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The triple alpha reaction is one of the most important reactions in the nuclear astrophysics. However, its 
reaction rate in high temperature environments at T9 > 2 was still uncertain. One of the major origins 
of the uncertainty was that the radiative-decay probability of the 3−

1 state in 12C was unknown. In the 
present work, we have determined the radiative-decay probability of the 3−

1 state to be 1.3+1.2
−1.1 ×10−6 by 

measuring the 1H(12C,12Cp) reaction for the first time, and derived the triple alpha reaction rate in high 
temperature environments from the measured radiative-decay probability. The present result suggests 
that the 3−

1 state noticeably enhances the triple alpha reaction rate although the contribution from the 
3−

1 state had been assumed to be small.
© 2021 Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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When our universe began about 13.8 billion years ago, no elements existed there. All of the elements were synthesized in the history 
of the universe by nuclear reactions.

Helium, the second abundant element in the universe, was synthesized by a series of proton/neutron capture or transfer reactions 
during the big bang nucleosynthesis (BBN) in 3–20 minutes after the beginning of the universe. Since there is no bound state in the A =
5 isobar, this proton and neutron capture chain suspended at A = 4. 8Be nuclei were produced in 4He + 4He collisions, but they decayed 
back to two 4He nuclei with very short lifetimes. Therefore, it is considered in the standard BBN model that heavy elements with A > 4 
were rarely synthesized, and their abundances were less than 10−9 in the early universe.

Heavier elements than He were mainly synthesized in stars. Stars synthesize 4He in proton-proton chain reactions or the CNO cycle 
during they remain on the main sequence. 4He becomes abundant in cores of stars when stars exhaust hydrogen and leave from the main 
sequence. However it is not trivial how heavy elements are synthesized from 4He in stars unless the bottlenecks at A = 5 and 8 are 
solved. This was a serious puzzle in physics until 1950s.

It is widely known that this puzzle was solved by Salpeter and Hoyle [1,2]. Salpeter proposed that 12C should be synthesized by the 
triple alpha (3α) reaction in dense and hot environments in stars [3], and Hoyle predicted that a 3α resonance should exist at slightly 
above the 3α decay threshold in 12C to explain the cosmic abundance ratio of He:C:O in a scenario with the 3α reaction [4]. This predicted 
3α resonance was experimentally established by Dunbar et al. [5]. This state is now called the Hoyle state [6,7].

In the 3α reaction, an α particle is captured by 8Be which is a 2α resonance, and consequently an excited state in 12C is populated 
as a 3α resonance. At normal stellar temperatures T9 ∼ 0.1 (T9 is the temperature in units of 109 K.), this process proceeds mainly 
via the Hoyle state at Ex = 7.654 MeV, but high-lying 3α resonances such as 3−

1 at Ex = 9.64 MeV and 2+
2 at Ex = 9.87 MeV play a 

significant role at higher temperatures [8]. Most of these 3α resonances decay back to three α particles, but an extremely little fraction of 
them is de-excited to the ground state in 12C by radiative decay. The 3α reaction rate, therefore, strongly depends on the radiative-decay 
probabilities �rad/�tot of the 3α resonances, which are given by the ratios of the radiative-decay widths �rad to the total widths �tot. �rad
is the sum of the γ -decay width �γ and the pair-production decay width �e+e− .

The 3α reaction is the doorway reaction that bypasses the A = 5 and 8 bottlenecks and allows the production of heavier elements, 
and thus it is one of the most important nuclear reactions in the nucleosynthesis. For example, the 3α reaction has a great impact on 
abundances of proton-rich isotopes of medium heavy elements (p-nuclei). The astrophysical origin of the p-nuclei is still under debate. 
The νp-process during the supernova explosions is a promising solution to explain their abundances [9–12], but it has not been fully 
understood. Wanajo theoretically examined the νp-process and found that a small variation of the 3α reaction rate at T9 > 2 drastically 
changes abundances of the p-nuclei [13]. The high-lying 3α resonances enhance the 3α reaction to increase medium mass nuclei with 
A = 60–80, and these nuclei act as proton poisons to slow down the νp process at A > 80. If the 3α reaction rate would increase several 
times, the production of the p-nuclei with A > 80 would be suppressed by several orders of magnitude. The importance of the 3α reaction 
rate is also discussed in high-density environments [14,15].

In nuclear astrophysical calculations, the 3α reaction rate estimated in the NACRE compilation [16] has been widely used. However, the 
estimated 3α reaction rate at T9 > 2 was quite uncertain because the radiative-decay widths of the 3−

1 and 2+
2 states were experimentally 

unknown when the NACRE compilation was established.
The 2+

2 state was naturally predicted as an excited state of the relative motion of the α particles in the Hoyle state by α cluster-model 
(ACM) calculations [17–20], but its existence was experimentally controversial for a long time. Fynbo et al. reported that the 2+

2 state was 
not observed in the β decay of 12N and 12B, and claimed its contribution to the 3α reaction is negligible [21]. Later, Itoh et al. found the 
2+

2 state [22], and Zimmerman et al. experimentally determined its energy, the direct-decay width to the ground state �(E2; 2+
2 → g.s.), 

and the total width �tot [23]. Although the sequential-decay width via the 2+
1 state at Ex = 4.440 MeV �(E2; 2+

2 → 2+
1 ) is still unknown, 

its contribution to the 3α rate should be suppressed by a factor of about 20 (∼ [9.87/(9.87 − 4.44)]5) compared to that from the direct 
decay because the E2-decay width is proportional to the 5th power of the decay energy.

Contrary to the 2+
2 state, the contribution of the 3−

1 state is still very uncertain. The 3−
1 state also decays to the ground state by either 

a direct decay or a sequential decay via the 2+
1 state. The direct decay is an E3 transition, and its width is already known as 0.31 ± 0.04

meV from the (e, e′) measurement [24]. Since �tot of the 3−
1 state is 46 ± 3 keV [25], the direct-decay probability is (6.7 ± 1.0) × 10−9. 

This is the lower limit of �rad/�tot for the 3−
1 state. On the other hand, in the sequential decay, the E1, M2, and E3 transitions are in 

principle allowed. However, the M2 transition is significantly suppressed due to the isospin selection rule [26] since both the 3−
1 and 2+

1
states are isoscalar states. The shell-model calculation with the SFO interaction [27] predicts the M2-decay width from the 3−

1 state to the 
2+

1 state is as small as 5 μeV. The isoscalar E1 transition is also strictly forbidden in the first order. However the E1 transition might have 
a larger width than the E3 and M2 transitions due to the two reasons. First, the isospin symmetry is slightly broken due to the Coulomb 
interaction. Second, E1 transitions are generally much stronger than E3 and M2 transitions. Actually, it was reported that a typical E1
transition rate between the isoscalar states around A = 12 is 10−3.6 Weisskopf unit [28], which corresponds to �rad = 15 meV in the 3−

1
→ 2+

1 transition. This is significantly larger than �rad = 2 meV assumed in NACRE. Therefore, the 3α reaction rate via the 3−
1 state might 

be much larger than the estimation in NACRE.
A pioneering work to determine �rad/�tot for the 3−

1 state was carried out by measuring α inelastic scattering from 12C back in 1970s 
[29]. Once the 3α resonances in 12C are excited, these states decay either to three α particles or to the ground state of 12C by emitting 
γ rays or e+e− pairs. The radiative-decay events can be identified by detecting 12C in the final state without detecting γ rays nor e+e−
pairs. In Ref. [29], recoil 12C nuclei after radiative decay were detected in coincidence with scattered α particles. However, small 13C 
impurities in the isotopically enriched 12C target caused serious backgrounds, and thus only the upper limit of �rad/�tot for the 3−

1 state 
was reported as 8.2 × 10−7 at a confidence level of 95%.

In the present work, proton inelastic scattering from 12C was measured in order to determine �rad/�tot for the 3−
1 state. The measure-

ment was carried out under the inverse kinematic condition in which a 12C beam bombarded a hydrogen target. Scattered 12C nuclei were 
detected in coincidence with recoil protons. Since no 13C impurity was contained in the 12C beam, the signal-to-noise ratio was much 
improved.
2
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Fig. 1. Excitation-energy spectra of 12C for (a) the singles events and (b) the coincidence events in the inelastic proton scattering. The gray histogram presents the accidental 
coincidence events. The vertical dashed lines at Ex = 8.5 and 10.7 MeV divide the spectra into the three excitation-energy regions measured by using different sensitive areas 
of Gion. The spectra at Ex ≥ 10.7 MeV are multiplied by a factor of 20.

The experiment was carried out at the cyclotron facility in Research Center for Nuclear Physics (RCNP), Osaka University. A 12C5+ beam 
at 262 MeV bombarded a hydrogen target in the scattering chamber of the Grand Raiden (GR) spectrometer [30]. The unreacted beam 
was stopped in the Faraday cup downstream of a collimator plate for GR. A solid hydrogen target (SHT) system was newly developed to 
improve the hydrogen-to-contaminant ratio better than the gas target [31]. Pure hydrogen gas was fully converted to the parahydrogen 
whose thermal conductivity is about 10 times higher than the normal hydrogen [32]. The parahydrogen gas was filled into the target cell 
made of copper and cooled down to 9.6 K by a Gifford-McMahon refrigerator. A thin SHT with a thickness of 0.65 mm was made to keep 
the excitation-energy resolution in 12C better than 0.65 MeV at the full width at half maximum. The entrance and exit windows of the 
target cell were 15 mm in diameter and sealed with 6-μm thick aramid films. Backgrounds due to the window films were successfully 
subtracted by an empty-cell measurement because the scattering events from target nuclei other than protons cause no peak structures 
in excitation-energy spectra.

Recoil protons were detected by using the GAGG [33] based light ion telescope (Gion) which was located at θlab = −41◦ . Gion consisted 
of a double-sided Si strip detector (DSSD) and 24 GAGG scintillators. The particle identification was carried out with the �E-E correlation 
between the DSSD and the GAGG scintillators. The thickness of the DSSD was 650 μm, and the sensitive area was 48 mm in horizontal 
and 128 mm in vertical. The front and rear sides of the DSSD were divided into the 16 vertical strips and 32 horizontal strips, respectively. 
The GAGG crystals with a dimension of 18 mm × 18 mm × 25 mm were wrapped with enhanced specular reflector (ESR) films [34]. 
The thickness of the ESR film was 65 μm. The 24 GAGG crystals were mounted on avalanche photodiodes and stacked in 8 rows and 3 
columns behind the DSSD. The distance between the target and Gion was 125 mm, and the 8 rows of the GAGG crystals were arranged to 
arch with respect to the target.

The GR spectrometer was located at θlab = 2.8◦ covering ±0.8◦ and ±30 mr in the horizontal and vertical directions. Scattered 12C 
nuclei or decay α particles from excited states in 12C were momentum-analyzed by GR and detected by the focal plane detectors. The 
focal plane detectors consisted of the two multiwire drift chambers (MWDCs) and two plastic scintillators (PS1 and PS2). They were tilted 
along the focal plane by 45◦ with respect to the central orbit of GR. Helium bags were installed between the detectors to suppress the 
multiple scattering by air. The MWDCs were operated using a detection gas of He (50%) + CH4 (50%). The thicknesses of PS1 and PS2 were 
1 mm and 10 mm so that 12C nuclei stopped in PS1 but α particles penetrated it. By using an anti-coincidence technique between PS1 
and PS2, trigger signals for 12C events were generated. The GR spectrometer enabled us to precisely measure momenta, time of flights, and 
emission angles of scattered 12C nuclei. It was crucial to reject background particles from different processes or different target nuclei. It 
was also useful to kinematically remove the accidental coincidence events as described later. This was a great advantage over the previous 
work [29] in which both of scattered α particles and recoil 12C nuclei were detected by solid state detectors.

Fig. 1(a) shows the excitation-energy spectrum for the 12C(p, p′) reaction obtained with the SHT after the backgrounds due to the 
window films were subtracted. In the inverse kinematic measurement, spurious peaks are observed in excitation-energy spectra near the 
most backward angle where recoil protons can be emitted (critical angle) because d	cm/d	lab diverges at the critical angle. Therefore, we 
eliminated events near the critical angle from the present analysis by reducing the effective area of Gion to 73%, 51%, and 3% for the three 
different excitation-energy regions at Ex < 8.5 MeV, 8.5 MeV ≤ Ex < 10.7 MeV, and Ex ≥ 10.7 MeV, respectively.

The excitation-energy spectrum for the radiative-decay events was obtained from the coincidence events between protons and 12C 
nuclei after subtracting the empty-cell spectrum. The backgrounds due to the window films were less than 10% of the coincidence events 
from the 12C + p scattering around the 3−

1 state.
Accidental coincidence events, in which a 12C nucleus and a proton from different events were detected at the same time, also caused 

serious backgrounds. In such events, two recoil protons must be emitted, therefore we set the angular acceptance of Gion to be large 
enough to detect both of these protons for rejecting most of the accidental coincidence events. In addition, the angular and energy 
correlations between the detected proton and 12C were employed for further rejection of the accidental coincidence events.

The accidental coincidence events can be virtually generated by the event mixing analysis of singles events in GR and Gion. It was found 
that the accidental coincidence events were reduced by a factor of 100 thanks to the angular and energy correlations. The gray histogram 
3
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Fig. 2. Excitation-energy spectra of 12C around the 3−
1 state for (a) the singles events and (b) the coincidence events in the inelastic proton scattering. The thick solid lines 

show the fit functions for the 0+
2 and 3−

1 states while the dashed lines show that for the continuum. The thin solid lines present the sum of all the fit functions.

in Fig. 1(b) presents the excitation-energy spectrum for the remaining accidental coincidence events. The excitation-energy spectrum for 
the true coincidence events was obtained by subtracting these accidental coincidence events as presented by the open histogram.

The three prominent peaks due to the 2+
1 , 0+

2 , and 1+
1 states were clearly observed in the coincidence spectrum. The two small bumps 

were also seen at Ex ∼ 10.85 and 11.5 MeV. The bump at 10.85 MeV is close to the 1−
1 state which was observed in the inelastic electron 

scattering [35], whereas no state corresponding to another bump at Ex ∼ 11.5 MeV is reported in Ref. [25]. It should be noted that the 
excitation-energy spectra at Ex ≥ 10.7 MeV are scaled up by a factor of 20 and the statistical uncertainties around Ex ∼ 11 MeV in Fig. 1(b) 
are very large. Therefore, we do not make further discussion about these two bumps here.

Figs. 2(a) and (b) show the excitation-energy spectra of the singles and coincidence events around the 3−
1 state, which were measured 

with 51% of the sensitive area of Gion optimized for Ex = 8.5–10.7 MeV. A small peak due to the 3−
1 state was observed on the continuum 

in the coincidence spectrum. The origin of this continuum is unclear. The broad 2+
2 state lies near the 3−

1 state, but this state could not 
be observed in the present coincidence spectrum because its radiative-decay probability is considered to be an order of 10−8 [23]. One 
possible origin is the 12C + d →12 C + p + n process. Because it is a three-body process, it might cause a continuous spectrum. However, 
we confirmed by a background measurement with a CD2 target that the contribution from the deuteron break-up process is smaller than 
10−8 when the SHT with the natural abundance is used. The accidental coincidence events are also unlikely to be the origin because the 
peak-to-continuum ratio in the coincidence spectrum would be the same with that in the singles spectrum if the accidental coincidence 
events caused the continuum.

Both of the singles and coincidence spectra were fitted by the two gaussian functions for the 3−
1 and 0+

2 states and a smooth function 
for the continuum in order to obtain the yields of the singles and coincidence events. The centroids and widths of the gaussian functions 
were determined to reproduce the singles spectrum, and the same values were used for the coincidence spectrum. The two different 
functions were tried to fit the continuum. One is an exponential function, and the other is the semi-phenomenological function taken 
from Ref. [36] and added by a constant offset. The measured spectra were subtracted by the fit functions for the 0+

2 state and the 
continuum, and the remaining spectra were integrated to obtain the yields of the 3−

1 state. This trick was introduced to avoid errors due 
to the disagreement in the shapes between the gaussian fit function and the measured peak.

The obtained yields in the coincidence spectrum were 71 and 116 with the semi-phenomenological function and the exponential 
function, respectively, and the reduced χ2 values for the two fits were 0.69 and 1.05. Since the semi-phenomenological function gave the 
better reduced χ2 value than the exponential function, the yield obtained with the semi-phenomenological function was adopted as the 
most probable value. The difference between the two yields was assumed to be the systematic uncertainty due to the ambiguity of the 
continuum function. Because the adopted yield is smaller than the other yield, we added this systematic uncertainty to the upper side. 
In order to estimate the systematic uncertainty on the lower side, we employed a liner function to fit the continuum. It is reasonable to 
assume that the continuum is described by a convex-downward function around the 3−

1 state because it is almost zero below the 3α-
decay threshold at Ex = 7.27 MeV and seems to rise from the threshold smoothly. Therefore, the linear function is expected to simulate an 
extreme case to give the upper limit of the continuum. However, the linear function is physically unrealistic around the 0+

2 state because 
this function becomes negative. In the present analysis, we used the linear function only for the error estimation and fitted it with the 
gaussian function to the spectrum at Ex = 8.8–10.5 MeV around the 3−

1 state. The obtained yield for the 3−
1 state in the coincidence 

spectrum was 31, and thus we estimated the systematic uncertainty on the lower side to be the difference between 71 and 31.
The statistical uncertainty of the yield as the 68% confidence interval was determined from the interval with χ2 − χ2

min ≤ 1 according 
to the standard procedure. The statistical uncertainty for the yield of the 3−

1 state in the coincidence spectrum was ±42, and thus 
the statistical peak significance was 91%. Finally, the singles and coincidence yields of the 3−

1 state were obtained as listed with their 
uncertainties in Table 1. The uncertainties were determined by the quadratic sums of the statistical and systematic uncertainties.

Similarly, the yields of the 0+
2 and 1+

1 states were also obtained by analyzing the excitation-energy spectra measured with 73% and 3% 
of the sensitive area of Gion optimized for Ex < 8.5 MeV and Ex ≥ 10.7 MeV, respectively.
4
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Table 1
Summary of the experimental information for the 0+

2 , 3−
1 , and 1+

1 states in 12C.

0+
2 3−

1 1+
1

Yield of singles events (2.06 ± 0.03) × 107 (2.47 ± 0.01) × 108 (3.05+0.72
−0.76) × 106

Yield of coincidence events 957 ± 79 71+62
−58 (1.43 ± 0.01) × 104

Geometrical and event-selection efficiency εg × εs (0.317 × 0.344) ± 0.019 (0.703 × 0.306) ± 0.036 (0.988 × 0.182) ± 0.023
�rad/�tot (present) (4.3 ± 0.8) × 10−4 1.3+1.2

−1.1 × 10−6 (2.6 ± 0.7) × 10−2

�rad/�tot (previous) [25] (4.16 ± 0.11) × 10−4 < 8.2 × 10−7(95%C.L.) (2.21 ± 0.07) × 10−2

�tot (eV) [25] 9.3 ± 0.9 (46 ± 3) × 103 0.40 ± 0.05

The radiative-decay probability is given by

�rad

�tot
= (Yield of coincidence events)

(Yield of singles events)

1

εgεs
.

εg is the geometrical efficiency for the coincidence measurement, and εs is the event-selection efficiency in the accidental-event rejection 
with the angular and energy correlations. These efficiencies were estimated by the Monte Carlo calculation as listed in Table 1. Their 
uncertainties mainly stem from the non-uniformity of the target thickness. Finally, �rad/�tot for the 0+

2 , 3−
1 , and 1+

1 states were obtained 
as listed in Table 1. The present �rad/�tot values for the 0+

2 and 1+
1 states are consistent with the literature values [25], and this warrants 

the reliability of the present analysis. Very recently, a new result for the radiative-decay probability for the 0+
2 state was reported to 

be (6.2 ± 0.6) × 10−4 [37], which was much larger than the literature value [25]. Most of the previous results [38–44] except one from 
Ref. [45] are consistent with Ref. [25] within their uncertainties but not with the new result from Ref. [37]. The present result also supports 
Ref. [25], therefore we adopted the radiative-decay probability of the 0+

2 state from Ref. [25] in the present analysis.
The radiative-decay probability of the 3−

1 state was determined to be �rad/�tot = 1.3+1.2
−1.1 ×10−6. Unfortunately, the present data cannot 

reject the null result for the radiative decay of the 3−
1 state at the fully high statistical confidence level, but its most probable value is 

larger than the previous upper limit [29].
A possible reason for the overestimation is a wrong particle identification by the focal plane detector of GR. Because the magnetic 

rigidities of the decay α particles emitted from the 3−
1 state are almost same as that of 12C, a sizable fraction of the decay α particles 

reached the focal plane as well as 12C. If such α particles had been misidentified as 12C, this event would have been recognized as a 
radiative-decay event. However, this scenario is not plausible. We have estimated the probability of misidentifying the α particle as 12C is 
lower than 10−7 from the data analysis and the Monte Carlo calculation.

In conventional ACMs, predicted wave functions are purely isoscalar because all of nuclear states are described on the basis of relative 
motions of isoscalar α particles. Therefore, the E1 decay from the 3−

1 state to the 2+
1 state is extremely suppressed. The D3h symmetry, 

which was proposed to be well conserved in 12C [47], also prohibits the E1 transition between the 3−
1 and 2+

1 states. Under the D3h

symmetry, the 3−
1 state has a K = 3 quantum number while the 2+

1 state is described as a member of the ground-state K = 0 rotational 
band. The �K = 2 transition is strictly forbidden in the E1 transition. Therefore, the large �rad/�tot value, although its uncertainty is quite 
large, suggests that the D3h symmetry breaking should be considered as well as the isospin symmetry breaking.

We calculated the 3α reaction rates with the formula given in Ref. [16]. The mathematical formula and resonance parameters are 
given in the supplementary material. The resonance parameters used in the calculation were taken from Ref. [25] except �rad/�tot for 
the 3−

1 and 2+
2 states. The direct-decay probability of the 2+

2 state to the ground state was reported to be 7.5(1.7) × 10−8 in Ref. [23], 
but the sequential-decay probability via the 2+

1 state is still unknown. Therefore, we estimated the sequential-decay probability with the 
3α resonating-group method (RGM) [18]. The RGM calculation gives the larger E2-decay widths of �RGM(E2; 2+

2 → g.s.) = 2.0 × 102 meV 
and �RGM(E2; 2+

1 → g.s.) = 64 meV than their experimental values of �exp(E2; 2+
2 → g.s.) = 60 ± 10 meV and �exp(E2; 2+

1 → g.s.) =
10.8 ± 0.06 meV. In the present analysis, we renormalized the theoretical sequential E2-decay width of �RGM(E2; 2+

2 → 2+
1 ) = 24 meV by 

the experiment-to-RGM ratio for the direct decay �exp(E2; 2+
2 → g.s.)/ �RGM(E2; 2+

2 → g.s.), and adopted �(E2; 2+
2 → 2+

1 ) = 7.2 meV as 
the most probable value. We assumed its error distribution to be uniform between −7.2 meV and +28.2 meV, i.e. the uniform probability 
distribution of �(E2; 2+

2 → 2+
1 ) between 0 and 36 meV to estimate the uncertainty of the 3α reaction rate.

Fig. 3 presents the calculated 3α reaction rates r3α divided by the 3α rate in NACRE r3α(NACRE) . The error bands associated with the 
calculated 3α rates present their confidence interval at 68%, and the light gray band shows the uncertainty in NACRE. The 3α rate in 
NACRE was quite uncertain in the high temperature region at T9 > 2 due to the poor experimental information on the 3−

1 and 2+
2 states. 

According to the suggestion in Ref. [21], when only the 0+
2 state and the direct radiative decay of the 3−

1 state are taken into account, the 
3α rate presented by the red dotted line becomes much smaller than that in NACRE at high T9 and close to the old 3α rate by Caughlan 
and Fowler [46] shown by the black dashed-dotted line. This is reasonable because the both calculations take into account the 0+

2 and 3−
1

states but ignore the 2+
2 state. The different behavior at T9 > 6 is due to the difference in the assumed radiative-decay width of the 3−

1
state. By including the 2+

2 state as reported in Refs. [22,23], the 3α rate restores but it is still smaller than NACRE as shown by the blue 
dashed line because �rad/�tot for the 2+

2 state is much smaller than the assumption in NACRE. In the present work, we have suggested 
that �rad/�tot for the 3−

1 state is significantly larger than the assumption in NACRE for the first time. The 3α rate obtained by taking into 
account all the contributions from the 0+

2 , 3−
1 , and 2+

2 states further restores as plotted by the black thick solid line. The reduction of the 
3α rate due to the 2+

2 state is compensated by the enhancement due to the 3−
1 state. After all, the new rate is consistent with NACRE 

within a large uncertainty which was inevitable before, but its uncertainty is now reduced at high temperatures. The approximate formula 
of the new 3α rates at T9 = 0.01–10 is given in Appendix and the numerical values can be found in the supplementary material.

In summary, we measured the 1H(12C,12Cp) reaction for estimating the contribution of the 3−
1 state in 12C to the 3α reaction rate in 

high-temperature environments. We obtained the radiative-decay probability of the 3−
1 state to be �rad/�tot = 1.3+1.2

−1.1 × 10−6 although 
systematic and statistical uncertainties were considerably large. Unfortunately, we cannot rule out a radiative-decay probability close to 
5
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Fig. 3. Various 3α reaction rates with their uncertainties divided by that from NACRE [16] at T9 = 0.5–10. The black dashed-dotted line shows the 3α rate taken from 
Ref. [46]. The red dotted line shows the 3α rate when the 0+

2 state and the direct decay of the 3−
1 state are taken into account as suggested in Ref. [21]. The blue dashed 

line shows the same calculation with the dotted line but the contribution from the 2+
2 state is also considered as suggested in Ref. [23]. The black thick solid line presents 

the new calculation including all the contributions from the 0+
2 , 3−

1 , and 2+
2 states.

zero at the fully high confidence level, but the present result suggests that the 3−
1 state noticeably enhances the 3α reaction rate. Although 

it had been considered that the 3α reaction rate at T9 > 2 is significantly smaller than the estimation in NACRE, the new rate comes back 
to that in NACRE within its uncertainty.
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Appendix A

The analytical expression of the revised triple alpha reaction rate N2
A〈σ v〉ααα at T9 = 0.01–10 in the unit of cm6 mol−2 s−1 is approx-

imately given in Eq. (1).

N2
A〈σ v〉ααα = N A〈σ v〉αα

gs

{
3.055 × 10−10T −2/3

9 exp
[
−23.135T −1/3

9 − (T9/0.4)2
]
(1 + 187.12T9 + 4.294 × 103T 2

9 )

+4.909 × 10−14T −3/2
9 exp(−3.35/T9) + 9.551 × 10−12T −3/2

9 exp(−26.84/T9)
}

, (1)

N A〈σ v〉αα
gs = 2.43 × 109T −2/3

9 exp
[
−13.49T −1/3

9 − (T9/0.15)2
]
(1 + 74.5T9) + 6.09 × 105T −3/2

9 exp(−1.054/T9). (2)

Eq. (2) for N A〈σ v〉αα
gs taken from Ref. [16] has no physical meaning but it is convenient for the definition of Eq. (1).

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .physletb .2021.136283.
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