

Lifetime measurement of low lying states of ^{27}Si

Sathi Sharma¹, Sangeeta Das¹, Arkajyoti De¹, Rashika Gupta¹, A. Gupta², A. Adhikari², A. Das², Y. Sapkota², A. Saha³, S. S. Alam³, S. Bhattacharya³, R. Banik³, S. Nandi³, S. Das⁴, S. Samanta⁴, S. Chatterjee⁴, S. Bhattacharyya³, B. Dey¹, D. Pramanik⁵, A. Bisoi², T. Bhattacharjee³, M. Nandy¹, S. Sarkar², and M. Saha Sarkar^{1*}

¹Saha Institute of Nuclear Physics, HBNI, Kolkata - 700064, INDIA

²Indian Institute of Engineering Science and Technology, Howrah - 711103, INDIA

³Variable Energy Cyclotron Centre, HBNI, Kolkata - 700064, INDIA

⁴UGC-DAE CSR, Kolkata Centre, Kolkata - 700098, INDIA and

⁵Haldia Institute of Technology, Haldia, West Bengal - 721631, INDIA

Introduction

Properties of the excited states in ^{27}Si above the proton emission threshold (7463.32 keV) [1] are relevant for studies related to the abundance of ^{26}Al in the Milky Way. The sub-threshold states, most of which have been studied long back [2] are also significant while studying branching of the particle channels in the $^{12}\text{C} + ^{16}\text{O}$ fusion process [3] and isospin-symmetry in nuclei [4].

In the present work, our primary motivation is to study the low lying isobaric analogue states (IAS) of $^{27}\text{Si}(T_z = -1/2)$ populated through charge - exchange reaction (p, n) from its mirror partner $^{27}\text{Al}(T_z = 1/2)$. There are several advantages of using proton induced reactions for studying low-lying states. Despite having low recoil velocities (here in case of ^{27}Si ion, v/c is $\simeq 0.003$), excited states of the residual nuclei are populated non-selectively. One can also specifically excite a few levels of interest and minimize the side feeding effects, which is advantageous while determining the level lifetimes.

Experiment and Analysis

The experiment was performed at VECC, Kolkata using $K=130$ Cyclotron during the recent campaign of Indian National Gamma Array (INGA). Natural ^{27}Al target was bom-

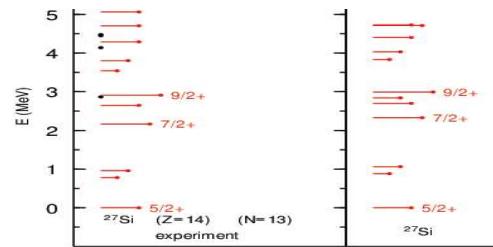


FIG. 1: Comparison of experimental [2] and theoretical level scheme of ^{27}Si till $\simeq 5$ MeV.

barded with 10 MeV proton beam. The target was 35 mg/cm^2 with 0.3 mm thick Ta backing. The INGA@VECC2018 consisted of 6 Clover detectors with 4 detectors at 90° and two detectors at 125° and one LEPS detector at 40° . Digital acquisition system PIXIE-16 acquired data both in singles as well as in coincidence mode [5]. Three channels were dominant in this reaction. They are - $^{27}\text{Al}(p, p'\gamma)^{27}\text{Al}$, $^{27}\text{Al}(p, n\gamma)^{27}\text{Si}$ and $^{27}\text{Al}(p, \alpha\gamma)^{24}\text{Mg}$. In case of ^{27}Si , excited states upto $\simeq 3$ MeV were populated (Fig. 1).

To calibrate the experimental spectrum at higher energy and determine detector efficiency, ^{66}Ga was produced by bombarding natural Zn with proton beam. ^{66}Ga has a half life of 9.49 h and its decay spectra consists of several gamma rays with energies ranging from 0.8 MeV to 5 MeV. The calibration and efficiency of the Clover detectors at each

*Electronic address: maitrayee.sahasarkar@saha.ac.in

TABLE I: Experimental lifetimes and reduced transition probabilities of excited levels in ^{27}Si are compared with theory. $B(\text{E}2)$'s in units of $e^2\text{fm}^4$ ($B(\text{M}1)$'s in μ_N^2) are shown in the first (second) line for each level. Experimental $B(\text{E}2)$ and $B(\text{M}1)$ values are determined with mixing ratios from [2]. These values are calculated only for the mean value of lifetimes.

E_γ (keV)	Half-life(fs)	Transition probability				
		Pres.	[4]	Pres.	[4].	Theo.
2163	$7/2_1^+$	>21	53(9)	<127.46	40	43.90
				<0.22	0.09	0.08
1690	$5/2_2^+$	>28	37(16)	<11.09	8	35.03
				<0.32	0.25	0.44
746	$9/2_1^+$	>54	75(14)	-	-	13.46
				<0.15	<0.46	0.10

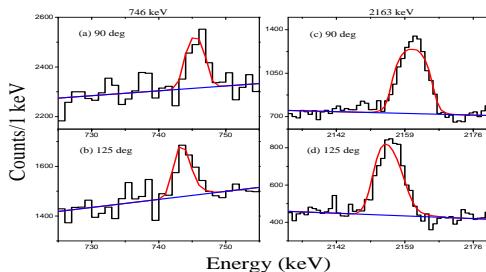


FIG. 2: Typical lineshape fits of two different gammas of ^{27}Si at two different angles. Black line connects the experimental data, red line is the lineshape fit and blue line is background.

angle were obtained using ^{152}Eu , ^{66}Ga decay data upto 5 MeV. The PIXIE-16 digitizer data was sorted using IUCPIX sorting programs [5]. Analysis was done using INGASORT [6] software. The lifetimes of the excited states were determined (Fig. 2) using LINESHAPE code [7]. We are only reporting the results without any side-feeding corrections to get a limiting value.

Theoretical calculations, Results and Discussions

Shell model calculations with OXBASH code [8] have been performed to calculate the energy spectra and transition rates. The sd

valence space with ^{16}O core and USDB interaction are used. The transition probabilities are calculated with effective charges $e_p=1.35e$ and $e_n=0.35e$, respectively, and standard values of intrinsic moments. In Fig. 1, the theoretical prediction of the energy spectra compare quite well with experiment. The transition probabilities (Table 1) also agree well in most cases. However, the large deviation of the theoretical reduced transition probabilities corresponding to 1690 keV transition needs special attention. The present experimental limits on lifetimes indicate necessity of including side-feeding corrections.

Acknowledgement

We would like to thank Mr. Pradipta Das and the INGA group for their sincere help during the experiment. Acknowledgement is due to Mr. Pradip Barua for his assistance. The authors sincerely acknowledge the help and support received from the accelerator group at the Variable Energy Cyclotron Centre (VECC), Kolkata, for having a successful experiment.

References

- [1] G. Lotay *et al.*, Phys. Rev. Lett. **102** (2009) 162502.
- [2] www.nndc.bnl.gov
- [3] X. Fang *et al.*, Phys. Rev. C **96** (2017) 045804.
- [4] J. J. Weaver *et al.*, Nucl. Phys. A **172** (1971) 577.
- [5] S. Das *et al.*, Nucl. Inst. and Meth. A **893** (2018) 138; S. Das *et al.*, Proc. DAE-BRNS Symp. on Nucl. Phys. **61** (2016) 1028.
- [6] R. K. Bhowmik, S. Muralithar and R.P. Singh, Proc. on DAE-BARNS Symp. on Nucl. Phys. **44B** (2001) 422.
- [7] J. C. Wells and N. R. Johnson, Oak Ridge National Laboratory (ORNL) Physics Division Progress Report ORNL-6689, 1991, p. 44.
- [8] Oxbash for Windows, B. A. Brown *et al.*, MSU-NSCL report number 1289.