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Daniel Kupelwieser Pion Cloud Effects in the Electromagnetic Nucleon Structure

Abstract

The main objective of this thesis is to study the influence of the pion cloud on the elec-
tromagnetic structure of the nucleon. Our starting point is a hybrid constituent-quark
model which contains, in addition to the valence quarks, also pions as elementary degrees
of freedom. The quarks are subject to an instantaneous confining force and can emit and
reabsorb the pions. The theoretical framework we use is relativistic quantum mechanics
in its point-form realization. Electron—nucleon scattering is formulated as a multichannel
problem for a Bakamjian—Thomas-type mass operator to account fully for the photon- and
pion-exchange dynamics. We calculate the relativistically invariant one-photon-exchange
amplitude for electron—nucleon scattering, from which the electromagnetic nucleon cur-
rent and subsequently, the electromagnetic nucleon form factors are extracted. As it turns
out, the basic ingredients to the one-photon-exchange amplitude are the electromagnetic
4N and strong 7NN vertex form factors of the (confined) three-quark valence component
of the nucleon (called the “bare nucleon”). The reason is that, due to instantaneous
confinement, only eigenstates of the pure confinement problem, i.e bare baryons, can
propagate in intermediate states. In order to calculate the strong and electromagnetic
form factors of the bare nucleon we adopt the parametrization of the three-quark wave
function proposed by Pasquini and Boffi who performed a similar calculation within the
front form of relativistic dynamics. Our form factor results are comparable with those of
Pasquini and Boffi and for momentum transfers Q% < 5 GeV? in reasonable agreement
with experiment. Pion loop effects turn out to be only significant below @2 < 0.5 GeV?2.
As a byproduct we also obtain a prediction for the strong w/N coupling constant and the
corresponding vertex form factor that is within the range of 7N phenomenology.

Keywords: Electromagnetic nucleon form factors, pion cloud, pion—nucleon vertex,

constituent-quark model, relativistic quantum mechanics, point-form dynamics.
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Zusammenfassung

Das wesentliche Ziel dieser Dissertation ist das Studium des Einflusses der Pionwolke
auf die elektromagnetische Struktur des Nukleons. Den Ausgangspunkt bildet ein hy-
brides Konstituentenquarkmodell, welches zusétzlich zu den Valenzquarks auch Pionen
als elementare Freiheitsgrade aufweist. Die Quarks unterliegen einem instantanen Con-
finement und kénnen Pionen emittieren und absorbieren. Als theoretisches Grundgeriist
dient uns die relativistische Quantenmechanik in Punktform. Elektron-Nukleon-Streuung
wird als Mehrkanalproblem mit einem Bakamjian—Thomas-Massenoperator formuliert.
Wir berechnen die relativistisch invariante Amplitude fiir Ein-Photonen-Austausch, von
welcher der elektromagnetische Strom sowie die elektromagnetischen Formfaktoren des
Nukleons abgeleitet werden. Es ergibt sich, dass die Grundelemente der Amplitude fiir
den Ein-Photonen-Austausch die elektromagnetischen v/N- und starken 7 /N-Formfaktoren
der Drei-Quark Valenzkomponente des Nukleons (des ,nackten® Nukleons) sind. (Der
Grund dafiir ist, dass wegen des instantanen Confinements nur Eigenzustinde des rei-
nen Confinement-Problems, d.h. nackte Baryonen, in Zwischenzustdnden propagieren
kénnen.) Um diese GréBen zu berechnen, verwenden wir die Parametrisierung der Drei-
Quark Wellenfunktion nach Pasquini und Boffi, welche eine dhnliche Berechnung in der
Frontform der relativistischen Dynamik durchfithrten. Unsere Ergebnisse sind vergleichbar
mit jenen von Pasquini und Boffi und stimmen fiir Impulsiibertrige von Q% < 5 GeV? an-
gemessen mit experimentellen Werten {iberein. Die Auswirkungen des Pionenaustauschs
erweisen sich nur unterhalb von @2 < 0.5 GeV? als signifikant. Als Nebenprodukt erhal-
ten wir auch eine Vorhersage fiir die starke w/N-Kopplungskonstante und den zugehorigen

Vertex-Formfaktor, welche sich im Rahmen der 7 /N-Phinomenologie bewegt.
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Chapter 1

Introduction

1.1 Studying the electromagnetic structure

of the nucleon

Electron-nucleon scattering is the most important tool to learn about the electromagnetic
structure of the nucleon [EW88]. In the present thesis we will concentrate on the nucleon
properties that are probed in elastic electron—nucleon scattering. The quantities extracted
from such scattering experiments are the nucleon form factors [Pun®15]. They are scalar
quantities that depend on the square of the four-momentum transferred from the electron
to the nucleon. They encode the spatial structure of the photon—nucleon vertex and
are thus also an important source of information on how the nucleon is composed of its
charged constituents, the quarks.

Quantum chromodynamics (QCD) is nowadays considered to be the elementary quan-
tum field theory of the strong interaction that tells us how quarks interact via gluon
exchange and, in particular, how nucleons are built up from quarks (and also antiquarks
and gluons). QCD is a gauge theory that is invariant under local SU(3)color transfor-
mations, i.e. both quarks and gluons carry a color charge and the Lagrangian of QCD
is invariant under space-time dependent SU(3) transformations in color space. In this
sense, the color charge is the charge that is responsible for the strong interaction. One of
the most prominent features of QCD is the observation that only colorless bound states
of quarks, antiquarks and gluons are observed in nature in the form of hadrons (mesons
and baryons). This is the phenomenon called “confinement”. As a consequence, colored
objects (quarks, antiquarks and gluons) that form a colorless hadron can only be identified
within a small spatial volume. What can happen, however, is that quark—antiquark fluc-
tuations of the vacuum can form colorless mesons, which are then emitted and reabsorbed
from the “core” of quarks, antiquarks and gluons. This “meson cloud” increases the spa-
tial extension of the original hadron. The increase is maximal for the lightest meson,

the pion. When the electromagnetic structure of the hadron is probed in electron—-hadron
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scattering, the photon exchanged between electron and hadron will “see” both, the core of
the hadron and the surrounding meson cloud. Consequently, the electromagnetic hadron
form factors extracted from elastic electron—hadron scattering data contain core- as well
as meson-cloud contributions. A major goal of this thesis is to give an estimate for the
size of the meson-cloud contribution to the electromagnetic nucleon form factors.

Since the solution of this problem within full QCD is still out of reach, we rather
use an effective description of nucleons in terms of constituent quarks that are bound by
an instantaneous confining potential and can also interact via the dynamical exchange of
pions (which couple directly to the constituent quarks). This means that our meson cloud
just consists of pions, which are supposed to provide the most important contribution to
the cloud. This kind of model is in the spirit of so-called “chiral constituent quark models”
[GRI6], which assert that constituent quarks and (the lightest) pseudoscalar mesons are
the effective particles and Goldstone bosons emerging from the spontaneous breakdown
of chiral symmetry in QCD.

Within this constituent quark model, the nucleon consists of a three-quark core that is
surrounded by a pion cloud. This is a problem with a finite number of degrees-of-freedom
— as opposed to the full QCD bound-state problem — and can thus be treated within a
quantum mechanical framework. Since we are exclusively dealing with light (constituent)
quarks, it is mandatory to take relativity appropriately into account. We make use of
the point-form of relativistic quantum mechanics (cf. Sec. 2.4.2, [Dir49, KP91, Kli98al)
in connection with the Bakamjian—-Thomas construction (Sec. 2.4.3, [BT53, KP91]) to
formulate electron—nucleon scattering in a Poincaré-invariant way. The same approach
has already been adopted for the description of the electroweak properties of light mesons
(m and p) [BSFKO09, Biell, GRS12] and for heavy-light mesons (D and B) [GRS12, GR13]
as well as for determining the weak B — D) decay form factors [GRS12].

In the present thesis we will extend this point-form approach for the calculation of
electromagnetic form factors to the case of baryons that are, in particular, not only
three-quark bound states, but contain also a three-quark—pion component. It should
be mentioned that point-form calculations of electromagnetic form factors exist already
[MBC*07, MCPWO05, WB101], but the authors did not account for extra pions and use
an ansatz for the electromagnetic nucleon current on quark level (point-form spectator
model) that differs slightly from the current which we extract from the invariant electron—
nucleon scattering amplitude.

For the calculation of the pion-cloud contribution to the electromagnetic nucleon form
factors we also need the structure of the pion—nucleon vertex, i.e. the pion—nucleon
coupling and the pion—nucleon form factor. This will be obtained from considering the
pion-loop contribution to the renormalization of the nucleon mass on the quark level.
This means that our calculations will not only provide predictions for the electromagnetic
structure of the nucleon, but at the same time also on its structure as seen by the pion
via the strong interaction. Calculations of the strong pion—nucleon vertex form factor and

coupling were also carried out within the point-form spectator model [MCPO09], giving
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again results that slightly differ from ours due to the same reason as in the electromagnetic
case.

Pasquini and Boffi [PB07] already pursued a similar approach to meson-cloud effects,
but they rather used the front-form of relativistic quantum mechanics and took a phe-
nomenological ansatz for the pion—nucleon vertex. For comparison, we will take their
three-quark wave function and use it to calculate both the strong and the electromagnetic

form factors of the (bare) nucleon in a consistent way.

1.2 Structure of this document

Chapter 2 introduces the basic tools and concepts that are needed for this work. This
includes relativistic kinematics, the Poincaré group, spin—% and spin-1 fields, relativistic
quantum mechanics and in particular its point-form realization, vertex operators, currents
and the relativistic multichannel formulation that we are going to use.

In chapter 3 the electromagnetic form factors of a “bare” nucleon (which consists only
of the 3-quark component) are determined. In Sec. 3.1 electron—nucleon scattering is
first considered on the hadronic level to introduce the relativistic multichannel formalism,
which we will use in the following. In this particular case only two channels are needed:
One containing the electron and the nucleon and the other one containing the electron,
the nucleon and the photon. Photon—electron and photon—nucleon vertex operators are
responsible for the transition between these channels. After applying a Feshbach reduction
to the mass-eigenvalue equation for this system to eliminate the channel containing the
photon, one obtains an optical (energy-dependent) potential that describes the one-photon
exchange between electron and nucleon. The one-photon-exchange amplitude — from
which the electromagnetic nucleon current can then be separated — is obtained by taking
matrix elements of this optical potential between states containing an electron and a
nucleon. If one allows for spatially extended nucleons, the nucleon current will contain
electromagnetic form factors. In order to find a microscopic expression for these form
factors, the whole procedure is repeated in Sec. 3.2 on the quark level by considering
electron scattering off a three-quark system that is confined by an instantaneous potential.
The two channels now consist of three quarks and an electron and of three quarks, an
electron and a photon, respectively. The photon channel is again eliminated to derive an
optical potential. Matrix elements of this optical potential between states consisting of an
electron and a three-quark bound state with nucleon quantum numbers finally yield the
one-photon-exchange amplitude. Equating this amplitude with the one on hadronic level
provides a microscopic expression for the electromagnetic nucleon current (Sec. 3.3), and
in the sequel, also for the nucleon form factors (Sec. 3.4). The numerical implementation
of the current- and form factor calculations is sketched in Sec. 3.5.

In chapter 4 an analogous procedure is applied to determine the strong TNN vertex
form factor. The physical process that is analyzed in order obtain the pseudoscalar (or

pseudovector) nucleon current is the mass eigenvalue problem for a nucleon that consists
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of a three-quark valence component and a three-quark-plus-pion non-valence component.
After eliminating the pionic channel, one ends up with an optical potential that describes
the pion-loop contribution to the nucleon mass. Again equating this optical potential,
as calculated on hadronic level, with the one obtained on constituent level, yields a mi-
croscopic expression for the pseudoscalar (or pseudovector) nucleon current and, in the
sequel, also for the T NN vertex form factor. The interesting point to observe here is,
that the optical potential on microscopic level can be reexpressed in terms of hadronic
degrees-of-freedom with the quark substructure entering only through vertex form factors
of “bare” baryons, i.e. eigenstates of the pure confinement problem.

This observation is used in chapter 5 to calculate the electromagnetic form factors
of a physical nucleon N, consisting of a “bare” nucleon Ny and an Nym component. In
Sec. 5.1, the setup of the Ne(y) state as a two-channel compound of a bare Npe(7) state
and an Nyme(v) state is laid out. The nucleon-pion wave function is first introduced here
(Sec. 5.2). For this compound state, a coupled-channels eigenvalue equation for electron—
nucleon scattering, analogous to the one in Sec. 3.1, is then formulated in Sec. 5.3. Again
after a Feshbach reduction, a first expression for the optical potential for each in- and
outgoing configuration (Ng and No7) is obtained. In Sec. 5.4, spectator conditions are
applied and the field theoretical vertex operators inserted. In Sec. 5.5, the expressions for
the optical potential for the various possible time-ordered diagrams are obtained. These
then add up to give a nice covariant expression for the overall optical one-photon-exchange
potential. Finally, in Sec. 5.6, this result is compared to the expression for the optical
potential we obtained on hadronic level in Sec. 3.1 to identify the nucleon current. After
insertion of the nucleon-pion wave function, using the same kinematics as in Sec. 3.4, we
then extract the overall form factor analogously. After having determined the microscopic
form of the (bare) electromagnetic nucleon form factors in chapter 3 and of the strong
wNoNy form factor in chapter 4, determination of the electromagnetic form factor of the
physical nucleon is a purely hadronic problem. The numerical implementation of this
program is sketched in Sec. 5.7; numerical form factor results are presented and discussed
in Sec. 5.8.

Chapter 6 contains a short summary and an outlook.

In appendix A, the renormalization of the nucleon mass due to the pion loop is de-
rived in some detail. The essential quantities to come out of this are the pion emission
probability, the bare nucleon mass and the pion-nucleon wave function. Appendix B is

devoted to further calculational details.



Chapter 2
Basic Concepts

We start out by introducing some basic concepts and tools that will be needed for this
document. These can roughly be grouped into the fields of special relativity, quantum
field theory, relativistic quantum mechanics as well as properties of hadrons and their

interactions.

2.1 Relativistic kinematics

The metric signature we use is (+ — — —), i.e. the (flat) metric is
n = diag(1, 1,1, -1) (2.1)

and the rest mass of a particle with relativistic energy w and three-momentum p'is

m = /w2 — p2. (2.2)
Its four-momentum p is then
w
p=1_]-. 2.3
() @3
We are using physical units, i.e.
c=h=1. (2.4)

Whenever we are using three-velocities (denoted by ©), they are defined as the three-
components of the corresponding four-velocities v, which in turn are defined as the four-
momentum divided by the rest mass, i.e.

0
- (”4) and 0 =/1+2. (2.5)
v

_ D
vi= =
m

2.2 Dirac and photon fields

In quantum field theory fermions, i.e. spin—% particles like the quark or the nucleon,

are usually represented by the Dirac field v, which is a 4-spinor field fulfilling the Dirac
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equation:
(iv* 0y —m)p = 0. (2.6)

We use the Dirac representation of the Dirac algebra with the Dirac matrices v* taking

on the form [IZ80]
I 0 ; 0 ot
0 2 i
_ 4= _ . 2.7
7 ( 0 -l > 7 < —o* 0 ) @7)

The Fourier decomposition of the Dirac field reads [IZ80]

3
v = [ g X (@@ u@ e s hw @) 28
a=+1

2

The index « runs over the two independent spin orientations of the Dirac particle. After
field quantization, the coefficients ¢, and d}, become particle annihilation and creation
operators, and u, and v, are the corresponding basis spinors which, in the representation
(2.7), can be written as [IZ80]

A
pAY +m
()= ==

A
P\ +m
3P (m+w) 9

u 1
$P T Jimt w)

s u

S O O =
o O = O

where the normalization is taken from [Biell].
Similarly, the Fourier decomposition of the photon field reads [IZ80]

d*p > — ,

v = [ ¥ (O d, e a marme) . (@)
=0

where the €, are four orthonormal polarization 4-vectors of the photon which, for fixed

momentum, form a complete basis of Minkowski space:

gux e, (D) €, (P) = G,
3 (2.11)
> ghrre (p) e (p) = g
=0

2.3 The Poincaré group and [SL(2,C)

The universal covering group of the restricted (i.e. proper orthochronous) Lorentz group
Ll is isomorphic to the Lie group SL(2,C) [Tha92, SU00, KP91]. This can be seen by
establishing an isomorphism between the space of hermitian 2x2 matrices and Minkowski
space: If o# is the four-vector of Pauli matrices with o := Iyx5 , a general hermitian
2x2 matrix can be written as

X:=8x)=a"0,. (2.12)
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The corresponding vector in Minkowski space is recovered via

1
at = 5 tr(o* X) . (2.13)
The restricted Poincaré group (i.e. the component of the identity) is the group of all
restricted Lorentz transformations plus displacements in space-time, i.e. the group of all
ordered pairs (A,a) with A € LT;— and a a vector in Minkowski space. In the space of

hermitian 2x2 matrices, the effect of a Poincaré transformation (A, a) is
X' =S(MNXSA) + S(a), (2.14)

where S(A) € SL(2,C) (i.e. det S(A) =1 ) and S(a) is a hermitian 2x2 matrix.

Poincaré transformations in Minkowski space are recovered via

1 1
A, = 5 tr(o,S(A)o, S(A)T) at = 3 tr(ouS(a)) . (2.15)
Note that S(A) and —S(A) give the same A, rendering SL(2,C) a double covering of the

restricted Lorentz group.

2.4 Relativistic quantum mechanics

2.4.1 The Poincaré algebra

Having discussed ISL(2,C) as the universal covering group of the restricted Poincaré
group, we can now turn to the representation of its algebra, the Poincaré algebra. The

most general SL(2,C) matrix can be written as [KP91]
S(A) = exp (—;(5+iﬁ)5> : (2.16)

where the components of ¢ are the three Pauli matrices and 5, 0 are two sets of three
parameters each, which parameterize a Lorentz transformation. Via a simple Taylor
expansion, subsequent use of the multiplication relations of the Pauli matrices and finally,
the representation properties from Sec. 2.3, it is easily shown that g encodes the angle
and axis orientation of a rotation and g’ the rapidity, |p] = Arsinh|¥], and the direction
of a rotationless boost as defined in Eq. (2.35). According to Eq. (2.12), the displacement
vector can be written as

S(a) =a" 0, . (2.17)

With any nine of the ten parameters p 6 and a* set to zero, the subgroup gener-
ated by the remaining parameter constitutes an Abelian subgroup of ISL(2,C). The

representation of a (proper) Poincaré transformation can thus be written as
S(A,a) = exp(~iP"a,) exp(=i(J- 0+ K - 7)) , (2.18)

where P* are now the four generators of space-time translations, J the three generators

of spatial rotations, and K the three generators of rotationless Lorentz boosts.
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In order for the group representation property (not explicitly mentioned here) of
S(A, a) to hold, the following canonical commutation relations (written in covariant form)
have to be fulfilled [Dir49]:

[P, P =0,
(K™, P =i(g" P — g"PY) | (2.19)
[K‘“j, K)\K} - 4 (gu)\ Kvr — guA KHe 4 gun Ku)\ _ gun Kl//\) ,

where we have used

K% .= K* | K .= ik g, KW = —K"" | (2.20)

2.4.2 Three forms of relativistic dynamics

In physical terms, the generator(s) J can be identified with the total angular momentum of
the system which the Poincaré transformation is performed on. It is thus called the angular
momentum operator. Likewise, P* corresponds to the total four-momentum and will be
called the four-momentum operator. Its zero component P° = H is usually referred to
as the Hamiltonian of the system. Total four-momentum and angular momentum are the
conserved Noether charges of the respective space-time transformations [PS95]. For a local
quantum-field theory they can be constructed from the energy-momentum tensor of the
system under consideration, which includes contributions from the individual particles
(the “free” part), as well as all interactions between the particles. For a set of Klein-

Gordon fields ¢;, for example, we have

oL
B a<au¢i)

with £ = Lgree + Lint - Demanding that interactions depend only on the fields but not

om b — gL (2.21)

on their derivatives, we have
O = —g" Line . (2.22)

int —

The four-momentum operator, for example, is then constructed via
Pt = / do,©""(x) , (2.23)
o

where o is an oriented, spacelike hypersurface of Minkowski space-time which has to be
specified. In classical relativistic dynamics the initial conditions of a given problem are
defined on this surface. In quantizing the theory it serves as quantization surface.

Since the commutation relations (2.19) have to be fulfilled to guarantee Poincaré in-
variance, inclusion of interactions in any one of the 10 Poincaré generators has to result in
other generators containing interactions accordingly. This happens automatically when
quantizing a local (interacting) field theory, but becomes a non-trivial problem if one
wants to stay within the framework of quantum mechanics and deal with only a finite
number of degrees-of-freedom. In his 1949 article [Dir49] Dirac identified three special
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forms of relativistic dynamics, which correspond to timelike foliations of space-time where
the resulting hypersurfaces possess a high degree of symmetry under Poincaré transforma-
tions. For a particular form of dynamics, those Poincaré transformations that leave the
corresponding hypersurfaces invariant are interaction-free. They are called “kinematic”,
while transformations that shift or deform the hypersurfaces do contain interactions; they

are called “dynamic”.

The instant form: In this most familiar picture, Minkowski space-time is foliated into

hyperplanes of equal coordinate time (an “instant”),
z¥ = const. (2.24)

These surfaces are related to each other via translations in the x° direction and are
deformed by boosts. Spatial translations and rotations leave these surfaces invariant. Ac-
cordingly, the generators P° = H (the nonrelativistic Hamiltonian) and Ko; are dynamic

while P? and K;; are kinematic.

The front form: A hyperplane tangent to the light cone is called a light front. In the
corresponding form of dynamics, Minkowski space-time is foliated into light fronts parallel
to each other. Their orientation is usually taken such that

2 +2® = 27 = const. (2.25)

Let a new coordinate system be given by
{AO,AI,AQ,A3} — {A*,Al,AQ,A*} (2.26)
with AT =A%+ A% A" :=4"- 43 (2.27)

for any 4-vector A*. There are only three dynamic generators in this approach: Transla-
tions generated by P~ that shift the light front in the ™ direction, and the generators
of the “front-form boosts”, K;4 and Ko. The kinematic generators are those of transla-
tions within the light front, P!, P2 and P, of rotations around the propagation direction,
K2, and of the Lorentz transformations K, _, K;_ and Ka_.

The point form: The initial surface in this approach is the space-time hyperboloid of
equal proper time,
2?2 = (2°)? - 2% = 72 = const. (2.28)

The four-momentum operator (2.23) is then

Pr=2 d'z¢ (2* = 72) 0(2°) 2, ©"H(2) , (2.29)
R4

and its interaction part, according to (2.22),

int —

Pl o= -2 /R4 d'z 5 (2% = 7°) 0(2°) 2 Line (2) . (2.30)
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All translations shift the hyperboloid (2.28), while boosts and rotations (i.e. all transfor-
mations leaving the point x = 0 invariant) leave the hyperboloid (with 7 = 0 ) invariant.
Thus, interactions only affect the 4 generators P*, i.e. the 4-momentum operator, but the
full Lorentz group (6 independent generators K, ) stays interaction-free. The greatest
benefit of this approach is that boosts can be performed without having to worry about

interactions, a feature that will be exploited heavily throughout this work.

2.4.3 Bakamjian—Thomas construction

The Bakamjian-Thomas construction [BT53] is a systematic procedure for adding inter-
actions to a system of (a finite number of) free particles such that Poincaré invariance is

preserved. In point form it leads to the factorization of the four-momentum operator,

Pt =MVE (2.31)
into a free 4-velocity operator,
‘/ffee = Mf;ele Pfl;ee (232)
and a mass operator
M = Mpyee +U (2.33)

which contains all the interactions. The interaction-potential operator U has to be a
Lorentz scalar that fulfills the commutation relations [Vi._ , U] =0. These conditions
satisfied, M commutes (like Mpeo) with all the Poincaré generators and represents the

invariant mass of the system in the sense that

P* P, =M?*. (2.34)

2.4.4 Lorentz boosts and Wigner rotations

A Lorentz boost (more precisely, a canonical boost) is a rotationless Lorentz transforma-
tion. We always use active boosts that act on particle velocities rather than frames of

reference. In our notation (2.5) their action on a 4-vector is described by the matrix

0 o'
B(v) = § L+ 0 —1 o5T . (2.35)
The inverse boost is defined by
B~Y(¥) = B(-7) . (2.36)

The result of a boost with velocity ¥, a general Lorentz transformation A and finally
_>
an inverse boost with the velocity Av is a pure rotation, called a “Wigner rotation” (or

Thomas precession in the relativity literature [SU00]):

Ruw (A, &) := B~ (A0) A B(7) . (2.37)
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It is important to note that
RiM(A, %) = B @) A~ B(A0) = R (A", Av). (2.38)

We have already discussed the SL(2,C) representation of the Lorentz algebra in
Sec. 2.4.1. Via Eq. (2.16) and the following remarks, using the rapidity p = Arsinh |7] ,

a canonical (rotationless) boost with velocity @' can be represented as
S(B(7)) = cosh(g) oo + sinh (g) nfo,  with @ =sinhpi . (2.39)

In our notation (2.5) this can equally be written as [Biell]

I KL = G- v
S(B(0)) =4/ 5 0+7\/m. (2.40)

The spin-j representation of a rotation is accomplished by Wigner-D-functions. We

need, in particular, the spin—% representation of Wigner rotations,

Dp, (Rw (A, 9)) =t Dy (A7) (2.41)

where p, ' = :t% are the spin polarization indices.
Since the Wigner-D-functions are the elements of a unitary representation of the ro-

tation group, the following relations hold [Biell]:
1 . - 1 t . 1 o _)
D (Rw(A, ¥)) = D, (Rw(A, ©)) = D2, (Ry' (A, 7)) ,

v (Rw (N, @) = D, (Rw (A, 3) R (A, 7))

“w
DE#/ (I) = bpuper
(2.42)
i.e. in our shorthand notation (2.41), via Eq. (2.38),
D7 (A, 5) = DI, (A7) = Dy (A AD) . (2.43)

2.4.5 Velocity states

The Bakamjian—Thomas construction in point form (2.31) is most easily carried out in a
velocity-state representation. Since all interactions are contained in the mass operator and

the free overall 4-velocity operator V% _ is factored out, it is most profitable to characterize

free
the state of an n-particle system by its overall velocity ‘7, the constituents’ momenta k!’
and their spin projections p; in the overall rest frame [K1i98b].
By means of Eq. (2.32), the eigenvalue of the free 4-velocity operator of an n-particle
system is obtained from the particle masses m; and the particle momenta p; via

- P )i
Voo ffree 2. Pi where p) = \/p? +m? . (2.44)

Maee /(3 00)2 — (X 13)?
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A velocity state is just a usual momentum state in the overall rest system that is boosted

to the overall velocity V by means of a rotationless boost (cf. Eq. (2.35)):
with

Zk =0 and thus Mpe = Zwl where w; := k) = 24+ m? . (2.46)

The p; is the spin orientation of the i-th particle with respect to the canonical spin [KP91].

The physical momenta of the particles are

—

pi=B(V)k; . (2.47)

The behavior of a velocity state under a Lorentz transformation A is described as follows
[K1i98b]:

L (- — . -

U ‘v, {k m}> -y ‘AV, {RW(A,VW u;}> D, (Rw(A V), (248)
{ui} ‘

(where @; := s ), i.e. spins and momenta for each particle ¢ always transform with

m;

the same Wigner rotation (cf. Sec. 2.4.4) Ry (A, ‘7), so that orbital and spin angular

momentum can be coupled as in the nonrelativistic case.

Orthogonality and completeness relations: The orthogonality relation for an n-
particle velocity state reads [Kra01]

<V/ {kwuﬂ }“77 {El7/1'za7—z}>
- 2wy, - -
=@ VOBV - V)— H ( (2m)3 2w; 83(k ) H ( o0 ) . (2.49)
(Z?:1 WJ) 7=l 7=l
where we have introduced (for later purposes) the isospin projection 7; of the i-th particle.
Note that, since the n-th particle’s momentum is already determined by Eq. (2.46), there
is no Dirac delta in E,({)! We take the momentum of particle n to be the redundant one.
The Kronecker delta over ,ug), 7'7(;), however, remains. We introduce a shorthand notation
by which Eq. (2.49) reads

<V/ {k'u:u‘z? z} V {kuﬂzaﬂ}> = AVV/ - 3 H A]] s (250)

(Z? 1‘”]) =
with Aj;/ containing also 6, s 57],]/, and the factor 6, 6, ., being absorbed in Ay .
Accordingly, the completeness relation, which defines the unity operator in the

velocity-state representation, reads:

3
nfl dgk Z”: W L L
{Z}/ 2m) 3V0 <(27r)32w ) ( aninj) ’V; {ki’m’Ti}><V;{k“ui’n}'
Hi,Ti

(2.51)
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Note that since the n-th particle’s momentum (the redundant one) is already determined
by Eq. (2.46), there is no integration over En (however the sums over p,, 7, remain)! We

again introduce a shorthand notation which reads

zDVH Dk;) (Z ) ‘V {kz,uz,n}><‘7;{l_c},um} (2.52)

with the sum running over u;, 7, ¢ =1,...,n . For each occurring photon, a 51@#’7 in Eq.
(2.49) has to be replaced by the metric (—g,, . ) and the sum over photon polarizations

in (2.51) by 3, (=g, ) [K1i03].

2.4.6 Coupled-channels approach and Feshbach reduction

One way to represent a multi-particle system with varying particle types and numbers
is via a coupled-channels approach [KP91]. The Hilbert space corresponding to a multi-
channel system is a (finite) direct sum of Hilbert spaces, each describing a particular
channel that is characterized by certain types and numbers of particles. The mass operator
of the whole system (the operator we are interested in) is then a matrix operator. On the
main diagonal we find the mass operators that act solely on the channel Hilbert spaces,
i.e., they keep the particle numbers fixed. Off-diagonal we find creation and annihilation
operators, which are responsible for transitions between the different channels. The mass-
eigenvalue equation for a system with particles A, B, C, ... or combinations thereof, with

channel mass operators M. and overall eigenvalue /s would thus read, for example,

My Kp Ko Kpo - |A) |A)

K, Map 0 Ko - |AB) |AB)

KL 0 Mic Kp - [AC) | =vs | AC) | (253
Khe KL KL Mape - |ABC) |ABC)

The channel mass operators M may contain, in addition to the relativistic energies of the
particles, also an instantaneous interaction term (like a confinement potential). Let us now
adopt the velocity-state representation and assume that particles in a particular channel
move freely. If they have masses m;, momenta k; with k; =0 and relativistic energies
=4/ l;:? + mf ,where i = A, B, ..., the eigenvalue of the channel mass operator M ap. .
is
MAB... =WA+wp +... (2.54)
The eigenvalue /s in Eq. (2.53), i.e. the square root of Mandelstam s, is the invariant
mass of the complete, fully interacting multi-particle system, in which transitions between
different channels may take place (we avoid using the symbol m here). The corresponding
eigenstate is a superposition of states belonging to the different channels. Via straightfor-
ward manipulations, the system of equations (2.53) can be reduced to a single equation in
one channel, which is the starting point for drawing diagrams. This is called a Feshbach
reduction [Fes58, Fes62].
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2.5 Hadron properties and interactions

2.5.1 The constituent quark model of the nucleon

In elementary particle physics one wants to describe the properties of hadrons, such
as protons, neutrons and mesons, in terms of their elementary constituents, the quarks
and gluons. Within a quantum field theory approach, quarks are the quanta of fields,
which, in addition to the usual properties like mass, electric charge and spin (helicity),
carry a so-called color charge. Forces between quarks are mediated by gluons, which
are quanta of another field. Both quarks and gluons are dynamic degrees of freedom,
i.e. quarks and gluons can be generated or destroyed following a certain set of rules.
The quantum field theory that describes all this is called “quantum chromodynamics”
(QCD). Experimentally, a single isolated quark can never be observed as a free state, a
phenomenon called confinement. The rigorous proof of how this follows from the theory
is still missing as of today, however.

A more phenomenological approach to hadron properties is provided by constituent-
quark models. In the conventional constituent-quark models a hadron is considered a
fixed multi-particle state, namely three quarks in the case of a baryon and a quark and an
antiquark for a meson. The constituent quarks carry an effective mass which differs from
the quark mass in QCD and acts as a free parameter of the model. The electric charge is
2 (times the elementary charge |e|) for up (u), charm (c) and top (¢) quarks, and —% for
down (d), strange (s) and bottom (b) quarks (like in QCD). Quarks are spin-3 particles.
The quark content of the nucleon, which is the particle we will investigate, is uud for the
proton and udd for the neutron.

Since we only work with nucleons and thus the light quarks u and d, we assume that
these have the same mass. They are then assigned a further quantum number which is
called isospin. It behaves just as regular spin does, but it is invariant under space-time
transformations. Proton and neutron as well as up- and down-quark are considered an
isospin-doublet, the positive isospin orientation being assigned to proton and up-quark,
the negative to neutron and down-quark. If the masses of u and d quarks are neglected
in the QCD Lagrangian, it exhibits an additional symmetry, the so-called “chiral sym-
metry”. This symmetry, however, is broken spontaneously in the quantized theory by
the quark condensate. As a consequence, massless pions emerge as the Goldstone bosons
of chiral symmetry breaking and quarks acquire an effective mass, thus becoming con-
stituent quarks. However, since the constituent u and d quarks have slightly different
masses and the pion is not massless albeit rather light, we say that chiral symmetry is
only an approximate symmetry and call the pions the pseudo-Goldstone bosons of chiral
symmetry breaking [GR96].

In order to be able to correctly describe the nucleon structure, a fully relativistic treat-
ment is mandatory even at low momentum transfers and will also be employed here. The
confinement of the quarks within the hadron is assumed to be caused by an instanta-

neous interaction, which gives rise to a purely discrete spectrum. Rather than solving the
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bound-state problem for a particular confinement potential, we will use an appropriate
ansatz for the three-quark wave function of the nucleon. Therein, both spin and isospin
have to be taken into account when constructing a fully symmetric (fully antisymmetric
when color is included) wave function.

For a model closer to the reality of a dynamic quark number, as described by field
theory, one then introduces, in addition to the three-quark valence Fock component of the
nucleon, a three-quark-plus-pion component and allows the pions to couple directly to the
quarks. In this way one gets, in addition to the confinement potential, a hyperfine inter-
action. Such a model is in the spirit of the so-called “chiral constituent-quark model”, in
which the lightest pseudoscalar mesons and constituent quarks emerge as effective degrees
of freedom after spontaneous chiral symmetry breaking, with the pseudoscalar mesons rep-
resenting the corresponding Goldstone bosons [GR96]. The resulting physical picture of a
baryon is that of a quark core which is sourrounded by a “cloud” of pseudoscalar mesons,
which affects its mass eigenvalue as well as its electromagnetic structure. The only mesons
that we will consider are the three pions (spin zero, electric charge and isospin +1, 0 and

—1, quark content ud for the 7+, @d for the 7~ and a combination of u% and dd for the

70).

2.5.2 Electromagnetic current and form factors

For the electromagnetic interaction of the photon with the nucleon, quark, or pion we use
the standard field-theoretical vertices from quantum electrodynamics. The interaction
part of the QED Lagrangian reads [IZ80)]

Ling = — Y Qilelhin" i Ay =t —le| Y JE A, (2.55)
[ [

where A* is the electromagnetic 4-potential which arises from the photon field and J!*
is the electromagnetic current of (spin—%) particle ¢ with electromagnetic charge @; (in
units of |e|) and (matter) field ;. Via (2.8) matrix elements of the current for a spin-1
particle ¢ with ingoing and outgoing spin polarizations p;, 1, and momenta k;, k. can be

written as

T e (i k) = Qi () 7wy, (Ki) - (2.56)
In order to take into account the spatial extension of a particle (let’s say the nucleon)
as well as extra loops (higher-order terms) at the vertex, the electromagnetic current is

expanded in terms of pertinent covariants as follows [GSS02, EW88, KM96, CDKM98]:

—

TN =Ty (Fy) (Fl(qz)v“ - F>(¢?) 4(17"N W‘m“]) uu(kn),  Fi(0) =1,  (257)

where u#(EN) and u#/(l_c'g\,) are the spinors (2.9) of ingoing and outgoing nucleon (with

momentum Eg(,) and (canonical) spin projection 1), respectively, ¢ is the 4-momentum

transfer and F;(¢?) and Fy(q?) are the Dirac and Pauli form factors.
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Frequently, the electric and the magnetic Sachs form factors Gg and Gj; are used
equivalently. They are more intuitive in the sense that for ¢? = 0, they assume the values
of the elementary charge and the magnetic moment py (= 2.79 for the proton, —1.91 for

the neutron), respectively:

2
pr— 7q f—
Gp=F+ 4m3, o Gel0)=Qn (2.58)

Gy=F+F, Gu)=uN.
2.5.3 The pion—quark/nucleon vertex

The interaction between pion and nucleon can be described by pseudoscalar or pseudovec-

tor coupling with the interaction Lagrangians [EW88|

LY = —ign On 7V TN br (2.59)
and ;
v N — v N -
Lipnt = _mi ¢N’7 75TwN 8u¢7r 5 (260)

respectively, where 7 is a vector consisting of the three Pauli matrices. Both 7 and JW
are vectors in isospin space. The strong m-N coupling constant has a value of gy ~ 13.4
[EWS88] or gy ~ 13.1 [Bug04], depending on the literature one uses. Pseudoscalar and
pseudovector coupling are equivalent for free nucleons.

Analogously, the (pointlike) interaction between pion and quark reads [EWS8S]

LY = —igP, 7" 7ty bn (2.61)
and f
L?r:/t = 7m7 Eq pYV 757_—'11011 8V¢7T ) (262)

respectively, where the pseudoscalar coupling constant has its value in the range [Wag98]

92

4r
For free quarks (nucleons), pseudoscalar and pseudovector coupling constants are related
via [EW8S]

=0.67...1.19 (g=2.90...3.87) . (2.63)

@ _ I ) (2.64)
My 2mpyyq
Taking matrix elements of (2.59) and (2.60) between a nucleon-pion and a nucleon

state, we end up with pseudoscalar and pseudovector currents
—igN GPS(Q2 = _q2) Uy, (k) ~° Uy (kN) Xizlv (7?' (b;kr) X7n
= —ign JJ%(ENMU’NaE§V7HIN)3:(TN77-J/V7T7IT) (265)

and

fx L L
¢ 7777 GPV(Q2 = _q2) Up' (kﬁv) Y '75 Uy (kN) ko Xj—l/v (T : ¢7r) XN

;z-T{TNJJE’VV(EN,M,E;V,M;V)%T(TN,T;V,T;) , (2.66)

T
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respectively. Here we have introduced vertex form factors Gps(Q?) and Gpy(Q?) to ac-
count for the substructure of the nucleon (and potentially the pion). The quantities 7y,
Th and 7, denote the isospin orientations of the nucleons and the pion, respectively. The
ingredients of the flavor function F are defined as follows:

e The nucleon/quark isospinors are

=y = (0 ) ey = (1) e

e The isospin wave functions of the pion are

1 1 1 1 0
5#* = ﬁ é ) ¢?7T7 = % _OZ ) 6#0 = 5-) 3 (268)

where the isospin orientations are +1 for the 7+, —1 for the 7~ and 0 for the 7.
e Finally, 7 is a 3-vector of Pauli matrices.

The nonzero components of F are

11
J(=z,-,0) =
(2’2’) Lo

(2.69)



Chapter 3

Electromagnetic Form Factors

of the “Bare” Nucleon

In this chapter, we determine the electromagnetic properties of the nucleon without ex-
plicitly taking into account the (non-valence) three-quark-plus-pion component of the
nucleon. However, its influence is implicitly accounted for by the choice of the model
parameters, like the constituent-quark mass or the parameters of the three-quark bound-
state wave function. With a slight adaption of these parameters and the replacement of
the physical nucleon mass by a bare nucleon mass these results will later serve as input
for the electromagnetic form factors of the bare nucleon.

The relevant quantities (i.e. optical one-photon exchange potential and nucleon
current) are first derived in the hadronic picture, where the nucleon’s sub-structure is
parametrized by means of phenomenological form factors, and then again in the quark
picture, where the nucleon consists of three confined, pointlike quarks. By comparing
these two results, one then obtains a microscopic (i.e., quark picture) expression for the
nucleon current, from which one extracts the analytic expressions for the “bare” form

factors.

3.1 Hadronic level

3.1.1 Basic setup

In order to demonstrate how our approach works and for later comparison, we first cal-
culate the one-photon-exchange amplitude for elastic electron—nucleon scattering on the
hadronic level. The electromagnetic interaction is mediated by the dynamic exchange of

one single photon.

21
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e Figure 3.1: Diagram representing the

> one-photon-exchange amplitude M, for
electron—nucleon scattering. The blob at
y the photon-nucleon vertex indicates the pos-

N sible occurence of vertex form factors, which

> account for the (spatial) extension of the nu-

cleon.

3.1.2 Eigenvalue equation and velocity states

We use a coupled-channels approach (cf. Sec. 2.4.6) with two channels: One contains the
nucleon (N) and the electron (e) only and the other contains the exchanged photon (7)
in addition.

We work with velocity states (cf. Sec. 2.4.5) ‘V; EN,,UN; N ke, ,ue> and
|V; BNy Ny TN e, fle; E’w fiy) (where >, ki =0 ) and use the shorthand notation |VN6>
and |VN e’y>, respectively.  Since we employ the Bakamjian-Thomas construction
(cf. Sec. 2.4.3), the overall 4-velocity V', which one obtains from the physical particles’
momenta ( p; = Ay k; ) is conserved, i.e.

PN+DPe PN+ Pet Py
Vion +pe)? /(ov +pe +p,)7

The eigenvalue equation for the invariant mass operator then reads
My, K VN VN
1\]{ v ‘ e> =/s | €> , (3.2)
Kfy My ey |VNe’y> |VNe'y>

where the diagonal matrix elements My, and My, are the mass operators

V= (3.1)

for non-interacting nucleon—electron and nucleon—electron—photon systems, respec-

tively, with eigenvalues mye =wy +we and Mmyey = Wy +we +w, (see Eq. (2.46),

w; = \/l;:? +m? ). The off-diagonal elements K. and K, linking the two channels, are
the annihilation resp. creation operators of the photon. /s (s being the Mandelstam
variable) is the mass eigenvalue of the fully interacting two-channel system.

Via a Feshbach reduction, Eq. (3.2) can be reduced to the N — e channel:

(Vs — Mne)|VNe) = Pyl|[VNe) = K, Pyey KI[VN€) = Vo [VNe) . (3.3)

Py is the propagator for the nucleon—electron state and Pyey 1= (Vs—M Ne,y)*1 the
propagator for the nucleon—electron—photon state. Vgp¢ is called the optical potential.
When the right hand side of Eq. (3.3) is read from right to left we see that, starting from
the |VN€> state, a photon is created by Kl, then a |VNe'y> state propagates and finally,
the photon is destroyed again by K. The optical potential thus describes the creation of
the photon by either electron or nucleon, the propagation of the nucleon—electron—photon

state, and the subsequent absorption of the photon by electron or nucleon.
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e e
r 4 >
v v
N N
> >

Figure 3.2: Time-ordered diagrams (contributing to M) representing exchange of a
photon between electron and nucleon on the hadronic level. The blob indicates that the

nucleon-photon vertex is not point-like.

In this work, we restrict ourselves to the perturbative treatment of electron—nucleon

scattering in leading order, i.e. one-photon exchange. This means that
VS — mye = wy + we (3.4)

and self-energy contributions due to photon emission and reabsorption (leading to loops)

can be neglected.

3.1.3 Splitting of vertex operators

Due to the structure of the interaction Lagrangian (2.55), the photon creation and anni-
hilation operators can each be split into a sum of photon—electron and photon—nucleon

vertex operators [Biell]:

KI|VN €)= (KL, + KL,) VN e)

(3.5)
K |[VNev) = (Key + Kny)|VNey) .

Ignoring any photon loops (which only amount to radiative corrections to nucleon and

electron masses), Eq. (3.3) takes the form

PyLVNe) = ( Ko Pyey Kl + KNA,PNGVKLY) [VN e) = Vope|[ VN €) . (3.6)

Vol Vo2

This can be interpreted as a photon being emitted by the nucleon and then absorbed
by the electron (left summand) or vice versa (right summand), represented by the two
diagrams in Fig. 3.2. In what follows, we will only treat the first summand in some detail.

The corresponding part of the optical potential we shall call V.

3.1.4 Insertion of completeness relations

In order to calculate the invariant one-photon-exchange amplitude, we calculate matrix
elements of the optical potential between nucleon—electron velocity states (cf. Sec. 2.4.5),

<V’ N’ e’|V;pt’VNe> . In order to end up with matrix elements of the vertex operators
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K and the eigenvalue of the propagator (m — M Ne’y)il , we insert the appropriate
unity operators (cf. Sec. 2.4.5) expressed in terms of velocity states (see Egs. (2.51) and
(2.52)):

(V! N'€|Voa|[V N e) = (V' N €| Koy (m = Myer) ™" Iney KN [V NE) (3.7)

Since the propagator is now acting on an eigenstate, it can be replaced by its eigenvalue
(v/s—mney) . Note that, via Eq. (2.46), the eigenvalue of the free mass operator of the
nucleon-electron-photon subsystem in the overall rest frame (velocity state) is just the

sum over the relativistic energies of the particles:
MNey = WN + We + Wy . (3.8)

The velocity-state unity element Iy, is obtained from Eq. (2.51) resp. Eq. (2.52). In

what follows, we will choose the momentum of the photon, I;:'n,, as the redundant one:

Nev = (2m)3 Ve ) (2m)32wn J (27)3 2w, 2w, g

KN He o~y TN

— —

X ’Va EN?:U‘NvTN; kenue; k’yaﬂ’y><V; ENaIU'NaTN; E@nufe; E’yaﬂ’y‘ (39)

3
— ZZDVDI@N Dk, (W +2“;+“7) (—g"") [V Ney)V Nen].
M~ v

3.1.5 Currents and spectator conditions

Inserting Eq. (3.9) into the expression for the first summand of the optical potential,
Eq. (3.7), we obtain velocity state matrix elements of the vertex operators. A further
simplification arises when we demand that certain spectator conditions be met: They state
that only those particles that hit each other at the vertex change their momentum, while
the others remain unaffected. Furthermore, due to the Bakamjian—Thomas construction
2.4.3, the overall four-velocity V' is conserved. The matrix elements of the vertex operators
read [Biell]:

(V'N'¢'y'|KL, |[VNe) = (VNe|Kn, [V/N'e'y')

= (27)° VOV = V') (27)%6, 1 2wed® (ke — KL) ‘il (N'Y||ER, [|V)
mNe'ymNe
~1
= AVV/ Aee/ T <N/’)//||KJTV,Y||N>
mNe'ymNe
(3.10)

and
(V'N'e'y'| Kl |[VNe) = (VNe| K., |V N'e'y')’
~1
:AVV/ANN’ /7<€/’}/HK;L,YH€> . (311)
m]\:?'e'ym:]i\fe
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For the reduced vertex matrix elements <||K(T)||> we use the standard field-
theoretical expressions, given by the interaction Lagrangian (2.55). This gives rise to

the electromagnetic vector currents of the nucleon (J4;) and the electron (J*) [Biell]:

<N/’Y/| ‘KT ||N> = le| JNV(EN, N, TN E&V, s TN) Ornrly eZ:(EfY) ,
(YKL ey = lel T (e, prei Koy 1) €0 (R) = el Qe Ty (L) vyt () €7 (R)

(3.12)

where €, (Ew) is the polarization 4-vector of the photon from Eq. (2.10). Note that for

the electromagnetic interaction the isospin of the nucleon doesn’t change, i.e. Th = 7n .

Note also that the electron is a point particle, whence we have already inserted Eq. (2.56)

to express its current. The nucleon current, on the other hand, is left as it is, since we

are interested in the nucleon’s spatial charge distribution.

At least for the electron, we can now easily observe that
oo (Ko res Koo 1) = Je (Bl il e, pre)” (3.13)

(use (’y")T =0~ ~Y). Since by Eq. (2.10) the photon polarization vector in Eq. (3.12)
has to be replaced by its complex conjugate if a photon is absorbed rather than emitted,

this also implies
(e |KL e} = (el | Kenl[e") - (3.14)

as already stated in Eq. (3.11).
For better readability, we introduce the following shorthand notations:

JV(N7N/) J (kN>MN>TNa]_€'N7:uN7TN)

JV(eae,) : J ( enueakewue)a (315)
€’ (7) =€, (ky) .

3.1.6 Analytic calculation of optical potential

With these tools at hand we can continue our analytic calculation of the first term of the
optical potential, Eq. (3.7). We start by inserting the expression for the unity operator
(3.9) in the Ney-space, which allows us to replace the propagator by its eigenvalue:

(V'N'€'|Vo1 |V Ne)
=(V'N'€/| Ko PyeyInes K, |V Ne)
"3 o (3.16)
—Zipv”m DE! N” (—g“w”v)<V”N”e”7"|K27|V’N’e’>*
V

x (V5 —mler) " (V'N"e"y"|KL, |V Ne) .
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We continue by inserting the spectator conditions for the nucleon-photon and the electron-
photon vertex, Egs. (3.10) and (3.11):

(V'N'e'|Vo1 [V Ne)

//3

_ZZDV”DIC DE! Ne”
’Y

()

Aﬂ< IR ) (VA =)™ PRI (I ).
Ney Mpe mNe’y TN

(3.17)
After elimination of the Delta functions and insertion of the nucleon and electron currents
(3.12), keeping in mind (3.13), we get

<V/N/e/’v'01|VNe> _ |€|2 & Z (—g:“'fy/”fy/)

ngmf’v
, " (3.18)
x Jy(e,e) e, (k' JN(N, N') e\ (k"
(e,€") e ( "’)\/Efwj\,fwefw;’ AN, N e (K5) o

We now make use of the completeness relation (2.11) for photon polarization vectors to
obtain
AVV’ gu JV(N, N/) JA(G, 6/)

" 3 o o
2wl My, V5 — Wy —we — W/

(VIN'e!|Vo1|[VNe) = — Jef? (3.19)

ky=k,—k.

Remaining diagram: In the completely analogous way, we obtain for the reverse time
ordering:

Avv: gua JY(N,N')J>e,¢€)

" 3 /
2wl My, VS —WN - W, —w

(VIN'e!|Voa|VNe) = — Jef? (3.20)

v Vky=k. k.,

Combination of the two time orderings: Finally, we combine the two time orderings

as in Eq. (3.6) to obtain the matrix elements of Vi, = Vo1 + Voa . Since we are using

e clastic scattering (energy-momentum conservation) with

e a single exchange of a massless, i.e. light-like, photon in

e a perturbative treatment,
the following relations hold [Biell]:

V8 — mye = we +wy = wl + Wy
and (3.21)

= Q%= (ke —k.)* = (ky — ky)?

1" —»//
2 _
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For the invariant one-photon-exchange amplitude M;,, we finally end up with
(cf. App. B.3)

Ayyr o, Jux
Miy = (V'N'e/|Vopt |V Ne) = [e]? —5 (N,N’)ﬁJA(e,e’) , (3.22)
Ne
where Q% = —¢? is the inverse of the four-momentum transfer squared, ¢* = (k. — k%)%,

i.e. with the metric (2.1), a positive quantity. We see that we have now indeed obtained
a covariant expression as has already been suggested in Fig. 3.1.

3.2 Constituent level

Having obtained a macroscopic expression (i.e., an expression on the hadronic level) for
the invariant one-photon-exchange electron—nucleon scattering amplitude, we now want
to derive a microscopic (i.e. quark level) expression. By equating the two we will then
obtain a microscopic description of the nucleon current J¥;. We proceed in a completely
analogous way to Sec. 3.1.

3.2.1 Basic setup

e Figure 3.3: (One of three) quark-level dia-

> gram(s) (contributing to M) for the calcu-

~ lation of the electromagnetic form factors of

the “bare” nucleon. The electron exchanges

7l N a photon with one of the three quarks. The

\J ® \ > relation between the nucleon state (prop-
\u/% agators) and the three-quark state is de-

scribed by the wave function W.

Instead of considering the nucleon as a quasi-elementary particle, we now model it
as a bound state of three light constituent quarks (cf. Sec. 2.5.1) with masses of approx.
0.26 GeV each, independent of flavor (u or d). These are confined by an instantaneous po-
tential, which enters the mass operator in Eq. (3.23). We will not specify the confinement
potential, since it is mainly the three-quark bound-state wave function that enters the
microscopic expression of the electromagnetic nucleon current. We will therefore rather
choose an appropriate parametrization of the wave function. For our purposes it will also
be important that confinement is instantaneous, since this implies that only hadrons (and
not free quarks) can propagate in intermediate states.

Momentum is now transferred between the electron and one of the three quarks, where
we use the symmetry properties of the three-quark wave function to make quark no. 1 the

struck one. This will be exploited when we discuss the spectator condition in Sec. 3.2.4.
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3.2.2 Eigenvalue equation and Feshbach reduction

The coupled-channels eigenvalue equation on quark level corresponding to Eq. (3.2) reads

Mggélf K’Y |\:[13qe> \/— |\113qe>
= /s , (3.23)
( K’J{/ M??‘(I)él'g’ ‘ \I,3q€7> | \IISqe’y>

where the diagonal mass operators M§g§f and Mgfl’;{g include, beyond the relativistic ener-
gies of the three quarks, the electron and possibly a photon, an instantaneous confinement
potential Vot

conf conf
M3q€(v) = M3ge() +V . (3.24)

Later on, we will need a complete set of velocity eigenstates of these mass operators. For

M34e() these are just velocity states of free particles fulfilling the eigenvalue equation

Msge(y) |V3ge(n)) = mage) |V 3ge (7)) = (qui + we (+ww)> V3ge(v)) . (3.25)
i=1

For Mggg(fﬂ{) one rather has states consisting of a baryon, the electron and possibly the

photon,

MsonL [V Be()) = mpen |V Be (7)) = (wp +we (+w,)) |V Be (7)) (3.26)

where |B> is an eigenstate of the confinement problem.
After a Feshbach reduction we get

(V5 = Mg Wage) =5 (PE) ™" W) = IS, Pt K (W) (3.20)
Ve

where the optical potential V¢ now contains all one-photon exchange contributions be-
tween the electron and the quarks. Since P?‘f(‘]’e“ﬁf = (\/E — Mgg;}ﬁ) - , we observe immedi-
ately that propagating intermediate states can only contain baryons, but not free quarks.

3.2.3 Vertex operators and completeness relations

In order to be able to compare the two expressions for the invariant one-photon-exchange
amplitude on hadronic and on quark level, we again need the velocity-state matrix ele-
ments of V¢ between electron—nucleon states. Since we now have a photon-quark vertex
instead of the photon-nucleon vertex, we need to sandwich the photon-quark vertex opera-
tor between free quark states. Furthermore, we have to insert a complete set of eigenstates
of Mggg in front of the propagator P§g§7f. Since we only have nucleons in the initial and
final state, it suffices to insert the completeness relation (3.9).

The photon creation and annihilation operators are split into a sum of quark—photon

and electron—photon vertex operators

KD [3qe(v)) = (K + KD, + K + KD)[3ge(7)) . (3.28)
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We again neglect self-energy photon loops (4 diagrams) and, in addition, photon ex-
change between the quarks (6 diagrams), which would lead to electromagnetic self-energy
corrections of the electron and the nucleon masses. The matrix elements of the optical
potential on quark level thus correspond to the following sum of 6 time-ordered diagrams,
which describe the exchange of a photon between the electron and one of the three quarks

(corresponds to Eq. (3.6) on the hadronic level):

(VIN'e |Vopt|[VNe) = (V/N'€/| Koy PR INerI3gey K J3ge|[VNE)

Vo1
+ <V/NI I}Kev J(ifoenwaNev]IquvK;zv%qe‘VN6>
+ (V'N'€'| K er PN er I3ger K T3ge [V NE)
+ (V'N'¢ |I3ge q17H3q67HNwP]‘"§,Oe‘$KT7‘VNe)
+ (V'N'e'|Isge K gy IsgerIney PR KL |V Ne)
+ (V'N'€'|Isge K gy Isger Iney PRI KL |V Ne) .

(3.29)

Here we have already inserted pertinent completeness relations at the appropriate places.
In what follows, we will concentrate on the treatment of the first line of Eq. (3.29), i.e. on
the determination of the matrix elements (V'N'e’ |V01 |VN e) . The explicit expressions
for the unity operators we need are (cf. Eq. (2.52)):

m3

INey = ZzDVDk Dk, N"’”( #ba) |V Ney)(VNey|
MN,TN wN
tue = 30 S0V Db Dk Dy, 5 V) (Ve (330
Haq15Tqy
3
T3gey = Z DV Dk, Dk,, Dk,, Dk, ZM( ") [V3gey )
Hqq:Tqq a

where the invariant masses m_.. are defined via Eq. (2.46). Note that in Iy, in contrast
to Eq. (3.9), we have now chosen the nucleon momentum to be the redundant one. For
quark-level quantities we always consider the momentum of quark 1 the redundant one.
Inserting these completeness relations into Eq. (3.29), we obtain velocity-state matrix
elements of the vertex operators on quark level and, on the other hand, brackets of
hadronic states with quark-level states, which will lead to three-quark wave functions.

These two quantities will be treated in the next two sections.
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3.2.4 Currents and spectator conditions

On quark level the spectator conditions for matrix elements of the vertex operators
(cf. Sec. 3.1.5 for further details) read

<V’3q’e’7'|K(}Lw|V3qe> =Ayy Aeer Apor A k)

e Y (@i7'[| K4 lar)
mqu'y que
B B —— (el le)
mNe'y mNe

We treat both quarks and the electron as point particles, whence, according to Sec. 2.5.2,

(3.31)
(V'N'e'y/|K] |VNe) =

their currents are
(@[ K8 1|ar) = lel Jo(ar, 1) 67y my €5 (Y)
= lel Qv (T, (Fiy) Wt (Fay)) b7y, €0 (L) (3.32)
(e[| lle) = lel e, ') () = lel Qe (T (RL) o, (Re) ) e (R -

Note that the electromagnetic interaction does not change the isospin of the quark!

3.2.5 Wave functions

In addition to the matrix elements of quark-level vertex operators, insertion of the com-
pleteness relations for free quarks also leads (via products Inclsge, IneyIsqey €tc.) to scalar
products between nucleon states and quark states. These give rise to the three-quark
bound-state wave function <3q ’N >, which relates quark momenta, spins and isospins to
the corresponding nucleon quantities and thus encodes quark confinement [Biell]. We will
later on use a phenomenological wave function that is defined in the center-of-momentum
(c.o.m.) frame of the three quarks. We will have a closer look on it in Sec. 3.3.2. It arises
in Eq. (3.29) via

(V'3 [VNe) = Ny AvviAeer (3¢ [N (3.33)

(V'3¢'e'y |VNey) = Ny Ayyi Ao Ay (3¢ [N '

N7 and Ny are normalization factors which are determined as follows:

Normalization of wave functions: We use the following condition from [Sen06]:

/ SRR (N3 (34 |N) = Siniir, Srnrs, - (3.34)
Py Fraa P

qu Tf12 TIZJ

The quantities with a “tilde” are defined in the c.o.m. frame of the three quarks that
constitute the nucleon, not the overall c.o.m. frame of the electron-3-quark-system, i.e
[SU00], in our shorthand notation (2.41):

UB(173q) |E(11 ﬁ%> = Z ’kfh /U'qz'> Dﬂqiﬁqi (B(ﬁ3q)a 77) (3'35)

Haq, :i%
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with ~
kq, = B(Usq)kq, ,
.k
V3q = ﬁ )
M3q (3.36)

qu = qu +EQQ —I—E% = EN )

M3q = Wq, + Wg, + Wgy = \/(wa + Wy, +wgy)? — qu .
By B(¥) we mean a (canonical, i.e. rotationless) Lorentz boost with velocity ¢. For the
definition of the Wigner rotation Ry and its associated Wigner-D-function in Eq. (3.35),
see Sec. 2.4.4. Note that 73, and m3, depend on the actual momenta of the three quarks
and not on the velocity and mass of the nucleon!

The Jacobian of the coordinate transformation between velocity states is derived in
analogy to the quark—antiquark case [Fuc07] and runs along the lines of the derivation
of the velocity-state integration measure given in [Kra01]. For details see App. B.1. The
result is
Wq1 Wg2 Wg3 Wq1 + Wg2 + Wgs

= = = .
Wql Wq2 We3 Wql + We2 + We3

BV ... dPky, kg, = PV .. Pk, &k (3.37)

The normalization factors are derived in analogy to the quark—antiquark case [Biell]
as detailed in App. B.2. The result is

Vo @, (S wh,)
V(E3,) @ +wo) (Dw), +w)
Vo 8,3, (o))
VE3,) (on +we +0,)* (T, +we +,)°

N; = 4(27)3

3 )

(3.38)

Ny = 4(27)3

3.2.6 Analytic calculation of optical potential

We now continue the analytic calculations of the first term of the quark-level optical
potential, i.e. Vg1, in Eq. (3.29). Letting the propagator act on its eigenfunction and after
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some rearranging we obtain, via Egs. (3.30),
(V'N'e'|Vo1|VNe)

=(V'N'€'|Ker PyerInessger K J3ge|[V NE)

(4) )
= > ZSDV 9 DEM DR AL ( N” (_g#§4>u§4))
HOE
HNHTN 3
(3)
M3ge (339)
<y zDV 3 DE® DE® DE® DE >7( q(;)) ( gui”uﬁ*’)
(3) _(3) 2wg,
Hai :Taq 5
x Z DV// k// k” k// (mgqe) 1
2 w// \/7 . m
1, oTgy a NE’Y

X AVIN'E [ K o[V O ND D (D) (10 N 0),1(4) | 7D 34(3)3)(3))

X (V@3¢ @@ K1

ql’ylvl/3qllell> <V//3q// " |VN€> ,

2" etc. The invariant masses m.__ are defined

where (3, z(®) ete. is equivalent to z”,
in Eq. (2.46).
After insertion of the spectator conditions (3.31) and the hadron wave functions (3.33)

(with normalization factors (3.38)), the last two lines of (3.39) read

’ / -1 *
Ay CD (0] ||e)

3
\/(mé\fe):; (mgéi"/)
\/ v Wt(lij)qu (Zw(3))
3 _ AP@OADDADD (N 34))
J(Z38) (m,) (m2,) (3.40)
x AIATOAIOAID 5, ) ) (a7 K, [ty
q1 Ta1 \/(m(s) )3 (m” )3
3gey 3qe
qul S, (Swp)
T e )

x 4 (2m)3

(0)” 0) "
S Ay AT (347N

where Ag)(j ) is shorthand for ALyt . We now exploit the delta functions to perform

most of the integrations in Eq. (3.39) and then cancel the resulting fractions as far as
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possible. Insertion of the quark and electron currents (3.32) then yields

(V'N'¢'|Vo1|V Ne)

=2(2m)% Ayyr Y D! DK DK g OO

(3)
V‘q1 Hay ‘;/1

><111 VN Vo 1

3) W (3)
WNW( ql\/wN+we3\/(wN+w VS —wy —we —wy)

\/wfg?) Wqs, W 3 Zw )
><A JT(e e®) e (3) k:(3

" "
\/wa Way (Id wfla:)

(Xa7)

(3.41)

(N" ¢ ¢4 o)

X JA(ql > Qf’)) f (3)

(3¢"[N) ,

where we have kept wé‘j)d for readability. Next, we use the velocity-state conditions

> En+k, =0,

. (3.42)
STEY 4k + kP =0,

whence

1 ' o
WAJ&) 8 0 8 (B = BQ) =0, 08, 0 0® (R +ED —KL) |
(3.43)

where we have kept w,(y ) for readability. We also employ the completeness relation (2.11)

for the photon polarization vectors e. We then denote all ingoing states with no prime
and outgoing states with a single prime, and after some rearranging we obtain

(V'N'¢'|Vo1|V Ne)

LN > Py, PPk, 1 1

/
2 ; We, Wgy WyWp, Wa, (VS — Wiy — we —wy)
Haqy Mg, Faz Hq3

\ZZTN \/wa @@t (S wh, \/waw@wqd (X wq,) i
V@ + @) (wn +we)? (Ca,) (S @)

< (N'|d; @2 03) {q1 a2 43 | N) J" (e, €') le] Qq, (74,) (%;l AR (qu)) :

X

with >, E,S? +kD =0 , E’y = Eé — k. and Do 7(2) = 7-](\;) . At this point we have already
inserted the full expression for the quark current (3.32) and finally abandoned our short-

hand notation for the quark momenta.
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Remaining diagrams: Derivation of Vi resp. Vi3 is completely analogous, with
q1 replaced by go or g3, respectively. The reverse time ordering, Vo4 — Vo is de-
rived in a completely analogous way (see also Sec. 3.1.6), the net effect being that
(Vs —wn —w. —w,)" ! is replaced by (v/s —wh —we —w,)"! . Also the combination
of the two time orderings is done as in App. B.3 by use of (3.21). The final result for the
invariant one-photon-exchange amplitude on constituent level is

&k,
My, =(V'N'e|Vope[VNe) = Ayy \/@ Z Z / (H wH)
i=1 HMaqrHasstas qj+#i

7
Mg, Taz Tas

1 \/wa qz qz (Zwlllk) \/(:)‘Il&@&qs Zw%)

X (N"|qy ¢y 45) (@1 g2 43 | N')

Yo s (D a@) V(2 &)

x JY(e,€') le] Qg (4,) (ﬂu

) o g, (Fay) )

i

(3.45)
Due to the symmetry properties of the three-quark wave function, it can be assumed that
the photon couples only to quark 1, implying an overall factor of 3 instead of the sum

over 1.

3.3 Calculation of nucleon currents

3.3.1 Derivation

Equating the expressions (3.22) and (3.45) for the invariant one-photon-exchange ampli-
tude on hadronic and on quark level, respectively, we obtain a microscopic expression for

the nucleon current:

JK/(ENMN;EV,MV;TN)

3\/7 3 /d ky d®ks 1 \/@ifvé@é(zw;) \/ﬁlﬁzag(Zwk)
TOVENEN ’ o - 3.46
s S SISO LA NV B

X (N'[gh b d5) (a1 a2 s [V (lel @1 (m) Ty (F) " ()

where we have replaced the quark indices g; simply by i and where the isospin of the
nucleon is 7y = +1/2 for the proton and —1/2 for the neutron.

3.3.2 Three-quark wave function

Nucleon rest frame: Since the nucleon is a fermion, its three-quark wave function
P .= <q~1 G2 q3 |N > (the “tilde” signifying that we are in the nucleon rest frame) has to
be fully antisymmeric under exchange of any two quarks. It is a product of the space (or
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momentum-) part ®x, a spin-flavor part $pg and a color part Pc:
D =Py - Ppg - D¢ . (3.47)

We assume the space part to be a pure s-wave. This means that ®x is completely sym-
metric. Since ®¢ is fully antisymmetric by construction (QCD), the spin-flavor part
®pg should also be completely symmetric, so that the full wave function ® is completely
antisymmetric.

But let us start with the flavor (isospin) part. It can be either a mixed symmetric or
a mixed antisymmetric state (in quarks 2 and 3) [Sen06, Wag98]:

1
LMY = — (yud — udu roton, mixed antisymm.) ,
F \/5( ) (p Yy )
1
pLme = %(uud + udu — 2duu) (proton, mixed symm.) ,
(3.48)
LMY = T(dud ddu) (neutron, mixed antisymm.) ,
PR = —(dud + ddu — 2udd) (neutron, mixed symm.) .

Sl-

This can also be expressed using Clebsch-Gordan coefficients for adding the isospins
T, = :i:% of the quarks. We first couple the isospins of quarks 2 and 3 to an intermediate

isospin s € {0,1} with projection 75 and then couple it with the isospin of quark 1:

1

_ STs 2 TN

Oy = C’2 2l C’STS% o (3.49)
T1,72,73,Ts

where s = 0 for the mixed antisymmetric state and s = 1 for the mixed symmetric state,

and T = —l—% for the proton and —% for the neutron.

Analogously, we have for the spin part:

q)g,ma _ T(TN 1) (uny = % , mixed antisymm.) ,
(I)g,ms _ —T(TTi + 11 -2 iTT) (MN = %, mixed symm.) ,
(3.50)
(I)éﬂna _ T(iw ) (uy = _% , mixed antisymm.) ,
ms 1 1
oL = %um +Ht =21 (uy = -5, mixed symm.)

which, in the nucleon rest frame referred to by a “tilde”, corresponds to

1~
3 UN
oy= ) Cifs oY (3.51)
_ 2#22M3 SHs3 M1
H1,fi2, 23, 0s

To obtain the fully symmetric spin-flavor part, we combine the product of mixed-

: N,ms .
symmeric states, ®p"" . LN’

@g’ma - LN ™ which in terms of Clebsch-Gordan coefficients reads

, with the product of mixed-antisymmetric states,

~ 1~ 1
; 3 KN 3 TN
Ppg = E E cie O c21_C? . 3.52
s = \f SA23 A3 5725 7s  Sfes A1 STag Tl (352)
S qi1,f2,H3, ks
T1,72,73,Ts
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Note that one has the same s in all four coefficients! It is then irrelevant which two
of the three quarks are coupled first. Since necessarily, s = fis + i3, 7s = T2 + 73,
i =pn and Y71 = 7N, Eq. (3.52) can equally be written in the form
1 = 4= 15 1
o = —— O3 Batits) os(ratms) o3 BN o2 , 3.53
D) a5

— Shet iz dTedTs Ts(fetiiz)d i s(retTs) T
Fi2,0i3
Ta.T3
where we have kept 11 and 71 for better readability.

For the spatial (momentum-) part of the wave function, we take the model proposed by
Schlumpf [Schl94, parameter set 3]. It was refitted by Pasquini and Boffi to accommodate
ameson cloud in their front-form study of the electromagnetic nucleon form factors [PB07].
Accordingly, we will use the Schlumpf parametrization for calculating the electromagnetic
nucleon form factors without the pion cloud and the Pasquini-Boffi parametrization for
the “bare” electromagnetic nucleon form factors, which are needed for the calculation that

includes pion-cloud effects. The momentum part of the Schlumpf wave function reads
N

Oy = ((Z@k)Z +B2)fy .

(3.54)

The values of the parameters (m is the constituent quark mass) are given in table 3.1. The

parametrization m 153 5
Schlumpf 0.263 | 0.607 | 3.5
Pa.-Bo. 0.264 | 0.489 | 3.21

Table 3.1: Parameters for the Schlumpf wave function as given in [Schl94, parameter set

3] (first line) and as reparametrized by Pasquini and Boffi [PB07] (second line).

normalization constant N is determined numerically to be N = /459 for the Schlumpf
parametrization and N = /200 for Pasquini-Boffi parametrization, respectively.

Electron—nucleon rest frame: In order to use the spin-flavor wave function (3.52) for
arbitrary velocity states of the electron—nucleon—photon system, we have to boost it from
the nucleon rest frame to the overall rest frame of the 3-quark—electron—photon system
using the Lorentz-transformation properties, Eq. (3.35). Each spin projection entering
the Clebsch-Gordan coefficients thus has to be multiplied with a Wigner-D-function (cf.
Sec. 2.4.4) corresponding to the Lorentz boost (3.35) and subsequently summed over all
spin orientations (in the tilde frame). According to [Biell] and taking into account that,
via Eq. (2.43), N

ky

my

Fx

o ) (3.55)

) = Diiyiin (B(isq),
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and
o ) AT B
Ry (B(Ts,), m—flvv) = Rw (B(@5,), 0) = B~ (B(34) 0) B(ds,) B(0),_,
= B Y(#3,) B(¥34)3x3 = I3x3 (3.56)
= DZN#N( .. ) = 5/“\,/7]\, R
we obtain (shorthand notation)
N
(n1q2q3 | N) = Z HDEQM%_ (B~ (Usq), qu ) {@132G3 |N)
{fig;} i N
= 77(]11
S T P, (B(E). 7o) (3o | ) (357
{fg;} 1
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We have thus succeeded in constructing ®x - Prg such that it is fully symmetric under

interchange of any two quarks. Multiplication by the color part ®¢ will then ensure full

antisymmetry as required for a fermionic wave function. However, we don’t have to care

about ®¢ since the electromagnetic interaction does not change color and hence, the color

matrix element just gives 1.

3.3.3 Analytic Result

Finally inserting Egs. (3.52), (3.54) and (3.57) into (3.46) and performing the integrations
in the rest frame of the three-quark subsystem using Eq. (3.37), we end up with
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where the spectator conditions (3.31) as well as isospin invariance have fully been taken

into account and hence, the sum runs over spins and isospins 1, p}, pio, 43, fa, 13, Hs,
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fi, 2, 73 (= £1), 5,8 (=0,1), s, p, and 75 (= —s) ... s)), while
=0+ 4

TN =T1+ 72+ 73

(3.59)

always has to be satisfied. Recall that spins can be coupled the usual way only in the rest

frame of the three-quark subsystem (“tilde”-frame) and via (3.56), ﬁg\? = ,ug\/]) !

3.4 Extraction of form factors

We now want to finally extract the electromagnetic form factors as defined in Sec. 2.5.2
from the microscopic expression we obtained for the nucleon current in Eq. (3.58). Since
we have worked with velocity states ( /2%) +k =0 ) so far, our microscopic current (3.58)
still does not transform like a 4-vector; it is rather Wigner rotated when undergoing a
Lorentz boost [Biell]. If, however, the current is reexpressed in terms of physical momenta

p(') =BWV)kY ) and corresponding spin projections a('), the resulting current
N N g N g

JN (PN, oN, PN, ON)

v 7 * — ﬁ — ﬁN
:B(V)l; Z JN(kNv,qukE\hNE\/)D,u’NJ;\,(B l(v)amiij)DuNUN(B 1(V)7m7N)
N By
(3.60)

does indeed transform like a 4-vector. We can thus perform a decomposition into linearly
independent 4-vectors, which can be built with the help of the nucleon spinors, y-matrices
and the particle momenta that occur in our electron—nucleon scattering process. Since
we will later on extract our form factors in the rest frame of the electron—nucleon system
where V =0 (and consequently, pg\l,) = k:g\l,) ), we will write down the general covariant
decomposition of the microscopic current (3.58) already for this case [Biell, CDKM98|:

In (kN uns K wly) = T, (Ry) T wpy (k) (3.61)
where
i B w,YP I
l—w,u:F/ yn g ng » B/ P _ k k/ m
1Y +2mNU qv + By ok (Lt m)ma (kn + ki)
my (mn)?
+ B, W' + By ——— (w,y?) w* (3.62)
2 wokRy 3 (wpki)? g
. 2
w_ L v _ @ a 3.63
o 5 Al el (3.63)
wh = kM kP (3.64)

The coefficients F] and F are the physical form factors of the nucleon we are looking for.
The covariants they are multiplied with depend only on the nucleon momenta, whereas
Bj ... Bj, are coefficients of covariants that contain also the electron momenta. These are

called the unphysical, or spurious, form factors.
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Actually, with the 4 components of the current and the 4 possibilities for incoming and
outgoing orientations of the nucleon spin, one would get altogether 16 spin matrix elements
(and accordingly, 16 possible covariants). But due to parity and time-reversal symmetry
combined (8 conditions) and rotation invariance (4 conditions which are guaranteed by
our approach, 2 of which are independent), not all of these are independent. With cur-
rent conservation as an eleventh independent condition, we end up with 5 independent
covariants and thus Egs. (3.61) and (3.62) for the most general covariant decomposition
of the microscopic current (3.58).

Even though the current is conserved, it can not be precluded that the unphysical part
vanishes. The reason for this is that the Bakamjian—Thomas construction, on which our
approach is based on, leads to wrong cluster properties (i.e., the violation of macroscopic
causality). One consequence of this is that the form factors in front of the covariants
may, in addition to the dependence on the 4-momentum transfer Q? = —(ky — k/y)?,
also exhibit a dependence on the invariant mass squared (i.e., Mandelstam s) of the
electron—nucleon system. This dependence is still in accordance with relativistic invari-
ance of the one-photon-exchange amplitude, but corresponds to a non-locality of the
photon-nucleon vertex. Our studies reveal indeed that the microscopic current (3.58)
contains an unphysical contribution and also the form factors exhibit an unwanted s-
dependence. But as experience with electromagnetic meson form factors has shown
[Biell, BSFK09, GRS12, BS14], this s-dependence vanishes rather fast with increasing s.
It is thus tempting to take s — oo, which has the advantage that (most of) the unphys-
ical contributions vanish and one obtains manageable analytical expressions for the form
factors. The s-dependence of the form factors may be interpreted as a dependence of the
frame in which the +*N — N subprocess is considered. The s — oo limit would then
correspond to the infinite-momentum frame of the nucleon. It has the further advantage
that we can easily compare our results with corresponding front-form calculations. In
the cases of the pion [BSFK09], the p meson [BS14] and of heavy-light mesons [GRS12],
this comparison has revealed the equivalence of the point-form results with corresponding
front-form calculations.

We will proceed in the same way here: We first fix the electron—nucleon scattering

kinematics, then let s — oo (or equivalently, ‘E](\/,)| — 00 ) and look what happens in this
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limit with the covariant decomposition (3.61) and (3.62). We use the following kinematics:

VE +mE k

Q
kn — 2 k— oo _%
N 0 0 )
k2L k

VE? +m3, k

Q . Q
kv =kn +q= 8 AN (2) ,  where (3.65)

K2 & k

q=(ky —kn) = (ke — k) =

o o o

is the transfer of four-momentum . It is then easily seen that contributions from Bj and
B in (3.62) are of order k~! resp. k™2 so that they can be safely neglected when k — oo .
Via a simple calculation performed in Mathematica®, we now obtain from Egs. (3.61)
and (3.62) a system of 16 equations, one for each of the four spacetime components of J*
and the 4 spin orientations py, py = i% . From these equations we want to determine
the three form factors FY, F}, B]. Neglecting contributions of o(k°) and using the 13
constraints (from parity, time-reversal, rotation invariance and current conservation)
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2 2 22 22 2 2 22 2 2
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3.66
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(where J , is shorthand for J§ (kn, i, Ky, pily)), the system reduces to the three equa-

tions 4BIQ?
1 / _ 70
<4m?\r Firee + 2F1) k= J%% ,
/ !
FQ SBémNQ k=J0 . (3.67)
my  4m3 + Q? 272

i(FQ+F;Q)=Ji, .
As one can see (assuming real form factors independent of k), J9, and J°,, have to be
22 22

real and of order k!, while J?, has to be purely imaginary and of order £°.
22
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Solving for the form factors (again by use of Mathematica®), we obtain:
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If we, however, demand agreement of our microscopic current (3.58) with the covariant
decomposition (3.61) and (3.62) only in leading order O(k'), only the first two equations
of (3.67) remain and there is no way to separate Bf. We thus have to redefine our physical

form factors:

2B/ 2
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N
B! 2 (3.69)
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so that )
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oy (3.70)
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which is the result we would have obtained with the covariant expansion (2.57) right away.
This means that all the unphysical contributions in the microscopic current (3.58) vanish
in leading order if the limit k — oo is taken. The Sachs form factors are then obtained
via Eq. (2.58).

3.5 Numerical implementation

The starting point of our numerical analysis is Eq. (3.58). It is integrated using the
Monte Carlo Miser integration routine of the GNU Scientific Library (GSL) under C++.
For matrix and vector calculations we use the Eigen library, which defines the classes
Vector4d, Vector2cd, Matrix4d, Matrix2cd for 4-dimensional real and 2-dimensional
complex vectors and matrices (component type double), respectively. Components are

in round brackets ().

3.5.1 Class structure

Functions for Pauli and Dirac (2.7) matrices of index i, Matrix2cd pauli (int i) and
Matrix4cd dirac (int i), are defined as global functions.

Any quantities that depend on the momenta %qi of the quarks are calculated in a class
called Mompart. It is initialized again and again for each point of the Monte Carlo integra-
tion with the 6 independent momentum compontens of the quarks, double karray [6]

(spherical coordinates) and a pointer to some other parameters, InputParams * params,
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where InputParams is a structure containing parameters like the forward momentum of
the nucleon double k, the momentum transfer double Q, double spin and isospin pro-
jections int muNpr, taul, the desired number of Monte Carlo integration points size_t
inpoints etc.

The public functions of the Mompart class are: The 6 Wigner rotations Matrix2cd
wigrotfactorl () ...Matrix2cd wigrotfactor3pr (), the momentum parts of the 3-
quark wave functions (3.54), double spacepart () and double spacepartpr (), the
electromagnetic current of quark 1, Matrix2cd quarklcurrent (), as well as any other
kinematic quantities explicitly appearing in Eq. (3.58), double prefactor ().

The private functions are the Lorentz boost with 4-velocity u and its inverse in stan-
dard (2.35), (2.36) and SL(2,C) (2.40) representation, Matrix4d [inv]boost (Vector4d
u) and Matrix2cd [inv]spinboost (Vector4d u).

In what follows, the class initialization and the more important or less obvious func-

tions are discussed in detail.

3.5.2 Kinematic quantities

The initialization for the local variables reads

Mompart: :Mompart (double karray[6] , InputParams * params):
k2 (karray[0]), theta2 (karray[1]), phi2 (karrayl[2]),
k3 (karray[3]), theta3 (karray([4]), phi3 (karray[5]),
k (params->k), Q (params->Q)

We then (in curly brackets) start out by initializing the 4-momenta of the quarks in the

“tilde” frame in spherical coordinates. Since »_ Eqi = 0 and all particles are on their mass

shells, we have

Vectordd ktilde [4]; // in class declaration

ktilde [2] << sqrt(pow(k2,2) + pow(m,2)),
k2*sin(theta2)*cos(phi2),
k2+sin(theta2)*sin(phi2),
k2*cos (theta?2) ;

// (analogously for ktilde[3])

Vector3d kitilde3d = -ktilde[2].segment<3>(1)-ktilde[3].segment<3>(1);
ktilde[1](0) = sqrt(pow(m,2)+kitilde3d.dot(kltilde3d));
ktilde[1] .segment<3>(1) = kltilde3d;

where m is the quark mass (globally defined) and k2, phi2, theta2 the three integration
variables for quark 2. We then introduce the invariant mass of the three quarks and the

velocity according to Eq. (3.36) using the kinematics (3.65),
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double mcl = ktilde[1] (0)+ktilde[2] (0)+ktilde[3](0);

Vector4d vcl; // in class declaration
vel << k/mcl , -Q/(2*mcl) , 0 , k/mcl;

where k is the modulus of the nucleon three-momentum that serves as an input parameter.
The quark momenta in the electron—3-quark rest frame are obtained via a canonical boost
as defined in (2.35) with velocity vcl:

Vector4d knaked [4]; // in class declaration
for (i=1; i<=3; i++){ knaked [i] = boost(vcl)*ktilde[i]; }

where boost (vcl) is the 4x4 boost matrix of boost velocity vcl, defined exactly as in
Eq. (2.35).
In the boosted frame, the 3-momentum transfer to quark 1 is the same as to the nucleon

in (3.65), while via the spectator conditions (3.31), quarks 2 and 3 remain unaffected:

Vector4d knakedpr [4]; // in class declaration
for (i=1; i<=3; i++){ knakedpr[i] = knaked[i]; }
knakedpr[1] (1) = knaked[1](1) + Q;

knakedpr[1] (0) =
sqrt (pow(m,2) + pow(knakedpr([1](1),2) + pow(knakedpr[1](2),2) + ... );

We then get the invariant mass and the velocity (3.36) for the outgoing (primed) 3-quark
system via

double mclpr =
sqrt (pow ((knakedpr [1] +knakedpr [2] +knakedpr [3]) (0) ,2) - pow(k,2));

Vector4d vclpr; // in class declaration
vclpr << k/mclpr , Q/(2*mclpr) , O , k/mclpr;

Finally, the primed quark momenta in the rest frame of the 3-quark system are obtained

via an inverse boost (2.36) with the primed 3-quark velocity:

for (i=1; i<=3; i++){ ktildepr([i] = invboost(vclpr)*knakedpr[i]; }

This completes the initialization of the class Mompart.
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3.5.3 Spin algebraics

The Clebsch-Gordan coefficients in (3.58) are generated via the relations [NIST]
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(3.71)
and are implemented as a 6-dimensional array of doubles. For simplicity, we have dou-
bled all spin variables mul, multilde, mulpr, mu2tildepr, ... that serve as function
arguments, so they become integers. They are defined in a separate class Clebschgordan
in a separate file.

The Wigner-D-functions are realized within the Mompart class as a sequence of boosts
(2.37) in their spin representation (2.40), i.e.

Matrix2cd Mompart::wigrotfactorl () { return
invspinbst (knaked[1] /m) *spinbst (vcl) *spinbst (ktilde[1]/m); }

Matrix2cd Mompart::wigrotfactorlpr () { return
invspinbst (ktildepr[1]/m)*invspinbst (vclpr)*spinbst (knakedpr[1]/m); }
// etc.

where we have used relations (2.43). With the call Mompart mp; the components of
the Wigner-D-functions are then mp.wigrotfactorl () ((1-mul)/2,(1-multilde)/2),
mp.wigrotfactoripr () ((1-multildepr)/2,(1-mulpr)/2) etc.

3.5.4 Quark current

Similarly, the current of quark 1, Matrix2cd Mompart::quarklcurrent (), is realized
as a complex 2x2 matrix within Mompart as well. The index number of the Lorentz
component, nu, is an input parameter (only 0 is needed). Its construction is a little bit
more complicated: First, the complex 4x4 “middle matrix” is built from Dirac matrices

via the definitions of the current (3.32) and the basis spinors (2.9). Here the multiplication
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with the rest-frame basis spinors, (1,0,0,0)T (which we call uOplus) and (0,1,0,0)"

(uOminus), is not yet performed:

Matrix4cd middlematrix =

(dirac(0)* (knakedpr[1]) (0) - dirac(1)*(knakedpr[1]) (1) -
dirac(2)*(knakedpr[1]) (2) - dirac(3)#*(knakedpr[1])(3) +
Matrixdcd::Identity()*m).adjoint() / sqrt(m+(knakedpr[1]) (0))

* dirac(0) * dirac(nu) *

(dirac(0)*(knaked[1]) (0) - dirac(1)*(knaked[1]) (1) -
dirac(2)*(knaked[1]) (2) - dirac(3)*(knaked[1])(3) +
Matrix4cd::Identity(O*m) / sqrt(m+(knaked[1])(0));

Only then, a complex 2x2 matrix qlc in the spin polarizations of quark 1, i.e. with the
components qlc((1-mulpr)/2, (1-mul)/2) is constructed by sandwiching it between the

rest-frame basis spinors:

Matrix2cd qlc;

qlc << (uOplus.dot(middlematrix*uOplus) ,
(uOplus.dot(middlematrix*uOminus) ,
(uOminus.dot (middlematrix*uOplus) ,

(uOminus.dot (middlematrix*uOminus) ;

return qlc;

3.5.5 Integrand function

The integrand is defined in a function complex<double> integrand (double karray
[6] , InputParams * params). The first part is a prefactor (double prefactor) made
up of the Jacobian of the spherical integration and the prefactor from the Mompart class.
The second part is a factor that is made up of all the Clebsch-Gordan coefficients (initial-
ized by external call Clebschgordan cg):

double cgfactor =

1/sqrt (2)*

cg.coeff (1,mu2tildepr,1,mudtildepr,spr,muspr) *
cg.coeff (spr,muspr,1,multildepr,Spr,params->muNpr) x*
cg.coeff(1,tau2,1,tau3,spr,taus) *

cg.coeff (spr,taus,1,taul,1,params->tauN) *
1/sqrt(2)*

cg.coeff(1,mu2tilde,1,mu3tilde,s,mus) *
cg.coeff(s,mus,1,multilde,S,muN) *
cg.coeff(1,tau2,1,tau3,s,taus) *

cg.coeff(s,taus,1,taul,1,params->taulN) ;
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The full integrand finally reads

intgr +=

prefactor *

(taul==-1 7 -0.33333 : taul==1 ? 0.6666667 : 0) *
cgfactor *

wigrotfactorlpr ((1-multildepr)/2,(1-mulpr)/2) *
wigrotfactorl ((1-mul)/2,(1-multilde)/2) *
wigrotfactor2pr ((1-mu2tildepr)/2,(1-mu2)/2) *
wigrotfactor2 ((1-mu2)/2,(1-mu2tilde)/2) *
wigrotfactor3pr ((1-mu3tildepr)/2,(1-mu3)/2) *
wigrotfactor3 ((1-mu3)/2,(1-mu3tilde)/2) *
spacepartpr *

spacepart *

quarklcurrent ((1-mulpr)/2,(1-mul)/2);

where there is a sum (implemented by a lot of for loops, hence the += in the first line) over
spins and isospins int mul, mulpr, mu2, mu3, mu2tilde, mu3tilde, mu2tildepr,
mu3tildepr, tau2, tau3 (= =£1), int s, spr (= 0,2) and int mus, muspr, taus
(= —s[pr]...s[pr]). The dependent variables int multilde, multildepr, taul are
set accordingly (see Sec. 3.3.3) including a check whether they are in the range +1.

The Mompart class is initialized by Mompart mp, and then we set Matrix2cd
wigrotfactorl = mp.wigrotfactorl etc. before the summation, so the initialization
does not occur for every single summand, which would be very time-consuming. Note
that the electric charge of quark 1 enters in the third line. After running all the for
loops, the result of complex<double> intgr is returned. Note that since the form fac-
tors are real, only the real part of the integrand is needed via Eq. (3.70).

3.5.6 Integration

The function that is finally passed to the GSL Monte Carlo routine is constructed via

double intfunction (double karray[], size_t dim, void * p){
InputParams * fp = (InputParams *)p;

return real(integrand(karray, fp)); }

Integration is performed in the function
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double integration (InputParams intpar) {

double result, error; // variables where result is saved
double kmin[] = {0,0,0,0,0,0}; // integration limits
double kmax[] {4.0,3.1416,6.2832,4,3.1416,6.2832};

// This assigns the function for 6-dim. MC integration:

gsl_monte_function INT = {&intfunction, 6, &intparl};

const gsl_rng type *T; // set up random number generator

gsl_rng *r; T = gsl_rng default; r = gsl_rng_alloc (T);

// Now we allocate space for and perform the integration:
gsl_monte_miser_state *s = gsl_monte_miser_alloc (6) ;
gsl_monte_miser_integrate

(&INT, kmin, kmax, 6, intpar.intpoints, r, s, &result, &error);

return result; }

The integration was performed in parallel threads for various parameters using Pthreads,
but this shall not be treated in detail here. A simple main function writing the results for
various values of the momentum transfer Q and both outgoing nucleon spin polarizations
muNpr to an ASCII output file (CSV table) out.csv could look like this:

int main(){

InputParams inpar;
inpar.k = 1000000; // forward momentum of nucleon
inpar.intpoints = 10000; // number of MC integration points

inpar.tauN = 1 // for proton, -1 for neutron

ofstream outfile; outfile.open("out.csv");
outfile << "Q72;;samespin;spinflip" << endl << endl;

for (inpar.Q=0.0001; inpar.Q<2.0002; inpar.Q+=0.1){
outfile << pow(inpar.Q,2) << ";;" ;
for (inpar.muNpr=1; inpar.muNpr>=-1; inpar.muNpr-=2){
outfile << integration(inpar) << ";"; }
outfile << endl; }
outfile.close(); return (0); }




48 3.6. Results

The result yields the nucleon current (3.58); the form factors are then obtained via

Eq. (3.70) using a tool of choice.

3.6 Results

For later purposes, we parametrize our numerical results in an appropriate way: The
results we obtain for the electric and magnetic Sachs form factors of the proton and

the magnetic Sachs form factor of the neutron are well described by a parametrization

2

also used by Kelly [Kel04] to fit the available experimental data: With 7 := 46272 ,
my

where Q? = —¢? is the negative four-momentum transfer squared, a reasonably good

parametrization of the electric proton and the magnetic proton and neutron Sachs form
factors is achieved with
1+a17
G (Q%) = [un - .
E/M(Q) [MN ]1+b17'+b27'2+6373

(3.72)

oy is the magnetic moment of the respective nucleon. Our results are well approximated
with the parameters given in Tab. 3.2. For comparison, the experimental values for the

magnetic moments are p, =2.79 and p, = —1.91 [PDG].

1k |
-1.5 ¢ -
) \ \ \ \ \
0 0.5 1 1.5 2 2.5 3
Q% [GeV?]
Figure 3.4: Electromagnetic Sachs form factors as functions of Q% = —¢*: G%: electric

form factor of the proton, G%,: magnetic form factor of the proton, G;: magnetic form
factor for neutron. Shaded areas: fit of experimental data (including errors) by Puckett
et al. [PuclQ] (proton) and Kelly [Kel04] (neutron).
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Gg Gy Gy
ar | —0.60 —0.215 —0.31
by | 103 10.6 11.0
by | 156  14.1 15.1
by | 3.24 -3.03 —551
e 279 —1.69

Table 3.2: Parametrization of our form factor results according to Eq. (3.72).

For the electric neutron form factor a modified Galster fit [GKM™*71] is used:

AT+ Br?
n 2\ _ . 2
63 = AT BTG 373
with the dipole form factor [DCCT66]
1

Gp(Q?) = (3.74)

2\

Our numerical data are well represented with the fit parameters A =0.39, B = 1.54 |
C =17 and D =0.42.

In Fig. 3.4, our results for the electic and the magnetic proton and magnetic neutron
form factors are shown in comparison with parametrizations of a comprehensive set of
experimental data by Puckett et al. [Pucl0] (including recent JLab data) for the proton
and Kelly [Kel04] for the neutron (shaded areas). Fig. 3.5 shows the electric neutron form
factor as compared with the Kelly parametrization.

In Figs. 3.6, 3.7 and 3.8 we show the same comparison, however in these graphs, the
form factors are divided by the dipole form factor Gp so that deviations and experimental
errors become better visible. Also note the logarithmic scale on the abscissa. The results
for both proton form factors are in reasonable agreement with the parametrization of
the experimental data. Also, the neutron magnetic form factor is well reproduced with
the absolute size of the neutron magnetic moment being a little bit too small. Only the
reproduction of the neutron electic form factor seems to be less satisfactory. But here
one has to keep in mind that it is a rather small quantity and that we have restricted
our three-quark wave function to an s-wave, thus limiting our possibilities to treat such
subtleties. Since we use the wave-function parameters of Schlumpf [Schl94], it is not
surprising that our results strongly resemble those of Ref. [Schl94]. It is just a further
indication for the equivalence of our point-form approach with corresponding front-form
calculations in the g™ =0 frame, which has already been asserted in Ref. [BSFK09] and
shown analytically for the electric pion form factor.
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Figure 3.5: Electric neutron form factor G% as function of Q? = —¢? .

Shaded area: Fit of experimental data (including errors) by Kelly [Kel04].
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Shaded area: Fit of experimental data (including errors) by Puckett et al. [Pucl0].
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Chapter 4
Strong Form Factor

In this chapter we investigate the structure of the pion—nucleon vertex. The quantities
we will obtain are the pion-nucleon coupling strength and the strong form factor, which
encodes the nucleon structure as probed by the pion. To a large part, the derivation runs
along the same lines as the one for the electromagnetic nucleon form factors in Chap. 3.
Again, the nucleon is taken to be a confined 3-quark state. We start out by deriving the
optical potential for pion emission and reabsorption by the nucleon on the hadronic level.

4.1 Hadronic level

4.1.1 Basic setup

We investigate a nucleon (N) that emits a pion (7) and absorbs it again. At the vertex,
due to the nature of the strong interaction, total isospin is conserved, while due to the
pseudoscalar nature of the pion, the spin of the emitting particle has to flip. In the
intermediate state (N'') we restrict our investigation to nucleons, although a A baryon
(spin and isospin %) or mass excitations of the nucleon could be created as well (but less
likely).

Figure 4.1: Self-energy contribution to the

N nucleon mass due to a pion loop. A pion
. ‘ > is emitted and then absorbed again by the
\ /
N - s nucleon. A possible vertex form factor, ac-
~ e

- - counting for a non-point-like vertex, is sym-
bolized by the blob.

52
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4.1.2 Eigenvalue equation and Feshbach reduction

We again use the coupled-channels approach (cf. Sec. 2.4.6). The Hilbert space for the
problem at hand comprises two channels, one containing the nucleon (N) only, the other
one containing, in addition, the pion (7). As mentioned before, transition of the nucleon

to a A baryon is neglected.

VN> and ’VN7T>. Allowing for a pionic
contribution to the nucleon, a physical nucleon state |VN > is now composed of a “bare”

We also use velocity states (cf. Sec. 2.4.5),

nucleon component |VN > and a “bare” nucleon + pion component |VN7/r> In our multi-

channel formulation, we write it in the form
|[VN) = |Vf@ : (4.1)
| VN 7T>

The mass-eigenvalue equation for a physical nucleon is then:

[ B B

The diagonal elements of the matrix mass operator, My, and Mpy,., are the free
mass operators of the respective channels with eigenvalues my, and mp,r = wn, + wr
(w; = \/l_c? +m? ), where my, is the mass of the “bare” nucleon. The off-diagonal ele-
ments, K| and K, are the (7 Ny Ny)-vertex operators. The (lowest) mass eigenvalue of
Eq. (4.2) is the mass of the physical nucleon, m = my .

After a Feshbach reduction (cf. Sec. 3.1.2), Eq. (4.2) becomes

PRUVN) == (m — My,) [VN) = Kz Py KE[VN) =: Vot [VN) (4.3)

with the propagator Py, := (m — Mpy,)"' .
In App. A we show in some detail how the eigenvalue problem (4.2) is solved. In what
follows, however, we are rather interested in the (m Ny Ny)-vertex of the free pion—nucleon

system.

4.1.3 Insertion of completeness relations

As in Sec. 3.1.4 we now want to calculate velocity-state matrix elements of the optical
potential. To this end, we insert the completeness relations for free nucleon—pion states

in front of the propagator to obtain its eigenvalue and the vertex matrix elements:
(V' N§ Vot | VING) = (V' N§| K (m — Mygs) ™" Inge KHVING) (4.4)

We again take the velocity-state completeness relations from Sec. 2.4.5 and use the short-

hand notation (2.52) right away:
Zﬁ M N
Iny= = ¥ DV Dky, 2w0 |V N ){(V Nor| , (4.5)

where we have rendered the pion momentum redundant (whence a sum over pion isospins

is implied).
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4.1.4 The vertex operators

Upon insertion of expression (4.5) into equation (4.4) we obtain velocity-state matrix
elements of the vertex operators. Since, due to the Bakamjian—Thomas construction in
Sec. 2.4.3, the overall four-velocity V' is conserved at the vertices, they read

(V'N'n'|KE|VNg) = (VNo | K [V Ny'7')" = Ayy % (No'n'|| KX|| No) -
N()ﬂ' mNo

(4.6)
The reduced vertex matrix element in Eq. (4.6) agrees with the pseudoscalar current of

the nucleon:
(No'w' || K] [No) = =i gvg TRy (Bgs 1o By s 1)+ F (70 Thig s 7o) (4.7)
for the pseudoscalar coupling and with

1t t _ -fNo
(No'n'||KL||No) = +i -

J?VZ(ENO’ HNos ]%\/'07 M;\/'U) by - 3:(7—1\70’ TJ/VOvT;r) (48)

for the pseudovector coupling, where JF is the flavor function as treated in Sec. 2.5.3.

4.1.5 Analytic calculation of the optical potential

With the above ingredients, the matrix elements of the optical potential, Eq. (4.4), become

(V' No'|Vopt |V No)

zDV”Dk NO’* <V’NO | K|V No" 7" (my —mly, )~ (VN7 | KLV NG )

(4.9)
Upon insertion of expression (4.6) for the vertices, we obtain
(VNG Ve [V o)
DV//Dk‘ Nmr) Avrrion 1 < " //||KTHN
// Vv 3 3 0 (4,10)
N07l' NO
X (mN — m']([w)_l AVV” ; <N0”7TH‘ ‘KI.HNO> 3
m/]/VgTr m?VQ

and after elimination of the Delta functions we get the final result

(V' No'|Vopt |V No)

"
_ Ay kaNo <N 1" //HKTHNO > (mN _mX/o‘rr)il <N0//71—//HK‘I_||N0>

3
my, 2wy

(4.11)
where we have used my, =m)y, and m — my and the vertex matrix elements are
determined by Eq. (4.7) or Eq. (4.8).
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4.2 Constituent level

We now proceed analogously to Sec. 3.2 when calculating (hadronic) matrix elements of
the optical potential on the constituent level. By equating the result to (4.11) we will then
obtain a microscopic expression for the nucleon pseudoscalar (or pseudovector) current

from which we will derive a microscopic expression for the strong form factor.

4.2.1 Basic setup

We model the nucleon the same way as we did in Chap. 3, i.e. we use a constituent quark
model with v and d quarks of masses of approx. 0.26 GeV each. Confinement is enforced
by an instantaneous interaction. Analogously to Sec. 4.1, a pion is now emitted by one
quark and then absorbed by the same quark or another. In the rest frame of the incoming
or outgoing nucleon (velocity states), the three-momentum that is transferred by the pion
is the same on the nucleon level and on the quark level. Again we restrict ourselves to a
nucleon (quark content uud or udd) in the intermediate state, even though propagation of
a A baryon (quark content uuu, uud, udd or ddd for AT+, A+ A® and A~ respectively)
or other nucleonic (mass) excitations are also thinkable (but less likely).

Figure 4.2: (One of nine) quark level diagram(s) for the calculation of the strong form
factor of the “bare” nucleon. A pion is emitted by one of the three quarks, then a confined
baryon state propagates, then the pion is absorbed again by a quark. The relation between

the nucleon state and the three-quark state is described by the wave function V.

4.2.2 Eigenvalue equation and Feshbach reduction

On quark level the coupled-channels eigenvalue equation reads

Mg K [¥3q) | _ |¢3q) A
(KJT M§;2f><lw3qw>> m(ww ’ (112

where the diagonal elements Mg;’“f and Mgonf

3qn include, beyond the relativistic energies of

the three quarks and possibly the pion, also an instantaneous confinement potential

conf conf
M3q(7'r) - M3q(7'r) + V . (413)
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Later on, we will need a complete set of velocity eigenstates of these mass operators. For

Ms34(r), these are just velocity states of free particles fulfilling the eigenvalue equation

3
Msg(n)|V3q(m)) = mag(m) |V3q(n)) = (Z wqi(wﬁ)) |V3q(m)) . (4.14)
1=1

For Mgg(‘;f) one rather has states consisting of a (bare) baryon By and possibly the pion:

MSoPE |V Bo(m)) = mupy(x) |V Bo(m)) = (wp, (+wx)) |V Bo (7)) , (4.15)

where ‘BO> is an eigenstate of the pure confinement problem.
Reducing the problem to the 3-quark channel via a Feshbach reduction, we get

P?fgnf_l‘w3q> = (mN - M§§nf) ’¢3q> = K; Pg;;fK;‘¢3q> = V()pt’w?rq> ) (4.16)

where the optical potential V¢ now contains all the possibilities to exchange one pion
between the quarks, even reabsorption by the same quark. Since we are mainly interested
in the nucleon, we have already replaced the mass-eigenvalue m by the (physical) nucleon
mass my. Here it should be emphasized that, due to the instantaneous confinement, the
latter process does not renormalize the quark mass (since quarks do not propagate freely

in our model). It is rather a contribution to the baryon-mass renormalization!

4.2.3 Vertex operators and completeness relations

We again need to calculate hadronic velocity-state matrix elements and use the hadronic
propagator while keeping the quark-level vertex operators, as detailed in Sec. 3.2.3. In-
serting the appropriate completeness relations and splitting the pion creation- and anni-

hilation operators into sums of quark-pion vertex operators as

KD |V3g(m) = (K + KD+ K8 |[V3g(r)), (4.17)
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the velocity-state matrix element of the optical potential between bare nucleons then
corresponds to the following expression for 9 pion-loop diagrams:
(V' N/ [Vopt [V No) = (V' No' | Isg Ky e lsgr ProrIngr Isgn K, 23|V No)
Vo1
+ (V' No/|I3q K gy nlagm ProrIngnlsqn K, T34V N
+ (V' No'[I3g K gy nl3gn Pro el Ngnlsgn K Isq |V No

+ <V/NO |]I3q qlTl']ng‘ITPNoﬂ']INDﬂ'HSqTr qzﬂHSq’VNO
+ <V NO UISq qgfr]ISqﬂ'PNgw]INowH?:qﬂ' q27r]13q’VN0
+ <V/NO UISq q;;rr]I3q7rPN07r]IN07rH3q7r q2ﬂH3q’VNO

+ <V No' |]I3q K g wl3gr Pyl ngrlagr qdﬂH3q|VNo
+ <V/N0 |]I3q qQTrH3q7rPN07rHN07rH3q7T q3ﬂH3q’VNO
+ <V/NO ’]I?)q qu{'ng‘ITPNoﬂ']INoﬂ'H?)qTF q3ﬂH3q’VNO

)
)
)
; (4.18)
)
)
)

3
= > {V'Ny/[IsgKq,nsgn ProrIngalsgn K T34V No)
i,j=1

Note that the propagator is a purely hadronic propagator. Due to instantaneous confin-
ment, only hadrons are allowed to propagate in intermediate states.
The completeness relations again follow from Eq. (2.52) and read

3
L = 3 3DV Dl 2 |V Vo) (Vo

z [V3q)(V3q| (4.19)

g = > ZDVDkqQDkq32

Hay5Tqy

Isgr = ) iDVDkqQDk%Dk Mg |V3q7r><V3q7r|
Hay>Tay

where the eigenvalues m__ of the free mass operators are defined via Eq. (2.46).

Inserting these expressions into Eq. (4.18), we obtain velocity-state matrix elements of
the vertex operators on quark level on the one hand and, on the other hand, brackets of
hadronic states with quark-level states which will lead to the three-quark wave function of
the bare nucleon. These two entities will be treated in the next two sections in respective
order.

4.2.4 Currents and spectator condition

We again concentrate on the calculation of the first line of Eq. (4.18), ie. of

<V’ N(')|V01 |VN0 e>. The corresponding quark-level spectator condition reads
1

ey T <q17r H 1TrHQ1> :
\/ m3q7rm3q

(V34| K}, |V30) = By A

4295

(4.20)
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There are now two possible choices for the quark—pion vertex <q’17r' |K };m|q1>
(cf. Sec. 2.5.3): We can use either pseudoscalar or pseudovector pion—quark coupling.
The corresponding expressions are

<q/17rl| |K;17r| |ql>ps = 7igﬂ#fn (_};1) 75 u#ql (E%) ! :}-(TQI’ 7'(;1 ) Tﬂ')

and

N -
<q’17r/’ |K;17T| ‘Q1>pv =+ mi U‘M]l (ktl]l) T 75 u,uql (kq1) k‘IVT ! 9:(7-% ) Tél ) 7—71') ’
s
(4.21)
respectively, where g is the strong pseudoscalar pion—quark coupling constant, f the

corresponding pseudovector coupling constant, and F is the flavor function as treated in
Sec. 2.5.3.

4.2.5 Wave functions

The 3-quark wave functions that arise from expressions of the form Inls,, In,I34x, etc.

are derived in the same way as in Sec. 3.2.5. The result is

<V’3q/ |VNO> = Nl AVV’ <3ql ‘N0> y

(4.22)
<V’3q'7r' |VN07T> = NQ AVV/ATW/ <3q/ |N0> .
From the normalization condition
> / APk, A% K (N 34" )(3¢" |N') = 0y, Orrt, (4.23)
o T
iy

(momenta with a “tilde” defined as in Sec. 3.2.5) we obtain the normalization factors

my, w), W, w!
q17"4927"q3
Ny =4-(2m)3

9

i, ()’
\/WNO afh UN‘)tlzz oA‘}tlla (Z wlllk )
\/(Z wll]k) (wNO + wﬂ')s (Z w"]k + wﬂ')s

The derivation is quite analogous to the one in App. B.2.

(4.24)

N2 =4. (27’(’)3

4.2.6 Analytic calculation of the optical potential

We now continue our analytic calculations with the first term of the quark-level optical
potential, V1 in Eq. (4.18). In what follows, sums over spins and isospins of particles
with redundant momenta are implied. After inserting the eigenvalue of the propagator
and some rearranging we obtain, via Eqs. (4.19),
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(V'No'|Vor|V No)

=(V'No'|[I3¢ K gy nl3gn PnorlNgnIsqn KL I3q |V No)

(v ()
m

% (6) 9,5

q1

Y piY NM) @\

DV® pg e (mN — mNM)

3

zDV///Dk///Dk///Dk/// gtlzﬂ zDVﬁDk// Dk’” ( H)
20 /// 20 //

> <V/N0 ‘V(G)Sq(6)><V(6 3q(6)‘qu‘V(5)3q(5)ﬂ'(5)><V(5)3q(5)7r(5) ‘V(4)N0(4)7r(4)>

<V(4)N0(4) (4) ’V/N?) " ///><V///3 " ///‘

qlﬂ‘V//3q//><VH3q// ’VNO> ,

(4.25)
where V® again stands for V" etc. and with the invariant masses m._ defined in
Eq. (2.46).

Via the spectator condition (4.20) and the wave functions (4.22) (with the normaliza-

tion factors (4.24)), the last two lines of (4.25) read

~(6)~(6) ~ (6)
m Wq, Waqy Wq
4. (271_)3 \/ No Wq1 Wq2 AV/V(5) <N0/ ’3q(6)>

X Avovem A © o8 o o <q§5)w(5)|!K3qu§6)>*

5 6
¢<msqa> (vs3)
5 5
\/wj(v Wq1 qz ( ) (Zw‘(lk))
8 Ay v e A pe (3¢ [Ng™)

V(5582 (8. () o
>

x 4 - (2m)

ok ey (S )
¢ (@) (md),)” (m)’

1
X Ay Dggray Boyray (mY! )3 (m4 )3 (ot || G, x|
3qm 3q

It/ Al
M No wfll wfnw%

Av(4) v Aﬂ_(4) — <N0 (4) | 3q”l>

X 4- (271')3 AVV” <3q” ’N0> .

miy, (M)
After cancelling the fractions and exploiting the Delta functions as well as the fact

that in states without a pion, > w => Wy &) = m3q) resp. y wj = > W) =mj, , we
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get
(V' Ny'| Vi |V No)

Dk DK D! DE!! Dk
=16 - (27T)12 AVV/ i

5 " 4
Waq wa) OJ w WT(l')

\/mT 171' 1
No
\/ @ 5O )
q1 (12 1
y ( ) (3¢ | No™) (mN _ mﬁé{f,r)
(za)
Vel sy (Sey)
(Zw///)

M No (‘T)qll wzlz w% < 1"
3q NO > .
my, |

(4.27)

(No [3q") (ot | K] | a)

Here we have kept the intermediate velocity-state momenta of quark 1, k] and kql ,
as well as all 3 quark momenta in the “tilde” frame, kg” and kl( ) (and all dependent
quantitites), for readability. The non-tilde three-momenta are obtained via the definition
of the velocity state (2.46) in combination with the spectator conditions (4.20), whence
ng + E;; + Egg + EST4) =0,ie. E;'I' = E;’l — l;:;(;l) (and vice versa for states with 5 and 6
primes). To obtain the momenta in the “tilde” frame, we use equation (3.35); note that
the velocity (3.36) of the 3-quark subsystem depends on all three quark momenta!
Finally, after the index replacements # — () for the incoming quark state, (6) — /
for the outgoing one, /" — 1 and (5) — /7 for intermediate quark states and

(4) — 1 for the intermediate hadronic nucleon state, we can rewrite this into an ex-
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pression compatible with Eq. (4.11):

A , Dk,//
VNGVl V) = T jﬁ

DE DE \/w wl Wit wlf (- wit
« | 4- @m0 z ]41” kg, a1%42%q3 ( Qk) <N0” ’3q”>
“o (>Z&g.)

*
< (a |58l ah) /mv, B, 20,35, (3¢ | M)

x (my — m'](,ow)_l

(4.28)

Dy, Dy V%0 G 5000, (S wi)
“an Y (>Zag,)
<q¥7r”|’ ;1WHQ1> V MNG Wqy gy Was <3q ’N0>) )

where for the vertex matrix elements we will use Eqs. (4.21).

x | 4-(2n)°

<NOII |3q//>

For symmetry reasons (we will use the same 3-quark wave function as in Sec. 3.3.2),
Vopt = 9Vo1 (cf Eq. (4.18)).

4.3 The microscopic expression for the

pion—nucleon vertex

From comparing Eqgs. (4.11) and (4.28) we get for the pion—nucleon vertex

(No" 7" [ K e [ V)

1

DO i) — e\ Jk, DT, (S wr)
=12 (27)° Z Zﬁ " mqs Vi, 88wy L ~q3 22 (4.29)
qu ‘11 (ngk)

) ()
Hqy:Tay

% < " ‘3(]”><C]U HHK21L17qu§/)> <3q(/) |NO(/)>

from which we can immediately derive the nucleon pseudoscalar and pseudovector currents

by comparing with Egs. (4.7) and (4.8), respectively.

As already mentioned, we will use either pseudoscalar or pseudovector coupling for
the quark—pion vertex, cf Egs. (4.21). Also, we use the same 3-quark wave function as we
already did in Sec. 3.3.2:

(G132 |N) = x Tps O (4.30)

with the momentum part
N
Oox = (4.31)

((Z @) + 52)7
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and the spin-flavor part

1~ 1
5 5T
@FS_— > Sooooe oy, cRMY Ty (4.32)
\/> a2t s 7'22 T3 Shsg3 M1 STs3 T1
S [1,M2,03,0s
T1,72,73,Ts

Both parts of the wave function are again defined in the “tilde” frame, i.e. in the rest
frame of the nucleon.

We use Wigner-D-functions to transform the wave function to the overall rest frame
(of the 3gm system) in the same manner as in Eqs. (3.57). However, we make use of the
fact that for the incoming and outgoing states |VN (’)> resp. |V 3q(’)>, the coordinates
with and without a tilde are identical. For symmetry reasons it can be assumed that the
pion couples to quark 1, which implies an overall factor of 3 which has already been taken
into account in equation (4.29). For the first vertex (the one between incoming nucleon

state and intermediate nucleon—pion state), we thus end up with

5 =
9N, JN([)M (kNov HNg 5 X/'O y /J'NO) 97(7—1\707 TNO ) 7-7/1',)

~ T T "
1 A3Fs 3T 1 Wy Wy Wy > Wi
WNo Wiy, 2 3 ~ ~71
wi | @z |\l YWy
~I!

~I
X Do (B(%q) )D vy (B(U3,), 03) D;gﬁg (B(U5,), U3)

Ho Ko
1~ 1~ 1
« Cé P Cs n 2 KNy 2 TNy N (4.33)
N// 1 ~// T T s/l 1~ s''T 1 7!
K23 B 23 T3 Hs 2 1 s3 T

- Y
(Cap?+62)
% Osus STs %MNO

%TNO N
1

Suagus Fmakms suegmsTegT ((Z@k)2+ﬁ2)v

X ﬂﬂ/f(E/l/) (g |:_f 'YV k;r/u:| 75> Upy (El) Sr(Tb 7—1 ’TN> )

Mz g

where we have defined for the pseudovector coupling

I

JPH(No, No") := T gn
© 9Ny

T3 (No, No") K (4.34)
to treat the pseudoscalar (without square brackets) and pseudovector (with square brack-
ets) case at the same time. Additionally, we have again replaced the quark indices ¢; by
i and used the shorthand notation (2.41). The spectator conditions (4.20) (valid in the
non-“tilde” frame!) have already been taken into account. Keeping in mind as well the
relations Y p; = pn , > uy = pi (spins can be coupled as usual only in the “tilde”
frame) and Y 7, =7n, Y. 7/ =Th , the sum is over quark spins and isospins po, s,
T2, T3, WY, B4 and [ (= £3 ) as well as over intermediate (iso)spins s, s” (= {0,1}) and
their polarizations ju,, fi/ and 7, (= —s") ... s")). Eq. (4.33) relates also the pseudoscalar
(pseudovector) pion—quark coupling g (f) with the corresponding coupling gn, (fn,) on
hadron level.



Chapter 4. Strong Form Factor 63

It is easily checked that

11

- 1
s T, 35TN S8Ts 3TN no_ny " AN
E Ci CSQ//T/,% ,Ci oy C2 - 3:(7-177-1 y T, ) = 9~(TN’TNaT ) ) (435)
s

5T25 73 Ty 3T25 T3 STs3 T1 ™ ™

{71 }:8:7s,
0o
8", T

however, this expression cannot be isolated from the above equation. The reason is that

s and s” also occur in the spin sum.

4.4 Extraction of the form factor

4.4.1 Kinematics

In order to extract the strong form factor and the wNgNy coupling, we use the following
kinematics: The frame of reference is the rest frame of the incoming (and outgoing)
nucleon. The pion is emitted in the z!-direction with momentum k; the nucleon picks up

the reverse 3-momentum:

MmN, VK2 4+ m2

0 k
kNU = 0 ) kﬂ' = 0 5
0 0
\/ K2+ miy,
Fo—Fw-Fe = wo—| | (4.36)
0
0
mNO
! zn 7 / 0
kNQZkN0+k7r = kNo = 0 kN()
0

The negative 4-momentum transfer to the nucleon is then

2
my, — 1/k2+m?\70

2 2= _(kn — k" 2_ k
@ 1 (o — k) 0 (4.37)
0

= —2m3, + 2mny, \/ k2 +m3, -

4.4.2 Pseudoscalar coupling

To extract the strong form factor for pseudoscalar mNgNy coupling, we do the following:
According to Eq. (2.65),

—

9N, JZ?/'U (kNov KNy 3 X/O ) ,LLX/'O) = 9Ny GPS(Q2) ﬂ“‘XIO (kxl'o) 75 Up g (kNo) . (438)
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We evaluate this expression using Mathematica®. In our kinematics, Eq. (4.36), this

reads

1 1 11
J]5VO(_§7_§) = J15Vo(§7§) =0,
17 11 (4.39)
5 5 2
JNO(§7_§) = JNO(_§7§) = QGPE(Q ) )
where we observe that
T =Jx, - (4.40)
We thus obtain the strong nucleon form factor via
1 1 1
2y _ 5
Gps(Q7) = 2] JNo(iv_i) . (4.41)

4.4.3 Pseudovector coupling
With J°#(Ng, Ny') defined as in Eqs. (4.34) and (2.66), the pseudovector analog reads

587 > I — =
9Ny JNg (kNo y MNg 5 k;(fo? MKTO) == m s GPV(Q2) ulLK,O (kX’o) Y ’75 uMNO (kNo) kw ’ (442)

™

which gives

sy, 101 sy 11
‘]Ng(_§a_ )ZJN§(§7§>_07
s 11 sy, 101
JNg(§a_§)_JNg(_§?§>
e o kv/2mg (mNo—i—,/kQ—i—m?vo—i— k2+m3r)
=+ m GPV(Q) 2 )
INo Mim (\/ k2 + mpy, + mNo)
and thus
(y/k‘Q-l-m?V +mN) 1 1
Goe(@Q?) =+ S— M g3t )

9ne 7 Ing (50— 5
k /2mNo (mN0+ /k2+m?vo+ k2+m‘%) UfN(J 09 2
(4.43)
We fix gn, and fn, such that Gps(0) = Gpy(0) = 1.

4.5 Numerical implementation

For the major part, the numerical evaluation of the nucleon pseudoscalar current, Eq.
(4.33), runs along the same lines as that of the electromagnetic current in Sec. 3.5. The

differences are as follows:

4.5.1 Kinematic quantities

The initialization of the quark momenta in the incoming state reads
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knaked [2] <<  sqrt(pow(k2,2) + pow(m,2)),
k2xsin(theta2) *cos(phi2),
k2*sin(theta2)*sin(phi2),
k2*cos (theta2) ;

// (knaked [3] analogously)

Vector3d kilnaked3d = -knaked[2].segment<3>(1)-knaked[3].segment<3>(1);
knaked[1] (0) = sqrt(pow(m,2)+kinaked3d.dot (kinaked3d));
knaked[1] .segment<3>(1) = klnaked3d;

where m is the quark mass (globally defined) and k2, phi2, theta2 the three integration
variables for quark 2.

The 3-momentum transfer (now “k”) to quark 1 is the same as to the nucleon in (4.36),
while via the spectator conditions (4.20), quarks 2 and 3 remain unaffected:

Vector4d knakedpr [4]; // in class declaration

for (i=1; i<=3; i++){ knakedpr[i] = knaked[i]; }

knakedpr [1] (1)

knaked[1] (1) - k;

knakedpr [1] (0)
sqrt (pow(m,2) + pow(knakedpr[1](1),2) + pow(knakedpr[1](2),2) + ... );

We then get the double-primed invariant mass of the 3-quark subsystem and the velocity
(3.36) via

double mclpr =
sqrt (pow (knakedpr [1] (0) +knakedpr [2] (0) +knakedpr [3] (0) ,2) -pow(k,2));
Vector4d vclpr; // in class declaration

vclpr << (sqrt(pow(k,2) + pow(mclpr,2))/mclpr) , -k/mclpr , 0 , O;

The double-primed quark momenta in the original (“tilde”) frame are obtained via an

inverse boost (2.36) with the double-primed velocity of the 3-quark subsystem:

for (i=1; i<=3; i++){ ktildepr [i] = invboost(vclpr)*knakedpr[i]; }

4.5.2 Quark current and flavor function

Naturally, in the function for the current of quark 1, Matrix2cd

Mompart: :quarkicurrent (), we now need ~° for pseudoscalar and kY-, ~° for
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pseudovector coupling, i.e. instead of dirac(nu) in the middle line of Matrix4cd

middlematrix we have dirac(5) and
-1/(2*m) * (dirac(0)x*sqrt(pow(k,2)+pow(mpi,2))-dirac(1)*k) * dirac(5b)

respectively, where mpi is the pion mass.
In addition to the spin-momentum part of the quark current, we also need the flavor
function F from Sec. 2.5.3. It reads

double flavorfunction(int tau, int taupr){
double ff;
if (tau == 1 && taupr == 1) ff = 1;
else if (tau == 1 && taupr == -1) ff = sqrt(2);
else if (tau == -1 && taupr == 1) ff = sqrt(2);
else if (tau == -1 &% taupr == -1) ff = -1;
return ff; }

4.5.3 Integrand function

The factor which is made up of all the Clebsch-Gordan coefficients (initialized by external

call Clebschgordan cg) reads

double cgfactor =

1/sqrt(2) *

cg.coeff (1,mu2tildepr,1,mu3tildepr,spr,mustildepr) *
cg.coeff(1,tau2,1,taul,spr,taus) *

cg.coeff (spr,mustildepr,1,multildepr,1,params->muNpr) %*
cg.coeff (spr,taus,1,taulpr,1,params->tauNpr) x*
1/sqrt(2) *

cg.coeff(1,mu2,1,mu3,s,mus) *
cg.coeff(1,tau2,1,taul,s,taus) *

cg.coeff(s,mus,1,mul,1,params->mul)*

cg.coeff(s,taus,1,taul,1,params->taul) ;

The full integrand reads
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intgr +=

prefactor *

cgfactor *

wigrotfactoripr ((1-multildepr)/2,(1-mulpr)/2) *
wigrotfactor2pr ((1-mu2tildepr)/2,(1-mu2)/2) *
wigrotfactor3pr ((1-mu3tildepr)/2,(1-mu3)/2) *
spacepartpr *

spacepart *

quarklcurrent ((1-mulpr)/2,(1-mul)/2) *

flavorfunction(taul,taulpr);

with a sum over spins and isospins mu2, mu3, tau2, tau3, mulpr, mu2tildepr,
mu3tildepr ( = +1), s, spr ( =0,2) and mus, mustildepr, taus (= —s[pr]...s[pr]).
The dependent variables int mul, multildepr, taul, taulpr are set accordingly (see
comment after Eq. (4.33)) including a check whether they are in the range +1. Note that
the strong quark coupling constant g has yet to be determined and has thus been set to 1.

After continuing with the rest of the procedure as outlined in Sec. 3.5, we obtain a
result for the pseudoscalar current, R(Q?), which equals the nucleon pseudoscalar current
divided by the strong quark coupling constant, g- R(Q?) = gn, J15V0 (Q?) . Since the r.h.s.
at Q% = 0 equals the nucleon strong coupling constant, gy, , we obtain the quark coupling

constant via
gn, =g R(0) (4.44)

i.e. the pseudoscalar current of the bare nucleon reads

v, I3, (Q%) = % “R(Q?) . (4.45)

4.6 Results

The normalized form factor G, (Q?) is well described by a fit of the form [MCP09]

2y _ 1 ’
)

where k is the three-momentum of the pion (related to Q? via Eq. (4.37)). For compar-

(4.46)

ison with predictions from other approaches we will neglect the pionic component of the
nucleon as well as the renormalization of the nucleon mass due to pion loops. As a con-
sequence, the physical nucleon N can be identified with the bare nucleon Ny (which is a
pure 3-quark bound state). Possible pionic effects are then hidden in the parametrization
of the 3-quark bound-state wave function and the constituent quark masses. For these

quantities we will use the same values as for the calculation of the electromagnetic form
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Figure 4.3: Strong #NN form factor: Comparison of our results (pseudoscalar and
pseudovector coupling) with findings by Melde et al. [MCPO09], Polinder and Rijken
[PRO5a, PRO5Db], and lattice results by Liu et al. [LDDW95] as well as Erkol et al.
[EOT09].

factors in Chap. 3. A comparison of our results for pseudoscalar and pseudovector cou-
pling with another constituent-quark-model calculation [MCP09] (pseudovector), with a
hadronic pion-cloud model [PR05a, PRO5b] (pseudovector) and with lattice predictions
[LDDW95, EOT09] (pseudoscalar) is shown in Fig. 4.3. The normalized results, which
are shown there, do not depend strongly on the choice of the coupling (pseudoscalar or
pseudovector). Instead, there is a significant difference in the outcome for the strong
quark—pion coupling constant.

For pseudoscalar coupling our results are well described by the fitting parameters
A1 =0.637 and Ay =1.46. Taking the phenomenologically determined value for the
7NN coupling constant gy = 13.1 [Bug04], we obtain the quark pseudoscalar coupling
constant g = 3.55 ( g?/4m = 1.00 ) by means of Eq. (4.44).

For pseudovector coupling we obtain A; =0.607, Ay =1.68 and
Jpv = 2m—"jr‘ f=285 (ggv/47r =0.65). This coupling constant compares well with
the one used in the Goldstone-Boson exchange relativistic constituent quark model by
Glozman et al. ( g2, /47 = 0.67 ) [GPPT98].



Chapter 5

Overall Electromagnetic

Form Factor

Having calculated the electromagnetic and the strong form factors of the bare nucleon,
we now want to obtain the electromagnetic form factors of the nucleon including the
pion-cloud effect. We restrict ourselves to a single pion that is emitted and reabsorbed
by the nucleon. We will therefore treat the physical nucleon as a state consisting of a
“bare” nucleon and a bare nucleon + pion component. This formalisms calls for the
mass of the “bare” nucleon, which differs from the physical one. Note that from now on,
all calculations can and will be performed on the hadronic level, since the three-quark
structure of the bare nucleon just enters the electromagnetic and strong couplings and
vertex form factors, which have already been determined in the preceding sections. The

formalism is treated in detail in what follows.

5.1 Basic setup

The starting point for our treatment of the electromagnetic nucleon form factors including
the pion cloud is essentially the same as in Sec. 3.1. In order to properly describe the
physical nucleon state, we consider it as a superposition of a bare nucleon state and a bare
nucleon—pion state. The velocity states of Eq. (3.2) then become two-component state
vectors

[VNe(7)) := |[VNe(y)) + [V Nme(7)) . (5.1)
The two components can be obtained by solving the eigenvalue problem for the matrix

mass operator (cf. App. A):

M K,
MNe('y) = Noe() . (52)
KL Mygre(y)

The operators My.(y) contain all interactions except photon exchange, that is, in our

case, just the pion exchange. The diagonal elements of the matrices (5.2), in turn, are the

69
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Figure 5.1: Physical nucleon N as a superposition of a bare nucleon component N and
a bare nucleon 4 pion component N7. The N state consists of a single free nucleon Ny
with probability (1 — «). The N state is a distribution of free nucleon—pion states Ny
which is described by the wave function ¥ and occurs with overall probability o.

free mass operators of the respective subsystems, that is, they only contain relativistic
energies, whereas interactions with the pion are accounted for by the vertex operators
Kg). Note that, since we have mpy,e = wn, + We # Mye = WN + we for the eigenvalues,
also the masses of the physical and the bare nucleon are not equal (as long as K,(TT) does
not vanish):

my 7& mpn, ! (53)

We again work with velocity states also for the channels |V]\~f e(7)) and |VN7/re('y)>.
They are superpositions of corresponding free (i.e. orthogonal) states ’VN()@(’V)> and
‘VN()W@(’V)>, respectively, with the wave functions W/, (r) acting as coefficients. The lat-
ter are determined by solving the eigenvalue equation for the physical nucleon (cf. App. A).
The normalization of the free states reads (cf. Eq. (2.50)):

(VNo(m)e() [V Ny(n")e' (7)) = ——2— Avyr (Arnr) Deer (Aqy) (5.4)

and the corresponding completeness relation (cf. Eq. (2.52)):

m3
@@ |y Ny () e (v) WV No (m)e(v)

. (55
o (55)

INo(mye(r) = zDV (Dkr) Dke (Dks)

where a sum over py, and 7y, is implied and the m_ are — as usual — the eigenvalues of

the corresponding free mass operators, i.e. they contain no interactions.

5.2 The nucleon—pion wave function

In the following, we introduce the wave functions ¥/, and ¥/, in order to properly
describe the bare nucleon and the bare nucleon + pion components in the physical nucleon,

respectively. These are just appropriate projections onto free states, i.e.:

(VINe' () [VNe(y)) = VI —aNi Uyyng Aviy Acre (Ays)

o (5.6)
(V' Now'e' (1) [VNTe()) = VaNa O ynim Avry Aere (Ayry)

The N; are normalization factors yet to be determined. The role of the coefficients v/1 — «

and /a will become clearer in a moment.



Chapter 5. Overall Electromagnetic Form Factor 71

Using the relations above, the expansions of the nucleonic components in terms of free

states then read
‘Vﬁe('y» = Inge(y) }Vﬁe )>
XDV Dk, Dk’)( NOE(V |V’N’ ¢ (V) (V' Ny () [VNe(r))

( en)?
= - NO (7 N1 U Ny

No

V Nye (1) (5.7)

and

[VNre()) = Iyt [ N7e()

m —
= ZDV’Dk;Dk;(Dk;) (ome)” [V/Ny7'e' (7)) (V/ Ny n'e' () |V Ne(v))

ZwNO

)?
=Va sz’ MM Uy [VNG e (7)) (5.8)
with a sum over p/y and 7y, implied. Since a single bare nucleon necessarily has the
same quantum numbers as the physical nucleon it relates to, the bare-nucleon-in-physical-

nucleon wave function is simply a product of Kronecker deltas over spins and isospins:

UN/Ng = Sty Orvr, - (5.9)

Furthermore in the velocity-state representation, the three-momentum of both bare and
physical nucleon is determined by the one of the electron:

kn, = kn = —Fe . (5.10)
However, since my # my, , this is not true for the four-momenta: ky # kny, !

The normalization condition for the nucleon—pion wave function reads

> / &K Ui g N N = Opun i ey (5.11)

1" " "
T T
HNo TNg

or, in our shorthand notation,

= Opun puly Orn}
sz’” 4 N/N”?T” \I,N’/N(/)/ﬂ” = W . (512)

HNo TNy

The quantities with a “tilde” are defined in the center-of-momentum (c.o.m.) frame of
the Nom subsystem which constitutes the physical nucleon, not the overall c.o.m. frame
as usual (cf. Sec. 2.4.5), i.e

EN(J = Bil(’UNoﬂ') kNo s kr = Bil('UNoTr) kx 5
- O F (5.13)
UB(ENO,r)’k?NoMNo> = Z ‘kNo:uNo>D/LNOﬁNO (B(’UNOTF)7 mNO ) )

UNy=%3
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with .
— kNoTr
UN()ﬂ' - )
Mmyyw

ENOTr = ENO + Eﬂ' = *Ee = EN ) (514)

MNgw = WNy + Wr = \/(WNO +wr)? = E]2V07r :
By B(¥) we mean a (canonical, i.e. rotationless) Lorentz boost with velocity ¢. For the
definition of the Wigner rotation Ry and its associated Wigner-D-function in Eq. (5.13),
see Sec. 2.4.4. Note that the boost velocity Uy, is calculated from En not by dividing
by the physical nucleon mass my, but rather by the invariant mass my,,! Applying the

coordinate transformation from App. B.1,

WN, wNO + Wy

Dk, = Dk, ,
wN() wN() +wﬂ'

(5.15)

we can also write

"
DE" wNo wNo +wr ~I Tk U _ 6#1\7#}\16"'1\1"'1/\1 516
- 7~// w” UJ N/Né/ﬂ'” N’/N(’,/Tr” = . ( . )
// // s

2(2m
Wi No (2m)?

Via Eq. (2.50) the normalization of the physical state and consequently, via Eq. (5.1), the

substates should read

<VNe(’y) |V’N’e’(’y’)> = <VN6 (7) |V’]\~]'e'('y’)> + <V]VT;6(’7) |V/]/V_l\7?/6/(’}/)>

2 OJN (517)
w3 Avyr Acer (By )5M’NMN Orp
Ne(v)
with the normalizations
~ ~ 2w
(VNe(y) [V'N'e'(v)) = (1 - a) = N Ay Acer (D) St Oty
Ne(v)
(5.18)
2 WN

<V],V\7/re(7) |V'N'n'e' (7)) = Avvr Acer (Dyyr) S une 07t e

mNe( )
for each component. This means that « is the probability for finding the nucleon—pion
component in the physical nucleon. Likewise, the completeness relation for the physical
nucleon state decomposes into

3

Ine() = O DV Dke(Dky (—g"#)) ——2 on O 1V Ne(y) ) (VNe(y)]

2
KNTN
3 MNe(y)
(51 DV Dk (Dk., (—gH vl
1 v (=g"™")) 2WN (5.19)
MNTN

x (|VJ\~/'6(7)><VJ\~/'6(7)} + |Vme(7)><V]Ve(7)|
+ |Vﬁe(7)><Vme(7)| + |V]fV\_ﬂ/'e('y)><Vme(’y)|> )

The normalization factors N; in (5.7) and (5.8) are then obtained as follows:



Chapter 5. Overall Electromagnetic Form Factor 73

Ni:  Starting out from Eq. (5.7), we have

<V]Ve(7) |V’N’e’(’y’)>
)3

3
(mge)® (Mot <VNOe 7|V Nye' (7))

=(1—a) N N]
(1=a) NNy 2wy, 2wNO (5.20)

3

5.4 MNye

64 (1—a)N2 (207(7))AVV, Acer (D) .
wNO

Equating this to (5.18), we see that

2wN0 2wN

N2 = . (5.21)
(mNoe('y))3 m:]))\/e('\/)
Na:  Starting out from Eq. (5.8), we have
<V]VTF6(’Y) |V’]Tf77?’e'(’y’)>
(m// e 3 m/// e 3
=« ZDk.;{ Dk;{/ g(LJ//(’Y)) ( I;fo(JJ//E’Y)) N2 NIQ W?V/Né"/r" \I’N'/Né”‘n"”
Mo Mo (5.22)

<V 6/71'//6 ‘V’NW " /(7/)>
DK/ Na N, Nomw) . o NN
2 N/Ny YN Ny AV Beer (Ayy) s

with sums over :“N(, and TNO 1mphed. Equating this to expression (5.18) we see that,

under consideration of Eq. (5.16),
2 WN 2 OJ?(,O &}XIO ~1/ WKTO + w;{

Ni =2(2m)? = —
m}a’Ve("/) (mﬁ(foﬂe('y))?) wE(fo WKTO + w;‘{

(5.23)

Thus, the expansion of the bare nucleon and bare nucleon + pion components in terms

of free velocity states finally reads

|VZ\~fe(7)> =V1-«a (mve()° ;JN |V Noe(v))

Who MNe(y)

[VN7e(y)) = Va2 (@2r)3 > sz;

’ ’
Ko TNg

(M me())? wh why + wh
x [ ——ome) il R = U [VNGTe ()
Wi, mNe(’y) W, No

(5.24)

5.3 Eigenvalue equation and Feshbach reduction

We start with a coupled-channels approach exactly as in Sec. 3.1, Eq. (3.2):

My. K, [VNe) \ |VNe)
( K Mye, ) ( [VNey) ) B ﬁ( [VNev) ) ’ (5-25)
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where the diagonal elements My, and My, are the mass operators for nucleon—electron
and nucleon—electron—photon channels (without electromagnetic interactions), respec-
tively, and the off-diagonal elements K., and KL linking the two channels, are the annihi-
lation resp. creation operators of the photon. s is the Mandelstam variable for electron—
nucleon scattering (i.e. the invariant mass squared of the whole system). A Feshbach

reduction completely analogous to Sec. 3.1.2 yields
(Vs — My.)|VNe) =: Pyl|[VNe) = K, Pyey KI|VNe) . (5.26)
—_———
Vopt

Via Eq. (5.1), the matrix elements of the optical potential Vo can then be decomposed
in terms of the nucleonic components:

(V'N'€'|Vopt|VNe)
=(V'N'¢/| K Pxey Iney KT [V Ne)
+ (V'N'€'| Koy Pyey Iney K |V NTE) (5.27)
+ (V'N'7'¢!| Ky Pres Iney K [VNE)
+ (V'N'7'¢!| K Pyen Iney K |V NTE)
where we have already inserted the unity operator, which is necessary so that the propa-
gator can assume its eigenvalue.
Using the decomposition (5.19) for Iy, and replacing the propagator by its eigenvalue,

we get the following 4 expressions for the single matrix elements (between orthogonal
states, i.e. the first line in Eq. (5.27) corresponds to <V’N’e|V0pt’VNe> etc.):

<V%6|/%Pt|vme> = Z zDV”Dk;’Dk;’ <_gu'4n;’>
MR TN

(5.28)
" (mxle'y)g ]-
2 V5 —mi,

where either all the 7’s in round brackets or all those in square brackets (or both)

x (VN(m)e| K|V N (x)ey) (VN[rler| K|V Nrle)

are included or omitted. Here and from now on, we will use the shorthand notation

|VNe>/ = |V’N’e’> etc. for primed states, wherever it seems necessary. Note that
(VNe|'Vope|VNwe) = (VNme| V) [VNe)'™ . (5.29)

Using Egs. (5.24), we obtain
(VNe|'Vope|VNe) = % 1-0a)? ) zDV”Dk;’Dk’; (_gu%’u%’)

" "
UNTN

x \/(mQVOe)3 \/( Wy = (VNoe| K, |V Noen)" (5.30)

Wi, miye)

(m/1</' e’y)3 1 " (mN 6)3 WN
o N (VNoey|" KI|VNge) | —22 | ——
o‘)No mNe'y WNy Mye
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<Vﬁe|/Vopt|Vme> = 2m)3a(l —a) zDV”Dk”Dk”< “v“w)

" 1"
UNTN

m- )3 / m' 3 1
T [ e I [V g [
(miye) Wi,

1
wNU \[ - mNev

/// )3 ~NT n "
Z Wi Wi Wy, +w
§ : " Nofrev No No T % "ot
X ij o 77 5 +w”/ ‘IIN”/Né”ﬂ"”<VN07Te,y K’Y
NO ™

W, Wi,
P oy 3@ [w® 1@
(4 ey
x D ka )|VN07re> wéf) 3 w<4> ~<4> O] YN
W) - No M'Ney No
(5.31)
and
(VNTe| Vope|VNTe) = 2(2m)°a® zDV” DI DK (—g"r)
BTN
/// 3 / ~H TS " "
Nome) Wiy Wi, Wi Jwiy, +wi %
X Z sz///\/ — 0 QVS)S WOK/!O \/5%0 n w%' ‘I’N’/N”' ///<VN07T€|
D T [ 1 o
x> ka [V Nore) ™ @ OEE\R=C) L o® o gt
g\‘]lg ](\;10) No No No ”
1
\[_mNev
D 0D [+ .
x > omey 0 0 T (VNomey| K]
5 5 ~(5) , ~(6)  N"/N®z) ¥
T g oD e
0
(6) 3 ~(6) ~(6) (6) (6)
© | (Myyre)® wn Wy, Wr
X Z ka 2 |VN > 6 ° 6 6 VNN o) -
53‘) <6) wgvo) (mne)3 "Jj(vg ( )"‘W( ) /o
(5.32)

5.4 Spectator conditions

Due to the structure of the interaction Lagrangian (2.55) we can now split the photon

creation- and annihilation operators into sums of vertex operators as we already did in
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Sec. 3.1.3:
K} Noe) = (it + KLy ) [Nac)
. (5.33)
K} [Nome) = (KL, + KL, + K1, ) [Nome)
and vice versa for the annihilation operators.
Having done this, we can employ the following spectator conditions:
-1
(VN € | [V Noe) = vy e —— D (N[ K, | No)
mNoe"ymNoe
-1
(V'No'e'y'|KL|VNoe) = Ay Ang vy % (e'Y||KLle)
\/ mNoemeoe
-1
<V’NO’7T’6’7"K1TVW|VNO776> = AyyrDnp Deer % {No'Y| |KJTVMHN0> ;
\/ mNoﬂ'e’ymNmre
(V/No'we | KLV Nome) = Ay Ay Brms —— L (e/7/|| KL |e)
mN()TI’C"{mNo‘ﬂ'e
<V/NO/7T/€/’)//‘KTTF,Y|VN07T€> = AVV’ANONO’Aee’ % <7T/’y,‘ |K7Tr,y| |7T>
\/ mNoﬂ'e'ymNowe
(5.34)

and vice versa for the annihilation operators. In addition, the electromagnetic interaction
leaves the isospin of the nucleon or pion invariant, whence the vertex operator matrix
elements read

(NG |1 KKy [No) = (No| | Ko || NGV )™ = lel Ju(No, Ng) € () Bry g,
(YK e) = (el ey |ler)” = lel Ju (e, ) ()" (5:35)
(my || |7} = (| Bnn | 72)" = lel Ju (7)€ () 0y
where we again use the shorthand notation (3.15), i.e. the J¥(...) are the currents of the

respective particles and €”(v’) is the photon polarization vector. Furthermore, we will use
JU(X, X =T(X, X) . (5.36)

(For a more detailed explanation we refer to Sec. 3.1.5, for details on the currents being
inserted to Sec. 5.6.)

5.5 Diagrams

Using the splitting of the photon creation- and annihilation operators from Eq. (5.33), we
are now ready to write down the time-ordered diagrams which correspond to the matrix
elements of the optical potential, Egs. (5.30) — (5.32). Furthermore, we will employ the
spectator conditions (5.34). In the final step, we will obtain the three covariant diagrams
pertaining to the problem at hand.
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5.5.1 Time-ordered diagrams

Neglecting self-energy photon loops and photon exchange between pion and nucleon, we
obtain the following expressions for time-ordered diagrams. Note that via Eqgs. (5.9) and
(5.10), we have kY, = IZX,O ;WY =Y, and TN =Ty !

Nucleon component incoming and outgoing: For the following calculation it is
more convenient to render the photon momentum instead of the nucleon momentum in

Eq. (5.30) redundant, whence, via Eq. (2.52), we have to replace

k// Dk//
Zz X | (5.37)

" //
KNTN

so that for Eq. (5.30) we can write

(V'N'e|Vop |V Ne)

=(1- Avv“ wN
Ne 1/(/.)N
< S ow ok () 557 e v
2wl s—m’](,ey wWN, | M.

x (Ae’e” (No| | K Ny | [NGA") Angng (Y| KL |[e)

Aoy (€1 Koo [ Beer (N7 | B || N0) ) -

(5.38)

N ‘No Ny N’
Figure 5.2: Time-ordered diagrams for bare nucleon component incoming and outgoing.
Note that, in addition to the normalization factors /1 — a for incoming and outgoing
wave functions, one has an additional factor (1 — «), which comes from insertion of the

completeness relation (5.19).
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Evaluating the Deltas and inserting the current expressions (5.35) for the vertex matrix

elements, we obtain

(V'N'€! Vo |V Ne)

=(1- a) le|? AV;/' ghoi) Wy N
2N u “ng “’No (5.39)

1 ( ) () € (7)

X

Wy \ VS —wn — W, —w,y \/E wN—we—wA,

X Jx(No, N{) Jo (e, €)

[

’
e

where we have performed the index replacement v — v and kept k., outside the brackets
for readability. Inserting the completeness relation for photons, Eq. (2.11), we obtain

~ ~ A ’ OJ
V/N'e |Vops[VNe) = —(1 — 2 VY N
< ¢ ’ pt’ e> ( a | | 2mNe wNo wNo

y 1 1
wy \ Vs —wy —wl —w,y

x JY(No, N§) Jo (e, e’) .

Ey=ke—k! \/g Wy — We — Wy

Nucleon+pion component incoming, nucleon component outgoing: For the
following calculation we start out from Eq. (5.31) and again perform the splitting of the
vertex operators (5.33). In order to exploit the spectator conditions (5.34), we will have
to render the double-primed photon momentum instead of the double-primed nucleon
momentum redundant in two terms (the ones involving the Ay, ny). Via Eq. (2.52) we

"
ND

Figure 5.3: Time-ordered diagrams for bare nucleon+pion incoming and bare nucleon

outgoing.
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replace

}C/l ‘li) kj/l
Z z Mo | (5.41)

" //
KUNTN

so that for Eq. (5.31) we can write

(V'N'€ |Vops |V Ne)

"0 1
(]. — Oé 27T AVV’ “ sz” k” MV”’Y)
Ne UWN #// " 1/(4}?([0

" "
\/WN, T wWr

" ~ ~
Dk CLJK//O w \IIN”/N”/TI"”
\/g — mN57 #'” w i /~/// T w///

(4) (4)

w —+ w
(4) ~(4) (4) VNo * T
x> ka (4)\/ ~(4) o0 Y /NG w @

(4) (4)

B (N K I By Bt (72 "|| lle)

w/ 1 o1 QJX[
o (1-a) (2m)* Ayy m > szQDkX/U (*9"”””) "
mly, /Wg\fo 7 w

" "
1 Dk/// ~m ~/// “No + W * 1
Wiy, W

X W e
N/ /N 7"
Vo 73(,0 \[ mNe'y W T [l L Tw Wl ’ Yo

(4)

+w

(4) WN \/T wie + wf

" (;@ZSD]G (4)\/7 o & ~(4) + oW N/Né“>7r<4>
N ﬂ'

(AN'N// (€l Brraco B (N1 NS

+ Ao (€ 1ol 7" Ao Bere (7KL |50 )

(5.42)
For the first term we then make use of the relations
K +FO + k. =0,
'” k”' ké’ k;’ =0,
= & (R~ NO) 5O (R — R = 63 (K — R9) 8 (Re — RY — RY) (5:43)
= jv A s Drasr Arer = wlv Brr ey Berer By s 80 10

For the third term we change the momentum to be integrated over (making the other the
redundant one):

()
DK DkY)
> —ar _Zi W (5.44)

ROME) Yh, RO
HNo TN
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Evaluating the Deltas and inserting the current expressions (5.35) for the vertex matrix
elements together with the nucleon—pion wave-function normalization (5.16), the com-
pleteness relations for photon polarization vectors, Eq. (2.11) and the index identifications
7" =~ and (Ny/7)® — (No/7)" we then obtain

<V’N’e’ | Vopt | Vﬂe)

1 Wy w, 1
=——a(l—a)le*Avy - N _ —
3 ol1=0) mne)® \| (i o,

WN w 1 1
—a(l- 2 Ayyr N _ =
* (L) el dvv \/ (e ¢ (i P 0y Y5~y — e~

1 dgka// wNO + UJ/I (5.45)
o /
X5 E / 7 \/ Ny O ——= YN Ny Ju(e;€)
w a// + w//
B TR T No
§ 1 ~n o~ w%‘) +own * v "
X T wNO w‘/ﬂ{ B WN//N,IITI'// J ( N )
— Wy oo 0
I 0 Ny ™

7 1
1 ~ion “No + W * v 1
+ -, w - —_— N//Tr/// J (ﬂ- 7r )

w. ’ )
w No =m T o N'/Ng o
NU T k)::/: 1 7]@,,{



Chapter 5. Overall Electromagnetic Form Factor

Nucleon component incoming, Nucleon+pion component outgoing:

Eq. (5.29) we have, analogously,

(V' N'7e! | Vo |V Ne)

1 WN w 1
= — — 1 - 2 A ’ - N <
2 a(l-a) el Avy \/(mz\/e)3 \/(m’Ne)3 W

1 1
X JY(Ny, N)) J,, (e, €
wﬁvo\[_%_%_“” ( 0) Ju( )ﬁ o
Fy=k! —k.
WN w 1 1
—a(l- 2 Ayyr N_ -
(1=l Avy \/ G \/ iyl s Voo ol

"
wNO + wy

1 dSk,// — ,
) Z / i \/T = YNy I (e, €')
il WrlN, m

T T!
KN TN T

" _|_ (A)H
/I I/l)

UJND
oMo * J, (
/// No — N'/N§'n" 0
“W / ///
No

k/” —k;\/,()-‘rk
k —k 7k'
" 1
Wi, +w
1 ~i No T Tz 7"
+ 7 OJNO (.d,n. // N//N(/]'w’” V(’]T , T )
~ 1 .
B Wi, + Wr R =K +E
Ey=ke—k.
& @/
L ~J
0
5, 0
N IN TN N7
e 6/
yal A
\/ »
Y

Ny

81

Via

(5.46)

Figure 5.4: Time-ordered diagrams for bare nucleon incoming and bare nucleon+pion

outgoing.



82 5.5. Diagrams
Nucleon+pion component incoming and outgoing: Upon inserting the splitting
of the vertex operators and the spectator conditions from Sec. 5.4, Eq. (5.32) becomes

— — /
(VNI | Vo [V NTe) = 2(2m)° 02 Ay [ S [

Dk/// X// er///
TS 0 *
X /// No Wr o i o N'/Ny'm'"
N 7'r
w74, :
Dk(4)
x>
(4) (4) 5\171)
KN TNg 0
§ : " DE" Tl 1
X Dk k 'u"f”"f) v (4)
N/ /NN w(4) M
Z INoZr s —wffy — wil — W]

B N R e T (547
ST “’ o \/ﬁ Yive g
KN TNg N

DY AR ol e R
(6 W W ~(6 N/N(6>7r<5>
(6)_(6)
K NoTNg

(Bt B (3 1B NS oo Ao (&5 [1 )

B g B (0] Ko [[7997) Ay v Ao (€7 |EEL )

b g S (e300 B (N[N0

+ A (4) Aﬂ.///ﬂ.(4) <6 HK He” //>AN(()5)N(()6) Ae//e <7T(5)’7H’ |K,,1;,y‘ ‘7‘('(6)>) .

Ng'' Ny
To proceed, we make use of the following relations:
e For terms one and two (left side of Fig. 5.5),
7(5) | 7(5) L T _
iy, + k& + k! + k=0,
) -
KO + kKO + k. =0,
—~5) =6 o - oo o - -
= (kY — kW) ° (KD — KO) = 8 (K + k! — k) 8* (K — k9) |

1 1
5 Ay n©® Drerre Aerer = — Aoie—ery Drern6) Derer 6 5) 0 0_5)_©
WN o o w7 HNgHNg TNy TNy
0

(5.48)
along with the index identifications 4’ — v and (No/m)* — (No/x)"

e For term two, in addition,

(4) (4)

Dk Dk

> ZZ =§ ZZ ng‘) (5.49)
W

(4) ) (4)
KN TNy T
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e For terms three and four (right side of Fig. 5.5),

K +FD + K+ B =0,
_‘X/{O—’—E‘/II{/_‘_E;:O’

= 0% (k) — ki) 0% (KD — K27y = 6% (k! + kY — kL) 0 (B9 — B2
1 1
= T)J(\;l) AN(')”N(S‘I) Aﬂ///ﬂ.(él) Ae”e = w—g A’Y”(e’—e) Aﬂ///ﬂ,@) Ae”e 5#/]@/0#5\‘713 67']/\/,67'1(\?0) R
0

(5.50)
along with the index identifications ~” —~, (No/m)®) — (No/m)"” and
(No/ﬂ')(G) — (No/’]'r)/, .

e For term four, in addition,

D 7(r6) Dk(ﬁ)
D™ _ Mo . (5.51)
G o

NO ™

Furthermore, employing the nucleon—pion wave-function normalization (5.16) and in-

serting the vertex matrix elements (5.35) along with the completeness relation for photons,

" "
NO NO

Figure 5.5: Time-ordered diagrams for bare nucleon+pion incoming and bare nu-
cleon+pion outgoing.
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Eq. (2.11), the result reads

(V'N'7'e! Vo |V Ne)

’ 3 1.1/ " "

_ 2162 A Wy wWN 1 d kﬂ' ~ion Yo +wr
— % e Ay S o | N T
(m/y,)3 my, 2w W wh No=m A\l o+ ot

Ne Ne Yo No 7 Ny s

1"
KN TNy Tm

/// " v / 1" "
oM ot w U* 1 ‘I'N/N” . J (67 € ) JV(NO ’ NO )
§ :\/ No W ~/// ~ N’/N”’Tr” " 0 7 P
B, o T Wn ° “No VS —wn —wp —wy
0

— N, T Wi 1 JY(e,e) I, (7", 7"
N : (e.¢) Jy (", ")

" N/ N//Tr/// N/N//Tr//
N-l-w’ NGy VS —wn —wl —w,y

+ oMo w?{,’o +wH U N 1 \I/N Ny J"(e, €') Ju (NG, No")
VR T s N s~y — e —

1’
Ko

” " "o
oo wNo+w7r * NN” ”J (6 B)J(Tr , T )
~ ’ 11t
No ¥ o N'/N{§'=m / \[ wN We — Wy
(5.52)

where we have kept w, (E'y — ke — k. in the first two terms and E’y =k — k. in

the second two terms) and wyy” /xm (k]<,’ /= kx, /T lgw in the first two terms and

k:;(,’o Jn = E;(,O = k, in the second two terms) for readability.

5.5.2 Covariant diagrams

We observe that, except for the pion probability factor « resp. (1 — a), the following

expressions are equal:

e Term 1 in (5.40) and term 1 in (5.45

)
e Term 2 in (5.40) and term 1 in (5.46
)

Term 2 in (5.45) and term 3 in (5.52

Term 3 in (5.45) and term 4 in (5.52

Term 2 in (5.46) and term 1 in (5.52

)
)
)
)
)
)

Term 3 in (5.46) and term 2 in (5.52
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so that via Eq. (5.27), the result for the overall optical potential reads

(V'N'e'|Vopt [V Ne)

_ (1 B a) \e|2 Avyyr wywny 1 (J"(NO,N(S) Jy (e e) n J¥ (N, N§) J,,(e,e’))
m?\/e WEVOWNO 20y \VS—WN —Wl —wy V5 — Wy —We —w,y

3.0 1" "

Fale? A fon L S /d’“ N T b e
3 N %N 7\ Wy W ~7r ~

My, 2w, W Wy, T wr

/// " v / "
r% o L+ wr g s L\IJN/N” o (e,€") J,(NY, Ng")
E : o ~/// " T 17 o™
/// +w © wNO

VS —wN —wl —w,y
~// wNO + w/// lII* 1 \Ij JV(e’ 6/) (]y(ﬂ_//7 7.r///)
~ 7’ =i N N// 17
V Wi, @ Wy, + Wy NN i /Ng'm VS —wn —wh —w,y

p- /// + w// 1 JV(67 6/) JU(N N/I/)
+ ZQ(WX]IO "'/l/ + \I]N//N/// " (,JX[/ \I/N/Nélﬂ_// 7
0

1”1 \/g_wN_we_w’Y
'U'NO

" " v / "o
~i =~ [“No Twr o 1 J"(e,€’) Jy(n", ")
Wiy wthy | =2—- T

0 1
“N,

’ Ittt T \I/ ! ot!
N'/N{'m w;{/ N/N§ \/g_wg\[—we_w'y
(5.53)
where in terms 1 (first line, left), 3 and 4 (third and fourth line) we have E = ke — k.
and kzx,’ /r = k” No/m T If7 and in terms 2 (ﬁrst line, right), 5 and 6 (fifth and sixth line)

we have k'y = k — k and k’” k” . Since in all terms, we have
k%o/ﬂ_ - kNO/ﬂ' ke - ké (554)

and the only Ev—dependent quantity, w., is independent of its sign, we see that except for
the propagators \/E% , terms 3 and 5 as well as terms 4 and 6 are each equal. Using
App. B.3 for combination of the two time orderings, exactly as we did in Sec. 3.1.6, we
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finally end up with

(V'N'€'|Vopt |V Ne)

Avvs
= (1-a) e vV 1/“’N 1/“’N —J” (No, N3) J, (e, ')
Wi,

3 1.1 "
2 VV Z d°k; = wN -I-w
Fale WNWN 5 QQ / w!! \ Wi, Wi\ = ‘I’N/N” "

//

NOTNOTN
" 17
wy. T wr 1
"o~ T No = T g% v / "
E w o~ U nrn ——J7 (e, e JUNN
& \/T /// _,’_w// N’ /N{'n R ( ) ) ( )

No

/ "
, Twr 1
* v / 1" "
~,/ +w”, N,/N(S/W”,WJ (Q,G)Jy(ﬂ' , T )
™

(5.55)
where Q? = —¢? is the negative of the photon four-momentum transfer squared. Note
that the three terms above correspond to a photon exchange of an electron with each of
the three legs in Fig. 5.1: The first term (first line) corresponds to exchange of a photon
with a “bare” nucleon (compare with Eq. (3.22) at the end of Sec. 3.1.6), the second term
(second to last line) corresponds to photon exchange with the (bare) nucleon inside the
pion loop, and the third term (last line) to photon exchange with the pion. The two
possible time orderings have now been merged into a covariant photon propagator; the

result being pictured in Fig. 5.6.

5.6 Calculation of nucleon current

In order to obtain an overall expression for the electromagnetic nucleon currrent including
pion loop effects, we equate the result in Eq. (5.55) to the general expression for the
invariant one-photon exchange amplitude on hadron level, Eq. (3.22). Furthermore, we
transform the integration over the pion momenta from the velocity state (overall c.o.m.
frame) to the c.o.m. frame of the nucleon—pion subsystem (coordinates with a “tilde”) in
accordance with App. B.1: The transformation prescription reads

W T 4

B = “No W PNo T g3 (5.56)

! N/ " ™
wNo w NO + w’ﬂ'
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e e e
” Y Y
Y N + +
o TN

Figure 5.6: Covariant one-photon-exchange amplitude for electron scattering off a nucleon
that consists of a bare nucleon and a bare nucleon+pion component. The black blob
represents the overall photon-nucleon vertex, which consists of the three contributions
shown in the second line. Open circles represent electromagnetic and strong form factors
of a bare nucleon.

We then obtain the following expression for the overall nucleon current:

JY(N,N")

/
= (1= a) |22 [ 225 ¥ (No, NG)
OJNO OJNO
BR[Oy, ol
e B T e Vs e 557
o M

T g
“NO N0 4

11 1
wy T wy 1
2 : [~ ~ N,
(A)X]IO ~/”D + =~ ql}k\f//Né"Tr// a JV(N NI/I)
i Wr w

No
"
wyl
/// ~// + s \I/);V//N“‘;r/“ 1”/ JV(ﬂ'”ﬂTW) )
—l—w 0 Wy

The nucleon—pion wave function becomes (in its own rest frame, cf. Eq. (A.12)), after

insertion of the pseudoscalar Nym-vertex (4.7),

B —i 9Ny G(QVQ ) Upry, (kNO) 'Y Uin, (kNo) 9~(TNO’ TNO ’ 7-7r) VvV1i—«

\I/N/N// " = 5
° 2\/2(27)% \ fmn, @, @ (my — &, — &) va

(5.58)

(analogously for triple-primed expressions), where G (@Z) is the strong nucleon form factor

in dependence of the squared four-momentum transferred to the nucleon by the pion.
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Since, due to the nature of the electromagnetic interaction, 7y, = TJIVO and
TNo/x = Ty = » the product of flavor functions in Eq. (5.57) becomes

FArY) 1= F(TNos TNy T2 ) F (TN TR T7) (5.59)

s

and thus, via Eq. (2.69), takes on the values

F2(0) = 6 and F2(£1) =2 (1 - 5%75%) . (5.60)

"
TNoTNg

Due to the nature of its derivation, the wave function (5.58) is defined in the rest frame
of the nucleon—pion subsystem (coordinates with a “tilde”). In order to obtain the wave
function in the boosted system (overall rest frame), we proceed analogously to Sec. 3.3.2

using Eq. (5.13), whence

Wy, (K,) 7 g, ()

~11 ~
=

Fngy .~ ~ ) kn,
— Z D/L'](IO;LN (Ux/'(]w)’ ﬁ) uﬁxfo (kX/o) 75 uﬁNO (kNO) D/"NoﬁNo (B(HN0)7 m]\: )
BNg P, 0 o
(5.61)

(and likewise for triple-primed states), where vf([mr is the relativistic velocity of the
nucleon—pion subsystem with invariant mass mpy,, cf. Egs. (5.13) and (5.14). Since
in the incoming and outgoing states, where there is no pion present, we have a boost with
k
UNy = m}]\;(:]
in Eq. (5.61) reduces to a Kronecker delta (compare to Eq. (3.56)!). The overall Wigner

and also, Uy, = 0, we see that via Eq. (2.43), the second Wigner-D-function

factor which then enters equation (5.57) is

~1 ~I1
—

-

k
~, " * " No
DHXIO HNg (B('UNmr)? No) Du;\’,’o /J«x/o (B('UNmr)v mNO) (562)
for the first part (nucleon struck) and
= ~1
k k
. A No *// = n No
Dy, s, (BWigr): mNO) Diiw e (B, mNo) (5.63)

for the second part (pion struck; note that due to the spectator conditions, uf = iy, !,

with a sum over each spin polarization with a “tilde” implied.
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The final result for the electromagnetic nucleon current reads

JY(N,N')
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(5.64)
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W, + wy wl No ™ Ng

where « is the pion loop probability, my, the bare nucleon mass, gy, the bare strong
nucleon—pion coupling constant, G(@Q) the strong form factor of the bare nucleon,
JY(N{, N}") the electromagnetic current of the bare nucleon in the intermediate state
and J ”( " 7"} the corresponding electromagnetic pion current. The evaluation of these
quantities using the results in App. A and Secs. 3.6 and 4.6 as well as in [Biel1] is explained
in Sec. 5.7.

5.6.1 Kinematics

For the system containing the electron and the physical nucleon, we choose the same
kinematics as in Sec. 3.4:

0
Q
kN _ 2 k—oo _% q= Q
0 0 ’ 0 ’
k2 - k 0
(5.65)
VK2 +mi; L
Q Q
k;V:kN+q: 2 k—oo D)
0 0
kz_Qj k
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For the pion momentum we make no assumptions. Since we will use spherical integra-

tion in the “tilde” frame, which is the rest frame of the physical nucleon, we use the

MmN, \/ K2+ m2

parametrization

Ty = 0 o — % sinf cos ¢
’ 0 , " % sin 6 sin ¢
0 % cos
(5.66)
\/ R+ mE,
~I! ~ ~I! ~ ~ 08
p = o ~ —% sin 0 cos
Fng = vy —Fy = R = | hsinfeose
—K sinfsin ¢
—F cosf
with the integration measure
PPk’ =72 sinfdrdfdg . (5.67)

The 4-momentum transfer for pion emission/absorption in the “tilde” frame thus reads

2
my, — /K> +m%\,0

2 ~ . 7
~ ~ ~ 0
Q2 =~ =~ (Fn — ) = - * ein§ cos ¢

% sinfsin ¢ (5.68)
—2miy, +2my, \/R2 +m3, .

7 cosf
5.7 Numerical implementation

For the numerical treatment of the result (5.64) we use a similar procedure as in Secs. 3.5
and 4.5. However, we first have to clarify some points on the “bare” quantities we will
use.

5.7.1 Form-factor input

Pion electromagnetic form factor: The electromagnetic current for a charged pion
reads [EW88]
TV (rF m ) = 2G(Q7) (kY + k) (5.69)

where G (Q?) is the electromagnetic pion form factor in dependence of four-momentum
transfer squared. We take the result from [Biell] and parametrize it, like the strong
7No Ny form factor (cf. Eq. 4.46), in the form

G (QY) = —————— (5.70)

with A2 =0.67 and A2 =1.59.
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Bare electromagnetic nucleon form factors: The -electromagnetic current
JY(NY,NY') in (5.64) is “bare”, i.e. it relates to a nucleon with bare mass my,. We
thus have to readjust the results of Chap. 3, which we obtained for the electromagnetic
nucleon form factors leaving out the pion cloud.

Recall that these have been extracted from a microscopic expression for the physical
nucleon current J” (N, N'), Eq. (3.58), which uses the three-quark wave function obtained
by Schlumpf [Schl92]. This wave function has been refitted by Pasquini and Boffi [PB07]
to yield the best possible results for a problem (bare nucleon plus meson cloud) similar
to the one we are dealing with here. We thus repeat the same procedure as described in
Chap. 3, this time using the Pasquini-Boffi wave function, and use a parametrization of
the result as described in Sec. 3.6 as input.

Note that in the main analytic result of Chap. 3, Eq. (3.58), the only dependence of
the nucleon current on the nucleon mass is via the \/wh wy factor (equals k% + m% in
the kinematics (3.65)) in the first line. Since we use the infinite momentum frame with
k — oo, it is irrelevant which nucleon mass is used in the currents. The (normalized)
current of the bare nucleon and the three-quark-contribution to the physical nucleon
current differ by just a factor (1 — «). Taking the physical nucleon mass in Egs. (2.58)
and (3.70) thus already gives the three-quark-contribution to the electromagnetic (Sachs)
form factors of the physical nucleon. We finally use Eq. (2.57) in combination with (2.9)
with bare nucleon masses my, instead of physical ones, i.e. the replacement

By =% MNo p, — Mo g0 (5.71)

e i B 1ol

to obtain the bare nucleon current J”(Ng, Ny”).

Bare nucleon—pion strong form factor: In what follows, we will restrict ourselves
to pseudoscalar coupling. Since we start with a given 3-quark wave function of the bare
nucleon instead of solving the pure confinement problem, we have to determine the bare
nucleon mass mg. This cannot be done directly by solving the equation for nucleon-mass
renormalization due to pion loops, since mg enters also the mNgNy coupling constant
and the strong form factor, which are again needed to calculate the pion-loop kernel for
the mass-renormalization equation. We thus employ a self-consistent iteration procedure
which is sketched in Fig. 5.7:

First note that we can determine the quantitites mpy, and subsequently « from
Egs. (A.15) and (A.13). However, for this we need the bare nucleon—pion vertex,
<N67r’||K;LHNO> = gn, J°(No, N}) . In principle, this vertex can be obtained from the
result for the strong pseudoscalar current in Eq. (4.33). However, we know neither the
bare nucleon mass my, nor the bare nucleon—pion coupling constant gy,. We therefore
do the following: First, we evaluate Eq. (4.33) for the physical nucleon mass, as has al-
ready been done in Chap. 4, this time with the already obtained quark coupling constant
g = 3.55 (which we keep constant). We then obtain a new (“bare”) nucleon—pion coupl-

ing constant gy, and new parametrizations A;, Ay of the strong form factor which we
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feed back into equation (A.15) to obtain a new nucleon mass m/y which is fed back into
Egs. (4.33) (replacing my wherever needed), and so on. After 4 iterations the values of
mYy, and gj converge with sufficient precision to give the desired values my, and gy,
for the bare nucleon. As a side product, we also obtain the pion loop probability « via
Eq. (A.13). The results are shown in Tab. 5.1.

determination of
my, g mNoNo coupling gy, and strong IN,
form factor (parametrization)

/ /
m'y, A1, As, g,

determination of
my bare nucleon mass m'N0 and MmN, , O
pion loop probability a

Figure 5.7: Flow chart for self-consistent calculation of wNNgNy coupling, vertex form

factor, bare nucleon mass and pion-loop probability a given the 3¢ wave function of the
bare nucleon.

Run IN, Ay Ay | miy, o
1| 13.00 0.648 1.65 | 1.08 0.12
2 | 1487 0.634 1.51 | 1.10 0.13
3] 1516 0.631 1.51 | 1.11 0.14
411530 0.631 148 | 1.11 0.14

Table 5.1: Iterations for the determination of the bare nucleon mass my,, the bare

nucleon—pion coupling constant gy, and the pion loop probability a.
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5.7.2 Class structure in C+-+

Functions for Pauli and Dirac matrices, Matrix2cd pauli (int i) and Matrix4cd
dirac (int i), are defined globally. So are the fits for the pion electromagnetic
form factor (5.70), double pielmagff (double gsquared) the proton and neutron
electric and magnetic Sachs form factors (Eq. (3.72) and following table as well as
Eq. (3.73)), double pelff (double gsquared), double pmagff (double gsquared),
double nelff (double gsquared) and double nmagff (double gsquared), as well as
the strong nucleon—pion form factor (4.46):

double strongff (Vector4d kin,Vector4d kout){
double 11 = 0.554; double 12 = 0.823;
// fit parameters
double Q2 = - pow((kin(0)-kout(0)),2) + pow((kin(1l)-kout(1)),2)
+ pow((kin(2)-kout(2)),2) + pow((kin(3)-kout(3)),2);
// momentum transfer squared
return 1/(1 + Q2/11 + pow(Q2/12,2)); }

Any quantities which depend on the momenta NX,O, E;; of the nucleon and the pion in
the intermediate state are again calculated in a class called Mompart which has a structure
very similar to the one we used in Sec. 3.5.1. It is initialized again and again for each
point of the Monte Carlo integration with the 3 independent momentum components
of the pion, double karray [3] (spherical coordinates) and a pointer to parameters,
InputParams * params, where the struct InputParams now contains parameters like
the forward momentum of the nucleon (double k), the momentum transfer by the photon
(double Q), the double value of the nucleon isospin and outgoing spin projections (int
taull, muNpr), double nucleon and pion isospins in the intermediate state (int tauN02pr,
taupi2pr), which hadron in the intermediate state is to be struck by the photon (char
struckhadron), the number of MC integration points (size_t intpoints) as well as the
bare nucleon mass and the pion loop probability (double mNO, alpha).

The public functions of the Mompart class are: The Wigner rotations Matrix2cd
wigrotfactor2pr() and Matrix2cd wigrotfactor3prstar(), the nucleon—pion wave
functions Matrix2cd NOpiwavefunction() and Matrix2cd NOpiwavefunctionprst(),
the electromagnetic currents of the nucleon and the pion in the intermediate state,
Matrix2cd nucleoncurrent() and double pioncurrent(), as well as a prefactor
double prefactor(). Note that all but the last two of these functions are complex
2x2 matrices in their spin polarization components.

The private functions are once again the Lorentz boost with 4-velocity u
and its inverse in standard (2.35), (2.36) and SL(2,C) (2.40) representations,
Matrix4d [inv]boost (Vector4d u) and Matrix2cd [inv]spinboost (Vector4d u).
Also, the generic currents ﬂu/(lz’)'y”uﬂ(lz) and ﬁu/(lg’) [v*,7*] UH(E) which are
needed for constructing the electromagnetic nucleon current from the form fac-
tors, cf. Eq. (2.57): Matrix2cd currentmatrix (Vector4d kin, Vector4d kout, int
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mu) and Matrix2cd currentmatrix (Vector4d kin, Vector4d kout, int mu, int
nu) (overloaded function), as matrices in the spin polarizations; for details see Sec. 3.5.4.
Note, however, that these are currents for the “bare” nucleon, i.e. in these definitions,
the bare nucleon mass mNO is used.

In what follows, the class initialization and the more important or less obvious func-
tions are discussed in detail.

5.7.3 Kinematic quantities

The initialization for the local variables reads

Mompart: :Mompart (double karray[3] , InputParams * params):

kappatilde (karray[0]), thetatilde (karray[1]),
phitilde (karray[2]), k (params->k), Q (params->Q),
struckhadron (params->struckhadron),
alpha(params->alpha), mNO(params->mNO),
tauNO2pr (params->tauNO2pr), taupil2pr (params->taupi2pr),

muNpr (params->muNpr), tauN (params->taulN)

We then (in the part written in curly brackets in the code) start out by initializing the
4-momenta of the nucleon and the pion in the “tilde” frame in spherical coordinates,
Eq. (5.66):

Vector4dd kNOtilde, kNOtilde2pr, kpitilde2pr; //in class declaration

kNOtilde << mNO , O , O , O;

kpitilde2pr << sqrt(pow(kappatilde,2) + pow(mpi,2)),
kappatilde*sin(thetatilde)*cos(phitilde),
kappatilde*sin(thetatilde)*sin(phitilde),
kappatilde*cos(thetatilde);

kNOtilde2pr << sqrt(pow(kappatilde,2) + pow(mNO,2)),
- kappatilde*sin(thetatilde)*cos(phitilde),
- kappatilde*sin(thetatilde)*sin(phitilde),
- kappatilde*cos(thetatilde);

Following this, we introduce the invariant mass of the Ny7 subsystem and its velocity by
means of Eq. (5.14) using the kinematics (5.65),
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double mcl2pr; Vector4d vcl2pr; //in class declaration
mcl2pr = kNOtilde2pr (0)+kpitilde2pr(0);

vcl2pr << sqrt(pow(k,2)+pow(mcl2pr,2))/mcl2pr,
-Q/ (2*mcl2pr),
0,
sqrt (pow(k,2)-pow(Q,2) /4) /mcl2pr;

Intermediate nucleon and pion momenta in the overall c.o.m. frame are obtained via a
boost as defined in (2.35) with velocity vcl2pr:

Vector4d kNO2pr, kpi2pr; //in class declaration
kNO2pr = boost(vcl2pr)*kNOtilde2pr;
kpi2pr = boost(vcl2pr)*kpitilde2pr;

In the boosted frame the momentum transfer to the bare nucleon or the pion in the
intermediate state (depending on the diagram) is the same as the one to the physical
nucleon as a whole in (5.65). Via the spectator conditions (5.34) the other particle remains

unaffected:

Vector4d kNO3pr, kpi3pr; //in class declaration

if (struckhadron == ’N’){

kNO3pr(1) = kNO2pr(1) + Q;

kNO3pr(2) = kNO2pr(2);

kNO3pr(3) = kNO2pr(3);

kNO3pr(0) = sqrt(pow(mNO,2)+pow (kNO3pr (1) ,2)+pow(kNO3pr(2),2)+...);

kpi3pr = kpi2pr;}

else if (struckhadron == ’pi’){

kpi3pr(1) = kpi2pr(1) + Q;

kpi3pr(2) = kpi2pr(2);

kpi3pr(3) = kpi2pr(3);

kpi3pr(0) = sqrt(pow(mpi,2)+pow(kpi3dpr(1),2)+pow(kpi3dpr(2),2)+...);

kNO3pr = kNO2pr;?}

We then get the triple-primed invariant mass and velocity (5.14) fo the Nym subsystem
(in the kinematics (5.65)) via



96 5.7. Numerical implementation

double mcl3pr; Vector4d vcl3pr; //in class declaration

mcl3pr = sqrt(pow((kNO3pr(0) + kpi3pr(0)),2) - pow(k,2));
vcl3pr << (sqrt(pow(k,2) + pow(mcl3pr,2))/mcl3pr) ,

Q/ (2*mcl3pr) ,

0,

(sqrt(pow(k,2) - pow(Q,2)/4)/mcl3pr);

and the triple-primed nucleon and pion momenta in the “tilde” frame via an inverse boost
(2.36):

Vector4d kNOtilde3pr, kpitilde3pr; //in class declaration
kNOtilde3pr = invboost (vcl3pr)*kNO3pr;
kpitilde3pr = invboost(vcl3pr)*kpi3pr;

This ends the initialization of the class Mompart. In what follows, we discuss its public

functions.

5.7.4 Currents and wave functions from form factors

The following public function of the Mompart class yields the 0-component of the elec-
tromagnetic current of the intermediate, bare nucleon (double- and triple-primed states,
momenta kNO2pr and kNO3pr) as a complex 2x2 matrix in spin polarization components
int muNO2pr, muNO3pr = -1,1. First the local variables for the electric and magnetic
Sachs form factors, GE and GM, for the kind of particle determined by tauNO2pr, are set to
the values given in Sec. 3.6, double n/p/el/magff (pow(Q,2)) (see above). Since these
fits describe form factors determined for a physical rather than bare nucleon, we then use
the physical nucleon mass mN to determine the corresponding Dirac and Pauli form factors
double F1 and double F2 via Egs. (2.58) and additionally, double F2 gets multiplied by
a factor mNO/mN as explained in the second paragraph of Sec. 5.7.1. The zero component of
the nucleon current is then obtained via Eq. (2.57) with bare nucleon masses mNO instead

of physical ones.
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Matrix2cd Mompart::nucleoncurrent (){
double GE, GM; // Sachs form factors

if (tauNO2pr == -1){ //neutron
GE = nelff(pow(Q,2)); GM = nmagff (pow(Q,2));}
else if (tauNO2pr == 1){ //proton
GE = pelff(pow(Q,2)); GM = pmagff (pow(Q,2));}

double F1 = (GE + pow(Q,2)/(4*pow(mN,2)) * GM)/
(1 + pow(Q,2)/(4*xpow(mN,2)) );
double F2 = mNO/mN * (GM-GE)/(1+pow(Q,2)/(4*pow(mN,2)));

Matrix2cd nuclcurrent = Fl*currentmatrix(kNOQPr,kNOBpr,O);
for (int nu =1; nu<=3; nu++){
nuclcurrent += F2 * (kNO3pr-kNO2pr) (nu)/(4*mNO) *
currentmatrix (kNO2pr,kNO3pr,0,nu); }

return nuclcurrent; }

The pion current (5.69) depends on the isospin of the pion. Its zero component (which is

the only one we need) reads

double Mompart::pioncurrent (){ int e;

if (taupi2pr==-2) e=-1; else if (taupi2pr==0) e=0; else e=1;

return e * pielmagff (Qpi23squared) * (kpi2pr+kpi3pr) (0); }

Note that we use both kNO3pr and kpi3pr even though one of them (depending on the
parameter struckhadron) is always equal to kNO2pr resp. kpi2pr. The nucleon—pion
wave functions (5.58) (again implemented as complex 2X2 matrices in spin polarization
components muNOtilde, muNOtilde2pr) read

Matrix2cd Mompart::NOpiwavefunction () { return
sqrt ((1-alpha)/alpha) *gNO*strongff (kNOtilde,kNOtilde2pr) *
currentmatrix(kNOtilde,kNOtilde2pr,5) /
(2*sqrt (2*pow (2%pi,3)) *
sqrt (mNO*kNOtilde2pr (0) *kpitilde2pr(0)) *
(mN-kNOtilde2pr (0)-kpitilde2pr(0))); }

and
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Matrix2cd Mompart: :NOpiwavefunctionprst () { return
sqrt ((1-alpha)/alpha)*gNO*strongff (kNOtilde,kNOtilde3pr) *
currentmatrix (kNOtilde3pr,kNOtilde,5) /
(2*sqrt (2xpow (2*pi,3)) *
sqrt (mNO*kNOtilde3pr (0) *kpitilde3pr(0)) *
(mN-kNOtilde3pr (0)-kpitilde3pr(0))); }

where Matrix2cd currentmatrix is defined analogously to Sec. 3.5.4 and the isospin
dependence F2(7/) has been left out for now.

5.7.5 Wigner rotations

The Wigner rotations (5.62) (and (5.63), but this case is included by construction) are
implemented as follows:

Matrix2cd Mompart::wigrotfactor2pr () { return
invspinboost (kNO2pr/mNO) *

spinboost (vcl2pr) *

spinboost (kNOtilde2pr/mNO); }

and

Matrix2cd Mompart::wigrotfactor3prstar () { return
invspinboost (kNOtilde3pr/mNO) *

invspinboost (vcl3pr) *

spinboost (kNO3pr/mNO); }

The final public function of the Mompart class is the remaining prefactor double

Mompart: :prefactor () which is trivial. This ends the description of the Mompart class.

5.7.6 Bare part

The v = 0 component of the bare nucleon current (first line) in Eq. (5.64) is obtained
as a 2x2 matrix in spin polarizations p/y and pun (muNpr and muN) as follows: First, the
extraction of Dirac and Pauli form factors F1 and F2 from Sec. 3.6 works exactly as in

Sec. 5.7.4. Then, in the kinematics (5.65), we first calculate the forward momentum of
mpy,
myn
physical by bare quantities), the bare nucleon current:

the bare nucleon, ko := k , then the prefactor, and finally, via Eq. (3.70) (replace
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Matrix2d barepart (InputParams inp){
Matrix2d nuclcurrent;
double kO = inp.mNO/mN * inp.k;

double prefactor = (l-inp.alpha) * sqrt(pow(inp.k,2)+pow(mN,2)) /
sqrt (pow(k0,2) +pow(inp.mN0,2)) ;

nuclcurrent (0,0) = 2xk0*F1;
nuclcurrent (1,0) = (kO*inp.Q/inp.mNO) * F2;
nuclcurrent (0,1) = -(kO*inp.Q/inp.mNO) * F2;
nuclcurrent (1,1) = 2xk0xF1;

return prefactor * nuclcurrent; }




100 5.7. Numerical implementation

5.7.7 Integration

The integrand in (5.64) reads

complex<double> integrand (double karray[3], InputParams*params){
Mompart mp (karray, params);

Matrix2cd intgrmatrix;

if (params->struckhadron==’N’){
intgrmatrix = mp.prefactor () *
(params->taupi2pr == 0 7 1 : 2)*
mp.NOpiwavefunctionprst () *
mp.wigrotfactor3prstar () *
mp.nucleoncurrent ()*
mp.wigrotfactor2pr () *
mp.NOpiwavefunction Q) ;
}
else if (params->struckhadron=="p’){
intgrmatrix = mp.prefactor () *
(params->taupi2pr == 0 7 1 : 2)*
mp.NOpiwavefunctionprst () *
mp.wigrotfactor3prstar () *
mp.pioncurrent () *
mp.wigrotfactor2pr () *
mp.NOpiwavefunction () ;

} else intgrmatrix << 0,0,0,0;

return intgrmatrix((1-params->mulNpr)/2, (1-muN)/2); }

where instead of the sums over iy, , 7, , #y, and 'y in the first part resp. a7y, ,

and ﬁ%o in the second part we use simple matrix multiplication. Summation over T]’\’,O
resp. 7./ is achieved at a higher level (via params->taupi2pr).

Integration is then performed exactly as in Sec. 3.5.6, except only in three dimen-
sions, with double kmax[] = {10,3.1416,6.2832}. A simple main function writing the
results for various values of the momentum transfer Q and both outgoing nucleon spin

polarizations muNpr to an ASCII output file (CSV table) out.csv could look like this:
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int main(){

InputParams inpar;
inpar.k = 1000000; // forward momentum of nucleon
inpar.intpoints = 10000; // number of MC integration points
inpar.tauN = 1 // for proton, -1 for neutron
inpar.alpha = 0.10; inpar.mNO = 1.00; // from iteration

char part = ’b’> // for bare part, ’N’ for nucleon, ’p’ for pion struck

ofstream outfile; outfile.open("out.csv");

outfile << "Q72;;samespin;spinflip" << endl << endl;

for (inpar.Q=0.0001; inpar.Q<2.0002; inpar.Q+=0.1){
outfile << pow(inpar.Q,2) << ";;" ;
for (inpar.muNpr=1; inpar.muNpr>=-1; inpar.mulNpr-=2){
double result = O;

if (part == ’b’){
result = barepart (inpar) ((1-inpar.muNpr)/2, (1-muN)/2); }

else {inpar.struckhadron = part;

if (part == ’p’) {

inpar.tauNO2pr = -inpar.tauN; //pi~0 loops give no contrib.
inpar.taupi2pr = inpar.tauN - inpar.tauNO2pr;

result = integration(inpar);

}

else if (part == ’N’) {

for (inpar.tauNO2pr=-1; inpar.tauNO2pr<=1; inpar.tauN02pr+=2){
inpar.taupi2pr = inpar.tauN - inpar.tauNO2pr;

result += integration(inpar); }
} else return (0); } // end if-else

outfile << result << ";"; } // end for (inpar.mulNpr)
outfile << endl; } // end for (inpar.Q)

outfile.close(); return (0); }

Depending on the setting for char part, the result yields either the bare part (first
term) of the nucleon current (5.64), or the pion loop contribution for the struck nucleon
(second term) or the struck pion (third term); the form factors are then obtained via

Eq. (3.70) (using physical nucleon masses!) using a tool of choice.
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5.8 Results

5.8.1 Summary of results

The main results of our calculations as well as a comparison with results by Pasquini
and Boffi [PB07] and experimental values [PDG]| are shown in Tab. 5.2 and in figures
referenced therein. For results concerning the mean quadratic charge radius, which (in

the relativistic case) is defined as

2 v 4GE(Q%)
(rgn) :=—6 1@ ooy (5.72)
see Tab. 5.3.
loop N loop 7 loop bare sum f.f.  Fig.
Qp 0.05 0.09 0.14 0.86 1.0 G% 58
p 0.04 0.14 0.19 2.39 258 || Gh, 5.9
Qn . . . . 0.0 G% 5.10
n 0.01 -0.14 | —0.13 | —1.45 || —1.58 || G}; 5.11
Qp [PBOT] . . 0.09 0.91 1.0 G,
Uy [PBOT] 0.18 . 0.35 2.52 2.87 || G&,
Q. [PBO7] . . . . 0.0 Gt
un [PBO7] | — 0.12 . —0.29 | —1.51 || —1.80 [
@, (Ch. 3) . . . . 1.0 G 3.6
tp (Ch. 3) . . . . 2.79 || Gh, 3.7
Q@n (Ch. 3) . . . . 0.0 G% 35
tn, (Ch. 3) . . . . —1.69 T 3.8
Q, [PDG] . . . . 1.0
1y [PDG] . . . . 2.79
Q. [PDG] . . . . 0.0
fin [PDG] . . . . -1.91

Table 5.2: Overview of results for the nucleon including the pion loop (this chapter),
the front-form calculations by Pasquini and Boffi [PB07], the nucleon without pionic
contribution (Chap. 3), as well as current (CODATA) experimental values [PDG]. For
each category we list the contribution to the overall proton charge @, (in units of |e]), to
the magnetic moment of the proton p,, the overall neutron charge @, (for completeness),
as well as the contribution to the magnetic moment of the neutron g,,.

Left to right: Contribution of the loop nucleon, of the loop pion, overall loop contribution,
contribution of the bare nucleon, sum of all contributions, corresponding Sachs form factor

with reference to figure where form factor is plotted.
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Figure 5.8: Our predictions for the electric proton form factor G% normalized to the
dipole form factor Gp, as a function of Q2 = —¢? on a logarithmic scale. Total result
and contribution of the bare nucleon and the pion loops correspond to solid, dotted and

dashed lines, respectively. Shaded area: fit of experimental data (including uncertainties)

by Puckett [Pucl0].
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Figure 5.9: Our predictions for the magnetic proton form factor G, normalized to the
dipole form factor Gp, as a function of @2 = —¢? on a logarithmic scale. Total result
and contribution of the bare nucleon and the pion loops correspond to solid, dotted and
dashed lines, respectively. Shaded area: fit of experimental data (including uncertainties)

by Puckett [Pucl0].
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Figure 5.10: Our predictions for the electric neutron form factor G% as a function of
Q? = —¢?. Total result and contribution of the bare nucleon and the pion loops correspond
to solid, dotted and dashed lines, respectively. Shaded area: fit of experimental data by
Kelly [Kel04].
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Figure 5.11: Our predictions for the magnetic neutron form factor G, normalized to the
dipole form factor Gp, as a function of Q2 = —¢? on a logarithmic scale. Total result
and contribution of the bare nucleon and the pion loops correspond to solid, dotted and
dashed lines, respectively. Shaded area: Fit of experimental data by Kelly [Kel04].
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rop () [ 13, ()
bare part 0.77 -0.023
incl. 7-loop 0.82 -0.050
bare nucleon (Ch. 3) 0.86 -0.026
bare part [PBO7] 0.80 -0.010
incl. meson loop [PB07] 0.88 -0.063
exp. [PDG] (JANS*13]) | 0.88 (0.84) | -0.115

Table 5.3: Charge radii of the nucleon including the pion loop (contribution of the bare
part and overall result) as well as of the bare nucleon, compared with results by Pasquini
and Bofli ([PB07] using an SU(6)-symmetric wave function with the momentum part
(3.33)), and experimental values [PDG]. For the proton, the current value of measure-
ments involving muonic hydrogen, giving rise to the so-called “proton radius puzzle”, is

included in brackets [ANS™13].

5.8.2 Discussion of results

We start the discussion of our results with the static properties of the nucleon. These are
mainly the magnetic moment of the nucleon and its mean quadratic charge radius (5.72).
In Tab. 5.2 our predictions for the nucleon magnetic moments are decomposed into the
various contributions and compared with experimental results as well as the results of the
front-form calculations of Ref. [PB07], from which we have taken our parametrisation of
the three-quark wave function of the bare nucleon. What we observe already is that the
relative size of the loop contribution is 7% of the total proton magnetic moment and 8.5%
of the total neutron magnetic moment, the major part coming from the photon coupling
to the pion. Our total result is smaller than the experimental one. It deviates by about 7%
for the proton and 17% for the neutron. At this point, however, we want to emphasize that
our main goal was not to reproduce the experimental data as good as possible by adapting
the 3¢g-wave-function parameters and the mg-coupling. We rather aimed at an extension
of the point-form approach so that pion-cloud effects can be appropriately described and
we wanted to give a first estimate for the size of such effects.

When comparing our results with those of Ref. [PB07], one has to keep a few points in
mind: Unlike the authors of [PB07], who took a phenomenological m Ny Ny form factor (of
Gaussian form), we have calculated both electromagnetic form factors of the bare nucleon
and the strong m Ny Ny vertex form factor with the same microscopic input, namely the 3¢-
bound-state wave function given in Eq. (3.54). With our value of the wg-coupling and this
wave function, our valence-Fock-state probability becomes (1 — «) = 86% (cf. Tab. 5.1),
while Pasquini and Boffi obtained 91%. For the coupling of the pion to the physical

nucleon we get
Ly 2 1
A InNN = (1-a) EQWNONO = 13.78,

a value similar to the one used in Ref. [PB07] (namely 13.6). A further difference is that
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the authors of Ref. [PB07], in addition to #N, took into account also Np, Nw, Ar and
Ap intermediate states, with A7 being the most important one. For all the intermediate
states they, however, took the physical masses of the hadrons. To be consistent within our
simple model we, on the other hand, use bare nucleon states with the corresponding bare
masses within the pion loop. Taking into account the different probabilities for finding the
bare nucleon in the physical nucleon, our results for the bare contribution to the magnetic
moments appear to be consistent with those of Ref. [PB07].

The second interesting static quantity is the mean quadratic charge radius,
cf. Eq. (5.72). In Tab. 5.3 we again compare our results with those of Ref. [PB07] as
well as experiment. We find that in our results for the proton, the pion loop accounts for
approx. 6% of the (linear) charge radius, while if we ignore the pion loop contribution,
the proton appears about 5% larger. Also, our bare part of the proton radius is approx.
4% smaller than that found by Pasquini and Boffi, while our overall proton radius is
about 7% smaller than theirs. Comparing with experiment, we see that our result for the
nucleon ignoring the pion loop (0.86 fm) get very close to the CODATA value of 0.88 fm,
while the result including the pion loop (0.82 fm) is closer to newer measurements using
myonic hydrogen that yield a proton radius of 0.84 fm [ANST13]. This huge and as of
today unexplained discrepancy in measurements is known as the proton radius puzzle.

For the neutron quadratic charge radius we obtain similar results as Pasquini and
Boffi; however, the difference between the bare contribution (which in our case is almost
the same as the result if we ignore any meson loops) and the overall result is much less
pronounced in our case and also, we don’t even reach 50% of the experimental value of
—0.115 fm?2. Pasquini and Boffi managed to reproduce this value approximately only by
including an s’-compontent in their wave function, however for comparability, we only
included their results for a pure s-wave with SU(6)-symmetry.

Our results for the nucleon electromagnetic form factors as functions of the (nega-
tive) four-momentum transfer squared are shown in Figs. 5.8—5.11 and compared with
parametrizations of the experimental data. The form factors are normalized to the dipole
form to make discrepancies with experiment and the experimental uncertainties more
visible (except Fig. 5.10) and a logarithmic scale has been chosen for the abscissa to
emphasize the region below 1 GeV.

We achieve reasonable agreement with experiment for the proton electric and magnetic
form factor and the neutron magnetic form factor. The reproduction of the neutron
electric form factor is less satisfactory, but as we have remarked already in Sec. 3.6, the
absolute magnitude of this quantity is small and the actual size of the experimental error
bars is larger than indicated by the shaded band. Also Pasquini and Boffi encountered the
same problem; in order to better reproduce experimental results for the neutron electric
form factor, they included an s’-component in their wave function, which we have not.
The size of the pionic contribution to all the nucleon form factors is comparable to the one
found in Refs. [PB07, CM12]. A significant effect of the non-valence 3¢ + m component

on the form factors is only observed for momentum transfers Q2 < 0.5GeV? |



Chapter 6

Summary and Outlook

Scattering experiments with electrons are an important method to determine the spatial
distribution of electric charge and magnetic moment within a nucleon, i.e. proton or
neutron. Relativistic constituent quark models are one of the most important means to
provide a theoretical explanation of these distributions in terms of subnuclear degrees of
freedom. They describe the nucleon as consisting of three valence (constituent) quarks.
Such models are usually based on one of the three forms of relativistic dynamics found by
Dirac. In this work we have taken the least utilized one, namely the point form, to treat
electron—nucleon scattering in a relativistically invariant way. The main objective of this
thesis was, however, not to redo such form factor calculations in point form, but rather
to study the influence of non-valence contributions, which are modeled as pions that
are emitted and reabsorbed by the constituent quarks, on the electromagnetic nucleon
structure. To this end, we had to extend the relativistic multichannel formulation, which
has already been applied successfully to calculating electroweak meson form factors within
constituent quark models, to the case of baryons. A further necessary generalization of the
formalism was the inclusion of pions as dynamical degrees of freedom, in addition to the
constituent quarks, the electron, and the photon. Under the assumption of instantaneous
confinement of the constituent quarks it turns out that the calculation of the pionic
contributions can be reformulated as a purely hadronic problem in which the nucleon
emits and reabsorbs the pion. The nucleonic substructure is then hidden in the strong
coupling of the pion to a “bare” nucleon, i.e. an eigenstate of the pure confinement
problem, and a corresponding vertex form factor, which can be calculated on quark level
using the same kind of formalism as for the electromagnetic nucleon form factors within
the pure constituent-quark model. The basic ingredients for calculating pion-loop effects
are thus the electromagnetic and strong form factors of a bare nucleon.

In a first step, we have therefore calculated the electromagnetic nucleon form factors
within the pure constituent-quark model assuming an instantaneous confinement potential
between the quarks. This has been done by deriving the invariant one-photon-exchange

amplitude within our relativistic multichannel approach, extracting the electromagnetic
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nucleon current and analyzing its covariant structure. What enters the form factors es-
sentially is the three-quark nucleon wave function. Instead of solving the three-quark
mass eigenvalue equation with some confinement potential, we have rather taken an ap-
propriate parametrization of this wave function. We have adopted an SU(6) spin—flavor
symmetric form with the momentum part chosen from Schlumpf [Schl94]. The relation of
the boosted nucleon wave function to the wave function for the nucleon at rest is uniquely
determined within our point-form approach. Thereby the Wigner rotations of the quarks’
spin orientations play an important role. Already within this pure constituent-quark
model, we were able to reproduce experimental results [Kel04, Pucl0] as well as existing
front-form calculations [Schl94, PB07] reasonably well. Ounly the — experimentally less
precisely determined — electric Sachs form factor of the neutron obtained by us misses
the peak value by about 50% (due to the restriction to a pure s-wave) and the peak is
slightly shifted as compared to experiment, but the momentum-transfer dependence is
roughly reproduced. The electric proton form factor fits experimental results very well
for values of Q2 up to about 3 GeV2. The magnetic form factors of proton and neutron
fit quite well, especially below Q? ~ 2 GeV2. However, the absolute value of the neutron
magnetic moment is underestimated by about 12%. Even over a larger range of Q? the
momentum-transfer dependence of the form factors is reasonably well reproduced.

For the same wave-function model, using the same methods as above, we have then
determined the strong coupling constants and form factors for the w /N N-vertex for pseu-
doscalar as well as pseudovector coupling (Chap. 4). The normalized results for each form
factor hardly differ from each other, and both compare well with results for a hadronic
pion-cloud model [PR05a, PRO5b], lattice results by Liu et al. [LDDW95], and another
constituent-quark-model calculation by Melde et al. [MCP09]. For pseudovector coupling,
the quark-pion coupling constant we determine from the phenomenologically known 7N N
coupling differs from the one used in the Goldstone-boson-exchange relativistic constituent
quark model [GPP*98] by only 1.5%.

In order to determine the electromagnetic form factors of a physical nucleon, i.e. a
bare nucleon that is surrounded by a pion cloud, we have finally treated the physical
nucleon as a superposition of a bare nucleon component and a bare-nucleon-plus-pion
component (Chap. 5). Using our results for the strong form factor, we have determined
the probabilities of these components, the mass of the bare nucleon, and the nucleon-
pion wave function. Together with our results for the electromagnetic and strong form
factors of the bare nucleon, these quantities were then used to calculate the invariant
one-photon-exchange amplitude for electron scattering off a physical nucleon. At this
stage this becomes a purely hadronic problem with the quark substructure encoded in the
strong and electromagnetic form factors of the bare nucleon. The final results resemble
those of the pure constituent-quark model (Chap. 3). To compare with a similar front-
form calculation we have only slighty readjusted the wave function parameters to the
values chosen by Pasquini and Boffi [PB07]. One also has to take into account that

the probability of finding the three-quark component in the physical nucleon is now less
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than one, so that there is room left for the three-quark—pion component. Our results
are comparable to experiment [Kel04, Pucl0] as well as equivalent front-form calculations
[PBO7]. What has been achieved by including the pion cloud is:

e a slight improvement of the electric neutron form factor,

e a slight improvement of the electric proton form factor above momentum transfers
squared of about 0.4-0.5 GeV?2, however slightly too high values between 0.04 GeV?
and 0.4 GeV?,

e an overall shift of the magnetic proton form factor, leading to a magnetic moment

of the proton that is approx. 7.5% too low (as compared to experiment), and

e an overall shift of the magnetic neutron form factor, leading to a magnetic moment
of the neutron about 17% smaller than the experimental value.

We obtain good results for the proton charge radius, about 2% below the CODATA
value within the pure constituent-quark model and approx. 7% below for the proton
including the pion cloud. However, the neutron charge radius squared is not even half
the CODATA value due to the restriction of the three-quark wave function to an s-wave
ground state, as already mentioned. Studying the contributions to the magnetic moments
in detail we see that Pasquini and Boffi [PB07], who used a phenomenological ansatz for
the m—baryon vertices, obtained a much smaller probability for finding mesons in the
nucleon (9% instead of 14%), yet a much larger contribution of the meson loop (loop
baryon + loop meson) to the magnetic moment, which renders their results much closer
to experiment. The reason for this is probably that, while we restricted ourselves to
studying just the pion loop with nucleon intermediate state, they in addition considered
p and w loops as well as an intermediate Delta. However, we want to point out that the
aim of this work was mainly to establish the formalism and to estimate the role of pionic
contributions to the electromagnetic nucleon structure.

In our simple model there is still room left for a better quantitative reproduction of the
electromagnetic nucleon form factors. Altogether there are 4 parameters in the model: the
constituent-quark mass, the mq coupling, and two parameters in the wave function. We
believe that an appropriate readjustment of the parameters as well as the addition of an
§'- component to the wave function, as has been done by Pasquini and Boffi [PB07], could
already provide a considerable improvement of our form-factor predictions. Introducing
an even more realistic wave function could further ameliorate our results. A physically
more complete description of the nucleon structure may even require to introduce, in
addition to the pion, other mesons in the cloud and, in particular, also A baryons within
the meson loops. The same approach can then, of course, also be applied to describe the
electromagnetic A and N A-transition form factors. In these cases the pionic contributions

are expected to be much more important, since the A is a 7N resonance.



Appendix A

The nucleon with pion cloud

In this appendix we summarize how a physical nucleon, consisting of a bare nucleon
component and a bare nucleon+pion component, is described within our multichannel
approach. We start by writing the physical nucleon state as a two-component vector, the

components representing the contributions of the bare nucleon and the bare nucleon+pion

[VN) := ( ‘V@Q (A1)

|VN7T

states, respectively:

with

‘VN> =Vli-a ::Z: |VNo) ,

\/7 (A.2)
[VNT) = Va /2(2r)3 ZSD];’ NO’T = U N j7')
and the matrix mass operator
- M K,
My ;( K’f " ) . (A.3)
Fie No‘n'

The kinematical factors in (A.2) are chosen such that « is the probability to find the
bare nucleon+pion component in the physical nucleon. Correspondingly, (1 — «) is the
probability to find the bare nucleon component in the physical nucleon. Wy /n; . is the
wave function of the bare nucleon+pion component. The normalization of the free states

is

(VNo |[V'NG) = 2 ,
Mo (A.4)
(VNom |[V'Njr'y = 2°;N° Avv: Aprs .
mNo'fr

110



Appendix A. The nucleon with pion cloud 111

The nucleon-pion vertex matrix element is, according to Eq. (4.6),

1
——— (N,
\/ m]\?}gﬂ' m?\fo

(V'N'n'|KE|VNg) = (VNo | K [V Ny'7')" = Avy "7 || K| No) .

(A.5)

The normalization condition for the nucleon-pion wave function reads

NN

1 12 * —

ZDkﬂ_ (JJﬂ. \IIN/N(I)/ﬂ"' \I’N'/Né/ﬂ'” = 2(27‘()3 . (A6)

In order to extract the three unknown quantities, i.e. the probability « of the N7 com-

ponent, the nucleon—pion two-body wave function ¥y, n,. and the bare nucleon mass
N, from this picture, we need a system of three independent equations involving these

quantities. These equations are the following:

First equation: We calculate matrix elements of the mass operator My (that describes
the physical nucleon) between a free (“bare”) nucleon state and a physical nucleon state
(A.1). We take the matrix form (A.3) of My and equate the result with the corresponding
matrix element of the mass operator’s eigenvalue my:

vy = (V) ( e, ) (V)

Mnyx ’VN7T>
(A.2) /
VAl <V NO’MNO |VN0>

"
- //
Va2 @n)? szH \/F \mr‘I’N/N” o (VN[ |[VNG"7") -y 7
Wy,

4 2
R, s

(ABs)ympy

\/ (2m)3 Ja sz// ‘I/N/N“ ., <N0||K HNO// //>AVV’ .
mN0 V@

(Recall that in the rest frame of the (bare) nucleon, wy, =mn,, !)
On the other hand, we have

2

mNO

(VNG| |[VN) B iy TR T (VING V) 2 VT aAvyr . (A8)
N

Equating Egs. (A.7) and (A.8), we obtain the result

\/1 — /(2 | w
(mN mN() a QT:LTN ka// \I/N/N//ﬂ-// <N0HK HN e . (Ag)
0
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Second equation: Analogously, we can calculate for a pion of given momentum k.
. 0 T My, K
VN |Mn|VN) := 0 T
< o™ ‘ N’ > (<V’N67T'|) ( Kjr MNmr >

VN
(||VNN>>) (A2 ”;;JVV VI—a (V' Ny | KLV NG)
s

//
+v/2(27)3 Va sz” V\/ﬁr Ve xpN/NN,r,,<V )| Mg | VN7
wNO

(A:j:) v1—a L ; <N67T/HKT||N0>AVV/

mN() (mNoﬂ')

/ /
+ \/ 271' \/7\/7\111\[/]\[6,“./ AVV/ .
mN()ﬂ'

(A.10)
On the other hand, we have
(V' N{m' | My |VN)

(A.2) / mNoﬂ)d w//
=my /2 (27)3 sz;’ S Va Uy (VNG [VNG7")

(
WN /Wi, (A.11)

and equating (A.10) and (A.11), we obtain

K T—a
21/2 (27 Wy = ! o |2 No) VT —a | (A.12)

T _
\/ TN Wiy, Wi TN T 9Ny T W Va

Determination of a: Applying the normalization condition (A.6) to Eq. (A.12), we

get

2
K
4 M Ny Wiy, (mN—wK,O—w”)

T

(A.13)

so we have obtained an explicit equation for a.
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Eigenvalue equation for my,: On the other hand, upon inserting (A.12) into (A.9)
and using Eqs. (4.7) and (2.69), we obtain, for pseudoscalar coupling:

M, (MN = MNy ) Oy iy, Ty 7ie,

2 " JS*(N(S/vN(l))?(TJ,VOaTJ/\/IOvTTIr/) J5(N0,N6/)3'~(TN0,7‘]/\/,0,7‘#) (A.14)
= 9N, Z Dk" 4( o //) " )
l‘xfo‘rl/\/’o mN wNO Wr wNO
ie.
S(E I " ) 2
3 2 ‘J Nos 39 VNg» 123\
myN —mpy, = — Z/Dkg INo T ’ m 2 HO . (A.15)
4 /"'” mNO wN() mN — wNo - wﬂ'
No

This is the (non-linear) algebraic equation we use to determine the bare nucleon mass
mp,, given the physical nucleon mass my by its experimental value. The final form
of the mass-eigenvalue equation (A.15) is then obtained by using rotational invariance
(also of ZNX@
coordinates). This allows us to use the expression (4.39) for the pseudoscalar current J3,
(or (4.43) for the pseudovector current Ji,ﬁ). We then get:

3/ dk
mN —mMmN, = = —

I (K, z, l%(fo, M?(fo)‘ ) to perform the angular integration (in spherical

2 ) (2m)2
) K4 g G
VE2+m2 (mN — /K2 +mRy, — m) (k’2+m?\,o + mp, M)

(A.16)

for pseudoscalar w Ny Ny coupling or

3 dk

2
(mN0+\/k2+m?V0+ k2+mi)
m2 \/k? 4+ m2 (mN—\/kQ—i—m?\,o—\/kz—i—m?r) <k2+m?vo+mNM//€2+m?vo)

(A.17)

X

for pseudovector mNyNy coupling, respectively, and likewise (middle bracket in the de-
nominator gets squared) for Eq. (A.13).
It now remains to solve Eq. (A.15) numerically and use the result(s) in Eq. (A.13)

and, consequently, in Eq. (A.12) to determine o and ¥, respectively.



Appendix B

Calculational details

B.1 Transformation of integration measures
We start out with the integration measure of a general n-particle velocity state containing
/Hd?’pz _/d3V” -
2} i=1
BV L (Bhi\ s VP a7
_ / o (2w3> (Sw) #(3F) (B.2)
i=1 ’ i=1 i=1

BV = (d%i) By, A3y, (X7, w;)?

Vo S \2wi ) 2w, 2wg, 2wy,

three quarks,

() e -

2 Wi 2 Wn

, (B3)

assuming that the quarks are the last three particles and making the 3-momentum of quark
no. 1 the redundant one. Starting out with expression (B.2), we insert an integration and
a delta function over the overall four-momentum k3, of the three quarks. Due to Lorentz
invariance of the delta function and with

8k§q M3g
d =244 B4
D M3q = wig M3q, (B.4)

dkg, =

the element being inserted reads

3 3 w .
/d4k3q 5 (k3q - ;kq) = /dmgq dPks, %3; 54((’?) _ Z (i )) (B.5)

- /d3k3q %zﬂ%&? (i}?q) . (B.6)

i=1%a; i=1

We thus obtain

T35 - [T (5E) () @ (k) e, Zfe (3 ).

i=1 i=1 i=1%a; i=1
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Assuming that the quarks are the last three particles and using Lorentz invariance of the

3
single-particle integration measures ( Zf:J d2 kq] ) and by use of (3.36), expression (B.7)
becomes ’
d3V n—3 d3k/’ ddk n 5 n—3 1Wq 5 3 -
(3 Z i
[ T (55 (50 9 (b Foiew (5

(B.8)

Eliminating the delta functions (making the 3-momentum of quark no. 1 the redundant

one), we get

n—3 3 ~
d3V <d3kl) d3k¢12 d3kq3 (Zz 1(.01) Z?:l Wy, . (Bg)
VO L1\ 2w ) 28, 20 204 30w,
Comparing this with expression (B.3), the result is
BV .. Pl Phy, = PV .. 4, dF,, 20 YR Y Yo TRe Ths gy

wa We2 Wg3 Wql + Wg2 + We3
or, in our notation,

DV ...Dky, Dky, = DV ... Dy, Dhy, 208 Y01+ %02 T %3 (B.11)
Wql Wel + We2 + Wy3

B.2 Normalization of the three-quark wave function

In order to find the normalization factors for the three-quark wave functions (3.33), we
use the orthogonality relation (2.50) for hadronic velocity states and insert the quark-level

completeness relations (3.30).

Nucleon—electron state: For the Nye-state (with redundant nucleon 3-momentum),
relation (2.50) reads

AVV/ Aec’ 2WNO

/ /N —
<V Nye |VN06> = (e + wo)?

BNo v, 5TNOT]’VO ) (B.12)
where we have now explicitly included the Kronecker deltas for the (iso-)spins of the
particle with redundant momentum — the bare nucleon. Insertion of the quark-level unity

element (3.30) yields

(V'N{e' [I34¢|V Noe)

DV"D k”DkH DE" gq?:e <V/ Ne ‘V//S "NV 30" e |V N (Bl?))
939, q e >< q e | 06>7

with a sum over g and 7,/ implied. After inserting our expression (3.33) for the three-

quark wave function of the electron—nucleon system (now using more concise expressions
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for the normalization factors representing the correct number of primes), we get

" 3
(V' NG [I3qe |V Noe) = zDV”Dk;’Dk” DK jqe
q1
X Nngersqr Aviver Derer (Ng |3q”> Nnoesqr Avver Aeer (3¢” |N0> )
(B.14)
and after evaluating the Delta functions:
<V/N(/)€/|H3qe |VNO€>
1" 3
sz” k(l;g 2w 3qe NN/ '3q" NNOeSq” AVV’ Aee <N0 |3q//> <3q” |N0> (B15)

and with (B.11):

(V' Nj€'|Isge |V Noe)
o+ 4 "3
~ S0 DRy, S P N N A (3 (3 o)
q2 qS

q1

(B.16)

We demand that <V’N6€'|]I3qe|VNOe> = (V/Nje' ‘VN()€> and thus equality of expres-
sions (B.12) and (B.16). Applying the normalization condition (3.34), which in our short-

hand notation can be written
(2m)° sz” DK & &l (No'|3¢")(3q" | No) = Gpung iy, 07 They o (B.17)
we see that a sufficient condition for the equality of Egs. (B.12) and (B.16) is
\/WNO Wy, W0, (i)
@) wn, +we® (Dwh, +w.)

Nigesqr = 4 - (27)3

(B.18)

Nucleon—electron—photon state: Analogously, when a photon is present, we have

the orthogonality relation

A IAee/A ' 2
(V' Nge'' [V Noey) = = =ce = =20 (B.19)
Noevy

Insertion of the quark-level completeness relation (3.30) yields

(V' Nge'y'|Isgey |V Noev) = zDV”Dk;’Dk;’Dk;;Dk;;

3
m3 ",
X ﬁq{? (fgmﬂv) <V’ 66/7/ |V” qu " "><V” q// " ”|VN06’y> (B.20)
1

After inserting expression (3.33), we get

//3
(V' N§e'y [Tzger |V Noe) :iDV”Dké'Dkfy’Dk;; D!/ ey (_gu;’u;’)

93 9y
X NNée’w’Sq” AV’V” Ae/e// A,y/,yu <N6 |3q//> NN0573QH AVV” Aee” Ayy// <3q// |N0> (B21)
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and after evaluating the Delta functions:

<V’Née'f}/ |H3qe’v | V Ny 6")/>

1" 3
= sz” Dk” que'y NN(’)e/'y’Bq” NNoe'ySq” AVV’ Aee/ A,W/<N(/) |3q”> <3q” |N0> (B22)

q2 g3 "
2 le

and with (B.11):

(V'Nje'y |Tsger |V Noey)

" Sy [ 1 m”3
— q1 q2 g3 "3qey 2
B ZﬁDk; Dheg, Wi +win +wils 287, Npensqr AvviBeer Ayar (NG [3¢") (3¢ [No) -
(B.23)
Demanding (B.19) = (B.23) and the norm (3.34), the result is
/o B, 3, T4, (S wh,)
NNoeysq = 4(2m)° = = - (B.24)

V(S5 @n +we +w) (S + e+ 0y)°

B.3 Combination of time orderings

This section treats the combination of the two time-orderings of the Nevy-propagator in
Secs. 3.1.6 and 3.2.6.
We proceed as in [Biell] and use energy and momentum conservation in

the one-photon exchange amplitude, which implies +/s = mpy. :wj(\/,) +w£/) (hence

Wy —wWN =we —w, ) and wy = |E7| = |k. — k.| , to obtain
1 1
II =
ey \/E—wgv—we—war\f—wN—wé—wy
1 n 1
= = = B.25
an —wy — | we -~ [ (29
B 1 1
w;fwefﬂgeflgu wefw;—%efl;“'

Reducing this to the common denominator, we obtain
—2lke — k.| 2w,
- SN2 2
w4 (o) ¢

HNe’y = (B26)

where we have introduced the photon four-momentum transfer

why —wy We — W)
q:= <l§g B EN) = <Ee B E’) and Q% =—¢*. (B.27)
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