the “gen-

eralised structure” which is the analogue of the frame bundle F in conventional geometry.

1These are reviewed in appendix B.
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LetM be a d-dimensional spin manifold. One starts by defining the generalised tangent

space E as an extension of the tangent space by the cotangent space

0 −→ T ∗M −→ E −→ TM −→ 0, (3.1)

which depends on a specific patching via one-forms Λ(ij). If v(i) ∈ Γ(TUi) and λ(i) ∈
Γ(T ∗Ui), so V(i) = v(i) + λ(i) is a section of E over the patch Ui, then

v(i) + λ(i) = v(j) +
(
λ(j) − iv(j)

dΛ(ij)

)
, (3.2)

on the overlap Ui ∩ Uj . Hence as defined, while the v(i) globally are equivalent to a choice

of vector, the λ(i) do not globally define a one-form. E is in fact isomorphic to TM⊕T ∗M
though there is no canonical isomorphism. Instead one must choose a splitting of the

sequence (3.1) which, as will be shown below, precisely reproduces the bosonic symmetries

of the NSNS sector.

3.1.1 Generalised structure bundle

Crucially the definition of E is consistent with an O(d, d) metric given by, for V = v + λ

〈
V, V

〉
= ivλ, (3.3)

since iv(i)
λ(i) = iv(j)

λ(j) on Ui ∩ Uj .
In order to describe the dilaton correctly we will actually need to consider a slight

generalisation of E. We define the bundle Ẽ weighted by detT ∗M so that

Ẽ = detT ∗M ⊗ E. (3.4)

The point is that, given the metric (3.3), one can now define a natural principal bundle

with fibre O(d, d) × R+ in terms of bases of Ẽ. We define a conformal basis {ÊA} with
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A = 1, . . . 2d on Ẽx as one satisfying

〈
ÊA, ÊB

〉
= Φ2ηAB where η =

1

2

(
0 1

1 0

)
. (3.5)

That is {ÊA} is orthonormal up to a frame-dependent conformal factor Φ ∈ Γ(detT ∗M).

We then define the generalised structure bundle

F̃ =
{

(x, {ÊA}) : x ∈M , and {ÊA} is a conformal basis of Ẽx
}
. (3.6)

By construction, this is a principal bundle with fibre O(d, d)×R+. One can make a change

of basis

V A 7→ V ′A = MA
BV

B, ÊA 7→ Ê ′A = ÊB(M−1)BA. (3.7)

where M ∈ O(d, d) × R+ so that (M−1)CA(M−1)DBηCD = σ2ηAB for some σ. The

topology of F̃ encodes both the topology of the tangent bundle TM and of the B-field

gerbe.

Given the definition (3.1) there is one natural conformal basis defined by the choice of

coordinates on M , namely {ÊA} = {∂/∂xµ} ∪ {dxµ}. Given V ∈ Γ(E) over the patch

Ui, we have V = vµ(∂/∂xµ) + λµdxµ, we will sometime denote the components of V in

this frame by an index M such that

V M =

vµ for M = µ

λµ for M = µ+ d
. (3.8)

3.1.2 Generalised tensors and spinors

Generalised tensors are simply sections of vector bundles constructed from different repre-

sentations of O(d, d)× R+, that is representations of O(d, d) of definite weight under R+.

Since the O(d, d) metric gives an isomorphism between E and E∗, one has the bundle

E⊗n(p) = (detT ∗M)p ⊗ E ⊗ · · · ⊗ E. (3.9)
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for a general tensor of weight p.

One can also consider Spin(d, d) spinor representations [11]. The O(d, d) Clifford

algebra

{ΓA,ΓB} = 2ηAB. (3.10)

can be realised on each coordinate patch Ui by identifying spinors with weighted sums of

forms Ψ(i) ∈ Γ((detT ∗Ui)
1/2 ⊗ Λ•T ∗Ui), with the Clifford action

V AΓAΨ(i) = ivΨ(i) + λ(i) ∧Ψ(i). (3.11)

The patching (3.2) then implies

Ψ(i) = edΛ(ij) ∧Ψ(j). (3.12)

Projecting onto the chiral spinors then defines two Spin(d, d) spinor bundles, isomorphic

to weighted sums of odd or even forms S±(E) ' (detT ∗M)−1/2 ⊗ Λeven/oddT ∗M where

again specifying the isomorphism requires a choice of splitting.

More generally one defines Spin(d, d)× R+ spinors of weight p as sections of

S±(p) = (detT ∗M)p ⊗ S±(E). (3.13)

Note that there is a natural Spin(d, d) invariant bilinear on these spinor spaces given by the

Mukai pairing [9, 11]. For Ψ,Ψ′ ∈ Γ(S±(p)) one has

〈
Ψ,Ψ′

〉
=
∑
n

(−)[(n+1)/2]Ψ(d−n) ∧Ψ′(n) ∈ Γ((detT ∗M)2p), (3.14)

where Ψ(n) and Ψ′(n) are the local weighted n-form components.

3.1.3 NSNS bosonic symmetries and split frames

Let us make a small detour and examine in more detail the symmetries of the NSNS bosonic

sector. The potential B is only locally defined, so that, given an open cover {Ui}, across
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coordinate patches Ui ∩ Uj it can be patched via

B(i) = B(j) − dΛ(ij). (3.15)

Furthermore the one-forms Λ(ij) satisfy

Λ(ij) + Λ(jk) + Λ(ki) = dΛ(ijk), (3.16)

on Ui ∩ Uj ∩ Uk. This makes B a “connection structure on a gerbe” [86]2.

As a side note, there is a similar patching for the sum of the RR potentials A. Given the

RR field strengths (2.6) from chapter , which are globally defined, we have that, as a sum

of forms3,

A(i) = edΛ(ij) ∧ A(j) + dΛ̂(ij), (3.17)

where Λ̂(ij) is a sum of even or odd forms in type IIA and type IIB respectively. Note the

presence of Λ(ij) in the first term, which is a consequence of us working in the “A-basis”

for the RR fields.

Focusing on the NSNS sector symmetry algebra we see that, in addition to diffeomor-

phism invariance, we have the local bosonic gauge symmetry

B′(i) = B(i) − dλ(i), A′(i) = edλ(i)A(i), (3.18)

where the choice of sign in the gauge transformation is to match the generalised geometry

conventions. Given the patching of B, the only requirement is dλ(i) = dλ(j) on Ui ∩
Uj . Thus globally λ(i) is equivalent to specifying a closed two-form. The set of gauge

symmetries is then the Abelian group of closed two-forms under addition Ω2
cl(M). The

gauge transformations do not commute with the diffeomorphisms so the NSNS bosonic

2In supergravity, there is no requirement that the flux H is quantised. However, string theory implies the
cohomological condition H/(8π2α′) ∈ H3(M,Z) (up to torsion terms). This can be implemented in the
gerbe structure by requiring gijk = exp(4πα′iΛ(ijk)) satisfy the cocycle condition gjklg−1

iklgijlg
−1
ijk = 1 on

Ui ∩ Uj ∩ Uk ∩ Ul. We will not consider this further restriction in the following.

3Note here i and j refer to the patch not the degree of the form.
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symmetry group GNS has a fibred structure

Ω2
cl(M) −→ GNS −→ Diff(M), (3.19)

sometimes written as the semi-direct product Diff(M) n Ω2
cl(M).

One can see this structure infinitesimally by combining the diffeomorphism and gauge

symmetries, given a vector v and one-form λ(i), into a general variation

δv+λg = Lvg, δv+λφ = Lvφ, δv+λB(i) = LvB(i) − dλ(i), (3.20)

where the patching (3.15) of B implies that

dλ(i) = dλ(j) − LvdΛ(ij). (3.21)

Recall that λ(i) and λ(i) + dφ(i) define the same gauge transformation. One can use this

ambiguity to integrate (3.21) and set

λ(i) = λ(j) − ivdΛ(ij), (3.22)

on Ui ∩ Uj .
It should by now be clear that this gerbe structure of supergravity is intimately related

to the way the generalised tangent space was constructed in (3.1). Introducing a two-form

B patched as in (3.15) is equivalent to specifying a map TM → E which splits the exact

sequence (3.1). This defines an isomorphism E ' TM ⊕ T ∗M and one is then able to

identify a special class of conformal frames for Ẽ that we call a split frame {ÊA} by

ÊA =

Êa = (det e) (êa + iêaB) for A = a

Ea = (det e)ea for A = a+ d
. (3.23)

where {êa} is a generic basis for TM and {ea} be the dual basis on T ∗M . We immediately

see that 〈
ÊA, ÊB

〉
= (det e)2ηAB, (3.24)



Chapter 3. O(d, d)× R+ generalised geometry 37

and hence the basis is conformal. Writing V = vaÊa + λaE
a ∈ Γ(Ẽ) we have

V (B) = va(det e)êa + λa(det e)ea

= v(i) + λ(i) − iv(i)
B(i),

(3.25)

demonstrating that the splitting defines an isomorphism Ẽ ' (detT ∗M)⊗ (TM ⊕ T ∗M)

since λ(i) − iv(i)
B(i) = λ(j) − iv(j)

B(j).

The class of split frames defines a sub-bundle of F̃ . Such frames are related by trans-

formations (3.7) where M takes the form

M = (detA)−1

(
1 0

ω 1

)(
A 0

0 (A−1)T

)
, (3.26)

where A ∈ GL(d,R) is the matrix transforming êa 7→ êb(A
−1)ba while ω = 1

2
ωabe

a ∧ eb

transforms B 7→ B′ = B + ω, where ω must be closed for B′ to be a splitting. This

defines a parabolic subgroup Gsplit = GL(d,R) n Rd(d−1)/2 ⊂ O(d, d) × R+ and hence

the set of all frames of the form (3.23) defines a Gsplit principal sub-bundle of F̃ , that is a

Gsplit-structure. This reflects the fact that the patching elements in the definition of Ẽ lie

only in this subgroup of O(d, d)× R+.

In what follows it will be useful to also define a class of conformal split frames given

by the set of split bases conformally rescaled by a function φ so that

ÊA =

Êa = e−2φ(det e) (êa + iêaB) for A = a

Ea = e−2φ(det e)ea for A = a+ d
. (3.27)

thus defining a Gsplit × R+ sub-bundle of F̃ . In complete analogy with the split case,

the components of V ∈ Γ(Ẽ) in the conformally split frame are related to those in the

coordinate basis by

V (B,φ) = e2φ
(
v(i) + λ(i) − iv(i)

B(i)

)
. (3.28)

We can similarly write the components of generalised spinors in different frames. The

relation between the coordinate and split frames implies that if Ψ
(B)
a1...an are the polyform
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components of Ψ ∈ Γ(S±(p)) in the split frame then

Ψ(B) =
∑
n

1
n!

Ψ(B)
a1...an

ea1 ∧ · · · ∧ ean = eB(i) ∧Ψ(i), (3.29)

demonstrating the isomorphism S±(p) ' (detT ∗M)p−1/2⊗Λeven/oddT ∗M , since eB(i)∧Ψ(i) =

eB(j) ∧Ψ(j). In the conformal split frame one similarly has

Ψ(B,φ) = epφeB(i) ∧Ψ(i). (3.30)

3.1.4 The Dorfman derivative, Courant bracket and exterior derivative

An important property of the generalised tangent space is that it admits a generalisation

of the Lie derivative which encodes the bosonic symmetries of the NSNS sector of type

II supergravity (3.20). Given V = v + λ ∈ Γ(E), one can define an operator LV acting

on any generalised tensor, which combines the action of an infinitesimal diffeomorphisms

generated by v and a B-field gauge transformations generated by λ.

Acting on W = w + ζ ∈ E(p), we define the Dorfman derivative4 or “generalised Lie

derivative” as [30]

LVW = Lvw + Lvζ − iwdλ, (3.31)

where, since w and ζ are weighted tensors, the action of the Lie derivative is

Lvwµ = vν∂νw
µ − wν∂νvµ + p(∂νv

ν)wµ,

Lvζµ = vν∂νζµ + (∂µv
ν)ζν + p(∂νv

ν)ζµ.
(3.32)

Defining the action on a function f as simply LV f = Lvf , one can then extend the notion

of Dorfman derivative to any O(d, d)× R+ tensor using the Leibniz property.

To see this explicitly it is useful to note that we can rewrite (3.31) in a moreO(d, d)×R+

covariant way, in analogy with (B.4). First note that one can embed the action of the partial

derivative operator into generalised geometry using the map T ∗M → E. In coordinate

4If p = 0 then LVW is none other than the Dorfman bracket [89]. Since it extends to a derivation on the
tensor algebra of generalised tensors, it is natural in our context to call it the “Dorfman derivative”.
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indices, as viewed as mapping to a section of E∗, one defines

∂M =

∂µ for M = µ

0 for M = µ+ d
. (3.33)

One can then rewrite (5.25) in terms of generalised objects (as in [36, 37, 40])

LVW
M = V N∂NW

M +
(
∂MV N − ∂NV M

)
WN + p

(
∂NV

N
)
WM , (3.34)

where indices are contracted using theO(d, d) metric (3.3), which, by definition, is constant

with respect to ∂. Note that this form is exactly analogous to the conventional Lie deriva-

tive (B.4), though now with the adjoint action in o(d, d)⊕R rather than gl(d). Specifically

the second and third terms are (minus) the action of an o(d, d)⊕ R element m, given by

m ·W =

(
a 0

−ω −aT

)(
w

ζ

)
− p tr a

(
w

ζ

)
, (3.35)

where aµν = ∂νv
µ and ωµν = ∂µλν − ∂νλµ. Comparing with (3.26), we see that m in fact

acts in the Lie algebra of the Gsplit subgroup of O(d, d)× R+.

This form can then be naturally extended to an arbitrary O(d, d) × R+ tensor α ∈
Γ(E⊗n(p) ) as

LV α
M1...Mn = V N∂Nα

M1...Mn +
(
∂M1V N − ∂NV M1

)
αN

M2...Mn

+ · · ·+
(
∂MnV N − ∂NV Mn

)
αM1...Mn−1

N + p
(
∂NV

N
)
αM1...Mn ,

(3.36)

again in analogy with (B.4). It similarly extends to generalised spinors Ψ ∈ Γ(S±(p)) as (see

also [90])

LV Ψ = V N∂NΨ + 1
4

(∂MVN − ∂NVM) ΓMNΨ + p(∂MV
M)Ψ, (3.37)

where ΓMN = 1
2

(ΓMΓN − ΓNΓM).

Note that when W ∈ Γ(E) one can also define the antisymmetrisation of the Dorfman



3.1 The O(d, d)× R+ generalised tangent space 40

derivative
JV,W K = 1

2
(LVW − LWV )

= [v, w] + Lvζ − Lwλ− 1
2
d (ivζ − iwλ) ,

(3.38)

which is known as the Courant bracket [10]. It can be rewritten in an O(d, d) covariant

form as

JU, V KM = UN∂NV
M − V N∂NU

M − 1
2

(
UN∂

MV N − VN∂MUN
)
. (3.39)

which follows directly from (3.34).

Finally note that since S±(1/2) ' Λeven/oddT ∗M the Clifford action of ∂M on Ψ ∈ Γ(S±(1/2))

defines a natural action of the exterior derivative. On Ui one defines d : Γ(S±(1/2)) →
Γ(S∓(1/2)) by

(dΨ)(i) = 1
2
ΓM∂MΨ(i) = dΨ(i), (3.40)

that is, it is simply the exterior derivative of the component p-forms. The Dorfman deriva-

tive and Courant bracket can then be regarded as derived brackets for this exterior deriva-

tive [91].

3.1.5 Generalised O(d, d)× R+ connections and torsion

We now turn to the definitions of generalised connections, torsion and the possibility of

defining a generalised curvature. The notion of connection on a Courant algebroid was first

introduced by Alekseev and Xu [92, 88] and Gualtieri [93] (see also Ellwood [94]). At

least locally, it is also essentially equivalent to the connection defined by Siegel [36, 37]

and discussed in double field theory [38]. It is also very closely related to the differential

operator introduced in the “stringy differential geometry” of [52].

Our definitions will follow closely those in [92, 93] though, in connecting to super-

gravity, it is important to extend the definitions to include the R+ factor in the generalised

structure bundle.
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Generalised connections

Here we will specifically be interested in those generalised connections that are compatible

with the O(d, d) × R+ structure. Following [92, 93] we can define a first-order linear

differential operator D, such that, given W ∈ Γ(Ẽ), in frame indices,

DMW
A = ∂MW

A + Ω̃M
A
BW

B. (3.41)

Compatibility with the O(d, d)× R+ structure implies

Ω̃M
A
B = ΩM

A
B − ΛMδ

A
B, (3.42)

where Λ is the R+ part of the connection and Ω the O(d, d) part, so that we have

ΩM
AB = −ΩM

BA. (3.43)

The action of D then extends naturally to any generalised tensor. In particular, if α ∈
Γ(E⊗n(p) ) we have

DMα
A1...An = ∂Mα

A1...An + ΩM
A1
Bα

BA2...An

+ · · ·+ ΩM
An

Bα
A1...An−1B − pΛMα

A1...An .
(3.44)

Similarly, if Ψ ∈ Γ(S±(p)) then

DMΨ =
(
∂M + 1

4
ΩM

ABΓAB − pΛM

)
Ψ. (3.45)

Given a conventional connection∇ and a conformal split frame of the form (3.27), one

can construct the corresponding generalised connection as follows. Writing a generalised

vector W ∈ Γ(Ẽ) as

W = WAÊA = waÊa + ζaE
a, (3.46)

and, by construction, w = wa(det e)êa ∈ Γ((detT ∗M) ⊗ TM) and ζ = ζa(det e)ea ∈
Γ((detT ∗M) ⊗ T ∗M), so we can define ∇µw

a and ∇µζa. The generalised connection
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defined by ∇ lifted to an action on Ẽ by the conformal split frame is then simply

(D∇MW
A)ÊA =

(∇µw
a)Êa + (∇µζa)E

a for M = µ

0 for M = µ+ d
. (3.47)

Generalised torsion

We define the generalised torsion T of a generalised connection D in direct analogy to

the conventional definition (B.8). Let α be any generalised tensor and LDV α be the Dorf-

man derivative (3.36) with ∂ replaced by D. The generalised torsion is a linear map

T : Γ(E) → Γ(ad(F̃ )) where ad(F̃ ) ' Λ2E ⊕ R is the o(d, d) ⊕ R adjoint represen-

tation bundle associated to F̃ . It is defined by

T (V ) · α = LDV α− LV α, (3.48)

for any V ∈ Γ(E) and where T (V ) acts via the adjoint representation on α. This definition

is close to that of [93], except for the additional R+ action in the definition of L.

Viewed as a tensor T ∈ Γ(E ⊗ ad F̃ ), with indices such that T (V )MN = V PTMPN ,

we can derive an explicit expression for T . Let {ÊA} be a general conformal basis with〈
ÊA, ÊB

〉
= Φ2ηAB. Then {Φ−1ÊA} is an orthonormal basis for E. Given the connection

DMW
A = ∂MW

A + Ω̃M
A
BW

B, we have

TABC = −3Ω̃[ABC] + Ω̃D
D
BηAC − Φ−2

〈
ÊA, LΦ−1ÊB

ÊC
〉
, (3.49)

where indices are lowered with ηAB.

Naively one might expect that T ∈ Γ((E ⊗ Λ2E) ⊕ E). However the form of the

Dorfman derivative means that fewer components of Ω̃ actually enter the torsion and

T ∈ Γ(Λ3E ⊕ E). (3.50)

This can be seen most easily in the coordinate basis where the two components are

TMPN = (T1)MPN − (T2)P δ
M
N , (3.51)
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with
(T1)MNP = −3Ω̃[MNP ] = −3Ω[MNP ],

(T2)M = −Ω̃Q
Q
M = ΛM − ΩQ

Q
M .

(3.52)

An immediate consequence of this definition is that for Ψ ∈ Γ(S±(1/2)) the Dirac opera-

tor ΓMDMΨ is determined by the torsion of the connection [92]

ΓMDMΨ = ΓM(∂MΨ + 1
4
ΩMNPΓNPΨ− 1

2
ΛMΨ)

= ΓM∂MΨ + 1
4
Ω[MNP ]Γ

MNPΨ− 1
2
(ΛM − ΩN

N
M)ΓMΨ

= 2dΨ− 1
12

(T1)[MNP ]Γ
MNPΨ− 1

2
(T2)MΓMΨ.

(3.53)

This equation could equally well be used as a definition of the torsion of a generalised

connection. Note in particular that if the connection is torsion-free we see that the Dirac

operator becomes equal to the exterior derivative

ΓMDMΨ = 2dΨ. (3.54)

As an example, we can calculate the torsion for the generalised connection D∇ defined

in (3.47). In general we have

LΦ−1ÊA
ÊB =

(
LΦ−1ÊA

Φ
)

Φ−1ÊB + Φ
(
LΦ−1ÊA

(Φ−1ÊB)
)
, (3.55)

where here

LΦ−1ÊA
Φ =

−e−2φ(det e)
(
iêaiêbde

b + 2iêadφ
)

for A = a

0 for A = a+ d
, (3.56)

and

LΦ−1ÊA
Φ−1ÊB =

(
[êa, êb] + i[êa,êb]B − iêaiêbH Lêaeb

−Lêbea 0

)
AB

, (3.57)

where H = dB. If the conventional connection ∇ is torsion-free, the corresponding gen-
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eralised torsion is given by

T1 = −4H, T2 = −4 dφ, (3.58)

where we are using the embedding5 T ∗M → E (and the corresponding T ∗M → Λ3E) to

write the expressions in terms of forms. This result is most easily seen by taking êa to be

the coordinate frame, so that all but the H and dφ terms in (3.56) and (3.57) vanish.

The absence of generalised curvature

Having defined torsion it is natural to ask if one can also introduce a notion of generalised

curvature in analogy to the usual definition (B.9), as the commutator of two generalised

connections but now using the Courant bracket (3.38) rather than the Lie bracket

R (U, V,W ) = [DU , DV ]W −DJU,V KW. (3.59)

However, this object is non-tensorial [93]. We can check for linearity in the arguments

explicitly. Taking U → fU , V → gV and W → hW for some scalar functions f, g, h, we

obtain

[DfU , DgV ]hW −DJfU,gV KhW

= fgh
(
[DU , DV ]W −DJU,V KW

)
− 1

2
h
〈
U, V

〉
D(fdg−gdf)W,

(3.60)

and so the curvature is not linear in U and V .

Nonetheless, if there is additional structure, as will be relevant for supergravity, we

are able to define other tensorial objects that are measures of generalised curvature. In

particular, let C1 ⊂ E and C2 ⊂ E be subspaces such that
〈
U, V

〉
= 0 for all U ∈

Γ(C1) and V ∈ Γ(C2). For such a U and V the final term in (3.60) vanishes, and so

R ∈ Γ((C1 ⊗ C2) ⊗ o(d, d)) is a tensor. A special example of this is when C1 = C2 is a

null subspace of E.

5Note that with our definitions we have (∂Aφ)Φ−1ÊA = 2dφ due to the factor 1
2 in ηAB
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3.2 O(p, q)×O(q, p) structures and torsion-free connections

We now turn to constructing the generalised analogue of the Levi–Civita connection. The

latter is the unique torsion-free connection that preserves the O(d) ⊂ GL(d,R) structure

defined by a metric g. Here we will be interested in generalised connections that preserve

an O(p, q)× O(q, p) ⊂ O(d, d)× R+ structure on F̃ , where p + q = d. We will find that,

in analogy to the Levi–Civita connection, it is always possible to construct torsion-free

connections of this type but there is no unique choice. Locally this is same construction

that appears in Siegel [36, 37] and closely related to that of [52].

3.2.1 O(p, q)×O(q, p) structures and the generalised metric

Following closely the standard definition of the generalised metric [11], consider anO(p, q)×
O(q, p) principal sub-bundle P of the generalised structure bundle F̃ . As discussed below,

this is equivalent to specifying a conventional metric g of signature (p, q), aB-field patched

as in (3.15) and a dilaton φ. As such it clearly gives the appropriate generalised structure

to capture the NSNS supergravity fields.

Geometrically, an O(p, q) × O(q, p) structure does two things. First it fixes a nowhere

vanishing section of the determinant bundle which we denote |volG| ∈ Γ(detT ∗M), giving

an isomorphism between weighted and unweighted generalised tangent space Ẽ and E.

Second it defines a splitting of E into two d-dimensional sub-bundles

E = C+ ⊕ C− , (3.61)

such that theO(d, d) metric (3.3) restricts to a separate metric of signature (p, q) on C+ and

a metric of signature (q, p) on C−. (Each sub-bundle is also isomorphic to TM using the

map E → TM .)

In terms of F̃ we can identify a special set of frames defining a O(p, q)× O(p, q) sub-

bundle. We define a frame {Ê+
a } ∪ {Ê−ā } such that {Ê+

a } form an orthonormal basis for
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C+ and {Ê−ā } form an orthonormal basis for C−. This means they satisfy

〈
Ê+
a , Ê

+
b

〉
= |volG|2 ηab,〈

Ê−ā , Ê
−
b̄

〉
= − |volG|2 ηāb̄,〈

Ê+
a , Ê

−
ā

〉
= 0.

(3.62)

where |volG| ∈ Γ(detT ∗M) is now some fixed density (independent of the particular frame

element) and ηab and ηāb̄ are flat metrics with signature (p, q). There is thus a manifest

O(p, q)×O(q, p) symmetry with the first factor acting on Ê+
a and the second on Ê−ā .

Note that the natural conformal frame

ÊA =

Ê+
a for A = a

Ê−ā for A = ā+ d
, (3.63)

satisfies 〈
ÊA, ÊB

〉
= |volG|2 ηAB, where ηAB =

(
ηab 0

0 −ηāb̄

)
, (3.64)

where the form of ηAB differs from that used in (3.5). In this section, we will use this

form of the metric ηAB throughout. It is also important to note that we will adopt the

convention that we will always raise and lower the C+ indices a, b, c, . . . with ηab and the

C− indices ā, b̄, c̄, . . . with ηāb̄, while we continue to raise and lower 2d dimensional indices

A,B,C, . . . with the O(d, d) metric ηAB. Thus, for example we have

ÊA =

Ê+a for A = a

−Ê−ā for A = ā+ d
, (3.65)

when we raise the A index on the frame.

One can write a generic O(p, q)×O(q, p) structure explicitly as

Ê+
a = e−2φ

√
−g
(
ê+
a + e+

a + iê+aB
)
,

Ê−ā = e−2φ
√
−g
(
ê−ā − e−ā + iê−ā B

)
,

(3.66)
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where the fixed conformal factor in (3.62) is given by

|volG| = e−2φ
√
|g|, (3.67)

and where {ê+
a } and {ê−ā }, and their duals {e+a} and {e−ā}, are two independent orthonor-

mal frames for the metric g, so that

g = ηabe
+a ⊗ e+b = ηāb̄e

−ā ⊗ e−b̄,

g(ê+
a , ê

+
b ) = ηab, g(ê−ā , ê

−
b̄

) = ηāb̄.
(3.68)

By this explicit construction we see that there is no topological obstruction to the existence

of O(p, q)×O(q, p) structures.

In addition to the O(p, q) × O(q, p) invariant density (3.67) one can also construct the

invariant generalised metric G [11]. It has the form

G = ηabÊ+
a ⊗ Ê+

b + ηāb̄Ê−ā ⊗ Ê−b̄ . (3.69)

One can also consider the rescaled G̃ = |volG|−2G, which in the coordinate frame has the

familiar expression

G̃MN =
1

2

(
g −Bg−1B −Bg−1

g−1B g−1

)
MN

. (3.70)

By construction, G parametrises the coset (O(d, d)×R+)/O(p, q)×O(q, p) where p+q =

d.

Finally the O(p, q) × O(q, p) structure provides two additional chirality operators Γ±

on Spin(d, d)× R+ spinors which one can define as [30, 95, 90]

Γ(+) = 1
d!
εa1...adΓa1 . . .Γad , Γ(−) = 1

d!
εā1...ādΓā1 . . .Γād . (3.71)

Using that, in the split frame, the Clifford action takes the form

Γa ·Ψ(B) = iê+a Ψ(B) + e+
a ∧Ψ(B), Γā ·Ψ(B) = iê−a Ψ(B) − e−a ∧Ψ(B), (3.72)
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these can be evaluated on the weighted n-form components of Ψ as

Γ(+)Ψ
(B)
(n) = (−)[n/2] ∗Ψ

(B)
(n) , Γ(−)Ψ

(B)
(n) = (−)d(−)[n+1/2] ∗Ψ

(B)
(n) , (3.73)

and thus we have a generalisation of the Hodge dual on Spin(d, d)× R+ spinors.

Since G̃TηG̃ = η, the rescaled generalised metric G̃A
B is an element ofO(d, d) and one

can easily check that G̃2 = 1. Connecting to the discussion of [90], for even dimensions d,

one has G̃ ∈ SO(d, d) and Γ(−) is an element of Spin(d, d) satisfying

Γ(−)ΓAΓ(−)−1 = G̃A
BΓB, (3.74)

so that Γ(−) is a preimage of G in the double covering map Spin(d, d) → SO(d, d). In

odd dimensions d, Γ(+) is an element of Pin(d, d) which maps to G̃ ∈ O(d, d) under the

double cover Pin(d, d)→ O(d, d).

3.2.2 Torsion-free, compatible connections

A generalised connection D is compatible with the O(p, q)×O(q, p) structure P ⊂ F̃ if

DG = 0, (3.75)

or equivalently, if the derivative acts only in the O(p, q) × O(q, p) sub-bundle so that for

W ∈ Γ(Ẽ) given by

W = wa+Ê
+
a + wā−Ê

−
ā , (3.76)

we have

DMW
A =

∂Mwa+ + ΩM
a
bw

b
+ for A = a

∂Mw
ā
− + ΩM

ā
b̄w

b̄
− for A = ā

, (3.77)

with

ΩMab = −ΩMba, ΩMāb̄ = −ΩMb̄ā. (3.78)

In this subsection we will show, in analogy to the construction of the Levi–Civita connec-

tion, that
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Given an O(p, q)×O(q, p) structure P ⊂ F̃ there always exists a torsion-free,

compatible generalised connection D. However, it is not unique.

We can construct a compatible connection as follows. Let ∇ be the Levi–Civita con-

nection for the metric g. In terms of the two orthonormal bases we get two gauge equivalent

spin-connections, so that if v = vaê+
a = vāê−ā ∈ Γ(TM) we have

∇µv
ν =

(
∂µv

a + ω+
µ
a
bv
b
)
(ê+
a )ν =

(
∂µv

ā + ω−µ
ā
b̄v
b̄
)
(ê−ā )ν . (3.79)

We can then define, as in (3.47)

D∇MW
a =

∇µw
a
+ for M = µ

0 for M = µ+ d
, D∇MW

ā =

∇µw
ā
− for M = µ

0 for M = µ+ d
.

(3.80)

Since ω+
µab = −ω+

µba and ω−
µāb̄

= −ω−
µb̄ā

, by construction, this generalised connection is

compatible with the O(p, q)×O(q, p) structure.

However D∇ is not torsion-free. To see this we note that, comparing with (3.27), when

we choose the two orthonormal frames to be aligned so e+
a = e−a = ea we have

W = wa+Ê
+
a + wā−Ê

−
ā =

(
wa+ + wa−

)
Êa + (w+a − w−a)Ea, (3.81)

and the two definitions of D∇ in (3.47) and (3.80) agree. Hence from (3.58) we have the

non-zero torsion components

T1 = −4H, T2 = −4dφ. (3.82)

To construct a torsion-free compatible connection we simply modify D∇. A generic

generalised connection D can be always be written as

DMW
A = D∇MW

A + ΣM
A
BW

B. (3.83)
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If D is compatible with the O(p, q) × O(q, p) structure then we have ΣM
a
b̄ = ΣM

ā
b = 0

and

ΣMab = −ΣMba, ΣMāb̄ = −ΣMb̄ā. (3.84)

By definition, the generalised torsion components of D are then given by

(T1)ABC = −4HABC − 3Σ[ABC], (T2)A = −4dφA − ΣC
C
A. (3.85)

The components HABC and dφA are the components in frame indices of the corresponding

forms under the embeddings T ∗M ↪→ E and Λ3T ∗M ↪→ Λ3E. Given

dxµ = 1
2
Φ−1

(
ê+
a
µÊ+a − ê−ā µÊ−ā

)
, (3.86)

we have, for instance,

dφ = 1
2
∂aφ

(
Φ−1Ê+a

)
− 1

2
∂āφ

(
Φ−1Ê−ā

)
. (3.87)

where there is a similar decomposition of H under

Λ3T ∗M ↪→ Λ3E ' Λ3C+ ⊕ (Λ2C+ ⊗ C−)⊕ (C+ ⊗ Λ2C−)⊕ Λ3C−, (3.88)

Note also that the middle index on Σ[ABC] in equation (3.85) has also been lowered with

this ηAB which introduces some signs. The result is that the components are

dφA =


1
2
∂aφ A = a

1
2
∂āφ A = ā+ d

, HABC =



1
8
Habc (A,B,C) = (a, b, c)

1
8
Habc̄ (A,B,C) = (a, b, c̄+ d)

1
8
Hab̄c̄ (A,B,C) = (a, b̄+ d, c̄+ d)

1
8
Hāb̄c̄ (A,B,C) = (ā+ d, b̄+ d, c̄+ d)

,

(3.89)
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and that setting the torsion of D to zero is equivalent to

Σ[abc] = −1
6
Habc, Σābc = −1

2
Hābc, Σa

a
b = −2∂bφ,

Σ[āb̄c̄] = +1
6
Hāb̄c̄, Σab̄c̄ = +1

2
Hab̄c̄, Σā

ā
b̄ = −2∂b̄φ.

(3.90)

Thus we can always find a torsion-free compatible connection but clearly these conditions

do not determine D uniquely. Specifically, one finds

Daw
b
+ = ∇aw

b
+ − 1

6
Ha

b
cw

c
+ − 2

d−1

(
δa
b∂cφ− ηac∂bφ

)
wc+ +Q+

a
b
cw

c
+,

Dāw
b
+ = ∇āw

b
+ − 1

2
Hā

b
cw

c
+,

Daw
b̄
− = ∇aw

b̄
− + 1

2
Ha

b̄
c̄w

c̄
−,

Dāw
b̄
− = ∇āw

b̄
− + 1

6
Hā

b̄
c̄w

c̄
− − 2

d−1

(
δā
b̄∂c̄φ− ηāc̄∂ b̄φ

)
wc̄− +Q−ā

b̄
c̄w

c̄
−,

(3.91)

where the undetermined tensors Q± satisfy

Q+
abc = −Q+

acb, Q+
[abc] = 0, Q+

a
a
b = 0,

Q−
āb̄c̄

= −Q−
āc̄b̄
, Q−

[āb̄c̄]
= 0, Q−ā

ā
b̄ = 0,

(3.92)

and hence do not contribute to the torsion.

3.2.3 Unique operators and generalised O(p, q)×O(q, p) curvatures

The fact that the O(p, q) × O(q, p) structure and torsion conditions are not sufficient to

specify a unique generalised connection might raise ambiguities which could pose a prob-

lem for the applications to supergravity we are ultimately interested in. However, we will

now show that it is still possible to find differential expressions that are independent of the

chosen D, by forming O(p, q) × O(q, p) covariant operators which do not depend on the

undetermined components Q±. For example, by examining (3.91) we already see that

Dāw
b
+ = ∇āw

b
+ − 1

2
Hā

b
cw

c
+,

Daw
b̄
− = ∇aw

b̄
− + 1

2
Ha

b̄
c̄w

c̄
−,

(3.93)
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have no dependence on Q± and so are unique. We find that this is also true for

Daw
a
+ = ∇aw

a
+ − 2(∂aφ)wa+,

Dāw
ā
− = ∇āw

ā
− − 2(∂āφ)wā−.

(3.94)

Anticipating our application to supergravity, we will be especially interested in writing

formulae for Spin(p, q) spinors, so let us now assume that we have a Spin(p, q)×Spin(q, p)

structure. If S(C±) are then the spinor bundles associated to the sub-bundles C±, γa and

γā the corresponding gamma matrices and ε± ∈ Γ(S(C±)), we have that by definition a

generalised connection acts as

DMε
+ = ∂Mε

+ + 1
4
ΩM

abγabε
+,

DMε
− = ∂Mε

− + 1
4
ΩM

āb̄γāb̄ε
−.

(3.95)

There are four operators which can be built out of these derivatives that are uniquely deter-

mined
Dāε

+ =
(
∇ā − 1

8
Hābcγ

bc
)
ε+,

Daε
− =

(
∇a + 1

8
Hab̄c̄γ

b̄c̄
)
ε−,

γaDaε
+ =

(
γa∇a − 1

24
Habcγ

abc − γa∂aφ
)
ε+,

γāDāε
− =

(
γā∇ā + 1

24
Hāb̄c̄γ

āb̄c̄ − γā∂āφ
)
ε−.

(3.96)

The first two expressions follow directly from (3.93). In the final two expressions, there

is an elegant cancellation from γaγbc = γabc + ηabγc − ηacγb which removes the terms

involving Q±.

The restriction that expressions involving generalised connections be determined unam-

biguously, irrespective of the particular D, now serves as a selection criteria for construct-

ing new generalised objects. In particular, when defining a generalised notion of curvature,

we find that even though we can actually build a tensorial O(p, q) × O(q, p) generalised

Riemann curvature – by following the example in section 3.1.5 and taking C1 = C± and

C2 = C∓ so that the index structure would be
(
R c
ab̄ d,R

c̄
ab̄ d̄

)
and

(
R c
āb d,R

c̄
āb d̄

)
– it would

not result in a uniquely determined object. However, we can use combinations of (3.93)

and (3.94) to define the corresponding generalised Ricci tensorRAB unambiguously. Given
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an O(p, q)×O(q, p) structure P ⊂ F̃ , the generalised Ricci will be a section of the bundle

adP⊥ = ad F̃ / adP (3.97)

which is associated to the coset O(d, d)×R+/O(p, q)×O(q, p). It can then be most easily

constructed by defining its scalar and non-scalar parts. The non-scalar is given by

R0

ab̄w
a
+ = [Da, Db̄]w

a
+, (3.98)

or6

R0

ābw
ā
− = [Dā, Db]w

ā
−. (3.99)

Note that the index contractions are precisely what is needed to guarantee uniqueness.

From its index structure one clearly sees that R0 is traceless. It turns out that to define

the generalised Ricci scalar we need the help of spinors and the operators in (3.96). We can

obtain the non-scalar Ricci again from either

1
2
R0

ab̄γ
aε+ = [γaDa, Db̄] ε

+,

1
2
R0

ābγ
āε− = [γāDā, Db] ε

−.
(3.100)

However, now we also find a scalar

−1
4
Rε+ =

(
γaDaγ

bDb −DāDā

)
ε+, (3.101)

or alternatively,

−1
4
Rε− =

(
γāDāγ

b̄Db̄ −DaDa

)
ε−. (3.102)

Again, note the need to use the correct combinations of the operators in these definitions

so that all the undetermined components drop out.

The fact that R is indeed a scalar and not itself an operator might not be immediately

apparent, so it is useful to work out the explicit form of these curvatures. This can be done

6Note that naively one might expect these definitions to give distinct tensors. However one can check that
compatibility with the O(p, q)×O(q, p) structure means that the two agree.
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by again choosing the two orthogonal frames to be aligned, e+
a = e−a , to find

R0

ab = Rab − 1
4
HacdHb

cd + 2∇a∇bφ+ 1
2
e2φ∇c(e−2φHcab), (3.103)

and for the scalar

R = R+ 4∇2φ− 4(∂φ)2 − 1
12
H2. (3.104)

From these expressions it is clear that we have obtained genuine tensors which are uniquely

determined by the torsion conditions, as desired. Furthermore, comparing with [36, 37]

we see that locally these are the same tensors that appear in Siegel’s formulation. The

expressions (3.103) and (3.104) also appear in the discussion of [52].
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Chapter 4

O(9, 1)×O(1, 9) generalised gravity

Having established the necessary elements of O(d, d) × R+ generalised geometry in the

previous chapter, we now present a full reformulation of the ten-dimensional type II super-

gravity presented in section 2.1 as the generalised geometrical analogues of Einstein grav-

ity. The dynamics and supersymmetry transformations are encoded by anO(9, 1)×O(1, 9)

structure with a compatible, torsion-free generalised connection. An outcome of this will

be a formulation of type II supergravity with manifest local O(9, 1)×O(1, 9) symmetry.

In the following we will consider the full ten-dimensional supergraviy theory so that the

relevant generalised structure is O(10, 10) × R+. However, one can equally well consider

compactifications of theory of the form R9−d,1 ×M

ds2
10 = ds2(R9−d,1) + ds2

d, (4.1)

where ds2(R9−d,1) is the flat metric on R9−d,1 and ds2
d is a general metric on the d-dimensional

manifold M . The relevant structure is then the O(d) × O(d) ⊂ O(d, d) × R+ generalised

geometry on M . Below we will focus on the O(10, 10) × R+ case. The compactification

case follows essentially identically.
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4.1 NSNS and fermionic degrees of freedom and O(9, 1) × O(1, 9)

structures

From the discussion of section 3.2.1 we see that an O(9, 1) × O(1, 9) ⊂ O(10, 10) × R+

generalised structure is parametrised by a metric g of signature (9, 1), a two-formB patched

as in (3.15) and a dilaton φ, that is, at each point x ∈M

{g,B, φ} ∈ O(10, 10)

O(9, 1)×O(1, 9)
× R+. (4.2)

Thus it precisely captures the NSNS bosonic fields of type II theories by packaging them

into the generalised metric G. As in [30], the infinitesimal bosonic symmetry transforma-

tion (3.20) is naturally encoded as the Dorfman derivative by V = v + λ

δVG = LVG, (4.3)

and the algebra of these transformations is given by the Courant bracket (3.38).

The type II fermionic degrees of freedom fall into spinor and vector-spinor represen-

tations of Spin(9, 1) × Spin(1, 9)1. Let S(C+) and S(C−) denote the Spin(9, 1) spinor

bundles associated to the sub-bundles C± write γa and γā for the corresponding gamma

matrices. Since we are in ten dimensions, we can further decompose into spinor bundles

S±(C+) and S±(C−) of definite chirality under γ(10).

The gravitino degrees of freedom then correspond to

ψ+
ā ∈ Γ(C− ⊗ S∓(C+)), ψ−a ∈ Γ(C+ ⊗ S+(C−)), (4.4)

where the upper sign on the chirality refers to type IIA and the lower to type IIB. Note that

the vector and spinor parts of the gravitinos transform under different Spin(9, 1) groups.

1Since the underlying manifoldM is assumed to possess a spin structure, we are free to promoteO(9, 1)×
O(1, 9) to Spin(9, 1)×Spin(1, 9). Here will ignore more complicated extended spin structures that can arise
in generalised geometry as described in [64].
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For the dilatino degrees of freedom one has

ρ+ ∈ Γ(S±(C+)), ρ− ∈ Γ(S+(C−)), (4.5)

where again the upper and lower signs refer to IIA and IIB respectively. Similarly the

supersymmetry parameters are sections

ε+ ∈ Γ(S∓(C+)), ε− ∈ Γ(S+(C−)). (4.6)

In terms of the string spectrum these gravitino and dilatino representations just correspond

to the explicit left- and right-moving fermionic states of the superstring and, in a supergrav-

ity context were discussed, for example, in [96, 97].

4.2 RR fields

As is known from studying the action of T-duality, the RR field strengths transform as

Spin(10, 10) spinors [96, 97, 1, 98, 99]. Here, the patching (3.17) of A(i) on Ui ∩ Uj
implies that the polyform F(i) = dA(i) is patched as in (3.12), and hence, as generalised

spinors,

F ∈ Γ(S±(1/2)), (4.7)

where the upper sign is for type IIA and the lower for type IIB. Furthermore, we see that

the RR field strengths F (B)
(n) that appear in the supergravity (2.6) are simply F expressed in

a split frame as in (3.29)

F (B) = eB(i) ∧ F(i) = eB(i) ∧
∑
n

dA
(n−1)
(i) . (4.8)

Note that the additional gauge transformations dΛ̂ in (3.17) imply that A(i) does not glob-

ally define a section of S±(1/2). Since A(i) is still locally a generalised spinor on the patch Ui
we can perform the same operations on it as we do on F in the remainder of this section.

Given the generalised metric structure, we can also write F in terms of Spin(9, 1) ×
Spin(1, 9) representations. One has the decomposition Cliff(10, 10;R) ' Cliff(9, 1;R) ⊗
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Cliff(1, 9;R) with

ΓA =

γa ⊗ 1 for A = a

γ(10) ⊗ γāγ(10) for A = ā+ d
. (4.9)

and hence we can identify2

S(1/2) ' S(C+)⊗ S(C−). (4.10)

Using the spinor norm on S(C−) we can equally well view F ∈ Γ(S(1/2)) as a map from

section of S(C−) to sections of S(C+). We denote the image under this isomorphism as

F# : S(C−)→ S(C+). (4.11)

We have that F ∈ Γ(S(C+) ⊗ S(C−)) naturally has spin indices Fαᾱ, while F# naturally

has indices Fα
ᾱ. The isomorphism simply corresponds to lowering an index with the

Cliff(9, 1;R) intertwiner C̃ᾱβ̄ . The conjugate map, F T
# : S(C+)→ S(C−), is given by

F T
# = (C̃F#C̃

−1)T , (4.12)

which corresponds to lowering the other index on Fαᾱ and taking the transpose.

We now give the relations between the components of the Spin(d, d) × R+ spinor in

all relevant frames. Note first that if the bases are aligned so that e+ = e− = e then the

Spin(9, 1)× Spin(1, 9) basis (3.66) is a split conformal basis and we have a Spin(9, 1) ⊂
Spin(9, 1) × Spin(1, 9) structure. We can then use the isomorphism Cliff(9, 1;R) '
Λ•T ∗M to write F (B,φ) as a spinor bilinear

/F
(B,φ)

=
∑
n

1
n!
F (B,φ)
a1...an

γa1...an . (4.13)

More generally if the frames are related by Lorentz transformations e±a = Λ±ba ea and we

write Λ± for the corresponding Spin(9, 1) transformations then we can define F# explicitly

2In fact S(p) ' S(C+)⊗ S(C−) for any p, but here we focus on the case of interest p = 1
2
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as

F# = Λ+ /F
(B,φ)

(Λ−)−1, (4.14)

which concretely realises the isomorphism between F (B,φ) and F#.

This map can easily be inverted and so we can write the components of F ∈ Γ(S(1/2))

in the coordinate frame as

F(i) = e−B(i) ∧ F (B) = e−φe−B(i) ∧ F (B,φ)

= e−φe−B(i) ∧
∑
n

[ 1

32(n!)
(−)[n/2] tr

(
γ(n)(Λ

+)−1F#Λ−
)]
.

(4.15)

This chain of equalities relates the components of F in all the frames we have discussed.

Finally, we note that the self-duality conditions satisfied by the RR field strengths F ∈
Γ(S±(1/2)) become a chirality condition under the operator Γ(−) defined in (3.71)

Γ(−)F = −F, (4.16)

as discussed in [100, 90].

4.3 Supersymmetry algebra

We now show that the supersymmetry variations can be written in a simple, locally Spin(9, 1)×
Spin(1, 9) covariant form using the torsion-free compatible connection D.

We start with the fermionic variations (2.14). Looking at the expressions (3.96), we

see that the uniquely determined spinor operators allow us to write the supersymmetry

variations compactly as
δψ+

ā = Dāε
+ + 1

16
F#γāε

−,

δψ−a = Daε
− + 1

16
F T

# γaε
+,

δρ+ = γaDaε
+,

δρ− = γāDāε
−,

(4.17)

where we have also used the results from the previous section to add the RR field strengths

to the gravitino variations.
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For the bosonic fields, we need the variation of a generic Spin(9, 1) × Spin(1, 9)

frame (3.66). Note that this means defining the variation of a pair of orthonormal bases

{e+a} and {e−ā} whereas the conventional supersymmetry variations (2.13) are given

in terms of a single basis {ea}. The only possibility, compatible with the Spin(9, 1) ×
Spin(1, 9) representations of the fermions, is to take

δ̃Ê+
a = (δ log |volG|)Ê+

a + (δΛ+
ab̄

)Ê−b̄,

δ̃Ê−ā = (δ log |volG|)Ê−ā + (δΛ−āb)Ê
+b,

(4.18)

where
δΛ+

aā = ε̄+γaψ
+
ā + ε̄−γāψ

−
a ,

δΛ−āa = ε̄+γaψ
+
ā + ε̄−γāψ

−
a ,

(4.19)

and

δ log |volG| = −2δφ+ 1
2
δ log(−g) = ε̄+ρ+ + ε̄−ρ−. (4.20)

Note that the variation of the basis (4.18) is by construction orthogonal to the Spin(9, 1)×
Spin(1, 9) action. This is because it is impossible to construct an Spin(9, 1) × Spin(1, 9)

tensor linear in ψ+
ā and ψ−a with two indices of the same type, that is L+

ab or L−
āb̄

.

The corresponding variations of the frames ê± are

δ̃e+a
µ = ε̄+γµψ

+a + ε̄−γaψ−µ ,

δ̃e−āµ = ε̄+γāψ+
µ + ε̄−γµψ

−ā,
(4.21)

which both give

δ̃gµν = 2ε̄+γ(µψ
+
ν) + 2ε̄−γ(µψ

−
ν), (4.22)

as required, but, when setting the frames equal so e+a = ea and e−ā = eā, differ by Lorentz

transformations from the standard form (2.13)

δ̃e+a
µ = δe+a

µ −
(
ε̄+γaψ+b − ε̄+γbψ+a

)
e+
µb,

δ̃e−āµ = δe+ā
µ −

(
ε̄−γāψ−b̄ − ε̄−γ b̄ψ−ā

)
e−
µb̄
.

(4.23)
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This can also be expressed in terms of the generalised metric GAB as

δGaā = δGāa = 2
(
ε̄+ρ+ + ε̄−ρ−

)
Gaā + 2 |volG|2

(
ε̄+γaψ

+
ā + ε̄−γāψ

−
a

)
. (4.24)

The variation of the RR potential A can be written as a bispinor

1
16

(δA#) =
(
γaε+ψ̄−a − ρ+ε̄−

)
∓
(
ψ+
ā ε̄
−γā + ε+ρ̄−

)
, (4.25)

where the upper sign is for type IIA and the lower for type IIB.

4.4 Equations of motion

Finally, we rewrite the supergravity equations of motion (2.9) and (2.10) with local Spin(9, 1)×
Spin(1, 9) covariance, using the generalised notions of curvature obtained in section 3.2.3.

From the generalised Ricci tensor (3.103) we find that the equations of motion for g

and B can be written as

R0

ab̄ + 1
16
|volG|−1 〈F,Γab̄F〉 = 0, (4.26)

where we have made use of the Mukai pairing defined in (3.14)3 to introduce the RR fields

in a Spin(9, 1)× Spin(1, 9) covariant manner.

The equation of motion for φ does not involve the RR fields, so it is simply given by

the generalised scalar curvature (3.104)

R = 0. (4.27)

Using definition (3.40) and equation (3.54) we can write the equation of motion for the

RR fields in the familiar form

1
2
ΓADAF = dF = 0, (4.28)

3Note that
〈
F,Γab̄F

〉
∈ Γ((detT ∗M)⊗ C+ ⊗ C−) so |volG|−1 〈

F,Γab̄F
〉
∈ Γ(C+ ⊗ C−)
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where the first equality serves as a reminder that this definition of the exterior derivative is

fully covariant under Spin(d, d)× R+.

We also have the bosonic pseudo-action (2.5) which takes the simple form4

SB =
1

2κ2

∫ (
|volG| R + 1

4

〈
F,Γ(−)F

〉)
, (4.29)

using the density |volG|. Note that the Mukai pairing is a top-form which can be directly

integrated.

The fermionic action (2.8) is given by

SF = − 1

2κ2

∫
2 |volG|

[
ψ̄+āγbDbψ

+
ā + ψ̄−aγ b̄Db̄ψ

−
a

+ 2ρ̄+Dāψ
+ā + 2ρ̄−Daψ

−a

− ρ̄+γaDaρ
+ − ρ̄−γāDāρ

−

− 1
8

(
ρ̄+F#ρ

− + ψ̄+
ā γ

aF#γ
āψ−a

)]
.

(4.30)

Varying this with respect to the fermionic fields leads to the generalised geometry version

of (2.10)
γbDbψ

+
ā −Dāρ

+ = + 1
16
γbF#γāψ

−
b ,

γ b̄Db̄ψ
−
a −Daρ

− = + 1
16
γ b̄F T

# γaψ
+
b̄
,

γaDaρ
+ −Dāψ+

ā = − 1
16
F#ρ

−,

γāDāρ
− −Daψ−a = − 1

16
F T

# ρ
+,

(4.31)

and it is straightforward to verify that by applying a supersymmetry variation (4.17) we

recover the bosonic equations of motion (4.26)-(4.28).

We have thus rewritten all the supergravity equations from section 2.1 in terms of tor-

sion free generalised connections and therefore as manifestly covariant under local Spin(9, 1)×
Spin(1, 9) transformations.

4Up to integration by parts of the∇2φ term
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Chapter 5

Ed(d)×R+ generalised geometry

Following closely the construction given in chapter 3, here we introduce the generalised

geometry versions of the tangent space, frame bundle, Lie derivative, connections and tor-

sion, now in the more subtle context of an Ed(d)×R+ structure. The Ed(d) generalised

tangent space was first developed in [64] and independently in [65], where the exceptional

Courant bracket was also given for the first time. We slightly generalise those notions by

introducing an R+ factor, known as the “trombone symmetry” [101], as it allows one to

specify the isomorphism between the generalised tangent space and a sum of vectors and

forms. Physically, it is known to be related to the “warp factor” of warped supergravity

reductions. The need for this extra factor in the context of E7(7) geometries has already

been identified in [74, 81, 82, 102].

5.1 The Ed(d)×R+ generalised tangent space

We start by recalling the definition of the generalised tangent space for Ed(d)×R+ gener-

alised geometry [64, 65] and defining what is meant by the “generalised structure”.

Let M be a d-dimensional spin manifold with d ≤ 71. The generalised tangent space is

1We actually only consider 4 ≤ d ≤ 7, as for lower dimensions the relevant structures simplify to a point
that generalised geometry has little to add to the usual Riemannian description.
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isomorphic to a sum of tensor bundles

E ' TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ7T ∗M), (5.1)

where for d < 7 some of these terms will of course be absent. The isomorphism is not

unique. The bundle is actually described using a specific patching. If we write

V(i) = v(i) + ω(i) + σ(i) + τ(i)

∈ Γ(TUi ⊕ Λ2T ∗Ui ⊕ Λ5T ∗Ui ⊕ (T ∗Ui ⊗ Λ7T ∗Ui)),
(5.2)

for a section of E over the patch Ui, then

V(i) = edΛ(ij)+dΛ̃(ij)V(j), (5.3)

on the overlap Ui ∩ Uj where Λ(ij) and Λ̃(ij) are locally two- and five-forms respectively.

The exponentiated action is given by

v(i) = v(j),

ω(i) = ω(j) + iv(j)
dΛ(ij),

σ(i) = σ(j) + dΛ(ij) ∧ ω(j) + 1
2
dΛ(ij) ∧ iv(j)

dΛ(ij) + iv(j)
dΛ̃(ij),

τ(i) = τ(j) + jdΛ(ij) ∧ σ(j) − jdΛ̃(ij) ∧ ω(j) + jdΛ(ij) ∧ iv(j)
dΛ̃(ij)

+ 1
2
jdΛ(ij) ∧ dΛ(ij) ∧ ω(j) + 1

6
jdΛ(ij) ∧ dΛ(ij) ∧ iv(j)

dΛ(ij),

(5.4)

where we are using the notation of (A.5). Technically this defines E as a result of a series

of extensions
0 −→ Λ2T ∗M −→ E ′′ −→ TM −→ 0,

0 −→ Λ5T ∗M −→ E ′ −→ E ′′ −→ 0,

0 −→ T ∗M ⊗ Λ7T ∗M −→ E −→ E ′ −→ 0.

(5.5)

Note that while the v(i) globally are equivalent to a choice of vector, the ω(i), σ(i) and τ(i)

are not globally tensors.

Note that globally the collection Λ(ij) formally define a “connective structures on gerbe”
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(for a review see, for example, [86]). This essentially means there is a hierarchy of succes-

sive gauge transformations on the multiple intersections

Λ(ij) + Λ(jk) + Λ(ki) = dΛ(ijk) on Ui ∩ Uj ∩ Uk,

Λ(jkl) − Λ(ikl) + Λ(ijl) − Λ(ijk) = dΛ(ijkl) on Ui ∩ Uj ∩ Uk ∩ Ul.
(5.6)

If the supergravity flux is quantised, we will have g(ijkl) = eiΛ(ijkl) ∈ U(1) with the cocycle

condition

g(jklm)g
−1
(iklm)g(ijlm)g

−1
(ijkm)g(ijkl) = 1, (5.7)

on Ui ∩ · · · ∩ Um. For Λ̃(ij) there is a similar set of structures,

Λ̃(ij)−Λ̃(ik) + Λ̃(jk)

= dΛ̃(ijk) + 1
2

1
3!

(
Λ(ij) ∧ dΛ(jk) + antisymmetrisation in [ijk]

)
on Ui ∩ Uj ∩ Uk,

Λ̃(ijk)−Λ̃(ijl) + Λ̃(ikl) − Λ̃(jkl)

= dΛ̃(ijkl) + 1
2

1
4!

(
Λ(ijk) ∧ dΛ(kl) + antisymmetrisation in [ijkl]

)
on Ui ∩ Uj ∩ Uk ∩ Ul,

etc.

(5.8)

with the final cocycle condition defined on a octuple intersection Ui1 ∩ · · · ∩Ui8 . Note that

this does not give a gerbe structure, but a kind of “gerbe twisted by a gerbe”.

The bundle E encodes all the topological information of the supergravity background:

the twisting of the tangent space TM as well as that of the gerbes, which encode the

topology of the supergravity form-field potentials.

5.1.1 Generalised Ed(d)×R+ structure bundle and split frames

In all dimensions d ≤ 7 the fibre Ex of the generalised vector bundle at x ∈ M forms a

representation space of Ed(d)×R+. These are listed in table 5.1. As we discuss below, the

explicit action is defined using the GL(d,R) subgroup that acts on the component spaces
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TxM , Λ2T ∗xM , Λ5T ∗xM and T ∗xM ⊗ Λ7T ∗xM . Note that without the additional R+ action,

sections of E would transform as tensors weighted by a power of detT ∗M . Thus it is key

to extend the action to Ed(d)×R+ in order to define E directly as the extension (5.5).

Ed(d) group Ed(d)×R+ rep.

E7(7) 561

E6(6) 27′1
E5(5) ' Spin(5, 5) 16c1
E4(4) ' SL(5,R) 10′1

Table 5.1: Generalised tangent space and frame bundle representations where the subscript
denotes the R+ weight, where 11 ' (detT ∗M)1/(9−d)

Crucially, the patching defined in (5.3) is compatible with this Ed(d)×R+ action. This

means that one can define a generalised structure bundle as a sub-bundle of the frame

bundle F for E. Let {ÊA} be a basis for Ex, where the label A runs over the dimension

n of the generalised tangent space as listed in table 5.1. The frame bundle F formed from

all such bases is, by construction, a GL(n,R) principal bundle. We can then define the

generalised structure bundle as the natural Ed(d)×R+ principal sub-bundle of F compatible

with the patching (5.3) as follows.

Let êa be a basis for TxM and ea the dual basis for T ∗xM . We can use these to construct

an explicit basis of Ex as

{ÊA} = {êa} ∪ {eab} ∪ {ea1...a5} ∪ {ea,a1...a7}, (5.9)

where ea1...ap = ea1 ∧ · · · ∧ eap and ea,a1...a7 = ea ⊗ ea1 ∧ · · · ∧ ea7 . A generic section of E

at x ∈ Ui takes the form

V = V AÊA = vaêa + 1
2
ωabe

ab + 1
5!
σa1...a5e

a1...a5 + 1
7!
τa,a1...a7e

a,a1...a7 . (5.10)

As usual, a choice of coordinates on Ui defines a particular such basis where {ÊA} =

{∂/∂xm} ∪ {dxm ∧ dxn}+ . . . . We will denote the components of V in such a coordinate

frame by an index M , namely V M = (vm, ωmn, σm1...m5 , τm,m1...m7).

We then define a Ed(d)×R+ basis as one related to (5.9) by an Ed(d)×R+ transforma-
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tion

V A 7→ V ′A = MA
BV

B, ÊA 7→ Ê ′A = ÊB(M−1)BA, (5.11)

where the explicit action of M is defined in appendix E. The action has a GL(d,R) sub-

group that acts in a conventional way on the bases êa, eab etc, and includes the patching

transformation (5.3)2.

The fact that the definition of the Ed(d)×R+ action is compatible with the patching

means that we can then define the generalised Ed(d)×R+ structure bundle F̃ as a sub-

bundle of the frame bundle for E given by

F̃ =
{

(x, {ÊA}) : x ∈M , and {ÊA} is an Ed(d)×R+ basis of Ex
}
. (5.12)

By construction, this is a principal bundle with fibre Ed(d)×R+. The bundle F̃ is the

direct analogue of the frame bundle of conventional differential geometry, with Ed(d)×R+

playing the role of GL(d,R).

A special class of Ed(d)×R+ frames are those defined by a splitting of the generalised

tangent space E, that is, an isomorphism of the form (5.1). Let A and Ã be three- and

six-form (gerbe) connections patched on Ui ∩ Uj by

A(i) = A(j) + dΛ(ij),

Ã(i) = Ã(j) + dΛ̃(ij) − 1
2
dΛ(ij) ∧ A(j).

(5.13)

Note that from these one can construct the globally defined field strengths

F = dA(i),

F̃ = dÃ(i) − 1
2
A(i) ∧ F.

(5.14)

Given a generic basis {êa} for TM with {ea} the dual basis on T ∗M and a scalar function

2In analogy to the definitions for O(d, d)×R+ generalised geometry in chapter 3, we could equivalently
define an Ed(d)×R+ basis using invariants constructed from sections of E. For example, in d = 7 there is a
natural symplectic pairing and symmetric quartic invariant that can be used to define E7(7) (in the context of
generalised geometry see [65]). However, these invariants differ in different dimension d so it is more useful
here to define Ed(d) by an explicit action.
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∆, we define a conformal split frame {ÊA} for E by

Êa = e∆
(
êa + iêaA+ iêaÃ+ 1

2
A ∧ iêaA

+ jA ∧ iêaÃ+ 1
6
jA ∧ A ∧ iêaA

)
,

Êab = e∆
(
eab + A ∧ eab − jÃ ∧ eab + 1

2
jA ∧ A ∧ eab

)
,

Êa1...a5 = e∆ (ea1...a5 + jA ∧ ea1...a5) ,

Êa,a1...a7 = e∆ea,a1...a7 ,

(5.15)

while a split frame has the same form but with ∆ = 0. To see that A and Ã define an

isomorphism (5.1) note that, in the conformal split frame,

V (A,Ã,∆) = e−∆e−A(i)−Ã(i)V(i)

= vaêa + 1
2
ωabe

ab + 1
5!
σa1...a5e

a1...a5 + 1
7!
τa,a1...a7e

a,a1...a7

∈ Γ(TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ7T ∗M)),

(5.16)

since the patching implies e−A(i)−Ã(i)V(i) = e−A(j)−Ã(j)V(j) on Ui ∩ Uj .
The class of split frames defines a sub-bundle of F̃

Psplit =
{

(x, {ÊA}) : x ∈M , and {ÊA} is split frame
}
⊂ F̃ . (5.17)

Split frames are related by transformations (5.11) where M takes the form M = ea+ãm

with m ∈ GL(d,R). The action of a+ ã shifts A 7→ A+ a and Ã 7→ Ã+ ã. This forms a

parabolic subgroup Gsplit = GL(d,R) n (a+ ã)-shifts ⊂ Ed(d)×R+ where (a+ ã)-shifts

is the nilpotent group of order two formed of elements M = ea+ã. Hence Psplit is a Gsplit

principal sub-bundle of F̃ , that is a Gsplit-structure. This reflects the fact that the patching

elements in the definition of E lie only in this subgroup of Ed(d)×R+.

5.1.2 Generalised tensors

Generalised tensors are simply sections of vector bundles constructed from the generalised

structure bundle using different representations of Ed(d)×R+. We have already discussed



Chapter 5. Ed(d)×R+ generalised geometry 69

the generalised tangent space E. There are four other vector bundles which will be of

particular importance in the following. The relevant representations are summarised in

table 5.2.

dimension E∗ ad F̃ ⊂ E ⊗ E∗ N ⊂ S2E K ⊂ E∗ ⊗ ad F̃

7 56−1 1330 + 10 133+2 912−1
6 27−1 780 + 10 27′+2 351′−1
5 16c−1 450 + 10 10+2 144c−1
4 10−1 240 + 10 5′+2 40−1 + 15′−1

Table 5.2: Some generalised tensor bundles

The first is the dual generalised tangent space

E∗ ' T ∗M ⊕ Λ2TM ⊕ Λ5TM ⊕ (TM ⊗ Λ7TM). (5.18)

Given a basis {ÊA} for E we have a dual basis {EA} on E∗ and sections of E∗ can be

written as Z = ZAE
A.

Next we then have the adjoint bundle ad F̃ associated with the Ed(d)×R+ principal

bundle F̃

ad F̃ ' R⊕ (TM ⊗ T ∗M)⊕ Λ3T ∗M ⊕ Λ6T ∗M ⊕ Λ3TM ⊕ Λ6TM. (5.19)

By construction ad F̃ ⊂ E ⊗ E∗ and hence we can write sections as R = RA
BÊA ⊗ EB.

We write the projection on the adjoint representation as

×ad : E∗ ⊗ E → ad F̃ . (5.20)

It is given explicitly in (E.13).

We also consider the sub-bundle of the symmetric product of two generalised tangent

bundles N ⊂ S2E,

N ' T ∗M ⊕ Λ4T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M)

⊕ (Λ3T ∗M ⊗ Λ7T ∗M)⊕ (Λ6T ∗M ⊗ Λ7T ∗M).
(5.21)
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We can write sections as Y = Y ABÊA ⊗ ÊB with the projection

×N : E ⊗ E → N. (5.22)

It is given explicitly in (E.15).

Finally, we also need the higher dimensional representation K ⊂ E∗ ⊗ ad F̃ listed in

the last column of table 5.2. Decomposing under GL(d,R) one has

K ' T ∗M ⊕ S2TM ⊕ Λ2TM ⊕ (Λ2T ∗M ⊗ TM)0 ⊕ (Λ3TM ⊗ T ∗M)0

⊕ Λ4T ∗M ⊕ (Λ4TM ⊗ TM)0 ⊕ Λ5TM ⊕ (Λ2TM ⊗ Λ6TM)0

⊕ Λ7T ∗M ⊕ (TM ⊗ Λ7TM)⊕ (Λ7TM ⊗ Λ7TM)

⊕ (S2T ∗M ⊗ Λ7TM)⊕ (Λ4TM ⊗ Λ7TM),

(5.23)

where, in fact, the Λ5TM term is absent when d = 5. Note also that the zero subscripts are

defined such that

amn
n = 0, if a ∈ Γ((Λ2T ∗M ⊗ TM)0),

amnpp = 0, if a ∈ Γ((Λ3TM ⊗ T ∗M)0),

a[m1m2m3m4,m5] = 0, if a ∈ Γ((Λ4TM ⊗ TM)0),

am[n1,m2...,n7] = 0, if a ∈ Γ((Λ2TM ⊗ Λ6TM)0).

(5.24)

Since K ⊂ E∗ ⊗ ad F̃ we can write sections as T = T B
A CE

A ⊗ ÊB ⊗ EC .

5.1.3 The Dorfman derivative and Courant bracket

An important property of the generalised tangent space is that it admits a generalisation

of the Lie derivative which encodes the bosonic symmetries of the supergravity. Given

V = v + ω + σ + τ ∈ Γ(E), one can define an operator LV acting on any generalised

tensor, which combines the action of an infinitesimal diffeomorphism generated by v and

A- and Ã-field gauge transformations generated by ω and σ. Formally this gives E the

structure of a “Leibniz algebroid” [102].
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Acting on V ′ = v′ + ω′ + σ′ + τ ′ ∈ Γ(E), one defines the Dorfman derivative3 or

“generalised Lie derivative”

LV V
′ = Lvv′ + (Lvω′ − iv′dω) + (Lvσ′ − iv′dσ − ω′ ∧ dω)

+ (Lvτ ′ − jσ′ ∧ dω − jω′ ∧ dσ) .
(5.25)

Defining the action on a function f as simply LV f = Lvf , one can then extend the notion

of Dorfman derivative to a derivative on the space of Ed(d)×R+ tensors using the Leibniz

property.

To see this, first note that we can rewrite (5.25) in a more Ed(d)×R+ covariant way,

in analogy with the corresponding expressions for the conventional Lie derivative and the

Dorfman derivative inO(d, d)×R+ generalised geometry (3.31). One can embed the action

of the partial derivative operator via the map T ∗M → E∗ defined by the dual of the exact

sequences (5.5). In coordinate indices M , as viewed as mapping to a section of E∗, one

defines

∂M =

∂m for M = m

0 otherwise
. (5.26)

Such an embedding has the property that under the projection onto N∗ we have

∂f ×N∗ ∂g = 0, (5.27)

for arbitrary functions f, g. We will comment on this observation in section 5.1.5.

One can then rewrite (5.25) in terms of generalised objects as

LV V
′M = V N∂NV

′M − (∂ ×ad V )MNV
′N , (5.28)

where ×ad denotes the projection onto ad F̃ given in (5.20). Concretely, from (E.13) we

have

∂ ×ad V = r + a+ ã, (5.29)

3We are following [102] in keeping the same nomenclature for this object as the one we used for the
corresponding derivative in a Courant algebroid (3.34)
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where rmn = ∂nv
m, a = dω and ã = dσ. We see that the action actually lies in the adjoint

of theGsplit ⊂ Ed(d)×R+ group. This form of the Dorfman derivative can then be naturally

extended to an arbitrary Ed(d)×R+ tensor by taking that appropriate adjoint action on the

Ed(d)×R+ representation.

Note that we can also define a bracket by taking the antisymmetrisation of the Dorfman

derivative. This was originally given in [65] where it was called the “exceptional Courant

bracket”, and re-derived in [102]. It is given by

JV, V ′K = 1
2

(LV V
′ − LV ′V )

= [v, v′] + Lvω′ − Lv′ω − 1
2
d (ivω

′ − iv′ω)

+ Lvσ′ − Lv′σ − 1
2
d (ivσ

′ − iv′σ) + 1
2
ω ∧ dω′ − 1

2
ω′ ∧ dω

+ 1
2
Lvτ ′ − 1

2
Lv′τ + 1

2

(
jω ∧ dσ′ − jσ′ ∧ dω

)
− 1

2

(
jω′ ∧ dσ − jσ ∧ dω′

)
.

(5.30)

Note that the group generated by closed A and Ã shifts is a semi-direct product Ω3
cl(M) n

Ω6
cl(M) and corresponds to the symmetry group of gauge transformations in the super-

gravity. The full automorphism group of the exceptional Courant bracket is then the local

symmetry group of the supergravity Gsugra = Diff(M) n (Ω3
cl(M) n Ω6

cl(M)).

For U, V,W ∈ Γ(E), the Dorfman derivative also satisfies the Leibniz identity

LU(LVW )− LV (LUW ) = LLUVW, (5.31)

and henceE is a “Leibniz algebroid”. On first inspection, one might expect that the bracket

of JU, V K should appear on the RHS. However, the statement is correct since one can show

that

LJU,V KW = LLUVW, (5.32)

so that the RHS is automatically antisymmetric in U and V .
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5.1.4 Generalised Ed(d)×R+ connections and torsion

We now turn to the definitions of generalised connections and torsion. Generalised con-

nections on algebroids were first introduced by Alekseev and Xu [92, 88]. To study the

dynamics of E7(7) geometries with an eleven-dimensional supergravity origin and super-

symmetric backgrounds, related notions were also developed by [81, 82, 103, 104]. Here,

for the Ed(d)×R+ case, we follow much the same procedure and conventions as we did for

O(d, d)× R+ in chapter 3.

Generalised connections

We first define generalised connections that are compatible with the Ed(d)×R+ structure.

These are first-order linear differential operators D, such that, given W ∈ E, in frame

indices,

DMW
A = ∂MW

A + ΩM
A
BW

B. (5.33)

where Ω is a section of E∗ (denoted by the M index) taking values in Ed(d)×R+ (denoted

by the A and B frame indices), and as such, the action of D then extends naturally to any

generalised Ed(d)×R+ tensor.

Given a conventional connection ∇ and a conformal split frame of the form (5.15),

one can construct the corresponding generalised connection as follows. Given the isomor-

phism (5.16), by construction vaêa ∈ Γ(TM), 1
2
ωabe

ab ∈ Γ(Λ2T ∗M) etc and hence ∇mv
a

and ∇mωab are well-defined. The generalised connection defined by ∇ lifted to an action

on E by the conformal split frame is then simply

D∇MV =


(∇mv

a)Êa + 1
2
(∇mωab)Ê

ab

+ 1
5!

(∇mσa1...a5)Êa1...a5 + 1
7!

(∇mτa,a1...a7)Êa,a1...a7

for M = m,

0 otherwise.

(5.34)

Generalised torsion

We define the generalised torsion T of a generalised connection D in direct analogy to the

conventional definition and to the one we defined in the O(d, d)× R+ case.
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Let α be any generalised Ed(d)×R+ tensor and letLDV α be the Dorfman derivative (5.28)

with ∂ replaced by D. The generalised torsion is a linear map T : Γ(E) → Γ(ad(F̃ )) de-

fined by

T (V ) · α = LDV α− LV α, (5.35)

for any V ∈ Γ(E) and where T (V ) acts via the adjoint representation on α. Let {ÊA} be

an Ed(d)×R+ frame for E and {EA} be the dual frame for E∗ satisfying EA(ÊB) = δAB.

We then have the explicit expression

T (V ) = V C
[
Ω A
C B − Ω A

B C − EA(LÊC ÊB)
]
ÊA ×ad E

B. (5.36)

Note that we are projecting onto the adjoint representation on the A and B indices. Note

also that in a coordinate frame the last term vanishes.

Viewed as a generalised Ed(d)×R+ tensor we have T ∈ Γ(E∗ ⊗ ad F̃ ). However, the

form of the Dorfman derivative means that fewer components actually survive and we find

T ∈ Γ(K ⊕ E∗), (5.37)

where K was defined in table 5.2. Note that these representations are exactly the same

ones that appear in the embedding tensor formulation of gauged supergravities [105, 106],

including gaugings [107] of the so-called “trombone” symmetry [101].

As an example, we can calculate the torsion of the generalised connection D∇ defined

by a conventional connection ∇ and a conformal split frame as given in (5.34). Assuming

∇ is torsion-free we find

T (V ) = e∆
(
−ivd∆ + v ⊗ d∆− ivF + d∆ ∧ ω − ivF̃ + ω ∧ F + d∆ ∧ σ

)
, (5.38)

where we are using the isomorphism (5.19), and F and F̃ are the (globally defined) field

strengths of the potentials A and Ã given by (5.14).
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5.1.5 The “section condition”, Jacobi identity

and the absence of generalised curvature

Restricting our analysis to d ≤ 6, we find that the bundle N given in (5.21) measures the

failure of the generalised tangent bundle to satisfy the properties of a Lie algebroid. This

follows from the observation that the difference between the Dorfman derivative and the

exceptional Courant bracket (that is, the symmetric part of the Dorfman derivative), for

V, V ′ ∈ Γ(E), is precisely given by4

LV V
′ − JV, V ′K = 1

2
d (ivω

′ + iv′ω − ivσ′ − iv′σ + ω ∧ ω′) = ∂ ×E (V ×N V ′), (5.39)

where the last equality stresses the Ed(d) × R+ covariant form of the exact term. There-

fore, while the Dorfman derivative satisfies a sort of Jacobi identity via the Leibniz iden-

tity (5.31), the Jacobiator of the exceptional Courant bracket, like that of the O(d, d)

Courant bracket, does not vanish in general. In fact, it can be shown that

Jac(U, V,W ) = JJU, V K ,W K + c.p. = 1
3
∂ ×E (JU, V K×N W + c.p.) , (5.40)

where U, V,W ∈ Γ(E) and c.p. denotes cyclic permutations in U, V and W . We see that

both the failure of the exceptional Courant bracket to be Jacobi and the Dorfman derivative

to be antisymmetric is measured by an exact term given by the ×N projection. The proof

is essentially the same as the one for the O(d, d) case, see for example [11], section 3.25.

Similarly, and as was the case withO(d, d)×R+ generalised connections, for notions of

generalised curvature one finds the naive definition [DU , DV ]W −DJU,V KW is not a tensor

and its failure to be covariant is measured by the projection of the first two arguments to

N . Explicitly, taking U → fU , V → gV and W → hW for some scalar functions f, g, h,

4For d ≥ 7 the RHS can no longer be written covariantly as a derivative of an Ed(d) × R+ tensor built
from U and V . Similar complications occur in the discussion of the curvature below. This is the reason for
the restriction to d ≤ 6 in this section.

5Note that N ' R in the O(d, d) case.
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we obtain

[DfU , DgV ]hW −DJfU,gV KhW

= fgh
(
[DU , DV ]W −DJU,V KW

)
− 1

2
hD(f∂g−g∂f)×E(U×NV )W.

(5.41)

Note, however, that it is still possible to define analogues of the Ricci tensor and scalar when

there is additional structure on the generalised tangent space, as we see in the following

section.

Finally, we note that from the point of view of “double field theory”-like geometries [35,

74, 36], the equation

∂f ×N∗ ∂g = 0, (5.42)

for any functions f and g acquires a special interpretation. In these theories, one starts

by enlarging the spacetime manifold so that its dimension matches that of the generalised

tangent space. The partial derivative ∂Mf is then generically non-zero for all M . However,

the corresponding Dorfman derivative does not then satisfy the Leibniz property, nor is the

action for the generalised metric invariant. One must instead impose a “section condition”

or “strong constraint”. In the original O(d, d) double field theory the condition takes the

form (∂Af)(∂Ag) = 0. It implies that, in fact, the fields only depend on half the coordi-

nates. For exceptional geometries, the d = 4 case was thoroughly analysed in [79], and is

given by (5.42). Again it implies that the fields depend on only d of the coordinates.

It is in fact easy to show that satisfying (5.42) always implies the Leibniz property. Thus

it gives the section condition in general dimension. In generalised geometry it is satisfied

identically by taking ∂M of the form (5.26). However given the Ed(d)×R+ covariant form

of the Dorfman derivative (5.28), any subspace of E∗ in the same orbit under Ed(d)×R+

will also satisfy the Leibniz condition. Note further that any such subspace, like T ∗, is

invariant under an action of the parabolic subgroup Gsplit.

5.1.6 Generalised G structures

In what follows we will be interested in further refinements of the generalised frame bundle

F̃ . We define a generalised G structure P as a G ⊂ Ed(d)×R+ principle sub-bundle of the
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generalised structure bundle F̃ , that is

P ⊂ F̃ with fibre G. (5.43)

It picks out a special subset of frames that are related by G transformations. Typically

one can also define P by giving a set of nowhere vanishing generalised tensors {K(a)},
invariant under the action of G. By definition, the invariant tensors parametrise, at each

point x ∈M , an element of the coset

{K(a)}
∣∣
x
∈

Ed(d)×R+

G
. (5.44)

A generalised connection D is said to be compatible with the G structure P if it pre-

serves all the invariant tensors

DK(a) = 0 (5.45)

or, equivalently, if the derivative acts only in the G sub-bundle P .

A special class of generalisedG structures are those characterised by the maximal com-

pact subgroup Hd of Ed(d).

5.2 Hd structures and torsion-free connections

We now turn to the construction of the analogue of the Levi–Civita connection by consid-

ering additional structure on the generalised tangent space.

We consider Hd structures on E where Hd is the maximally compact6 subgroup of

Ed(d). These, along with their double covers7 H̃d are listed in table 5.3. We will then

6Note that one could equally consider the non-compact versions of Hd by switching the signature of the
metric in appendix F so that it defines an SO(p, q) subgroup of GL(d,R), and the corresponding results
then follow identically. For instance, if in d = 7 one chooses the SO(6, 1) signature, one would obtain the
non-compact SU∗(8) subgroup of E7(7) × R+, which would be relevant for discussing timelike reductions
of 11-dimensional supergravity [108].

7We give the double covers of the maximally compact group, since we will be interested in the analogues
of spinor representations. A necessary and sufficient condition for the existence of the double cover is the
vanishing of the 2nd Stiefel-Whitney class of the generalised tangent bundle [64]. As the underlying manifold
is spin by assumption, this is automatically satisfied.
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be interested in generalised connections D that preserve the Hd structure. We find it is

always possible to construct torsion-free connections of this type but they are not unique.

Nonetheless we show that, using the Hd structure, one can construct unique projections of

D, and that these can be used to define analogues of the Ricci tensor and scalar curvatures

with a local Hd symmetry.

Ed(d) Hd H̃d E ' E∗ adP⊥

E7(7) SU(8)/Z2 SU(8) 28 + 2̄8 35 + 3̄5 + 1
E6(6) USp(8)/Z2 USp(8) 27 42 + 1
E5(5) Spin(5)× Spin(5)/Z2 Spin(5)× Spin(5) (4,4) (5,5) + (1,1)
E4(4) SO(5) Spin(5) 10 14 + 1

Table 5.3: Maximal compact subgroups Hd of Ed(d), their double covers H̃d , and Hd rep-
resentations of the generalised tangent spaces and coset bundles adP⊥ = ad F̃ / adP in
various d dimensions

5.2.1 Hd structures and the generalised metric

An Hd structure on the generalised tangent space is the direct analogue of metric structure,

where one considers the set of orthonormal frames related by O(d) transformations. As

we saw in section 5.1.6, it formally defines an Hd principal sub-bundle of the generalised

structure bundle F̃ , that is

P ⊂ F̃ with fibre Hd. (5.46)

which is parametrised by an element of the coset (Ed(d)×R+)/Hd at each point on the

manifold. The corresponding representations are listed in table 5.3. Note that there is

always a singlet corresponding to the R+ factor.

One can construct elements of P concretely, that is, identify the analogues of “orthonor-

mal” frames, in the following way. Given an Hd structure, it is always possible to put the
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Hd frame in a conformal split form, namely,

Êa = e∆
(
êa + iêaA+ iêaÃ+ 1

2
A ∧ iêaA

+ jA ∧ iêaÃ+ 1
6
jA ∧ A ∧ iêaA

)
,

Êab = e∆
(
eab + A ∧ eab − jÃ ∧ eab + 1

2
jA ∧ A ∧ eab

)
,

Êa1...a5 = e∆ (ea1...a5 + jA ∧ ea1...a5) ,

Êa,a1...a7 = e∆ea,a1...a7 .

(5.47)

Any other frame is then related by an Hd transformation of the form given in appendix F.

Concretely given V = V AÊA ∈ Γ(E) expanded in such a frame, different frames are

related by

V A 7→ V ′A = HA
BV

B, ÊA 7→ Ê ′A = ÊB(H−1)BA, (5.48)

where H is defined in (F.4). Note that the O(d) ⊂ Hd action simply rotates the êa basis,

defining a set of orthonormal frames for a conventional metric g. It also keeps the frame in

the conformal split form. Thus the set of conformal split Hd frames actually forms an O(d)

structure on E, that is

(P ∩ Psplit) ⊂ F̃ with fibre O(d). (5.49)

One can also define the generalised metric acting on V = V AÊA ∈ Γ(E), expanded in

an Hd basis, one defines

G(V, V ) = v2 + 1
2!
ω2 + 1

5!
σ2 + 1

7!
τ 2, (5.50)

where v2 = vav
a, ω2 = ωabω

ab, σ2 = σa1...a5σ
a1...a5 , τ 2 = τa,a1...a7τ

a,a1...a7 , and indices are

contracted using the flat frame metric δab (as used to define the Hd subgroup in appendix F).

Note that G allows us to identify E ' E∗. Since, by definition, this is independent of the

choice of Hd frame, it can be evaluated in the conformal split representative (5.47). Hence

one sees explicitly that the metric is defined by the fields g, A, Ã and ∆ that determine the

coset element. Explicit expressions for the generalised metric in terms of the supergravity

fields in the coordinate frame have been worked out, for example, in [73].
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Note that the Hd structure embeds as Hd ⊂ Ed(d) ⊂ Ed(d)×R+. This mirrors the chain

of embeddings in Riemannian geometry SO(d) ⊂ SL(d,R) ⊂ GL(d,R) which allows

one to define a detT ∗M density that is SO(d) invariant,
√
g. Likewise, here we can define

a density that is Hd (and Ed(d)) invariant, corresponding to the choice of R+ factor which,

in terms of the conformal split frame, is given by8

|volG| =
√
g e(9−d)∆, (5.51)

as can be seen from appendix E.1.

5.2.2 Torsion-free, compatible connections

A generalised connection D is compatible with the Hd structure P ⊂ F̃ if

DG = 0, (5.52)

or, equivalently, if the derivative acts only in the Hd sub-bundle. In this subsection we will

show, in analogy to the construction of the Levi–Civita connection, that

Given an Hd structure P ⊂ F̃ there always exists a torsion-free, compatible

generalised connection D. However, it is not unique.

We construct the compatible connection explicitly by working in the conformal split Hd

frame (5.47). However the connection is Hd covariant, so the form in any another frame

simply follows from an Hd transformation.

Let ∇ be the Levi–Civita connection for the metric g. We can lift the connection to an

action on V ∈ Γ(E) by defining, as in (5.34),

D∇MV =


(∇mv

a)Êa + 1
2
(∇mωab)Ê

ab

+ 1
5!

(∇mσa1...a5)Êa1...a5 + 1
7!

(∇mτa,a1...a7)Êa,a1...a7

for M = m,

0 otherwise.

(5.53)

8In general, |volG| can be related to the determinant of the metric by detG = |volG|− dimE/(9−d).
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Since ∇ is compatible with the O(d) ⊂ Hd subgroup, it is necessarily an Hd -compatible

connection. However, D∇ is not torsion-free. From (5.38), since ∇ is torsion-free (in the

conventional sense), we have

T (V ) = e∆
(
−ivd∆ + v ⊗ d∆− ivF + d∆ ∧ ω − ivF̃ + ω ∧ F + d∆ ∧ σ

)
. (5.54)

To construct a torsion-free compatible connection we simply modify D∇. A generic

generalised connection D can always be written as

DMW
A = D∇MW

A + ΣM
A
BW

B. (5.55)

If D is compatible with the Hd structure then

Σ ∈ Γ(E∗ ⊗ adP ), (5.56)

that is, it is a generalised covector taking values in the adjoint of Hd . The problem is then

to find a suitable Σ such that the torsion of D vanishes. Fortunately, decomposing under

Hd one finds that all the representations that appear in the torsion are already contained in

Σ. Thus a solution always exists, but is not unique. The relevant representations are listed

in table 5.4. As Hd tensor bundles one has

E∗ ⊗ adP ' (K ⊕ E∗)⊕ U, (5.57)

so that the torsion T ∈ Γ(K ⊕ E∗) and the unconstrained part of Σ is a section of U .

dimension K ⊕ E∗ U ' (E∗ ⊗ adP )/(K ⊕ E∗)
7 28 + 2̄8 + 36 + 3̄6 + 420 + ¯420 1280 + ¯1280
6 27 + 36 + 315 594
5 (4,4) + (4,4) + (16,4) + (4,16) (20,4) + (4,20)
4 1 + 5 + 10 + 14 + 35′ 35

Table 5.4: Components of the connection Σ that are constrained by the torsion, T , and the
unconstrained ones, U , as Hd representations
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The solution for Σ can be written very explicitly as follows. Contracting with V ∈ Γ(E)

so Σ(V ) ∈ adP and using the basis for the adjoint of Hd given in (F.2) and (F.3) we have

Σ(V )ab = e∆
(

2
(

7−d
d−1

)
v[a∂b]∆ + 1

4!
ωcdF

cd
ab + 1

7!
σc1...c5F̃

c1...c5
ab + C(V )ab

)
,

Σ(V )abc = e∆
(

6
(d−1)(d−2)

(d∆ ∧ ω)abc + 1
4
vdFdabc + C(V )abc

)
,

Σ(V )a1...a6 = e∆
(

1
7
vbF̃ba1...a6 + C(V )a1...a6

)
,

(5.58)

where the ambiguous part of the connection Q ∈ Γ(E∗ ⊗ adP ) projects to zero under the

map to the torsion representation K ⊕ E∗, that is Q ∈ Γ(U). Using the embedding of H̃d

in Cliff(d;R) given in (F.8) we can thus write the full connection as

Da = e∆
(
∇a + 1

2

(
7−d
d−1

)
(∂b∆)γa

b − 1
2

1
4!
Fab1b2b3γ

b1b2b3 − 1
2

1
7!
F̃ab1...b6γ

b1...b6 + /Qa

)
,

Da1a2 = e∆
(

1
4

2!
4!
F a1a2

b1b2γ
b1b2 − 3

(d−1)(d−2)
(∂b∆)γa1a2b + /Qa1a2

)
,

Da1...a5 = e∆
(

1
4

5!
7!
F̃ a1...a5

b1b2γ
b1b2 + /Qa1...a5

)
,

Da,a1...a7 = e∆ (/Qa,a1...a7) ,

(5.59)

where

/Qm = 1
2

(
1
2!
Qm,abγ

ab − 1
3!
Qm,a1a2a3γ

a1a2a3 − 1
6!
Qm,a1...a6γ

a1...a6
)
,

/Qm1m2 = 1
2

(
1
2!
Qm1m2

abγ
ab − 1

3!
Qm1m2

a1a2a3γ
a1a2a3 − 1

6!
Qm1m2

a1...a6γ
a1...a6

)
,

etc.

(5.60)

is the embedding of the ambiguous part of the connection.

5.2.3 Unique operators and generalised Hd curvatures

We now turn to the construction of unique operators and curvatures from the torsion-free

and H̃d -compatible connection D constructed in the previous section. To keep the H̃d

covariance manifest in all dimensions, we will necessarily have to maintain the discussion

in this section fairly abstract. However, once we reach the construction of the supergravity

in chapter 6 it will be possible to make the concepts discussed here much more concrete.
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Given a bundle X transforming as some representation of H̃d , we define the map

QX : U ⊗X −→ E∗ ⊗X, (5.61)

via the embedding U ⊂ E∗ ⊗ adP and the adjoint action of adP on X . We then have the

projection

PX : E∗ ⊗X −→ E∗ ⊗X
ImQX

. (5.62)

Recall that the ambiguous part Q of the connection D is a section of U , which acts on X

via the map QX . If α ∈ Γ(X), then, by construction, PX(D ⊗ α) is uniquely defined,

independent of Q.

We can construct explicit examples of such operators as follows. Consider two real

H̃d bundles S and J , which we refer to as the “spinor” bundle and the “gravitino” bundle

respectively, since, as we will see in the following chapter, the supersymmetry parameter

and the gravitino field in supergravity are sections of them. The relevant H̃d representations

are listed in table 5.5. Note that the spinor representation is simply the Cliff(d;R) spinor

H̃d S J

SU (8) 8 + 8̄ 56 + 5̄6
USp(8) 8 48
USp(4)× USp(4) (4,1) + (1,4) (4,5) + (5,4)
USp(4) 4 16

Table 5.5: Spinor and gravitino representations in each dimension

representation using the embedding (F.8).

One finds that under the projection PX we have

PS(E∗ ⊗ S) ' S ⊕ J,

PJ(E∗ ⊗ J) ' S ⊕ J.
(5.63)

Therefore, for any ε ∈ Γ(S) and ψ ∈ Γ(J), one has that the following are unique for any
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torsion-free connection
D ×J ε, D ×S ε,

D ×J ψ, D ×S ψ,
(5.64)

where ×X denotes the projection onto the X bundle.

We would now like to define measures of generalised curvature. As was mentioned

in section 5.1.5, the natural definition of a Riemann curvature does not result in a tensor.

Nonetheless, for a torsion-free, H̃d -compatible connection D there does exist a generalised

Ricci tensor RAB, and it is a section of the bundle

adP⊥ = ad F̃ / adP ⊂ E∗ ⊗ E∗, (5.65)

where the last relation follows because, as representations of Hd , E ' E∗. It is not im-

mediately apparent that we can make such a definition, but RAB can in fact be constructed

from compositions of the unique operators (5.64) as

D ×J (D ×J ε) +D ×J (D ×S ε) = R0 · ε,

D ×S (D ×J ε) +D ×S (D ×S ε) = Rε,

(5.66)

where R and R0
AB provide the scalar and non-scalar parts of RAB respectively9. The ex-

istence of expressions of this type is a non-trivial statement. By computing in the split

frame, it can be shown that the LHS is linear in ε, and since ε and the LHS are mani-

festly covariant, these expressions define a tensor. We will write the components explicitly

in equation (6.16). This calculation further provides the non-trivial result that RAB is re-

stricted to be a section of adP⊥, rather than a more general section of (S ⊗ J) ⊕ R. In

the context of supergravity, this calculation exactly corresponds to the closure of the su-

persymmetry algebra on the fermionic equations of motion, as will be discussed further

in section 6.2. Finally, since it is built from unique operators, the generalised curvature is

automatically unique for a torsion-free compatible connection.

The expressions (5.66) can be written with a different sequence of projections. This

9Note that adP⊥ ⊂ (S ⊗ J)⊕R and the H̃d structure gives an isomorphism S ' S∗ and J ' J∗. Thus,
as in the first line of (5.66), we can also view R0 as a map from S to J .
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helps elucidates the nature of the curvature in terms of certain second-order differential op-

erators. In conventional differential geometry the commutator of two connections [∇m,∇n]

has no second-derivative term simply because the partial derivatives commute. This is a

necessary condition for the curvature to be tensorial. In Ed(d) indices one can similarly

write the commutator of two generalised derivatives formally as (D ∧D)AB = [DA, DB].

More precisely, acting on an Ed(d)×R+ vector bundle X we have

(D ∧D) : X → Λ2E∗ ⊗X. (5.67)

Since again the partial derivatives commute this operator contains no second-order deriva-

tive term, and so can potentially be used to construct a curvature tensor. However, in

Ed(d)×R+ generalised geometry we also have ∂f×N∗ ∂g = 0 for any f and g, and so we

can take the projection to the bundle N∗ defined earlier, giving a similar operator

(D×N∗D) : X → N∗ ⊗X, (5.68)

which will again contain no second-order derivatives. One thus expects that these two

operators, which can be defined for an arbitrary Ed(d)×R+ connection, should appear in

any definition of generalised curvature. Given an H̃d structure and a torsion-free compatible

connection D, they indeed enter the definition of RAB. Using H̃d covariant projections one

finds
(D ∧D)×J ε+ (D×N∗D)×J ε = R0 · ε,

(D ∧D)×S ε+ (D×N∗D)×S ε = Rε.
(5.69)

This structure suggests there will be similar definitions of curvature in terms of the oper-

ators (D ∧ D) and (D×N∗D) independent of the representation on which they act, and

potentially without the need for additional structure.
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Chapter 6

Hd generalised gravity

We are now able to give a complete rewriting in the language of generalised geometry of

the restricted eleven-dimensional supergravity from section 2.2. This will result in a unified

formulation which has the larger bosonic symmetries of the theory manifest. Specifically,

the local symmetry of the theory is Spin(10− d, 1)× H̃d where H̃d is the double-cover of

the maximal compact subgroup of Ed(d).

6.1 Supergravity degrees of freedom

Bosons

Consider then the maximally compact subgroup of Ed(d), Hd. As we saw in section 5.2.1,

the choice of such a structure is parametrised, at each point on the manifold, by a Rieman-

nian metric g, a three-form A and a six-form Ã gauge fields, and a scalar ∆, that is

{g, A, Ã,∆} ∈
Ed(d)×R+

Hd

. (6.1)

These are precisely the set of bosonic fields in the restricted theory. We thus have that all

the bosonic fields get unified in the generalised metric G defined in (5.50).

As in [30], the infinitesimal bosonic symmetry transformation is naturally encoded as
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the Dorfman derivative by V ∈ Γ(E)

δVG = LVG, (6.2)

and the algebra of these transformations is given by [LU , LV ] = LLUV = −LLV U = LJU,V K

where the bracket JU, V K is the antisymmetrisation of the Dorfman derivative (5.30).

Fermions

The fermionic degrees of freedom form spinor representations of H̃d , the double cover1

of Hd [59, 60, 109]. Let S and J denote the bundles associated to the representations of

H̃d listed in table 5.5. The fermion fields ψ, ρ and the supersymmetry parameter ε of the

restricted theory are sections

ψ ∈ Γ(J), ρ ∈ Γ(S), ε ∈ Γ(S). (6.3)

However, the restricted fermions also transform as spinors of the flat R10−d,1 space. As

discussed in section 2.2.2, the simplest formulation is to view them as eleven-dimensional

spinors and use the embedding Spin(10 − d, 1) × H̃d ⊂ Cliff(10, 1;R) described in ap-

pendix F.3. This will allow us to write expressions directly comparable to the ones in

section 2.2.2. There is, however, a price to pay, as there are actually two distinct ways of

realising the action of H̃d on the Cliff(10, 1;R) spinor bundle Ŝ, related by a change of sign

of the gamma matrices. Given χ± ∈ Γ(Ŝ) and N ∈ Γ(adP ) we have the two actions

N · χ̂± = 1
2

(
1
2!
nabΓ

ab ± 1
3!
babcΓ

abc − 1
6!
b̃a1...a6Γa1...a6

)
χ̂±. (6.4)

If one denotes as Ŝ± the bundle of spinors transforming under the two actions, one finds,

for even d, that the two representations are equivalent, and Ŝ ' Ŝ+ ' Ŝ−. However for

odd d they are distinct and the spinor bundle decomposes Ŝ ' Ŝ+⊕ Ŝ−. The same applies

to spin-3
2

bundles Ĵ±. The Spin(10− d, 1)× H̃d representations of the corresponding four

1Note that, as discussed in appendix C.1, H̃d can be defined abstractly for all d ≤ 8 as the subgroup of
Cliff(d;R) preserving a particular involution of the algebra.
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bundles listed in table 6.1 (see also [110]).

d Ŝ− Ŝ+ Ĵ− Ĵ+

7 (2,8) + (2̄, 8̄) (2, 8̄) + (2̄,8) (2,56) + (2̄, 5̄6) (2, 5̄6) + (2̄,56)
6 (4,8) (4,8) (4,48) (4,48)
5 (4,4,1) + (4̄,1,4) (4,1,4) + (4̄,4,1) (4,4,5) + (4̄,5,4) (4,5,4) + (4̄,4,5)
4 (8,4) (8,4) (8,16) (8,16)

Table 6.1: Spinor and gravitino as Spin(10− d, 1)× H̃d representations. Note that when d
is even the positive and negative representations are actually equivalent.

Finally, we find that the supergravity fields of section 2.2.2 can be identified as follows,

ε̂− = e−∆/2 εsugra ∈ Γ(Ŝ−),

ρ̂+ = e∆/2 ρsugra ∈ Γ(Ŝ+),

ψ̂−a = e∆/2 ψsugra
a ∈ Γ(Ĵ−).

(6.5)

Note that, due to the warping of the metric, the precise maps between the fermion fields

as viewed in the geometry and in the supergravity description involve a conformal rescal-

ing. This is of course purely conventional, since one could just as easily perform field

redefinitions at the supergravity level. We chose, however, to maintain the conventions in

section 2.2.2 as familiar as possible and make the identification at this point.

6.2 Supergravity operators

The differential operators present in the supergravity equations will be built out of gen-

eralised connections D which are simultaneously torsion-free and Hd compatible. As we

saw in chapter 5, there always exists such a torsion-free, metric compatible connection but,

unlike the Levi–Civita connection, it is not unique. Instead, we were led to define projec-

tors which result in unique operators when applied to D. We identified four such maps in

section 5.2.3, and they turned out to be directly related to the representations of the fermion

fields. Since we are interested in comparing with the supergravity expressions, we can take

the embedding (F.12) and consider the natural action of D on the Spin(10 − d, 1) × H̃d
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representations listed in table 6.1. The four projections then split into eight

D ×Ŝ∓ : Ŝ± → Ŝ∓, D ×Ĵ± : Ŝ± → Ĵ±,

D ×Ĵ∓ : Ĵ± → Ĵ∓, D ×Ŝ± : Ĵ± → Ŝ±.
(6.6)

In section 5.2.3 we kept the discussion fairly abstract, but now we can check explicitly that

the projected derivatives are indeed independent of the undetermined components of the

connection Q, by decomposing under Spin(d) ⊂ H̃d and taking the torsion-free connec-

tion (5.59). Using the formulae for the projections given in (F.18) and (F.19), and already

applying the operators to the supersymmetry parameter ε̂− in (6.5), we then find for the

first two

D ×Ŝ+ ε̂
− = e∆/2

(
/∇+ 9−d

2
(/∂∆)− 1

4
/F − 1

4
/̃F
)
εsugra,

(D ×Ĵ− ε̂
−)a = e∆/2

(
∇a + 1

288
(Γa

b1...b4 − 8δa
b1Γb2b3b4)Fb1...b4

− 1
12

1
6!
F̃ab1...b6Γb1...b6

)
εsugra.

(6.7)

From derivatives of elements Γ(Ĵ±) we obtain the second set of unique operators which

using (F.20) and (F.21) as applied to ψ̂− of (6.5), take the form

D ×Ŝ− ψ̂
− = e3∆/2

[
∇a − 1

10−dΓab∇b + (10− d)∂a∆− Γab∂b∆

− 1
4

1
3!
F a

b1b2b3Γb1b2b3 + 1
4

1
10−d

1
4!

Γab1...b4F
b1...b4

− 1
4

1
6!
F̃ a

b1...b6Γb1...b6
]
ψsugra
a ,

(D ×Ĵ+ ψ̂
−)a = −e3∆/2

[
Γc(∇c + 11−d

2
∂c∆)δa

b + 2
9−dΓb(∇a + 11−d

2
∂a∆)

− 1
12

(3 + 2
9−d)/Fδa

b + 1
3

10−d
9−d

1
2!
Fa

b
cdΓ

cd

− 1
3

1
9−d

1
3!
Fa

c1...c3Γbc1...c3 + 1
6

10−d
9−d

1
3!
F bc1...c3Γac1...c3

− 1
6

1
9−d

1
4!
Fc1...c4Γa

bc1...c4 + 1
4

1
5!
F̃a

b
c1...c5Γc1...c5

]
ψsugra
b .

(6.8)

These four operators, all constructed from the same connection, will now enable us to

rewrite all the supergravity equations of section 2.2.2.
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6.3 Supersymmetry algebra

Comparing with (2.35), we immediately see that the operators (6.6) give precisely the su-

persymmetry variations of the two fermion fields

δψ̂− = D ×Ĵ− ε̂
−,

δρ̂+ = D ×Ŝ+ ε̂
−.

(6.9)

Since the bosons arrange themselves into the generalised metric, one expects that their

supersymmetry variations (2.36) are given by the variation of G. In fact, the most conve-

nient object to consider is G−1δG which is naturally a section of the bundle ad(P )⊥, listed

in table 5.3. One has the isomorphism (F.5)

ad(P )⊥ ' R⊕ S2T ∗M ⊕ Λ3T ∗M ⊕ Λ6T ∗M (6.10)

and we can identify the component variations of the generalised metric, as written in the

split frame, as
(G−1δG) = −2δ∆,

(G−1δG)ab = δgab

(G−1δG)abc = −δAabc,

(G−1δG)a1...a6 = −δÃa1...a6 .

(6.11)

One finds that the supersymmetry variations of the bosons (2.36) can be written in the H̃d

covariant form

G−1δG = (ψ̂−× adP⊥ ε̂
−) + (ρ̂+× adP⊥ ε̂

−), (6.12)

where × adP⊥ denotes the projection to ad(P )⊥ given in (F.15) and (F.16).
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6.4 Generalised Curvatures and the Equations of Motion

To realise the fermionic equations of motion one uses the unique projections (6.6). We can

then formulate the two equations (2.33) and (2.34) as, respectively,

−D ×Ĵ+ ψ̂
− − 11−d

9−d D ×Ĵ+ ρ̂
+ = 0,

−D ×Ŝ− ρ̂
+ −D ×Ŝ− ψ̂

− = 0.
(6.13)

Note that ρ̂+ is embedded with a different conformal factor to ε̂− and also is a section of

Ŝ+ rather than Ŝ−. This means we have

D ×Ŝ− ρ̂
+ = −e3∆/2

(
/∇+ 11−d

2
(/∂∆) + 1

4
/F − 1

4
/̃F
)
ρsugra

(D ×Ĵ+ ρ̂
+)a = e3∆/2

[
(∇a + ∂a∆)− 1

288
(Γa

b1...b4 − 8δa
b1Γb2b3b4)Fb1...b4

− 1
12

1
6!
F̃ab1...b6Γb1...b6

]
ρsugra

(6.14)

From these we can now find explicitly the generalised Ricci tensor RAB we defined

in (5.66). Recall that the supersymmetric variation of the fermionic equations of motion

vanishes up to the bosonic equations of motion (6.13). Anticipating that the bosonic equa-

tions of motion will correspond to RAB = 0, one way to define generalised Ricci tensor

is via the variation of (6.13) under (6.9). By construction this gives RAB as a section of

adP⊥ ⊂ E∗ ⊗ E∗, the same space as variations of the generalised metric δG, in complete

analogy to the conventional metric and Ricci tensor. Defining RAB as an H̃d tensor we

write
−D ×Ĵ+ (D ×Ĵ− ε̂

−)− 11−d
9−d D ×Ĵ+ (D ×Ŝ+ ε̂

−) = R0 · ε̂−,

D ×Ŝ− (D ×Ĵ− ε̂
−) +D ×Ŝ− (D ×Ŝ+ ε̂

−) = R ε̂−,
(6.15)

for any ε̂− ∈ Γ(Ŝ−) and where R and R0
AB are the scalar and non-scalar parts of RAB

respectively. The action of R0
AB on ε̂− that appears of the right-hand side of (6.15) is given

explicitly in (F.11).
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In components, using the notation of (F.5), we find

R = e2∆
[
R− 2(c− 1)∇2∆− c(c− 1)(∂∆)2 − 1

2
1
4!
F 2 − 1

2
1
7!
F̃ 2
]

Rab = e2∆
[
Rab − c∇a∇b∆− c(∂a∆)(∂b∆)

− 1
2

1
4!

(
4Fac1c2c3Fb

c1c2c3 − 1
3
gabF

2
)

− 1
2

1
7!

(
7F̃ac1...c6F̃b

c1...c6 − 2
3
gabF̃

2
) ]
,

Rabc = 1
2
e2∆ ∗

[
e−c∆d ∗ (ec∆F )− F ∧ ∗F̃

]
abc
,

Ra1...a6 = 1
2
e2∆ ∗

[
e−c∆d ∗ (ec∆F̃ )

]
a1...a6

,

(6.16)

where c = 11 − d. The generalised Ricci tensor is manifestly uniquely determined and

comparing with (2.31) we see that the bosonic equations of motion become simply

RAB = 0. (6.17)

The bosonic action (2.30) is given by the generalised curvature scalar, integrated with

the volume form (5.51)

SB =
1

2κ2

∫
|volG|R. (6.18)

Finally, the fermionic action can be written using the natural invariant pairings of the terms

in (6.13) with the fermionic fields. Using the expressions (F.14) and (F.13) for the spinor

bilinears, we find that (2.32) can be rewritten as

SF =
1

κ2

∫
|volG|

[
− 〈ψ̂−, D ×Ĵ+ ψ̂

−〉 − c
c−2
〈ψ̂−, D ×Ĵ+ ρ̂

+〉

+ c(c−1)
(c−2)2 〈ρ̂+, D ×Ŝ− ψ̂

−〉+ c(c−1)
(c−2)2 〈ρ̂+, D ×Ŝ− ρ̂

+〉
]
.

(6.19)

6.5 Explicit Hd constructions

In the previous section, we gave the generic construction of the supergravity in terms of

generalised geometry, valid in all d ≤ 7. The theory has a local H̃d symmetry, however this

was not explicit since we used a Cliff(10, 1;R) formulation for the fermionic fields.
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For completeness, we now work out explicitly two examples, in d = 4 and d = 7, where

the local Spin(5) and SU (8) symmetries are manifest. Correspondingly, in this section we

treat the fermions slightly differently from the previous ones. Whereas before we kept all

spinors as Cliff(10, 1;R) objects, we now want to make their H̃d nature more explicit. In

order to make this possible, one has to decompose the eleven-dimensional spinors follow-

ing the procedures outlined in appendix D and embed the Cliff(d;R) expressions into H̃d

representations, according to appendix F.2. We will then keep the external spinor indices

of the fermion fields hidden and treat them as sections of the genuine H̃d bundles S and J .

6.5.1 d = 4 and H̃4 = Spin(5)

GL+(5,R) generalised geometry

In four dimensions, we haveE4(4)×R+ ' SL(5,R)×R+ ' GL+(5,R). We can then write

the generalised geometry explicitly in terms of indices i, j, k, · · · = 1, . . . , 5 transforming

under GL+(5,R).

Generalised vectors V transform in the antisymmetric 10 representation. We can intro-

duce a basis {Êii′} (locally a section of the generalised structure bundle F̃ ) transforming

under GL+(5,R) so that

V = 1
2
V ii′Êii′ . (6.20)

In the conformal split frame (5.15), we can identify [64, 79]

Êa5 = e∆ (êa + iêaA) ,

Êab = 1
2
e∆εabcde

cd,
(6.21)

where ε is the numerical totally antisymmetric symbol. Equivalently

V a5 = va,

V ab = 1
2
εabcdωcd,

(6.22)
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where va and ωab are as in (5.16). In this frame the partial derivative (5.26) ∂ii′ has the form

∂a5 = 1
2
e∆∂a,

∂ab = 0.
(6.23)

Note that there is also a generalised tensor bundle W which transforms in the fundamental

5 representation of GL+(5,R). One finds

W ' (detT ∗M)1/2 ⊗ (TM ⊕ detTM) , (6.24)

and a choice of basis {Êii′} defines a basis {Êi} of W where K = KiÊi ∈ Γ(W ), such

that

Êii′ = Êi ∧ Êi′ , (6.25)

sinceE ' Λ2W , and where we use the four-dimensional isomorphism detT ∗M⊗Λ2TM '
Λ2T ∗M .

With this notation we can then use the GL+(5,R) adjoint action explicitly to write

the Dorfman derivative (5.28) of a generalised vector. It takes its simplest form in the

coordinate frame, where it reads

LVW
ij = V kk′∂kk′W

ij + 4
(
∂kk′V

k[i
)
W j]k′ +

(
∂kk′V

kk′
)
W ij. (6.26)

This form of the d = 4 Dorfman derivative was given, without the R+ action, in [79]2. We

can then write a generic generalised connection as

Dii′V
jj′ = ∂ii′V

jj′ + Ωii′
j
kV

kj′ + Ωii′
j′
kV

jk, (6.27)

where the j and k indices of Ωii′
j
k parametrise an element of the adjoint of GL+(5,R).

2For the antisymmetrisation of LVW (which is simply the Courant bracket for two-forms [9]) in SL(5,R)
indices see also [111].
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Spin(5) structures and supergravity

In four dimensions Hd ' SO(5) and we define the sub-bundle P ⊂ F̃ of SO(5) frames as

the set of frames where the generalised metric (5.50) can be written as

G(V,W ) = 1
2
δijδi′j′V

ii′W jj′ , (6.28)

where δij is the flat SO(5) metric with which we can raise and lower indices frame indices.

Equivalently we can think of the generalised metric as defining orthonormal frames on the

5-representation bundle W .

Upon decomposing the fermionic fields of the supergravity according to D.1, one finds

that they embed into the spinor and traceless vector-spinor representations of Spin(5). Our

conventions regarding Cliff(4;R) and Cliff(5;R) algebras are given in appendix C.5 and

we leave Spin(5) spinor indices implicit throughout. We define

ε = e−∆/2εsugra ∈ Γ(S),

ρ = e∆/2γ(4)ρsugra ∈ Γ(S),

ψi =

e∆/2γ(4)
(
δba − 2

5
γaγ

b
)
ψsugra
b for i = a

−3
5
e∆/2γaψsugra

a for i = 5
∈ Γ(J).

(6.29)

Crucially, note the appearance of conformal factors in the definitions, in similar fashion

to (6.5). Recall also that in four dimensions we have S ' S+ ' S−, where the action by

γ(4) in the second line of (6.29) realises the second isomorphism.

A generalised connection is compatible with the generalised metric (6.28) if DG = 0.

In terms of the connection (6.27) in frame indices this implies

Ωii′ jj′ = −Ωii′ j′j (6.30)

where indices are lowered using the SO(5) metric δij . For such SO(5)-connections, we

can define the generalised spinor derivative, given χ ∈ Γ(S)

Dii′χ =
(
∂ii′ +

1
4
Ωii′jj′ γ̂

jj′
)
χ. (6.31)
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An example of such a generalised connection is the one (5.53) defined by the Levi–Civita

connection∇, where, acting on χ ∈ Γ(S), we have

D∇ii′χ =


1
2
e∆
(
∂a + 1

4
ωa bcγ̂

bc
)
χ if i = a and i′ = 5

0 if i = a and i′ = b
, (6.32)

where ωa bc is the usual spin-connection.

We can construct a torsion-free compatible connection D, by shifting D∇ by an addi-

tional connection piece Σ[ii′][jj′], such that its action on χ ∈ Γ(S) is given by

Dii′χ = D∇ii′χ+ 1
4
Σii′jj′ γ̂

jj′χ. (6.33)

The connection is torsion-free if

Σii′jj′ = 1
2

(
δj[iΣi′]j′ − δj′[iΣi′]j

)
+Qii′jj′ , (6.34)

where Qii′jj′ is the undetermined part – traceless and symmetric under exchange of pairs

of indices, so it transforms in the 35 of SO(5), see table 5.4 – and

Σa5 = −Σ5a = −2e∆∂a∆,

Σab = − 1
12

e∆Fδab,

Σ55 = 7
12

e∆F,

(6.35)

with F = 1
4!
εabcdFabcd. The projections (6.6) can be written in Spin(5) indices as

D ×S ε = −γ̂ijDijε,

(D ×J ε)i = 2(γ̂jDijε− 1
5
γ̂iγ̂

jj′Djj′ε),

(D ×J ψ)i = −γ̂jj′Djj′ψi + 12
5
Dijψ

j − 8
5
γ̂i
jDjj′ψ

j′ ,

D ×S ψ = −5
3
γ̂iDijψ

j.

(6.36)

and are unique, independent of Qii′jj′ .

The supersymmetry variations of the fermions (6.9) can then be written in a manifestly
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Spin(5) covariant form

δψi = (D ×J ε)i = 2(γ̂jDijε− 1
5
γ̂iγ̂

jj′Djj′ε),

δρ = D ×S ε = −γ̂ijDijε,
(6.37)

whereas the variation of the bosons (6.12) is given by

δG[ii′][jj′] = 1
2

(
δHi[jδj′]i′ − δHi′[jδj′]i

)
, (6.38)

with

δHij = −2ε̄γ̂(iψj) − 1
5
δij ε̄ρ. (6.39)

Turning to the equations of motion, from (6.13), we find that the fermionic equations

take the form

−14
5

(γ̂jDijρ− 1
5
γ̂iγ̂

jj′Djj′ρ)− γ̂jj′Djj′ψi + 12
5
Dijψ

j − 8
5
γ̂i
jDjj′ψ

j′ = 0,

γ̂ijDijρ+ 5
3
γ̂iDijψ

j = 0.
(6.40)

The generalised Ricci tensor (6.15), after some rearrangement and gamma matrix algebra,

can be written as

R0

ij γ̂
jε = 4

5
γ̂j
[
Dik, Dj

k
]
ε− 2γ̂jkl [Dij, Dkl] ε− 56

25
γ̂i
jk
[
Djl, Dk

l
]
ε

− 16
5
γ̂jklD[ijDkl]ε+ 8

5
γ̂i
j1...j4D[j1j2Dj3j4]ε,

5
24
Rε = 5

3
γ̂ii
′jj′Dii′Djj′ε− 5

3
γ̂ij[Dik, Dj

k]ε.

(6.41)

Note that in this form one can clearly see that the curvatures cannot be obtained simply

from the commutator of two generalised covariant derivatives. Instead, one must consider

additional terms resulting from a specific symmetric projection of the connections, as ob-

served in section 5.2.3.

The bosonic action (6.18) is

SB =
1

2κ2

∫
|volG|R. (6.42)
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While the fermionic action (6.19) can be written as

SF =
1

κ2

∫
|volG|

(
− ψ̄i(−γ̂jkDjkψi + 12

5
Dijψ

j − 8
5
γ̂i
jDjkψ

k)

− 14
5
ψ̄i(γ̂jDijρ− 1

5
γ̂iγ̂

jj′Djj′ρ)

− 14
5

(ρ̄γ̂iDijψ
j)− 42

25
(ρ̄γ̂ijDijρ)

)
,

(6.43)

where we use the Spin(5) covariant spinor conjugate. It is also important to note that there

are two sets of suppressed indices on the spinors in this expression. These are the SU (2)

indices for the five-dimensional symplectic Majorana spinors and the external Spin(6, 1)

indices, which must be summed over. For full details of the spinor conventions used, see

appendices C.5 and D.1.

We have now rewritten all of the supergravity equations with manifest Spin(5) symme-

try.

6.5.2 d = 7 and H̃7 = SU (8)

E7 (7 )×R+ generalised geometry

We follow the standard approach [59] of describing E7(7) in terms of its SL(8,R) sub-

group, following the notation of [65]3. We denote indices transforming under SL(8,R) by

i, j, k, · · · = 1, . . . , 8.

Generalised vectors transform in the 56 representation of E7 (7 ), which under SL(8,R)

decomposes into the sum 28 + 28′ of bivectors and two-forms. We can introduce a basis

{Êii′ , Ěii′} transforming under E7 (7 ) and write a generalised vector as

V = 1
2
V ii′Êii′ +

1
2
Ṽii′Ě

ii′ . (6.44)

3Note however that when it comes to spinors, here we take instead γ(7) = −i, the opposite choice to that
in [65], and we also use a different normalisation of our SU (8) indices.
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In the conformal split frame (5.15), we can identify

V a8 = va, V ab = 1
5!
εabc1...c5σc1...c5 ,

Ṽa8 = 1
7!
εb1...b7τa,b1...b7 , Ṽab = ωab,

(6.45)

where va, ωab, etc. are as in (5.16), with the obvious corresponding identification of Êa8

etc. The partial derivative ∂µ is lifted into E∗, with a conformal factor due to the form of

the conformal split frame, as

∂a8 = 1
2
e∆∂a, ∂ab = 0, ∂̃ii

′
= 0. (6.46)

In this notation, the Dorfman derivative (5.28), the antisymmetrisation of which is the

“exceptional Courant bracket” of [65], can then be written in the coordinate frame as

(LVW )ii
′
= V jj′∂jj′W

ii′ + 4W j[i∂jj′V
i′]j′

+W ii′∂jj′V
jj′ − 1

4
εii
′jj′kk′ll′W̃jj′∂kk′Ṽll′ ,

(LVW )ii′ = V jj′∂jj′W̃ii′ − 4W̃j[i∂i′]j′V
jj′ − 6W jj′∂[jj′Ṽii′],

(6.47)

where εi1...i8 is the totally antisymmetric symbol preserved by SL(8,R).

A generic E7 (7 )×R+ generalised connection D = (Dii′ , D̃
ii′) acting on V ∈ Γ(E)

takes the form

Dii′V
jj′ = ∂ii′V

jj′ + Ω j
ii′ kV

kj′ + Ω j′

ii′ kV
jk + ∗Ω jj′kk′

ii′ Ṽkk′ ,

Dii′Ṽjj′ = ∂ii′Ṽjj′ − Ω k
ii′ jṼkj′ − Ω k

ii′ j′Ṽjk + Ωii′ jj′kk′V
kk′ ,

D̃ii′V jj′ = ∂̃ii
′
V jj′ + Ω̃ii′ j

kV
kj′ + Ω̃ii′ j′

kV
jk + ∗Ω̃ii′ jj′kk′Ṽkk′ ,

D̃ii′Ṽjj′ = ∂̃ii
′
Ṽjj′ − Ω̃ii′ k

jṼkj′ − Ω̃ii′ k
j′Ṽjk + Ω̃ii′

jj′kk′V
kk′ ,

(6.48)

where ∗Ω jj′kk′

ii′ = 1
4
εjj
′kk′ll′mm′Ωii′ ll′mm′ and similarly for ∗Ω̃ii′jj′kk′ .
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SU (8) structures and supergravity

In seven dimensions Hd = SU (8)/Z2 and the common subgroup of Hd and the SL(8,R)

subgroup that we used to define E7 (7 ) is SO(8). We define the sub-bundle P ⊂ F̃ of

SU (8)/Z2 frames as the set of frames where the generalised metric (5.50) can be written

as

G(V,W ) = 1
2

(
δijδi′j′V

ii′W jj′ + δijδi
′j′Ṽii′W̃jj′

)
, (6.49)

where δij is the flat SO(8) metric. To write sections of E with manifest SU (8) indices

α, β, γ, . . .= 1, . . . , 8 one uses the SO(8) gamma matrices

V αβ = i(γ̂ij)
αβ
(
V ij + iṼ ij

)
,

V̄αβ = −i(γ̂ij)αβ
(
Vij − iṼij

)
.

(6.50)

where, γ̂ij are defined in (C.27) and, when restricted to the Spin(8) subgroup α, β, . . .

indices are raised and lowered using the intertwiner C̃ (see appendix C.2).

The eleven-dimensional supergravity fermion fields can be decomposed into complex

seven-dimensional spinors following the discussion in D.2. Using the embedding Spin(7) ⊂
Spin(8) ⊂ SU (8), discussed in detail in appendix C.6, they can be identified as SU (8) rep-

resentations as follows. For the spinors we simply have

εα = e−∆/2(εsugra)α ∈ Γ(S−),

ρ̄α = ie∆/2C̃αβ(γ(7)ρsugra)β ∈ Γ(S+).
(6.51)

Note the need to include the conformal factors in the definitions and also that, though we

write ρ̄ since it is embedded into the 8̄ representation of SU (8), ρ̄α is defined in terms

of the un-conjugated ρsugra. The 8 and 8̄ representations are simply the fundamental and

anti-fundamental so are related by conjugation so that ε̄α = (εβ)∗Aβ̇α, using the SU (8)-

invariant intertwiner A (see appendix C.2).

For the 56-dimensional vector-spinor we proceed in two steps, first embedding into
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Spin(8) by writing

ψSpin(8)

a8 = 1
4
e∆/2

(
δba + 1

2
γaγ

b
)
ψsugra
b ,

ψSpin(8)

ab = −1
2
e∆/2γ(7)

(
γ[aδb]

c − 1
4
γabγ

c
)
ψsugra
c ,

(6.52)

and then into SU (8) as

ψαβγ = 1
3
i(γ̂ii

′
)[αβ(ψSpin(8)

ii′ )γ] ∈ Γ(J−). (6.53)

A generalised connection is compatible with the generalised metric (6.49) if DG = 0.

For such connections, we can define the generalised spinor derivative via the adjoint action

of SU (8) given in [65]. Acting on χ ∈ Γ(S−) we have

Dii′χ = ∂ii′χ + 1
4
Ωii′jj′ γ̂

jj′χ− 1
48

iΩii′k1...k4 γ̂
k1...k4χ,

D̃ii′χ = ∂̃ii′χ+ 1
4
Ω̃ii′jj′ γ̂

jj′χ− 1
48

iΩ̃ii′k1...k4 γ̂
k1...k4χ.

(6.54)

where we have used the SO(8) metric δij to lower indices. An example of such a gener-

alised connection is the one (5.53) defined by the Levi–Civita connection∇

D∇ii′χ =


1
2
e∆
(
∂a + 1

4
ωa bcγ̂

bc
)
χ if i = a and i′ = 8

0 if i = a and i′ = b
,

D̃∇ii′χ = 0.

(6.55)

where ωa bc is the usual spin-connection.

We can construct a torsion-free compatible connection D, by shifting D∇ by an addi-

tional connection piece Σ, such that its action on χ ∈ Γ(S−) is given by

Dii′χ = D∇ii′χ + 1
4
Σii′jj′ γ̂

jj′χ− 1
48

iΣii′k1...k4 γ̂
k1...k4χ,

D̃ii′χ = D̃∇ii′χ+ 1
4
Σ̃ii′jj′ γ̂

jj′χ− 1
48

iΣ̃ii′k1...k4 γ̂
k1...k4χ.

(6.56)
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where, in the conformal split frame,

Σii′jj′ = −1
3
e∆δijK̃i′j′ +

1
42

e∆F̃ δijδi′j′ − e∆δij∂i′j′∆ +Qii′jj′ ,

Σ̃ii′jj′ = 1
3
e∆Kii′jj′ − 1

6
e∆Kjj′ii′ + Q̃ii′jj′ ,

Σi1...i6 = Qi1...i6 ,

Σ̃i1...i6 = Q̃i1...i6 .

(6.57)

In this expression primed and unprimed indices are antisymmetrised implicitly, (Q, Q̃) are

the undetermined components4, F̃ = 1
7!
εa1...a7F̃a1...a7 and

Kii′jj′ =

(∗F )abc for (i, i,′ j, j′) = (a, b, c, 8)

0 otherwise
,

K̃ij =

F̃ for (i, j) = (8, 8)

0 otherwise
,

(6.58)

give the embedding of the supergravity fluxes. The connection can be rewritten in SU (8)

indices through
Dαβ = i(γ̂ij)αβ

(
Dij + iD̃ij

)
,

D̄αβ = −i(γ̂ij)αβ
(
Dij − iD̃ij

)
.

(6.59)

With these definitions, we can now give the explicit form of the unique operators (6.6)

in SU (8) indices

(D ×J− ε)αβγ = D[αβεγ],

(D ×S+ ε)α = −D̄αβε
β,

(D ×J+ ψ)αβγ = − 1
12
εαβγδδ′θ1θ2θ3D

δδ′ψθ1θ2θ3 ,

(D ×S− ψ)α = 1
2
D̄βγψ

αβγ,

(6.60)

where εα1...α8 is the totally antisymmetric symbol preserved by SU (8).

4From section 5.2.2 and table 5.4, these are sections of the 1280 + ¯1280 representations of SU (8).
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From the first two we can immediately read off the supersymmetry variations of the

fermions (6.9)

δψαβγ = D[αβεγ], δρ̄α = −D̄αβε
β, (6.61)

while the variations of the bosons (6.12) can be packaged as

δGAB =

(
δGαβγδ δGαβ

γδ

δGαβ
γδ δGαβγδ

)
=

1

|volG|

(
δH̄αβγδ 0

0 δHαβγδ

)
−GAB δ log |volG| (6.62)

with
δHαβγδ = − 3

16

(
ε[αψβγδ] + 1

4!
εαβγδα

′β′γ′δ′ ε̄α′ψ̄β′γ′δ′
)

δ log |volG| = ρ̄αε
α + ραε̄α

(6.63)

The fermion equations of motion (6.13) are

− 1
12
εαβγδδ′θ1θ2θ3D

δδ′ψθ1θ2θ3 + 2D̄[αβ ρ̄γ] = 0,

Dαβ ρ̄β − 1
2
D̄βγψ

αβγ = 0.
(6.64)

As before, the curvatures can be obtained by taking the supersymmetry variations of the

fermion equations of motion and after some algebra one obtains the expressions

R0

αβγδε
δ = −2

(
D̄[αβD̄γδ] + 1

4!
εαβγδεε′θθ′D

εε′Dθθ′
)
εδ −

[
D̄[αβ, D̄γ]δ

]
εδ,

1
6
Rεα = 2

3

(
{Dαγ, D̄βγ} − 1

8
δαβ{Dγδ, D̄γδ}

)
εβ

− 1
3

(
[D̄βγ, D

αγ]− 1
8
δαβ[D̄γδ, D

γδ]
)
εβ + 1

8

[
Dβγ, D̄βγ

]
εα.

(6.65)

The vanishing of these then corresponds to the bosonic equations of motion (6.17). As for

d = 4, we again observe that the curvatures contain terms symmetric in the two connec-

tions, in the representations of the bundle N identified in section 5.2.3.

The bosonic action (6.18) takes the form

SB =
1

2κ2

∫
|volG|R, (6.66)



6.5 Explicit Hd constructions 104

while the fermion action (6.19) is

SF =
3

2κ2

∫
|volG|

(
1
4!
εα1α2α3ββ′γ1γ2γ3ψ

α1α2α3Dββ′ψγ1γ2γ3

+ ρ̄αD̄βγψ
αβγ − ψαβγD̄αβ ρ̄γ − 2ρ̄αD

αβ ρ̄β + cc
)
.

(6.67)

This completes the rewriting of the seven-dimensional theory with explicit local SU (8)

symmetry.
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Chapter 7

Conclusion

We have provided a reformulation of type II and eleven-dimensional supergravity, including

the fermions to leading order, such that their larger bosonic symmetries are manifest. This

was accomplished by writing down the natural analogue of Einstein gravity for generalised

geometry. In the type II case we geometrised the NSNS sector in terms of O(10, 10)×R+

generalised geometry, and showed that the both the RR fields and the fermions embedded

directly into representations of the local symmetry group, Spin(9, 1) × Spin(1, 9). For

eleven-dimensional supergravity we showed how Ed(d)×R+ generalised geometry encom-

passes all the bosonic symmetries and that the fermion fields fill out representations of the

local H̃d group. To summarise, in both cases the supergravity is described by a simple set

of equations which are manifestly covariant not just under gauge transformations and dif-

feomorphisms, but also under the action of the larger local groups. In the abstract language

of section 5.2.3 these are

Equations of Motion Supersymmetry
(D ×J ψ) + (D ×J ρ) = 0,

(D ×S ψ) + (D ×S ρ) = 0,

RAB = 0,


δψ = D ×J ε,

δρ = D ×S ε,

δG = (ψ ×adP⊥ ε) + (ρ×adP⊥ ε).

(7.1)
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The simplicity of these expressions is all the more remarkable given how naturally they

arise – the generalised connection D and generalised metric G are the direct analogues

of the Levi-Civita ∇ and metric g of Riemannian geometry. The representations S and J

in which the fermionic fields transform can be uniquely identified just by examining the

H̃d decomposition of torsion-free, metric compatible generalised connections, as was ex-

plained in section 5.2.3. We believe that this provides compelling evidence that generalised

geometry is a natural framework with which to formulate supergravity.

A surprising outcome of our work is the observation that, despite the fact that the geo-

metric construction is entirely bosonic, supersymmetry is deeply integrated in the formal-

ism – torsion-free, metric compatible connections describe the variation of the fermions

and the equations of motion of the fermions close under supersymmetry on the bosonic

generalised curvatures. One problem that generalised geometry is thus particularly well

suited to tackle is that of describing supersymmetric vacua with flux [104, 103, 112, 113].

In this context, our formalism can in a sense be viewed as an expansion of the ideas of

generalised complex structures, as it provides a way of unifying all the possible structures

that describe supersymmetric backgrounds in a single generalised G-structure (from sec-

tion 5.1.6), where G ⊂ H̃d , at each level of preserved supersymmetry. Furthermore, it

turns out that the Killing spinor equations can be shown to be equivalent to integrability

conditions on the generalised connection – supersymmetric backgrounds are in one-to-one

correspondence with manifolds with generalised special holonomy.

Let us see how this works in a particularly important case.

7.1 d = 7 backgrounds with N = 1 supersymmetry

Recall that a background of M theory is said to be supersymmetric if there exists a nowhere-

vanishing choice of supersymmetry parameter on the manifold, the Killing spinor, such that

the supersymmetry variations of all of the background fields vanish. For classical super-

gravity solutions the background fermionic fields are zero. The variations of the bosonic

fields always have a fermionic factor, so these are automatically zero. Therefore, the non-

trivial condition for supersymmetry is the vanishing of the variations of the fermionic fields,

and we need only consider the lowest order terms in fermions.
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Let us then consider the d = 7 case, using the same field ansatz from section 2.2.2.

If one has an N = 1 vacuum, then there exists a spinor field ε globally defined on the

background manifold M which satisfies the Killing spinor equations

0 = γm∇mε+ γm(∂m∆)ε− 1
96
γm1...m4Fm1...m4ε

− 1
4

1
7!
γm1...m7F̃m1...m7ε,

0 = ∇mε+ 1
288

(γm
n1...n4 − 8δm

n1γn2n3n4)Fn1...n4ε

− 1
12

1
6!
F̃mn1...n6γ

n1...n6ε,

(7.2)

The Killing spinor defines a G-structure on the tangent space of M , which for non-

vanishing fluxes will have some intrinsic torsion (see appendix B for a quick review on the

notion of intrinsic torsion). Thus, in ordinary geometry one finds that generic supersym-

metric flux backgrounds are not integrable. However, from the point of view of generalised

geometry, the larger symmetries of the generalised tangent space allow us to use the spinor

to define generalised G-structures, which, as we will now see, are integrable precisely if

and only if the Killing spinor equations hold.

We start by encoding the equations (7.2) in the H̃d -covariant form

D ×J ε = 0, D ×S ε = 0. (7.3)

Since ε is a globally non-vanishing section of S, its components are stabilised by tran-

sition functions in some subgroup G of H̃d . In other words, those H̃d frames in which the

components of ε are fixed define a generalised G-structure P . The condition for a gener-

alised connection to be compatible with this structure is then Dε = 0.

Now, the equations (7.3), which hold for any torsion-free H̃d compatible D, appear

weaker than the compatibility condition, as they constrain only two of the irreducible parts

of Dε. If the generalised G-structure has vanishing generalised intrinsic torsion we need

to show that one can still find a torsion-free compatible connection D̂ such that the full

compatibility condition D̂ε = 0 is satisfied1. We will prove this by calculating the repre-

1Note that this is a different definition of generalised holonomy to the one in [110, 114], as we are con-
sidering the full generalised connection D as opposed to just the projected derivatives which appear in the
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sentation in which the intrinsic torsion transforms and demonstrating that the Killing spinor

equations precisely annihilate this representation. Note that will we study only the linear

algebra involved at a single point in the manifold so that we may discuss representations

rather than bundles and so, for the sake of readability, we will use a slight abuse of notation

and not distinguish between the two.

The argument goes as follows. Denote the vector space of H̃d connection pieces at the

point by C and the space of G-compatible connections (where G ⊂ H̃d ) by CP . These

are (reducible) representations of H̃d and G respectively and split into two (also in general

reducible) representations

C = E∗ ⊗ ad H̃d = K ⊕ U,

CP = E∗ ⊗ adG = KP ⊕ UP ,
(7.4)

where K and KP are the components constrained by the torsion and U and UP are uncon-

strained by the torsion. Clearly CP ⊂ C, KP ⊂ K and UP ⊂ U .

Decomposing the H̃d representations under G, we have

K = KP ⊕Kint, (7.5)

whereKint ' K/KP is the (reducible) representation ofG under which the intrinsic torsion

transforms. This can easily be found as we know K and KP = CP ∩K.

The Killing spinor equations transform under the representation S ⊕ J of H̃d and the

projection which give rise to them from the generalised connection becomes

P : C → S ⊕ J,

Σ 7→ (Σ×S ε) + (Σ×J ε).
(7.6)

Recall that this projection is such that the Killing spinor equations are uniquely determined

for torsion-free connections, i.e. components of the connection lying in U do not contribute

to them. Now, G is the stabiliser of ε so for Σ ∈ CP we have Σ · ε = 0. We have the

fermionic supersymmetry variations.
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decomposition C = KP ⊕Kint⊕U and the projection depends only on torsion components

of Σ. Suppose the kernel of the mappingP were equal toKP⊕U , as the above observations

suggest, then we would have an isomorphism

P|Kint : Kint → S ⊕ J, (7.7)

and this would demonstrate that the vanishing of the intrinsic torsion was equivalent to the

Killing spinor equations. We assert that this is the case for now, and one can check this by

explicit calculation of the dependences.

In the d = 7 case for N = 1 backgrounds, the internal complex spinor ε is a section

of the generalised spinor bundle S. The fibre of this bundle is the representation 8 + 8̄ of

SU (8) where the two parts are related by complex conjugation, see table 5.5. Therefore ε

is stabilised by SU (7) ⊂ SU (8) and so defines an SU (7) structure. This statement unifies

all of the different subgroups of Spin(7) which can stabilise both the real and imaginary

parts of ε [65].

We can then explicitly compute the generalised intrinsic torsion of this SU (7) structure.

We have the SU (8) representations

S ⊕ J =
[
8 + 8̄

]
+
[
56 + 5̄6

]
,

K =
[
28 + 2̄8

]
+
[
36 + 3̄6

]
+
[
420 + ¯420

]
.

U =
[
1280 + ¯1280

]
.

(7.8)

The next step is to calculate their SU (7) decompositions

S ⊕ J = 2× 1 +
[
7 + 7̄

]
+
[
21 + 2̄1

]
+
[
35 + 3̄5

]
,

K = 2×
(
1 +

[
7 + 7̄

]
+
[
21 + 2̄1

])
+
[
28 + 2̄8

]
+
[
35 + 3̄5

]
+
[
140 + ¯140

]
+
[
224 + ¯224

]
.

U =
[
7 + 7̄

]
+
[
21 + 2̄1

]
+
[
28 + 2̄8

]
+
[
112 + ¯112

]
+
[

¯140 + 140
]

+
[
189 + ¯189

]
+
[
735 + ¯735

]
+ 2× 48.

(7.9)

We have that generalised connections compatible with the SU (7) structure fill out the
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vector space

CP = E ⊗ ad(SU (7))

=
[
7 + 7̄

]
+
[
21 + 2̄1

]
+
[
28 + 2̄8

]
+
[
140 + ¯140

]
+
[
224 + ¯224

]
+
[
189 + ¯189

]
+
[
735 + ¯735

]
.

(7.10)

Now we must find the intersection KP = CP ∩ K. Clearly the last two terms will not

contribute, and by checking against the decomposition of U we immediately see that the

224 + ¯224 must be in the intersection. The remaining components require a more careful

analysis, but it is not too difficult to check explicitly that none of them vanish under the

torsion map CP → KP . Therefore, we have that

KP =
[
7 + 7̄

]
+
[
21 + 2̄1

]
+
[
28 + 2̄8

]
+
[
140 + ¯140

]
+
[
224 + ¯224

]
, (7.11)

and so conclude

Kint = 2× 1 +
[
7 + 7̄

]
+
[
21 + 2̄1

]
+
[
35 + 3̄5

]
= S ⊕ J.

(7.12)

Shur’s lemma then guarantees that the restricted map (7.7) is thus either zero or an iso-

morphism on each of the irreducible parts of Kint = S ⊕ J . We assert that it is in fact an

isomorphism, which proves that the Killing spinor equations have precisely the necessary

degrees of freedom to set the intrinsic torsion of the SU (7) structure to zero.

It is worth mentioning that the solution corresponding to an NS5-brane wrapped on a

Kahler 2-cycle in a Calabai-Yau manifold [115] is included in this framework, even though

it falls outside the classification of [116] (as this is an N = 1 background with vanishing

RR fields). Reducing from M theory to type II, we have that the decomposition of the

SU (8) Killing spinor under SU (4) × SU (4) is ε = ε1 + ε2 ∈ (4 + 4̄,1) + (1,4 + 4̄).

For this solution, one sets the second spinor ε2 to zero, so the pure spinors of [116]

vanish identically. However, in our formalism, which does not involve the tensor prod-

uct of the spinors, this supersymmetry parameter still gives a non-vanishing section of

S ∼ (4 + 4̄,1) + (1,4 + 4̄), describing an SU (3)× SU (4) ⊂ SU (7) structure.
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7.2 Future Outlook

We have thus shown that N = 1 backgrounds in d = 7 are described by manifolds with

generalised SU(7) special holonomy. Though we will not elaborate on it further here, it

can actually be shown that similar results hold for higher amounts of preserved supersym-

metryN in any dimension, and in theO(d, d) formalism as well if the RR fields vanish. An

obvious next step is then to apply these results in order to find new background solutions for

both type II and M theory. We note that if this proves successful, then the study of the mod-

uli space and the phenomenological implications of these new background classes should

benefit from the fact that our formalism is able to unify all the bosonic fields in the inter-

nal manifold while keeping the larger symmetries manifest. Additionally, it should not be

too difficult to expand the formalism to, for example, describe AdS reductions as opposed

to just the Minkowski ones we considered here. This could be extremely rewarding as it

would then have a direct application to the gravity side of the AdS/CFT correspondence.

On the subject of string compactifications, a somewhat related problem is the study of

non-geometric backgrounds. There have been a few recent developments in this field using

generalised geometry and Double Field Theory (for example [30, 117, 118, 119]). The

formalism we developed here allows us to clarify some of these results and their scope of

applicability. For instance, the action given in [117] can be interpreted in the context of

the O(9, 1)× O(1, 9) generalised gravity of chapter 4. Given a bivector β ∈ Γ(Λ2TM), it

amounts to evaluating the generalised Ricci scalar R in a different frame from the standard

split frame, namely

ÊA =

Êa = e−2φ(det e)êa for A = a

Ea = e−2φ(det e) (ea + βêa) for A = a+ d
. (7.13)

which is related to the conformal split frame by an O(10, 10) transformation outside the

geometric subgroup Gsplit. Locally, from a generalised geometrical perspective, these are

equivalent, as expected from [30]. However, given the patching (3.2), the new frame is

not, generically, globally defined in a conventional generalised geometry. The suggestion

though is that on a non-geometrical background (patched for instance by a T-duality) it
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may be possible to make some global notion of such a frame. So it seems clear that while

generalised geometry can provide some new insights into non-geometric backgrounds, one

will need to move beyond it in order to obtain the full picture.

On the other hand, the formalism we developed here might already be directly appli-

cable to the ongoing problem in string perturbation theory of finding corrections to the

effective action which are higher order in derivatives. Not only should the calculations

benefit from the more manifest symmetries, but the fact that defining curvature tensors in

generalised geometry is a very a non-trivial question, as we saw in section 3.1.5, could be

very significant. The simple requirement that the higher order Lagrangians should be built

out of generalised connections provides one with extra constraints which might be key in

finding the corrections.

The full extent of the relation between generalised geometries and supersymmetry is

also something that clearly warrants further exploration. One might try to formulate other

supergravities, such as six-dimensional N = (1, 0), which should provide further evidence

of this connection. These will likely require the use of other “duality groups” for the

generalised structure – for instance a formalism based onBd(d) = SO(d+1, d) [102] seems

to describe heterotic coupled to a U(1) gauge field [120]. Alternatively, one could attempt

to extend the geometry to make supersymmetry manifest, perhaps by adapting some of the

tools from superspace formalism.

A potentially harder problem can be posed if one tries to extend the Ed(d)×R+ structure

to higher dimensions. Here one has to deal with E8(8) and its infinite dimensional Kac-

Moody extensions, as is the case in West’s E11 [66] programme. The basic obstruction,

even for d = 8, is that although the generalised tangent space exists one cannot write a

covariant expression for the Dorfman derivative in the form (5.28). This is a consequence

of the presence of tensors in the generalised tangent space which are not forms, and as such

one cannot act upon them with the de Rham differential. Indeed, in d = 7 one already has

τ ∈ Γ(T ∗M ⊗ Λ7T ∗M) in E, but this gets projected to zero in the Dorfman derivative

– we have no such luck in higher dimensions. Furthermore, this term already meant that

in d = 7 we could not write the symmetric component of the Dorfman derivative (5.39)

in an Ed(d)×R+ covariant form. Physically extra terms of this sort in the generalised

tangent space correspond to Kaluza–Klein monopole charges in the U-duality algebra and



Chapter 7. Conclusion 113

should be associated to the symmetries of “dual gravitons”. Ultimately, what is needed is

a derived bracket construction for the Ed(d) case, with an appropriate generalisation of the

de Rahm differential that can act on these higher spin fields. It seems likely that creating a

complete theory that describes these large exceptional geometries would be a tremendous

step forward in our understanding of string and M theory.
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Appendix A

Conventions

A.1 Lorentzian signature

We take the g metric with the mostly plus signature (− + + · · ·+). We use the indices

µ, ν, λ . . . as the spacetime coordinate indices and a, b, c . . . for the tangent space indices.

We take symmetrisation of indices with weight one. Give forms λ ∈ ΛkT ∗M , in D dimen-

sions, our conventions are

λ = 1
k!
λµ1...µkdx

µ1 ∧ . . . λdxµk ,

λ ∧ λ′ = 1
(k+k′)!

(
(k+k′)!
k! k!

λ[µ1...µkλµk+1...µk+k′ ]

)
dxµ1 ∧ · · · ∧ dxµk+k′ ,

∗λ = 1
(10−k)!

(
1
k!

√
−gεµ1...µD−kν1...νkλ

ν1...νk
)

dxµ1 ∧ · · · ∧ dxµD−k , (A.1)

where ε01...D−1 = −ε01...D−1 = +1.

A.2 Euclidean signature

We use the indicesm,n, p, . . . as the coordinate indices and a, b, c . . . for the tangent space

indices. We take symmetrisation of indices with weight one. Given a polyvector w ∈
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ΛpTM and a form λ ∈ ΛqT ∗M , we write in components

w =
1

p!
wm1...mp

∂

∂xm1
∧ · · · ∧ ∂

∂xmp
,

λ =
1

q!
λm1...mqdx

m1 ∧ · · · ∧ dxmq ,

(A.2)

so that wedge products and contractions are given by

(w ∧ w′)m1...mp+p′ =
(p+ p′)!

p!p′!
w[m1...mpw′mp+1...mp+p′ ],

(λ ∧ λ′)m1...mq+q′
=

(q + q′)!

q!q′!
λ[m1...mqλ

′
mp+1...mq+q′ ]

,

(w y λ)a1...aq−p
:=

1

p!
wc1...cpλc1...cpa1...aq−p if p ≤ q,

(w y λ)a1...ap−q :=
1

q!
wa1...ap−qc1...cqλc1...cq if p ≥ q.

(A.3)

Given the tensors t ∈ TM ⊗ Λ7TM , τ ∈ T ∗M ⊗ Λ7T ∗M and a ∈ TM ⊗ T ∗M with

components

t =
1

7!
wm,m1...m7

∂

∂xm
⊗ ∂

∂xm1
∧ · · · ∧ ∂

∂xm7
,

τ =
1

7!
τm,m1...m7dxm ⊗ dxm1 ∧ · · · ∧ dxmq ,

a = amn
∂

∂xm
⊗ dxn,

(A.4)

and also a form σ ∈ Λ5T ∗M and a vector v ∈ TM , we use the “j-notation” from [65],
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defining

(w y τ)a1...a8−p
:=

1

(p− 1)!
wc1...cpτc1,c2...cpa1...a8−p ,

(t y λ)a1...a8−q :=
1

(q − 1)!
tc1,c2...cqa1...a8−qλc1...cq ,

(t y τ) :=
1

7!
ta,b1...b7τa,b1...b7 ,

(jw ∧ w′)a,a1...a7 :=
7!

(p− 1)!(8− p)!
wa[a1...ap−1w′ap...a7],

(jλ ∧ λ′)a,a1...a7
:=

7!

(q − 1)!(8− q)!
λa[a1...aq−1λ

′
aq ...a7],

(jw y jλ)a b :=
1

(p− 1)!
wac1...cp−1λbc1...cp−1 ,

(jt y jτ)a b :=
1

7!
ta,c1...c7τb,c1...c7 ,(

jp+1λ ∧ τ
)
a1...ap+1,b1...b7

:= (p+ 1)λ[a1...τap+1],b1...b7 ,(
j3σ ∧ σ′

)
a1...a3,b1...b7

:= 7!
5!·2!

σa1...a3[b1b2σ
′
...b7],

(v y jτ)mn1...n6 := vpτm,pn1...n6 .

(A.5)

The d dimensional metric g is always positive definite. We define the orientation,

ε1...d = ε1...d = +1, and use the conventions

∗λm1...md−q = 1
q!

√
|g|εm1...md−kn1...nqλ

n1...nq ,

λ2 = λm1...mqλ
m1...mq .

(A.6)
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Appendix B

Metric structures, torsion and the

Levi–Civita connection

In this appendix we briefly review the basic geometry that goes into the construction of

the Levi–Civita connection, as context for the corresponding generalised geometrical ana-

logues.

Let M be a d-dimensional manifold. We write {êa} for a basis of the tangent space

TxM at x ∈ M and {ea} be the dual basis of T ∗xM satisfying iêaeb = δa
b. Recall that the

frame bundle F is the bundle of all bases {êa} over M ,

F = {(x, {êa}) : x ∈M and {êa} is a basis for TxM} . (B.1)

On each fibre of F there is an action of Aab ∈ GL(d,R), given v = vaêa ∈ Γ(TxM),

va 7→ v′a = Aabv
b, êa 7→ ê′a = êb(A

−1)ba. (B.2)

giving F the structure of a GL(d,R) principal bundle.

The Lie derivative Lv encodes the effect of an infinitesimal diffeomorphism. On a

vector field w it is equal to the Lie bracket

Lvw = −Lwv = [v, w] , (B.3)
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while on a general tensor field α one has, in coordinate indices,

Lvαµ1...µp
ν1...νq

= vµ∂µα
µ1...µp
ν1...νq

+ (∂µv
µ1)αµµ2...µp

ν1...νq
+ · · ·+ (∂µv

µp)αµ1...µp−1µ
ν1...νq

− (∂ν1v
µ)αµ1...µp

µν2...νq
− · · · −

(
∂νqv

µ
)
αµ1...µp
ν1...νq−1µ

.

(B.4)

Note that the terms on the second and third lines can be viewed as the adjoint action of

the gl(d,R) matrix aµν = ∂νv
µ on the particular tensor field α. This form will have an

analogous expression when we come to generalised geometry.

Let∇µv
ν = ∂µv

ν +ωµ
ν
λv

λ be a general connection on TM . The torsion T ∈ Γ(TM⊗
Λ2T ∗M) of ∇ is defined by

T (v, w) = ∇vw −∇wv − [v, w] . (B.5)

or concretely, in coordinate indices,

T µνλ = ων
µ
λ − ωλµν , (B.6)

while, in a general basis where∇µv
a = ∂µv

a + ωµ
a
bv
b, one has

T abc = ωb
a
c − ωcab + [êb, êc]

a . (B.7)

Since again it has a natural generalised geometric analogue, it is useful to equivalently

define the torsion in terms of the Lie derivative. If L∇v α is the analogue of the Lie deriva-

tive (B.4) but with ∂ replaced by∇, and (ivT )µν = vλT µλν then

(ivT )α = L∇v α− Lvα, (B.8)

where we view ivT as a section of the gl(d,R) adjoint bundle acting on the given tensor

field α.

The curvature of a connection ∇ is given by the Riemann tensor R ∈ Γ(Λ2T ∗M ⊗
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TM ⊗ T ∗M), defined by

R(u, v)w = [∇u,∇v]w −∇[u,v]w,

R λ
µν ρv

ρ = [∇µ,∇ν ]v
λ − T ρµν∇ρv

λ.
(B.9)

The Ricci tensor is the trace of the Riemann curvature

Rµν = R λ
λµ ν . (B.10)

If the manifold admits a metric g then the Ricci scalar is defined by

R = gµνRµν . (B.11)

A G-structure is a principal sub-bundle P ⊂ F with fibre G. In the case of the metric

g, the G = O(d) sub-bundle is formed by the set of orthonormal bases

P = {(x, {êa}) ∈ F : g(êa, êb) = δab} , (B.12)

related by anO(d) ⊂ GL(d,R) action. (A Lorentzian metric defines aO(d−1, 1)-structure

and δab is replaced by ηab.) At each point x ∈ M , the metric defines a point in the coset

space

g|x ∈ GL(d,R)/O(d). (B.13)

In general the existence of aG-structure can impose topological conditions on the manifold,

since it implies that the tangent space can be patched using only G ⊂ GL(d,R) transition

functions. (For example, for even d, if G = GL(d/2,C), the manifold must admit an

almost complex structure, while for G = SL(d,R) it must be orientable.) However, for

O(d) there is no such restriction.

A connection ∇ is compatible with a G-structure P ⊂ F if the corresponding connec-

tion of the principal bundle F reduces to a connection on P . This means that, given a basis

{êa}, one has a set of connection one-forms ωab taking values in the adjoint representation

of G given by

∇∂/∂xµ êa = ωµ
b
aêb. (B.14)
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For a metric structure this is equivalent to the condition∇g = 0. A compatible connection

can then be locally represented as a section

ω ∈ Γ(T ∗M ⊗ ad(P )). (B.15)

The torsion of ∇ is a section of the bundle TM ⊗ Λ2T ∗M , and in general both of these

bundles can be decomposed into irreducible parts under G.

The intrinsic torsion of P can then be defined as follows. Consider two such con-

nections ∇ and ∇′, both compatible with the structure P , and let T (∇) and T (∇′) be

their respective torsions. The difference of these ∆T = T (∇′) − T (∇) is a section of

W := TM ⊗ Λ2T ∗M . However, it can happen that, varying ∇′ for fixed ∇, ∆T fills out

only a subspace of the full space of torsions. Let Σ ∈ Γ(T ∗M ⊗ ad(P )) be the difference

of the two connections, which is a tensor such that for v ∈ Γ(TM)

Σv = ∇′v −∇v. (B.16)

∆T is a linear function of Σ. Therefore, if the dimension of T ∗M ⊗ ad(P ) is less than the

dimension of TM ⊗ Λ2T ∗M , it is clear that ∆T must be restricted to a subspace. Label

the image of the torsion map on T ∗M ⊗ ad(P ) as WP , then we can define the bundle

Kint =
W

WP

. (B.17)

Now, given any compatible connection∇ on P , its torsion defines an element ofWI , which

is independent of which connection one chooses. This element ofWI is the intrinsic torsion

of P , and if it is non-zero, then there does not exist a torsion-free connection which is

compatible with P . G-structures with vanishing intrinsic torsion are said to be torsion-free

or equivalently integrable (to first order).

In general, the vanishing of the intrinsic torsion is a first-order differential constraint on

the structure. Suppose the structure is defined by a G-invariant tensor Φ, and let∇′ = ∇+

Σ, where this time ∇ is torsion-free and ∇′ is assumed to be torsion-free and compatible.

This implies that

0 = ∇′Φ = ∇Φ + Σ · Φ. (B.18)
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We must therefore be able to solve the equation ∇Φ = −Σ · Φ for Σ, subject to the

constraint that T (Σ) = 0, and in general this constrains which irreducible parts of ∇Φ

can be non-zero. Thus we have first-order differential constraints on the invariant tensor Φ

which defines the structure.
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Appendix C

Clifford algebras

C.1 Clifford algebras, involutions and H̃d

The real Clifford algebras Cliff(p, q;R) are generated by gamma matrices satisfying

{γm, γn} = 2gmn, γm1...mk = γ[m1 . . . γmk], (C.1)

where g is a d-dimensional metric of signature (p, q). Here we will be primarily interested

in Cliff(d;R) = Cliff(d, 0;R) and Cliff(d− 1, 1;R). The top gamma matrix is defined as

γ(d) = 1
d!
εm1...mdγ

m1...md =

γ0γ1 . . . γd−1 for Cliff(d− 1, 1;R)

γ1 . . . γd for Cliff(d;R)
, (C.2)

and one has
[
γ(d), γm

]
= 0 if d is odd, while {γ(d), γm} = 0 if d is even, and

(γ(d))2 =

1 if p− q = 0, 1 (mod 4)

−1 if p− q = 2, 3 (mod 4)
(C.3)

We also use Dirac slash notation with weight one so that for ω ∈ Γ(ΛkT ∗M)

/ω = 1
k!
ωm1...mkγ

m1...mk . (C.4)



Appendix C. Clifford algebras 123

The real Clifford algebras are isomorphic to matrix algebras over R, C or the quater-

nions H. These are listed in table C.1. Note that in odd dimensions the pair {1, γ(d)}
generate the centre of the algebra, which is isomorphic to R ⊕ R if p − q = 1 (mod 4)

and C if p− q = 3 (mod 4). In the first case Cliff(p, q;R) splits into two pieces with γ(d)

eigenvalues of ±1. In the second case γ(d) plays the role of i under the isomorphism with

GL(2[d/2],C).

p− q (mod 8) Cliff(p, q;R)

0, 2 GL(2d/2,R)
1 GL(2[d/2],R)⊕GL(2[d/2],R)
3, 7 GL(2[d/2],C)
4, 6 GL(2d/2−1,H)
5 GL(2[d/2]−1,H)⊕GL(2[d/2]−1,H)

Table C.1: Real Clifford algebras

There are three involutions of the algebra given by

γm1...mk 7→ (−)kγm1...mk ,

γm1...mk 7→ γmk...m1 ,

γm1...mk 7→ (−)kγmk...m1 ,

(C.5)

usually called “reflection”, “reversal” and “Clifford conjugation”. The first is an automor-

phism of the algebra, the other two are anti-automorphisms. The reflection involution gives

a grading of Cliff(p, q;R) = Cliff+(p, q;R)⊕ Cliff−(p, q;R) into odd and even powers of

γm. The group Spin(p, q) lies in Cliff+(p, q;R).

The involutions can be used to define other subgroups of the Clifford algebra. In par-

ticular one has

H̃p,q = {g ∈ Cliff(p, q;R) : gtg = 1} (C.6)

gt is the image of g under the reversal involution. For the corresponding Lie alegbra we

require at + a = 0, and so the algebra is generated by elements in the negative eigenspace

of the involution. For d ≤ 8, this is the set {γmn, γmnp, γm1...m6 , γm1...m7}. We see that the
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maximally compact subgroups H̃d ⊂ Ed(d) are given by

H̃d = H̃d,0 (C.7)

for the Cliff(d;R) algebras1.

C.2 Representations of Cliff(p, q;R) and intertwiners

It is usual to consider irreducible complex representations of the gamma matrices acting

on spinors. When d is even there is only one such representation. There are then three

intertwiners realising the involutions discussed above, namely,

γ(d)γ
mγ−1

(d) = −γm,

CγmC−1 = (γm)T ,

C̃γmC̃−1 = −(γm)T ,

(C.8)

where C̃ = Cγ(d). There are four further intertwiners, not all independent, giving

AγmA−1 = (γm)†, DγmD−1 = (γm)∗,

ÃγmÃ−1 = −(γm)†, D̃γmD̃−1 = −(γm)∗.
(C.9)

By construction we see that H̃d is the group preserving C.

When d is odd there are two inequivalent irreducible representations with either γ(d) =

±1 when p − q = 1 (mod 4) or γ(d) = ±i when p − q = 3 (mod 4). Since here γ(d) is

odd under the reflection, this involution exchanges the two representations. Thus only half

of the possible intertwiners exist on each. One has

CγmC−1 = (γm)T , if d = 1 (mod 4),

C̃γmC̃−1 = −(γm)T , if d = 3 (mod 4).
(C.10)

1Note that H̃7,0 is strictly U(8). Dropping the γ(7) generator one gets H̃7 = SU (8).
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while
AγmA−1 = (γm)†, if p is odd,

ÃγmÃ−1 = −(γm)†, if p is even,

DγmD−1 = (γm)∗, if p− q = 1 (mod 4),

D̃γmD̃−1 = −(γm)∗, if p− q = 3 (mod 4).

(C.11)

Note that under reversal (γ(d))t = (−)d(d−1)/2γ(d) so when d = 3 (mod 4) the involu-

tion exchanges representations and we have no C intertwiner. In particular for Cliff(d;R) it

maps γ(d) = i to γ(d) = −i. However, this map can also be realised on each representation

separately by the adjoint AγmA−1 = (γm)†. Hence for d = 3 (mod 4) we can instead

define H̃d as the group preserving A.

The conjugate intertwiners allow us to define Majorana and symplectic Majorana rep-

resentations when there is an isomorphism to real and quaternionic matrix algebras respec-

tively. Thus when p − q = 0, 1, 2 (mod 8) one has DD∗ = 1 and can define a reality

condition on the spinors

χ = (Dχ)∗. (C.12)

When p − q = 4, 5, 6 (mod 8) one has DD∗ = −1 one can define a symplectic reality

condition. Introducing a pair of SU (2) indices A,B, . . . = 1, 2 on the spinors with the

convention for raising and lowering these indices

χA = εABχ
B, χA = εABχB, (C.13)

the symplectic Majorana condition is

ηA = εAB(DηB)∗. (C.14)

Note that for p − q = 0, 6, 7 (mod 8) and p − q = 2, 3, 4 (mod 8) one can also define

analogous Majorana and symplectic Majorana conditions respectively using D̃.
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C.3 Cliff(10, 1;R)

For Cliff(10, 1;R) ' GL(32,R) ⊕ GL(32,R), following the conventions of [85] we take

the representation with

Γ(11) = Γ0Γ1 . . .Γ10 = −1. (C.15)

The D intertwiner defines Majorana spinors, while C̃ = −C̃T defines the conjugate

ε = (Dε)∗, ε̄ = εT C̃. (C.16)

such that

ΓM1...Mkε = (−1)[(k+1)/2]ε̄ΓM1...Mk . (C.17)

C.4 Cliff(9, 1;R)

The Cliff(9, 1;R) gamma matrices are defined as

{γµ, γν} = 2gµν , γµ1...µk = γ[µ1 . . . γµk], (C.18)

and we use the anti-symmetric transpose intertwiner

C̃γµC̃−1 = −(γµ)T , C̃T = −C̃, (C.19)

to define the Majorana conjugate as ε̄ = εT C̃. This leads to the formulae

C̃γµ1...µkC̃−1 = (−)[(k+1)/2](γµ1...µk)T ,

ε̄γµ1...µkχ = (−)[(k+1)/2]χ̄γµ1...µkε, (C.20)

where in the second equation the spinors ε and χ are anti-commuting. The top gamma is

defined as

γ(10) = γ0γ1 . . . γ9 = 1
10!
εµ1...µ10γ

µ1...µ10 , (C.21)
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and this gives rise to the equation

γµ1...µkγ
(10) = (−)[k/2] 1

(10−k)!

√
−gεµ1...µkν1...ν10−kγ

ν1...ν10−k , (C.22)

which is also commonly written as

γ(k)γ(10) = (−)[k/2] ∗ γ(10−k). (C.23)

C.5 Cliff(4;R) and Spin(5)

For Cliff(4;R) ' GL(2,H), D∗D = −1 and we can use this to introduce symplectic

Majorana spinors, while we use C̃ to define the conjugate spinor

χA = εAB(DχB)∗, χ̄A = εAB(χB)T C̃ (C.24)

The other intertwiner C = C̃γ(4) provides a symplectic inner product on spinors, which

is preserved by {γmn, γmnp}, i.e. the H̃4
∼= Spin(5) algebra. The Spin(5) gamma matrix

algebra can be realised explicitly by setting

γ̂i =

γa i = a

γ(4) i = 5
, (C.25)

and identifying γmnp = −εmnpqγqγ(4). The same gamma matrices give a representation of

Cliff(5;R) (with γ(5) = +1).

C.6 Cliff(7;R) and Spin(8)

For Cliff(7;R) we take the representation with γ(7) = −i and define conjugate spinors

ε̄ = ε†A. (C.26)

This provides a hermitian inner product on spinors, which is preserved by H̃7
∼= SU (8),

generated by {γmn, γmnp, γm1...m6}. The intertwiner C̃ = C̃T is preserved by a Spin(8) ⊂
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SU (8) subgroup. The corresponding generators can be written as

γ̂ij =


γab i = a, j = b

+γaγ(7) i = a, j = 8

−γbγ(7) i = 8, j = b

, (C.27)

This representation has negative chirality in the sense that

γ̂i1...i8 = −εi1...i8 . (C.28)

We have the useful completeness relations, reflecting SO(8) triality,

γ̂ijαβγ̂ij
γδ = 16δγδαβ, γ̂ijαβγ̂kl

αβ = 16δijkl,

where we have used C̃ to raise and lower spinor indices, and Fierz identity, which also

serves as our definition of εα1...α8 ,

1
4!
εαα′ββ′γγ′δδ′ γ̂

ijγγ′ γ̂klδδ
′
= 2γ̂[ij

[αα′ γ̂
kl]
ββ′] − γ̂ij [αα′ γ̂

kl
ββ′]. (C.29)

Note that as a representation of the Spin(8) algebra we can impose a reality condition

on the spinors χ = (Dχ)∗ using the intertwiner D̃ with D̃∗D̃ = +1. For such a real spinor

the two possible definitions of spinor conjugate coincide χ̄ = χT C̃ = χ†A. In fact there

exists a GL(8,R) family of purely imaginary bases of gamma matrices such that D̃ = 1 and

A = C̃. In such a basis we have ε̄ = ε†C̃ = ε†A for a general spinor ε = χ1 + iχ2. Many

of our SU (8) equations are written under a Spin(8) = SU (8) ∩ SL(8,R) decomposition

in such an imaginary basis, and thus it is natural to raise and lower spinor indices with the

Spin(8) invariant C̃.



129

Appendix D

Spinor Decompositions

D.1 (10, 1)→ (6, 1) + (4, 0)

We can decompose the Cliff(10, 1;R) gamma matrices as

Γµ = γµ ⊗ γ(4), Γm = 1⊗ γm, (D.1)

and the eleven-dimensional intertwiners as

C̃ = C̃(6,1) ⊗ C̃(4), D = D(6,1) ⊗D(4). (D.2)

Introducing a basis of seven dimensional symplectic Majorana spinors {ηAI }, we can

then decompose a general eleven-dimensional Majorana spinor as

ε = εAB
(
ηAI ⊗ χBI

)
, (D.3)

where {χAI} are some collection of four dimensional symplectic Majorana spinors. All of

the data of the eleven dimensional spinor is now contained in χAI , the extra index I serving

as the external Spin(6, 1) index.

The eleven dimensional spinor conjugate can be realised in terms of the four dimen-
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sional spinors χAI by setting

χ̄AI = εAIBJ(χBJ)T C̃(4), (D.4)

where εAIBJ = (ηAI)
T C̃(6,1)ηBJ .

Clearly from the decomposition (D.1) the action of the internal eleven dimensional

gamma matrices is simply

Γmε↔ γmχAI , (D.5)

and any eleven dimensional equation with only internal gamma matrices takes the same

form in terms of χAI . Thus, supressing the extra indices on χ, the supergravity equations

with fermions in section 2.2.2 take exactly the same form when written in terms of the

four-dimensional spinors.

D.2 (10, 1)→ (3, 1) + (7, 0)

We can use a complex decomposition of the Cliff(10, 1;R) gamma matrices as

Γµ = γµ ⊗ 1, Γm = iγ(4) ⊗ γm, (D.6)

and the eleven-dimensional intertwiners as

C̃ = C̃(3,1) ⊗ C̃(7), D = D(3,1) ⊗ D̃(7). (D.7)

We take a chiral decomposition of an eleven-dimensional Majorana spinor

ε =
(
η+
I ⊗ χ

I
)

+ (D(3,1)η
+
I )∗ ⊗ (D̃(7)χ

I)∗, (D.8)

where γ(4)η+
I = −iη+

I so that {η+
I } are a basis of complex Weyl spinors in the external

space. The Majorana condition on ε is automatic with no additional constraint on χI ,

which is complex. Again the extra index I on χ provides an external Spin(3, 1) index.

The Clifford action of the internal eleven-dimensional gamma matrices then reduces to
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the action of the seven-dimensional gamma matrices on χ

Γmε = η+
I ⊗ (γmχI) + (D(3,1)η

+
I )∗ ⊗ (D̃(7)γ

mχI)∗. (D.9)

To see how to write eleven-dimensional spinor bilinears in this language, we expand

ε̄Γm1...mkε′ =
(

(η+
I )T C̃(3,1)η

+
J

)(
(χI)T C̃(7)γ

m1...mkχ′J
)

+
(

(η+
I )TDT

(3,1)C̃(3,1)D(3,1)η
+
J

)∗(
(χI)T D̃T

(7)C̃(7)D̃(7)γ
m1...mkχ′J

)∗
=
(
χ̄Iγ

m1...mkχ′I
)

+
(

cc
)
,

(D.10)

where we have made the definition

χ̄I = εIJ(χJ)T C̃(7), (D.11)

with εIJ = −(η+
I )T C̃(3,1)η

+
J .

With these definitions, the equations linear in spinors in section 2.2.2 take the same

form when written in terms of χI , while the spinor bilinear expressions take the same form

with a complex conjugate piece added to them.
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Appendix E

Ed(d)×R+

In this appendix we give an explicit construction of Ed(d)×R+ for d ≤ 7 based on the

GL(d,R) subgroup. We will describe the action directly in terms of the bundles that appear

in the generalised geometry.

E.1 Construction of Ed(d)×R+ from GL(d,R)

We have

E ' TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ7T ∗M),

E∗ ' T ∗M ⊕ Λ2TM ⊕ Λ5TM ⊕ (TM ⊗ Λ7TM),

ad F̃ ' R⊕ (TM ⊗ T ∗M)⊕ Λ3T ∗M ⊕ Λ6T ∗M ⊕ Λ3TM ⊕ Λ6TM.

(E.1)

The corresponding Ed(d)×R+ representations are listed in Table 5.1. We write sections as

V = v + ω + σ + τ ∈ E,

Z = ζ + u+ s+ t ∈ E∗,

R = c+ r + a+ ã+ α + α̃ ∈ ad F̃ ,

(E.2)

so that v ∈ TM , ω ∈ Λ2T ∗M , ζ ∈ T ∗M , c ∈ R etc. If {êa} is a basis for TM with a dual

basis {ea} on T ∗M then there is a natural gl(d,R) action on each tensor component. For
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instance

(r · v)a = rabv
b, (r · ω)ab = −rcaωcb − rcbωac, etc. (E.3)

Writing V ′ = R · V for the adjoint Ed(d)×R+ action of R ∈ ad F̃ on V ∈ E, the

components of V ′, using the notation of appendix A.2, are given by

v′ = cv + r · v + α y ω − α̃ y σ,

ω′ = cω + r · ω + v y a+ α y σ + α̃ y τ,

σ′ = cσ + r · σ + v y ã+ a ∧ ω + α y τ,

τ ′ = cτ + r · τ − jã ∧ ω + ja ∧ σ.

(E.4)

Note that, the Ed(d) sub-algebra is generated by setting c = 1
(9−d)

raa. Similarly, given

Z ∈ E∗ we have
ζ ′ = −cζ + r · ζ − u y a+ s y ã,

u′ = −cu+ r · u− α y ζ − s y a+ t y ã,

s′ = −cs+ r · s− α̃ y ζ − α ∧ u− t y a,

t′ = −ct+ r · t− jα ∧ s− jα̃ ∧ u.

(E.5)

Finally the adjoint commutator

R′′ = [R,R′] (E.6)

has components

c′′ = 1
3
(α y a′ − α′ y a) + 2

3
(α̃′ y ã− α̃ y ã′),

r′′ = [r, r′] + jα y ja′ − jα′ y ja− 1
3
(α y a′ − α′ y a)1

+ jα̃′ y jã− jα̃ y jã′ − 2
3
(α̃′ y ã− α̃ y ã′)1,

a′′ = r · a′ − r′ · a+ α′ y ã− α y ã′,

ã′′ = r · ã′ − r′ · ã− a ∧ a′,

α′′ = r · α′ − r′ · α + α̃′ y a− α̃ y a′,

α̃′′ = r · α̃′ − r′ · α̃− α ∧ α′

(E.7)
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Here we have c′′ = 1
9−dr

′′a
a, as R′′ lies in the Ed(d) sub-algebra.

The Ed(d)×R+ Lie group can then be constructed starting with GL(d,R) and using the

exponentiated action of a, ã, α and α̃. The GL(d,R) action by an element m is standard so

(m · v)a = ma
bv
b, (m · ω)ab = (m−1)ca(m

−1)dbωcd, etc. (E.8)

The action of a and ã form a nilpotent subgroup of nilpotency class two. One has

ea+ãV = v + (ω + iva)

+
(
σ + a ∧ ω + 1

2
a ∧ iva+ ivã

)
+
(
τ + ja ∧ σ − jã ∧ ω + 1

2
ja ∧ a ∧ ω

+ 1
2
ja ∧ ivã− 1

2
jã ∧ iva+ 1

6
ja ∧ a ∧ iva

)
,

(E.9)

with no terms higher than cubic in the expansion. The action of α and α̃ form a similar

nilpotent subgroup of nilpotency class two with

eα+α̃V =
(
v + α y ω − α̃ y σ + 1

2
α y α y σ

+ 1
2
α y α̃ y τ + 1

2
α̃ y α y τ + 1

6
α y α y α y τ

)
+ (ω + α y σ + α̃ y τ + α y α y σ)

+ (σ + α y τ) + τ.

(E.10)

A general element of Ed(d)×R+ then has the form

M · V = eλ eα+α̃ ea+ãm · V, (E.11)

where eλ with λ ∈ R is included to give a general R+ scaling.

E.2 Some tensor bundle products

We also define two tensor bundle products. We have the map into the adjoint bundle

×ad : E∗ ⊗ E → ad F̃ . (E.12)
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Writing R = Z ×ad V we have

c = −1
3
u y ω − 2

3
s y σ − t y τ,

m = v ⊗ ζ − ju y jω + 1
3
(u y ω)1− js y jσ + 2

3
(s y σ)1− jt y jτ,

α = v ∧ u+ s y ω + t y σ,

α̃ = −v ∧ s− t y ω,

a = ζ ∧ ω + u y σ + s y τ,

ã = ζ ∧ σ + u y τ.

(E.13)

We can also consider the bundle N as given in table 5.2. Taking

N ' T ∗M ⊕ Λ4T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M)⊕ (Λ3T ∗M ⊗ Λ7T ∗M)⊕ (Λ6T ∗M ⊗ Λ7T ∗M).

Y = λ+ κ+ µ+ ν + π,

(E.14)

we have that the symmetric map E ⊗ E → N is

λ = v y ω′ + v′ y ω,

κ = v y σ′ + v′ y σ − ω ∧ ω′,

µ = (jω ∧ σ′ + jω′ ∧ σ)− 1
4

(σ ∧ ω′ + σ′ ∧ ω)

+ (v y jτ) + (v y jτ ′)− 1
4
(v y τ ′ + v′ y τ),

ν = j3ω ∧ τ ′ + j3ω′ ∧ τ − j3σ ∧ σ′,

π = j6σ ∧ τ ′ + j6σ′ ∧ τ,

(E.15)
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Appendix F

Hd and H̃d

We now turn to the analogous description of Hd in SO(d) representations. We then give

a detailed description of the spinor representations of Hd and provide several important

projections of tensor products in this language.

F.1 Hd and SO(d)

Given a positive definite metric g on TM , which for convenience we take to be in standard

form δab in frame indices, we can define a metric on E by

G(V, V ) = v2 + 1
2!
ω2 + 1

5!
σ2 + 1

7!
τ 2, (F.1)

where v2 = vav
a, ω2 = ωabω

ab, etc as in (A.6). Note that this metric allows us to identify

E ' E∗.

The subgroup of Ed(d)×R+ that leaves the metric is invariant is Hd , the maximal com-

pact subgroup of Ed(d) (see table 5.3). Geometrically it defines a generalised Hd structure,

that is an Hd sub-bundle P of the generalised structure bundle F̃ . The corresponding Lie

algebra bundle is parametrised by

adP ' Λ2T ∗M ⊕ Λ3T ∗M ⊕ Λ6T ∗M,

N = n+ b+ b̃,
(F.2)
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and embeds in ad F̃ as
c = 0,

mab = nab,

aabc = −αabc = babc,

ãa1...a6 = α̃a1...a6 = b̃a1...a6 ,

(F.3)

where indices are lowered with the metric g. Note that nab generates the O(d) ⊂ GL(d,R)

subgroup that preserves g. Concretely a general group element can be written as

H · V = eα+α̃ ea+ã h · V, (F.4)

where h ∈ O(d) and a and α and ã and α̃ are related as in (F.3).

The generalised tangent space E ' E∗ forms an irreducible Hd bundle, where the ac-

tion of Hd just follows from (E.4). The corresponding representations are listed in table 5.3.

Another important representation of Hd is the complement of the adjoint of Hd in

Ed(d)×R+, which we denote as H⊥ (see table 5.3). An element of H⊥ is represented

as
H⊥ ' R⊕ S2F ∗ ⊕ Λ3F ∗ ⊕ Λ6F ∗,

Q = c+ h+ q + q̃
(F.5)

and it embeds in ad F̃

c = c,

mab = hab,

aabc = αabc = qabc,

ãa1...a6 = −α̃a1...a6 = q̃a1...a6 .

(F.6)

The action of Hd on this representation is given by Ed(d)×R+ Lie algebra. Writing Q′ =
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N ·Q we have

c′ = −2
3
b y q − 4

3
b̃ y q̃,

h′ = n · h− jb y jq − jq y jb− jb̃ y jq̃ − jq̃ y jb̃+
(

2
3
b y q + 4

3
b̃ y q̃

)
1,

q′ = n · q − h · b+ b y q̃ + q y b̃,

q̃′ = n · q̃ − h · b̃− b ∧ q,

(F.7)

where we are using the GL(d,R) adjoint action of h on Λ3T ∗M and Λ6T ∗M . The Hd

invariant scalar part ofQ is given by c− 1
9−dh

a
a, while the remaining irreducible component

has c = 1
9−dh

a
a.

F.2 H̃d and Cliff(d;R)

The double cover H̃d of Hd has a realisation in terms of the Clifford algebra Cliff(d;R).

Let S be the bundle of Cliff(d;R) spinors. We can identify sections of S as H̃d bundles in

two different ways, which we denote S±. Specifically χ± ∈ S± if

N · χ± = 1
2

(
1
2!
nabγ

ab ± 1
3!
babcγ

abc − 1
6!
b̃a1...a6γ

a1...a6
)
χ±, (F.8)

forN ∈ adP . As expected, in both cases n generates the Spin(d) subgroup of H̃d . The two

representations are mapped into each other by γa → −γa. As such, they are inequivalent

in odd dimensions. However, in even dimensions, since −γa = γ(d)γa(γ(d))−1, they are

equivalent and one can identify χ− = γ(d)χ+. Thus one finds

S ' S+ ⊕ S− if d is odd,

S ' S+ ' S− if d is even.
(F.9)

The different H̃d representations are listed explicitly in table 5.5.

The Spin(d) vector-spinor bundle J also forms representations of H̃d . Again we can
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identify two different actions. If ϕ±a ∈ J± we have1

N · ϕ±a = 1
2

(
1
2!
nbcγ

bc ± 1
3!
bbcdγ

bcd − 1
6!
b̃b1...b6γ

b1...b6
)
ϕ±a − nbaϕ±b

∓ 2
3
ba
b
cγ
cϕ±b ∓ 1

3
1
2!
bbcdγa

cdϕ±b

+ 1
3

1
4!
b̃a
b
c1...c4γ

c1...c4ϕ±b + 2
3

1
5!
b̃bc1...c5γa

c1...c5ϕ±b .

(F.10)

Again in even dimension J+ ' J−. The H̃d representations are listed explicitly in table 5.5.

Finally will also need the projections H⊥ ⊗ S± → J∓, which, for Q ∈ H⊥ and

χ± ∈ S±, is given by

(Q×J∓ χ±)a = 1
2
habγ

bχ± ∓ 1
3

1
2!
qabcγ

bcχ± ± 1
6

1
3!
qbcdγa

bcdχ±

+ 1
6

1
5!
q̃ab1...b5γ

b1...b5χ± − 1
3

1
6!
q̃c1...c6γa

c1...c6χ±.
(F.11)

F.3 H̃d and Cliff(10, 1;R)

To describe the reformulation of D = 11 supergravity restricted to d dimensions it is very

useful to use the embedding of H̃d in Cliff(10, 1;R). This identifies the same action of

H̃d on spinors given in (F.8) but now using the internal spacelike gamma matrices Γa for

a = 1, . . . , d. Combined with the external spin generators Γµν , this actually gives an action

of Spin(10− d, 1)× H̃d on eleven-dimensional spinors. As before the action of H̃d can be

embedded in two different ways. We write χ̂± ∈ Ŝ± with

N · χ̂± = 1
2

(
1
2!
nabΓ

ab ± 1
3!
babcΓ

abc − 1
6!
b̃a1...a6Γa1...a6

)
χ̂±. (F.12)

Since the algebra of the {Γa} is the same as Cliff(d;R) all the equations of the previous

section translate directly to this presentation of H̃d . The advantage of the direct action on

eleven-dimensional spinors is that it allows us to write H̃d covariant spinor equations in a

dimension independent way.

As before we can also identify two realisations Ĵ± of H̃d on the representations with one

1The formula given here matches those found in [121, 122] for levels 0, 1 and 2 of K(E10). A similar
formula also appears in the context of E11 in [123].
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eleven-dimensional spinor index and one internal vector index which transform as (F.10)

(with Γa in place of γa). The Spin(d− 1, 1)× H̃d representations for Ŝ± and Ĵ± are listed

explicitly in table 6.1.

In addition to the projection H⊥ ⊗ Ŝ± → Ĵ∓ given by (F.11) (with Γa in place of

γa) we can identify various other tensor products. We have the singlet projections 〈·, ·〉 :

Ŝ∓ ⊗ Ŝ± → 1 given by the conventional Cliff(10, 1;R) bilinear, defined using (C.16), so

〈χ̂−, χ̂+〉 = ¯̂χ−χ+, (F.13)

where χ̂± ∈ Ŝ±. There is a similar singlet projection 〈·, ·〉 : Ĵ∓ ⊗ Ĵ± → 1 given by2

〈ϕ̂∓, ϕ̂±〉 = ¯̂ϕ∓a
(
δab + 1

9−dΓaΓb
)
ϕ̂±b , (F.14)

where ϕ̂± ∈ Ĵ±.

We also have projections from Ŝ± ⊗ Ĵ± and Ŝ± ⊗ Ŝ∓ to H⊥. Given χ̂+ ∈ Ŝ− and

ϕ̂± ∈ Ĵ± we have, using the decomposition (F.5),

(χ̂± ×H⊥ ϕ̂±) = 2
9−d

¯̂χ±Γaϕ̂±a ,

(χ̂± ×H⊥ ϕ̂±)ab = 2¯̂χ±Γ(aϕ̂
±
b)

(χ̂± ×H⊥ ϕ̂±)abc = ∓3 ¯̂χ±Γ[abϕ̂
±
c] ,

(χ̂± ×H⊥ ϕ̂±)a1...a6 = −6 ¯̂χ±Γ[a1...a5
ϕ̂±a6],

(F.15)

Note that the image of this projection does not include the H̃d scalar part of H⊥, since,

from the first two components, c− 1
9−dh

a
a = 0. We also have

(χ̂+ ×H⊥ χ̂−) = 2
9−d

¯̂χ−χ̂+, (F.16)

and all other components of H⊥ are set to zero. We see that the image of this map is in the

H̃d scalar part of H⊥.

Finally, we also need the H̃d projections for E ' E∗ acting on S± and J±. Given

2Setting d = 10 in this reproduces the corresponding inner product in [121].
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V ∈ E, χ̂± ∈ Ŝ± and ϕ̂±a ∈ Ĵ± it is useful to introduce the notation

V × Ŝ∓ χ̂
±, V × Ĵ± χ̂

±,

V × Ŝ± ϕ̂
±, V × Ĵ∓ ϕ̂

±,
(F.17)

which are given explicitly by

(V ×Ŝ± χ̂
∓) =

(
± vaΓa + 1

2!
ωabΓ

ab ± 1
5!
σa1...a5Γa1...a5 + 1

6!
τ bba1...a6Γa1...a6

)
χ̂±, (F.18)

and

(V ×Ĵ± χ̂
±)a =

(
va ± 2

3
Γbωab ∓ 1

3
1
2!

Γa
cdωcd − 1

3
1
4!

Γc1...c4σac1...c4

+ 2
3

1
5!

Γa
c1...c5σc1...c5 ± 1

7!
Γc1...c7τa,c1...c7

)
χ̂±, (F.19)

while

(V ×Ŝ± ϕ̂
±) = vaϕ̂a + 1

10−dvaΓ
abϕ̂b ± 1

10−d
1
2!
ωbcΓ

abcϕ̂+
a ± 8−d

10−dω
a
bΓ

bϕ̂+
a

− 1
10−d

1
5!
σb1...b5Γab1...b5ϕ̂

+
a − 8−d

10−d
1
4!
σab1...b4Γb1...b4ϕ̂+

a

∓ 1
7!
τa,b1...b7Γb1...b7ϕ̂+

a ∓ 1
3

1
5!
τ c,c

a
b1...b5Γb1...b5ϕ̂+

a , (F.20)

and finally

(V ×Ĵ∓ ϕ̂
±)a = ±vcΓcϕ̂+

a ± 2
9−dΓcvaϕ̂

+
c − 1

2!
ωcdΓ

cdϕ̂+
a + 4

3
ωa

bϕ̂+
b

− 2
3
ωcdΓa

cϕ̂+d − 4
3

1
9−dωabΓ

bΓcϕ̂+
c + 2

3
1

9−d
1
2!
ωbcΓa

bcΓdϕ̂+
d

± 1
5!
σc1...c5Γc1...c5ϕ̂+

a ∓ 2
3

1
3!
σa

b
c1c2c3Γc1c2c3ϕ̂+

b ∓ 4
3

1
4!
σbc1...c4Γa

c1...c4ϕ̂+
b

∓ 2
3

1
9−d

1
4!
σac1...c4Γc1...c4Γdϕ̂+

d ± 4
3

1
9−d

1
5!
σc1...c5Γa

c1...c5Γdϕ̂+
d

+ 1
7!
τc,d1...d7ΓcΓd1...d7ϕ̂+

a + 1
7!
τa,c1...c7Γc1...c7Γdϕ̂+

d . (F.21)
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