

Population-level Dark Energy Constraints from Strong Gravitational Lensing using Simulation Based Inference

Sreevani Jarugula¹, Brian Nord^{1,2,3}, Abhijith Gandrakota¹, Aleksandra Ćiprijanović¹

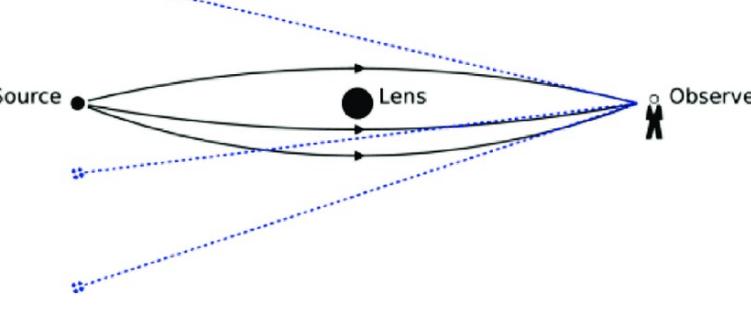
1. Fermi National Accelerator Laboratory; 2. Kavli Institute for Cosmological Physics, University of Chicago; 3. Department of Astronomy and Astrophysics, University of Chicago.

DEEP SKIES
Bringing Artificial Intelligence to Astrophysics

FERMILAB-POSTER-24-0117-CSAID

Introduction

- Strong Gravitational Lensing offers crucial insights into Cosmology like Dark Energy and Dark Matter.
- Thousands of lenses are predicted to be observed from future surveys like LSST. Traditional Monte Carlo methods are computationally prohibitive for cosmological inference from this big data.
- We present a scalable approach for dark energy equation-of-state parameter (w) inference from a population of strong gravitational lens images using **Simulation Based Inference (SBI)** with **Neural Ratio Estimation (NRE)**.
- We obtain better constraints on w from population-level inference compared to individual lens analysis, constraining w to within 1σ .



Simulation based Inference

- Simulation Based Inference (SBI) is a statistical method where simulated data is used for the inference of model parameters at the observed data.
- SBI is particularly useful for posterior inference when the likelihood is intractable and is amortized

Neural Ratio Estimation

NRE is a classifier to differentiate between sample-parameter pairs:

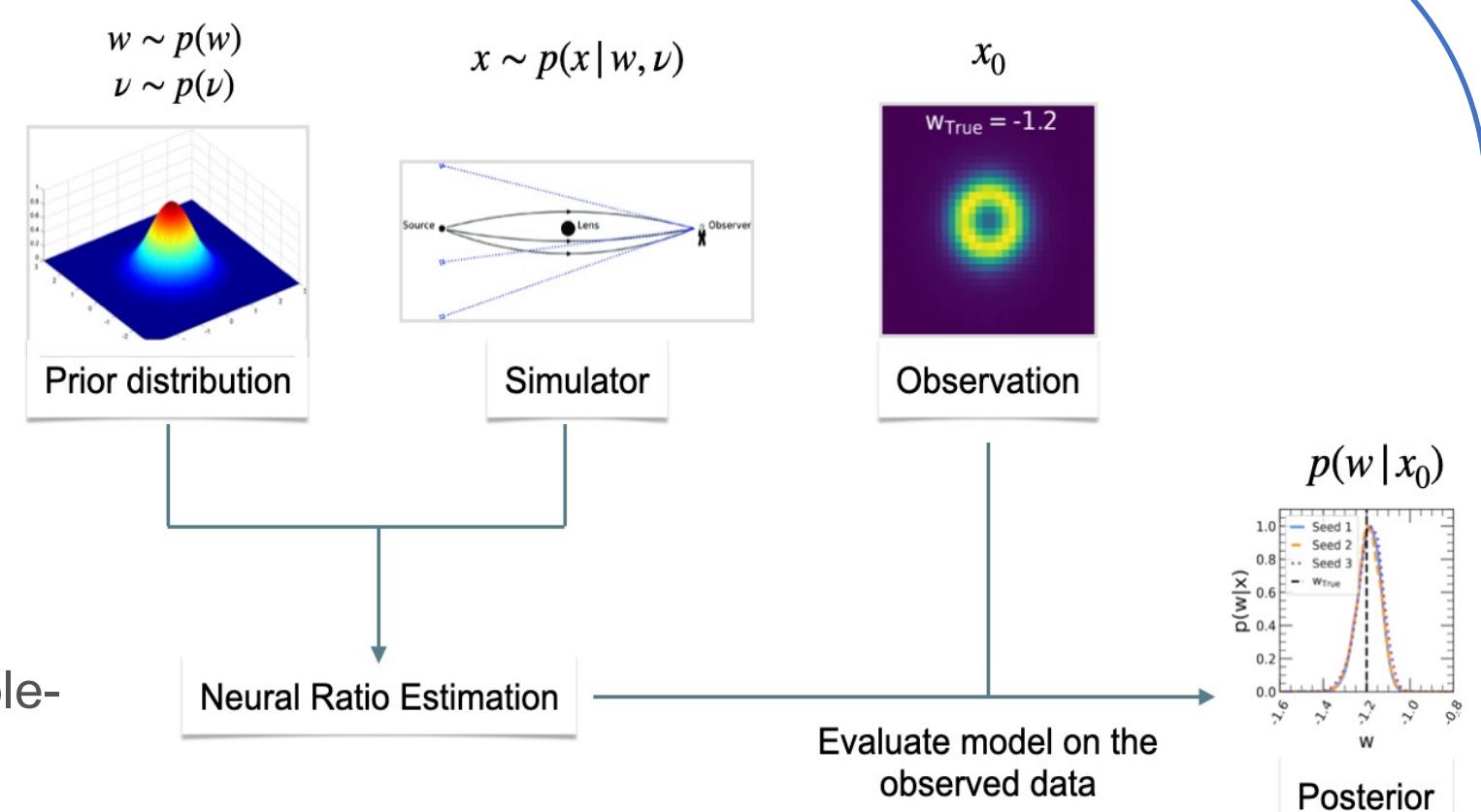
- $(x, w) \sim p(x, w)$ with class label $y=1$
- $(x, w) \sim p(x)p(w)$ with class label $y=0$

The network learns likelihood-to-evidence ratio

$$r(x|w) = \frac{p(x, w)}{p(x)p(w)} = \frac{p(x|w)}{p(x)}$$

NRE facilities inference of parameters common across a population of observations $\{x\}$. The joint likelihood is written as

$$r(\{x\}|w) = \prod_i r(x_i|w) = \sum_i \log r(x_i|w)$$



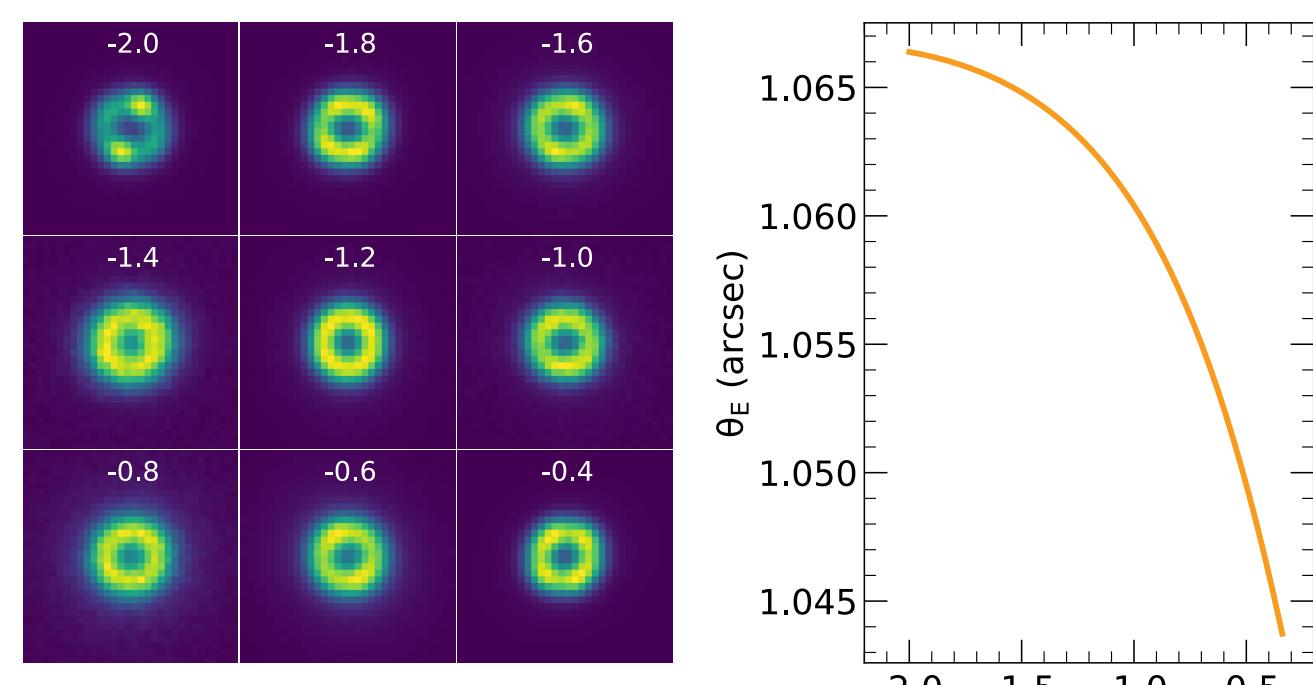
Population-level Posterior Inference

- Method 1: MCMC sampling of the joint likelihood using Metropolis-Hastings algorithm
- Method 2: Analytical calculation using the joint likelihood

$$p(w|\{x\}) = \frac{p(w)\prod_i r(x_i|w)}{\int dw' p(w')\prod_i r(x_i|w')}$$

Dataset

- We simulate galaxy-galaxy strong lenses using Deeplenstronomy [1]. The lenses are approximated by singular isothermal ellipsoid (SIE) lens profile and the source light profile by Sersic.
- Simulations are generated with Dark Energy Survey (DES) conditions using single band and image size of 32×32 pixels.
- Observable x : Strong lens image
- Parameter of interest w : dark energy equation-of-state parameters
- Nuisance parameters v : lens and source ellipticity, source magnitude, effective radius, and Sersic index.



Left: A sample of simulated strong lens images for different w values.
Right: The correlation between the Einstein Radius of the lens image and w

Training and validation Data:

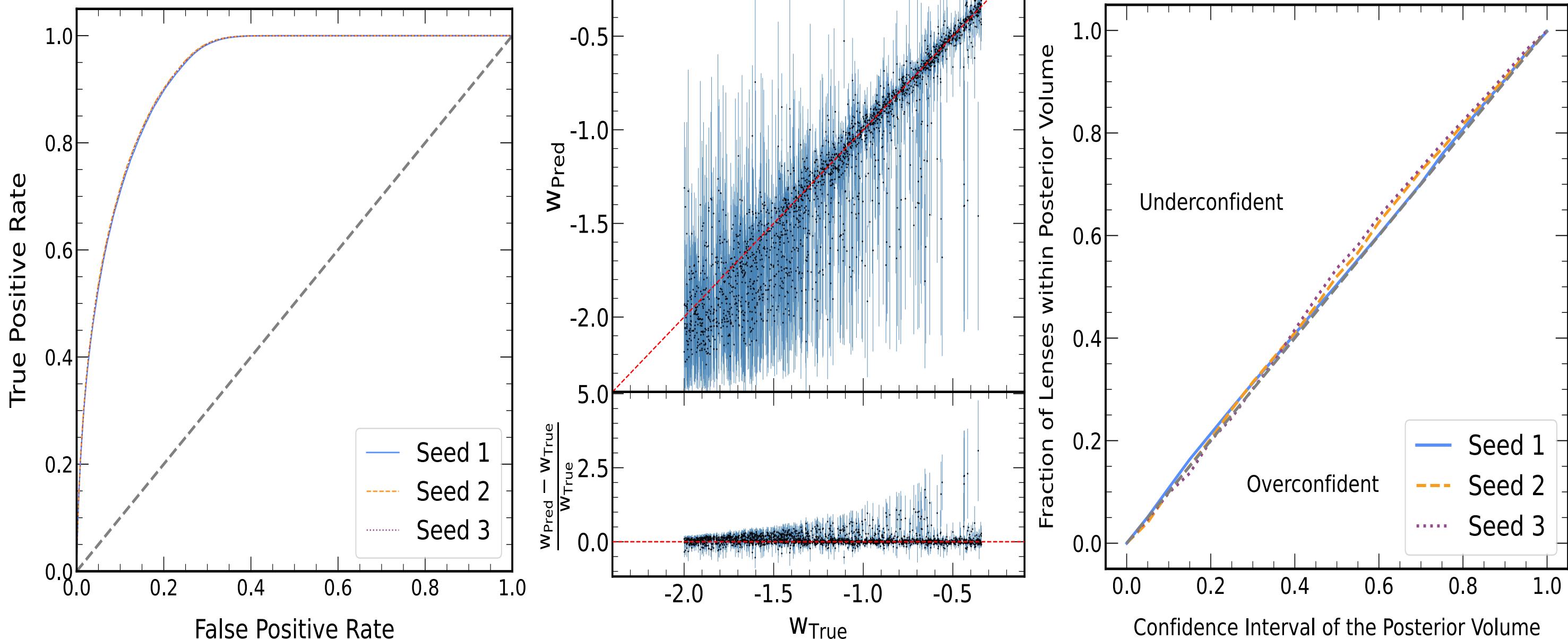
640000 and 160000 images respectively simulated from uniform prior $w \sim U(-2.0, -0.34)$

Test Data:

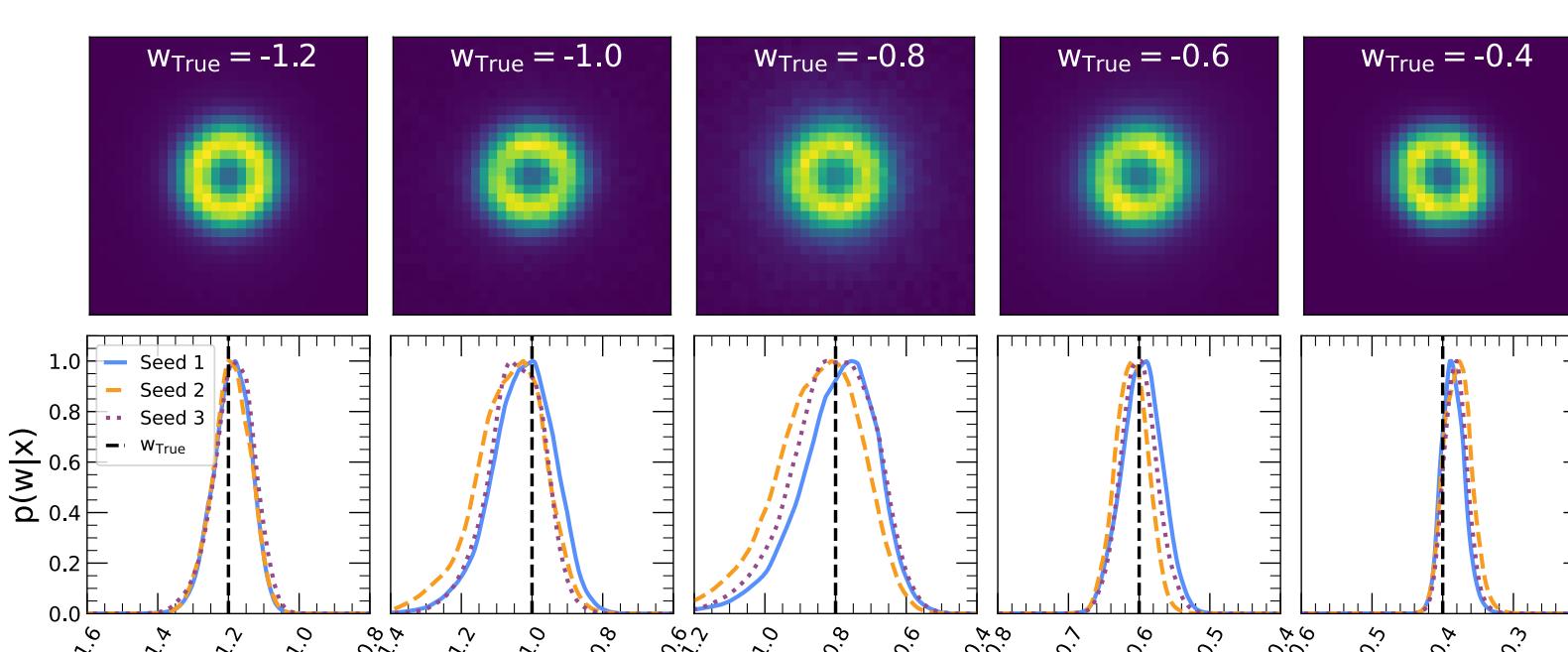
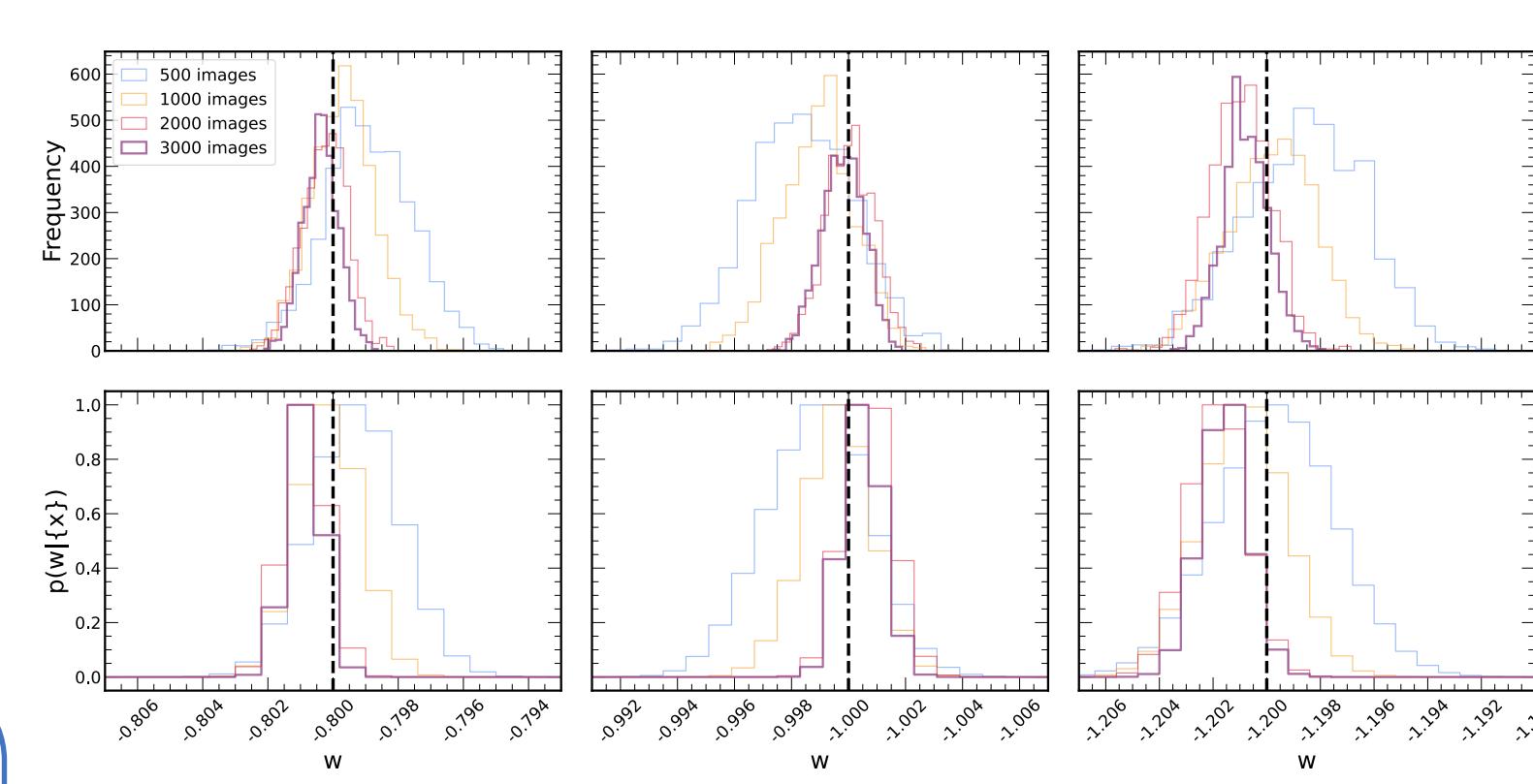
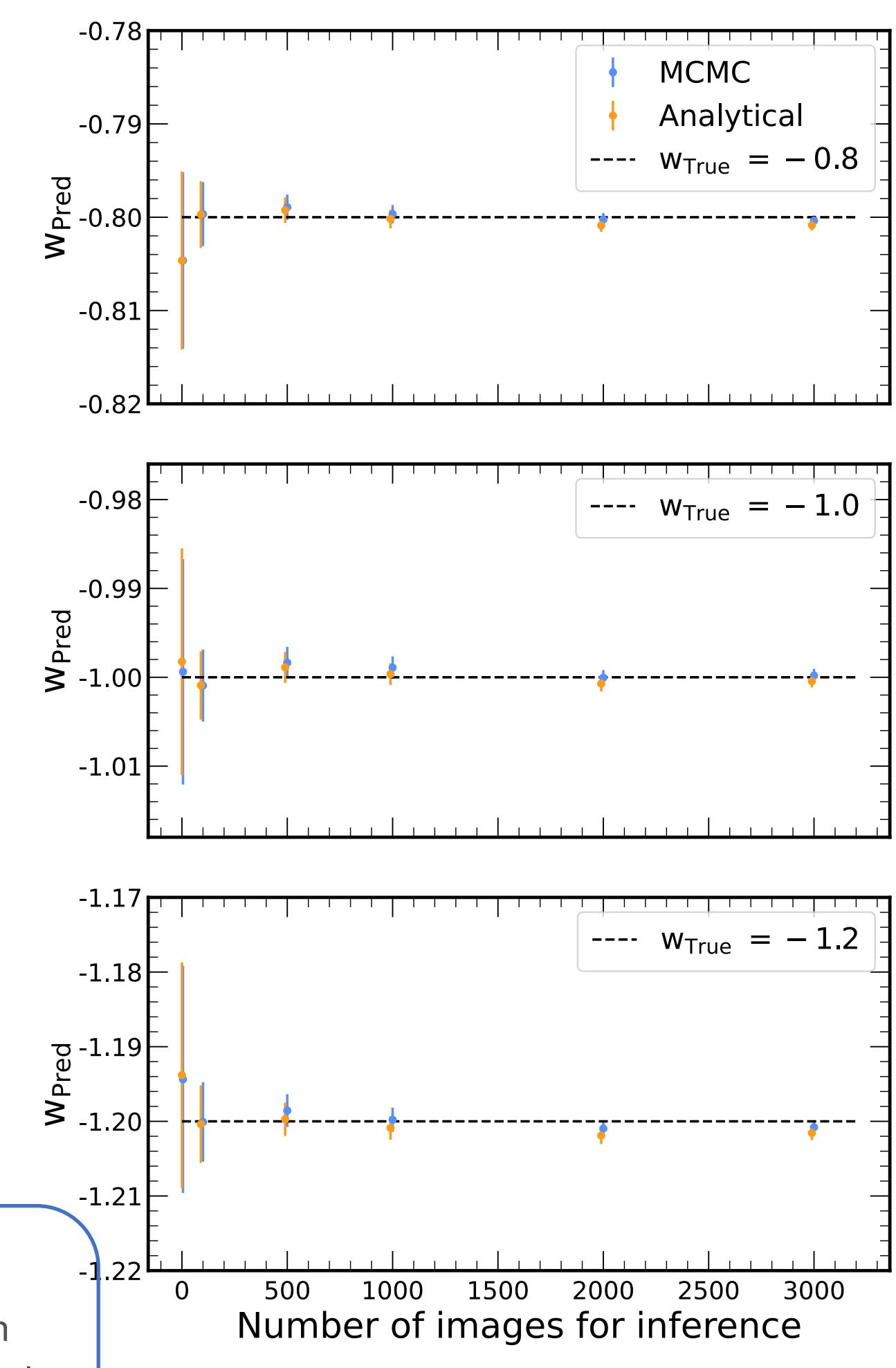
2000 images simulated from uniform prior $w \sim U(-2.0, -0.34)$

3000 images generated with fixed $w = -1.2, -1.0, -0.8$ across all images respectively.

Results



Left: The ROC curve for three models with different weight initializations. The AUC ~ 0.92 . Middle Top: The parity plot showing true w vs predicted w with 1σ error. Middle Bottom: The bias plot with scaled error. Red line shows expected value. Right: The posterior coverage plot for three models showing that the model is well-calibrated.



Experimental Details

NRE is a classifier network with ResNet Architecture. The model is trained using Binary Cross Entropy Loss Function with Adam optimizer

Conclusions

- The model is well calibrated irrespective of the weights initialization
- We perform population-level analysis by estimating the posterior using the joint likelihood-to-evidence ratio. We observe that the posterior width decreases with an increasing number of observations in the inference population.