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ABSTRACT

We extend the widespread use and versatility of pseudostates in the theoretical char-
acterization of properties of two-electron atoms and ions by using them in calculations
for three distinct physical processes. Atomic systems have infinitely many bound and
continuum states, posing a computational challenge for calculations involving per-
turbation sums over intermediate states. In this work, we construct two-electron
pseudostates variationally using a doubled basis set of correlated Hylleraas functions.

The first process we consider is the beta decay of ®He, an isotope of helium with
a halo nucleus that lives for 0.8 s. The electron-antineutrino correlation coefficient,
agy, is related to the kinematics following this decay and is a frequent subject of low-
energy tests of the Standard Model—exotic interactions beyond vector—axial-vector
would signal new physics. The Coulomb pulse resulting from the change in nuclear
charge from Z = 2 to Z = 3 can shake off one or both of the atomic electrons of
the SLiTdaughter ion. The precise charge state fractions of the daughter ion affect
the kinematics of the decay, which are used to obtain ag,. We treat the shake-up
and shake-off processes in the beta decay of He by developing two-electron, con-
figuration interaction (CI) projection operators capable of distinguishing single- and
double-ionization channels [A. T. Bondy and G. W. F. Drake, Atoms 11, 41 (2023)].
The ClI-like projection operators are formed using products of one-electron Sturmian
pseudostates that have a fascinating “triangular” structure, with a wide range of
nonlinear parameters, capable of spanning many distance scales and producing very-
high-energy (E > 10%° a.u.) pseudostates. We have reduced a theory-experiment
discrepancy by an order of magnitude and predict the charge-state fraction of ®Li**
following this decay to be 0.35(5)% and 0.53(7)% for the 1 'Sy and 2 35 states of
®He, respectively—still much larger than the measured 0.018(15)% [T. A. Carlson et
al., Phys. Rev. 129, 2220 (1963)] and < 0.01% |R. Hong et al., Phys. Rev. A 96,
053411 (2017)].

vi



Secondly, we perform high-precision variational calculations which include finite-
nuclear-mass effects for spontaneous two-photon (2E1) decay rates in heliumlike ions
in the metastable 215 state, including the heavy species of muonic, pionic and an-
tiprotonic helium [A. T. Bondy, D. C. Morton, and G. W. F. Drake, Phys. Rev. A
102, 052807 (2020)]. This critical process helps determine population balances and
serves as a temperature and pressure probe in low-particle-density regimes such as
astrophysical planetary nebulae. In calculating the finite-nuclear-mass effects, mass
polarization was treated as a gauge-dependent power series in p/M, leading to novel
algebraic relationships that test for gauge equivalence—for 2°Ne®* the length and
velocity gauge of the two-photon decay rates agree to 1 ppb. We generalize the alge-
braic relationships to test for agreement when finite-nuclear-mass effects are included
between length, velocity, and acceleration gauges for any nFE1-photon transitions
[A. T. Bondy and G. W. F. Drake, Phys. Rev. A 108, 022807 (2023)]. These general
relations are tested and verified for three cases of spontaneous decay in heliumlike
ions: the E1 decays 21P—-11S and 23P—-23S and the 2F1 decay 2 'S—11S. They
provide a powerful new way to test the accuracy of calculations involving approximate
wave functions.

Finally, the tune-out frequency near 726 THz for the 2 35, state of helium, which
corresponds in lowest order to a zero in the frequency-dependent polarizability, is
calculated as part of a joint theoretical-experimental effort [B. Henson et al., Science
376, 199 (2022)|. This provides a novel test of QED for a physical effect other than
the traditional energy level measurements, such as the Lamb shift. The problem
is reformulated as a zero in the Rayleigh scattering cross section to include higher-
order retardation effects. We present high-precision, variational calculations of the
Rayleigh scattering cross section in helium within the framework of nonrelativistic-
QED, including higher-order corrections due to relativistic, QED, and retardation
effects. This theoretical-experimental comparison tests QED effects and retardation
effects at the 300 and 20 level, respectively. The tune-out frequency is calculated to
be 725 736 252(9) MHz, while the measured value is 725 736 700(260) MHz, leaving

a 1.70 discrepancy.
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CHAPTER 1

Introduction

pseudo: being apparently rather than actually as stated; synonyms: sham,

spurious

— Merriam-Webster Dictionary

His [Isaac Newton’s| theory of the moon [i.e., the three-body problem] ...
made his head ache, and kept him awake so often, that he would think of

it no more.
— Edmond Halley, circa 1727 [1]

Physics thrives on crisis.

— Steven Weinberg, Rev. Mod. Phys. 61, 1 (1989).

1.1 BACKGROUND AND MOTIVATION

This dissertation explores two-electron atoms, such as helium, which have played a
fundamental role in developing quantum mechanics and quantum field theory. Even
before these subjects were formally developed, these systems played a crucial role in
nuclear physics and condensed matter physics. Helium was involved in Rutherford’s
gold foil experiment, which elucidated atomic structure, and Kammerlingh-Onnes’
discovery of superconductivity. It is also highly relevant in astrophysics; it is the
second-most abundant element in the universe. A recurrent theme in the study of
helium is its simplicity. With only two electrons, a system like helium, with its

theoretical simplicity and experimental accessibility, provides an ideal platform for
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probing the foundations of quantum mechanics which underpin our understanding of
the larger universe.

However, while atomic physics offers precise insights into certain quantum phe-
nomena, it also brings to light broader questions that remain unresolved, particularly
when we consider the universe as a whole. The Standard Model (SM) [2] is the most
sophisticated and stringently tested theory but fails to describe certain critical fea-
tures of the universe. The SM does not predict the existence of dark matter or dark
energy, yet astrophysical observations [3| provide compelling evidence for both [4]. In
fact, the SM only accounts for 4.6% of the energy-matter density of the universe. Fur-
thermore, the SM does not predict a universe with more matter than antimatter [5],
a fortunate feature of the universe for us, as we would not exist otherwise. Additional
problems the SM does not address include the hierarchy problem, neutrino masses,
the strong CP problem, and others such as proton decay or the cosmological constant
problem.! This state of affairs constitutes something of a crisis in physics—our best
theories do not seem able to describe much of our universe.

Building particle colliders and searching for new particles through their direct ob-
servation has been the primary means for searching for new physics (NP) that would
help inform our understanding of the SM or expose its deficiencies. In these high-
energy collision experiments, new particles are created and then detected. Although
this effort is crucial, it is also costly. A complementary, substantially less expensive
approach is to search for NP by conducting precision measurements in atomic physics
and comparing the results with equally precise theoretical calculations. Finding de-
viations between theory and experiment is a signal for NP.

There are many examples where atomic physics as a subdiscipline contributes
to this search. For example, the SM predicts that CPT (charge, parity, and time
reversal) symmetry is exact.? The ALPHA-2 collaboration at CERN (European Or-

ganization for Nuclear Research) tested and confirmed this hypothesis by performing

'Reconciling general relativity with the SM, via, e.g., string theory, does not constitute one of
these problems, although it might solve one or more of these issues.

2CPT symmetry is thought to hold for all physical phenomena. Stated more precisely, any
Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must have CPT sym-
metry [6].
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spectroscopy on antihydrogen [7]. Efforts within atomic physics have contributed
significantly to searches for dark matter, as outlined in Ref. [8]. It is unknown what
constitutes dark matter—a wide range of candidate particles have been studied, in-
cluding those made from ordinary matter, such as Massive Compact Halo Objects
(MACHOs) and primordial black holes, and also those involving exotic particles be-
yond the Standard Model, including Weakly Interacting Massive Particles (WIMPs)
and axions [9]. The goal of a broad class of these efforts is to do terrestrial exper-
iments to seek nongravitational interactions of dark matter with the particles and
fields of the SM [8]. An example is the cosmic axion spin precession experiment
(CASPEr), which considers and tests the possibility that axion dark matter could
cause the precession of nuclear spins [10].

Another incredibly active area of research involves the search for a nonzero electron
electric dipole moment (eEDM) [11-13| that currently sets the upper limit on its
value to 4.1 x 1072° ecm. A nonzero value® would provide evidence for potential NP
mechanisms leading to the baryon asymmetry. Future experiments at York University
plan to place molecules in a cubic lattice of solid argon [15] or neon [16]. These
experiments can now probe energies on the order of 1 PeV,* much greater than those
of which the Large Hadron Collider (13 TeV) [14] or its successor, the Future Circular
Collider (~ 100 TeV) [19], are capable.

Further examples of atomic physics constituting NP searches include the g — 2
measurement in the electron [20] and the muon [21] and the so-called proton radius
puzzle |22, 23|.°> Deviations between the QED predictions for either of these quantities

compared to their experimental measurement would be a signal for NP.

3The SM predicts an eEDM of approximately 1073 ¢ cm [14]; the lowest measured upper limit
is 4.1 x 1073%¢ cm [13].

4Progressively lowering the upper limit on the eEDM probes correspondingly higher energies via
ruling out new particles—expected to induce a much larger eEDM [17]— predicted at those higher
energies in extensions to the SM [18].

5The proton radius puzzle has an exciting, recent history that began with the surprising rev-
elation that the charge radius of the proton was 0.04 fm smaller using input data coming from
spectroscopy on muonic rather than either electronic (normal) hydrogen [22] or scattering data. A
very sophisticated Lamb shift measurement in 2019 confirms the 0.84 fm value [23].
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1.2 OVERVIEW OF RESEARCH PROJECTS

The results of four research papers form the basis of this dissertation [24-27], which we
have expanded to create three of the six chapters. These topics are briefly introduced

here and are more comprehensively covered in the corresponding chapters.

Beta decay and charge-state distributions in *He

Chapter 3 discusses the beta decay of the neutron-rich He which has a lifetime of
0.8s. Beta decay is a radioactive process governed by the weak interaction where a
neutron transforms into a proton, or vice-versa. Inside an atom, this implies that
the daughter ion has a different nuclear charge than the parent ion and thus is a
different element. This process is accompanied by the ejection of two leptons—an
electron and an antineutrino, or a positron and a neutrino. The angle between these
two leptons is related to the electron-antineutrino correlation coefficient, ag,, which
is actively studied in search of new physics beyond the Standard Model. This search
is an example of a low-energy search for new physics, complementing the high-energy
approaches taken at particle colliders such as the Large Hadron Collider at CERN
[28].

The beta decay studied in this dissertation is described by the equation ‘He —
[6Lit]+e~ +. The square brackets around the daughter ion indicate that “shake-up”
to excited Li' states, along with “shake-off” to singly-ionized ®Li*t™" states or doubly-
ionized °Li** states, are possible. We are concerned with calculating the probabilities
of forming each of these charge states in the daughter ion. In Chap. 3, we discuss de-
veloping and using two-electron projection operators capable of distinguishing single-
and double-ionization channels. The aim is to reduce a large existing discrepancy
between theory and experiment concerning the distribution over charge states of ‘He

decay products, and especially the very small amount of double ionization.

Finite-nuclear-mass effects in two-photon decay in He-like ions

Astrophysical spectroscopy can be used to probe the physical conditions, such as

temperature and pressure, of distant objects, including planetary nebulae and the
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early universe itself. Helium consitutes 10% of the universe by number of atoms
and therefore contributes significantly to the radiation observed in its study. The
dominant contributions come from dipole-allowed transitions (e.g., n'P —n'S tran-
sitions), however, dipole-forbidden transitions, such as the 2'S — 1S spontaneous
decay process studied here, are also important both in achieving high-precision and
in frequency regions where the allowed emitted spectrum is relatively weak. Further-
more, forbidden rates are needed to calculate the population balance (distribution
of atomic states in the atoms comprising remote astrophysical objects), a property
needed to infer the aforementioned physical conditions.

In Chap. 4, we show calculations performed for two-photon decay rates, including
the effect of finite nuclear mass—a small correction to the infinite nuclear mass case—
for a series of heliumlike ions, including “heavy” systems such as muonic, pionic, and
antiprotonic helium. One of the components of this correction is mass polarization,
which corresponds to an additional term in the Hamiltonian governing the system that
would otherwise be zero in the infinite-mass case. We treated this mass polarization
term as a power series and demonstrated how algebraic relationships arise from this
approach. These algebraic relationships test gauge equivalence between the length
and velocity forms in m-photon transitions in heliumlike systems. We demonstrate
their validity for the cases of n = 1 (single photon) and n = 2 (two photon) sponta-
neous decay. The significance of the algebraic relationships is that they provide an
important new way of testing the accuracy of approximate calculations of radiative

transition rates when exact wave functions are not available.

Testing QED with the tune-out frequency in helium

The tune-out frequency is the specific frequency of laser light incident upon an atom
where the atom ceases to scatter that light and effectively becomes invisible to it.
This situation is described as a zero in the Rayleigh scattering cross section. In
lowest order, this corresponds to a zero in the dynamic polarizability, a quantity that
involves a sum over a complete set of off-diagonal matrix elements of the electric dipole

interaction. In this way, studying the tune-out frequency amounts to a test of QED,
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involving an atomic property other than a QED energy shift such as the Lamb shift.
In higher order, retardation corrections distinguish the Rayleigh scattering picture
from the more usual dynamic polarizability. In Chapter 5, the tune-out frequency is
calculated to high precision in the framework of nonrelativistic QED (NRQED) and
the results are compared with experiment, forming the first test of QED that does
not involve an energy shift. A comparison with experiment shows that there remains

a 1.70 discrepancy that requires further work.

1.3 METHODOLOGY OVERVIEW

1.3.1 Introduction to pseudospectral methods

Chapter 2 describes the general theoretical methods applicable to all projects dis-
cussed in the dissertation, while each chapter describes the particular details relevant
to the project under discussion. In the present section, we discuss the common element
across all studies—the use of pseudospectra, which are complete set of pseudostates.
Pseudospectral methods can be defined in comparison to spectral methods, which

solve differential equations, such as the Schrodinger equation

Hy = B, (1.1)

with which we are concerned here, by using true eigenstates of the system’s Hamilto-
nian. An example of a spectral method is a complete Fourier series, where the sines
and cosines are eigenfunctions (they solve the correesponding differential equation
under certain boundary conditions) of some operator, e.g., in the heat equation. In
pseudospectral methods, on the other hand, a finite number of pseudostates approx-
imate the true eigenstates, as in a truncated Fourier series used in applications such
as image processing. The primary use of pseudospectra in this dissertation is to carry

out sums over the complete Hilbert space of the Hamiltonian—which involves an in-
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finite set of bound and continuum states.® Here, spectral methods would involve an
infinite sum and integral and are not computationally realizable.

This section is not intended to be a rigorous description of how to obtain pseu-
dostates or their properties, a subject discussed in Chap. 2, but instead aims to

demonstrate their usefulness via two examples.

1.3.2 Examples using pseudospectra

The calculation of the polarizability of the ground state of hydrogen offers one striking
example of the usefulness of pseudospectra, shown in Fig. 1.3.1. The static polariz-

ability d, is defined as

d. = =2 [(ewslzlemp)” [ (Ers = Enp) = 9/2, (1.2)
np#ls
where @15, ¢pn, are the unperturbed exact wave functions that solve Eq. (1.1) and
E\s, E,, are their energies, and the sum runs over the infinite set of {p,,} eigen-
states which connected to ¢, through the dipole operator z. This quantity has an
exact value (9/2) because it can be expressed as a convergent infinite sum over both
discrete and continuum states over the excited states of hydrogen that. The form of
the polarizability is not especially relevant; it is only crucial to understand that its
calculation involves a sum over the complete set of eigenstates of the Hamiltonian.
In Fig. 1.3.1, the exact ground state of hydrogen, ¢;s, was used, however, the
infinite sum over {p,,} was replaced by a pseudospectra with basis functions of the
form x; = Zf\il cijr'e”*"Y19. Three pseudospectra are considered, with N = 2,3,5
in the plotted examples, corresponding to two, three, and five term basis sets.
Figure 1.3.1 introduces some essential concepts that will recur in this dissertation.
Firstly, along the z-axis is the nonlinear parameter a—pseudospectra will be formed
with both linear and nonlinear parameters that we will vary, usually to minimize

energy eigenvalues. Additionally, the number of terms corresponds to enlarging the

SFurthermore, the exact eigenfunctions and eigenvalues for helium or any general three-body
problem is impossible. Helium is the quantum mechanical version of the sun-earth-moon (three-
body) problem that lamented Newton many centuries ago.
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H(1s) Polarizability [a.u.]

a1 L Two terms
i Three terms
Five terms

3.9\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\
0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 13 1.4

Nonlinear parameter a [1/a.u.]

Fig. 1.3.1: Shown are the polarizabilities, calculated according to Eq. (1.2), of the ground
state of hydrogen (The correct answer in the nonrelativistic limit is 4.5 a.u.). The pseu-
dospectra used have basis functions of the form y; = Ef\; 1 cijrie*a’”Ylo, as described in the
text. The nonlinear parameter « is varied to show regions of stability. It is remarkable that,
even for a two-term pseudospectrum, when a = 1, there is already an exact representation
of the complete spectrum. For a five-term pseudospectra, we see a large region of stability,
where d is correctly calculated for the entire av € [0.44,1.4].

basis set, a method used to obtain convergence. For the polarizability, we see this
convergence take place moving from N = 2, where only certain nonlinear parameters
lead to the true polarizability, to N = 5 where there is a broad region of stability.
Another example demonstrating the power of pseudospectra involves the calcu-
lation of the Bethe logarithm, involving a sum over states in both the numerator
and denominator,” which is part of the Lamb shift and is thus an important QED
contribution in atomic physics. Figure 1.3.2 shows the value of the Bethe logarithm
of H as a function of the highest-energy eigenvalue included in the partial sum, using
the formulation developed by Drake and Goldman [29]. We see a few things from this

curve. Firstly, one must go to very high energies, about 10® a.u., before obtaining

"The partial sum is given by S(E) = N/D, where N = 3=, [(0|p|i)|* (E; — Eo) In |E; — Ep| and
D=3, [(0[pli)|* (Ei — Eo)
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Fig. 1.3.2: The partial sum of the Bethe logarithm of H, S(F), is plotted as a function of
the last—also largest— energy contained in the partial sum. Created using the formulation
developed by Drake and Goldman [29].

convergence in S(F) and also, from the inset, that this method allows us to go to
extremely high energies—almost 10%° a.u.

Despite the seemingly negative connotations of the term “pseudo” in general lan-
guage, implying something false, this dissertation shows the invaluable role that pseu-
dostates play in advancing our understanding of atomic systems and making possible
otherwise inaccessible calculations. Through a series of projects, we will explore how
pseudostates make possible profound and otherwise unattainable insights by facili-

tating atomic and molecular physics calculations.

1.4 SCOPE AND SIGNIFICANCE OF RESEARCH

The potential impact of this research is immense. Both the beta decay and tune-out
projects seek to rectify the crisis that is the incompleteness of the SM by contributing

directly to searches for NP. The SM makes a definite prediction about the kinematics
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following beta decay and about the precise frequency at which the helium atom should
become invisible to an applied laser field, i.e., the tune-out frequency. We perform
calculations involving two-electron wave functions formed using Hylleraas basis states
to answer whether or not the SM agrees with our collaborator’s measurements in
answer to these questions. This research either confirms the SM or finds a deviation
that requires more attention. This possible deviation, by itself, would not unravel
the SM—to be sure, this is a physics-wide effort to probe every nook and cranny that
we find plausible and possible to examine. If the discrepancy is genuine, it would
pinpoint the area to explore when considering how NP might build on the existing
SM.

The other two projects are related and aim to answer less extravagant but no less
universal questions. In astrophysical observation, the population balance of astro-
physical sources contains information about the temperature, composition, pressure,
and more concerning a distant astrophysical body or, in the case of the cosmic mi-
crowave background radiation, about the early universe itself. Therefore, since helium
comprises 10% of the atoms in the universe, accurate calculations of properties of two-
electron atoms, such as energies and transition rates, are essential. To this end, we
present calculations of the 2E'1 transition rates of helium, including the effects of a
finite nuclear mass but not relativistic effects, which also contributes at an experi-
mentally relevant level.

A central objective within this dissertation is to answer questions such as those
posed above by using pseudospectral techniques described and defined in the preced-
ing section, thereby demonstrating and exploiting their ubiquity as a computational

technique in atomic physics.

10



1.5. STRUCTURE OF THE DISSERTATION

1.5 STRUCTURE OF THE DISSERTATION

We synthesize four research projects in this document in three separate chapters.
Each of these is self-contained in the same sense as a research paper.® However, the
chapters are not strict reproductions of the research papers, and they do relegate
some information to the overall theory chapter or appendices when that format is
more sensible as it functions in the entire document.

The main body of this dissertation consists of six chapters, of which this section
concludes the first chapter: the Introduction. Chapter 2 outlines the theoretical
methods underpinning the computation and analysis common to all projects studied.
Chapters 3, 4, 5 contain more detailed theoretical aspects of the individual works,
where the particular projects are discussed in detail. On this note, Ch. 3 contains
work on the beta decay of He, Ch. 4 describes calculations concerning the two-
photon decay of helium and also about exploring algebraic relationships that arise
therein in treating mass polarization, and Ch. 5 outlines the first test of QED other
than energy shifts based on the tune-out frequency of helium. Chapter 6 provides an
overall conclusion of the whole dissertation and discusses future work.

Several appendices include material that was either tangential to the main discus-

sion or too substantial to include in the relevant section of the document.

8The relative lengths of the chapters is indicative of the proportion of time spent on each of
these projects.
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CHAPTER 2

Theoretical Methods

2.1 OVERVIEW

This chapter presents an overview of the theoretical frameworks and methods com-
mon to all chapters of this dissertation. Atomic structure problems boil down to
computing matrix elements, i.e., integrals, between two wave functions connected by
an operator. Accordingly, the central objective in solving structure problems is to
establish precisely how we obtain the wave functions and carry out these integrals.!
Due to the nature of this dissertation—being based on four published papers [25-27],
separated into chapters—we present more specialized “theoretical” material in the
relevant chapters.

The contents of this chapter are as follows. After discussing atomic units in
Sec. 2.2, the one-electron problem is stated and solved in Sec. 2.3, leading to the
concept of Sturmian functions, discussed in Sec. 2.4. Then the two-electron problem
is developed in Sec. 2.5 and is then solved throughout Secs. 2.6 and 2.7. In Sec. 2.6,
the variational methods used are described, while Sec. 2.7 describes the Hylleraas
wave functions employed as trial functions in this work. Finally, Sec. 2.8 outlines the

analytic forms of the integrals needed in the calculations contained in this dissertation.

ISubstantial portions of the material in this chapter are heavily influenced by the collected
writings and notes of G. W. F. Drake, including published works and formal and informal sets of
notes and verbal correspondence. References appear where appropriate.
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2.2. ATOMIC UNITS

2.2 ATOMIC UNITS

A few comments on atomic units (a.u.)—which appear several times in the Introduc-
tion and are ubiquitous in atomic physics—are in order.? The defining property is to

set the following quantities to unity:
me. =h=e=4mey = 1. (2.1)

These assignments correspond to measuring mass in units of the mass of the electron,
me, angular momentum in units of A, charge in units of the electron charge, e, and
vacuum permittivity in terms of 4me.

A few important scales emerge from these definitions. Carried out in SI units, the

energies of the bound states of the infinite-nuclear-mass, one-electron problem have

62 —Z2
B, = a_o( =4 ) (2.2)

where Ze is the nuclear charge, n is the principal quantum number,® and a, is the

Bohr radius, defined by

the form

Amegh?
ag =

(2.3)

me?
In atomic units, we measure energies in units of the prefactor of Eq. (2.2), which we

refer to as the Hartree energy Ej,

B= <, (2.4)

We measure distances using the aforementioned Bohr radius. Both ag and Ej, are 1
in atomic units.

The time-independent Schrodinger equation is stated in Sec. 2.3 in SI units and
then transformed to atomic units. In Sec. 2.5.1, we further simplify, for computational
purposes, to dimensionless Z-scaled atomic units where distances and energies are

given by p = Zr/ag and € = Eag/(Ze)?, respectively.

2 Atomic units were developed in 1928 by Hartree [30] to reduce the large number of constants
that we would otherwise need to carry around in basic calculations in quantum mechanics and,
therefore, atomic physics.

3Details on solving the one-electron Schrédinger equation appear in Sec. 2.3.
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2.3. ONE-ELECTRON SCHRODINGER EQUATION

The idea is to perform calculations entirely in atomic units and only at the very
end substitute back in the SI values of the constants used in the calculations.* The

current values are [31]

By, = 27.211 386 245 981(30) eV
= 4.359 744 722 2060(48) x 107'* J, and

ap = 5.291 772105 44(82) x 107! m.

Finally, a comment on the dimensionless fine-structure constant, «, defined by [31]

2

o= =7.2973525643(11) x 1072, (2.5)
4dmeghc

with ¢ being the speed of light, is warranted. A consequence is that the speed of light
is approximately 137 in atomic units. The fundamental measurement quantities can

be expressed in terms of a, e.g.,

h

amc

ag = and Ey = a®mc?

High-precision atomic physics uses the fine-structure constant as an essential expan-
sion parameter, treating relativity and QED effects as perturbations in «.
All quantities stated in this dissertation are assumed to be in atomic units unless

indicated otherwise.

2.3 ONE-ELECTRON SCHRODINGER EQUATION

The one-electron atom or ion is a two-body problem where the electron and nucleus®
interact via the Coulomb interaction. We are concerned here with the nonrelativistic,
time-independent case. The primary purpose of this section is to set the stage for

the following section about Sturmian functions—by establishing the radial solutions

4The currently accepted values of these quantities are found at https://physics.nist.gov/
cuu/Constants/index.html.
SHere, we treat the nucleus as a single body of mass M and charge Z.
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2.3. ONE-ELECTRON SCHRODINGER EQUATION

to the one-electron Schrodinger equation. To this end, the details are kept brief.
The nonrelativistic (NR) time-independent Schrédinger equation,® Hty = Ew, for

the one-electron problem with an infinitely heavy nucleus is:

h Ze?
H=-—V>— 2.6
2m Aregr’ (2:6)
1 A
H= —§V2 - — (in a.u.), (2.7)
r

where h, m, Z and ¢y are Planck’s constant, the electron mass, the nuclear charge
and the vacuum permittivity, respectively, and r, is the electron distance from the
nucleus. The second line is expressed in atomic units.

This equation separates in spherical coordinates (r, 0, ¢) according to

U(r) = Yo (0, ) Re(r) (2.8)

with the spherical harmonics, Yy, (0, ¢), solving the angular part [32, pp. 19-25|. The

radial equation

[_é (j_; L2d w) - ﬂ R(r) = ERu(r), (2.9)

rdr r

has solutions

Ry(r) = rexp(ikr) [A 1Fy(a; ¢; 2) + BU(a, ¢, 2)] (2.10)

where 1 F; and U are the regular and irregular solutions to the confluent hypergeo-

metric functions (see, e.g. [33] for their solutions), A and B are arbitrary constants,

SFor the structure problems in Chaps. 4 and 5, the time-independent Schrédinger equation is
the appropriate starting point. In studying the time-dependent beta decay process in Chap. 3, we
make the sudden approximation and therefore use the time-independent Schrédinger equation there
as well.
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2.3. ONE-ELECTRON SCHRODINGER EQUATION

and k. a, c, z are defined as

k=+2E,
a=0+1—ik"'2Z,
(2.11)
c=20+2,
z = —2ikr.
Eq. (2.8), using the radial function Eq. (2.10), has a complete set of solutions, in-
cluding both bound states, defined by E < 0, and continuum states, given by £ > 0.
These are also known as Coulomb wave functions.
The bound state solutions occur when a = —n + ¢ + 1 is a negative integer and

have the form
Ru(Zr) = ple /" Fy(—=(n — € — 1);20 + 2;277), (2.12)

with energies given by

ZZ
E,=——, 2.13
where n = 1,2,3... is the principal quantum number and ¢ = 0,...,n — 1 is the

angular momentum quantum number. 1F(a;b; 2) is the confluent hypergeometric
function of the first kind and is a finite polynomial of order n — ¢ — 1 with n — ¢
terms. This form of radial powers multiplied by exponentials guides the formation of
approximate two-electron wave functions in Sec. 2.7.1.

With an eye toward the prospect of performing computations on hydrogenlike
atoms wherein we must sum over the complete set of eigenstates of H in Eq. (2.7),
a task shown to be important in the Introduction, we can make some comments.
Eq. (2.10) is the correct equation, but it contains two infinities of states: a denu-
merable infinity of bound states and an uncountably infinite set of continuum states.
It is the latter of these that poses the much more significant obstacle. If we were
summing over the bound state solutions, we could at least search for convergence
as n — oo in whatever property we study. This approach would work if it were to

turn out that contributions to the sum diminished rapidly enough in this limit. This
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2.4. STURMIAN FUNCTIONS

strategy is even more difficult with the continuum, where we could seek convergence
in the corresponding integral as £ — co. In general, to carry out a complete sum over
states, we need to actually represent this complete set. These considerations lead us
to the discussion of Sturmian functions, a topic central to the study of overlapping

ionization channels in the beta decay of He that is the subject of Chap. 3.

2.4 STURMIAN FUNCTIONS

Any homogeneous linear second-order differential equation” can be written in the

Sturm-Liouville form [34]

d

K@ - cew=o, (2.14)

dx

defined on the closed interval x € [a, b] and supplemented with appropriate boundary
conditions. The choice G(x) = —Ag(x) + [(z) yields an eigenvalue problem where A

can be adjusted to satisfy the boundary conditions.®

2.4.1 The oscillation theorem

The oscillation theorem, as described by Drake [34] and Ince [35], provides insight

into the nodal properties of Sturmian eigenfunctions. The theorem is as follows.

Theorem 1 (Sturmian Oscillation Theorem). Suppose K(z), g(z), and I(x) are con-
tinuous, real, positive’, and monotonically decreasing on [a,b]. Then the Sturm-

Liouville problem

d dy

— | K(x)—= A —1 = 2.1

&[]+ po - 1w =o. (2.15)
has an infinite sequence of discrete eigenvalues A\y < Ag < A3... with eigenvectors
Y1, Y2, Y3 - .. such that y,,(x) has m —1 zeroes on the interval [a,b]. The eigenvectors

"The radial Schrédinger equation in Eq. (2.9) is one example where r — 2 and R(r) — y.

8All functions of z, namely K (z),G(z),g(z), and I(z), are arbitrary.

9The conclusion of the theorem holds in the case that g undergoes a sign change on the interval
of interest, but we do not require this for the following discussion.
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2.4. STURMIAN FUNCTIONS

are orthogonal with respect to g(x), and the set {y,(z)} forms a Sturmian basis

set—uwhich is complete.

The critical consequence of this theorem is that the Sturmian basis set, a gener-
alized Fourier series, is complete: one can expand an arbitrary function f(z) in this
basis set. Notably, the eigenvalues of this basis set are discrete. Consider momen-
tarily the formal solutions to the Schrédinger equation just discussed in the previous
section. In obtaining these solutions to the radial equation in Eq. (2.9) on the interval
r € [0,00], one effectively holds Z fixed while varying E, subject to the boundary
conditions

limrR(r) =0, lim R(r) =0 (2.16)

r—0 r—00

leading to an infinite set of bound states and continuum states [34].
The Coulomb problem can be formulated as a Sturm-Liouville problem meeting
the criteria outlined in Theorem 1 by writing the radial equation as

{ : ( o M) A} Ry(r) = ER(r), (2.17)

2\dr?2 ' rdr 72 o

where we regard E as fixed, along with a variable nuclear charge, denoted by A. The
procedure for generating the complete and discrete basis set is as follows. Consider
a fixed negative energy ¥ = —e with € > 0. The horizontal line denotes this energy,
E in Fig. 2.4.1. The general strategy is to keep this energy fixed, vary the potential
(A), and look for normalizable solutions.!® The Schrédinger equation has solutions

E.(Z) = meaning that a particular E,(Z) = —e can be satisfied infinitely

_Z

Iz
many times via progressively increasing both A and n. As the parameter \ increases,
corresponding to increasing Z and making the potential more attractive, we pull
one eigenvalue after another down through the fixed £ = —¢; these states have
eigenvalues \, = nv/2e. Whenever a solution to the Schrodinger equation is pulled

down through E = —e¢, another solution to the Sturm-Liouville problem is obtained—

a process yielding discrete eigenstates that can occur infinitely many times. Fig. 2.4.1

10We write A instead of Z to emphasize that this is an adjustable parameter in this Sturmian
formulation.
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2.4. STURMIAN FUNCTIONS

Solutions
to SL
problem

Increasing A

Fig. 2.4.1: The principle of generating solutions to the Sturm-Liouville (SL) equation is
shown. By holding E fixed to some negative number and progressively increasing A in
Eq. (2.17), we obtain more and more solutions. The spacings are not drawn to scale; the
only relevant detail is that more and more states are pulled below the fixed £ = —e.

illustrates this procedure. The resulting set of discrete Sturmian states is complete
in the limit where the number of states so obtaied, N, tends to infinity [36, 37].
This set constitutes a pseudospectrum since they approximate the true eigenstates of
the Hamiltonian while providing a complete basis representing bound and continuum
states.

The solutions to this Sturm-Liouville radial equation are called Sturmian functions

and have the form

Ru(r) = ! (n+ D v (20)*%(2ar) e | Fy(—n 41 + 1,21 + 2; 2ar)
" 2+ \(n—1—1)12n e ’ ’

(2.18)

where o« = v/2¢ and n > [ + 1. Since the first argument of {F] is negative, this

corresponds to a finite polynomial function of r. These solutions look similar to

the bound-state solutions to the radial Schrodinger equation given in Eq. (2.12),

especially because both are sets of functions with discrete eigenvalues. However,

Theorem 1 guarantees that, unlike the bound-state solutions, which do not include
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2.4. STURMIAN FUNCTIONS

the continuum, the set of Sturmian functions! in Eq. (2.18), in the limit where the
number of states approaches infinity, does.

Another difference with the bound-state solutions lies in the critical detail that the
exponent of the Sturmian functions does not depend on n. Instead, the exponential
factor —ar is constant in Sturmian functions. Thus, Sturmian radial functions are

or. Therefore, we can create a pseudospec-

a polynomial function multiplied by e~
tra by diagonalizing the one-electron Hamiltonian in terms of basis functions with
linear combinations of y = r"e™*" functions. These structure of these functions is
informed by their physical relevance: they capture the appropriate near-nucleus and
asymptotic behaviour of the true wave functions of the hydrogen atom. Indeed, as the
introductory quote of this thesis says, the pseudostates are “false states”, i.e., they are
not the exact solutions of the one-electron Hamiltonian. Even so, they are complete,
and we will see that this property is even more essential and useful.

In conclusion, the preceding discussion of the Sturmian theory provides a rigor-
ous foundation for choosing y; = ¢;r"e~%" type basis functions in the one-electron
problem. Often, the basis functions are the sum of several such functions, x =
c1X1+Caxe+ - .., where each term has a different linear parameter (coefficient) ¢; and
nonlinear parameter «;. In Sec. 2.6, the minimization principles that govern the opti-

mization of these parameters are described. We show in Sec. 2.7.3 that this property

of Sturmian functions informs our choice of two-electron basis functions [38|.

11 Additionally, according to Theorem 1, the Sturmian functions are orthogonal with respect to the
potential 1/r. In this dissertation, we orthogonalize these basis states, an operation which preserves
completeness.
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2.5 TWO-ELECTRON SCHRODINGER EQUATION

2.5.1 Problem statement

The two-electron Schrédinger equation in ST units for infinite nuclear mass'? is [39]

[ o Ze*  Ze* e
—— —— - — 4+ — |y =F 2.1
(Vi3 - T -2 Sy (219)

where r; and ry are the radial coordinates of the two electrons and rj5 = |rs —ry| are
Hylleraas coordinates and are defined in Fig. 2.5.1. We rewrite this in dimensionless

Z-scaled units'® according to p = Zr/ag as

1 11zt
—(V2 +V2)—— ——+=—|¢=ev, 2.20
2< 7 p2) P11 P2 P12 Y 4 ( )

with e = Eag/(Ze)?. Eq. (2.20) is the form of the Schrédinger equation that we solve
throughout this dissertation.

Owing to the presence of the 1/p;5 term, the two-electron problem in Eq. (2.20)
cannot be separated, and it cannot be solved exactly as in the case of the one-electron
problem [40, pp. 5-15]. The helium atom is the quantum mechanical three-body
problem—a problem whose classical analogue is known to lack closed-form solutions
for the general case.!* In practice, the fact that analytic solutions are unavailable is
not a problem since numerical methods exist that are essentially exact for structure

calculations in atomic physics.

12Chapter 4 contains work incorporating finite-nuclear-mass effects in nE1 transition rates in
two-electron atoms. Treatment of the finite-nuclear-mass Hamiltonian is left to this chapter.

13This method allows the interelectron potential, 1/p;2, to be treated as a perturbation in powers
of 1/Z.

14The prototypical example is the earth-moon-sun system that was first studied by Newton—and
subsequently by the best mathematical minds for countless generations after that—in connection
with the question of the stability of the solar system. Upon proving that the two-body system has
closed-form solutions [41], Newton was shocked to discover that he could not solve the three-body
problem—which “made his head ache, and kept him awake so often, that he would think of it no
more” [1].
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X

Fig. 2.5.1: An illustration of Hylleraas coordinates. The full set of independent radial
(r1 = |r1|,r2 = |r2|,m12 = |r1 — r2|) and angular (61, ¢1, x) coordinates are shown for two
electrons located at r{ and ro relative to the centre-of-mass. Here, 01, ¢1 are the polar and
azimuthal angles of electron 1 and y is the angle of rotation of the rigid triangle formed by
the ry,ro and ri9.

2.5.2 Spin: singlet and triplet solutions

Two separate spin configurations of two-electron systems exist: singlet and triplet
states. This is a direct consequence of the fact that fermions must have a totally
antisymmetric wave function. Wave functions can generally be written as a product of
a spatial and spin part. This is a trivial matter in treating the one-electron Coulomb
problem, and thus Eq. (2.8) only contains the spatial (1,6, ¢) part. The full one-
electron eigenstates are a product of the spatial and spin components, ¥y = RY y.

Since electrons are particles of spin—%, there are two spin states: spin up x; = (é) =

12 1) and spin down | = (2) = |2 —1). These are written of the form |s m,) where
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s is the spin quantum number, and m, is the component of spin angular momentum,
which has units of A. It is usual to label the one-electron spin-state with m, = :I:%
alone, since s = % for all electrons.

For two-electron systems, the criterion of a totally antisymmetric wave function

can be expressed as [42]

(

¢S(r17 r2)XA(17 2)
U(1,2) =< or (2.21)

¢A(r17 r2>XS(17 2)7

\

meaning that spatial (¢) and spin () parts of the total wave function ¥ must have

opposite symmetry. The symmetric/antisymmetric spatial wave functions are

S *L ri.r I'o. I an
Y7 (ry, 1) = \/5[1?( 1,T2) + 1(re,11)], and (2.22)
WAL, 2) = [0, 12) — (ra, 1), (2.23)

Sl

For the spin part, we now adopt the notation of |ms; ms2) for the coupled state

|3 ms1)|5 ms2). Four possibilities have a well-defined symmetry. Three of which are

symmetric:

55)
=G+l 5] 224
Gzl
and one is antisymmetric
=35 (-3 - 1-30) (2:25)

The three symmetric spin states x° in Eq. (2.24) form a product with the anti-
symmetric spatial state ¢ in Eq. (2.23), forming the triplet configurations. The
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antisymmetric spin state xy° combines with ¢°, giving the singlet configuration. We
solve the Schrédinger equation, Eq. (2.20), yielding the spatial part of the wave func-
tion, and thus the singlet and triplet states are ¢° and 1 with the “+” and “—”
signs, respectively, between the direct and exchange terms in Eqgs. (2.22) and (2.23).

Both singlet and triplet states are studied in this dissertation.

2.6 VARIATIONAL PRINCIPLE

Without exact solutions, we construct approximate solutions that become complete in

the infinite limit obtained via progressively increasing the number of basis functions.

2.6.1 Rayleigh-Ritz variational method

For any normalizable trial function W;,, the quantity

5. (Yl W)

—<\Iftr!‘1’tr> (2.26)

is an upper bound according to Fi, > FE;, where E; is the true ground state energy
[43]. This can be shown by expanding Wy, in the complete basis set of orthonormal

eigenfunctions'® ¢, ¢, @3, ... of H with eigenvalues F; < Fy < E3 < ---, such that

Uy = i Cii, (2.27)

=1

where {¢;} are the expansion coefficients. The normalization of Wy, ensures Y .=, |¢;]* = 1.

The expression for the energy of the trial wave function is then

Etr — <\Dtr|H|\Ijtr>a (228)

5Even though we do not know what these eigenfunctions are, it can be assumed that such a set,
whose eigenvalues are the true energies, exists and is complete. This follows the observation that
the two-electron Hamiltonian operator is self-adjoint in an appropriate Hilbert space.
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and, upon expanding W, in terms of the exact eigenfunctions {¢;}, which satisfy

<¢’L‘¢]> = (SZ’J‘ and <¢1‘H‘¢l> = Ei(SiJ we have [34]

By = |e1PEr + |co By + |3 * B3 + - - -
=By + |eo|*(Ba — Ey) + |cs* (B3 — Ey) + -+ - (2.29)
> F.

The last inequality, which establishes FEi. as an upper bound to the exact ground
state energy, Fy, follows from the ordering of the eigenvalues in terms of increasing
energy. It is important to remember that the foundation for this technique is that
the spectrum is bounded from below—the ground state forms such a bound in the
spectrum of the nonrelativistic Schrodinger equation, with which we are concerned

in this dissertation.!'®

2.6.2 Equivalent generalized eigenvalue problem

Since it is impossible to form a trial wave function whose energy is beneath the
ground state by the variational principle, we thus have a license to manipulate a
potential trial function in any fashion and to choose whichever results in the smallest
eigenvalue. Beyond normalizability, the form of a trial function has no restrictions;
however, using the one-electron solutions as an example, a trial function might look
like Wi, = ar®e”*" with linear variational parameter a; and nonlinear variational

17

parameters as and az.'” Minimizing the energy of this state has now become a

multivariable calculus problem, where the following equations must simultaneously

be satisfied:
a-Etr

Oa,

=0, p=1,...,N, (2.30)

where, for the specific trial function mentioned above N = 3. Eq. (2.30) gives a set of
transcendental equations that are not algebraically solvable in general. This problem

is (algebraically) soluble in the special case where we only have linear variational

6Even in Chap. 5, where relativistic and QED effects are computed, we use nonrelativistic QED
(NRQED) and only ever solve the NR problem, adding higher-order corrections pertubatively.
1"The ensuing argument carries over directly to the two-electron case.
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coefficients [34].
This linear variational eigenvalue problem can be solved by forming basis states

out of the functions {y;,7 =1,..., N} according to

N
Uy, = Z a;Xi, (2.31)

i=1
where the linear coefficients {a;} are taken as the variational parameters. With
this formulation, the minimization of the linear variational parameters expressed in

Eq. (2.30) becomes identical to the equivalent generalized eigenvalue problem (GEP)
Ha = \Oa, (2.32)

where a is a vector of the expansion coefficients, H and O are the Hamiltonian and
overlap matrices, respectively, satisfying H,, = (Xm|H |xn) and O, = (Xom|Xn). The
lowest of the N eigenvalues generated from this N-dimensional problem will be the
upper bound to the true ground state energy. Different methods of solving this GEP
depend on whether one wants a single optimized state or a complete pseudospectrum.
The methods of solving this linear algebra problem are discussed in Appendix A.
Although the GEP in Eq. (2.32) is equivalent to the minimization condition ex-
pressed in Eq. (2.30), it is not equivalent to the Schrodinger equation itself: the choice
of trial functions matters here. The solution obtained is only guaranteed to converge
from above to the exact gound-state energy if the basis set is complete — there may be
a finite gap.'® The condition that the GEP is equivalent to the Schrodinger equation
is that the basis set {x;,7 = 1,..., N} becomes complete in the limit that N — oo
[34]. The strategy to carry out these calculations is to solve the GEP for increasing
values of N and then study the convergence of the corresponding quantity calculated

to discern the N — oo behaviour.

18Tn the two-electron problem, such a gap occurs with the Hartree-Fock method, discussed in
Sec. 2.7.4. By assuming separable solutions, this method converges to too large a ground energy
(E ~ —2.87) compared to the exact E = —2.903724 ..., since it does not account for the so-called
correlation energy.
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s
E. )»4
E: .
E, A3 .
By — oo

Ap——.
EZ ...... ——........
A=

E1 — ———.., ——
N=1 N =2 N =3 N=4 N=5

Fig. 2.6.1: Iustration of the Hylleraas-Undheim-MacDonald theorem. For five separate
calculations that solve the GEP in Eq. (2.32), each of which increases the number of basis
functions N, we see that (1) the N — 1 old eigenvalues of the previous calculation lie be-
tween the N new eigenvalues and (2) that each trial eigenvalue is an upper bound to the
corresponding exact eigenvalue.

2.6.3 Extension to excited states

We have already demonstrated that the lowest eigenvalue A; generated from solving
the GEP is an upper bound to the exact ground state energy F;. The case, however,
is stronger than this: the remaining A; for ¢ > 2 are also upper bounds to the
corresponding exact eigenvalues of the Schrodinger equation, provided that the correct
number of states lies below. This is referred to as the Hylleraas-Undheim-MacDonald
theorem [44, 45| and is a consequence of the matrix interleaving theorem, shown in
Fig. 2.6.1. The matrix interleaving theorem states that as the dimensionality of H and
O increases by 1, amounting to adding an extra row and column to these matrices,

the old N eigenvalues must interleave the new N + 1 eigenvalues. This principle
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is illustrated in Fig. 2.6.1 for basis sets with N = 1 to 5 terms. To achieve this
interleaving, the eigenvalues must all move inexorably downward with each increase
in N; however, we also know that the exact spectrum is obtained as N — oo, from
the assumption of completeness. This implies that each trial eigenvalue is indeed
an upper bound to the corresponding exact energy, and we can strengthen the initial
variational statement by including all N. Solving the GEP in Eq. 2.32 with an N-term

basis set yields N eigenvalues satisfying

2.7 HYLLERAAS TRIAL WAVE FUNCTIONS

The trial functions used in this dissertation to solve the GEP in Eq. (2.32) are formed

using Hylleraas basis functions; whose form we establish in this section.

2.7.1 Statement of Hylleraas basis functions

The doubled Hylleraas basis functions used in this dissertation have the form [43]

it jk<Q
A
U= |eplvunlan, Ba) +eplegn(as, Bs) | | (2.34)

s

ijk ~ ~
A-sector B-sector

where the basis functions ¢;;x(c, ) are defined by
ijr(a, B) = rt rg rk e omi—hr )/%b’L(fl, T9) * exchange (2.35)

in Hylleraas coordinates. The exchange term represents the interchange of electron
labels, and the + and — correspond to singlet and triplet states, respectively.
The quantity y}f’ 1,.0(T1,72) represents a vector-coupled product of spherical har-

monics of angular momenta ¢; and /5 to form a state with total angular momentum
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L and component M, according to [43]

Vr(Fry72) = > Yoy, (71)Yigm, (2) (Calamyma| LM), (2.36)

mi,m2
where (¢10omymy|LM) are Clebsh-Gordan coupling coefficients [32, pp. 37-42]. The
parameter 2 = (i + j + k)max controls the size of the basis set. The nominal number

of terms in each sector is
1
N = 6(Q+1)(Q+2)(Q+3). (2.37)

The Hylleraas pseudostates are a two-electron generalization of a one-electron Coulomb

Sturmian basis set described in Sec. 2.4.

2.7.2 Nonlinear parameters

The basis set in Eq. (2.34) is “doubled” in the sense that different nonlinear parameters
aa, Ba and ap, P are used for the asymptotic (A) and short-range (B) sectors
respectively. This allows the wave functions to be modelled much more flexibly. The
original Hylleraas functions were not doubled in this sense—this was a significant
improvement, especially for higher-lying Rydberg states,'® initiated by Drake [48].
The nonlinear parameters are determined by calculating analytically the four
derivatives OF /Oaa, OE /0B 4, OE /Oag, and OE/0fp and finding the zeros by New-
ton’s method [49, 50], yielding the energy minimum on the multidimensional energy
surface. In practice, one of the nonlinear parameters (usually 1) is varied in order
to optimize some quantity being calculated that depends on the wave functions. For
instance, Chap. 3 of this dissertation treats the beta decay of *He. A complete pseu-
dospectrum of the °Li*daughter ion is needed to perform this calculation. To form
this pseudospectrum f3; was optimized [51] in oorder to achieve variational stability
for the total probability of excitation of °Li*, a rather complicated quantity that is

the sum of several overlap integrals.

Y Tripling of the Hylleraas basis sets (e.g., [46, 47]) has led to even further increases in accuracy.

29



2.7. HYLLERAAS TRIAL WAVE FUNCTIONS

Table 2.7.1: Comparison of the variational ground-state energy obtained using Hylleraas
trial functions formed according to Eq. (2.34) containing all powers of 71 and 79, but only
select powers of 719 [54]. It can be seen that odd powers of ris contribute significantly to
improving the accuracy.

12 terms Energy (a.u.) Error (eV)
no 712 -2.879024 0.67200
rZ, -2.900503 0.08760
r2, 1y 12.902752 0.02640
T12 -2.903496 0.00620
rio, 7%, -2.903700 0.00065
all 719 -2.903724 0.00000

2.7.3 Strategies and completeness

Before attempting to achieve convergence by progressively enlarging the basis sets
used to solve the GEP, we must address a crucial question: Are the Hylleraas basis
functions, expressed in Eq. (2.34), complete in the limit N — co? We can guarantee
they will reach the exact states and energies within this limit if they are.
Fortunately, the Hylleraas basis functions have been proven by Klahn and Bingel
to be complete?® in the limit 2 — oo [36, 53]. For S-states, completeness is ensured
by two factors. The first factor is the completeness of the one-electron Sturmians,
discussed in Sec. 2.4, and a complete set of angular functions [52, p. 110]. This
completeness of angular functions achieved in Hylleraas basis sets results from the
presence of powers of rj5 being directly in the basis functions [54]. The powerful
effect of this feature of the basis function can be seen in Table 2.7.1, which compares
the energies calculated using different basis sets to the exact energy. The striking
conclusion is how significant an effect the odd powers of rq5, starting with ry5 itself,
have on the calculation. The implications of this are most properly understood in
the context of the limitations of another method of forming basis functions: the

configuration interaction (CI) approach, which we now discuss.

20Technically speaking, the basis set needs to become complete as {2 — oo in a first Sobolev space,
which is a Hilbert space with square integrable first derivatives [52, p. 110].
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2.7.4 Comparison of Hylleraas construction to other basis sets

The CI approach is another method that is complete in the limit of increasing the
size of the calculation to infinity [36]. The basis functions in a CI wave functions are

formed according to [3§]

b(r1,12) = Coul? (r)ul? (ra) Yo 0 (1, 72) + Crul? (r)ul” (r2) YO, o (1, 7)

(2.38)
+ C’gugd)(rl)ugd)(rg)y§270(f1, T9) + ... £ exchange,

as an example for S state, where ug) (r;) are one-electron orbitals with angular mo-

mentum ¢. The procedure is to couple all one-electron orbitals that can form a total
L = 0. The comparison of the energy obtained using this method to others including
the Hylleraas basis states described in Sec. 2.7.1 is shown in Table 2.7.2, along with
several other techniques that can be used form the basis states. The simplest ap-
proximation to write down the two-electron wave function is via a separable product

forming the the so-called Hartree-Fock method, with a radial wave function

1
o(ry,r2) = E [ (11)ug(re) £ ua(ry)us(re)] (2.39)

which, when substituted into the variational principle, Eq. (2.28), yields an energy
E ~ —2.87 a.u. The difference between this and the exact energy (-2.903 724 a.u.)
is about 0.03 a.u. and is referred to as the correlation energy. The other methods in
Table 2.7.2 account for correlation and are much more accurate than the Hartree-Fock
method.

Returning now to the role of 15, we begin by using the cosine law to write

T%2 = T% + T% — 27”17"2 COS 812. (240)
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The spherical harmonic addition theorem [32, p. 63|

Py(cosby9) =

91; 801 (027S02) (241)

for 1

rist cos iy = — Z Y (01, 01) Y (02, ¢2), (2.42)
m=—1
shows that powers of cos 815 correspond to correlation terms in the CI wave function.
We see that r%,, proportional to P;, accounts for the pp contributions in the S-state
CI wave functions in Eq. (2.38). Further, the ss contributions arise from r{, since
}/()?0,0(flﬁ T9) is just a number. All higher £/ coupling can be obtained from higher even
powers of 115 for the corresponding higher ¢ contributions of the addition theorem.
In this way, including powers of 7?7 for n = 0,1,2,... systematically includes all of
the coupled states of the CI method. The special role played by odd powers of i,
shown in Table 2.7.1 is understood by considering that if we expand the square root

of the right-hand side of Eq. (2.40),

2
rio =1+ xcosbs = 1+£C08912 — x—C082912+..., (2.43)

2 8

with = 2riry/(r? + 73), we get all powers of cosfys, corresponding to all higher-
order Il couplings via the addition theorem in Eq. (2.41). The inclusion of all possible
correlations therefore happens much more quickly in Hylleraas basis sets compared
to any CI methods that write down the basis functions as in Eq. (2.38).2! This is
why the Hylleraas approach is so much more effective; even though the CI method
is complete in principle, it is not computationally possible to include all couplings,
whereas, with Hylleraas states, they are automatically included with the odd powers
of r19 via the expansion shown in Eq. (2.43).

Another crucial property of the solutions containing odd powers of 715 is that they

help satisfy?? the electron-electron cusp condition that occurs when ry5 = 0, a specific

21These comments extend to states of higher angular momentum, with the difference being that
L # 0 states can be formed by more than one coupling scheme—for L = 0 we only had ¢/—which
results in different sequences of basis functions Eq. (2.34).

22The odd powers contain a square root factor and their derivative contains a cusp.
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Table 2.7.2: Comparison between the level of accuracy that can be achieved using the
Hartree-Fock method and various correlated variational wave functions. The Hylleraas basis
states achieve much better accuracy than the rest [38].

Method Typical Accuracy for the Energy
Basic Hartree-Fock [39] ~ 1072 a.u.

Many Body Perturbation Theory [38] > 107% a.u.

Configuration Interaction [38] 107 — 1078 a.u.

Explicitly Correlated Gaussians [57] ~ 10712 a.u.

Hylleraas Coordinates (He) [58—-60] <1073 - 1071 a.u.

case of the general Kato cusp condition [55],

o _
( ) = g ¥ (ryy = 0), (2.44)

where m;; and ¢;; are the masses and charges of the two particles, respectively,
and p;; = m;m;/(m; +m;) and ¢ denotes the wave function averaged over a sphere
centred at r;; = 0 [43]. The Kato cusp condition arises because the Coulomb potential
diverges when two charged particles coalesce, but the local energy must be constant.
For this to be true in the case of the Schrodinger equation the diverging potential
that occurs as r;; — 0 must cancel exactly with the “kinetic local energy,” leading to

the general two-particle coalescence Kato cusp conditions in Eq. (2.44) [56].

2.8 INTEGRALS INVOLVING HYLLERAAS WAVE
FUNCTIONS

The high-precision comparisons between theory and experiment in two-electron prob-
lems required to test QED (cf. Chap. 5) would be computationally infeasible if the
integrals could not be evaluated in closed form. In the case of the doubled basis set of
correlated Hylleraas functions, in Eq. (2.34), the procedure for analytically evaluating

all integrals of interest was established by Drake in 1978 [61]. Together, Refs. [61]
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and Chap. 12 of the Springer Handbook of Atomic, Molecular, and Optical Physics,
2nd Edition [43], also by Drake, provide the foundation for this section.??

2.8.1 General integral

In order to solve the GEP and obtain the optimized Hylleraas pseudostates, both
the Hamiltonian and overlap matrices must be established. Each element of these
two matrices is itself an integral, defined in Dirac notation as H,, = (Xm|H|xXn)
and O = (Xm|Xn). Once we have these pseudostates, after solving the GEP, all
structure properties in atomic physics are calculated as matrix elements that are also
integrals.?* A preliminary step in this direction that will not be belaboured here®
is to write the operators of concern, including those that comprise the Hamiltonian,
in the six-dimensional Hylleraas coordinates. The six independent coordinates are
shown in Fig. 2.5.1.

The most general integral between states y = Ryé\f& ; and x' = R’yé}ﬁé ;. that
are connected through an arbitrary operator expressed as a coupled spherical tensor

T2,k 18
I= / / drydra RV 1 (1, 72) T g (v, 12) RV, 1 (P, ), (2.45)

with the vector coupled spherical harmonics defined in Eq. (2.36) and likewise for the

tensor operator
T¢ = kyk KQ\Y2 (7)Y, (7 2.46
ko i (T1,T2) (k1kaq1a2| KQ)Y, (1) Y, (72) (2.46)
q1,92

describing the coupling of two tensor operators of rank k; and ks to form a total tensor

of rank K. Thus, T,g ko i (r1,12) describes the angular part of a general operator that

23The computer programs used in this work, which solve the GEP by evaluating the integrals
contained in the section, can be found in Ref. [62]. Standard quadruple precision (about 32 decimal
digits) is sufficient for the present set of calculations.

24This includes diagonal matrix elements—expectation values—as in energy calculations or per-
turbations to energy and also off-diagonal elements such as those involved in computing the polar-
izability.

25See references suggested at the beginning of this section for more details.
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can be a function of the coordinates and derivatives of the electrons 1 and 2. The
Hamiltonian and overlap are rotationally invariant operators, corresponding to rank-0
(scalar) tensors, a subset of this most general integral.

The volume element can be written as [63]

dr = Tldrl’l“gd?“grlgd?"lg sin 91d91dg01dx (247)

corresponding to product of radial (r1,72,712) and angular (61, ¢1, x) part, as shown

in Fig. 2.5.1, yielding

ri+r2
// drldrg / dX/ d¢1/ Sln91 d@l/ TldTl/ T’Qd?”g/ 7’12d7”12
[r1—r2]

r1+72

= A x |:/ (&1 dT’l / T2 d?“g / 12 d7°12
T1 T2—T1

[e%e} [e%} r1+72
-+ / T2 dT’Q / T1 d7’1 / 12 dT12‘| (248)

0 T2 r1—72

The solutions of the general integral expressed in Eq. (2.45) have the form
I =Y CAIN(RiRy) (2.49)
A

where I)(R1Rs) is the radial part and the sum over A ensures the inclusion of all
possible nonvanishing couplings—its role is seen below in the evaluation of the angular

part contained in C}.

2.8.2 The angular part

In Eq. (2.49), the remaining part, Cy, is the angular integral®®, which has the following

general solution [61]

Ch= > Chouns (2.50)

A1,A2

26These ensuing formulae are a consequence of repeated angular couplings. Detailed derivations
can be found in Ref. [61].
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with the individual C}, », A formed according to

ol T K L
1) X ud Dy s (2.51)
—M Q M

C/\l,)\Q,A = (_

with X, y, A given by a prefactor multiplied by a product of four 3-5 symbols

_1)6’1+€’2+L’+A
8

€1 kl )\1 6/1 )\1 A gg k’g )\2 6,2 )\2 A
x . (2.52)

0 0 O 0 0 O 0 0 O 0 0 O

Xapoh = (A1, Mgy M) (€1, Ky, 04, 0, kg, 0y, L LK)

where (a,b,...) = (2a+1)(20+1)--- and D, », o given by a product of 6-5 and 9-j

symbols

( )
ly ¢y L

L v v

Dyon = ki ky K- (2.53)

A AN Ao
M Ny L
\ V,

The Wigner 3-7, 6-j and 9-j symbols that are used to form the Cy, », A are defined in
Edmonds [32, pp. 45-50, 92-97, 100-108] and arise in the description of the coupling

of angular momenta needed to evaluate the angular portion of the general integral.

2.8.3 Radial integrals and recursion relations

The most general statement of the radial integral I, is

Ix(a,b,c;a,8) = (f(a,b,c;a, B)Pr(cosb12))rad, (2.54)

where (---).q corresponds to integration using the radial bounds established when

defining the volume element above in Eq. (2.47) with integrand

fla,b,c;a, B) = rirgrie =0, (2.55)
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The Pj(cosf2) is a residual radial function from the angular integration over the set
of vector coupled spherical harmonics [43|, with cos ;5 = 1 - I'9 defined in Eq. (2.40)

2 2 2
T{ Ty — Ty

cos s = (2.56)

27“17'2

Carrying out calculations in Hylleraas coordinates according to the basis functions
in Eq. (2.35), the radial portion of every integrand will have the form displayed in
Eq. (2.54).

The strategy used to obtain the integrals {I,} for the requisite A = 0,1,...
corresponding to nonvanishing C in Eq. (2.49) is to find Iy and I; first and then use

the recursion relation

2A+1

IA+1(a7b7C; Oé,ﬁ) = C+2

IA((Z—l,b—1,C+2;Oé,6)+IA_1(CL,b,C;Oé,B), (257>
when ¢ # —2, and

Ingi(a,b,—2;0,8) = QA+ 1)1\ %(a — 1,0 — 1,0; 0, B) + In_1(a, b, —2: a0, B). (2.58)

when ¢ = —2 [43]. The logarithmic integrals, 1%, that arise have the form
I/I\Og(a’a b7 G Q, B) = <f(a7 b7 G, ﬁ) ln TIZPA(COS 912)>rad7 (259>

with the recursion relations

(2A+1)

o I%(a—1,b—1,c+ 2 a,p)

I}\Ofl(a, b,c;a, f) =

C+2[A(a_17b_17c+2;a75)

+ 1%, (a, b, ¢; 0, B). (2.60)

The general radial integral with A = 0 is Io(a,b,c;, 8) = (rér§r{e=om=rr2) 4
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has the closed-form solution

9 [(c+1)/2] ¢4 2
Io(a,b, C;Oéaﬁ) = Z ( . )[Fa+2i+2,b+c—2z‘+2(06,5)+Fb+2i+2,a+c—2z‘+2(5;04)]
i=0

c+2 2t +1
(2.61)
with F, ,(«, 3) defined by
r q . j
¢! (P +J)" ( p )
; ¢q20,p=20
(o + BpHigest ; i \a+g) =0
' 00 3] J+1
Fpqla, B) = _P__ J ( « ) g<0.p>0 (262
aPtat2 j;_i_l (] _ q)l o+ /8 —
0, p<0

\

where p=a+2i+2, ¢ =b+ ¢ — 2i + 2 and [z] means “greatest integer in.”

I, can be written in terms of [ via [61]
1
Li(a,b,c) = 5 [Io(a+1,b—1,¢) 4+ Ip(a— 1,0+ 1,¢) — In(a— 1,b—1,¢+2)] (2.63)

which, together with Iy, provides the seeds from which all other I, follow by the
recursion relations given in Eqs. (2.57)—(2.60)

Any integral over Hylleraas wave functions connected by an arbitrary operator can
be evaluated using the machinery developed above. One needs to write the operator
in Hylleraas coordinates, which can, in practice, lead to reasonably complicated equa-
tions. Details are readily available in references contained throughout the chapter. A

full table of the radial integrals Iy and I}’ can be found in Chap. 12 of Ref. [43].

2.8.4 Hamiltonian and overlap matrix elements

As an example, we state the specialized form which the general integral in Eq. (2.45)

takes for the infinite-nuclear-mass Hamiltonian and overlap matrix elements that are
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input for the Eq. (2.32), the GEP. If the initial and final Hylleraas states are

a, b c 057’1—,37’2 M ~ ~
X = TTalrg€ yMQL(Tl, 72) and

_a b o —a'ri—B'ro\ )M A A
X' =riryrie ygllg/QL(Tla 7a),

then the integrals that constitute the Hamiltonian matrix elements are [43]

(X'[H|x) = Z Ca Z [AEI)IA(CM— i, by, ey oy, By) (2.64)

FAP Iy (ag, b — i ey an, Be) + AP Iy (as, by, o — Gy, 5+)] (2.65)
where ay =ad' +a, ap =d + a, etc., and

A(1 —ai—oz +20_ay (C_),
C+

A =2 {a+(a+ +2)+a_a_—[ara_ + a_(ay + 2)] (2—) } — 87,
+

AN = —a2 —a® —2a; +2a_(a; +1) ( ) 2L (0 + 1) (1 - C—)
Cy Cy

c_
+ 203 (0 + 1) (1 + —) :
C+
AP =0, AP =8 and AP =2(2 -2,
with ¢_/c; = 0for ¢y =0. The AZ@) differ from the Agl) only in that the replacements
a—b, a— B, {1 — l5 are made.

The overlap integral, yielding overlap matrix elements, can be given in terms of

the above definitions as

(1) =D Calalag, by, cq;ap, By). (2.66)
A
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CHAPTER 3

Beta Decay and Charge-state

Distributions in 9He

3.1 OVERVIEW

The Standard Model (SM) provides the framework for understanding the kinematics
following a beta decay event in ‘He, which has a lifetime of 0.8 s. Supposing this is a
vector-axial semileptonic weak process, it predicts the electron-antineutrino correla-
tion coefficient, a quantity related to the angle between the electron and antineutrino
that emerges from the beta decay. Deviations from this prediction are widely pos-
tulated as signals for new physics (NP) [28]. Due to the elusive nature of neutrinos
and the resulting inability to detect them experimentally, it is essential to understand
what happens to the recoiling daughter ion, °Li*, following a decay event, to deduce
the kinematics of the decay.

This chapter includes published work which attempts to resolve a significant
theoretical-experimental discrepancy in the predicted amount of double ionization
following this process [26]. Pseudospectra, of both the one- and two-electron variety,
feature prominently in the analysis in this chapter owing to their ability to discretely
represent an infinite bound and continuous spectrum.

We begin in Sec. 3.2 by giving a historical overview of this fascinating and sig-
nificant problem. Section 3.3 then outlines the motivation for this work, describing
how it relates to potential new physics beyond the Standard Model. This section in-

troduces the experimental quantity of interest, the electron-antineutrino correlation
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coefficient (ag,). It is theoretically motivated, and the experiments that measure this
quantity are summarized. Turning to atomic physics, Sec. 3.4 sets up the problem
and describes the assumptions made. Section 3.5 describes the previous theoretical
work to calculate the charge-state fractions of the SLi" daughter ion following the
beta decay of *He. At this stage, previous works have significantly overestimated the
amount of double ionization, i.e., formation of ®Li*", compared with experiments.
Following this, Sec. 3.6 makes two theoretical arguments to support the notion that
theory is indeed overestimating the amount of °Li** following the decay. In Sec. 3.7,
an outline of the projection operators and their derivation is presented, with the re-
sults of this method being described in Sec. 3.8. Section 3.9 discusses several avenues

for future work.

3.2 HISTORICAL SIGNIFICANCE

In 1959, on the heels of her major experiment studying the beta decay °°Co, which
established nonconservation of parity in the weak interaction!, C. S. Wu, in Reviews

of Modern Physics, wrote |64]:

The frontier of parity study has now advanced to the field of strange
particles. The atmosphere in the field of beta decay appears unusually
calm and quiet after the storm. I will try to piece together the jigsaw
picture and see what sorts of puzzles in beta decay have fallen into shape.
Most urgent is the question of whether there are still any missing pieces

and what are they if there are?

The problem of beta decay holds a significant and exciting position in the history
of physics. The general equation describing beta decay? is [65]:

2XN — é:l:lX]/V:Fl + e + (7, or 1), (3.1)

IThis discovery led directly to the 1957 Nobel Prize for her theoretical collaborators, C. N. Yang
and T. D. Lee. Her omission from this prestigious award is indefensible, considering her crucial role.
Her contributions would later be recognized with the first Wolf Prize in 1978.

2This is an atomic perspective on the problem; there are two more successively fundamental
levels to consider: the nuclear and quark levels.
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which describes an atomic element X with mass number A, atomic number Z, and
neutron number N decaying into element X’ with mass number A, atomic number
Z=+1, and neutron number NF1, along with the leptonic pairs of an electron /positron,
e, and an antineutrino/neutrino (7. /v.). This process produces energy Qs =
Imn(Z,A) —my(Z £1,A) — m.] c?, which is shared between the outgoing leptons
and, if the decay occurs in an atom, the recoiling daughter ion (or the daughter
proton in the case of bare neutron decay). In this equation, my is the mass of the
parent or daughter nucleus (with corrections for electron binding energy), m, is the
mass of the electron, Z is the atomic number of the parent ion, and c is the speed of
light. The half-life of the process is approximately 10 minutes for a bare neutron and
ranges substantially in atomic systems, owing to wildly differing stability of various
nuclear configurations, selection rules, and values of energy release [65].

It is worthwhile to briefly consider the historical relevance of this “storm” alluded
to by Wu. We first focus on phenomena preceding quantum mechanics, leading toward
the old quantum theory. In studying the phosphorescent properties of the recently
discovered uranium salts in 1896, then relevant for the lighting industry, including the
cathode-ray tube, Becquerel accidentally observed radioactivity for the first time [66];
he detected products of beta decay, then “uranic rays”. This work is foundational to
nuclear physics and was awarded the 1903 Nobel Prize in Physics alongside Marie and
Pierre Curie. By 1914, quantitative studies [67] underway® concerning the energy of
the beta rays (by 1902, it was recognized that these were electrons) revealed something
unexpected: the energy spectrum of the beta particles was continuous. Assuming a
two-body interaction, the beta particle and the leftover “daughter” nucleus, this is
inconsistent with the conservation of energy and momentum. The situation, pictured
in Fig. 3.2.1 was so strange that many resorted to relegating conservation of energy to

a statistical law, not observed in every interaction, but observed on average |70, 71|—

3A fascinating historical episode is involved here [68]. In 1911, Meitner, Hahn, and von Baeyer
measured a monoenergetic spectrum of electron emission using a photographic plate — later con-
tradicted by two separate Chadwick measurements, one using an ionization chamber and the other
with a Geiger counter. Ellis and Wooster, using yet another device, an absorption calorimeter [69],
confirmed the Chadwick results. Meitner’s photographic detection method was too crude, offering
insufficient resolution of the diffuse lines and preventing the conclusion that the energy spectrum
was continuous.
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a view advanced by even Pauli and Bohr, who renounced it in 1936 after Fermi
established the theory of beta decay [72].

As a “desperate remedy” [71] to the problem of “missing” energy , Pauli proposed
another subatomic particle, which he called the neutron. This particle he proposed
had properties of both the actual neutron, discovered by Chadwick two years later
[73], and the neutrino in Fermi’s theory of beta decay. Fermi correctly postulated
that the neutrino is actually created during the beta decay process [74, 75| whereas
others such as Pauli assumed that it was already within the nucleus. Fermi’s theory
detailed a new (contact) force called the weak force and firmly restored faith in the
conservation of energy law.*

After Fermi’s theory, physicists worked for many years to discern the Lorentz
gauge the structure of the weak interaction, and understand how the weak force fits
into the framework of relativity. Fermi initially predicted that the coupling structure
between the outgoing leptons would have a vector character, where no spin change
would happen in beta decay (AS = 0). However, shortly after, it was shown that
either an axial or tensor structure would be needed to explain the observed selection
rules, which implied a spin change AS =1 [77|. The following section will elaborate
on these points.

This work culminated in the electroweak unification led by Glashow, Salam, and
Weinberg. Weinberg, in his seminal 1967 paper [78, 79|, which presented the theo-
retical framework that unified the electromagnetic and weak forces, credited Fermi’s
work on beta decay from more than 30 years prior as the first attempted unification.
This unification led to correct high-energy predictions, including the W and Z bosons
[80], that met with consistent experimental confirmation. The W and Z bosons were
shown to mediate the weak interaction just as photons mediate the electromagnetic
interaction.

As a final historical point, due to its role in stellar nucleosynthesis, beta decay in-

fluences stellar evolution, elemental abundances, and, ultimately, our understanding

4Fermi’s paper was rejected by Nature “because it contained speculations too remote from reality
to be of interest to the reader” [76].
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Fig. 3.2.1: A plot of the intensity of beta emission with a range of energies [69]. This result of
Ellis and Wooster in 1927 shows unequivocally that the intensity of beta particles, following
the beta decay of radium, is shown to vary continuously with energy. This confirmed the
earlier Chadwick experiments with significantly greater resolution.

of the origins of the universe |81, 82|. Furthermore, studying beta decay in the con-
text of neutrino physics is an essential area of active research. Work in this direction,
including the study of neutrino masses and oscillations and the widely probed for neu-
trinoless double beta decay [83], have implications for particle physics, astrophysics

and cosmology and was recognized with the 2015 Nobel Prize in Physics [84].

3.3 MOTIVATION

3.3.1 The V — A theory

After a significant amount of work that led to the establishment of parity nonconser-

vation in the weak interaction |64, 85], it was found [86-88] that the weak interaction
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Fig. 3.3.1: The weak interaction in beta decay. The left panel shows the post-S~-decay
products with a daughter ion and an ejected beta particle e~ with an inset showing the
nuclear-level products of the 8~ -decay of a neutron. The Feynman diagram corresponding
to this inset is shown in the right panel. Images are in the public domain.

was of the form V — A ("vector minus axial-vector").® Over the ensuing several years,
this was confirmed by a flurry of experimental activity [91-94]. It is known now that
the weak interactions are a mixture of V and A components—not necessarily strictly
of the form V — A.

Much later, in 2009, Weinberg remarked [79] that “V — A was the key”; that
the realization that this indeed was the proper form of the interaction, leading to a
profound analogy between electromagnetic and weak interactions, and led to their
unification.

This is the point of departure from the historical overview for our story: the eluci-
dation of the V — A theory of the weak interaction, which established its chiral nature.
We begin by briefly outlining this theory and, in the following section, overview its

connection to searches for new physics (NP). The question occupying the physics

®Even though it has been universally acknowledged (since the mid-1960s [78]) that Sudarshan
and Marshak [86] have priority on the V — A theory, it is still mostly referred to as the “Feynman
and Gell-Mann theory,” with their work more frequently cited, possibly due to their status as Nobel
laureates. In the first printing of Surely You’re Joking, Mr. Feynman [89], Feynman discussed beta
decay and omits Sudarshan and Marshak’s contributions, claiming that understanding V' — A was
the first and only time in his career that he truly understood something new first. Regarding the
same story, Gell-Mann even threatened legal action [90] against Feynman for misrepresenting his
contributions in their joint work [87]. As a result of this exchange between Feynman and Gell-
Mann, subsequent printings of Surely You’re Joking, Mr. Feynman, if not the widespread consensus,
correctly acknowledge Sudarshan and Marshak’s priority.
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community after Fermi’s theory was: which of the possible covariant, i.e., Lorentz
invariant, expressions for the interaction Hamiltonian was correct. Covariance is an
expected property of any physical theory, asserting that the laws of physics are the
same in all inertial reference frames. As discussed in the Introduction, covariance is
intimately related to CPT symmetry (combination of charge, parity, and time-reversal
conjugation leaves the physics unchanged), perhaps the most important symmetry of
the SM — and one that we have tested extensively [95] and have not yet been found
to break.®

The form of the nuclear-level Hamiltonian” governing the beta decay shown in the

right panel of Fig. 3.3.1 is [96, p. 5]

Hp=H,+H,+ H.+ H; + ) g; / (1,0, ) (1, Ousz) (3.2)

where n, p, e, U refer to the neutron, proton, electron and antineutrino along with
their unperturbed Hamiltonians (H,) and wave functions (u,), which are solutions
to the Dirac equation.® There are five possible covariant interactions (i = 1,2,...,5)

that could characterize beta decay
Os=1, Oy=19" Or=d" Oa=9"y, Op=1=—ivonrsn (3.3

where S, V, T, A and P are, respectively, the scalar, vector, tensor, axial vector and
pseudoscalar operators corresponding to the currents (ﬁp(’)%n). These currents are
weighted by the constants g;. In Eq. (3.3), v* are Dirac matrices and o = %[’y“, ~¥].

As already mentioned, extensive experimental efforts [91-94| that continue to this

6In more general frameworks such as string theory, CPT symmetry violation no longer implies
LI violation [6].

"In high-energy QCD experiments, the quark-level Hamiltonian is required [28].

8Eq. (3.2) can represent (pure) neutron decay or nuclear beta decay. In the former case, the wave
functions are solutions to the free Dirac equation, whereas in the latter, the proton and neutron
are bound inside of a nucleus, while the emitted beta particle exists in the Coulomb field of the
atomic nucleus [96, p. 5]. Additionally, it is an open question whether or not neutrinos are Dirac
or Majorana particles. If neutrinos are Dirac particles, i.e., they are fermions with distinct particles
and antiparticles, then they satisfy the Dirac equation. Alternatively, if neutrinos are Majorana
particles, i.e., they are their own antiparticle, then they don’t satisfy the usual Dirac equation;
however, they do satisfy a modified Dirac equation.
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day [97, 98] have shown that it is only the vector and axial vector interactions which
contribute to the interaction Hamiltonian in Eq. (3.2). The resulting Hamiltonian

(from here to be referred to as the “SM prediction”)?

G C
Hint(n7p7 €, V) = \/_g / d3x |:HP7M <1 + 0_375) un:| |:ae’7,u<1 - 75)“1/1 ) (34)

where G is the Fermi constant of beta decay, proportional to the ud-element of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is known experimentally that g—é =
—1.255(6) |96, p. 260]. Without dwelling further on particle physics, it is important to
note that current research into beta decay aims to uncover new physics by identifying
additional components in decay interactions, however small. This means that the
interaction term in Eq. (3.4) is rigorously tested for possibly including more than just
vector and axial-vector components.

The conservation of total angular momentum of the system (nucleus and leptonic
products) is

Ji=Js+L. +Se, (3.5)

where J; and J ¢ are the initial and final total angular momenta of the nucleus and L.,
and S, are the total orbital and spin angular momenta of the lepton pair. Consider-
ation of Eq. (3.5) further differentiates the types of decay events. The distinguishing
feature is the alignment, or lack thereof, in the spins of the outgoing leptons. In al-
lowed decays!'® the outgoing leptons do not have orbital angular momentum (L., = 0);

i.e., that they are emitted as an “s-wave” with a spherically symmetric character. The

9A subtle point of Eq. (3.4) is that both maximal parity violation and left-handed neutrinos
are assumed in writing it this way. These are justified assumptions since they correspond to every
measurement that has ever been performed. These concepts will be discussed soon. As a point of
notation, we will, from now on, write e and v for simplicity with the understanding that the leptons
obey Eq. (3.1), such that one is a particle and the other an antiparticle.

0Forbidden decays, where the leptons have nonzero orbital angular momentum, are greatly
suppressed and will not be discussed here.
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angular momentum selection rules are [96, pp. 262-263|

Fermi transition (S =0): Jf = Jf (3.6)
I7 (JI = Jf #0)
Gamow-Teller transition (S =1): Jf = (3.7)
JrE1

where J; and Jy are the initial and final total angular momenta of the nucleus and
S = |Se + S, | depicts the total spin of the lepton pair. The parity of the nucleus, ,
is unchanged as a consequence of the lepton pair having L = 0.

The form of Egs. (3.6) and (3.7) can be understood as follows. It can be shown
by nonrelativistic reduction that the Fermi transitions proceed via vector operators,
which do not cause any change in nuclear spin. Thus, in Fermi transitions, where the
e~ /et and . /v, are antialigned, the total spin does not change, AS = 0 and the total
(nuclear) angular momentum remains constant. Conversely, in Gamow-Teller decays,
the lepton spins are aligned and AS = 1. It follows from Eq. (3.7) that transitions
satisfying |J; — J;| = 1 are pure Gamow-Teller transitions. The beta decay of ®°He
(J™ = 07) to °Li* (J™ = 17), the subject of this chapter, is pure GT.

The most general form of the decay rate distribution, derived from Fermi’s Golden
Rule (cf. Appendix B), given in the beta particle (¢) and (anti)neutrino (v) directions
and beta particle energy is |28, 99|

F(+Z, E,
w({J)|Ee, Qe, Q) dE.dQ.dQ, = W]}CE’@(ED — E.)*dE,.dQ.dS, (3.8)
m
Pe Po  ,Me | (J) Pe Py Pe X Py
X g{{waEeEv +bEe + J] {AEB +BEU + D 5B, ]}

where F, p, {2 are the energy, momentum and solid detection angle for the two lep-
tons; Ey is the maximum beta particle energy, J and (J) are initial angular momentum
and polarization of the initial (nuclear) state; F'(£Z, E.) is the Fermi function, a cor-
rection factor accounting for the distortion felt by the beta particle, which is moving
in the Coulomb field of the nucleus of charge Z (96, pp. 263-269|; and a, b, A, B, D

(each multiplied ) are correlation coefficients depending on the form of the transition
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matrix elements of the beta decay Hamiltonian in Eq. (3.2). Although all five of these
coefficients are actively studied in searches for new physics (see Ref. [28| for details),
we are exclusively concerned with ag,, the f—v angular correlation coefficient, in this
dissertation. With this in mind, a simplified version of this equation [98, 100] where,
for example, unpolarized ((J) = 0) nuclei can be used, will serve our purpose:

Me

w(Ee, 0) C<1+bEe

+ aﬂy% oS 9> : (3.9)

In Eq. (3.9), C describes the phase space density of such transitions [100] and depends
on the momenta and energy of the outgoing leptons. The so-called Fierz term, b,
remains in this equation, even though we do not explicitly consider it here, and the
SM predicts it to be 0 in pure Gamow-Teller beta decays [98]. The reason for this is
that measurements of ag,, as in those of Miiller et al., [98], are automatically sensitive

to potentially nonzero values of b which could point to new physics (NP).

3.3.2 The f—v angular correlation coefficient

In order to understand the relevance of ag, in searches for NP , we begin by considering
the SM prediction for its value. “Correlation coefficients” such as ag,, appearing in
Egs. (3.8) and (3.9) are formed as products of nuclear matrix elements, including
both the Fermi and Gamow-Teller type, and coupling constants. The full form!! of

ag,§, for the general case of mixed decay (0 < z < 1) is [99]

Gt — |MF|2{|OV|2 LG = [CsP? rogﬁ} (3.10)

1
~gMarP{ICaP + 164 - Crf - 32,

HTerms arising from the so-called Coulomb correction have been omitted here, owing to their
smallness relative to the magnitudes of interest [94]. See [99] for the full expression.
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where My and Mgp are the Fermi and Gamow-Teller nuclear matrix elements.!?

¢ itself is given by
€= |MpP [|Cv? + |CVP + |Cs® + |C5*] + [Mar[? [|Cal® + |C4* + [Cr* + |C7[?] -

The {C;} and {C}}, fori = S, V, T, A, are the Lee-Yang coupling constants, i.e., “cur-
rents”, appropriate for characterizing the beta decay process at the level of constituent
nucleons.’® C; and C/ refer to parity conserving and nonconserving components of
the interaction, respectively [85].!* The implication is that the {C;} retain their sign
under parity inversion whereas {C/} undergo a sign change. In the maximal parity
violation predicted by the SM, these currents satisfy C; = C!. The {C’;g)} parame-
ters are related to the more fundamental hadronic charges and further to the Wilson
coeflicients at the quark level predicted by QCD [28].

In the SM [101], pure decays, where either Mg = 0 (in GT decays) or Mgy = 0

(in Fermi decays) can be written in terms of the coupling constants as

|Cs]? + |C% 2
pp=1— """ 3.11
a@ F |Cv|2 ( )
1 |Cr|? + |C7 2
ABy,GT = _g 11— |C,—A’2T 9 (3'12)

where the second term in each of these is expected to be zero based on the SM
prediction. Thus, a measurement of ag, constitutes a measurement of the ratio of

these coupling constants. This can be expressed even more simply as

1/3—p? 1
, == = —(4x — 1), 1
a6 3(1+p2) 3( o ) (3.13)

where p is the Gamow-Teller/Fermi mixing ratio,'® or expressed in terms of x the

2Mp =0 (Mgr =0) in GT (F) decays.

13 Appendix C discusses the handedness of leptons in the SM, a relevant concept for the present
consideration.

14These are effective couplings which relate to the more ‘fundamental’ quark-level parameters
including masses and couplings of potential new particles [28].

15The mixing ratio, p, is the ratio of the product of the coupling constant and the nuclear matrix

element for each decay type (terms to be soon discussed) so that p = %VI”]{[GFT.

50



3.3. MOTIVATION

1.0 -

0.5

0.0 0.2 0.4 0.6 0.8 1.0

Fermi fraction ()

Fig. 3.3.2: Scott diagram showing the value of ag, as a function of the Fermi fraction z,
which characterizes the degree of mixing in the decay. The solid red line corresponds to the
V — A structure of the weak interaction observed in nature.

Table 3.3.1: Summary of the value of the beta-neutrino angular correlation coefficient (ag, )
for pure Fermi (z = 1) or Gamow-Teller (z = 0) decays. The SM (V — A) predictions lie in
the “Vector/Axial-Vector” column.

Transition Type Vector / Axial-Vector Scalar/ Tensor
Pure Fermi +1 —1
Pure Gamow-Teller —1/3 +1/3

Fermi fraction. Pure decays (z = 0 for Gamow-Teller and x = 1 for Fermi decays)
are found at the endpoints of the Scott diagram in Fig. 3.3.2.

In allowed transitions, the SM predicts that the values of ag, for pure scalar,
vector, tensor, axial-vector interactions to be [94], respectively -1, 1, %, —% (this is
summarized in Table 3.3.1). Since the SM predicts the weak interaction to be V' and

A, we expect that ag, will lie along the solid red line in the Scott diagram shown in

Fig. 3.3.2. Deviations from this prediction are actively sought in searches for NP.
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3.3.3 Uses in searches for new physics

As described in the Introduction, despite the sweeping and significant successes of the
SM, there are several critical questions for which it has no answer. Phenomena such
as dark matter and baryonic asymmetry point to new physics (NP). The weak sector
of the SM, and in particular the correlation coefficient ag, in beta decay, is a popular
starting point to detect such NP directly [28]. This is the first example in this thesis
that searches for NP at the low-energy frontier by using high-precision measurements
and supporting theoretical efforts.

Many extensions'® to the SM (i.e., “beyond SM” (BSM) theories) postulate new
particles that have couplings different from what we see in the SM [104]. Data from
beta decay experiments competes with and complements other sources, such as the
LHC [105] and astrophysical data, such as the neutrino flux from observed supernovae
[106].

Although the specific modification to the weak interaction is dependent on which
BSM is under consideration [107|, the generic mathematical form underlying how
NP would become manifest in beta decays is in changes to the quark-level transition
d —> ue~ 1., a process that is mediated by W7 bosons [104, 107]. The cause of this is
that the beta decay Hamiltonian predicted by the SM (Eq. (3.4)) picks up additional
terms corresponding to scalar, tensor, or even pseudoscalar terms and also containing
right(left)-handed (anti)leptons.

The usual way to capture this mathematically is by adding terms with NP-
couplings «; for hypothetical interactions O; to the SM Langrangian Lg\; according

to

Lpsm = Lsm + Z @;O;. (3.14)

In addition to the new terms introduced in this fashion, new interference terms

16 A1l have the virtue of explaining some as yet unexplained phenomena such as the naturalness
problem or affording a BSM mechanism for CP violation believed to be required for the observed
baryon asymmetry in the universe. Since CP violation [102] is required for baryon asymmetry, and
CPT, tied intimately to Lorentz invariance [103], is believed to be a good symmetry [8], a specific
set of theoretical efforts are focused on adding terms to the beta decay Lagrangian which violate
T-reversal symmetry.
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between the SM and BSM couplings can be expected to contribute to the decay rates.
Generally, these additional terms correspond not only to new couplings but also to
new particles and forces.

One concrete example of a BSM theory which generates an exotic, i.e., non-SM,
weak interaction is the “Minimal Supersymmetric Standard Model” (MSSM) [108§]
wherein right-handed (RH) interactions are introduced via RH sfermions.!” These
supersymmetric corrections generate scalar and tensor interactions which modify the
beta decay Hamiltonian in Eq. (3.4) and the testable parameter ag,, directly related
to the Lee-Yang coupling constants.!® To compete with the constraints imposed from
other sources, such as the LHC, beta decay measurements must take place at the
dag,/ag, ~ 0.1% level of precision to be sensitive to left-handed scalar and tensor
interactions and dag, /ag, ~ 0.01% to compete in studies of right-handed interactions
[107]. While the former limit (~ 0.1%) is well within reach of many experiments
(almost all of those described in Table 3.3.2), a precision of ~ 0.01% is not within
the current capability of ongoing experiments.

In experimental determinations of ag,, one searches for possible “exotic” scalar
or tensor contributions that would manifest as terms quadratic in the corresponding

coupling constants [28]. The quantity that is measured is not ag,, but rather

agy = agy/ (1 + <b%>> (3.15)

where the dependence on the Fierz term, b, manifests through the weighted average of
its product with the total mass (m.) and energy (E.) of the beta particle [109]. In the
SM, b has a nonzero value. It becomes nonzero through couplings between standard
(V, A) and exotic (S, T') currents [126]. In practice, depending on which type of decay
is probed, the relative contributions of |C7/Cy4| (in pure Gamow-Teller decays) or
|Cs/Cyv| (in pure Fermi decays) can be determined, both of which are expected to be

0 in the SM.

17Sfermions are the superpartners of fermions characteristic of SUSY theories.

18The C! can also be calculated directly from lattice QCD, yielding results in agreement with
experiment. However, the theoretical errors are typically much larger than those obtained from
using data from low-energy beta decay experiments.
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Table 3.3.2: Ongoing nuclear beta decay experiments studying the correlation coefficient
ag, are listed. Each decay is classified by its “type™ Fermi or Gamow-Teller and based on
whether it is 3~ or 31 decay. See Table V in Ref. [109] for a comprehensive list of the older
experimental efforts.

Parent Type Experiment Year (Most Recent)

CHe ™ GT/p~ LPCTrap (GANIL) [97, 110, 111] 2012
BArt Mixed/p* LPCTrap (GANIL) [112, 113] 2018
YNet Mixed/8~ LPCTrap (GANIL) [113] 2018
6He aT/6 Oak Ridge [114] 1963
U. Washington [98, 115] 2022

Weizmann Inst. [116] In Progress

SARAF (Yavne) [117] In Progress®
2Na, Mixed /5 Berkeley [118, 119] 2008P
27y Both ISOLDE (CERN) [101, 120, 121 2020
BKm F/g+ TRIUMF [122] 2005
SLiT GT/p~ ATLAS (Argonne) [123-125] 2015°¢

2 The SARAF experiment will also look at several isotopes of neon: ®Ne, Ne, 23Ne.

b There is some interesting history surrounding the Berkeley experiments. The initial
experiments [118] found a substantial (3.60) disagreement with the SM, while the latter
measurement |[119] showed that the original effort was compromised by unintentionally
trapped 2'Nag molecules.

¢ In these 8Lit experiments, it is a-8-7 correlations that are studied.

There are several completed, ongoing, and planned experiments which seek to
measure every coefficient (a,b, A, B, D) in Eq. (3.8), which are all connected to fun-
damental predictions of the SM. Efforts to determine ag, are reviewed in the following
section. A complete list of these experiments can be found in Section 3 of the Review
by Gonzalez-Alonso et al. [28]. These beta decay experiments all seek to discern and

stringently test the fundamental properties of the weak interaction.

3.3.4 Experimental measurements of ag,

Careful measurement of the the beta decay rate of unpolarized nuclei, governed

by Eq. (3.9) offers one means of obtaining the quantity of interest ag,. Since the
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Fig. 3.3.3: Kinematics following the beta decay of ®He. The angle 6 between the electron and
antineutrino is related to the electron-antineutrino correlation coefficient — the experimental
quantity of interest in connection with searches for NP.

(anti)neutrino cannot be detected directly in experiments, ag, can be deduced by
observing the momentum spectra of the recoiling nucleons in coincidence with the
beta particle.!? The typical situation is illustrated by considering the beta decay of
SHe shown in Fig. 3.3.3. Due to the elusive nature of neutrinos and the resulting
inability to detect them experimentally, it is essential to understand what happens
to the recoiling daughter ion, °Li*, following a decay event, to deduce the kinematics
of the decay.

A summary of these experiments is given in Table 3.3.2. Early work to estab-
lish the V—A theory, such as from Allen et al. [93], is omitted from this table. The
significant advancements that have been made in the techniques of laser cooling and
trapping® have facilitated a strong resurgence of interest in this problem. Well-
localized atomic clouds allow decay products—importantly, the recoil ions—to emerge
with minimal scattering, offering great control over associated systematic uncertain-
ties [28]. The high intensity of radioactive source atoms and ions provided from the

various sources like GANIL, ISOLDE, and CENPA at the University of Washington

BIn this work, we are concerned with nuclear beta decays, that is, beta decays that occur in
atoms or ions, but there is also significant activity which considers bare neutron beta decay (e.g.,
the aSPECT spectrometer at Institut Laue-Langevin [127] and the aCORN spectrometer at NIST
[128]).

2Ton (Paul or Penning) and atom (magneto-optical) traps are both extensively used to study
beta decay. .
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Fig. 3.3.4: The predicted shapes of the recoiling daughter ion’s (RI) momentum are shown
for the two possible Fermi interactions (vector and scalar) and the two possible Gamow-
Teller interactions (axial-vector and tensor).

discussed in Table 3.3.2 is a critical reason contributing to the high precision that is
now possible in low-energy decay experiments. The radioactive atoms are produced
typically via a stripping interaction (e.g., "Li(d,p)®Li at ISOLDE-CERN [125]) and are
then cooled and trapped, possibly multiple times. The common objective in all exper-
imental efforts studying nuclear beta decay is to measure in coincidence the recoiling
daughter ion (RI) and the beta particle. Spatial- and energy-resolved measurements
of the recoiling ion and beta particle are made possible by a microchannel plate and
a telescope/scintillator, respectively. Time-of-flight (TOF) analysis allows for deter-
mining the momenta of the RI.2! The decay rate is thus measured as a function of the
momentum of the RI. These measurements are compared with the theoretical curves
[93, 94], which depend on the value of ag,, as shown in Fig. 3.3.4. In comparing the
observed spectra with those predicted theoretically with different values of ag, that
the data analysis proceeds. This is a difficult task, especially when considering that
the results must be precise (dag,/ag, ~ 0.1%) in order to be helpful. Furthermore,
to obtain the theoretical curve, very realistic simulations must be carried out [126]
and in particular, the centre of the trap must be known very precisely, as it is often
the leading source of systematic uncertainty [129]. Great efforts are taken to model

the trapped ion cloud and the electric and magnetic fields present in order to cor-

2IThe exact mechanism of how the TOF measurement is performed is slightly different in certain
experiments. For example, experiments at GANIL and University of Washington use a set of plates
in an electrostatic mechanism whereby the Rl is accelerated. On the other hand, the ISOLDE-CERN
WITCH experiment uses a magnetic spectrometer where recoil ions spiral adiabatically from a high
B field to a low B field.
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rectly capture the dynamics of the field and cooling effects along with the N-body
interactions present in the buffer gas (98, 129]. As in all precision experiments, the
continuous development of better detection schemes and methodologies to improve

measurement statistics is of chief importance.

3.3.5 Advantages of light atoms

Although, as illustrated in Table 3.3.2, many isotopes can be studied, there are certain
advantages to using a “simple” atom such as °He, or the still more straightforward
one-electron system SHe™. Firstly, this is a pure GT decay and is exclusively sensitive
to potential exotic tensor currents and will serve to measure Cr/C4. The advantage
to studying a pure decay is that the Fermi fraction (z) has a known value (0 or 1)
rather than a value 0 < x < 1 that requires calculation and measurement. Fur-
thermore, in light nuclei such as this A = 6 system, the high-precision few-body
nuclear structure calculations needed to model the decay, in comparison with the ex-
periment, are possible [98]. Few-nucleon systems such as °He facilitate the inclusion
of higher-order (nuclear) contributions such as recoil order and radiative corrections
that produce more accurate (nuclear) simulations. Additionally, ®He (or ®He™) is
one of the lightest nuclei to undergo beta decay with a relatively large energy release
(@ ~ 3.5 MeV), providing ideal conditions for the detection of the RI [130]. The
relatively low energies of the beta particle and the RI make these experiments chal-
lenging. The large @ value of “He decay balances accurate nuclear theory calculations

and sufficient experimental signal.

3.3.6 Connection to atomic physics

From the viewpoint of calculating atomic properties, He is an excellent candidate
parent ion for studying beta decay because this is a simple atomic system comprised

of two electrons.?? The atomic electrons can be modelled with high-precision in these

22The one-electron ‘He™, studied extensively at GANIL (e.g., [111]), is also excellent in this
regard. Adopting a “glass is half full” sentiment; the two-electron case is valuable as it tests electron
correlation and exchange effects while remaining very accurate.
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systems and this feature is how atomic theory connects to these nuclear physics exper-
iments. The excitation and ionization processes of the RI are referred to as “shake-up”
and “shake-oft”. Understanding these atomic effects is ultimately crucial in the exper-
imental determination of ag, since the different charge states of the daughter ion can
be discerned by TOF analysis. As such, the distribution between the daughter ion’s
charge states must be known to experimentally realize the RI momentum spectrum
of Fig. 3.3.4 and thereby determine ag,. This can be achieved by setting thresholds
on the minimum beta particle energy to restrict attention to decays that completely
separate charge states based on TOF analysis (e.g., Ref. [130]). However, in simple
atomic systems with one or two electrons, it should also be possible to predict the
amount of shake-up and shake-off accurately. For example, in the one-electron He™
system, theory [131] and experiment [111] are in perfect agreement. This behaviour of
atomic electrons is also studied in more sophisticated decays, such as ?Ne* and 3Ar™
[113], however, here it is noted that the ability to calculate the shake-off probabilities
of these “highly” multielectron system is difficult to calculate to high accuracy. This
work focuses on the two-election system He, the “sweet spot” between these two ex-
tremes, where theory is still competent but where electron-electron correlation must

be considered.

3.4 FORMULATION OF THE PROBLEM

Atomic calculations predict the behaviour of the two atomic electrons following beta
decay. The daughter ion can become excited (in shake-up), singly, or doubly ionized
(in shake-off). These three channels correspond to different charge states of the
SLiTdaughter ion: ®LiT, ®Li™" and SLi*T. In particular, the primary objective of
this work was to rectify the fact that previous theoretical efforts [131, 132] and [133,
pp- 59-66] have universally overestimated the quantity of double ionization (formation
of SLi**") relative to experiments [114, 115]. This section formulates the problem to
be solved by first describing the kinematics of the beta decay and then outlining the

physical assumptions made. Henceforth, we will be exclusively concerned with pure
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GT beta decay of “He.?3

3.4.1 Kinematic description

We have established in this chapter that the beta decay He — [SLi*] + e~ + v is
studied to determine whether or not NP is present in the ag, coefficient. The square
brackets around the daughter SLi* ion are a reminder that shake-up (excitation to
(°Li*)*) and shake-off (single or double ionization to ®Li*™ or SLi**, respectively) are
all possible outcomes of *He decay, as shown in Fig. 3.3.3. The experimental challenge
is that ¥ cannot be detected directly, so its momentum vector must be deduced
from the overall kinematics of the decay process, including both the [ particle and
the recoiling 8Li™ nucleus, together with its two atomic electrons. In Sec. 3.3.4, it
was shown that interpreting correctly the recoil ion momentum spectra, needed to
determine ag,, one must consider its charge state. Otherwise, deviations due to the
electronic momentum might masquerade as a signal for new physics. First, we must
formulate the kinematics of the decay.

The kinematics of the process is as follows. As discussed previously [115, 132],
the emitted [ particle has a maximum kinetic energy of F., = 3.51 MeV with a
broad energy distribution going down to nearly zero. However, in the experiment
of Hong et al. [115], only those events with £ > 1 MeV were counted to ensure
separation in the TOF spectra used to disentangle the separate charge states. At
these energies, the § particle is relativistic. From the relativistic energy-momentum
equation (Foay + mec?)? = *P? + m?2c*, the maximum recoil momentum is P, =
1070 a.u. In contrast, since the recoiling He nucleus is much more massive (M =
6.01523 u), its recoil velocity of v = 0.0925 a.u. is nonrelativistic. The atomic
electrons acquire a corresponding momentum K = m.v,. = 0.0925 a.u.; however,
this amount is so small that it is unimportant for the present discussion, though it

was considered in [132] and [133, pp. 32-43].

23The decay of *He™ (identical from a nuclear physics perspective) will also be briefly discussed.
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3.4.2 Physical assumptions

The three points of discussion concerning the physical process here are the recoil of
the daughter ion, the decay itself, which results in a change in nuclear charge, and the
outgoing beta particle. Recall that we are interested in calculating the amount of each
SLi* charge state following the decay. In these three cases, we will ask what effect
these have on the atomic electrons and to what (if any) extent we must accommodate
them in our theoretical treatment. The future works at the end of this chapter in
Sec. 3.9 addresses the possible relaxation of these assumptions.

Firstly, a perturbation is introduced by the fact that the °Li* daughter ion acquires
momentum due to the decay. Mathematically, this recoil is generated by the operator
e (r1+r2) - Recoil corrections are important for analyzing experiments [132]. However,
for the present study, we worked in the limit of zero recoil (K = 0) where the operator
mentioned above is 1 since the recoil effects do not materially change the charge-

state distributions, which are our main focus. In particular, the probability for the

formation of Li** can be written in the form [132]:
PLi*Y)= A+ K*B+---, (3.16)

where hK = Rh|K| is the magnitude of the recoil momentum, with B ~ 0.005 so that
K?B ~ 4 x 107° relative to the previously calculated value A ~ 0.012 [132]. The
present work, therefore, focused on the leading A term and neglected the recoil. It
will be seen that the discrepancy in predicted double ionization is much larger than
this.

The most significant perturbation contributing to exciting or ionizing atomic elec-
trons is the change in nuclear charge accompanying decay.?* The charge goes from
Z = 2 to Z = 3, and thus, the Hamiltonian changes (from Hz_s to Hz_3) in a
very short time. In this work, we adopt the sudden approximation (SA), where this

change in nuclear charge is modelled as taking place instantaneously. This simplifica-

24The other process that can happen is “direct-collision”, where an orbital electron is Coulomb
scattered by the emitted beta particle. This effect was shown to be of order ~ o?(aZ)? ~ 107% in
helium [134], much too small for us to be concerned with here.
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tion has been almost universally used in studying beta decay in light atoms such as
®He [111, 114, 131, 132, 134]. In particular, Couratin et al. [111] showed agreement
between theory and experiment in the one-electron °Het while using the SA. The SA
should work just as well in the Z = 2 two-electron case since the energies involved are
not significantly different from the one-electron case (and, as shown in Appendix D,
the argument for its use is that the beta particle being significantly greater than the
binding energy of the atomic electrons. To this point, Chizma et al. [135] considered
how the SA affects the calculated decay rates (cf. Eq. (3.8)). They show that it is for
beta energies Fs < 0.05Z2 a.u. that the SA needs to be relaxed.

The physical justification for making the SA is that the emitted g particle is
relativistic and can be thought of as a spherical shell of charge expanding with (nearly)
the speed of light. The SA is valid for “fast” processes that occur on time scales much
shorter than the natural timescales governing the system’s dynamics. The key result
is that the wave functions of the electrons do not have time to adjust to the new
Hamiltonian. The initial helium wave function ¥(°He), an eigenstate of Hz_, is not
an eigenstate of Hz_3 and (by assuming the SA) does not have time to adiabatically
adjust to the new system. Thus, it must be expanded over the complete set of states
U, (SLiT) according to

U(He) = > ¢ Uy(Lit). (3.17)

See Appendix D for a derivation of and further comments on the SA.

The next question is whether the outgoing beta particle interacts significantly
with the atomic electrons. This leads to the necessity of including exchange effects
arising from the indistinguishability of the atomic electrons and the outgoing beta
particle. We make the approximation that the beta particle is distinguishable from
the atomic electrons, thereby neglecting the exchange effect.?” The physical reason for
adopting this approximation is that the beta particle has very high energy and is in a
continuum state with minimal overlap with the (bound) two-electron wave function.

Further, the relativistic beta particle will spend little time interacting with the atomic

25To be clear, both exchange effects and full correlations are accounted for in the treatment of
the two atomic electrons.
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electrons, so any possible exchange interaction will occur on very small timescales.
Cooper and Aberg [136] have considered exchange effects using a “single-step” model,
which extends the SA. They derived a formula and concluded that for both shake-up
and shake-off processes, the predictions of the SA are obtained in the limit £ > E,,
where the beta particle has much more energy than the atomic electrons. In the
beta decay of ®He, where Es ~ 10* a.u. and E, ~ 1 a.u., this condition is easily
met.?® Exchange effects between the 3 particle and the atomic electrons have been

considered explicitly and found to be negligible at these energies [136, 137].

3.4.3 Problem statement

We are trying to solve the problem of determining the probabilities of forming daugh-
ter ions of each charge state. The first step is to calculate the individual probabilities
of a transition into each final state |¥;(°Li")). In the limit of no nuclear recoil, this

becomes [132]:
Py = (W)U (L) = Ay (3.18)

Since there are a countably infinite number of discrete bound states and an uncount-
ably infinite number of continuous scattering states, the methods used to sum or
integrate the {P_, s} corresponding to a given charge state require careful considera-
tion and constitute the primary challenge.

A consequence of working only with P,_,; ~ A is that this work is only concerned
with transitions that involve no change in angular momentum (AL = 0) and only
S — S transitions as we are always starting in .S states. Transitions to higher angular

momentum states occur only at higher orders of K, with much smaller probabilities,

26Tn higher-Z atoms, where typically Eg is smaller than in He and E,, which scales as Z2,
exchange effects are more important, and the formalism developed in Ref. [136] can be consulted.
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due to the expansion of the recoil operator

. . K2)?
K _ piKz +iKz — ( 27) + ..., (319)
Kr)?2 Kr)?
:1_%4_@—( 37“) Py(cos@)+ ..., (3.20)
——— S—P N 4
S-S S—D

Refs. [132] and [133, pp. 32-43]| treat these recoil-dependent effects, and the method-

ology developed here could also be turned towards recoil corrections in the future.?”

3.5 STATE OF THE ART

There have been several attempts to predict the probabilities of shake-up and shake-
off (of as many electrons as possible) in various atomic systems, as discussed in
Sec. 3.3.6. The conclusion of previous work is that in one-electron systems, theoretical
predictions agree with experiment [111, 131|, whereas in systems with more than one
electron, theory and experiment do not agree (e.g., [113—-115]). We are concerned
with the two-electron system, which has been studied experimentally [114, 115] and
theoretically in Refs. [131, 132, 134|. The critical problem we seek to rectify is the
overestimation of double ionization, i.e., the formation of SLi*", following the beta
decay of 5He. This section critically reviews previous theoretical efforts, and problems
are revealed in their formalism. In particular, the work of Schulhoff and Drake [132]

serves as the foundation for the present work.

3.5.1 Previous theoretical attempts

The key problem, stated in Eq. (3.18), is to (1) calculate squared overlap matrix
elements |[(¥,;(°He)|V(°Li*))|? = P,_,; that represent the probability of transition
from the initial state W;(°He), with energy F;, to a final state W;(°Li") of energy
Ey; and (2) add or integrate these probabilities according to charge state. Thus, the

2"That we don’t obtain agreement even on the recoil-independent A probabilities, though we do
find improvement on previous work, is why we have not yet taken this further step.
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problem involves choosing accurate wave functions with a well-defined charge state
and correctly integrating the appropriate { P, ¢} corresponding to each charge state.

A common feature of all approaches to this problem is to use a discrete pseu-
dospectrum, a concept introduced in Sec. 2.7.1, to represent both the bound and
continuum states. This allows the integral [ B0 P(E)dE over the continuum to be re-
placed by a computationally-tractable sum. In using a pseudospectrum, this integral
can be approximated by the sum ). w;P(Ey), where the weights are chosen with
the understanding that each pseudostate ¥ ;(°Li*) with energy E; corresponds to an
energy range. The goal, then, is to develop a finite set of pseudostates which cap-
ture the essential physics of the problem. At a minimum, these basis sets should be
asymptotically complete and cover the energy range that is expected to be important
for the problem. The following text outlines various methods to achieve this goal.
Further efforts undertaken will be the main focus of the subsequent Secs. 3.6 and 3.7.

One of the first treatments of the beta decay of He was by Winther in 1952 [138],
where he considered only bound-bound transitions P;_,; where ¥, =5 Li*(1sns 19)
for n = 1—-4. In this calculation, Hylleraas wavefunctions were used to represent
the ground states of SHe and SLi"T along with the first excited state of LiT, while
Hartree wave functions were used for the remaining bound states of Li*T. A problem
with this pioneering implementation was that the bound states of °Li* generated
in this way were not orthonormal. Due to this, the probabilities calculated do not
add exactly to 1, so even though estimates are given for transitions to the con-
tinuum, they cannot be taken too seriously. One remarkable fact about Winther’s
work is that using Hylleraas wave functions with a single nonlinear parameter for the
ground (1s* 1S) for ®He and SLi* with only 6 and 9 terms, respectively,?® predicted
|(SHe(1s? 15)| °Li* (1s% 1.9))|? ~ 0.670, when the current best value [132] is 0.7086. . . .
This indicates the importance of electron exchange and correlation effects in the beta
decay process. Hylleraas wave functions, even in their simplest and restricted form,

are well-suited to tackle this problem.

28In the present work, we used up to 650 terms in our Hylleraas basis functions, with two basis
sectors, i.e., sets of terms in the wave function with different nonlinear parameters.
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In 1968, Carlson et al. [139] used nonrelativistic Hartree-Fock wave functions to
carry out a much more comprehensive calculation. They considered the probability
P of creating a vacancy in the K-shell in elements in the Z = 2 to 92 range under-
going beta decay from the ground state. Although this calculation is sophisticated,
the Pg value is insufficient to partition the charge state fractions of the daughter ion
following beta decay. In °He, they calculated Px = 0.269 and the current best value
is [132] Px = 0.291. This difference cannot be attributed to the number of terms
in the wave functions in this case; rather, the method of forming the wave functions
is insufficient. Hartree-Fock wave functions do not account for correlation even in
this limit of an infinite basis set size. An important finding of this work was that for
7 2 31, relativistic Hartree-Fock-Slater wave functions are needed.?

Wauters and Vaeck used the first configuration interaction (CI) method in treat-
ing this problem [131]. In their work, two-electron wave functions are formed using
configurations built on one-electron orbitals that are formed using B splines. The
central property is that the wave functions are formed as linear combinations of pos-
itive piecewise polynomials (i.e., B splines) defined on a knot sequence via recursion
relations [131]. The advantage of B splines is that each basis function is nonzero
only over a limited range; this simplifies calculations as the interactions become local.
Other basis functions, such as Slater or Gaussian orbitals, are infinite in extent. Fur-
thermore, the one-electron basis set constructed of B splines is effectively complete,
allowing for the entire spectrum of the one-electron Hamiltonian H™ to be described
by a finite pseudospectrum. These one-electron orbitals are combined as described
in Sec. 2.7.4. and the calculated charge-state fractions using this method appear in
Table 3.5.1.

Although CI methods systematically include electron correlation, Table 2.7.2
shows that they do this much less effectively than Hylleraas wave functions. Fur-
thermore, in Table 3.5.1, we see that the probabilities for the various charge states

following the beta decay of ®He that are calculated using this method do not add

29 Another significant aspect of this work is that it was one of the early successes of the Hartree-
Fock code written by Charlotte Froese Fischer [140]. This would later evolve into the famous
multi-configurational Hartree-Fock program, using the self-consistent field method.
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exactly to 100%. For these reasons, Hylleraas wave functions were deemed the ap-
propriate starting place for this calculation.

Frolov and Ruiz [134] calculated transition shake-up probabilities in the light
atoms He, Li, and Be. In the two-electron He, they used the so-called Hylleraas-CI
[141, 142], a hybrid method that uses higher angular momentum states characteristic
of the CI that include the interelecton coordinate rq5, the hallmark of the Hylleraas
approach, into the basis states. These calculations yielded high-precision results for
the |(*He(1'9)|Li*(n'S))|? up to n = 7 that was surpassed in 2015 by Schulhoff
and Drake [132], who used a fully correlated and doubled Hylleraas basis set to

variationally solve the two-electron problem.

3.5.2 Foundation: doubled Hylleraas basis functions

The current work builds on Ref. [132], and it therefore serves to briefly recapitulate
this work. Recall that the problem we wish to answer is: What is the probability of
forming SLi", SLi**, and SLi*" following the beta decay of ®He. For this purpose, we
use variationally constructed Hylleraas states (cf. Sec. 2.7.1).

In Ref. [132], the °Li* final states in Eq. (3.18) were partitioned by their energy

range (bins) as a proxy for the charge state, according to

Bin 1 (shake-up) : E,(Li") < FE < Ey(Li*")
Bin 2 (single ionization) : E,(LitT) < E < E,(Li*") (3.21)
Bin 3 (double ionization) : E (Li*") < E < o0

where F(Li") = —7.2799134. .. is the ground-state energy of ’Li*, E,(Li**) = —4.5
a.a., and F,(Li*") = 0. This is shown below in Fig. 3.6.1. Bin 1 corresponds to shake-
up, whereas Bins 2 and 3 are classified as shake-off. The pseudospectra were optimized
by varying (; in the first sector of the Hylleraas basis functions, with the remaining
nonlinear parameters chosen to be similar to the low-lying bound states [51]. Further,
since this is a pseudospectrum, each eigenstate represents a range of energies. The

method of Stieltjes imaging [143] was used to approximate the differential transition
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Table 3.5.1: Comparison of previous theory with experiment for the probabilities P(6Li**)
of forming the various charge states with k = 1,2, 3 following beta decay of SHe(1 'Sp) or
6He(2 351) as initial states. Ground state results in the upper panel are from Carlson et al.
[114]. Metastable triplet results in the lower panel are from Hong et al. [115]. All quantities
are expressed in percent (%).

%He state® Daughter ion Theory [132] Theory [131] Exp’t.

118, 6] i+ 89.03(3) 89.09 89.9(2)
6L+ 9.7(1) 10.44 10.1(2)
6T i3+ 1.2(1) 0.32 0.018(15)
Total 99.9(1) 99.85 100.0(2)

238, 6] i+ 88.711(3) 89.9(3)(1)
6L+ 9.42(7) 10.1(3)(1)
6T i3+ 1.86(7) <0.01
Total 99.99(7) 100.00

2 Results have also been calculated [133, pp. 67-73] and measured [115] for the He(2 3 P)
initial state. As the text mentions, P states are not featured in the present work as we are
focused on resolving a simpler problem first.

dP(E)
dE

probability per unit energy interval from the initial state of He to a final state

of SLi* with energy E in the form

dP(E) 1P+ P,
dE - 2 €ji+1 — &j

(3.22)

evaluated at E; = (g;11 + £;)/2. Stieltjes imaging yielded increased stability in the

dP(E — . . . . Lo
d% ) vs. E; graphs with an increasing number of terms N, in the variational wave

functions and therefore in the calculated charge state fractions. The validity of this
method was demonstrated in the problem of photoionization of hydrogen [144]. A
linear smoothing method was applied for those states closest to the bin boundaries
[133, pp. 51-52].

In addition to giving closure, as indicated by a total probability being equal to
100%, as shown in Table 3.5.1, in Ref. [132], several oscillator strength sum rules are

shown to be satisfied for the wave functions used to describe the initial *He state and
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the SLi* pseudospectra. In particular, a generalized Thomas-Reiche-Kuhn (TRK)
sum rule,®” that includes the change in Coulomb potential accompanying beta decay,
was derived and found to be satisfied. To account for this change, a modification to

the ordinary optical oscillator strength?! was made according to
fisy = 2[Epi+ (5) — Bre)l (ilz1 + 2 i 2. (3.23)

The TRK sum rule then acquires an extra term due to the change in the Coulomb

potential with the result

D fion = N+ 2(i (Vi — Viee) (21 + 22)°0) (3.24)

=2 — 2(i (i + l) (21 + 22)2|4), (3.25)

1 T2

where N = 2 is the number of electrons and |i) denotes the ®He initial state. For

He(1'S) — Li(n!P), the sum rule is
> frte(118)1itn1p) = —1.9734403, (3.26)

which is satisfied to many figures using the Hylleraas pseudostates obtained via the
procedures described here. The sum rules interconnect and tightly constrain the
calculated charge-state fractions and justify the completeness assumption contained
in Eq. (3.17),

U(*He) = Y ¢ 0;(°Li")

that these fully correlated pseudostates ¥;(6Li*) on the right-hand-side contain com-
plete information about all possible two-electron states, including single- and double-
continuum states, as well as autoionizing resonances, at least in the limit of large

basis sets and in the region of space near the nucleus (cf. Sec. 2.7.3).

30The normal TRK sum rule is: Y., f;, = N where N is the number of electrons [40, p. 256].
Eq. (3.25) reduces to this normal case when the initial and final state are from the same Hamiltonian.

31The ordinary oscillator strength looks identical to Eq. (3.23) but assumes that the initial and
final states come from the same Hamiltonian.
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The results for the calculated charge state fractions following decay from the
ground and metastable triplet state of °He are shown in Table 3.5.1. Predictions
from theory, namely the Hylleraas approach of Schulhoff and Drake [132], and the
CI + B spline approach of Wauters and Vaeck [131] are compared with two experi-
ments, one old [114] and one new [115]. The predictions of the Hylleraas method are
superior to the CI method and will, from here on, be synonymous with “theory” since
it better includes electron correlation—a feature that Wauters and Vaeck [131] explic-
itly demonstrated to be important in treating atomic rearrangement following beta
decay. Also, the CI method does not give closure as the total probability does not
add to 100% as it does with the Hylleraas method. The theory compares favourably
with the experiment for all but the amount of double ionization or formation of 6Li*",
where there is a disagreement by several orders of magnitude. This overestimation of

Bin 3 in Eq. (3.21) is the focus of the present work.

3.6 OVERESTIMATED DOUBLE IONIZATION

This section outlines why a metric other than energy must be deployed to partition
the charge states in the 5Li™ daughter ions following beta decay. First, it is shown that
the F > 0 region contains contributions from single and double ionization. Then, we
directly confront the experimental reality that very little °Li*" is measured, regardless
of the charge state (cf. 3.5.1), and sketch an argument as to why this makes sense.
This serves to justify the creation of projection operators, which will be described in

the subsequent section.

3.6.1 Energy does not describe charge state

The primary limitation of the method employed by Schulhoff and Drake [132] is that
energy is not the appropriate metric to describe the charge state of an atom. Their
calculation identified the charge states by the energy bin into which the pseudostate
fell, summarized in Eq. (3.21).

Bins 1 and 2 contain purely °Li™ and SLi*™" states (Bin 2 includes doubly excited
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Single 4+ double ionization

0 Lit* + e +e”

Single ionization continuum

E (au.)

—4.5 Litt 4+ e~

Li*T bound states

Fig. 3.6.1: Energy level diagram of SLiT with the charge states indicated. Notably, the
FE > 0 region contains both the single and double ionization channels.

autoionizing states), but Bin 3 contains both °Li*" and SLi**. It is in Bin 3, where
E > 0 a.u. that the energy fails to represent unambiguously the charge state. This
is illustrated in Fig. 3.6.1 and can be understood as follows. The argument begins
with a discussion of how the ionization thresholds are calculated and an analysis of
why the energy parameter in Bins 1 and 2 is an unambiguous indication of the charge
state.

In the screened hydrogenic and independent particle approximations, which are
sufficient for the ensuing argument, the energy is the sum of the Bohr energies:

Z7: (Z-1)

Jo
2n? 2n3

where Z, ny, and nsy are the nuclear charge and the principal quantum numbers of
electrons one and two, respectively. For singly excited states ny — oo, the first

electron is in the ground state (n; = 1), giving the first ionization threshold in °Li*
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as F1« = —4.5 a.u.. This is the lowest possible energy that a ®Li*™ state can have as
it is simply the binding energy of the remaining one-electron (n = 1) system, while
the ejected electron moves away with kinetic energy that must be added to —4.5 a.u.
In doubly ionized states, both n; — oo and ny — oo, leading to Fyna = 0. This is
the lowest possible energy that a SLi*" state can have; the kinetic energy of the two
ejected electrons must be added to 0 a.u. Any states with £ < Fyst are bound, and
it follows that bound states cannot have E > Fis:. For the same reason, since n;
remains finite in Bin 2, no doubly ionized states can have E < FEyn.a. Thus, states
with energies in Bin 2, Fis«t < E < Fyna, are all singly ionized. These arguments set
strict limits on the contents of Bins 1 and 2, but concerning Bin 3, they only tell us
that SLi" states cannot possibly be there.

Figure 3.6.1 shows clearly that the energy bin £ > 0 is not exclusively com-
posed of doubly ionized states. As mentioned above, in the single ionization channel,
®He(1s?) — SLi*"(1s) + e, the energy is calculated (to a good approximation
appropriate for this heuristic argument) according to £y, = —4.5 + K5, where —4.5
a.u. is the *Li*"(1s) binding energy and K, > 0 is the kinetic energy of the ejected
electron. In beta decay events leading to singly ionized daughter ions, there is no
restriction on how much energy K, the ejected electrons can carry away. Since the
ejected electron can carry away an arbitrarily high amount of energy — even enough
to give E,, > 0, therefore the E > 0 region described by Bin 3 contains overlapping

continua, which both contribute.

3.6.2 Suppression of double ionization

Based on the above reasoning, we would expect that the previous theoretical formula-
tion is overestimating the amount of Li**. Here, we present an argument that outlines
why very little double ionization should occur. It is known from work on the related
problem of the single- and double-photoionization [145] cross sections that (1) the
cross section o becomes progressively smaller as the energy is increased, and (2) dou-

ble ionization is significantly suppressed near threshold [146]. In the same way that
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Fig. 3.6.2: This diagram illustrates the phase space arguments suggesting that double ion-
ization is rare. In the case where energy /momentum are not equally shared between the two
electrons, shown in panel A, one electron will fall back and become bound, creating a singly
ionized state, shown in panel B.

o(E) decreases with energy, so does P(E).3? It makes sense that the matrix elements
became smaller and smaller as the energy difference between the states increased, as
there is progressively less overlap between the corresponding wave functions. There
is a vast literature in collision and laser physics concerned with cross-section calcula-
tions that are very similar in spirit to the present work. The points mentioned here
are revisited in the context of contributing to this literature in the discussion of future
work in Sec. 3.9.1.

Figure 3.6.2 considers the situation where the daughter atom has some £ > 0 that
is relatively small. The two possibilities are that the atom is singly ionized, with one
ejected electron, or doubly ionized, with two ejected electrons. Phase space consid-
erations support the notion that very little double ionization should occur in these
“near-threshold events.” Suppose that two electrons are being ejected but with very
little total energy, so they are moving slowly. For both electrons to truly be ejected,
in this limiting case, the energy needs to be shared almost equally between them,
or else one of them will “fall back,” leaving the atom singly ionized. This argument
extends to relatively low-energy E > 0 states, just above threshold, suggesting that at

these small energies single ionization remains dominant. Although if the energy to be

32The photoionization cross section is proportional to squared dipole matrix elements o(E)
AE|{f|2|i)]?, as compared with beta decay probabilities, which scale according to P(E) o |{f|i)]?.
Both o(F) and P(F) decrease significantly with increasing energy.
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p.. = o) <I><++; \&
Sxarmlh

Fig. 3.7.1: Schematic indicating the role of the projection operators P, , namely, to resolve
the overlapping continua in the £ > 0 a.u. region. The idea is to form the projection
operators using two-electron basis functions ®(+1) that are constructed as doubly ionized
states.

shared is sufficiently large, this argument becomes less important, it remains true, in
the related problem of photoionization of helium, that the double-to-single-ionization
ratio, o(E);4/0(E)+ is very small near the double ionization threshold and never
becomes much larger than 2 even at extremely high energies [146].

We have formed a complete pseudospectrum that includes electron correlation.
However, since energy eigenvalues are not a good proxy for the charge state and
double ionization is significantly suppressed near the threshold, we must establish a
method that correctly encodes the charge state of the °Li* daughter ion. To this end,

we construct projection operators, as discussed in the following section.

3.7 PROJECTION OPERATORS

The overall strategy employed in this work is to build on the work of Schulhoff and
Drake [132]. We retain the same optimized initial ®He states, adding the metastable
singlet “He(2 15) state,*® and also the same SLit with the same optimized nonlinear
parameters that were found initially in Ref. [51]. The present work aims to develop
projection operators P, (hereafter denoted simply by P), illustrated in Fig. 3.7.1,
that are applied to the £ > 0 region of the ’Li™ pseudospectra in order to resolve the
overlapping ionization channels.

The central problem then is to construct a projection operator P and its orthogo-
nal complement @Q such that P|W¥;(°Li")) corresponds to states where both electrons

have asymptotically outgoing boundary conditions (i.e., °Li*" states) and such that

330ptimized as in Ref. [51]
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P|¥;(5Li")) = 0 for states lying below the double-ionization threshold. Our strategy
is to resolve each pseudostate | ¥;(°Li")) lying above the double-ionization threshold
at E = 0 into its orthogonal component parts |¢;"|? = (U;(Li") | P | ¥;(°LiT")) and
|2 = (U, (OLiY) | Q | W;(PLit)), where

A e T (3.27)

R = ¢/ lal? (3.28)

are the fractional probabilities for the formation of Li3* and SLi*™*, respectively. As

usual, the projection operators have the properties P + @) = 1 and PQ = 0.

3.7.1 Construction of projection operators

Our approach is to construct projection operators for the correlated two-electron
pseudostates W;(ry,re) in terms of the sums of the products of one-electron pseu-
dostates ¢,(r). They are obtained by first orthogonalizing and then diagonalizing the

unscreened hydrogenic Hamiltonian:
1oy
Hy = —§V —Z/r (3.29)

in a basis set of functions x;x(r) = rie=eN'T for a range of powers j and k such that

a particular ¢,,;(r) for angular momentum [ has the form® (for example):

Gu(r) = [(a10 + a1 + arr® + agzr®)e
+ ( 20 + Q217 + Q92T )6 aX’r

) (3.30)

+ (aso + agr)e T

+(

CL40) —a)\4r]rlY'em(‘9’ ¢)

34The theory of these Sturmian functions is discussed in Sec. 2.4 along with several properties
that make them extremely useful, perhaps most notably the fact that Sturmian functions form a
complete — and discrete — representation of the spectrum of the one-electron Hamiltonian.
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for the case 0 = 4, where Q) = (j + k)max, and ay are linear variational parameters.
Because of their shape, we call these “triangular” basis sets, as used previously in the
calculation of the Bethe logarithms for hydrogen [29]. The total number of terms is
Ny = Q(Q + 1)/2 if all terms in Equation (3.30) are kept. The triangular basis
sets have two important features. First, the highest eigenvalue is pushed up by many
orders of magnitude beyond what is typically achieved with a single exponential term
(i.e., a “linear” basis set). For our typical values of & = 0.1Z and X\ = 5.15, the high-
est eigenvalue is approximately Ehpign = 1097150 =361 3y, or 2.5 x 10% a.u., although,
for different constructions, this can be pushed much higher (cf. The Bethe logarithm
problem in Fig. 1.3.2) The basis set, therefore, spans a huge range of (nonrelativistic)
energy and distance scales. The ground state and the first several excited states are
also well represented. Second, the basis set has a remarkable degree of numerical
stability despite the huge range of distance scales covered. With quadruple preci-
sion, §) can be increased to around 17 or 18. As shown previously [29], the positive
eigenvalues are roughly evenly spaced on a logarithmic energy scale up to very high
energies.

Assume for simplicity that W;(r;, ry) is an S-state. Neglecting the 1/r5 electron-
electron interaction, a zero-order approximation to the P projection operator can then
be formed from a doubly-positive-energy sum over all (anti)symmetrized products of

one-electron pseudostates:

L ng

where the sum over [ is a sum over two-electron partial waves coupled to form an S-
state and n. stands for a pair of integers {n,n’} such that both ¢, ;(r) and ¢, ,(r) lie
in the positive-energy scattering continuum. | n,[) is then correspondingly defined

by

lnel) = %n D a(10)) | Bur 1(02)) VB (B, )

+ exchange] (3.32)

75



3.7. PROJECTION OPERATORS

where y&M@Q . (F1,T2) is a vector-coupled product of spherical harmonics with L = 0
and M = 0. The generalization to states of arbitrary L is straightforward. The

complementary operator () is then defined by

QU =3">"|n_.l)(n_,1| (3.33)

where, for brevity, n_ stands for all three combinations {+, -}, {—,+}, and {—, =},
indicating that at least one of the two electrons is in a negative-energy-bound pseu-
dostate.

This method of calculation is similar in spirit to that of Forrey et al. [147| for
double-photoionization of helium, except that the true Coulomb waves are here re-
placed by pseudostates at the same energy. As shown in Fig. 3.7.2, the two agree
very well out to quite large distances.

The method is justified by the degree to which the final results converge with the

basis set size and the sum over partial waves:

(Wi(ry,12) | PO+ QW | Uy(ry,12))

= (Vi(r1,r2) | ¥i(r1,12)) (3.34)

is satisfied. Instead of analyzing the asymptotic form of the scattering solution,
as in an R-matrix calculation, the method analyzes the correlated positive-energy
pseudostate in the region near the nucleus, where the () operator projects out that
part that has the asymptotic form of a bound state for one of the two electrons.
This is then identified as the amplitude for single-ionization and the orthogonal P
component as the amplitude for double ionization. The contrast between the two
asymptotic forms is illustrated by comparing the top and bottom panels in Fig. 3.7.2.

The method must also converge with respect to the inclusion of the electron-

electron interaction V' = 1/ry5 in PO as a perturbation. Up to second order, the
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Coulomb Wave Function, E = 0.06 a.u.
Pseudostate, E = 0.06 @.u. ==semseen

Irw|?

Coulomb Wave Function, E = 4.56 a.u.
W(1s), E=-4.5a.u. =

I

Irp1?

LETTUHT

0 5 10 15 20
Radial Distance [a.u.]

Fig. 3.7.2: Upper panel: Comparison of a one-electron pseudostate radial wave function with
the corresponding exact Coulomb wave function at the same energy (E = 0.06 a.u.) near
the threshold. In the case of double ionization, both electrons have wave functions of this
form. This shows that the pseudostate representation remains accurate out to reasonably
large distances. Lower panel: The two one-electron states (Ejs = —4.5 a.u. and Ej =
4.56 a.u.) corresponding to a near-threshold single-ionization state, demonstrating that the
region nearest the nucleus is that which contributes when taking their product and forming
projection operators as described in the present work.

perturbed projection operator is

pP=P9 4 pl) 4 p@ (3.35)
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with
PO =37 [In) | + Iy Y| (3.36)
n4
and
PO =" [[n)® (] + ) (| + ) Dy | O] (3.37)
n4

where the sum over the zeroth-order two-electron states {n, } is understood to contain
the sum over [ such that the total L = 0 states are formed. The perturbed wave

functions are (in the finite set of pseudostates |n.))

‘n+>(1): Z |m+>am+,n+ (338)
myFEny
and
vmn
mn = F R, (3:39)

with V,,,, = (m|V|n). The (unnormalized) second-order solutions are

L
E  —H

n+

= |Th) + T ) + T ) +[T--) (3.40)

’n+>(2) V- Vn+,n+)’n+>(l)

where, for the perturbed state |n)®),

) (| (V = Vi ny )lig)
= 3 VYo, 3y
mp#n n+ mp
iq;":_

and p and ¢ each take on the values + or —. Only |7} ;) and |1} _) contribute
to the positive-energy projection operator P, with |1} _) corresponding to virtual
transitions to negative-energy states and back again. The transition probability into

the projected final state corresponding to Li** then corresponds to the diagonal

78



3.7. PROJECTION OPERATORS

matrix elements:

P = (WL PO + PY + PO (°LiY))

082 D32 | (232 (3.42)

The first-order correction |c!”* |2 given by

[P = (Wilm ) (0 W)y (3.43)
mf;ﬁ_n+
vanishes identically since the matrix elements are real and v, », = —y,, m,. The

second-order correction consists of the diagonal matrix elements of the (0,2) and the

(1,1) parts, as shown in Equation (3.37). The (0, 2) part is

Z [|”+><”+’(2) + |n+)(2)(n+|]

n4
[n4) (M|
= Z ﬁ(vm+7m+ - Vn+,n+)am+7n+
ny 4 M+
m+7én+

n m
i Z ng)(my| +| Z iy Qi

sy Eny = Em, g AN
m+¢n+
n m
+ E ‘ + +’ E Vm+z Qi _ny (n+ A m+) (344)
4 m+ i
m+7én+

The first term vanishes because it is antisymmetric under the interchange (n, <> m.).

The second and third terms can both be rewritten by the use of the identity:

Vm+ a1 Qi ng — Vn+»ii O‘ii,m+

By, — En,

nt

= Omy iy Qig oy (3.45)

79



3.7. PROJECTION OPERATORS

to obtain the remaining diagonal part:

Z [In0)(n|® + 0y )@ (ny )]

n4
= 2{: |n+><nl+| 2{: (lm+J+aLhn+
"+ i AMg N
Mg FEN
+ > M) ami n, (3.46)
e i

The remaining (1, 1) contribution from Equation (3.37) is

Z|”+>(l)<”+|(l): Z |m+><m+|a3n+,n+
ny

et
my #En g

S Imailom, i, (3.47)
n+

i FEmy gy
m+;én+

Interchanging the dummy indices ny and ¢, shows that the second term cancels the

first term of Equation (3.46), leaving just the terms:

Pe = Z |m+><m+|a$n+,n+

n4
my #En g

+ Z ’n+><m+‘z@m+,i_0@_,n+ (3.48)
"y i

m+;£n+

However, this still must be corrected so that the total wave functions |n.) + |ng ) +
Iny)® are normalized to unity up to second order. The renormalization can be
accomplished by subtracting a component of the unperturbed solution |ny) from
In,)? to obtain

N 1
7@ = )@ = S (3.49)

which still satisfies the second-order perturbation equation. This contributes an ad-

ditional amount:

AP = = 3 ) (myle?, . (3.50)

n4,m4y
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leaving just the renormalized projection operator:

PP = 3" Iy )(mi] Y am, i i, (3.51)
ny,my i
corresponding to the sum over virtual negative-energy states.
It turns out that even this contribution is cancelled if one includes the counterbal-
ancing positive-energy part coming from the second-order perturbation of negative-
energy states. Terms from |[n_){n_|® 4+ |n_)# (n_| do not contribute, but the first-

order cross-terms contribute:

LR UE S I TN - (352)
n— n—,miyn4

With the change of notation n_ = ¢_, it is clear that this term cancels the one

remaining term in Eq. (3.51) for P®). Thus, the leading perturbative correction to P

due to the electron—electron interaction is at most of third order. However, it is still

of interest to calculate the

D_1E P =Y (WLt [ PO | wiCLiT)) (3.53)
i i
contribution (summed over positive-energy pseudostates) that would still remain
without this final cancellation due to the positive-energy part coming from perturbed
negative-energy states, as discussed in the following section. The second-order con-
tributions from only positive-energy states, prior to cancellation, serve as an upper

bound on the order at which third- or higher-order effects could contribute.

3.8 RESULTS

This section discusses the numerical results obtained for the transition probability

coefficients P(SLi*") = Y~ |c3*|? in Eq. (3.42). The calculations are first presented

n
(0)3+’2
n

to test for the convergence of the leading coefficients ) |c with respect to
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Fig. 3.8.1: An example of convergence with respect to the number of partial waves ¢ (red
dots) for the SLi3* probability following the decay of “He(2 39) for the case Q) = Qg = 8.
This is the top left result (the top number) for the SHe(2 35) section of Table 3.8.1.

both €2y, controlling the size of the basis from which the projection operators are
formed, and €25, playing the same role for the Hylleraas states used to depict the
SLi* pseudospectrum. In addition, we examined the convergence with respect to the
sum over partial waves ¢ in Eq. (3.31) and perturbation corrections to the projection
operators due to the electron-electron Coulomb interaction.

First, concerning the convergence with respect to partial waves, direct calculations
were performed up to ¢ = 7 (i.e., one-electron states with ¢; = ¢5 = ¢ were coupled
to form an S-state with L = 0) and an extrapolation performed up to ¢ = co. The
results were found to converge relatively slowly in proportion to 1/v//+ 1. As a
typical example, Fig. 3.8.1 shows the convergence pattern for the He(2 3S;) case
with Q; = ()5 = 8. The extrapolated value is shown by the intercept on the vertical
axis.

Next, concerning the convergence with respect to €2; and €25, the results are shown

(as a percentage) by the top number of each pair in Table 3.8.1 and for each of the

35The 1//¢ + 1 form used in finding convergence was emprically found to fit the data well com-
pared to other (negative) integral or half-integral powers of ¢ + 1 for a wider variety of (£21,€2)
combinations for the three initial states.
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three initial atomic states. The entries along the main diagonal provide a measure
of the degree of convergence and their uncertainty. Since there does not appear
to be a consistent trend either up or down, we took the average of all the num-
bers in Table 3.8.1 with the rms statistical spread as the uncertainty. The total
double-ionization probability, prior to being subject to the projection operators of
Equation (3.31), is the sum of overlap integrals between an optimized initial state of
6He and a pseudospectrum representing all doubly ionized °Li* states. Although this
quantity can be stated with a well-defined error, as demonstrated in [132], it does
not show monotonic convergence but rather oscillates around a value. The reason
for this is that the nonlinear parameters in Eq. (2.34) that are used to construct the
eigenvalue spectrum of pseudostates are (necessarily) not separately optimized for
each state within the pseudospectrum [51|. The actual numbers of terms in the basis
sets for each () are listed in Table 3.8.2.

Finally, concerning perturbation corrections due to the electron—electron interac-
tion, this mixes each of the simple one-electron product pseudostates |n,¢) with all
the others, but as shown in Equation (3.43), the first-order corrections cancel in pairs
when summed over the complete set of states that form the projection operator. A
more lengthy calculation in Sec. 3.7.1 shows that the second-order corrections also
cancel, provided that one takes into account both the renormalization of the perturbed
wave functions so that P? = P up to second order and the counterbalancing positive-
energy contribution coming from the perturbed negative-energy states. It is perhaps
not surprising that these perturbation corrections sum to zero because the only role
of the P projection operator is to enforce doubly outgoing boundary conditions via
positive energy for both electrons without further energy resolution. However, it is
still interesting to see the order of magnitude of the partial-second-order contribu-
tions generated by P® in Equation (3.51). The results are shown by the bottom
number of each pair in Table 3.8.1. Although there is no clear convergence pattern,
the magnitudes are all 2% or less of the zero-order term. One can, therefore, expect
third- or higher-order contributions not included in the calculation to be smaller still.

The main source of uncertainty is thus the convergence uncertainty associated with
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Table 3.8.1: Convergence table for Li** probabilities for the initial states SHe(1 1Sp) and
6He(2 3S). Zeroth- and partial second-order corrections (top and bottom of each cell, re-
spectively) from Eq. (3.53), taken in the limit of infinite partial waves as shown in Fig. 3.8.1.
Results are expressed in percent(%) shown for different sizes of both the projection operator
(€1) and Hylleraas-type pseudostate (€22) basis sets used in Eq. (3.42). The bottom entry
is a partial second order correction, which, as explained in the text, ultimately cancels. The
top values in the table for each state will be averaged to obtain the final 5Li3* probability.
This table is continued on the following page.

Qy
5He state 04 8 10 12 14

115, 8 0.3663 0.3564 0.3134 0.4483
-0.0017 -0.0011 -0.0014 -0.0009

10 0.3142 0.3326 0.3100 0.4314

-0.0068 -0.0057 -0.0091 -0.0011

12 0.3123 0.3145 0.3009 0.4357

-0.0045 -0.0027 -0.0019 -0.0066

14 0.3145 0.3128 0.3556 0.4121

-0.0006 -0.0001 -0.0011 -0.0008

238, 8 0.5740 0.4161 0.4293 0.4028
-0.0013 -0.0004 -0.0003 -0.0003

10 0.5084 0.4947 0.5272 0.5405

-0.0031 -0.0010 -0.0032 -0.0031

12 0.5223 0.5281 0.5744 0.6209

-0.0052 -0.0017 -0.0025 -0.0022

14 0.5304 0.5314 0.6062 0.6400

-0.0002 -0.0006 -0.0002 -0.0002

the zero-order term.

The final results are summarized in Table 3.8.3. The main conclusion is that
most of the daughter ions in the energy bin with £ > 0 are SLi**-ions plus an
energetic electron, rather than 5Li** plus two low-energy electrons. For example, for
the ®He(1 1Sy) case, of the calculated 1.2(1)% of the ®Li-ions with £ > 0, 0.35(5)%
are °Li**, and the remaining 0.85(10)% are Li*". The SLi*T fraction agrees with the

0.32% calculated by Wauters and Vaeck [131], but their total only sums to 99.85%,

84



3.8. RESULTS

Table 3.8.1 (con’t): This is a continuation of Table 3.8.1 containing the convergence table
for forming SLi** following the ®He(2 'Sp) initial state. The same description found in

Table 3.8.1 and will not be reproduced.

Qy
6He state O 8 10 12 14

218, 8 0.5838 0.4645 0.4829 0.5470
-0.0041 -0.0036 -0.0027 -0.0030

10 0.4988 0.5522 0.5611 0.6193

-0.0284 -0.0083 -0.0196 -0.0467

12 0.4994 0.5697 0.6046 0.6636

-0.0023 -0.0089 -0.0012 -0.0052

14 0.5037 0.5836 0.6196 0.6610

-0.0027 -0.0001 -0.0034 -0.0010

Table 3.8.2: Number of terms N (€21) and N2(22) in the basis sets. The factor 8 for N;(€2)
accounts for the sum over partial waves up to £ = 7.

Ny (£22)

QlorQ Nl(Ql> 1 150 2 351 2 150
8 81 x 8 181 164 182
10 196 x 8 295 218 301
12 400 x 8 442 441 457
14 729 x 8 624 650 652

with no uncertainty given. For the ®He(2 35;) case, the fractions are 0.53(7)% for

SLi** and 1.33(7)% for SLit+.

The redistributed charge-state fractions are shown in Table 3.8.4. However, even

these reduced fractions of ®Li**-ions are still an order of magnitude or more larger

than the experimental values of 0.018(15)% for the ®He(1 1Sy) case and < 0.01% for

the ®He(2 3S) case. The recalculated Li™™" fraction is now also larger than the ex-

periment, while the Li* fraction remains lower than the experiment. The differences

are much larger than the statistical uncertainties. It seems that the theoretical values

for both °Li** and %Li*T need to be lowered by about the same amount and added
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Table 3.8.3: Previous [132] and corrected ®Li3* charge-state fractions for each initial state
following beta decay. All quantities expressed in percent (%).

p(GLi3+)
®He State Previous [132] Present Exp’t
115, 1.2(1) 0.35(5) 0.018(15) [114]
238, 1.86(7) 0.53(7) <0.01 [115]
215, 0.56(6)

Table 3.8.4: Corrected probabilities p(6Li**) of forming the various charge states of
SLi**,k = 1,2,3 following the beta decay of SHe(1 1Sy) or He(2 35;) as initial states.
All quantities are expressed in percent (%).

SHe Li Theory

State Ion Present Ref. [131] Exp’t. Difference

1Sy SLit 89.03(3) 89.09 89.9(2) ~0.9(2)
6Lit+  10.55(10)  10.44 10.1(2) 0.45(20)
63+ 0.35(5) 0.32 0.018(15) 0.34(5)
Total  99.9(1) 99.85 100.0(2) —0.1(2)

235, SLit 88.711(3) 80.9(3)(1)>  —1.2(2)
SLitt  10.75(7) 10.1(3)(1) 0.65(20)
6Li3+ 0.53(7) <0.01 0.53(5)
Total 99.99(7) 100.00 —0.02(20)

& Carlson et al. [114].
> Hong et al. [115].

to SLiT in order to bring the theory and experiments into agreement.

3.9 FUTURE WORK

There is clearly more work to be done on the problem and good reason to believe
that at least part of the outstanding discrepancies lie in the theoretical formulation of

the problem. The phase space considerations alone, presented in Sec. 3.6.2, provide
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a strong qualitative reasoning supporting the idea that single ionization should be
significantly more probable than double ionization. One avenue for improving the
calculation would be to investigate the effect of relaxing the sudden approximation,
which would require solving the time-dependent Schrédinger equation. However,
based on the arguments in this chapter, Ref. [134], which predicts that the SA would
introduce corrections into the probabilities at the level of 3 x 10~7 %, this is unlikely
to make a difference at the level with which we are concerned. Another area of future
work will be to reformulate the problem theoretically to investigate the emitted light
resulting from the process. This would offer a complementary approach to the current
experimental techniques which use methods such as time-of-flight analysis to discern
the charge states of daughter ions. Yet another significantly more promising direction
is to utilize the matrix elements of the delta function to diagnose whether the Hylleraas
pseudostates contain an appropriate degree of 1s occupancy. We discuss this avenue

in more detail in the ensuing section.

3.9.1 Delta function matrix elements: A potential new method

for treating one- and two-channel scattering problems

The photoionization cross section o(F), in atomic units,*® is [148, p. 148]

o(E) = 47T2aw\(He(1 1S)|z1 + z9|He(n 1P>]2, (3.54)

where « is the fine-stucture constant and iw = E(n 'P) — E(1 'S) = E, is quite
similar to the beta decay transition probabilities we have been considering.

The problem of calculating the final-state fraction of SLi%* to SLi** is closely
related to the two-electron problem of calculating the ratio of the double-to-single

photoionization cross sections

R(E) = 024 (E)/011.(E),

36 Assuming laser polarization in the z direction.
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for energies beyond the second ionization threshold £ > 0, where the two channels
compete. There is a vast and rich literature for this topic for helium, ranging from
many-body perturbation theory (MBPT) [149-151], close-coupling (cc) [152], con-
vergent close-coupling (ccc) [153|, R-matrix methods [154] with a discretization of
the continuum, and various distorted wave (DW) approximations for the final-state
wave function [155-158|. The older literature up to 1996 was reviewed by Sadeghpour
[159]. More recent work has applied these same methods to single- and double-
photoionization of °LiT, including R-matrix calculations [160, 161], time-dependent
close-coupling (TDCC) [162], ccc for the helium isoelectronic sequence [163], and
B-spline methods [161, 164].

The method we propose is complementary to those mentioned above in that it uses
the behaviour of the wave function as r — 0 as opposed to the more common asymp-
totic condition as r — oco. The latter condition often relies on treating ionized states
with long-range single-electron components that match the appropriate Coulomb wave
functions (CWF) to large distances. In our method, as shown in Fig. 3.7.2, we operate
with the assumption that a correct representation of the near-nucleus behaviour of
the pseudostates should contain the same information concerning the atom’s charge
state. Photoionization of He(1s? 1.S), shown in Eq. (3.54), describes the transition of
the ground state of helium to one of two channels: (1) singly ionized He*(1s) + le™;
(2) doubly ionized a™* + 2e~. It is known from experiment [146] that R(F) is much
less than 1 just above the double ionization threshold and that, even for very large
energies, it never becomes larger than 4. This indicates that the two-electron wave
functions used to represent this process should have a significant 1s component at
least until the He™™ threshold — and even a little bit beyond this. The quantity which
describes the degree to which the inner electron remains bound, i.e., the amount of
“1s” character, is the delta function matrix element (n 'P|§(ri)|n 1P) = (6(r1)), 1p.
For bound states, this should be nearly constant as n varies, and nearly equal to
that of the ground state (§(r;));15. The singly ionized He(n ! P) states should also
have delta function matrix elements close to this same value. For the Hylleraas pseu-

dospectrum {¥(n 'P)} arising from the diagonalization of Hz_,, Fig. 3.9.1 shows
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Fig. 3.9.1: The delta function matrix element, (n *P|5(r1)|n 1P) = (§(r1)),, 1 p, normalized
to the ground state value (§(r1)); 15 is calculated for the SHe(n ' P) pseudostates well into
the doubly ionized continuum, up to £ = 120 eV. Several basis sets are included with 104
to 446 terms. The ground-state and 2 'P energies are shown, along with the first and
second ionization thresholds. The purpose of this graph is to illustrate that the Hylleraas
pseudostates lose their “1s” character before their energies even reach the second ionization
threshold.

the calculated delta function matrix elements, (§(r1)), 1p, normalized to the ground
state value. It should be noted that smoothing and averaging procedures have been
employed in generating this curve to recognize that each energy truly represents a
range, as found in Ref. [132] and described in Sec. 3.5.

This figure illustrates that there is an underlying problem with the {¥(°He)}
pseudospectrum, namely that it does not retain its “1s” character into the double
ionization continuum, as it should. This is indicated by the precipitous fall in the
delta function matrix element observed even before the double ionization (Het™)
threshold is reached. As a consequence, the photoionization cross section ratio ooy /oy
is too large in the region near threshold. These problems also plague the {°Li"}
pseudospectra used in this work, a variation of the same problem, and account for

the difficulties encountered in actually projecting out the Li*™ from the £ > 0 region.
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The shortcoming lies not with the projection operator formalism but rather with the
fact that there is little to no singly-ionized °Li*™ in the Hylleraas pseudostates to
begin with.

Future work®” will attempt to reformulate the Hylleraas basis functions, which
form the first step of solving the beta decay problem, such that they retain sufficient
“1s” character into the double continuum. To this end, delta function matrix elements
should be used as a diagnostic tool. The projection operators described in Sec. 3.7.1
would still be useful, to the extent that a discrete pseudospectrum would not be
expected to contain complete information about the charge state. The improved
Hylleraas pseudostates do not have to be perfect; they just need to have a slightly
more realistic “1s” character. If successful, this approach will not only solve the
beta decay problem at hand but may also be useful in the aforementioned problem
of photoionization in two-electron systems. In particular, this method would offer
an alternative to the theoretical methods mentioned earlier in this section that are
ubiquitous in laser and collision physics.

Once the double ionization probability is correct, the methods developed here can
and should be applied to the recoil-dependent probabilities and to the case of the
initial state having L # 0. The projection operators could immediately be applied to
the full suite of results contained in Refs. [132] and [133, pp. 59-73|. The reason for
not doing this so far is that we have yet to agree with the experiment for the simpler

case of initial S states.

3TThese efforts involve altering the basis functions by (1) modifying nonlinear parameters to
push the energy to which the delta function remains equal to the ground states; (2) removing the
interelectron coordinate ris parts of the basis set; (3) Increasing the layers of the basis set with
additional customization.
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CHAPTER 4

Finite-nuclear-mass FEffects in
Two-photon Decay in Heliumlike

ITons

4.1 OVERVIEW

In Chap. 3, pseudostates were used in a scattering-type problem, namely beta decay,
where the transitions take place between the initial state and an ostensibly real final
state—the physical picture was that the change in Coulomb potential results in a
redistribution of the initial °He state into a complete set of real ®Li*states.! That we
needed to use a pseudospectrum was due to practical reasons in order to carry out the
calculation. We now turn our attention to a conceptually distinct deployment of these
pseudostates—we consider a problem within atomic structure where the “transitions”
are understood to be to wirtual states. The problem at hand in this chapter is to
treat two-photon transitions, which take place by virtual interactions with the QED
vacuum. That two conceptually distinct processes can be accurately treated with
the same underlying paradigm is a testament to the power of forming and using

pseudospectra.?

1By real, we mean that these are observable states that could be physically occupied following
beta decay.

2A caveat to this is that in the beta decay problem, it could be construed that we indeed were
already considering transitions to virtual states since all but the lowest lying pseudostates truly do
represent a range of energies. Nevertheless, we understand the shake-up/off processes to connect
real—not virtual—states in principle.
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4.1. OVERVIEW

In this chapter, we discuss the most accurate calculation to date of the finite-
nuclear-mass effect for two-photon spontaneous decay rates for helium-like ions from
Z = 2 through to Z = 10. This decay is relevant in astrophysical contexts where
the particle density is low such as planetary nebulae, where radiative and collisional
decay mechanisms compete. As part of this work, the mass polarization component
of the finite-nuclear-mass effect is treated with a gauge-dependent power series.

In the theory of radiative transitions, the usual simplified gauge equivalence of
the length and velocity forms applies only in the limit of infinite nuclear mass. Here,
we correct this for the case of finite nuclear mass. This chapter expands the finite-

nuclear-mass corrections due to mass polarization in a power series in /M, where

mM
m—+M

1 is the reduced mass pu = and m and M are the electron and nuclear masses,
respectively. New algebraic relationships connecting the length and velocity forms
of the expansion coefficients are derived. These relations provide a stringent test of
the accuracy of the calculation since they are only satisfied if the wave functions are
exact. As a test, high-precision numerical results are presented for various transitions
in helium. This chapter also generalizes the algebraic relations to arbitrary n-photon
transitions. These relationships place tight constraints on the results and enable easily
adjusted results in the case of slight modifications in u, m., or M.

The outline of the chapter is as follows. Section 4.2 begins with a historical
overview, including the relevance of multiphoton processes and spontaneous emission.
In the following Sec. 4.3 the motivation for the work presented in this chapter is
given, followed by a brief history of calculations in Sec. 4.4. Following this, Sec. 4.5
describes the theoretical formulation of two-photon decay and then Sec. 4.6 briefly
establishes the wave functions used including a discussion of reduced-mass atomic
units. Subsequently, the characterization of finite-nuclear-mass effects,® including the
establishment of general nE'1 relationships in the length, velocity, and acceleration

gauges, appear in Secs. 4.7 and 4.8. Section 4.9.1 contains a plethora of results related

to calculating 2E1 decay rates in heliumlike ions, and Sec. 4.9.2 contains results for

3The adjectives “finite-nuclear-mass” and “infinite-nuclear-mass” are abbreviated in this chapter
to “finite-mass” and “infinite-mass.”
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4.2. HISTORICAL SIGNIFICANCE

testing the corresponding algebraic relations. Lastly, Sec. 4.10 describes the horizons

for future work, some of which are already underway.

4.2 HISTORICAL SIGNIFICANCE

Maria Goeppert Mayer was a student at Gottingen in the 1920s while it was a “caul-
dron of quantum mechanics,” where she was a student of Max Born.* It was in her
doctoral dissertation [166] that she established the first theoretical formulation of
multiphoton processes in quantum mechanics. Following Dirac’s famous paper which
developed transformation theory, establishing the equivalence between Schrédinger
and Heisenberg’s formulations of quantum mechanics [167|, he wrote two further pa-
pers that were to have a large influence on the work of Goeppert Mayer [168, 169].

Prior to Goeppert Mayer’s work, only single-photon processes were theoretically
described, first with Einstein’s description of the photoelectric effect. Consider light
shining on a metal composed of atoms. His theory says that there is a minimum
frequency of light beyond which ionization will not take place. Furthermore, the
intensity of the light has no effect on whether or not this process occurs; it only
affects how much it occurs. Goeppert Mayer’s crucial contribution to this problem
was to realize that, with sufficient intensity of incident light, this process could occur
with more than one photon, each of which has a frequency (1) less than that needed
to ionize the atom by itself and (2) that need not actually coincide with any bound
states upon absorption.

This general situation is depicted in Fig. 4.2.1. The atomic system has ionization
potention I,, which must be overcome by the photon energy according to Nhw =
KE + I, where w is the laser frequency, /N is the number of photons, K E' the kinetic
energy of the ejected electron, and I, the ionization potential of the atomic system,

representing the amount of energy needed to simply ionize the atom. In describing

4She was unusually well-connected: her father was not only a Professor, but she herself would go
onto become the seventh straight generation of university professors on her paternal side of the family.
Furthermore, David Hilbert was her immediate neighbour and a good friend of the family. Other
good family friends included Max Born and James Franck, who would both significanly influence
her work, the former being her Ph.D. supervisor [165].
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Fig. 4.2.1: This diagram illustrates the difference between single and multiphoton ionization
of an atom with ionization potential I, and kinetic energy KFE of the ejected electron.
In weak intensity regimes, single-photon processes such as the photoelectric effect occur
according to hw; = KFE + I,, however, in higher intensity regimes multiphoton processes
can take place where several photons (in this case 4) can make up the energy fiw;. Goeppert
Mayer showed that the correct equation is Nhiw = KE + I, where N > 1 is possible in
strong fields.

the photoelectric effect, Einstein assumed that N = 1, but Goeppert Mayer showed
that N > 1 processes are possible.”

It took 30 years for her theoretical predictions to be realized due to the lack of
sufficient light intensities for multiphoton absorption in atoms until the advent of
lasers. After Townes developed the maser in 1953, Kaiser and Garrett observed two-
photon absorption in CaF3t [176]. The crucial milestone was Maiman’s invention
of the laser in 1960 [177|. This rich history of laser physics underpins nonlinear
optics, leading to numerous Nobel prizes, including the 2023 Nobel for attoscience. In
emission, multiphoton processes are rare compared to single-photon counterparts and
are typically relevant only when other decay channels are forbidden by selection rules.
Continual laser improvements drive high-precision atomic physics and necessitate the
theoretical calculations presented in this dissertation.

This chapter contains calculations on the spontaneous two-photon decay of he-

lium. Having addressed the historical significance of “two-photon” part of the title by

5This chapter focuses on multiphoton processes from a structure perspective—specifically, we
discuss events that involve interaction with the QED vacuum. A variety of multiphoton processes
arising from laser-atom interactions are actively studied (see, for example, [170-175]).
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4.3. MOTIVATION

discussing multiphoton processes and their origin, we now focus on “spontaneous” de-
cay. Although spontaneous emission is one of the three radiative processes described
by Einstein’s A and B coefficients [178], it is only postulated in his theory. Sponta-
neous decay occurs when an excited atom in empty space decays. While quantum
mechanics provides a framework for absorption and stimulated emission, it does not
offer a mechanism for spontaneous emission. The explanation lies in the nature of
empty space, which quantum electrodynamics (QED) describes as interacting with the
atom through vacuum fluctuations. These fluctuations cause spontaneous emission

and phenomena like the Lamb shift [179] and Casimir effect [180].

4.3 MOTIVATION

4.3.1 Astrophysical observation

Our understanding of the composition, dynamics, and origin of the universe comes in
large part from spectroscopic observations of atoms and plasmas—these data serve
as a temperature and pressure probe for distant astrophysical bodies. Since helium is
the second most abundant element, constituting 10% of the atoms universe, quantita-
tive knowledge of its spectral properties is crucial to properly interpret astrophysical
observations. Significant work has been conducted by Drake, Morton, and collabora-
tors [181-183], including calculations of several structure properties for He including
energy levels, transition rates, lifetimes and oscillator strengths.

An important class of radiative data comes from forbidden transitions, from which
more than half of the atoms in the universe recombined, mostly from 2E1 processes
[184]. The 2F1 transition from 2 'S-1 'S in helium is shown as the thickest (and only
red) line in Fig. 4.3.1, which shows all the possible decays from the n = 2 manifold
in helium. Another crucial decay mechanism is the metastable triplet decay from
the 2 35 state, a topic which Drake and colleagues have worked on extensively for
both the 2E1 [185, 186] and M1 [187] mechanisms. The long radiative lifetimes of

metastable states in helium, together with collision rates, determine their population
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Fig. 4.3.1: Energy level diagram for the n = 2 manifold of helium, illustrating those
metastable processes that are of astrophysical interest and indicating the decay mecha-
nism of those of interest.

balance in astrophysical sources such as planetary nebulae. These transitions largely
determine the rate of radiation loss in the early universe to form the cosmological
microwave background (CMB) since there is little resonant reabsorption of radiation
owing to the low particle density [188, 189].

Figure 4.3.2 illustrates this point by plotting the detailed calculations of various
line intensities at the present epoch due to the recombination of hydrogen and helium
[190].% Both the dominant resonant processes and the forbidden two-photon processes
are included. It is the plasmonic activity in the hot early universe that thermalized
the radiation content, leading to the CMB. Besides this background of radiation,
additional photons were generated via the recombination of certain light atoms—
most importantly hydrogen, and then helium.”

It can be seen that, although the two-photon decay of helium is several orders

6The continuous and doubly-peaked spectrum of the P — S recombinations is a result of sev-
eral broadening mechanisms and the fact that there is a significant pre- and post-recombination
contributions that occurred at different epochs are were then subject to different enviroments [190]

"The redshift enlargens the originally emitted wavelength per Aobserved = Aemitted X 1+ 2).
The recombination period was when the universe was about 400,000 years old, corresponding to a
redshift z = 1000 and a wavelength observed today that is about a factor of 1000 larger. This is
why the spectrum of H and He is in the pum, rather than the familiar nm range.
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Fig. 4.3.2: Comparing the line intensities due to recombination from the n = 2 manifold
observed in the cosmic microwave background (CMB) spectrum. Here, the 2E1 decays in
hydrogen and helium, respectively, the thicker and thin (red) dotted lines, are compared
with the dominant E'1 lines in H and He, respectively, the thick and thin solid (black) lines.
Calculations from Wong, Seager, and Scott[190].

of magnitude smaller than the other components, there are indeed regions (around
200 pm) where this process makes an important contribution. Including all other
forbidden transitions in He from n 1S and n ' D for n > 2 changes the CMB anisotropy
power spectrum further by about 1% [184]. Thus, an understanding of the cosmic
microwave background relies on accurately accounting for the forbidden processes.
In particular, Spitzer and Greenstein [191] investigated the two-photon emission
by neutral hydrogen as a source of continuum radiation from planetary nebulae and
Osterbrock [192]| has further elaborated its importance where particle densities are
less than about 10* cm™3. Since hydrogen has its 2p 2P3"/2 level very close to 2s %5 s,
collisions can be competitive in depopulating that level to 1s 29, /2. The hydrogen
emission neglecting mass and relativity corrections has an integrated rate of 8.2294 s~1
[193] extending from 121.9 nm to a maximum at 243.1 nm and then decreasing through
the visible and infrared spectral regions. At low densities, this two-photon emission

exceeds the contributions from the recombination of ionized hydrogen and helium
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from the Balmer limit at 364.6 pm to about 447.5 pm [192].

For comparison, the two-photon spectrum of neutral helium has a total rate of
50.093 s~1 [193] extending from 601.40 ym to a maximum at 120.28 um decreasing
to about 64% of the peak value at 364.6 pm. Typically, helium is present with 1/10
the hydrogen abundance by number of atoms [194], so the two-photon emission by
helium could be an important addition to the continuum emission around 400 pm
in some planetary nebulae. Similarly for helium in the early universe, two-photon
emission affects the populations of the two lowest S-states.

Beyond astrophysical observations, laboratory measurements of the total decay
rate have been made for He [195], and the six He-like ions with Z = 3, 18, 28, 35, 36,
and 41 [196-201], as reviewed by Mokler and Dunford [202]. This work focuses on
heavier two-electron systems where the relativistic effects become more pronounced.
Each of the decay mechanisms in the Fig. 4.3.1 has been studied in detail in this
regime. Recent work has focussed on the photon spectral distribution functions for
heavy heliumlike ions up to Z = 92 using relativistic Green’s functions methods
[203] in comparison with experiment [204]. For the corresponding hydrogenic case,
the angular and polarization dependence of the photons in the relativistic region has

been studied by Safari et al. [205], including hyperfine structure.

4.3.2 Theoretical motivation

A prominent aspect of this chapter in Sec. 4.9.1 involves the numerical comparison
between the length and velocity forms/gauges® of the calculated decay rates. Chang-
ing gauges relies on commutation relations that apply exactly when the pseudostates
are exact eigenstates of the Hamiltonian. Therefore, testing gauge invariance is a cru-
cial internal check on theoretical calculations, especially when experimental results
are unavailable or theory is ahead of experiment. In radiative transitions theory,
gauge equivalence of the length and velocity forms applies only in the limit of infinite
nuclear mass. Here, we build on Drake’s work [193] to extend this to finite nuclear

mass. A central goal is to make the relationships developed in Ref. [193] as precise

8These two terms are used interchangeably in this chapter.
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and general as possible. In the NR limit, testing gauge invariance stringently is the
primary method to assess the accuracy of both the infinite-mass pseudostates and the
overall calculations of the decay rates. To facilitate this generalization for a broader
range of transitions, the decay rate equations have been extended to the acceleration
gauge and generalized to nE1 decay processes.

In extending this work to include relativistic effects,’ discussed in Sec. 4.10, the
questions of gauge invariance and preferred gauge are very much open. Grant wrote
an article titled “Gauge invariance and relativistic radiative transitions” [206] in 1974

and claimed that:

One might think that the role of gauge invariance in the study of the
interaction between the electromagnetic field and the electron-positron
field is a topic that is now well understood, so that it should not be

necessary to write a paper with the above title.

44 years later, in 2018, in a paper calculating relativistic and radiative corrections to

the dynamic Stark shift, Jentschura and Adhikari [207] say:

One might think that all conceivable questions regarding the gauge in-
variance of physical processes in quantum electrodynamics (QED) have

already been addressed in the literature. That is not the case.

Clearly questions remain on the important topic on gauge invariance that is instru-
mental to internally testing theoretical results. These difficulties can arise from the
treatment of negative energy states, whose contributions to the various atomic pro-
cesses under consideration are not gauge invariant. This is indeed an active area of

theoretical research where open questions linger.

9This commentary remains relevant in Chap. 5 whose topic is computing the tuneout frequency
in helium as a test of QED.
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4.4 BRIEF HISTORY OF CALCULATIONS AND
EXPERIMENTS

Following the initial theoretical analysis by Goeppert-Mayer, Breit and Teller [208]
performed the first quantitative calculations for hydrogen 2 25, 2 — 1 2S, /2 and gave
qualitative estimates for helium 2 'Sy — 1 1S;. More quantitative estimates were
obtained by Dalgarno [209] from oscillator strength sum rules and the first accurate
calculations were performed by Drake et al. [186] for helium and the heliumlike ions
up to Ne®t. These calculations demonstrated the approximate Z° scaling of the
decay rates from 51.3 s7! for He to 1.00 x 107 s~! for Ne®*. The accuracy was further
improved by Drake [193], including an estimate of relativistic corrections derived
from the one-electron case [210], and extended to all ions up to U?T. The first fully
relativistic calculations by were performed by Derevianko and Johnson [211], using a
relativistic configuration-interaction method, and found to be in good agreement with
Ref. [193]. They also confirmed previous investigations [186, 212| that the triplet-to-
singlet decay rates are negligible at low atomic number, with the ratio increasing from

6.2x 107" at Z=21t02.6 x 107% at Z = 16.

4.5 THEORETICAL FORMULATION

For helium and the low-Z heliumlike ions considered in this chapter, the appropriate
starting point for a discussion of finite-mass-effects is the Schrodinger equation in an
inertial coordinate system. For an atom with atomic number Z and nuclear mass
M located at Ry and N electrons of mass m, located at R,;, the nonrelativistic

Hamiltonian'® is

P2 L[ P2 Ze/dmey = Ze2/Amey
Hipert = —% - — 4.1
‘ 2M+Z<2me R; — Ry +Z\R]-—R,-| (4.1)

J>i

10Gection 4.10 outlines the inclusion of relativistic effects.
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in ST units [31], where P = —ihVg. The Schrodinger equation'?

Hinert|u> - Eu|u> (42)

then determines the energy levels E, and eigenvectors |u). To simplify the solution,

the usual procedure is to transform to centre-of-mass (cm) plus relative coordinates

defined by

MRN+meZRi
R., — 4.3
M + Nm, (4.3)

Transforming Eq. (4.1) to coordinates r; = R; — Ry and R, = 0 so that
N
(M 4+ Nme)Rx + me Z r,=20 (4.5)

i=1

and taking the conserved total momentum to be zero in the absence of external forces

resulting in
N N N
ZPi = Zpi and PN—l-Zpi =0
i=1 i=1 i=1

gives

1
Her, Z—Zp, +—ZZP1 p; + mpgm

=1 j>Z
N
Ze? [4meg Ze? /47reo
_ (4.6)
> (Zhp eyt

Here p is the reduced electron mass i = meM/(me + M), the term ., pi - p;/M
is the mass-polarization operator and the term involving P., = —iAVg_ accounts
for the motion of the centre of mass relative to the inertial frame represented by the

coordinates Ry and R;.

1 The structure-related problem of spontaneous decay requires only the TISE as the system begins
and ends in an eigenstate of the NR Hamiltonian.

101



4.5. THEORETICAL FORMULATION

We next include the interaction with the radiation field, specified by its vector

potential
AR, 1) = Ag(w)ée™ Rt L cc. (4.7)
where . 12
Ap(w) =¢ (2eowV) (4.8)
for a photon of frequency w, wave vector k (|k| = w/c), and polarization € L k.

The factor Ag(w) normalizes the vector potential to unit photon energy fiw in volume
V. In a semiclassical picture, the interaction Hamiltonian with the radiation field is

obtained by making the minimal coupling replacements [213]

PN — PN—ZGA(RN) (49)

for the canonical momenta in the inertial Hamiltonian Hiepq in Eq. (4.1). The linear

coupling terms then yield

N
Ze e
Hint = —EPN'A<RN) + Moc ZZIPz'A(Rz) ) (411)

a result valid in this work where the quadratic A? term can be neglected.

4.5.1 Single-photon transitions

As a point of reference, consider the well-known case of single-photon transitions for a
finite nuclear mass, as first discussed by Fried and Martin [214], and extended by Yan
and Drake [215] and Drake and Morton [181]. From Fermi’s Golden Rule (FGR),"?

the decay rate for spontaneous emission from state i to f is

21, .
wid) = €|<1|Hmt|f>|2p(w)d9, (4.12)

12Gee Appendix B for a sketch of how FGR arises within the framework of time-dependent per-
turbation theory.
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where

plw) = @rclh (4.13)

is the number of photon states with polarization € per unit energy in the normalization
volume V. In the long wavelength and electric dipole approximations, the factor e’*'®
in Eq. (4.7) is replaced by unity.

After integrating over angles df) and summing over polarizations €, the decay rate

reduces to [40, p. 248|
wip = sow; | (i Qp|f)|?, (4.14)

where wi¢ is the transition frequency and, as follows from Eq. (4.11), Qp is the

dimensionless velocity form of the transition operator

Z 1
Qp=—-—-""Px+—) P (4.15)
for the general case of N electrons. From the commutator!?

[Hinerta QR/ha}i,f] - QPa (416)

where Hiyep is the field-free Hamiltonian in Eq. (4.1), the equivalent length form is
; N
QR - —ECL)i7f (ZRN - Zl R’I,) . (417)

Furthermore, the dipole operator in the acceleration form Q4 can be obtained using

the commutation relation

[Hinerta QP/hwi,f] = QA- (418>
where
14 7 me + M (R; — Ry)
= 4.19
Qa MeC Wi g Z IR; — Rn|® ( )
13Equations (4.16) and (4.18) follow from the basic commutatation relations [H,r] = —ihp/m

and [H,p] = ihdV (r)/0r, for H = p?/2m + V(r). For the Coulomb potential, V(r) = +Z/r, the
[H,r] commutator is the same, but [H, p| = FihZr/r® = FihZa.
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All forms of the dipole operators in Eqgs. (4.15), (4.17), and (4.19) are expressed in the
inertial frame. Though the numerical tests in this work (as in Ref. [24]) are performed
for the length and velocity forms, we present the corresponding acceleration forms
throughout the chapter and extend the algebraic relations we derive to include this
acceleration form.

To study mass polarization effects, Qp, Qr, and Q4 must be transformed to c.m.

plus relative coordinates to conform with the Hamiltonian in Eq. (4.6), with the result

Z
Q, = m:c Z | &3

1w al
if
QT’ = Zr E r;,

Q- —~ 7,3 (4.20)

N |r; |3

where
_Zme—i—M Z_Zme—i—M

Z:Za s r = X7 s>
P M Nm,+ M

and the number of electrons is N = 2 for heliumlike atoms. The Z, terms account
for the radiation produced by the nucleus as it moves in the c.m. frame [193]. These

operators satisfy

[HCTYH QT} = ha}i,pr; and
[Hem, Qp] = hwifQu (4.21)

in the c.m. frame. To the extent that the nonrelativistic Schrodinger equation, Eq.

(4.2), is solved exactly, the relation

(1Q.[f) = ({Qplf) = (i|Qalf) (4.22)

is satisfied to all orders in m./M. For a neutral atom, N = Z and Z, = 1. If,
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following Ref. [181], the oscillator strength is defined by

2m.c?

fit = S 1Q @61, el (123

then the Thomas-Reiche-Kuhn sum rule >, fiy = N is modified to read [181]
> fiu=N+Z°m./M (4.24)
f

with emission counted as negative and absorption as positive. In this way, the sum is
2 for positronium (Ps), but 3 for Ps™, as expected for two or three radiating particles
of the same mass. The above formulas provide a smooth interpolation between the
two extremes. An advantage of this definition is that the decay rate, summed over

final states and averaged over initial states, has the conventional form

= 20N (4.25)
Wis = — ify .
of MeC? o
where fif = —(g¢/g:) fr. is the (negative) oscillator strength for photon emission from

state |i), and g;, gr are the statistical weights of the states.

4.5.2 Two-photon transitions

The triply differential rate for the simultaneous emission of two photons of frequencies

w1 and wq can similarly be expressed via FGR in the form

2
A0, d2, = 2T U Ppleon) plen) 2, dS2 B (426)
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where, in a nonrelativistic approximation, Ui(f) is a second-order interaction energy

with the electromagnetic field given by!'4

VR {(f | Hint(w1) | 7)(n | Hing(ws) | 1)

i.f - En — Ei + hCUQ
+<f | Hing(w2) | n)(n | Hing(w1) | 1) (4.27)
En - Ei + hwl
summed over positive energy states, and by conservation of energy
Ei — Ef = hw1 + hwg. (428)

The interaction energy, Ui(?), contains a complete sum over a set of intermediate

states. Computationally, this demands a discrete pseudospectrum, just as in the fi-
nal Li" spectrum in Chap. 3. As noted in the chapter overview, the strength of
pseudostates—particularly their derivation through diagonalization to form a com-
plete pseudospectrum—is fully demonstrated here. Using pseudospectra, two distinct
physical processes—excitation /ionization and interaction with the QED vacuum—can
be calculated.

Two-photon decay leads to a broad distribution of photon energies such that their
sum is equal to the atomic energy difference. Using Eqs. (4.8) and (4.13) for Ay and

p(w), and approximating A = A€, the two-photon decay rate becomes

% hw f - € - € |1
dw(%)dQldQQ:w Z [< | Qy ;1‘”;<Z’h(jp é | 1) (4.29)
n — 44 2
(1 Q& n)(n] Q-2 [i)][
0y dQs dE).
+ E B T o dy dQ2y dE,

To treat the process in which the final polarizations are not detected, this must still
be summed over two linearly independent sets of polarization vectors €; and €&, and
integrated over angles. For S — S transitions via intermediate P-states, the matrix

elements squared are proportional to |&;-&|?, and the sum over polarization vectors

14See Appendix E, based on Refs. [216, 217, for a sketch of how this form of the interaction
energy arises by considering interaction with the QED vacuum.
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4.5. THEORETICAL FORMULATION

yields an angular correlation factor of 1 + cos? f15 (see Appendix F). The remaining

angular integral is

4 2
/ dQl/ dQQ(l + COS2 912) = 0 37T (430)
A 4

The final result for the singly differential decay rate for the case of the helium 2 1S

state is thus

dw @)

dw1

8a?
— 3—7T]Q(27)(w1,w2)\2 (4.31)
where the dimensionless quantity Q") can be expressed in velocity form (p) as

QP (wr,wa) = —(wiwn) > (118 | Qp [ n'P)(n'P | Q- | 215)

n

1 1
X < + > . (4.32)
Wp —Wi +we Wy —wi+wr

where w; = Ej/h and @), , is the z-component of the vector Q,, defined in Eq. (4.33).

Exactly the same expression applies for the length and acceleration forms Q?V)(

Wi, w2)
and Qc(fw (w1, ws) by replacing the @ with Q] or @, .. These dimensionless dipole

operators in the velocity, length, and acceleration forms are given by:

N
1
Q, = Z, i, (4.33)
L —
. 1/2 N
Q. = MZTZQ, (4.34)
C
=1
. N
;o 14 T
Q, = _mec<w1w2)1/22pz,r;3 (4.35)

The equivalence of the three forms can also be regarded as a gauge transformation,
as discussed in general by Goldman and Drake [210]. A numerical comparison of the
two provides a check on the accuracy of the calculations since it is valid only if the
wave functions are exact, and the sum over intermediate states is complete.
Comparing Eqgs. (4.33)—(4.35) with the one-photon version summarized in Eq. (4.20),

we note that the overall frequency w and Z terms, along with the momentum p and
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4.6. WAVE FUNCTIONS FOR CALCULATION

position r operators occur with the same power for the corresponding gauge. The only
difference is that the frequency in the prefactor reads (wjws)/? for the two-photon
dipole operator in the length and acceleration gauge, but just w; ¢ in the corresponding
single-photon operator. This correspondence will be used in generalizing the conclu-
sions drawn from one- and two-photon transition rates to the general case of nE1
transitions in Sec. 4.8.2.

Finally, the integrated two-photon decay rate is

A 2
W@ L / duw' V)dwl
0

2 dw1

402N !
- 5= | ek, (4.36)

where y = w; /A, A = (E; — E)/h and the factor of 1/2 is included because each pair

of photons should be counted only once.

4.6 WAVE FUNCTIONS FOR CALCULATION

In order to obtain any numerical decay rates, the first step is to choose appropri-
ate basis sets to diagonalize the finite- and infinite-mass Hamiltonian in Eq. (4.6),
generating both the initial and final helium states, and a third basis set to form the
pseudospectra needed to carry out the complete sum involved in the decay rate. The
same Hylleraas basis sets, developed in Sec. 2.7.1, and used in Chap. 3, are used for

this purpose.

4.6.1 Reduced-mass atomic units

For the purpose of calculations, it is convenient to transform to reduced-mass atomic

units of distance, time, momentum and energy, respectively, defined by

VAT i ag

= — P70
P me '’ g Me aC
) Me Qg Me FE
g o _Med _(me) _E 1.37
; 0y e (M)a2mec2, (437)
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so that the Schrodinger equation assumes the dimensionless form for two electrons

_

Mvpl Vi, + Vipr,p2)| ¥ =€e¥ (4.38)

R 2
_§(VP1 + VPQ)
Z Z 1
where V(p1,p0) = —— — — + —.
P P2 |p1— 2l
The two-electron wave functions for the initial and final S-states, and the intermediate

P-states are all calculated variationally as described in Chap. 2.

4.7 FINITE-NUCLEAR-MASS EFFECTS

Both finite- and infinite-mass decay rates were calculated using Eq. (4.36), using the
pseudospectra with the appropriate Hamiltonian (i.e., u/M — 0 for the infinite-mass
case) to evaluate the sum over states arising in Eq. (4.32). The results are summarized
in Table 4.9.3. A primary focus of this work, however, was to study the relationship
between the finite- and infinite-mass cases and to discern how finite-mass effects
arise. The motivation for doing this is ultimately to extend the derivation of gauge
equivalence, usually given in the infinite-mass limit, to the case of finite nuclear mass.
This section and the next both deal with this topic. Within this section, Sec. 4.7.1
enumerates the sources of the finite-mass effect and then Sec. 4.7.2 collects the results
in the form of constitutive relationships between the finite- and infinite-mass decay

rates.

4.7.1 Three sources of finite-mass effects

Finite-mass corrections to w, o, come from three sources and are first discussed with
respect to 2F'1 transitions. The first is due to radiation emitted by the nucleus moving
in the c.m. frame and can be expressed as a power of Z, in Eqs. (4.33)—(4.35). In
the two-photon case this is taken into account by powers four Z# in all three forms
x = p, r, a. The second source of finite-mass-effects, analogous to the normal isotope
shift, is due to the mass scaling of the energies, transition frequencies and matrix

elements as calculated from wave functions expressed in reduced mass atomic units

109



4.7. FINITE-NUCLEAR-MASS EFFECTS

according to Eq. (4.37). This mass scaling is expressed as powers of p/m,. Since
the @' terms in Eqs. (4.33)—(4.35) occur, via Eq. (4.32), with the fourth power in the
integral in Eq. (4.36), along with the frequency factor A, the factors to transform

)

the reduced atomic units to physical ones are (y1/ms)® for both w?” and wi*”, and

(p1/me) for w?.

The third correction comes from the direct effect of the mass polarization term
— 4V, - V,, in Eq. (4.38) on the wave functions, energies and matrix elements,
analogous to the specific isotope shift. The result can be expressed as a correction
factor F'(u/M) to the two-photon decay rate for infinite nuclear mass ws. For small

w/M, it is useful to expand F'(u/M) in the form
Fo(u/M) =1+ (u/M)Cy + (u/M)? Dy + (u/M)*Ey + - - . (4.39)

where C,, D,, and E, correspond to first-, second-, and third-order mass polarization
corrections for the three forms. For helium and the heliumlike ions, u/M ~ 1074, and
so terms beyond D, are negligible. The coefficients C, and D, could be calculated
by perturbation theory, '* but we have adopted the simple expedient of calculating

F,(uu/M) for an arbitrary pair of values of ;1/M and solving for C, and D,.

4.7.2 Constitutive relationships

These three sources of finite-mass effects are summarized as follows. We write down
these relationships for the case of spontaneous emission but emphasize that the en-
suing algebra is the same for other transition rates involving the same number of

photons and leads to the same algebraic relationships. For single-photon decay, the

15This procedure is outlined in Appendix G.
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three factors enter in the form

uf) = 22 () B/, (1.40)
Me ’
3
uf = 2 () B/l (141)
3
uf = 22 (L) Bl (142
Me ’
and for two-photon decay, they enter in the form
W = 7 (i) Fi/ Myw ), (4.43)
me ’
%
w® = 7 (E) Fy(u/M)w), (4.44)
5
uf) = 28 (L) R (4.45)

It is noteworthy, though coincidental,'® that the constitutive relationship between
the finite- and infinite-mass decay rate expressions is identical in the velocity and

acceleration cases—labelled as Z, and F}, in both gauges.

4.8 TREATING MASS POLARIZATION

The first two effects, radiation emitted in the c.m. frame and mass scaling, are a
direct consequence of the form the decay rate and the form of the corresponding
dipole operators are easily handled. Mass polarization, on the other hand, requires a
more detailed calculation. We have treated mass polarization as an additional third
factor, F,(u/M), defined by a power series as shown in Eq. (4.39). In Appendix G,

the equivalence of this approach with simple perturbation theory is shown.

6Following the gauge transformation between the velocity and acceleration forms, which is per-
formed via the commutation relation in Eq. (4.21), the same Z term, characterizing the nuclear
motion in the c.o.m. frame, and the same power of 11/m. appear in the decay rate expression.

111



4.8. TREATING MASS POLARIZATION

4.8.1 Algebraic relations

If the wave functions and sums over intermediate states are exact!”, then for an

nE1-photon transition it should be true that w™” = w{™ = w{"™, or in terms of
ratios

wl()m) B wfﬂm) B w((lm) 6

(ny) () (ny)” (4.46)

Wp,o0 Wr,00 Wa, 00

By expanding the prefactors in the rate equations in powers of 11/ M using the relations

p/me = 1—p/M (4.47)

me/M = p/M + (u/M)?* + (u/M)* + ... (4.48)

and collecting coefficients of equal powers of /M up to (u/M)3, one can derive
algebraic relations connecting the coefficients C,, D,, F,, ... in Eq. (4.39). As an
example, for two-photon transition rates, the relationship between these expansion

coefficients are

order

(n/M) Cp—Cr = —4, (4.49)
C, = C,,

(ju/M)? 4C, + D, — D, = —6, (4.50)
D, = D,,

(/M) : 6C, +4D,+ E, — E, =4, (4.51)
E, = E,,

where the length /acceleration relationships (not displayed) are the same as the length-
/velocity relationships.
The degree to which these equations are satisfied tests how well the length and

velocity gauges agree for a given calculation. For example, Table 4.9.2 demonstrates

17The exactness of the wave functions ensures the exact satisfaction of the commutators in Sec. 4.5
underlying the particular gauge transformations.
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agreement to 1 part in 10® between the length and velocity gauges for the two-photon

decay rates of heliumlike ions.

4.8.2 Generalization to higher-order transitions

The preceding analysis can be extended to the general n-photon transition rate (n£1)
problem. The constitutive relations between the two gauges can be obtained by
accounting for the additional sets of intermediate states needed to accommodate
higher-order transitions, leading to generalized versions of dipole operators given in
Eqgs. (4.33)—(4.35) for the case of two-photon transitions. This involves tracking ad-
ditional powers of Z, and p/m, that come from more virtual dipole matrix elements.

In the general case, these relationships are

2n+1
n n M T
up? = 2 (L) R, 4.52)
Me ’
M 2n+1
w) = Z]f” (H) Fp(u/M)wé’f&?- (4.54)

In the same fashion as described in Sec. 4.8.1, this leads to the generalized algebraic

relations

order

(u/M) - C, — C, = —2n, (4.55)
C, = C,,

(p/M)? 2nC, + D, — D, = —n(2n — 1), (4.56)
D, = D,,

(/M) : n(2n —1)C, + 2nD, + E, — E,,

- gn(n +1)(5— 2n), (4.57)

E,=E,
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Egs. (4.55)—(4.57) can be used to compare length and velocity nFE1 transition rates
up to order (u/M)3. Eq. (4.57) was not tested since we are only able to achieve
agreement in the finite-mass decay rates between the gauges to 1 part per billion
at most, whereas, in helium, the third-order corrections contribute at the parts per
trillion level. Extending this set of algebraic relations to higher-order terms in the

power series is straightforward and follows the procedure described in this section.

4.9 RESULTS

In Sec. 4.9.1, high-precision two-photon decay rates in heliumlike ions are presented
for both the finite- and infinite-mass case and for both the length and velocity forms.
In Sec. 4.9.2, the algebraic relations from Eqs. (4.55)—(4.57) are confirmed in the cases

of one- and two-photon decay for a set of heliumlike ions.

4.9.1 Two-photon decay rates

We have investigated 14 heliumlike systems, specifically “He and its isotope *He,
"Li and its isotope °Li, along with the most abundant forms for the rest of the
isoelectronic sequence to 1°Ne. For all of these, /M is sufficiently small that a power
series expansion in powers of p/M is useful, and so they provide an opportunity to
check the algebraic relationships by relating the coefficients. In addition, we studied
three heavy helium species p?-*He, 72-*He and p2-*He in which the two electrons
are replaced by antiprotons, pions and muons respectively. Although these would be
difficult to observe experimentally, the values of u/M are so large (0.2011... for p?)
that many terms contribute to the expansion in powers of 11/M, and so the comparison
of the length and velocity forms provides a check that the mass dependence is correct
to all orders in p/M.

Table 4.9.1 shows as a typical example the convergence of the velocity and length

rates'® with increasing the basis set size Q for *He. (The basis sets for 115 are a

18We have not investigated the acceleration form and have only present detailed calculations for
2FE1 decay—the case of chief experimental interest.
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Table 4.9.1: Convergence with respect to basis set size (N) of the *He(2 1Sy) two-photon
decay rates w,(n%)/oz6 for a finite nuclear mass p/M = 1.37074562 x 10~*. The subscripts 7
and p denote the length (L) and velocity (V) forms respectively. Units are atomic units. To
convert to s, multiply by a®/7. = 6242.763420(56) s~! where a = 7.2973525693(11) x
1073 is the fine structure constant and 7, = 2.418 884 326 5857(47) x 10717 s is the atomic

unit of time. Constants are taken from the CODATA recommendations [31].

Q N(@2'S) N@2'P) wy” Jab w faf
4 M 104 8.169161866 046x 10~ 8.182 145 206 238 10~
5 67 145 8.170301592330x10~° 8.174691 464 231x 1073
6 98 197 8.170633057717x107* 8.171830051527x10~*
7 135 265 8.170667222361x1073 8.171125033845x1073
8 182 346 8.170 684 766 627x 1073 8.170855 798 069x 103
9 236 446 8.170 690 486 882x 1073 8.170747017232x1073
10 301 959 8.170691 869 889x 103 8.170730900210x 1073
11 373 692 8.170692739038x1073 8.170 701468 677x1073
12 457 836 8.170692912027x 103 8.170697771291x1073
13 548 1000 8.170692 965 787x 1073 8.170695 029 079x 103
14 652 1173 8.170692 999 658 x 103 8.170693 953 023x 1073
15 763 1366 8.170693014043x 1073 8.170 693 367 924x 1073
16 888 1566 8.170693019 245 x 10~ 8.170 693193226 10~
Extrap. 8.17069302130(21)x10~%  8.170693117(8)x 1073

little larger than those for 21S.) The rates are tabulated in atomic units and divided
by a® so that the accuracies are not limited by the uncertainty in the fine structure
constant o = 7.2973525643(11) x 1072 [31]. The velocity rates increase while the
length rates decrease in larger steps to the same final value within 2 parts in 108
for = 16 and 1 part in 108 for the extrapolated values. This is typical for all the
systems studied with slightly poorer convergence for larger p/M and better for the
more higher Z ions reaching 6 parts in 10° for 2°Ne®" with Q = 16, and 6 parts in
1019 for the extrapolated values, altogether providing confidence in the reliability of
our wave functions. These extrapolated rates, with their uncertainty, appear in Table

4.9.2 for the Z = 2 to 10 heliumlike sequence, including some exotic systems. Since
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Table 4.9.2: Extrapolated velocity (p) and length (r) two-photon decay rates w®Y) /a8 for
various atoms and ions, including the heavy-helium cases with both electrons replaced by
antiprotons (p), pions (7), or muons (). Units are atomic units. To convert to s~!, multiply
by af/7, where 7. is given in Table I, 5 = 1.317365 60x1020s, 7, = 8.85610x10"%0s,
and 7, = 1.169 852 69x107 19 s for the antiprotonic, pionic, and muonic cases respectively.
Numbers in parentheses () are estimated uncertainties. Not to be confused with citations,
in this table the number in square brackets || is the power of 10 that the quantity should
be multiplied by.

Ton Z w/M w§ o wi® /oS

524He 2 2.01102052[—1]  5.20561768579(17)[—3] 5.205 617713 1(13)[~3]
4He 2 3.60930[2) 7.543 045 464 90(31)[ 3] 7.543 045 560(8)[ 3]
J24He 2 275651798[2]  7.6869822646(4)[—3] 7.6869823097(11)[3]
He 2 1.81921206(—4]  8.169874733147(22)[=3]  8.169874826(8)[—3]
He 2 1.37074562(—4]  8.17069302130(21)[—3] 8.170693 117(8)[—3]
SLit 3 9.1216756/=5]  3.109011875468(10)[=1]  3.1090118852(11)[—1]
it 3 7.8201950(=5  3.108946571280(10)[=1]  3.1089465812(11)[—1]
Be™ 4 6.088 199[—5] 2.9116174788637(14) 2.9116174840(7)
HBSt 5 4.983870[—5] 1476948014809 15(15)[1]  1.476948017 98(15)[1]
RO 6 4572544[—5] 5.2020961640483(35)[1]  5.202996 174 30(21)[1]
UNSE 7 3.918481[-5] 1.51544220815997(13)[2]  1.5154422110(6)[2)
606+ 8 3.430541[—5] 3.70799448849301(25)[2)  3.707 994492 78(16)[2]
WETE 9 2.888173[—5] 8.07T705093746353(4)[2]  8.0770509445(23)[2]
DN 10 2.744620[—5] 1.60898133893441(5)[3]  1.6089813398859(33)[3]

the velocity rates are more rapidly convergent, we have quoted extrapolated velocity
values in Tables 4.9.3 and 4.9.4.

Table 4.9.2 compares the length and velocity forms for all 14 systems. It is clear
that the length and velocity forms agree to within the convergence uncertainty of
about one part in 10% or better over the entire range of /M, including the three
heavy-helium species. The results verify that the combined mass dependence from
all three sources—mass scaling, mass polarization and nuclear motion—have been
correctly calculated, and all three must be included to bring the L and V forms into

agreement.
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Table 4.9.3: Two-photon decay rates w(®Y) /a8 for various atoms and ions, including the
heavy-helium cases for both finite and infinite nuclear mass. To convert to s~! multiply by

ab/7,—see Table 4.9.2 for this quantity and the values of Tps Tr, and 7.

Ion Z w®) /af ws /ab w®) jwd)
p4He 2 5.20561768579(17)x 103 8.1731947151(20)x 10~ 0.636 913455 17(28)
et 2 7.54304546490(31)x 103 8.1731947151(20)x 10~ 0.922 900 497 0(4)
PHe 2 7.6869822646(4)x 1073 8.173 194 7151(20)x 10~ 0.940 511 334 0(5)

3He 2 8.169874733147(22)x 1073 8.173194 7151(20) x 103 0.999 593 796 30(36)
‘He 2 8.170693 021 30(21)x 1073 8.173194 7151(20) x 103 0.999 693 914 82(35)
SLit 3 3.109011875468(10)x 10! 3.108 554 078 983(7) x 10~* 1.00014726991(4)
Lt 3 3.108946571280(10)x10~"  3.108554 078 983(7)x 10~ 1.000 126 262 01(4)
9Bet+ 4 2.9116174788637(14) 2.9106406126215(16) 1.000 335618 983(8)
Hp3+ 5 1.476 948 014 809 15(15) x 10* 1.476 253 238 3922(19) x 10* 1.000 470 634 9825(16)
12Ca+ 6 5.292 996 164 0483(35) x 101 5.289 756 826 1109(23) x 101 1.000612379367(7)
N5+ 7 1.515442 208 159 97(13) x 102 1.514 412420070 65(13) x 102 1.000 679991 8406(12)
16Q6+ 8 3.707994 488 493 01(25) x 102 3.705284 196 490 4(9) x 102 1.000 731 466 6998(24)
LRT+ 9 8.077050 937 463 53(4) x 107 8.071 154 172 585 4(4) x 102 1.000 730 597 4775(5)
DNeft 10 1.608 981 338934 41(5) x 103 1.607 689 583 705 86(3) x 103 1.000 803 485 4745(4)

In Table 4.9.3, successive columns list the name, atomic number, the finite- and
infinite-mass decay rates, and the ratio w(®?)/ wé?ﬂ). The rates increase approximately
as Z% while the ratio w®/ w2 increases gradually, being less than unity for *He
and a little larger than unity for the higher-Z nuclei. There is clearly a cross-over
point between Z = 2 and Z = 3 where the finite nuclear mass effects exactly cancel.

The spectral distribution as a function of energy is symmetric about the midpoint
at hw = %(E1 — E¢). In Table 4.9.4 we list the peak emission rate in s™!, the energy
difference in wave numbers and the wavelength of the peak in nm units. As noted in
Sec. 4.3.1, two-photon emission from *He is relevant in the determination of popula-
tion balance astrophysical settings with low particle density, as in the characterization
of planetary nebulae. References [186, 193] give the helium rates over half the spec-
trum, but exclude the factor of 1/2 due to double counting. Figure 4.9.1 compares
the profiles for “He and p?-*He, both normalized to unit integrated emission rate.

The difference curve (red) across the middle shows that the effect of finite mass is to
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Table 4.9.4: Maximum two-photon decay rates, energy ranges, and the wavelengths of the
maximum rates. Values have converged to the figures quoted.

Ton Wnax (s71) A = w; — wr (em™1) Peak A\ (nm)
p>-‘He 8.91985500 x 10* 2.984309 x 10® 6.701720 x 1072
m2-He 1.8469 x 10* 4.5126 x 107 4.4320 x 107!
u?-*He 1.421736 x 10* 3.421 138 x 107 5.846 008 x 107!
SHe 7.255592 87 x 10! 1.663 010 x 10° 1.202639 x 102
‘He 7.256 23228 x 10! 1.663025 x 10° 1.202628 x 102
OLit 2.694 28513 x 103 4.914 063 x 10° 4.069 952 x 101
TLit 2.694 21272 x 103 4.914072 x 10° 4.069 944 x 10*
9Bet 2.49089244 x 10* 9.811005 x 10° 2.038 527 x 10!
B3+ 1.252656 20 x 10° 1.635617 x 10° 1.222780 x 10!
L2t 4.461 02908 x 10° 2.454 648 x 106 8.147 807

HNO+ 1.271097 75 x 10° 3.438 289 x 106 5.816 846

1606+ 3.098 26541 x 108 4.586 539 x 106 4.360 586

WRT+ 6.727 920 98 x 106 5.899 395 x 106 3.390178
20NeS+ 1.336 77261 x 107 7.376 858 x 106 2.711181

make the distribution curve higher and narrower.

Table 4.9.5 presents the final results for the two-photon decay rates, including
an estimate of the relativistic correction Awgy ) [193]. The relativistic contribution
becomes more important with increasing Z and is larger in magnitude than the mass
correction in all cases, but of opposite sign, except for Z = 2, where they both
lower the infinite nuclear mass decay rate. To quote estimates due to relativistic
effects, absent a rigorous calculation, we followed Ref. [193] assuming the effect for
a two-electron system is bounded by the unscreened and fully-screened shifts for a
single-electron ion and applied the mean to the w®?) values. Our best estimates of
the net rates are in the last column with the uncertainties indicated in parentheses
representing the full single-electron range. Our final numbers are essentially the
same as those of Derevianko and Johnson [211]|, who found this procedure in [193]

for infinite-mass nuclei consistent with their relativistic calculations for the low-Z
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Fig. 4.9.1: Plots of the two-photon emission rate w(*)(*He) (black) and the difference
Aw®) = ) (p2-4He) —w ) (*He) (red) as fractions y of the unit energy range normalized
to unity.

ions. However, for neutral helium, where relativistic effects are small and electron

correlation effects are large, there is a marginal disagreement of 0.09 £ 0.07 s
Experimental lifetimes of 5.03(26) x 10~* s for both “He and 3He [195] and

1.97(10) x 1072 s for "Li™ [196] are entirely consistent with our respective calculations

of 5.178(45) x 104 and 1.9634(28) x 1072,

4.9.2 Testing the algebraic relationships

The algebraic relations given in Sec. 4.8.1 have been tested and verified in numerical
calculations involving one- and two-photon decay rates, which, as mentioned previ-
ously, give rise to identical algebraic relationships as other transitions involving the
same number of photons. The algebraic coefficients, along with the satisfaction of the
corresponding algebraic relations, are presented in Tables 4.9.6 and 4.9.7.

The constitutive relations between the finite- and infinite-mass decay rates in Eqgs.
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Table 4.9.5: Final values for the two-photon decay rates, including finite nuclear mass

(2v)
(AwH/M

) and relativistic corrections (Aw(zv)) from Drake [193]. The total w

rel

(2v)
total

is compared

with the relativistic CI calculations of Derevianko and Johnson [211]. Units are s~* with an

overall scale factor given in the last column for all the entries.

Ion w? Awff/})l Awizﬂ ) wt(zga)l Ref. [211]  Difference  Scale
p>-*He 9.36866056(8)  —3.40163459(3) —0.014(13)  5.953(13) x10*
m-He 1.393610183(13) —0.107446652  —0.0021(19) 1.2841(19) x10*
p2-4He 1.055000450(9) —0.062760569  —0.0016(15) 0.9907(15) x10*
SHe  5.10233210(5)  —0.002072586  —0.008(7)  5.093(7)  5.102 —0.009(7)  x10'
‘He  5.10233210(5)  —0.001561748  —0.008(7)  5.093(7)  5.102 —0.009(7)  x10'
SLit  1.940596769(17)  0.000285792  —0.0020(17) 1.9388(17) 1.940 —0.0012(17) %10
TLit 1.940596769(17)  0.000245024  —0.0020(17) 1.9388(17) 1.940 —0.0012(17) x10°
‘Bett 1.817044074(16)  0.000609834  —0.0022(16) 1.8154(16) 1.816 —0.0006(16) x10*
B3 9.215899 72(8) 0.004337325  —0.014(8)  9.206(8)  9.211 —0.005(8)  x10*
204+ 3302270041(30)  0.002022242  —0.0063(33) 3.2979(33) 3.300 —0.0021(33) x10°
HUNS*9.45411846(9) 0.006428 723  —0.023(10)  9.438(10)  9.444 —0.006(10)  x10°
1606+ 2.313121264(21)  0.001691971  —0.0068(29) 2.3080(29) 2.310 —0.0020(29) x10°
PR™  5.03863060(5) 0.003 681 211 —0.018(6) 5.024(6) 5.029 —0.005(6) %108
2Ne®t  1.003642572(9) 0.000806412  —0.0044(14) 1.0001(14) 1.001 —0.0009(14) %107
(4.43) and (4.44), in terms of the expansion parameter p/M, are
Go(p/M) = (u/M)Cy + (/M)? Dy + /M)’ Ey +- . .. (4.58)

where G, (/M) is a gauge-dependent function of the finite- and infinite-mass decay

rates, the radiation emitted by the nucleus in the c.m. frame, and mass scaling. Next,

three values of p/M were used: p/M itself, along with 10(u/M) and 20(u/M), to

establish three equations for Eq. (4.58).

In what follows, although the analysis of the one- and two-photon decay cases are

treated somewhat differently, both methods are sufficient to obtain the coefficients

needed to test the algebraic relations. The acceleration gauge is not tested in this

work.
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One-photon decay

In the case of one-photon decay, a system of three linear equations, defined by writing
out Eq. (4.58) for the three values of /M mentioned above, yielding a 3 x 3 system,
was explicitly solved in order to include finite-mass effects up to order (u/M)? in
the mass polarization power series. This procedure is carried out for successively
larger basis sets according to Eq. (2.34) up to @ = (i + j + k)max = 17. These
corrections contribute to the extent that the decay rates between the length and
velocity gauges agree beyond the (u/M)? order or better than 1 part in 10%. The
third-order coefficients are not displayed in Table 4.9.6, nor is the third-order algebraic
equation, Eq. (4.57), tested (the decay rates do not presently agree well enough
to warrant such a comparison); however, nonnegligible third-order contributions to
lower-order coefficients C, and D, are explicitly considered by solving the 3 x 3 system

defined by Eq. (4.58),

y v v |G G (y)
10y 1042 1043| |D,| = |G.(10y) | 5 (4.59)
20y 20y? 20¢3| | E, G.(20y)

where y = /M and x = p, r for the two gauges.!® The first- and second-order mass
polarization power series coefficients that arise in treating one-photon decay in heli-
umlike ions are presented in Table 4.9.6. The results are calculated by averaging the
largest basis sets and the standard deviation of these was taken to be the uncertainty.
The coefficients of the mass polarization power series do converge with increasing
basis set sizes, but not in a monotonic fashion as in the decay rates. Thus, the stated
results and errors presented in Table 4.9.6 correspond to an average and standard
deviation of the calculations from the several largest basis sets. The coefficients are
shown to obey the algebraic relations in Eqgs. (4.49) and (4.50).

The inclusion of third-order corrections made little difference for the singlet case;

9Solving the upper 2 x 2 system instead of the full 3 x 3 form in Eq. (4.59) leads to slightly
different values for C, and D,, even though the uncertainty in F, itself is very large and the (u/M)3
relationship cannot be satisfied.
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a larger difference was observed in the case of triplet decay, where it was necessary
to include the E, coefficients to satisfy the (uu/M)? algebraic relation. This point is
illustrated in the last two rows of Table 4.9.6 and is a consequence of the Pauli princi-
ple: for triplet states, the electron-electron correlation plays a smaller role and more
accurate wave functions are obtained. Therefore, in the triplet case of one-photon

decay, the coefficients, particularly {D,}, are sensitive to the (u/M)? contributions.

Two-photon decay

The algebraic relations were derived for the first time and numerically tested for
the case of two-photon decay 2 'S — 1 1S in heliumlike ions (Z = 2 — 10), along
with the heavier u-He, m-He, and p-He. These results are reproduced in Table 4.9.7.
Instead of solving the linear system described by Eq. (4.58), as in the one-photon
case, iterative linear regressions are performed on this set of equations to obtain the
mass polarization coefficients C, and D,. On the initial iteration, the C, values are
obtained by a linear regression assuming no (u/M)? contributions (i.e., D, = 0).
Then, using these C, values, an updated equation is subject to linear regression to
get the D, coefficients. These updated D, values are then used for a second regression
to find C,, and the process is repeated once more to update the D, coefficients. This
procedure is carried out for successively larger basis sets according to Eq. (2.34) up
to Q = (i+j + k)max = 17. The slight disagreement in the (u/M)? relation for Z = 2
and 3 indicates that the rates between the gauges don’t quite agree to order (u/M)2.
This is because u/M o« 1/Z and Z = 2 and 3 are the largest /M values considered.

We have both derived and numerically tested general algebraic relations that quan-
tify the agreement between the length and velocity gauge for the general n-photon
(nE1) finite-mass transition rate equations and tested them for heliumlike ions. The
corresponding relationships between the length /velocity and acceleration gauge have
also been derived. These relations are built on the postulate, initially put forward
in Ref. [24], that the mass polarization component of the finite mass effect can be
treated with a power series in p/M. Eqs. (4.52-4.54) provide constitutive relations

that can be used to account for finite-mass effects for nE1 transition rates. The
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4.9. RESULTS

Table 4.9.6: Mass-polarization parameters C,, and D, from Eq. (4.39) are shown for the
one-photon decay processes in the indicated singlet and triplet He and He-like ions, along
with the accompanying algebraic relations, Egs. (4.55) and (4.56) for n = 1. For the triplet
transition at the bottom of the table, |[f] indicates third-order contributions (F, terms) are
included in the calculation and [f] indicates they are omitted.

Ton Cp C. C, —C, D, D, 2C, + D, - D,
2'P—118

‘He  -3.572719(1)  -1.57271(3) -2.00000(3) 8.888(1)  2.73(2) -0.99(2)
Lt -3.299929(3)  -1.299919(7)  -2.00001(1) 6.6723(8)  1.067(4) -0.995(5)
9Bett  -3.061260(8)  -1.0612(2) -2.0005(1) 5.3580(3)  0.232(6) -0.997(6)
B3 12.896567(5)  -0.89655(3) -2.00002(4) 4.5986(4) -0.194(5) -1.000(6)
ROt 2.780462(2)  -0.78047(3) -1.99999(3) 4.1215(2) -0.439(2) -0.999(2)
VUNST 22.6952538(3) -0.695250(4)  -2.000003(4)  3.800(1)  -0.61(2) -0.98(2)
1606+ _2.6304056(1) -0.630403(2) -2.000002(2) 3.5687(6) -0.702(9) -0.99(1)
BE™  _2.579540(1)  -0.57953(1) -2.000006(14)  3.3959(4) -0.762(1) -1.001(1)
WNeBt  -2.5386356(1) -0.538638(6)  -1.999996(6)  3.2618(8) -0.812(4) -1.002(5)

23p - 238
“He [f] -7.609183(1)  -5.60918375(4) -1.999999(1)  12.9523(2) -1.266053(8) -1.0000(2)
“He [f] -7.609191(1)  -5.60920948(3) -1.999982(1)  12.9703(1) -1.206957(4) -1.0411(1)

prefactors in these equations can be used to convert infinite-mass transition rates
calculated in any theoretical /computational framework to the corresponding finite-
mass rates. Eqgs. (4.55-4.57) are the corresponding algebraic relationships that test
for gauge agreement to ensure that mass polarization effects are included correctly to
a desired order in p1/M. These relations place tight constraints on theoretical calcula-
tions of finite-mass effects in nE'1 transition processes, as demonstrated in the case of
the spontaneous emission of heliumlike ions. They also test the leading infinite-mass
term since an error here would carry through to the higher-order terms in /M
Another approach to obtaining the coefficients F,(u/M) contained in Eqs. (4.52-
4.54) is to treat the mass polarization term, V,, - V,,, in Eq. (4.38) perturbatively in
the parameter /M. This would provide a more direct, but also more computation-
ally intensive, method for calculating the coefficients C,, D,, E,, ... of the successive
powers of p/M. Appendix G explores this approach; however, it is worth noting
that the coefficients (C,, D, ), already calculated in Tables 4.9.6 and 4.9.7, satisfy the
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Table 4.9.7: Mass-polarization parameters C, and D, from Eq. (4.39) are shown for two-
photon 218 — 115 decay in He and He-like ions, along with the accompanying algebraic
relations, Eqgs. (4.49) and (4.50), for the metastable singlet transition indicated.

Ton C, C, c,—C, D, D, 4C, + D, — D,
“He -5.2333588(30)  -1.23336(8)  -4.0000(8) 16.4344(10)  1.607(26) -6.106(27)

Lit -5.385078(8) -1.385078(12) -4.000000(17) 17.124(27)  1.95(32)  -6.37(35)
9Bett  -5.487355(9) -1.4871(5) -4.0002(5) 17.799(7) 1.74(35)  -5.89(36)

HB3t 5.557584(1) -1.5575(1) -4.00008(13)  18.3518(12)  2.09(12) -5.97(12)
204 _5.6094000(16)  -1.60943(13)  -3.99996(13)  18.8227(18)  2.47(14)  -6.08(14)

LN+ 5.64973214(24) -1.649718(24) -4.000014(24) 19.24196(29) 2.661(28) -6.018(28)
1600+ _5.68233816(7) -1.682327(12) -4.000010(12) 19.61265(9)  2.903(16) -6.020(16)
WE™  5.7094498(5)  -1.70942(6)  -4.000025(61) 19.9487(8)  3.099(99) -5.99(10)
WNeS  -5.73247255(30) -1.73249(3)  -3.99998(3)  20.2487(10)  3.40(10)  -6.08(10)

given algebraic relations up to order (u/M)? ~ 1078. A further improvement could
be a more judicious selection of values for p/M used to demonstrate numerically the
algebraic relations. Currently, the actual p/M value is used, along with both 10x and
20x this value; however, there is nothing particular about these choices and there is
no need to use /M itself. Exploring the space of possibilities here would likely lead

to a more convincing demonstration of the algebraic relations.

4.10 FUTURE WORK

The two most immediate extensions of this work, already mentioned at points during
this chapter, would be to: (1) calculate relativistic®® effects to the 2E1 decay rate in
Eq. (4.36); and (2) to apply the method of characterizing mass polarization to treat
finite mass effects to other atomic processes. A third and more involved extension
would be to extend the applicability of the methods and calculations developed herein

to higher-Z atoms using the unified method of Drake [218§].

29Work on a manuscript on this topic is underway.
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4.10.1 Inclusion of relativistic effects

For precision QED calculations [25, 219] to be compared with experiments, finite-
mass effects are needed and the method in this chapter provides a systematic method
for their inclusion. In the particular problem of two-photon decay, accurate compari-
son with experimental results [202] also requires a correct relativistic treatment—the
finite-mass effects oc /M and relativistic effects oc Z?a?, respectively, which are
comparable (~ 107*) in helium. This has been done previously, in Refs. [193] and
[211], but a novel addition would be to add relativistic effects to the finite-mass effects
discussed in this chapter, using Hylleraas basis sets, by a highly accurate perturbation
calculation.

An obstacle in calculating relativistic corrections to the 2E1 decay process is that
the interaction with the QED vacuum contained in FGR contains negative energy
states (cf. Appendix E). The success of variational techniques that use finite basis
sets, such as those in this dissertation, rely on the variational minimum principle
that ensures that we find the lowest upper bounds to the true NR energies (cf. sec-
tion 2.6).2! There are two primary ways to proceed: (1) include relativistic effects
from the start and add electron correlation as a perturbation; or conversely (2) include
electron correlation from the start and then add relativistic and other higher-order
effects perturbatively. In the first case, the Dirac equation is solved and then the
electron correlation is taken as the perturbation. Ref. [211] used a relativistic config-
uration interaction (RCI) approach to the two-photon decay problem and their results
are in Table 4.9.5.22

In the latter case, known as nonrelativistic-QED (NRQED), the time-independent
Schréodinger equation is solved using highly accurate Hylleraas basis functions that
fully include electron correlation and relativistic and higher-order QED effects are

added pertubatively.?® It is only in the special case of few-electron (N < 3) systems

21Tn practice, these problems can be overcome by a few several approaches, summarized in
Ref. [220].

22Geveral additional methods have seen wide use over the years such as Dirac-Hartree-Fock,
multiconfigurational-Dirac-Hartree-Fock, relativistic random-phase approximation.

23See Chap. 5, which discusses the precise calculation tune-out frequency, for more details.
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that an accurate NR calculation is even possible. Since the NR calculations are
essentially exact for all practical purposes, as long as the operators needed to calculate
these various higher-order effects are known, as is the case with the Breit operators
which capture relativistic effects [40, p. 181], this method often outperforms the
variational Dirac approaches in low-Z two- or three-electron systems.

What ultimately determines the choice between the two methods is which method
will have a more precise value for a given Z. Generally, a “crossing point” occurs
around Z = 27—values below which the NRQED method is more precise and above
which methods like RCI that start with the Dirac equation will be more precise [221].
As such, the set of Z < 10 studied here are excellent candidates for the NRQED
approach and will yield more accurate decay rates than that of the RCI approach of
Derevianko and Johnson [211].

Goldman and Drake developed a relativistic Sturmian formulation [222] and soon
thereafter demonstrated [210] that in the relativistic contributions to the one-electron
2F1 decay rate vanish to order (aZ)? in the length gauge. More importantly, the
dipole matrix elements that comprise the calculation are given with an adjustable,
continuous gauge parameter G, with the choices G = 0 and G = /2 yielding the
velocity and length gauges, respectively, in the nonrelativistic limit [206].

Since the interaction energy form U is the same for the two-electron case,
the strategy is to derive the relativistically perturbed interaction energy, similar to
Ref. [25], but to use the equivalent nonrelativistic operators chosen such that their
contribution from negative energy states vanishes at the order of relativistic correc-
tions. Work is in progress on the problem of establishing an equivalent one-electron
nonrelativistic £1 operator?* in the length gauge, where we reduced a general formula
[224] to a specific form for the one-electron case and were able to show equivalence
to the one-electron Dirac Sturmian result of Ref. [210]. This has been done in the
velocity gauge by Sami [225], where additional spin-dependent corrections arise. Once

the relationship is established for the He™(2s) decay, the methodology can be carried

24The Breit-Pauli corrections to the Hamiltonian and wave functions are well-understood; how-
ever, relativistic corrections to the dipole operator itself that arise from the Foldy-Woutheyson
transformation [223] must also be accounted for.

126



4.10. FUTURE WORK

over to the two-electron case.

4.10.2 Extend to additional structure problems

The formalism developed here for treating the mass polarization component of the
finite-mass effect in the calculation of nE1 transition rates in heliumlike ions could
be extended to other atomic processes, which are in general proportional to matrix
elements and energy differences raised to some power. The form of the resulting alge-
braic relations would be different from those presented here for other nE1 processes,
depending on the form of the quantity being calculated; however, they would still
serve as a theoretical check between calculations in the velocity and length gauges
and would be derived in the same way as presented here and in Ref. [24]. In calcu-
lations of stimulated emission, absorption, and photoionization [219, 226], the same
algebraic relations would apply as for spontaneous emission, but the numerical values
of the C,, D, etc. coefficients would be different. One possible application would be
to the study of Feshbach resonances [226].

4.10.3 Extension to highly charged heliumlike ions

Finite-mass effects diminish with the higher atomic number Z but nevertheless must
be accurately accounted for in precise comparisons between experiment and theory
[202]. The dominant coupling scheme for two-electron systems shifts from LS to jj
around Z ~ 26, requiring different methods to be deployed in calculating relativistic
contributions. The nonrelativistic approach described in this chapter addresses the
low-Z region, and relativistic effects can be added perturbatively, while methods like
RCI [211] are typically used to provide accurate decay rates at high-Z. These methods
can be unified for general nFE1 decay processes using the method developed by Drake

[218], successfully applied to heliumlike sequences up to Z = 100 [227].
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CHAPTER 5

Testing QED with the Tune-out

Frequency in Helium

5.1 OVERVIEW

This chapter details a joint theoretical-experimental effort! to test QED by comparing
measurements and calculations of the ~ 726 THz tune-out frequency of the 23S state
of helium. The tune-out frequency is the frequency at which an atom ceases to interact
with an incident laser light. The tune-out frequency is a completely independent test
of QED than the traditional experiments which measure atomic energy levels. In our
work, we have reformulated the problem as a zero in the coherent Rayleigh scattering
cross section, allowing for the calculation of retardation effects that arise due to the
finite velocity of light. This is the first calculation of the tune-out frequency that is
sensitive to these effects, building off of Pachucki and Puchalski’s [228] calculation of
the dynamic polarizability of helium. We are able to resolve QED effects at the 300
level and retardation effects at the 20 level.

In Appendix E, the problem of coherent Rayleigh scattering (RSCS), the topic
of this chapter, was observed to be very similar to that of two-photon transitions,
which were discussed in Chap. 4. This is yet another of a growing list of atomic
physics problems where pseudospectral methods are used to represent a complete

set of states. In this chapter, we use pseudospectra to treat perturbations in second

'While essential for completeness and thematic development, this material represents a smaller
portion of my research contributions. Thus, this chapter is shorter, reflecting the scope of my
involvement in this project.
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order, capturing QED transitions with the vacuum, and we also use them in first-order
perturbation theory to treat relativistic and QED corrections.

The content of the chapter is as follows. Section 5.2 provides the background for
the tune-out frequency as a test of QED. Then, Sec. 5.3 defines the tune-out frequency
and explains why we specifically chose the ~ 726 THz tune-out in 23S5;. Section 5.4
then briefly explains the experiment and discusses the largest sources of uncertainty.
The theoretical formulation is then expounded in Sec. 5.5, following which the overall
results are presented and discussed in Sec. 5.6. Lastly, future work is mentioned in

Sec. 5.7.

5.2 MOTIVATION

As outlined in the Introduction and investigated in Chap. 3, a major theme of present-
day physics, including atomic physics, is the search for new physics (NP) beyond the
Standard Model (SM). One sector under intense scrutiny is QED [8, 229| due to
continual improvements in high-precision experiments and theory. Advances in laser
spectroscopy now resolve QED contributions, and in two-electron systems, improve-
ments in variational techniques [229] and QED operators [230-233| enable precise
theory /experiment comparisons. As discussed in the Introduction, many QED tests
rely on precise energy measurements from spectroscopy, including the proton radius
puzzle and other Lamb shift measurements. Discrepancies between theoretical QED
values and observations signal NP. Precise QED calculations also determine physical
quantities like the nuclear radius of helium isotopes with halo nuclei [234-237], such
as 9He discussed in Chap. 3.

Common to all of the aforementioned examples is that they compare energy mea-
surements and calculations to probe QED. Energies are expectation values, i.e., diag-
onal matrix elements of the Hamiltonian matrix. Comparison of quantities other than
energies, such as lifetimes and transition rates, are generally much less accurate than
energy measurements. For instance, in Ref. [238], the transition rate 3P, —1 Sy was

measured to only 4.5% accuracy. Measurements such as this test off-diagonal matrix

129



5.2. MOTIVATION

elements. The dynamic polarizability ay4(w), a quantity proportional to the energy
shift? an atom experiences in an optical field of frequency w with z polarization, is

defined in the nonrelativistic limit to be [148, p. 256]

) = 1 ( 557 + 557 ) (5.0

with matrix elements between the state in question, |i), and all other states, {|n)},
must be computed.

These tests, therefore, offer not only an alternative, completely independent ap-
proach to testing QED, but are much more contrained in that the line strength of
every transition in the atomic spectrum, bound and continuum, contributes to this
quantity. In fact, the polarizability—both the dynamic case shown above and the
static case—have been of significant interest in the determination of several stan-
dards and constants, including the pressure [239] and temperature [240] standards,
which can be written in terms of the index of refraction [241|. The index of refrac-
tion, in turn, can be calculated using very precise values of the dipole polarizability
[242]. In fact, in recently calculating the index of refraction, Pachucki and Puchalski
demonstrated that the dipole polarizability formulation does not account for retar-
dation effects [228]. The index of refraction ultimately considers how plane waves of
light propagate through disordered media, and the slowing effect is due to scattering.
The process that should be considered is not polarizability but rather the Rayleigh
forward scattering amplitude—the photon nature of light is relevant to this process
[228]. We turn our attention towards the frequencies at which these quantities vanish:

the tune-out frequencies, i.e., zeroes in the Rayleigh scattering cross section.

2The energy shift AFE that an atom experiences in an optical field with electric field strength
F', is related to the dynamic polarizability via AFE = —%ad(w)F 2. The relation is approximate as
there are higher-order polarizabilities that contribute as well in the exact relation.
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Fig. 5.3.1: The level shifts for the 2 35 state and the 23P /33 P manifolds are shown for
the cases of (left to right) no laser light, and then for light of frequency less than, equal to,
and greater than the tune-out frequency. The noteworthy feature of incident light at the
tune-out frequency is that the energy shift in the 2 3S; vanishes.

5.3 THE TUNE-OUT FREQUENCY

The tune-out frequency, or equivalently, the tune-out wavelength, is essentially the
frequency /wavelength of an optical field incident upon a system (an atomic system
in our discussion) where the system ceases to interact with the applied field. Figure
5.3.1 demonstrates the situation for a helium atom prepared in its metastable 235
state. At the tune-out frequency, fro, the energy level shift cancels—a remarkable
zero since it is the result of the sum of an infinite number of terms.

As mentioned above, there are two alternative physical interpretations® of this
phenomenon that are equivalent in lowest order but lead to different higher-order
corrections. The experimental conditions determine which of these pictures is correct.
This was discussed by Drake et al. [217]| for the case of the tune-out frequency of
helium prepared in its metastable 23S state—the configuration with which we are
concerned in this chapter.

The first formulation of the tune-out frequency arose in the context of creating

optical lattices to selectively trap one type of atom in ultracold experiments involving

3The mathematical details of the two interpretations will be addressed in the following section
discussing the NRQED formalism.
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multiple atomic species.* Here, LeBlanc and Thywissen developed a scheme® where
the trapping wavelength of the optical trap was chosen to lie between two manifolds
of one of the two atomic species, such that the induced dipole moment in that species,
and thus the level shift, is zero. This situation is illustrated in Figs. 5.3.2 and 5.3.3 for
the case of He(23S5). The effect of this is that this species is no longer trapped, i.e.,
they achieved species selective trapping. Within an optical lattice, the appropriate
formalism is to consider the dynamic polarizability, since the potential is fixed in space
and oscillates in time and the atom’s position relative to the nodes of this potential
determines the interaction [217].

The tune-out experiment consists of a magnetically trapped Bose-Einstein con-
densate of metastable He(235;) atoms subjected to a probe beam that is a travelling
transverse plane wave. In this second formulation, the photon nature of the interac-
tion must be considered for higher-order effects, including retardation effects. Due to
this, the proper physical picture for this interaction is the point at which the atom

ceases to scatter light: the frequency at which the Rayleigh scattering cross section

(RSCS) vanishes [217].

5.3.1 Suitability of the tune-out frequency for testing QED

The tune-out frequency is an excellent nonenergy candidate for studying QED that
was first pointed out by Mitroy and Tang in 2013 [244]. Experimentally, it is ad-
vantageous because it constitutes a null measurement that does not require careful
calibration of light intensity or beam profile. Furthermore, unlike other experiments
that test QED, measuring excitation probabilities is not required here.®

The metastable state of helium has an exceptionally long lifetime (approximately
8000s) relative to typical atomic transition timescales (~107%s), making it ideal for

trapping and probing. It is also well-situated with respect to the energy level scheme of

4A landmark dual-species result involved observing the Fermi pressure in a fermion-boson °Li/"Li
mixture [243].

5This experiment focused on binary mixtures ultracold alkali-metal atoms such as Li-Cs, K-RB,
etc.

6Measuring direct transitions, such as the 2351-33S; transition in helium [245], or lifetimes,
require measurement of excited state populations [246].
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33p,
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Fig. 5.3.2: Partial energy level diagram of *He, showing in particular the relevant transitions
between the 23S state and the 23P/33P manifold, between which the tune-out frquency
occurs. The tune-out frequency studied in this work is very near 726 THz, below the 771 THz
transition to 32 P shown in blue. Not drawn to scale—the splittings are greatly exaggerated
in this drawing.

helium for measuring the tune-out property. Of the infinite set of tune-out frequencies
for the He(23S;) atom, the fro =~ 726 THz is the best choice. As shown in Fig. 5.3.3,
the fro = 726 THz is well separated from resonances, making it possible to actually
measure it without having the signal partially masqueraded by the sharp effects seen
near the resonances. Further, the gradient of the induced energy shift with respect
to the applied frequency, Cfl—;‘, is very small here compared to alternative decays [244].
This is a result of the fact that the two closest transitions (2 35-2 3P and 2 35-3 3P)
are separated by more than a factor of two in frequency. Therefore, for this tune-

out, the negative contributions to the RSCS due to 2 35-2 3P transitions are mostly

balanced by the positive 2 353 3P contributions.”

"The higher 2 3S-n 2P with n > 3 contributions are also positive, but relatively small.
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Fig. 5.3.3: This curve displays the dynamic polarizability as a function of the frequency
of the applied laser light. The discontinuities occur when the laser is in resonance with
transitions between the (from left to right) 2 3S and n = 2,3,4 3P manifolds. Between these
discontinuities, the polarizability must pass through zero—these are the so-called tune-out
frequencies. For reasons that are explained in the text, it is the tune-out (fro) around
726 THz, indicated by the red arrow, that is studied presently to test QED. Each vertical
line stands for the spin-orbit-split manifold and contains additional tune-outs that are not
useful since their contributions are completely dominated by the states within the manifold
and adhere to 1:3:5 geometric considerations [244].

In summary, the tune-out frequency is an ideal property to test QED independent
of energy shifts. Clearly, the 235 state of helium has excellent properties that make
this a candidate for precise and reliable measurement and calculations—which will

now be discussed in turn.

5.4 BRIEF OVERVIEW OF THE EXPERIMENT

The experiment was carried out by the He* BEC group at the Australian National
University; here, we touch on the most salient details. This section thus contains a
brief overview of the experiment itself and also a commentary on the most significant

sources of systematic error. Complete information can be found in the manuscript

134



5.4. BRIEF OVERVIEW OF THE EXPERIMENT

and accompanying supplementary materials that this chapter is based on [25], or in
even more detail in Ref. [247].

The central idea is to subject helium atoms, prepared in the 235;(M; = 1) state,
to a freely propagating, frequency-tunable pulsed laser beam and determine the point
at which they cease to scatter photons—in this experiment, we measured the fre-
quency at which the optical dipole potential vanished. The mechanism for performing
the tune-out measurement was the trap oscillation method. The magnetic trap forms
a sinusoidal oscillation with a trapping frequency of (l,,. Then, the probe laser
interacts with the trapped BEC with frequency f. Its Gaussian optical potential,
approximately harmonic, results in a response frequency {,;one. Atoms are outcou-

2

pled and their net oscillation frequency, Qpet, corresponding to Q2. = Q2 . + Q7.

is measured by plotting their velocities. Upon measuring )., separately, the above

2

orober Which itself is a function of the frequency of

formula gives an expression for 2
the probe laser frequency f. It turns out that Q2. is proportional to the RSCS

according to €2 . oc a(f)I, with I the intensity of the probe beam, and thus it is

zeroes in the Q2 vs. f graph that yield f = fro.

Table 5.4.1 shows the different contributions to the measured tune-out frequency,
including systematic effects and their uncertainties. We discuss only the largest of
these: beam polarization. This experiment requires accurate measurement of the
beam polarization when it interacts with the helium atoms. This is not possible,
however, since this interaction takes place inside the vacuum system where the beam
polarization is not measured. The beam polarization was measured immediately
before it enters and after it exits the chamber, though it could have slightly changed
during its passing through the vacuum. The birefrigence of the vacuum windows and

the non-uniformity of the beam polarization across the beam are the effects that carry

the largest uncertainty budget associated with this.
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Table 5.4.1: Contributions to the measured tune-out frequency with their systematic un-
certainties. The 40 MHz uncertainty in the measurement itself, however, is a statistical
uncertainty. The polarization is the largest contribution to the experimental uncertainty
budget.

Term Estimate (MHz) Uncertainty (MHz)
Measured Value 725 736 810 40
Polarization

- Birefringence -100 200

- Beam Anisotropy 0 150
Method Linearity 24 30
Hyperpolarizability -30 50
Broadband Light 0 30
DC Electric field 0 <1
Wave-meter 0 4
Mean-Field 0 <1
Total 725 736 700 260

5.5 THEORETICAL FORMULATION

5.5.1 Consequence of linear polarization of probe beam

Before unravelling the details of the calculation, it must be clear exactly what we have
calculated. In principle, the tune-out frequency, fro, corresponds to a zero in the
multicomponent field RSCS, a(fro) = 0. The RSCS is a multicomponent field that
contains scalar, vector and tensor components that depend on the degree of linear and
circular polarization of the probe beam in the atom’s reference frame. With arbitrary
polarization, for the 23S, (M; = 1) state, this results in a tune-out frequency with
scalar (S), vector (V), and tensor (T) components defined by:

fro(Qa, V) = f78«0+%ﬁv COS(Qk)V—%ﬁT {3 sin?(6,) (% + w> — 1} , (5.2)

where Q4 and V are the second and fourth Stokes parameters, respectively, and 6y, is
the angle between the laser propagation direction and the magnetic field vector; 3V

and 8T are the vector and tensor polarizabilities divided by the gradient of the scalar
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RSCS at the tune-out frequency. Q, and 6., are the laboratory measured second
Stokes parameter and the angle between the lab and atomic frames, respectively.

If the laser has a linear polarization that is perpendicular to the laser propagation
and the magnetic field, then fro(Q.4,V) simplifies to fro(—1,0), corresponding to a
RSCS

a(f) =a’(f) = o™ (f). (5.3)

It is this quantity which is interrogated in the comparison between experiment and

theory.®

5.5.2 Nonrelativistic RSCS or dynamic polarizability

For a system defined in NR-order by Hy|¢)) = Ey|¢), with Hy the field-free Hamil-
tonian, subject to an optical field of frequency w = 27 f, and in initial state vy, the

resolvent operator is

R(w) = Q(Ho — By + hw)™'Q, (5.4)

with projection operator @ = 1 — |1)y)(¢g|. With these definitions, the frequency-

dependent dipole polarizability can be written as
~ 1
ag(w) = §[ad(w) + ag(—w)] (5.5)
where ay(£w) given by
ag(fw) = 2(Yglé - rR(£w)é - r|vy) (5.6)

where € is the polarization of the incident field and r = ro + ra.

A complete set of discrete pseudostates, via ) in the resolvent operator in Eq. (5.4),

8The experiment actually measured fro(Q4,V) for many polarizations and probe frequencies
and performed interpolations to obtain fro(—1,0), using only the sign of 3T from theory. The
rationale for not using Eq. (5.2) is simply that the direction of the magnetic field—a quantity needed
on the theory side if Eq. (5.2) is used—could not be measured to sufficient precision. fro(—1,0) is
independent of this quantity.
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can be inserted to evaluate Eq. (5.6):

1 1
) = 62; Wale:-rln)l (En —Fo+hw | Ep—Fo— hw) - 6

Thus, any time the resolvent operator R(w) appears in the expression, a pseudospec-
trum is used to represent the complete set of states. In our calculation, summarized
in the following section in Table 5.6.1, the finite-nuclear-mass effects are included by

using the appropriate Hamiltonian Hy where M remains finite.

5.5.3 NRQED formulation of the tune-out frequency

In order to test QED, higher-order effects, beginning with relativistic effects, must
be systematically included in the calculation. Our approach is similar to that of

Refs. [219, 241, 242|. Higher-order relativistic and QED effects are added perturba-

tively to Eq. (5.6), yielding (2+1)-order corrections according to

A

Sa X (w) = 2(ho|[26 - rR(w)é - TR(W)X + & - rR(w)(X — (X)) Rw)é - r]|vh), (5.8)

where, X stands for each relativistic or QED perturbation operator, and (X' ) is its
expectation value. The polarizability /RSCS expression is already a second-order
perturbation and is further perturbed with respect to the effects in question. In two-
electron problems, this method is a great choice [229] since Hylleraas pseudostates can
be used to generate extremely accurate NR wave functions;” for example, Petrimoulx
et al. recently calculated the NR ground state energy and wave functions of H™ to 27
and 14 figures, respectively [47].

The tune-out frequency for S-states, which are considered here, is the zero of the

9Manalo showed [248] that the NRQED method with Hylleraas basis states used here agrees,
up to relativistic order, for the calculation of the frequency-dependent polarizability with earlier
calculations [242] that used “Slater germinals” comprised of all-exponential basis functions.
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total polarizability /RSCS whence all of these corrections are added in [228]:
. ™
B2 |Gaw) + Y 665 () + 084" (@) + 6Gapet (@) | +[B[x+0xer(w)] = 0, (5.9)

where E and B are the fields of the laser, x is the magnetic susceptibility, and
2 n . o . .

5@3‘91 Fo (w) is a further QED effect arising from the second-order perturbation of the

Bethe logarithm due to the electric field of the laser; dag e, and dxqe; are retardation

corrections.

5.5.4 Relativistic corrections

The nonzero'® relativistic corrections arise from the nonrelativistic reduction of the

Dirac equation, and the Pauli form of the Breit interaction at order o? are given (in

SI units) by [40, p. 181]

(p1 + p3)
H, — M1 ) 1
! 8m3c? (5.10)
e? ryo- (1‘12 : pl)Pz
- . 11
2 2(mc)27°12 {pl P2 + 7’%2 1 (5 )
Hy = 7(aeag)? [Z26°(r1) — 6%(r12)] (5.12)
412 .
Hs = —/;0 |:Sl Sy — & 1'122(52 1'12)} (5.13)
T12 T12

where pg = 52 (1 + o+ ) is the Bohr magneton and a ~ 1/137.03599906 is the

2mce

value used fine structure constant. The relativistic kinetic energy (H;), the orbit-
orbit interaction (Hs), and the Darwin term (H,) are spin-independent terms, while
the spin-spin term (Hjs) is spin-dependent and itself accounts entirely for the tensor

component o’ (f) in Eq. (5.3).

10The spin-orbit and spin-other-orbit terms of the Breit interaction vanish when summed over the
fine-structure splittings of the intermediate P-states—if they are regarded as degenerate, which they
can be in this limit. Also, the portion of the spin-spin term, Hs, proportional to §(r13), vanishes
due to the Pauli exclusion principle—since these are triplet states.
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5.5.5 QED corrections

The leading QED operators (in atomic units) are [249]
~3) 3 |4Z (19 9 3 3 7 1
XQED = {? (% —Ina* —1In kfo [5 (I’l) -+ ) (I'Q)} — 6_7]' 7’_21)’2 oy (514)

and

. 427 9c(3) 2179 32 10
X@W 4 — —2In2 ) 7> — — -—\Z 1
QED = X7 K 96 . ) + ( i et T 2 27) } (5.15)

x [0%(x1) + 0°(r2)]

where In kg is the Bethe logarithm, <7%> is the principal value of the divergent
i2/pv.
integral given by

(%) = lim 75 (€) + 4m(y + In€)d(rys), (5.16)
P.V.

{9 e—0

with € the radius of a small sphere about r5 = 0 that is omitted from the range
of integration and ~ is Euler’s constant. ((z) is the Riemann zeta function. The
third-order QED contribution listed above contains Araki-Sucher terms, while the
fourth-order term contains radiative contributions [250, 251].

The remaining nonradiative contributions were taken as the dominant source of
theoretical uncertainty (cf. Table 5.6.1)—these were estimated to be 6 MHz, i.e.,
about 5% of the magnitude of the radiative terms [232, 241]. This is, in fact, the
dominant source of uncertainty, not only for the QED part but for the entire theo-
retical calculation.

Another very small QED contribution comes from the second-order electric field
perturbation to the Bethe logarithm—the term in the tune-out condition expressed

in Eq. (5.9). This correction is equal to

a0 (w) = Sa%0f In ko (15 1) + 0°(e2) ), (5.17)
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and 0% Inky = 0.0485572(14)aj was calculated in Ref. [219]. Drake and Yan [252]

argued that this value comes entirely from the inner 1s electron and can thus be

taken to be the value for any excited or singly ionized state of He to an accuracy of

about 1%. For w < 1 this correction will not differ significantly from the static case

calculated in Ref. [219]."! The value used for 92 In k¢ in the present work is 0.049(1)a3,
_0%1Inko

which contributes at the negligible level of d&, ~ 0.18 x 107% a.u. to the RSCS

corresponding to a correction dwro ~ 0.124(3) MHz to the tune-out frequency.

5.5.6 Magnetic susceptibility

The magnetic susceptibility is a frequency-independent quantity defined by [253, 254]

a’ag 2 A a’ag 2
X=—= ZZ;(rZ xB)?) =— G Zzlrf , for S-states, (5.18)

where B denotes a unit vector. The expectation value (12 +r2) is 22.928644a2 for

the 2389 state of helium, yielding a correction of 188 MHz.

5.5.7 Retardation corrections

Retardation corrections were recently derived by Pachucki and Puchalski [228] for the
first time in treating the interaction of laser light incident upon a medium of helium
atoms as part of an investigation of the refractive index of helium gas. Prior to their
work, for instance, in Ref. [242], this problem was treated as a zero in the dynamic
polarizability—a strategy that must be reformulated in order to properly account for
retardation corrections. It is in these corrections that the difference in the physical
circumstances makes a difference in the calculation. For an atom in the presence of
a freely propagating laser beam, we expect retardation corrections that arise from
finite wavelength properties of light. For this, the correct theoretical formulation of
the vanishing interaction is as a zero in the RSCS, not the dynamic polarizability.

This introduced by Drake et al. [217] for the tune-out problem and is explained in

UThe calculation in Ref. [219] used (1|63(r1) + 63(ra)[h) = 3.620 858 63(1).
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Appendix E.
Ref. |228] defines the generalized polarizabilities (all in units of af except ay which

is in units of a3) as

cale) = § S04RED (5,19
o) = § S TR i) (5:20
cale) = § SR (5.1
as(w) = 2;?;2 aZ(r’jR(w)R(w)i(Lb X1y — 1y x Ly)H) (5.22)
o) = § SR, (523)

where the a and b sums are over the electronic coordinates 1 and 2, and a sum over
the repeated Cartesian vector components k and [ is assumed. Also, (rkrl)f) =
rFrt — 6,472 /3 is the quadrupole moment operator.

The above definitions differ by a factor of 2/3 from those in Ref. [228] so that here
ap(w) = ag(w), and oy (w) corresponds to the standard definition of the quadrupole
polarizability [255]. Further, as(w) corresponds to finite-wavelength corrections,
a3(w) contains relativistic corrections to the dipole transition operator [224|, and
the a4(w) term is magnetic in origin which cancels in the final analysis. For each

term, the above bar notation applies: a;(w) = [e;(w) + ;(—w)]. The retardation

corrections to the polarizability oy and diamagnetic coupling y are then

_ 3]{?2 aq (CU) 2@2(&)) d4(&))

Grer() = - < 5 15 18 ) (5:24)
3k’2 a1 (CU) 4@2(W) dg(u)) d4(bd)

Xre = 5 - s 2

Yree(@) = 5 < 60 45 9 18 (5:25)

where k = w/c. This yields a total retardation correction of
_ _ 3]{?2 o (w) 2072(0)) 613(Cd)
Qret (W) + Xret (W) = 53 ( 50 " a5 T o (5.26)
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contributing a total retardation correction of -477 MHz. These contributions include
relativistic—but not QED—corrections to the dipole transition operator.

The smallest correction was to account for finite nuclear size. In Ref. [256], the
operator 47y [0%(r1) + 6*(r2)] was evaluated, using rage = 1.6755 fmn [257], yielding

a finite-nuclear-size correction of 2.75 fm.

5.6 RESULTS

The various matrix elements that contribute to calculating the RSCS were calcu-
lated using the doubled Hylleraas basis sets (cf. Sec. 2.7.1). For the 233 state, an
optimized calculation is performed, whereas for all pseudospectra—coinciding with
the presence of the R(w)—a complete diagonalization of the Hamiltonian matrix is
performed.

Table 5.6.1 lists all of the theoretical contributions for the categories described
in the previous section. Since, according to Eq. (5.8), the individual perturbations
are frequency-dependent, the tune-out frequency changes as each is added, and so
the total must be iterated to convergence.'? Finite-mass effects are included in the
values quoted for the NR and relativistic contributions in Table 5.6.1. As mentioned
in Sec. 5.5.5, the dominant source of uncertainty is the nonradiative terms of order
a*, estimated +6 MHz.

Overall, the final theoretical result of 725 736 252(9) MHz differs from the experi-
mental result by —448 4260 MHz, 1.7 the measurement uncertainty ¢. This is shown
graphically in Fig. 5.6.1. from which it is clear that this theoretical-experimental com-
parison is able to discern QED contributions to the tune-out frequency fro at the
~ 300 level retardation effects at the ~ 20 level. This is the first calculation of fro
that includes retardation corrections, which could be tested much more stringently if

the experimental precision were increased.

12This procedure was relaxed, beginning at QED-order, for the terms of order o or smaller as
they are small enough to be added into Eq. (5.9) linearly.
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Table 5.6.1: Collection of the various theoretical contributions to the 235 —23P/33 P tune-
out frequency in helium near 725.7 THz. Finite-nuclear-mass effects are included in the
nonrelativistic and relativistic contributions.

Quantity Value (MHz) Uncertainty (MHz)
Nonrelativistic (NR) 725 645 115 2
Relativistic scalar (« 97 101 6
Relativistic tensor (— 1744 6
Total non-QED 725 743 960 6
QED o? -7 297 2
QED o* -127 6
Total QED -7 424 6
Retardation -A7T

Nuclear size 5

Magnetic polarizability 188

Theory (Total) 725 736 252 9
Experiment 725 736 700 260
Difference -448 260

2 Obtained using R..c = 3.2898419602508(64) x 10° MHz.
" This value was converted from data 2.75 fm in Ref. [256].

5.7 FUTURE WORK

Looking at the experimental uncertainties listed in Table 5.4.1, it is clear that experi-

mental improvements should be concerned with improving our ability to measure the

polarization—ideally even within the vacuum itself. Further, pursuant to the discus-

sion in Sec. 5.5.1, if the angle between the laser and the magnetic field were able to be

measured more precisely, this would allow independent testing of the scalar, vector,

and tensor parts of Eq. 5.2—an altogether stricter test of QED. The method could

be used to treat other tune-out frequencies in helium, and furthermore, it could help

to determine the charge radius of helium if the precision can be increased to the MHz

level.

On the theoretical side, higher-order retardation corrections due to the finite speed
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Fig. 5.6.1: A visual display of the material in Table 5.6.1. The difference between theory
and experiment (checkered bar), along with their respective uncertainties (in crosshatch),
are shown. Also depicted are the magnitudes of the theoretical contributions outlined in
Table 5.6.1 are shown.

of light can be calculated, which will contribute if the experiment reduces its un-
certainty by an order of magnitude. This calculation can be used to measure the
molar mass constant (M, ), a quantity related to the index of refraction of helium gas
[219, 242]|, which is no longer exactly M, =1 g/mol with the SI unit redefinitions in
2019 |258] that made Avogadro’s number exact.

Additional theoretical extensions of this work include making small QED correc-
tions more precise. Firstly, the electric field perturbation to the Bethe logarithm
could be explicitly calculated for the 23S, state, along with finite-mass corrections.
Also, the omitted nonradiative contributions [232] of order a* Ry could be explicitly

calculated for this state.
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CHAPTER 6

Conclusion and Future Work

6.1 OVERVIEW

This chapter begins in Sec. 6.2 with concluding remarks on each topic addressed in
this dissertation, highlighting the significance of each result obtained. The findings
are then synthesized in Sec. 6.3. They strongly support the theme that pseudospectra,
with their broad utility, can significantly enhance our understanding and applications
in atomic physics. Future work is discussed in Sec. 6.4, beginning with a recapitulation
of the most significant extensions suggested and then a suggestive example of where
one could apply the methodologies developed beyond the selection of projects in
this dissertation. Lastly, in Sec. 6.5, the significance of this work in terms of its

implications for ongoing activities in atomic physics is considered.

6.2 SUMMARY OF FINDINGS

The first project considered in this dissertation, in Chap. 3, was the beta decay of ‘He.
The problem addressed in this work was that previous theoretical attempts to quantify
the amount of double ionization following this decay consistently overestimated the
measured amount—by several orders of magnitude. This quantity is related to the
electron-antineutrino correlation coefficient, ag,, which is widely studied in low-energy
searches for new physics through potential non-Standard Model contributions to the
V — A theory of beta decay. We developed two-electron projection operators formed

of products of one-electron Sturmian functions to partition the overlapping single
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and double ionization continua. As a result of these efforts, we have reduced the
discrepancy between theory and experiment by an order of magnitude, although a
disagreement that requires further attention remains.

In the next project, contained within Chap. 4, the two-photon decay rates of
metastable 215 heliumlike ions were calculated. Two-photon decay of the metastable
215, competes with collisional deactivation under low density and temperature condi-
tions in astrophysical sources. So, the population balance provides a probe of temper-
ature and density [259, 260]. In this work, we obtained accurate values for the effects
of finite nuclear mass on this process. In characterizing these finite-mass effects, we
developed a technique for treating the mass polarization using a gauge-dependent
power series. We extended the notion of gauge equivalence beyond the usual context
of infinite nuclear mass. In doing so, we derived algebraic relations for nE1-photon
transitions in heliumlike systems. They were used to successfully demonstrate gauge
equivalence in the 2E1 decay of the 215 state along with the E1 decay of both the
2P and 23P states. These relationships were used in our work to provide a very
stringent test of the calculation’s accuracy, as they are only satisfied to the extent
that the wave functions are exact.

Chap. 5 focuses on a joint theory-experiment effort to test QED by comparing
calculations and measurements of the tune-out frequency of He(2 3S;). This novel
test of QED is independent of the traditional measurements of energy shifts, such
as the Lamb shift. A genuine discrepancy in the resulting comparison would be
a signal for new physics. On the theoretical side, we carried out a high-precision
calculation that was able to resolve both QED and retardation corrections to 300
and 20, respectively, where o is the measurement uncertainty. Building on the work
of Drake et al. [217], these retardation corrections have been included for the first
time in the present calculation. This amounts to reformulating the problem as a zero
in the coherent Rayleigh scattering cross section instead of a zero in the dynamic
polarizability, as previously assumed [244]. The result of this project was that there

was a 1.70 disagreement between theory and experiment.
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6.3 SYNTHESIS OF CONCLUSIONS

The unifying theme connecting the distinct physical processes studied in this disser-
tation lies within the methods used to carry out the calculations. In the epigraph of
this dissertation, we saw that “pseudo” means to be “false, deceptive, or having the
appearance of something it is not.” Indeed, at least for the two-electron problem,
pseudostates are not exact eigenstates. However, using variational methods, they
can become arbitrarily close to eigenstates and, more importantly, the pseudospectra
formed by solving the appropriate generalized eigenvalue problem tend to complete-
ness in the limit of large basis sets. The resulting computationally realizable discrete
sum, which replaces the infinite bound sum and continuum integral, demonstrates
that the prefix “pseudo” applies in name only. These powerful objects enable an
entire class of calculations that would otherwise be more difficult.

In this dissertation, we make repeated use of pseudospectra. In the beta decay
work, the foundation of our work was to expand an initial ®°He state in terms of
a complete set of final °Li* states, including single and double ionization channels.
The physics of the instantaneous change in nuclear charge following this event makes
possible electronic rearrangement to any final state of °Li". Therefore, the {°Li"}
pseudospectra, which includes SLi™™ and SLi*" states, represents actual states where
transitions from the initial °He state occur.! Beyond this, in forming the projection
operators to apply to each of these pseudostates, one-electron pseudospectra were
formed using Sturmian functions, taking advantage of their well-defined charge state
and ability to mimic the exact Coulomb wave functions over the region of interest.

This conceptualization of the complete set of states as actual states, in the sense
described in Footnote 1, contrasts with the use of pseudospectra that arise in deriving
the two-photon decay rate and the Rayleigh scattering cross section. In the latter
case, the sums enter the calculation to treat the interaction with the QED vacuum,

and we interpret these as sums over virtual rather than actual states. We also made

1Strictly speaking, via Stieltjes imaging, pseudostates represent a block of the continuum, and
therefore, the transitions described are from the initial state to a set of continuum states within an
energy range.
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this interpretation when using perturbation theory to treat the relativistic and QED
corrections. This diversity of use is a testament to the versatility of pseudospectra.
The resolvent operators (H — E,,,) ! that arise in perturbation theory can be formally
evaluated by inserting the identity operator ) |¢,)(¢,| = 1 and so any problem in
this class makes use of pseudospectra. The pseudospectral techniques developed and

used in this dissertation offer a common approach to both classes of problems.

6.4 FUTURE WORK

Each of Chapters 3, 4, and 5 concludes with a section outlining extensions and po-
tential next steps for the respective project. This section highlights the most exciting
and relevant extension from each chapter, followed by a project that was not men-
tioned but is an example of one of the many calculations that can be carried out using
the techniques developed in this work.

The most promising avenue to address the remaining discrepancy in the beta decay
of °He is to reformulate the 5Li" basis functions that comprise the pseudospectra to
which the projection operators were applied. One can accomplish this by studying
the delta function expectation value of these wave functions—a quantity that should
remain equal to its ground state, (1 1S|d(r;y)[1 1S) value, for energies near the double
ionization continuum. The wave functions used in Ref. [132] did not satisfy this
condition. By manipulating the Hylleraas pseudostates introduced in Chap. 2, with
the benefit of the variational principle, we aim to create wave functions whose delta
function matrix elements are close to the ground state value, and we postulate that
this will remove much of the remaining discrepancy between theory and experiment.

Concerning the two-photon decay rates that were the subject of Chap. 4, there is
a very straightforward but necessary subsequent step: evaluating relativistic effects.
Once completed, the data will be the most accurate two-photon decay rates for astro-
physical applications, replacing Ref. [211]. To compare with experiment, finite-mass
corrections of order y/M must be accompanied by («Z)? relativistic corrections, since

these are both of relative order 10~* in *He—the isotope of astrophysical interest. We
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perform this calculation by deriving a set of corrections via “2+1” order perturbation
theory, as in the Breit corrections in the tune-out project, except here the two-photon
emission interaction energy has a slightly different form than the Rayleigh scattering
cross section. Another extension of the work in Chap. 4 would be to calculate the
algebraic expansion coefficients by performing a perturbation expansion in the pa-
rameter /M, as indicated in Appendix G. Additionally, the algebraic relations could
be derived and used to characterize other processes in atomic physics, including ab-
sorption, photoionization, and Feshbach resonances.

As mentioned above, in the tune-out frequency study, there is a 1.70 discrepancy
between theory and experiment. The source of this disagreement is currently un-
known. Still, suppose we assume that the theoretical calculations are correct. In that
case, the next step will be to include higher-order retardation effects, which will be-
come relevant if the measurement uncertainty improves by an order of magnitude—a
possibility that will likely require in-vacuum optics to reduce the systematic uncer-
tainty associated with the laser polarization. This work could contribute to determin-
ing the molar mass constant, which no longer equals 1 after the last SI redefinitions
in 2019.

The discussion above is primarily concerned with direct extensions of the projects
addressed in this work. There is a lot of practical and valuable work to be done
in these directions; however, the methods developed can be applied to many more
problems beyond those mentioned here, including the broad class of perturbation
calculations, such as adding relativistic and QED corrections to the determination of
the ground state energy of H™, and the equally broad class of scattering problems,
such as the double photoionization of helium.

One particular project we will pursue is calculating the Lamb shift for high-L Ry-
dberg states in helium. The most difficult part of this calculation—briefly referenced
in the Introduction—is calculating the two-electron Bethe logarithm (BL).? The two-

electron BL component of the Lamb shift is the most difficult to calculate. For initial

2Despite significant recent work on the higher-order effects on the helium Lamb shift in low-lying
states, little attention has been paid to the Rydberg series.
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6.4. FUTURE WORK

state |0), it has the form

> [0lpla) I (B — Eo)

where Ej is the NR energy of the state in question, p = p; + p2 is the momentum
operator, and {|i),i = 1,...,N} is a complete set of states. The denominator is
27((ry) + 0(r2))o via the sum rule [261]; however, due to the logarithmic term the
numerator does not have a simple sum rule and needs to be evaluated by carrying
out the summation. Another difficulty is that this sum contains contributions from
very high-energy states (cf. Fig. 1.3.2 from the Introduction).

In low-lying states of helium, variational approaches have calculated the Lamb
shift, including the BL, with sufficient accuracy [29, 262|, but this is more difficult
for high-L Rydberg states.> To overcome these difficulties, Goldman and Drake [261]
developed a global formula for the asymptotic expansion for the Lamb shifts in helium
that calculates the perturbation of the electric field due to the Rydberg electron on
the inner He™(1s) Lamb shift. The two-electron BL of 5(1snl) with large [ is [261]

B(1snl) ~ [(1s) + % (%) B(nl) + caF* + O(F*) (6.2)

where $(nl) denotes the one-electron BL and F' describes the magnitude of the elec-
tric field of the Rydberg electron at the location of the inner 1s electron and is
F? = <7’_4)nL where r is the position of the Rydberg electron. ¢, is calculated per-
turbatively and currently [43] has the value ¢, = 0.316205(6)Z . Each of 3(1s),
B(nl), and co can now be calculated with higher precision than Ref. [263, 264] since
larger basis sets can be formed. Calculating 5(1s) and £(nl) involves evaluating the
one-electron BL* for the 1s and nl states and perturbing it with an electric field to

obtain the ¢y coefficient. To this end, we use the same one-electron, triangular Stur-

3Apart from the BL, the remaining contributions to the Lamb shift are proportional to the
delta function matrix elements. For the high-L Rydberg states, highly accurate calculations of
delta function matrix elements become computationally difficult and limiting in terms of an overall
calculation of the Lamb shift.

4The one-electron form of the BL is the same as the two-electron form shown in Eq. (6.1).
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6.5. BROADER IMPLICATIONS

mian functions developed in Chap. 3 [29]. The Bethe logarithm calculations can then
be used with the asymptotic expansions of the delta functions [263] to accurately

calculate the Lamb shift of Rydberg states of two-electron atomic systems.

6.5 BROADER IMPLICATIONS

Physics is an experimental discipline guided and supported by robust theoretical
efforts. The theoretical work presented here involves active collaboration with exper-
imental physicists across various disciplines, including nuclear, particle, and atomic
physics and astrophysical applications. Atoms have long been studied alongside quan-
tum mechanics due to their accessibility, simplicity, and ubiquity. These traits con-
tribute to a continuously evolving field that remains rooted in its foundational prin-
ciples. Atomic physics can be defined by the endeavours of atomic physicists, a
representative sample of which is showcased in this thesis.

The search for new physics (NP) beyond the Standard Model (SM) is a signifi-
cant discipline-wide effort to which atomic physicists contribute. From gravitational
lensing experiments indicative of dark matter to the apparent observation of baryonic
asymmetry via our universe’s matter content, it is clear that the SM (along with gen-
eral relativity) likely represents only part of the story. Atomic physicists are engaged
in numerous projects aimed at this goal, including studies of the electron electric
dipole moment (eEDM), muon g — 2 measurements, and various dark matter searches
mentioned in the Introduction.

The beta decay and tune-out frequency projects in this dissertation align with
this larger effort. The tune-out frequency project exemplifies the advancements made
possible by improvements in experimental capabilities. As laser power and precision
continue to improve, increasingly accurate measurements in AMO physics will become
feasible. These advancements necessitate that the theoretical AMO physics commu-
nity calculate the corresponding quantities with sufficient accuracy. Although the NP
sought in the study of beta decay pertains to nuclear physics, given that most beta

decay events occur within an atom, the motion of atomic electrons is relevant and
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6.5. BROADER IMPLICATIONS

must be accurately known. Both projects thus underscore the integral role of atomic
physics in advancing our understanding of fundamental processes and highlight the

necessity of precise theoretical and experimental collaboration in the field.
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APPENDIX A

Methods of Solving the Generalized

Figenvalue Problem

In Chap. 2, we show that, although the nonrelativistic two-electron Schrodinger equa-
tion does not have exact solutions, it can be solved to essentially arbitrary accuracy
using the Rayleigh-Ritz variational method.! It was shown that if the trial functions
forming the basis set are written with linear variational coefficients ¥, = ZzNﬂ ;i Xis

then solving the minimization problem

aEtr
Oa,

=0, p=1,...,N, (A.1)

is identical to the generalized eigenvalue problem (GEP)

Ha = \Oa, (A.2)

where a is a vector of the expansion coefficients, H and O are the Hamiltonian and
overlap matrices, respectively, satisfying H,,, = (xm|H|xn) and O = (Xm|Xn)-
This appendix discusses how Eq. (A.2) is solved. Standard quadruple precision (ap-
proximately 32 decimal digits) is sufficient for the calculations in this dissertation.
We use two separate methods—the power method and the brute force method—

to “solve” Eq. (A.2), depending on our objective.? The power method is used in this

IThis technique guarantees that the N eigenvalues found by diagonalization in any N-
dimensional basis set set will be upper bounds to the N exact—though unknown—eigenvalues.

2The primary reference for this appendix is the “Notes on solving the Schrédinger equation in
Hylleraas coordinates for heliumlike atoms” by Drake [39].
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dissertation when a single, optimized state is needed (e.g., the initial He(2 'S) state in
the two-photon decay studied in Chap. 4 and the beta decay in Chap. 3). The brute
force method is used when the entire pseudospectrum of the Hamiltonian is needed
due to sum(s) over state(s) appearing in the equations of interest—a necessity that

arises in every project considered in this dissertation and forms the common theme.

A.1 POWER METHOD

The power method applies for a diagonalizable N x N matrix H that has eigenvalues
A, A2, ..., Ay corresponding to eigenvectors WM WP and has one eigenvalue,

Anr, that is much larger than the others.
aq
If x= : | is an arbitrary vector in this space, it is always possible to expand it
an

in terms of the exact eigenvectors that diagonalize H, according to y = Zflvzl 2,0,
This corresponds to the members of the basis set of the trial Hylleraas wave function.

If x is acted upon n times by H according to
N
(H)"x =) 2 0@ — 2y X7, 0, (A.3)
q=1

the RHS tends to only a single term, containing the largest eigenvalue and its eigen-
vector, provided x; # 0.

This method can find any eigenvalue of H by manipulating the GEP into an
inverse problem. We begin by subtracting A\,OWV from both sides

HU = \OV (A.4)
(H — )\,0)¥ = (A — \,)OV, (A.5)

leading to the related eigenvalue problem
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A.2. BRUTE FORCE METHOD

where G = (H — 1,0)'O with eigenvalues (A, — \,) "
Supposing we are ultimately interested in the eigenvalue \;, the strategy is then

-1

to make the eigenvalue (A; — A,)~" much larger than the rest by choosing A, to be

very close to the desired \;. The procedure, as above, is to act repeatedly on y via

(G)"x as

x1 = Gx
x2 = Gxi
x3 = Gx2
Xn = GXn—l

until the ratios of components in Y, stop changing.
It is possible to avoid the matrix inversion and multiplication necessary to compute

G by instead solving the equivalent linear system
Fx, = Ox._1 (A7)

where F = H — ),0. To find x,,, we solve the N x N system using the square root
method [265]. This leads to the computation of A; by

~ (alHlxa)
Ay = —<anxn> ) (A.8)

A.2 BRUTE FORCE METHOD

This method is used when all N eigenvectors and eigenvalues of H in the GEP are
required. This is a full diagonalization, so it is considerably slower than the power
method described above.

The first step is to orthonormalize the basis set, which is accomplished by forming
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A.2. BRUTE FORCE METHOD

linear combinations of the original basis set {p,} per

N
O =Y PR, (A.9)
n=1

so that (®,,|®,) = 0mn. This is computationally achieved by finding an orthogonal
transformation matrix T such that the overlap matrix O, with elements O,,,, = (¢m|¥n),

is made diagonal®

L 0 0 --- 0
0 I, 0 0

T'OT=I=|0 0 1 --- 0 |; (A.10)
0 0 O Iy

Following this, a scale-change matrix S

1
e 00 0
0 11% 0 0
S=]0 0 I?}% o [|=8S" (A.11)
0 0 0o -.. Izlv%

is applied so that the diagonalized matrix is the identity matrix
S'TTTOTS = 1. (A.12)

Thus, we have the sought after matrix R = TS that transforms O by RTOR = 1.
Now we transform H, with H,,, = (¢n|H|p,) to the orthonormal basis set by

3The matrices T and W, defined below, are obtained by diagonalizing O and H', respectively.
The two interchangeable computational methods we used at different points in this dissertation are
1) the Jacobi method [266], and 2) the tridiagonalization + QL algorithm [267, 268].
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A.2. BRUTE FORCE METHOD

applying R
H = R'HR. (A.13)
H’ is then diagonalized by
A0 - 0
WIHW =)= O A_Q N O (A.14)
0 0 - Ay,

with the appropriate orthogonal transformation matrix W. The diagonal elements of

A are the eigenvalues and the ¢' eigenvector is given by

Z@ Wiy = Zgoan AWy (A.15)
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APPENDIX B

Deriwvation of Fermi’s Golden Rule
and Comments on Spontaneous

Decay

Fermi’s Golden Rule, as it is commonly known®, describes the transition rate between
an initial eigenstate with energy F; of a system to a final group of states within a

small energy range dE about energy E;. It reads [148, p. 135]

2T
“EWE plEy), (B.1)

Di 2m 5 2
Wi f = 21 _ 7 ‘<¢f‘w|¢i> P(Ef) =

t

where Wi; = (¢|W|@;) is the matrix element connecting the initial and final states
of the system by an operator that is representative of a weak perturbation, described
by operator W, and p(Ey) is the density of states at energy Ey—the number of
continuum states divided by dE at Ey. In bound-bound transitions, assuming a single-
photon transition for simplicity p(Ef) becomes a conservation of energy-enforcing
delta function because the final state is discrete.

The derivation of Eq. (B.1) follows in Sec. B.1. Since this dissertation is concerned
explicitly with spontaneous decay in Chap. 4, the ensuing Sec. B.2 discusses this

process regarding its connection to QED.

!The content of the equation was almost developed many years early by Dirac [168] in the same
paper that served as a significant inspiration to Maria Goeppert Mayer in her doctoral work on
two-photon processes [166].
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B.1. DERIVATION

B.1 DERIVATION

This derivation is a condensed version of those found in Friedrich’s Theoretical Atomic
Physics |148, pp. 132-135] and the Atomic and Molecular Physics Lecture Notes of
Kirchner [269]. The bulk of the derivation will assume bound-bound transitions—this
will be generalized to a continuum of final states at the end.

Suppose that an atom, governed by Hj, is contained in physical system S is

described by the Hamiltonian
H=Hy+W (B.2)

where W is a general form of a perturbation leading to transitions in the atomic
system. The time-dependent solutions to H can be expanded, in terms of the unper-

turbed energies F,, and eigenstates ¢,, as

- Xn: Ca(t) b XD (—%E@) , (B.3)

Assuming that we are in an eigenstate of Hy—express this as ¢,(t = 0) = 6,, then

the ensuing dynamics are given by the coupled-channel equations

dcm

Z W Cn €XD { (B — En)t} : (B.4)

an exact set of equations in the limit that the basis is complete. The time-dependence

of the coefficients can be obtained via integration:
1
em(t) = cm(0) + m/ dt’ ZW n €XP {h(E —En)t’] en(t) (B.5)
1
= ¢, (0) + Zh/ dt’ ZWmneXp [h(E —En)t’] cn(0)
1
dt'"y W —(En — E,)
e, 4 Wom e |8 B

t Z
t// s E _E 12 /! B
x/o d El:Wnlexp{h( . l)t]c,(t ) (B.6)
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B.1. DERIVATION

where the second equation is obtained by plugging in the first result, found in
Eq. (B.5). This expression has been carried out to second order; higher-order terms
are obtained by plugging in the most recent ¢,,(t) where the primed ¢,,(t') occurs in
the first equation.

To first order in W, the coefficients ¢, (t) are given by the first line of Eq. (B.6)

() = — /0 AW exp {%(Ef—Ei)t’} (B.7)

~ih
To make this general result more specific, we can assume that the perturbation is

periodic in time, as in how we treat the radiation field in Chap. 4, where o ~ 1/137

is the perturbation parameter. This time-dependent perturbation has the form:

0 t<ty=0
W(t) = (B.8)

Be™t + Bfe=™t > ¢,

Inserting this form of W (t) into the first-order Eq. (B.7)

|
cr(t) = 7 eIt W (t') dt! (B.9)
0
1 Blg) , Bty ,
_ (¢ Blei) (ez(wfi+w)t . 1) 4 (¢ B|pi) (el(wfi—w)t _ 1) (B.10)
h| wp+w We — w

The probability of a transition is p;—,; = |c;(¢)|% upon squaring we have?

Pios (1) =Bl {f (t,wpi + w) + f(t,wp — w)} (B.11)
N %wﬁﬁ{a(w—wi+w)+5(wf—wi—w)} (B.12)

2The integrals reduce to f(t,wp + w) = W, where AEL = R(wy — w; £ w).
Ast — oo, f(t,wp w) — 255(AL).
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B.1. DERIVATION

In this limit, the transition decay® rate is
2 9
Winsg = Pinsg [t = — Wil 0(wy — wi —w) (B.13)

Eq. (B.13) shows that transitions are only possible for “resonances”™ —where a photon
of energy ' = hw is donated to the field with an energy equal to the difference
between the states involved, i.e., F = h(w; — w;).*

The final step is to extend Eq. (B.13) to transition to a final state in a continuum.
There are two physical circumstances in which this applies. The first is when looking
at the transition of an atom to the actual continuum—where the eigenstates of an
atomic system form a continuous spectrum. This notably applies to the beta decay
problem of Chap. 3,° where, due to the sudden change in nuclear potential, shake-off
to the continuous single or double continuum can occur.

If we refer to the resonance bound-bound transition rate in Eq. B.13 as wf, s> then
emissions to the continuum to a state £y = F; — hw are obtained by taking the limit

of an integral about E; as follows

Ef+6
w;_y; = lim wl, p(Ey) dE; (B.14)
e—0 Ef—c
E¢+e o'
= lim |WiP6(wp — wi — w)p(Ey) dE; (B.15)

e—0 Ej—e h

27
= SEIWilp(Ey). (B.16)

In the above set of equations, the density of states p(Ey) is included since we must
be able count the states in the region [E; — €, Ef + €] in order to integrate over them.
In the limit ¢ — 0, the delta function is collapsed, and the transition rate takes its

value with Ey = E; — hw. This completes the derivation of Fermi’s Golden Rule.

3In decay, we have w = wy —w; and the first delta function vanishes. Decay is chosen to simplify
the situation and to correspond with the two-photon decay that is the subject of Chap. 4.

4In practice, this can be a multiphoton process where E = nhw for n > 2. These processes are
less and less likely by order since they require higher powers of the perturbing operator.

°In studying beta decay, we were concerned with a time-independent perturbation and also with
the probability as opposed to the rate, but the arguments about the density of states apply.
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B.2 SPONTANEOUS DECAY

Atomic transitions are well-described by the “semiclassical theory,” which treats the
atomic system quantum mechanically and the EM field classically, often using the
dipole, weak field, and rotating wave approximations. This method is used in Chap. 4
to address spontaneous two-photon decay. However, spontaneous emission processes
are not conceptually described by the semiclassical method, as it assumes an external
classical EM field.

For example, a hydrogen atom in the 2p state will decay to the ground state in
about 2.13 ns, regardless of an external field. An elementary semiclassical calcula-
tion can yield this Lyman-a 2p — 1s lifetime using Einstein coefficients [178], but it
doesn’t explain how a photon is emitted without interacting with an external field.
As Einstein postulated, the semiclassical theory produces correct spontaneous decay
rates in an ad hoc manner when combined with the Planck radiation law. This ap-
proach works well conceptually for stimulated emission and absorption, corresponding
to Einstein’s By and By coefficients, but not for spontaneous emission.

A complete Hamiltonian must account for both the atomic degrees of freedom and
the quantized EM field. This is done by treating the EM field as quantized harmonic
oscillators that define modes. The field amplitudes are creation and annihilation
operators that correspond to emission and absorption in an atomic context. The
vacuum comprises Fock states, specifying the number of photons in states of any
frequency. Spontaneous decay processes, as discussed in Chap. 4, occur due to vacuum
fluctuations, where a photon is donated to the vacuum, increasing the number of

photons in the corresponding Fock state.
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APPENDIX C

Handedness of Leptons in the SM

A signature feature of the weak interaction is that it is a chiral interaction where,
unlike the other known forces, left- and right-handed (LH and RH) particles are
treated differently.! Only LH leptons (and RH antileptons) couple to to the WT
bosons, the mediators of beta decay. Nonconservation of parity is a direct consequence
of this fact. Examining these properties supplements the discussion of ag, contained
in Sec. 3.3.2.

That our universe is such that the weak interaction is chiral is a direct consequence
of the (1—+°) (cf. the leptonic portion of Eq. (3.4)) structure of the Lorentz invariant
Lagrangian that emerges when constrained to experimental data [96, pp. 16-18].
However, we do not have any explanation for why only LH (rather than RH) leptons
participate in the weak interaction, when theoretically, the opposite could have been
the case. This constitutes yet another unexplained aspect of the Standard Model
(SM) that physicists are actively seeking new physics (NP) to explain and which is
frequently linked to the problem of baryonic asymmetry [104]. Amongst other things,
RH neutrinos? are also postulated as potential mechanisms in beyond-standard-model
(BSM) theories for how neutrinos acquire mass. That neutrinos are massive was only
established about 25 years ago by the Super-Kamiokande collaboration in Japan [270]
and the Sudbury Neutrino Observatory (SNO) collaboration in Canada [271]; these

efforts were recognized with the 2015 Nobel Prize in Physics. It is still unclear as

n the SM, leptons (and quarks) are mathematically described as Dirac (spinor) fields with
well-defined chirality with two parity eigenstates (£1) for RH/LH particles.

2In BSM theories, these are sometimes called sterile neutrinos because the weak interaction still
only couples to LH particles and RH antiparticles. It was initially thought that only LH neutrinos
exist.
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to how their mass arises. The relevance of neutrino mass is that, when they were
assumed massless, only LH neutrinos could exist — neutrino mass directly offers the
possibility of RH chiral states [272].

Referring to the Lee-Yang coupling coefficients that appear in Egs. (3.11) and
(3.12), the condition |C,| = |C%| corresponds to maximal parity violation, with C, =
+C! corresponding to LH neutrinos and C, = —C. to RH neutrinos [28]. In the
SM C; = 0 for ¢ # V, A, but in BSM theories involving the possibility of new forces
mediated by new bosons, this constraint can be removed in the case that scalar or
tensor fields emerge from interactions that do not discriminate based on chirality as
the current weak force does [28]. Experiments offer different constraints on these
parameters depending on whether or not one allows the possibility of RH neutrinos.
What can be measured is the ratios g—i and g—‘s/ for Gamow-Teller (GT) and Fermi

type decays, respectively. For example, in studying the pure GT beta decay of ‘He,

Johnson et al. [94] set an early experimental limit on this ratio as

|Crf” + |C7

I <04
Cap+jo,p < 0%

a result which has been revisited since [98, 110]. This experimental method allows for
the explicit consideration of BSM (Cr # 0) interactions comprised of either purely LH
neutrinos or the possibility of RH neutrinos (Cr = —C7). To date, all experiments

have found results consistent with the SM.

165



APPENDIX D

Assumptions in Treating Beta Decay

This appendix considers the time-dependence of the Coulomb potential V' (¢) due to
the change in the nuclear charge from Z = 2 to Z = 3 in the beta decay He —
SLi* + e” + . Let this occur at + = 0. The sudden approximation (SA), whose
adoption is the topic of Sec. 3.4.2, thus results in an instantaneous change in the
Hamiltonian at ¢t = 0, via the potential energy term.

It is shown that this approximation is valid in the beta decay process. This permits
the expansion of the initial ¢(°He) state in terms of the complete set of {¢(°Li")}
states since the initial state is not an eigenstate of the ¢ > 0 Hamiltonian. Using the
SA removes the time dependence, permitting the calculation to be carried out using
solutions the time-independent Schrédinger equation for both the initial ®He state
and the complete set of SLi' states.

The physical condition for the SA to hold is that the system’s wave function does
not change appreciably during the perturbation. We study the TDSE to establish the
criterion for the SA. The unitary time evolution operator!, U(t,to) evolves a system
in time according to

U(r,t) = Ul(t, to)W¥(r, o) (D.1)
U(t, to) also satisfies its own TDSE

!The following content is referenced from Chapters 2 and 5 of Modern Quantum Mechanics by
Sakurai and Napolitano [273].
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a form that can be rewritten as

0 H
Z%U(t, to) = h/—TU(t, to), (D3)

where t = sT for dimensionless s and a timescale T over which the perturbation is
applied. In the SA, T — 0 and thus 7" < h/AFE, where AE depicts the characteristic
energy scale of H. Thus, the right-hand side of Eq. (D.3) goes to 0, implying that

Ul(t,to) is a constant, which we can take? to be 1:
U(t,to)) >1 as T —0 (D.4)

In this case, according to Eq. (D.1), the system is in the same state during and
immediately after the decay at ¢ = 0" as it was before the decay, at t5 = 0.

We can now state the SA:

Sudden Approximation Criterion: Suppose a perturbation occurs at
t = 0 on the timescale T" in a system whose energy scale is denoted by
AE. It T < &, then the system’s state is the same immediately after

the perturbation as before the perturbation. As an equation, the SA says:

If T« A—FLE, then W(r,t=0")=U(r,t =0") (D.5)

Satisfaction of the sudden approximation in the decay of ‘He

The purpose of this section is to unpack the quantities T and AFE in Eq. (D.5)
within the framework of the beta decay of ‘He considered in this dissertation using
the parameters used in the experimental work in Refs. [114, 115] and the theoretical
works [26, 132].

In order to establish the characteristic time, 7', we must consider physically how

the Coulomb potential changes. The nuclear process n — p+ e~ + v, (corresponding

2This amounts to adding an arbitrary constant to H in a way that would only add an overall
phase that would not affect the dynamics or probabilities in a measurable way. Note that H (and
AF) still have time dependence, but the characteristic scale is dwarfed by h/T.
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tod L yte~ +7, in the quark picture) in the nucleus truly happens instantaneously
for our purposes. The mediator of the process, the W~ boson has a half-life of about
3 x107%°s ~ 1.2 x 1078 a.u. What is relevant is over what timescale the Coulomb
potential, as seen by the atomic electrons, changes from Z = 2 to Z = 3. This
happens as the beta particle passes through the electron cloud defined by the atomic
electrons. As before, we consider the beta particle to be a spherical shell of a radially
outward moving charge. Assuming that ro > ry, it is thus the time that it takes
the beta particle to pass through a distance ro — r; that defines the characteristic
time. There are calculations [43] of the expectation values of rj3 = |ro — ry|, which
is a different quantity, and sets an upper limit on ro — r1 in the (doubtful) case that
the electrons lie on the same side of a parallel line that goes through the nucleus.
Nonetheless, as an example in *He the expectation value (rj3) ~ 1.4 a.u., which can
be used to make the extreme case for the ground state of helium. The minimum
energy of beta particles considered in the measurement of the beta decay of He in
Ref. [115] is 1 MeV ~ 3.7 x 10* a.u. giving® vz &~ 129 a.u. Thus, the characteristic
time for the beta particle is T ~ (ry3) /vg = 1.4/129 = 0.01 a.u.

The characteristic energy scale, AF, is the relative spacing between the relevant
energy eigenvalues in solutions to a Hamiltonian. In atomic systems, this can, at first
glance, have a slightly ambiguous meaning because transitions can, in principle, take
place between states of arbitrarily high energy differences owing to the infinite con-
tinuum. However, in treating the SA in beta decay, we consider bound-state energies
in helium?* and therefore we can set AE ~ 1a.u. Thus we have i/AE ~ 1/1 = 1 and
(along with 7'~ 0.01), we have established® that If T < 4% holds for the beta decay
of the ground state of SHe. Similar results hold for the n = 2 metastable states that
have also been studied.

To be careful, in the preceding discussion, T" and AFE have been overestimated

(perhaps significantly) and underestimated, respectively. So the case for the SA is

3For this relativistic electron, a kinetic energy of 1 MeV equates to a velocity of about 0.941c.

4With a ground state and first ionization energy of -2.903. . .and -2, in a.u., respectively.

5A cruder approach that leads to the same conclusion would be to observe that the characteristic
time T' = ag/c = a1, = 0.007 < h/AFE = 1, where 7, is the atomic unit of time (=1 in a.u.).
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even stronger than what is presented here. Nevertheless, we can likely expect that
lifting the SA will be necessary at some level of precision. As shown in Chap. 3, this is

expected to be at a much smaller level of precision than we can theoretically achieve.

169



APPENDIX E

Derivation of Two-photon Decay
Rate and Rayleigh Scattering Cross

Section

E.1 SETTING THE STAGE

In this dissertation, the interaction with the QED vacuum is used in two places, in
distinct but related fashions. Firstly, it is used in Chap. 4 to derive the interaction
energy that appears in Fermi’s Golden Rule for the doubly differential decay rate.
The other example is in Chap. 5, where the tuneout frequency is reformulated as a
zero in the Rayleigh scattering cross section. The bulk of the machinery will be built
up for the first of these examples.

In Chap. 4, we wrote the two-photon decay rate in terms of Fermi’s Golden Rule
in the form

2
dw®) S, S = S |UF P plen) plun)d d dEy. (E1)

The purpose of this appendix is to provide a more rigorous foundation for the inter-
action energy, Uiff), in this equation. Several equations from Chap. 4 will be listed
again for convenience. This derivation follows Refs. [216, 217]

In a nonrelativistic approximation, Ui(f) is a second-order interaction energy with
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the electromagnetic field given by

v = -% [(f | Hint(w1) | ) (n | Hing(w2) | 1)

B E, — E; + hws
<f | Hint(WZ) | n)(n | Hint(wl) | i>
E.2
+ B, — E + Iy (E.2)

summed over positive energy states, and by conservation of energy F; — Fr = hw; + hws.
The nt under the summation sign indicates that this interaction only includes a sum
over the positive energy states. This is the key piece of the interaction energy that
requires justification. We have performed the calculation within the nonrelativistic
(NR) framework, so it is clear that negative energy states are not included. However,
the form of Eq. (E.2) needs to be justified.

For this derivation, we recall from Sec. 4.5 that H;,; < p- A,, for the two photons
W with m = 1,2. The structure of Eq. (E.2) varies depending on the gauge used
and the choice of coordinate system. Therefore, we will establish this relationship

without meticulously including every factor. So, we aim to show

(flp-Ailn)(n|p-As]i)
Ul(,?)_CZ|: 1 2
nt

E, — E; + hw,
(f1p-As|n){nlp-Aili)
E.
+ E, — E; + hw, ’ (E.3)

for some overall constant C'.

E.2 DERIVATION

Free electrons have no structure and thus cannot emit or absorb photons—the simplest
electron-photon interactions, such as the two-photon decay, are second-order processes

desribed by the second-order scattering matrix

S = ezN/E(@)A(sz)Sge) (21, 22) A(w1) ¥ (21) d'ay d*s, (E.4)
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where 1) corresponds to the electron wave functions and A the potentials of the
photon states, and 5% desribes the pairing between the electron operators.! The N
ensures normal ordering? The integration occurs in 4 dimensional spacetime (zy =

ict, 1,29, x3). Upon integrating over the time and frequency variables, we obtain:

7

S& . = —2miUZ), 8(E; — wi — By — ws), (E.5)

where Ul.(i)f is the interaction energy, corresponding to the on-shell component of the

S-matrix.
g 2mhete 3 (Flese ™ n) (nfee™ i) | (flere™ ™ |n){nfése™™ i)
Ty o & B, — E; — En — E; — hws

(E.6)

This is of the form used in Chap. 4, where the normalization constant has already
been imposed. In Eq. (E.6), € = 7,e,, a product of the Dirac y-matrices and e the
polarization vector satisfying k-e = 0. In our work, we will sum over the independent
polarizations. So far, this looks identical to Eq. (E.2), with the important exception
that this includes a sum over positive and negative energy states, whereas Eq. (E.2) is
only over the positive energy states. Also, since we are working in the nonrelativistic
limit, the relativistic operators will be replaced by their NR counterparts obtained
by expanding the lower spinor in the expansion parameter 1/c.

The next objective is to evaluate the sum over negative energy states and remove it
from the sum in Eq. (E.6). Several approximations are now made with the ultimate
consequence that each denominator in Eq. (E.6) can be replaced by the constant

—2mc?. The assumptions that determine this are:

1. Photon energies are small compared to the rest mass of the electron: wy o < mc?;

this can also be expressed as |E; ; — mc?| < mc?.

!The pairing operator Sge) is a Green’s function for a Dirac equation for the electron in an
external field, which involves a frequency integral over all of frequency space—positive and negative.

2The normal operator N ensures annihilation operators are placed to the left of creation opera-
tors.
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2. Only NR intermediate states |n) are important in the process, which can be

quantified as ||E,| — mc?| < mc?.

Now, under these approximations, the interaction energy, restricted to a sum over

negative energy states, UZ.(;)f, reads

vty =0y [<f|é2e—ik”|n><n|éle““|z'> T (flere™ ) (nleze )|, (E.T)
n(=)
where C' = —mhe*m/(V/wiws) is the prefactor, whose form is irrelevant to the ensu-
ing discussion.
The next step is to transform the sum in Eq. (E.7) to include positive energy states
by introducing negative energy projection operators to complete the sum by closure
to obtain a result for the sum. This can be achieved by introducing the projection

operator P

) — me? — 4 N me? — yymc? 1= (E.8)
Cme—EC 2mc? 2 .
satisfying  y4[n®)) = £mc?|n™) (E.9)

The effect of 75(_), in the limit of the NR approximations mentioned above, expressed
in the rightmost expression in Eq. (E.8), and in consideration of the eigenvalue prob-
lem of 74, given in Eq. (E.9) is to leave the negative energy states alone and to

annihilate the positive energy states:

. n), i E,<0
PO ) — ) (E.10)

0, if £, > 0.

Thus, if we make the following replacement |n*)) — P()|n*)), we can extend the

sum in Eq. (E.7) to positive energy states®

3This only needs to be done once for each factor in each of the terms in the expression in
Eq. (E.11) since it of course is that same state |n) involved in both factors
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- A 1- —ikor ~  ikir|:
UL}ZCZ[WGZ—%‘? K2 n) (nfé e i)

L=, ko
FUle e ) e, (B
after which can complete the sum via closure, ) ) [n)(n| = 1.
) C

U5y =S tries (4 - 1) e

+ (fler (74 — 1) eike—ka)x é2|i>]

= ... = Cey - ey fle kK| (E.12)

The last simplification is achieved using y4e = —e7ys and eye; + €,y = 2e;e; and
further that y4|n) ~ |n). In the dipole approximation, which is used in calculating
the the two-photon decay rates in Chap. 4, this term vanishes, since the operator goes
to unity and the atomic states, |i) = He(2 'S) and |f) = He(1 1S) are orthogonal.
Corrections from UZ.(;)f come into play at relative order o?Z2 and need to be included
in a relativistic calculation.

In the NR and dipole approximation, we can now return to the full interaction
energy in Eq. (E.5) and remove the sum over negative states. The only remaining
thing to do is to replace €; = ~v,e, with the corresponding NR operators. Using
the definition of the v matrices, we can rewrite operator: v,e, = —ifo - e, where
e, = 1,2 the polarization of the two photons. The anticommutator {a;, } = 0 can

be repeatedly applied in Eq. (E.5) to make the replacement
ene kT 5o Ay, (E.13)

where the complex conjugate A’ replaces A,, where appropriate. Furthermore, the
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operator replacement, which uses the dipole approximation, is given by*

a-A—>M+uxA, (E.14)

mc
For this application, the spin-dependent second term can be ignored for the two-
photon problem and is included in the relativistic Breit corrections applied in our
study of the tuneout frequency. The combination of Eqs. (E.12) and (E.13) allows
the replacement of the operators in Eq. (E.5) by operators p - A o« H;,;—with the
sum restricted to postive energy states, and the operators shown to be of the form

this completes our goal in the derivation.

E.3 RAYLEIGH SCATTERING FORMALISM

This derivation closely follows Drake et al. [217], and begins with Eqgs. (E.2) and
(E.3), but with the simplification to the case of coherent Rayleigh scattering, defined
by E; = Ey, ki = kg, and w; = wy. The aim is not to reproduce this result in full,
but will quote the crucial results, which are necessary inclusions in calculations that
account for retardation—finite wavelength—correction. As shown in Ref. [25], the
subject of Chap. 5 of this dissertation, this formalism is very important as it results
in different corrections than using a seemingly appropriate and similar picture of the
dynamic polarizability.

Beginning with Eq. (E.6), as in the two-photon decay, the Rayleigh scattering
criterion, lead to the same numerators in both terms, lead to the following form® of

the total interaction energy:

_ 2mc 6277, e 1
Z‘ flae™ )] <AE o AEn—cD)’ (E.15)

4This result follows from the Foldy-Woutheyson transformation, which is applicable in the limit
mentioned above in deriving U7, |E,, — mc?| < mc?.

5For simplicity, this assumes propagation along 2 and polarization along & and @ = hw.
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where e** = 1 + ikz — (k2)?/2 + ... is the retardation expansion. In calculating
the contribution from negative energy states, in the same way as above one finds a
result proportional to the matrix element e; - ey (f|e~*k2=k1)T|3). This is equal to Ny
for coherent scattering. Making the same approximations leading up to Eq. (E.14),

except that the photon energy is retained, though small, in the denominator. This

leads to
2N7wc?eh 1 1
U =— E.16
wy (2m02—|—(D * 2m02—@) (E-16)
2N7e?h @ \?
~_ 1 < ) . E.17
mwy [ * 2mc? * ] ( )

Inserting this into Eq. (E.15) and making the long wavelength (e’ ~ 1) approxi-
mation and further using the NP operators and neglecting the second term in U(™)

yields

2meh 1
me{ Z| ilpzlm)| (AE +w AEn—w)_N} (E-18)

giving the velocity form of the interaction. The length form is the typical gauge for
the calculation, so we will consider the length gauge via [H, x] = ihp,/m. It turns out
that the first term in Eq. (E.18), after expanding the energy denominators, actually

equals NV in the limit w — 0:

1 1 2 &
_ 1 E.19
AE, 1o AE, -0 AEn< NN ) (E-19)

The first term in Eq. (E.18) is now equal to N by the TRK sum rule:

2 :
— S lilpal)? = N
n n+

Accordingly, only the second term in Eq. (E.19) contributes to the limit w — 0. Upon
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switching to the length gauge the following form is obtained®

2me’w , , 1 1
U= Y ;<z|x|n><n|x|z> (AEn 5 + AL, —w) (E.20)
= %chad<u}), (E21)

which can be directly compared to the dynamic polarizability, as shown in Eq. (E.20).
The zeroes in the coherent Rayleigh scattering cross section, U(w), clearly match
those in the dynamic polarizability, ap(w), when the long wavelength approximation
kz < 1 is made, interpreting the tuneout frequency equivalent in this limit.

If retardation—finite wavelength—corrections are considered, however, then the
higher order terms enter into Eq. (E.15) and this is no longer the case. In this limit,
the zeroes of the Rayleigh scattering cross section do not coincide with the dynamic

polarizability, as shown explicitly in Ref. [217] in the velocity gauge.

6This involves pulling out a factor of A“_’—; and subsequently resumming to infinity.
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APPENDIX F

Integration to Obtain the Decay Rate

The purpose of this Appendix is to give a simple way to sum over the two independent
polarization vectors €; and €y perpendicular to k; and ks in order to obtain the
angular correlation function (1 + cos?®6}5).

Let k; and ks define the xy-plane (the collision plane). Then two possible inde-
pendent choices for |€1-é2|2 are first, choose €; = &,, €; = &, perpendicular to the
xy-plane. Then |€+&;|*> = 1. Second, choose & = ki x e, & =kyxeé,sothat

they both lie in the xy-plane. Then, since by assumption k;-e, =0,

&1-&)7 = |(k x &) (ks x &,)]?
= |ky-ks?

= cos® 0y

The sum of both polarization contributions is thus a factor of 1 + cos? ;5.

Similarly for the case of single-photon transitions, we need to integrate |&-Q|?
over solid angles df) for the direction of emission k. For purposes of the integration,
assume that Q points in the z-direction. Then two possible independent choices for
€ are first, choose €; to point in the k x Q direction. In this case, €;-Q = 0, and so
it does not contribute. Second, choose €, to lie in the (k, Q) plane orthogonal to €&;.

Then if k-8, = cos 0, €;+-é, = sinf, and the angular integral is

/\aQ-QPdQ = |Q]2/ sin? 0 dQ
4 4

- Tlap (F.1)
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APPENDIX G

Derivation of Algebraic Relations

from Pertubation Theory

This Appendix will demonstrate that perturbation theory can be used to obtain the
algebraic relations that are the subject of this Chap. 4. We will consider explicitly
the relationship for the first-order mass polarization coefficients between the length

and velocity forms of single-photon transitions (cf. Sec. 4.8.2), given by
C,—C, = -2 (A1)
The single-photon decay rate, given in Eq. (4.14), is
wig = gawi e (i Qulf)[*.

We will work in centre-of-mass coordinates, using reduced-mass atomic units, given
in Eq. (4.37), such that the length and velocity operators are p = p; + p, and
V =V, + V,, respectively. The condition that the length and velocity gauge should

be equal with all finite-mass effects included is

3
22 (L) ARGV = 22 (L) AE|(|p|f) 2
() apvinr = 22 () a8 leln)

e

avine= (Z2) (L) amienr o2

P €
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where we have used that wiy = AE;y = AE in atomic units and all finite-mass
dependence besides mass polarization has been factored out. From the definitions of

Zy, Z, (cf. Sec. 4.5.1) and u, it follows that

(%)Q(m%>_2=1—2u/1\4+--.-

The fundamental perturbation equations

7 p
(Ho + 1V, vm) (|\11><0> + WO+ )

= (O + X po ...)(\If@) 2 gy )
( +M + | W) +M|> +

can then be solved to write AE and the squared dipole matrix elements |(i|p|f)|* and

|(i|V|f)|* as expansions in p/M. These are

(AB) = [ABO + LARD 1 .]2

= [AE©]2 ¢ AE OAE® 4.
2
1G]V :[|V\f +—(1\V]f> +}
= |GIVHO + 2 ([ VIHDP + ... and
. (1) 2
[GlpIDI = [GlplD® + - (ilplH ™ + ...
= |{ilolf) [ + 24=| il lt) V] +

The first-order dipole matrix element terms (i|V|f)(1) and (i|p|f)*) each contain two
terms, arising from first-order corrections to both the initial and final state wave

functions. Finally, putting these expansions back into Eq. (A1) gives

(1—2u/M+...) ((AE(O)) MAE IAEW )
X ((R(°>)2 + 2%(1%(1))2 ¥ )
= (PO)? 4 2%(P(1))2 4
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where the perturbation coefficients for the length and velocity dipole matrix ele-
ments are written in a slightly abbreviated notation using R™ = |(i|p|f)™| and

P = |(i|V|f)(™)], respectively. Solving these perturbation equations yields
(AE(O)R(O))2 _ (p(0>)2

in zeroth-order, successfully recovering the commutator identity. In first-order, we
obtain

AE(O)AE(U(R(O))Z + (AE(O)R(U)Q — (AE(O)R(U)Q — (p(l))Z.

Rearranging and using the zeroth-order identity gives

(p(l) ) 2 2AE<0>AE<1>(R<O>)2 + (AEO@RM)Y2

PO (AE© RO)? -
By identifying
P 2
Cp=2 <m> and (A3)
AE(O)AE(U(R(O))? + (AE(O)R(U)Z

C,=2 (A4)

(AEORO)2 ’

we have recovered the desired algebraic relation in Eq. (Al), connecting the first-
order length and velocity mass polarization coefficients that arise in transition rates

in single-photon transitions using perturbation theory.
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