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ABSTRACT

We extend the widespread use and versatility of pseudostates in the theoretical char-

acterization of properties of two-electron atoms and ions by using them in calculations

for three distinct physical processes. Atomic systems have infinitely many bound and

continuum states, posing a computational challenge for calculations involving per-

turbation sums over intermediate states. In this work, we construct two-electron

pseudostates variationally using a doubled basis set of correlated Hylleraas functions.

The first process we consider is the beta decay of 6He, an isotope of helium with

a halo nucleus that lives for 0.8 s. The electron-antineutrino correlation coefficient,

aβν , is related to the kinematics following this decay and is a frequent subject of low-

energy tests of the Standard Model—exotic interactions beyond vector–axial-vector

would signal new physics. The Coulomb pulse resulting from the change in nuclear

charge from Z = 2 to Z = 3 can shake off one or both of the atomic electrons of

the 6Li+daughter ion. The precise charge state fractions of the daughter ion affect

the kinematics of the decay, which are used to obtain aβν . We treat the shake-up

and shake-off processes in the beta decay of 6He by developing two-electron, con-

figuration interaction (CI) projection operators capable of distinguishing single- and

double-ionization channels [A. T. Bondy and G. W. F. Drake, Atoms 11, 41 (2023)].

The CI-like projection operators are formed using products of one-electron Sturmian

pseudostates that have a fascinating “triangular” structure, with a wide range of

nonlinear parameters, capable of spanning many distance scales and producing very-

high-energy (E > 1030 a.u.) pseudostates. We have reduced a theory-experiment

discrepancy by an order of magnitude and predict the charge-state fraction of 6Li3+

following this decay to be 0.35(5)% and 0.53(7)% for the 1 1S0 and 2 3S1 states of
6He, respectively—still much larger than the measured 0.018(15)% [T. A. Carlson et

al., Phys. Rev. 129, 2220 (1963)] and < 0.01% [R. Hong et al., Phys. Rev. A 96,

053411 (2017)].
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Secondly, we perform high-precision variational calculations which include finite-

nuclear-mass effects for spontaneous two-photon (2E1) decay rates in heliumlike ions

in the metastable 2 1S state, including the heavy species of muonic, pionic and an-

tiprotonic helium [A. T. Bondy, D. C. Morton, and G. W. F. Drake, Phys. Rev. A

102, 052807 (2020)]. This critical process helps determine population balances and

serves as a temperature and pressure probe in low-particle-density regimes such as

astrophysical planetary nebulae. In calculating the finite-nuclear-mass effects, mass

polarization was treated as a gauge-dependent power series in µ/M , leading to novel

algebraic relationships that test for gauge equivalence—for 20Ne8+ the length and

velocity gauge of the two-photon decay rates agree to 1 ppb. We generalize the alge-

braic relationships to test for agreement when finite-nuclear-mass effects are included

between length, velocity, and acceleration gauges for any nE1-photon transitions

[A. T. Bondy and G. W. F. Drake, Phys. Rev. A 108, 022807 (2023)]. These general

relations are tested and verified for three cases of spontaneous decay in heliumlike

ions: the E1 decays 2 1P – 1 1S and 2 3P – 2 3S and the 2E1 decay 2 1S – 1 1S. They

provide a powerful new way to test the accuracy of calculations involving approximate

wave functions.

Finally, the tune-out frequency near 726 THz for the 2 3S1 state of helium, which

corresponds in lowest order to a zero in the frequency-dependent polarizability, is

calculated as part of a joint theoretical-experimental effort [B. Henson et al., Science

376, 199 (2022)]. This provides a novel test of QED for a physical effect other than

the traditional energy level measurements, such as the Lamb shift. The problem

is reformulated as a zero in the Rayleigh scattering cross section to include higher-

order retardation effects. We present high-precision, variational calculations of the

Rayleigh scattering cross section in helium within the framework of nonrelativistic-

QED, including higher-order corrections due to relativistic, QED, and retardation

effects. This theoretical-experimental comparison tests QED effects and retardation

effects at the 30σ and 2σ level, respectively. The tune-out frequency is calculated to

be 725 736 252(9) MHz, while the measured value is 725 736 700(260) MHz, leaving

a 1.7σ discrepancy.

vii



DEDICATION

To mom and dad, who instilled in me a strong work ethic and gave me so much love,

and to Emily, who has encouraged and supported me throughout the past few years.

viii



ACKNOWLEDGEMENTS

My supervisor, Dr. Drake, has been an incredible mentor, guiding me into the world

of atomic physics. Early on, I realized the immense value of his guidance, and I am

deeply grateful for his influence on my personal and academic growth. Undoubtedly,

his intelligence, dedication, and hard work have inspired me and brought out the

best in my abilities. Patience and encouragement were always at the forefront of his

mentorship, especially when he supported my attendance at several conferences and

our joint papers. He encouraged me to pursue every opportunity that would advance

my career, such as conducting research abroad, teaching classes at the University

of Windsor, and serving on various committees, both at Windsor and for the APS.

Over time, these activities took time away from my research, and I am grateful he

allowed me the flexibility to pursue them. Regardless of the challenges, he has always

been kind and patient, often inviting me to events and into his home for meals and

gatherings. I strive to live up to the graciousness and generosity he has consistently

shown. Above all, I am thankful for the trust and freedom he has placed in me

throughout this journey.

Also, I would like to acknowledge the important influence that Dr. Klaus Bartschat

has had on my professional development and growth as a physicist. He hosted me

twice for extended research visits where I became familiar with laser-atom interactions

and attoscience, introducing me to the scattering side of atomic physics. He leads by

example and has always promoted my best interest. We have collaborated outside

of these visits and I have thoroughly enjoyed working with him. His generosity and

graciousness are greatly appreciated.

Next, I wish to thank the Department of Physics as they have truly treated me

as a family member. Overall, their contributions have been integral to my academic

journey. There are no words that can express how much I appreciate the support

I’ve received here. Long-lasting gratitude is due to Kimberly Lefebvre for our many

ix



discussions and camaraderie over these years and for the care she has shown for me. I

also want to acknowledge Nia Khuong for our discussions over the past few years and

for all of her help getting me across the finish line. Kindness has always been evident

in the mentorship I have received from Dr. Rangan, who served as both an academic

mentor and a faculty mentor for the SAGES teaching practicum I conducted with

her. Each letter she has written and every bit of advice she has given have been

invaluable to me. Understanding and encouragement came also from Dr. Rehse, who

I would like to thank for the wide-ranging discussions we have had over the years.

Support from Dr. Rau, Dr. Hammond, and Dr. Xiao has also been integral to my

development.

There are many other students over the years to whom I am grateful. Within

the Drake research group: PeiPei Zhang, Dan Venn, Maha Sami, Spencer Percy,

Cody McLeod, Eric Ene, Oliver Hallett, Ben Najem have all been wonderful to work

with and to share ideas with, physics or otherwise. I would also like to acknowledge

Griffin Howson, Sareen Sabra, and Sara Moezzi; it has been a pleasure to share an

office space with the three of you. Tristhal Parasram, Nathan Drouillard, Dimitri

Shinas, and Abo-Bakr Emara, it has been great to overlap with all of you as graduate

students. Lamies Sati, it was a pleasure getting to know you and to work together.

Evan Petrimoulx, it has been awesome working together and solving problems, you

have a bright future ahead of you! Dr. Eva Schulhoff, you played a significant role in

introducing me to this research group. I thank you for the many exciting discussions

that we have had over coffee over the years.

Outside of Windsor, I would like to acknowledge other close collaborators with

whom I had substantial contact: Dr. Donald Morton, Dr. Kathryn Hamilton, Dr.

Soumyajit Saha, and Dr. Juan del Valle. I am grateful for having crossed paths with

all of you and for everything that I have learned from you all and, above all, for

your friendship. I would also like to acknowledge Dr. Tom Kirchner, who wonderfully

taught me graduate quantum mechanics and atomic physics and has had a significant

positive influence on my career.

I am very grateful for Joshuah Trocchi, who has been a very supportive friend

x



for the past twelve years. We have spent countless hours working together and I

thank you for supporting me in this journey. Our discussions about books and other

subjects have been a treasure. Alex Merryfield, you have encouraged me through

times thick and thin and have always been a good sounding board. I appreciate our

many discussions and the great times that we have had. Thank you to all of my

friends for your generosity, kindness, and humour—I can only hope to return these

qualities to you.

My family has been an extreme source of support as well, especially including my

Grandma Bondy, Grandma Bartlett, and Grandpa Bondy, who have passed away.

Each of them played a significant role in both this academic journey and in who I

am as a person. The remainder of my family have also been tremendously supportive

and I am so grateful and fortunate to have them in my life. In particular, I would

like to thank my Grandpa Bartlett, my Aunt Donna, Aunt Heather and Uncle Brian,

and my Aunt Janice and Uncle John. All of you were there for me when my mom

passed away and I am eternally thankful for your presence in my life. That goes for

Lauren and Shannon, Megan, Nicole, Ally, and Ben as well. To the entirety of my

family: thank you for your endless support and love. To Gudi, I appreciate your

kindness and concern for me over the years, and for taking good care of my dad. To

Ramón and Gaby, I look forward to many great years with you both. Your kindness,

intelligence, and magnanimity are imprinted on your amazing daughter. I am eager

to soon return to the beautiful Peru as a Spanish speaker.

Emily, you are a source of stability and inspiration in my life and I am eager to

build a life together. You have been my rock for the past few years and have endlessly

encouraged me to complete this dissertation and have always supported me. Love you!

Mom and Dad, thank you for all of your love since the day I was born. I love

you both with all my heart. Thank you for always insisting that I do my best and

for showing interest in whatever I was interested in. Dad, thank you for carrying on

in life and always leading by example. You are the hardest working person I know.

Mom, it truly does not feel that a day goes by where I do not notice your influence

on my life. I still feel your love and am guided by it.

xi



TABLE OF CONTENTS

DECLARATION OF CO-AUTHORSHIP / PREVIOUS
PUBLICATION iii

ABSTRACT vi

DEDICATION viii

ACKNOWLEDGEMENTS ix

LIST OF FIGURES xvi

LIST OF TABLES xxi

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of Research Projects . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Introduction to pseudospectral methods . . . . . . . . . . . . . . . . . 6
1.3.2 Examples using pseudospectra . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Scope and Significance of Research . . . . . . . . . . . . . . . . . . . . . 9
1.5 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Theoretical Methods 12
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Atomic units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 One-electron Schrödinger equation . . . . . . . . . . . . . . . . . . . . . 14
2.4 Sturmian functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 The oscillation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Two-electron Schrödinger equation . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.2 Spin: singlet and triplet solutions . . . . . . . . . . . . . . . . . . . . . 22
2.6 Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.1 Rayleigh-Ritz variational method . . . . . . . . . . . . . . . . . . . . . 24
2.6.2 Equivalent generalized eigenvalue problem . . . . . . . . . . . . . . . . 25
2.6.3 Extension to excited states . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Hylleraas Trial Wave Functions . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.1 Statement of Hylleraas basis functions . . . . . . . . . . . . . . . . . . 28
2.7.2 Nonlinear parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.3 Strategies and completeness . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7.4 Comparison of Hylleraas construction to other basis sets . . . . . . . . 31

xii



2.8 Integrals involving Hylleraas wave functions . . . . . . . . . . . . . . . . 33
2.8.1 General integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8.2 The angular part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8.3 Radial integrals and recursion relations . . . . . . . . . . . . . . . . . . 36
2.8.4 Hamiltonian and overlap matrix elements . . . . . . . . . . . . . . . . 38

3 Beta Decay and Charge-state Distributions in 6He 40
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Historical Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 The V − A theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 The β−ν angular correlation coefficient . . . . . . . . . . . . . . . . . 49
3.3.3 Uses in searches for new physics . . . . . . . . . . . . . . . . . . . . . . 52
3.3.4 Experimental measurements of aβν . . . . . . . . . . . . . . . . . . . . 54
3.3.5 Advantages of light atoms . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.6 Connection to atomic physics . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.1 Kinematic description . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.2 Physical assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.1 Previous theoretical attempts . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.2 Foundation: doubled Hylleraas basis functions . . . . . . . . . . . . . . 66
3.6 Overestimated Double Ionization . . . . . . . . . . . . . . . . . . . . . . 69
3.6.1 Energy does not describe charge state . . . . . . . . . . . . . . . . . . 69
3.6.2 Suppression of double ionization . . . . . . . . . . . . . . . . . . . . . 71
3.7 Projection Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.7.1 Construction of projection operators . . . . . . . . . . . . . . . . . . . 74
3.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.9 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.9.1 Delta function matrix elements: A potential new method for treating

one- and two-channel scattering problems . . . . . . . . . . . . 87

4 Finite-nuclear-mass Effects in Two-photon Decay in Heliumlike Ions 91
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Historical Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.1 Astrophysical observation . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.2 Theoretical motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4 Brief history of calculations and experiments . . . . . . . . . . . . . . . . 100
4.5 Theoretical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5.1 Single-photon transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5.2 Two-photon transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6 Wave functions for calculation . . . . . . . . . . . . . . . . . . . . . . . . 108
4.6.1 Reduced-mass atomic units . . . . . . . . . . . . . . . . . . . . . . . . 108

xiii



4.7 Finite-Nuclear-Mass Effects . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.7.1 Three sources of finite-mass effects . . . . . . . . . . . . . . . . . . . . 109
4.7.2 Constitutive relationships . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.8 Treating mass polarization . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.8.1 Algebraic relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.8.2 Generalization to higher-order transitions . . . . . . . . . . . . . . . . 113
4.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.9.1 Two-photon decay rates . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.9.2 Testing the algebraic relationships . . . . . . . . . . . . . . . . . . . . 119
4.10 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.10.1 Inclusion of relativistic effects . . . . . . . . . . . . . . . . . . . . . . . 125
4.10.2 Extend to additional structure problems . . . . . . . . . . . . . . . . . 127
4.10.3 Extension to highly charged heliumlike ions . . . . . . . . . . . . . . . 127

5 Testing QED with the Tune-out Frequency in Helium 128
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3 The tune-out frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3.1 Suitability of the tune-out frequency for testing QED . . . . . . . . . . 132
5.4 Brief overview of the experiment . . . . . . . . . . . . . . . . . . . . . . 134
5.5 Theoretical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.5.1 Consequence of linear polarization of probe beam . . . . . . . . . . . . 136
5.5.2 Nonrelativistic RSCS or dynamic polarizability . . . . . . . . . . . . . 137
5.5.3 NRQED formulation of the tune-out frequency . . . . . . . . . . . . . 138
5.5.4 Relativistic corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5.5 QED corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5.6 Magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.5.7 Retardation corrections . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.7 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Conclusion and Future Work 146
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3 Synthesis of Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.5 Broader Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A Methods of Solving the Generalized Eigenvalue Problem 154
A.1 Power method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2 Brute force method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xiv



B Derivation of Fermi’s Golden Rule and Comments on Spontaneous
Decay 159

B.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
B.2 Spontaneous decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

C Handedness of Leptons in the SM 164

D Assumptions in Treating Beta Decay 166

E Derivation of Two-photon Decay Rate and Rayleigh Scattering Cross
Section 170

E.1 Setting the Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
E.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
E.3 Rayleigh scattering formalism . . . . . . . . . . . . . . . . . . . . . . . . 175

F Integration to Obtain the Decay Rate 178

G Derivation of Algebraic Relations from Pertubation Theory 179

REFERENCES 182

VITA AUCTORIS 202

xv



LIST OF FIGURES

1.3.1 Shown are the polarizabilities, calculated according to Eq. (1.2), of the

ground state of hydrogen (The correct answer in the nonrelativistic

limit is 4.5 a.u.). The pseudospectra used have basis functions of the

form χj =
∑N

i=1 cijr
ie−αrY10, as described in the text. The nonlin-

ear parameter α is varied to show regions of stability. It is remark-

able that, even for a two-term pseudospectrum, when α = 1, there

is already an exact representation of the complete spectrum. For a

five-term pseudospectra, we see a large region of stability, where dz is

correctly calculated for the entire α ∈ [0.44, 1.4]. . . . . . . . . . . . 8

1.3.2 The partial sum of the Bethe logarithm of H, β(E), is plotted as a

function of the last—also largest— energy contained in the partial

sum. Created using the formulation developed by Drake and Goldman . 9

2.4.1 The principle of generating solutions to the Sturm-Liouville (SL) equa-

tion is shown. By holding E fixed to some negative number and

progressively increasing λ in Eq. (2.17), we obtain more and more so-

lutions. The spacings are not drawn to scale; the only relevant detail

is that more and more states are pulled below the fixed E = −ϵ. . . 19

2.5.1 An illustration of Hylleraas coordinates. The full set of independent

radial (r1 = |r1|, r2 = |r2|, r12 = |r1 − r2|) and angular (θ1, ϕ1, χ)

coordinates are shown for two electrons located at r1 and r2 relative

to the centre-of-mass. Here, θ1, ϕ1 are the polar and azimuthal angles

of electron 1 and χ is the angle of rotation of the rigid triangle formed

by the r1, r2 and r12. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

xvi



2.6.1 Illustration of the Hylleraas-Undheim-MacDonald theorem. For five sep-

arate calculations that solve the GEP in Eq. (2.32), each of which in-

creases the number of basis functions N , we see that (1) the N−1 old

eigenvalues of the previous calculation lie between the N new eigen-

values and (2) that each trial eigenvalue is an upper bound to the

corresponding exact eigenvalue. . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 A plot of the intensity of beta emission with a range of energies . This

result of Ellis and Wooster in 1927 shows unequivocally that the inten-

sity of beta particles, following the beta decay of radium, is shown to

vary continuously with energy. This confirmed the earlier Chadwick

experiments with significantly greater resolution. . . . . . . . . . . . 44

3.3.1 The weak interaction in beta decay. The left panel shows the post-β−-

decay products with a daughter ion and an ejected beta particle e−

with an inset showing the nuclear-level products of the β−-decay of a

neutron. The Feynman diagram corresponding to this inset is shown

in the right panel. Images are in the public domain. . . . . . . . . . 45

3.3.2 Scott diagram showing the value of aβν as a function of the Fermi fraction

x, which characterizes the degree of mixing in the decay. The solid

red line corresponds to the V − A structure of the weak interaction

observed in nature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.3 Kinematics following the beta decay of 6He. The angle θ between the

electron and antineutrino is related to the electron-antineutrino corre-

lation coefficient – the experimental quantity of interest in connection

with searches for NP. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.4 The predicted shapes of the recoiling daughter ion’s (RI) momentum are

shown for the two possible Fermi interactions (vector and scalar) and

the two possible Gamow-Teller interactions (axial-vector and tensor). 56

3.6.1 Energy level diagram of 6Li+ with the charge states indicated. Notably,

the E > 0 region contains both the single and double ionization channels. 70

xvii



3.6.2 This diagram illustrates the phase space arguments suggesting that dou-

ble ionization is rare. In the case where energy/momentum are not

equally shared between the two electrons, shown in panel A, one elec-

tron will fall back and become bound, creating a singly ionized state,

shown in panel B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7.1 Schematic indicating the role of the projection operators P++, namely,

to resolve the overlapping continua in the E > 0 a.u. region. The idea

is to form the projection operators using two-electron basis functions

Φ(++) that are constructed as doubly ionized states. . . . . . . . . . 73

3.7.2 Upper panel: Comparison of a one-electron pseudostate radial wave

function with the corresponding exact Coulomb wave function at the

same energy (E = 0.06 a.u.) near the threshold. In the case of dou-

ble ionization, both electrons have wave functions of this form. This

shows that the pseudostate representation remains accurate out to

reasonably large distances. Lower panel: The two one-electron states

(E1s = −4.5 a.u. and Ek = 4.56 a.u.) corresponding to a near-

threshold single-ionization state, demonstrating that the region near-

est the nucleus is that which contributes when taking their product

and forming projection operators as described in the present work. . 77

3.8.1 An example of convergence with respect to the number of partial waves

ℓ (red dots) for the 6Li3+ probability following the decay of 6He(2 3S)

for the case Ω1 = Ω2 = 8. This is the top left result (the top number)

for the 6He(2 3S) section of Table 3.8.1. . . . . . . . . . . . . . . . . 82

xviii



3.9.1 The delta function matrix element, ⟨n 1P |δ(r1)|n 1P ⟩ ≡ ⟨δ(r1)⟩n 1P ,

normalized to the ground state value ⟨δ(r1)⟩1 1S is calculated for the
6He(n 1P ) pseudostates well into the doubly ionized continuum, up

to E = 120 eV. Several basis sets are included with 104 to 446 terms.

The ground-state and 2 1P energies are shown, along with the first and

second ionization thresholds. The purpose of this graph is to illustrate

that the Hylleraas pseudostates lose their “1s” character before their

energies even reach the second ionization threshold. . . . . . . . . . 89

4.2.1 This diagram illustrates the difference between single and multiphoton

ionization of an atom with ionization potential Ip and kinetic energy

KE of the ejected electron. In weak intensity regimes, single-photon

processes such as the photoelectric effect occur according to ℏω1 =

KE + Ip, however, in higher intensity regimes multiphoton processes

can take place where several photons (in this case 4) can make up

the energy ℏω1. Goeppert Mayer showed that the correct equation is

Nℏω = KE + Ip, where N > 1 is possible in strong fields. . . . . . 94

4.3.1 Energy level diagram for the n = 2 manifold of helium, illustrating those

metastable processes that are of astrophysical interest and indicating

the decay mechanism of those of interest. . . . . . . . . . . . . . . . 96

4.3.2 Comparing the line intensities due to recombination from the n = 2

manifold observed in the cosmic microwave background (CMB) spec-

trum. Here, the 2E1 decays in hydrogen and helium, respectively, the

thicker and thin (red) dotted lines, are compared with the dominant

E1 lines in H and He, respectively, the thick and thin solid (black)

lines. Calculations from Wong, Seager, and Scott. . . . . . . . . . . . 97

4.9.1 Plots of the two-photon emission rate w(2γ)(4He) (black) and the differ-

ence ∆w(2γ) = w(2γ)(µ2-4He) − w(2γ)(4He) (red) as fractions y of the

unit energy range normalized to unity. . . . . . . . . . . . . . . . . . 119

xix



5.3.1 The level shifts for the 2 3S1 state and the 2 3P / 3 3P manifolds are

shown for the cases of (left to right) no laser light, and then for light of

frequency less than, equal to, and greater than the tune-out frequency.

The noteworthy feature of incident light at the tune-out frequency is

that the energy shift in the 2 3S1 vanishes. . . . . . . . . . . . . . . . 131

5.3.2 Partial energy level diagram of 4He, showing in particular the relevant

transitions between the 23S1 state and the 23P/33P manifold, between

which the tune-out frquency occurs. The tune-out frequency studied

in this work is very near 726 THz, below the 771 THz transition to

33P shown in blue. Not drawn to scale—the splittings are greatly

exaggerated in this drawing. . . . . . . . . . . . . . . . . . . . . . . 133

5.3.3 This curve displays the dynamic polarizability as a function of the fre-

quency of the applied laser light. The discontinuities occur when the

laser is in resonance with transitions between the (from left to right)

2 3S and n = 2, 3, 4 3P manifolds. Between these discontinuities, the

polarizability must pass through zero—these are the so-called tune-out

frequencies. For reasons that are explained in the text, it is the tune-

out (fTO) around 726 THz, indicated by the red arrow, that is studied

presently to test QED. Each vertical line stands for the spin-orbit-split

manifold and contains additional tune-outs that are not useful since

their contributions are completely dominated by the states within the

manifold and adhere to 1:3:5 geometric considerations . . . . . . . . 134

5.6.1 A visual display of the material in Table 5.6.1. The difference between

theory and experiment (checkered bar), along with their respective

uncertainties (in crosshatch), are shown. Also depicted are the mag-

nitudes of the theoretical contributions outlined in Table 5.6.1 are

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xx



LIST OF TABLES

2.7.1 Comparison of the variational ground-state energy obtained using Hyller-

aas trial functions formed according to Eq. (2.34) containing all powers

of r1 and r2, but only select powers of r12 . It can be seen that odd

powers of r12 contribute significantly to improving the accuracy. . . . 30

2.7.2 Comparison between the level of accuracy that can be achieved using

the Hartree-Fock method and various correlated variational wave func-

tions. The Hylleraas basis states achieve much better accuracy than

the rest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Summary of the value of the beta-neutrino angular correlation coefficient

(aβν) for pure Fermi (x = 1) or Gamow-Teller (x = 0) decays. The

SM (V − A) predictions lie in the “Vector/Axial-Vector” column. . . 51

3.3.2 Ongoing nuclear beta decay experiments studying the correlation coef-

ficient aβν are listed. Each decay is classified by its “type”: Fermi or

Gamow-Teller and based on whether it is β− or β+ decay. See Table

V in Ref. for a comprehensive list of the older experimental efforts. 54

3.5.1 Comparison of previous theory with experiment for the probabilities

P (6Lik+) of forming the various charge states with k = 1, 2, 3 following

beta decay of 6He(1 1S0) or 6He(2 3S1) as initial states. Ground state

results in the upper panel are from Carlson et al. . Metastable triplet

results in the lower panel are from Hong et al. . All quantities are

expressed in percent (%). . . . . . . . . . . . . . . . . . . . . . . . . 67

xxi



3.8.1 Convergence table for 6Li3+ probabilities for the initial states 6He(1 1S0)

and 6He(2 3S1). Zeroth- and partial second-order corrections (top

and bottom of each cell, respectively) from Eq. (3.53), taken in the

limit of infinite partial waves as shown in Fig. 3.8.1. Results are

expressed in percent(%) shown for different sizes of both the projection

operator (Ω1) and Hylleraas-type pseudostate (Ω2) basis sets used in

Eq. (3.42). The bottom entry is a partial second order correction,

which, as explained in the text, ultimately cancels. The top values

in the table for each state will be averaged to obtain the final 6Li3+

probability. This table is continued on the following page. . . . . . . 84

3.8.1 Table 3.8.1 (con’t): This is a continuation of Table 3.8.1 containing the

convergence table for forming 6Li3+ following the 6He(2 1S0) initial

state. The same description found in Table 3.8.1 and will not be

reproduced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.8.2 Number of terms N1(Ω1) and N2(Ω2) in the basis sets. The factor 8 for

N1(Ω1) accounts for the sum over partial waves up to ℓ = 7. . . . . 85

3.8.3 Previous and corrected 6Li3+ charge-state fractions for each initial state

following beta decay. All quantities expressed in percent (%). . . . . 86

3.8.4 Corrected probabilities p(6Lik+) of forming the various charge states of
6Lik+, k = 1, 2, 3 following the beta decay of 6He(1 1S0) or 6He(2 3S1)

as initial states. All quantities are expressed in percent (%). . . . . . 86

4.9.1 Convergence with respect to basis set size (N) of the 4He(2 1S0) two-

photon decay rates w(2γ)
r /α6 for a finite nuclear mass µ/M = 1.370 745 62×

10−4. The subscripts r and p denote the length (L) and velocity (V)

forms respectively. Units are atomic units. To convert to s−1, multiply

by α6/τe = 6242.763 420(56) s−1 where α = 7.297 352 5693(11)× 10−3

is the fine structure constant and τe = 2.418 884 326 5857(47)× 10−17

s is the atomic unit of time. Constants are taken from the CODATA

recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xxii



4.9.2 Extrapolated velocity (p) and length (r) two-photon decay rates w(2γ)/α6

for various atoms and ions, including the heavy-helium cases with both

electrons replaced by antiprotons (p̄), pions (π), or muons (µ). Units

are atomic units. To convert to s−1, multiply by α6/τx where τe is

given in Table I, τp̄ = 1.317 365 60×10−20 s, τπ = 8.85610×10−20 s, and

τµ = 1.169 852 69×10−19 s for the antiprotonic, pionic, and muonic

cases respectively. Numbers in parentheses () are estimated uncer-

tainties. Not to be confused with citations, in this table the number

in square brackets [ ] is the power of 10 that the quantity should be

multiplied by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.9.3 Two-photon decay rates w(2γ) /α6 for various atoms and ions, including

the heavy-helium cases for both finite and infinite nuclear mass. To

convert to s−1 multiply by α6/τx—see Table 4.9.2 for this quantity

and the values of τp̄, τπ, and τµ. . . . . . . . . . . . . . . . . . . . . . 117

4.9.4 Maximum two-photon decay rates, energy ranges, and the wavelengths

of the maximum rates. Values have converged to the figures quoted. 118

4.9.5 Final values for the two-photon decay rates, including finite nuclear mass

(∆w(2γ)
µ/M) and relativistic corrections (∆w(2γ)

rel ) from Drake . The total

w
(2γ)
total is compared with the relativistic CI calculations of Derevianko

and Johnson . Units are s−1 with an overall scale factor given in the

last column for all the entries. . . . . . . . . . . . . . . . . . . . . . 120

4.9.6 Mass-polarization parameters Cx and Dx from Eq. (4.39) are shown for

the one-photon decay processes in the indicated singlet and triplet

He and He-like ions, along with the accompanying algebraic relations,

Eqs. (4.55) and (4.56) for n = 1. For the triplet transition at the

bottom of the table, [†] indicates third-order contributions (Ex terms)

are included in the calculation and [‡] indicates they are omitted. . . 123

xxiii



4.9.7 Mass-polarization parameters Cx and Dx from Eq. (4.39) are shown

for two-photon 2 1S − 1 1S decay in He and He-like ions, along with

the accompanying algebraic relations, Eqs. (4.49) and (4.50), for the

metastable singlet transition indicated. . . . . . . . . . . . . . . . . . 124

5.4.1 Contributions to the measured tune-out frequency with their systematic

uncertainties. The 40 MHz uncertainty in the measurement itself,

however, is a statistical uncertainty. The polarization is the largest

contribution to the experimental uncertainty budget. . . . . . . . . . 136

5.6.1 Collection of the various theoretical contributions to the 23S1−23P/33P

tune-out frequency in helium near 725.7 THz. Finite-nuclear-mass

effects are included in the nonrelativistic and relativistic contributions. 144

xxiv



CHAPTER 1

Introduction

pseudo: being apparently rather than actually as stated; synonyms: sham,

spurious
— Merriam-Webster Dictionary

His [Isaac Newton’s] theory of the moon [i.e., the three-body problem] ...

made his head ache, and kept him awake so often, that he would think of

it no more.
— Edmond Halley, circa 1727 [1]

Physics thrives on crisis.

— Steven Weinberg, Rev. Mod. Phys. 61, 1 (1989).

1.1 BACKGROUND AND MOTIVATION

This dissertation explores two-electron atoms, such as helium, which have played a

fundamental role in developing quantum mechanics and quantum field theory. Even

before these subjects were formally developed, these systems played a crucial role in

nuclear physics and condensed matter physics. Helium was involved in Rutherford’s

gold foil experiment, which elucidated atomic structure, and Kammerlingh-Onnes’

discovery of superconductivity. It is also highly relevant in astrophysics; it is the

second-most abundant element in the universe. A recurrent theme in the study of

helium is its simplicity. With only two electrons, a system like helium, with its

theoretical simplicity and experimental accessibility, provides an ideal platform for
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probing the foundations of quantum mechanics which underpin our understanding of

the larger universe.

However, while atomic physics offers precise insights into certain quantum phe-

nomena, it also brings to light broader questions that remain unresolved, particularly

when we consider the universe as a whole. The Standard Model (SM) [2] is the most

sophisticated and stringently tested theory but fails to describe certain critical fea-

tures of the universe. The SM does not predict the existence of dark matter or dark

energy, yet astrophysical observations [3] provide compelling evidence for both [4]. In

fact, the SM only accounts for 4.6% of the energy-matter density of the universe. Fur-

thermore, the SM does not predict a universe with more matter than antimatter [5],

a fortunate feature of the universe for us, as we would not exist otherwise. Additional

problems the SM does not address include the hierarchy problem, neutrino masses,

the strong CP problem, and others such as proton decay or the cosmological constant

problem.1 This state of affairs constitutes something of a crisis in physics—our best

theories do not seem able to describe much of our universe.

Building particle colliders and searching for new particles through their direct ob-

servation has been the primary means for searching for new physics (NP) that would

help inform our understanding of the SM or expose its deficiencies. In these high-

energy collision experiments, new particles are created and then detected. Although

this effort is crucial, it is also costly. A complementary, substantially less expensive

approach is to search for NP by conducting precision measurements in atomic physics

and comparing the results with equally precise theoretical calculations. Finding de-

viations between theory and experiment is a signal for NP.

There are many examples where atomic physics as a subdiscipline contributes

to this search. For example, the SM predicts that CPT (charge, parity, and time

reversal) symmetry is exact.2 The ALPHA-2 collaboration at CERN (European Or-

ganization for Nuclear Research) tested and confirmed this hypothesis by performing

1Reconciling general relativity with the SM, via, e.g., string theory, does not constitute one of
these problems, although it might solve one or more of these issues.

2CPT symmetry is thought to hold for all physical phenomena. Stated more precisely, any
Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must have CPT sym-
metry [6].
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spectroscopy on antihydrogen [7]. Efforts within atomic physics have contributed

significantly to searches for dark matter, as outlined in Ref. [8]. It is unknown what

constitutes dark matter—a wide range of candidate particles have been studied, in-

cluding those made from ordinary matter, such as Massive Compact Halo Objects

(MACHOs) and primordial black holes, and also those involving exotic particles be-

yond the Standard Model, including Weakly Interacting Massive Particles (WIMPs)

and axions [9]. The goal of a broad class of these efforts is to do terrestrial exper-

iments to seek nongravitational interactions of dark matter with the particles and

fields of the SM [8]. An example is the cosmic axion spin precession experiment

(CASPEr), which considers and tests the possibility that axion dark matter could

cause the precession of nuclear spins [10].

Another incredibly active area of research involves the search for a nonzero electron

electric dipole moment (eEDM) [11–13] that currently sets the upper limit on its

value to 4.1× 10−30 e cm. A nonzero value3 would provide evidence for potential NP

mechanisms leading to the baryon asymmetry. Future experiments at York University

plan to place molecules in a cubic lattice of solid argon [15] or neon [16]. These

experiments can now probe energies on the order of 1 PeV,4 much greater than those

of which the Large Hadron Collider (13 TeV) [14] or its successor, the Future Circular

Collider (∼ 100 TeV) [19], are capable.

Further examples of atomic physics constituting NP searches include the g − 2

measurement in the electron [20] and the muon [21] and the so-called proton radius

puzzle [22, 23].5 Deviations between the QED predictions for either of these quantities

compared to their experimental measurement would be a signal for NP.

3The SM predicts an eEDM of approximately 10−38 e cm [14]; the lowest measured upper limit
is 4.1× 10−30 e cm [13].

4Progressively lowering the upper limit on the eEDM probes correspondingly higher energies via
ruling out new particles—expected to induce a much larger eEDM [17]— predicted at those higher
energies in extensions to the SM [18].

5The proton radius puzzle has an exciting, recent history that began with the surprising rev-
elation that the charge radius of the proton was 0.04 fm smaller using input data coming from
spectroscopy on muonic rather than either electronic (normal) hydrogen [22] or scattering data. A
very sophisticated Lamb shift measurement in 2019 confirms the 0.84 fm value [23].
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1.2 OVERVIEW OF RESEARCH PROJECTS

The results of four research papers form the basis of this dissertation [24–27], which we

have expanded to create three of the six chapters. These topics are briefly introduced

here and are more comprehensively covered in the corresponding chapters.

Beta decay and charge-state distributions in 6He

Chapter 3 discusses the beta decay of the neutron-rich 6He which has a lifetime of

0.8s. Beta decay is a radioactive process governed by the weak interaction where a

neutron transforms into a proton, or vice-versa. Inside an atom, this implies that

the daughter ion has a different nuclear charge than the parent ion and thus is a

different element. This process is accompanied by the ejection of two leptons—an

electron and an antineutrino, or a positron and a neutrino. The angle between these

two leptons is related to the electron-antineutrino correlation coefficient, aβν , which

is actively studied in search of new physics beyond the Standard Model. This search

is an example of a low-energy search for new physics, complementing the high-energy

approaches taken at particle colliders such as the Large Hadron Collider at CERN

[28].

The beta decay studied in this dissertation is described by the equation 6He →
[6Li+]+e−+ ν̄ . The square brackets around the daughter ion indicate that “shake-up”

to excited 6Li+ states, along with “shake-off” to singly-ionized 6Li++ states or doubly-

ionized 6Li3+ states, are possible. We are concerned with calculating the probabilities

of forming each of these charge states in the daughter ion. In Chap. 3, we discuss de-

veloping and using two-electron projection operators capable of distinguishing single-

and double-ionization channels. The aim is to reduce a large existing discrepancy

between theory and experiment concerning the distribution over charge states of 6He

decay products, and especially the very small amount of double ionization.

Finite-nuclear-mass effects in two-photon decay in He-like ions

Astrophysical spectroscopy can be used to probe the physical conditions, such as

temperature and pressure, of distant objects, including planetary nebulae and the

4



1.2. OVERVIEW OF RESEARCH PROJECTS

early universe itself. Helium consitutes 10% of the universe by number of atoms

and therefore contributes significantly to the radiation observed in its study. The

dominant contributions come from dipole-allowed transitions (e.g., n 1P − n 1S tran-

sitions), however, dipole-forbidden transitions, such as the 2 1S − 1 1S spontaneous

decay process studied here, are also important both in achieving high-precision and

in frequency regions where the allowed emitted spectrum is relatively weak. Further-

more, forbidden rates are needed to calculate the population balance (distribution

of atomic states in the atoms comprising remote astrophysical objects), a property

needed to infer the aforementioned physical conditions.

In Chap. 4, we show calculations performed for two-photon decay rates, including

the effect of finite nuclear mass—a small correction to the infinite nuclear mass case—

for a series of heliumlike ions, including “heavy” systems such as muonic, pionic, and

antiprotonic helium. One of the components of this correction is mass polarization,

which corresponds to an additional term in the Hamiltonian governing the system that

would otherwise be zero in the infinite-mass case. We treated this mass polarization

term as a power series and demonstrated how algebraic relationships arise from this

approach. These algebraic relationships test gauge equivalence between the length

and velocity forms in n-photon transitions in heliumlike systems. We demonstrate

their validity for the cases of n = 1 (single photon) and n = 2 (two photon) sponta-

neous decay. The significance of the algebraic relationships is that they provide an

important new way of testing the accuracy of approximate calculations of radiative

transition rates when exact wave functions are not available.

Testing QED with the tune-out frequency in helium

The tune-out frequency is the specific frequency of laser light incident upon an atom

where the atom ceases to scatter that light and effectively becomes invisible to it.

This situation is described as a zero in the Rayleigh scattering cross section. In

lowest order, this corresponds to a zero in the dynamic polarizability, a quantity that

involves a sum over a complete set of off-diagonal matrix elements of the electric dipole

interaction. In this way, studying the tune-out frequency amounts to a test of QED,

5
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involving an atomic property other than a QED energy shift such as the Lamb shift.

In higher order, retardation corrections distinguish the Rayleigh scattering picture

from the more usual dynamic polarizability. In Chapter 5, the tune-out frequency is

calculated to high precision in the framework of nonrelativistic QED (NRQED) and

the results are compared with experiment, forming the first test of QED that does

not involve an energy shift. A comparison with experiment shows that there remains

a 1.7σ discrepancy that requires further work.

1.3 METHODOLOGY OVERVIEW

1.3.1 Introduction to pseudospectral methods

Chapter 2 describes the general theoretical methods applicable to all projects dis-

cussed in the dissertation, while each chapter describes the particular details relevant

to the project under discussion. In the present section, we discuss the common element

across all studies—the use of pseudospectra, which are complete set of pseudostates.

Pseudospectral methods can be defined in comparison to spectral methods, which

solve differential equations, such as the Schrödinger equation

Hψ = Eψ, (1.1)

with which we are concerned here, by using true eigenstates of the system’s Hamilto-

nian. An example of a spectral method is a complete Fourier series, where the sines

and cosines are eigenfunctions (they solve the correesponding differential equation

under certain boundary conditions) of some operator, e.g., in the heat equation. In

pseudospectral methods, on the other hand, a finite number of pseudostates approx-

imate the true eigenstates, as in a truncated Fourier series used in applications such

as image processing. The primary use of pseudospectra in this dissertation is to carry

out sums over the complete Hilbert space of the Hamiltonian—which involves an in-

6



1.3. METHODOLOGY OVERVIEW

finite set of bound and continuum states.6 Here, spectral methods would involve an

infinite sum and integral and are not computationally realizable.

This section is not intended to be a rigorous description of how to obtain pseu-

dostates or their properties, a subject discussed in Chap. 2, but instead aims to

demonstrate their usefulness via two examples.

1.3.2 Examples using pseudospectra

The calculation of the polarizability of the ground state of hydrogen offers one striking

example of the usefulness of pseudospectra, shown in Fig. 1.3.1. The static polariz-

ability dz is defined as

dz = −2
∑

np ̸=1s

|⟨φ1s|z|φnp⟩|2 /(E1s − Enp) = 9/2, (1.2)

where φ1s, φnp are the unperturbed exact wave functions that solve Eq. (1.1) and

E1s, Enp are their energies, and the sum runs over the infinite set of {φnp} eigen-

states which connected to φ1s through the dipole operator z. This quantity has an

exact value (9/2) because it can be expressed as a convergent infinite sum over both

discrete and continuum states over the excited states of hydrogen that. The form of

the polarizability is not especially relevant; it is only crucial to understand that its

calculation involves a sum over the complete set of eigenstates of the Hamiltonian.

In Fig. 1.3.1, the exact ground state of hydrogen, φ1s, was used, however, the

infinite sum over {φnp} was replaced by a pseudospectra with basis functions of the

form χj =
∑N

i=1 cijr
ie−αrY10. Three pseudospectra are considered, with N = 2, 3, 5

in the plotted examples, corresponding to two, three, and five term basis sets.

Figure 1.3.1 introduces some essential concepts that will recur in this dissertation.

Firstly, along the x-axis is the nonlinear parameter α—pseudospectra will be formed

with both linear and nonlinear parameters that we will vary, usually to minimize

energy eigenvalues. Additionally, the number of terms corresponds to enlarging the
6Furthermore, the exact eigenfunctions and eigenvalues for helium or any general three-body

problem is impossible. Helium is the quantum mechanical version of the sun-earth-moon (three-
body) problem that lamented Newton many centuries ago.
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Fig. 1.3.1: Shown are the polarizabilities, calculated according to Eq. (1.2), of the ground
state of hydrogen (The correct answer in the nonrelativistic limit is 4.5 a.u.). The pseu-
dospectra used have basis functions of the form χj =

∑N
i=1 cijr

ie−αrY10, as described in the
text. The nonlinear parameter α is varied to show regions of stability. It is remarkable that,
even for a two-term pseudospectrum, when α = 1, there is already an exact representation
of the complete spectrum. For a five-term pseudospectra, we see a large region of stability,
where dz is correctly calculated for the entire α ∈ [0.44, 1.4].

basis set, a method used to obtain convergence. For the polarizability, we see this

convergence take place moving from N = 2, where only certain nonlinear parameters

lead to the true polarizability, to N = 5 where there is a broad region of stability.

Another example demonstrating the power of pseudospectra involves the calcu-

lation of the Bethe logarithm, involving a sum over states in both the numerator

and denominator,7 which is part of the Lamb shift and is thus an important QED

contribution in atomic physics. Figure 1.3.2 shows the value of the Bethe logarithm

of H as a function of the highest-energy eigenvalue included in the partial sum, using

the formulation developed by Drake and Goldman [29]. We see a few things from this

curve. Firstly, one must go to very high energies, about 108 a.u., before obtaining

7The partial sum is given by β(E) = N/D, where N =
∑

i |⟨0|p|i⟩|
2
(Ei − E0) ln |Ei − E0| and

D =
∑

i |⟨0|p|i⟩|
2
(Ei − E0)
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Fig. 1.3.2: The partial sum of the Bethe logarithm of H, β(E), is plotted as a function of
the last—also largest— energy contained in the partial sum. Created using the formulation
developed by Drake and Goldman [29].

convergence in β(E) and also, from the inset, that this method allows us to go to

extremely high energies—almost 1040 a.u.

Despite the seemingly negative connotations of the term “pseudo” in general lan-

guage, implying something false, this dissertation shows the invaluable role that pseu-

dostates play in advancing our understanding of atomic systems and making possible

otherwise inaccessible calculations. Through a series of projects, we will explore how

pseudostates make possible profound and otherwise unattainable insights by facili-

tating atomic and molecular physics calculations.

1.4 SCOPE AND SIGNIFICANCE OF RESEARCH

The potential impact of this research is immense. Both the beta decay and tune-out

projects seek to rectify the crisis that is the incompleteness of the SM by contributing

directly to searches for NP. The SM makes a definite prediction about the kinematics

9
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following beta decay and about the precise frequency at which the helium atom should

become invisible to an applied laser field, i.e., the tune-out frequency. We perform

calculations involving two-electron wave functions formed using Hylleraas basis states

to answer whether or not the SM agrees with our collaborator’s measurements in

answer to these questions. This research either confirms the SM or finds a deviation

that requires more attention. This possible deviation, by itself, would not unravel

the SM—to be sure, this is a physics-wide effort to probe every nook and cranny that

we find plausible and possible to examine. If the discrepancy is genuine, it would

pinpoint the area to explore when considering how NP might build on the existing

SM.

The other two projects are related and aim to answer less extravagant but no less

universal questions. In astrophysical observation, the population balance of astro-

physical sources contains information about the temperature, composition, pressure,

and more concerning a distant astrophysical body or, in the case of the cosmic mi-

crowave background radiation, about the early universe itself. Therefore, since helium

comprises 10% of the atoms in the universe, accurate calculations of properties of two-

electron atoms, such as energies and transition rates, are essential. To this end, we

present calculations of the 2E1 transition rates of helium, including the effects of a

finite nuclear mass but not relativistic effects, which also contributes at an experi-

mentally relevant level.

A central objective within this dissertation is to answer questions such as those

posed above by using pseudospectral techniques described and defined in the preced-

ing section, thereby demonstrating and exploiting their ubiquity as a computational

technique in atomic physics.

10
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1.5 STRUCTURE OF THE DISSERTATION

We synthesize four research projects in this document in three separate chapters.

Each of these is self-contained in the same sense as a research paper.8 However, the

chapters are not strict reproductions of the research papers, and they do relegate

some information to the overall theory chapter or appendices when that format is

more sensible as it functions in the entire document.

The main body of this dissertation consists of six chapters, of which this section

concludes the first chapter: the Introduction. Chapter 2 outlines the theoretical

methods underpinning the computation and analysis common to all projects studied.

Chapters 3, 4, 5 contain more detailed theoretical aspects of the individual works,

where the particular projects are discussed in detail. On this note, Ch. 3 contains

work on the beta decay of 6He, Ch. 4 describes calculations concerning the two-

photon decay of helium and also about exploring algebraic relationships that arise

therein in treating mass polarization, and Ch. 5 outlines the first test of QED other

than energy shifts based on the tune-out frequency of helium. Chapter 6 provides an

overall conclusion of the whole dissertation and discusses future work.

Several appendices include material that was either tangential to the main discus-

sion or too substantial to include in the relevant section of the document.

8The relative lengths of the chapters is indicative of the proportion of time spent on each of
these projects.
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CHAPTER 2

Theoretical Methods

2.1 OVERVIEW

This chapter presents an overview of the theoretical frameworks and methods com-

mon to all chapters of this dissertation. Atomic structure problems boil down to

computing matrix elements, i.e., integrals, between two wave functions connected by

an operator. Accordingly, the central objective in solving structure problems is to

establish precisely how we obtain the wave functions and carry out these integrals.1

Due to the nature of this dissertation—being based on four published papers [25–27],

separated into chapters—we present more specialized “theoretical” material in the

relevant chapters.

The contents of this chapter are as follows. After discussing atomic units in

Sec. 2.2, the one-electron problem is stated and solved in Sec. 2.3, leading to the

concept of Sturmian functions, discussed in Sec. 2.4. Then the two-electron problem

is developed in Sec. 2.5 and is then solved throughout Secs. 2.6 and 2.7. In Sec. 2.6,

the variational methods used are described, while Sec. 2.7 describes the Hylleraas

wave functions employed as trial functions in this work. Finally, Sec. 2.8 outlines the

analytic forms of the integrals needed in the calculations contained in this dissertation.

1Substantial portions of the material in this chapter are heavily influenced by the collected
writings and notes of G. W. F. Drake, including published works and formal and informal sets of
notes and verbal correspondence. References appear where appropriate.
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2.2 ATOMIC UNITS

A few comments on atomic units (a.u.)—which appear several times in the Introduc-

tion and are ubiquitous in atomic physics—are in order.2 The defining property is to

set the following quantities to unity:

me = ℏ = e = 4πϵ0 = 1. (2.1)

These assignments correspond to measuring mass in units of the mass of the electron,

me, angular momentum in units of ℏ, charge in units of the electron charge, e, and

vacuum permittivity in terms of 4πϵ0.

A few important scales emerge from these definitions. Carried out in SI units, the

energies of the bound states of the infinite-nuclear-mass, one-electron problem have

the form

En =
e2

a0

(−Z2

2n2

)
, (2.2)

where Ze is the nuclear charge, n is the principal quantum number,3 and a0 is the

Bohr radius, defined by

a0 =
4πϵ0ℏ2

me2
. (2.3)

In atomic units, we measure energies in units of the prefactor of Eq. (2.2), which we

refer to as the Hartree energy Eh

Eh =
e2

a0
, (2.4)

We measure distances using the aforementioned Bohr radius. Both a0 and Eh are 1

in atomic units.

The time-independent Schrödinger equation is stated in Sec. 2.3 in SI units and

then transformed to atomic units. In Sec. 2.5.1, we further simplify, for computational

purposes, to dimensionless Z-scaled atomic units where distances and energies are

given by ρ = Zr/a0 and ε = Ea0/(Ze)
2, respectively.

2Atomic units were developed in 1928 by Hartree [30] to reduce the large number of constants
that we would otherwise need to carry around in basic calculations in quantum mechanics and,
therefore, atomic physics.

3Details on solving the one-electron Schrödinger equation appear in Sec. 2.3.
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The idea is to perform calculations entirely in atomic units and only at the very

end substitute back in the SI values of the constants used in the calculations.4 The

current values are [31]

Eh = 27.211 386 245 981(30) eV

= 4.359 744 722 2060(48)× 10−18 J, and

a0 = 5.291 772 105 44(82)× 10−11 m.

Finally, a comment on the dimensionless fine-structure constant, α, defined by [31]

α =
e2

4πϵ0ℏc
= 7.297 352 5643(11)× 10−3, (2.5)

with c being the speed of light, is warranted. A consequence is that the speed of light

is approximately 137 in atomic units. The fundamental measurement quantities can

be expressed in terms of α, e.g.,

a0 =
ℏ

αmc
and Eh = α2mc2

High-precision atomic physics uses the fine-structure constant as an essential expan-

sion parameter, treating relativity and QED effects as perturbations in α.

All quantities stated in this dissertation are assumed to be in atomic units unless

indicated otherwise.

2.3 ONE-ELECTRON SCHRÖDINGER EQUATION

The one-electron atom or ion is a two-body problem where the electron and nucleus5

interact via the Coulomb interaction. We are concerned here with the nonrelativistic,

time-independent case. The primary purpose of this section is to set the stage for

the following section about Sturmian functions—by establishing the radial solutions

4The currently accepted values of these quantities are found at https://physics.nist.gov/
cuu/Constants/index.html.

5Here, we treat the nucleus as a single body of mass M and charge Z.
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to the one-electron Schrödinger equation. To this end, the details are kept brief.

The nonrelativistic (NR) time-independent Schrödinger equation,6 Hψ = Eψ, for

the one-electron problem with an infinitely heavy nucleus is:

H = − ℏ
2m

∇2 − Ze2

4πϵ0r
, (2.6)

H = −1

2
∇2 − Z

r
(in a.u.), (2.7)

where ℏ, m, Z and ϵ0 are Planck’s constant, the electron mass, the nuclear charge

and the vacuum permittivity, respectively, and r, is the electron distance from the

nucleus. The second line is expressed in atomic units.

This equation separates in spherical coordinates (r, θ, ϕ) according to

ψ(r) = Yℓm(θ, ϕ)Rℓ(r) (2.8)

with the spherical harmonics, Yℓm(θ, ϕ), solving the angular part [32, pp. 19–25]. The

radial equation

[
−1

2

(
d2

dr2
+

2

r

d

dr
− ℓ(ℓ+ 1)

r2

)
− Z

r

]
Rℓ(r) = ERℓ(r), (2.9)

has solutions

Rℓ(r) = rℓ exp(ikr) [A 1F1(a; c; z) +BU(a, c, z)] (2.10)

where 1F1 and U are the regular and irregular solutions to the confluent hypergeo-

metric functions (see, e.g. [33] for their solutions), A and B are arbitrary constants,

6For the structure problems in Chaps. 4 and 5, the time-independent Schrödinger equation is
the appropriate starting point. In studying the time-dependent beta decay process in Chap. 3, we
make the sudden approximation and therefore use the time-independent Schrödinger equation there
as well.
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and k, a, c, z are defined as
k =

√
2E,

a = ℓ+ 1− ik−1Z,

c = 2ℓ+ 2,

z = −2ikr.

(2.11)

Eq. (2.8), using the radial function Eq. (2.10), has a complete set of solutions, in-

cluding both bound states, defined by E < 0, and continuum states, given by E > 0.

These are also known as Coulomb wave functions.

The bound state solutions occur when a = −n + ℓ + 1 is a negative integer and

have the form

Rnl(Zr) = ρℓe−Zr/n
1F1(−(n− ℓ− 1); 2ℓ+ 2; 2Zr), (2.12)

with energies given by

En = − Z2

2n2
, (2.13)

where n = 1, 2, 3 . . . is the principal quantum number and ℓ = 0, . . . , n − 1 is the

angular momentum quantum number. 1F1(a; b; z) is the confluent hypergeometric

function of the first kind and is a finite polynomial of order n − ℓ − 1 with n − ℓ

terms. This form of radial powers multiplied by exponentials guides the formation of

approximate two-electron wave functions in Sec. 2.7.1.

With an eye toward the prospect of performing computations on hydrogenlike

atoms wherein we must sum over the complete set of eigenstates of H in Eq. (2.7),

a task shown to be important in the Introduction, we can make some comments.

Eq. (2.10) is the correct equation, but it contains two infinities of states: a denu-

merable infinity of bound states and an uncountably infinite set of continuum states.

It is the latter of these that poses the much more significant obstacle. If we were

summing over the bound state solutions, we could at least search for convergence

as n → ∞ in whatever property we study. This approach would work if it were to

turn out that contributions to the sum diminished rapidly enough in this limit. This
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strategy is even more difficult with the continuum, where we could seek convergence

in the corresponding integral as E → ∞. In general, to carry out a complete sum over

states, we need to actually represent this complete set. These considerations lead us

to the discussion of Sturmian functions, a topic central to the study of overlapping

ionization channels in the beta decay of 6He that is the subject of Chap. 3.

2.4 STURMIAN FUNCTIONS

Any homogeneous linear second-order differential equation7 can be written in the

Sturm-Liouville form [34]

d

dx

[
K(x)

dy

dx

]
−G(x)y = 0, (2.14)

defined on the closed interval x ∈ [a, b] and supplemented with appropriate boundary

conditions. The choice G(x) = −λg(x) + l(x) yields an eigenvalue problem where λ

can be adjusted to satisfy the boundary conditions.8

2.4.1 The oscillation theorem

The oscillation theorem, as described by Drake [34] and Ince [35], provides insight

into the nodal properties of Sturmian eigenfunctions. The theorem is as follows.

Theorem 1 (Sturmian Oscillation Theorem). Suppose K(x), g(x), and l(x) are con-

tinuous, real, positive9, and monotonically decreasing on [a, b]. Then the Sturm-

Liouville problem
d

dx

[
K(x)

dy

dx

]
+ [λg(x)− l(x)]y = 0, (2.15)

has an infinite sequence of discrete eigenvalues λ1 < λ2 < λ3 . . . with eigenvectors

y1, y2, y3 . . . such that ym(x) has m− 1 zeroes on the interval [a, b]. The eigenvectors

7The radial Schrödinger equation in Eq. (2.9) is one example where r → x and R(r) → y.
8All functions of x, namely K(x), G(x), g(x), and l(x), are arbitrary.
9The conclusion of the theorem holds in the case that g undergoes a sign change on the interval

of interest, but we do not require this for the following discussion.
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are orthogonal with respect to g(x), and the set {ym(x)} forms a Sturmian basis

set—which is complete.

The critical consequence of this theorem is that the Sturmian basis set, a gener-

alized Fourier series, is complete: one can expand an arbitrary function f(x) in this

basis set. Notably, the eigenvalues of this basis set are discrete. Consider momen-

tarily the formal solutions to the Schrödinger equation just discussed in the previous

section. In obtaining these solutions to the radial equation in Eq. (2.9) on the interval

r ∈ [0,∞], one effectively holds Z fixed while varying E, subject to the boundary

conditions

lim
r→0

rR(r) = 0, lim
r→∞

R(r) = 0 (2.16)

leading to an infinite set of bound states and continuum states [34].

The Coulomb problem can be formulated as a Sturm-Liouville problem meeting

the criteria outlined in Theorem 1 by writing the radial equation as

[
−1

2

(
d2

dr2
+

2

r

d

dr
− ℓ(ℓ+ 1)

r2

)
− λ

r

]
Rℓ(r) = ERℓ(r), (2.17)

where we regard E as fixed, along with a variable nuclear charge, denoted by λ. The

procedure for generating the complete and discrete basis set is as follows. Consider

a fixed negative energy E = −ϵ with ϵ > 0. The horizontal line denotes this energy,

E, in Fig. 2.4.1. The general strategy is to keep this energy fixed, vary the potential

(λ), and look for normalizable solutions.10 The Schrödinger equation has solutions

En(Z) = − Z2

2n2 , meaning that a particular En(Z) = −ϵ can be satisfied infinitely

many times via progressively increasing both λ and n. As the parameter λ increases,

corresponding to increasing Z and making the potential more attractive, we pull

one eigenvalue after another down through the fixed E = −ϵ; these states have

eigenvalues λn = n
√
2ϵ. Whenever a solution to the Schrödinger equation is pulled

down through E = −ϵ, another solution to the Sturm-Liouville problem is obtained—

a process yielding discrete eigenstates that can occur infinitely many times. Fig. 2.4.1

10We write λ instead of Z to emphasize that this is an adjustable parameter in this Sturmian
formulation.
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𝐸 = −𝜖

Increasing 𝜆

Solutions 
to SL 
problem

Fig. 2.4.1: The principle of generating solutions to the Sturm-Liouville (SL) equation is
shown. By holding E fixed to some negative number and progressively increasing λ in
Eq. (2.17), we obtain more and more solutions. The spacings are not drawn to scale; the
only relevant detail is that more and more states are pulled below the fixed E = −ϵ.

illustrates this procedure. The resulting set of discrete Sturmian states is complete

in the limit where the number of states so obtaied, N , tends to infinity [36, 37].

This set constitutes a pseudospectrum since they approximate the true eigenstates of

the Hamiltonian while providing a complete basis representing bound and continuum

states.

The solutions to this Sturm-Liouville radial equation are called Sturmian functions

and have the form

Rnl(r) =
1

(2l + 1)!

(
(n+ l)!

(n− l − 1)!2n

)1/2

(2α)3/2(2αr)le−αr
1F1(−n+ l + 1, 2l + 2; 2αr)

(2.18)

where α =
√
2ϵ and n ≥ l + 1. Since the first argument of 1F1 is negative, this

corresponds to a finite polynomial function of r. These solutions look similar to

the bound-state solutions to the radial Schrödinger equation given in Eq. (2.12),

especially because both are sets of functions with discrete eigenvalues. However,

Theorem 1 guarantees that, unlike the bound-state solutions, which do not include
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the continuum, the set of Sturmian functions11 in Eq. (2.18), in the limit where the

number of states approaches infinity, does.

Another difference with the bound-state solutions lies in the critical detail that the

exponent of the Sturmian functions does not depend on n. Instead, the exponential

factor −αr is constant in Sturmian functions. Thus, Sturmian radial functions are

a polynomial function multiplied by e−αr. Therefore, we can create a pseudospec-

tra by diagonalizing the one-electron Hamiltonian in terms of basis functions with

linear combinations of χ = rne−αr functions. These structure of these functions is

informed by their physical relevance: they capture the appropriate near-nucleus and

asymptotic behaviour of the true wave functions of the hydrogen atom. Indeed, as the

introductory quote of this thesis says, the pseudostates are “false states”, i.e., they are

not the exact solutions of the one-electron Hamiltonian. Even so, they are complete,

and we will see that this property is even more essential and useful.

In conclusion, the preceding discussion of the Sturmian theory provides a rigor-

ous foundation for choosing χi = cir
ne−αir type basis functions in the one-electron

problem. Often, the basis functions are the sum of several such functions, χ =

c1χ1+c2χ2+ . . . , where each term has a different linear parameter (coefficient) ci and

nonlinear parameter αi. In Sec. 2.6, the minimization principles that govern the opti-

mization of these parameters are described. We show in Sec. 2.7.3 that this property

of Sturmian functions informs our choice of two-electron basis functions [38].

11Additionally, according to Theorem 1, the Sturmian functions are orthogonal with respect to the
potential 1/r. In this dissertation, we orthogonalize these basis states, an operation which preserves
completeness.
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2.5 TWO-ELECTRON SCHRÖDINGER EQUATION

2.5.1 Problem statement

The two-electron Schrödinger equation in SI units for infinite nuclear mass12 is [39]

[
− ℏ2

2m
(∇2

1 +∇2
2)−

Ze2

r1
− Ze2

r2
+
e2

r12

]
ψ = Eψ (2.19)

where r1 and r2 are the radial coordinates of the two electrons and r12 = |r2− r1| are

Hylleraas coordinates and are defined in Fig. 2.5.1. We rewrite this in dimensionless

Z-scaled units13 according to ρ = Zr/a0 as

[
−1

2
(∇2

ρ1
+∇2

ρ2
)− 1

ρ1
− 1

ρ2
+
Z−1

ρ12

]
ψ = εψ, (2.20)

with ε = Ea0/(Ze)
2. Eq. (2.20) is the form of the Schrödinger equation that we solve

throughout this dissertation.

Owing to the presence of the 1/ρ12 term, the two-electron problem in Eq. (2.20)

cannot be separated, and it cannot be solved exactly as in the case of the one-electron

problem [40, pp. 5–15]. The helium atom is the quantum mechanical three-body

problem—a problem whose classical analogue is known to lack closed-form solutions

for the general case.14 In practice, the fact that analytic solutions are unavailable is

not a problem since numerical methods exist that are essentially exact for structure

calculations in atomic physics.

12Chapter 4 contains work incorporating finite-nuclear-mass effects in nE1 transition rates in
two-electron atoms. Treatment of the finite-nuclear-mass Hamiltonian is left to this chapter.

13This method allows the interelectron potential, 1/ρ12, to be treated as a perturbation in powers
of 1/Z.

14The prototypical example is the earth-moon-sun system that was first studied by Newton—and
subsequently by the best mathematical minds for countless generations after that—in connection
with the question of the stability of the solar system. Upon proving that the two-body system has
closed-form solutions [41], Newton was shocked to discover that he could not solve the three-body
problem—which “made his head ache, and kept him awake so often, that he would think of it no
more” [1].
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Fig. 2.5.1: An illustration of Hylleraas coordinates. The full set of independent radial
(r1 = |r1|, r2 = |r2|, r12 = |r1 − r2|) and angular (θ1, ϕ1, χ) coordinates are shown for two
electrons located at r1 and r2 relative to the centre-of-mass. Here, θ1, ϕ1 are the polar and
azimuthal angles of electron 1 and χ is the angle of rotation of the rigid triangle formed by
the r1, r2 and r12.

2.5.2 Spin: singlet and triplet solutions

Two separate spin configurations of two-electron systems exist: singlet and triplet

states. This is a direct consequence of the fact that fermions must have a totally

antisymmetric wave function. Wave functions can generally be written as a product of

a spatial and spin part. This is a trivial matter in treating the one-electron Coulomb

problem, and thus Eq. (2.8) only contains the spatial (r, θ, ϕ) part. The full one-

electron eigenstates are a product of the spatial and spin components, ψχ = RY χ.

Since electrons are particles of spin-1
2
, there are two spin states: spin up χ↑ =

(
1
0

)
≡

|1
2

1
2
⟩ and spin down χ↓ =

(
0
1

)
≡ |1

2
− 1

2
⟩. These are written of the form |s ms⟩ where
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2.5. TWO-ELECTRON SCHRÖDINGER EQUATION

s is the spin quantum number, and ms is the component of spin angular momentum,

which has units of ℏ. It is usual to label the one-electron spin-state with ms = ±1
2

alone, since s = 1
2

for all electrons.

For two-electron systems, the criterion of a totally antisymmetric wave function

can be expressed as [42]

Ψ(1, 2) =





ψS(r1, r2)χ
A(1, 2)

or

ψA(r1, r2)χ
S(1, 2),

(2.21)

meaning that spatial (ψ) and spin (χ) parts of the total wave function Ψ must have

opposite symmetry. The symmetric/antisymmetric spatial wave functions are

ψS(r1, r2) =
1√
2
[ψ(r1, r2) + ψ(r2, r1)], and (2.22)

ψA(r1, r2) =
1√
2
[ψ(r1, r2)− ψ(r2, r1)]. (2.23)

For the spin part, we now adopt the notation of |ms,1 ms,2⟩ for the coupled state

|1
2
ms,1⟩|12 ms,2⟩. Four possibilities have a well-defined symmetry. Three of which are

symmetric:

χS =





∣∣1
2

1
2

〉

1√
2

[∣∣1
2

1
2

〉
+
∣∣1
2
− 1

2

〉]

∣∣−1
2
− 1

2

〉
,

(2.24)

and one is antisymmetric

χA = 1√
2

[∣∣1
2
− 1

2

〉
−
∣∣−1

2
1
2

〉]
. (2.25)

The three symmetric spin states χS in Eq. (2.24) form a product with the anti-

symmetric spatial state ψA in Eq. (2.23), forming the triplet configurations. The
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antisymmetric spin state χS combines with ψS, giving the singlet configuration. We

solve the Schrödinger equation, Eq. (2.20), yielding the spatial part of the wave func-

tion, and thus the singlet and triplet states are ψS and ψA with the “+” and “−”

signs, respectively, between the direct and exchange terms in Eqs. (2.22) and (2.23).

Both singlet and triplet states are studied in this dissertation.

2.6 VARIATIONAL PRINCIPLE

Without exact solutions, we construct approximate solutions that become complete in

the infinite limit obtained via progressively increasing the number of basis functions.

2.6.1 Rayleigh-Ritz variational method

For any normalizable trial function Ψtr, the quantity

Etr =
⟨Ψtr|H|Ψtr⟩
⟨Ψtr|Ψtr⟩

(2.26)

is an upper bound according to Etr ≥ E1, where E1 is the true ground state energy

[43]. This can be shown by expanding Ψtr in the complete basis set of orthonormal

eigenfunctions15 ϕ1, ϕ2, ϕ3, . . . of H with eigenvalues E1 < E2 < E3 < · · · , such that

Ψtr =
∞∑

i=1

ciϕi, (2.27)

where {ci} are the expansion coefficients. The normalization of Ψtr ensures
∑∞

i=1 |ci|2 = 1.

The expression for the energy of the trial wave function is then

Etr = ⟨Ψtr|H|Ψtr⟩, (2.28)

15Even though we do not know what these eigenfunctions are, it can be assumed that such a set,
whose eigenvalues are the true energies, exists and is complete. This follows the observation that
the two-electron Hamiltonian operator is self-adjoint in an appropriate Hilbert space.
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2.6. VARIATIONAL PRINCIPLE

and, upon expanding Ψtr in terms of the exact eigenfunctions {ϕi}, which satisfy

⟨ϕi|ϕj⟩ = δi,j and ⟨ϕi|H|ϕi⟩ = Eiδi,j we have [34]

Etr = |c1|2E1 + |c2|2E2 + |c3|2E3 + · · ·

= E1 + |c2|2(E2 − E1) + |c3|2(E3 − E1) + · · ·

≥ E1.

(2.29)

The last inequality, which establishes Etr as an upper bound to the exact ground

state energy, E1, follows from the ordering of the eigenvalues in terms of increasing

energy. It is important to remember that the foundation for this technique is that

the spectrum is bounded from below—the ground state forms such a bound in the

spectrum of the nonrelativistic Schrödinger equation, with which we are concerned

in this dissertation.16

2.6.2 Equivalent generalized eigenvalue problem

Since it is impossible to form a trial wave function whose energy is beneath the

ground state by the variational principle, we thus have a license to manipulate a

potential trial function in any fashion and to choose whichever results in the smallest

eigenvalue. Beyond normalizability, the form of a trial function has no restrictions;

however, using the one-electron solutions as an example, a trial function might look

like Ψtr = a1r
a2e−a3r, with linear variational parameter a1 and nonlinear variational

parameters a2 and a3.17 Minimizing the energy of this state has now become a

multivariable calculus problem, where the following equations must simultaneously

be satisfied:
∂Etr

∂ap
= 0, p = 1, . . . , N, (2.30)

where, for the specific trial function mentioned above N = 3. Eq. (2.30) gives a set of

transcendental equations that are not algebraically solvable in general. This problem

is (algebraically) soluble in the special case where we only have linear variational

16Even in Chap. 5, where relativistic and QED effects are computed, we use nonrelativistic QED
(NRQED) and only ever solve the NR problem, adding higher-order corrections pertubatively.

17The ensuing argument carries over directly to the two-electron case.
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2.6. VARIATIONAL PRINCIPLE

coefficients [34].

This linear variational eigenvalue problem can be solved by forming basis states

out of the functions {χi, i = 1, . . . , N} according to

Ψtr =
N∑

i=1

aiχi, (2.31)

where the linear coefficients {ai} are taken as the variational parameters. With

this formulation, the minimization of the linear variational parameters expressed in

Eq. (2.30) becomes identical to the equivalent generalized eigenvalue problem (GEP)

Ha = λOa, (2.32)

where a is a vector of the expansion coefficients, H and O are the Hamiltonian and

overlap matrices, respectively, satisfying Hmn = ⟨χm|H|χn⟩ and Omn = ⟨χm|χn⟩. The

lowest of the N eigenvalues generated from this N -dimensional problem will be the

upper bound to the true ground state energy. Different methods of solving this GEP

depend on whether one wants a single optimized state or a complete pseudospectrum.

The methods of solving this linear algebra problem are discussed in Appendix A.

Although the GEP in Eq. (2.32) is equivalent to the minimization condition ex-

pressed in Eq. (2.30), it is not equivalent to the Schrödinger equation itself: the choice

of trial functions matters here. The solution obtained is only guaranteed to converge

from above to the exact gound-state energy if the basis set is complete – there may be

a finite gap.18 The condition that the GEP is equivalent to the Schrödinger equation

is that the basis set {χi, i = 1, . . . , N} becomes complete in the limit that N → ∞
[34]. The strategy to carry out these calculations is to solve the GEP for increasing

values of N and then study the convergence of the corresponding quantity calculated

to discern the N → ∞ behaviour.

18In the two-electron problem, such a gap occurs with the Hartree-Fock method, discussed in
Sec. 2.7.4. By assuming separable solutions, this method converges to too large a ground energy
(E ≃ −2.87) compared to the exact E = −2.903724 . . . , since it does not account for the so-called
correlation energy.
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Fig. 2.6.1: Illustration of the Hylleraas-Undheim-MacDonald theorem. For five separate
calculations that solve the GEP in Eq. (2.32), each of which increases the number of basis
functions N , we see that (1) the N − 1 old eigenvalues of the previous calculation lie be-
tween the N new eigenvalues and (2) that each trial eigenvalue is an upper bound to the
corresponding exact eigenvalue.

2.6.3 Extension to excited states

We have already demonstrated that the lowest eigenvalue λ1 generated from solving

the GEP is an upper bound to the exact ground state energy E1. The case, however,

is stronger than this: the remaining λi for i ≥ 2 are also upper bounds to the

corresponding exact eigenvalues of the Schrödinger equation, provided that the correct

number of states lies below. This is referred to as the Hylleraas-Undheim-MacDonald

theorem [44, 45] and is a consequence of the matrix interleaving theorem, shown in

Fig. 2.6.1. The matrix interleaving theorem states that as the dimensionality of H and

O increases by 1, amounting to adding an extra row and column to these matrices,

the old N eigenvalues must interleave the new N + 1 eigenvalues. This principle
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2.7. HYLLERAAS TRIAL WAVE FUNCTIONS

is illustrated in Fig. 2.6.1 for basis sets with N = 1 to 5 terms. To achieve this

interleaving, the eigenvalues must all move inexorably downward with each increase

in N ; however, we also know that the exact spectrum is obtained as N → ∞, from

the assumption of completeness. This implies that each trial eigenvalue is indeed

an upper bound to the corresponding exact energy, and we can strengthen the initial

variational statement by including all N . Solving the GEP in Eq. 2.32 with an N -term

basis set yields N eigenvalues satisfying

λi ≥ Ei for i = 1, . . . , N. (2.33)

2.7 HYLLERAAS TRIAL WAVE FUNCTIONS

The trial functions used in this dissertation to solve the GEP in Eq. (2.32) are formed

using Hylleraas basis functions; whose form we establish in this section.

2.7.1 Statement of Hylleraas basis functions

The doubled Hylleraas basis functions used in this dissertation have the form [43]

Ψ =

i+j+k≤Ω∑

ijk


c(A)

ijkφijk(αA, βA)︸ ︷︷ ︸
A-sector

+ c
(B)
ijkφijk(αB, βB)︸ ︷︷ ︸

B-sector


 , (2.34)

where the basis functions φijk(α, β) are defined by

φijk(α, β) = ri1 r
j
2 r

k
12 e

−αr1−βr2 YM
ℓ1,ℓ2,L

(r̂1, r̂2)± exchange (2.35)

in Hylleraas coordinates. The exchange term represents the interchange of electron

labels, and the + and − correspond to singlet and triplet states, respectively.

The quantity YM
ℓ1,ℓ2,L

(r̂1, r̂2) represents a vector-coupled product of spherical har-

monics of angular momenta ℓ1 and ℓ2 to form a state with total angular momentum
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L and component M , according to [43]

YM
ℓ1ℓ2L

(r̂1, r̂2) =
∑

m1,m2

Yℓ1m1(r̂1)Yℓ2m2(r̂2)⟨ℓ1ℓ2m1m2|LM⟩, (2.36)

where ⟨ℓ1ℓ2m1m2|LM⟩ are Clebsh-Gordan coupling coefficients [32, pp. 37–42]. The

parameter Ω = (i+ j + k)max controls the size of the basis set. The nominal number

of terms in each sector is

N =
1

6
(Ω + 1)(Ω + 2)(Ω + 3). (2.37)

The Hylleraas pseudostates are a two-electron generalization of a one-electron Coulomb

Sturmian basis set described in Sec. 2.4.

2.7.2 Nonlinear parameters

The basis set in Eq. (2.34) is “doubled” in the sense that different nonlinear parameters

αA, βA and αB, βB are used for the asymptotic (A) and short-range (B) sectors

respectively. This allows the wave functions to be modelled much more flexibly. The

original Hylleraas functions were not doubled in this sense—this was a significant

improvement, especially for higher-lying Rydberg states,19 initiated by Drake [48].

The nonlinear parameters are determined by calculating analytically the four

derivatives ∂E/∂αA, ∂E/∂βA, ∂E/∂αB, and ∂E/∂βB and finding the zeros by New-

ton’s method [49, 50], yielding the energy minimum on the multidimensional energy

surface. In practice, one of the nonlinear parameters (usually β1) is varied in order

to optimize some quantity being calculated that depends on the wave functions. For

instance, Chap. 3 of this dissertation treats the beta decay of 6He. A complete pseu-

dospectrum of the 6Li+daughter ion is needed to perform this calculation. To form

this pseudospectrum β1 was optimized [51] in oorder to achieve variational stability

for the total probability of excitation of 6Li+, a rather complicated quantity that is

the sum of several overlap integrals.

19Tripling of the Hylleraas basis sets (e.g., [46, 47]) has led to even further increases in accuracy.
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Table 2.7.1: Comparison of the variational ground-state energy obtained using Hylleraas
trial functions formed according to Eq. (2.34) containing all powers of r1 and r2, but only
select powers of r12 [54]. It can be seen that odd powers of r12 contribute significantly to
improving the accuracy.

r12 terms Energy (a.u.) Error (eV)

no r12 -2.879024 0.67200
r212 -2.900503 0.08760

r212, r
4
12 -2.902752 0.02640

r12 -2.903496 0.00620
r12, r

3
12 -2.903700 0.00065

all r12 -2.903724 0.00000

2.7.3 Strategies and completeness

Before attempting to achieve convergence by progressively enlarging the basis sets

used to solve the GEP, we must address a crucial question: Are the Hylleraas basis

functions, expressed in Eq. (2.34), complete in the limit N → ∞? We can guarantee

they will reach the exact states and energies within this limit if they are.

Fortunately, the Hylleraas basis functions have been proven by Klahn and Bingel

to be complete20 in the limit Ω → ∞ [36, 53]. For S-states, completeness is ensured

by two factors. The first factor is the completeness of the one-electron Sturmians,

discussed in Sec. 2.4, and a complete set of angular functions [52, p. 110]. This

completeness of angular functions achieved in Hylleraas basis sets results from the

presence of powers of r12 being directly in the basis functions [54]. The powerful

effect of this feature of the basis function can be seen in Table 2.7.1, which compares

the energies calculated using different basis sets to the exact energy. The striking

conclusion is how significant an effect the odd powers of r12, starting with r12 itself,

have on the calculation. The implications of this are most properly understood in

the context of the limitations of another method of forming basis functions: the

configuration interaction (CI) approach, which we now discuss.

20Technically speaking, the basis set needs to become complete as Ω → ∞ in a first Sobolev space,
which is a Hilbert space with square integrable first derivatives [52, p. 110].
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2.7.4 Comparison of Hylleraas construction to other basis sets

The CI approach is another method that is complete in the limit of increasing the

size of the calculation to infinity [36]. The basis functions in a CI wave functions are

formed according to [38]

ψ(r1, r2) = C0u
(s)
1 (r1)u

(s)
1 (r2)Y

0
0,0,0(r̂1, r̂2) + C1u

(p)
1 (r1)u

(p)
1 (r2)Y

0
1,1,0(r̂1, r̂2)

+ C2u
(d)
1 (r1)u

(d)
1 (r2)Y0

2,2,0(r̂1, r̂2) + . . .± exchange,
(2.38)

as an example for S state, where u(ℓ)1 (ri) are one-electron orbitals with angular mo-

mentum ℓ. The procedure is to couple all one-electron orbitals that can form a total

L = 0. The comparison of the energy obtained using this method to others including

the Hylleraas basis states described in Sec. 2.7.1 is shown in Table 2.7.2, along with

several other techniques that can be used form the basis states. The simplest ap-

proximation to write down the two-electron wave function is via a separable product

forming the the so-called Hartree-Fock method, with a radial wave function

ϕ(r1, r2) =
1√
2
[u1(r1)u2(r2)± u2(r1)u1(r2)] (2.39)

which, when substituted into the variational principle, Eq. (2.28), yields an energy

E ≃ −2.87 a.u. The difference between this and the exact energy (-2.903 724 a.u.)

is about 0.03 a.u. and is referred to as the correlation energy. The other methods in

Table 2.7.2 account for correlation and are much more accurate than the Hartree-Fock

method.

Returning now to the role of r12, we begin by using the cosine law to write

r212 = r21 + r22 − 2r1r2 cos θ12. (2.40)
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The spherical harmonic addition theorem [32, p. 63]

Pℓ(cos θ12) =
4π

2l + 1

1∑

m=−1

Y m∗
l (θ1, φ1)Y

m
l (θ2, φ2), (2.41)

for l = 1−→ cos θ12 =
4π

3

1∑

m=−1

Y m∗
1 (θ1, φ1)Y

m
1 (θ2, φ2), (2.42)

shows that powers of cos θ12 correspond to correlation terms in the CI wave function.

We see that r212, proportional to P1, accounts for the pp contributions in the S-state

CI wave functions in Eq. (2.38). Further, the ss contributions arise from r012 since

Y 0
0,0,0(r̂1, r̂2) is just a number. All higher ℓℓ coupling can be obtained from higher even

powers of r12 for the corresponding higher ℓ contributions of the addition theorem.

In this way, including powers of r2n12 for n = 0, 1, 2, . . . systematically includes all of

the coupled states of the CI method. The special role played by odd powers of r12

shown in Table 2.7.1 is understood by considering that if we expand the square root

of the right-hand side of Eq. (2.40),

r12 ≡
√

1 + x cos θ12 = 1 +
x

2
cos θ12 −

x2

8
cos2 θ12 + . . . , (2.43)

with x ≡ 2r1r2/(r
2
1 + r22), we get all powers of cos θ12, corresponding to all higher-

order ll couplings via the addition theorem in Eq. (2.41). The inclusion of all possible

correlations therefore happens much more quickly in Hylleraas basis sets compared

to any CI methods that write down the basis functions as in Eq. (2.38).21 This is

why the Hylleraas approach is so much more effective; even though the CI method

is complete in principle, it is not computationally possible to include all couplings,

whereas, with Hylleraas states, they are automatically included with the odd powers

of r12 via the expansion shown in Eq. (2.43).

Another crucial property of the solutions containing odd powers of r12 is that they

help satisfy22 the electron-electron cusp condition that occurs when r12 = 0, a specific

21These comments extend to states of higher angular momentum, with the difference being that
L ̸= 0 states can be formed by more than one coupling scheme—for L = 0 we only had ℓℓ—which
results in different sequences of basis functions Eq. (2.34).

22The odd powers contain a square root factor and their derivative contains a cusp.
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Table 2.7.2: Comparison between the level of accuracy that can be achieved using the
Hartree-Fock method and various correlated variational wave functions. The Hylleraas basis
states achieve much better accuracy than the rest [38].

Method Typical Accuracy for the Energy

Basic Hartree-Fock [39] ∼ 10−2 a.u.
Many Body Perturbation Theory [38] ≥ 10−6 a.u.
Configuration Interaction [38] 10−6 − 10−8 a.u.
Explicitly Correlated Gaussians [57] ∼ 10−10 a.u.
Hylleraas Coordinates (He) [58–60] ≤ 10−35 − 10−40 a.u.

case of the general Kato cusp condition [55],

(
∂Ψ̄

∂rij

)

rij=0

= µijqiqjΨ̄(rij = 0), (2.44)

where mi,j and qi,j are the masses and charges of the two particles, respectively,

and µij = mimj/(mi +mj) and ψ̄ denotes the wave function averaged over a sphere

centred at rij = 0 [43]. The Kato cusp condition arises because the Coulomb potential

diverges when two charged particles coalesce, but the local energy must be constant.

For this to be true in the case of the Schrödinger equation the diverging potential

that occurs as rij → 0 must cancel exactly with the “kinetic local energy,” leading to

the general two-particle coalescence Kato cusp conditions in Eq. (2.44) [56].

2.8 INTEGRALS INVOLVING HYLLERAAS WAVE

FUNCTIONS

The high-precision comparisons between theory and experiment in two-electron prob-

lems required to test QED (cf. Chap. 5) would be computationally infeasible if the

integrals could not be evaluated in closed form. In the case of the doubled basis set of

correlated Hylleraas functions, in Eq. (2.34), the procedure for analytically evaluating

all integrals of interest was established by Drake in 1978 [61]. Together, Refs. [61]
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and Chap. 12 of the Springer Handbook of Atomic, Molecular, and Optical Physics,

2nd Edition [43], also by Drake, provide the foundation for this section.23

2.8.1 General integral

In order to solve the GEP and obtain the optimized Hylleraas pseudostates, both

the Hamiltonian and overlap matrices must be established. Each element of these

two matrices is itself an integral, defined in Dirac notation as Hmn = ⟨χm|H|χn⟩
and Omn = ⟨χm|χn⟩. Once we have these pseudostates, after solving the GEP, all

structure properties in atomic physics are calculated as matrix elements that are also

integrals.24 A preliminary step in this direction that will not be belaboured here25

is to write the operators of concern, including those that comprise the Hamiltonian,

in the six-dimensional Hylleraas coordinates. The six independent coordinates are

shown in Fig. 2.5.1.

The most general integral between states χ = RYM
ℓ1ℓ2L

and χ′ = R′YM ′

ℓ′1ℓ
′
2L

′ that

are connected through an arbitrary operator expressed as a coupled spherical tensor

TQ
k1k2K

is

I =

∫∫
dr1dr2R

′YM ′

ℓ′1ℓ
′
2L

′(r̂1, r̂2)
∗TQ

k1k2K
(r1, r2)RYM

ℓ1ℓ2L
(r̂1, r̂2), (2.45)

with the vector coupled spherical harmonics defined in Eq. (2.36) and likewise for the

tensor operator

TQ
k1k2K

(r1, r2) =
∑

q1,q2

⟨k1k2q1q2|KQ⟩Y q1
k1
(r̂1)Y

q2
k2
(r̂2) (2.46)

describing the coupling of two tensor operators of rank k1 and k2 to form a total tensor

of rank K. Thus, TQ
k1k2K

(r1, r2) describes the angular part of a general operator that

23The computer programs used in this work, which solve the GEP by evaluating the integrals
contained in the section, can be found in Ref. [62]. Standard quadruple precision (about 32 decimal
digits) is sufficient for the present set of calculations.

24This includes diagonal matrix elements—expectation values—as in energy calculations or per-
turbations to energy and also off-diagonal elements such as those involved in computing the polar-
izability.

25See references suggested at the beginning of this section for more details.
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can be a function of the coordinates and derivatives of the electrons 1 and 2. The

Hamiltonian and overlap are rotationally invariant operators, corresponding to rank-0

(scalar) tensors, a subset of this most general integral.

The volume element can be written as [63]

dτ = r1dr1r2dr2r12dr12 sin θ1dθ1dφ1dχ (2.47)

corresponding to product of radial (r1, r2, r12) and angular (θ1, ϕ1, χ) part, as shown

in Fig. 2.5.1, yielding

∫∫
dr1dr2 =

A︷ ︸︸ ︷∫ 2π

0

dχ

∫ 2π

0

dϕ1

∫ π

0

sin θ1 dθ1

∫ ∞

0

r1dr1

∫ ∞

0

r2dr2

∫ r1+r2

|r1−r2|
r12dr12

= A×
[∫ ∞

0

r1 dr1

∫ ∞

r1

r2 dr2

∫ r1+r2

r2−r1

r12 dr12

+

∫ ∞

0

r2 dr2

∫ ∞

r2

r1 dr1

∫ r1+r2

r1−r2

r12 dr12

]
(2.48)

The solutions of the general integral expressed in Eq. (2.45) have the form

I =
∑

Λ

CΛIΛ(R1R2) (2.49)

where IΛ(R1R2) is the radial part and the sum over Λ ensures the inclusion of all

possible nonvanishing couplings—its role is seen below in the evaluation of the angular

part contained in CΛ.

2.8.2 The angular part

In Eq. (2.49), the remaining part, CΛ, is the angular integral26, which has the following

general solution [61]

CΛ =
∑

λ1,λ2

Cλ1,λ2,Λ, (2.50)

26These ensuing formulae are a consequence of repeated angular couplings. Detailed derivations
can be found in Ref. [61].
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with the individual Cλ1,λ2,Λ formed according to

Cλ1,λ2,Λ = (−1)L
′−M ′




L′ K L

−M ′ Q M


Xλ1,λ2,ΛDλ1,λ2,Λ, (2.51)

with Xλ1,λ2,Λ given by a prefactor multiplied by a product of four 3-j symbols

Xλ1λ2,Λ =
(−1)ℓ

′
1+ℓ′2+L′+Λ

8π
(λ1, λ2,Λ)(ℓ1, k1, ℓ

′
1, ℓ2, k2, ℓ

′
2, L, L

′, K)1/2

×



ℓ1 k1 λ1

0 0 0






ℓ′1 λ1 Λ

0 0 0






ℓ2 k2 λ2

0 0 0






ℓ′2 λ2 Λ

0 0 0


 , (2.52)

where (a, b, . . . ) ≡ (2a+1)(2b+1) · · · and Dλ1,λ2,Λ given by a product of 6-j and 9-j

symbols

Dλ1λ2Λ =




L′ ℓ′2 ℓ′1

Λ λ1 λ2









ℓ1 ℓ2 L

k1 k2 K

λ1 λ2 L′





. (2.53)

The Wigner 3-j, 6-j and 9-j symbols that are used to form the Cλ1,λ2,Λ are defined in

Edmonds [32, pp. 45–50, 92–97, 100–108] and arise in the description of the coupling

of angular momenta needed to evaluate the angular portion of the general integral.

2.8.3 Radial integrals and recursion relations

The most general statement of the radial integral IΛ is

IΛ(a, b, c;α, β) = ⟨f(a, b, c;α, β)PΛ(cos θ12)⟩rad, (2.54)

where ⟨· · · ⟩rad corresponds to integration using the radial bounds established when

defining the volume element above in Eq. (2.47) with integrand

f(a, b, c;α, β) = ra1r
b
2r

c
12e

−αr1−βr2 . (2.55)
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The PΛ(cos θ12) is a residual radial function from the angular integration over the set

of vector coupled spherical harmonics [43], with cos θ12 ≡ r̂1 · r̂2 defined in Eq. (2.40)

cos θ12 =
r21 + r22 − r212

2r1r2
. (2.56)

Carrying out calculations in Hylleraas coordinates according to the basis functions

in Eq. (2.35), the radial portion of every integrand will have the form displayed in

Eq. (2.54).

The strategy used to obtain the integrals {IΛ} for the requisite Λ = 0, 1, . . .

corresponding to nonvanishing CΛ in Eq. (2.49) is to find I0 and I1 first and then use

the recursion relation

IΛ+1(a, b, c;α, β) =
2Λ + 1

c+ 2
IΛ(a− 1, b− 1, c+ 2;α, β) + IΛ−1(a, b, c;α, β), (2.57)

when c ̸= −2, and

IΛ+1(a, b,−2;α, β) = (2Λ + 1)I logΛ (a− 1, b− 1, 0;α, β) + IΛ−1(a, b,−2;α, β). (2.58)

when c = −2 [43]. The logarithmic integrals, I logΛ , that arise have the form

I logΛ (a, b, c;α, β) = ⟨f(a, b, c;α, β) ln r12PΛ(cos θ12)⟩rad, (2.59)

with the recursion relations

I logΛ+1(a, b, c;α, β) =
(2Λ + 1)

c+ 2

[
I logΛ (a− 1, b− 1, c+ 2;α, β)

− 1

c+ 2
IΛ(a− 1, b− 1, c+ 2;α, β)

]

+ I logΛ−1(a, b, c;α, β). (2.60)

The general radial integral with Λ = 0 is I0(a, b, c;α, β) = ⟨ra1rb2rc12e−αr1−βr2⟩rad
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has the closed-form solution

I0(a, b, c;α, β) =
2

c+ 2

[(c+1)/2]∑

i=0

(
c+ 2

2i+ 1

)
[Fa+2i+2,b+c−2i+2(α, β)+Fb+2i+2,a+c−2i+2(β, α)]

(2.61)

with Fp,q(α, β) defined by

Fp,q(α, β) =





q!

(α + β)p+1βq+1

q∑

j=0

(p+ j)!

j!

(
β

α + β

)j

, q ≥ 0, p ≥ 0

p!

αp+q+2

∞∑

j=p+q+1

j!

(j − q)!

(
α

α + β

)j+1

, q < 0, p ≥ 0

0, p < 0

(2.62)

where p = a+ 2i+ 2, q = b+ c− 2i+ 2 and [x] means “greatest integer in.”

I1 can be written in terms of I0 via [61]

I1(a, b, c) =
1

2
[I0(a+ 1, b− 1, c) + I0(a− 1, b+ 1, c)− I0(a− 1, b− 1, c+ 2)] (2.63)

which, together with I0, provides the seeds from which all other IΛ follow by the

recursion relations given in Eqs. (2.57)–(2.60)

Any integral over Hylleraas wave functions connected by an arbitrary operator can

be evaluated using the machinery developed above. One needs to write the operator

in Hylleraas coordinates, which can, in practice, lead to reasonably complicated equa-

tions. Details are readily available in references contained throughout the chapter. A

full table of the radial integrals I0 and I log0 can be found in Chap. 12 of Ref. [43].

2.8.4 Hamiltonian and overlap matrix elements

As an example, we state the specialized form which the general integral in Eq. (2.45)

takes for the infinite-nuclear-mass Hamiltonian and overlap matrix elements that are
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input for the Eq. (2.32), the GEP. If the initial and final Hylleraas states are

χ = ra1r
b
2r

c
12e

−αr1−βr2YM
ℓ1ℓ2L

(r̂1, r̂2) and

χ′ = ra
′

1 r
b′

2 r
c′

12e
−α′r1−β′r2YM

ℓ′1ℓ
′
2L
(r̂1, r̂2),

then the integrals that constitute the Hamiltonian matrix elements are [43]

⟨χ′|H|χ⟩ = 1

8

∑

Λ

CΛ

2∑

i=0

[
A

(1)
i IΛ(a+− i, b+, c+;α+, β+) (2.64)

+A
(2)
i IΛ(a+, b+− i, c+;α+, β+) + A

(3)
i IΛ(a+, b+, c+− i;α+, β+)

]
(2.65)

where a+ = a′ ± a, α+ = α′ ± α, etc., and

A
(1)
0 = −α2

+ − α2
− + 2α−α+

(
c−
c+

)
,

A
(1)
1 = 2

{
α+(a+ + 2) + α−a−− [α+a− + α−(a+ + 2)]

(
c−
c+

)}
− 8Z,

A
(1)
2 = −a2+ − a2− − 2a+ + 2a−(a+ + 1)

(
c−
c+

)
+ 2l1(ℓ1 + 1)

(
1− c−

c+

)

+ 2l′1(ℓ
′
1 + 1)

(
1 +

c−
c+

)
,

A
(3)
0 = 0, A

(3)
1 = 8, and A

(3)
2 = 2

(
c2+ − c2−

)
,

with c−/c+ = 0 for c+ = 0. The A(2)
i differ from the A(1)

i only in that the replacements

a→ b, α → β, ℓ1 → ℓ2 are made.

The overlap integral, yielding overlap matrix elements, can be given in terms of

the above definitions as

⟨χ′|χ⟩ =
∑

Λ

CΛIΛ(a+, b+, c+;α+, β+). (2.66)
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CHAPTER 3

Beta Decay and Charge-state

Distributions in 6He

3.1 OVERVIEW

The Standard Model (SM) provides the framework for understanding the kinematics

following a beta decay event in 6He, which has a lifetime of 0.8 s. Supposing this is a

vector-axial semileptonic weak process, it predicts the electron-antineutrino correla-

tion coefficient, a quantity related to the angle between the electron and antineutrino

that emerges from the beta decay. Deviations from this prediction are widely pos-

tulated as signals for new physics (NP) [28]. Due to the elusive nature of neutrinos

and the resulting inability to detect them experimentally, it is essential to understand

what happens to the recoiling daughter ion, 6Li+, following a decay event, to deduce

the kinematics of the decay.

This chapter includes published work which attempts to resolve a significant

theoretical-experimental discrepancy in the predicted amount of double ionization

following this process [26]. Pseudospectra, of both the one- and two-electron variety,

feature prominently in the analysis in this chapter owing to their ability to discretely

represent an infinite bound and continuous spectrum.

We begin in Sec. 3.2 by giving a historical overview of this fascinating and sig-

nificant problem. Section 3.3 then outlines the motivation for this work, describing

how it relates to potential new physics beyond the Standard Model. This section in-

troduces the experimental quantity of interest, the electron-antineutrino correlation
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coefficient (aβν). It is theoretically motivated, and the experiments that measure this

quantity are summarized. Turning to atomic physics, Sec. 3.4 sets up the problem

and describes the assumptions made. Section 3.5 describes the previous theoretical

work to calculate the charge-state fractions of the 6Li+ daughter ion following the

beta decay of 6He. At this stage, previous works have significantly overestimated the

amount of double ionization, i.e., formation of 6Li3+, compared with experiments.

Following this, Sec. 3.6 makes two theoretical arguments to support the notion that

theory is indeed overestimating the amount of 6Li3+ following the decay. In Sec. 3.7,

an outline of the projection operators and their derivation is presented, with the re-

sults of this method being described in Sec. 3.8. Section 3.9 discusses several avenues

for future work.

3.2 HISTORICAL SIGNIFICANCE

In 1959, on the heels of her major experiment studying the beta decay 60Co, which

established nonconservation of parity in the weak interaction1, C. S. Wu, in Reviews

of Modern Physics, wrote [64]:

The frontier of parity study has now advanced to the field of strange

particles. The atmosphere in the field of beta decay appears unusually

calm and quiet after the storm. I will try to piece together the jigsaw

picture and see what sorts of puzzles in beta decay have fallen into shape.

Most urgent is the question of whether there are still any missing pieces

and what are they if there are?

The problem of beta decay holds a significant and exciting position in the history

of physics. The general equation describing beta decay2 is [65]:

A
ZXN −→ A

Z±1X
′
N∓1 + e∓ + (ν̄e or νe), (3.1)

1This discovery led directly to the 1957 Nobel Prize for her theoretical collaborators, C. N. Yang
and T. D. Lee. Her omission from this prestigious award is indefensible, considering her crucial role.
Her contributions would later be recognized with the first Wolf Prize in 1978.

2This is an atomic perspective on the problem; there are two more successively fundamental
levels to consider: the nuclear and quark levels.
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which describes an atomic element X with mass number A, atomic number Z, and

neutron number N decaying into element X ′ with mass number A, atomic number

Z±1, and neutron numberN∓1, along with the leptonic pairs of an electron/positron,

e∓, and an antineutrino/neutrino (ν̄e / νe). This process produces energy Qβ∓ =

[mN(Z,A)−mN(Z ± 1, A)−me] c
2, which is shared between the outgoing leptons

and, if the decay occurs in an atom, the recoiling daughter ion (or the daughter

proton in the case of bare neutron decay). In this equation, mN is the mass of the

parent or daughter nucleus (with corrections for electron binding energy), me is the

mass of the electron, Z is the atomic number of the parent ion, and c is the speed of

light. The half-life of the process is approximately 10 minutes for a bare neutron and

ranges substantially in atomic systems, owing to wildly differing stability of various

nuclear configurations, selection rules, and values of energy release [65].

It is worthwhile to briefly consider the historical relevance of this “storm” alluded

to by Wu. We first focus on phenomena preceding quantum mechanics, leading toward

the old quantum theory. In studying the phosphorescent properties of the recently

discovered uranium salts in 1896, then relevant for the lighting industry, including the

cathode-ray tube, Becquerel accidentally observed radioactivity for the first time [66];

he detected products of beta decay, then “uranic rays”. This work is foundational to

nuclear physics and was awarded the 1903 Nobel Prize in Physics alongside Marie and

Pierre Curie. By 1914, quantitative studies [67] underway3 concerning the energy of

the beta rays (by 1902, it was recognized that these were electrons) revealed something

unexpected: the energy spectrum of the beta particles was continuous. Assuming a

two-body interaction, the beta particle and the leftover “daughter” nucleus, this is

inconsistent with the conservation of energy and momentum. The situation, pictured

in Fig. 3.2.1 was so strange that many resorted to relegating conservation of energy to

a statistical law, not observed in every interaction, but observed on average [70, 71]—

3A fascinating historical episode is involved here [68]. In 1911, Meitner, Hahn, and von Baeyer
measured a monoenergetic spectrum of electron emission using a photographic plate – later con-
tradicted by two separate Chadwick measurements, one using an ionization chamber and the other
with a Geiger counter. Ellis and Wooster, using yet another device, an absorption calorimeter [69],
confirmed the Chadwick results. Meitner’s photographic detection method was too crude, offering
insufficient resolution of the diffuse lines and preventing the conclusion that the energy spectrum
was continuous.
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a view advanced by even Pauli and Bohr, who renounced it in 1936 after Fermi

established the theory of beta decay [72].

As a “desperate remedy” [71] to the problem of “missing” energy , Pauli proposed

another subatomic particle, which he called the neutron. This particle he proposed

had properties of both the actual neutron, discovered by Chadwick two years later

[73], and the neutrino in Fermi’s theory of beta decay. Fermi correctly postulated

that the neutrino is actually created during the beta decay process [74, 75] whereas

others such as Pauli assumed that it was already within the nucleus. Fermi’s theory

detailed a new (contact) force called the weak force and firmly restored faith in the

conservation of energy law.4

After Fermi’s theory, physicists worked for many years to discern the Lorentz

gauge the structure of the weak interaction, and understand how the weak force fits

into the framework of relativity. Fermi initially predicted that the coupling structure

between the outgoing leptons would have a vector character, where no spin change

would happen in beta decay (∆S = 0). However, shortly after, it was shown that

either an axial or tensor structure would be needed to explain the observed selection

rules, which implied a spin change ∆S = 1 [77]. The following section will elaborate

on these points.

This work culminated in the electroweak unification led by Glashow, Salam, and

Weinberg. Weinberg, in his seminal 1967 paper [78, 79], which presented the theo-

retical framework that unified the electromagnetic and weak forces, credited Fermi’s

work on beta decay from more than 30 years prior as the first attempted unification.

This unification led to correct high-energy predictions, including the W and Z bosons

[80], that met with consistent experimental confirmation. The W and Z bosons were

shown to mediate the weak interaction just as photons mediate the electromagnetic

interaction.

As a final historical point, due to its role in stellar nucleosynthesis, beta decay in-

fluences stellar evolution, elemental abundances, and, ultimately, our understanding

4Fermi’s paper was rejected by Nature “because it contained speculations too remote from reality
to be of interest to the reader” [76].
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Average Energy o f Disintegration of Radium E. I l l

of the other atoms present, we conclude that the energy of disintegration is not 
a fixed characteristic quantity. To take the extreme cases, there are a few

25
3sCfc
5i
6

atoms emitting as much as 1,000,000 volts, whereas at the other end of the 
spectrum there are a few emitting only 4 per cent, of this. From this curve 
we can, following out this hypothesis, deduce the average energy of disintegra-
tion, and we obtain a figure about 390,000 volts. Now the average energy of 
disintegration can be measured by another method entirely free from any 
hypothesis, namely, the heating effect of the (3-rays. This is most simply done 
by enclosing a source of radium E in a calorimeter whose walls are sufficiently 
thick to absorb completely the (3-radiation. If the heating effect is now 
measured and divided by the number of atoms disintegrating per unit time, we 
obtain the average energy given out on disintegration. If this figure agrees 
with the value estimated from the distribution curve, 390,000 volts, then it is 
clear that the observed (3-radiation accounts for the entire energy emission, and 
we deduce the corollary that the energy of disintegration varies from atom to 
atom.

There is a sharp distinction between this result and that to be anticipated 
on the view that the energy of disintegration is a characteristic constant of 
the atom. On this latter view, since electrons are emitted with energies as high 
as 1,000,000 volts, the characteristic energy cannot be less than this figure, and
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Fig. 3.2.1: A plot of the intensity of beta emission with a range of energies [69]. This result of
Ellis and Wooster in 1927 shows unequivocally that the intensity of beta particles, following
the beta decay of radium, is shown to vary continuously with energy. This confirmed the
earlier Chadwick experiments with significantly greater resolution.

of the origins of the universe [81, 82]. Furthermore, studying beta decay in the con-

text of neutrino physics is an essential area of active research. Work in this direction,

including the study of neutrino masses and oscillations and the widely probed for neu-

trinoless double beta decay [83], have implications for particle physics, astrophysics

and cosmology and was recognized with the 2015 Nobel Prize in Physics [84].

3.3 MOTIVATION

3.3.1 The V − A theory

After a significant amount of work that led to the establishment of parity nonconser-

vation in the weak interaction [64, 85], it was found [86–88] that the weak interaction
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Fig. 3.3.1: The weak interaction in beta decay. The left panel shows the post-β−-decay
products with a daughter ion and an ejected beta particle e− with an inset showing the
nuclear-level products of the β−-decay of a neutron. The Feynman diagram corresponding
to this inset is shown in the right panel. Images are in the public domain.

was of the form V −A ("vector minus axial-vector").5 Over the ensuing several years,

this was confirmed by a flurry of experimental activity [91–94]. It is known now that

the weak interactions are a mixture of V and A components—not necessarily strictly

of the form V − A.

Much later, in 2009, Weinberg remarked [79] that “V − A was the key”; that

the realization that this indeed was the proper form of the interaction, leading to a

profound analogy between electromagnetic and weak interactions, and led to their

unification.

This is the point of departure from the historical overview for our story: the eluci-

dation of the V −A theory of the weak interaction, which established its chiral nature.

We begin by briefly outlining this theory and, in the following section, overview its

connection to searches for new physics (NP). The question occupying the physics

5Even though it has been universally acknowledged (since the mid-1960s [78]) that Sudarshan
and Marshak [86] have priority on the V − A theory, it is still mostly referred to as the “Feynman
and Gell-Mann theory,” with their work more frequently cited, possibly due to their status as Nobel
laureates. In the first printing of Surely You’re Joking, Mr. Feynman [89], Feynman discussed beta
decay and omits Sudarshan and Marshak’s contributions, claiming that understanding V − A was
the first and only time in his career that he truly understood something new first. Regarding the
same story, Gell-Mann even threatened legal action [90] against Feynman for misrepresenting his
contributions in their joint work [87]. As a result of this exchange between Feynman and Gell-
Mann, subsequent printings of Surely You’re Joking, Mr. Feynman, if not the widespread consensus,
correctly acknowledge Sudarshan and Marshak’s priority.
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community after Fermi’s theory was: which of the possible covariant, i.e., Lorentz

invariant, expressions for the interaction Hamiltonian was correct. Covariance is an

expected property of any physical theory, asserting that the laws of physics are the

same in all inertial reference frames. As discussed in the Introduction, covariance is

intimately related to CPT symmetry (combination of charge, parity, and time-reversal

conjugation leaves the physics unchanged), perhaps the most important symmetry of

the SM – and one that we have tested extensively [95] and have not yet been found

to break.6

The form of the nuclear-level Hamiltonian7 governing the beta decay shown in the

right panel of Fig. 3.3.1 is [96, p. 5]

HF = Hn +Hp +He +Hν̄ +
∑

i

gi

∫
d3x(ūpOiun)(ūeOiuν̄) (3.2)

where n, p, e, ν̄ refer to the neutron, proton, electron and antineutrino along with

their unperturbed Hamiltonians (Hx) and wave functions (ux), which are solutions

to the Dirac equation.8 There are five possible covariant interactions (i = 1, 2, . . . , 5)

that could characterize beta decay

OS = 1, OV = γµ, OT = σµν , OA = γµγ5, OP = γ5 = −iγ0γ1γ2γ3 (3.3)

where S, V, T, A and P are, respectively, the scalar, vector, tensor, axial vector and

pseudoscalar operators corresponding to the currents (ψ̄pOiψn). These currents are

weighted by the constants gi. In Eq. (3.3), γµ are Dirac matrices and σµν = i
2
[γµ, γν ].

As already mentioned, extensive experimental efforts [91–94] that continue to this

6In more general frameworks such as string theory, CPT symmetry violation no longer implies
LI violation [6].

7In high-energy QCD experiments, the quark-level Hamiltonian is required [28].
8Eq. (3.2) can represent (pure) neutron decay or nuclear beta decay. In the former case, the wave

functions are solutions to the free Dirac equation, whereas in the latter, the proton and neutron
are bound inside of a nucleus, while the emitted beta particle exists in the Coulomb field of the
atomic nucleus [96, p. 5]. Additionally, it is an open question whether or not neutrinos are Dirac
or Majorana particles. If neutrinos are Dirac particles, i.e., they are fermions with distinct particles
and antiparticles, then they satisfy the Dirac equation. Alternatively, if neutrinos are Majorana
particles, i.e., they are their own antiparticle, then they don’t satisfy the usual Dirac equation;
however, they do satisfy a modified Dirac equation.
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day [97, 98] have shown that it is only the vector and axial vector interactions which

contribute to the interaction Hamiltonian in Eq. (3.2). The resulting Hamiltonian

(from here to be referred to as the “SM prediction”)9

Hint(n, p, e, ν) =
Gβ√
2

∫
d3x

[
ūpγ

µ

(
1 +

CA

CV

γ5

)
un

][
ūeγµ(1− γ5)uν

]
, (3.4)

where Gβ is the Fermi constant of beta decay, proportional to the ud-element of the

Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is known experimentally that CA

CV
=

−1.255(6) [96, p. 260]. Without dwelling further on particle physics, it is important to

note that current research into beta decay aims to uncover new physics by identifying

additional components in decay interactions, however small. This means that the

interaction term in Eq. (3.4) is rigorously tested for possibly including more than just

vector and axial-vector components.

The conservation of total angular momentum of the system (nucleus and leptonic

products) is

Ji = Jf + Leν + Seν , (3.5)

where Ji and Jf are the initial and final total angular momenta of the nucleus and Leν

and Seν are the total orbital and spin angular momenta of the lepton pair. Consider-

ation of Eq. (3.5) further differentiates the types of decay events. The distinguishing

feature is the alignment, or lack thereof, in the spins of the outgoing leptons. In al-

lowed decays10 the outgoing leptons do not have orbital angular momentum (Leν = 0);

i.e., that they are emitted as an “s-wave” with a spherically symmetric character. The

9A subtle point of Eq. (3.4) is that both maximal parity violation and left-handed neutrinos
are assumed in writing it this way. These are justified assumptions since they correspond to every
measurement that has ever been performed. These concepts will be discussed soon. As a point of
notation, we will, from now on, write e and ν for simplicity with the understanding that the leptons
obey Eq. (3.1), such that one is a particle and the other an antiparticle.

10Forbidden decays, where the leptons have nonzero orbital angular momentum, are greatly
suppressed and will not be discussed here.
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angular momentum selection rules are [96, pp. 262–263]

Fermi transition (S = 0) : Jπ
f = Jπ

i (3.6)

Gamow-Teller transition (S = 1) : Jπ
f =




Jπ
i , (Jπ

i = Jπ
f ̸= 0)

Jπ
i ± 1

(3.7)

where Ji and Jf are the initial and final total angular momenta of the nucleus and

S = |Se + Sν | depicts the total spin of the lepton pair. The parity of the nucleus, π,

is unchanged as a consequence of the lepton pair having L = 0.

The form of Eqs. (3.6) and (3.7) can be understood as follows. It can be shown

by nonrelativistic reduction that the Fermi transitions proceed via vector operators,

which do not cause any change in nuclear spin. Thus, in Fermi transitions, where the

e−/e+ and ν̄e/νe are antialigned, the total spin does not change, ∆S = 0 and the total

(nuclear) angular momentum remains constant. Conversely, in Gamow-Teller decays,

the lepton spins are aligned and ∆S = 1. It follows from Eq. (3.7) that transitions

satisfying |Jf − Ji| = 1 are pure Gamow-Teller transitions. The beta decay of 6He

(Jπ = 0+) to 6Li+ (Jπ = 1+), the subject of this chapter, is pure GT.

The most general form of the decay rate distribution, derived from Fermi’s Golden

Rule (cf. Appendix B), given in the beta particle (e) and (anti)neutrino (ν) directions

and beta particle energy is [28, 99]

w(⟨J⟩|Ee,Ωe,Ωv)dEedΩedΩv =
F (±Z,Ee)

(2π)5
peEe(E0 − Ee)

2dEedΩedΩv (3.8)

× ξ

{[
1 + a

pe · pv

EeEv

+ b
me

Ee

+
⟨J⟩
J

] [
A
pe

Ee

+B
pv

Ev

+D
pe × pv

EeEv

]}

where E, p, Ω are the energy, momentum and solid detection angle for the two lep-

tons; E0 is the maximum beta particle energy, J and ⟨J⟩ are initial angular momentum

and polarization of the initial (nuclear) state; F (±Z,Ee) is the Fermi function, a cor-

rection factor accounting for the distortion felt by the beta particle, which is moving

in the Coulomb field of the nucleus of charge Z [96, pp. 263–269]; and a, b, A, B, D

(each multiplied ξ) are correlation coefficients depending on the form of the transition
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matrix elements of the beta decay Hamiltonian in Eq. (3.2). Although all five of these

coefficients are actively studied in searches for new physics (see Ref. [28] for details),

we are exclusively concerned with aβν , the β−ν angular correlation coefficient, in this

dissertation. With this in mind, a simplified version of this equation [98, 100] where,

for example, unpolarized (⟨J⟩ = 0) nuclei can be used, will serve our purpose:

w(Ee, θ) ∝ C

(
1 + b

me

Ee

+ aβν
pe
Ee

cos θ

)
. (3.9)

In Eq. (3.9), C describes the phase space density of such transitions [100] and depends

on the momenta and energy of the outgoing leptons. The so-called Fierz term, b,

remains in this equation, even though we do not explicitly consider it here, and the

SM predicts it to be 0 in pure Gamow-Teller beta decays [98]. The reason for this is

that measurements of aβν , as in those of Müller et al., [98], are automatically sensitive

to potentially nonzero values of b which could point to new physics (NP).

3.3.2 The β−ν angular correlation coefficient

In order to understand the relevance of aβν in searches for NP , we begin by considering

the SM prediction for its value. “Correlation coefficients” such as aβν , appearing in

Eqs. (3.8) and (3.9) are formed as products of nuclear matrix elements, including

both the Fermi and Gamow-Teller type, and coupling constants. The full form11 of

aβνξ, for the general case of mixed decay (0 < x < 1) is [99]

aβνξ = |MF |2
{
|CV |2 + |C ′

V |2 − |CS|2 − |C ′
S|2
}

(3.10)

−1

3
|MGT |2

{
|CA|2 + |C ′

A|2 − |CT |2 − |C ′
T |2
}
,

11Terms arising from the so-called Coulomb correction have been omitted here, owing to their
smallness relative to the magnitudes of interest [94]. See [99] for the full expression.
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where MF and MGT are the Fermi and Gamow-Teller nuclear matrix elements.12

ξ itself is given by

ξ = |MF |2
[
|CV |2 + |C ′

V |2 + |CS|2 + |C ′
S|2
]
+ |MGT |2

[
|CA|2 + |C ′

A|2 + |CT |2 + |C ′
T |2
]
.

The {Ci} and {C ′
i}, for i = S, V, T, A, are the Lee-Yang coupling constants, i.e., “cur-

rents”, appropriate for characterizing the beta decay process at the level of constituent

nucleons.13 Ci and C ′
i refer to parity conserving and nonconserving components of

the interaction, respectively [85].14 The implication is that the {Ci} retain their sign

under parity inversion whereas {C ′
i} undergo a sign change. In the maximal parity

violation predicted by the SM, these currents satisfy Ci = C ′
i. The {C(′)

x } parame-

ters are related to the more fundamental hadronic charges and further to the Wilson

coefficients at the quark level predicted by QCD [28].

In the SM [101], pure decays, where either MF = 0 (in GT decays) or MGT = 0

(in Fermi decays) can be written in terms of the coupling constants as

aβν;F = 1− |CS|2 + |C ′
S|2

|CV |2
(3.11)

aβν;GT = −1

3

[
1− |CT |2 + |C ′

T |2
|CA|2

]
, (3.12)

where the second term in each of these is expected to be zero based on the SM

prediction. Thus, a measurement of aβν constitutes a measurement of the ratio of

these coupling constants. This can be expressed even more simply as

aβν =
1

3

(
3− ρ2

1 + ρ2

)
=

1

3
(4x− 1), (3.13)

where ρ is the Gamow-Teller/Fermi mixing ratio,15 or expressed in terms of x the

12MF = 0 (MGT = 0) in GT (F) decays.
13Appendix C discusses the handedness of leptons in the SM, a relevant concept for the present

consideration.
14These are effective couplings which relate to the more ‘fundamental’ quark-level parameters

including masses and couplings of potential new particles [28].
15The mixing ratio, ρ, is the ratio of the product of the coupling constant and the nuclear matrix

element for each decay type (terms to be soon discussed) so that ρ = CAMGT

CV MF
.
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Fig. 3.3.2: Scott diagram showing the value of aβν as a function of the Fermi fraction x,
which characterizes the degree of mixing in the decay. The solid red line corresponds to the
V −A structure of the weak interaction observed in nature.

Table 3.3.1: Summary of the value of the beta-neutrino angular correlation coefficient (aβν)
for pure Fermi (x = 1) or Gamow-Teller (x = 0) decays. The SM (V −A) predictions lie in
the “Vector/Axial-Vector” column.

Transition Type Vector/Axial-Vector Scalar/Tensor

Pure Fermi +1 −1

Pure Gamow-Teller −1/3 +1/3

Fermi fraction. Pure decays (x = 0 for Gamow-Teller and x = 1 for Fermi decays)

are found at the endpoints of the Scott diagram in Fig. 3.3.2.

In allowed transitions, the SM predicts that the values of aβν for pure scalar,

vector, tensor, axial-vector interactions to be [94], respectively -1, 1, 1
3
, −1

3
(this is

summarized in Table 3.3.1). Since the SM predicts the weak interaction to be V and

A, we expect that aβν will lie along the solid red line in the Scott diagram shown in

Fig. 3.3.2. Deviations from this prediction are actively sought in searches for NP.
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3.3.3 Uses in searches for new physics

As described in the Introduction, despite the sweeping and significant successes of the

SM, there are several critical questions for which it has no answer. Phenomena such

as dark matter and baryonic asymmetry point to new physics (NP). The weak sector

of the SM, and in particular the correlation coefficient aβν in beta decay, is a popular

starting point to detect such NP directly [28]. This is the first example in this thesis

that searches for NP at the low-energy frontier by using high-precision measurements

and supporting theoretical efforts.

Many extensions16 to the SM (i.e., “beyond SM” (BSM) theories) postulate new

particles that have couplings different from what we see in the SM [104]. Data from

beta decay experiments competes with and complements other sources, such as the

LHC [105] and astrophysical data, such as the neutrino flux from observed supernovae

[106].

Although the specific modification to the weak interaction is dependent on which

BSM is under consideration [107], the generic mathematical form underlying how

NP would become manifest in beta decays is in changes to the quark-level transition

d −→ ue−ν̄e, a process that is mediated by W∓ bosons [104, 107]. The cause of this is

that the beta decay Hamiltonian predicted by the SM (Eq. (3.4)) picks up additional

terms corresponding to scalar, tensor, or even pseudoscalar terms and also containing

right(left)-handed (anti)leptons.

The usual way to capture this mathematically is by adding terms with NP-

couplings αi for hypothetical interactions Oi to the SM Langrangian LSM according

to

LBSM = LSM +
∑

i

αiOi. (3.14)

In addition to the new terms introduced in this fashion, new interference terms

16All have the virtue of explaining some as yet unexplained phenomena such as the naturalness
problem or affording a BSM mechanism for CP violation believed to be required for the observed
baryon asymmetry in the universe. Since CP violation [102] is required for baryon asymmetry, and
CPT, tied intimately to Lorentz invariance [103], is believed to be a good symmetry [8], a specific
set of theoretical efforts are focused on adding terms to the beta decay Lagrangian which violate
T-reversal symmetry.
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between the SM and BSM couplings can be expected to contribute to the decay rates.

Generally, these additional terms correspond not only to new couplings but also to

new particles and forces.

One concrete example of a BSM theory which generates an exotic, i.e., non-SM,

weak interaction is the “Minimal Supersymmetric Standard Model” (MSSM) [108]

wherein right-handed (RH) interactions are introduced via RH sfermions.17 These

supersymmetric corrections generate scalar and tensor interactions which modify the

beta decay Hamiltonian in Eq. (3.4) and the testable parameter aβν , directly related

to the Lee-Yang coupling constants.18 To compete with the constraints imposed from

other sources, such as the LHC, beta decay measurements must take place at the

δaβν/aβν ∼ 0.1% level of precision to be sensitive to left-handed scalar and tensor

interactions and δaβν/aβν ∼ 0.01% to compete in studies of right-handed interactions

[107]. While the former limit (∼ 0.1%) is well within reach of many experiments

(almost all of those described in Table 3.3.2), a precision of ∼ 0.01% is not within

the current capability of ongoing experiments.

In experimental determinations of aβν , one searches for possible “exotic” scalar

or tensor contributions that would manifest as terms quadratic in the corresponding

coupling constants [28]. The quantity that is measured is not aβν , but rather

ãβν = aβν/

(
1 +

〈
b
me

Ee

〉)
, (3.15)

where the dependence on the Fierz term, b, manifests through the weighted average of

its product with the total mass (me) and energy (Ee) of the beta particle [109]. In the

SM, b has a nonzero value. It becomes nonzero through couplings between standard

(V,A) and exotic (S, T ) currents [126]. In practice, depending on which type of decay

is probed, the relative contributions of |CT/CA| (in pure Gamow-Teller decays) or

|CS/CV | (in pure Fermi decays) can be determined, both of which are expected to be

0 in the SM.

17Sfermions are the superpartners of fermions characteristic of SUSY theories.
18The C ′

i can also be calculated directly from lattice QCD, yielding results in agreement with
experiment. However, the theoretical errors are typically much larger than those obtained from
using data from low-energy beta decay experiments.
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Table 3.3.2: Ongoing nuclear beta decay experiments studying the correlation coefficient
aβν are listed. Each decay is classified by its “type”: Fermi or Gamow-Teller and based on
whether it is β− or β+ decay. See Table V in Ref. [109] for a comprehensive list of the older
experimental efforts.

Parent Type Experiment Year (Most Recent)

6He+ GT/β− LPCTrap (GANIL) [97, 110, 111] 2012
35Ar+ Mixed/β+ LPCTrap (GANIL) [112, 113] 2018
19Ne+ Mixed/β− LPCTrap (GANIL) [113] 2018
6He GT/β− Oak Ridge [114] 1963

U. Washington [98, 115] 2022

Weizmann Inst. [116] In Progress

SARAF (Yavne) [117] In Progressa

21Na Mixed/β+ Berkeley [118, 119] 2008b

32Ar Both ISOLDE (CERN) [101, 120, 121] 2020
38Km F/β+ TRIUMF [122] 2005
8Li+ GT/β− ATLAS (Argonne) [123–125] 2015c

a The SARAF experiment will also look at several isotopes of neon: 18Ne, 19Ne, 23Ne.
b There is some interesting history surrounding the Berkeley experiments. The initial

experiments [118] found a substantial (3.6σ) disagreement with the SM, while the latter
measurement [119] showed that the original effort was compromised by unintentionally
trapped 21Na2 molecules.

c In these 8Li+ experiments, it is α-β-ν̄ correlations that are studied.

There are several completed, ongoing, and planned experiments which seek to

measure every coefficient (a, b, A,B,D) in Eq. (3.8), which are all connected to fun-

damental predictions of the SM. Efforts to determine aβν are reviewed in the following

section. A complete list of these experiments can be found in Section 3 of the Review

by González-Alonso et al. [28]. These beta decay experiments all seek to discern and

stringently test the fundamental properties of the weak interaction.

3.3.4 Experimental measurements of aβν

Careful measurement of the the beta decay rate of unpolarized nuclei, governed

by Eq. (3.9) offers one means of obtaining the quantity of interest aβν . Since the
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Fig. 3.3.3: Kinematics following the beta decay of 6He. The angle θ between the electron and
antineutrino is related to the electron-antineutrino correlation coefficient – the experimental
quantity of interest in connection with searches for NP.

(anti)neutrino cannot be detected directly in experiments, aβν can be deduced by

observing the momentum spectra of the recoiling nucleons in coincidence with the

beta particle.19 The typical situation is illustrated by considering the beta decay of
6He shown in Fig. 3.3.3. Due to the elusive nature of neutrinos and the resulting

inability to detect them experimentally, it is essential to understand what happens

to the recoiling daughter ion, 6Li+, following a decay event, to deduce the kinematics

of the decay.

A summary of these experiments is given in Table 3.3.2. Early work to estab-

lish the V –A theory, such as from Allen et al. [93], is omitted from this table. The

significant advancements that have been made in the techniques of laser cooling and

trapping20 have facilitated a strong resurgence of interest in this problem. Well-

localized atomic clouds allow decay products—importantly, the recoil ions—to emerge

with minimal scattering, offering great control over associated systematic uncertain-

ties [28]. The high intensity of radioactive source atoms and ions provided from the

various sources like GANIL, ISOLDE, and CENPA at the University of Washington

19In this work, we are concerned with nuclear beta decays, that is, beta decays that occur in
atoms or ions, but there is also significant activity which considers bare neutron beta decay (e.g.,
the aSPECT spectrometer at Institut Laue-Langevin [127] and the aCORN spectrometer at NIST
[128]).

20Ion (Paul or Penning) and atom (magneto-optical) traps are both extensively used to study
beta decay. .
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Fig. 3.3.4: The predicted shapes of the recoiling daughter ion’s (RI) momentum are shown
for the two possible Fermi interactions (vector and scalar) and the two possible Gamow-
Teller interactions (axial-vector and tensor).

discussed in Table 3.3.2 is a critical reason contributing to the high precision that is

now possible in low-energy decay experiments. The radioactive atoms are produced

typically via a stripping interaction (e.g., 7Li(d,p)8Li at ISOLDE-CERN [125]) and are

then cooled and trapped, possibly multiple times. The common objective in all exper-

imental efforts studying nuclear beta decay is to measure in coincidence the recoiling

daughter ion (RI) and the beta particle. Spatial- and energy-resolved measurements

of the recoiling ion and beta particle are made possible by a microchannel plate and

a telescope/scintillator, respectively. Time-of-flight (TOF) analysis allows for deter-

mining the momenta of the RI.21 The decay rate is thus measured as a function of the

momentum of the RI. These measurements are compared with the theoretical curves

[93, 94], which depend on the value of aβν , as shown in Fig. 3.3.4. In comparing the

observed spectra with those predicted theoretically with different values of aβν that

the data analysis proceeds. This is a difficult task, especially when considering that

the results must be precise (δaβν/aβν ∼ 0.1%) in order to be helpful. Furthermore,

to obtain the theoretical curve, very realistic simulations must be carried out [126]

and in particular, the centre of the trap must be known very precisely, as it is often

the leading source of systematic uncertainty [129]. Great efforts are taken to model

the trapped ion cloud and the electric and magnetic fields present in order to cor-

21The exact mechanism of how the TOF measurement is performed is slightly different in certain
experiments. For example, experiments at GANIL and University of Washington use a set of plates
in an electrostatic mechanism whereby the RI is accelerated. On the other hand, the ISOLDE-CERN
WITCH experiment uses a magnetic spectrometer where recoil ions spiral adiabatically from a high
B field to a low B field.
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rectly capture the dynamics of the field and cooling effects along with the N -body

interactions present in the buffer gas [98, 129]. As in all precision experiments, the

continuous development of better detection schemes and methodologies to improve

measurement statistics is of chief importance.

3.3.5 Advantages of light atoms

Although, as illustrated in Table 3.3.2, many isotopes can be studied, there are certain

advantages to using a “simple” atom such as 6He, or the still more straightforward

one-electron system 6He+. Firstly, this is a pure GT decay and is exclusively sensitive

to potential exotic tensor currents and will serve to measure CT/CA. The advantage

to studying a pure decay is that the Fermi fraction (x) has a known value (0 or 1)

rather than a value 0 < x < 1 that requires calculation and measurement. Fur-

thermore, in light nuclei such as this A = 6 system, the high-precision few-body

nuclear structure calculations needed to model the decay, in comparison with the ex-

periment, are possible [98]. Few-nucleon systems such as 6He facilitate the inclusion

of higher-order (nuclear) contributions such as recoil order and radiative corrections

that produce more accurate (nuclear) simulations. Additionally, 6He (or 6He+) is

one of the lightest nuclei to undergo beta decay with a relatively large energy release

(Q ∼ 3.5 MeV), providing ideal conditions for the detection of the RI [130]. The

relatively low energies of the beta particle and the RI make these experiments chal-

lenging. The large Q value of 6He decay balances accurate nuclear theory calculations

and sufficient experimental signal.

3.3.6 Connection to atomic physics

From the viewpoint of calculating atomic properties, 6He is an excellent candidate

parent ion for studying beta decay because this is a simple atomic system comprised

of two electrons.22 The atomic electrons can be modelled with high-precision in these

22The one-electron 6He+, studied extensively at GANIL (e.g., [111]), is also excellent in this
regard. Adopting a “glass is half full” sentiment; the two-electron case is valuable as it tests electron
correlation and exchange effects while remaining very accurate.
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systems and this feature is how atomic theory connects to these nuclear physics exper-

iments. The excitation and ionization processes of the RI are referred to as “shake-up”

and “shake-off”. Understanding these atomic effects is ultimately crucial in the exper-

imental determination of aβν since the different charge states of the daughter ion can

be discerned by TOF analysis. As such, the distribution between the daughter ion’s

charge states must be known to experimentally realize the RI momentum spectrum

of Fig. 3.3.4 and thereby determine aβν . This can be achieved by setting thresholds

on the minimum beta particle energy to restrict attention to decays that completely

separate charge states based on TOF analysis (e.g., Ref. [130]). However, in simple

atomic systems with one or two electrons, it should also be possible to predict the

amount of shake-up and shake-off accurately. For example, in the one-electron 6He+

system, theory [131] and experiment [111] are in perfect agreement. This behaviour of

atomic electrons is also studied in more sophisticated decays, such as 19Ne+ and 35Ar+

[113], however, here it is noted that the ability to calculate the shake-off probabilities

of these “highly” multielectron system is difficult to calculate to high accuracy. This

work focuses on the two-election system 6He, the “sweet spot” between these two ex-

tremes, where theory is still competent but where electron-electron correlation must

be considered.

3.4 FORMULATION OF THE PROBLEM

Atomic calculations predict the behaviour of the two atomic electrons following beta

decay. The daughter ion can become excited (in shake-up), singly, or doubly ionized

(in shake-off). These three channels correspond to different charge states of the
6Li+daughter ion: 6Li+, 6Li++, and 6Li3+. In particular, the primary objective of

this work was to rectify the fact that previous theoretical efforts [131, 132] and [133,

pp. 59–66] have universally overestimated the quantity of double ionization (formation

of 6Li3+) relative to experiments [114, 115]. This section formulates the problem to

be solved by first describing the kinematics of the beta decay and then outlining the

physical assumptions made. Henceforth, we will be exclusively concerned with pure
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GT beta decay of 6He.23

3.4.1 Kinematic description

We have established in this chapter that the beta decay 6He → [6Li+] + e− + ν̄ is

studied to determine whether or not NP is present in the aβν coefficient. The square

brackets around the daughter 6Li+ ion are a reminder that shake-up (excitation to

(6Li+)∗) and shake-off (single or double ionization to 6Li++ or 6Li3+, respectively) are

all possible outcomes of 6He decay, as shown in Fig. 3.3.3. The experimental challenge

is that ν̄ cannot be detected directly, so its momentum vector must be deduced

from the overall kinematics of the decay process, including both the β particle and

the recoiling 6Li+ nucleus, together with its two atomic electrons. In Sec. 3.3.4, it

was shown that interpreting correctly the recoil ion momentum spectra, needed to

determine aβν , one must consider its charge state. Otherwise, deviations due to the

electronic momentum might masquerade as a signal for new physics. First, we must

formulate the kinematics of the decay.

The kinematics of the process is as follows. As discussed previously [115, 132],

the emitted β particle has a maximum kinetic energy of Emax = 3.51 MeV with a

broad energy distribution going down to nearly zero. However, in the experiment

of Hong et al. [115], only those events with E > 1 MeV were counted to ensure

separation in the TOF spectra used to disentangle the separate charge states. At

these energies, the β particle is relativistic. From the relativistic energy-momentum

equation (Emax +mec
2)2 = c2P 2 +m2

ec
4, the maximum recoil momentum is Prec =

1070 a.u. In contrast, since the recoiling 6He nucleus is much more massive (M =

6.01523 u), its recoil velocity of vrec = 0.0925 a.u. is nonrelativistic. The atomic

electrons acquire a corresponding momentum K = mevrec = 0.0925 a.u.; however,

this amount is so small that it is unimportant for the present discussion, though it

was considered in [132] and [133, pp. 32–43].

23The decay of 6He+ (identical from a nuclear physics perspective) will also be briefly discussed.
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3.4.2 Physical assumptions

The three points of discussion concerning the physical process here are the recoil of

the daughter ion, the decay itself, which results in a change in nuclear charge, and the

outgoing beta particle. Recall that we are interested in calculating the amount of each
6Li+ charge state following the decay. In these three cases, we will ask what effect

these have on the atomic electrons and to what (if any) extent we must accommodate

them in our theoretical treatment. The future works at the end of this chapter in

Sec. 3.9 addresses the possible relaxation of these assumptions.

Firstly, a perturbation is introduced by the fact that the 6Li+ daughter ion acquires

momentum due to the decay. Mathematically, this recoil is generated by the operator

eiK·(r1+r2). Recoil corrections are important for analyzing experiments [132]. However,

for the present study, we worked in the limit of zero recoil (K = 0) where the operator

mentioned above is 1 since the recoil effects do not materially change the charge-

state distributions, which are our main focus. In particular, the probability for the

formation of Li3+ can be written in the form [132]:

P (Li3+) = A+K2B + · · · , (3.16)

where ℏK = ℏ|K| is the magnitude of the recoil momentum, with B ≃ 0.005 so that

K2B ≃ 4 × 10−5 relative to the previously calculated value A ≃ 0.012 [132]. The

present work, therefore, focused on the leading A term and neglected the recoil. It

will be seen that the discrepancy in predicted double ionization is much larger than

this.

The most significant perturbation contributing to exciting or ionizing atomic elec-

trons is the change in nuclear charge accompanying decay.24 The charge goes from

Z = 2 to Z = 3, and thus, the Hamiltonian changes (from HZ=2 to HZ=3) in a

very short time. In this work, we adopt the sudden approximation (SA), where this

change in nuclear charge is modelled as taking place instantaneously. This simplifica-

24The other process that can happen is “direct-collision”, where an orbital electron is Coulomb
scattered by the emitted beta particle. This effect was shown to be of order ≈ α2(αZ)2 ≈ 10−8 in
helium [134], much too small for us to be concerned with here.
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tion has been almost universally used in studying beta decay in light atoms such as
6He [111, 114, 131, 132, 134]. In particular, Couratin et al. [111] showed agreement

between theory and experiment in the one-electron 6He+ while using the SA. The SA

should work just as well in the Z = 2 two-electron case since the energies involved are

not significantly different from the one-electron case (and, as shown in Appendix D,

the argument for its use is that the beta particle being significantly greater than the

binding energy of the atomic electrons. To this point, Chizma et al. [135] considered

how the SA affects the calculated decay rates (cf. Eq. (3.8)). They show that it is for

beta energies Eβ ≲ 0.05Z2 a.u. that the SA needs to be relaxed.

The physical justification for making the SA is that the emitted β particle is

relativistic and can be thought of as a spherical shell of charge expanding with (nearly)

the speed of light. The SA is valid for “fast” processes that occur on time scales much

shorter than the natural timescales governing the system’s dynamics. The key result

is that the wave functions of the electrons do not have time to adjust to the new

Hamiltonian. The initial helium wave function Ψ(6He), an eigenstate of HZ=2, is not

an eigenstate of HZ=3 and (by assuming the SA) does not have time to adiabatically

adjust to the new system. Thus, it must be expanded over the complete set of states

Ψi(6Li+) according to

Ψ(He) =
∑

i

ciΨi(Li
+). (3.17)

See Appendix D for a derivation of and further comments on the SA.

The next question is whether the outgoing beta particle interacts significantly

with the atomic electrons. This leads to the necessity of including exchange effects

arising from the indistinguishability of the atomic electrons and the outgoing beta

particle. We make the approximation that the beta particle is distinguishable from

the atomic electrons, thereby neglecting the exchange effect.25 The physical reason for

adopting this approximation is that the beta particle has very high energy and is in a

continuum state with minimal overlap with the (bound) two-electron wave function.

Further, the relativistic beta particle will spend little time interacting with the atomic

25To be clear, both exchange effects and full correlations are accounted for in the treatment of
the two atomic electrons.
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electrons, so any possible exchange interaction will occur on very small timescales.

Cooper and Åberg [136] have considered exchange effects using a “single-step” model,

which extends the SA. They derived a formula and concluded that for both shake-up

and shake-off processes, the predictions of the SA are obtained in the limit Eβ ≫ Ea,

where the beta particle has much more energy than the atomic electrons. In the

beta decay of 6He, where Eβ ∼ 104 a.u. and Ea ∼ 1 a.u., this condition is easily

met.26 Exchange effects between the β particle and the atomic electrons have been

considered explicitly and found to be negligible at these energies [136, 137].

3.4.3 Problem statement

We are trying to solve the problem of determining the probabilities of forming daugh-

ter ions of each charge state. The first step is to calculate the individual probabilities

of a transition into each final state |Ψf (
6Li+)⟩. In the limit of no nuclear recoil, this

becomes [132]:

Pi→f = |⟨Ψi(
6He)|Ψf (

6Li+)⟩|2 = Aif . (3.18)

Since there are a countably infinite number of discrete bound states and an uncount-

ably infinite number of continuous scattering states, the methods used to sum or

integrate the {Pi→f} corresponding to a given charge state require careful considera-

tion and constitute the primary challenge.

A consequence of working only with Pi→f ≈ A is that this work is only concerned

with transitions that involve no change in angular momentum (∆L = 0) and only

S−S transitions as we are always starting in S states. Transitions to higher angular

momentum states occur only at higher orders of K, with much smaller probabilities,

26In higher-Z atoms, where typically Eβ is smaller than in 6He and Ea, which scales as Z2,
exchange effects are more important, and the formalism developed in Ref. [136] can be consulted.
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due to the expansion of the recoil operator

eiK·r = eiKz = 1 + iKz − (Kz)2

2!
+ . . . , (3.19)

= 1− (Kr)2

6︸ ︷︷ ︸
S−S

+ iKz︸︷︷︸
S−P

− (Kr)2

3
P2(cos θ)

︸ ︷︷ ︸
S−D

+ . . . , (3.20)

Refs. [132] and [133, pp. 32–43] treat these recoil-dependent effects, and the method-

ology developed here could also be turned towards recoil corrections in the future.27

3.5 STATE OF THE ART

There have been several attempts to predict the probabilities of shake-up and shake-

off (of as many electrons as possible) in various atomic systems, as discussed in

Sec. 3.3.6. The conclusion of previous work is that in one-electron systems, theoretical

predictions agree with experiment [111, 131], whereas in systems with more than one

electron, theory and experiment do not agree (e.g., [113–115]). We are concerned

with the two-electron system, which has been studied experimentally [114, 115] and

theoretically in Refs. [131, 132, 134]. The critical problem we seek to rectify is the

overestimation of double ionization, i.e., the formation of 6Li3+, following the beta

decay of 6He. This section critically reviews previous theoretical efforts, and problems

are revealed in their formalism. In particular, the work of Schulhoff and Drake [132]

serves as the foundation for the present work.

3.5.1 Previous theoretical attempts

The key problem, stated in Eq. (3.18), is to (1) calculate squared overlap matrix

elements |⟨Ψi(
6He)|Ψf (

6Li+)⟩|2 = Pi→f that represent the probability of transition

from the initial state Ψi(
6He), with energy Ei, to a final state Ψf (

6Li+) of energy

Ef ; and (2) add or integrate these probabilities according to charge state. Thus, the

27That we don’t obtain agreement even on the recoil-independent A probabilities, though we do
find improvement on previous work, is why we have not yet taken this further step.
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problem involves choosing accurate wave functions with a well-defined charge state

and correctly integrating the appropriate {Pi→f} corresponding to each charge state.

A common feature of all approaches to this problem is to use a discrete pseu-

dospectrum, a concept introduced in Sec. 2.7.1, to represent both the bound and

continuum states. This allows the integral
∫
E>0

P(E)dE over the continuum to be re-

placed by a computationally-tractable sum. In using a pseudospectrum, this integral

can be approximated by the sum
∑

f wfP (Ef ), where the weights are chosen with

the understanding that each pseudostate Ψf (
6Li+) with energy Ef corresponds to an

energy range. The goal, then, is to develop a finite set of pseudostates which cap-

ture the essential physics of the problem. At a minimum, these basis sets should be

asymptotically complete and cover the energy range that is expected to be important

for the problem. The following text outlines various methods to achieve this goal.

Further efforts undertaken will be the main focus of the subsequent Secs. 3.6 and 3.7.

One of the first treatments of the beta decay of 6He was by Winther in 1952 [138],

where he considered only bound-bound transitions Pi→f where Ψf =6 Li+(1sns 1S)

for n = 1 – 4. In this calculation, Hylleraas wavefunctions were used to represent

the ground states of 6He and 6Li+ along with the first excited state of 6Li+, while

Hartree wave functions were used for the remaining bound states of 6Li+. A problem

with this pioneering implementation was that the bound states of 6Li+ generated

in this way were not orthonormal. Due to this, the probabilities calculated do not

add exactly to 1, so even though estimates are given for transitions to the con-

tinuum, they cannot be taken too seriously. One remarkable fact about Winther’s

work is that using Hylleraas wave functions with a single nonlinear parameter for the

ground (1s2 1S) for 6He and 6Li+ with only 6 and 9 terms, respectively,28 predicted

|⟨6He(1s2 1S)| 6Li+(1s2 1S)⟩|2 ≈ 0.670, when the current best value [132] is 0.7086 . . . .

This indicates the importance of electron exchange and correlation effects in the beta

decay process. Hylleraas wave functions, even in their simplest and restricted form,

are well-suited to tackle this problem.

28In the present work, we used up to 650 terms in our Hylleraas basis functions, with two basis
sectors, i.e., sets of terms in the wave function with different nonlinear parameters.
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In 1968, Carlson et al. [139] used nonrelativistic Hartree-Fock wave functions to

carry out a much more comprehensive calculation. They considered the probability

PK of creating a vacancy in the K-shell in elements in the Z = 2 to 92 range under-

going beta decay from the ground state. Although this calculation is sophisticated,

the PK value is insufficient to partition the charge state fractions of the daughter ion

following beta decay. In 6He, they calculated PK = 0.269 and the current best value

is [132] PK = 0.291. This difference cannot be attributed to the number of terms

in the wave functions in this case; rather, the method of forming the wave functions

is insufficient. Hartree-Fock wave functions do not account for correlation even in

this limit of an infinite basis set size. An important finding of this work was that for

Z ≳ 31, relativistic Hartree-Fock-Slater wave functions are needed.29

Wauters and Vaeck used the first configuration interaction (CI) method in treat-

ing this problem [131]. In their work, two-electron wave functions are formed using

configurations built on one-electron orbitals that are formed using B splines. The

central property is that the wave functions are formed as linear combinations of pos-

itive piecewise polynomials (i.e., B splines) defined on a knot sequence via recursion

relations [131]. The advantage of B splines is that each basis function is nonzero

only over a limited range; this simplifies calculations as the interactions become local.

Other basis functions, such as Slater or Gaussian orbitals, are infinite in extent. Fur-

thermore, the one-electron basis set constructed of B splines is effectively complete,

allowing for the entire spectrum of the one-electron Hamiltonian H(1) to be described

by a finite pseudospectrum. These one-electron orbitals are combined as described

in Sec. 2.7.4. and the calculated charge-state fractions using this method appear in

Table 3.5.1.

Although CI methods systematically include electron correlation, Table 2.7.2

shows that they do this much less effectively than Hylleraas wave functions. Fur-

thermore, in Table 3.5.1, we see that the probabilities for the various charge states

following the beta decay of 6He that are calculated using this method do not add

29Another significant aspect of this work is that it was one of the early successes of the Hartree-
Fock code written by Charlotte Froese Fischer [140]. This would later evolve into the famous
multi-configurational Hartree-Fock program, using the self-consistent field method.
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exactly to 100%. For these reasons, Hylleraas wave functions were deemed the ap-

propriate starting place for this calculation.

Frolov and Ruiz [134] calculated transition shake-up probabilities in the light

atoms He, Li, and Be. In the two-electron He, they used the so-called Hylleraas-CI

[141, 142], a hybrid method that uses higher angular momentum states characteristic

of the CI that include the interelecton coordinate r12, the hallmark of the Hylleraas

approach, into the basis states. These calculations yielded high-precision results for

the |⟨6He(11S)|6Li+(n1S)⟩|2 up to n = 7 that was surpassed in 2015 by Schulhoff

and Drake [132], who used a fully correlated and doubled Hylleraas basis set to

variationally solve the two-electron problem.

3.5.2 Foundation: doubled Hylleraas basis functions

The current work builds on Ref. [132], and it therefore serves to briefly recapitulate

this work. Recall that the problem we wish to answer is: What is the probability of

forming 6Li+, 6Li++, and 6Li3+ following the beta decay of 6He. For this purpose, we

use variationally constructed Hylleraas states (cf. Sec. 2.7.1).

In Ref. [132], the 6Li+ final states in Eq. (3.18) were partitioned by their energy

range (bins) as a proxy for the charge state, according to

Bin 1 (shake-up) : Eg(Li+) ≤ E < Eg(Li++)

Bin 2 (single ionization) : Eg(Li++) ≤ E < Eg(Li3+) (3.21)

Bin 3 (double ionization) : Eg(Li3+) ≤ E <∞

where Eg(Li+) = −7.2799134 . . . is the ground-state energy of 6Li+, Eg(Li++) = −4.5

a.u., and Eg(Li3+) = 0. This is shown below in Fig. 3.6.1. Bin 1 corresponds to shake-

up, whereas Bins 2 and 3 are classified as shake-off. The pseudospectra were optimized

by varying β1 in the first sector of the Hylleraas basis functions, with the remaining

nonlinear parameters chosen to be similar to the low-lying bound states [51]. Further,

since this is a pseudospectrum, each eigenstate represents a range of energies. The

method of Stieltjes imaging [143] was used to approximate the differential transition
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Table 3.5.1: Comparison of previous theory with experiment for the probabilities P (6Lik+)
of forming the various charge states with k = 1, 2, 3 following beta decay of 6He(1 1S0) or
6He(2 3S1) as initial states. Ground state results in the upper panel are from Carlson et al.
[114]. Metastable triplet results in the lower panel are from Hong et al. [115]. All quantities
are expressed in percent (%).

6He statea Daughter ion Theory [132] Theory [131] Exp’t.

1 1S0
6Li+ 89.03(3) 89.09 89.9(2)
6Li++ 9.7(1) 10.44 10.1(2)
6Li3+ 1.2(1) 0.32 0.018(15)

Total 99.9(1) 99.85 100.0(2)

2 3S1
6Li+ 88.711(3) 89.9(3)(1)
6Li++ 9.42(7) 10.1(3)(1)
6Li3+ 1.86(7) <0.01

Total 99.99(7) 100.00

a Results have also been calculated [133, pp. 67–73] and measured [115] for the 6He(2 3P )

initial state. As the text mentions, P states are not featured in the present work as we are
focused on resolving a simpler problem first.

probability per unit energy interval dP (E)
dE

from the initial state of 6He to a final state

of 6Li+ with energy E in the form

dP (Ē)

dE
≈ 1

2

Pj+1 + Pj

εj+1 − εj
(3.22)

evaluated at Ēj = (εj+1 + εj)/2. Stieltjes imaging yielded increased stability in the
dP (Ē)
dE

vs. Ēj graphs with an increasing number of terms N2 in the variational wave

functions and therefore in the calculated charge state fractions. The validity of this

method was demonstrated in the problem of photoionization of hydrogen [144]. A

linear smoothing method was applied for those states closest to the bin boundaries

[133, pp. 51–52].

In addition to giving closure, as indicated by a total probability being equal to

100%, as shown in Table 3.5.1, in Ref. [132], several oscillator strength sum rules are

shown to be satisfied for the wave functions used to describe the initial 6He state and
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the 6Li+ pseudospectra. In particular, a generalized Thomas-Reiche-Kuhn (TRK)

sum rule,30 that includes the change in Coulomb potential accompanying beta decay,

was derived and found to be satisfied. To account for this change, a modification to

the ordinary optical oscillator strength31 was made according to

fi→f = 2[ELi+(f) − EHe(i)]|⟨i|z1 + z2|f⟩Li+|2. (3.23)

The TRK sum rule then acquires an extra term due to the change in the Coulomb

potential with the result

∑

n

fi→n = N + 2⟨i|(VLi+ − VHe)(z1 + z2)
2|i⟩ (3.24)

= 2− 2⟨i|
(

1

r1
+

1

r2

)
(z1 + z2)

2|i⟩, (3.25)

where N = 2 is the number of electrons and |i⟩ denotes the 6He initial state. For

He(1 1S) → Li(n 1P ), the sum rule is

∑

n

fHe(1 1S)→Li(n 1P ) = −1.9734403, (3.26)

which is satisfied to many figures using the Hylleraas pseudostates obtained via the

procedures described here. The sum rules interconnect and tightly constrain the

calculated charge-state fractions and justify the completeness assumption contained

in Eq. (3.17),

Ψ(6He) =
∑

i

ciΨi(
6Li+)

that these fully correlated pseudostates Ψi(
6Li+) on the right-hand-side contain com-

plete information about all possible two-electron states, including single- and double-

continuum states, as well as autoionizing resonances, at least in the limit of large

basis sets and in the region of space near the nucleus (cf. Sec. 2.7.3).

30The normal TRK sum rule is:
∑

n fi,n = N where N is the number of electrons [40, p. 256].
Eq. (3.25) reduces to this normal case when the initial and final state are from the same Hamiltonian.

31The ordinary oscillator strength looks identical to Eq. (3.23) but assumes that the initial and
final states come from the same Hamiltonian.

68



3.6. OVERESTIMATED DOUBLE IONIZATION

The results for the calculated charge state fractions following decay from the

ground and metastable triplet state of 6He are shown in Table 3.5.1. Predictions

from theory, namely the Hylleraas approach of Schulhoff and Drake [132], and the

CI + B spline approach of Wauters and Vaeck [131] are compared with two experi-

ments, one old [114] and one new [115]. The predictions of the Hylleraas method are

superior to the CI method and will, from here on, be synonymous with “theory” since

it better includes electron correlation—a feature that Wauters and Vaeck [131] explic-

itly demonstrated to be important in treating atomic rearrangement following beta

decay. Also, the CI method does not give closure as the total probability does not

add to 100% as it does with the Hylleraas method. The theory compares favourably

with the experiment for all but the amount of double ionization or formation of 6Li3+,

where there is a disagreement by several orders of magnitude. This overestimation of

Bin 3 in Eq. (3.21) is the focus of the present work.

3.6 OVERESTIMATED DOUBLE IONIZATION

This section outlines why a metric other than energy must be deployed to partition

the charge states in the 6Li+ daughter ions following beta decay. First, it is shown that

the E > 0 region contains contributions from single and double ionization. Then, we

directly confront the experimental reality that very little 6Li3+ is measured, regardless

of the charge state (cf. 3.5.1), and sketch an argument as to why this makes sense.

This serves to justify the creation of projection operators, which will be described in

the subsequent section.

3.6.1 Energy does not describe charge state

The primary limitation of the method employed by Schulhoff and Drake [132] is that

energy is not the appropriate metric to describe the charge state of an atom. Their

calculation identified the charge states by the energy bin into which the pseudostate

fell, summarized in Eq. (3.21).

Bins 1 and 2 contain purely 6Li+ and 6Li++ states (Bin 2 includes doubly excited

69



3.6. OVERESTIMATED DOUBLE IONIZATION

Li+ bound states
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Fig. 3.6.1: Energy level diagram of 6Li+ with the charge states indicated. Notably, the
E > 0 region contains both the single and double ionization channels.

autoionizing states), but Bin 3 contains both 6Li++ and 6Li3+. It is in Bin 3, where

E > 0 a.u. that the energy fails to represent unambiguously the charge state. This

is illustrated in Fig. 3.6.1 and can be understood as follows. The argument begins

with a discussion of how the ionization thresholds are calculated and an analysis of

why the energy parameter in Bins 1 and 2 is an unambiguous indication of the charge

state.

In the screened hydrogenic and independent particle approximations, which are

sufficient for the ensuing argument, the energy is the sum of the Bohr energies:

E = − Z2

2n2
1

− (Z − 1)2

2n2
2

where Z, n1, and n2 are the nuclear charge and the principal quantum numbers of

electrons one and two, respectively. For singly excited states n2 → ∞, the first

electron is in the ground state (n1 = 1), giving the first ionization threshold in 6Li+
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3.6. OVERESTIMATED DOUBLE IONIZATION

as E1st = −4.5 a.u.. This is the lowest possible energy that a 6Li++ state can have as

it is simply the binding energy of the remaining one-electron (n = 1) system, while

the ejected electron moves away with kinetic energy that must be added to −4.5 a.u.

In doubly ionized states, both n1 → ∞ and n2 → ∞, leading to E2nd = 0. This is

the lowest possible energy that a 6Li3+ state can have; the kinetic energy of the two

ejected electrons must be added to 0 a.u. Any states with E < E1st are bound, and

it follows that bound states cannot have E > E1st . For the same reason, since n1

remains finite in Bin 2, no doubly ionized states can have E < E2nd . Thus, states

with energies in Bin 2, E1st < E < E2nd , are all singly ionized. These arguments set

strict limits on the contents of Bins 1 and 2, but concerning Bin 3, they only tell us

that 6Li+ states cannot possibly be there.

Figure 3.6.1 shows clearly that the energy bin E > 0 is not exclusively com-

posed of doubly ionized states. As mentioned above, in the single ionization channel,
6He(1s2) −→ 6Li++(1s) + e−, the energy is calculated (to a good approximation

appropriate for this heuristic argument) according to E++ = −4.5 +K2, where −4.5

a.u. is the 6Li++(1s) binding energy and K2 > 0 is the kinetic energy of the ejected

electron. In beta decay events leading to singly ionized daughter ions, there is no

restriction on how much energy K2 the ejected electrons can carry away. Since the

ejected electron can carry away an arbitrarily high amount of energy – even enough

to give E++ > 0, therefore the E > 0 region described by Bin 3 contains overlapping

continua, which both contribute.

3.6.2 Suppression of double ionization

Based on the above reasoning, we would expect that the previous theoretical formula-

tion is overestimating the amount of Li3+. Here, we present an argument that outlines

why very little double ionization should occur. It is known from work on the related

problem of the single- and double-photoionization [145] cross sections that (1) the

cross section σ becomes progressively smaller as the energy is increased, and (2) dou-

ble ionization is significantly suppressed near threshold [146]. In the same way that
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3.6. OVERESTIMATED DOUBLE IONIZATION

A

3+

e−

e−

B

3+

−

e−

Fig. 3.6.2: This diagram illustrates the phase space arguments suggesting that double ion-
ization is rare. In the case where energy/momentum are not equally shared between the two
electrons, shown in panel A, one electron will fall back and become bound, creating a singly
ionized state, shown in panel B.

σ(E) decreases with energy, so does P (E).32 It makes sense that the matrix elements

became smaller and smaller as the energy difference between the states increased, as

there is progressively less overlap between the corresponding wave functions. There

is a vast literature in collision and laser physics concerned with cross-section calcula-

tions that are very similar in spirit to the present work. The points mentioned here

are revisited in the context of contributing to this literature in the discussion of future

work in Sec. 3.9.1.

Figure 3.6.2 considers the situation where the daughter atom has some E > 0 that

is relatively small. The two possibilities are that the atom is singly ionized, with one

ejected electron, or doubly ionized, with two ejected electrons. Phase space consid-

erations support the notion that very little double ionization should occur in these

“near-threshold events.” Suppose that two electrons are being ejected but with very

little total energy, so they are moving slowly. For both electrons to truly be ejected,

in this limiting case, the energy needs to be shared almost equally between them,

or else one of them will “fall back,” leaving the atom singly ionized. This argument

extends to relatively low-energy E > 0 states, just above threshold, suggesting that at

these small energies single ionization remains dominant. Although if the energy to be

32The photoionization cross section is proportional to squared dipole matrix elements σ(E) ∝
∆E|⟨f |z|i⟩|2, as compared with beta decay probabilities, which scale according to P (E) ∝ |⟨f |i⟩|2.
Both σ(E) and P (E) decrease significantly with increasing energy.
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3.7. PROJECTION OPERATORS
Pi!f (++) =

��h i|eiK·r|f (++)i
��2 ⇡ A(f) ⇡

��h i|f (++)i
��2

P++ ⌘
X

�(++)

|�(++)ih�(++)| (1)

P 0
i!f (++) = hf (++)|P++P++|f (++)i ⇥ A(f) (2)

Ef (++) > 0 a.u. (3)
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Fig. 3.7.1: Schematic indicating the role of the projection operators P++, namely, to resolve
the overlapping continua in the E > 0 a.u. region. The idea is to form the projection
operators using two-electron basis functions Φ(++) that are constructed as doubly ionized
states.

shared is sufficiently large, this argument becomes less important, it remains true, in

the related problem of photoionization of helium, that the double-to-single-ionization

ratio, σ(E)++/σ(E)+ is very small near the double ionization threshold and never

becomes much larger than 2 even at extremely high energies [146].

We have formed a complete pseudospectrum that includes electron correlation.

However, since energy eigenvalues are not a good proxy for the charge state and

double ionization is significantly suppressed near the threshold, we must establish a

method that correctly encodes the charge state of the 6Li+ daughter ion. To this end,

we construct projection operators, as discussed in the following section.

3.7 PROJECTION OPERATORS

The overall strategy employed in this work is to build on the work of Schulhoff and

Drake [132]. We retain the same optimized initial 6He states, adding the metastable

singlet 6He(2 1S) state,33 and also the same 6Li+ with the same optimized nonlinear

parameters that were found initially in Ref. [51]. The present work aims to develop

projection operators P++ (hereafter denoted simply by P ), illustrated in Fig. 3.7.1,

that are applied to the E > 0 region of the 6Li+ pseudospectra in order to resolve the

overlapping ionization channels.

The central problem then is to construct a projection operator P and its orthogo-

nal complement Q such that P |Ψi(
6Li+)⟩ corresponds to states where both electrons

have asymptotically outgoing boundary conditions (i.e., 6Li3+ states) and such that

33Optimized as in Ref. [51]
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3.7. PROJECTION OPERATORS

P|Ψi(
6Li+)⟩ = 0 for states lying below the double-ionization threshold. Our strategy

is to resolve each pseudostate | Ψi(
6Li+)⟩ lying above the double-ionization threshold

at E = 0 into its orthogonal component parts |c3+i |2 = ⟨Ψi(
6Li+) | P | Ψi(

6Li+)⟩ and

|c++
i |2 = ⟨Ψi(

6Li+) | Q | Ψi(
6Li+)⟩, where

R3+
i = |c3+i |2/|ci|2 (3.27)

R++
i = |c++

i |2/|ci|2 (3.28)

are the fractional probabilities for the formation of 6Li3+ and 6Li++, respectively. As

usual, the projection operators have the properties P +Q = 1 and PQ = 0.

3.7.1 Construction of projection operators

Our approach is to construct projection operators for the correlated two-electron

pseudostates Ψi(r1, r2) in terms of the sums of the products of one-electron pseu-

dostates ϕn(r). They are obtained by first orthogonalizing and then diagonalizing the

unscreened hydrogenic Hamiltonian:

H0 = −1

2
∇2 − Z/r (3.29)

in a basis set of functions χj,k(r) = rje−αλkr for a range of powers j and k such that

a particular ϕnl(r) for angular momentum l has the form34 (for example):

ϕnl(r) = [(a10 + a11r + a12r
2 + a13r

3)e−αλr

+ (a20 + a21r + a22r
2)e−αλ2r

+ (a30 + a31r)e
−αλ3r

+ (a40)e
−αλ4r]rlY m

ℓ (θ, ϕ)

(3.30)

34The theory of these Sturmian functions is discussed in Sec. 2.4 along with several properties
that make them extremely useful, perhaps most notably the fact that Sturmian functions form a
complete – and discrete – representation of the spectrum of the one-electron Hamiltonian.
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3.7. PROJECTION OPERATORS

for the case Ω1 = 4, where Ω1 = (j+ k)max, and ast are linear variational parameters.

Because of their shape, we call these “triangular” basis sets, as used previously in the

calculation of the Bethe logarithms for hydrogen [29]. The total number of terms is

N1 = Ω1(Ω1 + 1)/2 if all terms in Equation (3.30) are kept. The triangular basis

sets have two important features. First, the highest eigenvalue is pushed up by many

orders of magnitude beyond what is typically achieved with a single exponential term

(i.e., a “linear” basis set). For our typical values of α = 0.1Z and λ = 5.15, the high-

est eigenvalue is approximately Ehigh = 100.715Ω1−3.61 a.u., or 2.5× 106 a.u., although,

for different constructions, this can be pushed much higher (cf. The Bethe logarithm

problem in Fig. 1.3.2) The basis set, therefore, spans a huge range of (nonrelativistic)

energy and distance scales. The ground state and the first several excited states are

also well represented. Second, the basis set has a remarkable degree of numerical

stability despite the huge range of distance scales covered. With quadruple preci-

sion, Ω can be increased to around 17 or 18. As shown previously [29], the positive

eigenvalues are roughly evenly spaced on a logarithmic energy scale up to very high

energies.

Assume for simplicity that Ψi(r1, r2) is an S-state. Neglecting the 1/r12 electron-

electron interaction, a zero-order approximation to the P projection operator can then

be formed from a doubly-positive-energy sum over all (anti)symmetrized products of

one-electron pseudostates:

P (0) =
∑

ℓ

∑

n+

| n+, l⟩⟨n+, l | (3.31)

where the sum over l is a sum over two-electron partial waves coupled to form an S-

state and n+ stands for a pair of integers {n,n′} such that both ϕn,l(r) and ϕn′,l(r) lie

in the positive-energy scattering continuum. | n+, l⟩ is then correspondingly defined

by

| n+, l⟩ =
1√
2
[| ϕn+,l(r1)⟩ | ϕn′

+,l(r2)⟩Y0
ll0(r̂1, r̂2)

± exchange] (3.32)
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3.7. PROJECTION OPERATORS

where YM
ℓ1ℓ2L

(r̂1, r̂2) is a vector-coupled product of spherical harmonics with L = 0

and M = 0. The generalization to states of arbitrary L is straightforward. The

complementary operator Q0 is then defined by

Q(0) =
∑

ℓ

∑

n−

| n−, l⟩⟨n−, l | (3.33)

where, for brevity, n− stands for all three combinations {+,−}, {−,+}, and {−,−},
indicating that at least one of the two electrons is in a negative-energy-bound pseu-

dostate.

This method of calculation is similar in spirit to that of Forrey et al. [147] for

double-photoionization of helium, except that the true Coulomb waves are here re-

placed by pseudostates at the same energy. As shown in Fig. 3.7.2, the two agree

very well out to quite large distances.

The method is justified by the degree to which the final results converge with the

basis set size and the sum over partial waves:

⟨Ψi(r1, r2) | P (0) +Q(0) | Ψi(r1, r2)⟩

= ⟨Ψi(r1, r2) | Ψi(r1, r2)⟩ (3.34)

is satisfied. Instead of analyzing the asymptotic form of the scattering solution,

as in an R-matrix calculation, the method analyzes the correlated positive-energy

pseudostate in the region near the nucleus, where the Q operator projects out that

part that has the asymptotic form of a bound state for one of the two electrons.

This is then identified as the amplitude for single-ionization and the orthogonal P

component as the amplitude for double ionization. The contrast between the two

asymptotic forms is illustrated by comparing the top and bottom panels in Fig. 3.7.2.

The method must also converge with respect to the inclusion of the electron-

electron interaction V = 1/r12 in P (0) as a perturbation. Up to second order, the
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3.7. PROJECTION OPERATORS

4

for the case ⌦1 = 4, where ⌦1 = (j + k)max, and the
ast are linear variational [paramenters. Because of their
shape, we call these “triangular" basis sets, as used previ-
ously in the calculation of Bethe logarithms for hydrogen
[31]. The total number of terms is N1 = ⌦1(⌦1 +1)/2�1
since the final “a40" term (or as0 in general) in the bottom
row of Eq. (11) is dropped. The triangular basis sets have
two important features. First, the highest eigenvalue is
pushed up by many orders of magnitude beyond what is
typically achieved with a single exponential term (i.e. a
“linear" basis set). For our typical values of ↵ = 0.1Z
and � = 5.15, the highest eigenvalue is approximately
Ehigh = 100.715⌦1�3.61 a.u., or 2.5 ⇥ 106 a.u. The ba-
sis set therefore spans a huge range of (nonrelativistic)
energy and distance scales. The ground state and first
several excited states are also well represented. Second,
the basis set has a remarkable degree of numerical sta-
bility, despite the huge range of distance scales covered.
With quadruple precision, ⌦ can be increased to around
17 or 18. As shown previously [31], the positive eigen-
values are roughly evenly spaced on a logarithmic energy
scale up to very high energies. Quadruple precision was
used throughout the calculations.

Assume for simplicity that  i(r1, r2) is an S-state.
With neglect of the 1/r12 electron-electron interaction,
a zero-order approximation to the P projection opera-
tor can then be formed from a doubly-positive energy
sum over all (anti)symmetrized products of one-electron
pseudostates

P (0) =
X

l

X

n+

| n+, lihn+, l | (12)

where the sum over l is a sum over two-electron partial
waves coupled to form an S-state, and n+ stands for a
pair of integers {n,n0} such that both �n,l(r) and �n0,l(r)
lie in the positive energy scattering continuum. | n+, li
is then correspondingly defined by

| n+, li =
1p
2
[| �n+,l(r1)i | �n0+,l(r2)iY0

ll0(r̂1, r̂2)

± exchange] (13)

where YM
l1l2L(r̂1, r̂2) is a vector-coupled product of spheri-

cal harmonics with L = 0 and M = 0. The generalization
to states of arbitrary L is straight-forward. The comple-
mentary operator Q0 is then defined by

Q(0) =
X

l

X

n�

| n�, lihn�, l | (14)

where for brevity n� stands for all three combinations
{+,�}, {�, +}, and {�,�}, indicating that at least one
of the two electrons is in a negative energy bound pseu-
dostate.

This method of calculation is similar in spirit to that
of Forrey et al. [32] for double photoionization of helium,
except that the true Coulomb waves are here replaced
by pseudostates at the same energy. As shown in Fig.

|rΨ|2

Coulomb Wave Function, E = 0.06 a.u.
Pseudostate, E = 0.06 a.u.

 0  5  10  15  20

|rΨ|2

Radial Distance [a.u.]

Coulomb Wave Function, E = 4.56 a.u.
Ψ(1s),  E = -4.5 a.u.

FIG. 2: FIXThe bottom panel shows the one-electron wave
functions comprising a near-threshold single-ionization state,
demonstrating that the region nearest the nucleus is that
which contributes. The top panel compares a one-electron
pseudostate radial wave function with the corresponding ex-
act Coulomb wave function at the same near-threshold energy,
showing good agreement in the region near the nucleus.

2, the two agree very well out to quite large distances.
The method is justified by the degree to which the final
results converge with basis set size, and the sum over
partial waves

h i(r1, r2) | P (0) + Q(0) |  i(r1, r2)i
= h i(r1, r2) |  i(r1, r2)i (15)

is satisfied.
The method must also converge with respect to inclu-

sion of the electron-electron interaction in P (0) as a per-
turbation. Up to second order, the perturbed projection
operator is

P = P (0) + P (1) + P (2) (16)

with

P (1) =
X

n+

h
|n+i(1)hn+| + |n+ihn+|(1)

i
(17)

Fig. 3.7.2: Upper panel: Comparison of a one-electron pseudostate radial wave function with
the corresponding exact Coulomb wave function at the same energy (E = 0.06 a.u.) near
the threshold. In the case of double ionization, both electrons have wave functions of this
form. This shows that the pseudostate representation remains accurate out to reasonably
large distances. Lower panel: The two one-electron states (E1s = −4.5 a.u. and Ek =
4.56 a.u.) corresponding to a near-threshold single-ionization state, demonstrating that the
region nearest the nucleus is that which contributes when taking their product and forming
projection operators as described in the present work.

perturbed projection operator is

P = P (0) + P (1) + P (2) (3.35)
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3.7. PROJECTION OPERATORS

with

P (1) =
∑

n+

[
|n+⟩(1)⟨n+|+ |n+⟩⟨n+|(1)

]
(3.36)

and

P (2) =
∑

n+

[
|n+⟩(2)⟨n+|+ |n+⟩⟨n+|(2) + |n+⟩(1)⟨n+|(1)

]
(3.37)

where the sum over the zeroth-order two-electron states {n+} is understood to contain

the sum over l such that the total L = 0 states are formed. The perturbed wave

functions are (in the finite set of pseudostates |n+⟩)

|n+⟩(1) =
∑

m+ ̸=n+

|m+⟩αm+,n+ (3.38)

and

αm,n =
Vm,n

Em − En

(3.39)

with Vm,n = ⟨m|V |n⟩. The (unnormalized) second-order solutions are

|n+⟩(2) =
1

En+ −H
(V − Vn+,n+)|n+⟩(1)

= |T+,+⟩+ |T+,−⟩+ |T−,+⟩+ |T−,−⟩ (3.40)

where, for the perturbed state |n+⟩(2),

|Tp,q⟩ =
∑

mp ̸=n+
iq ̸=n+

|mp⟩⟨mp|(V − Vn+,n+)|iq⟩
En+ − Emp

αiq ,n+ (3.41)

and p and q each take on the values + or −. Only |T+,+⟩ and |T+,−⟩ contribute

to the positive-energy projection operator P , with |T+,−⟩ corresponding to virtual

transitions to negative-energy states and back again. The transition probability into

the projected final state corresponding to 6Li3+ then corresponds to the diagonal
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matrix elements:

|c3+i |2 = ⟨Ψi(
6Li+)|P (0) + P (1) + P (2)|Ψi(

6Li+)⟩

≡ |c(0)3+i |2 + |c(1)3+i |2 + |c(2)3+i |2 (3.42)

The first-order correction |c(1)3+i |2 given by

|c(1)3+i |2 =
∑
n+

m+ ̸=n+

⟨Ψi|m+⟩⟨n+|Ψi⟩αm+,n+ (3.43)

vanishes identically since the matrix elements are real and αm+,n+ = −αn+,m+ . The

second-order correction consists of the diagonal matrix elements of the (0, 2) and the

(1, 1) parts, as shown in Equation (3.37). The (0, 2) part is

∑

n+

[
|n+⟩⟨n+|(2) + |n+⟩(2)⟨n+|

]

=
∑
n+

m+ ̸=n+

|n+⟩⟨m+|
En+ − Em+

(Vm+,m+ − Vn+,n+)αm+,n+

+
∑
n+

m+ ̸=n+

|n+⟩⟨m+|
En+ − Em+

∑

i+ ̸=m+,n+

Vm+,i+αi+n+

+
∑
n+

m+ ̸=n+

|n+⟩⟨m+|
En+ − Em+

∑

i−

Vm+,i−αi−n+ + (n+ ↔ m+) (3.44)

The first term vanishes because it is antisymmetric under the interchange (n+ ↔ m+).

The second and third terms can both be rewritten by the use of the identity:

Vm+,i±αi±,n+ − Vn+,i±αi±,m+

En+ − Em+

= αm+,i±αi±,n+ (3.45)
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to obtain the remaining diagonal part:

∑

n+

[
|n+⟩⟨n+|(2) + |n+⟩(2)⟨n+|

]

=
∑
n+

m+ ̸=n+

|n+⟩⟨m+|
∑

i+ ̸=m+,n+

αm+,i+αi+,n+

+
∑
n+

m+ ̸=n+

|n+⟩⟨m+|
∑

i−

αm+,i−αi−,n+ (3.46)

The remaining (1, 1) contribution from Equation (3.37) is

∑

n+

|n+⟩(1)⟨n+|(1) =
∑
n+

m+ ̸=n+

|m+⟩⟨m+|α2
m+,n+

+
∑
n+

m+ ̸=n+

∑

i+ ̸=m+,n+

|m+⟩⟨i+|αm+,n+αi+,n+ (3.47)

Interchanging the dummy indices n+ and i+ shows that the second term cancels the

first term of Equation (3.46), leaving just the terms:

P (2) =
∑
n+

m+ ̸=n+

|m+⟩⟨m+|α2
m+,n+

+
∑
n+

m+ ̸=n+

|n+⟩⟨m+|
∑

i−

αm+,i−αi−,n+ (3.48)

However, this still must be corrected so that the total wave functions |n+⟩+ |n+⟩(1)+
|n+⟩(2) are normalized to unity up to second order. The renormalization can be

accomplished by subtracting a component of the unperturbed solution |n+⟩ from

|n+⟩(2) to obtain

|ñ+⟩(2) = |n+⟩(2) −
1

2
|n+⟩ (3.49)

which still satisfies the second-order perturbation equation. This contributes an ad-

ditional amount:

∆P (2) = −
∑

n+,m+

|m+⟩⟨m+|α2
m+,n+

(3.50)
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leaving just the renormalized projection operator:

P̃ (2) =
∑

n+,m+

|n+⟩⟨m+|
∑

i−

αm+,i−αi−,n+ (3.51)

corresponding to the sum over virtual negative-energy states.

It turns out that even this contribution is cancelled if one includes the counterbal-

ancing positive-energy part coming from the second-order perturbation of negative-

energy states. Terms from |n−⟩⟨n−|(2) + |n−⟩(2)⟨n−| do not contribute, but the first-

order cross-terms contribute:

∑

n−

|n−⟩(1)⟨n−|(1) =
∑

n−,m+n+

|m+⟩⟨n+|αn−,m+αn−,n+ (3.52)

With the change of notation n− = i−, it is clear that this term cancels the one

remaining term in Eq. (3.51) for P̃ (2). Thus, the leading perturbative correction to P

due to the electron–electron interaction is at most of third order. However, it is still

of interest to calculate the

∑

i

|c̃(2)3+i |2 =
∑

i

⟨Ψi(
6Li+) | P̃ (2) | Ψi(

6Li+)⟩ (3.53)

contribution (summed over positive-energy pseudostates) that would still remain

without this final cancellation due to the positive-energy part coming from perturbed

negative-energy states, as discussed in the following section. The second-order con-

tributions from only positive-energy states, prior to cancellation, serve as an upper

bound on the order at which third- or higher-order effects could contribute.

3.8 RESULTS

This section discusses the numerical results obtained for the transition probability

coefficients P(6Li3+) =
∑

n |c3+n |2 in Eq. (3.42). The calculations are first presented

to test for the convergence of the leading coefficients
∑

n |c
(0)3+
n |2 with respect to
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Fig. 3.8.1: An example of convergence with respect to the number of partial waves ℓ (red
dots) for the 6Li3+ probability following the decay of 6He(2 3S) for the case Ω1 = Ω2 = 8.
This is the top left result (the top number) for the 6He(2 3S) section of Table 3.8.1.

both Ω1, controlling the size of the basis from which the projection operators are

formed, and Ω2, playing the same role for the Hylleraas states used to depict the
6Li+ pseudospectrum. In addition, we examined the convergence with respect to the

sum over partial waves ℓ in Eq. (3.31) and perturbation corrections to the projection

operators due to the electron-electron Coulomb interaction.

First, concerning the convergence with respect to partial waves, direct calculations

were performed up to ℓ = 7 (i.e., one-electron states with ℓ1 = ℓ2 = ℓ were coupled

to form an S-state with L = 0) and an extrapolation performed up to ℓ = ∞. The

results were found to converge relatively slowly in proportion to 1/
√
ℓ+ 1.35 As a

typical example, Fig. 3.8.1 shows the convergence pattern for the 6He(2 3S1) case

with Ω1 = Ω2 = 8. The extrapolated value is shown by the intercept on the vertical

axis.

Next, concerning the convergence with respect to Ω1 and Ω2, the results are shown

(as a percentage) by the top number of each pair in Table 3.8.1 and for each of the

35The 1/
√
ℓ+ 1 form used in finding convergence was emprically found to fit the data well com-

pared to other (negative) integral or half-integral powers of ℓ + 1 for a wider variety of (Ω1,Ω2)
combinations for the three initial states.
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three initial atomic states. The entries along the main diagonal provide a measure

of the degree of convergence and their uncertainty. Since there does not appear

to be a consistent trend either up or down, we took the average of all the num-

bers in Table 3.8.1 with the rms statistical spread as the uncertainty. The total

double-ionization probability, prior to being subject to the projection operators of

Equation (3.31), is the sum of overlap integrals between an optimized initial state of
6He and a pseudospectrum representing all doubly ionized 6Li+ states. Although this

quantity can be stated with a well-defined error, as demonstrated in [132], it does

not show monotonic convergence but rather oscillates around a value. The reason

for this is that the nonlinear parameters in Eq. (2.34) that are used to construct the

eigenvalue spectrum of pseudostates are (necessarily) not separately optimized for

each state within the pseudospectrum [51]. The actual numbers of terms in the basis

sets for each Ω are listed in Table 3.8.2.

Finally, concerning perturbation corrections due to the electron–electron interac-

tion, this mixes each of the simple one-electron product pseudostates |n+, ℓ⟩ with all

the others, but as shown in Equation (3.43), the first-order corrections cancel in pairs

when summed over the complete set of states that form the projection operator. A

more lengthy calculation in Sec. 3.7.1 shows that the second-order corrections also

cancel, provided that one takes into account both the renormalization of the perturbed

wave functions so that P 2 = P up to second order and the counterbalancing positive-

energy contribution coming from the perturbed negative-energy states. It is perhaps

not surprising that these perturbation corrections sum to zero because the only role

of the P projection operator is to enforce doubly outgoing boundary conditions via

positive energy for both electrons without further energy resolution. However, it is

still interesting to see the order of magnitude of the partial-second-order contribu-

tions generated by P̃ (2) in Equation (3.51). The results are shown by the bottom

number of each pair in Table 3.8.1. Although there is no clear convergence pattern,

the magnitudes are all 2% or less of the zero-order term. One can, therefore, expect

third- or higher-order contributions not included in the calculation to be smaller still.

The main source of uncertainty is thus the convergence uncertainty associated with
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Table 3.8.1: Convergence table for 6Li3+ probabilities for the initial states 6He(1 1S0) and
6He(2 3S1). Zeroth- and partial second-order corrections (top and bottom of each cell, re-
spectively) from Eq. (3.53), taken in the limit of infinite partial waves as shown in Fig. 3.8.1.
Results are expressed in percent(%) shown for different sizes of both the projection operator
(Ω1) and Hylleraas-type pseudostate (Ω2) basis sets used in Eq. (3.42). The bottom entry
is a partial second order correction, which, as explained in the text, ultimately cancels. The
top values in the table for each state will be averaged to obtain the final 6Li3+ probability.
This table is continued on the following page.

Ω2

6He state Ω1 8 10 12 14

1 1S0 8 0.3663 0.3564 0.3134 0.4483
-0.0017 -0.0011 -0.0014 -0.0009

10 0.3142 0.3326 0.3100 0.4314
-0.0068 -0.0057 -0.0091 -0.0011

12 0.3123 0.3145 0.3009 0.4357
-0.0045 -0.0027 -0.0019 -0.0066

14 0.3145 0.3128 0.3556 0.4121
-0.0006 -0.0001 -0.0011 -0.0008

2 3S1 8 0.5740 0.4161 0.4293 0.4028
-0.0013 -0.0004 -0.0003 -0.0003

10 0.5084 0.4947 0.5272 0.5405
-0.0031 -0.0010 -0.0032 -0.0031

12 0.5223 0.5281 0.5744 0.6209
-0.0052 -0.0017 -0.0025 -0.0022

14 0.5304 0.5314 0.6062 0.6400
-0.0002 -0.0006 -0.0002 -0.0002

the zero-order term.

The final results are summarized in Table 3.8.3. The main conclusion is that

most of the daughter ions in the energy bin with E > 0 are 6Li++-ions plus an

energetic electron, rather than 6Li3+ plus two low-energy electrons. For example, for

the 6He(1 1S0) case, of the calculated 1.2(1)% of the 6Li-ions with E > 0, 0.35(5)%

are 6Li3+, and the remaining 0.85(10)% are 6Li++. The 6Li3+ fraction agrees with the

0.32% calculated by Wauters and Vaeck [131], but their total only sums to 99.85%,
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Table 3.8.1 (con’t): This is a continuation of Table 3.8.1 containing the convergence table
for forming 6Li3+ following the 6He(2 1S0) initial state. The same description found in
Table 3.8.1 and will not be reproduced.

Ω2

6He state Ω1 8 10 12 14

2 1S0 8 0.5838 0.4645 0.4829 0.5470
-0.0041 -0.0036 -0.0027 -0.0030

10 0.4988 0.5522 0.5611 0.6193
-0.0284 -0.0083 -0.0196 -0.0467

12 0.4994 0.5697 0.6046 0.6636
-0.0023 -0.0089 -0.0012 -0.0052

14 0.5037 0.5836 0.6196 0.6610
-0.0027 -0.0001 -0.0034 -0.0010

Table 3.8.2: Number of terms N1(Ω1) and N2(Ω2) in the basis sets. The factor 8 for N1(Ω1)
accounts for the sum over partial waves up to ℓ = 7.

N2(Ω2)

Ω1 or 2 N1(Ω1) 1 1S0 2 3S1 2 1S0

8 81× 8 181 164 182
10 196× 8 295 218 301
12 400× 8 442 441 457
14 729× 8 624 650 652

with no uncertainty given. For the 6He(2 3S1) case, the fractions are 0.53(7)% for
6Li3+ and 1.33(7)% for 6Li++.

The redistributed charge-state fractions are shown in Table 3.8.4. However, even

these reduced fractions of 6Li3+-ions are still an order of magnitude or more larger

than the experimental values of 0.018(15)% for the 6He(1 1S0) case and < 0.01% for

the 6He(2 3S1) case. The recalculated 6Li++ fraction is now also larger than the ex-

periment, while the 6Li+ fraction remains lower than the experiment. The differences

are much larger than the statistical uncertainties. It seems that the theoretical values

for both 6Li++ and 6Li3+ need to be lowered by about the same amount and added
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Table 3.8.3: Previous [132] and corrected 6Li3+ charge-state fractions for each initial state
following beta decay. All quantities expressed in percent (%).

p(6Li3+)

6He State Previous [132] Present Exp’t

1 1S0 1.2(1) 0.35(5) 0.018(15) [114]
2 3S1 1.86(7) 0.53(7) <0.01 [115]
2 1S0 0.56(6)

Table 3.8.4: Corrected probabilities p(6Lik+) of forming the various charge states of
6Lik+, k = 1, 2, 3 following the beta decay of 6He(1 1S0) or 6He(2 3S1) as initial states.
All quantities are expressed in percent (%).

6He 6Li Theory

State Ion Present Ref. [131] Exp’t. Difference

1 1S0
6Li+ 89.03(3) 89.09 89.9(2)a −0.9(2)
6Li++ 10.55(10) 10.44 10.1(2) 0.45(20)
6Li3+ 0.35(5) 0.32 0.018(15) 0.34(5)

Total 99.9(1) 99.85 100.0(2) −0.1(2)

2 3S1
6Li+ 88.711(3) 89.9(3)(1)b −1.2(2)
6Li++ 10.75(7) 10.1(3)(1) 0.65(20)
6Li3+ 0.53(7) <0.01 0.53(5)

Total 99.99(7) 100.00 −0.02(20)

a Carlson et al. [114].
b Hong et al. [115].

to 6Li+ in order to bring the theory and experiments into agreement.

3.9 FUTURE WORK

There is clearly more work to be done on the problem and good reason to believe

that at least part of the outstanding discrepancies lie in the theoretical formulation of

the problem. The phase space considerations alone, presented in Sec. 3.6.2, provide
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a strong qualitative reasoning supporting the idea that single ionization should be

significantly more probable than double ionization. One avenue for improving the

calculation would be to investigate the effect of relaxing the sudden approximation,

which would require solving the time-dependent Schrödinger equation. However,

based on the arguments in this chapter, Ref. [134], which predicts that the SA would

introduce corrections into the probabilities at the level of 3× 10−7%, this is unlikely

to make a difference at the level with which we are concerned. Another area of future

work will be to reformulate the problem theoretically to investigate the emitted light

resulting from the process. This would offer a complementary approach to the current

experimental techniques which use methods such as time-of-flight analysis to discern

the charge states of daughter ions. Yet another significantly more promising direction

is to utilize the matrix elements of the delta function to diagnose whether the Hylleraas

pseudostates contain an appropriate degree of 1s occupancy. We discuss this avenue

in more detail in the ensuing section.

3.9.1 Delta function matrix elements: A potential new method

for treating one- and two-channel scattering problems

The photoionization cross section σ(E), in atomic units,36 is [148, p. 148]

σ(E) = 4π2αω|⟨He(1 1S)|z1 + z2|He(n 1P ⟩|2, (3.54)

where α is the fine-stucture constant and ℏω = E(n 1P ) − E(1 1S) ≡ E, is quite

similar to the beta decay transition probabilities we have been considering.

The problem of calculating the final-state fraction of 6Li3+ to 6Li++ is closely

related to the two-electron problem of calculating the ratio of the double-to-single

photoionization cross sections

R(E) = σ2+(E)/σ1+(E),

36Assuming laser polarization in the ẑ direction.
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for energies beyond the second ionization threshold E > 0, where the two channels

compete. There is a vast and rich literature for this topic for helium, ranging from

many-body perturbation theory (MBPT) [149–151], close-coupling (cc) [152], con-

vergent close-coupling (ccc) [153], R-matrix methods [154] with a discretization of

the continuum, and various distorted wave (DW) approximations for the final-state

wave function [155–158]. The older literature up to 1996 was reviewed by Sadeghpour

[159]. More recent work has applied these same methods to single- and double-

photoionization of 6Li+, including R-matrix calculations [160, 161], time-dependent

close-coupling (TDCC) [162], ccc for the helium isoelectronic sequence [163], and

B-spline methods [161, 164].

The method we propose is complementary to those mentioned above in that it uses

the behaviour of the wave function as r → 0 as opposed to the more common asymp-

totic condition as r → ∞. The latter condition often relies on treating ionized states

with long-range single-electron components that match the appropriate Coulomb wave

functions (CWF) to large distances. In our method, as shown in Fig. 3.7.2, we operate

with the assumption that a correct representation of the near-nucleus behaviour of

the pseudostates should contain the same information concerning the atom’s charge

state. Photoionization of He(1s2 1S), shown in Eq. (3.54), describes the transition of

the ground state of helium to one of two channels: (1) singly ionized He+(1s) + 1e−;

(2) doubly ionized α++ + 2e−. It is known from experiment [146] that R(E) is much

less than 1 just above the double ionization threshold and that, even for very large

energies, it never becomes larger than 4. This indicates that the two-electron wave

functions used to represent this process should have a significant 1s component at

least until the He++ threshold – and even a little bit beyond this. The quantity which

describes the degree to which the inner electron remains bound, i.e., the amount of

“1s” character, is the delta function matrix element ⟨n 1P |δ(r1)|n 1P ⟩ ≡ ⟨δ(r1)⟩n 1P .

For bound states, this should be nearly constant as n varies, and nearly equal to

that of the ground state ⟨δ(r1)⟩1 1S. The singly ionized He(n 1P ) states should also

have delta function matrix elements close to this same value. For the Hylleraas pseu-

dospectrum {Ψ(n 1P )} arising from the diagonalization of HZ=2, Fig. 3.9.1 shows
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Fig. 3.9.1: The delta function matrix element, ⟨n 1P |δ(r1)|n 1P ⟩ ≡ ⟨δ(r1)⟩n 1P , normalized
to the ground state value ⟨δ(r1)⟩1 1S is calculated for the 6He(n 1P ) pseudostates well into
the doubly ionized continuum, up to E = 120 eV. Several basis sets are included with 104
to 446 terms. The ground-state and 2 1P energies are shown, along with the first and
second ionization thresholds. The purpose of this graph is to illustrate that the Hylleraas
pseudostates lose their “1s” character before their energies even reach the second ionization
threshold.

the calculated delta function matrix elements, ⟨δ(r1)⟩n 1P , normalized to the ground

state value. It should be noted that smoothing and averaging procedures have been

employed in generating this curve to recognize that each energy truly represents a

range, as found in Ref. [132] and described in Sec. 3.5.

This figure illustrates that there is an underlying problem with the {Ψ(6He)}
pseudospectrum, namely that it does not retain its “1s” character into the double

ionization continuum, as it should. This is indicated by the precipitous fall in the

delta function matrix element observed even before the double ionization (He++)

threshold is reached. As a consequence, the photoionization cross section ratio σ2+/σ+

is too large in the region near threshold. These problems also plague the {6Li+}

pseudospectra used in this work, a variation of the same problem, and account for

the difficulties encountered in actually projecting out the 6Li++ from the E > 0 region.
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The shortcoming lies not with the projection operator formalism but rather with the

fact that there is little to no singly-ionized 6Li++ in the Hylleraas pseudostates to

begin with.

Future work37 will attempt to reformulate the Hylleraas basis functions, which

form the first step of solving the beta decay problem, such that they retain sufficient

“1s” character into the double continuum. To this end, delta function matrix elements

should be used as a diagnostic tool. The projection operators described in Sec. 3.7.1

would still be useful, to the extent that a discrete pseudospectrum would not be

expected to contain complete information about the charge state. The improved

Hylleraas pseudostates do not have to be perfect; they just need to have a slightly

more realistic “1s” character. If successful, this approach will not only solve the

beta decay problem at hand but may also be useful in the aforementioned problem

of photoionization in two-electron systems. In particular, this method would offer

an alternative to the theoretical methods mentioned earlier in this section that are

ubiquitous in laser and collision physics.

Once the double ionization probability is correct, the methods developed here can

and should be applied to the recoil-dependent probabilities and to the case of the

initial state having L ̸= 0. The projection operators could immediately be applied to

the full suite of results contained in Refs. [132] and [133, pp. 59–73]. The reason for

not doing this so far is that we have yet to agree with the experiment for the simpler

case of initial S states.

37These efforts involve altering the basis functions by (1) modifying nonlinear parameters to
push the energy to which the delta function remains equal to the ground states; (2) removing the
interelectron coordinate r12 parts of the basis set; (3) Increasing the layers of the basis set with
additional customization.
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CHAPTER 4

Finite-nuclear-mass Effects in

Two-photon Decay in Heliumlike

Ions

4.1 OVERVIEW

In Chap. 3, pseudostates were used in a scattering-type problem, namely beta decay,

where the transitions take place between the initial state and an ostensibly real final

state—the physical picture was that the change in Coulomb potential results in a

redistribution of the initial 6He state into a complete set of real 6Li+states.1 That we

needed to use a pseudospectrum was due to practical reasons in order to carry out the

calculation. We now turn our attention to a conceptually distinct deployment of these

pseudostates—we consider a problem within atomic structure where the “transitions”

are understood to be to virtual states. The problem at hand in this chapter is to

treat two-photon transitions, which take place by virtual interactions with the QED

vacuum. That two conceptually distinct processes can be accurately treated with

the same underlying paradigm is a testament to the power of forming and using

pseudospectra.2

1By real, we mean that these are observable states that could be physically occupied following
beta decay.

2A caveat to this is that in the beta decay problem, it could be construed that we indeed were
already considering transitions to virtual states since all but the lowest lying pseudostates truly do
represent a range of energies. Nevertheless, we understand the shake-up/off processes to connect
real—not virtual—states in principle.
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In this chapter, we discuss the most accurate calculation to date of the finite-

nuclear-mass effect for two-photon spontaneous decay rates for helium-like ions from

Z = 2 through to Z = 10. This decay is relevant in astrophysical contexts where

the particle density is low such as planetary nebulae, where radiative and collisional

decay mechanisms compete. As part of this work, the mass polarization component

of the finite-nuclear-mass effect is treated with a gauge-dependent power series.

In the theory of radiative transitions, the usual simplified gauge equivalence of

the length and velocity forms applies only in the limit of infinite nuclear mass. Here,

we correct this for the case of finite nuclear mass. This chapter expands the finite-

nuclear-mass corrections due to mass polarization in a power series in µ/M , where

µ is the reduced mass µ = mM
m+M

and m and M are the electron and nuclear masses,

respectively. New algebraic relationships connecting the length and velocity forms

of the expansion coefficients are derived. These relations provide a stringent test of

the accuracy of the calculation since they are only satisfied if the wave functions are

exact. As a test, high-precision numerical results are presented for various transitions

in helium. This chapter also generalizes the algebraic relations to arbitrary n-photon

transitions. These relationships place tight constraints on the results and enable easily

adjusted results in the case of slight modifications in µ,me, or M .

The outline of the chapter is as follows. Section 4.2 begins with a historical

overview, including the relevance of multiphoton processes and spontaneous emission.

In the following Sec. 4.3 the motivation for the work presented in this chapter is

given, followed by a brief history of calculations in Sec. 4.4. Following this, Sec. 4.5

describes the theoretical formulation of two-photon decay and then Sec. 4.6 briefly

establishes the wave functions used including a discussion of reduced-mass atomic

units. Subsequently, the characterization of finite-nuclear-mass effects,3 including the

establishment of general nE1 relationships in the length, velocity, and acceleration

gauges, appear in Secs. 4.7 and 4.8. Section 4.9.1 contains a plethora of results related

to calculating 2E1 decay rates in heliumlike ions, and Sec. 4.9.2 contains results for

3The adjectives “finite-nuclear-mass” and “infinite-nuclear-mass” are abbreviated in this chapter
to “finite-mass” and “infinite-mass.”
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testing the corresponding algebraic relations. Lastly, Sec. 4.10 describes the horizons

for future work, some of which are already underway.

4.2 HISTORICAL SIGNIFICANCE

Maria Goeppert Mayer was a student at Göttingen in the 1920s while it was a “caul-

dron of quantum mechanics,” where she was a student of Max Born.4 It was in her

doctoral dissertation [166] that she established the first theoretical formulation of

multiphoton processes in quantum mechanics. Following Dirac’s famous paper which

developed transformation theory, establishing the equivalence between Schrödinger

and Heisenberg’s formulations of quantum mechanics [167], he wrote two further pa-

pers that were to have a large influence on the work of Goeppert Mayer [168, 169].

Prior to Goeppert Mayer’s work, only single-photon processes were theoretically

described, first with Einstein’s description of the photoelectric effect. Consider light

shining on a metal composed of atoms. His theory says that there is a minimum

frequency of light beyond which ionization will not take place. Furthermore, the

intensity of the light has no effect on whether or not this process occurs; it only

affects how much it occurs. Goeppert Mayer’s crucial contribution to this problem

was to realize that, with sufficient intensity of incident light, this process could occur

with more than one photon, each of which has a frequency (1) less than that needed

to ionize the atom by itself and (2) that need not actually coincide with any bound

states upon absorption.

This general situation is depicted in Fig. 4.2.1. The atomic system has ionization

potention Ip, which must be overcome by the photon energy according to Nℏω =

KE+ Ip, where ω is the laser frequency, N is the number of photons, KE the kinetic

energy of the ejected electron, and Ip the ionization potential of the atomic system,

representing the amount of energy needed to simply ionize the atom. In describing

4She was unusually well-connected: her father was not only a Professor, but she herself would go
onto become the seventh straight generation of university professors on her paternal side of the family.
Furthermore, David Hilbert was her immediate neighbour and a good friend of the family. Other
good family friends included Max Born and James Franck, who would both significanly influence
her work, the former being her Ph.D. supervisor [165].
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Fig. 4.2.1: This diagram illustrates the difference between single and multiphoton ionization
of an atom with ionization potential Ip and kinetic energy KE of the ejected electron.
In weak intensity regimes, single-photon processes such as the photoelectric effect occur
according to ℏω1 = KE + Ip, however, in higher intensity regimes multiphoton processes
can take place where several photons (in this case 4) can make up the energy ℏω1. Goeppert
Mayer showed that the correct equation is Nℏω = KE + Ip, where N > 1 is possible in
strong fields.

the photoelectric effect, Einstein assumed that N = 1, but Goeppert Mayer showed

that N > 1 processes are possible.5

It took 30 years for her theoretical predictions to be realized due to the lack of

sufficient light intensities for multiphoton absorption in atoms until the advent of

lasers. After Townes developed the maser in 1953, Kaiser and Garrett observed two-

photon absorption in CaF2+
2 [176]. The crucial milestone was Maiman’s invention

of the laser in 1960 [177]. This rich history of laser physics underpins nonlinear

optics, leading to numerous Nobel prizes, including the 2023 Nobel for attoscience. In

emission, multiphoton processes are rare compared to single-photon counterparts and

are typically relevant only when other decay channels are forbidden by selection rules.

Continual laser improvements drive high-precision atomic physics and necessitate the

theoretical calculations presented in this dissertation.

This chapter contains calculations on the spontaneous two-photon decay of he-

lium. Having addressed the historical significance of “two-photon” part of the title by

5This chapter focuses on multiphoton processes from a structure perspective—specifically, we
discuss events that involve interaction with the QED vacuum. A variety of multiphoton processes
arising from laser-atom interactions are actively studied (see, for example, [170–175]).
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discussing multiphoton processes and their origin, we now focus on “spontaneous” de-

cay. Although spontaneous emission is one of the three radiative processes described

by Einstein’s A and B coefficients [178], it is only postulated in his theory. Sponta-

neous decay occurs when an excited atom in empty space decays. While quantum

mechanics provides a framework for absorption and stimulated emission, it does not

offer a mechanism for spontaneous emission. The explanation lies in the nature of

empty space, which quantum electrodynamics (QED) describes as interacting with the

atom through vacuum fluctuations. These fluctuations cause spontaneous emission

and phenomena like the Lamb shift [179] and Casimir effect [180].

4.3 MOTIVATION

4.3.1 Astrophysical observation

Our understanding of the composition, dynamics, and origin of the universe comes in

large part from spectroscopic observations of atoms and plasmas—these data serve

as a temperature and pressure probe for distant astrophysical bodies. Since helium is

the second most abundant element, constituting 10% of the atoms universe, quantita-

tive knowledge of its spectral properties is crucial to properly interpret astrophysical

observations. Significant work has been conducted by Drake, Morton, and collabora-

tors [181–183], including calculations of several structure properties for 4He including

energy levels, transition rates, lifetimes and oscillator strengths.

An important class of radiative data comes from forbidden transitions, from which

more than half of the atoms in the universe recombined, mostly from 2E1 processes

[184]. The 2E1 transition from 2 1S–1 1S in helium is shown as the thickest (and only

red) line in Fig. 4.3.1, which shows all the possible decays from the n = 2 manifold

in helium. Another crucial decay mechanism is the metastable triplet decay from

the 2 3S state, a topic which Drake and colleagues have worked on extensively for

both the 2E1 [185, 186] and M1 [187] mechanisms. The long radiative lifetimes of

metastable states in helium, together with collision rates, determine their population
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Fig. 4.3.1: Energy level diagram for the n = 2 manifold of helium, illustrating those
metastable processes that are of astrophysical interest and indicating the decay mecha-
nism of those of interest.

balance in astrophysical sources such as planetary nebulae. These transitions largely

determine the rate of radiation loss in the early universe to form the cosmological

microwave background (CMB) since there is little resonant reabsorption of radiation

owing to the low particle density [188, 189].

Figure 4.3.2 illustrates this point by plotting the detailed calculations of various

line intensities at the present epoch due to the recombination of hydrogen and helium

[190].6 Both the dominant resonant processes and the forbidden two-photon processes

are included. It is the plasmonic activity in the hot early universe that thermalized

the radiation content, leading to the CMB. Besides this background of radiation,

additional photons were generated via the recombination of certain light atoms—

most importantly hydrogen, and then helium.7

It can be seen that, although the two-photon decay of helium is several orders

6The continuous and doubly-peaked spectrum of the P − S recombinations is a result of sev-
eral broadening mechanisms and the fact that there is a significant pre- and post-recombination
contributions that occurred at different epochs are were then subject to different enviroments [190]

7The redshift enlargens the originally emitted wavelength per λobserved = λemitted × (1 + z).
The recombination period was when the universe was about 400,000 years old, corresponding to a
redshift z = 1000 and a wavelength observed today that is about a factor of 1000 larger. This is
why the spectrum of H and He is in the µm, rather than the familiar nm range.
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Fig. 4.3.2: Comparing the line intensities due to recombination from the n = 2 manifold
observed in the cosmic microwave background (CMB) spectrum. Here, the 2E1 decays in
hydrogen and helium, respectively, the thicker and thin (red) dotted lines, are compared
with the dominant E1 lines in H and He, respectively, the thick and thin solid (black) lines.
Calculations from Wong, Seager, and Scott[190].

of magnitude smaller than the other components, there are indeed regions (around

200 µm) where this process makes an important contribution. Including all other

forbidden transitions in He from n 1S and n 1D for n > 2 changes the CMB anisotropy

power spectrum further by about 1% [184]. Thus, an understanding of the cosmic

microwave background relies on accurately accounting for the forbidden processes.

In particular, Spitzer and Greenstein [191] investigated the two-photon emission

by neutral hydrogen as a source of continuum radiation from planetary nebulae and

Osterbrock [192] has further elaborated its importance where particle densities are

less than about 104 cm−3. Since hydrogen has its 2p 2P o
3/2 level very close to 2s 2S1/2,

collisions can be competitive in depopulating that level to 1s 2S1/2. The hydrogen

emission neglecting mass and relativity corrections has an integrated rate of 8.2294 s−1

[193] extending from 121.9 nm to a maximum at 243.1 nm and then decreasing through

the visible and infrared spectral regions. At low densities, this two-photon emission

exceeds the contributions from the recombination of ionized hydrogen and helium
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from the Balmer limit at 364.6 µm to about 447.5 µm [192].

For comparison, the two-photon spectrum of neutral helium has a total rate of

50.093 s−1 [193] extending from 601.40 µm to a maximum at 120.28 µm decreasing

to about 64% of the peak value at 364.6 µm. Typically, helium is present with 1/10

the hydrogen abundance by number of atoms [194], so the two-photon emission by

helium could be an important addition to the continuum emission around 400 µm

in some planetary nebulae. Similarly for helium in the early universe, two-photon

emission affects the populations of the two lowest S-states.

Beyond astrophysical observations, laboratory measurements of the total decay

rate have been made for He [195], and the six He-like ions with Z = 3, 18, 28, 35, 36,

and 41 [196–201], as reviewed by Mokler and Dunford [202]. This work focuses on

heavier two-electron systems where the relativistic effects become more pronounced.

Each of the decay mechanisms in the Fig. 4.3.1 has been studied in detail in this

regime. Recent work has focussed on the photon spectral distribution functions for

heavy heliumlike ions up to Z = 92 using relativistic Green’s functions methods

[203] in comparison with experiment [204]. For the corresponding hydrogenic case,

the angular and polarization dependence of the photons in the relativistic region has

been studied by Safari et al. [205], including hyperfine structure.

4.3.2 Theoretical motivation

A prominent aspect of this chapter in Sec. 4.9.1 involves the numerical comparison

between the length and velocity forms/gauges8 of the calculated decay rates. Chang-

ing gauges relies on commutation relations that apply exactly when the pseudostates

are exact eigenstates of the Hamiltonian. Therefore, testing gauge invariance is a cru-

cial internal check on theoretical calculations, especially when experimental results

are unavailable or theory is ahead of experiment. In radiative transitions theory,

gauge equivalence of the length and velocity forms applies only in the limit of infinite

nuclear mass. Here, we build on Drake’s work [193] to extend this to finite nuclear

mass. A central goal is to make the relationships developed in Ref. [193] as precise
8These two terms are used interchangeably in this chapter.
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and general as possible. In the NR limit, testing gauge invariance stringently is the

primary method to assess the accuracy of both the infinite-mass pseudostates and the

overall calculations of the decay rates. To facilitate this generalization for a broader

range of transitions, the decay rate equations have been extended to the acceleration

gauge and generalized to nE1 decay processes.

In extending this work to include relativistic effects,9 discussed in Sec. 4.10, the

questions of gauge invariance and preferred gauge are very much open. Grant wrote

an article titled “Gauge invariance and relativistic radiative transitions” [206] in 1974

and claimed that:

One might think that the role of gauge invariance in the study of the

interaction between the electromagnetic field and the electron-positron

field is a topic that is now well understood, so that it should not be

necessary to write a paper with the above title.

44 years later, in 2018, in a paper calculating relativistic and radiative corrections to

the dynamic Stark shift, Jentschura and Adhikari [207] say:

One might think that all conceivable questions regarding the gauge in-

variance of physical processes in quantum electrodynamics (QED) have

already been addressed in the literature. That is not the case.

Clearly questions remain on the important topic on gauge invariance that is instru-

mental to internally testing theoretical results. These difficulties can arise from the

treatment of negative energy states, whose contributions to the various atomic pro-

cesses under consideration are not gauge invariant. This is indeed an active area of

theoretical research where open questions linger.

9This commentary remains relevant in Chap. 5 whose topic is computing the tuneout frequency
in helium as a test of QED.
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4.4 BRIEF HISTORY OF CALCULATIONS AND

EXPERIMENTS

Following the initial theoretical analysis by Goeppert-Mayer, Breit and Teller [208]

performed the first quantitative calculations for hydrogen 2 2S1/2 − 1 2S1/2 and gave

qualitative estimates for helium 2 1S0 − 1 1S0. More quantitative estimates were

obtained by Dalgarno [209] from oscillator strength sum rules and the first accurate

calculations were performed by Drake et al. [186] for helium and the heliumlike ions

up to Ne8+. These calculations demonstrated the approximate Z6 scaling of the

decay rates from 51.3 s−1 for He to 1.00×107 s−1 for Ne8+. The accuracy was further

improved by Drake [193], including an estimate of relativistic corrections derived

from the one-electron case [210], and extended to all ions up to U90+. The first fully

relativistic calculations by were performed by Derevianko and Johnson [211], using a

relativistic configuration-interaction method, and found to be in good agreement with

Ref. [193]. They also confirmed previous investigations [186, 212] that the triplet-to-

singlet decay rates are negligible at low atomic number, with the ratio increasing from

6.2× 10−11 at Z = 2 to 2.6× 10−6 at Z = 16.

4.5 THEORETICAL FORMULATION

For helium and the low-Z heliumlike ions considered in this chapter, the appropriate

starting point for a discussion of finite-mass-effects is the Schrödinger equation in an

inertial coordinate system. For an atom with atomic number Z and nuclear mass

M located at RN and N electrons of mass me located at Ri, the nonrelativistic

Hamiltonian10 is

Hinert =
P2

N

2M
+

N∑

i=1

(
P2

i

2me

− Ze2/4πϵ0
|Ri −RN |

+
N∑

j>i

Ze2/4πϵ0
|Rj −Ri|

)
(4.1)

10Section 4.10 outlines the inclusion of relativistic effects.
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in SI units [31], where P = −iℏ∇R. The Schrödinger equation11

Hinert|u⟩ = Eu|u⟩ (4.2)

then determines the energy levels Eu and eigenvectors |u⟩. To simplify the solution,

the usual procedure is to transform to centre-of-mass (cm) plus relative coordinates

defined by

Rcm =
MRN +me

∑
Ri

M +Nme

(4.3)

ri = Ri −RN. (4.4)

Transforming Eq. (4.1) to coordinates ri = Ri −RN and Rcm = 0 so that

(M +Nme)RN +me

N∑

i=1

ri = 0 (4.5)

and taking the conserved total momentum to be zero in the absence of external forces

resulting in
N∑

i=1

Pi =
N∑

i=1

pi and PN +
N∑

i=1

pi = 0

gives

Hcm =
1

2µ

N∑

i=1

p2
i +

1

M

N∑

i=1

N∑

j>i

pi · pj +
1

2(M +Nme)
P2

cm

−
N∑

i=1

(
Ze2/4πϵ0

|ri|
+

N∑

j>i

Ze2/4πϵ0
|rj − ri|

)
. (4.6)

Here µ is the reduced electron mass µ = meM/(me +M), the term
∑

j>i pi · pj/M

is the mass-polarization operator and the term involving Pcm = −iℏ∇Rcm accounts

for the motion of the centre of mass relative to the inertial frame represented by the

coordinates RN and Ri.

11The structure-related problem of spontaneous decay requires only the TISE as the system begins
and ends in an eigenstate of the NR Hamiltonian.
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We next include the interaction with the radiation field, specified by its vector

potential

A(R, t) = A0(ω)ϵ̂ e
ik·R−iωt + c.c. (4.7)

where

A0(ω) = c

(
ℏ

2ϵoωV

)1/2

(4.8)

for a photon of frequency ω, wave vector k (|k| = ω/c), and polarization ϵ̂ ⊥ k.

The factor A0(ω) normalizes the vector potential to unit photon energy ℏω in volume

V . In a semiclassical picture, the interaction Hamiltonian with the radiation field is

obtained by making the minimal coupling replacements [213]

PN → PN − ZeA(RN) (4.9)

Pi → Pi + eA(Ri) (4.10)

for the canonical momenta in the inertial Hamiltonian Hinert in Eq. (4.1). The linear

coupling terms then yield

Hint = − Ze

Mc
PN·A(RN) +

e

mec

N∑

i=1

Pi·A(Ri) , (4.11)

a result valid in this work where the quadratic A2 term can be neglected.

4.5.1 Single-photon transitions

As a point of reference, consider the well-known case of single-photon transitions for a

finite nuclear mass, as first discussed by Fried and Martin [214], and extended by Yan

and Drake [215] and Drake and Morton [181]. From Fermi’s Golden Rule (FGR),12

the decay rate for spontaneous emission from state i to f is

wi,fdΩ =
2π

ℏ
|⟨i|Hint|f⟩|2ρ(ω)dΩ , (4.12)

12See Appendix B for a sketch of how FGR arises within the framework of time-dependent per-
turbation theory.
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where

ρ(ω) =
Vω2

(2πc)3ℏ
(4.13)

is the number of photon states with polarization ϵ̂ per unit energy in the normalization

volume V . In the long wavelength and electric dipole approximations, the factor eik·R

in Eq. (4.7) is replaced by unity.

After integrating over angles dΩ and summing over polarizations ϵ̂, the decay rate

reduces to [40, p. 248]

wi,f =
4
3
αωi,f |⟨i|QP |f⟩|2 , (4.14)

where ωi,f is the transition frequency and, as follows from Eq. (4.11), QP is the

dimensionless velocity form of the transition operator

QP = − Z

Mc
PN +

1

mec

N∑

i=1

Pi (4.15)

for the general case of N electrons. From the commutator13

[Hinert,QR/ℏωi,f ] = QP , (4.16)

where Hinert is the field-free Hamiltonian in Eq. (4.1), the equivalent length form is

QR = − i

c
ωi,f

(
ZRN −

N∑

i=1

Ri

)
. (4.17)

Furthermore, the dipole operator in the acceleration form QA can be obtained using

the commutation relation

[Hinert,QP/ℏωi,f ] = QA. (4.18)

where

QA =
iZ

mec ωi,f

Zme +M

M

N∑

i=1

(Ri −RN)

|Ri −RN|3
. (4.19)

13Equations (4.16) and (4.18) follow from the basic commutatation relations [H, r] = −iℏp/m
and [H,p] = iℏ∂V (r)/∂r, for H = p2/2m + V (r). For the Coulomb potential, V (r) = ±Z/r, the
[H, r] commutator is the same, but [H,p] = ∓iℏZr/r3 ≡ ∓iℏZa.
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All forms of the dipole operators in Eqs. (4.15), (4.17), and (4.19) are expressed in the

inertial frame. Though the numerical tests in this work (as in Ref. [24]) are performed

for the length and velocity forms, we present the corresponding acceleration forms

throughout the chapter and extend the algebraic relations we derive to include this

acceleration form.

To study mass polarization effects, QP , QR, and QA must be transformed to c.m.

plus relative coordinates to conform with the Hamiltonian in Eq. (4.6), with the result

Qp =
Zp

mec

N∑

i=1

pi

Qr =
iωi,f

c
Zr

N∑

i=1

ri,

Qa =
iZ

mec ωi,f

Za

N∑

i=1

ri
|ri|3

(4.20)

where

Zp = Za =
Zme +M

M
, Zr =

Zme +M

Nme +M
,

and the number of electrons is N = 2 for heliumlike atoms. The Zx terms account

for the radiation produced by the nucleus as it moves in the c.m. frame [193]. These

operators satisfy

[Hcm,Qr] = ℏωi,fQp , and

[Hcm,Qp] = ℏωi,fQa , (4.21)

in the c.m. frame. To the extent that the nonrelativistic Schrödinger equation, Eq.

(4.2), is solved exactly, the relation

⟨i|Qr|f⟩ = ⟨i|Qp|f⟩ = ⟨i|Qa|f⟩ (4.22)

is satisfied to all orders in me/M . For a neutral atom, N = Z and Zr = 1. If,
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following Ref. [181], the oscillator strength is defined by

fi,f =
2mec

2

3ℏωi,f

⟨i|Qp · ϵ̂|f⟩⟨f|Qr · ϵ̂|i⟩, (4.23)

then the Thomas-Reiche-Kuhn sum rule
∑

f fi,f = N is modified to read [181]

∑

f

fi,f = N + Z2me/M (4.24)

with emission counted as negative and absorption as positive. In this way, the sum is

2 for positronium (Ps), but 3 for Ps−, as expected for two or three radiating particles

of the same mass. The above formulas provide a smooth interpolation between the

two extremes. An advantage of this definition is that the decay rate, summed over

final states and averaged over initial states, has the conventional form

w̄i,f = −
2αℏω2

i,f

mec2
f̄i,f , (4.25)

where f̄i,f = −(gf/gi)f̄f,i is the (negative) oscillator strength for photon emission from

state |i⟩, and gi, gf are the statistical weights of the states.

4.5.2 Two-photon transitions

The triply differential rate for the simultaneous emission of two photons of frequencies

ω1 and ω2 can similarly be expressed via FGR in the form

dw(2γ)dΩ1 dΩ2 =
2π

ℏ
|U (2)

i,f |2ρ(ω1)ρ(ω2)dΩ1 dΩ2 dE1 (4.26)
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where, in a nonrelativistic approximation, U (2)
i,f is a second-order interaction energy

with the electromagnetic field given by14

U
(2)
i,f = −

∑

n

[⟨f | Hint(ω1) | n⟩⟨n | Hint(ω2) | i⟩
En − Ei + ℏω2

+
⟨f | Hint(ω2) | n⟩⟨n | Hint(ω1) | i⟩

En − Ei + ℏω1

]
(4.27)

summed over positive energy states, and by conservation of energy

Ei − Ef = ℏω1 + ℏω2. (4.28)

The interaction energy, U (2)
i,f , contains a complete sum over a set of intermediate

states. Computationally, this demands a discrete pseudospectrum, just as in the fi-

nal 6Li+ spectrum in Chap. 3. As noted in the chapter overview, the strength of

pseudostates—particularly their derivation through diagonalization to form a com-

plete pseudospectrum—is fully demonstrated here. Using pseudospectra, two distinct

physical processes—excitation/ionization and interaction with the QED vacuum—can

be calculated.

Two-photon decay leads to a broad distribution of photon energies such that their

sum is equal to the atomic energy difference. Using Eqs. (4.8) and (4.13) for A0 and

ρ(ω), and approximating A = A0ϵ̂, the two-photon decay rate becomes

dw(2γ)dΩ1 dΩ2 =
α2ℏω1ω2

(2π)3

∣∣∣∣∣
∑

n

[⟨f | Qp · ϵ̂1 | n⟩⟨n | Qp · ϵ̂2 | i⟩
En − Ei + ℏω2

(4.29)

+
⟨f | Qp · ϵ̂2 | n⟩⟨n | Qp · ϵ̂1 | i⟩

En − Ei + ℏω1

]∣∣∣∣
2

dΩ1 dΩ2 dE1.

To treat the process in which the final polarizations are not detected, this must still

be summed over two linearly independent sets of polarization vectors ϵ̂1 and ϵ̂2, and

integrated over angles. For S − S transitions via intermediate P -states, the matrix

elements squared are proportional to |ϵ̂1·ϵ̂2|2, and the sum over polarization vectors

14See Appendix E, based on Refs. [216, 217], for a sketch of how this form of the interaction
energy arises by considering interaction with the QED vacuum.
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yields an angular correlation factor of 1 + cos2 θ12 (see Appendix F). The remaining

angular integral is ∫

4π

dΩ1

∫

4π

dΩ2(1 + cos2 θ12) =
64π2

3
(4.30)

The final result for the singly differential decay rate for the case of the helium 2 1S

state is thus

dw(2γ)

dω1

=
8α2

3π
|Q(2γ)(ω1, ω2)|2 (4.31)

where the dimensionless quantity Q(2γ) can be expressed in velocity form (p) as

Q(2γ)
p (ω1, ω2) = −(ω1ω2)

1/2
∑

n

⟨1 1S | Qp,z | n 1P ⟩⟨n 1P | Qp,z | 2 1S⟩

×
(

1

ωn − ωi + ω2

+
1

ωn − ωi + ω1

)
. (4.32)

where ωi = Ei/ℏ and Q′
p,z is the z-component of the vector Q′

p, defined in Eq. (4.33).

Exactly the same expression applies for the length and acceleration formsQ(2γ)
r (ω1, ω2)

and Q(2γ)
a (ω1, ω2) by replacing the Q′

p,z with Q′
r,z or Q′

a,z. These dimensionless dipole

operators in the velocity, length, and acceleration forms are given by:

Q′
p =

1

mec
Zp

N∑

i=1

pi, (4.33)

Q′
r =

i(ω1ω2)
1/2

c
Zr

N∑

i=1

ri, (4.34)

Q′
a =

iZ

mec (ω1ω2)1/2
Zp

N∑

i=1

ri
r3i

(4.35)

The equivalence of the three forms can also be regarded as a gauge transformation,

as discussed in general by Goldman and Drake [210]. A numerical comparison of the

two provides a check on the accuracy of the calculations since it is valid only if the

wave functions are exact, and the sum over intermediate states is complete.

Comparing Eqs. (4.33)–(4.35) with the one-photon version summarized in Eq. (4.20),

we note that the overall frequency ω and Z terms, along with the momentum p and
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position r operators occur with the same power for the corresponding gauge. The only

difference is that the frequency in the prefactor reads (ω1ω2)
1/2 for the two-photon

dipole operator in the length and acceleration gauge, but just ωi,f in the corresponding

single-photon operator. This correspondence will be used in generalizing the conclu-

sions drawn from one- and two-photon transition rates to the general case of nE1

transitions in Sec. 4.8.2.

Finally, the integrated two-photon decay rate is

w(2γ) =
1

2

∫ ∆

0

dw(2γ)

dω1

dω1

=
4α2∆

3π

∫ 1

0

|Q(2γ)(y)|2dy, (4.36)

where y = ω1/∆, ∆ = (Ei−Ef)/ℏ and the factor of 1/2 is included because each pair

of photons should be counted only once.

4.6 WAVE FUNCTIONS FOR CALCULATION

In order to obtain any numerical decay rates, the first step is to choose appropri-

ate basis sets to diagonalize the finite- and infinite-mass Hamiltonian in Eq. (4.6),

generating both the initial and final helium states, and a third basis set to form the

pseudospectra needed to carry out the complete sum involved in the decay rate. The

same Hylleraas basis sets, developed in Sec. 2.7.1, and used in Chap. 3, are used for

this purpose.

4.6.1 Reduced-mass atomic units

For the purpose of calculations, it is convenient to transform to reduced-mass atomic

units of distance, time, momentum and energy, respectively, defined by

ρ =
µ

me

a0
ℏ
, τ =

µ

me

a0
αc
t,

i∇ = −me

µ

a0
ℏ
p, ϵ =

(
me

µ

)
E

α2mec2
, (4.37)
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so that the Schrödinger equation assumes the dimensionless form for two electrons

[
−1

2
(∇2

ρ1
+∇2

ρ2
)− µ

M
∇ρ1 · ∇ρ2 + V (ρ1, ρ2)

]
Ψ = ϵΨ (4.38)

where V (ρ1, ρ2) = −Z

ρ1
− Z

ρ2
+

1

|ρ1 − ρ2|
.

The two-electron wave functions for the initial and final S-states, and the intermediate

P -states are all calculated variationally as described in Chap. 2.

4.7 FINITE-NUCLEAR-MASS EFFECTS

Both finite- and infinite-mass decay rates were calculated using Eq. (4.36), using the

pseudospectra with the appropriate Hamiltonian (i.e., µ/M → 0 for the infinite-mass

case) to evaluate the sum over states arising in Eq. (4.32). The results are summarized

in Table 4.9.3. A primary focus of this work, however, was to study the relationship

between the finite- and infinite-mass cases and to discern how finite-mass effects

arise. The motivation for doing this is ultimately to extend the derivation of gauge

equivalence, usually given in the infinite-mass limit, to the case of finite nuclear mass.

This section and the next both deal with this topic. Within this section, Sec. 4.7.1

enumerates the sources of the finite-mass effect and then Sec. 4.7.2 collects the results

in the form of constitutive relationships between the finite- and infinite-mass decay

rates.

4.7.1 Three sources of finite-mass effects

Finite-mass corrections to wx,∞ come from three sources and are first discussed with

respect to 2E1 transitions. The first is due to radiation emitted by the nucleus moving

in the c.m. frame and can be expressed as a power of Zx in Eqs. (4.33)–(4.35). In

the two-photon case this is taken into account by powers four Z4
x in all three forms

x = p, r, a. The second source of finite-mass-effects, analogous to the normal isotope

shift, is due to the mass scaling of the energies, transition frequencies and matrix

elements as calculated from wave functions expressed in reduced mass atomic units
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according to Eq. (4.37). This mass scaling is expressed as powers of µ/me. Since

the Q′ terms in Eqs. (4.33)–(4.35) occur, via Eq. (4.32), with the fourth power in the

integral in Eq. (4.36), along with the frequency factor ∆, the factors to transform

the reduced atomic units to physical ones are (µ/me)
5 for both w

(2γ)
p and w

(2γ)
a , and

(µ/me) for w(2γ)
r .

The third correction comes from the direct effect of the mass polarization term

− µ
M
∇ρ1 · ∇ρ2 in Eq. (4.38) on the wave functions, energies and matrix elements,

analogous to the specific isotope shift. The result can be expressed as a correction

factor F (µ/M) to the two-photon decay rate for infinite nuclear mass w(2γ)
∞ . For small

µ/M , it is useful to expand F (µ/M) in the form

F x(µ/M) = 1 + (µ/M)Cx + (µ/M)2Dx + (µ/M)3Ex + · · · . (4.39)

where Cx, Dx, and Ex correspond to first-, second-, and third-order mass polarization

corrections for the three forms. For helium and the heliumlike ions, µ/M ∼ 10−4, and

so terms beyond Dx are negligible. The coefficients Cx and Dx could be calculated

by perturbation theory, 15 but we have adopted the simple expedient of calculating

Fx(µ/M) for an arbitrary pair of values of µ/M and solving for Cx and Dx.

4.7.2 Constitutive relationships

These three sources of finite-mass effects are summarized as follows. We write down

these relationships for the case of spontaneous emission but emphasize that the en-

suing algebra is the same for other transition rates involving the same number of

photons and leads to the same algebraic relationships. For single-photon decay, the

15This procedure is outlined in Appendix G.
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three factors enter in the form

w(1γ)
r = Z2

r

(
µ

me

)
Fr(µ/M)w(1γ)

r,∞ , (4.40)

w(1γ)
p = Z2

p

(
µ

me

)3

Fp(µ/M)w(1γ)
p,∞ , (4.41)

w(1γ)
a = Z2

p

(
µ

me

)3

Fp(µ/M)w(1γ)
a,∞ , (4.42)

and for two-photon decay, they enter in the form

w(2γ)
r = Z4

r

(
µ

me

)
Fr(µ/M)w(2γ)

r,∞ , (4.43)

w(2γ)
p = Z4

p

(
µ

me

)5

Fp(µ/M)w(2γ)
p,∞ , (4.44)

w(2γ)
a = Z4

p

(
µ

me

)5

Fp(µ/M)w(2γ)
a,∞ . (4.45)

It is noteworthy, though coincidental,16 that the constitutive relationship between

the finite- and infinite-mass decay rate expressions is identical in the velocity and

acceleration cases—labelled as Zp and Fp in both gauges.

4.8 TREATING MASS POLARIZATION

The first two effects, radiation emitted in the c.m. frame and mass scaling, are a

direct consequence of the form the decay rate and the form of the corresponding

dipole operators are easily handled. Mass polarization, on the other hand, requires a

more detailed calculation. We have treated mass polarization as an additional third

factor, Fx(µ/M), defined by a power series as shown in Eq. (4.39). In Appendix G,

the equivalence of this approach with simple perturbation theory is shown.

16Following the gauge transformation between the velocity and acceleration forms, which is per-
formed via the commutation relation in Eq. (4.21), the same Z term, characterizing the nuclear
motion in the c.o.m. frame, and the same power of µ/me appear in the decay rate expression.
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4.8.1 Algebraic relations

If the wave functions and sums over intermediate states are exact17, then for an

nE1-photon transition it should be true that w(nγ)
p = w

(nγ)
r = w

(nγ)
a , or in terms of

ratios
w

(nγ)
p

w
(nγ)
p,∞

=
w

(nγ)
r

w
(nγ)
r,∞

=
w

(nγ)
a

w
(nγ)
a,∞

. (4.46)

By expanding the prefactors in the rate equations in powers of µ/M using the relations

µ/me = 1− µ/M (4.47)

me/M = µ/M + (µ/M)2 + (µ/M)3 + . . . (4.48)

and collecting coefficients of equal powers of µ/M up to (µ/M)3, one can derive

algebraic relations connecting the coefficients Cx, Dx, Ex, . . . in Eq. (4.39). As an

example, for two-photon transition rates, the relationship between these expansion

coefficients are

order

(µ/M) : Cp − Cr = −4, (4.49)

Cp = Ca,

(µ/M)2 : 4Cp +Dp −Dr = −6, (4.50)

Dp = Da,

(µ/M)3 : 6Cp + 4Dp + Ep − Er = 4, (4.51)

Ep = Ea,

where the length/acceleration relationships (not displayed) are the same as the length-

/velocity relationships.

The degree to which these equations are satisfied tests how well the length and

velocity gauges agree for a given calculation. For example, Table 4.9.2 demonstrates

17The exactness of the wave functions ensures the exact satisfaction of the commutators in Sec. 4.5
underlying the particular gauge transformations.
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agreement to 1 part in 108 between the length and velocity gauges for the two-photon

decay rates of heliumlike ions.

4.8.2 Generalization to higher-order transitions

The preceding analysis can be extended to the general n-photon transition rate (nE1)

problem. The constitutive relations between the two gauges can be obtained by

accounting for the additional sets of intermediate states needed to accommodate

higher-order transitions, leading to generalized versions of dipole operators given in

Eqs. (4.33)–(4.35) for the case of two-photon transitions. This involves tracking ad-

ditional powers of Zx and µ/me that come from more virtual dipole matrix elements.

In the general case, these relationships are

w(nγ)
p = Z2n

p

(
µ

me

)2n+1

Fp(µ/M)w(nγ)
p,∞ , (4.52)

w(nγ)
r = Z2n

r

(
µ

me

)
Fr(µ/M)w(nγ)

r,∞ , and (4.53)

w(nγ)
a = Z2n

p

(
µ

me

)2n+1

Fp(µ/M)w(nγ)
a,∞ . (4.54)

In the same fashion as described in Sec. 4.8.1, this leads to the generalized algebraic

relations

order

(µ/M) : Cp − Cr = −2n, (4.55)

Cp = Ca,

(µ/M)2 : 2nCp +Dp −Dr = −n(2n− 1), (4.56)

Dp = Da,

(µ/M)3 : n(2n− 1)Cp + 2nDp + Ep − Er,

=
2

3
n(n+ 1)(5− 2n), (4.57)

Ep = Ea.
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Eqs. (4.55)–(4.57) can be used to compare length and velocity nE1 transition rates

up to order (µ/M)3. Eq. (4.57) was not tested since we are only able to achieve

agreement in the finite-mass decay rates between the gauges to 1 part per billion

at most, whereas, in helium, the third-order corrections contribute at the parts per

trillion level. Extending this set of algebraic relations to higher-order terms in the

power series is straightforward and follows the procedure described in this section.

4.9 RESULTS

In Sec. 4.9.1, high-precision two-photon decay rates in heliumlike ions are presented

for both the finite- and infinite-mass case and for both the length and velocity forms.

In Sec. 4.9.2, the algebraic relations from Eqs. (4.55)–(4.57) are confirmed in the cases

of one- and two-photon decay for a set of heliumlike ions.

4.9.1 Two-photon decay rates

We have investigated 14 heliumlike systems, specifically 4He and its isotope 3He,
7Li and its isotope 6Li, along with the most abundant forms for the rest of the

isoelectronic sequence to 10Ne. For all of these, µ/M is sufficiently small that a power

series expansion in powers of µ/M is useful, and so they provide an opportunity to

check the algebraic relationships by relating the coefficients. In addition, we studied

three heavy helium species p̄2-4He, π2-4He and µ2-4He in which the two electrons

are replaced by antiprotons, pions and muons respectively. Although these would be

difficult to observe experimentally, the values of µ/M are so large (0.2011 . . . for p̄2)

that many terms contribute to the expansion in powers of µ/M , and so the comparison

of the length and velocity forms provides a check that the mass dependence is correct

to all orders in µ/M .

Table 4.9.1 shows as a typical example the convergence of the velocity and length

rates18 with increasing the basis set size Ω for 4He. (The basis sets for 11S are a

18We have not investigated the acceleration form and have only present detailed calculations for
2E1 decay—the case of chief experimental interest.
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Table 4.9.1: Convergence with respect to basis set size (N) of the 4He(2 1S0) two-photon
decay rates w(2γ)

r /α6 for a finite nuclear mass µ/M = 1.370 745 62× 10−4. The subscripts r
and p denote the length (L) and velocity (V) forms respectively. Units are atomic units. To
convert to s−1, multiply by α6/τe = 6242.763 420(56) s−1 where α = 7.297 352 5693(11) ×
10−3 is the fine structure constant and τe = 2.418 884 326 5857(47) × 10−17 s is the atomic
unit of time. Constants are taken from the CODATA recommendations [31].

Ω N(2 1S) N(2 1P ) w
(2γ)
p /α6 w

(2γ)
r /α6

4 44 104 8.169 161 866 046×10−3 8.182 145 206 238×10−3

5 67 145 8.170 301 592 330×10−3 8.174 691 464 231×10−3

6 98 197 8.170 633 057 717×10−3 8.171 830 051 527×10−3

7 135 265 8.170 667 222 361×10−3 8.171 125 033 845×10−3

8 182 346 8.170 684 766 627×10−3 8.170 855 798 069×10−3

9 236 446 8.170 690 486 882×10−3 8.170 747 017 232×10−3

10 301 559 8.170 691 869 889×10−3 8.170 730 900 210×10−3

11 373 692 8.170 692 739 038×10−3 8.170 701 468 677×10−3

12 457 836 8.170 692 912 027×10−3 8.170 697 771 291×10−3

13 548 1000 8.170 692 965 787×10−3 8.170 695 029 079×10−3

14 652 1173 8.170 692 999 658×10−3 8.170 693 953 023×10−3

15 763 1366 8.170 693 014 043×10−3 8.170 693 367 924×10−3

16 888 1566 8.170 693 019 245× 10−3 8.170 693 193 226×10−3

Extrap. 8.170 693 021 30(21)×10−3 8.170 693 117(8)×10−3

little larger than those for 21S.) The rates are tabulated in atomic units and divided

by α6 so that the accuracies are not limited by the uncertainty in the fine structure

constant α = 7.297 352 5643(11)× 10−3 [31]. The velocity rates increase while the

length rates decrease in larger steps to the same final value within 2 parts in 108

for Ω = 16 and 1 part in 108 for the extrapolated values. This is typical for all the

systems studied with slightly poorer convergence for larger µ/M and better for the

more higher Z ions reaching 6 parts in 109 for 20Ne8+ with Ω = 16, and 6 parts in

1010 for the extrapolated values, altogether providing confidence in the reliability of

our wave functions. These extrapolated rates, with their uncertainty, appear in Table

4.9.2 for the Z = 2 to 10 heliumlike sequence, including some exotic systems. Since
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Table 4.9.2: Extrapolated velocity (p) and length (r) two-photon decay rates w(2γ)/α6 for
various atoms and ions, including the heavy-helium cases with both electrons replaced by
antiprotons (p̄), pions (π), or muons (µ). Units are atomic units. To convert to s−1, multiply
by α6/τx where τe is given in Table I, τp̄ = 1.317 365 60×10−20 s, τπ = 8.85610×10−20 s,
and τµ = 1.169 852 69×10−19 s for the antiprotonic, pionic, and muonic cases respectively.
Numbers in parentheses () are estimated uncertainties. Not to be confused with citations,
in this table the number in square brackets [ ] is the power of 10 that the quantity should
be multiplied by.

Ion Z µ/M w
(2γ)
p /α6 w

(2γ)
r /α6

p̄2-4He 2 2.011 020 52[−1] 5.205 617 685 79(17)[−3] 5.205 617 713 1(13)[−3]

π2-4He 2 3.609 30 [2] 7.543 045 464 90(31)[−3] 7.543 045 560(8)[−3]

µ2-4He 2 2.756 517 98[2] 7.686 982 264 6(4)[−3] 7.686 982 309 7(11)[−3]

3He 2 1.819 212 06[−4] 8.169 874 733 147(22)[−3] 8.169 874 826(8)[−3]

4He 2 1.370 745 62[−4] 8.170 693 021 30(21)[−3] 8.170 693 117(8)[−3]

6Li+ 3 9.121 675 6[−5] 3.109 011 875 468(10)[−1] 3.109 011 8852(11)[−1]

7Li+ 3 7.820 195 0[−5] 3.108 946 571 280(10)[−1] 3.108 946 5812(11)[−1]

9Be++ 4 6.088 199[−5] 2.911 617 478 8637(14) 2.911 617 4840(7)
11B3+ 5 4.983 870[−5] 1.476 948 014 809 15(15)[1] 1.476 948 017 98(15)[1]
12C4+ 6 4.572 544[−5] 5.292 996 164 0483(35)[1] 5.292 996 174 30(21)[1]
14N5+ 7 3.918 481[−5] 1.515 442 208 159 97(13)[2] 1.515 442 2110(6)[2]
16O6+ 8 3.430 541[−5] 3.707 994 488 493 01(25)[2] 3.707 994 492 78(16)[2]
19F7+ 9 2.888 173[−5] 8.077 050 937 463 53(4)[2] 8.077 050 9445(23)[2]
20Ne8+ 10 2.744 620[−5] 1.608 981 338 934 41(5)[3] 1.608 981 339 8859(33)[3]

the velocity rates are more rapidly convergent, we have quoted extrapolated velocity

values in Tables 4.9.3 and 4.9.4.

Table 4.9.2 compares the length and velocity forms for all 14 systems. It is clear

that the length and velocity forms agree to within the convergence uncertainty of

about one part in 108 or better over the entire range of µ/M , including the three

heavy-helium species. The results verify that the combined mass dependence from

all three sources—mass scaling, mass polarization and nuclear motion—have been

correctly calculated, and all three must be included to bring the L and V forms into

agreement.
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Table 4.9.3: Two-photon decay rates w(2γ) /α6 for various atoms and ions, including the
heavy-helium cases for both finite and infinite nuclear mass. To convert to s−1 multiply by
α6/τx—see Table 4.9.2 for this quantity and the values of τp̄, τπ, and τµ.

Ion Z w(2γ) /α6 w
(2γ)
∞ /α6 w(2γ)/w

(2γ)
∞

p̄2-4He 2 5.205 617 685 79(17)×10−3 8.173 194 7151(20)×10−3 0.636 913 455 17(28)

π2-4He+ 2 7.543 045 464 90(31)×10−3 8.173 194 7151(20)×10−3 0.922 900 497 0(4)

µ2-4He 2 7.686 982 264 6(4)×10−3 8.173 194 7151(20)×10−3 0.940 511 334 0(5)
3He 2 8.169 874 733 147(22)×10−3 8.173 194 7151(20)×10−3 0.999 593 796 30(36)
4He 2 8.170 693 021 30(21)×10−3 8.173 194 7151(20)×10−3 0.999 693 914 82(35)
6Li+ 3 3.109 011 875 468(10)×10−1 3.108 554 078 983(7)×10−1 1.000 147 269 91(4)
7Li+ 3 3.108 946 571 280(10)×10−1 3.108 554 078 983(7)×10−1 1.000 126 262 01(4)
9Be++ 4 2.911 617 478 8637(14) 2.910 640 612 6215(16) 1.000 335 618 983(8)
11B3+ 5 1.476 948 014 809 15(15)×101 1.476 253 238 3922(19)×101 1.000 470 634 9825(16)
12C4+ 6 5.292 996 164 0483(35)×101 5.289 756 826 1109(23)×101 1.000 612 379 367(7)
14N5+ 7 1.515 442 208 159 97(13)×102 1.514 412 420 070 65(13)×102 1.000 679 991 8406(12)
16O6+ 8 3.707 994 488 493 01(25)×102 3.705 284 196 490 4(9)×102 1.000 731 466 6998(24)
19F7+ 9 8.077 050 937 463 53(4)×102 8.071 154 172 585 4(4)×102 1.000 730 597 4775(5)
20Ne8+ 10 1.608 981 338 934 41(5)×103 1.607 689 583 705 86(3)×103 1.000 803 485 4745(4)

In Table 4.9.3, successive columns list the name, atomic number, the finite- and

infinite-mass decay rates, and the ratio w(2γ)/w
(2γ)
∞ . The rates increase approximately

as Z6 while the ratio w(2γ)/w
(2γ)
∞ increases gradually, being less than unity for 4He

and a little larger than unity for the higher-Z nuclei. There is clearly a cross-over

point between Z = 2 and Z = 3 where the finite nuclear mass effects exactly cancel.

The spectral distribution as a function of energy is symmetric about the midpoint

at ℏω = 1
2
(Ei − Ef). In Table 4.9.4 we list the peak emission rate in s−1, the energy

difference in wave numbers and the wavelength of the peak in nm units. As noted in

Sec. 4.3.1, two-photon emission from 4He is relevant in the determination of popula-

tion balance astrophysical settings with low particle density, as in the characterization

of planetary nebulae. References [186, 193] give the helium rates over half the spec-

trum, but exclude the factor of 1/2 due to double counting. Figure 4.9.1 compares

the profiles for 4He and µ2-4He, both normalized to unit integrated emission rate.

The difference curve (red) across the middle shows that the effect of finite mass is to
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Table 4.9.4: Maximum two-photon decay rates, energy ranges, and the wavelengths of the
maximum rates. Values have converged to the figures quoted.

Ion wmax (s−1) ∆ = ωi − ωf (cm−1) Peak λ (nm)

p̄2-4He 8.919 855 00× 104 2.984309× 108 6.701 720× 10−2

π2-4He 1.8469× 104 4.5126× 107 4.4320× 10−1

µ2-4He 1.421 736× 104 3.421 138× 107 5.846 008× 10−1

3He 7.255 592 87× 101 1.663 010× 105 1.202 639× 102

4He 7.256 232 28× 101 1.663 025× 105 1.202 628× 102

6Li+ 2.694 285 13× 103 4.914 063× 105 4.069 952× 101

7Li+ 2.694 212 72× 103 4.914 072× 105 4.069 944× 101

9Be++ 2.490 892 44× 104 9.811 005× 105 2.038 527× 101

11B3+ 1.252 656 20× 105 1.635 617× 106 1.222 780× 101

12C4+ 4.461 029 08× 105 2.454 648× 106 8.147 807
14N5+ 1.271 097 75× 106 3.438 289× 106 5.816 846
16O6+ 3.098 265 41× 106 4.586 539× 106 4.360 586
19F7+ 6.727 920 98× 106 5.899 395× 106 3.390 178
20Ne8+ 1.336 772 61× 107 7.376 858× 106 2.711 181

make the distribution curve higher and narrower.

Table 4.9.5 presents the final results for the two-photon decay rates, including

an estimate of the relativistic correction ∆w
(2γ)
rel [193]. The relativistic contribution

becomes more important with increasing Z and is larger in magnitude than the mass

correction in all cases, but of opposite sign, except for Z = 2, where they both

lower the infinite nuclear mass decay rate. To quote estimates due to relativistic

effects, absent a rigorous calculation, we followed Ref. [193] assuming the effect for

a two-electron system is bounded by the unscreened and fully-screened shifts for a

single-electron ion and applied the mean to the w(2γ) values. Our best estimates of

the net rates are in the last column with the uncertainties indicated in parentheses

representing the full single-electron range. Our final numbers are essentially the

same as those of Derevianko and Johnson [211], who found this procedure in [193]

for infinite-mass nuclei consistent with their relativistic calculations for the low-Z
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TABLE VI. Final values for the two-photon decay rates, including finite nuclear mass (!w
(2γ )
µ/M ) and relativistic corrections (!w

(2γ )
rel ) from

Ref. [8]. The total w
(2γ )
total is compared with the relativistic CI calculations of Derevianko and Johnson [10]. Units are s−1 with an overall scale

factor given in the last column for all the entries.

Ion w
(2γ )
∞ !w

(2γ )
µ/M !w

(2γ )
rel w

(2γ )
total Ref. [10] Difference Scale

p̄2- 4He 9.368 660 56(8) −3.401 634 59(3) −0.014(13) 5.953(13) ×104

π 2- 4He 1.393 610 183(13) −0.107 446 652 −0.002 1(19) 1.284 1(19) ×104

µ2- 4He 1.055 000 450(9) −0.062 760 569 −0.001 6(15) 0.990 7(15) ×104

3He 5.102 332 10(5) −0.002 072 586 −0.008(7) 5.093(7) 5.102 −0.009(7) ×101

4He 5.102 332 10(5) −0.001 561 748 −0.008(7) 5.093(7) 5.102 −0.009(7) ×101

6Li+ 1.940 596 769(17) 0.000 285 792 −0.002 0(17) 1.938 8(17) 1.940 −0.001 2(17) ×103

7Li+ 1.940 596 769(17) 0.000 245 024 −0.002 0(17) 1.938 8(17) 1.940 −0.001 2(17) ×103

9Be++ 1.817 044 074(16) 0.000 609 834 −0.002 2(16) 1.815 4(16) 1.816 −0.000 6(16) ×104

11B3+ 9.215 899 72(8) 0.004 337 325 −0.014(8) 9.206(8) 9.211 −0.005(8) ×104

12C4+ 3.302 270 041(30) 0.002 022 242 −0.006 3(33) 3.297 9(33) 3.300 −0.002 1(33) ×105

14N5+ 9.454 118 46(9) 0.006 428 723 −0.023(10) 9.438(10) 9.444 −0.006(10) ×105

16O6+ 2.313 121 264(21) 0.001 691 971 −0.006 8(29) 2.308 0(29) 2.310 −0.002 0(29) ×106

19F7+ 5.038 630 60(5) 0.003 681 211 −0.018(6) 5.024(6) 5.029 −0.005(6) ×106

20Ne8+ 1.003 642 572(9) 0.000 806 412 −0.004 4(14) 1.000 1(14) 1.001 −0.000 9(14) ×107

important with increasing Z and is larger in magnitude than
the mass correction in all cases, but of opposite sign, except
for Z = 2, where they both lower the infinite-nuclear-mass
decay rate. For relativity we followed Ref. [8] assuming the
effect for a two-electron system is bounded by the unscreened
and fully screened shifts for a single-electron ion and applied
the mean to the w(2γ ) values. Our best estimates of the net
rates are in the last column with the uncertainties indicated
in parentheses representing the full single-electron range. Our
final numbers are essentially the same as those of Derevianko
and Johnson [10], who found this procedure in Ref. [8] for
infinite-mass nuclei consistent with their relativistic calcula-
tions for the low-Z ions. However, for neutral helium, where
relativistic effects are small and electron correlation effects
are large, there is a marginal disagreement of 0.09 ± 0.07 s−1.

Experimental lifetimes of 5.03(26) × 10−4 s for both 4He
and 3He [12] and 1.97(10) × 10−2 s for 7Li+ [13] are entirely
consistent with our respective calculations of 5.178(45) ×
10−4 and 1.9634(28) × 10−2.

FIG. 1. Plots of the two-photon emission rate w(2γ )(4He) and the
difference !w(2γ ) = w(2γ )(µ2- 4He) − w(2γ )(4He) (red) as fractions
y of the unit energy range normalized to unity.

V. ASTROPHYSICAL APPLICATION

Spitzer and Greenstein [36] investigated the two-photon
emission by neutral hydrogen as a source of continuum radi-
ation from planetary nebulae and Osterbrock [37] has further
elaborated its importance where particle densities are less than
about 104 cm−3. Since hydrogen has its 2p 2Po

3/2 level very
close to 2s 2S1/2, collisions can be competitive in depopulating
that level to 1s 2S1/2. The hydrogen emission before mass and
relativity corrections has an integrated rate of 8.2294 s−1 [5]
extending from 121.9 µm to a maximum at 243.1 µm and
then decreasing through the visible and infrared spectral re-
gions. At low densities, this two-photon emission exceeds the
contributions from the recombination of ionized hydrogen and
helium from the Balmer limit at 364.6 µm to about 447.5 µm
[37] if there is no significant recombination of twice-ionized
helium.

For comparison, the two-photon spectrum of neutral he-
lium has a total rate of 50.093 s−1 extending from 601.40 µm
to a maximum at 120.28 µm deceasing to about 64% of the
peak value at 364.6 µm. Typically, helium will be present with
1/10 the hydrogen abundance by number, so the two-photon
emission by helium could be an important addition to the
continuum emission around 400 µm in some planetary neb-
ulae. Similarly for helium in the early universe, two-photon
emission will affect the populations of the two lowest S
states.

VI. CONCLUSIONS AND DISCUSSION

The results of this work improve the accuracy of the two-
photon decay rates in helium and the heliumlike ions up to
Z = 10 by several orders of magnitude from parts in 104 to
parts in 109, at least in the nonrelativistic limit, and the effects
of finite nuclear mass have been included to all orders in
µ/M. The accuracy is sufficient to extract the leading two
coefficients in the mass-polarization part of the finite-mass
correction, and to test the algebraic relationships connecting

052807-8

Fig. 4.9.1: Plots of the two-photon emission rate w(2γ)(4He) (black) and the difference
∆w(2γ) = w(2γ)(µ2-4He)−w(2γ)(4He) (red) as fractions y of the unit energy range normalized
to unity.

ions. However, for neutral helium, where relativistic effects are small and electron

correlation effects are large, there is a marginal disagreement of 0.09± 0.07 s−1.

Experimental lifetimes of 5.03(26) × 10−4 s for both 4He and 3He [195] and

1.97(10)×10−2 s for 7Li+ [196] are entirely consistent with our respective calculations

of 5.178(45)× 10−4 and 1.9634(28)× 10−2.

4.9.2 Testing the algebraic relationships

The algebraic relations given in Sec. 4.8.1 have been tested and verified in numerical

calculations involving one- and two-photon decay rates, which, as mentioned previ-

ously, give rise to identical algebraic relationships as other transitions involving the

same number of photons. The algebraic coefficients, along with the satisfaction of the

corresponding algebraic relations, are presented in Tables 4.9.6 and 4.9.7.

The constitutive relations between the finite- and infinite-mass decay rates in Eqs.
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Table 4.9.5: Final values for the two-photon decay rates, including finite nuclear mass
(∆w(2γ)

µ/M ) and relativistic corrections (∆w(2γ)
rel ) from Drake [193]. The total w(2γ)

total is compared
with the relativistic CI calculations of Derevianko and Johnson [211]. Units are s−1 with an
overall scale factor given in the last column for all the entries.

Ion w
(2γ)
∞ ∆w

(2γ)
µ/M ∆w

(2γ)
rel w

(2γ)
total Ref. [211] Difference Scale

p̄2-4He 9.368 660 56(8) −3.401 634 59(3) −0.014(13) 5.953(13) ×104

π2-4He 1.393 610 183(13) −0.107 446 652 −0.002 1(19) 1.284 1(19) ×104

µ2-4He 1.055 000 450(9) −0.062 760 569 −0.001 6(15) 0.990 7(15) ×104

3He 5.102 332 10(5) −0.002 072 586 −0.008(7) 5.093(7) 5.102 −0.009(7) ×101

4He 5.102 332 10(5) −0.001 561 748 −0.008(7) 5.093(7) 5.102 −0.009(7) ×101

6Li+ 1.940 596 769(17) 0.000 285 792 −0.002 0(17) 1.938 8(17) 1.940 −0.001 2(17) ×103

7Li+ 1.940 596 769(17) 0.000 245 024 −0.002 0(17) 1.938 8(17) 1.940 −0.001 2(17) ×103

9Be++ 1.817 044 074(16) 0.000 609 834 −0.002 2(16) 1.815 4(16) 1.816 −0.000 6(16) ×104

11B3+ 9.215 899 72(8) 0.004 337 325 −0.014(8) 9.206(8) 9.211 −0.005(8) ×104

12C4+ 3.302 270 041(30) 0.002 022 242 −0.006 3(33) 3.297 9(33) 3.300 −0.002 1(33) ×105

14N5+ 9.454 118 46(9) 0.006 428 723 −0.023(10) 9.438(10) 9.444 −0.006(10) ×105

16O6+ 2.313 121 264(21) 0.001 691 971 −0.006 8(29) 2.308 0(29) 2.310 −0.002 0(29) ×106

19F7+ 5.038 630 60(5) 0.003 681 211 −0.018(6) 5.024(6) 5.029 −0.005(6) ×106

20Ne8+ 1.003 642 572(9) 0.000 806 412 −0.004 4(14) 1.000 1(14) 1.001 −0.000 9(14) ×107

(4.43) and (4.44), in terms of the expansion parameter µ/M , are

Gx(µ/M) = (µ/M)Cx + (µ/M)2Dx + (µ/M)3Ex + . . . , (4.58)

where Gx(µ/M) is a gauge-dependent function of the finite- and infinite-mass decay

rates, the radiation emitted by the nucleus in the c.m. frame, and mass scaling. Next,

three values of µ/M were used: µ/M itself, along with 10(µ/M) and 20(µ/M), to

establish three equations for Eq. (4.58).

In what follows, although the analysis of the one- and two-photon decay cases are

treated somewhat differently, both methods are sufficient to obtain the coefficients

needed to test the algebraic relations. The acceleration gauge is not tested in this

work.
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One-photon decay

In the case of one-photon decay, a system of three linear equations, defined by writing

out Eq. (4.58) for the three values of µ/M mentioned above, yielding a 3× 3 system,

was explicitly solved in order to include finite-mass effects up to order (µ/M)3 in

the mass polarization power series. This procedure is carried out for successively

larger basis sets according to Eq. (2.34) up to Ω = (i + j + k)max = 17. These

corrections contribute to the extent that the decay rates between the length and

velocity gauges agree beyond the (µ/M)2 order or better than 1 part in 108. The

third-order coefficients are not displayed in Table 4.9.6, nor is the third-order algebraic

equation, Eq. (4.57), tested (the decay rates do not presently agree well enough

to warrant such a comparison); however, nonnegligible third-order contributions to

lower-order coefficients Cx and Dx are explicitly considered by solving the 3×3 system

defined by Eq. (4.58),




y y2 y3

10y 10y2 10y3

20y 20y2 20y3







Cx

Dx

Ex



=




Gx(y)

Gx(10y)

Gx(20y)



, (4.59)

where y = µ/M and x = p, r for the two gauges.19 The first- and second-order mass

polarization power series coefficients that arise in treating one-photon decay in heli-

umlike ions are presented in Table 4.9.6. The results are calculated by averaging the

largest basis sets and the standard deviation of these was taken to be the uncertainty.

The coefficients of the mass polarization power series do converge with increasing

basis set sizes, but not in a monotonic fashion as in the decay rates. Thus, the stated

results and errors presented in Table 4.9.6 correspond to an average and standard

deviation of the calculations from the several largest basis sets. The coefficients are

shown to obey the algebraic relations in Eqs. (4.49) and (4.50).

The inclusion of third-order corrections made little difference for the singlet case;

19Solving the upper 2 × 2 system instead of the full 3 × 3 form in Eq. (4.59) leads to slightly
different values for Cx and Dx, even though the uncertainty in Ex itself is very large and the (µ/M)3

relationship cannot be satisfied.

121



4.9. RESULTS

a larger difference was observed in the case of triplet decay, where it was necessary

to include the Ex coefficients to satisfy the (µ/M)2 algebraic relation. This point is

illustrated in the last two rows of Table 4.9.6 and is a consequence of the Pauli princi-

ple: for triplet states, the electron-electron correlation plays a smaller role and more

accurate wave functions are obtained. Therefore, in the triplet case of one-photon

decay, the coefficients, particularly {Dx}, are sensitive to the (µ/M)3 contributions.

Two-photon decay

The algebraic relations were derived for the first time and numerically tested for

the case of two-photon decay 2 1S − 1 1S in heliumlike ions (Z = 2 − 10), along

with the heavier µ-He, π-He, and p̄-He. These results are reproduced in Table 4.9.7.

Instead of solving the linear system described by Eq. (4.58), as in the one-photon

case, iterative linear regressions are performed on this set of equations to obtain the

mass polarization coefficients Cx and Dx. On the initial iteration, the Cx values are

obtained by a linear regression assuming no (µ/M)2 contributions (i.e., Dx = 0).

Then, using these Cx values, an updated equation is subject to linear regression to

get the Dx coefficients. These updated Dx values are then used for a second regression

to find Cx, and the process is repeated once more to update the Dx coefficients. This

procedure is carried out for successively larger basis sets according to Eq. (2.34) up

to Ω = (i+ j+ k)max = 17. The slight disagreement in the (µ/M)2 relation for Z = 2

and 3 indicates that the rates between the gauges don’t quite agree to order (µ/M)2.

This is because µ/M ∝ 1/Z and Z = 2 and 3 are the largest µ/M values considered.

We have both derived and numerically tested general algebraic relations that quan-

tify the agreement between the length and velocity gauge for the general n-photon

(nE1) finite-mass transition rate equations and tested them for heliumlike ions. The

corresponding relationships between the length/velocity and acceleration gauge have

also been derived. These relations are built on the postulate, initially put forward

in Ref. [24], that the mass polarization component of the finite mass effect can be

treated with a power series in µ/M . Eqs. (4.52–4.54) provide constitutive relations

that can be used to account for finite-mass effects for nE1 transition rates. The
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Table 4.9.6: Mass-polarization parameters Cx and Dx from Eq. (4.39) are shown for the
one-photon decay processes in the indicated singlet and triplet He and He-like ions, along
with the accompanying algebraic relations, Eqs. (4.55) and (4.56) for n = 1. For the triplet
transition at the bottom of the table, [†] indicates third-order contributions (Ex terms) are
included in the calculation and [‡] indicates they are omitted.

Ion Cp Cr Cp − Cr Dp Dr 2Cp +Dp −Dr

2 1P − 1 1S
4He -3.572719(1) -1.57271(3) -2.00000(3) 8.888(1) 2.73(2) -0.99(2)
7Li+ -3.299929(3) -1.299919(7) -2.00001(1) 6.6723(8) 1.067(4) -0.995(5)
9Be++ -3.061260(8) -1.0612(2) -2.0005(1) 5.3580(3) 0.232(6) -0.997(6)
11B3+ -2.896567(5) -0.89655(3) -2.00002(4) 4.5986(4) -0.194(5) -1.000(6)
12C4+ -2.780462(2) -0.78047(3) -1.99999(3) 4.1215(2) -0.439(2) -0.999(2)
14N5+ -2.6952538(3) -0.695250(4) -2.000003(4) 3.800(1) -0.61(2) -0.98(2)
16O6+ -2.6304056(1) -0.630403(2) -2.000002(2) 3.5687(6) -0.702(9) -0.99(1)
19F7+ -2.579540(1) -0.57953(1) -2.000006(14) 3.3959(4) -0.762(1) -1.001(1)
20Ne8+ -2.5386356(1) -0.538638(6) -1.999996(6) 3.2618(8) -0.812(4) -1.002(5)

2 3P − 2 3S
4He [†] -7.609183(1) -5.60918375(4) -1.999999(1) 12.9523(2) -1.266053(8) -1.0000(2)
4He [‡] -7.609191(1) -5.60920948(3) -1.999982(1) 12.9703(1) -1.206957(4) -1.0411(1)

prefactors in these equations can be used to convert infinite-mass transition rates

calculated in any theoretical/computational framework to the corresponding finite-

mass rates. Eqs. (4.55-4.57) are the corresponding algebraic relationships that test

for gauge agreement to ensure that mass polarization effects are included correctly to

a desired order in µ/M . These relations place tight constraints on theoretical calcula-

tions of finite-mass effects in nE1 transition processes, as demonstrated in the case of

the spontaneous emission of heliumlike ions. They also test the leading infinite-mass

term since an error here would carry through to the higher-order terms in µ/M

Another approach to obtaining the coefficients Fx(µ/M) contained in Eqs. (4.52-

4.54) is to treat the mass polarization term, ∇ρ1 ·∇ρ2 , in Eq. (4.38) perturbatively in

the parameter µ/M . This would provide a more direct, but also more computation-

ally intensive, method for calculating the coefficients Cx, Dx, Ex, . . . of the successive

powers of µ/M . Appendix G explores this approach; however, it is worth noting

that the coefficients (Cx, Dx), already calculated in Tables 4.9.6 and 4.9.7, satisfy the
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4.10. FUTURE WORK

Table 4.9.7: Mass-polarization parameters Cx and Dx from Eq. (4.39) are shown for two-
photon 2 1S − 1 1S decay in He and He-like ions, along with the accompanying algebraic
relations, Eqs. (4.49) and (4.50), for the metastable singlet transition indicated.

Ion Cp Cr Cp − Cr Dp Dr 4Cp +Dp −Dr

4He -5.2333588(30) -1.23336(8) -4.0000(8) 16.4344(10) 1.607(26) -6.106(27)
7Li+ -5.385078(8) -1.385078(12) -4.000000(17) 17.124(27) 1.95(32) -6.37(35)
9Be++ -5.487355(9) -1.4871(5) -4.0002(5) 17.799(7) 1.74(35) -5.89(36)
11B3+ -5.557584(1) -1.5575(1) -4.00008(13) 18.3518(12) 2.09(12) -5.97(12)
12C4+ -5.6094000(16) -1.60943(13) -3.99996(13) 18.8227(18) 2.47(14) -6.08(14)
14N5+ -5.64973214(24) -1.649718(24) -4.000014(24) 19.24196(29) 2.661(28) -6.018(28)
16O6+ -5.68233816(7) -1.682327(12) -4.000010(12) 19.61265(9) 2.903(16) -6.020(16)
19F7+ -5.7094498(5) -1.70942(6) -4.000025(61) 19.9487(8) 3.099(99) -5.99(10)
20Ne8+ -5.73247255(30) -1.73249(3) -3.99998(3) 20.2487(10) 3.40(10) -6.08(10)

given algebraic relations up to order (µ/M)2 ≈ 10−8. A further improvement could

be a more judicious selection of values for µ/M used to demonstrate numerically the

algebraic relations. Currently, the actual µ/M value is used, along with both 10× and

20× this value; however, there is nothing particular about these choices and there is

no need to use µ/M itself. Exploring the space of possibilities here would likely lead

to a more convincing demonstration of the algebraic relations.

4.10 FUTURE WORK

The two most immediate extensions of this work, already mentioned at points during

this chapter, would be to: (1) calculate relativistic20 effects to the 2E1 decay rate in

Eq. (4.36); and (2) to apply the method of characterizing mass polarization to treat

finite mass effects to other atomic processes. A third and more involved extension

would be to extend the applicability of the methods and calculations developed herein

to higher-Z atoms using the unified method of Drake [218].

20Work on a manuscript on this topic is underway.
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4.10.1 Inclusion of relativistic effects

For precision QED calculations [25, 219] to be compared with experiments, finite-

mass effects are needed and the method in this chapter provides a systematic method

for their inclusion. In the particular problem of two-photon decay, accurate compari-

son with experimental results [202] also requires a correct relativistic treatment—the

finite-mass effects ∝ µ/M and relativistic effects ∝ Z2α2, respectively, which are

comparable (∼ 10−4) in helium. This has been done previously, in Refs. [193] and

[211], but a novel addition would be to add relativistic effects to the finite-mass effects

discussed in this chapter, using Hylleraas basis sets, by a highly accurate perturbation

calculation.

An obstacle in calculating relativistic corrections to the 2E1 decay process is that

the interaction with the QED vacuum contained in FGR contains negative energy

states (cf. Appendix E). The success of variational techniques that use finite basis

sets, such as those in this dissertation, rely on the variational minimum principle

that ensures that we find the lowest upper bounds to the true NR energies (cf. sec-

tion 2.6).21 There are two primary ways to proceed: (1) include relativistic effects

from the start and add electron correlation as a perturbation; or conversely (2) include

electron correlation from the start and then add relativistic and other higher-order

effects perturbatively. In the first case, the Dirac equation is solved and then the

electron correlation is taken as the perturbation. Ref. [211] used a relativistic config-

uration interaction (RCI) approach to the two-photon decay problem and their results

are in Table 4.9.5.22

In the latter case, known as nonrelativistic-QED (NRQED), the time-independent

Schrödinger equation is solved using highly accurate Hylleraas basis functions that

fully include electron correlation and relativistic and higher-order QED effects are

added pertubatively.23 It is only in the special case of few-electron (N ≤ 3) systems

21In practice, these problems can be overcome by a few several approaches, summarized in
Ref. [220].

22Several additional methods have seen wide use over the years such as Dirac-Hartree-Fock,
multiconfigurational-Dirac-Hartree-Fock, relativistic random-phase approximation.

23See Chap. 5, which discusses the precise calculation tune-out frequency, for more details.
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that an accurate NR calculation is even possible. Since the NR calculations are

essentially exact for all practical purposes, as long as the operators needed to calculate

these various higher-order effects are known, as is the case with the Breit operators

which capture relativistic effects [40, p. 181], this method often outperforms the

variational Dirac approaches in low-Z two- or three-electron systems.

What ultimately determines the choice between the two methods is which method

will have a more precise value for a given Z. Generally, a “crossing point” occurs

around Z = 27—values below which the NRQED method is more precise and above

which methods like RCI that start with the Dirac equation will be more precise [221].

As such, the set of Z ≤ 10 studied here are excellent candidates for the NRQED

approach and will yield more accurate decay rates than that of the RCI approach of

Derevianko and Johnson [211].

Goldman and Drake developed a relativistic Sturmian formulation [222] and soon

thereafter demonstrated [210] that in the relativistic contributions to the one-electron

2E1 decay rate vanish to order (αZ)2 in the length gauge. More importantly, the

dipole matrix elements that comprise the calculation are given with an adjustable,

continuous gauge parameter G, with the choices G = 0 and G =
√
2 yielding the

velocity and length gauges, respectively, in the nonrelativistic limit [206].

Since the interaction energy form U (2) is the same for the two-electron case,

the strategy is to derive the relativistically perturbed interaction energy, similar to

Ref. [25], but to use the equivalent nonrelativistic operators chosen such that their

contribution from negative energy states vanishes at the order of relativistic correc-

tions. Work is in progress on the problem of establishing an equivalent one-electron

nonrelativistic E1 operator24 in the length gauge, where we reduced a general formula

[224] to a specific form for the one-electron case and were able to show equivalence

to the one-electron Dirac Sturmian result of Ref. [210]. This has been done in the

velocity gauge by Sami [225], where additional spin-dependent corrections arise. Once

the relationship is established for the He+(2s) decay, the methodology can be carried

24The Breit-Pauli corrections to the Hamiltonian and wave functions are well-understood; how-
ever, relativistic corrections to the dipole operator itself that arise from the Foldy-Woutheyson
transformation [223] must also be accounted for.
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over to the two-electron case.

4.10.2 Extend to additional structure problems

The formalism developed here for treating the mass polarization component of the

finite-mass effect in the calculation of nE1 transition rates in heliumlike ions could

be extended to other atomic processes, which are in general proportional to matrix

elements and energy differences raised to some power. The form of the resulting alge-

braic relations would be different from those presented here for other nE1 processes,

depending on the form of the quantity being calculated; however, they would still

serve as a theoretical check between calculations in the velocity and length gauges

and would be derived in the same way as presented here and in Ref. [24]. In calcu-

lations of stimulated emission, absorption, and photoionization [219, 226], the same

algebraic relations would apply as for spontaneous emission, but the numerical values

of the Cx, Dx etc. coefficients would be different. One possible application would be

to the study of Feshbach resonances [226].

4.10.3 Extension to highly charged heliumlike ions

Finite-mass effects diminish with the higher atomic number Z but nevertheless must

be accurately accounted for in precise comparisons between experiment and theory

[202]. The dominant coupling scheme for two-electron systems shifts from LS to jj

around Z ≈ 26, requiring different methods to be deployed in calculating relativistic

contributions. The nonrelativistic approach described in this chapter addresses the

low-Z region, and relativistic effects can be added perturbatively, while methods like

RCI [211] are typically used to provide accurate decay rates at high-Z. These methods

can be unified for general nE1 decay processes using the method developed by Drake

[218], successfully applied to heliumlike sequences up to Z = 100 [227].
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CHAPTER 5

Testing QED with the Tune-out

Frequency in Helium

5.1 OVERVIEW

This chapter details a joint theoretical-experimental effort1 to test QED by comparing

measurements and calculations of the ∼ 726 THz tune-out frequency of the 2 3S1 state

of helium. The tune-out frequency is the frequency at which an atom ceases to interact

with an incident laser light. The tune-out frequency is a completely independent test

of QED than the traditional experiments which measure atomic energy levels. In our

work, we have reformulated the problem as a zero in the coherent Rayleigh scattering

cross section, allowing for the calculation of retardation effects that arise due to the

finite velocity of light. This is the first calculation of the tune-out frequency that is

sensitive to these effects, building off of Pachucki and Puchalski’s [228] calculation of

the dynamic polarizability of helium. We are able to resolve QED effects at the 30σ

level and retardation effects at the 2σ level.

In Appendix E, the problem of coherent Rayleigh scattering (RSCS), the topic

of this chapter, was observed to be very similar to that of two-photon transitions,

which were discussed in Chap. 4. This is yet another of a growing list of atomic

physics problems where pseudospectral methods are used to represent a complete

set of states. In this chapter, we use pseudospectra to treat perturbations in second

1While essential for completeness and thematic development, this material represents a smaller
portion of my research contributions. Thus, this chapter is shorter, reflecting the scope of my
involvement in this project.
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order, capturing QED transitions with the vacuum, and we also use them in first-order

perturbation theory to treat relativistic and QED corrections.

The content of the chapter is as follows. Section 5.2 provides the background for

the tune-out frequency as a test of QED. Then, Sec. 5.3 defines the tune-out frequency

and explains why we specifically chose the ∼ 726 THz tune-out in 2 3S1. Section 5.4

then briefly explains the experiment and discusses the largest sources of uncertainty.

The theoretical formulation is then expounded in Sec. 5.5, following which the overall

results are presented and discussed in Sec. 5.6. Lastly, future work is mentioned in

Sec. 5.7.

5.2 MOTIVATION

As outlined in the Introduction and investigated in Chap. 3, a major theme of present-

day physics, including atomic physics, is the search for new physics (NP) beyond the

Standard Model (SM). One sector under intense scrutiny is QED [8, 229] due to

continual improvements in high-precision experiments and theory. Advances in laser

spectroscopy now resolve QED contributions, and in two-electron systems, improve-

ments in variational techniques [229] and QED operators [230–233] enable precise

theory/experiment comparisons. As discussed in the Introduction, many QED tests

rely on precise energy measurements from spectroscopy, including the proton radius

puzzle and other Lamb shift measurements. Discrepancies between theoretical QED

values and observations signal NP. Precise QED calculations also determine physical

quantities like the nuclear radius of helium isotopes with halo nuclei [234–237], such

as 6He discussed in Chap. 3.

Common to all of the aforementioned examples is that they compare energy mea-

surements and calculations to probe QED. Energies are expectation values, i.e., diag-

onal matrix elements of the Hamiltonian matrix. Comparison of quantities other than

energies, such as lifetimes and transition rates, are generally much less accurate than

energy measurements. For instance, in Ref. [238], the transition rate 3P1 −1 S0 was

measured to only 4.5% accuracy. Measurements such as this test off-diagonal matrix
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elements. The dynamic polarizability αd(ω), a quantity proportional to the energy

shift2 an atom experiences in an optical field of frequency ω with ẑ polarization, is

defined in the nonrelativistic limit to be [148, p. 256]

αd(ω) =
∑

n

|⟨i|z|n⟩|2
(

1

∆En + ℏω
+

1

∆En − ℏω

)
, (5.1)

with matrix elements between the state in question, |i⟩, and all other states, {|n⟩},
must be computed.

These tests, therefore, offer not only an alternative, completely independent ap-

proach to testing QED, but are much more contrained in that the line strength of

every transition in the atomic spectrum, bound and continuum, contributes to this

quantity. In fact, the polarizability—both the dynamic case shown above and the

static case—have been of significant interest in the determination of several stan-

dards and constants, including the pressure [239] and temperature [240] standards,

which can be written in terms of the index of refraction [241]. The index of refrac-

tion, in turn, can be calculated using very precise values of the dipole polarizability

[242]. In fact, in recently calculating the index of refraction, Pachucki and Puchalski

demonstrated that the dipole polarizability formulation does not account for retar-

dation effects [228]. The index of refraction ultimately considers how plane waves of

light propagate through disordered media, and the slowing effect is due to scattering.

The process that should be considered is not polarizability but rather the Rayleigh

forward scattering amplitude—the photon nature of light is relevant to this process

[228]. We turn our attention towards the frequencies at which these quantities vanish:

the tune-out frequencies, i.e., zeroes in the Rayleigh scattering cross section.

2The energy shift ∆E that an atom experiences in an optical field with electric field strength
F , is related to the dynamic polarizability via ∆E ≈ − 1

2αd(ω)F
2. The relation is approximate as

there are higher-order polarizabilities that contribute as well in the exact relation.
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Fig. 5.3.1: The level shifts for the 2 3S1 state and the 2 3P / 3 3P manifolds are shown for
the cases of (left to right) no laser light, and then for light of frequency less than, equal to,
and greater than the tune-out frequency. The noteworthy feature of incident light at the
tune-out frequency is that the energy shift in the 2 3S1 vanishes.

5.3 THE TUNE-OUT FREQUENCY

The tune-out frequency, or equivalently, the tune-out wavelength, is essentially the

frequency/wavelength of an optical field incident upon a system (an atomic system

in our discussion) where the system ceases to interact with the applied field. Figure

5.3.1 demonstrates the situation for a helium atom prepared in its metastable 2 3S

state. At the tune-out frequency, fTO, the energy level shift cancels—a remarkable

zero since it is the result of the sum of an infinite number of terms.

As mentioned above, there are two alternative physical interpretations3 of this

phenomenon that are equivalent in lowest order but lead to different higher-order

corrections. The experimental conditions determine which of these pictures is correct.

This was discussed by Drake et al. [217] for the case of the tune-out frequency of

helium prepared in its metastable 2 3S state—the configuration with which we are

concerned in this chapter.

The first formulation of the tune-out frequency arose in the context of creating

optical lattices to selectively trap one type of atom in ultracold experiments involving

3The mathematical details of the two interpretations will be addressed in the following section
discussing the NRQED formalism.
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multiple atomic species.4 Here, LeBlanc and Thywissen developed a scheme5 where

the trapping wavelength of the optical trap was chosen to lie between two manifolds

of one of the two atomic species, such that the induced dipole moment in that species,

and thus the level shift, is zero. This situation is illustrated in Figs. 5.3.2 and 5.3.3 for

the case of He(2 3S). The effect of this is that this species is no longer trapped, i.e.,

they achieved species selective trapping. Within an optical lattice, the appropriate

formalism is to consider the dynamic polarizability, since the potential is fixed in space

and oscillates in time and the atom’s position relative to the nodes of this potential

determines the interaction [217].

The tune-out experiment consists of a magnetically trapped Bose-Einstein con-

densate of metastable He(23S1) atoms subjected to a probe beam that is a travelling

transverse plane wave. In this second formulation, the photon nature of the interac-

tion must be considered for higher-order effects, including retardation effects. Due to

this, the proper physical picture for this interaction is the point at which the atom

ceases to scatter light: the frequency at which the Rayleigh scattering cross section

(RSCS) vanishes [217].

5.3.1 Suitability of the tune-out frequency for testing QED

The tune-out frequency is an excellent nonenergy candidate for studying QED that

was first pointed out by Mitroy and Tang in 2013 [244]. Experimentally, it is ad-

vantageous because it constitutes a null measurement that does not require careful

calibration of light intensity or beam profile. Furthermore, unlike other experiments

that test QED, measuring excitation probabilities is not required here.6

The metastable state of helium has an exceptionally long lifetime (approximately

8000s) relative to typical atomic transition timescales (∼10−9s), making it ideal for

trapping and probing. It is also well-situated with respect to the energy level scheme of

4A landmark dual-species result involved observing the Fermi pressure in a fermion-boson 6Li/7Li
mixture [243].

5This experiment focused on binary mixtures ultracold alkali-metal atoms such as Li-Cs, K-RB,
etc.

6Measuring direct transitions, such as the 2 3S1–3 3S1 transition in helium [245], or lifetimes,
require measurement of excited state populations [246].
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Fig. 5.3.2: Partial energy level diagram of 4He, showing in particular the relevant transitions
between the 23S1 state and the 23P/33P manifold, between which the tune-out frquency
occurs. The tune-out frequency studied in this work is very near 726 THz, below the 771 THz
transition to 33P shown in blue. Not drawn to scale—the splittings are greatly exaggerated
in this drawing.

helium for measuring the tune-out property. Of the infinite set of tune-out frequencies

for the He(2 3S1) atom, the fTO ≈ 726 THz is the best choice. As shown in Fig. 5.3.3,

the fTO ≈ 726 THz is well separated from resonances, making it possible to actually

measure it without having the signal partially masqueraded by the sharp effects seen

near the resonances. Further, the gradient of the induced energy shift with respect

to the applied frequency, dα
df

, is very small here compared to alternative decays [244].

This is a result of the fact that the two closest transitions (2 3S–2 3P and 2 3S–3 3P )

are separated by more than a factor of two in frequency. Therefore, for this tune-

out, the negative contributions to the RSCS due to 2 3S–2 3P transitions are mostly

balanced by the positive 2 3S–3 3P contributions.7

7The higher 2 3S–n 3P with n > 3 contributions are also positive, but relatively small.
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Fig. 5.3.3: This curve displays the dynamic polarizability as a function of the frequency
of the applied laser light. The discontinuities occur when the laser is in resonance with
transitions between the (from left to right) 2 3S and n = 2, 3, 4 3P manifolds. Between these
discontinuities, the polarizability must pass through zero—these are the so-called tune-out
frequencies. For reasons that are explained in the text, it is the tune-out (fTO) around
726 THz, indicated by the red arrow, that is studied presently to test QED. Each vertical
line stands for the spin-orbit-split manifold and contains additional tune-outs that are not
useful since their contributions are completely dominated by the states within the manifold
and adhere to 1:3:5 geometric considerations [244].

In summary, the tune-out frequency is an ideal property to test QED independent

of energy shifts. Clearly, the 2 3S1 state of helium has excellent properties that make

this a candidate for precise and reliable measurement and calculations—which will

now be discussed in turn.

5.4 BRIEF OVERVIEW OF THE EXPERIMENT

The experiment was carried out by the He∗ BEC group at the Australian National

University; here, we touch on the most salient details. This section thus contains a

brief overview of the experiment itself and also a commentary on the most significant

sources of systematic error. Complete information can be found in the manuscript
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and accompanying supplementary materials that this chapter is based on [25], or in

even more detail in Ref. [247].

The central idea is to subject helium atoms, prepared in the 2 3S1(MJ = 1) state,

to a freely propagating, frequency-tunable pulsed laser beam and determine the point

at which they cease to scatter photons—in this experiment, we measured the fre-

quency at which the optical dipole potential vanished. The mechanism for performing

the tune-out measurement was the trap oscillation method. The magnetic trap forms

a sinusoidal oscillation with a trapping frequency of Ωtrap. Then, the probe laser

interacts with the trapped BEC with frequency f . Its Gaussian optical potential,

approximately harmonic, results in a response frequency Ωprobe. Atoms are outcou-

pled and their net oscillation frequency, Ωnet, corresponding to Ω2
net = Ω2

probe + Ω2
trap

is measured by plotting their velocities. Upon measuring Ωtrap separately, the above

formula gives an expression for Ω2
probe, which itself is a function of the frequency of

the probe laser frequency f . It turns out that Ω2
probe is proportional to the RSCS

according to Ω2
probe ∝ α(f)I, with I the intensity of the probe beam, and thus it is

zeroes in the Ω2
probe vs. f graph that yield f = fTO.

Table 5.4.1 shows the different contributions to the measured tune-out frequency,

including systematic effects and their uncertainties. We discuss only the largest of

these: beam polarization. This experiment requires accurate measurement of the

beam polarization when it interacts with the helium atoms. This is not possible,

however, since this interaction takes place inside the vacuum system where the beam

polarization is not measured. The beam polarization was measured immediately

before it enters and after it exits the chamber, though it could have slightly changed

during its passing through the vacuum. The birefrigence of the vacuum windows and

the non-uniformity of the beam polarization across the beam are the effects that carry

the largest uncertainty budget associated with this.
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Table 5.4.1: Contributions to the measured tune-out frequency with their systematic un-
certainties. The 40 MHz uncertainty in the measurement itself, however, is a statistical
uncertainty. The polarization is the largest contribution to the experimental uncertainty
budget.

Term Estimate (MHz) Uncertainty (MHz)

Measured Value 725 736 810 40
Polarization

- Birefringence -100 200
- Beam Anisotropy 0 150

Method Linearity 24 30
Hyperpolarizability -30 50
Broadband Light 0 30
DC Electric field 0 ≪ 1
Wave-meter 0 4
Mean-Field 0 ≪ 1

Total 725 736 700 260

5.5 THEORETICAL FORMULATION

5.5.1 Consequence of linear polarization of probe beam

Before unravelling the details of the calculation, it must be clear exactly what we have

calculated. In principle, the tune-out frequency, fTO, corresponds to a zero in the

multicomponent field RSCS, α(fTO) = 0. The RSCS is a multicomponent field that

contains scalar, vector and tensor components that depend on the degree of linear and

circular polarization of the probe beam in the atom’s reference frame. With arbitrary

polarization, for the 2 3S1(MJ = 1) state, this results in a tune-out frequency with

scalar (S), vector (V), and tensor (T) components defined by:

fTO(QA,V) = fS
TO+

1

2
βV cos(θk)V− 1

2
βT

[
3 sin2(θk)

(
1

2
+

QA(QL, θL)

2

)
− 1

]
, (5.2)

where QA and V are the second and fourth Stokes parameters, respectively, and θk is

the angle between the laser propagation direction and the magnetic field vector; βV

and βT are the vector and tensor polarizabilities divided by the gradient of the scalar
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RSCS at the tune-out frequency. QL and θL, are the laboratory measured second

Stokes parameter and the angle between the lab and atomic frames, respectively.

If the laser has a linear polarization that is perpendicular to the laser propagation

and the magnetic field, then fTO(QA,V) simplifies to fTO(−1, 0), corresponding to a

RSCS

α(f) = αS(f)− 1

2
αT (f). (5.3)

It is this quantity which is interrogated in the comparison between experiment and

theory.8

5.5.2 Nonrelativistic RSCS or dynamic polarizability

For a system defined in NR-order by H0|ψ⟩ = E0|ψ⟩, with H0 the field-free Hamil-

tonian, subject to an optical field of frequency ω = 2πf , and in initial state ψ0, the

resolvent operator is

R(ω) = Q(H0 − E0 + ℏω)−1Q, (5.4)

with projection operator Q = 1 − |ψ0⟩⟨ψ0|. With these definitions, the frequency-

dependent dipole polarizability can be written as

ᾱd(ω) =
1

2
[αd(ω) + αd(−ω)] (5.5)

where αd(±ω) given by

αd(±ω) = 2⟨ψ0|ê · rR(±ω)ê · r|ψ0⟩ (5.6)

where ê is the polarization of the incident field and r = r2 + r2.

A complete set of discrete pseudostates, viaQ in the resolvent operator in Eq. (5.4),

8The experiment actually measured fTO(QA,V) for many polarizations and probe frequencies
and performed interpolations to obtain fTO(−1, 0), using only the sign of βT from theory. The
rationale for not using Eq. (5.2) is simply that the direction of the magnetic field—a quantity needed
on the theory side if Eq. (5.2) is used—could not be measured to sufficient precision. fTO(−1, 0) is
independent of this quantity.
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can be inserted to evaluate Eq. (5.6):

ᾱd(ω) = e2
∑

n

|⟨ψ0|ê · r|ψn⟩|2
(

1

En − E0 + ℏω
+

1

En − E0 − ℏω

)
. (5.7)

Thus, any time the resolvent operator R(ω) appears in the expression, a pseudospec-

trum is used to represent the complete set of states. In our calculation, summarized

in the following section in Table 5.6.1, the finite-nuclear-mass effects are included by

using the appropriate Hamiltonian H0 where M remains finite.

5.5.3 NRQED formulation of the tune-out frequency

In order to test QED, higher-order effects, beginning with relativistic effects, must

be systematically included in the calculation. Our approach is similar to that of

Refs. [219, 241, 242]. Higher-order relativistic and QED effects are added perturba-

tively to Eq. (5.6), yielding (2+1)-order corrections according to

δαX̂
d (ω) = 2⟨ψ0|[2ê · rR(ω)ê · rR(ω)X̂ + ê · rR(ω)(X̂ − ⟨X̂⟩)R(ω)ê · r]|ψ0⟩, (5.8)

where, X̂ stands for each relativistic or QED perturbation operator, and ⟨X̂⟩ is its

expectation value. The polarizability/RSCS expression is already a second-order

perturbation and is further perturbed with respect to the effects in question. In two-

electron problems, this method is a great choice [229] since Hylleraas pseudostates can

be used to generate extremely accurate NR wave functions;9 for example, Petrimoulx

et al. recently calculated the NR ground state energy and wave functions of H− to 27

and 14 figures, respectively [47].

The tune-out frequency for S-states, which are considered here, is the zero of the

9Manalo showed [248] that the NRQED method with Hylleraas basis states used here agrees,
up to relativistic order, for the calculation of the frequency-dependent polarizability with earlier
calculations [242] that used “Slater germinals” comprised of all-exponential basis functions.
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total polarizability/RSCS whence all of these corrections are added in [228]:

|E|2

ᾱd(ω) +

∑

X̂

δᾱX̂
d (ω) + δᾱ

∂2
E ln k0

d (ω) + δᾱd,ret(ω)


+|B|2[χ+δχret(ω)] = 0, (5.9)

where E and B are the fields of the laser, χ is the magnetic susceptibility, and

δᾱ
∂2
E ln k0

d (ω) is a further QED effect arising from the second-order perturbation of the

Bethe logarithm due to the electric field of the laser; δαd,ret and δχret are retardation

corrections.

5.5.4 Relativistic corrections

The nonzero10 relativistic corrections arise from the nonrelativistic reduction of the

Dirac equation, and the Pauli form of the Breit interaction at order α2 are given (in

SI units) by [40, p. 181]

H1 = −(p41 + p42)

8m3c2
(5.10)

H2 = − e2

2(mc)2r12

[
p1 · p2 +

r12 · (r12 · p1)p2

r212

]
(5.11)

H4 = π(αea0)
2
[
Zδ3(r1)− δ3(r12)

]
(5.12)

H5 =
4µ2

0

r312

[
s1 · s2 −

3(s1 · r12)(s2 · r12)
r212

]
(5.13)

where µ0 =
eℏ
2mc

(
1 + α

2π
+ · · ·

)
is the Bohr magneton and α ≃ 1/137.03599906 is the

value used fine structure constant. The relativistic kinetic energy (H1), the orbit-

orbit interaction (H2), and the Darwin term (H4) are spin-independent terms, while

the spin-spin term (H5) is spin-dependent and itself accounts entirely for the tensor

component αT (f) in Eq. (5.3).

10The spin-orbit and spin-other-orbit terms of the Breit interaction vanish when summed over the
fine-structure splittings of the intermediate P -states—if they are regarded as degenerate, which they
can be in this limit. Also, the portion of the spin-spin term, H5, proportional to δ(r12), vanishes
due to the Pauli exclusion principle—since these are triplet states.
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5.5.5 QED corrections

The leading QED operators (in atomic units) are [249]

X̂
(3)
QED = α3

{
4Z

3

(
19

30
− lnα2 − ln k0

)[
δ3(r1) + δ3(r2)

]
− 7

6π

(
1

r312

)

P.V.

}
(5.14)

and

X̂
(4)
QED = α4π

[(
427

96
− 2 ln 2

)
Z2 +

(
−9ζ(3)

4π2
− 2179

648π2
+

3 ln 2

2
− 10

27

)
Z

]
(5.15)

×
[
δ3(r1) + δ3(r2)

]
,

where ln k0 is the Bethe logarithm,
(

1
r312

)
P.V.

is the principal value of the divergent

integral given by

(
1

r312

)

P.V.
= lim

ϵ→0
r−3
12 (ϵ) + 4π(γ + ln ϵ)δ(r12), (5.16)

with ϵ the radius of a small sphere about r12 = 0 that is omitted from the range

of integration and γ is Euler’s constant. ζ(z) is the Riemann zeta function. The

third-order QED contribution listed above contains Araki-Sucher terms, while the

fourth-order term contains radiative contributions [250, 251].

The remaining nonradiative contributions were taken as the dominant source of

theoretical uncertainty (cf. Table 5.6.1)—these were estimated to be 6 MHz, i.e.,

about 5% of the magnitude of the radiative terms [232, 241]. This is, in fact, the

dominant source of uncertainty, not only for the QED part but for the entire theo-

retical calculation.

Another very small QED contribution comes from the second-order electric field

perturbation to the Bethe logarithm—the term in the tune-out condition expressed

in Eq. (5.9). This correction is equal to

δᾱ
∂2
E ln k0

d (ω) =
8

3
α3∂2E ln k0⟨ψ|δ3(r1) + δ3(r2)|ψ⟩, (5.17)
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and ∂2E ln k0 = 0.048 557 2(14)a30 was calculated in Ref. [219]. Drake and Yan [252]

argued that this value comes entirely from the inner 1s electron and can thus be

taken to be the value for any excited or singly ionized state of He to an accuracy of

about 1%. For ω ≲ 1 this correction will not differ significantly from the static case

calculated in Ref. [219].11 The value used for ∂2E ln k0 in the present work is 0.049(1)a30,

which contributes at the negligible level of δᾱ∂2
E ln k0

d ≈ 0.18× 10−6 a.u. to the RSCS

corresponding to a correction δωTO ≃ 0.124(3) MHz to the tune-out frequency.

5.5.6 Magnetic susceptibility

The magnetic susceptibility is a frequency-independent quantity defined by [253, 254]

χ = −α
2a0
4

〈
2∑

i=1

(ri × B̂)2

〉
= −α

2a0
6

〈
2∑

i=1

r2i

〉
, for S-states, (5.18)

where B̂ denotes a unit vector. The expectation value ⟨r21 + r22⟩ is 22.928644a20 for

the 2 3S1 state of helium, yielding a correction of 188 MHz.

5.5.7 Retardation corrections

Retardation corrections were recently derived by Pachucki and Puchalski [228] for the

first time in treating the interaction of laser light incident upon a medium of helium

atoms as part of an investigation of the refractive index of helium gas. Prior to their

work, for instance, in Ref. [242], this problem was treated as a zero in the dynamic

polarizability—a strategy that must be reformulated in order to properly account for

retardation corrections. It is in these corrections that the difference in the physical

circumstances makes a difference in the calculation. For an atom in the presence of

a freely propagating laser beam, we expect retardation corrections that arise from

finite wavelength properties of light. For this, the correct theoretical formulation of

the vanishing interaction is as a zero in the RSCS, not the dynamic polarizability.

This introduced by Drake et al. [217] for the tune-out problem and is explained in

11The calculation in Ref. [219] used ⟨ψ|δ3(r1) + δ3(r2)|ψ⟩ = 3.620 858 63(1).
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Appendix E.

Ref. [228] defines the generalized polarizabilities (all in units of a50 except α0 which

is in units of a30) as

α0(ω) =
e2

3

∑

a,b

⟨rkaR(ω)rkb ⟩ (5.19)

α1(ω) =
e2

3

∑

a,b

⟨(rkarla)(2)R(ω)(rkb r
l
b)

(2)⟩ (5.20)

α2(ω) =
e2

3

∑

a,b

⟨rkaR(ω)rkb r
2
b ⟩ (5.21)

α3(ω) =
2iℏe2

3m

∑

a,b

⟨rkaR(ω)R(ω)i(Lb × rb − rb × Lb)
k⟩ (5.22)

α4(ω) =
e2

3

∑

a,b

⟨r2aR(ω)r2b ⟩, (5.23)

where the a and b sums are over the electronic coordinates 1 and 2, and a sum over

the repeated Cartesian vector components k and l is assumed. Also, (rkrl)
(2)
a ≡

rkrl − δklr
2/3 is the quadrupole moment operator.

The above definitions differ by a factor of 2/3 from those in Ref. [228] so that here

α0(ω) ≡ αd(ω), and α1(ω) corresponds to the standard definition of the quadrupole

polarizability [255]. Further, α2(ω) corresponds to finite-wavelength corrections,

α3(ω) contains relativistic corrections to the dipole transition operator [224], and

the α4(ω) term is magnetic in origin which cancels in the final analysis. For each

term, the above bar notation applies: ᾱi(ω) = 1
2
[αi(ω) + αi(−ω)]. The retardation

corrections to the polarizability α0 and diamagnetic coupling χ are then

ᾱret(ω) =
3k2

2

(
ᾱ1(ω)

15
− 2ᾱ2(ω)

15
+
ᾱ4(ω)

18

)
, (5.24)

χ̄ret(ω) =
3k2

2

(
ᾱ1(ω)

60
+

4ᾱ2(ω)

45
+
ᾱ3(ω)

9
− ᾱ4(ω)

18

)
, (5.25)

where k = ω/c. This yields a total retardation correction of

ᾱret(ω) + χ̄ret(ω) =
3k2

2

(
ᾱ1(ω)

20
− 2ᾱ2(ω)

45
+
ᾱ3(ω)

9

)
(5.26)
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contributing a total retardation correction of -477 MHz. These contributions include

relativistic—but not QED—corrections to the dipole transition operator.

The smallest correction was to account for finite nuclear size. In Ref. [256], the

operator 4π
3
r24He[δ

3(r1) + δ3(r2)] was evaluated, using r4He = 1.6755 fm [257], yielding

a finite-nuclear-size correction of 2.75 fm.

5.6 RESULTS

The various matrix elements that contribute to calculating the RSCS were calcu-

lated using the doubled Hylleraas basis sets (cf. Sec. 2.7.1). For the 2 3S1 state, an

optimized calculation is performed, whereas for all pseudospectra—coinciding with

the presence of the R(ω)—a complete diagonalization of the Hamiltonian matrix is

performed.

Table 5.6.1 lists all of the theoretical contributions for the categories described

in the previous section. Since, according to Eq. (5.8), the individual perturbations

are frequency-dependent, the tune-out frequency changes as each is added, and so

the total must be iterated to convergence.12 Finite-mass effects are included in the

values quoted for the NR and relativistic contributions in Table 5.6.1. As mentioned

in Sec. 5.5.5, the dominant source of uncertainty is the nonradiative terms of order

α4, estimated ±6 MHz.

Overall, the final theoretical result of 725 736 252(9) MHz differs from the experi-

mental result by −448±260 MHz, 1.7 the measurement uncertainty σ. This is shown

graphically in Fig. 5.6.1. from which it is clear that this theoretical-experimental com-

parison is able to discern QED contributions to the tune-out frequency fTO at the

∼ 30σ level retardation effects at the ∼ 2σ level. This is the first calculation of fTO

that includes retardation corrections, which could be tested much more stringently if

the experimental precision were increased.

12This procedure was relaxed, beginning at QED-order, for the terms of order α3 or smaller as
they are small enough to be added into Eq. (5.9) linearly.
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Table 5.6.1: Collection of the various theoretical contributions to the 23S1− 23P/33P tune-
out frequency in helium near 725.7 THz. Finite-nuclear-mass effects are included in the
nonrelativistic and relativistic contributions.

Quantity Value (MHz) Uncertainty (MHz)

Nonrelativistic (NR) 725 645 115 2
Relativistic scalar (αS)a 97 101 6
Relativistic tensor

(
−1

2
αT
)

1 744 6
Total non-QED 725 743 960 6

QED α3 -7 297 2
QED α4 -127 6
Total QED -7 424 6

Retardation -477 2
Nuclear sizeb 5 6
Magnetic polarizability 188 3

Theory (Total) 725 736 252 9
Experiment 725 736 700 260
Difference -448 260

a Obtained using R∞c = 3.2898419602508(64)× 109 MHz.
b This value was converted from data 2.75 fm in Ref. [256].

5.7 FUTURE WORK

Looking at the experimental uncertainties listed in Table 5.4.1, it is clear that experi-

mental improvements should be concerned with improving our ability to measure the

polarization—ideally even within the vacuum itself. Further, pursuant to the discus-

sion in Sec. 5.5.1, if the angle between the laser and the magnetic field were able to be

measured more precisely, this would allow independent testing of the scalar, vector,

and tensor parts of Eq. 5.2—an altogether stricter test of QED. The method could

be used to treat other tune-out frequencies in helium, and furthermore, it could help

to determine the charge radius of helium if the precision can be increased to the MHz

level.

On the theoretical side, higher-order retardation corrections due to the finite speed
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Theory – Expt.

Expt. unc.

Theory unc.

Nuclear size

QED 𝛼!

Magnetic Pol.

State retardation

QED 𝛼"

Rel. tensor

Rel. scalar

Effect size [MHz]

Fig. 5.6.1: A visual display of the material in Table 5.6.1. The difference between theory
and experiment (checkered bar), along with their respective uncertainties (in crosshatch),
are shown. Also depicted are the magnitudes of the theoretical contributions outlined in
Table 5.6.1 are shown.

of light can be calculated, which will contribute if the experiment reduces its un-

certainty by an order of magnitude. This calculation can be used to measure the

molar mass constant (Mu), a quantity related to the index of refraction of helium gas

[219, 242], which is no longer exactly Mu = 1 g/mol with the SI unit redefinitions in

2019 [258] that made Avogadro’s number exact.

Additional theoretical extensions of this work include making small QED correc-

tions more precise. Firstly, the electric field perturbation to the Bethe logarithm

could be explicitly calculated for the 2 3S1 state, along with finite-mass corrections.

Also, the omitted nonradiative contributions [232] of order α4 Ry could be explicitly

calculated for this state.
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CHAPTER 6

Conclusion and Future Work

6.1 OVERVIEW

This chapter begins in Sec. 6.2 with concluding remarks on each topic addressed in

this dissertation, highlighting the significance of each result obtained. The findings

are then synthesized in Sec. 6.3. They strongly support the theme that pseudospectra,

with their broad utility, can significantly enhance our understanding and applications

in atomic physics. Future work is discussed in Sec. 6.4, beginning with a recapitulation

of the most significant extensions suggested and then a suggestive example of where

one could apply the methodologies developed beyond the selection of projects in

this dissertation. Lastly, in Sec. 6.5, the significance of this work in terms of its

implications for ongoing activities in atomic physics is considered.

6.2 SUMMARY OF FINDINGS

The first project considered in this dissertation, in Chap. 3, was the beta decay of 6He.

The problem addressed in this work was that previous theoretical attempts to quantify

the amount of double ionization following this decay consistently overestimated the

measured amount—by several orders of magnitude. This quantity is related to the

electron-antineutrino correlation coefficient, aβν , which is widely studied in low-energy

searches for new physics through potential non-Standard Model contributions to the

V −A theory of beta decay. We developed two-electron projection operators formed

of products of one-electron Sturmian functions to partition the overlapping single
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and double ionization continua. As a result of these efforts, we have reduced the

discrepancy between theory and experiment by an order of magnitude, although a

disagreement that requires further attention remains.

In the next project, contained within Chap. 4, the two-photon decay rates of

metastable 2 1S heliumlike ions were calculated. Two-photon decay of the metastable

21S0 competes with collisional deactivation under low density and temperature condi-

tions in astrophysical sources. So, the population balance provides a probe of temper-

ature and density [259, 260]. In this work, we obtained accurate values for the effects

of finite nuclear mass on this process. In characterizing these finite-mass effects, we

developed a technique for treating the mass polarization using a gauge-dependent

power series. We extended the notion of gauge equivalence beyond the usual context

of infinite nuclear mass. In doing so, we derived algebraic relations for nE1-photon

transitions in heliumlike systems. They were used to successfully demonstrate gauge

equivalence in the 2E1 decay of the 2 1S state along with the E1 decay of both the

2 1P and 2 3P states. These relationships were used in our work to provide a very

stringent test of the calculation’s accuracy, as they are only satisfied to the extent

that the wave functions are exact.

Chap. 5 focuses on a joint theory-experiment effort to test QED by comparing

calculations and measurements of the tune-out frequency of He(2 3S1). This novel

test of QED is independent of the traditional measurements of energy shifts, such

as the Lamb shift. A genuine discrepancy in the resulting comparison would be

a signal for new physics. On the theoretical side, we carried out a high-precision

calculation that was able to resolve both QED and retardation corrections to 30σ

and 2σ, respectively, where σ is the measurement uncertainty. Building on the work

of Drake et al. [217], these retardation corrections have been included for the first

time in the present calculation. This amounts to reformulating the problem as a zero

in the coherent Rayleigh scattering cross section instead of a zero in the dynamic

polarizability, as previously assumed [244]. The result of this project was that there

was a 1.7σ disagreement between theory and experiment.
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6.3 SYNTHESIS OF CONCLUSIONS

The unifying theme connecting the distinct physical processes studied in this disser-

tation lies within the methods used to carry out the calculations. In the epigraph of

this dissertation, we saw that “pseudo” means to be “false, deceptive, or having the

appearance of something it is not.” Indeed, at least for the two-electron problem,

pseudostates are not exact eigenstates. However, using variational methods, they

can become arbitrarily close to eigenstates and, more importantly, the pseudospectra

formed by solving the appropriate generalized eigenvalue problem tend to complete-

ness in the limit of large basis sets. The resulting computationally realizable discrete

sum, which replaces the infinite bound sum and continuum integral, demonstrates

that the prefix “pseudo” applies in name only. These powerful objects enable an

entire class of calculations that would otherwise be more difficult.

In this dissertation, we make repeated use of pseudospectra. In the beta decay

work, the foundation of our work was to expand an initial 6He state in terms of

a complete set of final 6Li+ states, including single and double ionization channels.

The physics of the instantaneous change in nuclear charge following this event makes

possible electronic rearrangement to any final state of 6Li+. Therefore, the {6Li+}

pseudospectra, which includes 6Li++ and 6Li3+ states, represents actual states where

transitions from the initial 6He state occur.1 Beyond this, in forming the projection

operators to apply to each of these pseudostates, one-electron pseudospectra were

formed using Sturmian functions, taking advantage of their well-defined charge state

and ability to mimic the exact Coulomb wave functions over the region of interest.

This conceptualization of the complete set of states as actual states, in the sense

described in Footnote 1, contrasts with the use of pseudospectra that arise in deriving

the two-photon decay rate and the Rayleigh scattering cross section. In the latter

case, the sums enter the calculation to treat the interaction with the QED vacuum,

and we interpret these as sums over virtual rather than actual states. We also made

1Strictly speaking, via Stieltjes imaging, pseudostates represent a block of the continuum, and
therefore, the transitions described are from the initial state to a set of continuum states within an
energy range.
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this interpretation when using perturbation theory to treat the relativistic and QED

corrections. This diversity of use is a testament to the versatility of pseudospectra.

The resolvent operators (H−Em)
−1 that arise in perturbation theory can be formally

evaluated by inserting the identity operator
∑

n |ϕn⟩⟨ϕn| = 1 and so any problem in

this class makes use of pseudospectra. The pseudospectral techniques developed and

used in this dissertation offer a common approach to both classes of problems.

6.4 FUTURE WORK

Each of Chapters 3, 4, and 5 concludes with a section outlining extensions and po-

tential next steps for the respective project. This section highlights the most exciting

and relevant extension from each chapter, followed by a project that was not men-

tioned but is an example of one of the many calculations that can be carried out using

the techniques developed in this work.

The most promising avenue to address the remaining discrepancy in the beta decay

of 6He is to reformulate the 6Li+ basis functions that comprise the pseudospectra to

which the projection operators were applied. One can accomplish this by studying

the delta function expectation value of these wave functions—a quantity that should

remain equal to its ground state, ⟨1 1S|δ(r1)|1 1S⟩ value, for energies near the double

ionization continuum. The wave functions used in Ref. [132] did not satisfy this

condition. By manipulating the Hylleraas pseudostates introduced in Chap. 2, with

the benefit of the variational principle, we aim to create wave functions whose delta

function matrix elements are close to the ground state value, and we postulate that

this will remove much of the remaining discrepancy between theory and experiment.

Concerning the two-photon decay rates that were the subject of Chap. 4, there is

a very straightforward but necessary subsequent step: evaluating relativistic effects.

Once completed, the data will be the most accurate two-photon decay rates for astro-

physical applications, replacing Ref. [211]. To compare with experiment, finite-mass

corrections of order µ/M must be accompanied by (αZ)2 relativistic corrections, since

these are both of relative order 10−4 in 4He—the isotope of astrophysical interest. We
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perform this calculation by deriving a set of corrections via “2+1” order perturbation

theory, as in the Breit corrections in the tune-out project, except here the two-photon

emission interaction energy has a slightly different form than the Rayleigh scattering

cross section. Another extension of the work in Chap. 4 would be to calculate the

algebraic expansion coefficients by performing a perturbation expansion in the pa-

rameter µ/M , as indicated in Appendix G. Additionally, the algebraic relations could

be derived and used to characterize other processes in atomic physics, including ab-

sorption, photoionization, and Feshbach resonances.

As mentioned above, in the tune-out frequency study, there is a 1.7σ discrepancy

between theory and experiment. The source of this disagreement is currently un-

known. Still, suppose we assume that the theoretical calculations are correct. In that

case, the next step will be to include higher-order retardation effects, which will be-

come relevant if the measurement uncertainty improves by an order of magnitude—a

possibility that will likely require in-vacuum optics to reduce the systematic uncer-

tainty associated with the laser polarization. This work could contribute to determin-

ing the molar mass constant, which no longer equals 1 after the last SI redefinitions

in 2019.

The discussion above is primarily concerned with direct extensions of the projects

addressed in this work. There is a lot of practical and valuable work to be done

in these directions; however, the methods developed can be applied to many more

problems beyond those mentioned here, including the broad class of perturbation

calculations, such as adding relativistic and QED corrections to the determination of

the ground state energy of H−, and the equally broad class of scattering problems,

such as the double photoionization of helium.

One particular project we will pursue is calculating the Lamb shift for high-L Ry-

dberg states in helium. The most difficult part of this calculation—briefly referenced

in the Introduction—is calculating the two-electron Bethe logarithm (BL).2 The two-

electron BL component of the Lamb shift is the most difficult to calculate. For initial

2Despite significant recent work on the higher-order effects on the helium Lamb shift in low-lying
states, little attention has been paid to the Rydberg series.
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state |0⟩, it has the form

β(nLS) =

∑
i |⟨0|p|i⟩|

2 (Ei − E0) ln |Ei − E0|∑
i |⟨0|p|i⟩|

2 (Ei − E0)
(6.1)

where E0 is the NR energy of the state in question, p = p1 + p2 is the momentum

operator, and {|i⟩, i = 1, . . . , N} is a complete set of states. The denominator is

2π⟨δ(r1) + δ(r2)⟩0 via the sum rule [261]; however, due to the logarithmic term the

numerator does not have a simple sum rule and needs to be evaluated by carrying

out the summation. Another difficulty is that this sum contains contributions from

very high-energy states (cf. Fig. 1.3.2 from the Introduction).

In low-lying states of helium, variational approaches have calculated the Lamb

shift, including the BL, with sufficient accuracy [29, 262], but this is more difficult

for high-L Rydberg states.3 To overcome these difficulties, Goldman and Drake [261]

developed a global formula for the asymptotic expansion for the Lamb shifts in helium

that calculates the perturbation of the electric field due to the Rydberg electron on

the inner He+(1s) Lamb shift. The two-electron BL of β(1snl) with large l is [261]

β(1snl) ≈ β(1s) +
1

n3

(
Z − 1

Z

)4

β(nl) + c2F
2 +O(F 4) (6.2)

where β(nl) denotes the one-electron BL and F describes the magnitude of the elec-

tric field of the Rydberg electron at the location of the inner 1s electron and is

F 2 = ⟨r−4⟩nL where r is the position of the Rydberg electron. c2 is calculated per-

turbatively and currently [43] has the value c2 = 0.316 205(6)Z−6. Each of β(1s),

β(nl), and c2 can now be calculated with higher precision than Ref. [263, 264] since

larger basis sets can be formed. Calculating β(1s) and β(nl) involves evaluating the

one-electron BL4 for the 1s and nl states and perturbing it with an electric field to

obtain the c2 coefficient. To this end, we use the same one-electron, triangular Stur-

3Apart from the BL, the remaining contributions to the Lamb shift are proportional to the
delta function matrix elements. For the high-L Rydberg states, highly accurate calculations of
delta function matrix elements become computationally difficult and limiting in terms of an overall
calculation of the Lamb shift.

4The one-electron form of the BL is the same as the two-electron form shown in Eq. (6.1).
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mian functions developed in Chap. 3 [29]. The Bethe logarithm calculations can then

be used with the asymptotic expansions of the delta functions [263] to accurately

calculate the Lamb shift of Rydberg states of two-electron atomic systems.

6.5 BROADER IMPLICATIONS

Physics is an experimental discipline guided and supported by robust theoretical

efforts. The theoretical work presented here involves active collaboration with exper-

imental physicists across various disciplines, including nuclear, particle, and atomic

physics and astrophysical applications. Atoms have long been studied alongside quan-

tum mechanics due to their accessibility, simplicity, and ubiquity. These traits con-

tribute to a continuously evolving field that remains rooted in its foundational prin-

ciples. Atomic physics can be defined by the endeavours of atomic physicists, a

representative sample of which is showcased in this thesis.

The search for new physics (NP) beyond the Standard Model (SM) is a signifi-

cant discipline-wide effort to which atomic physicists contribute. From gravitational

lensing experiments indicative of dark matter to the apparent observation of baryonic

asymmetry via our universe’s matter content, it is clear that the SM (along with gen-

eral relativity) likely represents only part of the story. Atomic physicists are engaged

in numerous projects aimed at this goal, including studies of the electron electric

dipole moment (eEDM), muon g−2 measurements, and various dark matter searches

mentioned in the Introduction.

The beta decay and tune-out frequency projects in this dissertation align with

this larger effort. The tune-out frequency project exemplifies the advancements made

possible by improvements in experimental capabilities. As laser power and precision

continue to improve, increasingly accurate measurements in AMO physics will become

feasible. These advancements necessitate that the theoretical AMO physics commu-

nity calculate the corresponding quantities with sufficient accuracy. Although the NP

sought in the study of beta decay pertains to nuclear physics, given that most beta

decay events occur within an atom, the motion of atomic electrons is relevant and
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6.5. BROADER IMPLICATIONS

must be accurately known. Both projects thus underscore the integral role of atomic

physics in advancing our understanding of fundamental processes and highlight the

necessity of precise theoretical and experimental collaboration in the field.
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APPENDIX A

Methods of Solving the Generalized

Eigenvalue Problem

In Chap. 2, we show that, although the nonrelativistic two-electron Schrödinger equa-

tion does not have exact solutions, it can be solved to essentially arbitrary accuracy

using the Rayleigh-Ritz variational method.1 It was shown that if the trial functions

forming the basis set are written with linear variational coefficients Ψtr =
∑N

i=1 aiχi,

then solving the minimization problem

∂Etr

∂ap
= 0, p = 1, . . . , N, (A.1)

is identical to the generalized eigenvalue problem (GEP)

Ha = λOa, (A.2)

where a is a vector of the expansion coefficients, H and O are the Hamiltonian and

overlap matrices, respectively, satisfying Hmn = ⟨χm|H|χn⟩ and Omn = ⟨χm|χn⟩.
This appendix discusses how Eq. (A.2) is solved. Standard quadruple precision (ap-

proximately 32 decimal digits) is sufficient for the calculations in this dissertation.

We use two separate methods—the power method and the brute force method—

to “solve” Eq. (A.2), depending on our objective.2 The power method is used in this

1This technique guarantees that the N eigenvalues found by diagonalization in any N -
dimensional basis set set will be upper bounds to the N exact—though unknown—eigenvalues.

2The primary reference for this appendix is the “Notes on solving the Schrödinger equation in
Hylleraas coordinates for heliumlike atoms” by Drake [39].
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A.1. POWER METHOD

dissertation when a single, optimized state is needed (e.g., the initial He(2 1S) state in

the two-photon decay studied in Chap. 4 and the beta decay in Chap. 3). The brute

force method is used when the entire pseudospectrum of the Hamiltonian is needed

due to sum(s) over state(s) appearing in the equations of interest—a necessity that

arises in every project considered in this dissertation and forms the common theme.

A.1 POWER METHOD

The power method applies for a diagonalizable N ×N matrix H that has eigenvalues

λ1, λ2, . . . , λN corresponding to eigenvectors Ψ(1),Ψ(2), . . . and has one eigenvalue,

λM , that is much larger than the others.

If χ =



a1
...
an


 is an arbitrary vector in this space, it is always possible to expand it

in terms of the exact eigenvectors that diagonalize H, according to χ =
∑N

q=1 xqΨ
(q).

This corresponds to the members of the basis set of the trial Hylleraas wave function.

If χ is acted upon n times by H according to

(H)nχ =
N∑

q=1

xqλ
n
qΨ

(q) −→ xMλ
n
MΨ(M), (A.3)

the RHS tends to only a single term, containing the largest eigenvalue and its eigen-

vector, provided xM ̸= 0.

This method can find any eigenvalue of H by manipulating the GEP into an

inverse problem. We begin by subtracting λqOΨ from both sides

HΨ = λOΨ (A.4)

(H− λqO)Ψ = (λ− λq)OΨ, (A.5)

leading to the related eigenvalue problem

GΨ =
1

λ− λq
Ψ (A.6)
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A.2. BRUTE FORCE METHOD

where G = (H− λqO)−1O with eigenvalues (λn − λq)
−1.

Supposing we are ultimately interested in the eigenvalue λJ , the strategy is then

to make the eigenvalue (λJ − λq)
−1 much larger than the rest by choosing λq to be

very close to the desired λJ . The procedure, as above, is to act repeatedly on χ via

(G)nχ as

χ1 = Gχ

χ2 = Gχ1

χ3 = Gχ2

...

χn = Gχn−1

until the ratios of components in χn stop changing.

It is possible to avoid the matrix inversion and multiplication necessary to compute

G by instead solving the equivalent linear system

Fχn = Oχn−1 (A.7)

where F = H − λqO. To find χn, we solve the N ×N system using the square root

method [265]. This leads to the computation of λJ by

λJ =
⟨χn|H|χn⟩
⟨χn|χn⟩

. (A.8)

A.2 BRUTE FORCE METHOD

This method is used when all N eigenvectors and eigenvalues of H in the GEP are

required. This is a full diagonalization, so it is considerably slower than the power

method described above.

The first step is to orthonormalize the basis set, which is accomplished by forming

156



A.2. BRUTE FORCE METHOD

linear combinations of the original basis set {φn} per

Φm =
N∑

n=1

φnRnm, (A.9)

so that ⟨Φm|Φn⟩ = δm,n. This is computationally achieved by finding an orthogonal

transformation matrix T such that the overlap matrix O, with elementsOmn = ⟨φm|φn⟩,
is made diagonal3

T⊤OT = I =




I1 0 0 · · · 0

0 I2 0 · · · 0

0 0 I3 · · · 0
...

...
... . . . ...

0 0 0 · · · IN .




; (A.10)

Following this, a scale-change matrix S

S =




1

I
1/2
1

0 0 · · · 0

0 1

I
1/2
2

0 · · · 0

0 0 1

I
1/2
3

· · · 0

...
...

... . . . ...

0 0 0 · · · 1

I
1/2
N




= S⊤ (A.11)

is applied so that the diagonalized matrix is the identity matrix

S⊤T⊤OTS = 1. (A.12)

Thus, we have the sought after matrix R = TS that transforms O by R⊤OR = 1.

Now we transform H, with Hmn = ⟨ϕm|H|ϕn⟩ to the orthonormal basis set by

3The matrices T and W, defined below, are obtained by diagonalizing O and H′, respectively.
The two interchangeable computational methods we used at different points in this dissertation are
1) the Jacobi method [266], and 2) the tridiagonalization + QL algorithm [267, 268].

157



A.2. BRUTE FORCE METHOD

applying R

H′ = R⊤HR. (A.13)

H′ is then diagonalized by

W⊤H′W = λ =




λ1 0 · · · 0

0 λ2 · · · 0
...

... . . . ...

0 0 · · · λN ,




(A.14)

with the appropriate orthogonal transformation matrix W. The diagonal elements of

λ are the eigenvalues and the qth eigenvector is given by

Ψ(q) =
N∑

n=1

ΦnWn,q =
∑

n,n′

φ′
nRn′,nWn,q. (A.15)
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APPENDIX B

Derivation of Fermi’s Golden Rule

and Comments on Spontaneous

Decay

Fermi’s Golden Rule, as it is commonly known1, describes the transition rate between

an initial eigenstate with energy Ei of a system to a final group of states within a

small energy range dE about energy Ef . It reads [148, p. 135]

wi→f ≡ pi→f

t
=

2π

ℏ

∣∣∣⟨ϕf |Ŵ |ϕi⟩
∣∣∣
2

ρ(Ef ) ≡
2π

ℏ
W 2

if ρ(Ef ), (B.1)

where Wif = ⟨ϕf |Ŵ |ϕi⟩ is the matrix element connecting the initial and final states

of the system by an operator that is representative of a weak perturbation, described

by operator Ŵ , and ρ(Ef ) is the density of states at energy Ef—the number of

continuum states divided by dE at Ef . In bound-bound transitions, assuming a single-

photon transition for simplicity ρ(Ef ) becomes a conservation of energy-enforcing

delta function because the final state is discrete.

The derivation of Eq. (B.1) follows in Sec. B.1. Since this dissertation is concerned

explicitly with spontaneous decay in Chap. 4, the ensuing Sec. B.2 discusses this

process regarding its connection to QED.

1The content of the equation was almost developed many years early by Dirac [168] in the same
paper that served as a significant inspiration to Maria Goeppert Mayer in her doctoral work on
two-photon processes [166].
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B.1. DERIVATION

B.1 DERIVATION

This derivation is a condensed version of those found in Friedrich’s Theoretical Atomic

Physics [148, pp. 132–135] and the Atomic and Molecular Physics Lecture Notes of

Kirchner [269]. The bulk of the derivation will assume bound-bound transitions—this

will be generalized to a continuum of final states at the end.

Suppose that an atom, governed by H0, is contained in physical system S is

described by the Hamiltonian

H = H0 +W (B.2)

where W is a general form of a perturbation leading to transitions in the atomic

system. The time-dependent solutions to H can be expanded, in terms of the unper-

turbed energies En and eigenstates ϕn as

ψ(t) =
∑

n

cn(t)ϕn exp

(
− i

ℏ
Ent

)
, (B.3)

Assuming that we are in an eigenstate of H0—express this as cn(t = 0) = δn,i, then

the ensuing dynamics are given by the coupled-channel equations

iℏ
dcm
dt

=
∑

n

Wmncn exp

[
i

ℏ
(Em − En)t

]
, (B.4)

an exact set of equations in the limit that the basis is complete. The time-dependence

of the coefficients can be obtained via integration:

cm(t) = cm(0) +
1

iℏ

∫ t

0

dt′
∑

n

Wmn exp

[
i

ℏ
(Em − En)t

′
]
cn(t

′) (B.5)

= cm(0) +
1

iℏ

∫ t

0

dt′
∑

n

Wmn exp

[
i

ℏ
(Em − En)t

′
]
cn(0)

+
1

(iℏ)2

∫ t

0

dt′
∑

n

Wmn exp

[
i

ℏ
(Em − En)t

′
]

×
∫ t′

0

dt′′
∑

l

Wnl exp

[
i

ℏ
(En − El)t

′′
]
cl(t

′′), (B.6)
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B.1. DERIVATION

where the second equation is obtained by plugging in the first result, found in

Eq. (B.5). This expression has been carried out to second order; higher-order terms

are obtained by plugging in the most recent cm(t) where the primed cm(t′) occurs in

the first equation.

To first order in W , the coefficients cn ̸=i(t) are given by the first line of Eq. (B.6)

cf (t) =
1

iℏ

∫ t

0

dt′Wfi exp

[
i

ℏ
(Ef − Ei)t

′
]

(B.7)

To make this general result more specific, we can assume that the perturbation is

periodic in time, as in how we treat the radiation field in Chap. 4, where α ≈ 1/137

is the perturbation parameter. This time-dependent perturbation has the form:

W (t) =




0 t ≤ t0 = 0

Beiωt +B†e−iωt t > t0

(B.8)

Inserting this form of W (t) into the first-order Eq. (B.7)

cf (t) =
1

iℏ

∫ t

0

eiωfit
′
Wfi(t

′) dt′ (B.9)

= −1

ℏ

{
⟨φf |B̂|φi⟩
ωfi + ω

(
ei(ωfi+ω)t − 1

)
+

⟨φf |B̂†|φi⟩
ωfi − ω

(
ei(ωfi−ω)t − 1

)
}

(B.10)

The probability of a transition is pi→f = |cf (t)|2; upon squaring we have2

pi→f (t) =|Bfi|2 {f(t, ωfi + ω) + f(t, ωfi − ω)} (B.11)

t→∞−−−→ 2πt

ℏ
|Bfi|2 {δ(ωf − ωi + ω) + δ(ωf − ωi − ω)} (B.12)

2The integrals reduce to f(t, ωfi ± ω) = sin2[(∆E±)t/(2ℏ)]
[(∆E±)/2]2 , where ∆E± = ℏ(ωf − ωi ± ω).

As t→ ∞, f(t, ωfi ± ω) → 2π
ℏ δ(∆±).
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B.1. DERIVATION

In this limit, the transition decay3 rate is

wi→f = pi→f/t =
2π

ℏ
|Wfi|2δ(ωf − ωi − ω) (B.13)

Eq. (B.13) shows that transitions are only possible for “resonances”—where a photon

of energy E = ℏω is donated to the field with an energy equal to the difference

between the states involved, i.e., E = ℏ(ωf − ωi).4

The final step is to extend Eq. (B.13) to transition to a final state in a continuum.

There are two physical circumstances in which this applies. The first is when looking

at the transition of an atom to the actual continuum—where the eigenstates of an

atomic system form a continuous spectrum. This notably applies to the beta decay

problem of Chap. 3,5 where, due to the sudden change in nuclear potential, shake-off

to the continuous single or double continuum can occur.

If we refer to the resonance bound-bound transition rate in Eq. B.13 as wR
i→f , then

emissions to the continuum to a state Ef = Ei − ℏω are obtained by taking the limit

of an integral about Ef as follows

wi→f = lim
ϵ→0

∫ Ef+ϵ

Ef−ϵ

wR
i→fρ(Ef ) dEf (B.14)

= lim
ϵ→0

∫ Ef+ϵ

Ef−ϵ

2π

ℏ
|Wfi|2δ(ωf − ωi − ω)ρ(Ef ) dEf (B.15)

=
2π

ℏ
|Wif |2ρ(Ef ). (B.16)

In the above set of equations, the density of states ρ(Ef ) is included since we must

be able count the states in the region [Ef − ϵ, Ef + ϵ] in order to integrate over them.

In the limit ϵ → 0, the delta function is collapsed, and the transition rate takes its

value with Ef = Ei − ℏω. This completes the derivation of Fermi’s Golden Rule.

3In decay, we have ω = ωf −ωi and the first delta function vanishes. Decay is chosen to simplify
the situation and to correspond with the two-photon decay that is the subject of Chap. 4.

4In practice, this can be a multiphoton process where E = nℏω for n ≥ 2. These processes are
less and less likely by order since they require higher powers of the perturbing operator.

5In studying beta decay, we were concerned with a time-independent perturbation and also with
the probability as opposed to the rate, but the arguments about the density of states apply.

162



B.2. SPONTANEOUS DECAY

B.2 SPONTANEOUS DECAY

Atomic transitions are well-described by the “semiclassical theory,” which treats the

atomic system quantum mechanically and the EM field classically, often using the

dipole, weak field, and rotating wave approximations. This method is used in Chap. 4

to address spontaneous two-photon decay. However, spontaneous emission processes

are not conceptually described by the semiclassical method, as it assumes an external

classical EM field.

For example, a hydrogen atom in the 2p state will decay to the ground state in

about 2.13 ns, regardless of an external field. An elementary semiclassical calcula-

tion can yield this Lyman-α 2p − 1s lifetime using Einstein coefficients [178], but it

doesn’t explain how a photon is emitted without interacting with an external field.

As Einstein postulated, the semiclassical theory produces correct spontaneous decay

rates in an ad hoc manner when combined with the Planck radiation law. This ap-

proach works well conceptually for stimulated emission and absorption, corresponding

to Einstein’s B12 and B21 coefficients, but not for spontaneous emission.

A complete Hamiltonian must account for both the atomic degrees of freedom and

the quantized EM field. This is done by treating the EM field as quantized harmonic

oscillators that define modes. The field amplitudes are creation and annihilation

operators that correspond to emission and absorption in an atomic context. The

vacuum comprises Fock states, specifying the number of photons in states of any

frequency. Spontaneous decay processes, as discussed in Chap. 4, occur due to vacuum

fluctuations, where a photon is donated to the vacuum, increasing the number of

photons in the corresponding Fock state.
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APPENDIX C

Handedness of Leptons in the SM

A signature feature of the weak interaction is that it is a chiral interaction where,

unlike the other known forces, left- and right-handed (LH and RH) particles are

treated differently.1 Only LH leptons (and RH antileptons) couple to to the W∓

bosons, the mediators of beta decay. Nonconservation of parity is a direct consequence

of this fact. Examining these properties supplements the discussion of aβν contained

in Sec. 3.3.2.

That our universe is such that the weak interaction is chiral is a direct consequence

of the 1
2
(1−γ5) (cf. the leptonic portion of Eq. (3.4)) structure of the Lorentz invariant

Lagrangian that emerges when constrained to experimental data [96, pp. 16–18].

However, we do not have any explanation for why only LH (rather than RH) leptons

participate in the weak interaction, when theoretically, the opposite could have been

the case. This constitutes yet another unexplained aspect of the Standard Model

(SM) that physicists are actively seeking new physics (NP) to explain and which is

frequently linked to the problem of baryonic asymmetry [104]. Amongst other things,

RH neutrinos2 are also postulated as potential mechanisms in beyond-standard-model

(BSM) theories for how neutrinos acquire mass. That neutrinos are massive was only

established about 25 years ago by the Super-Kamiokande collaboration in Japan [270]

and the Sudbury Neutrino Observatory (SNO) collaboration in Canada [271]; these

efforts were recognized with the 2015 Nobel Prize in Physics. It is still unclear as

1In the SM, leptons (and quarks) are mathematically described as Dirac (spinor) fields with
well-defined chirality with two parity eigenstates (±1) for RH/LH particles.

2In BSM theories, these are sometimes called sterile neutrinos because the weak interaction still
only couples to LH particles and RH antiparticles. It was initially thought that only LH neutrinos
exist.
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to how their mass arises. The relevance of neutrino mass is that, when they were

assumed massless, only LH neutrinos could exist – neutrino mass directly offers the

possibility of RH chiral states [272].

Referring to the Lee-Yang coupling coefficients that appear in Eqs. (3.11) and

(3.12), the condition |Cx| = |C ′
x| corresponds to maximal parity violation, with Cx =

+C ′
x corresponding to LH neutrinos and Cx = −C ′

x to RH neutrinos [28]. In the

SM Ci = 0 for i ̸= V,A, but in BSM theories involving the possibility of new forces

mediated by new bosons, this constraint can be removed in the case that scalar or

tensor fields emerge from interactions that do not discriminate based on chirality as

the current weak force does [28]. Experiments offer different constraints on these

parameters depending on whether or not one allows the possibility of RH neutrinos.

What can be measured is the ratios CT

CA
and CS

CV
for Gamow-Teller (GT) and Fermi

type decays, respectively. For example, in studying the pure GT beta decay of 6He,

Johnson et al. [94] set an early experimental limit on this ratio as

|CT |2 + |C ′
T |2

|CA|2 + |C ′
A|2

≤ 0.4%,

a result which has been revisited since [98, 110]. This experimental method allows for

the explicit consideration of BSM (CT ̸= 0) interactions comprised of either purely LH

neutrinos or the possibility of RH neutrinos (CT = −CT ). To date, all experiments

have found results consistent with the SM.
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APPENDIX D

Assumptions in Treating Beta Decay

This appendix considers the time-dependence of the Coulomb potential V (t) due to

the change in the nuclear charge from Z = 2 to Z = 3 in the beta decay 6He →
6Li+ + e− + ν̄. Let this occur at t = 0. The sudden approximation (SA), whose

adoption is the topic of Sec. 3.4.2, thus results in an instantaneous change in the

Hamiltonian at t = 0, via the potential energy term.

It is shown that this approximation is valid in the beta decay process. This permits

the expansion of the initial ψ(6He) state in terms of the complete set of {ψ(6Li+)}

states since the initial state is not an eigenstate of the t > 0 Hamiltonian. Using the

SA removes the time dependence, permitting the calculation to be carried out using

solutions the time-independent Schrödinger equation for both the initial 6He state

and the complete set of 6Li+ states.

The physical condition for the SA to hold is that the system’s wave function does

not change appreciably during the perturbation. We study the TDSE to establish the

criterion for the SA. The unitary time evolution operator1, U(t, t0) evolves a system

in time according to

Ψ(r, t) = U(t, t0)Ψ(r, t0) (D.1)

U(t, t0) also satisfies its own TDSE

iℏ
∂

∂t
U(t, t0) = HU(t, t0), (D.2)

1The following content is referenced from Chapters 2 and 5 of Modern Quantum Mechanics by
Sakurai and Napolitano [273].
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a form that can be rewritten as

i
∂

∂s
U(t, t0) =

H

ℏ/T
U(t, t0), (D.3)

where t = sT for dimensionless s and a timescale T over which the perturbation is

applied. In the SA, T → 0 and thus T ≪ ℏ/∆E, where ∆E depicts the characteristic

energy scale of H. Thus, the right-hand side of Eq. (D.3) goes to 0, implying that

U(t, t0) is a constant, which we can take2 to be 1:

U(t, t0) → 1 as T → 0 (D.4)

In this case, according to Eq. (D.1), the system is in the same state during and

immediately after the decay at t = 0+ as it was before the decay, at t0 = 0−.

We can now state the SA:

Sudden Approximation Criterion: Suppose a perturbation occurs at

t = 0 on the timescale T in a system whose energy scale is denoted by

∆E. If T ≪ ℏ
∆E

, then the system’s state is the same immediately after

the perturbation as before the perturbation. As an equation, the SA says:

If T ≪ ℏ
∆E

, then Ψ(r, t = 0+) = Ψ(r, t = 0−) (D.5)

Satisfaction of the sudden approximation in the decay of 6He

The purpose of this section is to unpack the quantities T and ∆E in Eq. (D.5)

within the framework of the beta decay of 6He considered in this dissertation using

the parameters used in the experimental work in Refs. [114, 115] and the theoretical

works [26, 132].

In order to establish the characteristic time, T , we must consider physically how

the Coulomb potential changes. The nuclear process n→ p+ e− + ν̄e (corresponding

2This amounts to adding an arbitrary constant to H in a way that would only add an overall
phase that would not affect the dynamics or probabilities in a measurable way. Note that H (and
∆E) still have time dependence, but the characteristic scale is dwarfed by ℏ/T .
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to d W−
−−→ u+e−+ν̄e in the quark picture) in the nucleus truly happens instantaneously

for our purposes. The mediator of the process, the W− boson has a half-life of about

3 ×10−25 s ≈ 1.2 × 10−8 a.u. What is relevant is over what timescale the Coulomb

potential, as seen by the atomic electrons, changes from Z = 2 to Z = 3. This

happens as the beta particle passes through the electron cloud defined by the atomic

electrons. As before, we consider the beta particle to be a spherical shell of a radially

outward moving charge. Assuming that r2 > r1, it is thus the time that it takes

the beta particle to pass through a distance r2 − r1 that defines the characteristic

time. There are calculations [43] of the expectation values of r12 = |r2 − r1|, which

is a different quantity, and sets an upper limit on r2 − r1 in the (doubtful) case that

the electrons lie on the same side of a parallel line that goes through the nucleus.

Nonetheless, as an example in 6He the expectation value ⟨r12⟩ ∼ 1.4 a.u., which can

be used to make the extreme case for the ground state of helium. The minimum

energy of beta particles considered in the measurement of the beta decay of 6He in

Ref. [115] is 1 MeV ≈ 3.7× 104 a.u. giving3 vβ ≈ 129 a.u. Thus, the characteristic

time for the beta particle is T ≈ ⟨r12⟩/vβ = 1.4/129 = 0.01 a.u.

The characteristic energy scale, ∆E, is the relative spacing between the relevant

energy eigenvalues in solutions to a Hamiltonian. In atomic systems, this can, at first

glance, have a slightly ambiguous meaning because transitions can, in principle, take

place between states of arbitrarily high energy differences owing to the infinite con-

tinuum. However, in treating the SA in beta decay, we consider bound-state energies

in helium4 and therefore we can set ∆E ∼ 1 a.u. Thus we have ℏ/∆E ≈ 1/1 = 1 and

(along with T ∼ 0.01), we have established5 that If T ≪ ℏ
∆E

holds for the beta decay

of the ground state of 6He. Similar results hold for the n = 2 metastable states that

have also been studied.

To be careful, in the preceding discussion, T and ∆E have been overestimated

(perhaps significantly) and underestimated, respectively. So the case for the SA is

3For this relativistic electron, a kinetic energy of 1 MeV equates to a velocity of about 0.941c.
4With a ground state and first ionization energy of -2.903. . . and -2, in a.u., respectively.
5A cruder approach that leads to the same conclusion would be to observe that the characteristic

time T = a0/c = ατa ≈ 0.007 ≪ ℏ/∆E = 1, where τa is the atomic unit of time (= 1 in a.u.).
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even stronger than what is presented here. Nevertheless, we can likely expect that

lifting the SA will be necessary at some level of precision. As shown in Chap. 3, this is

expected to be at a much smaller level of precision than we can theoretically achieve.
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APPENDIX E

Derivation of Two-photon Decay

Rate and Rayleigh Scattering Cross

Section

E.1 SETTING THE STAGE

In this dissertation, the interaction with the QED vacuum is used in two places, in

distinct but related fashions. Firstly, it is used in Chap. 4 to derive the interaction

energy that appears in Fermi’s Golden Rule for the doubly differential decay rate.

The other example is in Chap. 5, where the tuneout frequency is reformulated as a

zero in the Rayleigh scattering cross section. The bulk of the machinery will be built

up for the first of these examples.

In Chap. 4, we wrote the two-photon decay rate in terms of Fermi’s Golden Rule

in the form

dw(2γ)dΩ1 dΩ2 =
2π

ℏ
|U (2)

i,f |2ρ(ω1)ρ(ω2)dΩ1 dΩ2 dE1. (E.1)

The purpose of this appendix is to provide a more rigorous foundation for the inter-

action energy, U (2)
i,f , in this equation. Several equations from Chap. 4 will be listed

again for convenience. This derivation follows Refs. [216, 217]

In a nonrelativistic approximation, U (2)
i,f is a second-order interaction energy with
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E.2. DERIVATION

the electromagnetic field given by

U
(2)
i,f = −

∑

n+

[⟨f | Hint(ω1) | n⟩⟨n | Hint(ω2) | i⟩
En − Ei + ℏω2

+
⟨f | Hint(ω2) | n⟩⟨n | Hint(ω1) | i⟩

En − Ei + ℏω1

]
(E.2)

summed over positive energy states, and by conservation of energy Ei − Ef = ℏω1 + ℏω2.

The n+ under the summation sign indicates that this interaction only includes a sum

over the positive energy states. This is the key piece of the interaction energy that

requires justification. We have performed the calculation within the nonrelativistic

(NR) framework, so it is clear that negative energy states are not included. However,

the form of Eq. (E.2) needs to be justified.

For this derivation, we recall from Sec. 4.5 that Hint ∝ p ·Am for the two photons

ωm with m = 1, 2. The structure of Eq. (E.2) varies depending on the gauge used

and the choice of coordinate system. Therefore, we will establish this relationship

without meticulously including every factor. So, we aim to show

U
(2)
i,f = C

∑

n+

[⟨f | p ·A1 | n⟩⟨n | p ·A2 | i⟩
En − Ei + ℏω2

+
⟨f | p ·A2 | n⟩⟨n|p ·A1 | i⟩

En − Ei + ℏω1

]
, (E.3)

for some overall constant C.

E.2 DERIVATION

Free electrons have no structure and thus cannot emit or absorb photons—the simplest

electron-photon interactions, such as the two-photon decay, are second-order processes

desribed by the second-order scattering matrix

S(2) = e2N

∫
ψ(x2)Â(x2)S

(e)
c (x1, x2)Â(x1)ψ(x1) d

4x1 d
4x2, (E.4)
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E.2. DERIVATION

where ψ corresponds to the electron wave functions and A the potentials of the

photon states, and S(e)
c desribes the pairing between the electron operators.1 The N

ensures normal ordering2 The integration occurs in 4 dimensional spacetime (x0 =

ict, x1, x2, x3). Upon integrating over the time and frequency variables, we obtain:

S
(2)
i→f = −2πi U

(2)
i→f δ(Ei − ω1 − Ef − ω2), (E.5)

where U (2)
i→f is the interaction energy, corresponding to the on-shell component of the

S-matrix.

Ui→f =
2πℏc2e2

V√ω1ω2

∑

n±

(⟨f |ê2e−ik2·r|n⟩⟨n|ê1eik1·r|i⟩
En − Ei − ℏω1

+
⟨f |ê1eik1·r|n⟩⟨n|ê2e−ik2·r|i⟩

En − Ei − ℏω2

)

(E.6)

This is of the form used in Chap. 4, where the normalization constant has already

been imposed. In Eq. (E.6), êf = γµeµ, a product of the Dirac γ-matrices and e the

polarization vector satisfying k ·e = 0. In our work, we will sum over the independent

polarizations. So far, this looks identical to Eq. (E.2), with the important exception

that this includes a sum over positive and negative energy states, whereas Eq. (E.2) is

only over the positive energy states. Also, since we are working in the nonrelativistic

limit, the relativistic operators will be replaced by their NR counterparts obtained

by expanding the lower spinor in the expansion parameter 1/c.

The next objective is to evaluate the sum over negative energy states and remove it

from the sum in Eq. (E.6). Several approximations are now made with the ultimate

consequence that each denominator in Eq. (E.6) can be replaced by the constant

−2mc2. The assumptions that determine this are:

1. Photon energies are small compared to the rest mass of the electron: ω1,2 ≪ mc2;

this can also be expressed as |Ei,f −mc2| ≪ mc2.

1The pairing operator S(e)
c is a Green’s function for a Dirac equation for the electron in an

external field, which involves a frequency integral over all of frequency space—positive and negative.
2The normal operator N ensures annihilation operators are placed to the left of creation opera-

tors.
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E.2. DERIVATION

2. Only NR intermediate states |n⟩ are important in the process, which can be

quantified as ||En| −mc2| ≪ mc2.

Now, under these approximations, the interaction energy, restricted to a sum over

negative energy states, U (−)
i→f , reads

U
(−)
i→f = C

∑

n(−)

[
⟨f |ê2e−ik2·r|n⟩⟨n|ê1eik1·r|i⟩+ ⟨f |ê1eik1·r|n⟩⟨n|ê2e−ik2·r|i⟩

]
, (E.7)

where C = −πℏe2m/(V√ω1ω2) is the prefactor, whose form is irrelevant to the ensu-

ing discussion.

The next step is to transform the sum in Eq. (E.7) to include positive energy states

by introducing negative energy projection operators to complete the sum by closure

to obtain a result for the sum. This can be achieved by introducing the projection

operator P̂(−):

P̂(−) =
mc2 − γ4

mc2 − E
(−)
n

≈ mc2 − γ4mc
2

2mc2
=

1− γ4
2

, (E.8)

satisfying γ4|n(±)⟩ = ±mc2|n(±)⟩ (E.9)

The effect of P̂(−), in the limit of the NR approximations mentioned above, expressed

in the rightmost expression in Eq. (E.8), and in consideration of the eigenvalue prob-

lem of γ4, given in Eq. (E.9) is to leave the negative energy states alone and to

annihilate the positive energy states:

P̂(−)|n(±)⟩ =




|n(−)⟩, if En < 0

0, if En > 0.

(E.10)

Thus, if we make the following replacement |n(±)⟩ −→ P̂(−)|n(±)⟩, we can extend the

sum in Eq. (E.7) to positive energy states3

3This only needs to be done once for each factor in each of the terms in the expression in
Eq. (E.11) since it of course is that same state |n⟩ involved in both factors

173



E.2. DERIVATION

U
(−)
i→f = C

∑

n±

[
⟨f |ê2

1− γ4
2

e−ik2·r|n⟩⟨n|ê1eik1·r|i⟩

+ ⟨f |ê1
1− γ4

2
eik1·r|n⟩⟨n|ê2e−ik2·r|i⟩

]
, (E.11)

after which can complete the sum via closure,
∑

n(±) |n⟩⟨n| = 1.

U
(−)
i→f = −C

2

[
⟨f |ê2

(
γ4 − 1

)
e−i(k2−k1)·r ê1|i⟩

+ ⟨f |ê1
(
γ4 − 1

)
e−i(k2−k1)·r ê2|i⟩

]

= · · · = Ce1 · e2⟨f |e−i(k2−k1)·r|i⟩ (E.12)

The last simplification is achieved using γ4e = −eγ4 and êf êi + êiêf = 2eiei and

further that γ4|n⟩ ∼ |n⟩. In the dipole approximation, which is used in calculating

the the two-photon decay rates in Chap. 4, this term vanishes, since the operator goes

to unity and the atomic states, |i⟩ = He(2 1S) and |f⟩ = He(1 1S) are orthogonal.

Corrections from U
(−)
i→f come into play at relative order α2Z2 and need to be included

in a relativistic calculation.

In the NR and dipole approximation, we can now return to the full interaction

energy in Eq. (E.5) and remove the sum over negative states. The only remaining

thing to do is to replace êf = γµeµ with the corresponding NR operators. Using

the definition of the γ matrices, we can rewrite operator: γµeµ = −iβα · em where

em = 1, 2 the polarization of the two photons. The anticommutator {αi, β} = 0 can

be repeatedly applied in Eq. (E.5) to make the replacement

ême
−ikm·r −→ α ·Am, (E.13)

where the complex conjugate A∗
m replaces Am where appropriate. Furthermore, the
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E.3. RAYLEIGH SCATTERING FORMALISM

operator replacement, which uses the dipole approximation, is given by4

α ·A → p ·A
mc

+ µ×A, (E.14)

For this application, the spin-dependent second term can be ignored for the two-

photon problem and is included in the relativistic Breit corrections applied in our

study of the tuneout frequency. The combination of Eqs. (E.12) and (E.13) allows

the replacement of the operators in Eq. (E.5) by operators p · A ∝ Hint—with the

sum restricted to postive energy states, and the operators shown to be of the form

this completes our goal in the derivation.

E.3 RAYLEIGH SCATTERING FORMALISM

This derivation closely follows Drake et al. [217], and begins with Eqs. (E.2) and

(E.3), but with the simplification to the case of coherent Rayleigh scattering, defined

by Ei = Ef , k1 = k2, and ω1 = ω2. The aim is not to reproduce this result in full,

but will quote the crucial results, which are necessary inclusions in calculations that

account for retardation—finite wavelength—correction. As shown in Ref. [25], the

subject of Chap. 5 of this dissertation, this formalism is very important as it results

in different corrections than using a seemingly appropriate and similar picture of the

dynamic polarizability.

Beginning with Eq. (E.6), as in the two-photon decay, the Rayleigh scattering

criterion, lead to the same numerators in both terms, lead to the following form5 of

the total interaction energy:

U =
2πc2e2ℏ
ωV

∑

n±

∣∣⟨i|αxe
ikz|n⟩

∣∣2
(

1

∆En + ω̄
+

1

∆En − ω̄

)
, (E.15)

4This result follows from the Foldy-Woutheyson transformation, which is applicable in the limit
mentioned above in deriving U (−), |En −mc2| < mc2.

5For simplicity, this assumes propagation along ẑ and polarization along x̂ and ω̄ ≡ ℏω.
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E.3. RAYLEIGH SCATTERING FORMALISM

where eikz = 1 + ikz − (kz)2/2 + . . . is the retardation expansion. In calculating

the contribution from negative energy states, in the same way as above one finds a

result proportional to the matrix element e1 ·e2⟨f |e−i(k2−k1)·r|i⟩. This is equal to Nδif

for coherent scattering. Making the same approximations leading up to Eq. (E.14),

except that the photon energy is retained, though small, in the denominator. This

leads to

U− = −2Nπc2e2ℏ
ωV

(
1

2mc2 + ω̄
+

1

2mc2 − ω̄

)
(E.16)

≃ −2Nπe2ℏ
mωV

[
1 +

( ω̄

2mc2

)2
+ · · ·

]
. (E.17)

Inserting this into Eq. (E.15) and making the long wavelength (eik·r ≈ 1) approxi-

mation and further using the NP operators and neglecting the second term in U (−)

yields

U =
2πe2ℏ
ωmV

{
1

m

∑

n+

|⟨i|px|n⟩|2
(

1

∆En + ω̄
+

1

∆En − ω̄

)
−N

}
(E.18)

giving the velocity form of the interaction. The length form is the typical gauge for

the calculation, so we will consider the length gauge via [H, x] = iℏpx/m. It turns out

that the first term in Eq. (E.18), after expanding the energy denominators, actually

equals N in the limit ω → 0:

1

∆En + ω̄
+

1

∆En − ω̄
=

2

∆En

(
1 +

ω̄2

∆E2
n

+ · · ·
)

(E.19)

The first term in Eq. (E.18) is now equal to N by the TRK sum rule:

2

m∆En

∑

n+

|⟨i|px|n⟩|2 = N

Accordingly, only the second term in Eq. (E.19) contributes to the limit ω → 0. Upon
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E.3. RAYLEIGH SCATTERING FORMALISM

switching to the length gauge the following form is obtained6

U =
2πe2ω̄

V
∑

n+

⟨i|x|n⟩⟨n|x|i⟩
(

1

∆En + ω̄
+

1

∆En − ω̄

)
(E.20)

=
2πω̄

V αd(ω), (E.21)

which can be directly compared to the dynamic polarizability, as shown in Eq. (E.20).

The zeroes in the coherent Rayleigh scattering cross section, U(ω), clearly match

those in the dynamic polarizability, αD(ω), when the long wavelength approximation

kz ≪ 1 is made, interpreting the tuneout frequency equivalent in this limit.

If retardation—finite wavelength—corrections are considered, however, then the

higher order terms enter into Eq. (E.15) and this is no longer the case. In this limit,

the zeroes of the Rayleigh scattering cross section do not coincide with the dynamic

polarizability, as shown explicitly in Ref. [217] in the velocity gauge.

6This involves pulling out a factor of ω̄2

∆E2
n

and subsequently resumming to infinity.
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APPENDIX F

Integration to Obtain the Decay Rate

The purpose of this Appendix is to give a simple way to sum over the two independent

polarization vectors ϵ̂1 and ϵ̂2 perpendicular to k1 and k2 in order to obtain the

angular correlation function (1 + cos2 θ12).

Let k1 and k2 define the xy-plane (the collision plane). Then two possible inde-

pendent choices for |ϵ̂1·ϵ̂2|2 are first, choose ϵ̂1 = êz, ϵ̂2 = êz perpendicular to the

xy-plane. Then |ϵ̂1·ϵ̂2|2 = 1. Second, choose ϵ̂1 = k̂1 × êz, ϵ̂2 = k̂2 × êz so that

they both lie in the xy-plane. Then, since by assumption k̂i·êz = 0,

|ϵ̂1·ϵ̂2|2 = |(k̂1 × êz)·(k̂2 × êz)|2

= |k̂1·k̂2|2

= cos2 θ12

The sum of both polarization contributions is thus a factor of 1 + cos2 θ12.

Similarly for the case of single-photon transitions, we need to integrate |ϵ̂·Q|2

over solid angles dΩ for the direction of emission k. For purposes of the integration,

assume that Q points in the z-direction. Then two possible independent choices for

ϵ̂ are first, choose ϵ̂1 to point in the k̂× Q̂ direction. In this case, ϵ̂1·Q = 0, and so

it does not contribute. Second, choose ϵ̂2 to lie in the (k, Q) plane orthogonal to ϵ̂1.

Then if k̂·êz = cos θ, ϵ̂2·êz = sin θ, and the angular integral is

∫

4π

|ϵ̂2·Q|2dΩ = |Q|2
∫

4π

sin2 θ dΩ

=
8π

3
|Q|2 (F.1)
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APPENDIX G

Derivation of Algebraic Relations

from Pertubation Theory

This Appendix will demonstrate that perturbation theory can be used to obtain the

algebraic relations that are the subject of this Chap. 4. We will consider explicitly

the relationship for the first-order mass polarization coefficients between the length

and velocity forms of single-photon transitions (cf. Sec. 4.8.2), given by

Cp − Cr = −2. (A1)

The single-photon decay rate, given in Eq. (4.14), is

wi,f =
4
3
αωi,f |⟨i|Qx|f⟩|2 .

We will work in centre-of-mass coordinates, using reduced-mass atomic units, given

in Eq. (4.37), such that the length and velocity operators are ρ ≡ ρ1 + ρ2 and

∇ ≡ ∇1+∇2, respectively. The condition that the length and velocity gauge should

be equal with all finite-mass effects included is

Z2
p

(
µ

me

)3

∆E|⟨i|∇|f⟩|2 = Z2
r

(
µ

me

)
∆E3|⟨i|ρ|f⟩|2

|⟨i|∇|f⟩|2 =
(
Zr

Zp

)2(
µ

me

)−2

∆E2 |⟨i|ρ|f⟩|2, (A2)

179



where we have used that ωi,f = ∆Ei,f ≡ ∆E in atomic units and all finite-mass

dependence besides mass polarization has been factored out. From the definitions of

Zr, Zp (cf. Sec. 4.5.1) and µ, it follows that

(
Zr

Zp

)2(
µ

me

)−2

= 1− 2µ/M + . . . .

The fundamental perturbation equations

(
H0 +

µ

M
∇ρ1 · ∇ρ2

)(
|Ψ⟩(0) + µ

M
|Ψ⟩(1) + . . .

)

=
(
E(0) +

µ

M
E(1) + . . .

)(
|Ψ⟩(0) + µ

M
|Ψ⟩(1) + . . .

)

can then be solved to write ∆E and the squared dipole matrix elements |⟨i|ρ|f⟩|2 and

|⟨i|∇|f⟩|2 as expansions in µ/M . These are

(∆E)2 =
[
∆E(0) +

µ

M
∆E(1) + . . .

]2

= [∆E(0)]2 + 2
µ

M
∆E(0)∆E(1) + . . . ,

|⟨i|∇|f⟩|2 =
[
⟨i|∇|f⟩(0) + µ

M
⟨i|∇|f⟩(1) + . . .

]2

= |⟨i|∇|f⟩(0)|2 + 2
µ

M
|⟨i|∇|f⟩(1)|2 + . . . , and

|⟨i|ρ|f⟩|2 =
[
⟨i|ρ|f⟩(0) + µ

M
⟨i|ρ|f⟩(1) + . . .

]2

= |⟨i|ρ|f⟩(0)|2 + 2
µ

M
|⟨i|ρ|f⟩(1)|2 + . . . .

The first-order dipole matrix element terms ⟨i|∇|f⟩(1) and ⟨i|ρ|f⟩(1) each contain two

terms, arising from first-order corrections to both the initial and final state wave

functions. Finally, putting these expansions back into Eq. (A1) gives

(1− 2µ/M + . . . )
(
(∆E(0))2 + 2

µ

M
∆E(0)∆E(1) + . . .

)

×
(
(R(0))2 + 2

µ

M
(R(1))2 + . . .

)

= (P (0))2 + 2
µ

M
(P (1))2 + . . . ,
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where the perturbation coefficients for the length and velocity dipole matrix ele-

ments are written in a slightly abbreviated notation using R(n) ≡ |⟨i|ρ|f⟩(n)| and

P (n) ≡ |⟨i|∇|f⟩(n)|, respectively. Solving these perturbation equations yields

(
∆E(0)R(0)

)2
=
(
P (0)

)2

in zeroth-order, successfully recovering the commutator identity. In first-order, we

obtain

∆E(0)∆E(1)(R(0))2 + (∆E(0)R(1))2 − (∆E(0)R(1))2 = (P (1))2.

Rearranging and using the zeroth-order identity gives

2

(
P (1)

P (0)

)2

− 2
∆E(0)∆E(1)(R(0))2 + (∆E(0)R(1))2

(∆E(0)R(0))2
= −2.

By identifying

Cp ≡ 2

(
P (1)

P (0)

)2

and (A3)

Cr ≡ 2
∆E(0)∆E(1)(R(0))2 + (∆E(0)R(1))2

(∆E(0)R(0))2
, (A4)

we have recovered the desired algebraic relation in Eq. (A1), connecting the first-

order length and velocity mass polarization coefficients that arise in transition rates

in single-photon transitions using perturbation theory.
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