
Physics Letters B 808 (2020) 135611

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Memory effects in Kundt wave spacetimes

Indranil Chakraborty a,∗, Sayan Kar a,b

a Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, 721 302, India
b Department of Physics, Indian Institute of Technology Kharagpur, 721 302, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 May 2020
Accepted 7 July 2020
Available online 10 July 2020
Editor: V. Anastasia

Memory effects in the exact Kundt wave spacetimes are shown to arise in the behaviour of geodesics 
in such spacetimes. The types of Kundt spacetimes we consider here are direct products of the form 
H2 × M(1, 1) and S2 × M(1, 1). Both geometries have constant scalar curvature. We consider a scenario 
in which initial velocities of the transverse geodesic coordinates are set to zero (before the arrival of the 
pulse) in a spacetime with non-vanishing background curvature. We look for changes in the separation 
between pairs of geodesics caused by the pulse. Any relative change observed in the position and velocity 
profiles of geodesics, after the burst, can be solely attributed to the wave (hence, a memory effect). For 
constant negative curvature, we find there is permanent change in the separation of geodesics after the 
pulse has departed. Thus, there is displacement memory, though no velocity memory is found. In the 
case of constant positive scalar curvature (Plebański–Hacyan spacetimes), we find both displacement and 
velocity memory along one direction. In the other direction, a new kind of memory (which we term as 
frequency memory effect) is observed where the separation between the geodesics shows periodic oscillations 
once the pulse has left. We also carry out similar analyses for spacetimes with a non-constant scalar 
curvature, which may be positive or negative. The results here seem to qualitatively agree with those 
for constant scalar curvature, thereby suggesting a link between the nature of memory and curvature.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The study of memory effects has resurfaced recently since a 
suggested possibility of detection in advanced detectors like aLIGO, 
LISA and PTA [1], [2]. The frozen-in ‘memory’ in the freely falling 
detectors results in a DC shift in the net relative position (or rela-
tive velocity) due to the passage of a gravitational wave. In radia-
tive asymptotically flat spacetimes, this change is related to Bondi-
Metzner-Sachs (BMS) [3] transformations relating two inequivalent 
gravitational vacua. On the theoretical front, a triangular relation-
ship has been conjectured by Strominger [4] relating soft gravitons 
with BMS symmetries and memories.

Historically, the idea of a memory effect was first mentioned 
in a non-resonant detection method put forward by Zel’dovich and 
Polnarev [5] for measuring the radiation emitted from gravitational 
collapse of stars inside globular clusters. The term ‘memory effect’ 
was later coined by Braginsky and Grishchuk [6] who defined it 
as the change in the metric perturbation between initial and final 
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times (remote past and distant future). Christodoulou [7] general-
ized the idea of memory in the full nonlinear theory where the 
stress energy component due to gravitational radiation travels to 
null infinity. Subsequently, Thorne [8] attributed gravitons, sourced 
by the outgoing radiation, as being responsible for the nonlinear 
Christodoulou effect. Bieri, Garfinkle and several others considered 
massless fields propagating to null infinity [9] and, consequently, 
introduced an electromagnetic (photon) memory effect [10] as well 
as a neutrino memory effect [11]. Memory effects and their con-
sequences have been discussed, of late, in cosmology [12,13], extra 
dimensional physics [14–16], modified gravity [17,18] and massive 
gravity [19].

Displacement and velocity memory effects have been addressed 
by solving geodesic equations for sandwich wave spacetimes [20–
22]. Such spacetimes may contain a localised gravitational wave 
pulse between two flat Minkowski regions. In this letter, we study 
memory effects in spacetimes where the two regions separated by the 
pulse have finite curvature. Memory effects in radiative spacetimes 
with non-flat backgrounds have been previously analysed in [23]
where the authors have separated the deviation vector arising due 
to the background curvature and the gravitational wave by solving 
the geodesic deviation equation in Fermi normal coordinates and 
isolating the radiative part. Memory in cosmological spacetimes 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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(de Sitter, FRW) [12,13] have been worked out by taking pertur-
bations of the electric and magnetic parts of the Weyl tensor and 
looking at the behaviour (peel off) of these fields at large spatial 
distances. Here, we solve the geodesic equations for the spacelike co-
ordinates (x(u), y(u)) and look for signatures that a gravitational wave 
pulse may imprint on the geodesics, after its departure from the wave 
region.

We work with non-flat Kundt geometries [24] as backgrounds. 
Kundt spacetimes constitute exact radiative solutions of Einstein 
field equations admitting a nonexpanding, nonshearing and non-
twisting null geodesic congruence (NGC). The NGC is not in general 
covariantly constant. Hence, the wave surfaces are not necessar-
ily Euclidean transverse planes as the null rays are not parallel to 
each other. Thus, this class of spacetimes are generalisations over 
pp wave spacetimes [25,26] where u-constant hypersurfaces are 
planar. Such geometries have been extensively studied in all alge-
braically special spacetimes (Petrov classes of type II, III, D, N and 
O) for vacuum, pure radiation, non-zero cosmological constant and 
also in higher dimensions (see [27] for a comprehensive review) 
[28–33]. These classes of spacetimes also admit gyratonic solutions 
[34,35] which represent localized spinning sources moving at the 
speed of light. A ring of particles is seen to rotate in presence of a 
gyraton as they impart angular momentum to the ambient space-
time due to its spin [34]. Such metrics consist of an interior and 
an exterior region depending upon the presence or absence of gy-
ratonic matter respectively.

Throughout this letter, we shall consider the outside region 
which only contains gravitational radiation. Such waves are known 
as Kundt gravitational waves which propagate on different space-
time backgrounds [36,37]. The backgrounds that we choose to 
work with are constant curvature direct-product spacetimes. The 
two cases studied are H2 × M(1, 1) and S2 × M(1, 1) (Plebański–
Hacyan). We mainly focus on studying geodesic motions in such 
spacetimes for a sech-squared pulse profile with quadratic depen-
dence on transverse coordinates x, y. Such sandwich profiles have 
been investigated previously by the authors [38] while understand-
ing B-memory in exact plane wave spacetimes.

Exact solutions having nonzero twist have been studied with 
[39] or without cosmological constant [40] exhibiting nonplanar 
wavefronts for constant negative Gaussian curvature. These solu-
tions are known as twisted gravitational waves and have influence 
on the motion of spinning test particles [41]. A careful analysis of 
the geodesics for these two cases reveals significant differences in 
their nature of memory. For the case with constant positive curva-
ture, a new frequency memory effect is found which is extensively 
discussed. To further strengthen the relation between background 
curvature and the ensuing memory effect, we also study other 
background spacetimes which have varying scalar curvatures with 
the same overall sign.

2. Metric and its matter content

The general form of a Kundt spacetime is as follows [42]:

ds2 = 2du(dv + W1dx + W2dy) + Hdu2 + 1

P 2
(dx2 + dy2) (1)

P ≡ P (u, x, y), H ≡ H(u, v, x, y), W i ≡ W i(u, v, x, y), ∀ i ε {x, y}.
The NGC is given by a vector field k, where k = ∂v . k is also 

orthogonal to tangent vector fields to the spatial wave surfaces. We 
do not consider gyratonic matter present and hence W i is always 
set to zero. We will also assume H is independent of v . Thus, the 
metric line element used is:

ds2 = 2dudv + Hdu2 + 1

P 2
(dx2 + dy2) (2)

The Ricci scalar and the only non zero Einstein tensor for the 
Kundt wave metric given in Eq. (2) turn out as follows:
R = 2�(ln P ) (3)

Gu
u = −�(ln P ) (4)

Here, � = P 2(∂xx + ∂yy) [33]. For spacetimes having non van-
ishing cosmological constant and pure radiation (electromagnetic 
fields) [37], the Einstein field equations for the Gu

u component 
(see Eq. (4)) become

�(ln P ) = � + ρ (5)

Since the L. H. S. of Eq. (5) involves derivatives of only transverse 
x, y coordinates and its R. H. S. is a constant, there is no loss of 
generality in setting P independent of u. The canonical choice for 
P given by Eq. (5) generates wave surfaces of constant curvature 
[42]. In our letter, we consider both the positive (S2) and nega-
tive (H2) constant curvature cases separately.1 Hence, the metric 
(2) can be thought as gravitational waves propagating over a back-
ground geometry. The background spacetimes that we work with 
are direct-product constant curvature spacetimes –H2 × M(1, 1)

and S2 × M(1, 1) (Plebański–Hacyan spacetimes).2 Eq. (4) shows 
the presence of a non-vanishing energy momentum tensor follow-
ing from Einstein field equations. This matter content is nonzero 
and finite at every u-constant hypersurface. The presence of matter 
allows these hypersurfaces to have finite curvature (as is evident from 
Eq. (3)) and hence they are not the usual Euclidean transverse planes.3

Here, we choose H = sech2(u)(x2 − y2) and P ≡ P (x, y) acts as 
the square root of the inverse conformal factor determining the 
curvature of spatial 2-surfaces. Initially, we choose P so that the 
geometry is S2 or H2. Later, we will relax this constant curvature 
criterion and examine the behaviour of geodesics in variable cur-
vature metrics having a fixed sign for the curvature.

3. Kundt waves in H2 × M(1,1)

The functional form of P (x, y) = y. The invariant Ricci scalar is 
−2 (negative). The metric takes the form:

ds2 = 2dudv + sech2(u)(x2 − y2)du2 + 1

y2
(dx2 + dy2) (6)

For the metric given in Eq. (6) the geodesic equations for x, y are:

d2x

du2
− 2

y

(
dx

du

)(
dy

du

)
− sech2(u)xy2 = 0 (7)

d2 y

du2
− 1

y

(
dy

du

)2

+ 1

y

(
dx

du

)2

+ sech2(u)y3 = 0 (8)

Note that in the asymptotic regions (i.e. u → ±∞), constant x and 
y solve both the equations. This happens even though the space-
time has a negative scalar curvature.

The geodesic equations cannot be solved analytically and hence 
they are solved numerically using Mathematica 10. For this class of 
metrics, u acts as an affine parameter. We analyse geodesics and 
plot the solution of geodesic equations along the transverse spatial 
directions. The plots are given in Figs. 1a and 1b.

The plots in Figs. 1a and 1b demonstrate that the geodesics 
have permanent separation after encountering the gravitational 
wave pulse. The change in position before and after is dependent 
on the initial position of the pulse. We observe that the separation 
increases along x while it decreases along y.

We now look at the analysis of velocity of the geodesics from 
the plots shown in Figs. 2a and 2b.

1 The zero case corresponds to the pp wave metric.
2 M(1, 1) denotes Minkowski spacetime of 1+1 dimension.
3 This is unlike pp-wave spacetime where the hypersurfaces are exact Euclidean 

transverse planes having zero spatial curvature.
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Fig. 1. Displacement memory effect in Kundt waves with spatial 2-surfaces having negative curvature.

Fig. 2. Velocity memory effect for Kundt waves with spatial 2-surfaces having negative curvature.

Fig. 3. Displacement memory effect in Kundt waves for constant positive spatial 2-surfaces with initial positions as (x, y) = {(1, 2), (5, 6), (7, 8)} for the three geodesics 
respectively denoted in orange, blue and yellow respectively.
Fig. 2 shows that there is no velocity memory effect in these 
spacetimes. There is a transient peak corresponding to the pres-
ence of the pulse. After the departure of the pulse, the velocity 
vanishes. Thus along both directions (i.e. x & y), there is no change 
in the velocity of the timelike4 geodesics at early and late times.

Hence, from this metric we can clearly observe displacement 
memory effect as proposed by Zel’dovich and Polnarev and others 
[5], [6].

4. Kundt waves in S2 × M(1,1)

The conformal factor becomes sech2(y) (i.e. P = cosh y). The 
metric takes up the form:

ds2 = 2dudv + sech2(u)(x2 − y2)du2 + sech2(y)(dx2 + dy2) (9)

The geodesic equations for the transverse spatial coordinates are:

d2x

du2
− 2 tanh(y)

(
dx

du

)(
dy

du

)
− x

sech2(u)

sech2(y)
= 0 (10)

4 In these classes of metrics, the geodesic equations for x(u), y(u) are same for 
both timelike and null.
d2 y

du2
− tanh(y)

(
dy

du

)2

+ tanh(y)

(
dx

du

)2

+ y
sech2(u)

sech2(y)
= 0 (11)

We were unable to find analytical solutions for Eqs. (10) and (11). 
Hence, they are solved numerically using Mathematica 10. The plots 
are given in Figs. 3a and 3b.

In Fig. 3, we observe different types of memory along different 
axes. For the x direction given in Fig. 3a, there is increase in sep-
aration after the passage of the pulse. But along the y direction, 
we find in Fig. 3b that the geodesics tend to oscillate about zero 
value. Thus, the separation between them also oscillates. This is a 
new phenomenon which has not yet been discussed in the previ-
ous literature on memory. We call it as the frequency memory effect. 
The reason for calling it as a memory effect is because there is a 
characteristic frequency with which the separation oscillates after 
the passage of the pulse. We will study this effect extensively later. 
Next, we look into the velocities of the trajectories.

The plots in Fig. 4 show there is velocity memory present. In 
the x direction, the final velocity settles to a fixed value. While in 
y direction, there is periodical fluctuation owing to the frequency 
memory effect. Moreover, we find difference in amplitudes because 
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Fig. 4. Velocity memory effect for Kundt waves with spatial 2-surfaces having positive curvature. In the x direction, the three colours denote the velocities of the geodesics 
having the same initial velocities as given in Fig. 3a. In the y direction we have only plotted two geodesics corresponding to the first two values of initial positions, for better 
clarity.

Fig. 5. Frequency memory effect.
the geodesics which seem to oscillate more frequently have higher 
magnitudes of velocity.5

5. Frequency memory effect

The oscillatory behaviour of geodesics after the passage of pulse 
in Fig. 3b calls for further attention. Hence, we examine the plots 
with three different initial positions and look at the nature of sep-
aration of nearby geodesics.

Fig. 5a reveals the behaviour of geodesics post departure of the 
pulse for three different initial configurations. In the following ta-
ble we give the details of the frequency (wavelength) of oscillation 
for three separate initial positions.

Table 1
Frequency and wavelength of oscillation corresponding to different initial separa-
tions.

x y 1st trough 2nd trough Frequency 
(u−1)

λ (in units of u) Colour

2.0 3.0 5.98 7.13 0.869565 1.15 Light green
0.1 0.1 28.82 65.67 0.027137 36.85 Red
0.01 0.01 278.5 647.9 0.002707 369.4 Black

The distance between two successive troughs/crests is denoted 
as the wavelength (in units of u). The frequency is taken as the 
inverse of the wavelength. From the above Table it is clear that 
higher value of y-coordinate initially gives a high frequency os-
cillation (shown in light green) while smaller values yield smaller 
frequencies (shown in black in Fig. 5a).

There seems to be an occurrence of beats when we consider the 
evolution of geodesic deviation as shown in Fig. 5b. The variation 
in the pattern is due to the difference in y-coordinate values of 

5 While taking time derivative over the phases of a wave, the frequency compo-
nent come out as a factor.
each geodesic. Thus, one can attribute a particular frequency to 
a single geodesic solution. Hence, it can be said that for positive 
spatial curvature there is a particular frequency associated with 
the geodesic caused entirely by the passage of a gravitational wave 
pulse. Similar to displacement and velocity memory, we may name 
this oscillatory feature as a frequency memory effect.

6. Pulse nature

In our entire analysis we have used sech-squared as the nature 
of our pulse profile. However, the nature of memory is quite inde-
pendent of the nature of the chosen profile. In fact, for any such 
sandwich spacetimes (we have checked for the Gaussian pulse 
profile) one can observe permanent displacement as well as os-
cillatory behaviour for constant negative curvature and positive 
curvature respectively.

7. Variable curvature

The geodesic motion studied so far were in constant curvature 
direct-product spacetimes. The results obtained show that there 
are distinct classes of memory for different background curva-
tures. Thus, it is essential to analyse geodesics in varying curvature 
spacetimes to understand the connection between memory and 
curvature. We choose certain functional forms for P that yields 
varying scalar curvature with an overall positive or negative sign 
for the metric (2).

Negative curvature. In order to achieve variable negative curvature 
we take P = sech y (scalar curvature, R = −2 sech4 y), for which 
the two-dimensional xy space is that of the catenoid. The geodesic 
equations are as follows:

d2x

du2
+ 2 tanh(y)

(
dx

du

)(
dy

du

)
− x

sech2(u)

2
= 0 (12)
cosh (y)
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Fig. 6. Displacement memory effect for Kundt waves with spatial 2-surfaces having variable negative curvature with initial positions of the geodesics as {(3, 2), (5, 3)} for two 
geodesics denoted by orange and blue colours respectively.

Fig. 7. Displacement memory effect for Kundt waves with spatial 2-surfaces having variable positive curvature with initial positions of the geodesics as {(3, 2), (5, 3)} for two 
geodesics shown in orange and blue colours, respectively.
d2 y

du2
+ tanh(y)

(
dy

du

)2

− tanh(y)

(
dx

du

)2

+ y
sech2(u)

cosh2(y)
= 0 (13)

In Fig. 6a we see that initially parallel geodesics, after the pas-
sage of the pulse, undergoes a change in separation along x, which 
is almost constant. As seen in Fig. 6b, for the y coordinate there is 
an intersection but finally there is again a constant separation with 
a non zero slope. This nature is similar to the plots in Fig. 1 indi-
cating that negative curvature solutions produce only displacement 
memory.

Positive curvature. In order to have variable positive curvature on 
the two dimensional xy space, we take P = sec y (scalar curvature, 
R = 2 sec4 y > 0). The geodesic equations become:

d2x

du2
− 2 tanh(y)

(
dx

du

)(
dy

du

)
− x

sech2(u)

cos2(y)
= 0 (14)

d2 y

du2
− tanh(y)

(
dy

du

)2

+ tanh(y)

(
dx

du

)2

+ y
sech2(u)

cos2(y)
= 0 (15)

Fig. 7a shows monotonic increase in displacement memory. In 
Fig. 7b we find the same oscillatory behaviour as found earlier in 
Fig. 3b. This once again corresponds to the fact that positive cur-
vature solutions produce a frequency memory effect through an 
oscillatory behaviour after the pulse has departed.

8. Conclusions

Memory effects in Kundt wave spacetimes have been worked 
out in this letter. The method we adopt is to analyse the evolution 
of timelike geodesics before and after they encounter a localised 
gravitational wave source. The wave propagates on background 
(direct-product) spacetimes S2 × M(1, 1) and H2 × M(1, 1). We 
consider a metric in which the entire curvature comes from the 
two dimensional induced metric of the transverse wave surfaces. 
Using Einstein equations, we try to motivate the reason for spatial 
curvature in the wave surfaces. We find that matter is present on 
every u-constant hypersurface, which results in it being curved.

The geodesic solutions are obtained numerically and plotted. 
We find displacement memory in H2 × M(1, 1) along both x, y
directions. In S2 × M(1, 1), we find displacement and velocity 
memory along x direction while a new frequency memory effect ap-
pears in the y direction. The term memory is attributed to this 
new phenomenon because there is a characteristic periodic oscil-
lation of the geodesics caused due to the gravitational wave pulse. 
Frequency memory is explicitly studied for three different initial 
configurations. We observe that higher initial value of the coordi-
nate yields higher frequencies (low wavelengths) and vice versa. 
Three different cases are tabulated (Table 1) for better quantitative 
understanding.

Our entire analysis is independent of the choice of sandwich 
pulse profiles. For example if we assume a general Gaussian pulse 
(checked, but not shown here) we recover the same nature of 
memory as for the sech-squared pulse discussed above. We also 
explore variable curvature scenarios which have same sign. It is 
noted that similar qualitative features are retained in the latter 
case where curvature is not constant.

Thus, through studies on the memory effect one may under-
stand the behaviour of test particle motion in various background 
spacetimes of the Kundt class in a better way. Studying B-memory 
[38,43,44] of geodesic congruences in Kundt wave spacetimes will 
perhaps reveal another type of memory. It will be of interest to 
know if a similar frequency memory effect arises for B-memory 
too.
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