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Abstract
Advances in scattering amplitudes have exposed previously-hidden color-
kinematics and double-copy structures in theories ranging from gauge and grav-
ity theories to effective field theories such as chiral perturbation theory and the
Born–Infeld model. These novel structures both simplify higher-order calcula-
tions and pose tantalizing questions related to a unified framework underlying
relativistic quantum theories. This introductory mini-review article invites fur-
ther exploration of these topics. After a brief introduction to color-kinematics
duality and the double copy as they emerge at tree and loop-level in gauge
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and gravity theories, we present two distinct examples: (1) an introduction
to the web of double-copy-constructible theories, and (2) a discussion of the
application of the double copy to calculation relevant to gravitational-wave
physics.
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1. Introduction

Gauge and gravity theories share many formal similarities even though their physical properties
are distinct. Three of the known forces are described by gauge theories and give interactions
between elementary particles, while gravity is a much weaker force that shapes the macroscopic
evolution of the universe and spacetime itself. Nevertheless, the double-copy framework for
gravity, which we outline in this chapter, exploits a direct connection between these two classes
of theories, remarkably obtaining gravity directly from gauge theory. This framework provides
a fresh perspective on gravity and its connection to the other forces, as well as very effective
tools in the context of perturbative computations for gravity. A more comprehensive review
may be found in reference [1].
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Modern ideas make it much easier to calculate scattering amplitudes in perturbative quan-
tum gravity compared to using Feynman rules. When one considers complete gauge-invariant
scattering amplitudes instead of individual Feynman diagrams, which are not gauge invariant,
it becomes possible to identify nontrivial structures. The double copy and the associated dual-
ity between color and kinematics [2–4] are perhaps the most remarkable of these structures,
telling us that flat-space gravity scattering amplitudes can be obtained directly from gauge-
theory ones. Via the unitarity method [5–10] these same ideas can be carried to loop level. The
double copy is central to our ability to carry out calculations to very high loop orders in super-
gravity theories in Minkowski vacua and a property of all supergravities whose amplitudes
have been analyzed in detail. This leads to the natural question on whether all (super)gravity
theories are double copies of suitably-chosen matter-coupled gauge theories. The double copy
offers a possible unification of gauge and gravity theories in the sense of providing a frame-
work where calculations in both theories can be carried out using the same building blocks,
emphasizing that the two types of theories are part of the same over-arching structure. Beyond
gauge and gravity theories, double-copy relations also provide a new perspective on quantum
field theories, resulting in a web of theories, linked by the same underlying building blocks
(see section 3 of this review and e.g. references [11–23]).

The double copy has it origins in string theory. In the 1980s, Kawai, Lewellen, and Tye
(KLT) [2] realized that open- and closed-string tree-level amplitudes both share the same
fundamental gauge-invariant kinematic building blocks. They showed that closed-string tree
amplitudes could be written as a sum over products of pairs of open-string tree amplitudes.
In the low-energy limit, this translates directly to relations between gauge and gravity field-
theory amplitudes for any number of external particles [24]. The double copy is streamlined
and systematized by the introduction of the duality between color and kinematics [3]. The
duality effectively states that scattering amplitudes in gauge theories—and, more generally,
in theories with some continuous internal symmetry algebra—can be rearranged so that kine-
matic building blocks obey the same generic algebraic relations as their color factors. Via the
duality, not only can we constrain the kinematic dependence of each graph, but we can also
convert gauge-theory scattering amplitudes to gravity ones. This is done through the simple
replacement: color ⇒ kinematics. Such constructions have been summarized by the heuristic
statement ‘gravity ∼ (gauge theory) × (gauge theory)’.

At tree level, proofs exist [25–30] that the duality and double copy hold. At loop level,
less is known, but explicit constructions show that the duality between color and kinemat-
ics and the double copy hold for a wide class of examples [4, 31–51]. A natural question is
whether the double copy carries over to classical solutions beyond scattering amplitudes, espe-
cially for gravity. Scattering amplitudes in flat space are gauge invariant and independent of
coordinate choices, while generic classical solutions do depend on such choices, complicating
the problem of relating gravity solutions to gauge-theory ones. Nevertheless, there has been
substantial progress in unraveling both the underlying principles of color-kinematics duality
[22, 27, 52–62] and finding explicit examples of classical solutions related by the double-copy
property [63–90]. One of the most striking applications of the double copy beyond scattering
amplitudes relates to gravitational-wave physics, as highlighted by references [70, 82, 91–95].

This short review is organized as follows. In section 2 we give an overview of color-
kinematics duality and the associated double copy for the simplest case of pure gauge theory.
Then in section 3 we summarize the status of the web of theories linked by double copy rela-
tions, for both gravitational and non-gravitational theories. Then in section 4 we describe
the application of the double copy to the problem gravitational-wave physics. Some brief
comments on the outlook are given in section 5.
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2. Color/kinematics duality and the double copy

2.1. Basics of color/kinematics duality

The canonical example of a theory exhibiting color-kinematics duality is a gauge theory in
which all fields are in the adjoint representation of the gauge group, as considered in the original
paper [3]. In any such theory, the m-point tree-level amplitudes in D dimensions may be written
as

Atree
m = gm−2

∑
j

c jn j∏
i j

di j

, (1)

where the sum runs over the set of distinct m-point graphs with only three-point vertices. Con-
tributions from any diagram with quartic or higher-point vertices can be assigned to these
graphs simply by multiplying and dividing by appropriate missing propagators. The color fac-
tor c j is obtained by dressing each vertex in graph j with the relevant group-theory structure
constant, f̃ abc = i

√
2 f abc = Tr([Ta, Tb]Tc), where the Hermitian generators of the gauge group

Ta are normalized as Tr(TaTb) = δab. The kinematic numerators nj depend on momenta, polar-
izations, and spinors, as one would obtain using Feynman rules. The factors 1/di j are ordinary
scalar Feynman propagators, where i j runs over the propagators for diagram j. We denote the
gauge-theory coupling constant as g.

The nontrivial insight is that the kinematic numerators can be made to obey the same alge-
braic relations as the color factors [1, 3, 4, 34]. For theories with only fields in the adjoint
representation there are two generic properties. The first is that they obey Jacobi relations that
are inherited from the Lie algebra structure. For example, for the diagrams in figure 1 the color
factors obey

f a1a2b f ba3a4 + f a1a4bi f ba2a3 + f a1a3b f ba4a2 = 0. (2)

Such Lie-algebra relations are directly tied to the gauge invariance of amplitudes. For each
color Jacobi identity we then demand that there be a corresponding identity for the kinematic
numerators,

ci + c j + ck = 0 ⇒ ni + n j + nk = 0, (3)

where i, j, and k refer to three graphs which are identical except for one internal edge. A second
property is that kinematic factors should have the same antisymmetry under twists of diagrams
lines as color factors

ci = −ci ⇒ ni = −ni, (4)

where the graph i is graph i with twisted lines. For example, the color factor of diagram 1 of
figure 1 is antisymmetric under the swap of legs 1 and 2; we then require the corresponding
kinematic numerator exhibits the same antisymmetry.

The algebraic properties of color factors in gauge-theory amplitudes have important impli-
cations for kinematic numerators in equation (1). Consider a gauge-theory amplitude where
we shift the numerators,

ni = n′
i −Δi, (5)
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Figure 1. The three diagrams with cubic vertices describing a four-point tree amplitude.

subject to the constraint,∑
i

ciΔi

Di
= 0, (6)

the amplitude (1) is unchanged. Given that color factors are not independent but satisfy lin-
ear relations, nontrivial shifts of the kinematic numerators that leave the amplitudes invariant
can be found. The Δi can be thought of as generalized gauge functions that drop out of the
amplitude.

When we have numerators ni that obey the same algebraic relations as the color factors ci

in equations (3) and (4), we can then replace

ci → ni, (7)

in any given formula or amplitude. Given that the algebraic properties of the kinematic numer-
ators are the same as those of the color factors, the new amplitude that results will also satisfy
a generalized gauge invariance. Remarkably, this color-to-kinematics replacement gives us
gravity amplitudes,

Mtree
m = i

(κ
2

)m−2∑
j

ñ jn j

D j
, (8)

where κ2 = 32πG with G Newton’s constant, and where ñ j and n j are the kinematic numerator
factors of the two gauge-theory amplitudes. The two gauge theories can be different. Only one
of the two sets of numerators needs to manifestly satisfy the duality (3) for the double-copy
(8) to be gauge-invariant [4, 52].

Similar properties are conjectured to hold at loop level. Analogous to the tree level case (1),
an L-loop m-point gauge theory scattering amplitude can then be organized as,

A(L)
m = iL−1gm−2+2L

∑
i

∫ L∏
l=1

dD�l

(2π)D

1
Si

cini∏
i j

di j

, (9)

where the sum runs over the distinct L-loop m-point diagrams with only cubic vertices. Each
such diagram corresponds to a unique color factor ci

7. It also has an associated denominator
corresponding to the product of the denominators of the Feynman propagators ∼1/di j of each
internal line of the diagram. A difference with tree level is that one needs to include symmetry
factors Si that remove internal overcount of loop diagrams; they can be computed, as for regular
Feynman diagrams, by counting the number of discrete symmetries of each diagram with fixed

7 Our conventions for the overall phase in the representations of gauge-theory and gravity amplitudes follow the one
in reference [23] rather than the original Bern–Carrasco–Johansson (BCJ) papers [3, 4].
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external legs. As for tree level, the representation of the amplitude in terms of cubic diagrams is
trivial. The nontrivial part is to find representations of the amplitude where the duality holds so
that the integrand kinematic numerators ni satisfy the duality in equations (3) and (4). Whether
this can be done in general at loop level remains a conjecture, although there is considerable
evidence that such representations can be found [4, 31–51].

However, in certain cases, such as the five-loop four-point amplitude of N = 4 super-YM
theory, such representations have been elusive. In other cases, such as the all-plus two-loop five-
gluon amplitude in pure-YM theory, the BCJ form of the amplitude has a superficial power-
count much worse than that of standard Feynman diagrams [43] leading to more complicated
expressions.

Consider two m-point L-loop gauge theory amplitudes, A(L)
m and Ã(L)

m , and assume that they
are organized as in equation (9). Furthermore, label the two sets of numerators for each ampli-
tude ni and ñi, respectively. If at least one of the amplitudes, say Ã(L)

m , manifests the duality, we
may now replace the color factors of the first amplitude with the duality-satisfying numerators
ñi of the second one. This gives the loop-level double-copy formula for gravitational scattering
amplitudes [3, 4],

M(L)
m = A(L)

m

∣∣∣∣ ci→ñi
g→κ/2

= iL−1
(κ

2

)m−2+2L∑
i

∫ L∏
l=1

dD�l

(2π)D

1
Si

niñi

Di
, (10)

where the gravitational coupling κ/2 compensates for the change of engineering dimension
when replacing color factors with kinematic numerators. The most challenging aspect of
double-copy construction is finding a representation of the gauge-theory integrand that satisfies
the duality in equations (3) and (4). For the replacement (7) to be valid under the integration
symbol, it is important that the color factors not be explicitly evaluated by summing over the
contracted indices. Under explicit evaluation it can turn out that certain color factors vanish,
either by antisymmetry or by a special property of the group under consideration. We do not
wish to impose any specific color-factor properties on the numerator factors, only generic ones.

Standard methods such as Feynman rules, on-shell recursion [96], or generalized unitarity
[5, 6, 8, 9], generally do not naturally result in numerators obeying the duality. One straight-
forward (albeit somewhat tedious) way to find such numerators is to use an ansatz which is
constrained to manifest the duality and to match the correct amplitude [32, 34]. Constructive
ways to obtain numerators also exist [25–30, 97–99].

Aside from amplitudes, the duality has also been demonstrated to hold for currents with one
off-shell leg [37, 45, 49, 50, 100–103]. A possible way to make the duality valid for general off-
shell quantities would be to find a Lagrangian that generates Feynman rules whose diagrams
automatically respect the duality. Such Lagrangians are known to a few orders in perturbation
theory [52, 53, 104, 105]. An important problem is to find a useful closed form of such a
Lagrangian valid to all orders.

2.2. Gauge-theory amplitude relations

The duality also implies that there are nontrivial relations between partial amplitudes, which
are gauge invariant subdivisions of gauge theory scattering amplitudes. At tree level, with all
particles in the adjoint representation of SU(Nc), a full tree amplitude can be decomposed into
partial amplitudes,

Atree
n (1, 2, 3, . . . , n) = gn−2

∑
noncyclic

Tr[Ta1Ta2Ta3 . . . Tan]Atree
n (1, 2, 3, . . . , n), (11)
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where Atree
n is a tree-level color-ordered n-point partial amplitude. The sum is over all noncyclic

permutations of legs, which is equivalent to all permutations keeping leg 1 fixed. Helicities and
polarizations are suppressed. Reviews of such color decompositions are found in references
[106–109].

The generalized gauge invariance (6) has an interesting consequence: it leads to nontrivial
relations between gauge-theory partial amplitudes, known as BCJ amplitude relations,

s24Atree
4 (1, 2, 4, 3) = s14Atree

4 (1, 2, 3, 4),

s24Atree
5 (1, 2, 4, 3, 5) = (s14 + s45)Atree

5 (1, 2, 3, 4, 5)+ s14Atree
5 (1, 2, 3, 5, 4),

s24Atree
6 (1, 2, 4, 3, 5, 6) = (s14 + s46 + s45)Atree

6 (1, 2, 3, 4, 5, 6)

+ (s14 + s46)Atree
6 (1, 2, 3, 5, 4, 6)+ s14Atree

6 (1, 2, 3, 5, 6, 4), (12)

At tree level such relations exist for any number of external legs [3]. Progress at loop level
has been more difficult, except for special kinematic configurations such the forward limit
[23, 47, 110–113].

2.3. KLT formula and constructive tree-level adjoint color-kinematics duality

Double-copy relations have been known since 1985 in the form of Kawai–Lewellen–Tye rela-
tions [2]. We now review these relations from the vantage point of color-kinematics duality. At
three points, the full color-dressed amplitude for Yang–Mills in D dimensions is simply given
by

Atree
3 = g f̃ a1a2a3n123, (13)

where g is the gauge-theorycoupling constant, f̃ a1a2a3 is the suitably-normalized color structure
constant for the gauge theory, and n123 is the on-shell Feynman three-vertex,

n123 =
√

2((ε1 · ε2)(k2 · ε3) + (ε2 · ε3)(k3 · ε1) − (ε1 · ε3)(k3 · ε2)). (14)

The ki and ε j are the momenta and polarizations of the external legs. We can think of n123 as
the kinematic numerators described above, although here there is no propagator denominators.
It is straightforward to see that this is fully antisymmetric under exchange between any pair of
leg labels. As this satisfies the duality between color and kinematics it can be immediately be
used in the construction of a three-point gravitational amplitude,

−iMtree
3 =

(κ
2

)
n123 ñ123, (15)

where κ/2 is the gravitational coupling. Note that, in the case of three points, there is no gauge
freedom. The n123 can be interpreted as gauge-theory ordered (‘color stripped’) amplitudes
and we see the simplest example of the tree-level KLT relations between ordered gauge-theory
amplitudes and tree-level gravitational amplitudes,

−iMtree
3 (1, 2, 3) =

(κ
2

)
Atree

3 (1, 2, 3)Ãtree
3 (1, 2, 3). (16)

The situation is more interesting at four-points. Here we have the freedom to arrive at dif-
ferent representations for each of the three distinct labellings ns, nt, nu of the cubic graphs
labeled by the Mandelstam invariant describing each graph’s propagator, s = (k1 + k2)2,
t = (k2 + k3)2, and u = −s − t. The four-point amplitude is simply

7
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Atree
4 = g2

(nscs

s
+

ntct

t
+

nucu

u

)
, (17)

corresponding to m = 4 in equation (1).
We can decompose the amplitude (17) into color-ordered partial amplitudes using

equation (11), which is expressed in terms of the kinematic numerators,

Atree
st ≡ Atree

4 (1, 2, 3, 4) =
ns

s
− nt

t
, (18)

Atree
tu ≡ Atree

4 (1, 3, 2, 4) =
nt

t
− nu

u
, (19)

Atree
us ≡ Atree

4 (1, 2, 4, 3) =
nu

u
− ns

t
, (20)

where the signs follow from antisymmetry of color factors. At first sight, it might seem that,
with three kinematic numerators and three ordered amplitudes, we might be able to invert
this set of linear relations to express the numerators in terms of amplitudes. However, since
kinematic numerators satisfy ns + nt + nu = 0, the matrix is singular and cannot be inverted.
Reducing the linear relations, one finds that all of the ordered amplitudes are related by the BCJ
relations described earlier in equation (12), which we can write in an equivalent permutation-
invariant form as follows,

st Ast = ut Atu = su Aus. (21)

Using equation (18), we can solve nu in terms of Ast and nt,

nu =
(

s +
u
t

nt

)
Ast. (22)

Remarkably, nt cancels out when we substitute nu into equation (18) and solve in terms of
Ast. Indeed, plugging equation (22) and ns = −(nt + nu) into equation (18) simply produces
the four-point BCJ amplitude relations (12), and doing the same to equation (17), yields the
four-point amplitude in a basis of color factors,

Atree
4 = g2

(
csAst + cu

s
u

Ast

)
= g2(csAst + cuAtu). (23)

By applying the above equations expressing the numerators in terms of Ast and nt to the
double copy in equation (8) with m = 4, we can thereby obtain the gravitational amplitude in
terms of ordered gauge-theory amplitudes [3],

iMtree
4 =

(κ
2

)2
(

nsñs

s
+

ntñt

t
+

nuñu

u

)
=

(κ
2

)2
(stAst)

(
stÃst

)
(stu)−1

=
(κ

2

)2
sAstÃsu, (24)

where we used the BCJ amplitude relations (21) to obtain the final form. The relations (21)
allow us to find many equivalent ways of expressing the four-point KLT relations. A similar
exercise may be carried out at any multiplicity. Sample relations through six points are

8
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Figure 2. An m-point half-ladder tree diagram.

Mtree
5 = i

(κ
2

)3(
s12s45Atree

5 (1, 2, 3, 4, 5)Ãtree
5 (1, 3, 5, 4, 2)

+ s14s25Atree
5 (1, 4, 3, 2, 5)Ãtree

5 (1, 3, 5, 2, 4)
)

,

Mtree
6 = −i

(κ
2

)4(
s12s45Atree

6 (1, 2, 3, 4, 5, 6)
(

s35Ãtree
6 (2, 1, 5, 3, 4, 6)

+ (s34 + s35)Ãtree
6 (2, 1, 5, 4, 3, 6)

)
+ P(2, 3, 4)

)
, (25)

where P(i, j, k) represents a sum over all permutations of leg labels i, j, k. These are exactly
the low-energy limit of the KLT relations [2].

These relations have an m-point generalization in terms of a basis of (m − 3)!× (m − 3)!
ordered gauge amplitudes [24]:

Mtree
m = −i

(κ
2

)m−2 ∑
σ,ρ∈Sm−3(2,...,m−2)

Atree
m (1, σ, m − 1, m)S[σ|ρ]Ãtree

m (1, ρ, m, m − 1). (26)

The formula makes use of a matrix S[σ|ρ] known as the field-theory KLT or momentum ker-
nel. This is an (m − 3)!× (m − 3)! matrix of kinematic polynomials that acts on the vector of
(m − 3)! independent color-ordered amplitudes [2, 24, 25, 114, 115]:

S[σ|ρ] =
m−2∏
i=2

⎡⎣2p1 · pσi +

i∑
j=2

2pσi · pσ jθ(σ j, σi)ρ

⎤⎦, (27)

where θ(σ j, σi)ρ = 1 if σ j is before σi in the permutation ρ, and zero otherwise. Compact
recursive presentations of the KLT kernel have been found in references [25, 99].

There are a number of explicit constructions of the kinematic numerators that satisfy color-
kinematics duality for arbitrary number of external particles. The first of these was based
on matching to KLT relations [25, 116] and making use of the Del Duca–Dixon–Maltoni
color-basis [117]. The result are kinematic numerators for the half-ladder (or multi-peripheral)
diagrams, as depicted in figure 2, with the all remaining numerators determined by kinematic
Jacobi relations. A valid specification for the half-ladder is given by the above KLT kernel,

n(1, σ(2, . . . , m − 2), m − 1, m) = −i
∑

ρ∈Sm−3

S[σ|ρ]Ãtree
m (1, ρ, m, m − 1),

n(1, τ (2, . . . , m − 1), m)|τ (m−1)
=m−1 = 0. (28)

All remaining (2m − 5)!!− (m − 2)! numerators are determined by the Jacobi relations.
Because the numerators are expressed in terms of amplitudes which are nonlocal, this represen-
tation has the disadvantage of resulting in nonlocal numerators. It also does not give manifestly

9
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Figure 3. Graphical representation of the color-algebra relations in the adjoint (a) and
some arbitrary representation (b). The curly lines represent adjoint representation states
and the straight lines the arbitrary representation.

crossing-symmetric results, although the generated amplitudes do, of course, satisfy crossing.
One can find crossing-symmetric kinematic numerators either by solving the Jacobi relations
as functional constraints via an ansatz [118] or by appropriately symmetrizing equation (28), as
in reference [119]. There are by now a number of efficient means of generating arbitrary multi-
plicity tree-level Yang–Mills color-dual numerators with varying degrees of manifest crossing
symmetry, see e.g. references [61, 120, 121] and references therein.

2.4. Color-kinematics and double-copy construction beyond the adjoint representation

As discussed above, amplitudes with adjoint fields can manifest the duality between color and
indeed lead naturally to supersymmetric theories [1, 122, 123]. What about matter fields in the
fundamental or more general color representations? First we consider a gauge-theory with arbi-
trary gauge group and with matter particles—spin 0 or spin 1

2 —transforming in some matter
representation of that gauge group. For simplicity, we will restrict to cases where the only color
tensors appearing in amplitudes are f̃ abc and (Ta) j

i which both have three free indices. Thus,
all color factors can again correspond to cubic diagrams and with appropriate normalization
satisfy the defining commutation relations,

f̃ dae f̃ ebc − f̃ dbe f̃ eac = f̃ abe f̃ ecd ,

(Ta) k
i (Tb) j

k − (Tb) k
i (Ta) j

k = f̃ abc(Tc) j
i , (29)

as depicted in figure 3. We find it convenient to introduce raised and lowered indices commonly
associated with complex representations.

A difference with the pure-adjoint case is that edges of graphs now also encode the relevant
representation, see e.g. figure 3. While important, many of the same ideas and approaches
apply. We can still write m-point tree amplitudes in terms of cubic graphs,

Atree
m,k = −igm−2

∑
i

cini

Di
, (30)

where ci are color factors, ni are kinematic numerators, and Di are denominators encoding the
propagator structure of the cubic diagrams. The denominators (and numerators) may in princi-
ple contain masses, corresponding to massive propagators. The color factors ci in equation (30)
are constructed from the cubic diagrams using two building blocks: the structure constants f̃ abc

for three-gluon vertices and generators (Ta) j
i for quark-gluon vertices. When separating color

from kinematics, the diagrammatic crossing symmetry only holds up to signs dependent on the
permutation of legs. These signs are apparent in the total antisymmetry of f̃ abc. For a uniform
treatment of the generic representations, it convenient to introduce a similar antisymmetry for
the fundamental generators, artificially if necessary,

10
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(Ta) j
i ≡ −(Ta) j

i ⇔ f̃ cab = − f̃ bac. (31)

This allows us to introduce a compatible antisymmetry in color-ordered kinematic vertices, so
that they are effectively the same as for the adjoint representation. As noted in equation (29)
the color factors obey Jacobi and commutation identities. They both imply three-term color-
algebraic relations of the form given in equation (3). The existence of algebraic relations
between factors ci means that the corresponding kinematic coefficients ni/Di need not be
unique nor independently gauge-invariant.

As with the adjoint representation, one can still solve for all color factors in terms of a mini-
mal basis exploiting relevant antisymmetry and Jacobi-like identities, equation (29). Using this
basis in the full amplitude allows the identification of gauge-invariant ordered amplitudes as
kinematic coefficients of the remaining color weights. These gauge-invariant ordered ampli-
tudes will be related to each other by virtue of the fact that the kinematic weights ni can be
arranged in a color-dual fashion. A general color decomposition of tree-level amplitudes with
matter representations may be found in reference [124] (see also references [125–127]). These
ideas have been applied to massive scalar QCD at tree and loop level in reference [128] and
to N = 2 super-QCD with N f fermionic hypermultiplets in the fundamental through two-
loops in references [129, 130]. Further discussions of massive theories are found in references
[131–137].

Consider now generic single color traces and the types of algebraic structures that can
describe them. Since every multiplicity could admit a symmetric term in front of each dis-
tinct color trace, we should admit symmetric color weights dabc. . .m. These can be understood
as dressing vertices with m legs. So dabc can dress cubic vertices like f abc, dabcd dress four-point
vertices, and so on. The combination of various contractions of f abc and permutation invari-
ant d weights give rise to various algebraic structures which could have color-dual kinematic
weights. These structures are rather rich, admitting rules that allow one to generate a given alge-
braic structure through functional composition. When an algebraic structure depends on scalar
kinematics, this can admit a ladder where composition allows one to climb to higher dimension
effective operators with a small number of primary building blocks without having to resort
to an ansatz. At four and five points this has been shown to close, up to permutation invari-
ants [138, 139]. Such compositional approaches have also been generalized to double-trace
representations [140, 141]. Inverting the relationship between ordered amplitudes and these
non-adjoint kinematic graph weights will induce distinct gauge-invariantdouble-copy relation-
ships from the typical KLT formulation. When both copies can be organized into adjoint-type
ordered-amplitudes satisfying KK and BCJ amplitude relations these differences can be pulled
into higher-derivative corrections to a KLT-type mapping [139]. A general ansatz-based analy-
sis of higher-derivative generalized KLT mappings has been carried out in reference [142] and
its relationship to the compositional approach has been explored in reference [143].

Finally we point out the surprisingly generality of these ideas. Moving beyond the types
of color structures typically found at tree- and loop-level, one can consider exotic three-
dimensional color-dual Chern–Simons type theories [62]. The earliest example of such a
color-dual theory is Bagger–Lambert–Gustavsson where reference [144] pointed out that,
despite the color weights satisfying a three-algebra, color-dual gauge-theory numerators could
be found. Fascinatingly, the amplitudes of this theory double copy to those of three-dimensional
maximal supergravity theory, which can also be realized as the adjoint double-copy of the
amplitudes of dimensionally-reduced maximally supersymmetric Yang-Mills theory—a point
explored and clarified in references [145, 146]. Recently, topologically massive amplitudes
have also been shown to be color-dual [133–135], evading consistency issues that can arise
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with massive gauge theories [132] that do not arise from consistent dimensional reduction of
massless gauge theories [131].

3. A web of double-copy-constructible theories

Since their original formulation, color-kinematics duality and the double-copy construction
have been applied to a diverse array of theories. First, they played a fundamental role in enhanc-
ing our understanding of maximal supergravity, particularly in relation to its UV behavior.
From the beginning, it has also been clear that the double copy can be applied to theories
that can be interpreted as consistent truncations of maximal supergravity (in some cases, with
some subtleties related to the removal of undesired states, for which a variety of methods
are now available [128, 147–149]). Many additional examples of double-copy-constructible
theories have emerged, including non-gravitational theories, such as the Dirac–Born–Infeld
(DBI) theory, and theories which presents structures that are far more involved than maximal
supergravity, such as gauged supergravities. The double copy is now understood as a property
of very large classes of theories, and possibly a generic feature of gravitational interactions.
Seemingly-unrelated theories are now understood to share common building-blocks at the level
of the underlying gauge theories entering their double-copy construction. We note that some
instances of double copy connect string and superstring theories, giving a family of ‘stringy’
constructions. Similar programs, aiming at connecting different theories in a unified frame-
work, have also been formulated in the contexts of the scattering-equations formalism [11],
amplitude transmutation [12], and soft limits [150]. While we do not have the space to provide
a comprehensive summary of all known instances of the double copy, here we aim at giving
a broad overview of this web of theories, schematically portrayed in figure 4, as well as an
illustration of how the new examples of double copy are connected to the original construction
for maximal supergravity. For further details, we refer the reader to the more detailed review
[1] and to the original literature.

3.1. Ungauged supergravities

In order to provide an overview of the available double-copy constructions, we first need to
understand how to chart the space of possible gravitational theories. In the presence of super-
symmetry, this is a problem that has long been studied by the supergravity community [151].
Supergravity theories can be divided into ungauged theories, Yang–Mills–Einstein (YME) the-
ories, and gauged supergravities. The former are theories in which no field is charged under any
gauge group. N = 8 (ungauged) supergravity [152] belongs to this group (although several
gauged versions are available), together with half-maximal supergravity [153, 154]. These are
among the simplest examples of double-copy-constructible theories. While ungauged super-
gravities with N > 4 and two-derivative actions are unique, N = 3, 4 two-derivative super-
gravities are fully specified by a single parameter—the number of matter vector multiplets. If
we further reduce the number of supercharges, we are in a situation in which not only different
kinds of matter multiplets become possible, but additional information about their interac-
tions is needed to fully specify the theory. This freedom is reflected by the fact that, while
extended N > 2 supersymmetry permits only a discrete set of symmetric scalar manifolds,
N � 2 supersymmetry is not as constraining. In four dimensions, supergravities with vector
multiplets possess special-Kähler scalar manifolds, while the geometry is quaternionic-Kähler
in the case of supergravities with hypermultiplets [151]. From the double-copy perspective, a
particularly important class of theories is given by N = 2 Maxwell–Einstein theories that can
be uplifted to five dimensions. These theories are fully specified by their vector couplings in
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Figure 4. Web of double-copy-constructible theories. Undirected links with differ-
ent colors are drawn between theories that have a common gauge-theory factor. For
example, blue: pure SYM theory, red: (DF)2 theory, green: NLSM, pink: (S)YM the-
ory with massless matter, violet: spontaneously broken (S)YM theory. Directed links
point toward double-copy constructions that are obtained by modifying both gauge-
theory factors. Examples include: adding matter representations, assigning VEVs or
truncating/projecting out some states.

five dimensions, i.e. their five-dimensional action includes a term of the form

1

6
√

6
CIJK

∫
FI ∧ FJ ∧ AK , (32)

where the indices I, J, K run over the vector fields of the theory and CIJK is a constant symmetric
tensor. A fundamental result in supergravity states that the supergravity Lagrangian at the two-
derivative level can be fully determined once the CIJK tensors are given [155, 156]. In other
words, this class of theories is fully specified by three-point interactions, and hence constitutes
a very convenient arena for applying amplitude methods.

Double-copy constructions with N > 4 are unique; the gauge theory factors are two super-
Yang–Mills (SYM) theories with different amounts of supersymmetry [3, 4, 157–159],

N = (N1 + N2) supergravity : (N = N1 SYM) ⊗ (N = N2 SYM).
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When we consider N = 4 supergravity, the simplest double copy construction has one
free parameter: the number of adjoint scalars in the non-supersymmetric gauge theory
[3, 4, 157–159],

N = 4 supergravity : (N = 4 SYM) ⊗ (YM + ns scalars).

In turn, this becomes the number of vector multiplets in the outcome of the double copy. Color-
kinematics duality demands that the couplings between the extra scalars be such that the theory
can be regarded as the dimensional reduction of a higher-dimensional pure-YM theory. Further
reducing supersymmetry, the simplest double copy forN = 2 supergravity is of the form [160]

N = 2 supergravity (generic family) : (N = 2 SYM) ⊗ (YM + ns scalars).

This is the double-copy construction for an infinite family of N = 2 Maxwell–Einstein
theories that admit a five dimensional uplift and is known in the literature as the generic
family or generic Jordan family. However, this is only one possibility and additional vari-
ants of the construction have been formulated. A very important generalization is given by
adding matter (half) hypermultiplets to the supersymmetric theory, and matter fermions to the
non-supersymmetric theory [161],(

N = 2 homogeneous
supergravity

)
:

(N = 2 SYM

+
1
2

hyperR

)
⊗
(

YM + nsscalars
+n f fermionsR

)
. (33)

For technical reasons, the matter representation is taken to be pseudo-real, which makes it
possible to introduce a single half-hypermultiplet in the supersymmetric theory. Since we are
in the presence of more than one type of gauge-group representation, we need to generalize
color-kinematics duality beyond the purely-adjoint case, as we have already seen in section 2.4.
This is done according to the following rule:

‘Numerator factors in a CK-duality-satisfying presentation of a gauge-theory amplitude
obey the same algebraic relations as the color factors. This includes those relations which
stem from Jacobi identities or commutation relations of gauge group generators, as well
as additional relations that are required by gauge invariance’.

Additionally, we need to decide how different representations are combined by the double
copy. To this end, we can use a simple and elegant working rule:

‘Each state in the double-copy (gravitational) theory corresponds to a gauge-invariant
bilinear of gauge-theory states’.

For this to be possible, we identify the gauge groups of the two theories entering the con-
struction. Concretely, this rule implies that a supergravity field is obtained by combining two
adjoint or two matter gauge-theory fields, but no supergravity field can originate from the dou-
ble copy of one adjoint and one matter field, since this combination cannot form a gauge singlet.
Because of this rule, the double copy (33) does not contain any additional gravitino multiplets,
and the contribution of the extra matter fields simply yields additional vector multiplets. Fur-
thermore, the number of matter fermions n f is constrained by the requirement that the gauge
theory should be seen as a higher-dimensional YM theory with fermions. This requirement is
a consequence of color-kinematics duality, and the reader is referred to reference [161] for the
full analysis. Taking this constraint into account, we have a two-parameter family of double
copies which perfectly matches the classification of N = 2 Maxwell–Einstein supergravities
with homogeneous scalar manifolds that has been obtained in the supergravity literature [178].
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There are many more examples of double-copy constructions giving ungauged supergrav-
ities. A particularly important one is the construction for Einstein gravity. Simple counting
of states shows that the double copy of two pure YM theories yields additional states beyond
those of the graviton (in four dimensions, an additional complex scalar corresponding to a
dilaton and an axion). An interesting way to remove the unwanted states is to introduce matter
fermions in one of the two YM theories and matter ghost fields in the other [147]. These fields
only double copy with each other in accordance to the rule given before. Only amplitudes with
external gravitons are considered so that matter fields and ghosts appear only in loops. Ref-
erence [147] shows that the loop contributions coming from ghost fields are precisely what is
needed to cancel the contribution of the unwanted axion-dilaton degrees of freedom, result-
ing in a double-copy construction for pure Einstein gravity. One can also use physical-state
projectors to remove the unwanted states, as done in, for example, reference [95].

Given its role in the constructions outlined in this section, the reader may wonder whether
SYM theory is the only purely-adjoint theory that obeys color-kinematics duality. It turns
out that there is another theory with this property, which also appears in several double-
copy constructions. This is the so-called (DF)2 theory, which, in its simplest incarnation, is
a higher-derivative version of the YM theory with a mass parameter m. It has Lagrangian

L(DF)2+YM =
1
2

(DμFaμν)2 − 1
4

m2(Fa
μν)2. (34)

This minimal version of the (DF)2 theory enters the double-copy construction for a mass
deformation of conformal supergravity,

(Mass − deformed minimal CSG) = (SYM) ⊗
(
minimal(DF)2 + YM

)
. (35)

The above construction gives amplitudes in a mass-deformed minimalN = 4 theory that inter-
polates between (Weyl)2 and a Ricci-scalar term. Supersymmetry can be reduced by modifying
the first gauge-theory factor. Additionally, this (DF)2 theory has also a non-minimal version,
containing an F3 term together with further ghost scalars transforming in a specific matter rep-
resentation. In table 1, we summarize double-copy constructions giving ungauged gravitational
theories, and include references to the original literature.

3.2. Yang–Mills–Einstein and gauged supergravities with Minkowski vacua

YME theories and gauged supergravities are supergravity theories that contain gauge interac-
tions under which some of the fields are charged. The YME theories are obtained by promoting
a non-abelian subgroup of the global isometry group of a Maxwell–Einstein supergravity to a
local symmetry (without touching the R symmetry and without introducing additional fields).
In contrast, the defining property of gauged supergravities is that part of the R symmetry is
promoted to gauge symmetry. These theories are considerably more involved than their YME
relatives, exhibiting, among other things, non-trivial potentials, spontaneously-broken super-
symmetry and massive gravitini. The reader interested in the relevant supergravity literature
may consult references [151, 179]. Amplitudes in YME theories have been intensely inves-
tigated with a variety of methods: scattering equations [11, 180, 181], collinear limits [182],
on-shell recursion [183, 184], string theory [185, 186] and ambitwistor strings [187]. From
the point of view of the double-copy construction [160], non-abelian gauge interactions in the
double-copy theory are generated by introducing a trilinear coupling among the adjoint scalar
fields in the non-supersymmetric gauge-theory factor. These coupling are written as
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Table 1. Non-exhaustive list of ungauged double-copy-constructible gravitational theo-
ries presented in the literature with references. Theories are specified in four dimensions
(with the exception of the last entry).

Gravity Gauge theories References

N > 4 supergravity • N = 4 SYM theory [3, 4, 157–159]
• SYM theory

(N = 1, 2, 4)

N = 4 supergravity with
vector multiplets

• N = 4 SYM theory [3, 4, 157, 162]
• YM-scalar theory from

dimensional reduction

N = 4 supergravity with
vector multiplets

• N = 2 SYM theory
with hypermultiplets

[3, 4, 157, 162]

• N = 2 SYM theory
with hypermultiplets

Pure N < 4 supergravity • (S)YM theory with
matter in fundamental
rep.

[147]

• (S)YM theory with
ghosts in fundamental
rep.

Einstein gravity • YM theory with matter
in fundamental rep.

[147]

• YM theory with ghosts
in fundamental rep.

N = 2 Maxwell–Einstein supergravities
(generic family)

• N = 2 SYM theory [160]
• YM-scalar theory from

dimensional reduction

N = 2 Maxwell–Einstein supergravities
(magical/homogeneous theories)

• N = 2 SYM theory
with half
hypermultiplet in
pseudoreal
representation

[161, 163]

• YM-scalar theory from
dimensional reduction
with matter fermions in
pseudo-real
representation

N = 2 supergravities with
hypermultiplets

• N = 2 SYM theory
with half hypermultiplet

[161, 164]

• YM-scalar theory from
dimensional reduction
with extra matter scalars

N = 2 supergravities with vector/
hypermultiplets

• N = 1 SYM theory
with chiral multiplets

[165–167]

• N = 1 SYM theory
with chiral multiplets

(continued on next page)
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Table 1. Continued.

Gravity Gauge theories References

N = 1 supergravities with vector multiplets
(truncations of generic family)

• N = 1 SYM theory [160]
• YM-scalar theory from

dimensional red

N = 1 supergravities with vector multiplets
(truncations of homogeneous theories)

• N = 1 SYM theory
with chiral multiplets in
fundamental
representation

[147, 165–167]

• YM-scalar theory with
fermions in
fundamental
representation

N = 1 supergravities with chiral multiplets • N = 1 SYM theory
with chiral multiplets in
fundamental
representation

[147, 165–167]

• YM-scalar with extra
scalars in fundamental
rep.

Einstein gravity with massless matter • YM theory with matter [3, 147]
• YM theory with matter

Einstein gravity with massive scalars • Massive scalar QCD [128, 168]
• Massive scalar QCD

Heavy-mass effective theory • Heavy-quark effective
theory

[169, 170]

• Heavy-quark effective
theory

Einstein gravity with higher-derivative corrections • YM theory with
higher-derivative
corrections

[138, 142, 171]

• YM theory with
higher-derivative
corrections

Massive gravity/Kaluza–Klein gravity • Spontaneously-broken
YM theory

[131, 132, 172, 173]

• Spontaneously-broken
YM theory

N � 4 conformal (super)gravity • DF2 theory [174–176]
• (S)YM theory

3D maximal supergravity • BLG theory [144, 146, 177]
• BLG theory
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Table 2. Gauged/YME gravities and supergravities for which a double-copy construc-
tion is presently known.

Gravity Gauge theories References

Unbroken N � 4 YEM supergravities • SYM theory [160, 180, 188]
• YM-scalar theory with

trilinear scalar couplings
[11, 12, 181, 183–187]

Higgsed N � 4 YEM supergravities • SYM theory on the
Coulomb branch

[131]

• YM-scalar theory with
trilinear scalar couplings
and extra massive scalars

N = 2 YEM supergravities
(non-compact gauge groups)

• N = 2 SYM theory on
the Coulomb branch
with massive hypers

[189]

• YM-scalar theory with
trilinear scalar couplings
and massive fermions

U(1)R gauged supergravities
(with Minkowski vacua)

• SYM theory on
Coulomb branch

[190]

• YM theory with SUSY
broken by fermion
masses

Non-abelian gauged supergravities
(with Minkowski vacua)

• SYM theory on the
Coulomb branch

[191]

• YM-scalar theory with
trilinear scalar couplings
and massive fermions

δL =
λ

6!
FIJK Tr[φI ,φJ]φK , (36)

where FIJK is an antisymmetric tensor with indices running over the number of scalars in the
theory. The effect of these couplings is to introduce non-zero supergravity amplitudes between
three vectors which are proportional to the FIJK tensors. In turn, imposing color/kinematics
duality on amplitudes between four scalars is equivalent to requiring that these tensors obey
Jacobi relations, and hence can be thought of as the structure constants of the supergravity
gauge group. This is an example of a global symmetry in a gauge-theory factor being promoted
to a local symmetry by the double copy, analogous to the relation between global and local
supersymmetry. The net result is a double-copy of the form [160]

(YME supergravity) : (SYM theory) ⊗
(
YM + φ3 theory

)
, (37)

where, in case of N = 2, the λ→ 0 limit will yield a theory belonging to the generic family.
YME theories with spontaneously-broken gauge groups can also be constructed by taking the
SYM gauge theory on its Coulomb branch and introducing extra massive scalars in the non-
supersymmetric theory while making sure that color-kinematics duality is preserved [131].
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Table 3. Non-gravitational local field theories constructed as double copies.

Double copy Starting theories References

N � 4 DBI theory • NLSM [11–16, 22]
• (S)YM theory

Volkov–Akulov theory • NLSM [11, 192–195]
• SYM theory (only fermions as external states) [17, 19, 20]

Special Galileon theory • NLSM [11, 12, 21]
• NLSM [17, 22]

N � 4 DBI + (S)YM theory • NLSM + φ3 [11–18, 23]
• (S)YM theory

DBI + NLSM theory • NLSM [11–16, 23]
• YM + φ3 theory

3D N = 8 DBI theory • 3D N = 4 Chern-Simons-matter theory [62]
• 3D N = 4 Chern-Simons-matter theory

Gauged supergravities, even those admitting Minkowski vacua, are considerably more
involved. Their double-copy construction can be thought of as a generalization of the con-
struction for YME theories in which a spontaneously-broken YM theory is combined with a
theory in which supersymmetry is broken by explicit fermionic masses8. As in the construction
for YME theories, the appearance of trilinear scalar couplings results in non-abelian interac-
tions in the supergravity theory, but now the F-tensors are also related to the fermionic masses
by color-kinematics duality. The study of gauged supergravities in the double-copy language
is still in its infancy, and the reader should consult references [190, 191] for additional details.
The presently-known double-copy constructions for YEM theories and gauged supergravities
are listed in table 2. Various theories without a graviton, most prominently variants of the DBI
theory, have also been shown to admit such construction (see table 3 for an overview).

3.3. Stringy double copies

An important family of double-copy constructions applies to string-theory amplitudes. In this
case, a fundamental ingredient is given by a set of disk integrals with punctures [196, 197],

Zσ(ρ(1, . . . , n)) = (2α′)n−3
∫

σ{−∞�z1�···�zn�∞}

dz1 . . . dzn

vol(SL(2,R))

×
∏n

i< j|zi j|α
′si j

ρ{z12z23 . . . zn−1,nzn,1}
. (38)

We use the short-hand notation zi j = zi − z j, and we take care of the vol(SL(2,R) factor
by fixing three punctures as zi, z j, zk → (0, 1,∞) while introducing a Jacobian |zi jzikz jk|. The
above integrals depend explicitly on two permutations σ, ρ ∈ Sn. They are known to satisfy

8 The double-copy description of gauged supergravities in non-Minkowski vacua is an open problem.
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Table 4. Double-copy constructions of tree-level string amplitudes with external mass-
less states [208]. The single-valued projection sv(•) converts the disk integrals (38) to
sphere integrals (42).

String ⊗ QFT SYM (DF)2 + YM (DF)2 + YM + φ3

Z − theory Open superstring Open bosonic string Compactified open
bosonic string

sv(open superstring) Closed superstring Heterotic(gravity) Heterotic(gauge/gravity)

sv(open bosonic string) Heterotic(gravity) Closed bosonic string Compactified closed
bosonic string

[197] field-theory BCJ relations to all multiplicity with respect to the permutation ρ,

n−1∑
j=2

(p1 · p23... j)Zσ(2, 3, . . . , j, 1, j+ 1, . . . , n) = 0, (39)

and the so-called string-theory monodromy relations [198, 199] with respect to σ,

n−1∑
j=1

e2iπα′p1·p23... jZ(2,3,..., j,1, j+1,...,n)(ρ) = 0. (40)

Having introduced the appropriate building blocks, the open-superstring amplitudes with color-
ordered massless external states can be expressed as the double copy of the Z integrals with
Yang–Mills scattering amplitudes [196, 197],

Atree
OS (σ(1, 2, 3, . . . , n)) =

∑
τ ,ρ∈Sn−3(2,...,n−2)

Zσ(1, τ , n, n − 1)S[τ |ρ]ASYM(1, ρ, n − 1, n), (41)

where the field-theory KLT kernel S[τ |ρ] has been introduced in equation (27).
The Z integrals have been interpreted as the amplitudes of a scalar theory dubbed Z-theory

in references [18, 99, 102]. While it is surprising that the field-theory version of the KLT kernel
appears here, this may be understood from the fact that the decomposition is in terms of SYM
amplitudes that obey field-theory BCJ relations. It is remarkable that in the superstring all the
α′ dependence is contained in the Z theory. A closed-string version of the Z-theory integrals,
known to also satisfy field-theory relations to all multiplicity, is given by the following integrals
on the punctured Riemann sphere [200–203],

sv Z(τ |σ) =

(
2α′

π

)n−3 ∫ d2z1 . . . d2zn

vol(SL(2,C))

∏n
i< j| zi j|2α

′si j

τ{z̄12z̄23 . . . z̄n−1,nz̄n,1}σ{z12z23 . . . zn−1,nzn,1}
. (42)

The notation svZ refers to the so-called single-valued projection of multiple zeta values (see ref-
erences [204, 205] for details), but for us it will be simply part of the name of the building blocks
we are introducing. Using these integrals, closed-superstring amplitudes are schematically
given as [206, 207]

(Closed superstring) = (SYM) ⊗ sv(open superstring). (43)

The known stringy double copies are summarized in table 4. Note that the (DF)2 theory we
have introduced in the beginning of this section appears (in its non-minimal version) in several
of the entries.
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Each column in table 4 corresponds to the computation of one type of correlator. The SYM
column is derived for any number of external massless states [196]. The (DF)2 + YM and the
(DF)2 + YM + φ3 columns have been explicitly checked against string amplitudes through
five points, and all-multiplicity arguments were also given in reference [208]. While the dis-
cussion here focuses on tree-level amplitudes, some extensions to loop level are available in
the literature [209–221]. See also references [222, 223] for a construction of string amplitudes
in terms of field-theory amplitudes using the scattering-equations formalism.

4. From amplitudes to gravitational waves through the double copy

Previous sections have outlined a new approach to a wide class—perhaps even all—
gravitational theories, in which they are obtained from simpler gauge theories. Applied beyond
scattering amplitudes, similar procedures have been shown to relate certain classes of solutions
of Einstein’s equations to solutions of Maxwell’s9 equations with sources, a simple example of
which is the Schwarzschild solution [64]. Since this method has been used for nontrivial cal-
culations of supergravity ultraviolet properties up to five loops (see e.g. references [159, 162,
224–226]), it is logical to suspect that it can be useful to also advance the state of the art in
gravitational-wave physics based on Einstein’s general relativity by carrying out calculations
that are difficult through standard methods. A good choice is high orders of two-body classical
gravitational dynamics, given that it feeds into the analysis of gravitational-wave signals from
the LIGO/Virgo collaborations [227] and is of interest to LIGO theorists [228].

Scattering amplitudes and associated methods enter the picture through the observation that,
up to a point, scattering and bound-state motion are governed by the same equations of motion
and Hamiltonian. Thus one may find the Hamiltonian from a scattering analysis and use it sub-
sequently for analyzing bound-state motion10. The double copy enters very directly, because
of its natural use in scattering processes. This strategy of effectively integrating out gravitons
carrying momenta responsible for long-range interactions yields a two-body Hamiltonian, and
can in principle be extended to the construction of n-body Hamiltonians. Such Hamiltonians
can be interpreted as generating functions of classical observables.

To this end, we model the various classical bodies as point-particles, with or without spin
depending on whether or not the classical bodies are spinning. This is a reasonable approx-
imation if they are sufficiently far apart and may be systematically corrected to account for
finite-size effects [230]. We begin by reviewing the kinematics, scale hierarchies, power count-
ing, and truncation of graph structures that allow us to identify and remove the quantum
contributions at the integrand level. Because of the macroscopic nature of the scattering bod-
ies, it will turn out that loop-level amplitudes contain classical physics. The methods reviewed
below lead to simplifications which we will also illustrate and are important for success at high
loop orders.

4.1. Matter and graviton kinematics and the classical limit

There are several ways to extract classical physics from quantum field theory and more specif-
ically from scattering amplitudes. We will use the correspondence principle—that is that

9 These solutions can be thought of as being embedded in Yang–Mills solutions, by giving a nontrivial profile to the
vector corresponding to a single generator of the gauge group.
10 This philosophy requires care and possible modifications at O(G4), where the Hamiltonian depends on the trajectory
through the so-called tail effect [229], so a scattering-based Hamiltonian cannot be directly applied to bound-state
problems.
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classical physics emerges from the quantum physics in the limit of large masses and charges.
Chief among them is the angular momentum: to extract the classical part of a four-point elastic
amplitude we must therefore select a kinematic configuration in which the angular momentum
is large in natural (h̄ = 1) units [91, 93, 95]. It is not difficult to see that this implies the more
intuitive picture that classical physics governs processes in which the minimal inter-particle
separation is much larger than the de Broglie wavelength, λ, of each particle. Indeed,

J ∼ |b × p| � 1 ⇒ |b| � λ =
1
|p| . (44)

For a scattering process we may take the impact parameter |b| as a measure of the minimal
separation, while for a bound state we may take it to be the periastron or the average radius for
quasi-circular orbits.

Since the impact parameter is of order of the inverse momentum transfer in a scattering
process, |b| ∼ 1/|q|, the classical limit implies the kinematic hierarchy11

m1, m2, |p| ∼ J|q| � |q|. (45)

Classical and quantum contributions to scattering processes enter at different orders in an
expansion in large J, or equivalently, in small |q|. For example, since Newton’s potential is
classical, it follows that in the limit equation (45) any generating function of classical observ-
ables (e.g. the effective potential, the eikonal, the radial action, etc) for scalar bodies has the
general form

V =
G
|q|2 c1(p) +

1
|q|3

∑
n�2

(G|q|)n(ln q2)n mod 2cn(p). (46)

For spinning bodies this expression is augmented with a dependence on scalars constructed
from an equal numbers of the transferred momentum vector q and the rest frame spin S/m
[231]. Quantum corrections can be systematically included by keeping terms with suitably
subleading q counting.

We note that a small momentum transfer, as in equation (45), is not in contradiction with the
observation that motion on a closed orbit required a change in momentum of a particle that is
comparable with its initial momentum. Indeed, such long-term classical processes compound
a large number of elementary two-particle interactions mediated by graviton exchange. Each
such interaction transfers a momentum |q| compatible with equation (45) while the complete
classical process transfers a momentum commensurate with |p|. In the case of scattering, this
is concretely described by the exponentiation of graviton exchange in e.g. the eikonal approx-
imation [232]. In any case, once a potential and Hamiltonian are constructed to reproduce the
scattering amplitude, they can be applied more generally to classical physics.

Having reviewed the overall kinematics of a scattering process that captures its classical
limit, we proceed to detail the kinematics of the exchanged gravitons. This identifies the parts
of loop amplitudes that contribute in the classical limit, thus allowing us to discard from the
outset the parts that have no classical contributions. The main observation is that, in the classi-
cal regime in which the total momentum transferred q is small compared to external momenta,
the momentum of each individual graviton should be of the same order. To identify the relevant

11 This hierarchy implies that our results should not be expected to be valid for massless particles. Indeed, one can see
that the classical and massless limits do not commute [95].
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contributions we consider an internal graviton line with four-momentum � = (ω, �) and, fol-
lowing the method of regions [233, 234], we consider the possible scalings of its momentum
components:

Hard : (ω, �) ∼ (m, m),

Soft : (ω, �) ∼ (|q|, |q|) ∼ J−1(m|v|, m|v|),

Potential : (ω, �) ∼ (|q||v|, |q|) ∼ J−1(m|v|2, m|v|),

Radiation : (ω, �) ∼ (|q||v|, |q||v|) ∼ J−1(m|v|2, m|v|2), (47)

where we take as reference scale m = m1 + m2 (or the external momentum), and we use
equation (45) to arrive at the second set of scalings in the above equation. Gravitons with
hard O(m) = O(|p|) momenta lead to quantum-mechanical contributions because their energy
component is too large, causing the matter fields to fluctuate far off shell. Gravitons in the
soft region mediate long-range interactions, because |�| ∼ |q| ∼ |b|−1, so they can contribute
to a classical potential. We use the velocity 0 � |v| � 1 to separate the soft region into poten-
tial and radiation regions. For small velocities, the modes in the potential region are off shell
and carry little energy so they mediate interactions that are almost instantaneous, which is the
hallmark of a classical potential. The gravitons in the radiation region can be on shell so they
can be emitted in a scattering process. They can also be reabsorbed by the system and con-
tribute to its effective potential. This is the origin of the so-called tail effect [229]. The modes
in equation (47) identify the dominant contribution from each region to generic loop integrals.
Each of them is computed by expanding each loop momentum about the given scaling and
then integrating over the full phase space using dimensional regularization. To reconstruct the
complete integral one simply sum over all the regions. The apparent overcount stemming from
the integration over all momenta after expansion in each region is only superficial: expanding
momenta in one region about another leads to scaleless integrals which vanish in dimensional
regularization. For further detail on the method of regions we refer the reader to reference
[234].

The above considerations, together with the observation that graviton loops are scaleless and
thus vanish in the potential region, imply that the contributions of potential-region gravitons
to the classical potential (46) have the following features:

(a) In all contributing diagrams, before and after reduction to a basis, the two matter lines do
not intersect.

(b) Contributions where both ends of a graviton propagator attach to the same matter line are
dropped.

(c) Every independent loop has at least one matter line.
(d) Terms with too high a scaling in q or � are dropped because they are quantum contributions.

Equation (46) implies that at L loops a for a given diagram with nm matter propagators,
ng graviton propagators we can drop terms with more than nm + 2ng − 3L − 2 powers of
loop momentum in the numerator.

The first two of these features imply that the parts of an L-loop amplitude that are relevant
in the classical limit are strictly a subset of the product of two two-scalar-(L + 1)-graviton tree
amplitudes summed over the graviton states, together with scalar propagators for each of the
gravitons. For example, at one loop this is a product of two gravitational Compton amplitudes
summed over the graviton states and divided by q2

1q2
2 where qi are the momenta of the two

gravitons. This is shown graphically in the left-most diagram in figure 5.
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Figure 5. (Left-hand side) The part of the four-scalar one-loop amplitude that does not
contain intersecting matter lines. (Right-hand side) An identification of the part of the
four-scalar one-loop amplitude that do not contain intersecting matter lines and have at
least one matter line in the loop. Factorization of tree- and loop-level amplitude imply
that the shaded blobs are tree-level amplitudes.

The third property of the contributions to the classical limit weeds out part of the contribu-
tions appearing in the product of the two tree amplitudes and keeps only those for which each
independent loop has at least one matter line before and after reduction to an integral basis. One
starts with the terms having this property and in the process of reducing to a basis of integrals
keeps only those contributions that continue to have this property. At one-loop level, the first
step is shown on the right-hand side of the arrow in figure 5: there must be a matter line in at
least one of the two Compton amplitude factors.

While identified here from the perspective of the classical limit, the contributions obtained
this way have a natural interpretation in the generalized unitarity method [5, 6, 8–10, 108,
235, 236], where they are referred to as generalized cuts. The cut conditions—that is on-shell
conditions for the exposed lines—prevent those lines from being canceled in the process of
reduction to an integral basis. It is important to note that the cut momenta are on shell only for
the amplitudes represented by the blobs; the propagators for the exposed lines are not placed
on shell in this procedure.

Factorization of tree amplitudes implies that the contributions given by generalized cuts are
expressed in terms of sums of products of tree amplitudes; thus, one can directly apply the
KLT relations to obtain them in terms of amplitudes of scalars coupled to vector fields and
thus essentially use the KLT relations to obtain higher-loop amplitudes. As an example, the
expression of the first cut on the right-hand side of figure 5 is

C(a)
GR =

∑
h1,h2

Mtree
3 (3s, qh2

2 ,−5s)Mtree
3 (5s,−qh1

1 , 2s)Mtree
4 (1s, q−h1

1 ,−q−h1
2 , 4s)

=
∑

λ1,λ2,λ̃1,λ̃2

itPh2Ph2

[
Atree

3 (3s, qλ2
2 ,−5s)Atree

3 (5s,−qλ1
1 , 2s)

× Atree
4 (1s, q−λ1

1 ,−q−λ2
2 , 4s)

][
Atree

3 (3s, qλ̃2
2 ,−5s)Atree

3 (5s,−qλ̃1
1 , 2s)

× Atree
4 (4s, q−λ̃1

1 ,−q−λ̃2
2 , 1s)

]
, (48)

where h1,2 label the physical states of the graviton, λ1,2 and λ̃1,2 label the physical states of
the corresponding gluons, Ph1,h2 are projectors restricting the product of gluon states to be a
graviton state (i.e. they project out the dilaton and the antisymmetric tensor) and we use the
four-point BCJ amplitude relation [3] to simplify the expression. Thus, the gravity generalized
cut is expressed directly in terms of the components of gauge-theory generalized cuts. In four
dimensions, where physical states are labeled by their helicity, the projectors Ph1,h2 simply
correlate the helicities of the gluons, λ1 = λ̃1 and λ2 = λ̃2, and the gravity cut is expressed in
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terms of the four helicity configurations of the gauge-theory cut. In this way, through use of
the double copy, the basic building blocks are non-abelian gauge-theory tree amplitudes.

The generalized unitarity method also provides an algorithm for assembling the various
contributions obeying the properties described above while ensuring that terms that appear in
several generalized cuts are counted only once. For reviews of the generalized unitarity method
see references [108, 235, 236] and in the context of the classical limit of scattering amplitudes
see reference [95].

4.2. Classical potential and classical observables from classical amplitudes

Assuming that amplitudes evaluated in the classical limit are known, the next task is to find
a generating function of classical observables whose form is (46). This generating function is
understood as part of the Wilsonian-type effective action generated by integrating out gravi-
ton configurations that contribute to conservative physics [237]. They may be potential-region
gravitons [91, 93, 95, 238] or a mixture of potential and radiation region gravitons [237]. Con-
structing amplitudes from this effective action reveals that they exhibit classical parts, which
scale in the large angular momentum limit as described in the previous section, and also ‘super-
classical’ parts, which dominate in the large angular momentum limit over the classical ones.
Thus, the task is to consistently separate the classical part. Several methods have been proposed
in this direction and we briefly summarize them here in no particular order.

(a) Construct an effective two-body potential [91, 93, 95], which is then used in Hamilton’s
equations to generate classical observables. If the Hamiltonian is independent of the classi-
cal trajectory, as it is the case for the potential-graviton contributions, a change in boundary
conditions suffices to relate open trajectory and bound orbit motion.

The effective two-body potential is obtained through by a matching calculation in
which one demands [91] that the scattering amplitudes of gravitationally-coupled scalars
due to potential or mixed but time-symmetric gravitons are reproduced by an action
containing only the positive-energy modes of the matter fields and with instantaneous
(or energy- or time-independent) interactions

H = A†
(

i∂t +
√

p2 + m2
1

)
A + B†

(
i∂t +

√
p2 + m2

1

)
B + V(p)A†AB†B, (49)

with V in equation (46). The amplitudes following from this action are matched order by
order in Newton’s constant with those of the GR coupled to scalar fields of masses m1 and
m2; at each order one more coefficient of V is determined: tree-level matching fixes c1(p),
one-loop matching fixes c2(p), etc. At a loop order L, with stronger-than-classical scal-
ing at large angular momenta are completely determined by the Hamiltonian coefficients
determined through (L − 1)-loop order. For this reason they contain no new information
and are referred to as ‘iteration terms’.

We note that this effective potential can be systematically extended to include quantum
effects, see e.g. reference [239]; to this end one systematically keeps in the full-theory
amplitude the desired quantum-suppressed terms. In particular, one may include terms
subleading in the large angular momentum expansion such as graviton loops which would
probe quantum gravity effects but one should not include diagrams with intersecting
matter lines, as they do not contribute to long-range interactions.

(b) Other amplitudes-based approaches construct a generating function of open-orbit observ-
ables—the radial action—directly from amplitudes or evaluate open-orbit observables in
terms of matrix elements of operators in the final state of the process.
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The relation between the all-orders amplitude and the radial action builds on the observa-
tion that the solution to the unitarity constraint for an elastic two-particle S matrix is a phase.
Inspired by the eikonal approximation [63, 240–244], the ‘amplitude-radial action’ relation is
[237, 238]

iM(q) =
∫

J

(
eiIr(J) − 1

)
, Ĩr(q) = 4E|p|

∫
dD−2bμ−2ε eiq·bIr(J),

Ĩr(q) =
G
|q|2 a1(p) +

1
|q|3

∑
n�2

(G|q|)n(ln q2)n mod 2an(p), (50)

where E is the total energy, b is the impact parameter and μ is the scale of dimensional reg-
ularization. Classical observables are subsequently constructed through thermodynamic-type
relations (known for closed-orbit motion as the first law of binary mechanics [245]), e.g.

dIr =
θ

2π
dJ + τdE +

∑
a

〈za〉dma, (51)

where θ is the scattering angle, τ is the time delay and 〈z〉 is the averaged redshift. This has
been used to systematically bypass iterated contributions [246–248]. The formalism of refer-
ence [246] makes use of a heavy mass version of the double copy [170] to produce compact
expression for the amplitude. We refer the reader to the various original references for details.

The Kosower, Maybee, O’Connell (KMOC) formalism [92] constructs observables directly
from amplitudes and their cuts, dressed with the appropriate operators. They are computed as
the difference between the expectation values of these operators in the final and initial states,

ΔO = 〈 f |O| f 〉 − 〈i|O|i〉 (52)

and the final and initial states are related by the S-matrix operator,

| f 〉 = S|i〉. (53)

For example, the scattering angle is obtained from the change in momentum of matter particles.
This approach will be summarized in chapter 14 of this review [249].

To illustrate the methods let us now evaluate theO(G) andO(G2) amplitudes in the classical
limit and use them to find the effective potential and radial action.

4.3. 1PM

The tree-level amplitude of two distinct massive scalars in the classical limit due to graviton
exchange is simple-enough to be obtained through a Feynman graph calculation. It can also
be obtained as a double copy of two massive scalar amplitude due to gluon exchange. In this
second approach it is necessary to project out the dilaton-axion which is part of the double
copy of two vectors and couples to massive particles. This can be done while also focusing
the long-range interactions captured by this amplitude by evaluating only the pole part of the
amplitude12,

12 We take this approach because constructing the complete four-point amplitude through the double copy requires
subtracting out the dilaton exchange, which is present when the external particles are massive.
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iMtree
4 (1, 2, 3, 4)

∣∣long range
=

i
q2

∑
h

Mtree
3 (1, 4, qh)Mtree

3 (2, 3,−q−h)

=
(κ

2

)2 i
q2

∑
λ,λ̃

PhAtree
3 (1, 4, qλ)Atree

3 (2, 3,−q−λ)

× Atree
3 (1, 4, qλ̃)Atree

3 (2, 3,−q−λ̃), (54)

where Mtree
3 (i, j, qh) are two-scalar-graviton amplitudes, h tags the physical states of the gravi-

ton and we used the double-copy form (16) of Mtree
3 (i, j, qh). Particles with momenta p1 and p4

have mass m1, those with momenta p2 and p3 have mass m2 and the sum runs over the physical
states of the exchanged graviton. The sum over the physical polarizations of the graviton gives
the physical-state projector,

∑
h

ε(k)μνh ε(−k)αβ−h =
1
2
PμαPνβ +

1
2
PναPμβ − 1

D − 2
PμνPαβ , (55)

where

Pμν(k) = ημν − rμkν + rνkμ

r · k
, (56)

and rμ is an arbitrary null reference vector. Gauge invariance of the three-point amplitudes (54)
guarantees that the reference vector drops out, so we can effectively take Pμν(k) → ημν and
the physical-state sum (55) to be the numerator of the graviton propagator in de Donder gauge.

The two three-point amplitudes can be obtained as double-copies of the two-scalar-gluon
amplitudes, as in equation (15). They are

−iM(1, 4, qh) =
κ

2
Ph(

√
2ελμ(q)pμ1 )(

√
2ελν (q)pν1) =

κ

2
(2εh

μν(q)pμ1 pν1), (57)

where, as before, h labels the physical states of the graviton and εh
μν is transverse. This defines

the operatorPh used in equation (54). Using this together with (55), equation (54) then becomes

iMtree, class = −16πiGm2
1m2

2

q2
(2σ2 − 1), (58)

where m = m1 + m2, ν = m1m2/(m1 + m2)2, and σ = p1 · p2/(m1m2). Accounting for the
nonrelativistic normalization of the amplitudes following from the action (49), the resulting
O(G) potential coefficient is

c1(p) =
M4ν2

E1E2
(1 − 2σ2), (59)

where M = m1 + m2, ν = m1m2/M2 and E1,2 =
√

p2 + m2
1,2 are the energies of the two incom-

ing particles.
Similarly, comparing equation (58) with equation (50) and using references [237, 238] it

follows that the leading term of the radial action is

a1(p) = 16πM4ν2(2σ2 − 1). (60)
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Fourier-transforming to impact-parameter space13 leads, through equation (51), to the same
scattering angle as the Hamiltonian.

4.4. 2PM

The next contribution to the potential comes from the four-scalar one-loop amplitude. As we
discussed, the generalized unitarity method provides an algorithmic construction for this and
higher-loop amplitudes, while simultaneously seamlessly singling out the parts exhibiting the
features required of the classical limit and interfacing with the double copy to organize gravity
calculations in terms of simpler gauge theory ones. The one-loop amplitude however is suffi-
ciently simple so we can construct it without making use of the details of the general approach
while still avoiding explicit use of Feynman diagrammatics.

As we discussed on general grounds in section 4.1, to focus on the parts of the amplitude that
do not contain intersecting matter lines it suffices to set to zero in the numerator of all contribut-
ing diagrams the squared momenta of the gravitons connecting the two matter lines—momenta
q1 and q2 on the left-hand side of figure 5. Up to the overall factor of the two graviton prop-
agators, this is the residue of the one-loop amplitude corresponding to the pole q2

1 = 0 = q2
2,

implying that

Mone−loop
4 =

1
q2

1

1
q2

2

∑
h1,h2

Mtree
3 (1, 4, qh1

1 ,−qh2
2 )Mtree

3 (2, 3,−qh1
1 , qh2

2 ) + · · · , (61)

where Mtree are gravitational Compton amplitudes and the ellipses represent terms that are not
long-range classical. This avoids discussing the details of assembling the two finer contribu-
tions to the classical amplitude shown on the right-hand side of figure 5 since equation (61)
automatically contains both. At higher loops however the most efficient strategy is to use the
generalized unitarity method based on tree amplitudes with the fewest numbers of legs.

The two Compton amplitude factors follow from the double copy of the dimensional reduc-
tion of higher-dimensional four-gluon amplitude, with two gluons taken in the extra dimen-
sions. The dilaton-axion scalar is projected out from the product of each pair of intermediate
gluons so the remainder are only the physical states of two gravitons. The sum over each them
gives the physical-state projector (55) used in the tree-level computation. A judicious choice
of polarization-stripped amplitudes [250] leads to a manifest cancellation of the reference vec-
tor. Such choices, which can involve adding terms that vanish on-shell to allow amplitudes to
manifestly obey Ward identities, have been shown to always be possible [149].

The Compton amplitude may also be obtained through the KLT relation, as in
equation (24)14. In this case M1−loop is written as

Mone−loop
4 =

1
q2

1

1
q2

2

(q2)2
∑

λ1,λ2,λ̃1,λ̃2

Ph1Ph2Atree
4 (1, 4, qλ1

1 ,−qλ2
2 )Atree

4 (2, 3,−qλ1
1 , qλ2

2 )

× Atree
4 (1, 4,−qλ̃2

2 , qλ̃1
1 )Atree

4 (2, 3, qλ̃2
2 ,−qλ̃1

1 ) + · · · , (62)

where Ph1 and Ph2 project out the dilaton and antisymmetric tensor from the product of two
gluon states. The sum over the gluon states is given by equation (56) and together with Ph1

13 Note that this is a two-dimensional Fourier-transform, because the on-shell conditions on the external states constrain
the momentum transfer q to be two-dimensional.
14 Unlike equation (54), the dilaton contribution to the four-point tree amplitudes entering Mone−loop is projected out
by simply choosing the external (cut) lines to be gravitons.
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and Ph2 gives again equation (55). In four dimensions and in spinor-helicity notation this is
straightforward [95]: one simply correlates the helicities of the gluons in the two amplitude
factors, (λ1, λ̃1), (λ2, λ̃2) ∈ {(+,+), (−,−)}, so the scalar states {(+,−), (−,+)}never appear
in the product. Four-dimensional methods continue to produce correct results at O(G3) [95];
at higher orders however more caution is necessary because of subtleties with dimensional
regularization [237].

The result of either of these methods is then reduced to the standard one-loop basis of scalar
box, triangle and bubble integrals; during the calculation we enforce the four requirements that
weed out quantum contributions. Discarded contributions are diagrams with crossing matter
lines and graviton loops and the only surviving ones are the box and the triangle integrals
[91, 251]

iMone−loop

64π2G2m1m2
= 4m3

1m3
2(2σ2 − 1)2(IBox + IXBox)

− 3m1m2(5σ2 − 1)(m2
1I� + m2

2I�) + · · · , (63)

where the ellipsis stand for terms that are not long-range or classical or both, and

IBox =

∫
dd�

(2π)2

1
�2(�+ q)2((�+ p1)2 + m2

1)((�− p2)2 + m2
2)
. (64)

IXBox is obtained by interchanging p2 and p3 and I� and I� are obtained by removing one of
the matter propagators with masses m2 and m1, respectively. While at this order integration is
quite straightforward, it becomes less so at two loops and beyond; see chapter 4 of this review
[252] for modern techniques and results.

Accounting for the nonrelativistic normalization of the amplitudes following from the action
(49), the resulting O(G2) potential coefficient is

c2(p) =
M5ν2

E1E2

(
3
4

(1 − 5σ2) − 4MνE
E1E2

σ(1 − 2σ) − M3ν2E
2E2

1E2
2

(
1 − E1E2

E2

)
(1 − 2σ)2

)
, (65)

where E = E1 + E2. One may recognize the first term in parenthesis as the coefficient of the
triangle integrals in equation (63); the other two terms originate from the subtraction of the
term with stronger-than-classical scaling present in the box integral.

Separating the iteration of the tree-level radial action (60) as in reference [238], leads to the
O(G2) term of the radial action is

a2(p) = 6π2ν2M5(5σ2 − 1). (66)

As at O(G), observables following from the radial action thus derived agree with those follow-
ing from the two-body Hamiltonian.

4.5. Remarks and outlook

The methods summarized above have been used to derive the two-body potential and the
radial action that capture the suitably-defined [237] conservative open-orbit dynamics through
O(G4). An essential ingredient in these calculations has been the double-copy form of tree-
level gravity amplitudes in terms of gauge-theory amplitudes. Similarly, the KMOC formalism
together with the double copy as a means for deriving the necessary amplitudes has been used
to derive the impulse and energy loss through O(G3) [253–255]. Further progress may build
on double-copy constructions with gauge-invariant kinematic numerators [170, 246] obtained
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from recent developments in the kinematic algebra of gauge theories [60, 256]. Spin can also
be incorporated into this framework [231, 257]. Here the double-copy properties are less obvi-
ous, though at least to quadratic order in the spins the gravitational Compton amplitudes have
simple double-copy relations to gauge theory, and so does the tree-level energy momentum
tensor for any power of spin [231]. A double copy for massive particles with spin including
quantum effects was also discussed in reference [256].

5. Conclusions

In this mini-review, we summarized the status of color-kinematics duality and the associ-
ated double-copy construction, including the basics of color-kinematics duality, the web of
theories linked by the double copy, and applications to gravitational-wave physics. In recent
years there has been considerable interest in color-kinematics duality and the associated dou-
ble copy, especially towards finding new classical solutions where the double copy holds (see
e.g. references [63–90, 258, 259]), identifying supergravity theories admitting a double-copy
construction (see tables 1 and 2), and applying the double copy to physical problems such
as precision gravitational-wave computations (see e.g. references [93, 95, 237, 238, 246]).
There has also been important progress on basic questions such as identifying the underlying
kinematic algebra behind color-kinematics duality [22, 54, 56, 58, 60–62].

There are a number of obvious future directions which have attracted recent attention, seen
exciting progress, and will be interesting to investigate further:

• Identifying new classes of classical solutions where the double copy holds, especially for
cases that do no rely on the special properties of Kerr–Schild form of the metric [64–66,
75, 76]. More generally, it would be important to find rules for choosing good coordinates
and gauges that make double-copy relations more transparent.

• Realizing generalizations of scattering amplitudes in (A)dS that manifest the duality
between color and kinematics [260–265].

• Further understanding the underlying kinematic algebra behind the duality between color
and kinematics. A natural expectation is that the kinematic Jacobi identities are due to an
infinite-dimensional Lie algebra [266]. Finding a complete description of such an algebra
remains an open challenge, albeit with recent growing attention and progress [21, 60–62,
121, 267, 268].

• Expanding the web of theories linked by double-copy relations described in section 3.
This includes finding further non-gravitational examples beyond those listed in table 3
and understanding whether all supergravity theories are necessarily double copies.

• Carrying out new state-of-the-art computations of physical or theoretical interest. Recent
examples are high-order calculations in gravitational wave physics [95, 237, 238]. The
recent construction of the six-loop integrand of N = 4 SYM theory [269] suggests that
analogous progress is possible for N = 8 supergravity, with a goal of obtaining the ultra-
violet behavior.

• Identifying and developing novel directions. Recent examples include finding color-
kinematics duality in a non-abelian version of Navier–Stokes equation of fluid mechanics
[270], Chern–Simons theory [62], quantum entanglement [271] and field-space geometry
[272, 273].

• Finding new connections between the double copy and other advances in scattering ampli-
tudes, such as the amplituhedron [274, 275], integrated high-loop results for planarN = 4
SYM theory (see e.g. reference [276]).
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The duality between color and kinematics and the associated double-copy structure offer
a novel perspective on gravity theories compared to more traditional geometric approaches.
They were originally formulated for flat-space perturbative scattering amplitudes, where they
offer insight and tools to address a variety of problems. Based on large numbers of known
examples, the double copy applies much more generally, not only to classical solutions but
also to a web of interlocked gravitational and nongravitational theories. The surprisingly large
web of theories included in figure 4 suggests that (quantum) field theories have new nontrivial
hidden constraints, as suggested by the fact that the number of building blocks is smaller than
the number of consistent theories. In the coming years, it will be fascinating to find out the
reach of these ideas both on the computational and theoretical sides.
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