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Introduction

Supersymmetry (SUSY) [1-9] is an extension to the Standard Model (SM) which intro-
duces supersymmetric partners of the known fermions and bosons. For each known boson

or fermion, SUSY introduces a particle with identical quantum numbers except for a dif-

ference of half a unit of spin (). The introduction of gauge-invariant and renormalisable

interactions into SUSY models can violate the conservation of baryon number (B) and lep-

ton number (L), resulting in a proton lifetime shorter than current experimental limits [10].

This is usually solved by assuming that the multiplicative quantum number R-parity (R),



defined as R = (—1)3B-1)+25 ig conserved. In the framework of a generic R-parity-
conserving minimal supersymmetric extension of the SM (MSSM) [11-15], SUSY particles
are produced in pairs where the lightest supersymmetric particle (LSP) is stable, and is a
candidate for dark matter. In a large variety of models, the LSP is the lightest neutralino
(X)). The scalar partners of right-handed and left-handed quarks (squarks), Gr and §r,, mix
to form two mass eigenstates, ¢; and ¢o, with ¢; defined to be the lighter one. In the case of
the supersymmetric partner of the top quark (top squark, #), large mixing effects can lead
to one top-squark mass eigenstate, £, that is significantly lighter than the other squarks.
Consideration of naturalness and its impact on the SUSY particle spectrum, suggests that
top squarks cannot be too heavy, to keep the Higgs boson mass close to the electroweak
scale [16, 17]. Thus #; could be pair-produced with relatively large cross-sections at the
Large Hadron Collider (LHC).

The top squark can decay into a variety of final states, depending, amongst other
factors, on the hierarchy of the mass eigenstates formed from the linear superposition of
the SUSY partners of the Higgs boson and electroweak gauge bosons. In this paper the
relevant mass eigenstates are the lightest chargino ()ﬁc) and the x{. Two possible sets
of SUSY mass spectra are considered, assuming that the mixing of the neutralino gauge
eigenstates is such that the YJ is mostly the supersymmetric partner of the SM boson B
(before electroweak symmetry breaking) and taking into account previous experimental
constraints from the LEP experiments [18, 19] that m(¥i) > 103.5 GeV.

In both sets of spectra (figure 1) the #; is the only coloured particle contributing to the
production processes. In the first scenario the #;, assumed to be 7, decays via t; — b—l—)zli,
where m(f;) — m(X5) > m(b), and the X7 (assumed to be mostly the supersymmetric
partner of the SM W boson before electroweak symmetry breaking) subsequently decays
into the lightest neutralino (assumed to be the LSP) and a real (figure 1 (a)) or virtual
(figure 1 (b)) W boson. In the second scenario (figure 1 (c)), the 1, assumed to be 70%
tr, decays via t; — t+x!. Both on-shell, kinematically allowed for m(#;) > m(t) +m(x}),
and off-shell (resulting in a three-body decay to bW x?) top quarks are considered.

In all scenarios the top squarks are pair-produced and, since only the leptonic decay
mode of the W) is considered, the events are characterised by the presence of two isolated
leptons (e, p)! with opposite charge, and two b-quarks. Significant missing transverse mo-
mentum p?r‘iss, whose magnitude is referred to as Eﬁ?iss, is also expected from the neutrinos
and neutralinos in the final states.

In this paper, three different analysis strategies are used to search for ¢; pair pro-
duction, with a variety of signal regions defined for each. Two of the analyses target the
tp = b+ )Zli decay mode and the three-body #; — bW X! decay via an off-shell top-quark,
whilst one targets the £; — ¢ + X to an on-shell top-quark decay mode.

The kinematics of the £, — b+ ﬁc decay mode depend upon the mass hierarchy of
the #1, X+ and x¥ particles (figure 1 (a) and 1 (b)). In order to be sensitive to all the
possible mass splittings, two complementary cut-based analysis strategies are designed:
one to target large ﬁc — x{ mass splittings (larger than the W bosons mass), and one

!Electrons and muons from 7 decays are included.
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Figure 1. Schematic diagrams of mass hierarchy for the #; — b+ Xi decay mode ((a) larger than
the W mass (Y1, X)) mass splitting and (b) smaller than the W mass (YT, 9) mass splitting), and
(c) the t; — tX? decay mode.

to target small )Zf — %Y mass splittings (smaller than the W bosons mass); the first one
provides the sensitivity to the ¢; three-body decay.

These signatures have both very small cross-section and low branching ratios (BRs)
(of top-quark pairs to dileptonic final states). A multivariate approach is used to target
the on-shell top #; — t + X} decay mode (figure 1 (c)), to enhance sensitivity beyond what
can be achieved with cut-and-count techniques.

Previous ATLAS analyses using data at /s = 7TeV and 8 TeV have placed exclusions
limits at 95% confidence level (CL) on both the #; — b+ x5 [20-22] and #; — t+ X [23-25]
decay modes. This search is an update of the 7 TeV analysis targeting the two-lepton final
state [25] with a larger dataset, including additional selections sensitive to various signal
models and exploiting a multivariate analysis technique. Limits on top squarks direct
production have also been placed by the CMS [26-29], CDF [30] and DO [31] collaborations.

2 The ATLAS detector

ATLAS is a multi-purpose particle physics experiment [32] at the LHC. The detector lay-
out? consists of inner tracking devices surrounded by a superconducting solenoid, electro-
magnetic and hadronic calorimeters and a muon spectrometer. The inner tracking detector
(ID) covers |n| < 2.5 and consists of a silicon pixel detector, a semicondictor microstrip de-
tector, and a transition radiation tracker. The ID is surrounded by a thin superconducting
solenoid providing a 2T axial magnetic field and it provides precision tracking of charged
particles and vertex reconstruction. The calorimeter system covers the pseudorapidity
range |n| < 4.9. In the region |n| < 3.2, high-granularity liquid-argon electromagnetic

2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in
the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The z-axis points from
the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (7, ¢) are used
in the transverse plane, ¢ being the azimuthal angle around the beam pipe. The pseudorapidity is defined
in terms of the polar angle 6 as n = —Intan(6/2).



sampling calorimeters are used. A steel/scintillator-tile calorimeter provides energy mea-
surements for hadrons within || < 1.7. The end-cap and forward regions, which cover
the range 1.5 < |n| < 4.9, are instrumented with liquid-argon calorimeters for both elec-
tromagnetic and hadronic particles. The muon spectrometer surrounds the calorimeters
and consists of three large superconducting air-core toroid magnets, each with eight coils,
a system of precision tracking chambers (|n| < 2.7) and fast trigger chambers (|n| < 2.4).

3 Monte Carlo simulations and data samples

Monte Carlo (MC) simulated event samples are used to model the signal and to describe
all the backgrounds which produce events with two prompt leptons from W, Z or H
decays. All MC samples utilised in the analysis are produced using the ATLAS Underlying
Event Tune 2B [33] and are processed through the ATLAS detector simulation [34] based
on GEANT4 [35] or passed through a fast simulation using a parameterisation of the
performance of the ATLAS electromagnetic and hadronic calorimeters [36]. Additional pp
interactions in the same (in-time) and nearby (out-of-time) bunch crossings (pile-up) are
included in the simulation.

Processes involving supersymmetric particles are generated using HERWIG++2.5.2 [37]
(f1 — t +XY) and MADGRAPH-5.1.4.8° [38] ({; — b+ Xi) interfaced to PYTHIA-6.426 [39]
(with the PDF set CTEQ6L1 [40]). Different initial-state (ISR) and final-state radiation
(FSR) and «s parameter values are used to generate additional samples in order to evaluate
the effect of their systematic uncertainties. Signal cross-sections are calculated at next-to-
leading order (NLO) in ag, including the resummation of soft gluon emission at next-to-
leading-logarithm accuracy (NLO+NLL) [41-43], as described in ref. [44].

Top-quark pair and Wt production are simulated with MCGNLO-4. 06 [45, 46], interfaced
with HERWIG-6.520 [47] for the fragmentation and the hadronisation processes, and using
JIMMY-4.31 [48] for the underlying event description. In addition, ACERMC-3.8 [49] sam-
ples and POWHEG-1.0 [50] samples, interfaced to both PYTHIA-6.426 and HERWIG-6.520,
are used to estimate the event generator, fragmentation and hadronisation systematic un-
certainties. Samples of ttZ and ttW production (referred to as ¢tV') are generated with
MADGRAPH-5.1.4.8 interfaced to PYTHIA-6.426. Samples of Z/~4* produced in association
with jets are generated with SHERPA-1.4.1 [51], while ALPGEN-2. 14 [52] samples are used
for evaluation of systematic uncertainties. Diboson samples (WW, W Z, ZZ) are generated
with POWHEG-1.0. Additional samples generated with SHERPA-1.4.1 are used to estimate
the systematic arising from choice of event generator. Higgs boson production, including all
decay modes,* is simulated with PYTHIA-8. 165 [53]. Samples generated with MC@NLO-4. 06,
POWHEG-1.0 and SHERPA-1.4.1 are produced using the parton distribution function (PDF)
set CT10 [54]. All other samples are generated using the PDF set CTEQG6LI.

The background predictions are normalised to the theoretical cross-sections, includ-
ing higher-order QCD corrections where available, or are normalised to data in dedi-

3MADGRAPH has been used to simulate the decay chain up to the W bosons. The W branching ratio to

each lepton generation is hence 11.1%, consistent with a LO calculation.
4An SM-like 125 GeV Higgs boson, with the same BR as in the SM, is assumed.



cated control regions (CRs). The inclusive cross-section for Z/+*+jets is calculated with
DYNNLO [55] with the MSTW 2008 NNLO PDF set [56]. The ¢t cross-section for pp
collisions at a centre-of-mass energy of \/s = 8 TeV is o5 = 253ﬂ§ pb for a top-quark mass
of 172.5 GeV. It has been calculated at next-to-next-to-leading order (NNLO) in QCD in-
cluding resummation of next-to-next-to-leading-logarithmic (NNLL) soft gluon terms with
TOP++2.0 [57-62]. The uncertainties due to the choice of PDF set and «s were calcu-
lated using the PDFALHC prescription [63] with the MSTW2008 NNLO [56, 64], CT10
NNLO [65, 66] and NNPDF2.3 5f FEN [67] PDF sets, and were added in quadrature to
the uncertainty due to the choice of renormalisation and factorisation scale. The approxi-
mate NNLO-+NNLL cross-section is used for the normalisation of the Wt [68] sample. The
cross-sections calculated at NLO are used for the diboson [69], t{W and ttZ [70] samples.

The data sample used was recorded between March and December 2012 with the LHC
operating at a pp centre-of-mass energy of /s = 8TeV. Data were collected based on
the decision of a three-level trigger system. The events accepted passed either a single-
electron, a single-muon, a double-electron, a double-muon, or an electron-muon trigger.
The trigger efficiencies are approximately 99%, 96% and 91% for the events passing the
full ee, ey and pp selections described below, respectively. After beam, detector and data-
quality requirements, data corresponding to a total integrated luminosity of 20.3 fb~! were
analysed [71].

4 Physics object selection

Multiple vertex candidates from the proton-proton interaction are reconstructed using the
tracks in the inner detector. The vertex with the highest scalar sum of the transverse
momentum squared, Ep%, of the associated tracks is defined as the primary vertex.

Jets are reconstructed from three-dimensional energy clusters [72] in the calorimeter
using the anti-k; jet clustering algorithm [73, 74] with a radius parameter of 0.4. The
cluster energy is corrected using calibration factors based on MC simulation and validated
with extensive test-beam and collision-data studies [75], in order to take into account
effects such as non-compensation and inhomogeneities, the presence of dead material and
out-of-cluster energy deposits. Corrections for converting to the jet energy scale and for
in-time and out-of-time pile-up are also applied, as described in ref. [76]. Jet candidates
with transverse momentum (pr) greater than 20 GeV, |n| < 2.5 and a “jet vertex fraction”
larger than 0.5 for those with pr < 50 GeV, are selected as jets in the analysis. The
jet vertex fraction quantifies the fraction of the total jet momentum of the event that
originates from the reconstructed primary vertex. This requirement rejects jets originating
from additional proton-proton interactions. Events containing jets that are likely to have
arisen from detector noise or cosmic rays are also removed using the procedures described
in ref. [77].

A neural-network-based algorithm is used to identify which of the selected jet can-
didates contain a b-hadron decay (b-jets). The inputs to this algorithm are the impact
parameter of inner detector tracks, secondary vertex reconstruction and the topology of b-
and c-hadron decays inside a jet [78]. The efficiency for tagging b-jets in an MC sample



of tt events using this algorithm is 70% with rejection factors of 137 and 5 against light
quarks and c-quarks, respectively. To compensate for differences between the b-tagging
efficiencies and mis-tag rates in data and MC simulation, correction factors derived using
tt events are applied to the jets in the simulation as described in ref. [79].

Electron candidates are required to have pr > 10 GeV, |n| < 2.47 and to satisfy
“medium” electromagnetic shower shape and track selection quality criteria [80]. These
are defined as preselected electrons. Signal electrons are then required to satisfy “tight”
quality criteria [80]. They are also required to be isolated within the tracking volume: the
scalar sum, Ypr, of the pr of inner detector tracks with pr > 1 GeV, not including the
electron track, within a cone of radius AR = /(An)? + (A¢)? = 0.2 around the electron
candidate must be less than 10% of the electron pr, where An and A¢ are the separations
in  and ¢.

Muon candidates are reconstructed either from muon segments matched to inner de-
tector tracks, or from combined tracks in the inner detector and muon spectrometer [81].
They are required to have pp > 10GeV and |n| < 2.4. Their longitudinal and transverse
impact parameters must be within 1 mm and 0.2 mm of the primary vertex, respectively.
Such preselected candidates are then required to have Yp1 < 1.8 GeV, where Xpr is defined
in analogy to the electron case. Event-level weights are applied to MC events to correct for
differing lepton reconstruction and identification efficiencies between the simulation and
those measured in data.

Ambiguities exist in the reconstruction of electrons and jets as they use the same
calorimeter energy clusters as input: thus any jet whose axis lies within AR = 0.2 of a
preselected electron is discarded. Moreover, preselected electrons or muons within AR =
0.4 of any remaining jets are rejected to discard leptons from the decay of a b- or ¢c-hadron.

E%’iss is defined as the magnitude of the two-vector p%liss obtained from the negative
vector sum of the transverse momenta of all reconstructed electrons, jets and muons, and
calorimeter energy clusters not associated with any objects. Clusters associated with elec-
trons with pp > 10 GeV, and those associated with jets with pr > 20 GeV make use of the
electron and jet calibrations of these respective objects. For jets the calibration includes
the pile-up correction described above whilst the jet vertex fraction requirement is not
applied. Clusters of calorimeter cells with |n| < 2.5 not associated with these objects are
calibrated using both calorimeter and tracker information [82].

5 Event selection

5.1 Preselection and event variables

A common set of preselection requirements, and some discriminating variables are shared
by the three analysis strategies. The following event-level variables are defined, and their
use in the various analyses is detailed in sections 5.2, 5.3 and 5.4:

— myye: the invariant mass of the two oppositely charged leptons.

— mmg9 and mlff;jet: lepton-based and jet-based stransverse mass. The stransverse mass
[83, 84] is a kinematic variable that can be used to measure the masses of pair-



produced semi-invisibly decaying heavy particles. This quantity is defined as

mr2(PT,1, PT,2, dT) = qT71£iTI}2:qT {max[ mr(pr,1,91,1), m1(PT,2,971,2) |},

where m indicates the transverse mass,’ pt,1 and pr 2 are the transverse momentum
vectors of two particles (assumed to be massless), and qr,; and gt are vectors and
qr = qr,1 +9T,2. The minimisation is performed over all the possible decompositions
of qr. For tt or WW decays, if the transverse momenta of the two leptons in each
event are taken as pt 1 and pr,2, and Er’f}iss as qr, mra(4, 4, E%liss) is bounded sharply
from above by the mass of the W boson [85, 86]. In the {; — b+ )Zf[ decay mode
the upper bound is strongly correlated with the mass difference between the chargino
and the lightest neutralino. If the transverse momenta of the two reconstructed b-
quarks in the event are taken as pr,; and prt 2, and the lepton transverse momenta
are added vectorially to the missing transverse momentum in the event to form qr,
the resulting mra(b, b, {4 (+ E%) has a very different kinematic limit: for top-quark
pair production it is approximately bound by the mass of the top quark, whilst for
top-squark decays the bound is strongly correlated to the mass difference between
the top squark and the chargino. In this paper, mra (¢, £, E2) is referred to simply
as mrg, whilst mro(b, b, £+ £ + E%liss) is referred to as m?rgjet. The mass of the qr is
always set to zero in the calculation of these stransverse variables.

— A¢;: the azimuthal angular distance between the p%liss vector and the direction of

the closest jet.

— Agy: the azimuthal angular distance between the p%ﬁss vector and the direction of

the highest-pt lepton.

miss

— Ag¢p and préb: the azimuthal angular distance between the p7'™ vector and the
pf, = puiss 4 pf}l + pfl? vector.’
opposite of the vector sum of all the transverse hadronic activity in the event.

The pgréb variable, with magnitude pgréb, is the

— Meg: the scalar sum of the Effniss, the transverse momenta of the two leptons and
that of the two jets with the largest pt in each event.

— Ad¢y (Aby): the azimuthal (polar) angular distance between the two leptons.

— Agjy: the azimuthal angular distance between the highest-pr jet and lepton.

”

The three different analyses are referred to in this paper as the “leptonic mrs”, “hadronic

”

mre” and “multivariate analysis (MVA)”, respectively. The first two are so named as
they use, in the first case, mTo, and in the second case, mf’r_QJet, as the key discriminating

The transverse mass is defined by the equation mt = \/2|pr,1|[pT,2|(1 — cos(A¢)), where A¢ is the
angle between the particles with transverse momenta pr,; and pr2 in the plane perpendicular to the
beam axis.

SNote that the b in p4f, (and consequently A¢p) does not bear any relation to b-jet. In ref. [87] it was
so named to indicate that it represents the transverse momentum of boosted objects.



variable. The mrgy selection is used to ensure orthogonality between these two analyses,
allowing for their results to be combined. The third uses an MVA technique and targets
the on-shell top #; — ¢ + X! decay.

In all cases, events are required to have exactly two oppositely charged signal leptons
(electrons, muons or one of each). At least one of these electrons or muons must have
pr > 25 GeV, in order for the event to be triggered with high efficiency, and my, > 20 GeV
(regardless of the flavours of the leptons in the pair), in order to remove leptons from
low mass resonances.” If the event contains a third preselected electron or muon, the
event is rejected. This has a negligible impact on signal acceptance, whilst simplifying
the estimate of the fake and non-prompt lepton background (defined in section 6.2) and
reducing diboson backgrounds.

All three analyses consider events with both different-flavour (DF) and same-flavour
(SF) lepton pairs. These two event populations are separately used to train the MVA
decision® and are explicitly separated when defining the signal regions (SRs). The decay
t1 — b—l—)ﬁc is symmetric in flavour and the Z/~* background is small, hence the populations
are therefore not separated in the hadronic and leptonic mry analyses. All three analyses
exploit the differences between the DF and SF populations when evaluating and validating
background estimates.

5.2 Leptonic mTs selection

After applying the preselection described in section 5.1, events with SF leptons are required
to have the invariant mass of the lepton pairs outside the 71-111 GeV range. This is done
in order to reduce the number of background events containing two leptons produced by
the decay of a Z boson. Two additional selections are applied to reduce the number of
background events with high mrs arising from events with large Effniss due to mismeasured
jets: Agyp < 1.5 and A¢; > 1. After these selections the background is dominated by ¢t
events for DF lepton pairs and Z/~*+jets for SF lepton pairs. The mry distribution for
Z |v*+jets is, however, steeply falling and by requiring mry > 40 GeV the ¢ becomes the
dominant background in the SF sample as well.

The leptonic mrs selection has been optimised to target models with Am()}f, 5((1)) >
m(W) (figure 1 (a)). The jet pr spectrum is exploited in order to provide sensitivity to
models with varying jet multiplicity. Four non-exclusive SRs are defined, with different
selections on mT9 and on the transverse momentum of the two leading jets, as reported in
table 1. The SRs L90 and L120 require mTo > 90 GeV and mrs > 120 GeV, respectively,
with no additional requirement on jets. They provide sensitivity to scenarios with a small
Am(ty,XE) (almost degenerate top squark and chargino), where the production of high-pr
jets is not expected. The SR L100 has a tight jet selection, requiring at least two jets
with pt > 100 GeV and pt > 50 GeV, respectively, and mro > 100 GeV. This SR provides

"The mee requirement also resolves overlap ambiguities between electron and muon candidates by im-
plicitly removing events with close-by electrons and muons.

8MVA uses events which are known to belong to signal or background to determine the mapping function
from which it is possible to subsequently classify any given event into one of these two categories. This
“learning” phase is usually called “training”.



SR L90 L100 L110 L120
leading lepton pr [GeV] > 25

A¢; [rad] > 1.0

Agy, [rad] <15

mr2 [GeV] >90 >100 >110 > 120
Leading jet pp [GeV] — > 100 > 20 —
Second jet pr [GeV] — > 50 > 20 —
Am(ty, XT) small large moderate small
Am(XE, XY) moderate large moderate large

Table 1. Signal regions used in the leptonic myo analysis. The last two rows give the relative
sizes of the mass splittings that the SRs are sensitive to: small (almost degenerate), moderate (up
to around the W boson mass) or large (bigger than the W boson mass).

sensitivity to scenarios with both large Am(fy, Xi) and Am()ﬁc,f((l)), where large means
bigger than the W boson mass. SR L110 has a looser selection on jets, requiring two jets
with pp > 20 GeV each and mTo > 110 GeV. It provides sensitivity to scenarios with small
to moderate (up to around the W boson mass) values of Am/(ty, )Zic) resulting in moderate
jet activity.

5.3 Hadronic mrs selection

In contrast to the leptonic mro selection, the hadronic mrsy selection is designed to be
sensitive to the models with chargino-neutralino mass differences smaller than the W mass
(figure 1 (b)). In addition to the preselection described in section 5.1, events in the SR
(indicated as H160) are required to satisfy the requirements given in table 2. The require-
ment of two b-jets favours signal over background; the targeted signal events have in general
higher-pr b-jets as a result of a large Am(f1, XT) (figure 1 (b)). The tf background is then
further reduced by the m%jet requirement, which preferentially selects signal models with
large Am(ty, )ﬁc) over the SM background. The requirement on leading lepton pr has little
impact on the signal, but reduces the remaining Z/v*-+jets background to a negligible level.

5.4 Multivariate analysis

In this analysis, ; — ¢+ signal events are separated from SM backgrounds using an MVA
technique based on boosted decision trees (BDT) that uses a gradient-boosting algorithm
(BDTG) [88]. In addition to the preselection described in section 5.1, events are required
to have at least two jets, a leading jet with pr > 50 GeV and meg > 300 GeV. The selected
events are first divided into four (non-exclusive) categories, with the requirements in each
category designed to target different £; and X? masses:

— (C1) E®ss > 50 GeV: provides good sensitivity for m(¢;) in the range 200-500 GeV
and for low neutralino masses;



SR H160

b-jets =2

Leading lepton pr [GeV] | < 60
mre [GeV] <90
mb 3 [GeV] > 160
Am(ty, ﬁc) large
Am(XE, XY) small

Table 2. Signal region used in the hadronic mro analysis. The last two rows give the relative
sizes of the mass splittings that the SR is sensitive to: small (almost degenerate), moderate (up to
around the W boson mass) or large (bigger than the W boson mass).

— (C2) EXiss > 80 GeV: provides good sensitivity along the m(t;) = m(t) + m(x?)
boundarys;

— (C3) ERmiss > 50 GeV and leading lepton pp > 50 GeV: provides good sensitivity for
m(ty) in the range 400-500 GeV, and m(t;) > 500 GeV for high neutralino masses;

— (C4) E%liss > 50 GeV and leading lepton pt > 80 GeV: provides good sensitivity for
m(t;) > 500 GeV.

Events are then further divided into those containing an SF lepton pair and those containing
a DF lepton pair. Categories (C1), (C2) and (C4) are considered for DF events, and
categories (C1) and (C3) for SF events.

A BDTG discriminant is employed to further optimise the five subcategories (three
for DF, two for SF) described above. The following variables are given as input to the
BDTG: Er}niss, Mg, mr2, Aper, Ay, Agp and Agjp. These variables are well modelled by
the simulation and are effective in discriminating ¢ + ¥ signal from SM background; the
distributions in data and MC simulation for the four “best ranked” (their correlation with
the BDTG ranges from ~ 80% to ~ 95%) input variables for the SF and DF channels after
C1 cuts are shown in figures 2 and 3, respectively. In each of the sub-figures, the uncertainty
band represents the total uncertainty, from all statistical and systematic uncertainty sources
(section 7). The correlation coefficient between each pair of variables is found to be in good
agreement (within 1-2%) between data and MC.

Several BDTGs are trained using the simulated SM background against one or more
representative signal samples, chosen appropriately for each of the five subcategories. The
BDTG training parameters are chosen to best discriminate signal events from the back-
ground, without being overtrained (MC sub-samples, which are statistically independent
to the training sample, are used to check that the results are reproducible). The resulting
discriminants are bound between —1 and 1. The value of the cut on each of these discrim-
inants is chosen to maximise sensitivity to the signal points considered, with the possible
values of the BDTG threshold scanned in steps of 0.01. A total of nine BDTGs (five for
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Figure 2. The four best ranked input variables for the MVA analysis. SF channel: mro,
Emiss, Ag¢je and mye after C1 cuts (Emiss > 50 GeV). The contributions from all SM backgrounds
are shown as a histogram stack; the bands represent the total uncertainty from statistical and
systematic sources. The components labelled “Reducible” correspond to the fake and non-prompt
lepton backgrounds and are estimated from data as described in section 6.2; the other backgrounds
are estimated from MC simulation.

DF events, four for SF events) and BDTG requirements are defined, setting the SRs. They
are summarised in table 3.

6 Standard Model background determination

All backgrounds containing prompt leptons from W, Z or H decay are estimated directly
from MC simulation. The dominant backgrounds (top-quark pair production for all anal-
yses, and diboson and Wt single-top production for the leptonic mTo and hadronic mro
analyses respectively) are normalised to data in dedicated CRs, and then extrapolated to
the SRs using the MC simulation (with a likelihood fit as described in section 6.1). Whilst
it is not a dominant background, Z/~*+jets is also normalised in a dedicated CR in the
hadronic mrs analysis. All other such contributions are normalised to their theoretical
cross-sections.

The backgrounds due to non-prompt leptons (from heavy-flavour decays or photon
conversions) or jets misidentified as leptons are estimated using a data-driven technique.
Events with these types of lepton are referred to as “fake and non-prompt” lepton events.
The estimation procedure is common to all three analyses and is described in section 6.2.
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Figure 3. The four best ranked input variables for the MVA analysis. DF channel: mro,
Emiss A¢je and Ay, after C1 cuts. The contributions from all SM backgrounds are shown as a
histogram stack; the bands represent the total uncertainty from statistical and systematic sources.
The components labelled “Reducible” correspond to the fake and non-prompt lepton backgrounds
and are estimated from data as described in section 6.2; the other backgrounds are estimated from
MC simulation.

6.1 Background fit

The observed numbers of events in the CRs are used to derive SM background estimates in
each SR via a profile likelihood fit [89]. This procedure takes into account the correlations
across the CRs due to common systematic uncertainties and the cross-contamination in
each CR from other SM processes. The fit takes as input, for each SR:

1. The number of events observed in each CR and the corresponding number of events
predicted in each by the MC simulation for each (non-fake, prompt) background

source.

2. The number of events predicted by the MC simulation for each (non-fake, prompt)
background source.

3. The number of fake and non-prompt lepton events in each region (CRs and SR)
obtained with the data-driven technique (see section 6.2).

Each uncertainty source, as detailed in section 7, is treated as a nuisance parameter in
the fit, constrained with a Gaussian function taking into account the correlations between
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SR Training Sample [GeV] Category BDTG range
(m(t1), m(x7))
M1P¥F (225,0) 1 (ERss > 50 GeV) > —0.13
M2PF (250,25) (Emlbb > 50GeV) > —0.18
M3PF (300,50) 1 (Ewiss > 50 GeV) > 0.19
M4PF (350,170) ( miss > 80 GeV) > —0.65
M5PF (550,0) C4 (ERss > 50 GeV, > —0.33
leading lepton pp > 80 GeV)
M15F (225,25) C1 (Emiss > 50 GeV) > —0.66
M25F (300,50) C1 (Ems > 50 GeV) > —0.11
M35F (300,100) Cl1 (Exs > 50 GeV) > —0.77
M45F (500,250) C3 (ERss > 50 GeV, > —0.76
leading lepton pr > 50 GeV)

Table 3. Signal regions for the MVA analysis. The first column gives the name of each SR,
where DF and SF indicate different and same flavours, respectively. The second column gives the
signal sample used to train the BDTG. The third column lists the selection requirements applied in
addition to the BDTG requirement given in the fourth column and the common SR requirements:
> 2 jets, leading jet pr > 50 GeV, meg > 300 GeV.

sample estimates. The likelihood function is the product of Poisson probability functions
describing the observed and expected number of events in the control regions and the
Gaussian constraints on the nuisance parameters. For each analysis, and each SR, the free
parameters of the fit are the overall normalisations of the CR-constrained backgrounds: tt,
WW and (WZ,ZZ) for the leptonic mrye analysis; tt, Wt and Z/v*+jets for the hadronic
mre analysis and ¢¢ for the MVA analysis. The contributions from all other non-constrained
prompt-lepton processes are set to the MC expectation, but are allowed to vary within
their respective uncertainties. The contribution from fake and non-prompt lepton events
is also set to its estimated yield and allowed to vary within its uncertainty. The fitting
procedure maximises this likelihood by adjusting the free parameters; the fit constrains
only the background normalisations, while the systematic uncertainties are left unchanged
(i.e. the nuisance parameters always have a central value very close to zero with an error
close to one). Background fit results are cross-checked in validation regions (VRs) located
between, and orthogonal to, the control and signal regions. Sections 6.3 to 6.5 describe
the CR defined for each analysis and, in addition, any VRs defined to cross-check the
background fit results.

6.2 Fake and non-prompt lepton background estimation

The fake and non-prompt lepton background arises from semi-leptonic ¢, s-channel and
t-channel single-top, W+jets and light- and heavy-flavour jet production. The main con-
tributing source in a given region depends on the topology of the events: low-mrTo regions
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are expected to be dominated by the multijet background, while regions with moder-
ate/high mro are expected to be dominated by the W+jets and t¢ production. The fake
and non-prompt lepton background rate is estimated for each analysis from data using a
matrix method estimation, similar to that described in refs. [90, 91]. In order to use the
matrix method, two types of lepton identification criteria are defined: tight, corresponding
to the full set of identification criteria described above, and loose, corresponding to prese-
lected electrons and muons. The number of events containing fake leptons in each region
is obtained by acting on a vector of observed (loose, tight) counts with a 4 x 4 matrix
with terms containing probabilities (f and r) that relate real-real, real-fake, fake-real and
fake-fake lepton event counts to tight-tight, tight-loose, loose-tight and loose-loose counts.

The two probabilities used in the prediction are defined as follows: r is the probability
for real leptons satisfying the loose selection criteria to also pass the tight selection and f is
the equivalent probability for fake and non-prompt leptons. The probability r is measured
using a Z — (0({ = e, u) sample, while the probability f is measured from two background-
enriched control samples. The first of these requires exactly one lepton with pt > 25 GeV,
at least one jet, Efrniss < 25GeV, and an angular distance AR < 0.5 between the leading
jet and the lepton, in order to enhance the contribution from the multijet background. The
probability is parameterised as a function of the lepton n and pr and the number of jets.
For leptons with pr < 25GeV, in order to avoid trigger biases, a second control sample
which selects events containing a same-charge DF' lepton pair is used. The probability f is
parameterised as a function of lepton pr and 7, the number of jets, meg and mro. The last
two variables help to isolate the contributions expected to dominate from multijet, W +jets
or tt productions. In both control samples, the probability is parameterised by the number
of b-jets when a b-jet is explicitly required in the event selection (i.e. in the hadronic mrs),
in order to enhance the contribution from heavy-flavour jet production.

Many sources of systematic uncertainty are considered when evaluating this back-
ground. Like the probabilities themselves, the systematic uncertainties are also parame-
terised as a function of the lepton and event variables discussed above. The parameterised
uncertainties are in general dominated by differences in the measurement of the fake lep-
ton probabilities obtained when using the two control regions above. The limited number
of events in the CR used to measure the probabilities are also considered as a source of
systematic uncertainty. The overall systematic uncertainty ranges between 10% and 50%
across the various regions (control, validation and signal). Ultimately, in SRs with very
low predicted event yields the overall uncertainty on the fake and non-prompt lepton back-
ground yield is dominated by the statistical uncertainty arising from the limited number of
data events in the SRs, which reaches 60-80% in the less populated SRs. In these regions,
however, the contributions from fake and non-prompt lepton events are small or negligible.

The predictions obtained using this method are validated in events with same-charge
lepton pairs. As an example, figure 4 shows the distribution of meg and mrs in events
with a same-charge lepton pair after the preselection described in section 5.1, prior to any
additional selection.
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Figure 4. Distributions of meg (top) and mre (bottom), for SF (left) and DF (right) same-
charge lepton pairs, after the preselection requirements described in section 5.1. The components
labelled “Reducible” correspond to the fake and non-prompt lepton backgrounds and are estimated
from data as described in section 6.2. The other SM backgrounds processes which are expected
to contribute events with two real leptons are shown and are estimated from MC simulation. The
reconstructed leptons are required to match with a generator-level lepton in order to avoid any
double counting of the total fake and non-prompt lepton contribution. The bands represent the
total uncertainty.

6.3 Leptonic mt2 analysis

The dominant SM background contributions in the SRs are tt and WW decays. Other
diboson processes also expected to contribute significantly are: WZ in its 3-lepton decay
mode and ZZ decaying to two leptons and two neutrinos. A single dedicated CR is defined
for each of these backgrounds (CRXy,, where X=T,W,Z for the t¢{, WV and other diboson
productions respectively). Predictions in all SRs make use of the three common CRs. This
choice was optimised considering the background purity and the available sample size.

The validity of the combined background estimate is tested using a set of four validation
regions (VRY, where X describes the specific selection under validation). The definitions
of the CRs and VRs are given in table 4. The validity of the tf background prediction for
different jet selections is checked in VRiO0 and VR}}O.
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Selection Variable CRT. CRW; CRZ. VRPF VREF VR{®  VR{%
Flavour DF DF SF DF SF DF DF

me [GeV] — — 71-111 — < 7lor>111 — —

mr2 [GeV] 40-80  40-80 > 90 80-90 80-90 40-80  40-80
Py [GeV] > 30 <15 — — — >30 >30
A¢; [rad] >10 >1.0 >10 >1.0 > 1.0 >1.0 >1.0
Ay [rad] <1l5 <15 <15 <15 <15 <15 <15
Leading jet pr [GeV] — — — — — >20 > 100
Second leading jet pr [GeV] — — — — — > 20 > 50

Table 4. Definitions of the CRs and VRs in the leptonic mro analysis: CRTY, (used to constrain
tt), CRWy, (used to constrain WW), CRZy, (used to constrain WZ and ZZ), VRPY (validation
region for DF), VRPF (validation region for SF), VR#!? (validation region for L110 jet requirements)
and VRI% (validation region for L100 jet requirements).

Additional SM processes yielding two isolated leptons and large E%ﬁss (Higgs, Wt,
Z/y* — ll+jets and ttV) and providing a sub-dominant contribution to the SRs are
determined from MC simulation. The fake and non-prompt lepton background is a small
contribution (less than 10% of the total background). The composition before and after
the likelihood fit is given in table 5 for the CRs and table 6 for the VRs. In these (and all
subsequent) composition tables the quoted uncertainty includes all the sources of statistical
and systematic uncertainty considered (see section 7.). The purity of the CRs is improved
by exploiting flavour information and selecting either DF or SF pairs depending on the
process being considered. The normalisation factors derived are, however, applied to all
the events in a given process (both DF and SF). Checks were performed to demonstrate that
the normalisation factors are not flavour-dependent. Good agreement is found between data
and the SM prediction before and after the fit, leading to normalisation factors compatible
with unity. The normalisations of the ¢tt, WW and W Z, ZZ backgrounds as obtained from
the fit are 0.91 £+ 0.07, 1.27 +0.24 and 0.85 4 0.16 respectively.

The number of expected signal events in the CRs was investigated for each signal
model considered. The signal contamination in CRTf, and CRWy, is negligible, with the
exception of signal models with top squark masses close to the top-quark mass. In this case,
the signal contamination can be as high as 20% in CRTy, and up to 100% in CRWp,. The
signal contamination in CRZ, is typically less than 10%, with a few exceptions; for signal
models with top-squark masses below 250 GeV, the contamination is closer to 30%, and
for signal models with small Am(iy, )Zli) the signal contamination is as high as 100%. The
same CRs can be kept also for these signal models, despite the high signal contamination,
since the expected yields in the SRs would be large enough for these signal models to be
excluded even in the hypothesis of null expected background. The signal contamination
in the VRs can be up to ~ 100% for signal models with top-quark-like kinematics and
becomes negligible when considering models with increasing top-squark masses.

Figure 5 (top) shows the pfféb distribution for DF events with 40 < mps < 80GeV,
A¢ > 1.0 and A¢p < 1.5. The range pgffb < 15GeV corresponds to the CRWy, while the
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Channel CRTy, CRW, CRZL,
Observed events 12158 913 174
Total (constrained) bkg events 12158 + 110 913 + 30 174 £13
Fit output, ¢t events 8600 £ 400 136 + 24 27T+6
Fit output, WW events 1600 % 400 630 + 50 14+4
Fit output, WZ, ZZ events 64+ 14 14+5 1124+ 19
Total expected bkg events 12700 &+ 700 800 £ 90 190 + 20
Fit input, expected tf events 9500 £ 600 150 £ 25 307
Fit input, expected WW events 1260 + 110 490 £ 80 10.7 £ 2.5
Fit input, expected WZ, ZZ events 76 £+ 12 17+4 132+ 11
Expected Z/v* — ¢l events 9ts! 1.51%2 19£8
Expected tt V events 10.8+3.4 0.08+0.04 0.64+0.21
Expected Wt events 1070 + 90 35+7 1.6t1.1
Expected Higgs boson events 67+ 21 20£6 0.08£0.04
Expected events with fake and non-prompt leptons 740 + 90 81+ 16 - -

Table 5. Background fit results for the three CRs in the leptonic mrs analysis. The nominal ex-
pectations from MC simulation are given for comparison for those backgrounds (¢t, WW, WZ and
ZZ) which are normalised to data. Combined statistical and systematic uncertainties are given.
Events with fake or non-prompt leptons are estimated with the data-driven technique described
in section 6.2. The observed events and the total (constrained) background are the same by con-
struction. Entries marked - - indicate a negligible background contribution. Uncertainties on the
predicted background event yields are quoted as symmetric except where the negative error reaches
down to zero predicted events, in which case the negative error is truncated.

Channel VRS VRPF VR{10 VR]%
Observed events 494 622 8162 1370
Total bkg events 500 + 40 620 £ 50 7800 +400 1390+ 110
Fit output, ¢t events 338 £ 19 430 £29 6800400 12304+ 110
Fit output, WW events 97 £ 22 121 £ 27 290 £+ 70 38+15
Fit output, WZ, ZZ events 58+ 1.1 22+1.4 135432 1.5+1.2
Expected Z/v* — ¢¢ events 4151 -- 31'? lﬂ
Expected tt V events 0.48+£0.18 0.80+0.27 10.1+3.1 41+1.3
Expected Wt events 39+8 60 £+ 10 430 £ 50 62+8
Expected Higgs boson events 0.39£0.16 0.55+0.20 14+4 1.7+0.6
Expected events with fake and non-prompt leptons  10.5 £ 3.5 13+4 275 £33 45+ 7

Table 6. Background fit results for the four VRs in the leptonic myo analysis. Combined statistical
and systematic uncertainties are given. Events with fake or non-prompt leptons are estimated with
the data-driven technique described in section 6.2. The observed events and the total (constrained)
background are the same in the CRs by construction; this is not the case for the VRs, where the
consistency between these event yields is the test of the background model. Entries marked - -
indicate a negligible background contribution. Uncertainties on the predicted background event
yields are quoted as symmetric except where the negative error reaches down to zero predicted
events, in which case the negative error is truncated.
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Figure 5. Top: distribution of pfflb for DF events with 40 < mto < 80 GeV, Ag¢; > 1.0 rad and
Ag¢p < 1.5 rad. Bottom: distribution of mro for SF events with a dilepton invariant mass in the
71-111 GeV range, A¢p > 1.0 rad and A¢, < 1.5 rad. The contributions from all SM backgrounds
are shown as a histogram stack; the bands represent the total uncertainty. The components labelled
“Reducible” correspond to the fake and non-prompt lepton backgrounds and are estimated from
data as described in section 6.2; the other backgrounds are estimated from MC simulation. The
expected distribution for two signal models is also shown. The full line corresponds to a model
with m(f;) = 150 GeV, m(xi) = 120GeV and m(x}) = 1 GeV; the dashed line to a model with
m(t;) = 400 GeV, m(x) = 250 GeV and m(x}) = 1 GeV.

events with pf}éb > 30 GeV are those entering in CRTy,. Figure 5 (bottom) shows the mro
distribution for SF events with A¢ > 1.0 and A¢, < 1.5 and myy within 20 GeV of the Z
boson mass. The events with mrg > 90 GeV in this figure are those entering CRZy,.
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Selection Variable CRTy CRZyg VRTy
Flavour any SF any
b-jets =1 =2 =2
leading lepton pp [GeV] < 60 > 60 > 60

mye (SF events only) [GeV] —  81-101 < 8lor>101
mr2 [GeV] <9 <90 <90

mb 1 [GeV] > 160 > 160 > 160

Table 7. Definitions of the CRs and VR in the hadronic ms analysis: CRTy (used to constrain ¢
and Wt), CRZy (used to constrain Z/~v*+jets decays to ee and pu) and VRTy (validation region
for ¢t and Wt).

6.4 Hadronic mrs analysis

Top-quark pair and single-top (W¢-Channel) production contribute significantly to the
background event yields in the SR for this analysis. Simulation shows that 49% of back-
ground events in the SR are from top-quark pair production and 37% are from Wt. The
next most significant SM background contributions are those arising from fake or non-
prompt leptons. The remainder of the background is composed of Z/v*+jets and WW
events. The contributions from other diboson (WZ and ZZ), ttV and Higgs processes are
negligible, and are estimated using the MC simulation.

The CRs are defined for the combined ¢t and Wt process, and Z/~v*(— ee, puu)+jets
backgrounds (the Z/~*(— 77)4+jets contribution is fixed at the MC expectation). The
contribution from Wt in the SR is dominated by its NLO contributions (which can be in-
terpreted as top-pair production, followed by decay of one of the top-quarks). These CRs
are referred to as CRXpy, where X=T,Z for the (tt, Wt) and Z/v*(— ee, pp)+jet back-
grounds respectively. The validity of the combined estimate of the Wt and ¢t backgrounds
is tested using a validation region for the top-quark background (VRTy). The definitions
of these regions are given in table 7, and their composition before and after the likelihood
fit described in section 6.1 is given in table 8. Good agreement is found between data
and SM prediction before and after the fit, leading to normalisations consistent with one:
0.93 £ 0.32 for the (¢t,Wt) and 1.5 4 0.5 for the Z/~*+jets backgrounds.

The signal contamination in CRZy is negligible, whilst in CRTy it is of order 10%
(16%) for models with a 300 GeV top squark and a 150 GeV (100 GeV) chargino, for neu-
tralino masses below 100 GeV, which the region where H160 is sensitive. The signal con-
tamination in VRTy is much higher (~ 30%) in the same mass-space.

Figure 6 shows the m?r_Qjet distribution for events with one b-jet (using the highest pr
jet which is not a b-jet with the single b-jet in the calculation of m%}jet), mre < 90 GeV
and leading lepton pt < 60 GeV. The events with mt{iget > 160 GeV in the figure are those
entering CRTy. The data are in agreement with the background expectation across the

distribution.
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Channel CRTy CRZy VRTH
Observed events 315 156 112
Total (constrained) bkg events 315+ 18 156 + 13 110 + 50
Fit output, tf, Wt events 256 £+ 27 4+4 70 £ 40
Fit output, Z/v* — ee, pu+jets events 0.9:1):%, 147+ 13 20£8
Total expected bkg events 335£90 110 + 36 110 + 60
Fit input, expected tt, Wt events 280 4+ 90 5+5 80 £ 60
Fit input, expected Z/v* — ee, pu+jets events 0.61‘8:2 100 £ 34 13.8£24
Expected WW events 373 0.077057 143
Expected ttV events 23+£08 1.5+0.5 23£0.7
Expected WZ, ZZ events 0.40+0.16  0.067932  0.107915
Expected Z/v* — 77+jets events 23+17 0.14+£0.09 2.154+0.28
Expected events with fake and non-prompt leptons  29.4+1.7 0.36 £ 0.24 12.8£1.2
Expected Higgs boson events 0.35+0.05 2.06=+0.30 0.50+£0.06

Table 8. Background fit results for the two CRs and VR region in the hadronic mry analysis. The
nominal expectations from MC simulation are given for comparison for those backgrounds (¢, Wt
and Z/v*(— ee, u™ " )+jets production) which are normalised to data. Combined statistical and
systematic uncertainties are given. Events with fake or non-prompt leptons are estimated with the
data-driven technique described in section 6.2. The observed events and the total (constrained)
background are the same in the CRs by construction; this is not the case for the VR, where the
consistency between these event yields is the test of the background model. Uncertainties on the
predicted background event yields are quoted as symmetric except where the negative error reaches
down to zero predicted events, in which case the negative error is truncated.

6.5 Multivariate analysis

In this analysis, the dominant SM background processes are top-quark pair production
and diboson production. The Z/~v*+jets contribution, relevant only for the SF channel,
is strongly suppressed by the BDTG requirement. The CRs are defined for ¢t (table 9) in
regions mutually exclusive to the SRs, using BDTG intervals much more populated with
tt events, while all other SM background with two isolated leptons are small and evaluated
using MC simulation. The fake and non-prompt lepton background is estimated using
the method described in section 6.2. In addition to the application of all non-BDTG SR
cuts, the following selections are applied in the CRs: mTo > 90 GeV and, in SF events, myy
which must be less than 61 GeV or greater than 121 GeV. The composition before and after
the likelihood fit is given in tables 10 and 11 for the DF and SF CRs, respectively. The
corresponding CR for the DF (SF) SR labelled N is denoted CRT?E\I(SF). The normalisation
factors derived in each CR for ¢t are consistent within one standard deviation (1) of the
normalisation factor derived for ¢ in the leptonic-mTo analysis.

Figure 7 shows the BDTG distributions for data and MC simulation in CRTYj and
CRTSE,. The data are in agreement with the background expectations. The expected
distribution for the signal point which was used to train the corresponding SR is also
shown on each plot m(t), m(x?) = (300, 50) GeV.
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Figure 6. Distribution of m/,** for events with 1 b-jet and all other CRTy cuts, except that
on mbT;jet itself. The contributions from all SM backgrounds are shown as a histogram stack; the
bands represent the total uncertainty. The component labelled “Reducible” corresponds to the fake
and non-prompt lepton background and is estimated from data as described in section 6.2; the
other backgrounds are estimated from MC samples normalised to the luminosity of the data and
their respective cross-sections. The expected distribution for three signal models is also shown. The
dotted line corresponds to a model with m(f;) = 300 GeV, m(X5) = 150 GeV and m(x?) = 100 GeV;
the full line corresponds to a model with m(f;) = 300 GeV, m(xT) = 100 GeV and m(x?) = 50 GeV;
the dashed line to a model with m(#;) = 300 GeV, m(x7) = 100 GeV and m(x?) = 1 GeV. The last
bin includes the histogram overflow.

Control Region Event Variable Selection [GeV] BDTG range
CRTYY C1, mrge > 90 [—1.00, —0.20]
CRTYS C1, mre > 90 [—1.00, —0.30]
CRTYE C1, mre > 90 [—1.00, 0.00]
CRTYE C2, mTe > 90 [—1.00, —0.70]
CRTYE C4, mro > 90 [—1.00, —0.50]
CRTSE C1, mry > 90, my < 61 or myy > 121 [—0.85, —0.75]
CRTSE, C1, mpo > 90, mg < 61 or mg > 121 [—0.85, —0.20]
CRTSE, C1, mry > 90, my < 61 or myy > 121 [—0.95, —0.80]
CRTYY, C3, mry > 90, mg < 61 or mgy > 121 [—0.98, —0.78]

Table 9. Definitions of the CRs for the MVA analysis: the name of each CR is given in the first
column and these have a one-to-one correspondence with the equivalently named SR. The middle
column lists all selection cuts made, whilst the final column gives the BDTG range.
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Figure 7. BDTG distributions of data and MC events in control regions CRTL (top) and CRTS,
(bottom). The contributions from all SM backgrounds are shown as a histogram stack. The
bands represent the total uncertainty. The components labelled “Reducible” correspond to the fake
and non-prompt lepton backgrounds and are estimated from data as described in section 6.2; the
remaining backgrounds are estimated from MC samples normalised to the luminosity of the data.
The expected distribution for the signal point which was used to train the corresponding SR is also
shown on each plot (see text).

The validity of the background estimate is tested using a set of VRs. Analogously to
the CR, the corresponding VR for the DF (SF) SR labelled N is referred to as VRTI]\D/II;I(SF).
The definitions of these regions are given in table 12 and their composition before and after

the likelihood fit is given in tables 13 and 14 for the DF and SF VRs, respectively.
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Channel CRTYE CRTYE CRTYE CRTYE CRTYE
Observed events 419 410 428 368 251
Total (constrained) bkg events 419 £ 20 410 £20 428 £21 368 £ 19 251 £ 16
Fit output, tf events 369 + 23 363 + 23 379+ 24 325 £+ 22 214 +£19
Total expected bkg events 430+ 70 420 + 60 440+ 70 380 £ 60 260 £+ 50
Fit input, expected tt 380 £ 60 375+ 60 390+ 70 340 £+ 50 220 £ 40
Expected tfV events 2.7+£0.8 22407 24+0.7 2.7+£0.8 1.9+£0.6
Expected Wt events 20+ 5 19+5 20+ 5 16 +5 15+4
Expected WW events 82 7+8 7+ 673 617
Expected ZW, ZZ events 1.0+1.0 09749 1.0+ 1.0 0.5758 1.040.8
Expected Z/~* — £l+jets events 0.3793 0.31703  0.31703 0.37903 0.3793
Expected Higgs boson events 0.26£0.10 0.24+0.10 0.26+0.10 0.124+0.05 0.194+0.10
Expected events with fake and non-prompt leptons 18+4 18+4 19+4 17+4 12.5+3.2

Table 10. Background fit results for the DF CRs in the MVA analysis. The nominal expectations
from MC simulation are given for comparison for t£, which is normalised to data by the fit. Combined
statistical and systematic uncertainties are given. Events with fake or non-prompt leptons are
estimated with the data-driven technique described in section 6.2. The observed events and the
total (constrained) background are the same in the CRs by construction. Uncertainties on the
predicted background event yields are quoted as symmetric except where the negative error reaches
down to zero predicted events, in which case the negative error is truncated.

Channel CRTRf CRTS, CRT3, CRTY,
Observed events 99 79 133 27
Total (constrained) bkg events 99+ 10 79+9 133 £12 271+5
Fit output, ¢t events 82+ 12 55+ 14 101 £ 16 14 £8
Total expected bkg events 94 £ 16 88 + 16 129 £ 23 32+10
Fit input, expected tt 77+ 13 65+9 95 + 20 19+7
Expected ¢tV events 0.98+0.31 0.95£0.31 14+£04 0.70 £0.23
Expected Wt events 1.6+15 28+1.6 40+16  0.207533
Expected WW events 1.3717 1.4%7° 1748 0.7759
Expected ZW, ZZ events 1.3+0.8 2.14+0.7 21+1.3 1.4£0.5
Expected Z/v* — 0l+jets events T+7 12+ 11 14+9 7+£6
Expected Higgs boson events 0.06 £0.06 0.08+0.05 0.12+£0.05 0.04+0.04
Expected events with fake and non-prompt leptons 3.7 £ 1.7 3.7+1.7 6.9+23 28+1.2

Table 11. Background fit results for the SF CRs in the MVA analysis. The nominal expectations
from MC simulation are given for comparison for ¢, which is normalised to data by the fit. Combined
statistical and systematic uncertainties are given. Events with fake or non-prompt leptons are
estimated with the data-driven technique described in section 6.2. The observed events and the
total (constrained) background are the same in the CRs by construction. Uncertainties on the
predicted background event yields are quoted as symmetric except where the negative error reaches
down to zero predicted events, in which case the negative error is truncated.

The signal contamination in the CRs ranges from 1.5-30% (4.8-24%) in the DF (SF)
CRs, whilst the contamination in the DF (SF) VRs ranges from 0.4-20% (0.9-13%).
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Validation Region Event Variable Selection [GeV] BDTG range

VRTDE C1, 80 < mTe < 90 [—0.75, —0.13]
VRTYE C1, 80 < mTe < 90 [—0.75, —0.18]
VRTLE C1, 80 < mo < 90 [—0.80, 0.19]

VRTDE C2, 80 < mTe < 90 [—0.98, —0.65]
VRTLE C4, 80 < mTg < 90 [—0.998, —0.33]
VRTSH C1, 80 < mry < 90, my < 61 or mye > 121 [—0.80, —0.66]
VRTSE, C1, 80 < myg < 90, my < 61 or mg > 121 [—0.85, —0.11]
VRTSE C1, 80 < mry < 90, my < 61 or mge > 121 [~0.95, —0.77]
VRTSE, C3, 80 < mry < 90, my < 61 or mye > 121 [—0.995, —0.76]

Table 12. VRs for the MVA analysis. The name of each VR is given in the first column and
these have a one-to-one correspondence with the equivalently named SR. The middle column lists
all selection cuts made, whilst the final column gives the BDTG range.

Channel VRTRE VRTRE VRTYE VRTYE VRTLE
Observed events 149 57 30 40 47
Total bkg events 144 4+ 24 59+ 8 33+6 43+9 41410
Fit output, tf events 136 £ 23 54+7 306 37+9 36+9
Fit input, expected tt 141 + 20 56 + 10 308 39+ 10 37T+7
Expected ¢£V events 0.64+0.21 0.34+0.13 0.32+0.14 0.5040.17 0.39+0.14
Expected Wt events 44422 24416 0.47390 0.8732 2.6+1.5
Expected WWW events 1.0%1S 0.5752 0.4+04 0.97%% 1oti2
Expected ZW, ZZ events 0.09t338 0101018 0.08F0H 017752 0.31+0.31
Expected Higgs boson events 0.03 £ 0.03 -- 0.01739%  0.03+£0.03 0.02+0.02
Expected events with fake and non-prompt leptons 1.7+ 1.7 1.6 +£1.2 1.6 +£1.2 3.0+£1.5 O.ng:g

Table 13. Background fit results for the DF VRs in the MVA analysis. The nominal expectations
Combined
statistical and systematic uncertainties are given. Events with fake or non-prompt leptons are
estimated with the data-driven technique described in section 6.2. The observed events and the
total (constrained) background are the same in the CRs by construction; this is not the case for the
VRs, where the consistency between these event yields is the test of the background model. Entries
marked - - indicate a negligible background contribution. Backgrounds which contribute negligibly

from MC simulation are given for comparison for ¢f, which is normalised to data.

to all VRs are not listed. Uncertainties on the predicted background event yields are quoted as
symmetric except where the negative error reaches down to zero predicted events, in which case the
negative error is truncated.
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Channel VRIS VRTRE, VRTSE, VRTSE,
Observed events 65 20 140 17
Total bkg events 75+19 23+9 150 £ 40 22413
Fit output, tf events 69+ 19 19410 130 4 40 17413
Fit input, expected tt 64 £ 12 22+9 128 £ 23 23+5
Expected ttV events 0.26£0.10 0.22+0.09 0.6+0.2 0.20+£0.09
Expected Wt events 2.0+1.1 1.44+0.9 6.4+23 1.6 +1.0
Expected WW events 0.9+0.6 0.3103 21+£1.7  04+04
Expected ZW, ZZ events 0.19+£0.14 0.07703%  0.394£0.19 0.12+£0.12
Expected Z/v* — €l+]ets events 0.4f8:2 0.7f8:? O.9f(1)jg 0.3":8:?3
Expected Higgs boson events -- -- 0.02 £ 0.02 --
Expected events with fake and non-prompt leptons 2.8 + 1.3 0.8+0.8 32+19 1.7+1.0

Table 14. Background fit results for the SF VRs in the MVA analysis. The nominal expectations
from MC simulation are given for comparison for ¢f, which is normalised to data. Combined
statistical and systematic uncertainties are given. Events with fake or non-prompt leptons are
estimated with the data-driven technique described in section 6.2. The observed events and the
total (constrained) background are the same in the CRs by construction; this is not the case for
the VRs, where the consistency between these event yields is the test of the background models.
Entries marked - - indicate a negligible background contribution. Uncertainties on the predicted
background event yields are quoted as symmetric except where the negative error reaches down to
zero predicted events, in which case the negative error is truncated.

7 Systematic uncertainties

Various systematic uncertainties affecting the predicted background rates in the signal
regions are considered. Such uncertainties are either used directly in the evaluation of the
predicted background in the SRs when this is taken directly from MC simulation, or to
compute the uncertainty on the background fit.

The dominant detector-related systematic uncertainties considered in the analyses are:

— Jet energy scale and resolution. The uncertainty on the jet energy scale (JES) was
derived using a combination of MC simulations and data [77], taking into account the
dependence on pr, 7, jet flavour and number of primary vertices. The components
of the JES uncertainty are varied by +1¢ in the MC simulations and propagated to
the expected event yield. Uncertainties related to the jet energy resolution (JER) are
obtained with in situ measurements of the jet response balance in dijet events [92].
Their impact on the event yield is estimated by applying an additional smearing to
the jet transverse momenta in the MC simulations. The JES and JER variations
applied to jets are also propagated to the E%‘iss.

— Clusters in the calorimeter energy scale, resolution and pile-up modelling. The un-
certainties related to the contribution to E%liss from the energy scale and resolution
of clusters in the calorimeter not associated to electrons, muons or jets (including low
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momentum (7 < pr < 20 GeV) jets), as well as the uncertainty due to the modelling
of pile-up were evaluated.

— b-tagging (where applicable). The b-tagging uncertainty is evaluated by varying the
pr- and flavour-dependent correction factors applied to each jet in the simulation
within a range that reflects the systematic uncertainty on the measured tagging
efficiency and rejection rates. The relative impact of this uncertainty on the final
event yield is dominated by the uncertainty on the b-tagging efficiency.

— Fake and non-prompt lepton background uncertainties. The uncertainty on the fake
and non-prompt lepton background arises from the limited size of the control samples
used to measure the probabilities for loose leptons to pass the tight selections, the
comparison of results obtained with probabilities computed with alternative control
samples, and from the number of events in the loose and tight event samples.

The remaining detector-related systematic uncertainties, such as those on lepton recon-
struction efficiency and on the modelling of the trigger, are of the order of a few per-
cent. A 2.8% uncertainty on the luminosity determination was measured using techniques
similar to that of ref. [71] from a calibration of the luminosity scale derived from beam-
separation scans performed in November 2012, and it is included for all signal and back-
ground MC simulations.

Various theoretical uncertainties are considered in the MC modelling of the major
SM backgrounds. In the case of top-quark contributions, the predictions of MCGNLO-4.06
are compared with POWHEG interfaced to HERWIG to estimate the uncertainty due to the
choice of generator, while the difference in the yields obtained from POWHEG interfaced to
PYTHIA and POWHEG interfaced to HERWIG is taken as the systematic uncertainty on parton
showering, and the predictions of dedicated ACERMC-3.8 samples generated with different
tuning parameters are compared to give the uncertainty related to the amount of ISR/FSR.

At next-to-leading order, contributions with an additional bottom quark in the final
state lead to ambiguities in the distinction between the Wt process (gb — Wt) and top-
quark pair production. In the hadronic mTe analysis this becomes significant as the SR is a
region of phase space where these ambiguities are important. All the Wt samples, generated
using MC@NLO-4.06 and POWHEG-1.0, use the diagram removal [93] scheme. ACERMC-3.8
is used to generate a leading-order (LO) prediction of the WWb and WWWbb final state
(which includes both t¢ and Wt single-top processes); the predictions of these ACERMC-3.8
samples and MC@NLO-4.06 are then compared in order to assess the uncertainty on the
background estimate from this interference.

The uncertainties on diboson production are evaluated by comparing the predictions
of POWHEG-1.0 and SHERPA-1.4.1, and the uncertainties on Z/v*+jets production are
evaluated by comparing the predictions of SHERPA-1.4.1 and ALPGEN-2.14. The former
comparison includes the impact of choice of parton showering scheme.

The impact of the evaluated systematic uncertainties on the different SRs presented
are shown in tables 15, 16 and 17. These tables quote, for each SR, the percentage of the
total systematic uncertainty on the background yield which is attributed to each source.
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L90 LL100 L110 L120 H160
Background 300£50 524+22 93+35 194+9 26£6
Uncertainty Breakdown (%):
JES 2 12 3 2 49
JER 46 47 1 9 67
Cluster energy scale and resolution 44 30 11 4 4
Pile-up 42 22 19 12 10
b-tagging — — — — 19
Diboson generator 18 23 40 92 7
Top-quark generator 44 52 73 4 19
Top-quark decay: ISR/FSR 19 27 1 8 16
Top-quark decay: parton shower 17 20 21 5 33
tt, Wt interference — — — — 70
Simulation statistics 15 31 29 15 40
Fake and non-prompt leptons 3 0 1 1 4
tt normalisation 30 13 8 1 —
tt, Wt normalisation — — — — 125
WW normalisation 32 8 18 25 —
W Z, ZZ normalisation 5 2 5 9 —
Z/v* — ee, pu+jets normalisation — — — — 1.5

Table 15. Summary of the systematic uncertainties on the background estimates for the two mmra-
based analyses. The size of each uncertainty is quoted as a percent of the total uncertainty. Note
that the individual uncertainties can be correlated, and thus do not necessarily sum in quadrature
to 100%.

Since these uncertainties are correlated, there is no requirement for these to sum in quadra-
ture to 100%. These correlations are particularly strong in H160, where there are strong
cancellations between the ¢t and Wt normalisation and the top-quark generator system-
atic uncertainties. The uncertainty on the WZ/ZZ normalisation (where appropriate)
has comparable statistical and systematic components, whilst the t¢ (tt, Wt) and WW
normalisation uncertainties are dominated by systematic effects.

Systematic uncertainties are also taken into account for expected signal yields. The
uncertainty on the signal cross-sections is calculated with an envelope of cross-section
predictions which is defined using the 68% CL ranges of the CTEQ [40] (including the
as uncertainty) and MSTW [56] PDF sets, together with variations of the factorisation
and renormalisation scales by factors of two or one half. The nominal cross-section value
is taken to be the midpoint of the envelope and the uncertainty assigned is half the full
width of the envelope, using the procedure described in ref. [44]. The typical cross-section
uncertainty is 15% for the top-squark signal. Uncertainties on signal shape related to the
generation of the SUSY samples are determined using additional samples with modified
parameters. This includes uncertainties on the modelling of ISR and FSR, the choice of
renormalisation/factorisation scales, and the parton-shower matching scale settings. These
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MIDF M2DF MSDF M4DF M5DF

Background 58+19 13+4 51420 13+1.0 1.0+0.5
Uncertainty Breakdown (%):
JES 7 28 6 10 4
JER 12 37 29 14 25
Cluster energy scale

31 42 33 30 11
and resolution
Pile-up 25 35 14 — 13
Diboson generator 26 27 44 47 23
Top-quark generator 100 87 75 56 51
Top-quark decay: ISR/FSR 27 45 34 39 15
Top-quark decay: parton shower 35 1 33 5 15
Simulation statistics 40 32 39 30 44
Fake and non-prompt leptons 15 8 15 27 66
tt normalisation 47 48 30 10 11

Table 16. Summary of the systematic uncertainties on the background estimates for the MVA
analysis DF signal regions. The size of each uncertainty is quoted as a percent of the total uncer-
tainty. Note that the individual uncertainties can be correlated, and thus do not necessarily sum
in quadrature to 100%.

M1 M2SF M3t M4ST

Background 76+22 95+21 1.1£07 25410
Uncertainty Breakdown (%):

JES 12 12 21 13
JER 48 36 53 26
Cluster ene'rgy scale o1 93 93 15
and resolution

Pile-up 21 32 21 14
Diboson generator 6 13 5 2
Top-quark generator 71 50 42 26
Top-quark decay: ISR/FSR 25 24 12 17
Top-quark decay: parton shower 16 14 21 13
Simulation statistics 48 38 44 37
Fake and non-prompt leptons 19 38 36 6
tt normalisation 75 55 27 37

Table 17. Summary of the systematic uncertainties on the background estimates for the MVA
analysis SF signal regions. The size of each uncertainty is quoted as a percent of the total uncer-
tainty. Note that the individual uncertainties can be correlated, and thus do not necessarily sum
in quadrature to 100%.
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Channel L90 L100 L110 L120
Observed events 274 3 8 18
Total bkg events 300 £+ 50 52+22 9.3+£3.5 19+9
Fit output, tf events 172+ 33 35+21 34+29 1.1+1.1
Fit output, WW events 78 £ 20 1.0£0.5 32+14 12+7
Fit output, WZ, ZZ events 11.6+24 0227925 09405  41+21
Fit input, expected tt events 190 + 40 39+24 3.7+£3.2 1.2+1.2
Fit input, expected WW events 62+9 0.75£0.38 31 9+5
Fit input, expected WZ, ZZ events 13.6+24 0267038 1.1+£0.6 48425
Expected Z/~* — £¢ events 28414 014751 00970 0.077352
Expected ¢tV events 1.8+06 035+0.14 0.624+0.21 0.51=£0.18
Expected Wt events 2047 0.007530 -~ 035703
Expected Higgs boson events 0.65 £0.22 0.021'8:83 0.03£0.03 0.31£0.12
Expected events with fake and non-prompt leptons ~ 13.0 £ 3.5 -- 1.0+ 0.6 1.1+0.8

Table 18. Number of events and composition in the leptonic mrs SRs for an integrated luminosity
of 20.3fb~!. The nominal expectations from MC simulation are given for comparison for those back-
grounds that are normalised to data. Combined statistical and systematic uncertainties are given.
Events with fake or non-prompt leptons are estimated with the data-driven technique described in
section 6.2. Entries marked - - indicate a negligible background contribution. Uncertainties on the
predicted background event yields are quoted as symmetric except where the negative error reaches
down to zero predicted events, in which case the negative error is truncated.

uncertainties are relevant only in the case of small Am(ty, ﬁt) for the t; — b+ )Zic decay
mode or when m(#1) ~ m(t) +m(x}) for the ; — t+ X decay mode. They have an impact
of up to 10% (20%) on the acceptance in the f; — b+ XF (f1 — b+ X)) case depending on
the SR, but yield negligible effects on the sensitivity.

8 Results and interpretation

Tables 18 to 21 report the background yields (before and after the background-only like-
lihood fit) and the observed numbers of events in the various SRs. In each, agreement
is found between the SM prediction and the data, within uncertainties. In all tables the
quoted uncertainty includes all the sources of statistical and systematic uncertainty con-
sidered (see section 7).

The agreement between the SM prediction and the data is tested separately for the
SF and DF populations in L90 (the SR with the highest predicted background yield) as
an additional check. Results of this check are consistent with the inclusive result in both
the SF (123 observed and 136 4+ 19 expected events) and DF (151 observed and 164 + 31
expected events) samples, with the background composition being dominated by the flavour
symmetric t¢ and WW backgrounds. Small differences in the background composition arise
from the WZ and ZZ backgrounds, which account for 8% of the total background SF events
and < 1% of the total background DF events. Other minor differences are a result of the
fake and non-prompt lepton background which accounts for 6% of the DF background but
only 2% of the SF background. Z~* — ¢ events contribute only to the SF channel, and
are 2% of the total background event yield.
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Channel H160
Observed events 33
Total bkg events 26 +6
Fit output, tt, Wt events 22+5
Fit output, Z/v* — ee, uu+jets events O.Qf(ljjg
Fit input, expected tt, Wt events 247
Fit input, expected Z/v* — ee, pu+jets events 0.2'_%:%
Expected WW events 0.007055
Expected ttV events 0.47 +£0.16
Expected WZ, ZZ events 0.11+0.11
Expected Z/v* — T7+jets events 0.86 +0.15
Expected events with fake and non-prompt leptons 25+04
Expected Higgs boson events 0.08 £ 0.02

Table 19. Number of events and composition in SR H160 for an integrated luminosity of 20.3fb~! in
the hadronic mrs analysis. The nominal expectations from MC simulation are given for comparison
for those backgrounds (tt, Wt and Z/v*(— ee,utu~)+jets production) that are normalised to
data. Combined statistical and systematic uncertainties are given. Events with fake or non-prompt
leptons are estimated with the data-driven technique described in section 6.2.. Uncertainties on the
predicted background event yields are quoted as symmetric except where the negative error reaches
down to zero predicted events, in which case the negative error is truncated.

Channel M1PF M2PF M3PF M4PF M5PF
Observed events 9 11 5 3 1
Total bkg events 5.8+ 1.9 13+4 5.1+2.0 1.3+1.0 1.0£0.5
Fit output, ¢ events 50+1.9 11+4 31417 0.670% 0.291935
Fit input, expected tf 52426 11£5 3.2+21 0.6753 0.3754
Expected t#V events 04340.15 0.83+0.27 0.73+0.24 0.38+0.13 0.2340.09
Expected Wt events 0.00fgjgg 0.9£0.7 0.4+£0.4 - - - -
Expected WW events 0.375:3 0.7754 0.875:3 0.375%  049+0.19
Expected ZW, ZZ events 0.0579% 0114010 0.107912  0.0579%  0.03+0.03
Expected events with fake and non-prompt leptons  0.0070-23 0.00%058 0.0010:30 0.0015:2 0.00%930

Table 20. Number of events and composition of the DF signal regions for an integrated luminosity
of 20.3 fb~! in the MVA analysis. Nominal MC simulation expectation is given for comparison
for the background (tf) that is normalised to data. Combined statistical and systematic uncer-
tainties are given. Events with fake or non-prompt leptons are estimated with the data-driven
technique described in section 6.3. Entries marked - - indicate a negligible background contri-
bution. Backgrounds which contribute negligibly to all SRs are not listed. Uncertainties on the
predicted background event yields are quoted as symmetric except where the negative error reaches
down to zero predicted events, in which case the negative error is truncated.
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Channel M15F M25F M35F M45F
Observed events 6 9 0 5
Total bkg events 7.64+22 95+2.1 1.1£0.7 25+1.0
Fit output, tt events 71+2.2 3.8+£1.6 0.7£0.7 0.6 £0.5
Fit input, expected tt 6.6 +2.2 44+1.8 0.7+0.7 0.7+0.6
Expected ttV events 0.07+0.03 0.50+0.17 0.06+£0.04 0.17+0.10
Expected Wt events 0.02+9:98 0.0270:20 -- --
Expected WW events 0.08T00s 018703 0.00T005  0.06100%
Expected ZW, ZZ events 0.031095  23+05 00874 12409
Expected Z/v* — ({+jets events 0.0219:93 14776 -- 0.579¢
Expected events with fake and non-prompt leptons 0.31’8:;1 1.1+0.8 0.25f8:§g 0.001’8:88

Table 21. Number of events and composition of the SF signal regions for an integrated luminosity
of 20.3 fb~! in the MVA analysis. Nominal MC simulation expectation is given for comparison
for the background (tf) that is normalised to data. Combined statistical and systematic uncer-
tainties are given. Events with fake or non-prompt leptons are estimated with the data-driven
technique described in section 6.3. Entries marked - - indicate a negligible background contri-
bution. Backgrounds which contribute negligibly to all SRs are not listed. Uncertainties on the
predicted background event yields are quoted as symmetric except where the negative error reaches
down to zero predicted events, in which case the negative error is truncated.

Figures 8 to 10 illustrate the distribution of mrs in the different SRs of the leptonic
mro analysis, prior to any cut on mro, after the background fit. In this figure, the events
are separated into DF and SF lepton pairs, illustrating the similarity of the background
composition between the two populations (and the negligible size of Z/v*+jets in the SRs

themselves). Figure 11 illustrates the distribution of mbT_Qjet in SR H160, prior to any cut

on mbT_Qjet, after the background fit. Figure 12 illustrates the BDTG distribution, prior to
any cut on BDTG and after the background fit, for the DF and SF channels of the MVA
analysis as obtained from the trainings which used the point (m(¢), m(x})) = (300, 50) GeV
and (m(t),m(xY)) = (300, 100) GeV, respectively.

Upper limits at 95% CL on the number of beyond-the-SM (BSM) events for each
SR are derived using the CLg likelihood ratio prescription as described in ref. [94] and
neglecting any possible contamination in the control regions. Normalising these by the
integrated luminosity of the data sample, they can be interpreted as upper limits on the
visible BSM cross-section, oyis = 0 X € X A, where ¢ is the production cross-section for the
BSM signal, A is the acceptance defined by the fraction of events passing the geometric and
kinematic selections at particle level, and € is the detector reconstruction, identification and
trigger efficiency (see appendix A). Table 22 summarises, for each SR, the estimated SM
background yield, the observed numbers of events, and the expected and observed upper
limits on event yields from a BSM signal and on oy;s.

The results obtained are used to derive limits on the mass of a pair-produced top squark
t; decaying with 100% BR into the lightest chargino and a b-quark (for the leptonic and
hadronic mpe analyses), an off-shell ¢t-quark and the lightest neutralino (for the leptonic
mre analyses) or an on-shell top quark and the lightest neutralino (for the MVA).
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contributions from all SM backgrounds are shown as a histogram stack; the bands represent the
total uncertainty. The components labelled “Reducible” correspond to the fake and non-prompt
lepton backgrounds and are estimated from data as described in section 6.2; the other backgrounds
are estimated from MC simulation with normalisations measured in control regions described in
section 6.3 for tt and diboson backgrounds. The expected distribution for two signal models is
also shown. The full line corresponds to a model with m(f;) = 150 GeV, m(x¥{) = 120 GeV
and m(x}) = 1GeV; the dashed line to a model with m(f;) = 400 GeV, m(xT) = 250 GeV and
m(x?) = 1GeV. The arrows mark the cut values used to define the SRs.
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Figure 9. Distribution of mry for events passing all the signal candidate selection requirements,
except that on mro of the L100 selection, for SF (top) and DF (bottom) events. The contributions
from all SM backgrounds are shown as a histogram stack; the bands represent the total uncertainty.
The components labelled “Reducible” correspond to the fake and non-prompt lepton backgrounds
and are estimated from data as described in section 6.2; the other backgrounds are estimated from
MC simulation with normalisations measured in control regions described in section 6.3 for ¢ and
diboson backgrounds. The expected distribution for two signal models is also shown. The full line
corresponds to a model with m(f;) = 150 GeV, m(¥T) = 120 GeV and m(x}) = 1 GeV; the dashed
line to a model with m(f;) = 400 GeV, m(xT) = 250 GeV and m(x}) = 1GeV. The arrows mark
the cut values used to define the SRs.
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Figure 10. Distribution of mrsy for events passing all the signal candidate selection requirements,
except that on mro of the L110 selection, for SF (top) and DF (bottom) events. The contributions
from all SM backgrounds are shown as a histogram stack; the bands represent the total uncertainty.
The components labelled “Reducible” correspond to the fake and non-prompt lepton backgrounds
and are estimated from data as described in section 6.2; the other backgrounds are estimated from
MC simulation with normalisations measured in control regions described in section 6.3 for ¢ and
diboson backgrounds. The expected distribution for two signal models is also shown. The full line
corresponds to a model with m(f;) = 150 GeV, m(¥T) = 120 GeV and m(x}) = 1 GeV; the dashed
line to a model with m(f;) = 400 GeV, m(xT) = 250 GeV and m(x}) = 1GeV. The arrows mark
the cut values used to define the SRs.
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Figure 11. Distribution of m%jet for events with two b-jets and all other H160 cuts, minus that
on mb* itself. The contributions from all SM backgrounds are shown as a histogram stack; the

bands represent the total uncertainty. The component labelled “Reducible” represents the fake
and non-prompt lepton background and is estimated from data as described in section 6.2 and
the combined ¢ and Wt component is shown renormalised after the background fit; the other
backgrounds are estimated from MC samples normalised to the luminosity of the data and their
respective cross-sections. The expected distribution for three signal models is also shown. The
dotted line corresponds to a model with m(f;) = 300 GeV, m(X) = 150 GeV and m(x?) = 100 GeV;
the full line corresponds to a model with m(Z;) = 300 GeV, m(xT) = 100 GeV and m(x?) = 50 GeV;
the dashed line to a model with m(f;) = 300GeV, m(x;) = 100GeV and m(x?) = 1GeV. The
arrow marks the cut value used to define the SR.

The inclusive SRs in the leptonic mTo analysis were designed to maximise the discovery
potential of the analysis. In the absence of any excess, a set of statistically exclusive SR
can be defined in order to maximise the exclusion power of the search. Thus, in order to
allow a statistical combination of the leptonic ms SRs and maximise this potential, a set
of seven statistically independent SRs is defined in the (jet selections, mr2) plane, as shown
in figure 13. These SRs are labelled Sn, with n ranging from one to seven. Table 23 reports
the background yields (after the likelihood fit) and upper limits on the visible cross-sections
for each of these SRs. In each, agreement is found between the SM prediction and the data.

A fit similar to that described in section 6.1 is used to evaluate exclusion contours in
various two-dimensional mass parameter planes. In this fit, the CRs and SR(s) are fit si-
multaneously taking into account the experimental and theoretical systematic uncertainties
as nuisance parameters. The signal contamination of the CRs is taken into account in the
fit. The fit thus differs from the “background-only” fit described in section 6.1 as follows:

1. An extra free parameter for a possible BSM signal strength which is constrained to
be non-negative is added.
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— 36 —



Signal Region | Background Observation ngp.( obs.) ovis [fb]

L90 300 + 50 274 85 (74) 2 (3.6) [4.3 (3.7)]
L100 5.2 422 3 6.4 (5.6) 0.32 (0 28) [0.30 (0.24)]
L110 9.3+3.5 8 9.4 (9.0) 0.46 (0.44) [0.45 (0.42)]
L120 19+9 18 17 (17)  0.82 (0.83) [0.85 (0.82)]
H160 26 4 6 33 17 (22) ( 1) [0.83 (1.1)]
M1PF 584 1.9 9 7.7 (9.7)  0.38 (0.48) [0.37 (0.44)]
M2PF 1344 11 10.5 (9.4) 0.52 (0.46) [0.51 (0.45)]
M3PF 5.142.0 5 7.1 (7.1)  0.35 (0.35) [0.33 (0.33)]
M4PF 1.3+ 1.0 3 4.5 (6.5) 0.22 (0.32) [0.22 (0.31)]
M5PF 1.0£0.5 1 3.7 (3.7) 0.18 (0.18) [0.18 (0.17)]
M15F 7.6 422 6 7.6 (6.7) 0.37 (0.33) [0.37 (0.32)]
M25F 9.5+2.1 9 8.4 (8.2) 0.41 (0.40) [0.41 (0.39)]
M35F 1.1+0.7 0 3.1(3.1)  0.15 (0.15) [0.15 (0.11)]
M45F 2.5+ 1.0 5 5.2 (8.0) 0.26 (0.39) [0.26 (0.38)]

Table 22. Left to right: expected background, observed events, and 95% CL expected (observed)

upper limits on the number of BSM events (

595

exp.(obs.)

) and the visible cross-section ({Aec)?>

exp.( obs.))'

For each SR the numbers are calculated using toy MC pseudo-experiments. The equivalent limits
on the visible cross-section calculated using an asymptotic method [89] are given inside the square

brackets.

Jet Selection

Nets(P,>100 GeV) > 1

lets(p >50 GeV)>2

p,>20 GeV) >

]ets(

p,>20 GeV) <

jets(

90
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Figure 13. Definition of the “leptonic mr2” SRs used in the exclusion. The (jet selections, mTs)
plane is divided into 7 non-overlapping SRs.



Channel S1 S2 S3 S4
Observed events 250 1 2 3
Total bkg events 270 £ 40 34+1.8 1.3+0.6 3.7T£2.7
(Aea) 22, (obs.) D] 3.8 (3.4) 0.22(0.18) 0.20 (0.23)  0.32 (0.32)
[3.8 (3.3)] [0.23 (0.17)] [0.19 (0.23)] [0.32 (0.31)]
Channel S5 S6 S7
Observed events 0 3 15
Total bkg events 0.5+0.4 3.8+1.6 15+7
(Aea)2 (opsy (D] 015 (0.15)  0.28 (0.28)  0.75 (0.78)
[0.13 (0.11)] [0.28 (0.26)] [0.73 (0.73)]

Table 23. Number of events in the leptonic mro SRs used in the exclusion interpretation for an
integrated luminosity of 20.3fb~!. Combined statistical and systematic uncertainties are given.
oup.(obs.y) are also reported for each SR using toy
MC pseudo-experiments. The equivalent limits on the visible cross-section calculated using an

Upper limits on the visible cross-section ({Aec)

asymptotic method [89] are given inside the square brackets.

2. The number of events observed in the signal region is now also considered as an input
to the fit.

3. The expected contamination of the control regions by the signal is included in the
fit.

Systematic uncertainties on the signal expectations stemming from detector effects are
included in the fit in the same way as for the backgrounds. Systematic uncertainties on
the signal cross-section due to the choice of renormalisation and factorisation scale and
PDF uncertainties are calculated as described earlier but not included directly in the fit.
In all resulting exclusion contours the dashed (black) and solid (red) lines show the 95%
CL expected and observed limits, respectively, including all uncertainties except for the
theoretical signal cross-section uncertainty (PDF and scale). The (yellow) bands around
the expected limits show the +10 expectations. The dotted +10 (red) lines around the
observed limit represent the results obtained when moving the nominal signal cross-section
up or down by its theoretical uncertainty. Quoted numerical limits on the particle masses
are taken from these —1o “theory lines”.

For the leptonic and hadronic mro analyses, various two-dimensional slices in the
three-dimensional mass parameter space m/(t1, )Zf, 1)) are used to quantify the exclusion
contours on these parameters in the t; — b + )ﬁ mode: in the (¢, )Zic) mass plane for a
neutralino with a mass of 1 GeV (figure 14); in the (#1, X}) mass plane for a fixed value
of m(f1) — m(x¥) = 10GeV (figure 15); in the (Y1, X)) mass plane for a fixed 300 GeV
top squark (figure 16); and in the (f1, X)) mass plane for m(x7) = 2m(x}) (figure 17).
For the above limits, in each case all the exclusive SRs of the leptonic mTo analysis are
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Figure 14. Observed and expected exclusion contours at 95% CL in the (fl,ili) mass plane
for a fixed value of m(x}) = 1GeV. The dashed and solid lines show the 95% CL expected and
observed limits, respectively, including all uncertainties except for the theoretical signal cross-section
uncertainty (PDF and scale). The band around the expected limit shows the +10 expectation. The
dotted £10 lines around the observed limit represent the results obtained when moving the nominal
signal cross-section up or down by the theoretical uncertainty.

combined when setting the exclusions. The hadronic mre SR, H160, is added into the
combination in the plane with fixed 300 GeV top-squark mass, a projection in which the
77”L,br_2jet variable is expected to increase sensitivity, and for points in the 1 GeV neutralino
and the m(xi) = 2m(x?) planes with m(f;) = 300 GeV. In particular, in this last plane
(figure 17), the contribution from the hadronic mry SR is the narrow corridor at m(fl) =

300 GeV and low m(xY): this is the result of the sensitivity being limited on the higher

m(t1) side by the decreasing #; production cross-section and at lower masses by the ml;j;t
cut acceptance. The optimal choice of mlfl?;’t cut-value is heavily dictated by the shape

and expected sharp end-point of mI;ert for the ¢t background, rather than the end-points

expected for signal events.

For the MVA analysis, the exclusion contours for an on-shell top-quark in a t; — ¢+ X!
decay are quantified in the m(f;) — m(x}) plane (figure 18), taking the best expected DF
and SF SRs (defined as the regions with the lowest value of the expected CLy), for each
point, and combining them statistically.

The results of the leptonic mTo analysis are used to derive limits on the mass of a top
squark decaying with 100% BR into bW ! (figure 19) and the results of the hadronic ms
analysis are also used to derive limits on t; — b + )Zf for fixed 106 GeV chargino mass
(figure 20), a grid introduced by CDF in ref. [30].
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Figure 15. Observed and expected exclusion contours at 95% CL in the (¢, X¥}) mass plane for a
fixed value of m(;) —m(X;) = 10 GeV. The dashed and solid lines show the 95% CL expected and
observed limits, respectively, including all uncertainties except for the theoretical signal cross-section
uncertainty (PDF and scale). The band around the expected limit shows the +10 expectation. The
dotted +10 lines around the observed limit represent the results obtained when moving the nominal
signal cross-section up or down by the theoretical uncertainty.
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Figure 16. Observed and expected exclusion contours at 95% CL in the ()Zf,)}?) mass plane
for a fixed value of m(#;) = 300 GeV. The dashed and solid lines show the 95% CL expected and
observed limits, respectively, including all uncertainties except for the theoretical signal cross-section
uncertainty (PDF and scale). The band around the expected limit shows the £10 expectation. The
dotted +10 lines around the observed limit represent the results obtained when moving the nominal
signal cross-section up or down by the theoretical uncertainty. The solid light azure area labelled
OL is the exclusion contour from the ATLAS zero lepton direct top squark analysis [22].
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Figure 17. Observed and expected exclusion contours at 95% CL in the (1, ¥}) mass plane for
m(xXT) = 2m(xY). The dashed and solid lines show the 95% CL expected and observed limits,
respectively, including all uncertainties except for the theoretical signal cross-section uncertainty
(PDF and scale). The band around the expected limit shows the +1o expectation. The dotted
+10 lines around the observed limit represent the results obtained when moving the nominal signal
cross-section up or down by the theoretical uncertainty. The solid blue area labelled 1-2L is the
exclusion contour from an ATLAS search for direct top squark production in events with one or
two leptons [20].
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Figure 18. Observed and expected exclusion contours at 95% CL in the (f1,%)) mass plane
assuming f; — ¢ + . The dashed and solid lines show the 95% CL expected and observed limits,
respectively, including all uncertainties except for the theoretical signal cross-section uncertainty
(PDF and scale). The band around the expected limit shows the +1o expectation. The dotted
+10 lines around the observed limit represent the results obtained when moving the nominal signal
cross-section up or down by the theoretical uncertainty.
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Figure 19. Observed and expected exclusion contours at 95% CL in the (%1, %)) mass plane
assuming £; — bW with 100% BR. The dashed and solid lines show the 95% CL expected and
observed limits, respectively, including all uncertainties except for the theoretical signal cross-section
uncertainty (PDF and scale). The band around the expected limit shows the +10 expectation. The
dotted +10 lines around the observed limit represent the results obtained when moving the nominal
signal cross-section up or down by the theoretical uncertainty.
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Figure 20. Observed and expected exclusion contours at 95% CL in the (1, %)) mass plane
for a fixed value of m(x:) = 106 GeV. The dashed and solid lines show the 95% CL expected and
observed limits, respectively, including all uncertainties except for the theoretical signal cross-section
uncertainty (PDF and scale). The band around the expected limit shows the +1o expectation.
The dotted +10 lines around the observed limit represent the results obtained when moving the
nominal signal cross-section up or down by the theoretical uncertainty. The solid green area shows
the excluded region from a previous ATLAS two-lepton analysis [20].
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9 Conclusions

The results of a search for the production of the lightest top squark #; in a 20.3 fb~! dataset
of LHC pp collisions at /s = 8 TeV recorded by ATLAS are reported. Events with two
oppositely charged leptons (electrons or muons) were analysed and data compared to SM
predictions in a variety of SRs. Results are in agreement with SM predictions across all
SRs. The observations in the various SRs are used to produce 95% CL upper limits on £,
pair production assuming either the decay t; — b+ ﬁ[ or the decay t; — t+ X (each with
100% BR) for different assumptions on the mass hierarchy of the top squark, chargino and
lightest neutralino. In the #; — ¢+ X! case, and for an on-shell t-quark, the SRs considered
utilised an MVA technique.

For the case of a 1GeV neutralino, a top-squark #; with a mass between 150 GeV
and 445 GeV decaying to a b-quark and a chargino is excluded at 95% CL for a chargino
approximately degenerate with the top squark. For a 300 GeV top squark decaying to a
b-quark and a chargino, chargino masses between 100 GeV and 290 GeV are excluded for a
lightest neutralino with mass below 70 GeV. Top squarks of masses between 215 GeV and
530 GeV decaying to an on-shell t-quark and a neutralino of mass 1 GeV are excluded at
95% CL. Limits are also set on the direct three-body decay mode, t; — t + ¥ with an
off-shell t-quark (£; — Wxb), excluding a top squark between 90 GeV and 170 GeV, under
the assumption of a 1 GeV neutralino.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff
from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhl, Armenia; ARC, Aus-
tralia; BMWEF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP,
Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and
NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Re-
public; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF,
European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG,
HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MIN-
ERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan;
CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and
NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and
ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS,
Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation,
Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK,
Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF,
United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully,
in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF
(Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF

43 —



(Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL
(U.S.A.) and in the Tier-2 facilities worldwide.

A Generator-level object and event selection

The generator-level MC information is used to determine the acceptance and the efficiency
for simulated signal events in this analysis. The acceptance is defined as the fraction of sig-
nal events which pass the analysis selection performed on generator-level objects, therefore
emulating an ideal detector with perfect particle identification and no measurement reso-
lution effects. The efficiency is the ratio between the expected signal rate calculated with
simulated data passing all the reconstruction level cuts applied to reconstructed objects,
and the signal rate for the ideal detector. In this section, the details of the generator-level
object and event selection information are given.

The input to the object selection algorithm is the particles from the generated primary
proton-proton collision after parton shower and final-state radiation, and after the decay
of unstable supersymmetric particles, hadrons and 7 leptons. Muons and hadrons with a
lifetime comparable to or larger than the time of flight through the detector are not decayed.

Jets are reconstructed using the anti-k; jet clustering algorithm with radius parameter
of 0.4, as for the simulated and observed data, but the particle input to the algorithm is
restricted to MC particles other than muons, neutrinos, and neutralinos. All jets which
have a b-quark with pt > 5 GeV within a AR < 0.4 of the jet axis are considered as b-jet.

Electrons or muons are considered if they are produced by the decay of a W,Z, or
Higgs boson, a supersymmetric particle, or if they are produced by the decay of a 7 lepton
which was produced by the decay of these particles. The same selections on pt and 7
applied to reconstructed electrons, muons and jets, as well as the AR selections between
them, described in section 4, are applied also at generator-level.

The truth E%‘iss is taken as the sum of momenta of weakly interacting particles (neu-
trinos and neutralinos).

The event selection described in section 5 is then performed on the selected electrons,
muons, jets, and Efrniss.

Open Access. This article is distributed under the terms of the Creative Commons
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