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Introduction Simulation based Inference

w ~ p(w)
« Simulation Based Inference (SBI) is a statistical v~ p(v)

method where simulated data is used for the '*

x ~px|w,v)
« Strong Gravitational Lensing offers crucial insights into

Cosmology like Dark Energy and Dark Matter.

inference of model parameters at the observed
data.

"  SBI is particularly useful for posterior inference Prior distribution SimUatn Glbsealon

when the likelihood is intractable and is amortized p(w|xp)
Neural Ratio Estimation { ,\\ 2
 Thousands of lenses are predicted to be observed _ . _ , :
. N NRE is a classifier to differentiate between sample- Neural Ratio Estimation I e
from future surveys like LSST. Traditional Monte o Evaluatermodelon-the L

C _ o parameter pairs: obcarved dats _
arlo methods are computationally prohibitive for Posterior

¢ (x,w) ~ p(x,w) with class label y=1
* (x,w) ~p(x)p(w) with class label y=0

« We present a scalable approach for dark energy POpU'ﬂtiOﬂ-'GVQ' Posterior Inference
The network learns likelihood-to-evidence ratio

cosmological inference from this big data.

equation-of-state parameter (w) inference from a
population of strong gravitational lens images using r(xlw) = px,w) _ p(xlw) « Method 1: MCMC sampling of the joint likelihood
Simulation Based Inference (SBI) with Neural pCp(w)  p(x) using Metropolis-Hastings algorithm

Ratio Estimation (NRE).

NRE facilities inference of parameters common across a

, _ o o _ Method 2: Analytical calculation using the joint
population of observations {x}. The joint likelihood is

 We obtain better constraints on w from population- _ likelihood
level inference compared to individual lens analysis, written as p(W)ILr (xi|w)
constraining w to within 10. p(w|{x}) = —— —;
r(GcHw) = T r(x|w) = %, logr (xi|w) J dwp (WO (xilw’)
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\ / « We perform population-level analysis by estimating the posterior using

the joint likelihood-to-evidence ratio. We observe that the posterior
width decreases with an increasing number of observations in the

\inference population. J
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