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Memory effects in the exact Kundt wave spacetimes are shown to arise in the behaviour of geodesics
in such spacetimes. The types of Kundt spacetimes we consider here are direct products of the form
H? x M(1,1) and S? x M(1,1). Both geometries have constant scalar curvature. We consider a scenario
in which initial velocities of the transverse geodesic coordinates are set to zero (before the arrival of the
pulse) in a spacetime with non-vanishing background curvature. We look for changes in the separation
between pairs of geodesics caused by the pulse. Any relative change observed in the position and velocity
profiles of geodesics, after the burst, can be solely attributed to the wave (hence, a memory effect). For
constant negative curvature, we find there is permanent change in the separation of geodesics after the
pulse has departed. Thus, there is displacement memory, though no velocity memory is found. In the
case of constant positive scalar curvature (Plebaiski-Hacyan spacetimes), we find both displacement and
velocity memory along one direction. In the other direction, a new kind of memory (which we term as
frequency memory effect) is observed where the separation between the geodesics shows periodic oscillations
once the pulse has left. We also carry out similar analyses for spacetimes with a non-constant scalar
curvature, which may be positive or negative. The results here seem to qualitatively agree with those
for constant scalar curvature, thereby suggesting a link between the nature of memory and curvature.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction times (remote past and distant future). Christodoulou [7] general-
ized the idea of memory in the full nonlinear theory where the
stress energy component due to gravitational radiation travels to
null infinity. Subsequently, Thorne [8] attributed gravitons, sourced
by the outgoing radiation, as being responsible for the nonlinear
Christodoulou effect. Bieri, Garfinkle and several others considered
massless fields propagating to null infinity [9] and, consequently,
introduced an electromagnetic (photon) memory effect [10] as well
as a neutrino memory effect [11]. Memory effects and their con-
sequences have been discussed, of late, in cosmology [12,13], extra
dimensional physics [14-16], modified gravity [17,18] and massive
gravity [19].

Displacement and velocity memory effects have been addressed
by solving geodesic equations for sandwich wave spacetimes [20-
22]. Such spacetimes may contain a localised gravitational wave
pulse between two flat Minkowski regions. In this letter, we study
memory effects in spacetimes where the two regions separated by the
pulse have finite curvature. Memory effects in radiative spacetimes
with non-flat backgrounds have been previously analysed in [23]
where the authors have separated the deviation vector arising due

The study of memory effects has resurfaced recently since a
suggested possibility of detection in advanced detectors like aLIGO,
LISA and PTA [1], [2]. The frozen-in ‘memory’ in the freely falling
detectors results in a DC shift in the net relative position (or rela-
tive velocity) due to the passage of a gravitational wave. In radia-
tive asymptotically flat spacetimes, this change is related to Bondi-
Metzner-Sachs (BMS) [3] transformations relating two inequivalent
gravitational vacua. On the theoretical front, a triangular relation-
ship has been conjectured by Strominger [4] relating soft gravitons
with BMS symmetries and memories.

Historically, the idea of a memory effect was first mentioned
in a non-resonant detection method put forward by Zel'dovich and
Polnarev [5] for measuring the radiation emitted from gravitational
collapse of stars inside globular clusters. The term ‘memory effect’
was later coined by Braginsky and Grishchuk [6] who defined it
as the change in the metric perturbation between initial and final
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to the background curvature and the gravitational wave by solving
the geodesic deviation equation in Fermi normal coordinates and
isolating the radiative part. Memory in cosmological spacetimes
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(de Sitter, FRW) [12,13] have been worked out by taking pertur-
bations of the electric and magnetic parts of the Weyl tensor and
looking at the behaviour (peel off) of these fields at large spatial
distances. Here, we solve the geodesic equations for the spacelike co-
ordinates (x(u), y(u)) and look for signatures that a gravitational wave
pulse may imprint on the geodesics, after its departure from the wave
region.

We work with non-flat Kundt geometries [24] as backgrounds.
Kundt spacetimes constitute exact radiative solutions of Einstein
field equations admitting a nonexpanding, nonshearing and non-
twisting null geodesic congruence (NGC). The NGC is not in general
covariantly constant. Hence, the wave surfaces are not necessar-
ily Euclidean transverse planes as the null rays are not parallel to
each other. Thus, this class of spacetimes are generalisations over
pp wave spacetimes [25,26] where u-constant hypersurfaces are
planar. Such geometries have been extensively studied in all alge-
braically special spacetimes (Petrov classes of type II, Ill, D, N and
0) for vacuum, pure radiation, non-zero cosmological constant and
also in higher dimensions (see [27] for a comprehensive review)
[28-33]. These classes of spacetimes also admit gyratonic solutions
[34,35] which represent localized spinning sources moving at the
speed of light. A ring of particles is seen to rotate in presence of a
gyraton as they impart angular momentum to the ambient space-
time due to its spin [34]. Such metrics consist of an interior and
an exterior region depending upon the presence or absence of gy-
ratonic matter respectively.

Throughout this letter, we shall consider the outside region
which only contains gravitational radiation. Such waves are known
as Kundt gravitational waves which propagate on different space-
time backgrounds [36,37]. The backgrounds that we choose to
work with are constant curvature direct-product spacetimes. The
two cases studied are H2 x M(1,1) and S x M(1, 1) (Plebafski-
Hacyan). We mainly focus on studying geodesic motions in such
spacetimes for a sech-squared pulse profile with quadratic depen-
dence on transverse coordinates x, y. Such sandwich profiles have
been investigated previously by the authors [38] while understand-
ing B-memory in exact plane wave spacetimes.

Exact solutions having nonzero twist have been studied with
[39] or without cosmological constant [40] exhibiting nonplanar
wavefronts for constant negative Gaussian curvature. These solu-
tions are known as twisted gravitational waves and have influence
on the motion of spinning test particles [41]. A careful analysis of
the geodesics for these two cases reveals significant differences in
their nature of memory. For the case with constant positive curva-
ture, a new frequency memory effect is found which is extensively
discussed. To further strengthen the relation between background
curvature and the ensuing memory effect, we also study other
background spacetimes which have varying scalar curvatures with
the same overall sign.

2. Metric and its matter content
The general form of a Kundt spacetime is as follows [42]:

1
ds® = 2du(dv + Widx + Wody) + Hdu? + ﬁ(dxz +dy* (1)

P=Pu,x,y), H=Hu,v,x,y), Wi=W;u,v,x,y), Vie {x,y}

The NGC is given by a vector field k, where k = 9,. k is also
orthogonal to tangent vector fields to the spatial wave surfaces. We
do not consider gyratonic matter present and hence W; is always
set to zero. We will also assume H is independent of v. Thus, the
metric line element used is:

1
ds” = 2dudv + Hdu® + 5 (@X +dy?) (2)

The Ricci scalar and the only non zero Einstein tensor for the
Kundt wave metric given in Eq. (2) turn out as follows:

R =2A(InP) (3)
GYy=—A(nP) (4)

Here, A = P2(3y + dyy) [33]. For spacetimes having non van-
ishing cosmological constant and pure radiation (electromagnetic
fields) [37], the Einstein field equations for the G", component
(see Eq. (4)) become

A(nP)=A+p (5)

Since the L. H. S. of Eq. (5) involves derivatives of only transverse
x,y coordinates and its R. H. S. is a constant, there is no loss of
generality in setting P independent of u. The canonical choice for
P given by Eq. (5) generates wave surfaces of constant curvature
[42]. In our letter, we consider both the positive (S2) and nega-
tive (H2) constant curvature cases separately.! Hence, the metric
(2) can be thought as gravitational waves propagating over a back-
ground geometry. The background spacetimes that we work with
are direct-product constant curvature spacetimes -H2? x M(1,1)
and S x M(1,1) (Plebafiski-Hacyan spacetimes).? Eq. (4) shows
the presence of a non-vanishing energy momentum tensor follow-
ing from Einstein field equations. This matter content is nonzero
and finite at every u-constant hypersurface. The presence of matter
allows these hypersurfaces to have finite curvature (as is evident from
Eq. (3)) and hence they are not the usual Euclidean transverse planes.?
Here, we choose H = sech?(u)(x* — y2) and P = P(x, y) acts as
the square root of the inverse conformal factor determining the
curvature of spatial 2-surfaces. Initially, we choose P so that the
geometry is S2 or H2. Later, we will relax this constant curvature
criterion and examine the behaviour of geodesics in variable cur-
vature metrics having a fixed sign for the curvature.

3. Kundt waves in H2 x M(1, 1)

The functional form of P(x, y) = y. The invariant Ricci scalar is
—2 (negative). The metric takes the form:

1

ds? = 2dudv + sech? (u)(x*> — y®)du? + W(dx2 +dy?) (6)
For the metric given in Eq. (6) the geodesic equations for x, y are:
d?x 2 (dx\[dy )

22 Z) 22 = sech 2-0 7
du? y(du)(du) sech™(u)xy )
d2y 1 /dy\? 1 [dx\? )

= _ (X —(= h 3=0 8
Q2 y(du) +y<du> + sech”(u)y (8)

Note that in the asymptotic regions (i.e. u — £00), constant x and
y solve both the equations. This happens even though the space-
time has a negative scalar curvature.

The geodesic equations cannot be solved analytically and hence
they are solved numerically using Mathematica 10. For this class of
metrics, u acts as an affine parameter. We analyse geodesics and
plot the solution of geodesic equations along the transverse spatial
directions. The plots are given in Figs. 1a and 1b.

The plots in Figs. 1a and 1b demonstrate that the geodesics
have permanent separation after encountering the gravitational
wave pulse. The change in position before and after is dependent
on the initial position of the pulse. We observe that the separation
increases along x while it decreases along y.

We now look at the analysis of velocity of the geodesics from
the plots shown in Figs. 2a and 2b.

1 The zero case corresponds to the pp wave metric.

2 M(1,1) denotes Minkowski spacetime of 1+1 dimension.

3 This is unlike pp-wave spacetime where the hypersurfaces are exact Euclidean
transverse planes having zero spatial curvature.
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Fig. 1. Displacement memory effect in Kundt waves with spatial 2-surfaces having negative curvature.
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Fig. 2. Velocity memory effect for Kundt waves with spatial 2-surfaces having negative curvature.
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Fig. 3. Displacement memory effect in Kundt waves for constant positive spatial 2-surfaces with initial positions as (x, y) = {(1, 2), (5,6), (7,8)} for the three geodesics

respectively denoted in orange, blue and yellow respectively.

Fig. 2 shows that there is no velocity memory effect in these
spacetimes. There is a transient peak corresponding to the pres-
ence of the pulse. After the departure of the pulse, the velocity
vanishes. Thus along both directions (i.e. x & y), there is no change
in the velocity of the timelike* geodesics at early and late times.

Hence, from this metric we can clearly observe displacement
memory effect as proposed by Zel’dovich and Polnarev and others
(5], [6].

4. Kundt waves in S2 x M(1, 1)

The conformal factor becomes sech?(y) (i.e. P = coshy). The
metric takes up the form:

ds? = 2dudv + sech? (u)(x* — y?®)du? + sech?(y)(dx*> + dy?) (9)
The geodesic equations for the transverse spatial coordinates are:

d3x dx\ (dy sech?(u)
—— — 2tanh — — ) —x——+—=0 10
02 an (y)(du) (du) Xsechz(y) (10)

4 In these classes of metrics, the geodesic equations for x(u), y(u) are same for
both timelike and null.

d? dy\? dx\?
_g—tanh(y)< y) +tanh(y)(a) +y

sech? w

=0 (11
sech?(y) ()

du du

We were unable to find analytical solutions for Eqs. (10) and (11).
Hence, they are solved numerically using Mathematica 10. The plots
are given in Figs. 3a and 3b.

In Fig. 3, we observe different types of memory along different
axes. For the x direction given in Fig. 3a, there is increase in sep-
aration after the passage of the pulse. But along the y direction,
we find in Fig. 3b that the geodesics tend to oscillate about zero
value. Thus, the separation between them also oscillates. This is a
new phenomenon which has not yet been discussed in the previ-
ous literature on memory. We call it as the frequency memory effect.
The reason for calling it as a memory effect is because there is a
characteristic frequency with which the separation oscillates after
the passage of the pulse. We will study this effect extensively later.
Next, we look into the velocities of the trajectories.

The plots in Fig. 4 show there is velocity memory present. In
the x direction, the final velocity settles to a fixed value. While in
y direction, there is periodical fluctuation owing to the frequency
memory effect. Moreover, we find difference in amplitudes because
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Fig. 4. Velocity memory effect for Kundt waves with spatial 2-surfaces having positive curvature. In the x direction, the three colours denote the velocities of the geodesics
having the same initial velocities as given in Fig. 3a. In the y direction we have only plotted two geodesics corresponding to the first two values of initial positions, for better

clarity.
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Fig. 5. Frequency memory effect.

the geodesics which seem to oscillate more frequently have higher
magnitudes of velocity.

5. Frequency memory effect

The oscillatory behaviour of geodesics after the passage of pulse
in Fig. 3b calls for further attention. Hence, we examine the plots
with three different initial positions and look at the nature of sep-
aration of nearby geodesics.

Fig. 5a reveals the behaviour of geodesics post departure of the
pulse for three different initial configurations. In the following ta-
ble we give the details of the frequency (wavelength) of oscillation
for three separate initial positions.

Table 1
Frequency and wavelength of oscillation corresponding to different initial separa-
tions.

X y 1st trough 2nd trough Frequency A (in units of u) Colour
(u™")

20 3.0 598 713 0.869565 115 Light green

01 01 2882 65.67 0.027137 36.85 Red

0.01 0.01 2785 647.9 0.002707  369.4 Black

The distance between two successive troughs/crests is denoted
as the wavelength (in units of u). The frequency is taken as the
inverse of the wavelength. From the above Table it is clear that
higher value of y-coordinate initially gives a high frequency os-
cillation (shown in light green) while smaller values yield smaller
frequencies (shown in black in Fig. 5a).

There seems to be an occurrence of beats when we consider the
evolution of geodesic deviation as shown in Fig. 5b. The variation
in the pattern is due to the difference in y-coordinate values of

5 While taking time derivative over the phases of a wave, the frequency compo-
nent come out as a factor.

each geodesic. Thus, one can attribute a particular frequency to
a single geodesic solution. Hence, it can be said that for positive
spatial curvature there is a particular frequency associated with
the geodesic caused entirely by the passage of a gravitational wave
pulse. Similar to displacement and velocity memory, we may name
this oscillatory feature as a frequency memory effect.

6. Pulse nature

In our entire analysis we have used sech-squared as the nature
of our pulse profile. However, the nature of memory is quite inde-
pendent of the nature of the chosen profile. In fact, for any such
sandwich spacetimes (we have checked for the Gaussian pulse
profile) one can observe permanent displacement as well as os-
cillatory behaviour for constant negative curvature and positive
curvature respectively.

7. Variable curvature

The geodesic motion studied so far were in constant curvature
direct-product spacetimes. The results obtained show that there
are distinct classes of memory for different background curva-
tures. Thus, it is essential to analyse geodesics in varying curvature
spacetimes to understand the connection between memory and
curvature. We choose certain functional forms for P that yields
varying scalar curvature with an overall positive or negative sign
for the metric (2).

Negative curvature. In order to achieve variable negative curvature
we take P = sechy (scalar curvature, R = —2 sech? y), for which
the two-dimensional xy space is that of the catenoid. The geodesic
equations are as follows:

d2x dx\ [ dy sech?(u)
S8 otanhy oo ) (22 ) xR 12
& +2tan (y)( du)( du) e (12)
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Fig. 7. Displacement memory effect for Kundt waves with spatial 2-surfaces having variable positive curvature with initial positions of the geodesics as {(3, 2), (5, 3)} for two

geodesics shown in orange and blue colours, respectively.

d%y dy\? dx\>  sech?(u)
) tanh()(2) —tanh(p)( 2 e W _
T2 +tan (y)<du) an (y)(du> +ycosh2(y)

In Fig. 6a we see that initially parallel geodesics, after the pas-
sage of the pulse, undergoes a change in separation along x, which
is almost constant. As seen in Fig. 6b, for the y coordinate there is
an intersection but finally there is again a constant separation with
a non zero slope. This nature is similar to the plots in Fig. 1 indi-
cating that negative curvature solutions produce only displacement
memory.

Positive curvature. In order to have variable positive curvature on
the two dimensional xy space, we take P = sec y (scalar curvature,
R =2sec*y > 0). The geodesic equations become:

d%x dx\ (dy sech?(u)
W_Ztanh(y)<@><@>_xicosz(y) =0 (14)
Y tann( ><dy>2 tanh( >(dx>2 W o 1s)
a2z B gy ) TG ycosz(y)_

Fig. 7a shows monotonic increase in displacement memory. In
Fig. 7b we find the same oscillatory behaviour as found earlier in
Fig. 3b. This once again corresponds to the fact that positive cur-
vature solutions produce a frequency memory effect through an
oscillatory behaviour after the pulse has departed.

8. Conclusions

Memory effects in Kundt wave spacetimes have been worked
out in this letter. The method we adopt is to analyse the evolution
of timelike geodesics before and after they encounter a localised
gravitational wave source. The wave propagates on background
(direct-product) spacetimes S? x M(1,1) and H? x M(1,1). We
consider a metric in which the entire curvature comes from the
two dimensional induced metric of the transverse wave surfaces.
Using Einstein equations, we try to motivate the reason for spatial
curvature in the wave surfaces. We find that matter is present on
every u-constant hypersurface, which results in it being curved.

The geodesic solutions are obtained numerically and plotted.
We find displacement memory in H? x M(1,1) along both x, y

directions. In S% x M(1,1), we find displacement and velocity
memory along x direction while a new frequency memory effect ap-
pears in the y direction. The term memory is attributed to this
new phenomenon because there is a characteristic periodic oscil-
lation of the geodesics caused due to the gravitational wave pulse.
Frequency memory is explicitly studied for three different initial
configurations. We observe that higher initial value of the coordi-
nate yields higher frequencies (low wavelengths) and vice versa.
Three different cases are tabulated (Table 1) for better quantitative
understanding.

Our entire analysis is independent of the choice of sandwich
pulse profiles. For example if we assume a general Gaussian pulse
(checked, but not shown here) we recover the same nature of
memory as for the sech-squared pulse discussed above. We also
explore variable curvature scenarios which have same sign. It is
noted that similar qualitative features are retained in the latter
case where curvature is not constant.

Thus, through studies on the memory effect one may under-
stand the behaviour of test particle motion in various background
spacetimes of the Kundt class in a better way. Studying 3-memory
[38,43,44] of geodesic congruences in Kundt wave spacetimes will
perhaps reveal another type of memory. It will be of interest to
know if a similar frequency memory effect arises for B-memory
too.
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