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Plot of the rotational velocities of OB stars in the Andromeda galaxy. The
data points are rotational velocities derived from the N II emission lines of
bright OB stars. The solid curve is a polynomial fit to the data. [122]

Left: Color images of the Bullet Cluster, taken by the Magellan. Right:
Image of the Bullet cluster from the Chandra X-ray Observatory. In both
panels, the white bar corresponds to 200 kpc, and the green contours are
the x from weak lensing (see §A.1 for more on lensing). The white contours
are the 68.3%, 95.5%, and 99.7% confidence level of the peak positions. The
blue plus symbols are the locations that were used for the center of the gas
clumps. [26] . . . ..
Anisotropies in the CMB showcasing temperature variations, with the red
spots corresponding to colder and denser regions, and blue spots to regions
that are hotter and less dense. Credit: ESA and Planck Collaboration.
Power spectrum of the CMB, showing the amplitude of the temperature
fluctuations with respect to the scale, or multipole. Larger multipoles
correspond to smaller scales. The points with error bars are data from Planck,
WMAP, ACT, and SPT (the error in the multipoles is not shown here). The
curve is the predicted ACDM model from Planck. Acoustic peaks appear
at the largest scales (lowest multipoles, as well as a damping region for the
smallest scales (highest multipoles). From [150]. . . . . . ... ... ... ..
Left: 3D map of the distribution of galaxies out to 2 Gly from the Sloan
Digital Sky Survey (SDSS). Each point represents a galaxy colored by age,
with redder being older. The regions in the two gaps that are void of data
were not mapped due to the dust in the Milky Way obscuring the view of the
SDSS. Credit: M. Blanton and the Sloan Digital Sky Survey [155]. Right:
A slice of the dark matter distribution from the Millennium simulation. The
slice has a thickness of 15 Mpc/h. The full N-body simulation has a box
length of 500 Mpc/h. Credit: Millennium Simulation. . . . . . . ... .. ..

Masked HST image from [59] along with tNFW and tNFWmult models and
their residuals. Also seen is the critical curve, which shows the perturbation
by the dark substructure in the upper left. [92] . . . . . . ... ... ... ..
Projected density profiles for the elliptical models (left panel) and models with
multipoles (right panel). [92] . . . . . . .. ..o
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Projected mass profiles for the tNFW and tNFWmult models. While the mass
profiles differ substantially, near the perturbation radius at around 1 kpc, the
projected masses converge to a similar value. [92] . . . . ... ... .. ...
Projected dark matter mass within 1 kpc with respect to the total mass for
subhalo sample in the hydrodynamical run (left panel (a)) and DMO run
(right panel (b)). Gray triangle points are the full spherical average over 1000
LOS, and colored circles are the LOS giving the top 10% highest density in 1
kpc. Panel (a) circles are color-coded by M, (1 kpc). We include the 20 error
bands for Msp pa(1 kpe) in the tNFWmult model. . . . . . . ... ... ..
Slope of the surface density profile versus projected mass in 1 kpc. Here, we
limit the sample to the range M (1 kpc) = 2 — 5 x 10°M and vop < —0.5
for both the hydrodynamical (panel (a)) and DMO (panel (b)) runs. Color
conventions for markers are the same as in Fig. 2.4. Both panels include the
68% and 95% contours from lensing constraints for the tNFWmult model.
Included is the cosmological relation for dark matter for z = 1, 3, 5 at 3o.

Fraction of mock observations in our sample that have a log-slope steeper than
a given threshold v9p(0.75-1.25kpc). Only observations where Msp(1kpe) is
within 3 — 4 x 10°M,, are included. The 95% confidence in 7,p from our
tNFWmult model is shown as the vertical shaded bar. Each subhalo in our
mock observations is averaged over 20 similar LOS. Fewer than 1% satisfy the
lensing constraints. . . . . . ... ...

The velocity-dependence of self-interactions, (ov)/m, vs the mean scattering
velocity (v). The blue and red points represent, respectively, our fits to the
galaxy groups and clusters. The closed and open circles are SIDM fits without
AC, and with AC, respectively. Gray points are mock SIDM-plus-baryons
simulations with 1cm?/g from [118]. The shaded region represents the space
in which SIDM solves the core-cusp problem. The solid line represents (ov)/m
for a dark matter mass of 15 GeV and dark photon 11 MeV. [124] . . . . ..
Density profiles for the group CSWAG. A set of curves for CDM (yellow),
and SIDM with 0.1 cm?/g (blue) and 1cm?/g (red) for SAC, MAC, and pure
NFW. As also include the baryon profile. We use the fixed parameters Msoy =
1088 My, ¢ =109 and Y, =10%4. . . . . ...
Group CSWAG stellar velocity dispersion for CDM and SIDM for the same
AC prescriptions and mass and concentration parameters as in Fig. 3.2. . . .
Mg versus c for the groups and clusters in our analysis for the cases of SIDM
and CDM (without AC). The dark gray band is the median MCR from CDM-
only simulations for 0.19 < z < 0.45. The light gray band is a spread of
40.15dex in the concentration. . . . . . . . ... ... L.
Fitted (Maq, ¢) values for the simulated clusters. The left panel centers a prior
on the My derived from galaxy kinematics, while the right panel corresponds
to a prior centered on the true Msyy. The band is the MCR for z = 0 with a
+0.15dex spread inc. . . . . ...
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(Left) The central density as a function of the core radius, normalized by the
NFW parameters pg, rs. The initial time step in our gravothermal code is
denoted by tinitial, While teore is the time of core formation, when the central
density hits a minimum. The flow of time (shown with arrows) reveals a stark
increase in central density and corresponding shrinking of core radius after
core formation. (Right) p./ps with respect to shifted time, normalized by t.
(Eq. (4.8)). We include an inset to make clear how the collapse times vary for
each halo. When the halo transitions from LMFP to SMFP, we use dashed
lines. Models in both panels are the same and are the main models of the
paper (see the parameters in runs 1 — 5 of Table 4.1). . . . . ... ... ..
(Left) p./ps, versus the central 1D velocity dispersion normalized by Vi,
with each run having o.o/mam ~ 5cm?/g fixed for n = 0,1,2,3,3.7 for the
main five models, as in Fig. 4.1. We have used the upper horizontal axis to
show the shifted time to highlight the fact that most of the evolution is spent
around core formation (for the time axis, we chose Run #5 of Table 4.1).
Again, dashed lines indicate the core is in the SMFP. (Right) The same as the
left panel, except here, we fix n ~ 0 and n = 3.7 for various ¢ (details listed
in Table 4.1). . . . . . ..
(Left) SOV constants ¢; and ¢y from Eq. (4.18) vs. v./Vinax. Horizontal gray
lines are the predictions for ¢ 2, with ¢; = 2.322 x 1073, co = 9.704 x 10~*
for n = 4 [88] and ¢; = 1.903 x 1073, ¢; = 8.092 x 107* for n = 0 [8].
(Right) Log derivative of the central density vs. v./Viyax. Horizontal gray
lines are predictions of aw = 2.208 for n = 4 [88] and a = 2.190 for n = 0 [§]
using Eq. (4.22). For both panels: dotted vertical line indicates time of core
formation; top horizontal axis shows the shifted time normalized by t.o (run
5 of Table 4.1 is used for the time in the figures); o.o/mam =~ 5em? /g is fixed
for various n as shown in the legend. a = 2.192,2.195,2.199, 2.204, 2.207 for
n=20,1,2,3,3.7 respectively. . . . . . . ... ... ...
(Left) The central velocity dispersion at the LMFP to SMFP transition,
normalized by v.o, with respect to ¢ for halos in our models with n ~ 0
and n = 3.7. The predicted scale in Eq. (4.24) is plotted as solid gray lines.
(Right) The collapse time, fe, vs. & for n ~ 0 and n = 3.7. Dotted gray
lines are the f. shown in Fig. 4.1. Collapse times become delayed for larger
0. Circled diamonds are the models shown in the main text. For n = 3.7,
points left of the circled diamond are halos that do not reach SMFP, thus are
not shown in the left panel. . . . . . . . .. ... ... ... ... ...
The velocity dispersion profiles, density profiles, and log slopes of these density
profiles for n ~ 0 in the top row and n = 3.7 in the bottom row. Time step of
each profile plotted is listed in the legend (f = (£ — teore)/te0). Dashed part of
the curves represent the part of the halo that has entered the SMFP regime.
We show the initial NFW profile in dashed-dotted gray. The dashed-dotted
gray curves represent the initial NF'W profiles. We show the a computed from
Eq. (4.22) in the third column. . . . . . . . .. ... .o
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SOV constant ¢; vs v,/ Viax. Dotted lines are computed the same way as those
shown in Fig. 4.3, using Eq. (4.18), while solid lines come from Eq. (4.25).
The figure highlights the deviations from the requirements for self-similarity
of halos via the differences between the two methods. . . . . . .. ... ..

(Left) The log slope of the central density as a function of the central velocity,
normalized by V... Dashed lines represent the SMFP evolution of each halo.
The black horizontal line shows the v = 10 slope the halos asymptote to after
the v = 10 transition (indicated by diamonds). The stages of gravothermal
evolution are labeled and described in Sec. 5.3. The orange curves have larger
¢ and thus transition into the SMFP regime earlier. We indicate the division
of stages for each set of curves separately with vertical dashed (dotted) lines
for the blue (orange) curves. (Right) The quantity tcond/tayn as a function of
Ve/Vinax- The conduction timescale is tcong = tLvrp +tsmrp, where tpypp = tep
and tgvpp is defined in Eq. (5.17). The dynamical timescale ¢4y, is defined in
Eq. (5:20). . . .
(Upper Left) The evolution of the core mass as a function of the central
velocity, normalized by the LMFP scales as in 023, taken at core formation.
The dashed lines represent the evolution in the SMFP regime, where for large
e, the scatter in the halos is large. (Upper Right) Same as panels to the left,
except here we normalize with the new scales in the SMFP, M. 19, v¢ 10, when
the halos have reached the SMFP universal solution at the slope v = 10.
The scatter in the SMFP lines has decreased significantly and shows an
approximate universality. (Lower Left) Same as figure above, but here it is the
central density as a function of velocity. (Lower Right) Same as figure above,
but here it is the central density vs. central velocity, both normalized by new
scales pc10,Vc10. A more detailed explanation of our parameter definitions
and notations can be found in Table 5.1. . . . . . . ... ... ... ... ..
(Left) The evolution of the central density as a function of time, shifted and
normalized to the time maximal core is reached as defined in O23. One can
see that for different 0., the collapse times differ. (Right) Same as the left
plot, except the time here is shifted and normalized to the time the halos enter
the v = 10 phase, where the curves line up relatively well as we are already in
the self-similar solution. Note that here, the time the curves enter the v = 10
phase is not analytically determined, thus resulting in the scatter. . . . ..
(Left) The velocity dispersion as a function of radius for Stages 0, 1, 2, and
3. The upper row is for a small 6 with n = 3.7 corresponding to run 8 in
Table 5.2, and the lower row is for large & with n = 1 corresponding to run
13 in Table 5.2. (Middle) Density as a function of radius. (Right) Slope of
the density profile with respect to radius. . . . . . . . . ... ... ... ..
¢ as a function of v./Viyax. The dashed curves are obtained using Eq. (5.36)
for ¢, and the solid ones obtained by using Eq. (5.14) for £. The dotted line
indicates the line to which the curves tend to, which is £ ~0.11. . . . . ..
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(Left) The v.19/v. s to n.rs relation plotted as a black curve, fitted to our
numerical results (diamonds). (Right) Same as the left, but for the p.10/pc1s
to nerg relation. ..o oo oo
(Left) peao/pers VS Ve10/VeLs shown as a black curve fitted using the fits in
Figs. 5.6, plotted over our numerical runs (diamonds). (Right) Plot of the
Ne10 to neps relation, fitted using the same relation as in the left panel of
Fig 5.6, o oo e
(Left) The ratio of M, r1/Mago with respect to the halo mass Mg for a cross
section of 0oK, = 100cm?/g at v = 20km/s with w = 1km/s and w =
10*km/s (labeled). The band for the velocity independent model overtakes
the velocity dependent one for masses larger than 10 M. The gray hatched
shaded regions are those that do not collapse within the age of the universe
(see right panel). (Middle) Same as the left panel, but for the core mass at
the LS transition. (Right) Collapse time as a function of the halo mass for
the same models as in the left panel, with the gray hatched shaded region
above the line at (13.7 Gyr) indicating collapse times longer than the age of
the universe. The bands for the cases of w = 10*km/s and w = 1km/s
are labeled in the figure. The purple shaded bands in all the figures cover
a concentration of +0.3 dex around the median, represented by the dark
purple line. In the first two figures, the upper (lower) bound of the bands
correspond to higher (lower) concentration, while in the rightmost figure, the
upper (lower) bound represents the lower (higher) concentration, indicating
that higher concentration halos collapse faster. . . . . . . ... ... ... ..
(Left) Comparison between the numerically obtained and analytically
predicted central velocity at LS transition, plotted as a function of the
analytic central velocity at the LS transition. The difference between them
is very small, within ~ 2.6%. (Right) Comparison between the numerically
obtained and analytically predicted central density at LS transition, plotted
as a function of the LS transition central density. Here the analytic and
numerical values differ by at most ~ 25%. It is unsurprising that the central
density is a bit less accurate as it is the parameter that changes drastically. .
(Left) The LS transition mass normalized by the core mass at LS transition
as a function of central velocity. (Right) The LS transition radius normalized
by the core radius at LS transition as a function of central velocity. . . . . .
Plot of n as a function of v., plotted by holding the corresponding w constant
for each curve. The triangles show the n. and v, for the LS transition, and
the diamonds are for the v = 10 transition, obtained analytically. In both
cases, the solid markers are for runs 1-8 (lower ¢, and open markers for runs
9-16 (higher &), as shown in Table 5.2. The solid lines are plotted using K,
while the dashed lines use K @)
Mass at LS transition as a functlon of "iﬁFP for 4 cases, corresponding to
Runs 5, 8, 13, 16. The curves each correspond to profiles that are in Stage 3
of the evolution. . . . . . . .. . .o
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In self-interacting dark matter (SIDM) halos undergoing gravothermal evolution, the cores
of halos are driven into the short-mean-free-path (SMFP) regime and undergo core collapse.
In this dissertation, I study generic SIDM models with velocity-dependent cross-sections and
elastic scattering, in SIDM halos experiencing gravothermal collapse. We study the structure
and dynamics of halo cores in the SMFP and discover a new approximate universality deep
in the SMFP regime. This new SMFP universality allows for the mapping of velocity-
dependent cross sections to constant ones in this regime, offering improved predictions for
physics occurring in the SMFP evolution of SIDM halos. We devise a semi-analytic recipe to
predict the entire SMFP evolution of halos with our newfound SMFP universality by relating
this new phase to the long-mean-free-path (LMFP) regime. This methodology streamlines
the procedure of acquiring core properties within the SMFP regime and allows for estimates
of the minimum mass of the black hole left behind, using simply the initial halo characteristics

and particle physics parameters.
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Chapter 1

Introduction

The field of cosmology strives to unravel the mysteries of our universe, tracing its evolution
from the earliest moments to its eventual fate. A fundamental goal of this field is to
determine the universe’s composition, which includes the mysterious and elusive dark matter,
constituting approximately 27% of the universe’s total mass-energy density. In contrast,
baryonic matter makes up about 5%, while dark energy comprises the remaining 68%. These
components, along with the flat spacetime geometry of the universe, form the cornerstone
of the standard cosmological model known as A-Cold Dark Matter (ACDM). The role of
dark matter is pivotal in the formation of cosmic structures, making its study crucial for

understanding the universe’s structural evolution.

The concept of dark matter was first proposed by Swiss astrophysicist Fritz Zwicky in
the 1930s. Observing the Coma cluster and using the virial theorem, Zwicky discovered
that the visible matter was insufficient to account for the observed galactic velocities,
leading him to conclude that there must be a large amount of invisible matter holding
the cluster together [159, 160]. He called it “dunkle Materie”, which means “dark matter”

in German [159]. It was not until the 1970s that the concept of dark matter gained traction,



thanks to American astronomer Vera Rubin and her colleague Kent Ford. Their observations
of the Andromeda galaxy’s rotation curve revealed stars moving at nearly constant speeds
irrespective of their distance from the center [122]. These observations furnished the first
compelling evidence of dark matter’s existence, ushering an enduring quest for a particle

that, until this day, remains elusive.

The ACDM model has served as the standard cosmological framework in the fields of
cosmology and astrophysics. Its successes are undeniable: it provides an accurate description
of large scale structure and the Cosmic Microwave Background (CMB) [135, 111, 137].
However, the model faces challenges on small scales® [84, 148]. These challenges include the
“core-cusp” problem, where observed dark matter halos display central cores instead of the
predicted CDM cusps [94, 51], the “missing satellites” problem regarding the discrepancy in
the predicted and observed number of satellite galaxies in the Local Group [79, 51|, the “too
big to fail” problem related to the absence of massive galaxies predicted by ACDM [19], and
the diversity problem concerning the variation observed in dwarf and low surface brightness

galaxy rotation curves that cannot be explained by CDM [105].

To address these discrepancies, researchers have proposed alternative models to ACDM,
with many focusing on a dynamic dark sector. A prominent candidate is self-interacting
dark matter (SIDM), where dark matter particles scatter via non-gravitational interactions.
SIDM emerged as a solution to the small-scale issues, initially featuring constant cross-section
contact interactions that transformed central density cusps into cores, thus addressing the
core-cusp dilemma [135]. Recent observations suggest that the SIDM cross-section must be
velocity-dependent to align with observations at both dwarf and cluster scales [1, 139, 75].
This enables SIDM to maintain the large scale successes of ACDM while resolving its small

scale conflicts. The self-interactions in SIDM give rise to gravothermal evolution, potentially

'See Appendix A.2 for a detailed account of these problems.



explaining the formation of supermassive black holes (SMBHs) in the early universe [8, 7,

50, 83, 91, 103, 106, 112].

In this dissertation, I present a series of significant contributions I have made to the study of
dark matter, particularly focusing on the exploration of SIDM. These include my substantial
work in a study where I use the IllustrisTNG simulations [99] to highlight the challenges CDM
faces in explaining the high concentration of a dark substructure observed in the gravitational
lens SDSSJ0946+1006 [92]. This study underscores the limitations of the standard CDM

paradigm in certain astrophysical contexts.

Furthermore, I have co-authored research supporting velocity-dependent cross sections in
SIDM [124]. This work tests the effects of adiabatic contractions on the SIDM cross
section, examines the concentration-mass relation for SIDM, and places the first group scale

constraints on the SIDM cross section.

In another key piece of research I co-authored that explores the long-mean-free-path
(LMFP) regime of SIDM halos undergoing gravothermal evolution [106], I made significant
contributions to generalizing the LMFP self-similar and universal solutions to velocity

dependent cross sections for the first time.

Finally, I led a study that uncovers a new universality in the short-mean-free-path (SMFP)
evolution of SIDM halos [58]. This work provides a comprehensive characterization of the
SMFP evolution of halos. A noteworthy achievement of this research is the development of
a method to analytically predict key characteristics of the cores of SIDM halos undergoing
SMFP evolution, assuming elastic scattering. This semi-analytic framework bypasses the
necessity of running time-intensive numerical gravothermal code, thereby streamlining future
research in this area. It enables a deeper exploration of gravothermal evolution in SIDM
halos and provides a guide for future simulations investigating black hole formation from

gravothermal collapse.



Collectively, my research contributions advocate for exploring the dark sector and emphasize
the necessity of velocity-dependent cross sections in dark matter self-interactions. This
perspective is bolstered by emerging studies indicating the presence of core-collapsed halos
in dwarf galaxies [130], as well as the potential of core collapse to produce supermassive

black hole seeds [7, 50, 91, 103, 55].

The subsequent sections of this chapter will outline critical topics in cosmology, examine the
evidence supporting the existence of cold dark matter, introduce the concept and motivations
behind SIDM, and explore the particle physics aspects of SIDM. The following chapters
will detail my contributions and address the significance of the problems addressed in each
project. Finally, I will conclude by summarizing the implications of SIDM and gravothermal
collapse in our quest to understand the particle physics nature of SIDM, in an effort to

unravel the longstanding question of the particle properties of dark matter.

1.1 Modern Cosmology

Cosmology delves into the profound questions regarding the universe’s origin, structure,
evolution, and ultimate fate. It seeks to understand what the universe is composed of and
the laws governing its behavior. Its main framework, the Standard Model of Cosmology, is
commonly referred to as the ACDM model. Here, A stands for the cosmological constant,
representing dark energy, within a flat and homogeneous universe, while CDM is cold dark
matter. This model is predicated on key assumptions. Chief among them is Einstein’s
Theory of General Relativity, which provides the framework for understanding the universe’s
geometry and dynamics. Additionally, the model assumes that the universe is homogeneous

and isotropic at large scales. This uniformity, however, breaks on small scales, yielding to



tiny density fluctuations? in the Cosmic Microwave Background (CMB), the vestiges that

have guided the formation of galaxies we observe today.

The ACDM model further posits that the laws of physics are invariant across the universe and
throughout its history. It postulates that the universe was birthed from a hot, dense state
called the Big Bang, and experienced a period of rapid inflation. Integral to this model is the
existence of dark matter and dark energy, which are crucial to the universe’s evolutionary

history. This section is based on material in the following sources: [42, 123, 86, 68].

1.1.1 Standard Model of Cosmology in a Homogeneous Universe

The foundation of the standard model of cosmology is based on the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric, which describes a universe that is both homogeneous and

isotropic. For a Euclidean (spatially flat) universe, the FLRW metric can be expressed as

follows:
ds?® = Gudxtdz”
Goo(x,t) = —1,
(1.1)
gOi(X7 t) = O 9

9ij(x, 1) = a®(t)dy,

where a(t) represents the scale factor.

2These fluctuations are on the order of 1 part in 100,000 [42, 123].



The Friedmann equations, which are derived from Einstein’s field equations, form the

backbone of the cosmological model. The field equations are:

G, + Agy = 87GT),,

1
G;w = R,uy - §g,LWR7 (12)

R=g¢"R,,,

where G, is the Einstein tensor, R, is the Ricci tensor, I is the Ricci scalar, and T}, is

the energy-momentum tensor.

The Friedmann equations succinctly encapsulate the dynamics of a homogeneous and

isotropic universe:

N
a 1 K
= (5) =55

a

a ArG
== (3P,

(1.3)

Here, H denotes the Hubble parameter, p is the density, P is the pressure, and & is the

curvature term, which is negligible in a flat universe.

A key concept is the density parameter, derived by normalizing the density to the critical

density pe = 3HZ /871G and recasting Eq. 1.3 in terms of the Hubble constant Hy:

o2(t) _ p(t) —3(1+ws -2
M7= gy = 2 Qa0 4 Oula)] (14)

) refers to the density parameter for each constituent s (radiation, neutrinos, matter, dark
energy) of the universe, with wy as the equation of state parameter for each constituent. The

term g, which signifies curvature, is negligible for a flat universe.

The geometry of the universe is encoded within these parameters. A universe with 2 < 1

exhibits negative curvature, while €2 > 1 implies positive curvature. In our universe, 2 = 1



indicates flat geometry, hence (2x = 0. These equations not only govern the expansion and
geometry of space but also detail the evolution of the scale factor a, which encapsulates the
expansion history of the universe. The matter energy density evolves with the expansion
as o< a~3, radiation energy density as oc a~*, while the cosmological constant A remains

invariant through the expansion.

1.1.2 Cosmological Redshift

Cosmological redshift is a fundamental concept in observational cosmology, offering a crucial
link between the observed properties of distant celestial objects and the universe’s expansion.
This phenomenon occurs as the universe expands, causing the wavelengths of photons
traveling through space to stretch, thus shifting them towards longer, redder wavelengths —

a process known as “redshifting.”

To understand this better, it is useful to relate the scale factor of the universe to the redshift.

This relationship is described as®:

7 (1.5)

where z represents the redshift. It is important to note that redshift, as a measurable
quantity, is integral to observational astronomy. This is because redshift allows us to calculate
the distance to celestial objects by assessing the extent to which the light they emit has been

redshifted. The equation for redshift is given by:

Y

5= Aobs — Aemit (1.6)

/\emit

3More generally, the equation is Z—O =3 +1Ze where the subscript e stands for “emitted” (it is the scale
factor and redshift taken at the time the photons measured were emitted), and ag is the scale factor today,

which is equal to 1. Setting ap = 1, and removing the subscripts e, yields the equation given.



where At is the wavelength of the light at the time it was emitted, and Ao is the wavelength
observed upon reaching our telescopes. Additionally, redshift serves as a valuable metric for

estimating the universe’s rate of expansion.

1.1.3 Distances in an Expanding Universe

Understanding distances in an expanding universe is crucial in cosmology. The expansion
of the universe is characterized by the Hubble parameter, H(t), which describes the rate of
expansion as a function of time. Its inverse, the Hubble time ¢ty = H(t)™!, approximates

the age of the universe, assuming a linear expansion since the Big Bang.

The Hubble time can be used as a gauge for the time scale of processes on cosmological
scales. For example, processes with time scales shorter than a Hubble time occur within
the age of the universe, and thus, should be observable. We determine the universe’s age

through the lookback time, defined as:

t ag da/
== "

where we have used Eq. (1.3) to transform from ¢ to a. Transforming this into a form

involving redshift z, we get:

1 z dz'
foge = F/ 1+ 2)E@) (1:8)

with F(z) representing the Hubble parameter’s evolution:

H(z)
Hy

= F(2) = VO (1 + 2)2 + Qu(1 + 2)* + Qp + Q(1 + 2)2. (1.9)

This formulation is more practical since the redshift z is an observable.



The Hubble radius Dy = aH ' marks the distance at which objects recede at light speed.
Objects beyond this distance recede faster than light, yet we can observe some objects that
were within the Hubble radius at the time when they emitted the light now reaching us. The
particle horizon defines the observable universe’s boundary, marking the farthest distance
from which light could have reached us since the Big Bang. The cosmic event horizon,

conversely, delineates the boundary beyond which light emitted today will never reach us.

Measuring distances in an expanding universe involves understanding both proper and
comoving distances. Proper distance is the physical distance between two points at a given
time, increasing over time due to expansion. Comoving distance measures the distance with
the universe’s expansion factored out, and is thus unaffected by the expansion. The comoving
distance along the line of sight is expressed as:

z9 dz/
YL THEY

Z1

(1.10)

The proper distance is thus simply D,, = a(t)x.

The angular diameter distance D 4, another crucial measurement, relates an object’s angular
diameter in our sky to its physical size, accounting for the effects of the expansion.
Interestingly, up to about z ~ 1, the angular size of an object appears to increase, but

decreases beyond z ~ 1. For a flat universe, D4 is given by:

Dy

Dy —
A 142

: (1.11)

where the transverse comoving distance Dy, = x as given in Eq. (1.10) for a flat universe,
Dy = DHQ,;l/2 sinh (Q,lg/Qx/DH) for a negatively curved universe with €, > 1, and
Dy = Dy(|Q%])~Y2sin ((|Q%])/2x/Dy) for a positively curved universe with €, < 1.
Another useful quantity to measure with observations is the luminosity distance. When we

observe distant objects, the light we see is dimmed =2, and redshifted due to the universe’s



expansion. Assuming the luminosity of an object is known, as is the case with type la
supernovae which always have the same luminosity and are used as standard candles in
astronomy, you can then relate the flux of the object to its luminosity and distance through

F = L/(4wD%). With this, one can find its distance after factoring in the effects of redshift:

Dy =(1+42)Dy = (1+2)*Dy. (1.12)

With these distances, we can correlate observations with theoretical models, enhancing our

understanding of the universe’s expansion and structure.

1.1.4 Inhomogeneous Universe and Structure Formation

Structure formation in the universe is a process that originates from the minute quantum
fluctuations during the inflationary period, a phase of rapid exponential expansion in the
early universe [67]. These initial fluctuations grew with the expansion, and once frozen
in at the end of inflation, became the seeds for the cosmic structures we observe today.
Without these perturbations, our universe would be represented by the idealized perfectly
homogeneous metric in Eq. (1.1), and would lack the rich breadth of galaxies, clusters, and

large-scale structures we see today.

The true state of our universe is better captured by a perturbed metric, a deviation from

the ideal homogeneity in Eq. (1.1), can be expressed as*:

goo(x,t) = =1 — 2¥(x,t),
goi(x,t) =0, (1.13)

gij(X, t) = CLQ(t)éw[l + 2(1)(X, t)] .

4This perturbed metric is given in the Newtonian gauge. A full treatment can be found in [96].

10



In this perturbed framework, ¥ represents the Newtonian potential affecting nonrelativistic
objects under gravity, and ® signifies the perturbations in local spatial curvature, crucial for
structure formation independent of the universe’s expansion. These perturbations originate

in the inflation field and grow as space expands post-inflation.

A key component in this process is dark matter, which, due to its non-interaction with
radiation, can clump unobstructed by radiation pressure and form halos. These halos,
initially small in size and mass, gradually merge to form larger structures in a hierarchical

manner, a cornerstone concept in the CDM model.

To understand the evolution of these structures, we rely on the following fundamental

equations:
Continuity Equation:

dp B
E+V~(pv)—0. (1.14)

This equation underlines the conservation of mass within a fluid and governs the time

evolution of density perturbations.

Euler’s Equation:
1

— 4+ (v:-V)v=—=-Vp-V0. (1.15)
p

This encapsulates the momentum conservation dynamics of the fluid.

Poisson’s Equation:

V2P — 47 Gp. (1.16)

11



This equation links the gravitational potential ® to the matter distribution, which is vital

for understanding gravity’s role in shaping density perturbations.

The fractional overdensity, an essential concept in structure formation, is defined as:

p=rpo(l+0d+0(), (1.17)

where § = 0p/py represents the density contrast. In the linear regime where § < 1, higher-

order terms become negligible.

Lastly, the evolution of matter distribution becomes a statistical endeavor, described by the
Boltzmann equation:

a _

7 = CIf], (1.18)

where df /dt governs the collisionless interactions with a distribution function f that depends
on the particle species, while C|[f] is a collision term for fluids with particle interactions. This
equation governs the evolution of particle distributions, accounting for both collisionless and

collisional interactions.

The distribution function for neutrinos is given by the Fermi-Dirac distribution, and for
photons, by the Bose-Einstein distribution. These distribution functions are very important
because these particles are relativistic in the early universe. For non-relativistic particles
like baryons and CDM, because their velocities are much smaller than the speed of light, a

Maxwellian distribution is typically sufficient.

12



1.2 Cold Dark Matter

The concept of CDM is pivotal in our understanding of the universe’s structure and evolution.
CDM is crucial for explaining the observable small-scale structures in the cosmos. For dark
matter particles to form such structures, they needed to be “cold,” or non-relativistic, at the
time of their freeze-out [13, 12, 42]. This characteristic implies that they were moving slower
than the universe’s expansion rate. Had they been “hot,” moving at relativistic speeds, they

would have washed out the small-scale structure [13, 135, 42].

The freeze-out of CDM occurs when the universe cools sufficiently, and the rate of particle
interactions falls below the expansion rate of the universe. This moment depends on various
properties of the dark matter particles, such as mass and interaction characteristics [42].
After this freeze-out, the number density of CDM particles becomes fixed, and they effectively

become invisible, ceasing to interact with other particles [42, 13, 12].

Though invisible, the presence of dark matter is inferred through its gravitational
interactions. Evidence for its existence comes from astrophysical phenomena such as
rotation curves of galaxies, gravitational lensing effects, dynamics of galaxy clusters,

large-scale structure of the universe, and the Cosmic Microwave Background (CMB).

In simulations, CDM is often represented using the Navarro-Frenk-White (NFW) profile [97,
98], a model that has been validated through numerous N-body simulations. The NFW

profile is mathematically described as:

_ Ps
prww(r) = (r/rs)(L41/rg)?’ (1.19)

where pg, 75 represent the scale density and radius, respectively. It is important to note
that real astrophysical systems exhibit variations due to factors like stellar and gas content,

adiabatic contraction, and tidal disruptions, which can modify the profile away from the

13



idealized NFW form. However, the NF'W profile is a good approximation for the dark

matter halo.

1.2.1 Rotation curves

One of the most compelling pieces of evidence for dark matter comes from the observation
of galactic rotation curves. Vera Rubin and her colleague Kent Ford discovered the first
compelling evidence for dark matter in the rotation curve of M31 Andromeda galaxy [122].
Rotation curves plot the circular velocity of stars with respect to the distance from the center

of the galaxy, where the circular velocity is given by

o = GM) (1.20)

circ
r

where M (r) is the enclosed mass given by M(r) = 4x [ p(r')rdr’, r is the distance from
the center, and G is the gravitational constant [14]. The expectation, then, is that the

/2 but what is observed is a different picture: velocities remain

circular velocities drop as r~
relatively constant right our to the edge of the galaxy, as seen in Fig. 1.1. This clearly implies

that a large amount of unseen matter is present.

1.2.2 Galaxy clusters

Galaxy clusters, the largest gravitationally bound structures in the universe comprised of
as many as 1000 galaxies bound together under gravity, reveal that there is more mass
than visible matter alone can account for. Fritz Zwicky inferred that there was at least
400 times more matter than the visible mass can account for in the Coma cluster [159].
He estimated the mass using the virial theorem which states that a gravitationally bound

system in steady-state obeys 2(T) 4+ (U) = 0 [52, 14, 28, 133].
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Figure 1.1: Plot of the rotational velocities of OB stars in the Andromeda galaxy. The data
points are rotational velocities derived from the N II emission lines of bright OB stars. The
solid curve is a polynomial fit to the data. [122]

While he overestimated the mass by a factor of ~ 10 due to the Hubble constant being very
inaccurate at the time, he accurately determined that there was much more matter than

that which is visible [14].

Additional evidence for dark matter comes from X-ray emission of hot gas, which makes
up ~ 10 times more mass in clusters than the stars do [26, 108]. A great example is yet
again the Coma cluster, which contains a large amount of hot gas detected in X-rays with
temperatures of 8.11keV (~ 1 x 10® K) [20]. Since the galaxy mass is only ~ 10% of the gas
mass, it can not provide the required gravitational potential to hold such a large amount of
gas at such extreme temperatures, which indicates that the gravitational potential holding

onto the gas is sourced by dark matter [57].

The Bullet Cluster, as depicted in Fig. 1.2, stands as a crucial piece of empirical evidence

supporting the existence of dark matter. This object is the result of a high-speed collision
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~ 4700 km/s [26, 113], between two galaxy clusters. A notable aspect of the Bullet Cluster is
its composition: it possesses a significantly higher proportion of mass in gas (5 — 15% of the
total mass) compared to stars (about 1—2% of the total mass) [108]. Given that stars behave
as collisionless particles, in contrast to gas which experiences interactions, this scenario
presents an ideal opportunity to study dark matter. In such a collision, dark matter, like
stars, would be expected to exhibit collisionless behavior and thus pass through the clusters
along with the stars, whereas the gas would lag behind due to the drag from its collisional
properties. This is precisely what gravitational lensing observations reveal: the majority of
the clusters’ mass aligns with the galaxies themselves, not with the gas [26]. This conclusion
is shown in Fig. 1.2. The left panel of the figure shows contours tracing the positions of
the clusters post-collision, while the right panel overlays these contours onto an X-ray image
depicting the location of the gas. There is a clear offset between the gas distribution and
the peaks in the contour map, indicating that the primary mass component in the Bullet
Cluster is not the visible gas, but rather, dark matter. These observations from the Bullet
Cluster provide strong evidence for the existence of dark matter, demonstrating that the
majority of mass in these clusters is unseen, consistent with the theoretical predictions and

characteristics of dark matter.

1.2.3 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) provides some of the most compelling evidence
for the existence of dark matter. It is a relic from the time when the universe was
approximately 400, 000 years old, capturing crucial details about the universe’s composition

and the evolution of cosmic structures.

The CMB is essentially a snapshot of the early universe, revealing temperature anisotropies

that are the result of density perturbations present at that time. This snapshot can be seen
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Figure 1.2: Left: Color images of the Bullet Cluster, taken by the Magellan. Right: Image
of the Bullet cluster from the Chandra X-ray Observatory. In both panels, the white bar
corresponds to 200 kpc, and the green contours are the x from weak lensing (see §A.1 for
more on lensing). The white contours are the 68.3%, 95.5%, and 99.7% confidence level of
the peak positions. The blue plus symbols are the locations that were used for the center of
the gas clumps. [26]

Figure 1.3: Anisotropies in the CMB showcasing temperature variations, with the red spots
corresponding to colder and denser regions, and blue spots to regions that are hotter and
less dense. Credit: ESA and Planck Collaboration.
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in Fig. 1.3, from data taken by the Planck observatory. These perturbations, influenced
by gravity, grew over time and eventually led to the formation of the large-scale structures

observed in the current universe.

Analyzing the CMB involves studying its power spectrum, which characterizes the amplitude
of temperature fluctuations across different scales, as shown in Fig. 1.4 [150]. This power
spectrum is crucial for understanding the early universe’s composition and the interplay

between various constituents, including baryons, photons, and dark matter.

The temperature fluctuations in the CMB are closely related to the baryon acoustic
oscillations (BAO) created by the interplay between baryons and photons in the early
universe, when they were tightly coupled. Radiation pressure prevented baryons from
collapsing gravitationally into overdense regions, causing them to undergo BAO. Dark
matter, uninhibited by radiation pressure, was able to clump under gravity to form the

seeds for our universe’s structure.

The power spectrum’s peaks (see Fig. 1.4) provide insights into the universe’s shape and
matter content. The first peak’s position indicates the universe’s curvature. In the CMB
power spectrum, the location of this peak (around [ ~ 200) corresponds to a flat universe.
A negatively curved universe would show smaller perturbations (higher /), and a positively

curved one would show larger perturbations (lower [).

The second peak in the power spectrum is a direct consequence of BAO and sheds light on
the universe’s baryon content. The ratio of the heights of the second to the first peak helps

determine the proportion of the universe’s energy density composed of baryons.

The third peak in the power spectrum is particularly informative about the amount of dark
matter in the universe. Its amplitude is influenced by the depth of the potential wells created

by dark matter. A higher third peak suggests deeper wells, indicating a significant presence of

18



10° 1° 10' 5 3
6000 7!TIITIT' 77I7!I7F7D T 1 771 Fl L L L L] |'\71*.'TT L I I

i\‘, *Planck A
I : «WMAP

I

+
o i : «SPT i
5, 4000 I =
§ | 8 !
/tg L : '. :.u-‘. ’l' i
3 2000 - | Uy ‘
O | w o ?
0 et IS L O R0 0 WYY I 2 OO Y oV A A aih g aia o

2 10 30 500 1000 2000 3000
Multipole ¢

Figure 1.4: Power spectrum of the CMB, showing the amplitude of the temperature
fluctuations with respect to the scale, or multipole. Larger multipoles correspond to smaller
scales. The points with error bars are data from Planck, WMAP, ACT, and SPT (the error
in the multipoles is not shown here). The curve is the predicted ACDM model from Planck.
Acoustic peaks appear at the largest scales (lowest multipoles, as well as a damping region
for the smallest scales (highest multipoles). From [150].

dark matter. The similar amplitude of the third peak to the second peak suggests that dark

matter was the dominant component of matter density during this period of the universe.

1.2.4 Large Scale Structure

The large-scale structure in the universe formed from the seeds created by dark matter during
BAO, when matter was pushed out of the overdensities while dark matter was able to clump
together. This formed a cosmic web, a vast and intricate network of galaxies, clusters, and
filaments throughout the universe. This structure is seen in N-body simulations like the
Millennium Simulation, as shown in the right panel of Fig 1.5. In N-body simulations, only
the physics of gravity, as it pertains to CDM, is taken into account. The resulting cosmic web

seen in these simulations is a testament to the role of dark matter in shaping the universe.
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Figure 1.5: Left: 3D map of the distribution of galaxies out to 2 Gly from the Sloan Digital
Sky Survey (SDSS). Each point represents a galaxy colored by age, with redder being older.
The regions in the two gaps that are void of data were not mapped due to the dust in the
Milky Way obscuring the view of the SDSS. Credit: M. Blanton and the Sloan Digital Sky
Survey [155]. Right: A slice of the dark matter distribution from the Millennium simulation.
The slice has a thickness of 15 Mpc/h. The full N-body simulation has a box length of 500
Mpc/h. Credit: Millennium Simulation.

In contrast, baryonic matter, which interacts with photons, was subject to pressure that
caused it to oscillate in and out of the overdense regions. This oscillation hindered the
ability of baryons alone to form the complex cosmic web observed today. Essentially, baryons
decoupled too late to be able to create the observed large-scale structure within the time

necessary to explain observations today.

This theoretical understanding is strongly supported by observational data. For example, the
3D map of the universe from the Sloan Digital Sky Survey (SDSS) (shown in the left panel
of Fig 1.5) reveals patterns that strikingly resemble those produced in the CDM simulations
(seen in the right panel of Fig 1.5). The similarity between these observed structures and
CDM simulations underscores the importance of dark matter in the formation and evolution

of the universe’s large-scale structure.
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1.3 Particle Physics of SIDM

In understanding the particle physics of SIDM, it is essential to consider the broader context
of dark matter research and the motivations behind exploring models beyond the CDM
paradigm. While the ACDM model has been successful in explaining large-scale structures
in the universe, it encounters challenges at smaller scales (see Appendix A.2 for a detailed
account of these small-scale challenges). This has led to a growing interest in alternative

dark matter models.

Classes of well-motivated dark matter models include particles borne out of symmetries
proposed to address inconsistencies in the Standard Model (SM) of particle physics, and
those that might interact through yet undetected dark forces [32, 66]. Despite extensive
searches, weakly-interacting massive particles, or WIMPs, which are a primary candidate in
the first class of models, have not been detected [5]. This lack of detection has shifted the
focus of particle physicists towards the second class of models, which include dark sector

particles and forces and access a new range of parameter space [1, 32, 66].

The dark sector is characterized by dark matter self-interactions, mediated by new dark
forces. The dark matter can be multi-component, involving more than one type of
particle [112], and can manifest either as elastic scattering, where energy is conserved (as
discussed in my recent work [106] and others [8, 16, 75, 1]), or as inelastic, where scattering
is dissipative [17, 50, 151]. One of the most promising dark sector models is SIDM featuring
a velocity-dependent cross-section, a natural feature of Yukawa models with a light boson
mediator [139]. From a particle physics standpoint, velocity-dependent interactions could be

a hint for the existence of a rich dark sector, comprised of more than one particle.
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1.3.1 The Dark Sector

The dark sector encompasses a range of particles and forces which constitute dark matter
that may or may not be coupled to the SM. It could be composed of one or more particles
that may interact with each other through dark sector forces [53]. SIDM postulates that
interactions among dark matter particles with a dark sector force can lead to thermalization
in halos and redistribution of mass, offering solutions to the small-scale challenges faced by
CDM (see Appendix A.2). These interactions can be mediated by a light mass mediator
like a dark photon, typically in the mass range of 1 — 100 MeV [74, 131]. These interactions
can also arise through resonant scattering which does not require the introduction of light
particles [140, 138]. The interaction Lagrangian for such models varies depending on the
mediator. A model with a light mediator can be described by a vector boson where dark
matter particles are charged under a spontaneously broken U(1) symmetry and interact
through gauge boson exchange, or a scalar boson that mediates self-scattering between dark

matter particles. These interactions can be represented as follows:

G XV X®, (vector mediator)
Zini = ) (1.21)

Iy XX P (scalar mediator)

Here, x denotes the dark matter particle, ¢ represents the mediator, and g, is the dark

matter coupling constant.

Interactions between the dark sector and the SM, if present, can occur through various
mechanisms. Photon kinetic mixing involves the SM photon mixing with a light mass
mediator like a dark photon [131, 74]. Z boson mass mixing involves a new dark sector

Z’ boson mixing with the SM Z boson [74], while the Higgs portal coupling involves a scalar
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dark sector particle interacting with the SM scalar Higgs boson [74]. Given an SM coupling

opens up potential avenues for direct detection of dark matter in experiments [74, 131].

1.3.2 Yukawa Potential and Velocity Dependence

Yukawa potential The velocity dependence of the interaction cross section of SIDM serves
as a guideline for model building [124, 139, 130]. This velocity dependence emerges naturally
in Yukawa interactions, mediated by a light mediator [1, 16, 139]. This interaction can be

described by a Yukawa potential [75] which is characterized by

o
V(r)=+—"e ™", (1.22)

r
where o, = ¢, /47 is the dark fine structure coupling constant, m, is the mass of the

mediating particle, and r is the distance between interacting particles. The +(—) sign

indicates that the interactions are attractive (repulsive) [139, 75].

Velocity dependence The velocity-dependent scattering cross-section is a hallmark of
SIDM that is natural in Yukawa models. It can lead to observable effects on the structure
of dark matter halos on small scales while leaving large scales unchanged. The velocity

dependence is such that the cross section diminishes as the relative velocity increases [139].

The scattering amplitude, representing the interaction probability of SIDM particles, is
the solution to the Schrodinger equation. Solving the Schrédinger equation can be
computationally expensive. The Born approximation, applicable in the a,m, < mg regime
(where m, is the mass of the dark matter particle), simplifies this by assuming minimal

alteration of the wave during scattering [139, 140]. The Born differential cross section is [140]
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do 062 m2

A xx , (1.23)
ds2 (mivfel(l —cosf)/2 + mfb)2

where v, is the relative velocity between the scattering dark matter particles. It must be
stressed that Eq. (1.23) is only applicable in the o, m, < my limit; in the resonant regime,

the Schrédinger equation must be solved. See [140] for a treatment of the resonant regime.

Cross sections Two cross-sections often used to study SIDM interactions in simulations

are the momentum transfer cross-section and the viscosity cross-section. They are given by

do

or = /dQ(l—cos@)dQ

do
= [ dQsin? 60—
oy / sin ok

(1.24)

where df) is over the solid angle [119, 140]. The momentum transfer cross section, oy,
emphasizes the forward momentum transfer, and is weighted by (1 — cos#) which measures
the longitudinal momentum transfer, Ap = p(1 — cosf). Conversely, the viscosity cross
section, oy, emphasizes transverse scattering, weighted by sin? . The viscosity cross section
accounts for the fact that forward and backward scattering impact the dark matter halo
equally, and that scattering in the perpendicular direction is the most efficient for halo

thermalization.

Velocity dependence is incorporated through the differential cross section. For Rutherford-

like scattering with only ¢-channel contributions, it is expressed as [69, 153]:

do 09
do , (1.25)
A 4r (14 2 sin® )

2
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where the normalization prefactor is oy = 47ra3< / (miw‘l) and o, is the dark fine structure
constant as defined in Eq. (1.22), w = mgc/m,, is the characteristic velocity, v is the relative
velocity between scattering particles, and 6 is the scattering angle of the particles. For Mgller-

like scattering with ¢- and wu-channel contributions, the differential cross section is [153]:

do  1oow*[(3cos® 0 + 1)v* + dv?w? 4 4w’]
dQ w (sin® Qvt + 4v2w? + 4wt)?

(1.26)

The choice between momentum transfer and viscosity cross sections depends on the specific
scenario of SIDM interactions. In the case for Mpgller-like scattering where particles are
indistinguishable, the viscosity cross-section should be used as it minimizes forward and
backward scattering which do not affect the distribution of dark matter in the halo, while
emphasizing transverse scattering which plays a crucial role in thermalizing the halo [140, 29].
The momentum transfer cross section, on the other hand, is not well defined for identical
particles and cannot distinguish between forward and backward scattering when particles are
indistinguishable [140, 29]. It is thus more useful for interactions where forward scattering

plays a significant role.
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Chapter 2

Testing CDM and Motivating Physics
Beyond CDM using Gravitational

Lensing

The text in this chapter is based on work in [92]. T was not the lead, but my role in this paper
was substantial. The entire analysis performed using the IllustrisTNG simulations [99] was
performed by me, and most of the section was written by me. I will cite the paper and use

“we” and “our” to distinguish work that was not done by me, but is necessary for context.

2.1 Introduction
In the quest to reveal the properties of dark matter, the study of dark matter substructures

and their influence on gravitational lensing has garnered significant attention. The

gravitational lens galaxy SDSSJ0946+1006 has emerged as a pivotal system for the study of
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dark matter, having previously been identified to possess an invisible substructure through

its perturbative effects on lensed images [144].

In this chapter, I will discuss the results of this work where we constrain, for the first time, the
concentration of the observed substructure in SDSSJ0946+1006, and tested its consistency
with CDM predictions. We employed a two-pronged approach, using observations and
testing them with simulations. For the observational work, the lead author [92] used strong
lensing models to probe the dark substructure in SDSSJ0946+41006 to extract parameters
like the inner log-slope of the projected density profile, and the dark matter mass within
a 1 kpc radius. For the simulations, I used the state-of-the-art suite of CDM simulations,
MlustrisTNG [99], to obtain theoretical predictions for the substructure’s properties and test
against the parameters extracted from the observations. The combination of observed data

with simulated predictions laid the groundwork for the crucial findings of this work.

The substructure in SDSSJ0946+41006 is characterized by a drastically high concentration
as compared with the CDM prediction of a similar mass halo using the concentration-mass
relation of [46]. This is accompanied by an inordinately steep slope in the inner projected
density. To constrain substructure, we can use something called the perturbation radius [93],
which is the radius within which the gravitational influence of the substructure is dominant
(it is from the subhalo center to the most perturbed part of the critical curve). It turns out
this radius is about ~ 1 kpc. We determined the substructure’s projected mass within a
1 kpc radius to be approximately between 2 — 3.7 x 10° M, and the average log-slope of
the projected density profile within 0.75-1.25 kpc was steeper than isothermal [92]. We also

established an upper limit for the luminosity of the perturber of L = 1.2 x 10% L.

To juxtapose these findings, I selected analogue subhalos in the IllustrisTNG simulation,
both in the hydrodynamical runs as well as the dark-matter-only (DMO) ones, thereby
providing a test of the effect of adiabatic contractions from the baryons. I also accounted for

selection bias, a phenomenon where the triaxiality of dark matter halos yields the possibility
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Figure 2.1: Masked HST image from [59] along with tNFW and tNFWmult models and
their residuals. Also seen is the critical curve, which shows the perturbation by the dark
substructure in the upper left. [92]

of them being positioned such that the line-of-sight is along the long axis, producing stronger
lensing [129]. [ will lay out that, despite having a substantial sample size of over 2000 subhalos
in our sample from the hydrodynamical simulation and nearly 5000 subhalos in DMO, we
conclude that the existence of such a dark, highly concentrated subhalo is at odds with the

predictions of a ACDM universe, motivating dark sector models for dark matter.

2.2 Lensing model and results

In this study, four lensing models were employed to study the substructure in the lensing
galaxy SDSSJ0946+1006. The two main models used were an elliptical truncated NFW
(tNFW) profile [9] for the subhalo, as well as a tNFW profile with multipoles (tNFWmult),
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which is the same as the tNFW but allowing for departures from ellipticity through the
multipoles. The inclusion of multipoles is supported by the presence of perturbations in
the isophotes that may have been caused by a recent interaction with a nearby galactic
neighbor [59, 132], as well as the model used by [144] who found a preference for smooth
corrections. The critical curve from these models can be seen in Fig. 2.1, which reveal a

strong perturbation in the upper left due to the substructure.

For the purpose of testing how robustly constrained the density profile is, other models
were tested, such as the “cuspy halo model” [95] (the CoreCusp model in [4]), and an
additional CoreCusp with multipoles (CoreCuspmult). The results can be seen in Fig. 2.2.
Between 0.5—1 kpc, for each panel, the slopes are generally the same. This makes it a useful
observable for comparing to simulations. However, due to resolution limitations, [92] derived
a parameter in which the slope of the projected density is measured between 0.75-1.25 kpc,

Y2p(0.75 — 1.25kpc). It turns out that this parameter is correlated with 75 and cagp.

To see how well suited the projected mass at the perturbation radius (approximately 1 kpc)
is for constraining substructures, look at the projected mass profiles of both the tNFW
and tNFWmult models in Fig. 2.3. While the profiles differ, at right around 1 kpc, the
profiles cross and have around the same projected mass. This further supports the use of
the projected mass within the perturbation radius (for this subhalo, 1 kpc) as a robust way

to constrain the properties of dark substructure, as was done in [93].

With the tNFW model, a subhalo mass of 4.69 x 10° M, is obtained, along with an
extraordinarily high concentration of 1560. The tNFWmult model gives a more reasonable
concentration of 70.5, and a subhalo mass 2.61 x 10 M, [92]. Comparing to the
concentration-mass relation of [46], these concentrations deviate by at least 50. For the
projected mass within a 1 kpc radius, [92] found a range 2 — 3.7 x 10° My, a log-slope of the

inner density of vop(0.75 — 1.25kpc) < —1, specifically —1.98, —1.27, —3.27, and —1.79 for
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tNFW, tNFWmult, CoreCusp, and CoreCuspmult respectively, and an upper bound on the
luminosity of L < 1.2 x 10% Lg, [92].

2.3 Comparison to the IllustrisTNG Simulations

For this portion of the work, the three bounds obtained by [92] that are essential for
accurately representing the dark substructure are as follows: Msp(1kpe) = 2 x 109 Mg,
vop < —1, Ly < 1.2 x 10® L. To test the consistency of the substructure with CDM, I used

these bounds to find analog subhalos in the IllustrisTNG simulations to compare [99].

For a relevant comparison, we must account for baryonic effects on galaxy mass distributions,
as radiative cooling and subsequent adiabatic contraction of the dark matter halo will lead to
denser galaxies with larger Einstein radii than those in DMO simulations [15, 65]. Baryonic
processes, especially adiabatic contraction and AGN feedback, influence subhalo distribution
and mass functions [37]. We utilize the IllustrisTNG suite, which offers both hydrodynamical
and DMO simulations. The hydrodynamical suite includes gas cooling effects and subgrid
physics, including star and black hole dynamics and feedback mechanisms. In contrast, the

DMO suite of simulations are N-body, representing only collisionless CDM with gravity.

2.3.1 Sample Selection of Analog Subhalos

For a comprehensive test of the effect of baryons on subhalos, we analyze both the
hydrodynamical and DMO simulations in [llustrisTNG, specifically TNG100-1 and TNG100-
1-DARK. These simulations have box lengths of 100 Mpc and dark matter particle masses of
7.5x10M and 8.9 x 106 My, respectively. Given the resolution, subhalos with masses below

7.5 x 109 M, may be unresolved, leading to potential inaccuracies [24]. Thus, our analysis is
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confined to subhalos with dark matter masses 5 x 109 M, or larger to ensure ~ 1000 particles

per subhalo.

To identify analogues of the dark substructure, I used a similar method to that of [37]. I
scanned the TNG100-1 simulations, targeting host halos at redshift z = 0.2 with total masses
between 1 x 10 — 6 x 103 M, and stellar masses from 8 x 101° — 8 x 10*? M. Subhalos of
these hosts were selected based on total masses ranging from 8 x 10° — 4 x 10 M, and dark
matter masses between 5 x 10° M, —4 x 101 M. 1identified 3056 subhalos from 167 hosts in
the hydrodynamical run and 4909 subhalos from 188 hosts in the DMO run. After filtering
out subhalos with insufficient star particles or projected mass, 2205 subhalos remained for

the hydrodynamical run.

For each subhalo, I constructed density profiles by binning particles in radial mass bins. For
the 2D mass and surface density profiles, I shot 1000 random lines of sight (LOS) through
each subhalo, binned the particles in cylindrical shells, and averaged over the LOS for each
halo. Given the triaxial nature of dark matter halos, the LOS along the long axis of a halo
can amplify projected density and thus lensing, introducing selection bias [129]. We thus
selected the LOS with the projected density in 1 kpc in the top 10th percentile, in order to
examine the effect of selection bias. To determine the 2D density profile slope, v2p, we fitted

a power law to the profile between 0.75 — 1.25 kpc.

2.3.2 Comparison of Sample to Lensing Constraints

In Fig. 2.4 T have plotted the projected dark matter (DM) mass within 1 kpc, Map pas(1kpe),
against the total subhalo mass for both hydrodynamical and DMO simulations. From the
tNFWmult band, we see that only subhalos with a total mass around ~ 10'°M or greater
meet the required Msp par(lkpe). Subhalos below this threshold were excluded, which

eliminated many subhalos with low stellar mass.
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The right panel of Fig. 2.4 reveals a correlation: as the projected halo mass within 1 kpc
increases, so does the stellar mass in the same region. This means that CDM predictions can
only align with lensing results if the subhalos also have a stellar mass of at least ~ 2 x 108 M,

within 1 kpc, which conflicts with the lower stellar mass suggested by the observational data.

For the density slope analysis, we focused on the log-slope of the projected density profile of
the subhalos. Due to resolution constraints, we used the range between 0.75 and 1.25 kpc to
determine the average log-slope, vsp, for each subhalo. Looking at Fig. 2.5 and comparing
the hydrodynamical and DMO simulations, the DMO data exhibits a markedly milder slope
and fewer subhalos meeting the M,p(1kpe) criteria. This discrepancy is expected due to
the baryonic effects of adiabatic contraction and tidal stripping in the hydrodynamical

simulations, making the subhalo sample denser, especially for larger subhalo masses.

Our findings highlight the significance of the LOS in determining density profiles, and
show that selection bias indeed is a problem. The DMO run, in particular, showed
greater triaxiality, consistent with previous studies that show that baryons make halos more
spherical [44, 77]. Also plotted in Fig. 2.5 are the lensing constraints as 68% and 95%
contours, which reveal that most of the subhalos in our hydrodynamical sample do not have
a steep enough slope to match lensing data. Only a fraction of the hydrodynamical sample
met the slope constraints when selection bias is amplified, while none aligned with both the
inferred slope and Msp(1kpe) when averaged across all LOS. The DMO data was even less

consistent, with no subhalos achieving the required slope.

2.3.3 Concentration of the Subhalo in SDSSJ0946-+1006

I explored the likelihood of observing a perturber as concentrated as the one in
SDSSJ0946+1006 with our subhalo sample. To smooth out noise in the density profiles, I

averaged over 20 nearby LOS for each subhalo, serving as mock observations to determine
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the projected mass and density slope. Fig. 2.6 illustrates that less than 1% of these
observations align with the lensing constraint, with the DMO simulation showing no
matches. This indicates that the SDSSJ0946+41006 subhalo is extremely rare in CDM.
Furthermore, the few matching subhalos exhibit stellar masses exceeding the expected

upper limit, intensifying the discrepancy with CDM.

2.3.4 Mismatch with CDM Predictions

The subhalo is very difficult to fit with CDM predictions, as depicted in Fig. 2.5 and 2.6.
Only a few subhalos match the lensing constraints for specific LOS. The stellar mass of nearly
all the subhalos from our sample that fit the lensing constraints surpass 10° M, which, given
the luminosity constraint of Ly < 1.2x 10® L, implies an unusually steep stellar initial mass

function (IMF). Typical IMFs suggest a much lower M /Ly ratio [90, 60, 61, 149, 43], and
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only the centers of massive galaxies have shown IMF's steep enough to produce the observed

M/Ly > 8M/Le [31].

None of the subhalos in our sample that have the required projected mass also have stellar
masses below the upper limit of 2.4 x 108M,. The TNG100-1 simulation has been shown
to produce stellar masses consistent with Local Group dwarf galaxies, which suggests that
subhalos with such high projected masses must have a stellar mass exceeding that of the
SDSSJ0946+1006 substructure. Furthermore, most of the subhalos have more stellar than
dark matter mass within 1 kpc, hinting at a significant boost by adiabatic contraction. The
DMO simulation supports this, as none of the DMO mock observations achieved the required

density slope.

In conclusion, the SDSSJ0946+1006 substructure is anomalous in the ACDM model. Its
projected mass and density slope make it a distinct outlier that is unlikely to be produced

in a ACDM universe.

2.4 Possible Explanations: from Line-Of-Sight Halos

to Dark Matter Physics

Numerous studies propose that lensing perturbations might arise from dark matter halos
along the line of sight rather than subhalos of the lensing galaxy [38, 152, 85]. In our
case, our analysis suggests that this does not significantly alleviate the tension with CDM.
Recursive lensing, where light from a distant galaxy is lensed in stages by closer entities,
complicates this scenario, especially when the perturber is behind the primary lens [128].
Ultimately, the dark substructure is likely a perturbing subhalo rather than a line-of-sight

halo in the context of CDM.
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It is highly unlikely that CDM could produce the SDSSJ0946+1006 substructure, which
motivates other dark matter physics. One such model is SIDM (see §1.3 for a detailed
discussion of its particle physics). Specifically, gravothermal evolution (as described in
§5.2) will drive the core of the halo into core collapse due to the scattering of dark matter
particles [8, 3, 103, 47, 106]. Halos in the core collapse phase will experience a rapid increase
of the central densities, which in turn would result in higher concentrations and steeper inner
log-slopes. Further, as a subhalo, the onset of core collapse can be hastened [103]. SIDM
could thus potentially explain the steep inner density slope and high concentration, and as

a result, the mass in 1 kpc, of the substructure in SDSSJ0946+1006.

2.5 Conclusion

Using lens models to extract observables from the gravitational lensing galaxy,
SDSSJ0946+1006, this work has verified the discovery of a dark substructure as reported
by [144], and, for the first time, constrained its concentration, which is found to be
inordinately high. Our analysis yields a projected mass within 1 kpc of its center between
(2 —3.7) x 10°M,. Comparing our findings with a sample of subhalos from the Illustris
TNG100-1 simulations, we observe that less than 1% of the simulated subhalos align with
our lensing constraints, even when we account for selection bias which would return a surface
density that appears higher than it is due to the LOS. Moreover, all simulated subhalos
with a projected mass exceeding 2 x 10° M, surpass our upper limit for the observed stellar
mass of the substructure. The observed high central dark matter density, concentration,

and low luminosity make it a significant deviation from the predictions of ACDM.
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Chapter 3

Constraining the SIDM Cross Section

on Intermediate Scales

The material in this chapter is based the publication [124] on which T am a co-author. For
work that was not performed by me but is required for context, I will cite the paper. If I
am discussing collective results, I will use “we”, “our”, etc. Specifically, I wrote the Jeans
model section (§2.1) and did the work for and wrote the adiabatic contractions section (§3.3)
and the mass-concentration relation section (§3.5). I performed the work for figures 4, 5,
8, and helped the lead author derive the adiabatic contraction form we used in the code. I
also wrote the code for the cosmological lensing distances used in the Markov Chain Monte

Carlo (MCMC) written by the lead author [124]. I also made figures 13 and 16.

3.1 Introduction

The nature of dark matter, which constitutes approximately 27% of the total mass-energy

content of the universe, remains one of the most intriguing and fundamental questions in
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cosmology and astrophysics. While the existence of dark matter is well-established through
its gravitational effects on visible matter, its particle properties and interactions are still
largely unknown. Omne of the key questions in the study of dark matter is whether it
can experience self-interactions, and if so, how these interactions affect the structure and

dynamics of astrophysical systems.

This chapter delves into my work in [124], where we investigate SIDM using observational
data of relaxed galaxy groups and clusters from [102, 101, 100]. Galaxy groups and clusters
are ideal for studying dark matter self-interactions due to their high dark matter content
and range of velocities. By analyzing the kinematics of galaxies within these systems, we
can infer the properties of the underlying dark matter distribution and place constraints on

the self-interaction cross section of dark matter.

We use the Jeans formalism [75], a mathematical framework that describes the equilibrium
state of self-gravitating systems, to analyze the observational data. In our analysis, we
consider a wider range of systematic effects than in previous work, including adiabatic
contraction (AC) and stellar mass-to-light ratio and anisotropy, to robustly constrain the self-
interaction cross section. We also explore the velocity-dependence of the self-interaction cross
section and its implications for the structure and dynamics of galaxy groups and clusters. We
ran a Markov Chain Monte Carlo (MCMC) to fit the group and cluster data, and considered

four cases: SIDM with or without AC, and CDM with or without AC.

Our work provides a comprehensive analysis of the self-interactions of dark matter in galaxy
groups and clusters. We find that the concentration is systematically shifted to higher values
in SIDM compared to CDM. We find a mild preference for a nonzero cross section compared
with CDM in both galaxy groups and clusters. We also place the first constraint on SIDM

at an intermediate scale between galaxies and massive clusters.
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3.2 A Summary of Jeans Modeling

Jeans modeling provides a mathematical framework for describing the equilibrium state of a
self-gravitating system, taking into account the gravitational potential, velocity dispersion,
and density distribution of the system. The model used to study SIDM halos in this work is
based on the time-independent Jeans equation that describes the distribution of matter in

a system [73, 75].

In the Jeans model, collisions drive the inner halo towards hydrostatic equilibrium, while the
outer region remains effectively collisionless due to its lower density. The boundary between
these regions is determined by the radius r;, where dark matter has scattered on average

once per particle per lifetime of the system, according to the rate equation:

psom(r1) ) to=1, (3.1)

where psipm(r1) is the dark matter density at 71, (ov) is the velocity-averaged SIDM cross
section, m is the mass of the dark matter particle, and %, is the age of the system. We set

the age to 5 Gyr for groups and clusters in our work.

We use a non-singular isothermal profile to model the inner halo experiencing collisions by

solving the time-independent Jeans equation:
v (Jgpiso(r)) = _piso<r)vq)tot<r)7 (32)

where we include the dark matter and baryon potential in ®.. In our analysis, we assume
spherical symmetry and solve Eq. (3.2) for a fixed baryon density. The solution relies on two
parameters: the central dark matter density py = piso(0) and the one-dimensional velocity

dispersion oy3. We assume that oy is isotropic and constant throughout the system.
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We then define the full SIDM profile with the following piece-wise function matched at ry:

Piso(T) r <ry (self-interacting)
psiom(r) = (3.3)
pcom(r) > (collisionless)

where the inner halo is thermalized by self-scattering, and the outer halo profile can be
assumed to be collisionless and thus is modeled with a CDM profile. N-body simulations
have shown that the NFW profile of Eq. (1.19), which can be parameterized in terms of the
virial mass and concentration, (Mago, Ca00), 18 a good representation of dark matter halos.
The presence of baryons falling into the halo, however, can result in a profile cuspier than
NFW due to the process of adiabatic contraction (AC). To include AC, the standard method
assumes there is an adiabatic invariant M (r)r, with M. (r) being the total mass enclosed
within r, and that particle orbits are circular [15]. Another approach from [65, 64] involves
a modified adiabatic invariant M. (7)r that allows for eccentric orbits rather than circular

ones. Here, the orbit-averaged radius 7 is given as

f/?“o = AO (T/To)w s (34)

with ro = 0.03r999. The standard AC prescription [15] is recovered with Ag = w = 1. The
modified prescription [65] is retrieved by setting Ay = 1.6, w = 0.8. For our MCMCs, we
set Ay = 1.6 and allowed w to float between 0.6 — 1.3. In this study, we explore both a pure
NFW profile as well as one that has been modified by AC for the outer halo. The parameters
of the Jeans model include the baryon density, the SIDM profile parameters for the inner
halo, the parameters for the outer NF'W halo, and the matching radius r;. Allowing for AC,

w is an additional parameter.

Lastly, the Jeans model exhibits a two-fold degeneracy, where two values of the cross-section
o/m can yield similar spherically-averaged profiles. This corresponds to core growth or core

collapse. In this analysis, we only consider the core-growth solutions.
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3.3 Cross sections

This part of the study was led by the lead author, and the MCMC code used was written
by the lead author as well [124]. The results from our MCMCs for the self-interaction cross
section show that AC tends to shift the cross sections toward larger one compared to pure
NFW. While there is a mild preference for a nonzero cross section compared to CDM, a
few of the groups (CSWA141, CSWA165, CSWAG) and clusters (MS2137, A963, A2390)
preferred cross sections o/m < 0.2cm?/g. These results disfavor constant cross sections of
> 1cm?/g needed to solve small scale issues (see Sec. A.2), and are thus consistent with

velocity-dependent SIDM [124].

We determine upper limits on the cross section at the 95% confidence level, which are

presented for the case where AC is not considered, as:

o/m < 0.9cm?/g (groups),

(3.5)
o/m < 0.28 cm?/g (clusters),
and when we include AC, we have the following upper limits:
o/m < 1.1cm?/g (groups),
(3.6)

o/m < 0.35cm? /g (clusters).

We also consider a dark sector model with a dark photon mediating self-interactions, through
a repulsive Yukawa potential V(r) = o/e™#" /r, with p being the mass of the dark photon
and o' the dark fine structure constant. We set the dark matter mass to m = 15 GeV, and
use o = 1/137 and p = 11 MeV for the dark photon [124]. This model is shown in Fig. 3.1,
which was made by the lead author [124]. The solid line in Fig. 3.1 is (ov)/m as a function
of (v), which, including our results and new constraints for group scales, is consistent with a

velocity dependence. The yellow-shaded region 1cm?/g < o/m < 100cm?/g represents the
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Figure 3.1: The velocity-dependence of self-interactions, (ov)/m, vs the mean scattering
velocity (v). The blue and red points represent, respectively, our fits to the galaxy groups and
clusters. The closed and open circles are SIDM fits without AC, and with AC, respectively.
Gray points are mock SIDM-plus-baryons simulations with 1cm?/g from [118]. The shaded
region represents the space in which SIDM solves the core-cusp problem. The solid line
represents (ov)/m for a dark matter mass of 15 GeV and dark photon 11 MeV. [124]

region in which small-scale problems are solved [75]. In that region, self-interactions behave
like a contact interaction with a constant cross section ~ 3 cm?/g, and then the cross-section

falls with increasing mean velocity, consistent with a velocity dependent cross section.

3.4 Adiabatic Contractions

We extended the Jeans model to account for adiabatic contraction (AC) in this study for the
groups and clusters. The profile is represented by a modified NFW profile in the outer halo
beyond r; where dark matter particles are effectively collisionless. We explore the impact of
AC on SIDM profiles and on stellar kinematics and lensing observables. Three prescriptions
were considered: standard adiabatic contraction (SAC) [15], modified adiabatic contraction

(MAC) [65], and pure NFW profiles without AC [97].

I found that AC has a noticeable effect on SIDM halos only for small cross sections, when

ry is comparable to the extent at which baryon effects in the halo are strong. To illustrate
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Figure 3.2: Density profiles for the group CSWA6. A set of curves for CDM (yellow), and
SIDM with 0.1cm?/g (blue) and 1cm?/g (red) for SAC, MAC, and pure NFW. As also

include the baryon profile. We use the fixed parameters Myoy = 1038 M), ¢ = 10%%8, and
T, = 10°48,
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Figure 3.3: Group CSWAG stellar velocity dispersion for CDM and SIDM for the same AC

prescriptions and mass and concentration parameters as in Fig. 3.2.
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the effect, T used the example of the galaxy group CSWAG6 [100] in Fig. 3.2, fixing the mass,

concentration, and stellar mass-to-light ratio.

As expected, for CDM, AC produces halos with steeper inner slopes and increased central
densities compared to NFW profiles without AC. For SIDM, the effect of AC is more
appreciable for a cross section of 0.1 cm?/g which has r; ~ 30kpc, than for 1cm?/g which
r1 &~ 115kpc. This is because when the AC profile is matched onto the isothermal one so
far out in the halo, the effect of the baryons (which dominate near the center) is nullified. I
also found that AC heavily affects the velocity dispersions for smaller cross sections, which
we demonstrate in Fig. 3.3, where we use the same parameters as in Fig. 3.2. T also found
similarly that the convergence (defined in Eq. (A.8) in § A.1) is similarly affected, such that
SAC increases the convergence the most, and MAC by a slightly smaller amount, compared
to pure NFW. Smaller cross sections increase the spread between SAC, MAC, and NFW.
This is a result of the fact that higher cross sections tend to wash out the effects of AC as
r1 is larger and thus encompasses the region in which the halo is affected by AC, which is

why CDM is affected by AC the most.

3.5 Stellar mass-to-light ratio and Anisotropy

This part of the study was led by the lead author [124]. Modeling the stellar component of
groups and clusters can be difficult because of the uncertainties in the initial mass function in
stellar population synthesis (SPS). This makes the stellar mass-to-light ratio normalization
T, difficult to pin down. Additionally, the stellar velocity dispersion anisotropy, [, is
also fraught with uncertainty due to the limitation of our view of the universe being a 2-
dimensional projection, thus only allowing us to measure objects along the line of sight.

We thus allowed these parameters to vary in the MCMC placing weak priors on each

45



1.27 Clusters CDM
Clusters SIDM
_',[_. Groups CDM
1.0 o1 _ Groups SIDM
=S =
& §
200.8 If 1 }’4H
- i 2
PE—
0.61 21 + ,=i=,
+ i
0.4
13.5 14.0 14.5 15.0 15.5

Figure 3.4: M versus c for the groups and clusters in our analysis for the cases of SIDM and
CDM (without AC). The dark gray band is the median MCR from CDM-only simulations
for 0.19 < z < 0.45. The light gray band is a spread of +0.15dex in the concentration.

quantity [124]. We found that T,/YSFS is larger for SIDM than for CDM. For 3, there

was no preferred range for groups, but clusters prefer a slightly negative .

3.6 Mass-concentration relation

The mass-concentration relation (MCR) is a fundamental concept in cosmology that
describes the relationship between the mass of a dark matter halo and its concentration [147,
23, 41, 40, 46]. The concentration parameter is a measure of how centrally concentrated the
mass of a halo is, and it is typically defined as the ratio of the virial radius of the halo to
the scale radius of the halo’s density profile, ¢ = =2%. The virial mass of a dark matter
halo, Mg, is a measure of the total mass of the halo within its virial radius. The virial

radius is the radius within which the average density of the halo is 200 times the critical

3H?(z)

s » at some redshift. We also used the concentration-mass

density of the universe, p.it =
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relation of [46]. The MCR is very important in the study of dark matter halos as it can tell
us about its formation history, for example halos tend to be more concentrated if they have
not experienced mergers in their recent history. In SIDM, interactions redistribute mass in a
halo, which can thus affect the concentration. In this work, I examined how self-interactions

(without AC) affect the MCR.

For SIDM, the outer halo beyond r; is expected to be nearly collisionless, thus the profile
should coincide with the corresponding CDM profile in the absence of collisions. Thus we
may expect that the values of (Msg, ¢) that we obtain from our Jeans modeling should
generally obey the MCR. However, I found that the results from the MCMC fits for SIDM
show a systematic shift towards higher concentrations compared to the median MCR; see

Fig. 3.4. The CDM fits were in better agreement with the median MCR, as expected.

The central density of the halos in our study is constrained by observations. A higher
concentration increases the central density, while collisions generally decrease it. Thus
it is reasonable that turning on self-interactions would result in an increase in the
concentration for a fixed central density as a result. It is also possible that this shift towards
higher concentrations in SIDM fits could be representative of a bias in the Jeans model.
Additionally, the groups and clusters in our work are all strong lenses, meaning they are
susceptible to selection bias, where the orientation of a halo along our line of sight results in
higher concentrations [129]. It is also worth noting that the MCR is a CDM-based prediction

and may not be applicable to SIDM halos.

3.7 Comparison to simulations

We compare our methods to hydrodynamical simulations by [118]. This part of the study

was lead by a coauthor [124]. We re-simulate two clusters from the Cluster-EAGLE (CE)
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project [6, 11], the first to include baryons and self-interactions on cluster scales, with a self-
interaction cross-section per unit mass of o/m = 1cm?/g [124], and make mock observables

from them and fit them with our Jeans model to extract the cross section.

We consider three realizations of the data sample, each for a different slit angle for the
stellar kinematics. We find that the Jeans model gives robust predictions for the cross-
section, independent of the exact values of Msgy. We obtain values of o/m in the range of
1-1.7 cm? /g, depending on various systematic assumptions, which is close to the actual cross

section and thus confirms the Jeans model is robust.

I also looked at the MCR for the simulated clusters. I compared the values of (Msgg, ¢) from
our fits to the true values obtained from the CDM-only simulations for CE-05 and CE-12,

using the equation

0L0os
log (h(2) Mago/Me) = 13. 2.751 —_— .
08 (h(2) Masn/ M) = 1398 + 2T5log (705 5.7)
where the dimensionless Hubble parameter is h(z) = %{? The results showed that the

fits picked out larger values of ¢ and smaller values of Msy compared to the true values.
Because using priors on My, from our fits for CE-12 returned large deviations from the
true value, we also used the true value of M)y and ran the same analysis. The results
for CE-05 did not change by much, while those for CE-12 shifted closer to the true Msgg.
These effects can clearly be seen in Fig. 3.5. However, I still observed a trend toward higher
concentrations and smaller values of Mg, which was also found in the analysis of group and
cluster observations. The effect of the choice of priors for My on the joint fit for o/m was

negligible, so that these results remain the same.
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Figure 3.5: Fitted (Mag, c) values for the simulated clusters. The left panel centers a prior
on the Mygy derived from galaxy kinematics, while the right panel corresponds to a prior
centered on the true Msygy. The band is the MCR for z = 0 with a +0.15 dex spread in c.

3.8 Conclusion

In this work, we examined a set of strong lensing systems, drawing from the galaxy
group samples of [100] and the massive clusters in [102, 101], with mass ranges spanning
4 x 101 to 2 x 10" M. We placed the first constraint on o/m at an intermediate scale,
bridging the gap between galaxies and massive clusters. Furthermore, we re-evaluated the
cross-section constraint for massive clusters in [75]. By incorporating a broader range
of systematic uncertainties, such as the unknown stellar mass-to-light ratio T,, velocity
dispersion anisotropy f, and the potential effect of adiabatic contraction on SIDM halos,

our work improved prior constraints and made them more robust.

Our findings indicate a subtle preference for a non-zero cross-section compared to CDM for
both groups and clusters. We derived constraints on the cross section, considering scenarios
both with and without AC. Intriguingly, including AC systematically shifts the cross section
to higher o/m values. Our results for galaxy groups offer a new data point for the cross
section as a function of velocity. Our findings for clusters are consistent with previous studies

with values ~ 0.1 cm?/g [75, 48]. Our work supports a velocity-dependent cross-section for
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SIDM, that decreases as scattering velocity increases. This conclusion is consistent with

expectations in well-founded SIDM models from a particle physics perspective.

To further validate our Jeans model, we used mock observations from high-resolution
hydrodynamical SIDM cluster simulations with o/m = 1cm?/g [118]. Our analysis yielded
central values ranging in 1.1 —1.7 cm?/g. Though a little higher than the input cross section,
the fact that our model returned a value close to the input value is encouraging that it is

performing as it should.

Our results show that AC pushes the cross section to slightly larger values than CDM
without AC. We also see that SIDM concentrations are higher than the CDM prediction,
a result that comes from the model compensating for the interactions while holding the
central density constant. Our results contribute to the growing body of evidence supporting

a velocity-dependent SIDM cross-section that decreases with increasing scattering velocity.
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Chapter 4

Gravothermal Collapse of Velocity
Dependent SIDM Halos in the LMFP

Regime

This chapter is based on the work in [106] to which I contributed significantly. The results
are based on a gravothermal code to which I have contributed with maintaining and editing
the code, and supplied some of the cross-section computations that have been incorporated
into the code. In this work, the numerical work and results were performed by me, and the
theoretical derivations were done by the lead author. I made all the figures which are all
based on the numerical results I obtained (some figures in the Appendix include comparisons
between the numerical work and the theoretical predictions of [106]), and contributed to
writing the paper, but the bulk of it was written by the lead author [106]. To distinguish

work that is not mine but required for context, I cite the paper and/or use “we” and “our”.

51



4.1 Introduction

A particular area of interest in studying SIDM halos to learn about the particle physics
of dark matter is the phenomenon of gravothermal evolution, in which scattering enables
heat transfer between the inner and outer parts of the halo and drives the halo into core
collapse [88]. SIDM was initially introduced to explain small scale problems observed in
low mass halos [134] compared to CDM simulations [56, 94, 36, 104, 125, 62] such as the
core-cusp problem by alleviating central densities via scattering of dark matter particles (see
Appendix A.2 for more detail on the small scale problems). Given the observed diversity in
rotation curves of low-surface-brightness galaxies, the core collapse stage of SIDM halos is
particularly intriguing as it offers a new range of density profiles that exhibit central densities
much higher than CDM, allowing for a more diverse set of halo profiles that better match

observations [105, 72, 117].

In this chapter, I will describe our pivotal work in [106], where we focus on the gravothermal
evolution of isolated SIDM halos, specifically in the LMFP regime where dark matter
particles are able to make many orbits before scattering. We employ the spherically
symmetric gravothermal equations and, for the first time, generalize our work to include

velocity-dependent scattering cross sections.

We derive a new set of self-similar solutions in which the scattering cross-section is velocity
dependent. This is a first of its kind, as previous works [8] considered velocity-independent
cross-sections. These self-similar solutions offer an analytical framework that aids in
understanding our numerical results and the gravothermal evolution of SIDM halos. We
identify an approximate universality in the temporal evolution in the LMFP. These tools
enable the mapping of velocity-dependent models onto those that are velocity-independent.

The mapping is achieved through the scattering timescale, determined at core formation,

92



which is when the halo reaches its lowest central density. We find a form for the collapse

time in which the velocity dependence is included.

Most of our halos begin their evolution in the LMFP regime and spend the bulk of their
time here, and fall into the SMFP at the very late stages of the collapse. The predicted
collapse time of a halo is fully determined by the scattering time-scale, and our numerical
results show that there is only a small scatter due to the velocity dependence. Thus, given
the mass and particle physics, we can effectively scale out the particle physics with minimal

scatter and fully determine the entire evolution through its collapse time of any given halo.

Our work provides newly derived equations in the LMFP gravothermal evolution of SIDM
halos with velocity-dependent cross-sections. The discovery of universality in temporal
evolution and the derivation of new self-similar solutions are significant milestones that
provide useful tools for research, allowing one to fully analytically characterize the evolution

of any halo in the LMFP.

4.2 Gravothermal Evolution

The behavior of an isolated spherically symmetric, virialized halo can be described by the

following gravothermal equations [88, 8, 103, 50]:

oM gy A(pv?) _GMp L _K(‘?_T

or P or r2 0 Agr? or ’

oL 0 v3

= = —drr?p? (=) log | — 4.1
or e <8t)M Og(p>’ ( )

where p, M, L, and v represent the halo’s density, the enclosed mass, luminosity, and one-
dimensional velocity dispersion, respectively, and the dark matter temperature is given by

Tym = Mamv?, where mqay, is the dark matter particle mass. The heat conductivity term,
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k, which relates the luminosity to the temperature gradient, is where the particle physics

information lies.

4.2.1 Heat Conductivity with Velocity Dependence

The conductivities for the LMFP and SMFP have unique forms, and we interpolate between

them as follows [8]:

1 1 1
R +
K

. (4.2)
RLMFP RSMFP

We use a differential cross-section that converges to a constant if velocities are significantly
smaller than a velocity scale, v < w. This allows us to account for both velocity-dependent

and constant cross sections. The form is as follows:

. do (Urel ) . do (Urel ) o]
| = -0
o0 dQ) w—oo  dS) 47’

(4.3)

where v,q) = |v7 — v2| denotes the relative velocity between the colliding particles and oy is

a normalization prefactor [106].

The thermal properties of an SIDM halo in the SMFP do not depend on halo size,
allowing for the thermal conductivity to be derived perturbatively via the Chapman-Enskog
expansion [110, 25]. For hard-sphere scattering, the conductivity is given by x = 3bv /20,
where b = 25,/7/32 (see, for example, [8, 83, 103]).

Generalizing for a cross-section that includes velocity dependence, the lead author [106]

derived a new form for the conductivity that approaches x = 3bv/20q in the limit where
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where we choose p = 5 in this work!, and oy = f dosin? 6, and (-} denotes the thermal

average over velocities with a 3D Maxwell-Boltzmann distribution.

In contrast to the SMFP, the LMFP does depend on the halo size?. But the size of a
halo is arbitrary and depends on definitions, since there is not a sharp cut-off where a halo
“ends”. Given this complication, definitions of the conductivity in the LMFP depend on
N-body simulations. The derived conductivity is k = 3aCoovn?H?/2, where a = 4//7 and
H = v/\/4nGp is the Jeans scale. The value of C' is calibrated to simulations [8, 83, 50, 88].
We adopt C' = 0.6 as found in [50].

The lead author of our work in [106] used a similar rationale to that used in the derivation
of the SMFP conductivity with a velocity dependence, leading to the following form for the

LMFP heat conductivity:

3aC (o))

8rG m3

p'U3K3, (45)

RLMFP =

where K3 is defined in Eq. (4.4) for p = 3. The form allows for easy replacement of our

averaging (which is (0.v®)) with any other form.

'We select p = 5 to reflect the cross section dependence given in Kgmpp = F(v)(aviscvfel>_1

problem 10 of §10 in Ch. 1 of [110].
2From the kinetic theory of gases, we know the LMFP of a gas is defined by the volume of the box the
gas is in [25].

, as given in
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4.2.2 Long and Short Mean Free Path Regimes

Gravothermal evolution affects the core (central region) and outer halo differently. In this
work, we delineate the core via p(reore) = pe/2. As the core collapses, self-interactions
transport heat and mass to the outer halo while its temperature and density shoot up
rapidly. Because its rate of thermal evolution is very slow, the outer halo acts as a heat sink,

while the core continues to contract and heat up.

The LMFP is the focus of this work. In the LMFP, dark matter particles are sparse enough
to complete multiple orbits between collisions. The outer halo is almost always in this state,
while the core may not be; for example, very large cross-sections can cause the core to begin
in the SMFP. For the halos in this work, the cores generally evolve in the LMFP regime
for the majority of the time. As mentioned above, the core transfers heat and mass to the
outer halo which further cause the halo to contract and become rapidly denser and hotter,
ultimately driving the core into the SMFP. We define the transition between the LMFP to

the SMFP as the point where the conductivities are equal.

In the SMFP regime, particle collisions are frequent due to high density, which results in
shielding heat and mass transfer. During this phase, the core’s temperature and density
escalate rapidly. The timescales for LMFP and SMFP evolution are markedly different;
while most of the evolution occurs in the LMFP regime, the transition to the SMFP regime
happens swiftly. At this stage, the core enters a phase of constant thermal energy, where
the log-slope of central density relative to central velocity stabilizes over time, approaching
a value of v = 10. During this phase, the core’s temperature and density escalate rapidly.

However, the SMFP regime is omitted in this work, and is the focus of my work in Chapter 5.
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4.2.3 Numerical Techniques for Gravothermal Equations

To solve the gravothermal equations, we start with an initial NFW profile, assuming that
dark matter self-interactions are minimal during the formation of the halo. This allows the

halo to initially evolve in the LMFP.

We employ numerical methods, following established works [112, 103], to solve the

dimensionless form of the gravothermal equations in Eq. (4.1):

oM, 9pvY)  Mp -, Ov?

or P Ter T TR o BT TR

oL ., (0 ik

— = — ) log | —= 4.
or " <8t)1\7[ Og(ﬁ)’ (46)

where the physical quantities = = {p,v, M, L, r,t, k} are scaled as & = x/xy. These scales

are as follows:

MN 2 GMN MNU]QV
— - — L et
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where the subscript N denotes a scale quantity. The scattering timescale is:
by = %0 pyK. (“N> B (4.8)
= — v — . .
N 3aC PN . N3 w
We can now write the dimensionless conductivity as
. .37 9 ~ 170 ~ K, (v/w)
3 A2 ~~2 P
_ 0K, |1 KK ] R AT 4.9
K= pUv"K3 |1+ 0"pv° K35 P Kp(l/w) ( )
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where

5 aC’K 1 e 1\ pn 09 2 R w (4.10)
0" = — — —|— v W= —. .
b P \w) 0\ ) anG \ Vg ) oN

The two dimensionless parameters, & and w, fully specify these equations. We also choose

to express the cross-section in terms of its velocity dependence slope, n, defined through the

LMEFP heat conductivity equation as

dlog K
= — ) 4.11
" dlog vy ( )

We focus on Yukawa interactions between SIDM particles for our numerical calculations.
The self-interaction differential cross-section is formulated under the Born approximation:

do o9 vi 50 -
m = E (1 —|— ESlH 5 s (412)

where we use K, as a function of v/w.

Testing Numerical Convergence: We follow [112, 103] and numerically solve the
dimensionless gravothermal equations in Eq. (4.6) whilst fixing the mass shells. We
follow [103] to numerically calculate the heat conduction by taking small time steps with
€ = 107* to ensure the density remains nearly constant. I set 400 logarithmically-spaced
shells for the radius, holding the mass in each shell constant. We also conducted tests with
800 shells to confirm that our results have converged, and found that the minimum density
changes by only 0.016%, the dispersion at minimum density by 0.023% and the collapse time

by 0.1%. Our initial 400 shells are thus sufficient for this work.
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Figure 4.1: (Left) The central density as a function of the core radius, normalized by the
NFW parameters pg, rs. The initial time step in our gravothermal code is denoted by #initial,
while e is the time of core formation, when the central density hits a minimum. The flow
of time (shown with arrows) reveals a stark increase in central density and corresponding
shrinking of core radius after core formation. (Right) p./ps with respect to shifted time,
normalized by t.o (Eq. (4.8)). We include an inset to make clear how the collapse times vary
for each halo. When the halo transitions from LMFP to SMFP, we use dashed lines. Models
in both panels are the same and are the main models of the paper (see the parameters in
runs 1 — 5 of Table 4.1).

4.3 Universal Evolution for Velocity-Dependent SIDM

Halos

For the case of contact interactions (the limit w — oo in Eq. (4.10)), the gravothermal
equations are characterized by only one parameter, 6. Then, for a constant cross-section, the
LMFP universality of the gravothermal equations is an obvious result. However, including
velocity dependent interactions introduces a new parameter, w. My numerical results as
shown in Figs. 4.1 and 4.2 show us that nevertheless, the LMFP solution is approximately

universal with only minimal scatter due to the velocity dependence of the cross-section.

Despite the scatter, all halos converge to the same core radius 7core 0 (Where the core radius is

defined via p(reore) = pe/2.), central density p. o, and velocity dispersion v, o when normalized
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Figure 4.2: (Left) p./ps, versus the central 1D velocity dispersion normalized by Viay, with
each run having o./mam ~ 5cm?/g fixed for n = 0,1,2,3,3.7 for the main five models, as
in Fig. 4.1. We have used the upper horizontal axis to show the shifted time to highlight the
fact that most of the evolution is spent around core formation (for the time axis, we chose
Run #5 of Table 4.1). Again, dashed lines indicate the core is in the SMFP. (Right) The
same as the left panel, except here, we fix n ~ 0 and n = 3.7 for various & (details listed in
Table 4.1).

by the halo NF'W parameters, at the time of core formation, t.,... We find direct relations
between the core parameters and NFW parameters of reoeo = 0.4575, peo =~ 2.4p,, and
Ue,0 2 0.64Vhax, with which all of my numerical results agree. This approximate universality
suggests that we can effectively scale out all the particle physics and determine the entire

LMFP evolution of any given halo.

Figs. 4.1 and 4.2 also highlight that gravitational evolution occurs in stages in halos,
beginning with thermalizing until the halo reaches core formation, followed by a self-similar
evolution that proceeds until collapse. My numerical results show that the collapse time
occurs at a dimensionless time of t.on/t.o ~ 335, which is universally consistent across all

halos, within a minimal scatter due to the velocity dependence.

Rescaling the central density we obtained as p. ~ 2.4p, along with using C' = 0.61, we [106]

find the results agree.
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4.4 Self-Similarity of Velocity-Dependent SIDM in the

LMFP

In this section, I will outline the self-similar solutions in our work derived by the lead

author [106]. The self-similar solutions elucidate key aspects of the LMFP behavior of halos,

and the analytic handle allows us to characterize the collapse time.

Rather than using the initial time of our code as t = 0, we adopt teore = 0 so that the

gravothermal evolution begins after core formation, as in [8]. In the LMFP regime, the

dimensionless effective conductivity x is given by:

~ ~~3_p
Kot = pU° ",

where n is defined in Eq. (4.11), and Yukawa interactions imply 0 < n < 4.

Much like [88], our goal is to find a self-similar solution with the following form:

subject to the boundary conditions

p«(0) =v,(0) =1 and L.(0) = M.(0) =0

(4.13)

(4.14)

(4.15)

taken at r = r, = 0 with initial condition Z.(0) = 1. This leads to relationships between

temporal functions:
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(Left) SOV constants ¢; and ¢y from Eq. (4.18) vs. v./Viax. Horizontal gray

lines are the predictions for ¢; o, with ¢; = 2.322 x 1073, ¢y = 9.704 x 10~ for n = 4 [8§]
and ¢; = 1.903 x 1073, ¢; = 8.092 x 10~* for n = 0 [8]. (Right) Log derivative of the central
density vs. v./Viax. Horizontal gray lines are predictions of a = 2.208 for n = 4 [88] and
a = 2.190 for n = 0 [8] using Eq. (4.22). For both panels: dotted vertical line indicates
time of core formation; top horizontal axis shows the shifted time normalized by t.o (run 5
of Table 4.1 is used for the time in the figures); o.o/mam =~ 5cm?/g is fixed for various n as
shown in the legend. o = 2.192,2.195,2.199, 2.204, 2.207 for n = 0, 1, 2, 3, 3.7 respectively.

Using separation of variables (SOV) and defining a new time variable 7.(f) = t.o7. = t.0 MLUZ ,
the spatial forms can be recast as follows:
OM, 9 0 9 M, o 3,00
- * **:__*71/*:_***71_*
or. TP or. (p-v2) 72 P Tepl or.
IL. 2, .2 0log (vi/ps)
—_— = B — g 4.17
or, T Pa s {Cl < 0log M, ( )
with our SOV constants being ¢; and c¢s:
0 v3
= %0 () = L log M, 4.18
1 Tey 108 (,OC) Co Tey 108 ( )

While analogous to [8, 88], these are generalized to velocity-dependent interactions. And
looking at Fig. 4.3, my numerical results show that our work agrees with [8] for n = 0, and

[88] for n = 4, which are shown by the labeled horizontal lines in both panels.
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4.4.1 Predictive Power and Validation

Here, I compare the self-similar derivations [106] against the numerical results I obtained.
One important condition to ensure valid self-similar results from [88] requires that the density
is time independent and scales as the following from the center of the halo, » = 0 all the way

out to r — oc:

dlogp. . dlog p.

= = — 4.19

where @ must be in the range as per [2,2.5] [88]. This implies that p. = 7, *. We thus obtain

the following central parameters using this and Eq. (4.16):

_312-a
g—a ~2 ~2—a  ~ f2+(” 3)=35 ) (420)

With Eq. (4.20) and Eq. (4.18), we find

Co— (1
=6 . 4.21
“ Cy — 201 ( )
Finally, we come to the following relation
dlog p. 2
%8P _ 2% (4.22)
dlogv. «a—2

which I plot in the right panel of Fig. 4.3 using the form and my numerical results. Similarly
to Fig. 4.2, the lines reach a constant at core formation, with a small scatter due to n. The
horizontal gray lines underscore that our analytic forms plotted with my numerical results

agree with the results of [88] (n = 4) and [8] (n = 0).
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The collapse time was also analytically found [106] to be

i 1 6—a
e Ba—2)—n(a-2)

(4.23)

While the expression in Eq. (4.23) does not agree with my numerical results for the collapse
times which I have shown in Fig. 4.1, it is a small discrepancy that likely stems from the
fact that, although our results approximately agree with [88] and [8], the ¢; and a I show
in Fig. 4.3 do not actually reach a constant value before the core falls into the SMFP.
For example, Eq. (4.23) gives collapse times of . =~ 430, while my numerical results
yield te,on =~ 335. For a more in-depth discussion on the validity of the LMFP self-similar
predictions and how my numerical results differ in magnitude as well as behavior from our

analytic results [106], see Appendix 4.A.

Some important analytical forms for parameters at the LMFP to SMFP transition were
obtained in this work by [106], which I use in my first-author work in Ch. 5. They come
from defining the time when kpyrp =~ Ksvpp in the center of the halo as faLS. We end up

with an important set of definitions:

1 60 Ry I ~ 6% (Fors)™ | Tors =077 0 =1—n+ - . 5 (4.24)
where 2n = — dlog K3 Ky . For run 1 in Table 4.1, this gives vys =~ 0.85V,ax, Which agrees
dlog v S

well with my numerical results, as I show in Fig. 4.4.

An interesting find from my numerical results shown in the right panel of Fig. 4.4 is that, in

dimensionless time, larger ¢ results in a slightly delayed collapse time.
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Figure 4.4: (Left) The central velocity dispersion at the LMFP to SMFP transition,
normalized by v.o, with respect to ¢ for halos in our models with n ~ 0 and n = 3.7.
The predicted scale in Eq. (4.24) is plotted as solid gray lines. (Right) The collapse time,
teon, VS. 0 for n ~ 0 and n = 3.7. Dotted gray lines are the teon shown in Fig. 4.1. Collapse
times become delayed for larger 6. Circled diamonds are the models shown in the main text.
For n = 3.7, points left of the circled diamond are halos that do not reach SMFP, thus are
not shown in the left panel.

4.5 Discussion and Conclusion

In this study, we examined velocity-dependent self interactions of SIDM halos undergoing
gravothermal evolution in the LMFP regime and found an approximate universality. This
universality applies, for the first time, to generalized SIDM models with velocity dependence,
and allows a mapping between velocity-dependent and velocity-independent models. We find
that NF'W halos reach core formation, the point at which the core radius is a maximum, at
Teore,0 = 0.4575, peo = 2.4ps and v g =~ 0.64V,.x. My numerical results show that all halos
will eventually undergo core collapse and be driven into the SMFP regime. Our results are for
generic cross-section models and can be recalculated for other models beyond the Yukawa
interaction considered here. We demonstrate that the self-similar solutions in the LMFP
regime apply for a broad range of velocity-dependent cross-sections. These approximations
offer valuable insights into my numerical results, such as the core collapse timescale and the

evolution of the inner density and dispersion profiles of the halo.
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Our work implies that SIDM halos exhibit nearly universal gravothermal evolution, allowing
for different cross-section models to yield similar halo evolution in the LMFP regime once
the particle physics is scaled out, meaning that existing analytical models for constant cross-
sections can be mapped onto velocity-dependent cases. We have presented our findings in
terms of parameters typically used in simulations such as V.., and r,, which facilitates easy
validation of our work through N-body simulations in future works. Our work offers a robust
framework for capturing average behaviors in terms of density, dispersion, and timescales,

and constraining the interaction cross-section, once calibrated to N-body simulations.

4.A Caveats about the Self-Similar Solution
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Figure 4.5: The velocity dispersion profiles, density profiles, and log slopes of these density
profiles for n ~ 0 in the top row and n = 3.7 in the bottom row. Time step of each profile
plotted is listed in the legend (f = (t — tcore)/te0). Dashed part of the curves represent the
part of the halo that has entered the SMFP regime. We show the initial NF'W profile in
dashed-dotted gray. The dashed-dotted gray curves represent the initial NFW profiles. We
show the o computed from Eq. (4.22) in the third column.
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Figure 4.6: SOV constant ¢; vs v./Viax. Dotted lines are computed the same way as those
shown in Fig. 4.3, using Eq. (4.18), while solid lines come from Eq. (4.25). The figure
highlights the deviations from the requirements for self-similarity of halos via the differences
between the two methods.

In this section of the appendix, I will briefly outline how it is evident that there are departures
from the self-similarity requirements as shown in my numerical results, and as compared to
the analytic forms [106]. This is shown in Fig. 4.5, and in Fig. 4.6. Recall that a requirement
for self-similarity is that the slope of the density profile scales as 7=, as in Eq. (4.19). We
show the log-slope of the density profile, dlogp/dlogr, in Fig. 4.5, which shows that the
halo reaches a slope of —« around r ~ rg, which is shown by the horizontal gray line (which
comes from the right panel of Fig. 4.3). This is reassuring as it confirms the time and space
components of the self-similar solution, Eq. (4.22). The self-similarity requirement that the
density scales as Eq. (4.19) requires that « is constant between —2.5 and —2 [88, 8]. But
as we see in the third column of Fig. 4.5, the outer profile of the halo for all time steps
plotted is more like NFW, with a slope ~ —3. This implies that the self-similarity condition
is broken. Of course this is expected since the outer halo is dilute and thus thermalizing is
suppressed due to very low rates of self-interactions, which is why we can assume CDM for

the outer parts of a halo.
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We can also see that the self-similarity requirement breaks, and as such is approximate, in
Fig. 4.6, in which I used two methods to plot the SOV constant ¢;, one of which we show
in the left panel of Fig. 4.3 (which correspond to the dotted lines in Fig. 4.6 computed with
Eq. (4.18)). We can see that the dotted curves only nearly reach a constant for n = 3.7 and
n = 3, while the other cases do not reach a constant. The second set of curves in Fig. 4.6

(solid) are plotted using [106]

log v? log v?
lir% (d 8y > = lim (Qlogv’/Oor), _ _ar ~ ¢, (4.25)
T t

dlogp ), ro0 (Ologp/Or), 1—c

=ey? p, ~ 1 — %r2 [106]. The derivative in Eq. (4.25) is

which comes from p, ~ 1 — = T

taken for a fixed time. Looking at Fig. 4.6, we see the agree up until 0.75 — 0.80 v./Vinax,
after which the two methods diverge far before the halos fall into the SMFP. This is a clear
indication that the self-similar solution is approximately valid for a limited amount of time,

after which my numerical results clearly show they diverge from the self-similar solution.

Finally, the analytic result [106] for the collapse time shown in Eq. (4.23) predicts that the
core collapses at t.o =~ 430, however my numerical results show that the halo cores collapse
at teon ~ 330. Additionally, an important thing my numerical results clearly indicate is that
larger n return longer collapse times, as shown in Fig. 4.1. But Eq. (4.23) implies instead
that smaller n result in later collapse times. Our assumption is that this discrepancy also
comes from the fact that the self-similarity is only approximate, although it is not clear how

the departure from self-similarity would affect the analytic results.

4.B Table of Parameters used in Gravothermal Code

In this section of the Appendix, I include a table with a list of the parameters from the halos

I ran with the gravothermal code for our work. The input parameters are those I used to
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define each halo I ran, which some spread in the mass and concentration, and the output

parameters are those that are the results of the numerical runs.

Run Ps Ts  Vinax T:;m w Pe,0 Ve,0 % % decm % n o w
(10725 ] (kpe) () () (k) 107 My [l (%] [em

1 2.0 3.0 459 5.0 10* 4.9 29.5 2.5 0.64 50 5.0 2.1x10"* 0.029 339.5
2 2.0 3.0 459 10 95.1 4.9 295 25 0.6 4.9 0.64 1 0.025 3.2

3 2.0 3.0 459 40 40.2 4.9 29.5 2.5 0.64 5.3 0.24 0.023 14

4 2.0 3.0 45.9 1x10° 10.8 4.9 29.5 2.5 0.64 4.60 0.09 3 0.019 0.37
) 2.0 3.0 45.9 4x10° 1.0 4.9 29.51 2.45 0.64 5.6 0.06 3.7 0.020 0.034
6 4.0 4.0 86.5 9 10* 9.8 55.5 2.45 0.64 5.0 5.0 7.4 x107% 0.077 180.1
7 2.0 3.0 45.9 1.0 10* 4.9 29.5 2.5 0.64 1.0 1.0 2.1 x 10~* 0.0058 339.5
8 40 0.8 54.7 ) 10 98.1 35.1 2.5 0.64 5.0 5.0 3.0x10~* 0.15 284.7
9 40 0.8 54.7 4x10% 1.0 98.0 35.2 2.5 0.64 5.6 0.06 3.7 0.056 0.028
10 2.0 3.0 459 4x107 1.0 4.9 29.5 2.5 0.64 55.4 0.60 3.7 0.20 0.034
11 2.0 3.0 45.9 6.7 x 107 1.0 4.9 29.5 2.5 0.64 929 1.0 3.7 0.34 0.034

Table 4.1: Table of input parameters (ps, s, Vinax, 00/Mam, and w) and output parameters

Pc,0 Ve, 0

(Pc,m Ve,0,

ge A0 p g, and w). Runs 1-5 are the main runs in this work. The

Ps 7 Vmax’ Mdm’ Mdm

parameter oyg is defined as o190 = 0(v100) = 0(100 km/s).
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Chapter 5

On the Late-Time Evolution of
Velocity-Dependent Self-Interacting
Dark Matter Halos

This chapter is based on the paper “On the Late-Time Evolution of Velocity-Dependent Self-
Interacting Dark Matter Halos” written by Sophia Gad-Nasr, Kimberly K. Boddy, Manoj

Kaplinghat, Nadav Joseph Outmezguine, and Laura Sagunski [58].

Abstract

We study the evolution of isolated self-interacting dark matter (SIDM) halos that undergo
gravothermal collapse and are driven deep into the short-mean-free-path regime. We assume
spherical Navarro-Frenk-White (NFW) halos as initial conditions and allow for elastic dark
matter self-interactions. We discuss the structure of the halo core deep in the core-collapsed
regime and how it depends on the particle physics properties of dark matter, in particular, the
velocity dependence of the self-interaction cross section. We find an approximate universality

deep in this regime that allows us to connect the evolution in the short- and long-mean-free-
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path regimes, and approximately map the velocity-dependent self-interaction cross sections
to constant ones for the full gravothermal evolution. We provide a semi-analytic prescription
based on our numerical results for halo evolution deep in the core-collapsed regime. Our
results are essential for estimating the masses of the black holes that are likely to be left in

the core of SIDM halos.

5.1 Introduction

The nature of dark matter remains one of the most pressing questions in physics. We have a
wealth of data that constrains the interactions of dark matter with the Standard Model (SM).
However, less is known about the possible self-interactions of dark matter. Self-interactions
arise generically in dark sector models of physics beyond the SM and astrophysics provides
a way to constrain or measure its strength [139, 1]. Early models of SIDM featured contact
interactions with constant cross sections [134], but it has become evident that the cross
section must vary with velocity in order to match observations of cores in dwarf galaxies [47,
139, 141, 1] while avoiding constraints on cluster scales [21, 87, 109, 75, 49, 139, 124]. Viable
velocity-dependent SIDM models also lead to a large diversity in the rotation curves of
galaxies as observed [105] while maintaining all the successes of ACDM on large scales [72,

117).

A key feature of the evolution of SIDM halos is the possibility of gravothermal core
collapse [8]. Core collapse is unlikely to occur in the vast majority of field halos, however
the gravothermal evolution will be faster in some satellite galaxies and subhalos, which
could result in core collapse [103, 157]. It has been argued that core collapse must occur
in some of the satellite galaxies if SIDM is to explain the diversity in the halo densities of
the Milky Way (MW) satellites [71, 76, 156, 33, 70, 141]. It seems clear from recent work

comparing the densities of the MW satellites to SIDM models that do not allow for collapse
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that such models cannot be viable [114, 143, 78, 130]. If the gravothermal collapse proceeds
far enough in some halos, we expect the mean free path of dark matter particles to become
significantly shorter than the core size. In this regime, we do not have accurate simulations
or analytic framework. In this work, we explore the gravothermal core collapse phase in the
short mean free path regime allowing us to extend existing analytic approximations to high

core temperatures.

The evolution of an isolated, thermalized SIDM halo can be described by a set of
gravothermal fluid equations. In the early stages of evolution, the halo is sufficiently dilute
such that a dark matter particle completes many orbits before scattering with another dark
matter particle. In this long-mean-free-path (LMFP) regime, the gravothermal evolution
exhibits self-similar behavior, as demonstrated in our previous work ([106], hereafter referred
to as 023) and other works (for example, [88, 8, 83]). The gravothermal evolution is unstable,
leading to a runaway process in which the core of a halo collapses [89, 82, 8, 27, 83, 112, 126,
50, 156, 103, 33, 141]. Due to the self-similarity, all gravothermal halos undergo universal
evolution leading to core collapse, and the physical timescale on which the collapse occurs
depends on the particle physics of the halo, such as the SIDM cross section [8, 106], truncation
of the NFW profile due to tidal effects [103, 33|, the presence of baryons [120, 126, 54], and

dissipative interactions [50, 151, 55].

As gravothermal evolution proceeds, the core of the halo is driven deep into the core-
collapse phase, entering the short-mean-free path (SMFP) regime in which the high density
of particles allows them to undergo numerous collisions along each orbit. The evolution of
the core in the SMFP regime becomes distinct from that of the outer halo, which remains
in the LMFP regime. The properties of the core change much more rapidly in the SMFP
regime than in the LMFP regime; for example, the central density of the core increases many
orders of magnitude in extremely short time periods, and the temperature increases much

more rapidly, compared to the LMFP evolution. Thus, the universality of the core evolution
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in the LMFP regime is not expected to hold in the SMFP regime. No previous studies have
investigated the SMFP regime to see if the core maintains some form of universal evolution,
even if approximate. If such a universality exists, the gravothermal evolution of any halo
could be generically characterized from its initial stage to its gravothermal catastrophe, when

the core is expected to reach a relativistic instability that produces a black hole.

Previous works have estimated black hole masses resulting from the relativistic instability
(see for example [8, 83, 103, 91]). However, lacking accurate evolution characteristics of
halos in the SMFP regime results in inaccurate estimates of the core mass at the relativistic
instability. If black holes can be produced from the core collapse of dark matter halos,
production always occurs deep in the SMFP regime. It is therefore imperative to understand

the SMFP core evolution to determine the core properties in this regime.

In this paper, we explore the SMFP regime and study the evolution of the cores of initially
NFW, isolated, virialized SIDM halos by solving the spherically symmetric gravothermal
fluid equations. We show that the universality exhibited in O23 breaks down when the halo
transitions from the LMFP to the SMFP regime. We discover a new, approximately universal
solution to the gravothermal equations during the phase of evolution when the thermal energy
of the core becomes constant with respect to the 1-dimensional (1D) velocity dispersion and
time. The transition into this phase cannot be predicted analytically. Fortunately, we
find that the transition point can be related to the LMFP-to-SMFP transition, which is
analytically described in O23. We also quantify the scaling of the core mass as a function
of the central velocity dispersion during this phase of approximate SMFP universality. We
find more accurate relations for the core structure in the SMFP. As an application, we find
the core mass at the relativistic instability, which would be the minimum mass available
for black hole formation, and show that the mass loss is steeper than previously thought,
resulting in smaller core masses at the relativistic instability. Finally, we present a recipe to

easily compute the core properties of halos evolving deep in the SMFP regime.
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This paper is organized as follows: In §5.2 we present the gravothermal equations and
expressions for the heat conductivity, and we summarize our numerical procedure. In §5.3
we discuss the LMFP and SMFP evolution and formulate new designations for each stage
of evolution. In §5.4 we present the analytic description of the new SMFP universality and
validate it with our numerical solutions of the gravothermal equations in the SMFP regime.
In §5.5 we implement a method to analytically determine the parameters in the constant-
thermal-energy phase and outline a step-by-step recipe for obtaining the SMFP core mass
and black hole mass. The implications and limitations of this work are summarized in the
conclusions in §5.6. We include a derivation of the SMFP universal solution in Appendix 5.A,
show the dependence of the new SMFP parameters on the concentration of the halo
in Appendix 5.B, address issues of numerical resolution in Appendix 5.C, and discuss the

validity of approximations used in this paper in Appendix 5.D.

5.2 Gravothermal Evolution

The gravothermal evolution for a spherically symmetric, isolated, virialized halo is given by
the following relations for mass conservation, hydrostatic equilibrium, Fourier’s Law, and

the first law of thermodynamics [136, 88, 8, 103]:

oM g? dpv*)  GMp L~ or

or e or r2 0 Agr? Kar ’

oL 9 of 0 v?

E = —477'7’ pU <E)M10g (?> s (5].)

where p is the halo density, M is the mass enclosed within radius r, L is the luminosity, and
v is the 1D velocity dispersion. The entropy appears in the first law as log(v®/p), and the
temperature is related to the 1D velocity dispersion via T' = mgmv? from the kinetic theory

of gases, where myq,, is the dark matter particle mass.
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Parameter  Definition ‘
Teore Radius at which relation p(rcore) = pc/2 is satisfied for each snapshot in time
teore Time at which the core size is a maximum (and central density is a minimum)
teo LMFP scattering timescale (see Eq. (5.19))

Xc(t) Variables that describe the properties of the core (densest region in the halo)

like mass (M,(t)), density (p.(t)) and velocity dispersion (v.(t))

Xc,O = Xc(tcore)

Core properties at the time fcope

Xers = Xe(trs)

Core properties at the time when the scatterings in the core transition from
being in the LMFP to SMFP regime

Xc,lO = Xc(tlo)

Core properties at time the core enters a new phase in SMFP (Stage 3 in §5.3)

XN

Scale quantities taken at some point N

O0c,0y Oc,LLSs Oc,10

The value of the cross section, o¢K),, with the velocity dependence taken at
Ve,05 VeLSs Ve10 (see Eq. (5.4))

Nec0, N, LS5 Me,10

The log-slope of the cross section at the velocity scales v, ve1s; Ve 10
(see Eq. (5.9))

Oc,0, We,0

6 and w in Eq. (5.8) evaluated at the scattering timescale .o

Table 5.1: Table of parameters and their definitions. The first block of parameters are the core
radius 7core, the time of core formation tcore, and the scattering timescale t.o. In the second block,
the variable X is a placeholder for all the physical quantities used in the paper. The quantities
Pe, Ve are taken at the center of the halo (see Appendix 5.C.2 for details about how we address this
numerically), while r., M., L. are taken at the core radius, which is definition dependent. In the

last block, we include definitions involving the scattering parameters o., n¢, 6, wW.

__StageO Stagel Stage2  ____ Staged
20F
10°F
15¢
3|
10 = 10 ///’// 7, e
B 2,07
g 5 9007
oo | w0 _ gp e = /////////////
S maw ~ 7 | M0 AP
- <5 102k 2 9777
0 10 R0
0F — 0.1 R
—_— 0.25 // Pz
el 7, 7
5 — 05 2
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—10t . )
3 A/
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100k , L
10! 100 107
Ve/ Vinax e/ Vinax

Figure 5.1: (Left) The log slope of the central density as a function of the central velocity, normalized
by Vinax- Dashed lines represent the SMFP evolution of each halo. The black horizontal line shows
the v = 10 slope the halos asymptote to after the v = 10 transition (indicated by diamonds). The
stages of gravothermal evolution are labeled and described in Sec. 5.3. The orange curves have larger
¢ and thus transition into the SMFP regime earlier. We indicate the division of stages for each set
of curves separately with vertical dashed (dotted) lines for the blue (orange) curves. (Right) The
quantity tcondq/ tgyn as a function of v, /Vimax- The conduction timescale is tconqg = tLmrp + tsmrp,
where timpp = teo and tsypp is defined in Eq. (5.17). The dynamical timescale t4y, is defined in
Eq. (5.20).
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Figure 5.2: (Upper Left) The evolution of the core mass as a function of the central velocity,
normalized by the LMFP scales as in 023, taken at core formation. The dashed lines represent the
evolution in the SMFP regime, where for large v., the scatter in the halos is large. (Upper Right)
Same as panels to the left, except here we normalize with the new scales in the SMFP, M. 19, v¢ 10,
when the halos have reached the SMFP universal solution at the slope v = 10. The scatter in the
SMFP lines has decreased significantly and shows an approximate universality. (Lower Left) Same
as figure above, but here it is the central density as a function of velocity. (Lower Right) Same as
figure above, but here it is the central density vs. central velocity, both normalized by new scales
Pe,105 Ve, 10- A more detailed explanation of our parameter definitions and notations can be found
in Table 5.1.
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fed e 2 e ~ =
Run Color — 20- w pLS VLS P10 VIO T ffiz 7m$0§ Neo ML N10 Oc0 Weo
cm

[em]  [(km] [10'0 59 (k] [10M 2] [km] [em] [em] [em]
1 — 5.0 107 3.3 39.5 3.9 100.2 5.0 4.89 4.88 0.0003 0.0005 0.003 0.03 339
2 — 5.5 535 3.3 39.5 2.8 93.9 52 498 3.76 0.09 0.15 0.58 0.03 18.2
3 — 6 298 3.7 39.8 1.9 86.3 5.2 4.68 2.74 026 0.39 1.0 0.03 10.1
4 — 7 184.7 4.5 40.2 2.0 83.3 5.1 4.14 1.81 0.53 0.77 1.52 0.03 6.3
5 11 103.9 6.0 40.9 3.9 85.2 5.1 348 094 1.02 137 2.18 0.03 3.5
6 42 41.7 14.5 42.9 21.6 93.4 5.0 2.13 0.26 1.97 2.4 3.0 0.03 14
7 1050 11.8 40.0 455 144.2 104.5 5.1 1.15 0.07 3.01 3.3 3.5 0.03 0.4
8 5% 10 1.0 92.3 47.7  666.7 1153 5.0 0.71 0.03 3.67 3.7 3.8 0.03 0.03
9 — 90 10% 0.016 31.4 0.016 77.4 90.0 88 87.9 0.0003 0.0003 0.002 0.5 339
10 — 96 535 0.016 314 0.011 72.6 91.6 89.4 74.5 0.09 0.1 04 0.5 18.2
11 — 105 298 0.017 31.5 0.009 68.8 91.2 88.5 59.3 0.26 0.27 0.82 0.5 10.1
12 125.4 184.7 0.017 31.5 0.009 67.2 90.8 87.2 440 0.53 0.56 1.29 0.5 6.3
13 195 103.9 0.017 31.6 0.01 65.6 91.1 84.7 285 1.02 1.09 19 0.5 35
14 770 41.7 0.021 319 0.02 67.3 923 76.2 12.1 1.97 2.1 2.8 0.5 14
15 1.9 x 10* 11.8 0.029 32.6 0.09 73.8 92.0 60.8 4.12 3.01 3.1 34 0.5 04
16 9x 107 1.0 0.041 33.2 0.44 83.3 90.8 48.8 1.58 3.67 3.7 3.8 0.5 0.03

Table 5.2: Table of parameters for all halo runs. Input parameters for the code are ps, 75, 0¢/Mdm,
and w. The parameters p. s, Uc,LS; Pc,10, Ue,10 are obtained numerically, as are the parameters at
core formation: p.o >~ 2.4ps = 4.8 x 107 M@/kpc3, Ve,o = 0.64Viax = 29.5km/s. All remaining
parameters are derived. Runs 1 —8 all have o, =~ 5 cm? /g, while runs 9 — 16 have o, ~ 90 cm?/g.
All runs have p, = 2 x 107 Mg /kpc3, 7y = 3kpe, Vinax = 1.65751/Gps = 45.9km/s. All Gers = 1
by definition. See Table 5.1 for the explanation of our notation.
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Figure 5.3: (Left) The evolution of the central density as a function of time, shifted and normalized
to the time maximal core is reached as defined in O23. Ome can see that for different o, the
collapse times differ. (Right) Same as the left plot, except the time here is shifted and normalized
to the time the halos enter the v = 10 phase, where the curves line up relatively well as we are
already in the self-similar solution. Note that here, the time the curves enter the v = 10 phase is
not analytically determined, thus resulting in the scatter.
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5.2.1 Particle Physics via Conductivity

In this paper, we adopt the analogy of elastic Mgller scattering in a Yukawa potential [63,
153]. As in [O23], we employ a velocity-dependent cross section through the differential cross
section of the Born approximation:

do  1oow*[(3cos® 0 + 1)v* + dv?w? 4 4w’

- — 5.2
aa (sin? Qv + 4v2w? + dw?)? (5:2)

where w is a scale velocity that is a measure of the ratio of the mediator mass to the
dark matter mass, and oy is a normalization prefactor, and 6 is the scattering angle. This
differential cross section allows us to examine velocity-dependent cross sections, as well
as constant cross-sections, as it approaches a constant when the scale velocity w is taken
to be very large. The particle physics model enters the equations only through the heat

conductivity, x, in Eq. (5.1).

An exact form for the conductivity exists in the SMFP regime, but the LMFP conductivity
has only an approximate form and must be calibrated to simulations through a scaling

parameter C. We follow the notation of O23 to parameterize the LMFP conductivity as

3aC' (o))

3
K, .
887G m3 pUats, (5:3)

RLMFP =

where a = 4/y/7 and

(0w Upl)
Kp o viscVre .

N hmw—>oo <0ViSCUrel> '

(5.4)

Here, oyisc = [ do sin? @ represents the viscosity cross section. We note that in 023, we used
p = 3 in the LMFP conductivity. However, after we released our work, [154] released results
of their N-body simulations of SIDM gravothermal collapse which showed that p = 5 is a

better fit. We use their data to find that C' = 0.73 matches best with p = 5. However,
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in order to remain consistent with 023, we use C' = 0.6, noting that the precise value of
C' does not impact our main, qualitative results. Moreover, the appropriate value of C' for
velocity-dependent SIDM requires comparison to simulations, which is beyond the scope of

this work.

The SMFP conductivity computed in O23 is

3bv 1

KSMFP = 50—0@, (5.5)
where b = 25,/7/32 and
(o) _ 28K + SOK Ky — 64K 55)

off T TTKs — 112K, + 80K,y

As discussed in 023, we obtained K¢ from the Chapman-Enskog expansion [25, 110] at
second order which provides up to a 20% correction to the SMEFP heat conductivity. The
next order correction results in sub-percent corrections, so we truncate the expansion at

second order. Finally, we interpolate between the LMFP and SMFP regimes as follows:

1 1 1
— + .
K RLMFP RKSMFP

(5.7)

5.2.2 Numerical Methods

Our numerical procedure closely follows our work in 023. We may recast Eq. (5.1) to be

written in dimensionless form, which depends on only two dimensionless parameters:

C 1 1 M 2
62 = %Kg) (T) Ke(ff) (7) <4 ]\; 0 )
w W T4 Mdm
TN (5.8)

aC' 1 @ (1Y) pn 09 2 . w
~ YR (VKD (Z) L _——
b 5(w) off (w) 1w \ N ) T oy
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where the scale parameters py, vy, 7y, and My are related through GMy = ryv% and

My = 4mpnry;. Instead of using the parameter w, we can instead define the quantity n
to characterize the velocity-dependent SIDM scattering. As in 023, we use the (positive)

log-slope of the function K

dlog K
n= “dlog oy’ (5.9)

where K = K35 in the LMFP regime and K = Ke(?f) in the SMFP regime.

We employ our gravothermal code used in O23 to evolve velocity-dependent SIDM halos
according to the dimensionless form of Eq. (5.1). We assume halos initially have an NFW
profile, and from 023, the NFW parameters are related to the central parameters at core
formation as p.o = 2.4ps, veo = 0.64Vmax (see Table 5.1 for a description of our notation and
definitions). We evolve 16 halos with the parameters listed in Table 5.2. For the purpose of
maintaining numerical stability, we approximate fitted forms for Eq. (5.4), which we provide

in Appendix 5.D.

We define the size of the core of a halo repe Via p(7eore) = pe/2. As the halo evolves, different
regions of the halo may transition from the LMFP regime (for which kpyrp < ksypp) to the

SMFP regime (for which kpyvpp > ksmrp). We use the condition

RSMFP

=1 (5.10)

I{LMFP T=Tcore

to define the time when the core fully transitions from the LMFP to SMFP regime, and we

refer to this time as the LS transition.
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5.3 Long and Short Mean Free Path Evolution

We can delineate a halo undergoing gravothermal collapse into two regions: the outer halo
and the central core. Gravothermal evolution leads to core collapse: the core contracts
and heats up, leading to a high density and temperature, during which time dark matter
self-interactions transport heat and mass to the outer halo. Meanwhile, the outer halo
that surrounds the core remains relatively dilute and acts as a heat sink. The thermal
evolution timescale of the outer halo is much longer than that of the core, so the outer halo
changes temperature very slowly, while the core temperature increases rapidly. The outer
halo remains in the LMFP regime, while the core can be in the LMFP, the SMFP, or an
intermediate regime. The evolution in the two regimes differs substantially. In 023, we
explored the LMFP regime in detail. In this paper, we focus on the SMFP regime. We

provide a brief overview below of the two regimes.

In the LMFP regime, dark matter particles are sufficiently dilute such that particles can
make many orbits before scattering. While the outer halo is always in the LMFP regime, for
the core of a halo, this is not always the case. Given a large enough cross section, the core
of a halo can begin in the SMFP regime. However at core formation, as we studied in depth
in 023, the cores of halos evolve in the LMFP regime, and the LMFP solution represents
the bulk of the time an isolated halo spends in its evolution. The self-scattering enables
dark matter particles to transfer heat and mass between the inner and outer regions of the
halo. Initially, heat is transferred inward from the hotter outer halo to the colder inner core,
causing the core to expand until it reaches a maximum, or “maximal core.” The core then
transfers heat to the outer halo and shrinks, becoming denser and hotter. This runaway
process inevitably drives the core into the SMFP regime and into the core collapse phase.
The LMFP and SMFP regimes experience distinct evolution paths. This is illustrated in the
curves of Figs. 5.1 (left panel) and 5.2 (all panels) where the dashed portions of the curves

denote when the core is in the SMFP regime, whereas the solid portions indicate the LMFP
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Figure 5.4: (Left) The velocity dispersion as a function of radius for Stages 0, 1, 2, and 3. The

upper row is for a small & with n = 3.7 corresponding to run 8 in Table 5.2, and the lower row
is for large & with n = 1 corresponding to run 13 in Table 5.2. (Middle) Density as a function of

radius. (Right) Slope of the density profile with respect to radius.
regime. We delineate the LS transition as the point when the conductivities are equal, as in
Eq. (5.10). Notably, the orange curves transition from SMFP (dashed) at low v, values to
LMFP (solid) and return to SMFP (dashed) at high v. values. In contrast, the blue curves
begin in the LMFP regime (solid) and switch to the SMFP regime (dashed) as v, values
increase. Thus, halos with substantial cross sections begin their evolution with their cores in
the SMFP regime. Nonetheless, we assume NFW profiles as an initial condition, as we did
in 023, noting that halo core formation causes the core to transition to the LMFP regime
early in its evolution. It would be interesting to test other profiles with different inner slopes,
for example, a roughly constant core. We know that profiles that are truncated in the outer
regions due to tidal effects tend to speed up the onset of core collapse [126, 71, 103, 33|, and

thus it would be insightful to see how profiles with inner slopes that differ from ~ 7!

may
affect the evolution. We leave this interesting question to a future study.
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In the SMFP regime, the core shrinks and drastically increases in density. In this regime,
particles are so dense that collisions are very frequent. The dense core as a result hampers
heat and mass transfer from the core to the outer halo [8, 2, 50]. After the shielding begins,
the evolution paths of the outer and core become distinct, and the core can be treated
approximately independently from the outer halo. Shortly after this transition, the core
falls into a phase of constant thermal energy, where the log-slope of the central density
with respect to central velocity dispersion becomes constant in time, approaching a slope
of v = 10; see Fig. 5.1. Here, the core heats up very quickly and the density shoots up
by several orders of magnitude, which can be seen as a steady rise of the central density
with respect to the central velocity in Fig. 5.2 (lower panels), as well as both panels of
Fig. 5.3 where the central density shoots up during collapse. Looking at both Figs. 5.2
(lower panels) and 5.3, it is also evident that the timescale at which the LMFP and SMFP
evolution proceeds is drastically different: while the bulk of the evolution resides in the

LMFP, the SMFP evolution occurs very rapidly.

In the left panel of Fig. 5.1, we label each stage in the gravothermal evolution. We call the

quantity dlog p./dlog v, as v, given by

dlog pc

= 5.11
dlog v, 7 ( )

where p. oc v) with v ~ 10. Fig. 5.4 shows the density profiles for each of these stages.
The outer halo remains largely unchanged throughout the evolution, but the core changes

significantly. The stages are as follows:

e Stage 0: The Core Expansion Phase. During this initial phase, the halo’s core
undergoes an expansion process. While the core size increases, it experiences adiabatic

heating and a concurrent gradual decrease in density.
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e Stage 1: The Core Contraction Phase. This phase commences once the core reaches
its maximal size and minimal central density, initiating a period of contraction. During
this phase, the core decreases in size and increases in density. This marks the onset
of the LMFP evolution phase, characterized by self-similarity and approximate LMFP

universality, explored extensively in O23.

e Stage 2: The Unorganizable Phase. This phase signifies a departure from the self-
similarity and universality found in the earlier stages. Here, the halo does not conform
to any universally applicable solution. Despite this, we have developed semi-analytical
formulae that effectively map the values of macroscopic parameters at the end of Stage
1 to those at the beginning of Stage 3. Detailed discussions on these formulae are

provided in §5.4.

e Stage 3: The Constant Thermal Energy Phase. This phase represents the region
beyond the v = 10 transition where we identify a new SMFP universality. As depicted
in the left panel of Fig. 5.1, all halos tend towards the slope v = 10 during this stage,

allowing us to fully characterize the evolution during Stage 3.

5.4 SMFP Approximate Universality

In the LMFP regime, the self-similar solution is most clearly seen by scaling the central (i.e.,
at the halo center) quantities p, rcore, and v, by their value at core formation, which we refer
to as the instant of maximal core in O23. It represents the time at which the central density
is at a minimum and the size of the core is at a maximum (see the left panels of Fig. 5.2).
The approximate universality, however, breaks once the core enters the SMFP regime, as
evident in the left columns of Figs. 5.2 and 5.3. As discussed in 023, the breakdown of

universality at the LS transition is governed by the size of &.
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In this section, we present a new approximate universality in the deep SMFP regime. This
universality is evident upon scaling the central quantities by their respective values at the
onset of Stage 3, as seen in the right column of Fig. 5.2 and 5.3. The onset of Stage 3 of
the evolution is not as clear-cut as the LS transition and cannot be computed analytically;
however, as previously stated, we approximate the point of the v = 10 transition by taking
the minimum of the curves in the SMFP regime in the left panel of Fig. 5.1. The evolution
of the newly scaled quantities in the SMFP regime all align, as seen in the right panels of

Figs. 5.2 and 5.3.

5.4.1 Analytic description of the Core Structure

We now show some analytical properties of the halo cores during Stage 3 in the deep SMFP

regime. Detailed derivations are presented in Appendix 5.A.

We start by Taylor expanding the halo density and velocity dispersion profiles around the

halo center:

p=rpc(1—2"+0("),

(5.12)
v? =07 (1 —&” + EBa + O(af))
where x = r/r., and we have implicitly defined a core radius r. as
_ ) dlog p
2 e
r.T = 71415[1) ( 52 )t . (5.13)
We note that £ can be calculated from our numerical results:
£ — Tim (2108 v (5.14)
= lim . :
r—0 \ dlogp /,
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To leading order in x, mass conservation gives M ~ M. x3, with M, = 4mwp.r3/3. Using the
above expansion to the lowest order in the Jeans equation in Eq. (5.1), we find that the

central quantities are related through

(B (5.15)

As discussed earlier, we find that during Stage 3, p. o< v) with v ~ 10. From the above

relations, we see that M, vg’ﬂ/? ~ v, 2 or
M, 02\ !

This scaling is nicely demonstrated in the bottom right panel of Fig. 5.2. It is important to

dlog M.

Tlog o2 15 1Ot exactly —1, as a value of —1 indicates no core evolution [8]. But

point out that

it is very close to —1 and so we use this approximation. We define the SMFP timescale as

O'OKEE? (V) Ve

" _ 5.17
SMFP b G (5.17)
and find in Appendix 5.A that
. (9log(v*/p) 3 ¢
1 —_— ) = 5.18
50 ( ot T terp 1 +€ (5.18)

Note that through Eqs. (5.14) and (5.18), we obtain two different derivations of &: one
through a temporal derivative and the other through spatial ones. The agreement between

the two different derivations is demonstrated in Fig. 5.5.

It is not clear exactly why this approximate universality exists. Unlike the LMFP universality
we found in 023, the SMFP universality does not have a simple analytic derivation, and we

can only approximate the v = 10 transition numerically. But once this approximation is
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done, the universality does appear upon rescaling, and we produce analytic expressions for

these parameters using the fits in Eq. (5.21).

Although the particle physics dependence (the velocity dependence of the cross-section) can
be scaled out in Stage 1 (the LMFP) and Stage 3 (v = 10 transition), Stage 2 (the drop
from the LS transition to the v = 10 transition in the left panel of Fig. 5.1) seems to have a
non-trivial particle physics dependence. Accounting for this dependence is crucial to getting
some analytic handle on the v = 10 transition, which can be related to the LS transition, as

shown in §5.5.1.

5.4.2 SMFP timescale and validity of the gravothermal equations

In the LMFP regime, changes in the evolution occur on the scattering timescale given by

o 2 (oy) UN !
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for which the core parameters are taken at core formation in the LMFP (see Table 5.1 for
a full explanation of our definitions and notations at core formation, the LS transition, and
~v = 10 transition). In the SMFP regime, the timescale is given in Eq. (5.17) where, as in
Eq. (5.8), the core parameters can be taken at the LS or v = 10 transitions depending on
the stage of evolution. For the gravothermal equations to be valid, the relevant timescale

must always be longer than the dynamical time

1

tag = ————. 5.20
dy /47TG/)N ( )

Note that tgupp o< tﬁyn [teo, where t.o is Eq. (5.19) taken at core formation. One may be
concerned that the condition tgypp > t4yn is not fulfilled, because changes in the SMFP
occur very rapidly. In the right panel of Fig. 5.1, note that tcond/tayn > 1, and while it gets
close to 1, it does so in the LMFP regime, which has been investigated in simulations that
show the gravothermal equations are valid; see for example [154, 153]. Once the halos are
in the SMFP regime (dashed lines), tcond/tayn > 1 is always true. As long as the timescale
of SMFP evolution is larger than the dynamical timescale, changes due to the evolution
take longer than the dynamical time of the halo, allowing the halo to maintain hydrostatic

equilibrium. Thus, the gravothermal equations remain valid.

5.5 Core mass at the Relativistic Instability

Previous works have made estimates of the core mass at the relativistic instability [8, 83,
103, 91]. However, lacking the properties of the halo in Stage 3 that we have found has
led to overestimating this mass. The scaling used has been % = —0.85 [8, 83, 91] and
extrapolating to the relativistic instability velocity, which is estimated to be v, ~ ¢/3 [55].

As we discuss next, this results in a substantial overestimation of the core mass. Examining

the upper panels of Fig. 5.2, it becomes evident that the log slopes of the curves initially
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Figure 5.6: (Left) The vc10/ve,1s to ne1s relation plotted as a black curve, fitted to our numerical
results (diamonds). (Right) Same as the left, but for the p10/pcLs to ne g relation.

flatten to approximately —0.85 shortly after entering the SMFP regime (marked by dashed
lines). This is followed by a steepening of the slopes, eventually converging to a log-slope of
about —1. As we explained in §5.4.1, the slope cannot be exactly —1, but it is very close to

it and steeper than —0.85.

In this section, we present a new, more rigorous, prescription in which we connect the core
parameters at the LS transition to those in Stage 3 at the v = 10 transition. This new

prescription also affects the core mass obtained in the SMFP regime.

5.5.1 Relating the LS transition to the Stage 3 Parameters

As elaborated in Section 4, the onset of the newly identified universal phase—referred to as
Stage 3—commences at the v = 10 transition, for which we lack exact analytical predictions.
In this section, we introduce empirical formulae that allow for the estimation of key halo
core characteristics, starting from the core parameters at the LS transition. Given that
these LS parameters can be analytically derived from the initial core characteristics, we

essentially offer a semi-analytical framework to predict the core parameters at the v = 10
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Figure 5.7: (Left) pei0/pe,Ls VS Ue10/Ve,L.s shown as a black curve fitted using the fits in Figs. 5.6,
plotted over our numerical runs (diamonds). (Right) Plot of the n. 19 to n. s relation, fitted using
the same relation as in the left panel of Fig. 5.6.
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Figure 5.8: (Left) The ratio of M. r1/Maoo with respect to the halo mass Mg for a cross section of
00K, = 100cm? /g at v = 20km/s with w = 1km/s and w = 10* km/s (labeled). The band for the
velocity independent model overtakes the velocity dependent one for masses larger than 10° M.
The gray hatched shaded regions are those that do not collapse within the age of the universe (see
right panel). (Middle) Same as the left panel, but for the core mass at the LS transition. (Right)
Collapse time as a function of the halo mass for the same models as in the left panel, with the
gray hatched shaded region above the line at (13.7 Gyr) indicating collapse times longer than the
age of the universe. The bands for the cases of w = 10*km/s and w = 1km/s are labeled in the
figure. The purple shaded bands in all the figures cover a concentration of £0.3 dex around the
median, represented by the dark purple line. In the first two figures, the upper (lower) bound
of the bands correspond to higher (lower) concentration, while in the rightmost figure, the upper
(lower) bound represents the lower (higher) concentration, indicating that higher concentration
halos collapse faster.
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transition based on the initial halo conditions and particle physics parameters. Using the
approximate universality described in Section 4, this, in principle, allows for a semi-analytical

halo evolution model throughout the different phases.

The relation between the LS and v = 10 parameters is shown in Fig. 5.6, alongside the fitted

lines given below:

—— =exp

Ve Ls ndvy
(5.21)
Pe,LS ”2,’3133

The fitted lines closely align with the behavior of the numerically calculated points. The
above fits also introduce an implicit relation between v.10/veLs and pe10/pec s, this implicit
relation is the line shown on the left panel of Fig. 5.7. This line follows the numerical
calculations quite accurately. Per the definition in Eq. (5.9), the log-slope, n, is a function
of the central velocity dispersion, namely n = n(v./w). Denoting the inverse relation by
v./w = f(n) we can express vUe10/VeLs = f(ne10)/f(ners), solving for f(n.rs), and noting

that n[f(z)] = x, we find that:

Nels =N [UC’Lsf(nc,lo):| . (522)

Ve,10

The resulting line on the right panel of Fig. 5.7 validates this approach, as it closely matches

our numerical calculations.

To complete our semi-empirical model, we need to provide a means for finding n.rs, vcrs

and p.rs from the initial halo parameters. In 023 we derived the scaling laws

6—2a

2a
Vels _ s-1/5 Pels (%LS) 7 Mews (“ch8> o (5.23)
— =00 — ’ - : )
Ve,0 Peo Ve,0 Mep Ue,0
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where 6 ~ 1 —n.o+ a/(a — 2), and o ~ 2.2 up to small but important scatter which is
detailed in O23. With this at hand, we simply calculate n.rs by using Eq. (5.22). Having
these relations allows us to have an analytic handle on the v = 10 region, allowing one to
obtain the parameters in the v = 10 region by simply having the initial halo and cross-
section model. Eq. (5.23) relies on the assumption that core formation occurs in the LMFP,
which is satisfied when ksvpp > kpvrp at the time of core formation, t.oe. This implies
that & < 1 [cf. Egs. (5.3), (5.5), and (5.8)]. However, our numerical results demonstrate
the effectiveness of Eq. (5.23) even in scenarios where ¢ ~ 1, highlighting its applicability

beyond its initial theoretical assumptions.

5.5.2 Obtaining the core mass at the relativistic instability from

halo properties

Equipped with the results of the past section, we can derive updated predictions for the core
mass at the onset of the relativistic instability. Before doing so, it is crucial to emphasize
that the core mass at the point of relativistic instability, M, gy, should be considered a lower
limit for the mass that will ultimately collapse to form a black hole. We conjecture that the
upper bound for black hole growth due to processes such as accretion is the mass within the
region of the halo that is in the SMFP, and can be approximated as the core mass of the halo
at the LS transition, M. s (see App. 5.D, which outlines the validity of this approximation).
The fraction of the mass that actually ends up in the black hole is a very interesting topic

that requires relativistic treatment, and we leave this to a future study.

We express the core mass at LS transition through the relation in Eq. (5.23). Using Eq. (5.15)

we express the core mass at the moment of v = 10 as

v B (1) v (5.24)
c,10 — G —pc,m' .
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The mass at relativistic instability is thus approximately given by

2
Mer1 =~ Mo (Uc’lo) ; (5.25)

Ve, RI

where v.r1 >~ ¢/3. To demonstrate the relevant mass scales, we use our analytic recipe
(in §5.5.3) and focus on two example SIDM models, both having 0oK, = 100 cm*g™! at
v = 20 kms~!. The models demonstrate the two extremes of velocity dependence; the first
has a velocity scale of w = 1 kms™! displaying strong velocity dependence, while the second,
with w = 10* kms™!, which is practically a constant cross section. We utilize the Python
package COLOSSUS [39] for cosmological computations, along with a tight relation between
the virial mass of a halo, and its concentration (where the concentration is defined as ratio of
the virial radius to the scale radius of a halo) referred to as the concentration-mass relation
(see for example [23, 45, 80] for a detailed account of the relation between concentration and
mass of halos). We specifically use the concentration-mass relation from [40] to compute

M., g1, M.1s and t.on using our recipe in §5.5.3 and illustrate our findings in Fig. 5.8.

The left panel of Fig. 5.8 shows the core mass at relativistic instability as a function of
Msgp, providing an estimated lower bound on the mass of the black hole formed from core
collapse. The middle panel shows the core mass at the LS transition as a function of My,
representing the estimated upper bound on the black hole mass. The right panel shows the
collapse time (with the collapse time as defined in Eq. 29 of 023) of both models as a function
of Mygp, with the gray hatched shaded region representing timescales longer than the age of
the universe, and thus, signifying halos that do not collapse in time. The width of the bands
(shaded purple) in all three panels represents a spread around the median concentration
(dark purple line) of 0.3 dex. For the left and middle panels of Fig. 5.8, the upper (lower)
bound of the bands correspond to higher (lower) concentrations, while in the right panel, the
upper (lower) bound of the bands represent lower (higher) concentrations, which is indicative

of a more rapid collapse for halos with higher concentrations. The concentration dependence
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of all these parameters (as well as the My dependence of M, s and M. g;) can be found in

Appendix 5.B.

The left panel of Fig. 5.8 shows that higher M. gy are produced for all halo masses in the
case of constant cross sections. What is particularly intriguing to note is that, given a high
enough concentration, all halo masses with constant cross sections collapse within the age
of the universe. Halos with highly velocity-dependent cross sections (namely w = 1kms™)
and masses over ~ 10° M, do not collapse within the age of the universe, although a high
concentration allows for halos up to ~ 101 M, to collapse in time. In the case of a constant
cross-section, halos of mass Mgy ~ 10'° — 10! produce a minimum black hole mass (M.x1)
of order 1 — 10® M, while highly velocity-dependent ones of the same mass range do not
collapse within the age of the universe. This shows that previous works have overestimated
the core mass at the relativistic instability by about 2 orders of magnitude. One should keep
in mind, however, that given the need for large cross sections on dwarf scales, constant cross
sections have been ruled out by cluster constraints [75, 139, 124]. Another feature to note
is that M, gy is almost linearly proportional to Msgy in the highly velocity-dependent case,
yielding a nearly straight band in the left panel of Fig. 5.8. This dependence on My, along

with the relation in the middle panel, can be found in Appendix 5.B.

5.5.3 Recipe for analytically obtaining the core mass at the

relativistic instability

With the tools presented in this paper, one can easily find the core mass of a halo using just
the initial halo parameters and the particle physics of the halo. Here, we detail a step-by-
step recipe for obtaining M, at late times, and thus, an estimate for the core mass at the

relativistic instability, the minimum mass available for black hole formation. As stated in
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§5.5.2, although this procedure hinges upon relations that assume ¢ < 1, we have tested it

for halos with & ~ 1 and found that the predictions work remarkably well.

1. Find the maximal core parameters from the NFW halo parameters using the relations

from O23:

Peo = 2.4ps, Vo = 0.64Vax

2. Find the dispersion at LS transition, v, rs.

(a) Use Eq. (5.8) to obtain the dimensionless cross section.

(b) Set a = 2.2 and use Eq. (5.23) to find v.ps. (« typically ranges from 2.19 — 2.22

for n.o from 0 — 3.7, but 2.2 is a sufficient approximation.)
3. With the v. s obtained in step (ii), use Eq. (5.9) to find n.1s.

4. Use Eq. (5.23) to find the central density at the LS transition, p.rs, and the core mass

at LS transition, M, s.

5. With the v.rs, pers, ners found using the steps above, use our fit in Eq. (5.21) to

obtain the central dispersion and density at the v = 10 transition, v. 10, pe,10-
6. Find the core mass at the v = 10 transition using our equation in Eq. (5.24).

7. Finally, using the second equation in Eq. (5.16), extrapolate to the relativistic
instability at v. ~ ¢/3, and find the minimum mass available for black hole formation

using Eq. (5.25).

With these seven steps, one can determine the core mass at the relativistic instability, the
minimum mass available for black hole formation, simply from knowing the NF'W parameters
and the assumptions for the particle physics model. See Fig. 5.8 for the band we obtained

using the mass-concentration relation with COLOSSUS [39] and this recipe.
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5.6 Conclusions

We have examined the SMFP evolution of spherical, initially NFW, isolated halos for
velocity-dependent SIDM with varied velocity dependence strength undergoing elastic
scattering only. We show that in the SMFP regime, the core becomes distinct from the
outer LMFP halo. For the first time, we discover a universality in the SMFP regime and
the appropriate timescale in the SMFP evolution when the halo is deep in the core collapse.
We find new scales that allow one to scale out the particle physics, specifically at the v = 10
transition which leads into the constant thermal energy phase in Stage 3 of the halo evolution
(see Fig. 5.1). It remains unclear why this universality exists, but we find this universality in
all our runs for velocity-dependent SIDM halos. Although the v = 10 transition point cannot
be found analytically, we have determined a relation between the LS and v = 10 transitions
given in Egs. (5.21) that allows to simply compute parameters in Stage 3 analytically given

initial halo parameters and particle physics.

With these findings, we devise a recipe to estimate the core mass deep in the core collapse
regime using the relation in Eq. (5.23), shown in Fig. 5.2, and our recipe in §5.5.3. We can
use this recipe to compute the core mass at relativistic instability, which we expect would
be the minimum mass available for black hole formation, given the initial halo parameters
and particle physics. We find that previous works based on the gravothermal solutions
have overestimated the core mass at relativistic instability by about 2 orders of magnitude.
We find that the mass of the core reaches ~ 103 M, at the relativistic instability only
for Mygy ~ 10 M and constant cross sections, while high velocity dependence prevents
collapse from occurring in more massive halos. However, we note that other particle physics
likely becomes important in this regime and may cause black hole formation to occur before
the halo reaches v, ~ ¢/3. Note that dissipation [50, 151, 55], halo truncation [103], and the
presence of baryons [54] have been shown to cause halos to collapse faster, which could lead

in larger black hole masses.
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We compute the mass within the region of the halo that is in the SMFP regime as a function
of time and show that it asymptotes to a constant value. We show that this constant mass
can be estimated using the mass within the core when the core enters the SMFP regime
to within an O(1) scatter (see App. 5.D. The core mass at the LS transition can be easily
estimated given the analytic approximations derived in O23. We conjecture that this quantity
is roughly the maximum mass available for black hole growth via other physical processes

such as accretion.

The key takeaways are of our work are:

o We have discovered, for the first time, a universal solution for halos in Stage 3 of the

evolution (see Fig. 5.1).

o We have devised a method to analytically determine the v = 10 transition parameters

by relating them to the LS parameters defined in O23.

o We have outlined a step-by-step recipe to analytically determine the properties of the
core deep in the core collapse regime, given the halo parameters and cross section for
models with elastic scattering, without needing to run the gravothermal code. As an
application, we determine the core mass at the relativistic instability, which serves as

the minimum mass available for black hole formation.

Coupled with our companion paper in O23, we now have appropriate relations to describe
the entire gravothermal evolution of isolated halos, from the LMFP to SMFP regimes.
This provides a simple way to analytically find the minimum core mass available for
black hole growth after core collapse, given the initial halo parameters and assuming no
physics other than elastic collisions. It is an interesting question to ask how these analytic
predictions would change for tidally truncated halos and whether the universality based on

the connection to the LMFP regime is retained to some extent. It would also be interesting

97



to extend our analysis to cases where baryons dominate the central potential well and where

dissipative interactions are important.
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5.A Semi-analytic Description of the Evolution of the

Core

In this appendix, we derive some semi-analytical results, describing the central halo evolution
in the deep SMFP regime. We start our derivation by focusing the short-distance behavior
of the gravothermal solution. To do so, we Taylor expand near r = 0 the halo density and

velocity dispersion profiles as'

p=rp.(1—2"+0(")),

(5.26)
v =07 (1 —&” + Ba + O(a?))
where x = r/r., and r. is defined through
_ . dlogp
2 e -
re” =~ lm ( or? )t‘ (5:21)
Note that £ can be defined thorough
€=l 0log v? (5.28)
= lim . .
r—0 \ dlogp /,
Mass conservation gives that
3 5 Am g
M = M, (z* + O(z°)) , M.= 5P (5.29)
Using this in Jeans’ equation we arrive at the relation
GM.,
2 (5.30)

Uczm.

Lwhile the O(z?) term in the expansion of p is of similar magnitude to that of v?, we don’t quote it here
as it will not appear in any future steps.
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To make use of the remaining gravothermal equations, we recall Egs. (5.5) and (5.9), which

allows us to write

n+1
2

£x? + O(m4)) : (5.31)

ksmrp (V) = Kgmrp (Ve) (1 _

With this, the derivative of luminosity at short distances is given by

2_7[: ~ SWUEde/{SMFP(UC)gl’z |F) - gZL’Z (4B + (n + 1)§):| . (532)

The above equation should be equated to the entropy conservation law of the gravothermal
equations, Eq. (5.1). To do so, we first note that, using properties of partial derivative, we

find that at small x the following holds true

of (9 xdlogM,. (Of
(), = (%) 5% (5), 5:33)
Therefore
0 v3 x?
(E>M log n ~ Dy(t) — E(Q — 3&) Do (1) (5.34)

with Dy = dlog(v3/p.)/dt and Dy = dlog M,/dt. With this, entropy conservation gives

2
g—f ~ —4nrip’a? {D1 — % 314+ &)D; + (2 — 35)02]} (5.35)

Equating to leading order the two expressions we have for dL/dr in Egs. (5.32) and (5.35)

we get

dlogvi/p. _ 3 & oK)
SMEP S b Gy

(5.36)

dt _tSMFP 1+&7
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Moving to the next order in dL/dr we find

2 dlog M. 1—5n §
(5 —g> tompp—— = (3— 108 + 5 g) BY: (5.37)

We recall that in the deep SMFP regime, we find that p. oc v, with v ~ 10. Through
Eq. (5.30), this also implies M. o v272. With this in mind, the ratio of Egs. (5.36)
and (5.37) allows to relate v to &, 5 and n

~ 6+(208—8)(y—3) _10—2853
&= 9—(2+5n)(y—3) ~ 1+T7n

(5.38)

5.B The dependence of the SMFP parameters on the
concentration
In this section of the appendix, we outline the dependence of the SMFP parameters, such as

the parameters at the LS transition, the v = 10 transition, and the black hole mass, on the

concentration, at fixed Maqp.

To show how the parameters depend on the concentration, it is useful to outline these

relations first:

200

= C200
o 200 & (5.39)
Perit 3 log(l + 0200) - 1i2602000

(see for example [97]). Given that our parameters depend on some combination of ps, Vijax,

we can go ahead and find the dependence on the concentration with fixed Myq.
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It is right away useful to note that the dependence of p, on cqg9 approaches cyq,, but for the
range of cog9 we used in our spread, the power ranges between p = 2.4 — 2.6. We also note

that Viax o v/ psr2 which allows us to find the dependence of Vi on cogo.

We now note that the LS transition parameters are related to ps, Vinax as follows:

~—1/8 ~—1/6
Ve,LSs = Ve 00'070 X Vmaxo'c,o 5

2a 2a

Ve, LS a—2 L—1/8) -2

PecLS = Pe,0 X Ps |\ Oco )
Ve,0

(e K ( > Ue,04/Pe,0 X U Pco 5 (540)

Ve,10 X U LS 5 Pe,10 X PeLS 5

3
Ue,10

2
Mc,lO [0¢ 5 MC,RI [0.¢ Mc,l(ﬂ)c,lo .

Pe,10

We now see how nicely all the SMFP parameters are related to V., ps, and we know how
these parameters are related to cogg. This gives us the dependence on the concentration for

these parameters, as compared to these parameters at the median concentration, as follows:

( Uc,10 )
log
Ve, 10(med)
log < Pe,10 )
Pe, 10(med)
log < c 10 )
c 10(med)
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where here, d = £0.3 for the spread in the concentration, n = n., J is given by Eq. (5.23),
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we have set n = —%5 with a = 2.2 being a good approximation and thus n = 11, ¢ =

p
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and p = 2.4 — 2.6 where the lower bound of ¢y is p = 2.4, and the upper bound is p = 2.6
(but p = 2.5 is sufficient). This gives us the dependence on the concentration of the SMFP
parameters at fized Mygg. One may also find the dependence on Mgy by fixing cggg. For

example, since Viay oc Mylochhe ™" we find that

i) “a (0
log [ ——<® ) =~ (54 (-5 ,
s <MC,RI(med) 3 (n ) J

5.42
s (i) =3 (0 {557) .
gl —>"2—) == — - - 7
s Mc,LS(med) 3 g )
which easily explains the behavior we see in the left panel of Fig. 5.8 of the ratio Afj’m where
200

the w = 1km/s model (which has high n) appears to be relatively constant, and indeed
this is because its dependence on My is such that M, oc Mago as n — 3.7, and closer to

quadratic as n — 0.

5.C Resolution

In this section, we discuss the numerical resolution issues encountered when probing the
SMFP regime. In this regime, the central density increases drastically, while the core size
shrinks significantly as well. This results in the core size becoming too small to be resolved
late in the evolution. To address this while maintaining reasonable run times, we probe
smaller radii than we did in O23 with some trade-off to maintain reasonable run times of the
code, and increase the number of shells so as not to sacrifice the resolution of each profile.
We also develop a method for finding where the central density is no longer resolved by
finding the snapshot at which the core has become too small to resolve, and place a cutoff

to exclude snapshots with profiles where the core can no longer be resolved.
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5.C.1 Probing smaller radii and increasing shells

As halos evolve into the SMFP, the central density experiences a drastic increase while at
the same time the size of the core shrinks significantly. This eventually will lead to the core
shrinking to radii smaller than those we are probing. The solution is to examine smaller radii
while maintaining reasonable run times. To accommodate this while maintaining reasonable
run times for the code, we probed smaller radii in our runs (7, = 0.005 compared to
Tmin = 0.01 in O23), and increased the resolution from 400 to 450 shells to ensure our shell

resolution was not compromised.

Even with this increased resolution and probing smaller radii, the SMFP evolution will drive
the cores of the halos to shrink beyond the resolution we set in our runs. The reason this
becomes problematic is that we are not actually taking the density at the center of the halo
(r = 0), and as such the central density p. we obtain numerically is an approximation that
depends on how small our innermost radial shell is. If the core of the halo is resolved, then
the central region of the profile will be approximately flat, and thus our p. can be trusted
to be a good approximation. But as the core will shrink to a point where it can no longer
be resolved, a test is required to ensure we only probe snapshots with resolved cores, and

remove those that are not from the analysis.

5.C.2 Core resolution test

To address the issue of core resolution in our snapshots, we develop a test to determine
whether or not the core is resolved, and thus, whether the approximate central density
can be trusted. To do so we estimate the log-slope of the density profile at fixed mass
s[n] = (In(p[n+1]/p[n —1])/ In(r[n+ 1]/r[n — 1]) from the n+ 1 and n — 1 points. We place
a stringent limit on the slope that determines when the snapshots are no longer resolved,

such that if the slope at the nth point is steeper than -0.5, then we cannot assume the core
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is resolved any longer and remove this and later snapshots from any analysis where the core
density is required. We take n to be the fourth point in the density profile of a halo at each

snapshot in time in order to avoid numerical artifacts in the initial points in the profile.

One of the quantities of interest for our analysis is the rate of change of the central density
with the central velocity dispersion, i.e., v = dIn(p.)/dIn(v.). We estimate this as ves[n]
using the density p[n] and v[n] at different snapshots in time. Note that the central velocity
dispersion tends to a constant much faster than the density profile, and so v[n] is close to v,
to a good approximation. Since our derivatives are computed at fixed mass, we can ascertain
how good an approximation e [n] is. Within the core, we can write p[n] = p.(1— (r[n]/r.)?)
for r[n] < 7., and this ansatz defines .. In this region, we write (approximately) the enclosed
mass within r[n] as M[n| = (47/3)p.r[n]®. Within this set of approximations, we can show
the following:
n| — s[n

- —%15{ ]S[n]/[G | (5.43)

where 7est[n2] is shown in Fig. 5.1. By limiting to s[n] > —0.5, we can see that the error is

only about 3.3% or less when 7est[n] =~ 10.

5.C.3 Stage 3 of the evolution

Stage 3, the region beyond the v = 10 transition, cannot directly be obtained analytically.
Because of this, we approximate the transition by selecting the minimum of the curve in
Fig. 5.1 (left panel; diamonds correspond to the local minimum, which we call the v = 10
transition). This is the point beyond which the slope begins to increase, during which the
halos are in Stage 3. It is visible that the transition point is not where the curves reach the
v = 10 solution just yet; the models with weaker velocity dependence (or smaller n) take

slightly longer to asymptote to the v = 10 solution (i.e. Stage 3), as can be seen in the left
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panel of Fig. 5.1. For smaller values of n < 1, we cannot numerically resolve much of Stage
3; in fact, these halos fall to v = 3. However, for these models, we also observed that once
in this v = 3 region, the density of the shells just outside the core changes drastically from
shell to shell; because the gravothermal equations have been discretized assuming changes
from shell to shell are small, the results in this region cannot be trusted. We have also
explicitly checked that in these cases where the halos fall to this v = 3 region, energy is not
conserved. This leads us to the conclusion that the v = 3 region is numerical, and not an
actual solution. It seems that the models with n < 1 suffer this issue because the core mass
is the largest for these models. We hypothesize that numerical effects are larger for halos
with larger cores (thus, those with models that have n < 1). A detailed analysis of this is
beyond the scope of this paper, and we thus simply acknowledge that there are numerics
involved here, but do not investigate further. We thus caution the reader that, for n < 1,
we rely on assumptions and the evolution observed for the n > 1 cases, which indicate that

the halos evolve to asymptote to the v = 10 region in Stage 3.

Despite using the local minimum as the v = 10 transition point (as opposed to, say, a point
on the asymptote), we find that selecting tgyvrp(t10) scales the collapse times of the halos
astonishingly well, as can be seen in the right panel of Fig. 5.3. Thus, this approximation

works well enough to make predictions.

5.D Accuracy of Analytic Approximations

In this section, we discuss briefly our choice of using the analytic prediction for v.is, pers
rather than our numerical results, we justify the truncation of the expansion of Eq. (5.6),
we explain our definition of the mass at the transition from the LMFP to the SMFP regime,

and we outline the use of a fitted function as an approximation in place of Eq. (5.4).
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Figure 5.9: (Left) Comparison between the numerically obtained and analytically predicted central
velocity at LS transition, plotted as a function of the analytic central velocity at the LS transition.
The difference between them is very small, within ~ 2.6%. (Right) Comparison between the
numerically obtained and analytically predicted central density at LS transition, plotted as a
function of the LS transition central density. Here the analytic and numerical values differ by
at most ~ 25%. It is unsurprising that the central density is a bit less accurate as it is the
parameter that changes drastically.

A core aim of this paper is to provide a method to predict all parameters of a halo at both LS
and v = 10 transitions and black hole masses given only the initial halo parameters and the
particle physics model used. To achieve this, it makes most sense to use the prediction for
vers in Eq. (5.23) to show that the entirety of the halo evolution can be predicted without
the need to solve the gravothermal equations. Comparing the numerically determined and
theoretically predicted values, we find the v, s prediction is within ~ 2.6% of the numerically
determined value, while p.rs is within ~ 25%, as seen in Fig. 5.9. The wider scatter in the
central density can be attributed to the incredibly large changes it undergoes through the
evolution. Given that the predictions agree with the numerical values to within 25%, we
conclude that the analytic parameters are sufficiently close to the numerical values and use
them throughout this work. In the case of the parameters at the v = 10 transition, we use
the numerically obtained values, followed by fitting a curve to provide an analytic method

of obtaining the parameters.
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Next, we justify the analytic approximation of our second order expansion in Eq. (5.6) and
our choice for truncating the expansion of K e(fzf) at the second order, where we show the
difference between K5 and K é? . One will note that the curves in Fig. 5.11 vary only slightly,
and the largest variation occurs at high v. when the halos are in the SMFP. As we said in
subsection 5.2.1, the variation between K35 and K, e(? at second order is up to 20%, while the
difference between the second order and the next expansion is only a sub percent correction.

As seen in Fig. 5.11, the next order correction would not change the curves very much at

all, thus truncating the expansion at second order is valid and sufficient.

Here, we discuss our definition of the mass that is roughly the maximum available for black
hole growth. The mass within the LS transition radius (that is, the radius at which Eq. (5.10)
is satisfied) as it evolves with time, Mg, is the mass of a halo that is within the SMFP regime.
We conjecture that this would serve as an upper limit on the mass available for black hole
growth. This is a mass that cannot be determined analytically. But we find that the core
mass at the time the core transitions into the SMFP, M, 15, offers a good approximation for
this mass. This is desirable, as we can analytically determine the halo core properties at the

LS transition using the relations derived in O23.

In Fig. 5.10, we plot both the ratio of the masses, Mys/M.rs, and of the radius, r.s/r.1s;
as a function of the central velocity normalized by the central velocity at the LS transition.
We also show the evolution of the mass profiles that are in the SMFP regime as a function
of the kappa ratio :irﬁ, and that are in Stage 3, for four cases that show a range in n and &
in Fig. 5.12. One can see that for higher n, generally the LS mass does not evolve as much
as for lower n. In Fig. 5.10 we see that the ratio of the LS mass to the core mass at LS also
tends to a constant in the later evolution in Stage 3 (the same is true for the radius). The
ratio only differs by O(1), making the core mass at LS transition valid and more useful to

use in place of the mass of a halo at the LS transition, as it can be determine analytically.
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Finally, we mention the difference in the way we use Eq. (5.4) in the gravothermal code and
in the analysis. In the gravothermal code, we used a fit approximation for the purpose of

maintaining numerical stability. The approximation is given by

Ky~ 1+ “PoP o (5.44)
r L5 1log[1 + (sp1)P] ’ '

where we have set s = 2%+ with x = v/w and € = 1078, and py, p1, p2, p3 are just quantities
from the fits that vary for different p. For p = 3,5,7,9, we have, for (pg, p1,p2,p3), the

following;:

p=3: (8,0.339848,0.37,0.63),
p=>5: (24,0.251115,0.41,0.71),
p="T: (48,0.682602,0.42,0.74),

p=29: (80,1.32953,0.43,0.76).

We find that the fitted approximation does very well compared to the exact form, as is shown
in Fig. 5.13, where we plot the ratio of the exact form of K, (Eq. (5.4)) to the approximation
given in Eq. (5.44), both functions of v/w, plotted with respect to v/w. The fit differs from

the exact form by at most 2%.
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Figure 5.10: (Left) The LS transition mass normalized by the core mass at LS transition as a
function of central velocity. (Right) The LS transition radius normalized by the core radius at LS
transition as a function of central velocity.
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Figure 5.11: Plot of n as a function of v., plotted by holding the corresponding w constant for each
curve. The triangles show the n. and v, for the LS transition, and the diamonds are for the v = 10
transition, obtained analytically. In both cases, the solid markers are for runs 1-8 (lower &, and
open markers for runs 9-16 (higher &), as shown in Table 5.2. The solid lines are plotted using K,

while the dashed lines use K gf).
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Figure 5.13: The ratio of the exact K5 function as in Eq. (5.4) to the K5 approximation given in
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Chapter 6

Conclusions

The ACDM paradigm has long been the cornerstone of our understanding of the large-
scale structure in the universe. It offers robust predictions for phenomena such as the
CMB anisotropies and large-scale distribution of galaxies. Its limitations on small scales,
however, have catalyzed the exploration of alternative dark matter models, particularly

igniting interest in the dark sector.

The SIDM model has emerged as a strong, viable contender for dark matter, elegantly
reconciling discrepancies with observations by modifying halos only on small scales, while
maintaining the successes of ACDM on large scales. A velocity-dependent cross-section for
dark matter self-interactions is the keystone of this model, allowing for significant interactions
within dwarf galaxies while remaining negligible in massive galaxy clusters. Moreover, the
dark matter self-interactions lead the halo to undergo gravothermal evolution, culminating

in core collapse on timescales shorter than the age of the universe.

In [92], we presented an intriguing study of the dark substructure in the gravitational lens
SDSSJ0946+1006. Using observables such as the projected mass within the perturbation

radius, and the slope of the projected density between 0.75-1.25 kpc, allowed for a
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comparison to the CDM IlustrisTNG simulations.  After examining the TNG100-1
simulations in both hydrodynamical and DMO, we found that the extreme concentration

of this substructure is difficult to reconcile within a CDM universe.

In [124], we placed novel constraints on the cross section for both groups and clusters of
galaxies. We examined adiabatic contractions and found that they are significant only
for very small cross-sections. Having studied two mass scales allowed us to probe SIDM
interactions at different collision velocities, revealing a preference for a velocity dependence

in the interaction cross section.

In [106], we developed a new framework for the universal and self-similar solutions of SIDM
halos undergoing gravothermal evolution in the LMFP regime, extending the framework to
generic SIDM models with velocity-dependent cross sections. With this framework, we found
that the universal behavior exhibited by our halos allows for determining the entire LMFP

evolution of any halo.

In my latest first-author paper [58], I extended the study of gravothermal collapse of isolated
SIDM halos deep into the SMFP regime. The SMFP is important to understand and
characterize because evolution in this regime occurs on much more rapid timescales than
in the LMFP, and this is the regime in which core collapse of dark matter halos may
result in black hole formation. Our work unveiled, for the first time, a newfound SMFP
universality through which we can characterize the entire SMFP evolution of halos. A
significant achievement of this work is that we related the core properties in this new universal
phase in the SMFP, to core characteristics in the LMFP. The LMFP core parameters can
be analytically determined, as we showed in [106]. Having found a relation between the core
properties in the LMFP and the SMFP, I devised a semi-analytic methodology to determine
the core properties of halos deep in the SMFP, using only the initial NFW parameters
and particle physics of any halo. Our semi-analytic model can potentially streamline the

process of determining the core properties of halos in the SMFP, circumventing the need
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for computationally demanding numerical methods. Furthermore, our semi-analytic model
provides more accurate estimates of the minimum mass of the black holes that form from core
collapse. The results of this work [58] coupled with our work in [106] allow for the prediction

of the entire gravothermal evolution of any halo, from the LMFP to SMFP regime.

Looking ahead, I aim to further leverage simulations to probe the depths of SIDM and
the potential formation of supermassive black holes (SMBH) within this framework. The
potential for SIDM gravothermal collapse to elucidate the origins of SMBH seeds in the
early universe is an exciting avenue for further exploration that may also provide a better
understanding of the particle nature of dark matter. This research bridges the gap between
particle physics and astrophysics, allowing us to learn about the particle properties of dark
matter through astrophysical observations, while possibly solving the astrophysical mystery
of the existence of SMBHs so early in the universe’s history that it challenges our standard

models of black hole growth.
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Appendix A

Appendix

A.1 Gravitational Lensing

Gravitational lensing is a phenomenon predicted by Einstein’s theory of general relativity,
whereby photons deviate from their original trajectories as they travel through locally curved
space-time due to a massive object. It has become an indispensable tool in astrophysics and
cosmology, offering insights into the distribution of dark matter, the study of distant galaxies,
and the properties of the early universe. Gravitational lenses act as cosmic magnifying
glasses, allowing the study of objects otherwise too faint or distant to observe. The material

in this section mainly comes from the following sources [10, 81, 34, 116, 127, 30, 18|.

A.1.1 Deflection Angle

The amount by which light is deflected due to bending of spacetime can be quantified in
a deflection angle. The deflection angle determines how the background source appears to

us. For strong gravitational fields, it can lead to multiple images, arcs, or even complete
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Figure A.1: Lens diagram showing the trajectory of a light ray (the solid line) emitted by a
source S in a weak gravitational field and bent by a lens L. This effect produces an image
labeled I which is seen by some observer O. The angle £ is the angle of the position of
the actual source S while € is the angle of the position of the image I. The angle « is
the angle between S and [ measured by the observer at O, while the deflection angle is
a. Dy, Dg, Dyg are the angular diameter distance to the lens, distance to the source, and
distance between the source and lens respectively. Made with code snippet from [18].

rings known as Einstein rings, of the source. The deflection angle can be derived from the

Schwarzschild metric describing a spherically symmetric mass. For light passing by this mass

with an impact parameter that is much larger than the Schwarzschild radius, £ > R, = QC;M ,
the deflection angle is given by
AGM
N = Al
“ 2 (A1)

where M is the mass of the lens, £ is the impact parameter, and GG and ¢ are the gravitational
constant and speed of light, respectively. This condition implies that the deflection angle

will be small.
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Figure A.2: Strong lensing luminous red galaxy LRG 3-757 distorting the light of a distant
background galaxy. The lensing system is in nearly perfect alignment with our line of sight
such that it has created an Einstein ring. Credit: ESA/Hubble and NASA

A.1.2 Lens Equation
Using the small angle approximation (tanf ~ sinf ~ ) in Fig. A.1, we find the relation:

Dsf8 = Ds6 — D1sé(§) - (A.2)

Defining the reduced deflection angle as a(8) = DD—LSSd(O) where & is a function of 8 because

& = D10, we arrive at the following form of the lens equation:

B=60—-ad). (A.3)

If we have a perfect alignment, we can get an Einstein ring, as seen in Fig. A.2. In this case

we arrive at the following expression:

AGM Dig
Op =4/ —_— A4
K c? DLDS ’ ( )
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which gives us the Einstein radius via Ry = Dpfg. The size of the Einstein ring depends on

the mass of the lens as well as its geometry.

A.1.3 Surface Density and Convergence

When observing cosmic structures such as gravitational lenses, an understanding of their
three-dimensional density profile would be invaluable. Unfortunately, our observations are
limited to two-dimensional projections of these mass profiles. To circumvent this limitation,
we project the three-dimensional density onto a two-dimensional plane, yielding a surface

mass density. We define the two-dimensional mass, or projected mass, as
R
M(R) = / 27 R'Y(R')dR', (A.5)
0
where ¥(R) is the surface density and is given by

+o00
X(R) = / p(r)dz, (A.6)

with r = vV R? + 22. Essentially, this equation integrates the mass density along the line of

sight. The surface mass density is critical in determining the gravitational lensing strength.

A pivotal quantity in gravitational lensing is the critical surface density, Y. This is the
threshold surface density required for a lens to produce multiple images of a background
source. It is mathematically expressed as:

62 DS

Ecri = T .
"7 471G Dy, Dys
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Building on this, we introduce the convergence, k, given by:

by

5 (A.8)

K =

This dimensionless quantity gauges the strength of the lensing. It describes the local
mass distribution within the lens and is directly related to the deflection of light rays. A
convergence greater than 1, k > 1, indicates strong lensing, capable of producing multiple
images or Einstein rings, whereas x < 1 signifies weak lensing, resulting in only minor
distortions of the background source. The left panel of Fig. A.3 illustrates how the alignment
of a lensing cluster and a background galaxy along our line of sight affects the lensing

strength. The right panel showcases the strong lensing cluster, Abell 2218.
Further, we define the lensing potential, 1)(8), as:

Dis 2

»(0) = DLDSg/dz,(I)(DLO,z). (A.9)

Taking the Laplacian of the lensing potential, we find its relationship to the convergence:

V2 = 2k(0) , (A.10)

which is simply the two-dimensional Poisson equation.

A.1.4 Magnification

One of the key effects of gravitational lensing is magnification, which refers to the change
in the observed brightness of the source due to lensing effects. The Jacobian magnification

matrix describes how the image of a source is deformed by the lens. The magnification
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Figure A.3: Right: Depiction of a lensing cluster and a background galaxy, delineating
regions of strong, intermediate, and weak lensing, resulting in multiple images, arclets, and
weak shear. From [81]. Left: Hubble Space Telescope image of the strong lensing cluster

Abell 2218, featuring multiple images and arcs of background galaxies. Credit: ESA /Hubble,
Johan Richard (Caltech, USA).
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Figure A.4: TIllustration of the impact of convergence, with and without shear, on the
distortion of the lensed image. From [142].
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matrix A is given by

A(Q):%: 5.,_M I el —r (A.11)
00 Y 00,00, ny | nim )

where v = v, + iys is the shear, v, = %(1#,11 — 192) and 72 = 112, and « is the convergence
as defined in Eq. (A.8). The shear describes the tangential stretching distortion in the
image, whereas the term with the convergence represents the magnification of the image.
See Fig. A.4 to see how the convergence alone, compared to the convergence with shear,

distort a lensed image.

The magnification p is given by
pt=(det )7t = (1 — k) — 42, (A.12)

where |y]|?> = 7?2 + 2. The magnification quantifies how much brighter the lensed image is
compared to the actual source. It provides insight into the mass distribution of the lensing

object through the convergence and shear.

A.1.5 Critical Curves and Caustics

In certain configurations, the magnification can become theoretically infinite, or det(.4) = 0.
The points at which this occurs are called critical curves, which are in the image plane. The
corresponding features of the critical curves mapped onto the source plane via Eq. (A.3)
are called caustics. Caustics are where light from a source is highly focused, leading to
dramatic increases in brightness and the formation of multiple images or arcs. Examples of

such formations can be found in Fig. A.5.
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Figure A.5: Gravitational lensing illustration with an elliptical lens model. Panel S depicts
the source plane, featuring caustic lines and ten points, each signifying a source location.
Panel T demonstrates the image in the absence of lensing. Panels 1 through 10 show the
lensed images corresponding to each source position in panel S relative to the caustic. The
panels showcase several lensing effects, including characteristic ones such as arcs and Einstein
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crosses, based on the positioning of the source relative to the caustics. [81]

Critical curves and caustics are central to gravitational lensing. They provide insights into
the mass distribution of dark matter in the lensing object. Strong lensing of distant galaxies

is a favorable and fortunate configuration, as it allows us to study the properties of distant

galaxies and enhance our understanding of the early universe.
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A.2 Small scale crisis and Motivations for SIDM

ACDM model successfully explains the large-scale structure. It is consistent with a wide
range of observational data, including the CMB, the distribution of galaxies, and the number
of galaxy clusters in the Universe [135, 111, 137]. Moreover, simulations based on ACDM

reproduce the universe on large scales remarkably well [97, 137].

Despite its successes, the ACDM model faces challenges on small scales. For instance, it
predicts a larger number of small satellite galaxies around Milky Way-like galaxies than
observations show, which is a problem known as the “missing satellites problem” [22]. It
also predicts a cusp in the density profile of dark matter in galaxies, which is in contrast to
the observed cores, a discrepancy called the “core-cusp problem” [115, 35, 22]. The “too-
big-to-fail” (TBTF) problem arises from the observation that the most massive subhalos
predicted by CDM simulations are denser than any of the observed satellite galaxies of the
Milky Way [19, 107]. Finally, a problem referred to as the “diversity problem” refers to
the diversity in rotation curves in low surface brightness galaxies, despite CDM simulations

predicting them to be uniform [72, 117].

These small-scale problems have motivated the exploration of alternative dark matter models.
The SIDM model has emerged as a viable competitor to the ACDM model. In SIDM, dark
matter particles can interact with each other, not just through gravity but also through dark

sector forces. This leads to potential solutions to each of these small scale problems [145].

A.2.1 Core-Cusp Problem

The core-cusp problem is one of the most significant and notable challenges faced by the
ACDM model. It predicts high-density cusps at the centers of dark matter halos, while

observations show flat density cores in dwarf and low surface brightness galaxies [121, 115,
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35, 22]. Tt has been suggested that feedback from star formation and supernovae could
potentially flatten the central density profiles, providing a possible solution to this problem
while maintaining the CDM model [35], but it is not clear whether this can fully resolve the
problem, nor whether we know the baryonic physics well enough to simulate it [139]. SIDM
can provide a compelling solution to this problem. The self-interactions between dark matter
particles can lead to the transfer of heat and mass from the inner dense core to the outer
dilute halo, which creates a cored profile [47]. This mechanism has been shown to be effective

in producing core profiles in SIDM simulations that are consistent with observations [47].

A.2.2 Too-Big-To-Fail Problem

The “too big to fail” problem predicts a population of dense, massive subhalos that should
host bright dwarf galaxies, but no such galaxies are found in the Local Group [19]. SIDM
can potentially solve this problem. The self-interactions can redistribute the dark matter
in subhalos and reduce their central densities which makes them less likely to host bright

galaxies, an effect shown in SIDM simulations [76].

A.2.3 Diversity Problem

The diversity problem refers to the diverse range of inner slopes in galactic rotation curves
seen in spiral galaxies, which is difficult to reproduce in the ACDM model [105]. This problem
points to a shortcoming of ACDM on galactic scales and suggests that the nature of dark
matter and galaxy formation may not be fully understood [72, 117]. SIDM thermalizes halos
on shorter timescales than baryonic feedback, thus SIDM halos are generally insensitive to
feedback during its formation history [117, 158, 72]. Scattering also redistributes matter in
SIDM halos, which opens the door to a wider range of possible rotation curves, matching

the observed diversity [158, 72]. It should be noted that a recent study that looked at
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90 galaxies from the Spitzer Photometry and Accurate Rotation Curves survey found no
preference between the SIDM model and CDM that is affected by feedback, where both are
able to explain diversity in spiral galaxies, while CDM that was not affected by feedback was

unable to explain them [158].

A.2.4 Missing Satellites Problem

The missing satellites problem is another discrepancy between the ACDM model and
observations. The ACDM model predicts a much larger number of small satellite galaxies
around Milky Way-like galaxies than what is observed [79]. SIDM has been proposed as a
potential solution to this problem. The dark matter particle self-interactions can lead to
the evaporation of smaller dark matter subhalos and reduce the number of visible satellite
galaxies. Recent simulations have shown that SIDM can indeed produce a satellite galaxy
population that is in better agreement with observations [146]. On the other hand, recent
observations and improved simulations have begun to alleviate this problem. It is now
understood that much of the missing satellites could be too faint to detect with current
telescopes, and the inclusion of baryonic physics in the simulations can significantly reduce

the number of bright satellites [22].
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