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Abstract

In this thesis a new formulation is presented of the low energy, supergravity limit of type
IT string theory and M theory, including fermions to leading order. This is performed by
utilising the language of generalised geometry, which is shown to be the natural setting for
these theories.

The core idea behind generalised geometry — an extension of ordinary differential ge-
ometry — and what makes it such a powerful tool for analysing supergravity, is that it recasts
all the bosonic fields of the manifold as the natural geometric symmetries of an enlarged
tangent space. There are two versions of generalised geometry which are of particular in-
terest, namely O(d, d) generalised geometry which will be used to formulate the NSNS
sector of type II theories, and F;(q) generalised geometry (also known as exceptional gen-
eralised geometry) which enables the description of eleven-dimensional supergravity. For
both cases, this work will show how one can introduce generalised connections to study the
differential structure of the extended tangent spaces and define novel notions of generalised
curvature. Specifying extra local structure defines a generalised notion of the Riemannian
metric tensor, which contains all the relevant bosonic fields in a single, unified object.

With these tools one can then reformulate the supergravity equations very naturally,
as they become simply the generalised geometry analogue of Einstein gravity. One thus
obtains a formalism which is automatically fully covariant under all the bosonic symmetries
of supergravity. Furthermore, generalised connections are shown to be intimately related to
supersymmetry, with important consequences for future applications. As an example, in the
concluding chapter it will be shown how the classic problem of solving the Killing spinor
equations of supersymmetric compactifications can be equivalently recast as the statement

that the background possesses the generalised analogue of special holonomy.
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Chapter 1
Introduction

The foundations of modern physics rest on two major pillars, two theoretical constructs
which have been validated empirically to an extraordinary degree, general relativity and the
quantum field theory of the standard model. Yet these two are mutually inconsistent — di-
rect quantisation of Einstein-Hilbert gravity fails miserably due to its non-renormalisability.
And while it could have been the case that there were no situations in the Universe where
both theories need be applied, so that they could coexist peacefully, we are aware of phe-
nomena in nature where they must, such as astronomical black holes and the early universe.
Thus if physics is to provide a complete description of reality then one needs to find a new
theory which replaces the two current standards while still being able to recover them at the
appropriate limits, a theory-of-everything(-that-we-are-currently-aware-of). At the time of
writing, the leading candidate for such a theory is string theory.

String theory is a quantum field theory (of one-dimensional objects, as opposed of
point-like objects) which contains Einstein-Hilbert gravity at its lowest level in perturba-
tion theory (and with several corrections at higher level as should be expected). Since it
was originally formulated in the late 1960s, it has been established that string theory has
to satisfy certain internal consistency conditions in order to obtain a proper quantum the-
ory, which result in some very non-trivial consequences. These requirements include the
absence of negative norm states, which can be attained by formulating the theory at the
appropriate critical spacetime dimension, or a lack of tachyons in its physical spectrum,

which results from positing worldsheet supersymmetry (or equivalently, supersymmetry in
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the target spacetime) and forces the critical dimension to be terﬂ There are in fact five dif-
ferent string theories which satisfy these properties, type IIA, IIB, type I, SO(32)-heterotic
and Eg x Eg-heterotic. The low energy limit of these theories is a particular supergravity
theory in ten-dimensions, respectively, type IIA, type 1IB and type I coupled to different
super Yang-Mills theories, and it is by considering the supergravity limits that we can study
several of the properties of the string theories, especially if we are to have any hope of re-
lating them to any phenomenology. The fact that there exist five different string theories
might seem problematic but in 1995 [, 2] it was realised that this is not really an issue — all
five theories are in fact describing the same reality, just “interpreting” it differently, in the
sense that, for example, a solution to SO(32)-heterotic in a small coupling constant limit is
the same as a solution to type I in the large coupling constant limit (and vice-versa). This
is known as a duality transformation and when they are all put together they form a web
of relations connecting all the string theories, with a surprising corollary of their existence
being the discovery of a sixth theory, namely M theory, which does not contain strings but
is nonetheless dual to the string theories. M theory is formulated on an eleven-dimensional
spacetime and its low energy limit is eleven-dimensional supergravity.

Supergravity in eleven-dimensions, first constructed in [3], is special — it is uniquely
determined by the requirement that the graviton multiplet does not contain fields of spin
higher than two (a traditional requirement as there is no known way of formulating a con-
sistent interacting theory with a finite number of fields with spin higher than tw, or
equivalently, a maximum of 32 supercharges. Since generic spinors of Cliff(10, 1) contain
32 components (and are non-chiral), the minimum amount of supercharges allowed is pre-
cisely 32 and N = 1 supergravity is the only possibility left for constructing a consistent
theory. For dimensions higher than eleven spinors always have more than 32 components,
making eleven dimensional supergravity the highest possible dimension on which one can
formulate a consistent theory.

One can then descend from eleven dimensions to ten. If one does this while preserv-

Note that in this regard string theory is one of very few examples of physical theories which actually are
able to predict a dimension for spacetime, as opposed to taking it as an initial input or axiom.

To clarify, consistent theories with an infinite number of fields with arbitrarily high spin have been
constructed [4, 5] and are currently subject of intensive research.
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ing the 32 supersymmetries one then obtains one of the two maximal supergravities in
D = 10, type IIA, and then by performing a duality transformation one gets the other max-
imal supergravity, type IIB. Further, if one wishes to study the properties of other maximal
supergravities, then one should be able to describe reductions down to D = 11 — d dimen-
sions and, indeed, if we wish to relate string/M theory to our observed four-dimensional
reality, we better be able to account for the cases at least up to d < 7. In fact one of
the main uses for eleven-dimensional supergravity was to study the properties of maximal
N = 8 supergravity in four dimensions. In the late 1970s Cremmer and Julia [6) [7, |8]
toroidally reduced eleven-dimensional supergravity down to D = 4 and discovered that
it contains a large group of hidden symmetries — a global, non-compact E~(7) and a local
SU(8) group. Subsequently it was shown that reducing to 11 — d dimensions leads to a
a global, non-compact E;4) and a local symmetry group which is the maximal compact
subgroup Hy C Eg(4). As we will see, generalised geometry will allow us to describe a
much broader class of backgrounds than rectangular tori.

First some historical background. Generalised geometry (also known as O(d, d) gen-
eralised geometry, to distinguish from other versions that were introduced later) was in-
troduced by Hitchin to provide a unified description of complex manifolds and symplectic
manifolds, with an ultimate goal of generalising the notion of Calabi-Yau manifolds [9].
Instead of looking at structures defined on the tangent space 7'M of a manifold M, Hitchin
proposed considering “generalised structures’ on the bundle 7'M &1 M. For a d-dimensional
manifold, this bundle comes automatically equipped with a global O(d, d) metric 1 and ad-
mits a generalisation of the Lie bracket, the Courant bracket [10]. The Courant bracket
possesses extra symmetries, it is invariant not just under diffeomorphisms but also under
B-shifts, i.e. transformations by a closed two-form field B. Gualtieri expanded the formal-
ism [11} [12]], introducing the generalised metric — the natural object that arises when one
introduces the local maximal compact subgroup O(d) x O(d) C O(d,d) and which uni-
fies the ordinary Riemannian metric with the B gauge field — and generalised connections,
which allow one to define covariant derivatives on the generalised tangent space. These are
the basic tools that we will be making use of in this thesis.

All together, generalised geometry can be seen as a mechanism for covariantising the

two-form Kalb-Rammond field B of the NSNS sector of string theory. For physicists, the
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formalism thus provided a systematic way of studying supersymmetric compactifications
that went beyond Calabi-Yau by including the NSNS fluxes / = dB. This has permitted
the classification of entire new classes of solutions (for example in [[13} 14} |15, 116} 17, 18,
19, 20]), with applications to, for instance, the AdS/CFT correspondence (see for exam-
ple [21} 22} 123} 24, 25, 26]). It has in addition, been able to shed some light in the problem
of non-geometric backgrounds.

Non-geometry is an intrinsic part of string theory, a result of its non-local version of
quantum gravity. It can show up when one attempts to make a generic duality transfor-
mation away from a known background, resulting in a theory which no longer possesses
a spacetime which can be described by the usual tools of differential geometry. U-duality,
in its more narrow sense, is a non-pertubative symmetry that arises when one toroidally
reduces a string theory down to 11 — d dimensions, with d < 8. The resulting theory is then
invariant under Fj4)(Z) transformations [[1]l. The moduli of solutions of the low energy
limit of this theory, that is, maximal 11 — d-dimensional supergravity, is thus described
by the coset Fyqy(Z)\ E4q)(R)/ Hq. A subset of the U-duality transformations that has
been extensively studied is T-duality, which is given by the O(d,d;Z) C Ey(q)(Z) sub-
group. Unlike generic U-dualities which are non-perturbative, T-duality invariance hold at
each level of perturbation theory and in certain cases it can be interpreted in a very intu-
itive geometric picture from the point of view of the target space of the string worldsheet
— for instance, if the background is a fluxless compactification on a circle of radius R, T-
duality exchanges that with a compactification on a circle of radius 1/R, and, for closed
strings, the winding modes around the circle get exchanged with momentum modes. Non-
geometry can be observed in the case where one starts with a d-dimensional torus bundle
background with NSNS flux along the torus fibres. Performing a first T-duality along one
of those directions results in a new background with a different topology due to presence of
so-called geometric fluxes (see for instance [27, [28]]). The map between the two spaces is
by now well understood, especially so in the context of generalised geometry [29]. If one
T-dualises again, now along a different direction of flux, then one finds that, while it is still
possible to describe the resulting space locally in terms of generalised geometry [30], there
is no longer a well defined global picture in that language. In [31] Hull proposed that for

those cases one instead consider what he called T-folds — briefly, these are spaces with local
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patches which look like ordinary manifolds, but are glued together by O(d, d; Z) T-duality
transformations instead of just diffeomorphisms. T-folds can be constructed by defining
a new ‘“doubled torus” bundle, of dimension 2d, and then specifying a d-dimensional (no
longer geometric) subspace with those transition functions. The different T-dual configu-
rations are then particular examples of allowed “slicings” of the doubled torus.

There have been other attempts at attaining a deeper understanding of T-duality, and
early attempts at making those symmetries more manifest include [32, 33, 34]. A some-
what similar approach that has recently received quite a bit of attention is Double Field
Theory (DFT), introduced in 2008 by Hull and Zweibach [35]. Inspired by the doubled
torus example, in DFT fields live in a doubled manifold with “winding coordinates” (i.e.
canonically conjugate to winding modes on a torus) which are dual to the usual coordinates
(i.e. conjugate to momentum modes), with this duality being formalised by postulating the
existence of the flat O(d, d) metric n globally defined on the doubled manifold. This results
in a theory that closely mirrors the earlier work of Siegel [36/137] on “two-vierbein formal-
ism”, where he builds a gravitational theory based on local GL(d;R) x GL(d; R) doubled
frames. The reason the two formulations match can be traced to the fact that Siegel also
demands compatibility of his two-vierbein-connections with the O(d, d) metric, thus re-
ducing the structure group to the common subgroup of O(d, d) and GL(d; R) x GL(d;R),
that is, O(d) x O(d) which is precisely the same local structure in DFT. A more extensive
comparison of Siegel’s work and that of Hull and Zweibach can be found in [38]].

DFT has more peculiarities. There exists a constraint, imposed by considering the
closed string worldsheet perspective, that the fields are not allowed a completely general
dependence on the coordinates of the doubled manifold, rather they must satisfy the so-
called weak constraint: any field A must satisfy 9°A = 0. In subsequent work [39, 40]
it was realised that in order to formulate a completely background independent theory one
must borrow several of the concepts of generalised geometry, which is possible since the
tangent space of the doubled manifold coincides in many respects the O(d, d) generalised
tangent space. Indeed, it turns out that as a requirement to make the theory consistent —
in particular for it to be diffeomorphism and gauge invariant — one must impose an even
stronger constraint, also known as a section condition, that effectively forces the fields

to depend only on half the coordinates of the doubled manifold. One can then always
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use the O(d, d) symmetry to rotate locally this surviving set of coordinates so that they
match the usual momentum coordinates — thus “undoubling” the theory. This means that
under the strong constraint, DFT produces no new solutions as compared to the generalised
geometrical description, at least locally. Nonetheless the formalism has been extensively
developed [41, 142, [38], 43| 44, 45, 146, 47, 48, 149, 50, 51]], and while originally the DFT
version of the NSNS action was formulated in terms of first-order derivatives of doubled
objects, new constructions [49] based on the DFT analogues of generalised connections
have appeared which have enabled the construction of full DFT Riemann-like tensors. In
particular, the work of Jeon, Lee and Park [52, 153} 154} 55, 156] in terms of “semi-covariant”
derivatives on the doubled space has culminated in a full rewriting of the type II actions,
matching the results obtained in [S7].

Differences between generalised geometry and DFT can therefore only potentially arise
in respect to global considerations or by relaxing the strong constraint. Recent work has
moved in this direction by shifting the focus from the worldsheet perspective to looking
directly at the closure of the symmetry algebras in DFT. In particular backgrounds one
is able to leverage additional symmetries in order to formulate a consistent DFT which
does not respect the strong constraint, and these constructions have been used to describe
non-geometric backgrounds associated to gauged supergravities [46, 47,45, 150, 58]

In this thesis we will actually consider a broader class of “generalised geometries”, as
we are interested not just in the NSNS sector of the type Il theories, but also in the gauge
fields of eleven-dimensional supergravity. In 1986 de Wit and Nicolai [59] showed that
the hidden symmetries of N = 8, D = 4 supergravity discovered by Cremmer and Julia
— the global E7(7) and local SU(8) — can in fact be realised at the D = 11 level. By par-
tially gauge fixing the tangent space structure to Spin(3,1) x Spin(7) C Spin(10, 1), they
demonstrated that one can enhance this local group to obtain eleven-dimensional super-
gravity, to first order in fermions, with a manifest Spin(3, 1) x SU(8) symmetry. The other
groups that appear in toroidal reductions (all the way down to two dimensions) have also
been shown to exist in eleven-dimensions, see for instance [60,61,162,163]. The E;q) xRT
formalism we will present in thesis should be seen as the natural geometrisation of these
results.

Eqay xR generalised geometry was initially developed independently by Hull [64]
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and Waldram and Pacheco [65], who named it exceptional generalised geometry. Like
Hitchin’s original O(d, d) version, the key concept here is the introduction of an enlarged
tangent space whereupon one covariantises the gauge transformations of eleven-dimensional
supergravity as an intrinsic part of the geometry. And just like in the original version, one is
able to introduce a generalised version of the Lie bracket, which was called the exceptional
Courant bracket in [65]. It turns out that Gualtieri’s formalism for generalised connections
and generalised metric (now obtained by specifying the local H; C E4(4) subgroup) also
translates over almost verbatim.
There are other constructs inspired by the appearance of the £, hidden symmetry

groups in eleven-dimensional supergravity reductions. In particular, West in 2001 pro-
posed that the full underlying symmetry of M theory should be described by FEj; [66].

Recall that F};, sometimes also denoted £ ™

, 1s the infinite-dimensional Kac-Moody al-
gebra obtained from triple extending the Fs Dynkin diagram. Similarly to the DFT idea, in
West’s model spacetime is enlarged [67)] (now by an infinite number of extra dual coordi-
nates), such that its tangent space transforms as an F/1; representation. A field theory was
then constructed based on non-linear realisations of E; over its local (also infinite dimen-
sional) maximally compact subgroup [68, 169, [7/0]. Evidence for this conjecture had been
found by decomposing F/1; into one of its F; subalgebras, and then truncating all the extra
coordinates while keeping the part of the enlarged tangent space which transforms under
Eq [[71, 7720 [73]. A line of research that was originally developed independently of the F1;
programme is the one of Berman and Perry [74], which essentially reinterpreted the much
earlier work of [75] from the perspective of DFT. In [75] Duff and Lu built upon [32] to
provide an explanation for the existence of the Fy(4) and H; hidden symmetries of toroidal
reductions (for d < 5) by showing that they can be realised directly in the worldvolume
theory of (what is now known as) the M2 brane of M theory. Based on that result, Berman
and Perry proposed that, just like in DFT, one should introduce a larger manifold with extra
coordinates which here correspond to M2 wrapping modes instead of the string’s winding
modes. However, in order to produce a consistent theory (with diffeomorphism and gauge
invariance) they again needed to reduce down to momentum coordinates. The mechanism
for performing this reduction was called the “section condition”, and it is essentially the

FE4(qy version of the strong constraint of DFT. Just like in that case, the resulting setup
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ends up matching very closely that of exceptional generalised geometry [76, [77]. This
model has been expanded in [78, [79, I80] and the whole construction was incorporated
into the £y, formalism in [73]]. In that paper the authors succeed in providing expressions
for Lagrangians based on this method for all d < 8 (in this thesis we also consider just
those dimensions), though the “curvature” scalars they built were only first-order deriva-
tives of fields, and thus the resulting actions are equivalent to the usual supergravity ones
only up to total derivatives. Additionally, most of these constructions stop short of includ-
ing fermions. One notable exception is the work of Hillmann [81} 82], who, picking up
West’s £ non-realisations, focused on the d = 7 case and introduced a sixty dimensional
spacetime (4456, 56 being the dimension of the smallest nontrivial representation of E7).
By using “generalised E7(7) coset dynamics” and demanding that, upon truncating to 4+7
dimensions, the theory possess Diff(7) invariance, the author managed to show that the
construction reproduces the results of [39]. This dimensional truncation, which mirrors the
effects of the section condition, implies that again the enlarged tangent space of Hillmann
is precisely the exceptional generalised tangent space of [65)]. The geometrical objects he
constructs, together with the fermion fields, can then be directly mapped to the ones we
obtain in the d = 7 section of [[83]].

One can thus see that a lot of the success of these different approaches is a direct result
of their several points of contact with generalised geometry. This is no coincidence, as
we hope the reader will come to agree by the end of this thesis. Generalised geometry is
the natural language to formulate supergravities. Its relation to their bosonic symmetries
is precisely the same as that between Riemannian geometry and Einstein gravity. We will
demonstrate this by proceeding as follows.

In the next chapter we will review type Il and eleven-dimensional supergravities, estab-
lishing conventions and the expressions we intend to recover from generalised geometry.
A word of caution to the reader — we try to provide formulations which strike a balance
between the typical conventions of these supergravities and the ones which arise more nat-
urally in generalised geometry. It is therefore possible that some steps we take in that
chapter might seem unusual, as their reason will only become clear later in the thesis. This
treatment of the supergravities was described in [57, 83]].

In chapter three we review O(d, d) x RT generalised geometry. This is a very similar
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construction to that originally provided by Gualtieri. We examine the properties of the gen-
eralised tangent space, its differential structure and introduce generalised connections. The
existence of a local O(p, q) x O(q, p) structure allows us to construct all the analogues of fa-
miliar objects of (pseudo-)Riemannian geometry such as metric and curvature. These tools
allow us to geometrise the NSNS sector of ten-dimensional type II supergravity theories
in chapter four and obtain a reformulation with the O(9,1) x O(1,9) symmetry manifest.
These chapters follow from our work in [S7].

To geometrise the RR fields we have to move to E4¢4) xR™ generalised geometry with
a local H; symmetry, which we introduce in chapter six. We proceed in similar fashion
to the O(d, d) x R" chapter, though the analysis here is more involved as, on the face of
it, each dimension d would have to be considered separately. However, by constructing
the relevant groups in terms of their GL(d) and SO(d) subgroups and introducing some
new notation, we manage to maintain the discussion completely generic. The generalised
metric, generalised connections and their curvatures are all then constructed in completely
analogous ways to those of chapter three. Indeed, the method we use in this chapter is
kept so general that it should be possible to adapt it directly to other kinds of generalised
geometries, not just those based on Ey(4) XxR™. Most of the content in this chapter was first
given in [76].

We are then able to rewrite dimensional reductions of eleven-dimensional supergrav-
ity in chapter seven. Here, in addition to providing the generic description for all d,
we also study in explicit detail two cases: d = 4, corresponding to compactifications
to D = 11 — d = 7 dimensions, which is a relatively simple case with a local group
H, = SO(5); and the more complex d = 7, local group H; = SU(8)/Z,, which, since it
describes compactifications to four dimensions, is arguably the most important formulation
of Eqq) xR generalised geometry. These results were first presented in [83]].

In the conclusion we review the results and discuss their potential applications, with a

particular emphasis on supersymmetric backgrounds, and possible extensions.
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Chapter 2

Type 11 and eleven-dimensional

supergravity theories

In this chapter we briefly review the usual formulations of ten-dimensional type Il super-
gravity and eleven-dimensional supergravity. These will provide us with the expressions

that we will try to reproduce in the latter chapters based on generalised geometry.

2.1 Type II supergravity

Our basic conventions are given in appendix |Al and for the Cliff(9,1;R) Clifford alge-
bra conventions see appendix We essentially follow those of the democratic formal-
ism [84]], with the only difference which is not purely notational being that we take the
opposite sign for the Riemann tensor, as discussed in appendix |Bl We consider only the
leading-order fermionic terms. We introduce a slightly unconventional notation in a few
places in order to match more naturally with the underlying generalised geometry. It is
also helpful to considerably rewrite the fermionic sector, introducing a particular linear
combination of dilatini and gravitini, to match more closely what follows.

The type Il fields are denoted

{Guvs Buvs 6, AT 0, AT} 2.1)
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where g, is the metric, B, the two-form potential, ¢ is the dilaton and A,(Z) un are the RR
potentials in the democratic formalism, with n odd for type IIA and n even for type IIB. In
each theory there is also a pair of chiral gravitini ¢;; and a pair of chiral dilatini A*. Here
our notation is that + does not refer to the chirality of the spinor but, as we will see, denote
generalised geometrical subspaces. Specifically, in the notation of [84], for type IIA they

are the chiral components of the gravitino and dilatino

G =15+,  where 10pF = gk

(2.2)
A=A+~ where ~UONE = £)*

(Note that /" and ™, and similarly ¢/ and A~, have opposite chiralities.) For type IIB, in

the notation of [84] one has two component objects

_ b (10), )+ _ 1+
Y, = where "V, =1,

W
. (2.3)
A
A= where ~UIONF = —)\*,
-
and again the gravitini and dilatini have opposite chiralities.
In what follows, it will be very useful to consider the quantities
pr= Aty — AR 2.4)

instead of \*. These are the natural combinations that appear in generalised geometry and
from now on we will use p* rather than \*.

The bosonic “pseudo-action” takes the form

B 1
- 2K2

Sp / V=g [e—2¢ (R+4(09)* — 5H?) =) %(F{,ﬁ’)ﬂ : (2.5)

n

where H = dB and F((f)) is the n-form RR field strength. Here we will use the “A-basis”,
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where the field strengths, as sums of even or odd forms, take the fornﬂ
FO =N =" NdAg), (2.6)

where e = 1+ B+ %B A B+ . ... Thisis a “pseudo-action” because the RR fields satisfy

a self-duality relation that does not follow from varying the action, namely,

FY = ()2 F) 2.7)

where [n] denotes the integer part and * w denotes the Hodge dual of w. The fermionic ac-
tion, keeping only terms quadratic in the fermions, can be written after some manipulation

as

1
k2

S = / N e R R T A
— S HY; — O H T = St P+ 3 H )
e (2 Yy — ATV = 25 Ve (2.8)
+ SOTMHY, + ), H 0y + S H 0y — 2o B p’)
— L (i F s+ o ).
where V is the Levi—Civita connection.

To match what follows it is useful to rewrite the standard equations of motion in a partic-

ular form. For the bosonic fields, with the fermions set to zero, one takes the combinations

'Note that in type IIA one cannot write a potential for the zero-form field strength, which must instead be
added by hand in (2.6). Note also that in [84] these field strengths are denoted G.
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that naturally arise from the string S-functions, namely

R H,u)\pH +2v v ¢ i 2¢Z (n— 1 F(B) )\n_1Fl(/B))\1“'>\n71 - 07

HAL..

FBNAn—z _ 0,

i (e l“’)‘ 2 (n— 2)' MVM An—2 (2.9)

V2¢> — (Vo) + iR — LH? =0,
dF®) — g A F® =,
where the final Bianchi identity for F’ follows from the definition (2.6). Keeping only terms
linear in the fermions, the fermionic equations of motion read
7U [(vu + iHu)\pr)\p - au¢) wi + %Huu/\w)%] - (vu + éH;w)\fYV)\) pi
n v 7n(B)
= e (R) Py U
(Vu + %HMV)\/VV)\ - 2a,u¢> ¢Mi - ’YM (vu + iHuV)\/YVA - a/t¢) p:t
n (B)
= Le? Z(i)[( +1)/2]F(n) o7,

(2.10)

The supersymmetry variations are parametrised by are pair of chiral spinors €= where,

again, in the notation of [84], for type IIA, we have
e=e"+e  where Y10t = ¢t (2.11)

while for type IIB we have the doublet

et
e=( | where 7% =t (2.12)

€

Again keeping only linear terms in the fermions field, the supersymmetry transformations
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for the bosons read

dey, = by +E My,
0By, = 26"y, ¥ — 26 1, ¥y,

6¢ — 16log(—g) = —3e pt —3ep, (2.13)
(n) -, v, — - -
(ndA) " =5 (e Y = € Y )

F 5 (e YV € V€ )

where e, is an orthonormal frame for g, and in the last equation the upper sign refers to

type IIA and the lower to type IIB. For the fermions one has

v n B
S = (V F 1 Humy?) €5 + ey (1) H)/Z]an))%ﬁ,
n (2.14)
6p:t - ,y,u (v,u + iny/\’yl»\ - aﬂ¢) Ei‘

2.2 Eleven-dimensional supergravity

We now briefly review the usual formulation of eleven-dimensional N = 1 supergravity
and its restrictions to d dimensions. This will provide us with the expressions we will try

to reproduce in chapter {| based on generalised geometry.

22.1 N =1, D = 11 supergravity

Let us start by reviewing the action, equations of motion and supersymmetry variations of
eleven-dimensional supergravity, to leading order in the fermions, following the conven-
tions of [85] (see also appendices[A]and [C)).

The fields are simply

{gmn, Aunp, ¥ut, (2.15)

where gy is the metric, Ay p the three-form potential and v/, is the gravitino. We use

M, N, ... for eleven-dimensional coordinate indices to distinguish from the external space
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indices p, v, ... we will need for the next subsection. The bosonic action is given by
1
=53 (VEgR = LF AsF = LANF A F), (2.16)
K
where R is the Ricci scalar and F = d.A. This leads to the equations of motion

1 P1P>Ps 1 2\
Run — 15 (‘FMPlPQPB‘FN ' — 29MnF ) =0,

dx F+1FAF =0,

(2.17)

where R,y is the Ricci tensor.
Taking T'™ to be the Cliff(10, 1;R) gamma matrices, the fermionic action, to quadratic

order in ¢y, is given by

1 - _
= / \/__g<¢MFMNPVNwP + g5 F P o DM P

(2.18)
+ %fpl...P41ZP1FP2PS¢P4>7
the gravitino equation of motion is
MNP yapp + & (TVNP P Fp  py 4+ 12FMN p p, T P2) oy = 0. (2.19)
The supersymmetry variations of the bosons are
dgun = 280wy,
() (2.20)
dAunp = =3l NP,
while the supersymmetry variation of the gravitino is
Sn = Ve + 5as (Tar™M N — 86, MTMNsN) Fy - ne, (2.21)

where ¢ is the supersymmetry parameter.
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2.2.2 Restricted action, equations of motion and supersymmetry

We will be interested in “restrictions” of eleven-dimensional supergravity where the space-
time is assumed to be a warped product R'°=%! x M of Minkowski space with a d-

dimensional spin manifold M, with d < 7. The metric is taken to have the form
ds?, = e*Ads? (RO 4+ ds?(M), (2.22)

where ds?(R*°~%1) is the flat metric on R1%~%! and ds?(M ) is a general metric on M. The
warp factor A and all the other fields are assumed to be independent of the flat R0~
space. In this sense we restrict the full eleven-dimensional theory to M. We will split
the eleven-dimensional indices as external indices ¢ = 0, 1,...,c — 1 and internal indices
m=1,...,dwhere c+d = 11.

In the restricted theory, the surviving fields include the obvious internal components
of the eleven-dimensional fields (namely the metric g and three-form A) as well as the
warp factor A. If d = 7, the eleven-dimensional Hodge dual of the 4-form F' can have a
purely internal 7-form component. This leads one to introduce, in addition, a dual six-form

potential A on M which is related to the seven-form field strength F' by
F=dA-1AnNF (2.23)
The Bianchi identities satisfied by F' = d A and F are then

dF =0,

N (2.24)
dF + F AF =0.

With these definitions one can see that £ and [ are related to the components of the eleven

dimensional 4-form field strength F by
le...m4 - -le...m47 le...m7 - (*‘F>m1m7 s (225)

where *F is the eleven-dimensional Hodge dual. The field strengths F and [ are invariant
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under the gauge transformations of the potentials given by

A= A+ dA,

o (2.26)
A= A+dA—LdA A4,

for some two-form A and five-form A. There is an intricate hierarchy of further coupled
gauge transformations of A and /N\, discussed in more detail in section (see also [63]])
and which formally defines a form of “gerbe” [86l].

In order to diagonalise the kinetic terms in the fermionic Lagrangian, one introduces

the standard field redefinition of the external components of the gravitino
W =+ 25T . (2.27)

We then denote its trace as
p= %F“%/“ (2.28)

and allow this to be non-zero and dependant on the internal coordinates (this is the partner
of the warp factor A). Although the restriction to d-dimensions breaks the Lorentz symme-
try to Spin(10 —d, 1) x Spin(d) C Spin(10,1), we do not make an explicit decomposition
of the spinor indices under Spin(10—d, 1) x Spin(d). Instead we keep expressions in terms
of eleven-dimensional gamma matrices. This is helpful in what follows since it allows us
to treat all dimensions in a uniform way.

In summary, the surviving degrees of freedom after the restriction to d dimensions are

{gmrm Amnp> Aml...mm A; wma /0} (229)

One can then define the internal space bosonic action

1 ~
S =53 [ VIO (R4 cle= V@A) — P - 14FY). @230
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where the associated equations of motion

Rmn - CvmvnA - C(amA) (anA) - %l(4Fmp1p2P3F pipaps — lgm”F2)
1 ~
2

1F? =0, (231)

are those obtained by substituting the field ansatz into (2.17)). Similarly, to quadratic order

in fermions, the action for the fermion fields is

Sp=— 2P /\/gecﬂ{ ¢ — 4)Y, ™Y 0,
—c(c = 3)P" TV, — ¢ (VT Vi)™ + 9T, Vo))
— 1326 — 5e 4 P P TP, + (e — 3) G by
+ 53 U F "y TP + 11 (¢ — A Fyyp, TP PR,

1226 — e+ A Iy, s TP Po0h,

=

+1delc = 1) ™y, s TP P00, (2.32)
+c(e—1) (@mvmp - pvmwm) + c(lﬁmFm”Vnp — me”sz/;n)
— cfe = 1)(c = 2P (OnA)p — cle — D™ (04A)p

%C<C - 1)ﬁFmpqupqrwm - %%Cﬁrmpl.”plepl'”p‘lqﬂm

AN,

+

DO [

c(c— 1)zzmﬁ1mp1...parplmp6p

_ 11
26!

+c(c— 1) (pI""Vp + 1pFp — LpFp)|.
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This action leads to the equation of motion for /,,,,

0=(c—I" (Vy + £0,A) b, — c(c = 3) T (Vi + £0.4) Uy,
— Ly (Vi + £0A) " — Ly, (Vi + £0,A) ¥07)
— L(2¢* —5c+4) Q,anqupqw + c(c —3) Y
dl F plpzpsr )P1p2p3wn 4 a1 (C - 4)anp1...p4 Fp1.-~p4 wn
— 11267 = 5e+ 4) gy ps TP P20 + 22 c(c — 1) FpP 7T, et
" (Vo +0,A)p+c(c—1) (Vi + 0n) p

(2.33)

%C(C - 1)Fmp1p2psrp1p2p3p + 1 170 Crmm 104Fp1 Pip

1

4

11 [ ni...ng
- Z—,C(C - 1) mnl...ngr pa

and the equation of motion for p,

0=[V+4@A) +1F —1F]p

m+ (c = DoLAlY™ — LTV, + (c — 1)0 Al )y
[<>}cl{<>}(m
+ 151 E pipap T U — G T FT T

o T2 AT R LT

Turning to the supersymmetry transformations, we find that the variations of the fermion

fields are given by

op =¥ — 1 = 1P+ 2(@90)) e,

(2.35)
Sty = [Vm b Py (D — 86, mmemoms) — LAf s | o
and the variations of the bosons by
OGmn = 261 by,
(¢ —2)0A + 4§ logy/g = ép, 2.36)

6Amnp = _Sgr[mnlpp]?
5Am1...m6 = 6§F[m1...m5wm6]'
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This completes our summary of the reduced theory.

In chapter [0] the fermionic fields will be reinterpreted as representations of larger sym-
metry groups Hy D Spin(d). To mark that distinction, the fermions that have appeared in
this section will be denoted by £%¢™, p**&™ and 1*"#"*. Absent this label, the fields are to be

viewed as “generalised” objects transforming under ]fN[

Note that this is not necessary in the type II case as the generalised objects required there can be treated
within the usual notation (the index structure, for example, is comparatively simple).
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Chapter 3
O(d,d) x R generalised geometry

We would like to define the generalised geometric analogues of each of the ingredients in
the construction of the Levi—-Civita connectio In the first section we review the gener-
alisations of the frame bundle, the Lie derivative, connections, torsion and curvature. In
the following section we discuss the notion of a generalised metric and the analogue of the
Levi—Civita connection.

One way to view generalised geometry is as a formalism for “geometrising” the bosonic
structures that appear in supergravity. In the context of the NSNS sector this means first
combining the symmetry algebra of diffeomorphisms and B-field gauge transformations
into an algebra of “generalised” Lie derivatives. This structure is known as an “exact
Courant algebroid” in the mathematics literature [87, |88]] and, on a d-dimensional man-
ifold, defines a bundle with a natural O(d, d) action. Combining ¢, B and ¢ into a single
geometrical object introduces an additional refinement of the structure, defining a gener-
alised geometry [9, [11]. The only slight, though important, extension we will require here

is to promote the O(d, d) action to O(d, d) x R* [30 [17].

3.1 The O(d,d) x R generalised tangent space

We start by recalling the generalised tangent space and defining what we will call the “gen-

eralised structure” which is the analogue of the frame bundle F' in conventional geometry.

IThese are reviewed in appendix
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Let M be a d-dimensional spin manifold. One starts by defining the generalised tangent

space E as an extension of the tangent space by the cotangent space
0—T"M —F—TM —0, (3.1

which depends on a specific patching via one-forms A;). If vy € I'(TU;) and Ay €
I'(T*U;), so Viyy = vy + A is a section of £ over the patch U;, then

vy + Aay = ) + (Ag) = tugy, Ay ), (3.2)

on the overlap U; N U;. Hence as defined, while the v;) globally are equivalent to a choice
of vector, the \(;) do not globally define a one-form. £ is in fact isomorphic to T'M & T™* M
though there is no canonical isomorphism. Instead one must choose a splitting of the
sequence which, as will be shown below, precisely reproduces the bosonic symmetries

of the NSNS sector.

3.1.1 Generalised structure bundle

Crucially the definition of E is consistent with an O(d, d) metric given by, for V- =v + A
(V,V) =i\, (3.3)
since iv(”)\(i) = z',,<].))\(j) on U; N U;.
In order to describe the dilaton correctly we will actually need to consider a slight
generalisation of £/. We define the bundle E weighted by det 7™ M so that

E=detT*M ® E. (3.4)

The point is that, given the metric (3.3), one can now define a natural principal bundle
with fibre O(d, d) x R* in terms of bases of E. We define a conformal basis { E 4} with



Chapter 3. O(d,d) x R generalised geometry 33

A=1,...2d on E, as one satisfying

P 1(0 1
<EA,EB> = @277143 Where 77 = 5 (1 O) . (35)

That is { £} is orthonormal up to a frame-dependent conformal factor ® € I'(det 7% M).

We then define the generalised structure bundle
F= {(z, {EA}) :x € M, and {E,} is a conformal basis of E’m} (3.6)

By construction, this is a principal bundle with fibre O(d, d) x R™. One can make a change
of basis

VA VA= MAVE By By = B(M7)P . -7)

where M € O(d,d) x R* so that (M 1) 4(M~Y)Pgncp = o*nap for some o. The
topology of F encodes both the topology of the tangent bundle 7'M and of the B-field
gerbe.

Given the definition (3.1I)) there is one natural conformal basis defined by the choice of
coordinates on M, namely {E,} = {9/8z"} U {dz*}. Given V € T'(E) over the patch
U;, we have V' = v#(0/0x*) + \,dz*, we will sometime denote the components of V' in

this frame by an index M such that

v for M =p

M — (3.8)

Ay forM =p+d

3.1.2 Generalised tensors and spinors

Generalised tensors are simply sections of vector bundles constructed from different repre-
sentations of O(d, d) x R¥, that is representations of O(d, d) of definite weight under R.
Since the O(d, d) metric gives an isomorphism between £ and E*, one has the bundle

E = (det T"My @ E® -+ @ E. (3.9)
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for a general tensor of weight p.
One can also consider Spin(d,d) spinor representations [11]. The O(d,d) Clifford
algebra
(T4, T5} = 20ap. (3.10)

can be realised on each coordinate patch U; by identifying spinors with weighted sums of

forms U(;y € I'((det T*U;)"/? ® A*T*U;), with the Clifford action
VAT AUy =i, Wy + Ay A V. (3.11)
The patching (3.2)) then implies
W,y = e AUy, (3.12)

Projecting onto the chiral spinors then defines two Spin(d, d) spinor bundles, isomorphic
to weighted sums of odd or even forms S*(F) ~ (det T*M)~/2 @ A®eVeddT* [ where
again specifying the isomorphism requires a choice of splitting.

More generally one defines Spin(d, d) x R™ spinors of weight p as sections of

Sy = (det T*"M)” @ S*(E). (3.13)

Note that there is a natural Spin(d, d) invariant bilinear on these spinor spaces given by the

Mukai pairing [9, [11]. For ¥, ¥’ € F(S(j;)) one has

(U, W) = (=)l D2 A ') € T((det T*M)), (3.14)
where ¥ and U'("™ are the local weighted n-form components.

3.1.3 NSNS bosonic symmetries and split frames

Let us make a small detour and examine in more detail the symmetries of the NSNS bosonic

sector. The potential B is only locally defined, so that, given an open cover {U;}, across
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coordinate patches U; N Uj it can be patched via
B = By — dAgj). (3.15)
Furthermore the one-forms A ;;) satisfy
Agj) + Ay + Awiy = dA gy, (3.16)

on U; N U; N Uy. This makes B a “connection structure on a gerbe” [86
As a side note, there is a similar patching for the sum of the RR potentials A. Given the
RR field strengths (2.6) from chapter , which are globally defined, we have that, as a sum
of formg}
Ay = e A Ay + dAgy), (3.17)

where A(ij) is a sum of even or odd forms in type IIA and type IIB respectively. Note the
presence of A(;;) in the first term, which is a consequence of us working in the “A-basis”
for the RR fields.

Focusing on the NSNS sector symmetry algebra we see that, in addition to diffeomor-

phism invariance, we have the local bosonic gauge symmetry
Bly = By — dhy, Al =eP0 A, (3.18)

where the choice of sign in the gauge transformation is to match the generalised geometry
conventions. Given the patching of B, the only requirement is dA;) = dA) on U; N
U;. Thus globally A(; is equivalent to specifying a closed two-form. The set of gauge
symmetries is then the Abelian group of closed two-forms under addition Q%(M). The

gauge transformations do not commute with the diffeomorphisms so the NSNS bosonic

%In supergravity, there is no requirement that the flux H is quantised. However, string theory implies the
cohomological condition H/(87%a’) € H?3(M,Z) (up to torsion terms). This can be implemented in the
gerbe structure by requiring g;jx = exp(4ma’iA ;1)) satisfy the cocycle condition gjkzgi_k}gijzg{j,lc =1lon
U; NU; N U, N U;. We will not consider this further restriction in the following.

3Note here i and j refer to the patch not the degree of the form.
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symmetry group Gs has a fibred structure
Q4(M) — Gns — Diff(M), (3.19)

sometimes written as the semi-direct product Diff (M) x Q2 (M).
One can see this structure infinitesimally by combining the diffeomorphism and gauge

symmetries, given a vector v and one-form JA(;), into a general variation
dvirng = Lyg, Ovir@ = Ly, dviaBiy = LBy — dAgy, (3.20)
where the patching of B implies that
dAg) = dAG) — LodAgy). (3.21)

Recall that A;y and A(;) + d¢(;) define the same gauge transformation. One can use this
ambiguity to integrate (3.21)) and set

Ay = Ag) — WwdAay), (3.22)

on U; N Uj.

It should by now be clear that this gerbe structure of supergravity is intimately related
to the way the generalised tangent space was constructed in (3.1]). Introducing a two-form
B patched as in (3.15)) is equivalent to specifying a map 7'M — FE which splits the exact
sequence (3.1). This defines an isomorphism £ ~ TM @ T*M and one is then able to

identify a special class of conformal frames for F that we call a split frame {E 4} by

A

R E, = (dete) (é, +is,B) forA=a
Ey = . (3.23)
E* = (det e)e® forA=a+d

where {é,} is a generic basis for TM and {e®} be the dual basis on 7* M. We immediately
see that
(Ea, Ep) = (det e)*nas, (3.24)
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and hence the basis is conformal. Writing V' = v E, + \E® € F(E ) we have

VB = 4%(det e)é, + A\o(det e)e
(3.25)
= V) + Aw) — by Bl

demonstrating that the splitting defines an isomorphism E ~ (det T*M) @ (TM @® T*M)

since /\(i) — iv(i>B(i) = /\(j) — iv(j)B(j).
The class of split frames defines a sub-bundle of F. Such frames are related by trans-

formations (3.7) where M takes the form

M = (det A)~* (i 2) <‘§ (AE]I)T> : (3.26)

where A € GL(d,R) is the matrix transforming é, — é,(A~1)%, while w = %wabe“ A eb
transforms B — B’ = B + w, where w must be closed for B’ to be a splitting. This
defines a parabolic subgroup G = GL(d,R) x R¥4=1/2 ¢ O(d,d) x R* and hence
the set of all frames of the form defines a Gy principal sub-bundle of F , that is a
Gpiic-structure. This reflects the fact that the patching elements in the definition of F lie
only in this subgroup of O(d, d) x R*.

In what follows it will be useful to also define a class of conformal split frames given

by the set of split bases conformally rescaled by a function ¢ so that

R E, = e 2(dete) (6, +is, B) for A=a
Ej= . (3.27)
E* = e % (det e)e? forA=a+d

thus defining a Gy X R sub-bundle of F. In complete analogy with the split case,

the components of V' € I'(E) in the conformally split frame are related to those in the
coordinate basis by
VB = e (v + ) — v,y Ba))- (3.28)

We can similarly write the components of generalised spinors in different frames. The

relation between the coordinate and split frames implies that if \If,(f)an are the polyform
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components of ¥ € I'(.S é)) in the split frame then

vB) — Z %@(B) A Aetn = PO AT, (3.29)

aj...an
n

demonstrating the isomorphism S, = (det T*M )P~ /2@ A4+ M, since PO N ;) =

eBu A V). In the conformal split frame one similarly has

P (B:9) — oPPaBi) A ). (3.30)

3.1.4 The Dorfman derivative, Courant bracket and exterior derivative

An important property of the generalised tangent space is that it admits a generalisation
of the Lie derivative which encodes the bosonic symmetries of the NSNS sector of type
IT supergravity (3.20). Given V' = v + X € T'(E), one can define an operator Ly acting
on any generalised tensor, which combines the action of an infinitesimal diffeomorphisms
generated by v and a B-field gauge transformations generated by .
Actingon W = w + ¢ € E,), we define the Dorfman derivativeﬂ or “generalised Lie
derivative” as [30]
LyW = L,w + L,( — i,dA, (3.31)

where, since w and ( are weighted tensors, the action of the Lie derivative is

Lot =v"d,w* — w”o,u" + p(0,0" )w,

EvC,u = UV&VC;L + (auvl/)g/ +p(auvy><u-

(3.32)

Defining the action on a function f as simply Ly f = £, f, one can then extend the notion
of Dorfman derivative to any O(d, d) x R* tensor using the Leibniz property.

To see this explicitly it is useful to note that we can rewrite (3.31)) in amore O(d, d) x R™
covariant way, in analogy with (B.4)). First note that one can embed the action of the partial

derivative operator into generalised geometry using the map 7*M — [E. In coordinate

4If p = 0 then Ly, W is none other than the Dorfman bracket [89]. Since it extends to a derivation on the
tensor algebra of generalised tensors, it is natural in our context to call it the “Dorfman derivative”.
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indices, as viewed as mapping to a section of £*, one defines

0, for M =
oy =12 " s (3.33)

0 forM=p+d

One can then rewrite (5.25)) in terms of generalised objects (as in [36, 37, 40])
LyWM = vNouwM 4+ (9MVY — dNVM) Wy + p (On V) WM, (3.34)

where indices are contracted using the O(d, d) metric (3.3)), which, by definition, is constant
with respect to 0. Note that this form is exactly analogous to the conventional Lie deriva-
tive (B.4)), though now with the adjoint action in o(d, d) @ R rather than gl(d). Specifically

the second and third terms are (minus) the action of an o(d, d) & R element m, given by

m-W = —ptra , (3.35)
—w —a") \¢ ¢

where a*, = 0,v" and w,,, = J,\, — O, \,. Comparing with (3.26), we see that m in fact
acts in the Lie algebra of the Gy subgroup of O(d, d) x R.

This form can then be naturally extended to an arbitrary O(d,d) x R* tensor o €

F(Egg‘) as

LVaN[1...Mn — VNaNOéMl"'Mn + (8M1vN . anMl) aNMQ...Mn

NI (aanN _ anMn) aMiMaz1 4y ((9NVN) QMM
(3.36)

again in analogy with (B.4)). It similarly extends to generalised spinors ¥ € I'(.S é)) as (see
also [90])

Ly¥ =VVoyU + Zi (O Vi — OnVar) TN + p(00, V), (3.37)

where FMN = % (FMFN — FNFM)

Note that when W € I'(E)) one can also define the antisymmetrisation of the Dorfman
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derivative
[V.W] =5 (LvW = LwV)
(3.38)
= [v,w] + Lo — LA — 3d (¢ — iwA),
which is known as the Courant bracket [10]. It can be rewritten in an O(d, d) covariant

form as

[0, VY = UNox VM — vNoyUM — L (UnoMVY — ViyoMU™). (3.39)

1
2
which follows directly from (3.34)).

Finally note that since Sﬁ J) =2 AU M the Clifford action of 9y on W € F(Sﬁ /2))
defines a natural action of the exterior derivative. On U, one defines d : F(Sﬁ /2)) —
F(Sa /2)) by

(d0) ) = sTY O W) = AV, (3.40)

— 2
that is, it is simply the exterior derivative of the component p-forms. The Dorfman deriva-

tive and Courant bracket can then be regarded as derived brackets for this exterior deriva-
tive [91]].

3.1.5 Generalised O(d, d) x R™ connections and torsion

We now turn to the definitions of generalised connections, torsion and the possibility of
defining a generalised curvature. The notion of connection on a Courant algebroid was first
introduced by Alekseev and Xu [92, |88]] and Gualtieri [93] (see also Ellwood [94]). At
least locally, it is also essentially equivalent to the connection defined by Siegel [36) 137]]
and discussed in double field theory [38]]. It is also very closely related to the differential
operator introduced in the “stringy differential geometry” of [52].

Our definitions will follow closely those in [92, 93] though, in connecting to super-
gravity, it is important to extend the definitions to include the R factor in the generalised

structure bundle.
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Generalised connections

Here we will specifically be interested in those generalised connections that are compatible
with the O(d,d) x R" structure. Following [92, 93] we can define a first-order linear

differential operator D, such that, given W € I'(E), in frame indices,
DyW = 0y W4 + Qu W2, (3.41)
Compatibility with the O(d, d) x R" structure implies
Qs = Qs — Ao s, (3.42)
where A is the R™ part of the connection and €2 the O(d, d) part, so that we have
QP = -y (3.43)

The action of D then extends naturally to any generalised tensor. In particular, if @ €

T'(E()) we have

(3.44)
4+ QMAnBOéAL--AnﬂB _ pAMOzAl"'A”.

Similarly, if ¥ € I'(SZ

() then

DV = (Oar + 220" PTap — pAu) V. (3.45)

Given a conventional connection V and a conformal split frame of the form (3.27), one
can construct the corresponding generalised connection as follows. Writing a generalised

vector W € I'(E) as
W =WA4E, = w'E, + (E°, (3.46)

and, by construction, w = w*(dete)é, € I'((det T*M) ® TM) and { = (,(dete)e® €
I'((detT*M) ® T*M), so we can define V,w® and V,(,. The generalised connection
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defined by V lifted to an action on E by the conformal split frame is then simply

A

. V,uYE, + (V,()E* for M =
(D]EWA)EA _ ( p ) ( uC) H . (3.47)
0 forM =p+d

Generalised torsion

We define the generalised torsion T of a generalised connection D in direct analogy to
the conventional definition (B.8)). Let a be any generalised tensor and LY« be the Dorf-
man derivative (3.36) with O replaced by D. The generalised torsion is a linear map

T : T(E) — T'(ad(F)) where ad(F) ~ A*E ¢ R is the o(d,d) ® R adjoint represen-
tation bundle associated to F'. It is defined by

T(V)-a=Lla— Lya, (3.48)

forany V' € I'(F) and where T'(V') acts via the adjoint representation on «. This definition
is close to that of [93]], except for the additional R™ action in the definition of L.

Viewed as a tensor T’ € T'(E ® ad F), with indices such that T(V)M y = VFPTM
we can derive an explicit expression for 7". Let {E 4} be a general conformal basis with
<E A, EB> = ®?n,p. Then {CIflE 4} is an orthonormal basis for £. Given the connection

DMWA = 8MWA + QMABWB, we have
Tapc = —3Qanc) + Q" pnac — @_2<EA, L¢,1EBEC>, (3.49)

where indices are lowered with 74 3.
Naively one might expect that T € T'((E ® A*E) & E). However the form of the

Dorfman derivative means that fewer components of Q actually enter the torsion and
TeT(N’EgoE). (3.50)
This can be seen most easily in the coordinate basis where the two components are

T oy = (TV)M py — (To)p 6™ v, (3.51)
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with

(TV)punp = _3Q[MNP] = —3Qunp,
) (3.52)
(TQ)M = —QQQM = AM — QQQM.

An immediate consequence of this definition is that for U € F(Sﬁ /2)) the Dirac opera-

tor '™ D, ¥ is determined by the torsion of the connection [92]]
YDy =T (93 + 3l PW — $A4,0)
=TMOuV + 2Qunp TMVEW — LAy — Oy )TV O (3.53)

=2dV — L(T0) e TPV — (1), TV 0.

This equation could equally well be used as a definition of the torsion of a generalised
connection. Note in particular that if the connection is torsion-free we see that the Dirac

operator becomes equal to the exterior derivative
YDy = 2d0. (3.54)

As an example, we can calculate the torsion for the generalised connection DV defined
in (3.47). In general we have

Lyrp, Ep = (Ly-1j, @) @ 'Ep+ O(Ly 1z, (P Ep)), (3.55)
where here
—e 2?(dete) (is iz deb + 2is d for A =a
Ly1j,® = (det) Gt -49) : (3.56)
0 forA=a-+d
and
- Car €]+ Uege) B = le,io,H Lo’
Ly1p, @ 'Ep = o &) e B — el - , (3.57)
—Eébea 0 AB

where I = dB. If the conventional connection V is torsion-free, the corresponding gen-
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eralised torsion is given by
Ty = —4H, T, = —4d¢, (3.58)

where we are using the embeddingE] T*M — E (and the corresponding T*M — A3E) to
write the expressions in terms of forms. This result is most easily seen by taking é, to be

the coordinate frame, so that all but the H and d¢ terms in (3.56) and (3.57)) vanish.

The absence of generalised curvature

Having defined torsion it is natural to ask if one can also introduce a notion of generalised
curvature in analogy to the usual definition (B.9)), as the commutator of two generalised

connections but now using the Courant bracket (3.38)) rather than the Lie bracket
R(U,V,W) = [Dy, Dy]W — D yW. (3.59)

However, this object is non-tensorial [93]]. We can check for linearity in the arguments
explicitly. Taking U — fU,V — gV and W — hW for some scalar functions f, g, h, we

obtain

[Dsu, Dyv] hWW — DyjuguihW
g [fU.gV] (3.60)
= fgh ([Du, Dv]W — DyiW) — 55(U, V) D(sag-gap) W,

and so the curvature is not linear in U and V.

Nonetheless, if there is additional structure, as will be relevant for supergravity, we
are able to define other tensorial objects that are measures of generalised curvature. In
particular, let C; C F and C, C E be subspaces such that (U,V) = 0 for all U €
['(Cy) and V' € T'(Cy). For such a U and V the final term in vanishes, and so
R € T'((C; ® Cy) ® 0(d, d)) is a tensor. A special example of this is when C; = Cy is a

null subspace of F.

SNote that with our definitions we have (8A¢)<I>’1E 4 = 2d¢ due to the factor % innap
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3.2 O(p,q) x O(q,p) structures and torsion-free connections

We now turn to constructing the generalised analogue of the Levi—Civita connection. The
latter is the unique torsion-free connection that preserves the O(d) C GL(d,R) structure
defined by a metric g. Here we will be interested in generalised connections that preserve
an O(p, q) x O(q,p) C O(d,d) x RT structure on F', where p + ¢ = d. We will find that,
in analogy to the Levi—Civita connection, it is always possible to construct torsion-free
connections of this type but there is no unique choice. Locally this is same construction

that appears in Siegel [36,137] and closely related to that of [S2]].

3.2.1 O(p,q) x O(q,p) structures and the generalised metric

Following closely the standard definition of the generalised metric [11]], consider an O(p, q) X
O(q, p) principal sub-bundle P of the generalised structure bundle F'. As discussed below,
this is equivalent to specifying a conventional metric g of signature (p, q), a B-field patched
as in (3.15)) and a dilaton ¢. As such it clearly gives the appropriate generalised structure
to capture the NSNS supergravity fields.

Geometrically, an O(p, ¢) x O(q, p) structure does two things. First it fixes a nowhere
vanishing section of the determinant bundle which we denote |volg| € T'(det T* M), giving
an isomorphism between weighted and unweighted generalised tangent space E and E.

Second it defines a splitting of £ into two d-dimensional sub-bundles
E=C,pC_, (3.61)

such that the O(d, d) metric (3.3)) restricts to a separate metric of signature (p, ¢) on C'; and
a metric of signature (¢, p) on C_. (Each sub-bundle is also isomorphic to 7'M using the
map £ — T'M.)

In terms of F* we can identify a special set of frames defining a O(p, ¢) x O(p, q) sub-
bundle. We define a frame {E;}} U {E; } such that { £} form an orthonormal basis for
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C, and {Eg } form an orthonormal basis for C'_. This means they satisfy

<Ea+vEAzj> = ’VOIGF Nab,
(E7,E7) = — |vola|* 1, (3.62)
<EA;7 A(_z—> =0.

where |volg| € T'(det T* M) is now some fixed density (independent of the particular frame
element) and 7, and 7),; are flat metrics with signature (p, q). There is thus a manifest
O(p, q) x O(q,p) symmetry with the first factor acting on E,j and the second on E .

Note that the natural conformal frame

R Ef forA=a
Eyp=1< , (3.63)
E; forA=a+d

satisfies
(Ea, Bp) = [volo nap, where 145 = (77“" 0 ) , (3.64)
0 —7ap
where the form of 7,5 differs from that used in (3.3). In this section, we will use this
form of the metric n4p throughout. It is also important to note that we will adopt the
convention that we will always raise and lower the C indices a, b, c, ... with 7, and the
C_ indices @, b, ¢, . . . with 17,5, while we continue to raise and lower 2d dimensional indices

A, B,C, ... with the O(d, d) metric n4p. Thus, for example we have

4 Eta for A =a
oy (3.65)

—F% forA=a+d

when we raise the A index on the frame.

One can write a generic O(p, q¢) x O(q, p) structure explicitly as

A

Ef =e/=g(ef +ef +i4B),
(3.66)
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where the fixed conformal factor in (3.62) is given by

[volg| = e *+/] 9], (3.67)

and where {¢/ } and {é; }, and their duals {¢"*} and {e~?}, are two independent orthonor-

mal frames for the metric g, so that

g= nabeJra ® e+b — 77&56% ® 675,
(3.68)
g(éi—?é;) = Tab; 9<éc{aég_) = Nab-
By this explicit construction we see that there is no topological obstruction to the existence
of O(p, q) x O(q, p) structures.
In addition to the O(p, q) x O(q, p) invariant density (3.67) one can also construct the

invariant generalised metric G [11]]. It has the form
G=n"Ef @ Bf +n™E; ® E; . (3.69)

One can also consider the rescaled G = |vol(;|_2 G, which in the coordinate frame has the

. 1 (g—Bg'B —Bg~!
Cun = = (g g g ) . (3.70)
MN

familiar expression

2\ ¢'B g~
By construction, G parametrises the coset (O(d, d) x RT)/O(p, q) x O(q, p) where p+q =
d.

Finally the O(p, q) x O(q,p) structure provides two additional chirality operators I'*
on Spin(d,d) x RT spinors which one can define as [30, 95, 90]

1’\(«1») — ieal.‘.adl"al . 1" F(*) — %661...5&!1—‘&1 . FEL

Lag

(3.71)

I
Using that, in the split frame, the Clifford action takes the form

Ty P =i 0B et AP, Ta 0P =i 0P —e ATP - (3.72)
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these can be evaluated on the weighted n-form components of W as

TOwE = ()2 w (), POWE = ()2, (3.73)

(n) —

and thus we have a generalisation of the Hodge dual on Spin(d, d) x R* spinors.
Since GTnG = 1, the rescaled generalised metric G* 5 is an element of O(d, d) and one
can easily check that G?=1. Connecting to the discussion of [90], for even dimensions d,

one has G € SO(d, d) and T(-) is an element of Spin(d, d) satisfying
rEpArE-1t = GALDE, (3.74)

so that I'(™) is a preimage of G in the double covering map Spin(d,d) — SO(d,d). In
odd dimensions d, T*) is an element of Pin(d,d) which maps to G € O(d, d) under the
double cover Pin(d,d) — O(d,d).

3.2.2 Torsion-free, compatible connections
A generalised connection D is compatible with the O(p, ¢) x O(q, p) structure P C F if
DG =0, (3.75)

or equivalently, if the derivative acts only in the O(p, q) x O(q, p) sub-bundle so that for

W e I'(E) given by

W =wE +wE, (3.76)
we have
Opw® + Qupuw? for A=a
DyWwA = M T , (3.77)
Orw® + Qpowh forA=a
with
Qrrab = —Q0spa,s Qs = —Uaspa- (3.78)

In this subsection we will show, in analogy to the construction of the Levi—Civita connec-

tion, that
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Given an O(p, q) x O(q, p) structure P C F there always exists a torsion-free,

compatible generalised connection D. However, it is not unique.

We can construct a compatible connection as follows. Let V be the Levi—Civita con-
nection for the metric g. In terms of the two orthonormal bases we get two gauge equivalent

spin-connections, so that if v = v*é} = v%; € T'(T M) we have

VMUV _ (auva + w-l—ab,vb) (é(—lf—)u — (aﬂva + w;dgvb) (ég)”- (379)

w

We can then define, as in (3.47)

V,ws  for M = p V,w®  for M =p

DyW* = ,  Dywe= :
0 for M = p+d 0 forM =p+d
(3.80)
Since w,, = —w,,, and Woap = —W,5 DY construction, this generalised connection is

compatible with the O(p, q) x O(q, p) structure.
However DV is not torsion-free. To see this we note that, comparing with (3:27), when

we choose the two orthonormal frames to be aligned so e = e, = ¢, we have

A — A A

W =uwiEl +w'E; = (w4 w?) By + (wia — w_y) EY, (3.81)

and the two definitions of DV in (3.47) and (3.80) agree. Hence from (3.38)) we have the

non-zero torsion components

Ty = —4H, T,=—4d¢. (3.82)

To construct a torsion-free compatible connection we simply modify DV. A generic

generalised connection D can be always be written as

DyW#4 = DY WA 4+ 5,45 W5. (3.83)
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If D is compatible with the O(p, q) x O(q, p) structure then we have ¥,,% = ¥,% = 0
and
YiMab = — X Mbas Yivab = —2Mba (3.84)

By definition, the generalised torsion components of D are then given by
(Th)apc = —4H spc — 3¥aB0), (Ty) 4 = —4dpa — X 4. (3.85)

The components H*2¢ and d¢* are the components in frame indices of the corresponding

forms under the embeddings T*M < E and A3T*M — A3E. Given
dz# = 1o~ (éj“E+“ - ég”E‘a> , (3.86)
we have, for instance,
do = 18,0 (7 ET?) — L0:0 (@71 E7Y). (3.87)
where there is a similar decomposition of H under
NT*M — N°E~ N°C, @ (A°CLoC ) e (CLe N°C_)a N°C_, (3.88)

Note also that the middle index on Y4p¢) in equation (3.85) has also been lowered with

this 1745 which introduces some signs. The result is that the components are

(

tHae (A, B,C)=(a,b,c)
dds = 10,0 A=a | Hino — tHa: (A, B,C) = (a,b,c+d) |
10.0 A=a+d tHue (A,B,C)=(a,b+d,c+d)
| sHa: (A, B,C)=(a+db+dc+d)
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and that setting the torsion of D to zero is equivalent to

E[ozbc] = _%Habc’ Yiabe = _lH&bc, Zaab = —281,@25,

2

) (3.90)
Yiasg = JF%HaBa Yape = JF%HGI;@, 3% = —2050.

Thus we can always find a torsion-free compatible connection but clearly these conditions

do not determine D uniquely. Specifically, one finds

l)aUJ+ \V4 ’UJJr 1Habcwc+ - dL( bac(b nacab(b)er + Qa cw+a

1 b c
Daw+ Va er H(‘z cw,,

o (3.91)
Dawli == Vawb_ + %Hab(_:wc—a
Da’UJB_ = Vawi)_ —|‘ %Hagéwé_ — % ((551685(15 — naéagqb) wi ‘I‘ le;gw(z,
where the undetermined tensors Q7 satisfy
+ _ _Ot +a
abe — ach’ [abc] 0 Q b — O (3 92)

Q;EE = _Q;EE’ Q[;J,g] =0, ané =0,

and hence do not contribute to the torsion.

3.2.3 Unique operators and generalised O(p, q) x O(q, p) curvatures

The fact that the O(p,q) x O(q,p) structure and torsion conditions are not sufficient to
specify a unique generalised connection might raise ambiguities which could pose a prob-
lem for the applications to supergravity we are ultimately interested in. However, we will
now show that it is still possible to find differential expressions that are independent of the
chosen D, by forming O(p, q) x O(q,p) covariant operators which do not depend on the

undetermined components Q*. For example, by examining (3.91)) we already see that

Dyt = V' 1Habcwc,
’ ! o (3.93)
D’ =V + LH wl,
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have no dependence on ()* and so are unique. We find that this is also true for

a _ a a
Dyw} = Vws — 2(0,0)ws, (.08

Daw® = Vaw? — 2(0;0)w
Anticipating our application to supergravity, we will be especially interested in writing
formulae for Spin(p, q) spinors, so let us now assume that we have a Spin(p, ¢) x Spin(q, p)
structure. If S(CL) are then the spinor bundles associated to the sub-bundles C'y, v* and
7@ the corresponding gamma matrices and ¢* € T'(S(C.)), we have that by definition a

generalised connection acts as

DM€+ = aM€+ + %QMab7ab€+a
- (3.95)
Dye” = 0ye + iQM“b%ge_.

There are four operators which can be built out of these derivatives that are uniquely deter-

mined
= (Va — §Hane?™) €
(Va lHabc’y ) )
(3.96)
aD E ( ava - abc7 _,.)/a a¢) 6+

V' Dae™ = (’Yava + iHaBé”Yabé —9° a¢> €
The first two expressions follow directly from (3.93). In the final two expressions, there
is an elegant cancellation from Y%y% = ~H%¢ 4 pabye — pacad which removes the terms
involving Q*.

The restriction that expressions involving generalised connections be determined unam-
biguously, irrespective of the particular D, now serves as a selection criteria for construct-
ing new generalised objects. In particular, when defining a generalised notion of curvature,
we find that even though we can actually build a tensorial O(p, q) x O(q,p) generalised
Riemann curvature — by following the example in section [3.1.5] and taking C; = C and
Cy = C% so that the index structure would be (Rabc o R d) and (Rabcd, R_,¢ d—) — it would
not result in a uniquely determined object. However, we can use combinations of (3.93)

and (3.94) to define the corresponding generalised Ricci tensor R 45 unambiguously. Given
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an O(p, q) x O(q, p) structure P C F, the generalised Ricci will be a section of the bundle
ad Pt =ad F/ad P (3.97)

which is associated to the coset O(d, d) x Rt /O(p, q) x O(q, p). It can then be most easily

constructed by defining its scalar and non-scalar parts. The non-scalar is given by
R wS = [Dg, Dy w§, (3.98)

orf]
Ry, w® = [Dg, Dy w®. (3.99)

Note that the index contractions are precisely what is needed to guarantee uniqueness.

From its index structure one clearly sees that R° is traceless. It turns out that to define
the generalised Ricci scalar we need the help of spinors and the operators in (3.96). We can
obtain the non-scalar Ricci again from either

3Ry "e” = [v"Da, Dy €,

a

. . (3.100)
sRun e = [y"Da, Dy e
However, now we also find a scalar
—1Re" = (y*Doy’Dy — D* D)€", (3.101)
or alternatively,
—1Re™ = (v%Dyy* Dy — DD, )€, (3.102)

Again, note the need to use the correct combinations of the operators in these definitions
so that all the undetermined components drop out.
The fact that R is indeed a scalar and not itself an operator might not be immediately

apparent, so it is useful to work out the explicit form of these curvatures. This can be done

®Note that naively one might expect these definitions to give distinct tensors. However one can check that
compatibility with the O(p, ¢) x O(q, p) structure means that the two agree.
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by again choosing the two orthogonal frames to be aligned, e} = e, to find
R, = Rap — 2HocaHy ™ + 2V, Vi + 26>V (e > Hopp), (3.103)

and for the scalar

R=TR+4V?*¢ — 4(0¢)* — S H”. (3.104)

From these expressions it is clear that we have obtained genuine tensors which are uniquely
determined by the torsion conditions, as desired. Furthermore, comparing with [36} 137]]
we see that locally these are the same tensors that appear in Siegel’s formulation. The
expressions (3.103)) and (3.104)) also appear in the discussion of [52].
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Chapter 4
0(9,1) x O(1,9) generalised gravity

Having established the necessary elements of O(d,d) x R" generalised geometry in the
previous chapter, we now present a full reformulation of the ten-dimensional type II super-
gravity presented in section [2.1{as the generalised geometrical analogues of Einstein grav-
ity. The dynamics and supersymmetry transformations are encoded by an O(9, 1) x O(1,9)
structure with a compatible, torsion-free generalised connection. An outcome of this will
be a formulation of type II supergravity with manifest local O(9,1) x O(1,9) symmetry.
In the following we will consider the full ten-dimensional supergraviy theory so that the
relevant generalised structure is O(10,10) x R*. However, one can equally well consider

compactifications of theory of the form R%~%! x M
ds?, = ds*(R%™*) 4 ds?, (4.1)

where ds?(R%~%1) is the flat metric on R?~%! and ds? is a general metric on the d-dimensional
manifold M. The relevant structure is then the O(d) x O(d) C O(d,d) x R" generalised
geometry on M. Below we will focus on the O(10, 10) x R™ case. The compactification

case follows essentially identically.
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4.1 NSNS and fermionic degrees of freedom and O(9,1) x O(1,9)
structures
From the discussion of section [3.2.1] we see that an O(9, 1) x O(1,9) C O(10,10) x R*

generalised structure is parametrised by a metric g of signature (9, 1), a two-form B patched

as in (3.15)) and a dilaton ¢, that is, at each point x € M

0(10,10)
(9,1) x O(L,9)

{g9,B, ¢} € 0 x RT. 4.2)

Thus it precisely captures the NSNS bosonic fields of type II theories by packaging them
into the generalised metric GG. As in [30], the infinitesimal bosonic symmetry transforma-

tion (3.20) is naturally encoded as the Dorfman derivative by V' = v + A
dvG = LyG, (4.3)

and the algebra of these transformations is given by the Courant bracket (3.38).

The type II fermionic degrees of freedom fall into spinor and vector-spinor represen-
tations of Spin(9,1) x Spin(1,9)7} Let S(C,) and S(C_) denote the Spin(9,1) spinor
bundles associated to the sub-bundles C. write v* and 7 for the corresponding gamma
matrices. Since we are in ten dimensions, we can further decompose into spinor bundles
S*(C,) and S*(C_) of definite chirality under v,

The gravitino degrees of freedom then correspond to
va €ET(C-®ST(CL), ¢, eT(CL®ST(C)), (4.4

where the upper sign on the chirality refers to type IIA and the lower to type IIB. Note that

the vector and spinor parts of the gravitinos transform under different Spin(9, 1) groups.

!'Since the underlying manifold M is assumed to possess a spin structure, we are free to promote O(9, 1) x
0(1,9) to Spin(9,1) x Spin(1,9). Here will ignore more complicated extended spin structures that can arise
in generalised geometry as described in [64].
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For the dilatino degrees of freedom one has
ptET(SE(CL)),  pmeT(ST(CL), (4.5)

where again the upper and lower signs refer to IIA and IIB respectively. Similarly the

supersymmetry parameters are sections
e eT(SF(CL), € eT(SHCL)). (4.6)

In terms of the string spectrum these gravitino and dilatino representations just correspond
to the explicit left- and right-moving fermionic states of the superstring and, in a supergrav-

ity context were discussed, for example, in [96, 97]].

4.2 RR fields

As is known from studying the action of T-duality, the RR field strengths transform as
Spin (10, 10) spinors [96, 97, (1, 98|, 99]. Here, the patching (3.17) of Ayy on U; N U;
implies that the polyform F;) = dA(; is patched as in (3.12)), and hence, as generalised
spinors,

+

where the upper sign is for type IIA and the lower for type IIB. Furthermore, we see that
the RR field strengths F((Tg) that appear in the supergravity (2.6) are simply F' expressed in

a split frame as in (3.29)

F) = ePo A Fy =P Ay dAlY. (4.8)

Note that the additional gauge transformations dA in 3:17) imply that A(;y does not glob-

ally define a section of S(ji /2)" Since A; is still locally a generalised spinor on the patch U;

we can perform the same operations on it as we do on F' in the remainder of this section.
Given the generalised metric structure, we can also write F' in terms of Spin(9,1) x

Spin(1,9) representations. One has the decomposition Cliff(10, 10; R) ~ CIliff(9, ; R) ®
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Cliff(1, 9; R) with

*®1 for A=a
ra_)’ . (4.9)
719 @ ~3y(10) for A = a + d
and hence we can identifyﬂ

Using the spinor norm on S(C_) we can equally well view F' € I'(S(1/2)) as a map from

section of S(C_) to sections of S(C ). We denote the image under this isomorphism as
E,: S(C_) — S(C). (4.11)

We have that F' € I'(S(Cy) ® S(C-)) naturally has spin indices F'**, while F, naturally
has indices F'“5. The isomorphism simply corresponds to lowering an index with the

Cliff (9, 1; R) intertwiner (7@5. The conjugate map, F/ : S(C}) — S(C_), is given by
FI'=(CE.C™HT, 4.12)

which corresponds to lowering the other index on F** and taking the transpose.

We now give the relations between the components of the Spin(d,d) x R* spinor in
all relevant frames. Note first that if the bases are aligned so that e™ = e~ = e then the
Spin(9,1) x Spin(1,9) basis (3.66) is a split conformal basis and we have a Spin(9,1) C
Spin(9,1) x Spin(1,9) structure. We can then use the isomorphism Cliff(9,1;R) ~

l

A*T*M to write F(B:®) as a spinor bilinear

Ba ay...a
DD R 13)

n

More generally if the frames are related by Lorentz transformations eX = AFbe, and we

write A* for the corresponding Spin(9, 1) transformations then we can define F, explicitly

?In fact S,y ~ S(Cy) ® S(C-) for any p, but here we focus on the case of interest p = 3
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as
E, = AP, (4.14)

which concretely realises the isomorphism between F(%+®) and F,.
This map can easily be inverted and so we can write the components of F' € I'(S(1/2))

in the coordinate frame as
F(i) — e By A FB) — g% Bu) A F(B:9)

(4.15)

This chain of equalities relates the components of F'in all the frames we have discussed.
Finally, we note that the self-duality conditions satisfied by the RR field strengths F' €
F(S(ji /2)) become a chirality condition under the operator I'=) defined in (3.71)

r'~r=—F, (4.16)

as discussed in [[100, 90]].

4.3 Supersymmetry algebra

We now show that the supersymmetry variations can be written in a simple, locally Spin(9, 1) x
Spin(1,9) covariant form using the torsion-free compatible connection D.

We start with the fermionic variations (2.14). Looking at the expressions (3.96)), we
see that the uniquely determined spinor operators allow us to write the supersymmetry
variations compactly as

oYy = Dae’ + 1—16@7516_,
01y = Dae™ + = vqe™,
4.17)
dpt =~"Dget,
5p— = /yaDO_LE_7
where we have also used the results from the previous section to add the RR field strengths

to the gravitino variations.
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For the bosonic fields, we need the variation of a generic Spin(9,1) x Spin(1,9)
frame (3.60). Note that this means defining the variation of a pair of orthonormal bases
{e™*} and {e~®} whereas the conventional supersymmetry variations are given
in terms of a single basis {e“}. The only possibility, compatible with the Spin(9,1) x

Spin(1,9) representations of the fermions, is to take

SES = (3log|vola|) EF + (5AL)E?,

" A ) (4.18)
SE; = (9log|vola|) By + (5A5) ™,
where
0N, = Ut + E ey,
(4.19)
oA, = E V0t + e vay,
and
dlog [volg| = —2d¢ + %Mog(—g) =épttep. (4.20)

Note that the variation of the basis (4.18) is by construction orthogonal to the Spin (9, 1) x
Spin(1,9) action. This is because it is impossible to construct an Spin(9,1) x Spin(1,9)

tensor linear in ¢ and ¢, with two indices of the same type, that is L, or L.

+

The corresponding variations of the frames é* are

e e e

o ) i 4.21)
de, " = E+7“¢: + e vy,

which both give
O = 267, W + 26 v,1,, (4.22)

as required, but, when setting the frames equal so e™® = e® and ¢~ = €%, differ by Lorentz

transformations from the standard form (2.13)

Se—l-a _ 56—1—(1 _ E-i—,yaw-i-b _ E+,yb¢+a et ,
i li li ( ) ) 7 ) wh (423)
de, " = de;® — (7" —ey"y™) €.



Chapter 4. O(9,1) x O(1,9) generalised gravity 61

This can also be expressed in terms of the generalised metric G 45 as
0Gag = 0Gaa =2 (" p" + € p7) Gug + 2 |volg|” (ETat0d + e athy ) - (4.24)
The variation of the RR potential A can be written as a bispinor
= (6A,) = (Y'etd, —pTe ) F (ae " +€ep), (4.25)

where the upper sign is for type IIA and the lower for type IIB.

4.4 Equations of motion

Finally, we rewrite the supergravity equations of motion (2.9) and (2.10) with local Spin(9, 1) x
Spin(1,9) covariance, using the generalised notions of curvature obtained in section[3.2.3]
From the generalised Ricci tensor (3.103)) we find that the equations of motion for g

and B can be written as
R + & |volg| " (F,T 4 F) =0, (4.26)

where we have made use of the Mukai pairing defined in (3.14)f] to introduce the RR fields
in a Spin(9,1) x Spin(1,9) covariant manner.
The equation of motion for ¢ does not involve the RR fields, so it is simply given by

the generalised scalar curvature (3.104)
R=0. (4.27)

Using definition (3.40) and equation (3.54)) we can write the equation of motion for the
RR fields in the familiar form

IP4D4F = dF =0, (4.28)

3Note that (F,T;;F) € T((det T*M) ® C; @ C_) so |[volg| ' (F,T;F) € T(C1 ® C_)
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where the first equality serves as a reminder that this definition of the exterior derivative is
fully covariant under Spin(d,d) x R™.
We also have the bosonic pseudo-action (2.5) which takes the simple for

Sg (Jvolg| R+ X F T FY), (4.29)

T k2

using the density |volg|. Note that the Mukai pairing is a top-form which can be directly
integrated.

The fermionic action (2.8) is given by

1 o B _
Sk = —2—/#/2 [volg| [¢+a7bDb%+ + 97 Dy
+2p " Dagp ™ 4+ 2p Doy~
pDayp p~ Dy (4.30)
— P " Dap™ — 7" Dap™
—ﬂf@f+ﬁﬁwm%ﬁ]
Varying this with respect to the fermionic fields leads to the generalised geometry version

of (T0)

V' DypF — Dap™ = + L1 Epvay
V' Dythy — Dap™ = +77"F 707,

V' Dap™ = DYt = =5 Fp7,

(4.31)

Y Dap~ — D%, = —1cF}p",
and it is straightforward to verify that by applying a supersymmetry variation (4.17) we
recover the bosonic equations of motion (4.26))-([4.28).
We have thus rewritten all the supergravity equations from section [2.1]in terms of tor-
sion free generalised connections and therefore as manifestly covariant under local Spin (9, 1) x

Spin(1,9) transformations.

4Up to integration by parts of the V2¢ term
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Chapter 5
Eqa xR™ generalised geometry

Following closely the construction given in chapter [3] here we introduce the generalised
geometry versions of the tangent space, frame bundle, Lie derivative, connections and tor-
sion, now in the more subtle context of an FEg(q) xR* structure. The Eq(ay generalised
tangent space was first developed in [64] and independently in [65]], where the exceptional
Courant bracket was also given for the first time. We slightly generalise those notions by
introducing an R* factor, known as the “trombone symmetry” [101]], as it allows one to
specify the isomorphism between the generalised tangent space and a sum of vectors and
forms. Physically, it is known to be related to the “warp factor” of warped supergravity
reductions. The need for this extra factor in the context of E7(7) geometries has already

been identified in [[74} [81, [82] [102].

5.1 The Eyq) xR* generalised tangent space

We start by recalling the definition of the generalised tangent space for 44 xR* gener-
alised geometry [64, 65]] and defining what is meant by the “generalised structure”.

Let M be a d-dimensional spin manifold with d < ?ﬂ The generalised tangent space is

"We actually only consider 4 < d < 7, as for lower dimensions the relevant structures simplify to a point
that generalised geometry has little to add to the usual Riemannian description.
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isomorphic to a sum of tensor bundles
E~TM®NT*M®NTMo (T*M e AN'T*M), (5.1)

where for d < 7 some of these terms will of course be absent. The isomorphism is not

unique. The bundle is actually described using a specific patching. If we write

Vioy = vy +wiy +0a) + 70

5.2)
c I(TU; @ N*T*U; & N°T*U; @ (T*U; @ N'T*U;)),
for a section of £ over the patch U;, then
Vi = edA(ij>+d/~\(ij)v(j)7 (5.3)

on the overlap U; N U; where A;;) and /~\(ij) are locally two- and five-forms respectively.

The exponentiated action is given by

V() = VG)s
wii) = W) T du, A ),
o) = o) + dAij) Awg) + 3dA ) A, A + dug dA ), 54)
T = i) + 30y A oy = JdA g Awg) + 5dA ) Ay, dAgy)
+ 33 A0 ) A dAgy) Awi) + 5Ny A D) Ao, dB g,
where we are using the notation of (A.5]). Technically this defines E as a result of a series

of extensions
0 — A°T*M — E" — TM — 0,

0 — AT*M — E' — E" — 0, (5.5)
0—TMRINT*M —FE—E —0.

Note that while the v(;) globally are equivalent to a choice of vector, the w;), o(;) and 7(;
are not globally tensors.

Note that globally the collection A(;;) formally define a “connective structures on gerbe”
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(for a review see, for example, [86]). This essentially means there is a hierarchy of succes-

sive gauge transformations on the multiple intersections

A(ij) + A(jk) + A(ki) = dA(ijk) onU; N Uj N Uy, 5.6)
A(jkl) — A(ik:l) + A(ijl) — A(z’jk) = dA(ijkl) onU; N Uj NU,NU,.

If the supergravity flux is quantised, we will have g(;;) = e"*@ik0 € U(1) with the cocycle
condition

g(jklm)g(_i]ilm)g(ijlm)g(_i;km)g(ijkl) =1, (5.7)

onU;Nn---NU,,. For /~\(Z-j) there is a similar set of structures,

A=Ay + Aginy
= dA(ijk) + %% (A(Z—j) A dA(jr) + antisymmetrisation in [zyk])
onU; NU; NUy,
Aty =Ny + Ary = Ay (5.8)
= dAjm) + 24 (Agjry A dAg) + antisymmetrisation in [ijkl])
onU;NU;NU, NU,

etc.

with the final cocycle condition defined on a octuple intersection U;, N - - - N U,,. Note that
this does not give a gerbe structure, but a kind of “gerbe twisted by a gerbe”.

The bundle E encodes all the topological information of the supergravity background:
the twisting of the tangent space T'M as well as that of the gerbes, which encode the
topology of the supergravity form-field potentials.

5.1.1  Generalised Eq(q) xR™ structure bundle and split frames

In all dimensions d < 7 the fibre F, of the generalised vector bundle at x € M forms a
representation space of Fy4) xR™. These are listed in table As we discuss below, the

explicit action is defined using the GL(d, R) subgroup that acts on the component spaces
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T, M, N*T*M, A>T*M and T M @ A"T; M. Note that without the additional R™ action,
sections of £ would transform as tensors weighted by a power of det 7" M. Thus it is key

to extend the action to Fj4) xR™ in order to define E directly as the extension (5.5)).

Ey(qy group Eqqy xR* rep.
Erer 56,
E6(6) 27’1
Ess) ~ Spin(5,5) 165
E4(4) ~ SL(5,R) ]_0/1

Table 5.1: Generalised tangent space and frame bundle representations where the subscript
denotes the R™ weight, where 1; ~ (det T* M )'/(O=9)

Crucially, the patching defined in (5.3) is compatible with this Ey4) xR™ action. This
means that one can define a generalised structure bundle as a sub-bundle of the frame
bundle " for E. Let {E 4} be a basis for F,, where the label A runs over the dimension
n of the generalised tangent space as listed in table The frame bundle F' formed from
all such bases is, by construction, a GL(n,R) principal bundle. We can then define the
generalised structure bundle as the natural £4(4) X R™ principal sub-bundle of /* compatible
with the patching as follows.

Let ¢, be a basis for T, M and e* the dual basis for 7, M. We can use these to construct

an explicit basis of £, as
{Ba} ={ea} U{empU{em 2} U femoror), (59)

where e®1% = ™ A ... Ae® and ¥ = e @ e™ A--- A e?. A generic section of

at z € U, takes the form
V= VAE — 45 1 ab 1 ai...as 1 a,ai...ar 5.10
A V' €q + 2wabe + 5!0a1...a5€ + 7!Ta,a1...a7€ . ( . )

As usual, a choice of coordinates on U; defines a particular such basis where {E,} =
{0/0x™} U{dz™ Adz"} + .... We will denote the components of V" in such a coordinate
frame by an index M, namely VM = (v™, Wi, Oy s s Trnumy s )-

We then define a Ey(4) xR™ basis as one related to (5.9) by an E;(4) xR™ transforma-
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tion
VA VA = MALVE, Eq— B, = Eg(M™Y)? 4, (5.11)

where the explicit action of M is defined in appendix [El The action has a GL(d,R) sub-
group that acts in a conventional way on the bases é,, e? etc, and includes the patching
transformation

The fact that the definition of the E,(4) xR* action is compatible with the patching
means that we can then define the generalised Eqq) xR* structure bundle F as a sub-

bundle of the frame bundle for ' given by
F={(x,{EA}): v € M,and {E,} is an By xR" basis of £, }. (5.12)

By construction, this is a principal bundle with fibre E4¢4) xR*. The bundle F is the
direct analogue of the frame bundle of conventional differential geometry, with Eq(4) xR*
playing the role of GL(d, R).

A special class of Ey4) xR frames are those defined by a splitting of the generalised
tangent space F, that is, an isomorphism of the form (5.I). Let A and A be three- and

six-form (gerbe) connections patched on U; N U; by

Ay = Agy + dAgj),

- N _ (5.13)
1
Ay = Ag) + dAiy) — 3dAu A Ag).
Note that from these one can construct the globally defined field strengths
(5.14)

F= d/i(i) — %A(i) A F.

Given a generic basis {é,} for T'M with {e*} the dual basis on 7* M and a scalar function

%In analogy to the definitions for O(d, d) x R* generalised geometry in chapter we could equivalently
define an E,(4) XxR™ basis using invariants constructed from sections of E. For example, in d = 7 there is a
natural symplectic pairing and symmetric quartic invariant that can be used to define £y (in the context of
generalised geometry see [65]). However, these invariants differ in different dimension d so it is more useful
here to define Fy(4) by an explicit action.
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A, we define a conformal split frame {E 4} for E by

A

Ea:eA@a+%w4+%wi+%AAi%A
+ jA NG, A+ %jA/\A/\z'éaA>,
E® = A (e“b+AAe“b—jAAeab+%jA/\A/\e“b), (5.15)

EACLL..(L5 — eA (eal...a5 +]A /\ eal...a5)7

[a1-ar — eAea,al‘..cw
)

while a split frame has the same form but with A = 0. To see that A and A define an
isomorphism (5.1)) note that, in the conformal split frame,

V(A,A,A) _ e—Ae—A(i)—Am V(i)

A 1 b, 1 as | 1 ai...
= 0%y + JWab€™ + £0ay..a5€" " + i Taar..ar €T (5.16)

eD(TM @ N°T*M & N°T*M @ (T*M @ A'T*M)),

since the patching implies e~Aw A Vi = e‘AU)_A(J')V(j) on U; N U;.

The class of split frames defines a sub-bundle of F°
Poie = {(, {E4}): 2z € M,and {E,)} is split frame} C F. (5.17)

Split frames are related by transformations where M takes the form M = e*tim
with m € GL(d,R). The action of a + @ shifts A — A+ a and A — A + a. This forms a
parabolic subgroup G = GL(d,R) x (a + a)-shifts C Eyq) xR™ where (a + a)-shifts
is the nilpotent group of order two formed of elements M = e**%, Hence Ppiic 18 a Ggpiig
principal sub-bundle of F, that is a Gpiic-structure. This reflects the fact that the patching

elements in the definition of £ lie only in this subgroup of Eq(4) xR™*.

5.1.2 Generalised tensors

Generalised tensors are simply sections of vector bundles constructed from the generalised

structure bundle using different representations of E,4) xR*. We have already discussed
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the generalised tangent space E. There are four other vector bundles which will be of
particular importance in the following. The relevant representations are summarised in

table

dimension E* adFCE®QFE* NCS’E KCcE*®adF

7 56_1 1330+ 1, 133, 912,
6 27 1 780+ 1o 27, 351,
5 16°, 450+ 1 10, 144,
4 10, 249+ 1, 5,4 40_, + 15",

Table 5.2: Some generalised tensor bundles
The first is the dual generalised tangent space
E*~T*M @ NTM O NTM & (TM @ A'TM). (5.18)

Given a basis {£,} for E we have a dual basis {£4} on E* and sections of E* can be
written as Z = Z FE4.

Next we then have the adjoint bundle ad F' associated with the Eqqy xR principal
bundle F

ad F~R@ (TM @T*M) ® A*T*M & A°T*M @ A3TM @ AT M. (5.19)

By construction ad F C E ® E* and hence we can write sections as R = R BE 2 ® EB.

We write the projection on the adjoint representation as
Xu: E*QFE — ad F. (5.20)

It is given explicitly in (E.13).
We also consider the sub-bundle of the symmetric product of two generalised tangent
bundles N C S?E,
N ~T*M @ A*T*M & (T*M @ AST*M)

(5.21)
O (NT*M @ N'T*M) @ (AT*M @ A"T*M).
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We can write sections as Y = YABE, ® Ep with the projection

Xy:E®FE— N. (5.22)

It is given explicitly in (E.T5).
Finally, we also need the higher dimensional representation X C E* ® ad F listed in

the last column of table Decomposing under GL(d, R) one has

K~T*M& S*TM @ AN*TM & (N°T*M @ TM)y & (N*TM @ T*M),

®MNT*M & (MTM @TM)o ® A°TM & (N*TM @ AT M),
(5.23)
SAT M@ (TM@ANTM) S (A'TM @ A"TM)

© (S*T*M @ N"TM) @ (MTM @ A"TM),

where, in fact, the A>T’ M term is absent when d = 5. Note also that the zero subscripts are
defined such that

U™ =0, ifa € T((A*T*M @ TM),),

((
a™?, =0, ifaecT((ATM & T*M)y),
(5.24)
a[m1m2m3m4,m5} — 07 ifa € F((
((

ANTM @ TM)y),

amtrmeml =0, ifa € T((A’TM @ AT M)).

Since K C E* ® ad F' we can write sections as T = T,5.E4® Ep ® EC.

5.1.3 The Dorfman derivative and Courant bracket

An important property of the generalised tangent space is that it admits a generalisation
of the Lie derivative which encodes the bosonic symmetries of the supergravity. Given
V =v+w+o0o+ 71 € I'(F), one can define an operator Ly acting on any generalised
tensor, which combines the action of an infinitesimal diffeomorphism generated by v and
A- and A-field gauge transformations generated by w and o. Formally this gives E the
structure of a “Leibniz algebroid” [[102].
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Acting on V' = v/ + W' + o’ + 7' € T(E), one defines the Dorfman derivative| or

“generalised Lie derivative”

LyV' =L 4+ (L —ipdw) 4+ (L0 — iydo — W' A dw)
(5.25)
+ (L7 —jo' Ndw — jw' Ado).

Defining the action on a function f as simply Ly f = £, f, one can then extend the notion
of Dorfman derivative to a derivative on the space of F,(4) xR tensors using the Leibniz
property.

To see this, first note that we can rewrite (5.25]) in a more Eqca) xR* covariant way,
in analogy with the corresponding expressions for the conventional Lie derivative and the
Dorfman derivative in O(d, d) x R™ generalised geometry (3.31)). One can embed the action
of the partial derivative operator via the map 7" M — E* defined by the dual of the exact

sequences (5.5). In coordinate indices M, as viewed as mapping to a section of £*, one

defines
Oy, forM =m
O = . (5.26)
0  otherwise
Such an embedding has the property that under the projection onto N* we have
Of xy=0g =0, (5.27)
for arbitrary functions f, g. We will comment on this observation in section[5.1.5]
One can then rewrite (5.25]) in terms of generalised objects as
Ly V™M = VNON V™M — (9 xa V)M NV, (5.28)

where X, denotes the projection onto ad F' given in (5.20). Concretely, from (E.13) we
have
OXuqV =r+a+a, (5.29)

3We are following [[102] in keeping the same nomenclature for this object as the one we used for the
corresponding derivative in a Courant algebroid (3.34))
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where ™, = 0,v™, a = dw and @ = do. We see that the action actually lies in the adjoint
of the Giic C Ey(q) X R* group. This form of the Dorfman derivative can then be naturally
extended to an arbitrary F;4) xR™ tensor by taking that appropriate adjoint action on the
E4(qy xR* representation.

Note that we can also define a bracket by taking the antisymmetrisation of the Dorfman
derivative. This was originally given in [65] where it was called the “exceptional Courant

bracket”, and re-derived in [102]. It is given by

[V.V] =35 (LvV' = LyV)

= [v,0] 4+ Lo — Lyw — 3d (i, — iyw)

+L,0 — Lyo— %d (iy0" — iy0o) + %w A dw' — %w’ A dw

+ 3L, 7 =1Ly + L(jwAde’ — jo' Adw) — 1(jw' Ado — jo Adw').
(5.30)

Note that the group generated by closed A and A shifts is a semi-direct product Q3 (M) x
Q8 (M) and corresponds to the symmetry group of gauge transformations in the super-
gravity. The full automorphism group of the exceptional Courant bracket is then the local
symmetry group of the supergravity Gyuera = Diff (M) x (Q3(M) x Q5 (M)).

For U, V,W € I'(E), the Dorfman derivative also satisfies the Leibniz identity

Lu(LyW) = Ly(LyW) = Ly, W, (5.31)

and hence E is a “Leibniz algebroid”. On first inspection, one might expect that the bracket
of [U, V] should appear on the RHS. However, the statement is correct since one can show
that

LigyiW = Lp,vW, (5.32)

so that the RHS is automatically antisymmetric in U and V.
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5.1.4  Generalised Eg(q) xR™ connections and torsion

We now turn to the definitions of generalised connections and torsion. Generalised con-
nections on algebroids were first introduced by Alekseev and Xu [92, 88]]. To study the
dynamics of Er(;) geometries with an eleven-dimensional supergravity origin and super-
symmetric backgrounds, related notions were also developed by [81} 182, 103], [104]]. Here,
for the Fyq) xRR™ case, we follow much the same procedure and conventions as we did for
O(d,d) x R in chapter 3]

Generalised connections

We first define generalised connections that are compatible with the Ey4) xR™ structure.
These are first-order linear differential operators D), such that, given W € E, in frame
indices,

DyW = oW+ Qu gWo. (5.33)

where (2 is a section of £* (denoted by the M index) taking values in Ej(q) xRT (denoted
by the A and B frame indices), and as such, the action of D then extends naturally to any
generalised Eq(4) xR™ tensor.

Given a conventional connection V and a conformal split frame of the form (5.15),
one can construct the corresponding generalised connection as follows. Given the isomor-
phism (5.16), by construction v%¢, € I'(T' M), twae® € T'(A*T*M) etc and hence V,,v*
and V,,w,;, are well-defined. The generalised connection defined by V lifted to an action

on E by the conformal split frame is then simply

(Vi) E, + %(Vmwab)Eab
o R X for M =m,
Dy V = + 2 (VimGar.as) B + (VinTasay.ar) BV (5.34)

0 otherwise.

Generalised torsion

We define the generalised torsion 'I' of a generalised connection D in direct analogy to the

conventional definition and to the one we defined in the O(d, d) x R case.
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Let o be any generalised F4) xR tensor and let LE o be the Dorfman derivative (5.28)
with O replaced by D. The generalised torsion is a linear map 7 : I'(E) — T'(ad(F)) de-
fined by

T(V) -a=La— Lya, (5.35)

for any V € I'(E) and where T'(V') acts via the adjoint representation on a. Let {£ 4} be
an Ey(q) xR* frame for £ and {E} be the dual frame for E* satisfying EA(Eg) = 645.

We then have the explicit expression
T(V) = VE QA — Q. — EA(LECEB)] Ea %o EE. (5.36)

Note that we are projecting onto the adjoint representation on the A and B indices. Note
also that in a coordinate frame the last term vanishes.
Viewed as a generalised F4) xR™ tensor we have T € I'(£* ® ad F ). However, the

form of the Dorfman derivative means that fewer components actually survive and we find
Tel(KaE, (5.37)

where K was defined in table Note that these representations are exactly the same
ones that appear in the embedding tensor formulation of gauged supergravities [[105} [106],
including gaugings [107] of the so-called “trombone” symmetry [[101].

As an example, we can calculate the torsion of the generalised connection DV defined
by a conventional connection V and a conformal split frame as given in (5.34). Assuming

V is torsion-free we find
T(V) = e (<idA+ v @ dA —i,F +dAAw =i, +wAF+dANG), (538)

where we are using the isomorphism (5.19), and F' and F are the (globally defined) field
strengths of the potentials A and A given by (5.14).
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5.1.5 The “section condition”, Jacobi identity

and the absence of generalised curvature

Restricting our analysis to d < 6, we find that the bundle N given in (5.21) measures the
failure of the generalised tangent bundle to satisfy the properties of a Lie algebroid. This
follows from the observation that the difference between the Dorfman derivative and the
exceptional Courant bracket (that is, the symmetric part of the Dorfman derivative), for

V,V' € T(E), is precisely given byf]
LyV' = [V,V'] = 32d (i, + tyw — iy0" —iyo+wAw') =0 xg (V xy V'), (5.39)

where the last equality stresses the Fyq) x R* covariant form of the exact term. There-
fore, while the Dorfman derivative satisfies a sort of Jacobi identity via the Leibniz iden-
tity (5.31), the Jacobiator of the exceptional Courant bracket, like that of the O(d,d)

Courant bracket, does not vanish in general. In fact, it can be shown that
Jac(U, VW) = [[U, V], W] + c.p. = %8 xg ([U,V] xy W +c.p.), (5.40)

where U, V, W € I'(E) and c.p. denotes cyclic permutations in U, V' and W. We see that
both the failure of the exceptional Courant bracket to be Jacobi and the Dorfman derivative
to be antisymmetric is measured by an exact term given by the Xy projection. The proof
is essentially the same as the one for the O(d, d) case, see for example [11]], section 3.ﬂ
Similarly, and as was the case with O(d, d) x R* generalised connections, for notions of
generalised curvature one finds the naive definition [Dy;, Dy | W — DyyyvyW is not a tensor
and its failure to be covariant is measured by the projection of the first two arguments to

N. Explicitly, taking U — fU,V — gV and W — hW for some scalar functions f, g, h,

*For d > 7 the RHS can no longer be written covariantly as a derivative of an Egq) % R tensor built
from U and V. Similar complications occur in the discussion of the curvature below. This is the reason for
the restriction to d < 6 in this section.

SNote that N ~ R in the O(d, d) case.
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we obtain

[Dtv, Dgv] AW — Dysy gvihW

= fgh ([Du, Dv]W — Dy W) — $hD(sag—gof)x puxyyW.

(5.41)

Note, however, that it is still possible to define analogues of the Ricci tensor and scalar when
there is additional structure on the generalised tangent space, as we see in the following
section.
Finally, we note that from the point of view of “double field theory”-like geometries [35,
714,136, the equation
Of Xy« 0g =0, (5.42)

for any functions f and g acquires a special interpretation. In these theories, one starts
by enlarging the spacetime manifold so that its dimension matches that of the generalised
tangent space. The partial derivative 0, f is then generically non-zero for all M. However,
the corresponding Dorfman derivative does not then satisfy the Leibniz property, nor is the
action for the generalised metric invariant. One must instead impose a “section condition”
or “strong constraint”. In the original O(d, d) double field theory the condition takes the
form (94 f)(0ag) = 0. It implies that, in fact, the fields only depend on half the coordi-
nates. For exceptional geometries, the d = 4 case was thoroughly analysed in [79]], and is
given by (5.42). Again it implies that the fields depend on only d of the coordinates.

It is in fact easy to show that satisfying always implies the Leibniz property. Thus
it gives the section condition in general dimension. In generalised geometry it is satisfied
identically by taking 0y, of the form (5.26). However given the Ej4) xR™ covariant form
of the Dorfman derivative (5.28)), any subspace of E* in the same orbit under Eq4) xR*
will also satisfy the Leibniz condition. Note further that any such subspace, like 7™, is

invariant under an action of the parabolic subgroup Gy

5.1.6 Generalised G structures

In what follows we will be interested in further refinements of the generalised frame bundle

F'. We define a generalised G structure P asa G C Eq(qy xR™ principle sub-bundle of the
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generalised structure bundle F, that is
P C F with fibre G. (5.43)

It picks out a special subset of frames that are related by G transformations. Typically
one can also define P by giving a set of nowhere vanishing generalised tensors { K4},
invariant under the action of G. By definition, the invariant tensors parametrise, at each

point x € M, an element of the coset

E xRt
{K@}Le-i&%r——. (5.44)

A generalised connection D is said to be compatible with the G structure P if it pre-

serves all the invariant tensors
DK =0 (5.45)

or, equivalently, if the derivative acts only in the G sub-bundle P.
A special class of generalised G structures are those characterised by the maximal com-

pact subgroup H; of Eg(4).

5.2 H; structures and torsion-free connections

We now turn to the construction of the analogue of the Levi—Civita connection by consid-
ering additional structure on the generalised tangent space.

We consider H,; structures on £ where Hj; is the maximally compactﬁ subgroup of
Eg4(qy- These, along with their double cover ﬁd are listed in table We will then

®Note that one could equally consider the non-compact versions of Hy by switching the signature of the
metric in appendix [ so that it defines an SO(p, q) subgroup of GL(d,R), and the corresponding results
then follow identically. For instance, if in d = 7 one chooses the SO(6, 1) signature, one would obtain the
non-compact SU*(8) subgroup of E7(7) x R, which would be relevant for discussing timelike reductions
of 11-dimensional supergravity [108].

"We give the double covers of the maximally compact group, since we will be interested in the analogues
of spinor representations. A necessary and sufficient condition for the existence of the double cover is the
vanishing of the 2nd Stiefel-Whitney class of the generalised tangent bundle [64]. As the underlying manifold
is spin by assumption, this is automatically satisfied.
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be interested in generalised connections D that preserve the H; structure. We find it is
always possible to construct torsion-free connections of this type but they are not unique.
Nonetheless we show that, using the H; structure, one can construct unique projections of
D, and that these can be used to define analogues of the Ricci tensor and scalar curvatures

with a local H; symmetry.

Ed(d) Hd f{[d E ~ E* ad PL
Erz SU(8)/Zs SU(8) 28 +28 35+35+1
Esisy  Spin(5) x Spin(5)/Zy  Spin(b) x Spin(5) (4,4) (5,5)+(1,1)

Table 5.3: Maximal compact subgroups H; of E;(4), their double covers ﬁd, and H; rep-

resentations of the generalised tangent spaces and coset bundles ad P+ = ad F /ad P in
various d dimensions

5.2.1 H; structures and the generalised metric

An H, structure on the generalised tangent space is the direct analogue of metric structure,
where one considers the set of orthonormal frames related by O(d) transformations. As
we saw in section [5.1.6] it formally defines an H, principal sub-bundle of the generalised
structure bundle F , that 1s

P C F with fibre H,. (5.46)

which is parametrised by an element of the coset (Ey4) xR")/ Hy at each point on the
manifold. The corresponding representations are listed in table Note that there is
always a singlet corresponding to the R™ factor.

One can construct elements of P concretely, that is, identify the analogues of “orthonor-

mal” frames, in the following way. Given an H, structure, it is always possible to put the
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H, frame in a conformal split form, namely,

E,=e? (éa +ig, At+ic, A+ LANG,A
+ jANis, A+ %jA/\A/\@'éaA),
B = A (e“" AN — jANE + LJANAN eab> , (5.47)

Eal...a5 _ eA (eal...a5 +]A A ea1...a5),

Eoor-ar — eAea,al...tw

Any other frame is then related by an H, transformation of the form given in appendix [F}
Concretely given V' = VAE, € ['(E) expanded in such a frame, different frames are
related by

VA VA=HARVE By B\ = Eg(H )5, (5.48)

where H is defined in (F4). Note that the O(d) C H, action simply rotates the ¢, basis,
defining a set of orthonormal frames for a conventional metric g. It also keeps the frame in
the conformal split form. Thus the set of conformal split H, frames actually forms an O(d)

structure on I/, that is
(PN Pyit) C F with fibre O(d). (5.49)

One can also define the generalised metric acting on V' = VAE, € ['(E), expanded in

an H; basis, one defines
GV, V) =0+ 5w’ + §0° + 577, (5.50)

Where U2 = /Uava’ (JJ2 - wabwab7 0—2 — aal--.a5o_al...a57 7—2

= Ta.ar..an TV 97, and indices are
contracted using the flat frame metric d,; (as used to define the H; subgroup in appendix |F).
Note that G allows us to identify £ ~ E*. Since, by definition, this is independent of the
choice of H, frame, it can be evaluated in the conformal split representative (5.47)). Hence
one sees explicitly that the metric is defined by the fields g, A, A and A that determine the
coset element. Explicit expressions for the generalised metric in terms of the supergravity

fields in the coordinate frame have been worked out, for example, in [[73].
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Note that the H; structure embeds as Hy C Eqq) C Eq(a) xR*. This mirrors the chain
of embeddings in Riemannian geometry SO(d) C SL(d,R) C GL(d,R) which allows
one to define a det T M density that is SO(d) invariant, ,/g. Likewise, here we can define
a density that is Hy (and Ey(4)) invariant, corresponding to the choice of RT factor which,

in terms of the conformal split frame, is given b

[volg| = /ge® D4, (5.51)

as can be seen from appendix [E.T]

5.2.2 Torsion-free, compatible connections

A generalised connection D is compatible with the Hy structure P C F if
DG =0, (5.52)

or, equivalently, if the derivative acts only in the /; sub-bundle. In this subsection we will

show, in analogy to the construction of the Levi—Civita connection, that

Given an H, structure P C F there always exists a torsion-free, compatible

generalised connection D. However, it is not unique.

We construct the compatible connection explicitly by working in the conformal split Hy
frame (5.47). However the connection is H, covariant, so the form in any another frame
simply follows from an H,; transformation.

Let V be the Levi—Civita connection for the metric g. We can lift the connection to an
action on V' € I'(E) by defining, as in (5.34),

(V0" E, + %(Vmwab)l@“b
o R R for M = m,
DyV=9 4 5(Viluras) B 4 (Vi Taaq.ar ) B©0 (5.33)

0 otherwise.

8In general, [vol| can be related to the determinant of the metric by det G = |volg|~ ™ E/O=d)
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Since V is compatible with the O(d) C H, subgroup, it is necessarily an H;-compatible
connection. However, DV is not torsion-free. From (5.38)), since V is torsion-free (in the

conventional sense), we have
T(V)=e <—ivdA+U®dA—iUF—I—dAAw—z'UF—i—w/\F—i—dA/\a) . (5.54)

To construct a torsion-free compatible connection we simply modify DV. A generic

generalised connection D can always be written as
Dy W4 = DY WA 4+ 5, 45W5. (5.55)
If D is compatible with the H; structure then
Y el(E*®adP), (5.56)

that is, it is a generalised covector taking values in the adjoint of H;. The problem is then
to find a suitable X such that the torsion of D vanishes. Fortunately, decomposing under
H, one finds that all the representations that appear in the torsion are already contained in
.. Thus a solution always exists, but is not unique. The relevant representations are listed

in table[5.4l As H, tensor bundles one has
E*®@adP ~ (K®E*)®U, (5.57)

so that the torsion 7' € I'(K @ E*) and the unconstrained part of ¥ is a section of U.

dimension K @ E* U~ (E*®adP)/(K & EY)
7 28 + 28 + 36 + 36 + 420 + 420 1280 + 1280

6 27+ 36 + 315 594

5 (4,4) + (4,4) + (16,4) + (4,16) (20,4) + (4,20)

4 1+5+10+ 14+ 35 35

Table 5.4: Components of the connection X that are constrained by the torsion, 7', and the
unconstrained ones, U, as H,; representations
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The solution for X can be written very explicitly as follows. Contracting with V' € ['(E)

so (V') € ad P and using the basis for the adjoint of H, given in (F.2)) and (F:3) we have
S(V)ap =€ <2 (Z=2) 0O A + FweaF o + %O-Cl--.CSFClWCSClb + O(V)ab> ,

SV )abe = € (M_l)‘m(dA A W) abe + 20 Fygpe + C(V)abc> ; (5.58)

2V arss = ©* (30" Fhag oy + CV )

where the ambiguous part of the connection ) € I'(E* ® ad P) projects to zero under the
map to the torsion representation K @ E*, thatis () € I'(U). Using the embedding of H,
in Cliff (d; R) given in (E.8) we can thus write the full connection as
D, =e® (Va + 2 () (0oA) 7" — 2 E Fapbans Y% — 23 Fopy 7™ + @a) ;
puaz — oA (i&;Fa1a2blb27b1b2 _ (d71)3(d—2) (8bA),y(l1(12b + @alaz) :

15! Nalu.a5 blbg ai...as
1A, + Q) > ,

(5.59)

where

ab ajaza
@ = (_'Q , l,y — _'Q a1 ,y 1a2a3 !Q ar... ,y(ll a6) ,
2 mi1m ab mim 1a2 2 1eet 6
@m1m = <_'Q 1ma2 ’7 3[Q 1ma2 ’Ya a2a3 !Qm1m G’Ya as) , (5 0)

etc.

is the embedding of the ambiguous part of the connection.

5.2.3 Unique operators and generalised H,; curvatures

We now turn to the construction of unique operators and curvatures from the torsion-free
and ﬁd—compatible connection D constructed in the previous section. To keep the H,
covariance manifest in all dimensions, we will necessarily have to maintain the discussion
in this section fairly abstract. However, once we reach the construction of the supergravity

in chapter [6]it will be possible to make the concepts discussed here much more concrete.
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Given a bundle X transforming as some representation of H,, we define the map
Ox U X — EF"®X, (5.61)

via the embedding U C E* ® ad P and the adjoint action of ad P on X. We then have the

projection
Er® X

ImQx

Recall that the ambiguous part () of the connection D is a section of U, which acts on X

Px "X —

(5.62)

via the map Qx. If o € I'(X), then, by construction, Py (D ® «) is uniquely defined,
independent of ().

We can construct explicit examples of such operators as follows. Consider two real
H, bundles S and .J, which we refer to as the “spinor” bundle and the “gravitino” bundle
respectively, since, as we will see in the following chapter, the supersymmetry parameter
and the gravitino field in supergravity are sections of them. The relevant H, representations

are listed in table Note that the spinor representation is simply the Cliff(d; R) spinor

H, S J

SU(8) 8+8 56 + 56
USp(8) 8 48

USp(4) x USp(4) (4,1) + (1,4) (4,5) + (5,4)
USp(4) 4 16

Table 5.5: Spinor and gravitino representations in each dimension

representation using the embedding (F.8)).

One finds that under the projection Px we have

Ps(E*®S)~SaJ,
(5.63)
PiE*®J)~SdJ

Therefore, for any ¢ € I'(S) and ¢» € I'(J), one has that the following are unique for any
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torsion-free connection

D x e, D xge¢,
(5.64)
DXJ¢7 DXS¢7

where X x denotes the projection onto the X bundle.

We would now like to define measures of generalised curvature. As was mentioned
in section [5.1.3] the natural definition of a Riemann curvature does not result in a tensor.
Nonetheless, for a torsion-free, H 4-compatible connection D there does exist a generalised

Ricci tensor R4, and it is a section of the bundle
ad Pt =adF/adP C F* ® E, (5.65)

where the last relation follows because, as representations of H,;, £ ~ E*. It is not im-
mediately apparent that we can make such a definition, but R 45 can in fact be constructed

from compositions of the unique operators (5.64)) as

DXJ(DXJ€)+D><J(DXSE):Ro‘g,
(5.66)
D xg (D xye)+ D xg(D xge)=Re,

where R and R ; provide the scalar and non-scalar parts of R4p respectivelyﬂ The ex-
istence of expressions of this type is a non-trivial statement. By computing in the split
frame, it can be shown that the LHS is linear in ¢, and since ¢ and the LHS are mani-
festly covariant, these expressions define a tensor. We will write the components explicitly
in equation (6.16). This calculation further provides the non-trivial result that R4p is re-
stricted to be a section of ad P, rather than a more general section of (S ® J) @ R. In
the context of supergravity, this calculation exactly corresponds to the closure of the su-
persymmetry algebra on the fermionic equations of motion, as will be discussed further
in section Finally, since it is built from unique operators, the generalised curvature is
automatically unique for a torsion-free compatible connection.

The expressions (5.66) can be written with a different sequence of projections. This

Note that ad P+ C (S ® J) @ R and the H, structure gives an isomorphism S ~ S* and J ~ J*. Thus,
as in the first line of (5.66), we can also view R° as a map from S to .J.
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helps elucidates the nature of the curvature in terms of certain second-order differential op-
erators. In conventional differential geometry the commutator of two connections [V,,, V|
has no second-derivative term simply because the partial derivatives commute. This is a
necessary condition for the curvature to be tensorial. In E;4) indices one can similarly
write the commutator of two generalised derivatives formally as (D A D)ap = [Da, Dp].

More precisely, acting on an Ey4) xR™ vector bundle X we have
(DAD): X - AN’E*® X. (5.67)

Since again the partial derivatives commute this operator contains no second-order deriva-
tive term, and so can potentially be used to construct a curvature tensor. However, in
E,q)y xR™ generalised geometry we also have 0f Xy« 0g = 0 for any f and g, and so we

can take the projection to the bundle N* defined earlier, giving a similar operator
(Dxn«D): X - N*"® X, (5.68)

which will again contain no second-order derivatives. One thus expects that these two
operators, which can be defined for an arbitrary £4(4) xR* connection, should appear in
any definition of generalised curvature. Given an H,; structure and a torsion-free compatible
connection D, they indeed enter the definition of R 4p. Using H, covariant projections one

finds
(DAD)Xje+ (DXy+D) x;e=R’-¢,
(5.69)
(DAD) Xxge+ (Dxn+D) xge = Re.
This structure suggests there will be similar definitions of curvature in terms of the oper-

ators (D A D) and (D X n+ D) independent of the representation on which they act, and

potentially without the need for additional structure.
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Chapter 6
H; generalised gravity

We are now able to give a complete rewriting in the language of generalised geometry of
the restricted eleven-dimensional supergravity from section[2.2] This will result in a unified
formulation which has the larger bosonic symmetries of the theory manifest. Specifically,
the local symmetry of the theory is Spin(10 — d, 1) x H,; where H, is the double-cover of

the maximal compact subgroup of Ej(q).

6.1 Supergravity degrees of freedom

Bosons

Consider then the maximally compact subgroup of Eq(4), Hy. As we saw in section[5.2.1}
the choice of such a structure is parametrised, at each point on the manifold, by a Rieman-

nian metric g, a three-form A and a six-form A gauge fields, and a scalar A, that is

Ed(d) xRT

d

{9,A,A,A} € (6.1)

These are precisely the set of bosonic fields in the restricted theory. We thus have that all
the bosonic fields get unified in the generalised metric G defined in (5.50).

As in [30], the infinitesimal bosonic symmetry transformation is naturally encoded as
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the Dorfman derivative by V' € I'(E)
ovG = Ly G, (6.2)

and the algebra of these transformations is given by Ly, Lyv] = Li,v = —Lr,u = L]

where the bracket [U, V] is the antisymmetrisation of the Dorfman derivative (5.30).

Fermions

The fermionic degrees of freedom form spinor representations of Hy, the double cove
of Hy [59, 160, 109]. Let S and J denote the bundles associated to the representations of
Hy listed in table The fermion fields v/, p and the supersymmetry parameter ¢ of the

restricted theory are sections
Y eI'(J), pel(9), e € I'(9). (6.3)

However, the restricted fermions also transform as spinors of the flat R'*~%! space. As
discussed in section [2.2.2] the simplest formulation is to view them as eleven-dimensional
spinors and use the embedding Spin(10 — d, 1) x H,; C Cliff(10,1;R) described in ap-
pendix [F.3] This will allow us to write expressions directly comparable to the ones in
section There is, however, a price to pay, as there are actually two distinct ways of
realising the action of H, on the Cliff(10, 1;R) spinor bundle S, related by a change of sign
of the gamma matrices. Given x* € I'(S) and N € I'(ad P) we have the two actions

Nt = 3(3mal® £ Sbapel ™ = Ebay.ag D™ ) XE (6.4)

If one denotes as S* the bundle of spinors transforming under the two actions, one finds,
for even d, that the two representations are equivalent, and S ~ St ~ S~ However for
odd d they are distinct and the spinor bundle decomposes S ~ St @S-, The same applies

to spin-% bundles J=. The Spin(10 — d, 1) x H, representations of the corresponding four

"Note that, as discussed in appendix H,; can be defined abstractly for all d < 8 as the subgroup of
Cliff (d; R) preserving a particular involution of the algebra.
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bundles listed in table [6.1] (see also [110]).

d S St J- Jt

7 (2,8)+(2,8) (2,8) +(2,8) (2,56) +(2,56)  (2,56) + (2,56)
6 (4,8) (4, 8) (4, 48) (4, 48)

5 (4,4,1)+ (4,1,4) (4,1,4) + (4,4,1) (4,4,5)+(4,5,4) (4,5,4)+ (4,4,5)
4 (8,4) (8,4) (8,16) (8,16)

Table 6.1: Spinor and gravitino as Spin(10 —d, 1) x H, representations. Note that when d
is even the positive and negative representations are actually equivalent.

Finally, we find that the supergravity fields of section[2.2.2can be identified as follows,

&~ = efA/Z gsugra o F(Svf)’

A+ A2

pro= B2 puem e (ST, (6.5)

Jr =My er()).

Note that, due to the warping of the metric, the precise maps between the fermion fields
as viewed in the geometry and in the supergravity description involve a conformal rescal-
ing. This is of course purely conventional, since one could just as easily perform field
redefinitions at the supergravity level. We chose, however, to maintain the conventions in

section as familiar as possible and make the identification at this point.

6.2 Supergravity operators

The differential operators present in the supergravity equations will be built out of gen-
eralised connections DD which are simultaneously torsion-free and H; compatible. As we
saw in chapter 3] there always exists such a torsion-free, metric compatible connection but,
unlike the Levi—Civita connection, it is not unique. Instead, we were led to define projec-
tors which result in unique operators when applied to . We identified four such maps in
section[5.2.3] and they turned out to be directly related to the representations of the fermion
fields. Since we are interested in comparing with the supergravity expressions, we can take
the embedding and consider the natural action of D on the Spin(10 — d, 1) x H,
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representations listed in table The four projections then split into eight

D><SqE ZS’:E—)SCF, Din Igi%ji,
) ) ) ) (6.6)
D X o JJE = JT, D xge o JE— SE

In section we kept the discussion fairly abstract, but now we can check explicitly that
the projected derivatives are indeed independent of the undetermined components of the
connection (), by decomposing under Spin(d) C H, and taking the torsion-free connec-

tion (5.59). Using the formulae for the projections given in (F.18) and (F:19), and already
applying the operators to the supersymmetry parameter £~ in (6.3), we then find for the

first two

D xg &7 = eV 4 S4(PA) — LF — ),

(D x; &)y = eA/2<Va bl (Dbt gg b By 6.7)
. 1_12éﬁvabl."bﬁrbl...b(;)€sugra.

From derivatives of elements F(j *) we obtain the second set of unique operators which
using (F20) and (F21)) as applied to ¢~ of (6.3)), take the form

Dxg 7 = &2 |V = LT, 4 (10 - d)°A — T9,A

- 4113LF b1b2b3rblb2b3 +1 170— di‘ I%,. ~~b4Fb1mb‘1
i%ﬁv by, bGFbl...bg] wzugra’
(D X g )0 = —€/2[D4(V, + L20,0)0," + g2, T(V, + 1549,4) (6.8)

~ HE+ S+ SRR

1 1 1 cy...cab 110—d 1 rnbey...c3
- 59—d§F r C1...C3 +5 6 9—d 31F I‘acl .3
1.1 1 ber..ca 4 11 b c1...c5 | ,,sugra
- Eg—dZFI ala + 7 Fa c1.. 65F ]@Db .

These four operators, all constructed from the same connection, will now enable us to

rewrite all the supergravity equations of section [2.2.2]
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6.3 Supersymmetry algebra

Comparing with (2.35]), we immediately see that the operators (6.6)) give precisely the su-

persymmetry variations of the two fermion fields

~

0~ =D x;_ &7,
(6.9)
(SﬁJr =D X &+ .

Since the bosons arrange themselves into the generalised metric, one expects that their
supersymmetry variations are given by the variation of GG. In fact, the most conve-
nient object to consider is G~'dG which is naturally a section of the bundle ad(P)*, listed
in table One has the isomorphism (F.5))

ad(P)r ~R @ S*T*M & A3T*M @ AST*M (6.10)

and we can identify the component variations of the generalised metric, as written in the
split frame, as

(G15G) = —28A,

(G7'6G)ab = 6gas
(6.11)
(G_léG)abc = _5Aabca
(G_15G>a1...a6 = _5Aa1...a6-
One finds that the supersymmetry variations of the bosons (2.36) can be written in the H,
covariant form

GG = (U X aqpr &)+ (P X aapré), (6.12)

where X ,q p. denotes the projection to ad(P)~* given in (F.15) and (F.16).
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6.4 Generalised Curvatures and the Equations of Motion

To realise the fermionic equations of motion one uses the unique projections (6.6). We can

then formulate the two equations (2.33) and (2.34) as, respectively,

(6.13)

Note that /1 is embedded with a different conformal factor to £~ and also is a section of

S+ rather than S—. This means we have

D X g ,5+ _ —GSA/2<Y7 + HT—d(aA) + %F . ilffv>psugra
(D X ji 5" )a = /2| (Vo ) = s (D0 = 85 MTRWFy, 0 (6.14)

11 17 bi...be | ,sugra
~ 128 aby..bg L }P

From these we can now find explicitly the generalised Ricci tensor R4 we defined
in (5.66). Recall that the supersymmetric variation of the fermionic equations of motion
vanishes up to the bosonic equations of motion (6.13]). Anticipating that the bosonic equa-
tions of motion will correspond to R45 = 0, one way to define generalised Ricci tensor
is via the variation of under (6.9). By construction this gives R4z as a section of
ad P+ C E* ® E*, the same space as variations of the generalised metric G, in complete
analogy to the conventional metric and Ricci tensor. Defining R p as an H, tensor we
write

—Dxj (Dxje7)—2=4D x5, (D xg ) =R &7,

(6.15)
D X g- (D X G- é_) + D X g- (D X g+ é_) = Ré,

~

for any ¢~ € I'(S™) and where R and R’ are the scalar and non-scalar parts of Rap

respectively. The action of R ; on £~ that appears of the right-hand side of is given
explicitly in (E.11J).
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In components, using the notation of (E.5)), we find

R=e? [R —2(c— VA — c(c — 1)(0A)? — LLF? —

Ry = 22 [Rab —VoVA — c(0,A)(BA)

| =

1
2

IS

<4Fac10263Fb610263 - %gabF2>
- %% <7ﬁ’ac1...CGPN’IJCImc6 - %gabﬁQ) }7

Rope = 26?2 [e_CAd % (eAF) — F A *F] ,

2 abc

(6.16)

Ray.ag = 1o28 [e_CAd * (eCAF)} ,

2
ai...ae

where ¢ = 11 — d. The generalised Ricci tensor is manifestly uniquely determined and

comparing with (2.31)) we see that the bosonic equations of motion become simply
Rap =0. (6.17)

The bosonic action (2.30) is given by the generalised curvature scalar, integrated with
the volume form (5.5T))
1
Sp = 22 / [volg| R. (6.18)

Finally, the fermionic action can be written using the natural invariant pairings of the terms
in (6.13) with the fermionic fields. Using the expressions (F.14) and (F.13)) for the spinor
bilinears, we find that (2.32)) can be rewritten as

1 - . ~
Se = 5 [ Ivolal [ = (57D x5 67 = 25067, D x . 47)
(6.19)

NG, D xg ) + Bt D g 7).

6.5 Explicit H; constructions

In the previous section, we gave the generic construction of the supergravity in terms of
generalised geometry, valid in all d < 7. The theory has a local H, symmetry, however this

was not explicit since we used a Cliff (10, 1; R) formulation for the fermionic fields.
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For completeness, we now work out explicitly two examples, ind = 4 and d = 7, where
the local Spin(5) and SU (8) symmetries are manifest. Correspondingly, in this section we
treat the fermions slightly differently from the previous ones. Whereas before we kept all
spinors as Cliff(10, 1; R) objects, we now want to make their H, nature more explicit. In
order to make this possible, one has to decompose the eleven-dimensional spinors follow-
ing the procedures outlined in appendix @ and embed the Cliff(d; R) expressions into H,
representations, according to appendix We will then keep the external spinor indices

of the fermion fields hidden and treat them as sections of the genuine H, bundles S and J.

6.5.1 d=4and Hy; = Spin(5)

GL"(5,R) generalised geometry

In four dimensions, we have 4y x RT ~ SL(5,R) x Rt ~ GL* (5, R). We can then write
the generalised geometry explicitly in terms of indices 7, j, k,--- = 1,...,5 transforming
under GL* (5, R).

Generalised vectors V' transform in the antisymmetric 10 representation. We can intro-
duce a basis {E“/} (locally a section of the generalised structure bundle F) transforming
under GL* (5, R) so that

V=1ViE,. (6.20)

)
In the conformal split frame (5.15]), we can identify [64, [79]

A

Eus = e® (64 + g, A)

. (6.21)
Eab = %eAeabcdeCdu
where € is the numerical totally antisymmetric symbol. Equivalently
Va5 — Ua7
(6.22)

ab 1 _abcd
VP = 2ewea,
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where v® and w,;, are as in (5.16)). In this frame the partial derivative Oy has the form

aa5 = %eAam
(6.23)
Oy = 0.

Note that there is also a generalised tensor bundle W which transforms in the fundamental

5 representation of GL" (5, R). One finds
W~ (det T*M)"/? @ (TM @© det TM), (6.24)

and a choice of basis { E;;} defines a basis {E;} of W where K = K‘E; € (W), such
that
By = E; N Ey, (6.25)

since £/ ~ A%2W, and where we use the four-dimensional isomorphism det 7* M @A?T M ~
AN*T*M.

With this notation we can then use the GL*(5,R) adjoint action explicitly to write
the Dorfman derivative of a generalised vector. It takes its simplest form in the

coordinate frame, where it reads
LyWi = V9 Wi 4 4 (9 V) WV 4 (9 VI YW (6.26)

This form of the d = 4 Dorfman derivative was given, without the R™ action, in [79 We

can then write a generic generalised connection as
Dy V' = 9, VI 4 Q0 VR 4 Q7 VIR, (6.27)

where the j and k indices of §2;;7), parametrise an element of the adjoint of GL* (5, R).

2For the antisymmetrisation of Ly W (which is simply the Courant bracket for two-forms [9]) in SL(5, R)
indices see also [[1L11]].
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Spin(5) structures and supergravity

In four dimensions Hy; ~ SO(5) and we define the sub-bundle P C F of SO(5) frames as

the set of frames where the generalised metric (5.50]) can be written as
G(V,W) = 36,00 V' W7, (6.28)

where d;; is the flat SO(5) metric with which we can raise and lower indices frame indices.
Equivalently we can think of the generalised metric as defining orthonormal frames on the
5-representation bundle WW.

Upon decomposing the fermionic fields of the supergravity according to[D.1] one finds
that they embed into the spinor and traceless vector-spinor representations of Spin(5). Our
conventions regarding Cliff(4;R) and Cliff(5; R) algebras are given in appendix and

we leave Spin(5) spinor indices implicit throughout. We define

e = e—A/ngugra c F(S),

p= eA/27(4)psugra c F(S),

(6.29)
A1 (3 — 29,") Y fori =

Y = e I'(J).

— S/ 2yaqpumm fori =5

Crucially, note the appearance of conformal factors in the definitions, in similar fashion
to (6.3). Recall also that in four dimensions we have S ~ S* ~ S~ where the action by
7™ in the second line of (6.29) realises the second isomorphism.

A generalised connection is compatible with the generalised metric it DG = 0.
In terms of the connection in frame indices this implies

Qv i = — Qi 15 (6.30)

i jj

where indices are lowered using the SO(5) metric ¢;;. For such SO(5)-connections, we

can define the generalised spinor derivative, given x € I'(.S)

Divx = (aﬁ/ n iQii/jﬂﬁ’) X. 6.31)
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An example of such a generalised connection is the one (5.53)) defined by the Levi—Civita

connection V, where, acting on y € I'(S), we have

Le2 (0, + twypAte ifi=aand? =5
DYy =472 (0 + 3ai™) X , (6.32)
0 ifi=aandi =0

where w, p. is the usual spin-connection.
We can construct a torsion-free compatible connection D, by shifting DV by an addi-

tional connection piece Xy;);;,, such that its action on y € I'(S) is given by
Divx = D x + izuvjj@jj/x- (6.33)
The connection is torsion-free if
Sivjy = 5 (0620 — 0puZin;) + Quvsy, (6.34)

where ();;;;+ is the undetermined part — traceless and symmetric under exchange of pairs
of indices, so it transforms in the 35 of SO(5), see table[5.4]— and

Yias = —Xi5q = —2€A8aA,
Sab = — 156" Fog, (6.35)

255 = %GAF,
with F' = 5e®“F,;.;. The projections (6.6) can be written in Spin(5) indices as
D Xg €= —’A}/ijDij&“,
(D X J 8)7; = 2(’3/jDij€ — %’A}/i’A)/jj/Djj/e’f),
(D x5 )i = =47 Djjp; + 2 Dyp? — 247 Dy

D xs 1 = =33 Diji.

(6.36)

and are unique, independent of ;i .

The supersymmetry variations of the fermions (6.9) can then be written in a manifestly
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Spin(5) covariant form

i = (D x s €); = 24 Dyge — 14 Dyze),

- (6.37)
(5p =D Xg €= —’A)/ZJDijg,
whereas the variation of the bosons (6.12) is given by
with

Turning to the equations of motion, from (6.13)), we find that the fermionic equations

take the form

— Y Dyijp — 2447 Djjip) — 47 Djypi + 2Dy — 837 Dy =

Y9 Dijp + 37 Dy = 0.

(6.40)

The generalised Ricci tensor (6.13), after some rearrangement and gamma matrix algebra,

can be written as

~ ikl ~ gk l
RYAe = 257 [Diy, D;*| € = 24" [Dyj, D) e — 3247% [Djy, Di'] &
16 2 jkl 84 j1oj
= 37" DgDuge + 55" Dijyja Disjulé 6.41)
iRE = %ﬁ/ J D“/D”/S — —"}/ [Dzk, Djk]€.
Note that in this form one can clearly see that the curvatures cannot be obtained simply
from the commutator of two generalised covariant derivatives. Instead, one must consider
additional terms resulting from a specific symmetric projection of the connections, as ob-

served in section
The bosonic action (6.18)) is

1
SB = @ / ’VOIG' R. (642)
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While the fermionic action (6.19)) can be written as

1 o L
Sk = = / [volg| ( — ' (=" Djuts + 2Dy’ — 257 Djy®)
— B9 (3 Digp — $347 Dyjrp) (6.43)

- %(ﬁ?iDz‘ﬂ/’j) - %(ﬁﬁ/ij‘Dij/@)a

where we use the Spin(5) covariant spinor conjugate. It is also important to note that there
are two sets of suppressed indices on the spinors in this expression. These are the SU(2)
indices for the five-dimensional symplectic Majorana spinors and the external Spin(6,1)
indices, which must be summed over. For full details of the spinor conventions used, see
appendices|C.5and

We have now rewritten all of the supergravity equations with manifest Spin(5) symme-

try.

6.5.2 d=7and H; = SU(8)

Ey7y xR™ generalised geometry

We follow the standard approach [S9] of describing E7(7) in terms of its SL(8,R) sub-
group, following the notation of [65]ﬂ We denote indices transforming under SL(8, R) by
i g, koo =1,...,8.

Generalised vectors transform in the 56 representation of £y, which under SL(8, R)
decomposes into the sum 28 + 28’ of bivectors and two-forms. We can introduce a basis

{En'/, E¥'} transforming under E(7) and write a generalised vector as

A

V=1V"E,+

2

Vi B (6.44)

Bo[—

3Note however that when it comes to spinors, here we take instead 4(”) = —i, the opposite choice to that
in [63], and we also use a different normalisation of our SU(8) indices.
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In the conformal split frame (5.15)), we can identify

:/U7

a8 a ab __ 1 _abey...cs
V V& = e "Ocy. css

(6.45)
‘7 1 bi...by ‘7 _
a8 — ﬁe Ta,by...brs ab = Wab,

where 1%, we, etc. are as in (5.16), with the obvious corresponding identification of g
etc. The partial derivative 0, is lifted into £*, with a conformal factor due to the form of

the conformal split frame, as

-/

Ous = 220, Oy =0, o = 0. (6.46)

2

In this notation, the Dorfman derivative (5.28)), the antisymmetrisation of which is the

“exceptional Courant bracket” of [65]], can then be written in the coordinate frame as

(LyW)™ = Vi 9, W + aWilio, vl
+ Wii/ajj/vjj’ . Z_iEii/jj/kk/zllej/akk/‘zll’ (6.47)
(LvW)iar = VI 035 Wi — AW ;3000 V7 — 6W 0135 Vi,
where €1 is the totally antisymmetric symbol preserved by SL(8,R).
A generic Ey(7) xR* generalised connection D = (D;y, D) acting on V € TI'(E)
takes the form
Dip V7' = 0 VI + Q0 VN 4+ Q7 VI 4 TV

v v k Y7 k 1 kk'
Dy Viy = 0w Vijr — Q" Vi — Q" 5 Vi + Qs oV

~ .. Y ~ ..y 1Y ~”‘u/]- 93 ~ sl ) . ~ e ey ;7 ~ (6.48)
DV = 9TV 4 T VR T VIR s QTR

D LA VA (A ¥ il k1 QALIRY, Fyid’ kk!
D* Vi = 9" Vi = Q jvkj’_Q b ik + Q2 jj/kk’v )

i k! R , L. ~ 1y
where x(),,/7 " = Leds kR Wmm' Q0 and similarly for Q17K
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SU (8) structures and supergravity

In seven dimensions H; = SU(8)/Zy and the common subgroup of H,; and the SL(8,R)
subgroup that we used to define By, is SO(8). We define the sub-bundle P C F of
SU(8)/Z,y frames as the set of frames where the generalised metric can be written
as

G(V,W) = L(8j60p VW' 4 595"V W), (6.49)

where 0;; is the flat SO(8) metric. To write sections of £ with manifest SU(8) indices

a,B,7,...=1,...,8 one uses the SO(8) gamma matrices

Vap = —1(77)as (Vij — 1Vij).

(6.50)

where, 4% are defined in (C.27) and, when restricted to the Spin(8) subgroup «, 3, ...
indices are raised and lowered using the intertwiner C (see appendix .

The eleven-dimensional supergravity fermion fields can be decomposed into complex
seven-dimensional spinors following the discussion in Using the embedding Spin(7) C
Spin(8) C SU(8), discussed in detail in appendix|C.6] they can be identified as SU (8) rep-

resentations as follows. For the spinors we simply have

£ — e—A/Q(gsugra)a c 1‘*(5—),
- (6.51)
Do = ieA/QCaB(,y(ﬂpsugra)B c F(s—‘r)

Note the need to include the conformal factors in the definitions and also that, though we
write p since it is embedded into the 8 representation of SU(8), p, is defined in terms
of the un-conjugated p*'¢®. The 8 and 8 representations are simply the fundamental and
anti-fundamental so are related by conjugation so that &, = (¢” )*As, using the SU(8)-
invariant intertwiner A (see appendix [C.2)).

For the 56-dimensional vector-spinor we proceed in two steps, first embedding into
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Spin(8) by writing

wigm(s) 1eA/2 (5ba 27({}/ ) %ugra)

w;'Zm(S) 1 A/2 (7)( [51) . _f)/ab'y )¢sugra

(6.52)

and then into SU(8) as
9o = L3R (O € D(T). (6:53)

A generalised connection is compatible with the generalised metric (6.49) if DG = 0.
For such connections, we can define the generalised spinor derivative via the adjoint action

of SU(8) given in [65]. Acting on y € I'(S™) we have

DiilX - 8“/X + Z_llQii/jj',S/jj/X Isz’k’l k4’3/k1 b Xv
2 3 AN S5l (654)
Djirx = Oirx + ZILQii’jj”A}/J] X — ZlgiQii’kl...kfykl”'k‘*X.

where we have used the SO(8) metric ¢;; to lower indices. An example of such a gener-

alised connection is the one (5.53)) defined by the Levi—Civita connection V

A (00 + twapA*) x ifi=aandi’ =8

N =
@D

D“/X = )
0 ifi=aand? =0 (6.55)

Du/X 0.

where w, ;. 1s the usual spin-connection.
We can construct a torsion-free compatible connection D, by shifting DV by an addi-

tional connection piece Y, such that its action on y € I'(S™) is given by
Djix = D i X T EZZ "33 7 X 1En’k1 k4’3/k1 k4X7

Divx = Dyx + 38047 x — Ei%im w0

(6.56)
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where, in the conformal split frame,

1A 2 1 A7 A
-3 (5in7;/]-/ + 12€ F(Sijéi/j/ — € (5Z'jai/j/A + Qii’jj’;

Yiirjjr =
. A A ~
Diiirjq = %e Kiirjjr — %e Kjjrig + Qii’jj’a
(6.57)
Biig = Qiy..igs
Bi.ig = Qiy...is-
In this expression primed and unprimed indices are antisymmetrised implicitly, (Q, Q) are

the undetermined componentsﬂ, F = %6“1“'“7Fa1‘..a7 and

i« (%F)ape  for (i,4) 7,5") = (a,b,c,8)
iitjj = ;
0 otherwise

(6.58)

- F for(i,j) = (8,8
. () = (3:8)
0  otherwise

give the embedding of the supergravity fluxes. The connection can be rewritten in SU (8)

indices through
D% =i(39)*%(Dy; +1Dy;),
( J J) (6.59)

Daﬁ - —l(’%])aﬁ (DU - ID”)
With these definitions, we can now give the explicit form of the unique operators (6.6)
in SU(8) indices
(D x - 5)@% — D[aﬁgvl’
(D Xg+ €)q = —Dape”,
/ (6.60)
(D X g+ P)apy = —15 €apyiss, oo, D "%,

(D xs-¥)* = 3D, 0",
where €,, o, 18 the totally antisymmetric symbol preserved by SU (8).

and table these are sections of the 1280 + 1280 representations of SU(8).

4From section|5.2.2
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From the first two we can immediately read off the supersymmetry variations of the

fermions (6.9))
5P = Dlef 8pa = _Daﬁgﬁ, (6.61)

while the variations of the bosons (6.12)) can be packaged as

0G oy 0Gap" 1 (6H, 0
5Gap = o Tl ) o — Gap blog|vola| (6.62)
5GP 5 5GP | vole| \ 0 sHPO

with
5]_]@,375 _ _3 6[a¢576] + leaﬂ’yﬁa/ﬁw/d/g&/ijﬂl /5/
i6 4 ) (6.63)
dlog |volg| = pac® + p“éa
The fermion equations of motion (6.13)) are
56" 1.01020 D A
_% 6a5w55’919293D 1/) T 2D[aﬁpﬂ =0, (6.64)

DRy = 4D =0

As before, the curvatures can be obtained by taking the supersymmetry variations of the

fermion equations of motion and after some algebra one obtains the expressions

R} 5,55 = =2(DiapDrs) + 1 €aproceron D D* )&’ — [Diag, Dyjs) °,

LRe™ = 2 ({D*, Dg,} — £6°4{D™, D.s}) £ (6.65)

3

_ _ s _
— 1 ([Dgy, D] — 16°5[D,5, D*°)) €® + £ [DP7, Dy, | &

The vanishing of these then corresponds to the bosonic equations of motion (6.17). As for
d = 4, we again observe that the curvatures contain terms symmetric in the two connec-
tions, in the representations of the bundle NV identified in section

The bosonic action (6.18)) takes the form

1
S =3 / volg| R, (6.66)



6.5 Explicit H; constructions 104

while the fermion action (6.19)) is

3 1 arazas MBL’
SF == 72 / | J01G| (_ﬂ60102036/3/”1’72’y ’QU 1203 1 77Z)’\/l’m"/:%

+ Ba Dyt = 0% Dayp, = 26,0y + ce ).

This completes the rewriting of the seven-dimensional theory with explicit local SU (8)

symmetry.
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Chapter 7
Conclusion

We have provided a reformulation of type II and eleven-dimensional supergravity, including
the fermions to leading order, such that their larger bosonic symmetries are manifest. This
was accomplished by writing down the natural analogue of Einstein gravity for generalised
geometry. In the type II case we geometrised the NSNS sector in terms of O(10,10) x R*
generalised geometry, and showed that the both the RR fields and the fermions embedded
directly into representations of the local symmetry group, Spin(9,1) x Spin(1,9). For
eleven-dimensional supergravity we showed how Fy(4) xR* generalised geometry encom-
passes all the bosonic symmetries and that the fermion fields fill out representations of the
local Hy group. To summarise, in both cases the supergravity is described by a simple set
of equations which are manifestly covariant not just under gauge transformations and dif-
feomorphisms, but also under the action of the larger local groups. In the abstract language

of section[5.2.3] these are

Equations of Motion Supersymmetry

(<D><J77/)>+(DXJ,0):O, ((577D=DXJ€,
(7.1)
(DXS'QD>+(DX5,0):O, (Sp:DXSE,

| Flap =0, 0G = (¢ Xaapr €) + (p Xaapr €).

\
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The simplicity of these expressions is all the more remarkable given how naturally they
arise — the generalised connection D and generalised metric GG are the direct analogues
of the Levi-Civita V and metric g of Riemannian geometry. The representations .S and .J
in which the fermionic fields transform can be uniquely identified just by examining the
H, decomposition of torsion-free, metric compatible generalised connections, as was ex-
plained in section[5.2.3] We believe that this provides compelling evidence that generalised
geometry is a natural framework with which to formulate supergravity.

A surprising outcome of our work is the observation that, despite the fact that the geo-
metric construction is entirely bosonic, supersymmetry is deeply integrated in the formal-
ism — torsion-free, metric compatible connections describe the variation of the fermions
and the equations of motion of the fermions close under supersymmetry on the bosonic
generalised curvatures. One problem that generalised geometry is thus particularly well
suited to tackle is that of describing supersymmetric vacua with flux [104} 103} 112} [113]].
In this context, our formalism can in a sense be viewed as an expansion of the ideas of
generalised complex structures, as it provides a way of unifying all the possible structures
that describe supersymmetric backgrounds in a single generalised G-structure (from sec-
tion , where G C Hj, at each level of preserved supersymmetry. Furthermore, it
turns out that the Killing spinor equations can be shown to be equivalent to integrability
conditions on the generalised connection — supersymmetric backgrounds are in one-to-one
correspondence with manifolds with generalised special holonomy.

Let us see how this works in a particularly important case.

7.1 d = 7 backgrounds with N = 1 supersymmetry

Recall that a background of M theory is said to be supersymmetric if there exists a nowhere-
vanishing choice of supersymmetry parameter on the manifold, the Killing spinor, such that
the supersymmetry variations of all of the background fields vanish. For classical super-
gravity solutions the background fermionic fields are zero. The variations of the bosonic
fields always have a fermionic factor, so these are automatically zero. Therefore, the non-
trivial condition for supersymmetry is the vanishing of the variations of the fermionic fields,

and we need only consider the lowest order terms in fermions.
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Let us then consider the d = 7 case, using the same field ansatz from section m
If one has an N = 1 vacuum, then there exists a spinor field ¢ globally defined on the
background manifold M which satisfies the Killing spinor equations

0=""Vime +7"(OnA)e — 57 ™ Fopy g€

(7.2)
0= Vine + ghs (™™ = 86,90 Fy e

The Killing spinor defines a G-structure on the tangent space of M, which for non-
vanishing fluxes will have some intrinsic torsion (see appendix [B| for a quick review on the
notion of intrinsic torsion). Thus, in ordinary geometry one finds that generic supersym-
metric flux backgrounds are not integrable. However, from the point of view of generalised
geometry, the larger symmetries of the generalised tangent space allow us to use the spinor
to define generalised G-structures, which, as we will now see, are integrable precisely if
and only if the Killing spinor equations hold.

We start by encoding the equations in the H;-covariant form

D x;e=0, D xge=0. (7.3)

Since ¢ is a globally non-vanishing section of .9, its components are stabilised by tran-
sition functions in some subgroup G of H,. In other words, those H, frames in which the
components of ¢ are fixed define a generalised G-structure P. The condition for a gener-
alised connection to be compatible with this structure is then De = 0.

Now, the equations (7.3)), which hold for any torsion-free H, compatible D, appear
weaker than the compatibility condition, as they constrain only two of the irreducible parts
of De. If the generalised G-structure has vanishing generalised intrinsic torsion we need
to show that one can still find a torsion-free compatible connection D such that the full

compatibility condition De = 0is satisﬁe We will prove this by calculating the repre-

"Note that this is a different definition of generalised holonomy to the one in [[110, [114], as we are con-
sidering the full generalised connection D as opposed to just the projected derivatives which appear in the
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sentation in which the intrinsic torsion transforms and demonstrating that the Killing spinor
equations precisely annihilate this representation. Note that will we study only the linear
algebra involved at a single point in the manifold so that we may discuss representations
rather than bundles and so, for the sake of readability, we will use a slight abuse of notation
and not distinguish between the two.

The argument goes as follows. Denote the vector space of H; connection pieces at the
point by C' and the space of G-compatible connections (where G C H,) by Cp. These
are (reducible) representations of Hyand G respectively and split into two (also in general

reducible) representations

C=E*®adH,=KoU,
(7.4)
C’p:E*®adG:Kp@Up,

where K and K p are the components constrained by the torsion and U and Up are uncon-
strained by the torsion. Clearly Cp C C, Kp C K and Up C U.

Decomposing the H, representations under (G, we have
K = Kp ® Kiy, (7.5)

where K, ~ K/Kp is the (reducible) representation of G under which the intrinsic torsion
transforms. This can easily be found as we know K and Kp = Cp N K.
The Killing spinor equations transform under the representation S & J of H, and the

projection which give rise to them from the generalised connection becomes

P.C— S,
(7.6)
ZH(EXSG)—F(ZXJE).

Recall that this projection is such that the Killing spinor equations are uniquely determined
for torsion-free connections, i.e. components of the connection lying in U do not contribute

to them. Now, G is the stabiliser of € so for ¥ € Cp we have X - ¢ = 0. We have the

fermionic supersymmetry variations.
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decomposition C' = Kp @ K, @ U and the projection depends only on torsion components
of Y. Suppose the kernel of the mapping P were equal to Kp&B U, as the above observations
suggest, then we would have an isomorphism

Pk,

nt

. Kim — S EB J, (7'7)

and this would demonstrate that the vanishing of the intrinsic torsion was equivalent to the
Killing spinor equations. We assert that this is the case for now, and one can check this by
explicit calculation of the dependences.

In the d = 7 case for N = 1 backgrounds, the internal complex spinor € is a section
of the generalised spinor bundle S. The fibre of this bundle is the representation 8 + 8 of
SU(8) where the two parts are related by complex conjugation, see table Therefore ¢
is stabilised by SU(7) C SU(8) and so defines an SU(7) structure. This statement unifies
all of the different subgroups of Spin(7) which can stabilise both the real and imaginary
parts of € [63]].

We can then explicitly compute the generalised intrinsic torsion of this SU (7) structure.

We have the SU(8) representations

S&J=[8+8]+[56+56],
K = [28 + 28] + [36 + 36] + [420 + 420]. (7.8)

U = [1280 + 1280].
The next step is to calculate their SU(7) decompositions

S@J=2x14[7+7]+[21+21] + [35 + 35],
K=2x(14[7+7] + [21+21])
+ [28 + 28] + [35 + 35] + [140 + 140] + [224 + 224]. (7.9)
U=[7+7]+[21+21] + [28 + 28] + [112 + 112] + [140 + 140]

+ [189 + 189] + [735 + 735] + 2 x 48.

We have that generalised connections compatible with the SU(7) structure fill out the
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vector space

Cp=E®ad(SU(7))
= [7+7] + [21 4 21] + [28 + 28] + [140 + 140] + [224 + 224]  (7.10)

+ [189 + 189] + [735 + 735].

Now we must find the intersection Kp = Cp N K. Clearly the last two terms will not
contribute, and by checking against the decomposition of U we immediately see that the
224 + 224 must be in the intersection. The remaining components require a more careful
analysis, but it is not too difficult to check explicitly that none of them vanish under the

torsion map C'p — K p. Therefore, we have that
Kp=[T+7] +[21+21] + [28 + 28] + [140 + 140] + [224 +224|,  (7.11)

and so conclude

Kine =2 X 14 [T+ 7] + [21+ 21] + [35 + 35]
(7.12)
=S J

Shur’s lemma then guarantees that the restricted map is thus either zero or an iso-
morphism on each of the irreducible parts of K, = S & J. We assert that it is in fact an
isomorphism, which proves that the Killing spinor equations have precisely the necessary
degrees of freedom to set the intrinsic torsion of the SU(7) structure to zero.

It is worth mentioning that the solution corresponding to an NS5-brane wrapped on a
Kahler 2-cycle in a Calabai-Yau manifold [115] is included in this framework, even though
it falls outside the classification of [[116]] (as this is an NV = 1 background with vanishing
RR fields). Reducing from M theory to type II, we have that the decomposition of the
SU(8) Killing spinor under SU(4) x SU(4) ise = €; + 6 € (4+4,1) + (1,4 +4).
For this solution, one sets the second spinor €5 to zero, so the pure spinors of [116]
vanish identically. However, in our formalism, which does not involve the tensor prod-
uct of the spinors, this supersymmetry parameter still gives a non-vanishing section of

S~ (4+4,1)+ (1,4 + 4), describing an SU(3) x SU(4) C SU(7) structure.
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7.2 Future Outlook

We have thus shown that N = 1 backgrounds in d = 7 are described by manifolds with
generalised SU(7) special holonomy. Though we will not elaborate on it further here, it
can actually be shown that similar results hold for higher amounts of preserved supersym-
metry N in any dimension, and in the O(d, d) formalism as well if the RR fields vanish. An
obvious next step is then to apply these results in order to find new background solutions for
both type II and M theory. We note that if this proves successful, then the study of the mod-
uli space and the phenomenological implications of these new background classes should
benefit from the fact that our formalism is able to unify all the bosonic fields in the inter-
nal manifold while keeping the larger symmetries manifest. Additionally, it should not be
too difficult to expand the formalism to, for example, describe AdS reductions as opposed
to just the Minkowski ones we considered here. This could be extremely rewarding as it
would then have a direct application to the gravity side of the AdS/CFT correspondence.
On the subject of string compactifications, a somewhat related problem is the study of
non-geometric backgrounds. There have been a few recent developments in this field using
generalised geometry and Double Field Theory (for example [30} [117, (118, [119]). The
formalism we developed here allows us to clarify some of these results and their scope of
applicability. For instance, the action given in [117/] can be interpreted in the context of
the O(9,1) x O(1,9) generalised gravity of chapter[d] Given a bivector 3 € ['(A*T'M), it
amounts to evaluating the generalised Ricci scalar R in a different frame from the standard

split frame, namely

. E, = ¢ 2(dete)é, for A=a
Ey= (7.13)

E* = e ?*(dete) (e* + B¢%) for A=a+d

which is related to the conformal split frame by an O(10, 10) transformation outside the
geometric subgroup Gy Locally, from a generalised geometrical perspective, these are
equivalent, as expected from [30]. However, given the patching (3.2), the new frame is
not, generically, globally defined in a conventional generalised geometry. The suggestion

though is that on a non-geometrical background (patched for instance by a T-duality) it
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may be possible to make some global notion of such a frame. So it seems clear that while
generalised geometry can provide some new insights into non-geometric backgrounds, one
will need to move beyond it in order to obtain the full picture.

On the other hand, the formalism we developed here might already be directly appli-
cable to the ongoing problem in string perturbation theory of finding corrections to the
effective action which are higher order in derivatives. Not only should the calculations
benefit from the more manifest symmetries, but the fact that defining curvature tensors in
generalised geometry is a very a non-trivial question, as we saw in section [3.1.5] could be
very significant. The simple requirement that the higher order Lagrangians should be built
out of generalised connections provides one with extra constraints which might be key in
finding the corrections.

The full extent of the relation between generalised geometries and supersymmetry is
also something that clearly warrants further exploration. One might try to formulate other
supergravities, such as six-dimensional N = (1, 0), which should provide further evidence
of this connection. These will likely require the use of other “duality groups” for the
generalised structure — for instance a formalism based on By(q) = S O(d+1,d) [102] seems
to describe heterotic coupled to a U (1) gauge field [120]. Alternatively, one could attempt
to extend the geometry to make supersymmetry manifest, perhaps by adapting some of the
tools from superspace formalism.

A potentially harder problem can be posed if one tries to extend the Eq(4) xR™ structure
to higher dimensions. Here one has to deal with FEgg) and its infinite dimensional Kac-
Moody extensions, as is the case in West’s E£7; [66] programme. The basic obstruction,
even for d = 8, is that although the generalised tangent space exists one cannot write a
covariant expression for the Dorfman derivative in the form (5.28)). This is a consequence
of the presence of tensors in the generalised tangent space which are not forms, and as such
one cannot act upon them with the de Rham differential. Indeed, in d = 7 one already has
7 € I(T*M ® A"T*M) in E, but this gets projected to zero in the Dorfman derivative
— we have no such luck in higher dimensions. Furthermore, this term already meant that
in d = 7 we could not write the symmetric component of the Dorfman derivative (5.39)
in an Ey(4) xR* covariant form. Physically extra terms of this sort in the generalised

tangent space correspond to Kaluza—Klein monopole charges in the U-duality algebra and
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should be associated to the symmetries of “dual gravitons”. Ultimately, what is needed is
a derived bracket construction for the Ey4) case, with an appropriate generalisation of the
de Rahm differential that can act on these higher spin fields. It seems likely that creating a
complete theory that describes these large exceptional geometries would be a tremendous

step forward in our understanding of string and M theory.
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Appendix A

Conventions

A.1 Lorentzian signature

We take the g metric with the mostly plus signature (— + +---+). We use the indices
W, v, A\ .. as the spacetime coordinate indices and a, b, c. .. for the tangent space indices.
We take symmetrisation of indices with weight one. Give forms A\ € A*T*M, in D dimen-

sions, our conventions are

A= %)\m_,,ukdaj‘“ AL AdatE,

dzbt A - A dater’

fetk)!
ANN = (k+1k’)! (%A[Hl-uﬂkA

#k+1-~~l‘k+k’}>

A= m (% \% _geﬂl..-#kaul...ukAyl'nyk) dzht A A dquilz (Al)

where €01..D—1 — —601"'D—1 = +1.

A.2 Euclidean signature

We use the indices m, n, p, . . . as the coordinate indices and a, b, c. . . for the tangent space

indices. We take symmetrisation of indices with weight one. Given a polyvector w €
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APT M and a form A € AT* M, we write in components

w = 1wm1"'mp 0 A A 0
! dxm Oz’
1 (A.2)
A= —'/\m,__quxm1 A Ada™,
q!
so that wedge products and contractions are given by
Al
(w A w/)m1-..mp+p/ _ (p +p )'w[ml...mpw/mp+1...mp+p/]
plp'! ’
: _ (a+4)! :
<)‘ AA )ml...mq+q/ - W)\[ml“'mq)\mp+l---mq+ql]7
) (A.3)
(U) _ )\)m...aq,p — chlmcpAq...cpal...aq,p ifp S q,
ay...ap—q 1 at...ap—gC1...C 1
(w ) = P TIN L e ifp > gq.

Given the tensors t € TM @ A"TM, 7 € T*M @ A"T*M and a € TM ® T*M with

components

; 1 .. 0 2 0 A A 0
— e OO AN

7! dx™ = Jx™m Oz’

1
T = ﬁTm,m1.A.m7dIm & dz™ A A dxmqu (A4)
0

=a",—— ®da",

a=a pye ® dx

and also a form o € AST*M and a vector v € T'M, we use the “j-notation” from [63],
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defining
. 1 cl...cp
(U} - T)al...agfp = (p _ 1)'w TC1,CQ...cpa1...a8,pa
(t . )\)(Zlmanq = (q — 1)!tcl,cz...cqa1...as_q)\01”‘0(17
1 a,by...by
(t _ 7') = ﬁt Taby...bys
a,ai...a 7!
Jw A w" )P = alar--ap=1q,/ap--a7],
en) =D —p)!
AA N = LY ’
AN o 3 (I = g el M) (A.5)
. -\ \@ 1 acy...c
(]w - ]A) b = (p _ 1)'w b p_lAbcl...Cp_17
. - a 1 a,ci...c7
(]t JJT) b= ﬁt ’ Th,cy...crs
(jp+1/\ A T)al...ap+l,b1...b7 = (p+ 1))‘[“1~~~7—ap+1]7b1~~b7>
(]'30. A Ul)a1...a3,b1...b7 = 5%!210-a1...a3[b1b20-./..b7]7

. D
(U - ]T>mn1..‘n6 = Tm,pnl...ng-

The d dimensional metric g is always positive definite. We define the orientation,

€1 g = €% = 41, and use the conventions

_ 1/ n1...7
*)\ml,..md_q - a |g|€m1,..md_kn1..,nq)\ q’

)\2 == )\m1‘..mq)\m1mmq .

(A.6)
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Appendix B

Metric structures, torsion and the

Levi—Civita connection

In this appendix we briefly review the basic geometry that goes into the construction of
the Levi—Civita connection, as context for the corresponding generalised geometrical ana-
logues.

Let M be a d-dimensional manifold. We write {¢é,} for a basis of the tangent space
T,M at z € M and {e®} be the dual basis of T M satisfying i, e’ = §,°. Recall that the
frame bundle F' is the bundle of all bases {é} over M,

F={(z,{é.}): v € M and {é,} is a basis for T, M } . (B.1)
On each fibre of F' there is an action of A%, € GL(d,R), given v = v*é, € I'(T, M),
. (B.2)

v 0" = A%, o > €, = ey(A”

giving F’ the structure of a GL(d, R) principal bundle.
The Lie derivative £, encodes the effect of an infinitesimal diffeomorphism. On a

vector field w it is equal to the Lie bracket

Low=—Lyv=[v,w], (B.3)
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while on a general tensor field o one has, in coordinate indices,

E attbr — v#a ottiHe

V1...Ugq V1...Ug
- (0u0) Qi 4 (D00 ol (B.4)
— (D ot)alte — e — (D0t all b

Note that the terms on the second and third lines can be viewed as the adjoint action of
the gl(d, R) matrix a*, = 0,v" on the particular tensor field o. This form will have an
analogous expression when we come to generalised geometry.

Let V0" = 0,0” +w,”\v" be a general connection on T'M. The torsion 7' € T'(TM &
A2T*M) of V is defined by

T(v,w) = Vyw — Vv — [v,w]. (B.5)
or concretely, in coordinate indices,
TH\ = w/y —wiy, (B.6)
while, in a general basis where Vv = 0,v* + w,ﬂbvb, one has
T%e = wp®e — wy + [é, €.]" . (B.7)

Since again it has a natural generalised geometric analogue, it is useful to equivalently
define the torsion in terms of the Lie derivative. If LY « is the analogue of the Lie deriva-

tive but with 9 replaced by V, and (i,T)*, = v*T*,, then
(i,T)a = LY a — L, (B.8)

where we view 4,7 as a section of the gl(d, R) adjoint bundle acting on the given tensor
field a.
The curvature of a connection V is given by the Riemann tensor R € ['(A?2T*M ®
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TM ® T*M), defined by

R(u,v)w = [V, Vy]Jw — Vi, gw,

(B.9)
R, 0" = [V, Voot = T,V 0,
The Ricci tensor is the trace of the Riemann curvature
Ruw =Ry, - (B.10)
If the manifold admits a metric g then the Ricci scalar is defined by
R =¢"R,.. (B.11)

A G-structure is a principal sub-bundle P C F' with fibre G. In the case of the metric
g, the G = O(d) sub-bundle is formed by the set of orthonormal bases

P ={(z,{¢.}) € F:g(éq,é) = ba}, (B.12)

related by an O(d) C GL(d, R) action. (A Lorentzian metric defines a O(d—1, 1)-structure
and J,, is replaced by 74,.) At each point x € M, the metric defines a point in the coset
space

gl. € GL(d,R)/O(d). (B.13)

In general the existence of a GG-structure can impose topological conditions on the manifold,
since it implies that the tangent space can be patched using only G C GL(d, R) transition
functions. (For example, for even d, if G = GL(d/2,C), the manifold must admit an
almost complex structure, while for G = SL(d,R) it must be orientable.) However, for
O(d) there is no such restriction.

A connection V is compatible with a G-structure P C F' if the corresponding connec-
tion of the principal bundle F' reduces to a connection on P. This means that, given a basis
{é.}, one has a set of connection one-forms w®, taking values in the adjoint representation
of GG given by

Vo oana = w, by (B.14)
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For a metric structure this is equivalent to the condition Vg = 0. A compatible connection

can then be locally represented as a section
wel'(T"M @ ad(P)). (B.15)

The torsion of V is a section of the bundle TM @ A?>T*M, and in general both of these
bundles can be decomposed into irreducible parts under G.

The intrinsic torsion of P can then be defined as follows. Consider two such con-
nections V and V’, both compatible with the structure P, and let 7'(V) and T'(V’) be
their respective torsions. The difference of these AT = T'(V’) — T'(V) is a section of
W := TM ® A*T*M. However, it can happen that, varying V' for fixed V, AT fills out
only a subspace of the full space of torsions. Let ¥ € I'(T*M ® ad(P)) be the difference

of the two connections, which is a tensor such that for v € I'(T'M)
¥, =V, -V, (B.16)

AT is alinear function of . Therefore, if the dimension of 7*M ® ad(P) is less than the
dimension of TM @ A*T*M, it is clear that AT must be restricted to a subspace. Label

the image of the torsion map on 7*M ® ad(P) as Wp, then we can define the bundle

w
King = —. B.17
W (B.17)

Now, given any compatible connection V on P, its torsion defines an element of W, which
is independent of which connection one chooses. This element of W} is the intrinsic torsion
of P, and if it is non-zero, then there does not exist a torsion-free connection which is
compatible with P. G-structures with vanishing intrinsic torsion are said to be torsion-free
or equivalently integrable (to first order).

In general, the vanishing of the intrinsic torsion is a first-order differential constraint on
the structure. Suppose the structure is defined by a G-invariant tensor @, and let V' = V +
Y, where this time V is torsion-free and V'’ is assumed to be torsion-free and compatible.
This implies that

0=Vd=Vd+X- P (B.18)
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We must therefore be able to solve the equation V& = —3 - ® for 3, subject to the
constraint that 7'(¥) = 0, and in general this constrains which irreducible parts of V&
can be non-zero. Thus we have first-order differential constraints on the invariant tensor ¢

which defines the structure.
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Appendix C

Clifford algebras

C.1 (Clifford algebras, involutions and H,

The real Clifford algebras Cliff(p, ¢; R) are generated by gamma matrices satisfying

{y™ " =20m, e = ey (C.1)

where g is a d-dimensional metric of signature (p, ¢). Here we will be primarily interested

in Cliff(d; R) = Cliff(d, 0; R) and Cliff(d — 1, 1; R). The top gamma matrix is defined as

0A1 d—1 - :
0 000 A for Cliff(d — 1, 1; R)

= J€mi.mg YT = ; (C.2)
o0 for Cliff (d; R)

py(d)

and one has [y, y™] = 0if d is odd, while {y(?,y™} = 0 if d is even, and

1 ifp—qg=0,1 (mod4
(/D)2 = p—a ( ) (C.3)
-1 ifp—q¢=2,3 (mod4)

We also use Dirac slash notation with weight one so that for w € T'(A*T* M)

b= A ™. (C.4)
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The real Clifford algebras are isomorphic to matrix algebras over R, C or the quater-
nions H. These are listed in table Note that in odd dimensions the pair {1,7(®}
generate the centre of the algebra, which is isomorphicto R @ Rif p — ¢ = 1 (mod 4)
and Cif p — ¢ = 3 (mod 4). In the first case Cliff(p, ¢; R) splits into two pieces with (?

eigenvalues of &1. In the second case (¥ plays the role of i under the isomorphism with
GL(2142,C).

p—¢q (mod 8) Cliff(p, ¢; R)

0,2 GL(292 R)

1 GL(21% R) & GL(219/3 R)

3,7 GL(29/2 C)

4,6 GL(24/271 H)

5 GL(2192-1 H) @ GL(2%/2-1 H)

Table C.1: Real Clifford algebras
There are three involutions of the algebra given by

,yml...mk — (_)k,ymlmk’
fyml...mk — ,Ymk-nml’ (CS)

/yml...mk — (_)k,ymkml 7

29 <¢

usually called “reflection”, “reversal” and “Clifford conjugation”. The first is an automor-
phism of the algebra, the other two are anti-automorphisms. The reflection involution gives
a grading of Cliff(p, ¢; R) = Cliff* (p, ¢; R) @ Cliff ~ (p, ¢; R) into odd and even powers of
4™ The group Spin(p, q) lies in Cliff " (p, ¢; R).

The involutions can be used to define other subgroups of the Clifford algebra. In par-
ticular one has

H,, ={g € Cliff(p,¢;R) : g'g = 1} (C.6)

¢ is the image of ¢ under the reversal involution. For the corresponding Lie alegbra we
require a’ + a = 0, and so the algebra is generated by elements in the negative eigenspace

of the involution. For d < 8, this is the set {~"", 4™"P ~™1--M6 ~mi--m7} We see that the
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maximally compact subgroups H, C FE4q) are given by
Hy = Hyp (C.7)

for the Cliff (d; R) algebra]

C.2 Representations of Cliff (p, ¢; R) and intertwiners

It is usual to consider irreducible complex representations of the gamma matrices acting
on spinors. When d is even there is only one such representation. There are then three

intertwiners realising the involutions discussed above, namely,

Y)Y Yy = "
CymCTt = (v, (C3)
C,Ymcvfl — _(,ym)T’

where C' = C(9. There are four further intertwiners, not all independent, giving

A’ymA_l — (’Ym)T, D’}/mD_l — (,ym)*7
L. _ - (C.9
AymAT = — (™), DyY"D™h = —(y™)".

By construction we see that H, is the group preserving C'.

When d is odd there are two inequivalent irreducible representations with either (%) =
+1 whenp — ¢ = 1 (mod 4) or 7Y = 4i when p — ¢ = 3 (mod 4). Since here 7% is
odd under the reflection, this involution exchanges the two representations. Thus only half

of the possible intertwiners exist on each. One has

CymCt = (™7, ifd=1 (mod 4),
o (C.10)
CymC~t = —(v™7T, ifd=3 (mod 4).

'Note that flm is strictly U (8). Dropping the +(7) generator one gets H; = SU ().
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while
Ay AT = (™) if p is odd,
Aym AT = — (™), if p is even,
(C.11)
Dy™D™! = (™), ifp—qg=1 (mod 4),
Dym D™l = —(4™)*, ifp—q¢=3 (mod4).

Note that under reversal (7(®)t = (—)¥@=1/2~(@ 5o when d = 3 (mod 4) the involu-
tion exchanges representations and we have no C' intertwiner. In particular for Cliff (d; R) it
maps 7Y = ito v(¥) = —i. However, this map can also be realised on each representation
separately by the adjoint Ay A~ = (4™)I. Hence for d = 3 (mod 4) we can instead
define H, as the group preserving A.

The conjugate intertwiners allow us to define Majorana and symplectic Majorana rep-
resentations when there is an isomorphism to real and quaternionic matrix algebras respec-
tively. Thus when p — ¢ = 0,1,2 (mod 8) one has DD* = 1 and can define a reality

condition on the spinors

x = (Dx)*. (C.12)

When p — ¢ = 4,5,6 (mod 8) one has DD* = —1 one can define a symplectic reality
condition. Introducing a pair of SU(2) indices A, B,... = 1,2 on the spinors with the

convention for raising and lowering these indices

Xa = €eapX”, x* = e*Pys, (C.13)

the symplectic Majorana condition is
n = e (DnP)". (C.14)

Note that for p — ¢ = 0,6,7 (mod 8) and p — ¢ = 2,3,4 (mod 8) one can also define

analogous Majorana and symplectic Majorana conditions respectively using D.
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C.3 Cliff(10,1;R)

For Cliff(10, 1;R) ~ GL(32,R) & GL(32,R), following the conventions of [85] we take

the representation with

rh =rort. 1= —1.

The D intertwiner defines Majorana spinors, while C' = —C7 defines the conjugate

e = (De)", g=£"C.
such that

VMg — (—1)[(1)/2 2P M
C4 Clff(9,1;R)
The Cliff(9, 1; R) gamma matrices are defined as
{77} = 29", e =yl e,
and we use the anti-symmetric transpose intertwiner
CAHC = —()", & - ¢,
to define the Majorana conjugate as € = ¢C'. This leads to the formulae
C’fyﬂlmﬂké’*l — (_)[(k+1)/2] (7/‘1"4%)7'7
Eryt by = (_)[(k+1)/2]>_<7l‘1~#k67

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

where in the second equation the spinors € and x are anti-commuting. The top gamma is

defined as

(10) 9

— ~0A1L 1 B1-.-ft10
Y =77 ... = 1_()!6,u1.--,u107 5

(C.21)
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and this gives rise to the equation

7H1~~~Hk7(10) = (_)[k/ﬂﬁ v _g€H1~~~MkV1~-~V107k7V1mylojk7 (C22)
which is also commonly written as

A (F)(10) — (_)[k/2] 5 (10— (C.23)

C.5 Cliff(4;R) and Spin(5)
For Cliff(4;R) ~ GL(2,H), D*D = —1 and we can use this to introduce symplectic
Majorana spinors, while we use C' to define the conjugate spinor

XA =AB(DyEY, xa=eas(xP)'C (C.24)

The other intertwiner C' = 07(4) provides a symplectic inner product on spinors, which
is preserved by {7, 4"}, i.e. the H, = Spin(5) algebra. The Spin(5) gamma matrix

algebra can be realised explicitly by setting

, y 1=a
Y= , (C.25)
Ay =5
and identifying """ = —em”pq7q7(4). The same gamma matrices give a representation of
Cliff (5; R) (with 4 = +1).
C.6 CIliff(7;R) and Spin(8)
For Cliff (7;R) we take the representation with v(") = —i and define conjugate spinors
e=clA (C.26)

This provides a hermitian inner product on spinors, which is preserved by H; = SU (8),

generated by {7, 4" ~m1-ms} The intertwiner C' = C7 is preserved by a Spin(8) C
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SU (8) subgroup. The corresponding generators can be written as

vy t=a,j=0>

@ i=8,j=1b
This representation has negative chirality in the sense that
Aitis — i, (C.28)
We have the useful completeness relations, reflecting SO(8) triality,
A9 ogi ™ = 165365, A9 05’ = 1667,

where we have used C' to raise and lower spinor indices, and Fierz identity, which also

serves as our definition of €., a4,

]

~ 3Gy 2 kl6S"

L €aaraprpss AT AR = 2410 AR gon — A1 g, (C.29)

Note that as a representation of the Spin(8) algebra we can impose a reality condition
on the spinors y = (Dy)* using the intertwiner D with D*D = +1. For such a real spinor
the two possible definitions of spinor conjugate coincide Yy = x7C = yTA. In fact there
exists a GL(8, R) family of purely imaginary bases of gamma matrices such that D =1and
A = C. In such a basis we have £ = £TC' = ¢f A for a general spinor € = x; + iye. Many
of our SU(8) equations are written under a Spin(8) = SU(8) N SL(8, R) decomposition
in such an imaginary basis, and thus it is natural to raise and lower spinor indices with the

Spin(8) invariant C.
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Appendix D

Spinor Decompositions

D.1 (10,1) — (6,1) + (4,0)

We can decompose the Cliff(10, 1; R) gamma matrices as
I =A@y, " =109" (D.1)

and the eleven-dimensional intertwiners as

C= 6(671) & 6(4), D = D1y ® Dyy. (D.2)

Introducing a basis of seven dimensional symplectic Majorana spinors {n;'}, we can

then decompose a general eleven-dimensional Majorana spinor as

e=eap (n @x"), (D.3)

where {x“?} are some collection of four dimensional symplectic Majorana spinors. All of
the data of the eleven dimensional spinor is now contained in y“/, the extra index I serving
as the external Spin(6, 1) index.

The eleven dimensional spinor conjugate can be realised in terms of the four dimen-
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sional spinors ! by setting

Xar = earps(XP) T Cu, (D.4)

where €arp; = (UAI)TC(G,lmBJ~
Clearly from the decomposition (D.I) the action of the internal eleven dimensional
gamma matrices is simply

I™e & 4™y, (D.5)

and any eleven dimensional equation with only internal gamma matrices takes the same
form in terms of /. Thus, supressing the extra indices on y, the supergravity equations
with fermions in section take exactly the same form when written in terms of the

four-dimensional spinors.

D.2 (10,1) — (3,1) + (7,0)
We can use a complex decomposition of the Cliff(10, 1;R) gamma matrices as
M =9"®1, '™ =iy® ®~™, (D.6)

and the eleven-dimensional intertwiners as

C= 0(371) & 6(7), D= D(3’1) ® D(7). D. 7
We take a chiral decomposition of an eleven-dimensional Majorana spinor

e=(nf @x") + Deyn)* @ (Dmx'), (D.8)

where Yy = —in] so that {n]} are a basis of complex Weyl spinors in the external
space. The Majorana condition on ¢ is automatic with no additional constraint on Y/,
which is complex. Again the extra index [/ on x provides an external Spin(3,1) index.

The Clifford action of the internal eleven-dimensional gamma matrices then reduces to



Appendix D. Spinor Decompositions 131

the action of the seven-dimensional gamma matrices on Y
e =nf ® (y"x") + (Deynf ) @ (Dey™x')". (D.9)
To see how to write eleven-dimensional spinor bilinears in this language, we expand

srmemne = ((nf ) Coas ) () Cpy™ )
+ ((nf)TD@,1)é(3,1)D(3,l>ﬁf) <(XI)T[)%;)0(7)D<7>7m1"'mkx"])

= (mml'“m’“x”) + (CC>,
(D.10)

where we have made the definition

X1 = GIJ(XJ)TO(7)7 (D.11)

with e, = —(n)TCisyn; .
With these definitions, the equations linear in spinors in section take the same
form when written in terms of y/, while the spinor bilinear expressions take the same form

with a complex conjugate piece added to them.



132

Appendix E

Ed(d) XR+

In this appendix we give an explicit construction of Ey4) XxR™ for d < 7 based on the
GL(d,R) subgroup. We will describe the action directly in terms of the bundles that appear

in the generalised geometry.

E.1 Construction of £, ;) xR" from GL(d,R)
We have

E~TM@®NT*M&NTMe (T*Me ANT*M),
E* ~T"M @ N*TM & N°TM @& (TM @ A"TM), (E.1)

ad F~R@(TM @T*M)® A*T*M @ AT*M @ A3TM @ AT M.
The corresponding Ej4) X R™ representations are listed in Table We write sections as

V=v4+w+o+T1 ek,
Z=C+u+s+t € E*, (E.2)
R=c+r+a+a+a+a ecadF,

sothatv € TM,w € A*T*M, ( € T*M, ¢ € Retc. If {é,} is a basis for TM with a dual

basis {€} on T*M then there is a natural gl(d,R) action on each tensor component. For
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instance

(7" ’ U)a = rabvba (T : w)ab = _Tcawcb - chwac; etc. (E3)

Writing V' = R - V for the adjoint Ey4) xR™ action of R € adF onV € F, the
components of V’, using the notation of appendix are given by

V=cv+r-v+asw—a.lo,

W=cw+r-wrviataso+aaT,
(E4)

o =co+r-c+viatalw+ar,

T'=cr+r-T—jaNw+jaNo.

Note that, the Fy4) sub-algebra is generated by setting ¢ = ﬁraa. Similarly, given

Z € E* we have
(=—cC+r-(—usa+s.aa,

W=—-cut+r-u—ail—sia+taa,

(E.5)
s§'=—cs+r-s—asl(—aAhu—tJa,
t'=—ct+r-t—jaAs—jaAu.

Finally the adjoint commutator
R =[R, R (E.6)
has components
"=3(asd —d sa)+ 3@ sa—asd),
" =[r,r'|+ jasjd —jo' Jja—i(asd —d sa)l
+j& sja—jasja —2(d sa—aoad)l,
d"=r-d—r-a+d sa—asd, (E.7)

a'=r-ad—1r-a—and,
" =r-o -1 -a+d sa—-ald,

'=r-ad—-r-a—-and
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Here we have ¢/ = g%dr”aa, as R’ lies in the Ey(4) sub-algebra.

The Eq(4) xR* Lie group can then be constructed starting with GL(d, R) and using the

exponentiated action of a, a, « and &. The GL(d, R) action by an element m is standard so

(m-v)* =m%°  (m-ww= Mm% m H%hwaq, et (E.8)

The action of a and a form a nilpotent subgroup of nilpotency class two. One has

MY = v 4 (w + iya)
+ (0 +aAw+taNia+iya)
(E.9)
+ (T—i—ja/\a—j&/\w—i-%ja/\a/\w
+ 3ja Niyd — 3ja Niya + sja A aAiya),
with no terms higher than cubic in the expansion. The action of a and & form a similar

nilpotent subgroup of nilpotency class two with

ea+aV:(U+C¥JW—dJU+%C¥JaJU

+%OZ_IC~¥_IT+%C~Y_IOCJT+%C¥_IOC_IOC_IT>

(E.10)
+(wHasoc+asT+asas0)
+(o+aaT)+ T
A general element of Fy(q) xRT then has the form
M-V =eet@ettiy .V, (E.11)

where e* with A € R is included to give a general R* scaling.

E.2 Some tensor bundle products

We also define two tensor bundle products. We have the map into the adjoint bundle

Xu: E*®FE — adF. (E.12)
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Writing R = Z X, V we have

c:—%u_nw—§SJa—tJT,
m=v®(¢(—juijw+i(usw)l—jsijo+2(sao)l—jtjr,
a=vANu+siw+t.ao,
(E.13)
a=-vAs—t.iw,
a=CANw+uso+saT,

a=CNo+uaT.
We can also consider the bundle NV as given in table Taking

N~T*M AT M@ (T*M @ AT M) (NPT*M e ANT*M) & (AT*M @ A"T*M).

Y=A+Krk+p+v+m,

(E.14)
we have that the symmetric map £ ® 2 — N is
A=viw +7v Jw,
k=vio +v 10 —-wAW,
p=(jwAo +juw ANo)—3(c A +0 Aw)
(E.15)

+@ajr)+ (wajr)— 3wt +0' 7),
v=j7wnT + %W AT =0 N,

m =30 AT + % AT,
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Appendix F
H%EHKIEQ

We now turn to the analogous description of H,; in SO(d) representations. We then give
a detailed description of the spinor representations of H,; and provide several important

projections of tensor products in this language.

F1 H;and SO(d)

Given a positive definite metric g on 7'M, which for convenience we take to be in standard

form ¢, in frame indices, we can define a metric on E by
GV, V) =0v"+ 4w + 0% + 472, (F.1)

where v? = v,0?, wW? = wWuwW®, etc as in (A.6). Note that this metric allows us to identify
E~ E*.

The subgroup of F,4) xR™ that leaves the metric is invariant is /5, the maximal com-
pact subgroup of Ey(4) (see table @) Geometrically it defines a generalised H, structure,
that is an H,; sub-bundle P of the generalised structure bundle F. The corresponding Lie
algebra bundle is parametrised by

ad P ~ A’T*M @& A3T*M & AST* M,

) (F2)
N =n+b+0,



Appendix F. H, and H, 137

and embeds in ad F as

c=0,
Mab = Nab,
(F.3)
Qabe = —Qgbe = babcu
Qay...a6 = Aay...ag = bal...aga

where indices are lowered with the metric g. Note that n,, generates the O(d) C GL(d,R)

subgroup that preserves g. Concretely a general group element can be written as
H.V =e*f0crtap .y, (F4)

where i € O(d) and @ and « and @ and & are related as in (E.3).
The generalised tangent space £/ ~ E* forms an irreducible H; bundle, where the ac-
tion of H, just follows from (E.4)). The corresponding representations are listed in table
Another important representation of H; is the complement of the adjoint of H,; in
Eaa) xR*, which we denote as H+ (see table . An element of H~ is represented

as
HY ~Ra& S2F* @ A°F* @ A F~,
(E.5)
Q=c+h+q+q

and it embeds in ad F
c=c,

Map = haba
(F.6)
Aabe = Agbe = Gabes

aal...ae — _Oéa1.‘.a6 - q(l1.“a6‘

The action of H, on this representation is given by Ey4) xR™ Lie algebra. Writing Q" =
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N - () we have

/

c :—gb_lq— BJQ,

Ol

W=n-h—jbijg—jqojb—jbijg—jgojb+ (3boq+2b.4)1, )
¢=n-q—h-b+big+qb,

d=n-G—h-b—bAg,

where we are using the GL(d,R) adjoint action of h on AT*M and A®T*M. The H,
invariant scalar part of () is given by c— ﬁh“a, while the remaining irreducible component

_ 1 a
has ¢ = 551"

F.2 [, and Cliff(d; R)

The double cover H,; of H, has a realisation in terms of the Clifford algebra Cliff (d;R).
Let S be the bundle of Cliff(d; R) spinors. We can identify sections of S as H, bundles in
two different ways, which we denote S*. Specifically y* € S* if

N x* = 5 (5man™ £ 510ae7™ = Gbaras?™ ), (F3)
for N € ad P. As expected, in both cases n generates the Spin(d) subgroup of H,. The two
representations are mapped into each other by v — —~“. As such, they are inequivalent
in odd dimensions. However, in even dimensions, since —y* = ~(~%(+(@)~1 they are

equivalent and one can identify y~ = (¥ y*. Thus one finds

S~Ste S ifdisodd,
(F.9)
S~ St~ 8§ ifdiseven.

The different H, representations are listed explicitly in table

The Spin(d) vector-spinor bundle .J also forms representations of H,. Again we can
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identify two different actions. If o € J* we haveE]

b1...bg + b +
)@a — N oy

+ _1/1 be 1 bed 17
N - or = (5™ £ 3:06ea?™ — Gibb1.067

F 20, 0y F 220 ") (F.10)

C1...c4 2 1 bb

C1...C5
gpb 35V c1. ..c57a

1 17 b +
gzba cl.. 047 Q)Db .

Again in even dimension J* ~ J~. The H, representations are listed explicitly in table
Finally will also need the projections H+ ® S* — J¥, which, for Q € H* and

x*t € S*, is given by
(@ X X5)a = 2ha?"X* F 250" X " £ L E g X" E1n

c1...ce . *

11~ bi...bs5 . £ 11~
+ §519abs..bs"Y X — 3g%:..c6Va X

F.3 H,;and Cliff(10,1; R)

To describe the reformulation of D = 11 supergravity restricted to d dimensions it is very
useful to use the embedding of H, in Cliff(10,1;R). This identifies the same action of
H, on spinors given in but now using the internal spacelike gamma matrices ['* for
a=1,...,d. Combined with the external spin generators I'*”, this actually gives an action
of Spin(10 — d, 1) x H, on eleven-dimensional spinors. As before the action of [, can be

embedded in two different ways. We write Y~ € S* with
N - )A(i = %( nabrab + babcrabC - ééalm%rm...aa)xi' (F12)

Since the algebra of the {I'*} is the same as Cliff(d; R) all the equations of the previous
section translate directly to this presentation of H,. The advantage of the direct action on
eleven-dimensional spinors is that it allows us to write H, covariant spinor equations in a
dimension independent way.

As before we can also identify two realisations J* of H, on the representations with one

IThe formula given here matches those found in [121} [122]] for levels 0, 1 and 2 of K (E1g). A similar
formula also appears in the context of F1; in [123].
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eleven-dimensional spinor index and one internal vector index which transform as
(with T% in place of 4*). The Spin(d — 1,1) x H, representations for S= and J* are listed
explicitly in table

In addition to the projection H+ ® S* — JF given by (with T'® in place of
~*) we can identify various other tensor products. We have the singlet projections (-, -) :

SF ® S* — 1 given by the conventional Cliff (10, 1; R) bilinear, defined using (C-16)), so

) =x"x", (F.13)

where {* € S=. There is a similar singlet projection (-, -) : JFeJE -1 given b
(@F,0%) = @F (6% + LT T") ¢y, (F.14)

where ¢+ € J*.
We also have projections from S* ® J* and S* @ SF to H-. Given {* € S~ and
ot e J* we have, using the decomposition (E.5)),
(X" Xpe ¢7) = 52X 197,

(X5 X ¢ )b = QQiF(aS@Zt)
(F.15)

(X* Xpre @5 )ave = F3UT 0P
()Zj: XHJ‘ @i)alma(i = _6>:<ir[a1...a5¢i:6}’

Note that the image of this projection does not include the H, scalar part of H*, since,

from the first two components, ¢ — ﬁh“a = 0. We also have

(Xt xpe X7) =558 X7, (F.16)

and all other components of H~ are set to zero. We see that the image of this map is in the
H, scalar part of H~+.

Finally, we also need the H, projections for £ ~ E* acting on S* and J*. Given

2Setting d = 10 in this reproduces the corresponding inner product in [121]).
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VeE, ¥teS*tand or e J* it is useful to introduce the notation
VXS’¥>A(i7 ijif(ia
(F.17)
VXS‘i()biv VXjJFQbiv
which are given explicitly by
(V xge XF) = (£ 0To + 5wabl® £ L0060, T 4+ £7%%a1.0s D) XT,  (F.18)
and
(V in )A(i)a = (Ua + 1—‘bwab + 32|F Cdch - ;iqu C4Jac1...04
L I S ) Rl R b (F.19)
while
(V X g @i) =v* Soa + Tvarab(pb + 10— dglwbcrabcngr + 180 ijw brbgpa
- 1017d%0b1mb51m 5Py = g m . O
S LA R CME S T bSFbl o (F.20)
and finally
(V X jF @i)a = :tUCPc@;- + g%drcvzz@:— - %wchCde;_ + %wabg);—
_ —deF c('p+d _ %Ld FbFCSDC + _Ld%w I bcrdspd
+ é001-..05r‘61m05¢2_ + %%Jabcwz%rqwcg@b + 34|0 croeal 01”'0495;_
N R T
+ 2 Tedrdr DT T GE 4+ 2Ty e DTS (F.21)
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