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Abstract
Open-access, online quantum computers have shown significant improvements
in the past decade. Although they still suffer from noise and scalability limita-
tions, they do offer the possibility of experimenting with quantum circuits which
would otherwise have required laboratory resources and prowesses beyond the
reach of most students (and even researchers). In view of this, we revisit from
the ground up the notion of contextuality and show that it can now be easily
demonstrated on one of the IBM quantum computers. We showcase this with
an implementation of the Peres–Mermin square which, despite the high error
rates, manages to violate noncontextuality by almost 28 standard deviations.

Keywords: quantum contextuality, quantum computers, quantum
non-demolition measurements, quantum realism
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1. Introduction

One of the very first principles taught in undergraduate quantum mechanics is the uncertainty
principle. One learns, for instance, that a particle’s position x̂ cannot be measured together
with its momentum p̂. Mathematically, the principle is rather straightforward to explain, partic-
ularly in the wave function representation, where complementary variables can be visualized
as Fourier transforms of one another. The more one variable is well-defined, the more is its
transform spread out, and hence ill-defined, in the conjugate domain. However, physically—or
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rather, ontologically—the uncertainty principle is much more perplexing. All too often, it is
explained away by invoking a (presumed) disturbance caused by the measurement process
whereby, say, the retrieval of x collapses the wave function, and therefore irrevocably corrupts
any pre-existing information that it could have contained about p. This widespread explana-
tion, which perfectly abides by the orthodoxy of the Copenhagen interpretation, unfortunately
obscures a more fundamental question. In particular, it does not say whether there actually
was any pre-existing value of p to be disturbed in the first place. If anything, it tacitly suggests
such pre-existence of a well-defined p since, after all, one could have chosen to measure it first
instead of x. One can thus naively conclude that uncertainty is wholly due to disturbances, i.e.,
to complex but nonetheless deterministic processes which are governed by hidden variables.
Such variables, which act both at the state-preparation and at state-measurement stages, just
happen to be unfathomable with our current level of technology (and perhaps intelligence).
The question of whether hidden variables are indeed ‘pulling the strings’ behind a facade of
stochasticity was raised as early as the 1930s, most notably in the Einstein–Podolsky–Rosen
(EPR) paper [1]. It was then formalized in the 1960s by the works of Bell [2], and Kochen and
Specker [3], and finally answered by a host of experiments in the following decades [4–17].
Notwithstanding the likelihood of some pedantically elaborate loopholes [18], most results so
far concur in their discredit of a hidden variable theory [19].

The aforementioned proposals and experiments, though approaching the problem of hidden
variables from different angles, revolve around one core question: they essentially all inves-
tigate whether physical systems have well-defined, pre-existing properties independently of
measurement. (See figure 1 for an intuitive visualization of the problem.) In this paper, we
attempt a walk-through of such an investigation based on a scheme known as the Peres–Mermin
square [20–22]. We begin in section 2 by building a basic intuition of what it means for a system
to have pre-existing properties. The notion of contextuality is then elicited as arising from sce-
narios where pre-existing properties cannot logically account for the measurement outcomes.
We first illustrate this with a toy model which we then transpose in section 3 to the quantum
domain with the Peres–Mermin square. Finally, section 4 describes our implementation of the
Peres–Mermin square on one of the IBM quantum computers. Our results, though degraded
by noise, succeed nonetheless in demonstrating with high confidence that the Peres–Mermin
square cannot be described by pre-existing properties and instead responds contextually to
measurement choices.

All in all, the pedagogical aim of our presentation lies in the conceptual compactness of the
Peres–Mermin square together with the open-access and ease-of-use of quantum computers.
The latter are indeed becoming a versatile tool for experimentation, both for educational and
for research purposes [23–26].

2. Background

2.1. Classical systems as ensembles of possibilities

A central premise of classical physics is that any system S is characterized by a tuple

�a = [a1, . . . , an, . . . , aN]ᵀ (1)

of N attribute properties, e.g., its position, momentum, mass, spin, etc. Classical measurements
on the system are considered to be deterministic functions onto real scalars,

ân : S → an ∈ R, (2)
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Figure 1. Illustration of contextuality in three dimensions. A mystery object is assumed
to be pre-existing, i.e., constitutes an ‘element of reality’, if it is drawn with unbiased
replacement from an ensemble of objects with well-defined properties. If so, over several
runs of the experiment, its measurement outcomes (i.e., the shadows it casts on a screen)
should be consistent independently of the context (i.e., the angles of illumination). In
the present example, the mystery object is illuminated from pairs of directions, namely
from behind (x̂) and from the left (ŷ) in the context {x̂, ŷ}, and from the left (ŷ) and
from the bottom (̂z) in context {ŷ, ẑ}. Whereas one is lead to conclude that the object is
the cylinder in the former context, a copy of that same object is instead inferred to be
the sphere in the latter context. This in turn contradicts the initial condition for realism.
Note that we are not illuminating the object in all three Cartesian dimensions at once
so as to play by the rules of the uncertainty principle which, in this case, is reflected by
the fact that the object cannot be jointly illuminated from behind and from the bottom. It
can only be shone upon from specific combinations of angles—namely those that would
correspond to quantum-mechanically commuting observables.

which merely reveal the pre-existing values of the attributes without disrupting them. For
example, if some system is in a state �a = [a1 = +1, a2 = −1, a3 = −1]ᵀ, then any measure-
ment â2 of a2 will consistently return −1 regardless of whether a1 or a3 were also measured.
If this were not the case, or if successive measurements yielded different results, then classical
physics can still account for such an apparent indeterminism by modeling the system as a sta-
tistical ensemble from which a particular instance is randomly sampled. This way, one does not
renounce the assumption that the tuple �a of attributes is pre-existing and independent of mea-
surement, but simply encapsulates the observer’s epistemic ignorance about the ensemble with
a probabilistic description. Classically, the most general description of the state of a system is
therefore that of a statistical mixture, namely an ensemble which is a convex combination of
all the K possible attribute tuples

〈�a〉 =
[
�a(1), . . . ,�a(k), . . . ,�a(K)

]
�p = Â�p, (3)

where the kth element of the vector �p weighs the likelihood that the kth possible tuple �a(k)

of pre-existing attributes is picked out from the ensemble. Here, Â is the assemblage of all
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Figure 2. Each column is an ontic state of a three-attribute, binary system. Together,
they make up the ensemble of possible values that the attributes of the system can be in.
Since we have three binary attributes ai ∈ {−1,+1}, the cardinality of this ensemble
is 23 = 8. A general classical description of the system is given by the joint probability
mass function �p which weighs the different ontic states.

possible tuples into an N × K matrix. The convexity of equation (3) implies that �p is a
probability distribution, i.e., that

p(k) ∈ [0, 1] , ∀ k ∈ {1, . . . , K} and
K∑

k=1

p(k) = 1. (4)

Note that unlike �a in equation (1), 〈�a〉 in equation (3) does not necessarily represent the actual
state upon any given measurement, but is simply the expectation value over such possible states.

We shall later see how the above interpretation of measurements as random samplings from
a static and pre-existing grab bag is invalidated by quantum mechanics. For now, let us illus-
trate it with a simple example which shall set the stage for our later discussion of contextuality.
Let us consider some system which is presumably fully determined by three binary attributes
�a = [a1, a2, a3]ᵀ where a1, a2, a3 ∈ {−1,+1}. Prior to measurement, the ‘realm of
possibilities’ for this system—formally referred to as the set of ontic states [27]—consists of
the K = 23 = 8 permutations which are displayed as columns in figure 2.

The characterization of a general system consists of narrowing down this realm of possi-
bilities to the joint probability mass function �p that weighs each of the columns. (Recall that,
for the observer, �p serves as the most complete description of the ensemble.) Assuming that
one can sample many copies of the system at will, the most straightforward approach would
be to repeatedly measure the full triplet of attributes and then normalize the occurrences of
each combination �a (k) to obtain its corresponding probability p(k). This approach is not always
transposable to quantum mechanics, however, since the non-commutativity of certain pairs
of attributes would bar us from measuring them together. In order to allow for an adaptation
to the quantum case, we shall therefore constrain ourselves to measure only one attribute at
a time such that, over several runs, we can build up the expectation values 〈a1〉, 〈a2〉, and
〈a3〉 of the individual attributes. If one assumes that the expectation value 〈�a〉 of the tuple is
equal to the tuple of expectation values—as would be reasonable if the ensemble distribution
is independent on the choice of measurement—then all that remains is to solve⎡

⎣〈a1〉
〈a2〉
〈a3〉

⎤
⎦ =

⎡
⎣+1 −1 −1 +1 −1 +1 −1 +1
+1 −1 +1 −1 +1 −1 −1 +1
+1 −1 +1 −1 −1 +1 +1 −1

⎤
⎦�p (5)

for �p provided that equation (4) is satisfied.
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2.2. Contexts as sets of no-disturbance

2.2.1. Sets of compatible measurements. In the discussion leading up to equation (5), we
steered clear of issues that could arise from the uncertainty principle by measuring only one
attribute for each copy of the system. This restriction can however be relaxed whenever quan-
tum mechanics allows it, namely whenever the quantum mechanical observables that corre-
spond to the measured attributes commute. For example, if the quantum mechanical operator
corresponding to measurement ân commutes with that of âm, then the pre-existing values of
both an and am can be faithfully retrieved from the same sample of the system ensemble with-
out having to worry about measurement-induced disturbances. This can be extended to include
any other compatible measurements, thereby forming a set

M = {ân, âk, âl, âm, . . .} (6)

which is referred to as a context. Any sequence of measurements picked out from the same
context can be performed in any order and is expected to return consistent statistics. If there
exists a different context

M′ = {ân, âκ, âλ, âν , . . .}, (7)

where one of the elements is common to both contexts is, say,

ân ∈ M∩M′, (8)

then noncontextuality is the assertion that the statistics1 inferred about an are independent of
which context it was measured in. (No such guarantee of determinism can be made for the
remaining attributes am, ak, aν , aκ, . . . , however, unless they too are common to both contexts.)
In contrast, contextuality arises whenever measurement statistics do depend on the context as
shall be shown in section 2.4.

2.2.2. Product measurements. Measurements are not limited to gathering the expectation
values 〈an〉 of the individual attributes. As we just saw, they can also consist of sequences—or,
more specifically, products—of the individual attributes, so long as those attributes belong to
the same context. An example could be

â(n,ν) : S → anaν ∈ R, (9)

provided that the corresponding quantum observables commute, i.e., [ân, âν ] = 0. (Note that
the order of the subscript is irrelevant thanks to the commutativity property, i.e., â(n,ν) = â(ν,n).)
These sequence measurements, just like the attributes that make them up, can in turn be grouped
into contexts of mutually compatible operators, e.g.,

M′′ = {â(n,k), â(ν,n), . . .} . (10)

Note a crucial caveat: although the joint measurements in the context are compatible, the indi-
vidual measurements they are composed of may not be. E.g., [â(n,k), â(ν,n)] = 0 in equation (10)
does not guarantee that [âk, âν] = 0.

1 Strictly speaking, non-contextuality implies that there should exist at least one probability distribution that is
consistent with those statistics across all contexts.
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Figure 3. Many-to-one relationship between ontic states and the vector of joint prod-
uct measurements aia j. While the former live in an ensemble of 23 = 8 possibilities,
the latter only span half as many combinations. The remaining combinations—e.g.,
[−1,+1 + 1]ᵀ—are impossible to obtain from the original, predefined ensemble of
ontic states.

2.3. Possible vs ‘impossible’ measurement outcomes

Let us extend our earlier example of a three-attribute system with the pairwise product mea-
surements we just introduced in equation (9). As can be seen from figure 3, although we have
anam ∈ {−1,+1} for each individual product, the joint set of triplets [a1a2, a1a3, a2a3] does
not cover all the eight possible combinations in {−1,+1}3 due to the degeneracy of multiplica-
tion, namely (±1) × (±1) = +1 and (±1) × (∓1) = −1. In terms of product measurements,
the realm of possibilities has effectively been halved in comparison to those of equation (5) as
we now have ⎡

⎣〈a1a2〉
〈a1a3〉
〈a2a3〉

⎤
⎦

︸ ︷︷ ︸
�μ

=

⎡
⎣+1 +1 −1 −1 −1 −1 +1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 +1 −1 −1 +1 +1 −1 −1

⎤
⎦

︸ ︷︷ ︸
Â

�p, (11)

which, due to the column-degeneracy of Â, can be rewritten in more compact form as

�μ =

⎡
⎣+1 −1 −1 +1
+1 +1 −1 −1
+1 −1 +1 −1

⎤
⎦

︸ ︷︷ ︸
Â(R)

�pπ , (12)

with �pπ now being four-dimensional2. A consequence of this reduction in the realm of
possibilities is that certain measurement vectors such as

�μ = [−1,+1,+1]ᵀ (13)

2 Note that equation (11) only makes sense if the attributes an are probed individually. If the measurement merely
returns the joint product, then only equation (12) makes informational sense to the observer.

6



Eur. J. Phys. 43 (2022) 055401 A Laghaout et al

become impossible to obtain since they cannot solve equation (12) under the constraint of con-
vexity. In other words, no fixed, pre-existing ensemble of ontic states can ever lead to such
an outcome �μ. One can see that the distinction between classically possible and impossible
measurement outcomes has an algebraic underpinning: the convex hull spanned by the com-
plete set {−1,+1}3 of combinations is broken down into two convex hulls. The first is fully
consistent with classical assumptions (figure 3) and is spanned by the polytope delimited by
the columns of

Â(R) =

⎡
⎣+1 −1 −1 +1
+1 +1 −1 −1
+1 −1 +1 −1

⎤
⎦ . (14)

Any measurement vector �μ on the surface of this hull is deemed real as per the EPR definition
of realism. The second hull is delimited by the remaining set of combinations

Â(U) =

⎡
⎣−1 +1 +1 −1
−1 −1 +1 +1
−1 +1 −1 +1

⎤
⎦ . (15)

We shall refer to any measurement result that lies on this latter hull as unreal.
(A non-mathematical walk-through of convex hulls and their relevance as presented above
is provided in appendix A.)

In light of all the above, we are able to define a metric for violations of realism. Indeed, if
some measurement vector fails to satisfy the convex equation �μ = Â(R)�pπ , then its Euclidean
distance

D(R)
�μ = min

�pπ
‖�μ− Â(R)�pπ‖ (16)

from the real hull is a quantifier of its remoteness from realism.

2.4. Contextuality and unreal measurements

What if one does obtain an unreal—i.e., classically-impossible—measurement vector as in
equation (13), either empirically or via the predictions of a non-classical theory such as quan-
tum mechanics? Should one then abandon the assumption that the attributes are predefined? For
example, could it be that, unbeknownst to the experimenter, the joint probability distribution
�p changes its profile in response to the choice of context? In order to visualize these interpre-
tations, figure 4 renders our three-attribute system as a graph where each vertex represents a
binary attribute. The different contexts Mi j = {âi, â j} are highlighted as the sets of connected
vertices (i.e., hyperedges) that can be queried simultaneously3. For each context, figure 5 then
highlights the joint probability distributions �p that would be consistent with a real and unreal
measurement vector, respectively. An immediate observation is that, for a real vector such as
[−1,+1,−1]ᵀ, one finds ontic combinations which are consistent across all contexts, namely
those weighted by p(5) and p(6) in this example. For the unreal vector [−1,+1,+1]ᵀ, how-
ever, no such ontic combination can be found which would be consistent across all contexts.
In other words, it is as if the unreal measurement vector only makes sense when examined

3 In this trivial example, all attributes commute with one another, so there is in reality one big context covering them all.
The current grouping of the contexts as pairs of attributes is therefore contrived, but nonetheless valid for illustration
purposes. The Peres–Mermin square presents a more realistic case where the different attributes are indeed required
to belong to separate contexts because of their incompatibility.
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Figure 4. If one disposes the attributes ai of a system S as the vertices of a graph,
then contexts are formed by the hyperedges covering mutually compatible vertices.
Here, the tripartite binary-attribute system we have discussed so far is arbitrarily bro-
ken down into three contexts where each context is formed by a pair of attributes. For
quantum-mechanical systems in general, the contexts are dictated by the commutation
rules between the attributes.

Figure 5. Illustration of contextuality using a toy model of three binary attributes. All
eight ontic combinations of these attributes are displayed at the top alongside their asso-
ciated weights�p in the presumed ensemble distribution. For each of the contexts defined
in figure 4, the measurement outcomes that match the examples of real and unreal vec-
tors are highlighted in blue in the left and right columns, respectively. Consider first the
vector [−1,+1,−1]ᵀ in the real hull. All three contexts have some non-zero overlap,
namely at p(5) and p(6). In other words, for this particular real measurement vector, the
underlying joint probability distribution reduces to zero everywhere except for p(5) and
p(6). In contrast, the unreal vector [−1,+1,+1]ᵀ does not have global consistency since
the inferred ontic combinations seem to depend on the contexts which are used for prob-
ing the joint probability distribution. E.g., the latter collapses onto p(5) and p(6) when
probed in the contexts M12 and M13 but onto p(1) and p(2) when probed in the contexts
M13 and M23.

8
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in some contexts, but ends up contradicting itself when examined in all contexts—hence the
term contextuality. A discussion of whether contextuality and violations of realism are just
facets of the same phenomenon or two fundamentally distinct ones is beyond the scope of this
article. What is nonetheless evident is that they both challenge the classical understanding of
state preparation �p as a cause and state measurement 〈�a〉 as its effect [28, 29]. For our pur-
poses, we shall content ourselves with Abramsky’s [30] minimalist definition of contextuality
as a scenario where measurements statistics are ‘locally consistent but globally inconsistent’.
Here, locality does not necessarily refer to the spatial dimension but, more generally, to the
graph topology [31] formed by the contexts: measurements within a given context or between
a subset of contexts are considered local, whereas those that span all contexts are considered
global4.

A remark is in order regarding the role of non-commutativity: we presented it as a restric-
tion on the measurements that could be performed together, and thereby as the rationale for
grouping measurements into contexts. Indeed, if it were not for non-commutativity, there
would not be any contextuality since there would not be any contexts to speak of. Conse-
quently, one should regard the existence of incompatible observables as integral to the notion
of contextuality, and not merely an auxiliary constraint on it.

3. The Peres–Mermin square

3.1. Motivation: state-independence

Our discussion of contextuality has so far only invoked algebra and logic. We shall now review
a way to demonstrate it physically. It has been known for decades that quantum mechanics
can lead to contextual statistics [3]. Work on non-locality [2], which can be regarded as a
special case of contextuality where the sets of no-disturbance arise from the space-like separa-
tion of the measurements (as opposed to their commutativity), has been particularly prolific
[32]. Experimental demonstrations of non-locality [19], and more explicitly of contextual-
ity [4–17], have repeatedly confirmed that quantum mechanical systems behave contextu-
ally. These demonstrations are however demanding to perform due to their vulnerability to
quantum decoherence both at the state-engineering and state-measurement stages. For the
purposes of this article, we shall revisit a proposal which is state-independent and there-
fore does away with the specificities of state preparation altogether [33, 34]. This proposal,
known as the Peres–Mermin square, was first realized in 2009 using an elaborate ion trap
setup [6]. The following decade has since witnessed the democratization of quantum comput-
ing, thereby making it feasible to reproduce such demanding experiments using inexpensive
and user-friendly interfaces to online quantum computers [23–26]. The process is as easy
as writing a set of instructions to be uploaded to the remote computer, which subsequently
logs the measurement outcomes to a downloadable file. It has thus become possible for virtu-
ally anyone with programming skills and a basic understanding of qubit operations to observe
first-hand the counter-intuitive effects of contextuality. The Peres–Mermin proposal is partic-
ularly suited for this task since, as we shall see next, it only requires conceptually simple qubit
measurements.

4 Bell nonlocality is a special case of contextuality where space-like-separated measurement sites belong to the same
context since, as per the no-signaling theorem, no disturbance of the system is to be (classically) expected between
those sites.
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3.2. The square

3.2.1. Contexts with deterministically unreal outcomes. In terms of state engineering, the
Peres–Mermin setup requires nothing more than an arbitrary two-qubit system—be it pure
or not. The classical assumption is that each qubit points in a pre-existing, albeit stochastic,
direction of the Bloch sphere [35] and that a projective measurement along one of the three
basis vectors merely collapses the qubit onto its x, y, or z components5. The operators behind
these three projections, the Pauli operators,

σ̂x =

[
0 1
1 0

]
, σ̂y =

[
0 −i
i 0

]
, σ̂z =

[
1 0
0 −1

]
, (17)

do not to commute and therefore cannot be grouped into contexts. However, as one deals with
a two-qubit system, it was ingeniously shown by Mermin [21], based on earlier work by Peres
[20], that not only do certain pairs of joint projection operators commute, but that the contexts
they thus form always produce the same unreal measurement vector regardless of the input
state. This property is enabled by a fourth operator, namely the identity

Î =

[
1 0
0 1

]
, (18)

which leaves unchanged any qubit it operates on. (Physically, such a qubit would not be
measured at all.) The six contexts thus constructed,

Mr1 =
{
σ̂x ⊗ Î, Î⊗ σ̂x , σ̂x ⊗ σ̂x

}
, (19)

Mr2 =
{
Î⊗ σ̂y, σ̂y ⊗ Î, σ̂y ⊗ σ̂y

}
, (20)

Mr3 = {σ̂x ⊗ σ̂y, σ̂y ⊗ σ̂x, σ̂z ⊗ σ̂z} , (21)

Mc1 =
{
σ̂x ⊗ Î, Î⊗ σ̂y, σ̂x ⊗ σ̂y

}
, (22)

Mc2 =
{
Î⊗ σ̂x, σ̂y ⊗ Î, σ̂y ⊗ σ̂x

}
, and (23)

Mc3 = {σ̂x ⊗ σ̂x, σ̂y ⊗ σ̂y, σ̂z ⊗ σ̂z} , (24)

can be arranged as the rows and columns of the square in table 1. As can be verified by simple
matrix multiplication, the product of measurements drawn from any given context is tanta-
mount to the identity operation, except for the last column, which yields the negative identity.
(A full derivation for context Mc3 is provided in appendix B.) Quantum mechanically, there-
fore, the eigenvalues of these product measurements are deterministic, namely +1 for the rows
and first two columns and −1 for the third column.

This leads to a logical paradox: if one were to accept the classical premise that the out-
come of all nine joint measurements in the square are (i) predetermined to be either +1 or −1,
and (ii) that they are independent of whether they are obtained in the context of a row or
column sequence, then none of the 29 = 512 possible assignments of the square—or convex

5 Such a collapse can be stochastic as per the ensemble interpretation of the measurement outcomes.
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Table 1. The Peres–Mermin square is an assemblage of joint qubit measurements which,
when multiplied along the rows and columns yield definite eigenvalues, namely +1 for
the rows and first two columns, and −1 for the last column.

combinations thereof—can satisfy the predictions of quantum mechanics. Indeed, the row con-
texts generate eigenvalues of +1, thereby requiring an even number of −1 entries in each row
and thus an even number of −1s in the square. In contrast, the first two columns generate
eigenvalues of +1 while the last column yields −1, thus implying an overall odd number of
−1s in the square. Clearly, the assumptions (i) and (ii) cannot hold simultaneously in quantum
mechanics: either (i) is true and we lose noncontextuality, or (ii) is true and we lose realism—or
we lose both together.

3.2.2. The unreal measurement vector. To better understand how the above paradox is a man-
ifestation of contextuality, let us draw the parallel with our toy example so as to come up with
the Peres–Mermin analog of the unreal measurement vector equation (13).

Denote the entries of the square as âi j, where i and j are the indices of the rows and columns,
respectively, e.g., â21 = Î⊗ σ̂y. The values that these attributes can take on upon measurement
are ai j ∈ {−1,+1} such that the nine-dimensional ontic states

�a = [a11, a12, a13, a21, a22, a23, a31, a32, a33]ᵀ (25)

are drawn from a set of 29 = 512 combinations. Just as in the toy example, however, the dis-
tinction between real and unreal measurements does not arise from the ‘base’ ontic attributes
themselves, but rather from logical combinations thereof, namely product measurements. For
the Peres–Mermin system, these products can only be performed within its six contexts, i.e.,
from its three rows and three columns

r̂i =

3∏
j=1

âi j and ĉ j =

3∏
i=1

âi j, (26)

respectively (figure 6). The measurement vector we are interested in could therefore be the
concatenation of the row and column outcomes,

�μ = �r ⊕�c =
[
〈r1〉 , 〈r2〉 , 〈r3〉 , 〈c1〉 , 〈c2〉 , 〈c3〉

]ᵀ
. (27)

Classically, although each row or column can individually yield a value in {−1,+1}, the
complete six-dimensional measurement vector �μ does not cover all 26 = 64 combinations. This
is because, as per equation (26), the ontic states of equation (25) only map to 32 of those combi-
nations. In particular, the prediction of quantum mechanics, whereby the context measurements
have the deterministic eigenvalues

�μ(Q) = [+1,+1,+1,+1,+1,−1]T , (28)

cannot be mapped by the ontic states. In other words, just like equation (13), these measurement
outcomes cannot arise from a convex combination of the vectors supporting the real hull.
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Figure 6. The six contexts of the Peres–Mermin square.

3.3. The real and unreal hulls

Let us now explicitly identify the contours of the real and unreal hulls that arise from the
Peres–Mermin square. Realism implies that the attributes of the square have pre-existing values
in {−1,+1}. Consequently, the row and column measurements should agree as to the overall
parity of the square; i.e., they should agree as to whether there exists an even or and odd number
of−1s. Hence, realism requires that r1 · r2 · r3 = c1 · c2 · c3. This condition can be re-packaged
as the Boolean function

f (�μ) =
1
2

(
6∏

i=1

μi + 1

)
, (29)

12
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which yields 1 (true) when �μ is in the real hull and 0 (false) when �μ is in the unreal hull.
The 6 × 32 matrices Â(R) and Â(U) corresponding to equations (14) and (15), respectively are
therefore made up of the combinations in {−1,+1}6 that satisfy f (�μ) = 1 and f (�μ) = 0,
respectively. In particular, a simple check with f (�μ(Q)) = 0 confirms that quantum mechanics
produces an unreal vector. Even more telling is the distance of �μ(Q) to the real hull, which can be
shown to be

D(R)
�μ(Q) =

√
2
3
≈ 0.8165, (30)

using constrained nonlinear optimization on equation (16).
As we shall see in the next section, our goal is to check that the measurement vector �μ(IBM)

obtained experimentally on the quantum computer approximates the vector �μ(Q) predicted
by quantum mechanics. More specifically, we aim to verify that the distance D(R)

�μ(IBM) is large
enough to ascertain a violation of realism beyond statistical uncertainty.

4. Measuring the Peres–Mermin square on a quantum computer

4.1. Characterization of the quantum hardware

We ran our experiments on the IBM Quantum Experience platform, which is publicly available
on the internet [36]. Through its online portal, we had access to three quantum computers,
ibmqx2 ‘Yorktown’, ibmqx4 ‘Tenerife’, and ibmqx16 ‘Melbourne’, which all fall under
the category of Noisy Intermediate-Scale Quantum Computers (NISQs). For the present work,
we ran our experiments on ibmqx4. It consists of five qubits interconnected in a butterfly
pattern such that qubits 0, 1 and 2 are interconnected, and so are qubits 2, 3, and 4. Qubit 2 is
therefore the only one that is fully connected—and hence can be measured jointly—with all
the others.

The qubits are furthermore prone to decoherence, thereby requiring several runs of the
experiment to make up for statistical errors. In particular, IBM’s characterization of ibmqx4
showed that the relaxation time T1 for the different qubits lies between 30.1 μs and 52.1 μs,
whereas the dephasing time T2 lies between 4.9 μs and 53.0 μs. Similarly, the single- and
two-qubit gate errors show a significant spread of 0.69% to 3.37% and of 2.12% to 7.95%,
respectively. Finally, the readout errors on the qubit range from 3.4% to 34.8% (!) depending
on the qubit.

Finally, as a preamble to measuring the full rows and columns of the Peres–Mermin square,
we performed measurements of the nine individual observables on different input states on the
ibmqx4 computer. For example, the results when measuring the input state |−1z〉 ⊗ |−1z〉,
where the notation −1z means that it is the eigenstate to σ̂z having eigenvalue −1, yielded the
statistics in table 2 when repeated 8192 times. (This is the maximum number of repetitions
IBM allows ordinary users on any given day.)

In theory, only the measurement of â33 = σ̂z ⊗ σ̂z should produce a deterministic outcome,
+1. The other eight measurements, whose projectors are equatorial on the Bloch sphere, should
randomly yield the outcomes +1 and −1 with equal probability. We see that this is not quite
the case as the measurements have a slight bias toward the +1 outcome. Other input states such
as |+1z〉 ⊗ |+1z〉, |+1x〉 ⊗ |+1y〉, and |+1x〉 ⊗ |+1x〉 produced very similar data, both for the
measurements with nominally random outcomes and for that with a nominally deterministic
outcome. We did not systematically try with different entangled input states since we noted
that significant errors were introduced already in the state preparation stage, and these errors
could not be distinguished from the measurement errors.

13
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Table 2. The counts of the two possible outcomes for each entry in the Peres–Mermin
square is given by the two numbers between a pair of double vertical lines. For example,
out of 8192 measurements of σ̂x ⊗ Î, we obtained 4440 times +1 and 3752 times −1.

+1 −1 +1 −1 +1 −1

4440 3752 4279 3913 4553 3639
4353 3839 4376 3816 4636 3556
4565 3627 4488 3704 7798 394

The fact that the nominally random outcomes do not exhibit an exact fifty–fifty split has
multiple causes. The first is intrinsic to the quantum nature of the qubit system and is there-
fore expected to have the stochasticity of a binomial distribution with success probability of
1
2 . Any spread in the statistics beyond one standard deviation of this binomial distribution can
be imputed to classical fluctuations in the experimental setup. We indeed found out that the
results varied unpredictably from day to day by more than the expected standard deviation√

8192 × 1
2 × 1

2 ≈ 45.3 from the expected mean 8192 × 1
2 = 4096. As for the bias towards

+1 outcomes, a systematic error would be its most plausible explanation. It is estimated at
about 8% for the nominally random measurements and about 5% for the nominally deter-
ministic ones. Physically, this could be explained by the fact that the states |+1〉 and |−1〉
were implemented by the IBM computer as transmon qubits in the ground and excited state,
respectively. Through energy-dissipation, the latter will relax to the former, while the former
cannot undergo any further dissipation, only dephasing—hence the lopsidedness of the qubits
in favour of the ground state |+1〉.

4.2. The compatibility loophole

The Peres–Mermin setup requires that the two-qubit system undergoes three successive, com-
muting measurements. These measurements—or at least the first two of them—must be of the
quantum non-demolitional type [37]. (A demolitional measurement would otherwise leave no
state to subsequently measure.) Moreover, the outcomes of the three individual measurements
must not be known, only their overall product should. It is only after the third measurement
that this product measurement result shall be read out. To accomplish this, we accumulatively
encode the three-measurement product in the state of an ancillary qubit that is only to be read
out a posteriori. The downside of the approach is that it only becomes possible to verify that the
sequentially executed measurements do indeed commute by explicitly permuting their order
(i.e., by re-programming the permuted sequences in the quantum computer). This in turn opens
up for the so-called compatibility loophole whereby contexts can no longer be assumed to be
sets of no-disturbance [38, 39].

To show that a successive readout of the individual measurements in a context will not
result in the same measurement statistics as when only the final product result is read out, con-
sider the following example: suppose we prepare two particles in spin up in the y-direction
(of the Bloch sphere) and we want to measure them in context Mc3 . The first measurement
of their spin in the x-direction will then either be +1 and collapse the state to either ↑↑ or ↓↓
(in the x-direction), or be −1 and collapse the state to either ↑↓ or ↓↑ (still in the x-direction).
Subsequently measuring the spins in the y-direction would again randomly produce either the
result +1 or −1, uncorrelated to the first measurement. After the y-measurement, the state
would be collapsed along the y-axis. The final measurement in the z-direction would likewise
produce either the result +1 or −1, yet again uncorrelated to the previous measurement out-
comes. Hence, the product of the measurements read out individually in context Mc3 would

14
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Figure 7. Quantum circuits in the z-basis for the six contexts. The gates used include
the unitary rotation u(φ,λ) of the qubit which is composed of a λ-rotation around z, a
π
2 -rotation around y, and a φ-rotation around x. Also involved is the Hadamard gate H,
which flips the poles of the Bloch sphere into two antipodal points on the equator, as
well as the controlled NOT gate—symbolized by the vertical links—which effectively
serves to entangle the qubits. (An overview of quantum gates is available in [35].)

either be +1 or −1 with equal probability, contrary to the prediction of the Peres–Mermin
square, and contrary to our experimental results.

4.3. Quantum circuitry

Let us now describe how the experiment is performed—or rather, programmed—on the quan-
tum computer. The six sequence measurements are implemented as the circuits of figure 7.
Each circuit is governed by a short computer program that specifies the preparation, process-
ing, and measurement stages [40]. Although the order of the measurements is theoretically
irrelevant, the unequal performance of the qubits and the dependence of the gate operations on
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Table 3. Breakdown of the counts n(±) of the measurement outcomes ±1 in each of the
six contexts.

Mr1 Mr2 Mr3 Mc1 Mc2 Mc3

n(+) 7943 7731 7506 7813 7851 2033
n(−) 249 461 686 379 341 6159

their order compelled us to optimize the circuit design. This entailed, among other things, that
we minimize the number of gates required since each one comes at a cost of decoherence. For
example, we found out that we obtained worse results when the third row of the square was
implemented as σ̂x ⊗ σ̂x · σ̂y ⊗ σ̂y · σ̂z ⊗ σ̂z instead of in the reverse order as the latter would
otherwise requires more gates6. The same could be said of context Mc3 , which is also vul-
nerable to the aforementioned compatibility loophole in that the order of its measurements is
effectively detrimental to the measurement statistics. The first two rows and first two columns,
however, do not suffer from this problem.

4.4. Results and analysis

The best set of results was obtained using the input state |+1z〉 ⊗ |−1z〉. It consists of
n = 8192 measurements in each of the six contexts, of which n(−) returned the readout−1 while
the remaining n(+) returned +1 (table 3). The experimental measurement vector can then be
shown to be

�μ(IBM) =

⎡
⎢⎢⎢⎢⎢⎢⎣

+0.939
+0.887
+0.833
+0.907
+0.917
−0.504

⎤
⎥⎥⎥⎥⎥⎥⎦±

⎡
⎢⎢⎢⎢⎢⎢⎣

3.79
5.09
6.12
4.64
4.41
9.55

⎤
⎥⎥⎥⎥⎥⎥⎦ · 10−3. (31)

Each component of �μ(IBM), corresponding to some context c, is given by

μ(IBM)
c =

1
n

[
(+1) × n(+)

c + (−1) × n(−)
c

]
± δc, (32)

where we have included the standard error of the mean

δc = 2

√
1
n

n(+)
c

n
n(−)

c

n
, (33)

as the standard deviation divided by
√

n.
Using the SciPy Python library, we implemented Delaunay triangulation to compute

equation (16), and found out that, indeed, our measurement vector lies outside the real hull
at an Euclidean distance of

D(R)
�μ(IBM) ≈ 0.4029 (34)

6 We found the former sequence to perform equally well as σ̂x ⊗ σ̂x · σ̂z ⊗ σ̂z · σ̂y ⊗ σ̂y. This is predictable since they
both have the same number of gates.
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Figure 8. Schematic of a real convex hull R in the a1a2-plane supported by the 2D vec-
tors �a(1) through �a(7). The point symbolized by × represents the measurement outcome
�μ and D(R)

�μ is its closest distance to R. The width (height) of the light blue rectangle
defines two standard deviations of the measurement in the a1 (a2) direction. This rectan-
gle is inscribed in a standard deviation hypersphere (here, the circle in 2D) whose radius
Δ�μ is the worst case estimate of the measurement outcome resulting from one standard
deviation error in each direction in the plane.

from its surface [41]. To check that this result is statistically significant, we formed a six-
dimensional ‘hypersphere of uncertainty’ around �μ(IBM) based on the standard errors of our
measurements (figure 8). The radius of this sphere is

Δ�μ(IBM) =
√
�δ · �δ ≈ 0.0145, (35)

namely 0.4029/0.0145 ≈ 27.8 times smaller than D(R)
�μ(IBM) . We can therefore be confident that

our measurement results violate the realistic and noncontextuality hypothesis by at least 27
standard errors.

5. Discussion and outlook

This article aims to render the notions of contextuality and violations of realism more accessi-
ble to the non-specialist. We presented from the ground up a toy example that illustrates how
contextuality is an interpretation for measurement combinations that cannot logically result
from the assumption of pre-existing physical attributes. We then drew the parallel between
our toy example and an already well-established quantum setup, namely the Peres–Mermin
square. The choice of the Peres–Mermin square is owed to its compactness and elegance in
that it works deterministically and does not demand any elaborate quantum state engineer-
ing. Its only requirement is the processing and measurement of qubits, which makes it ideal
for experimentation on the emergent quantum computer platforms such as the IBM Quan-
tum Experience. Such platforms are an easy-to-use playground for experiments which only a
decade ago would have required dedicated laboratories. Our results, which confirmed the non-
classicality of the Peres–Mermin scheme by over 27 standard errors, are a testimony to the
credibility of online quantum computers as viable tools in fundamental research.
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Figure 9. Although there exists 22 = 4 combinations for pairing either chevrons and
rectangles, only three of them can be stacked in a stable equilibrium.

This said, we note that our metric for the violation of realism, D(R)
�μ(IBM) ≈ 0.4029,

though satisfactory in terms of disproving the null hypothesis beyond the margin of error
Δ�μ(IBM) ≈ 0.0145, is in fact barely half what it could have been in theory, namely D(R)

�μ(Q) =√
2/3. This is because the so-called NISQ computers we have used are indeed still too noisy.

In particular, we found that the decoherence of the qubits, the non-ideal gate fidelities, and
the high readout errors had to be compensated by careful circuit design and several re-runs of
the program. Up to 30% of our program executions were too affected by noise to indicate any
non-classicality in their results. This was compounded by unpredictable systematic fluctuations
from one day to the next which are presumably due to tune-ups of the hardware. Nonethe-
less, we expect that all these nuisances will be mitigated as the technology steadily improves
[42, 43].

Finally, in order to place our work in a larger context, we should clarify that our discus-
sion assumed the Copenhagen interpretation. For completeness, alternative interpretations, or
analogies with classical systems that exhibit ‘quantum behaviour’, should however be kept in
mind [44–47].
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Appendix A. Convex hulls from ontic states (an intuitive example)

This section illustrates in a self-contained and non-mathematical way how ontic (i.e., real)
states give rise to the so-called convex hulls. To this end, imagine we have several instances
of two possible shapes—rectangles and chevrons—which we would like to group into pairs
where one shape is stacked on top of the other. As is illustrated in figure 9, although we
have 22 = 4 combinations for these stacks, only three of them are physically possible in the
sense that the fourth cannot exist: a rectangle cannot rest in stable equilibrium on top of a
chevron.

18



Eur. J. Phys. 43 (2022) 055401 A Laghaout et al

Figure 10. Any conceivable ensemble of pairwise stacks averages to a point on the trian-
gle delimited by [−1,−1], [−1,+1], and [+1,+1]. In the particular case illustrate here,
we have μ = (5[−1,−1] + 2[+1,+1] + 4[−1,+1]) /11 ≈ [−0.6, 0.1].

Without loss of generality, one can represent rectangles and chevrons with −1 and +1
respectively such that the four combinations of pairwise stacks can be laid on a two-
dimensional plane where the abscissa represents the bottom shape and the ordinate repre-
sents the top shape. If we then have an ensemble of such pairwise stacks, we expect that
the mean position of elements in the ensemble lies somewhere on the triangle delimited by
[−1,−1], [−1,+1], and [+1,+1]. This triangle, which charts the realm of possibilities as a
two-dimensional surface, is what is referred to as the real convex hull (figure 10). The com-
plementary triangle delimited by [−1,−1], [+1,+1] and the ‘impossible’ corner [+1,−1]
(i.e., rectangle on top of chevron) is called the unreal convex hull in that no point within could
possibly result from an ensemble of stable stacks.

Appendix B. Derivation of the third column of the Peres–Mermin square

The definition of tensor products Â(L) ⊗ Â(R) is that every entry a(L)
i j of the left-hand operand is

multiplied by the whole right-hand operand. For example, for two-dimensional matrices, we
have

Â(L) ⊗ Â(R) =

[
a(L)

11 a(L)
12

a(L)
21 a(L)

22

]
⊗
[

a(R)
11 a(R)

12

a(R)
21 a(R)

22

]

=

⎡
⎢⎢⎢⎢⎢⎣

a(L)
11 a(R)

11 a(L)
11 a(R)

12 a(L)
12 a(R)

11 a(L)
12 a(R)

12

a(L)
11 a(R)

21 a(L)
11 a(R)

22 a(L)
12 a(R)

21 a(L)
12 a(R)

22

a(L)
21 a(R)

11 a(L)
21 a(R)

12 a(L)
22 a(R)

11 a(L)
22 a(R)

12

a(L)
21 a(R)

21 a(L)
21 a(R)

22 a(L)
22 a(R)

21 a(L)
22 a(R)

22

⎤
⎥⎥⎥⎥⎥⎦ . (36)
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Furthermore, when involved in matrix multiplication, tensor products have the property that(
Â(R) ⊗ Â(L)

)
·
(
B̂(R) ⊗ B̂(L)

)
=

(
Â(R) · B̂(R)

)
⊗
(

Â(L) · B̂(L)
)
. (37)

Let us now derive the sequence of operations associated with context Mc3 , i.e., the third
column of the Peres–Mermin square. We have

(σ̂x ⊗ σ̂x) · (σ̂y ⊗ σ̂y) · (σ̂z ⊗ σ̂z) = {equation (37)}

= (σ̂x · σ̂y · σ̂z) ⊗ (σ̂x · σ̂y · σ̂z)

= {σ̂x · σ̂y = iσ̂z}
= (iσ̂z · σ̂z) ⊗ (iσ̂z · σ̂z)

=
{
σ̂z · σ̂z = Î2

}
= îI2 ⊗ îI2

= {equation (36)}

= −Î4. (38)

Hence, the (doubly-degenerate) eigenvalue of measurements in Mc3 is −1.
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