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Abstract: We build a model of the origin of physical constants, including masses and coupling

constants. We consider the quantum correction of masses and coupling constants. Some exactly

solved leading quantum corrections are given. In the model, the physical constant originates from

a coupling between the matter field and a background field. We show that if such a background

field as it should be in the real physical world is a quantum field, then the physical constant will

have a space- and time-dependent quantum correction and will no longer be a constant. We build a

scalar field model and a mechanics model. In these two models, we discuss the quantum correction

of masses and coupling constants in the field framework and in the mechanics framework.

Keywords: origin of physical constant; mass; coupling constant; correction

1. Introduction

We consider the effect of vacuum fluctuations on physical constants. For this purpose,
we need a mechanism of the origin of physical constants. There is no generally accepted
physical theory about the origin of physical constants. In this paper, we first suggest a
model of the origin of physical constants. In the model, the physical constant originates
from a coupling between the matter field and a background field. In the model, the physical
constant is originated by a mechanism similar to the Higgs mechanism in which the mass
of a field comes from a coupling with a scalar field. The physical constants considered in
this paper are the mass and the coupling constant.

A real physical field must be a quantum field rather than a classical field. We show
that if the background scalar field is a quantum field, there exists a quantum correction on
the mass and the coupling constant. The quantum correction is not a constant. As a result,
the quantum corrected mass and coupling constant are no longer constants. That is, if the
background scalar field is a classical field, the mass and the coupling constant are constants,
while if the background field is a quantum field, the mass and the coupling constant may
depend on time and spatial coordinates at the quantum level.

In addition to the field-theory model, we build a toy mechanics model. In the me-
chanics model, the mass and the coupling constant originate from a coupling between the
mechanics system and a background mechanics system. Similarly, when the background
mechanics system is a quantum mechanics system, the mass and coupling constant have
a quantum correction which varies with time and space. This mechanics model helps to
explain our point at an elementary level.

The focus of this paper is to explore the possibility of a physical constant being
modified at the quantum level. To illustrate the main concept clearly, we construct the
toy models as simply as possible, without considering various real physical mechanisms.
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Along this line of thought, the scheme can be applied to various models and is not limited
to masses and coupling constants.

In the model, the matter system is taken as a classical physical system and the back-
ground system is taken as a quantum one. However, this model can be directly transformed
into the case that both the matter system and the background system are quantum systems,
so long as the matter system is a quantum system.

In this paper, we take masses and coupling constants as examples to illustrate how
to consider the quantum correction of physical constants. The time-dependent physical
constant has been discussed for a long time [1,2]. Jordan considered the variation of fine
structure [3–6]. There are theoretical and experimental studies regarding the gravitational
constant. Ref. [7] utilized data from the Wilkinson Microwave Anisotropy Probe (WMAP)
to calculate the variation of the gravitational constant G and the parameters in the Brans–
Dicke theory and analyze cosmological quantities. Ref. [8] calculated the time-varying
gravitational constant G in the context of superstring theory, obtaining a value for δG/G
and improving the method for measuring δG/G. Refs. [9,10] provided upper limits on the
variation of the gravitational constant G, δG/G, for pulsating white dwarfs and indepen-
dent constraints on the rate of change. Ref. [11] established boundaries on the evolution of
the gravitational constant G in Cosmological Type Ia Supernovae. Ref. [12] proposed a new
method to investigate whether the speed of light and fine structure constant vary over time
using Strong Gravitational Lensing and Type Ia Supernovae observations, and the result
suggested that no strong indication of varying speed of light was found. Ref. [13] provided
experimental evidence of the variation of the gravitational constant with space. Ref. [14]
demonstrated through experimental data the existence of gravitational dipole radiation,
which can be used to test the variation of the gravitational constant. Ref. [15] presented
changes in the gravitational constant based on lunar laser ranging data and provided

numerical values for Ġ
G and G̈

G . Ref. [16] considered an (n + 1)-dimensional EGB model and
obtained solutions with an exponential dependence of scale factors for the “synchronous-
like” variable τ, which describes an exponential expansion of three-dimensional factor
space. The obtained solution satisfied the observational constraints on the temporal vari-
ation of the effective gravitational constant G, and the author also provided a detailed
analysis of the model’s parameter selection. Refs. [6,17–19] discussed basic constants that
vary with time in running vacuum models of cosmic evolution. These basic constants
include the ratio of the proton mass to the electron mass, the strong coupling constant, the
fine structure constant, and gravitational constant. Ref. [20] improved the bounds on the
variation of cosmological expansion rates using primordial element abundances, updated
nuclear and weak reaction rates, and observations of the cosmic microwave background.

The author provided and analyzed GBBN
G0

and Ġ
G0

. Ref. [21] improved the Einstein–Hilbert
action by using a renormalization group approach and rewrote gravitational constant and
the cosmological constant as scalar functions on spacetime. The article also found that
a power law indicating a running of Newton’s constant, with a small exponent on the
order of 10−6, could explain non-Keplerian behavior without requiring the postulation of
dark matter in the galactic halo. Ref. [22] considered loop corrections to several physical
processes and indicated that the quantum corrections exhibit significant variations, both in
magnitude and direction, and do not possess the necessary characteristics of a running cou-
pling constant. In cosmology, there are studies on nonconstant gravitational constant [23].
The method suggested in the paper also applies to the gravitational constant [24]. Some
authors discussed the measurement and analysis of the fine structure constant α. The
quantum correction, generally, may depend on the time and space. Ref. [25] examined the
variation of the fine structure constant. The author suggested constructing a variability
framework based on general assumptions to discuss the question of whether the fine struc-
ture constant changes. In the cosmological context, the framework predicts α̇/α compatible
with astronomical constraints, indicating the possibility of variation in the fine structure
constant. However, the author noted that the framework’s prediction of the spatial gradient
of α conflicts fatally with the results of the Eotvos–Dicke–Braginsky experiments. Therefore,
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from the perspective of the equivalence principle, the possibility of time variation in the
fine structure constant was ruled out. Ref. [26] considered the time-dependent variation of
the strong coupling constant. The author proposed to generalize the time-dependent fine
structure constant αem in the Bekenstein model to the strong coupling constant in QCD. It
iwas found that the variation of the strong coupling constant in QCD is opposite to that
in electromagnetism. Vacuum was identified as the main cause for the variation of the
strong coupling constant when compared with the matter. Ref. [27] reviewed progress
achieved over the past decade in testing the possibility of time variation of the fine structure
constant. The article analyzed the stability of experimental measurements of α and the
numerical values of α̇

α . Ref. [28] proposed a new method for measuring changes in the
fine structure constant by comparing atomic clocks based on the hyperfine transition in
alkali atoms with different atomic numbers. Refs. [29–31] also used different atomic clock
methods to measure changes in α. Ref. [32] demonstrated that quasar spectra can be used
to study the possible time or spatial variation of the fine structure constant using a method
offering an order of magnitude sensitivity gain. Based on observations from the Keck
telescope, Ref. [33] indicated that the value of α is smaller at a high redshift, providing
evidence for the spatial variation of the fine structure constant. Ref. [34] presented a
spectroscopic method for pulsed beams of cold molecules and used this method to measure
the frequencies of microwave transitions in CH to search for changes in fundamental
physical constants. The article also provided limits on the variations of the fine structure

constant △α
α and the electron-to-proton mass ratio

△µ
µ . There are studies regarding the

possible time and space variation of the cosmological constant. Ref. [35] constructed a
semiclassical Friedmann–Lemaîre–Robertson–Walker (FLRW) model for the variation of
cosmological constants and showed that the cosmological constant becomes variable at
arbitrarily low energies due to the remnant quantum effects of the heaviest particles. This
model can be validated using Type Ia Supernova observations. It explains that its results
coincide with the amplification of ΛΩ obtained from SNAP observations when considering
flat FLRW conditions at redshift z = 1 − 1.5. Ref. [36] indicated that there is insufficient
evidence to show whether or not the cosmological constant is variable or constant and
suggested that this problem can only be solved by gaining a deeper understanding of the
vacuum contributions of massive quantum fields on a curved spacetime background. The
article provided theoretical calculations of cosmological constants or vacuum energies and
highlighted that they can vary in QFT. Ref. [37] demonstrated that the presence of quantum
gravity leads to an additional contribution to the running charge that does not exist when
the cosmological constant is zero.

In Section 2, we consider the quantum correction of the mass and the coupling constant
of scalar fields. In Section 3, we consider the quantum correction of the mass and the
coupling constant in mechanics. Section 4 is devoted to discussions and outlook.

2. Field-Theory Model: Quantum Correction of Mass and Coupling Constant

In this paper, we build a field-theory model in which the mass and the self-interacting
coupling constant originate from a coupling between the matter field and a background
scalar field. If the background scalar field is a classical field, the mass and the coupling
constant are constants which are the same as that in conventional classical field theory. If the
background scalar field, however, as it should be in the real physical world, is a quantum
field, the mass and the coupling constant will have a quantum correction. The quantum
correction of the physical constant is generally a function of time and spatial coordinate,
so the mass and the coupling constant are functions of time and spatial coordinate at the
quantum level.

In this paper, we take a scalar field as the matter field as an example.
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2.1. Quantum Correction of Mass

2.1.1. Model of Origin of Mass

The free massive matter scalar field φ is described by the Lagrangian

Lmatter =
1

2

(

∂µφ∂µφ − m2φ2
)

, (1)

where m is the mass of the field φ. In the model, we assume that the mass m originates from
a coupling of the matter scalar field φ to a background scalar field Φ . The background
scalar field Φ is described by

Lbackground =
1

2

(

∂µΦ∂µΦ − M2Φ2
)

, (2)

where M is a parameter playing the mass of the background scalar field Φ. We couple φ
and Φ in the following form:

L =
1

2

(

∂µφ∂µφ − m2(Φ)φ2
)

+
1

2

(

∂µΦ∂µΦ − M2Φ2
)

. (3)

The mass term m2(Φ)φ2 now describes the coupling between φ and Φ. From the view
of the background field Φ, the effective potential is

Veff(Φ) =
1

2
φ2m2(Φ) +

1

2
M2Φ2. (4)

The mass of the matter field, m(Φ), depends on the solution of the background field Φ.
In the classical field theory, the mass is a constant, so m(Φ) here should be a constant. This
requires that the background field Φ is in a time-independent and coordinate-independent
classical ground state, i.e., Φ = Φ0, provided reasonably Veff(Φ) is lower bounded. In
the classical picture, the ground state Φ0 is the position of the minimum value of the
potential Veff(Φ). It should be emphasized that in the classical picture it is the position of
the minimum value of the potential Veff(Φ), rather than the form of the potential Veff(Φ),
that determines the mass of the matter field φ; namely, the mass is m(Φ0). Furthermore,
the mass of the field φ being a constant also requires that the mass is independent of the
value of the field φ. When φ is zero, i.e., φ = 0, Veff = 0 + 1

2 M2Φ2. At this point, the

minimum value point of Veff is also the minimum value point of 1
2 M2Φ2. Since the mass

m(Φ0) is a constant, the mass should be determined by the minimum value point of 1
2 M2Φ2

regardless of the value of φ. Therefore, the minimum value point of Veff must be the same
as the minimum value point of 1

2 M2Φ2. The position of the minimum value of 1
2 M2Φ2

is Φ = Φ0 = 0, which determines that the extremum point of Veff is at Φ = 0. At this
point, the function m2(Φ) in the term 1

2 φ2m2(Φ) can be chosen arbitrarily as long as the
extremum point of Veff occurs at Φ = 0. Therefore, the minimum point of Φ should be at
the same position as 1

2 M2Φ2 and Veff.

2.1.2. Quantum Correction of Mass

A field in the real physical world, as it should be, is a quantum field. Here, we consider
the case that only the background scalar field Φ is a quantum field.

The mass of the matter field φ, m(Φ), depends on the background field Φ, so the
quantum correction to the background field Φ leads to a quantum correction to the mass
m(Φ). The quantum correction of Φ is no longer a constant, so the mass m(Φ) is no longer
a constant and may depend on the time and the spatial coordinate.

To calculate the quantum correction to the mass m(Φ), we first calculate the quantum
correction to the background field Φ by the path integral approach.
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The classical field Φcl is given by the classical action functional:

δS[Φcl]

δΦ
= 0. (5)

The action S[Φ] =
∫

d4xL(Φ). The quantum field Φ is given by

δΓ[Φ]

δΦ
= 0. (6)

The effective action

Γ[Φ] = W[J]−
∫

d4xΦ(x)J(x) (7)

is the Legendre transform of the generating functional W[J] defined by Z[J] = e
i
h̄ W[J] with

Z[J] =
∫

DΦ exp

(

i

h̄

(

S[Φ] +
∫

d4xJΦ

))

. (8)

The quantum fluctuation, or the quantum correction of the field, is

η = Φ − Φcl. (9)

Expanding the action S[Φ] around the classical field Φcl to the second order and
considering the classical field Equation (5) offer

S[Φ] = S[Φcl] +
1

2

∫

d4x1d4x2
δ2S[Φcl]

δΦ(x1)δΦ(x2)
η(x1)η(x2). (10)

Using the Gaussian integral formula
∫

DΦ exp
(

−
[

1
2 (Φ, AΦ) + (b, Φ) + c

])

= (det A)−1/2 exp
[

1
2

(

b, A−1b
)

− c
]

, we have

W[J] = −ih̄ ln Z[J]

= S[Φcl] +
∫

d4xJ(x)Φcl(x) +
i

2
h̄ tr ln

(

− i

h̄

δ2S[Φcl]

δΦ(x1)δΦ(x2)

)

− 1

2

∫

d4x1d4x2 J(x1)

(

δ2S[Φcl]

δΦ(x1)δΦ(x2)

)−1

J(x2). (11)

Solving J by

Φ(x1) =
δW[J]

δJ(x1)
= Φcl(x1)−

∫

d4x2

(

δ2S[Φcl]

δΦ(x1)δΦ(x2)

)−1

J(x2) (12)

gives

J(x2) = −
∫

d4x1
δ2S[Φcl]

δΦ(x1)δΦ(x2)
η(x1). (13)

Effective action (7) becomes

Γ[Φ] = S[Φcl] +
i

2
h̄ tr ln

(

− i

h̄

δ2S[Φcl]

δΦ(x1)δΦ(x2)

)

+
∫

d4x1d4x2
1

2

δ2S[Φcl]

δΦ(x1)δΦ(x2)
η(x1)η(x2). (14)
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The equation of the quantum fluctuation η, by Equation (6), reads

∫

d4x1
δ2S[Φcl]

δΦ(x1)δΦ(x2)
η(x1) = 0. (15)

The above result can also be achieved by directly substituting Φ = Φcl + η into the
field equation obtained by Equation (5) [38].

The classical field equation of the background field by the Lagrangian (3) reads

∂2Φcl +
[

M2Φcl + φ2m(Φcl)m
′(Φcl)

]

= 0, (16)

where m′(Φ) denotes the derivative dm(Φ)/dΦ. The equation of the quantum fluctuation
up to the first order, by Equation (15), reads

∂2η +
[

M2 + φ2m(Φcl)m
′′(Φcl)

]

η = 0. (17)

It can be seen that the quantum correction depends on three factors: the classical
solution of the background field Φcl, the function form of m(Φ), and the solution of the
matter field φ. The quantum correction is different when the solution of the matter field φ is
different. In the classical picture, the mass of the matter field φ is independent of the matter
field φ but depends only on the ground state of the background field, while the classical
ground state Φ = Φ0 is a constant depending only on the position of the minimum value
of Veff.

The quantum correction to the mass of the matter field φ is determined by the quantum
fluctuation η. We expand the mass of the matter field around Φ0 as

m(Φ) = m(Φ0 + η) = m(Φ0) +
1

2
m′′(Φ0)η

2 + · · · , (18)

where m′(Φ0) = 0 for Φ0 is the minimum value. The quantum fluctuation η can only be
determined up to a constant factor, for η and Cη are both the solutions of linear homoge-
neous Equation (17). One can measure the experimental value of the mass mexperiment(x0)
at the point x0 = (t0, x0). At the point x0, the quantum corrected mass by Equation (18) up
to the leading order is

m(x0) = m(Φ0) +
1

2
m′′(Φ0)η

2(x0). (19)

Then, we have
m(x0) = mexperiment(x0). (20)

The quantum fluctuation at x0, then, by Equations (19) and (20), reads

η(x0) =

√

mexperiment(x0)− m(Φ0)
1
2 m′′(Φ0)

. (21)

The undetermined constant can be solved from Equation (21).
The quantum correction is different for different φ, so we first solve φ from the field

equation given by the Lagrangian (3),

∂2φ + m2(Φ)φ = 0. (22)

Taking only the leading contribution into account, we simply take m(Φ) ≃ m(Φ0).
Equation (22) then becomes

∂2φ + m2(Φ0)φ = 0. (23)
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Field Equation (23) has the solution

φ = ∑
n=0

An cos(ωnt) cos

(

√

ω2
n − m2(Φ0)x

)

. (24)

As an example, we consider the case that the matter field is in the ground state. In the
ground state, ω0 = m(Φ0) and φ = A0 cos(m(Φ0)t), so Equation (17) reads

∂2η

∂t2
− ∂2η

∂x2
+
[

m(Φ0)m
′′(Φ0)A2

0 cos2(m(Φ0)t) + M2
]

η = 0. (25)

The quantum fluctuation, after separating variables η = T(t)R(x), is given by equa-
tions

d2T(t)

dt2
+
[

m(Φ0)m
′′(Φ0)A2

0 cos2(m(Φ0)t) + κ2
]

T(t) = 0, (26)

d2R(x)

dx2
+
(

−M2 + κ2
)

R(x) = 0, (27)

where κ is the variable separation constant.
The quantum correction, by solving Equations (26) and (27), are

T(t) = CT se
κ2

m2(Φ0)
+

A2
0m′′(Φ0)
2m(Φ0)

(

m(Φ0)t,−
A2

0m′′(Φ0)

4m(Φ0)

)

+ C
′
T ce

κ2

m2(Φ0)
+

A2
0m′′(Φ0)
2m(Φ0)

(

m(Φ0)t,−
A2

0m′′(Φ0)

4m(Φ0)

)

, (28)

R(x) = CR cos
(
√

κ2 − M2x
)

, (29)

where sev(z, q) is the odd Mathieu function and cev(z, q) is the even Mathieu function [39].
The quantum fluctuation η = T(t)R(x) should vanish when the mass is very large,

i.e., T(t)|m→∞ = 0, so we only need the odd Mathieu function:

η = C cos
(
√

κ2 − M2x
)

se
κ2

m2(Φ0)
+

A2
0m′′(Φ0)
2m(Φ0)

(

m(Φ0)t,−
A2

0m′′(Φ0)

4m(Φ0)

)

. (30)

The quantum corrected mass, when the matter field is in the ground state, by Equation (18),
reads

m = m(Φ0) +
1

2
m′′(Φ0)C

2 cos2
(
√

κ2 − M2x
)

se2
κ2

m2(Φ0)
+

A2
0m′′(Φ0)
2m(Φ0)

(

m(Φ0)t,−
A2

0m′′(Φ0)

4m(Φ0)

)

. (31)

The quantum correction to the mass depends both on the time t and the spatial
coordinate x. Once the quantum fluctuation is in the ground state, i.e., κ2 = M2, the
quantum correction depends only on t:

mφ = m +
1

2
C2m′′(Φ0) se2

M2

m2(Φ0)
+

A2
0m′′(Φ0)
2m(Φ0)

(

m(Φ0)t,−
A2

0m′′(Φ0)

4m(Φ0)

)

. (32)

The quantum corrected part is not a constant which, of course, is small compared to
the classical mass.
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By observation, the mass measured at (x0, t0) is mexperiment(x0, t0). Then, m(x0, t0) =
mexperiment(x0, t0), by Equation (31), determines the constant C:

C =

√

2[mexperiment(x0,t0)−m(Φ0)]
m′′(Φ0)

cos
(√

κ2 − M2x0

)

se2

M2

m2(Φ0)
+

A2
0m′′(Φ0)
2m(Φ0)

(

m(Φ0)t,− A2
0m′′(Φ0)
4m(Φ0)

) . (33)

For the case of κ2 = M2, the constant C becomes

C =

√

2[mexperiment(x0,t0)−m(Φ0)]
m′′(Φ0)

se
M2

m2(Φ0)
+

A2
0m′′(Φ0)
2m(Φ0)

(

m(Φ0)t0,− A2
0m′′(Φ0)
4m(Φ0)

) . (34)

We sketch a schematic diagram of the modified mass in Equation (32) in Figure 1. The
physical values are not drawn to scale in this figure for clarity.

0.8

1.0

m

t
Figure 1. Sketch of the corrected mass. The classical mass here is taken as m = 1.

2.2. Quantum Correction of Coupling Constant

2.2.1. Model of Origin of Coupling Constant

The same scheme applies also to the quantum correction of the coupling constant.
The matter scalar field φ with a self-interaction is described by

Lmatter =
1

2

(

∂µφ∂µφ − m2φ2
)

− λV(φ), (35)

where we extract the coupling constant λ out of the potential.
As above, we assume that the coupling constant originates from a coupling of the

matter scalar field φ to a background scalar field Φ. The background field Φ, described by
the Lagrangian (2), couples with the matter field φ in the following form:

L =
1

2

(

∂µφ∂µφ − m2φ2
)

− λ(Φ)V(φ) +
1

2

(

∂µΦ∂µΦ − M2Φ2
)

. (36)
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The coupling constant λ(Φ) serves as a potential of the background field Φ. For the
background Φ, there exists a potential

Veff(Φ) = V(φ)λ(Φ) +
1

2
M2Φ2. (37)

The classical solution of Φ should be a constant solution so that λ(Φ) is a constant, for
the classical coupling constant is a constant, so Φ = Φ0. The classical ground-state solution
Φ0 is the position of the minimum value of Veff(Φ). The classical coupling constant is
independent of φ, which requires that the coupling constant depends on and only on the
background field Φ. Meanwhile, we also require that the coupling constant should not
depend on φ. When φ = 0, we have Veff = 0 + 1

2 M2Φ2. At φ = 0, the minimum point of

Veff is also the minimum point of 1
2 M2Φ2. Since the coupling constant λ(Φ0) is a constant

in the classical case, it should be determined by the minimum point of 1
2 M2Φ2 regardless of

the value of φ. Therefore, we require that Veff and 1
2 M2Φ2 have the same minimum point.

The minimum point for 1
2 M2Φ2 is Φ = Φ0 = 0, which leads to the minimum point of Veff

also being Φ = 0. At this point, the coupling constant λ(Φ) in the first term V(Φ)λ(Φ)
can be arbitrarily chosen without affecting the conclusion that the minimum point of Veff

is at Φ = 0. Therefore, the minimum points of V(Φ)λ(Φ) should be the same as those of
1
2 M2Φ2 and Veff.

2.2.2. Quantum Correction of Coupling Constant

When the background scalar field Φ is a quantum field, there is a time- and/or space-
dependent quantum correction to the coupling constant.

The classical field equation of the background field, by Equation (36), reads

∂2Φcl + V(φ)λ′(Φcl) + M2Φcl = 0. (38)

The equation of the quantum fluctuation up to the first order, by Equation (15), reads

∂2η +
(

V(φ)λ′′(Φcl) + M2
)

η = 0. (39)

Similar to Section 2.1.2, the quantum correction up to the leading contribution is

λ(Φ) = λ(Φ0 + η) = λ(Φ0) +
1

2
λ′′(Φ0)η

2 + · · · . (40)

In the experiments, one can measure the value of the coupling constant λexperiment(x0)
at the point x0 = (t0, x0). At the point x0, by Equation (40), up to the leading order, we have

λ(x0) = λ(Φ0) +
1

2
λ′′(Φ0)η(x0)

2. (41)

Then, λexperiment(x0) = λ(x0). The quantum fluctuation at x0, then, by Equation (41),
reads

η(x0) =

√

2
[

λexperiment(x0)− λ(Φ0)
]

λ′′(Φ0)
. (42)

The undetermined constant in η can be solved from Equation (42).
The equation of the matter field φ by the Lagrangian (36) reads

∂µ∂µφ + m2φ + λ(Φ)V′(φ) = 0. (43)

To sketch the model, we consider a simple toy example with the potential

V(φ) =
1

2
αφ2 (44)
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with α > 0. Taking only the first-order contribution into account, we take Φ ≃ Φ0. Then,
Equation (43) becomes

∂2φ + m2φ + αλ(Φ0)φ = 0, (45)

which has the solution φ = ∑n=0 An cos(ωnt) cos
(

√

ω2
n − m2 − αλ(Φ0)x

)

. As a simple

example, we only consider a single mode solution of ω2
0 = m2 + αλ(Φ0):

φ = A1 cos

(

√

m2 + αλ(Φ0)t

)

. (46)

Substituting Equation (46) into (39) offers

∂2η

∂t2
− ∂2η

∂x2
+

[

1

2
αA2

1λ′′(Φ0) cos2

(

√

m2 + αλ(Φ0)t

)

+ M2

]

η = 0. (47)

By separating variables η = T(t)R(x), we arrive at

T(t) = C2 se 4κ2+A2
1

αλ′′(Φ0)
4m2+4αλ(Φ0)

(

√

m2 + αλ(Φ0)t,−
A2

1αλ′′(Φ0)

8[m2 + αλ(Φ0)]

)

+ C3 ce 4κ2+A2
1

αλ′′(Φ0)
4m2+4αλ(Φ0)

(

√

m2 + αλ(Φ0)t,−
A2

1αλ′′(Φ0)

8[m2 + αλ(Φ0)]

)

,

R(x) = C1 cos
(
√

κ2 − M2x
)

. (48)

The quantum fluctuation should vanish when the mass tends to infinity, so C3 = 0.
Then,

η = C cos
(
√

κ2 − M2x
)

se 4κ2+A2
1

αλ′′(Φ0)
4m2+4αλ(Φ0)

(

√

m2 + αλ(Φ0)t,−
A2

1αλ′′(Φ0)

8[m2 + αλ(Φ0)]

)

, (49)

where C = C1C2. The quantum corrected coupling constant is

λ = λ(Φ0) +
C2

2
λ′′(Φ0) cos2

(
√

κ2 − M2x
)

se2
4κ2+A2

1
αλ′′(Φ0)

4m2+4αλ(Φ0)

(

√

m2 + αλ(Φ0)t,−
A2

1αλ′′(Φ0)

8[m2 + αλ(Φ0)]

)

. (50)

Once the quantum fluctuation is in the ground state, κ2 = M2, the quantum correction
depends only on the time t:

λφ = λ +
C2

2
λ′′(Φ0) se2

4M2+A2
1

αλ′′(Φ0)
4m2+4αλ(Φ0)

(

√

m2 + αλ(Φ0)t,−
A2

1αλ′′(Φ0)

8[m2 + αλ(Φ0)]

)

. (51)

Here, λ = λ(Φ0) is the classical coupling constant.
By observation, the coupling constant measured at (x0, t0) is λexperiment(x0, t0). Then,

λ(x0, t0) = λexperiment(x0, t0), by Equation (31), determines C:

C =

√

2
[

λexperiment(x0, t0)− λ(Φ0)
]

λ′′(Φ0)

[

cos
(
√

κ2 − M2x0

)

× se 4κ2+A2
1

αλ′′(Φ0)
4m2+4αλ(Φ0)

(

√

m2 + αλ(Φ0)t0,− A2
1αλ′′(Φ0)

8[m2 + αλ(Φ0)]

)





−1

. (52)

3. Mechanics Model: Quantum Correction of Mass and Coupling Constant

To illustrate the model intuitively at an elementary level, moreover, we build a me-
chanics model. In the model, the physical constant, e.g., the mass and the coupling constant,
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originates from a coupling between the matter and a background background matter. As
in the above, in the classical picture, the mass and the coupling constant of a mechanics
system are constants. However, in the quantum picture, since the background matter obeys
quantum mechanics, the mass and the coupling constant have a quantum correction which
varies with time and/or space.

3.1. Quantum Correction of Mass

In classical mechanics, a system is described by the Lagrangian

Lx(x, ẋ) =
1

2
mẋ2 − U(x). (53)

In the model, we assume that the mass originates from a coupling between the matter
mechanics system and a background mechanics system. We introduce a background
mechanics system

Ly(y, ẏ) =
1

2
Mẏ2 − V(y). (54)

Here and after, we call the matter system the x-system and the background system the
y-system for convenience.

We couple the x-system and the y-system in the form

L(x, ẋ; y, ẏ) =
1

2
m(y)ẋ2 − U(x) +

1

2
Mẏ2 − V(y), (55)

where m(y) is the mass of the x-system and a potential of the y-system. The kinetic energy
term 1

2 m(y)ẋ2 describes the coupling between x- and y-systems.
In the classical mechanics, the Newtonian equations by the Lagrangian (55) are

d

dt
(m(y)ẋ) = −dU(x)

dx
, (56)

Mÿ = −dV(y)

dy
+

1

2
ẋ2 dm(y)

dy
. (57)

The potential of the y-system is

Veff = V(y)− 1

2
ẋ2m(y). (58)

As discussed above, the y-system should stay in a time-independent stable state.
A reasonable choice is y = y0, a classical motionless state. In classical mechanics, the
motionless solution y = y0 is the position of the minimum value of Veff. The mass of the
classical x-system should be independent of the solution, so we require that the mass m(y0)
should be independent of x. When ẋ = 0, Veff = V(y), so the minimum point of Veff is the
same as the minimum point of V(y). Since the classical mass m(y0) is a constant, it should
be determined by the minimum point of V(y), regardless of the value of x. Thus, Veff and
V(y) should have the same minimum points. At this point, the mass m(y0) in 1

2 ẋ2m(y)
can be arbitrarily chosen as long as it does not affect the minimum point of V(y), so the
minimum point of 1

2 ẋ2m(y) should be the same as the minimum points of Veff and V(y),

i.e.,
dVeff(y0)

dy = dm(y0)
dy = dV(y0)

dy = 0.

In this model, the mass in the x-system is determined by the position of the minimum
value of the potential in the y-system:

m = m(y0), (59)

with y0 determined by
dV(y0)

dy
= 0. (60)
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If the background y-system obeys classical mechanics, the mass depends only on the
position of the minimum value of the potential in the y-system, no matter what the function
form of the potential is. If the background y-system obeys quantum mechanics, there is a
quantum correction to the mass. The quantum correction is no longer a constant.

In classical mechanics, the background y-system is in the classical ground state so that
the mass is a constant. In quantum mechanics, the y-system is still in the ground state, but
the energy level is discrete. There exists an energy gap which ensures an nonzero mass.
The quantum corrected mass is no longer a constant, but may depend on time and space.

Following the method in quantum field theory used above, we write the quantum-
corrected solution of the y-system as

y = y0 + η, (61)

where y0 is the is the classical ground state. The mass can be expanded as

m(y) = m(y0) +
1

2
m′′(y0)η

2 + · · · , (62)

where m′(y0) = 0 for y0 is the minimum value of m(y).
Here, we use an alternative approach to derive the equation of η. Substituting

Equation (61) into Equation (57) and keeping only the first order in η, we arrive at

[

Mÿcl + V′(ycl)−
1

2
m′(ycl)ẋ2

]

+

[

Mη̈ + ηV′′(ycl)−
1

2
ηm′′(ycl)ẋ2

]

= 0. (63)

Taking Equation (57) into consideration, we arrive at

Mη̈ + V′′(ycl)η − 1

2
m′′(ycl)ẋ2η = 0. (64)

η and Cη are both the solutions of Equation (64). One can measure the experimental
value of the coupling constant λexperiment(x0) at the point x0 = (t0, x0). At the time t0, the
experimental value is mexperiment(t0) and the quantum corrected mass by Equation (40) up
to the leading order is

m(t0) = m(y0) +
1

2
m′′(y0)η(t0)

2. (65)

Then, we have mexperiment(t0) = m(t0). The quantum fluctuation at t0, then, by
Equation (41), reads

η(t0) =

√

2
[

mexperiment(t0)− m(y0)
]

m′′(y0)
. (66)

The undetermined constant in η can then be solved.
The solution of the classical y-system, ycl, is the ground-state solution: ycl = y0 with

y0 the position of the minimum value of the potential of the y-system.

The quantum fluctuations for different states of the x-system are different, for η, from
Equation (64), depends also on the solution of the x-system.

As the leading contribution, we only consider the classical solution of x-system. For
the classical x-system, we have E = 1

2 m(y0)ẋ2 + U(x), whichs gives

ẋ =

√

2

m(y0)
[E − U(x)]. (67)
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Substituting Equation (67) into Equation (64) offers

Mη̈ +

{

V′′(y0)−
m′′(y0)

m(y0)
[E − U(x)]

}

η = 0. (68)

To illustrate, we consider a simple toy model with the potential U(x) = 1
2 αx2. In

principle, the x-system is also quantum, but as the zero-order approximation we consider
the classical equation of motion instead:

m0 ẍ + αx = 0, (69)

where m0 = m(y0) is the classical mass. Equation (69) has a solution x = cos
√

α
m0

t, so

ẋ = −
√

α

m0
sin

(√

α

m0
t

)

. (70)

Substituting Equation (70) into Equation (64) offers

Mη̈ +

[

V′′(y0)−
1

2
α

m′′(y0)

m0
sin2

(√

α

m0
t

)]

η = 0. (71)

The solution is

η = C se
− αm′′(y0)−4m0V′′(y0)

4αM

(

−m′′(y0)

8M
,

√

α

m0
t

)

+ C′ ce
− αm′′(y0)−4m0V′′(y0)

4αM

(

−m′′(y0)

8M
,

√

α

m0
t

)

. (72)

The quantum effect should vanish when the mass M tends to infinity. When M → ∞,

η ∼ C se0

(

0,
√

αt√
m0

)

+ C′ ce0

(

0,
√

αt√
m0

)

. The ce0(0, z) term does not vanish, so C′ = 0. We

have

η = C se
− αm′′(y0)−4m0V′′(y0)

4αM

(

−m′′(y0)

8M
,

√

α

m0
t

)

. (73)

The quantum corrected mass by Equation (62) reads

m = m0 +
C2

2
m′′(y0) se2

− αm′′(y0)−4m0V′′(y0)
4αM

(

−m′′(y0)

8M
,

√

α

m0
t

)

. (74)

By observation, the coupling constant measured at t0 is mexperiment(t0), and m(t0) =
mexperiment(t0) determines the constant C:

C =

√

2[mexperiment(t0)−m(y0)]
m′′(y0)

se
− αm′′(y0)−4m0V′′(y0)

4αM

(

−m′′(y0)
8M ,

√

α
m0

t0

) . (75)

The quantum correction to the mass depends on the solutions of both the x-system
and the y-system.

3.2. Quantum Correction of Coupling Constant

Suppose the matter x-system, Lx = 1
2 mẋ2 − λU(x), couples with the background

y-system as

L =
1

2
mẋ2 − λ(y)U(x) +

1

2
Mẏ2 − V(y). (76)
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Here, λ(y) is the coupling constant in the x-system, but is a potential in the y-system.
The classical mechanics equations of motion, by the Lagrangian (76), read

mẍ = −λ(y)
dU(x)

dx
, (77)

Mÿ = −dV(y)

dy
− U(x)

dλ(y)

dy
, (78)

In the y-system, the potential is

Veff = V(y) + U(x)λ(y). (79)

Based on the same reasons above, λ(y) in U(x)λ(y) can be arbitrarily chosen as long
as it does not affect the minimum points of V(y), so the minimum points of U(x)λ(y)

should be the same as those of Veff and V(y), i.e.,
dVeff(y0)

dy = dλ(y0)
dy = dV(y0)

dy = 0.

The coupling constant in the x-system is determined by the position of the minimum
value of the potential of the y-system: λ = λ(y0) with y0 determined by Equation (60).
Expanding the coupling constant, we have

λ = λ(y0 + η) = λ(y0) +
1

2
λ′′(y0)η

2 + · · · , (80)

where λ′(y0) = 0.
The equation of the quantum fluctuation is obtained by substituting Equation (61) into

Equation (78) and keeping only the first-order contribution:

Mη̈ +
[

V′′(ycl) + U(x)λ′′(ycl)
]

η = 0. (81)

Here, η and Cη are both solutions.
At the time t0, the experimental measured value is λexperiment(t0) and the quantum

corrected coupling constant by Equation (80) up to the leading order is

λ(t0) = λ(y0) +
1

2
λ′′(y0)η(t0)

2. (82)

Then, we have
λexperiment(t0) = λ(t0). (83)

The quantum fluctuation at t0, then, by Equation (82), reads

η(t0) =

√

2
[

λexperiment(t0)− λ(y0)
]

λ′′(y0)
. (84)

The undetermined constant in η can be solved from Equation (84).
Also, we take the potential U(x) = 1

2 αx2 as an example. Using the classical equation
of motion

mẍ = −αλ0x (85)

as the zero-order approximation, we have a solution of the x-system:

x = A cos

(

√

αλ0

m
t

)

, (86)

where λ0 = λ(y0). In this toy model, we take A = 1. Then, the equation of the quantum
fluctuation (81) becomes

Mη̈ +

[

V′′(y0) +
1

2
α cos2

(

√

αλ0

m
t

)

λ′′(y0)

]

η = 0. (87)



Universe 2023, 9, 426 15 of 18

Similarly, in consideration of that the quantum fluctuation should vanish when M is
large, the solution of Equation (87) is

η = C se m[4V′′(y0)+αλ′′(y0)]
4Mαλ0

(

−mλ′′(y0)

8αλ0M
,

√

αλ0

m
t

)

. (88)

Then, the quantum corrected coupling constant by Equation (80) reads

λ = λ0 +
C2

2
λ′′(y0) se2

m[4V′′(y0)+αλ′′(y0)]
4Mαλ0

(

−mλ′′(y0)

8αλ0M
,

√

αλ0

m
t

)

. (89)

By observation, the coupling constant measured at t0 is λexperiment(t0). Then, λ(t0) =
λexperiment(t0), by Equation (31), determines the constant C:

C =

√

2[λexperiment(t0)−λ(y0)]
λ′′(y0)

se m[4V′′(y0)+αλ′′(y0)]
4Mαλ0

(

−mλ′′(y0)
8αλ0 M ,

√

αλ0
m t

) . (90)

4. Discussions and Outlook

We build a field model and a mechanics model of the origin of physical constants. In
the field model, the mass and the coupling constant originate from a coupling between the
matter field and a background scalar field, so that there is a time- and space-dependent
quantum correction. In the mechanics model, the mass and the coupling constant originate
from a coupling of the mechanics system with a background mechanics system. If this
background mechanics system is a quantum mechanics system, there is a time- and space-
dependent quantum correction on the mass and the coupling constant.

By background fields or mechanical systems we mean that we leave aside the obser-
vation of this field or mechanical system for the time being, just like the situation that the
Higgs field before the Higgs particle was discovered. If the model is correct, the back-
ground field, like the Higgs field, should also be observable, but we do not discuss that in
this paper.

In this paper, we only consider simple conceptual toy models. In more realistic and
therefore more complex cases, the choice of the background scalar field takes into account
more factors. But from such a simple model, we can already see that if the physical constant
originates from a coupling between the matter and a background matter, then the physical
constant is not a constant but varies in time and space. Therefore, whether the physical
constant varies in time and space can serve as an experimental criterion to judge whether
the model is correct.

It is worth noting that if the physical constant originates from the coupling with a
background quantum system and the background field is in a bound state, the physical
constant, e.g., the mass and the coupling constant, likely has a nonzero minimum. This
implies that in the model, even if the physical constant in the classical picture tends to zero,
there will exist a nonzero quantum correction. In other words, the physical constant will
have a minimum value, similar to the energy gap.

In the model, the matter fields are classical fields, though the background fields are
quantum fields. This is because treating the background field as a quantum field and
the matter field as a classical field can already offer the leading order contribution of the
quantum correction to physical constants. The same processing applies also to the case
where the matter field is a quantum field. Another question that warrants discussion is the
effect on physical constants when a transition occurs between two vacuums.

In our model, both the mass and the coupling constant originate from a coupling
between the matter field and a background field. If the background field that originates the
mass and the coupling constant is the same field, that is, the matter field obtains both of its
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mass and coupling constant in the same interaction with the background field, then there
is some relationship between the mass and the coupling constant. This can be used as a
candidate model for the problem of the mixing of the mass eigenstates and the interaction
eigenstates of different generations of particles in particle physics. Concretely, in the present
paper, to more clearly illustrate the mechanism of generating physical constants proposed
in this model, we chose an extremely simple scheme as an example: the matter field is a
scalar field, the mass and coupling constants are generated independently, and the effective
potential has only one minimum point. This model also applies to the mass and coupling
constants for spinor and vector fields. In further work, we will consider more complex and
realistic situations: the matter field is a spinor field, and mass and coupling constants are
generated through interactions with the same background field. In particular, the effective
potential has three distinct minima of different magnitudes, corresponding to three different
minimum points. The three different minimum points of the effective potential correspond
to three different masses. After considering quantum corrections, these three masses, i.e.,
the three minima of the effective potential, can transition between each other, while there
exists a certain relationship with the coupling between matter fields. This provides a model
for three generations of fermions, in which there is a certain relationship between the mass
eigenstates and the interaction eigenstates, manifesting as some mixing between the mass
and interaction eigenstates. Furthermore, the masses and coupling constants of the different
fields in theory, which are independent phenomenological parameters in the current theory,
have a common origin, providing a pathway to discussing the relationships between these
physical constants and reducing the number of independent phenomenological parameters.
In addition, the method presented in this paper is not only limited to obtaining mass
and coupling constants, but can, in principle, also be used to consider the origin of other
physical constants. If all physical constants arise from the interaction between matter fields
and one or several background fields, then the relationship between different physical
constants can be described.

In our model, masses originate from the interaction between a matter field and a
certain background field. In Mach’s principle, the mass is determined by all other matter in
the universe; that is, the mass is not an inherent property of the matter itself but is instead a
consequence of the collective interactions of matter in the universe. This similarity inspires
us to consider using our model to construct physical models that respect Mach’s principle.

The variation of the physical constant with time and space is a pure quantum effect. In
future work, we will discuss the effect of such quantum corrections on various properties of
matter fields, e.g., the one-loop effective action, the vacuum energy, and other spectral func-
tions [40–46]. We may calculate the one-loop effective action, the vacuum energy, and other
spectral functions of the quantum field under the quantum-corrected physical constant.

In order to illustrate our treatment at an elementary level, we build a mechanics model
to demonstrate the origin of physical constants. In this mechanics model, we suggest a
method to approach the quantum result from a classical mechanics model. This method
can be further developed on broader issues.

This paper considers toy models in which the matter field is a scalar field rather
than the matter fields measured in experiments, such as spinor and electromagnetic fields.
Therefore, it cannot be directly compared with current experimental results. However,
the approach of modifying the model for physical constants can also be applied to other
physical constants associated with other matter fields. In future work, we will consider the
modification of physical constants related to matter fields, such as spinor and vector fields.
The results obtained can then be compared with experimental results, in principle.
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