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Daniel Kupelwieser Pion Cloud Effects in the Electromagnetic Nucleon Structure

Abstract

The main objective of this thesis is to study the influence of the pion cloud on the elec-

tromagnetic structure of the nucleon. Our starting point is a hybrid constituent-quark

model which contains, in addition to the valence quarks, also pions as elementary degrees

of freedom. The quarks are subject to an instantaneous confining force and can emit and

reabsorb the pions. The theoretical framework we use is relativistic quantum mechanics

in its point-form realization. Electron–nucleon scattering is formulated as a multichannel

problem for a Bakamjian–Thomas-type mass operator to account fully for the photon- and

pion-exchange dynamics. We calculate the relativistically invariant one-photon-exchange

amplitude for electron–nucleon scattering, from which the electromagnetic nucleon cur-

rent and subsequently, the electromagnetic nucleon form factors are extracted. As it turns

out, the basic ingredients to the one-photon-exchange amplitude are the electromagnetic

γN and strong πN vertex form factors of the (confined) three-quark valence component

of the nucleon (called the “bare nucleon”). The reason is that, due to instantaneous

confinement, only eigenstates of the pure confinement problem, i.e bare baryons, can

propagate in intermediate states. In order to calculate the strong and electromagnetic

form factors of the bare nucleon we adopt the parametrization of the three-quark wave

function proposed by Pasquini and Boffi who performed a similar calculation within the

front form of relativistic dynamics. Our form factor results are comparable with those of

Pasquini and Boffi and for momentum transfers Q2 . 5 GeV2 in reasonable agreement

with experiment. Pion loop effects turn out to be only significant below Q2 . 0.5 GeV2.

As a byproduct we also obtain a prediction for the strong πN coupling constant and the

corresponding vertex form factor that is within the range of πN phenomenology.

Keywords: Electromagnetic nucleon form factors, pion cloud, pion–nucleon vertex,

constituent-quark model, relativistic quantum mechanics, point-form dynamics.
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Zusammenfassung

Das wesentliche Ziel dieser Dissertation ist das Studium des Einflusses der Pionwolke

auf die elektromagnetische Struktur des Nukleons. Den Ausgangspunkt bildet ein hy-

brides Konstituentenquarkmodell, welches zusätzlich zu den Valenzquarks auch Pionen

als elementare Freiheitsgrade aufweist. Die Quarks unterliegen einem instantanen Con-

finement und können Pionen emittieren und absorbieren. Als theoretisches Grundgerüst

dient uns die relativistische Quantenmechanik in Punktform. Elektron–Nukleon-Streuung

wird als Mehrkanalproblem mit einem Bakamjian–Thomas-Massenoperator formuliert.

Wir berechnen die relativistisch invariante Amplitude für Ein-Photonen-Austausch, von

welcher der elektromagnetische Strom sowie die elektromagnetischen Formfaktoren des

Nukleons abgeleitet werden. Es ergibt sich, dass die Grundelemente der Amplitude für

den Ein-Photonen-Austausch die elektromagnetischen γN - und starken πN -Formfaktoren

der Drei-Quark Valenzkomponente des Nukleons (des
”
nackten“ Nukleons) sind. (Der

Grund dafür ist, dass wegen des instantanen Confinements nur Eigenzustände des rei-

nen Confinement-Problems, d.h. nackte Baryonen, in Zwischenzuständen propagieren

können.) Um diese Größen zu berechnen, verwenden wir die Parametrisierung der Drei-

Quark Wellenfunktion nach Pasquini und Boffi, welche eine ähnliche Berechnung in der

Frontform der relativistischen Dynamik durchführten. Unsere Ergebnisse sind vergleichbar

mit jenen von Pasquini und Boffi und stimmen für Impulsüberträge von Q2 . 5 GeV2 an-

gemessen mit experimentellen Werten überein. Die Auswirkungen des Pionenaustauschs

erweisen sich nur unterhalb von Q2 . 0.5 GeV2 als signifikant. Als Nebenprodukt erhal-

ten wir auch eine Vorhersage für die starke πN -Kopplungskonstante und den zugehörigen

Vertex-Formfaktor, welche sich im Rahmen der πN -Phänomenologie bewegt.
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Chapter 1

Introduction

1.1 Studying the electromagnetic structure

of the nucleon

Electron-nucleon scattering is the most important tool to learn about the electromagnetic

structure of the nucleon [EW88]. In the present thesis we will concentrate on the nucleon

properties that are probed in elastic electron–nucleon scattering. The quantities extracted

from such scattering experiments are the nucleon form factors [Pun+15]. They are scalar

quantities that depend on the square of the four-momentum transferred from the electron

to the nucleon. They encode the spatial structure of the photon–nucleon vertex and

are thus also an important source of information on how the nucleon is composed of its

charged constituents, the quarks.

Quantum chromodynamics (QCD) is nowadays considered to be the elementary quan-

tum field theory of the strong interaction that tells us how quarks interact via gluon

exchange and, in particular, how nucleons are built up from quarks (and also antiquarks

and gluons). QCD is a gauge theory that is invariant under local SU(3)color transfor-

mations, i.e. both quarks and gluons carry a color charge and the Lagrangian of QCD

is invariant under space-time dependent SU(3) transformations in color space. In this

sense, the color charge is the charge that is responsible for the strong interaction. One of

the most prominent features of QCD is the observation that only colorless bound states

of quarks, antiquarks and gluons are observed in nature in the form of hadrons (mesons

and baryons). This is the phenomenon called “confinement”. As a consequence, colored

objects (quarks, antiquarks and gluons) that form a colorless hadron can only be identified

within a small spatial volume. What can happen, however, is that quark–antiquark fluc-

tuations of the vacuum can form colorless mesons, which are then emitted and reabsorbed

from the “core” of quarks, antiquarks and gluons. This “meson cloud” increases the spa-

tial extension of the original hadron. The increase is maximal for the lightest meson,

the pion. When the electromagnetic structure of the hadron is probed in electron–hadron
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scattering, the photon exchanged between electron and hadron will “see” both, the core of

the hadron and the surrounding meson cloud. Consequently, the electromagnetic hadron

form factors extracted from elastic electron–hadron scattering data contain core- as well

as meson-cloud contributions. A major goal of this thesis is to give an estimate for the

size of the meson-cloud contribution to the electromagnetic nucleon form factors.

Since the solution of this problem within full QCD is still out of reach, we rather

use an effective description of nucleons in terms of constituent quarks that are bound by

an instantaneous confining potential and can also interact via the dynamical exchange of

pions (which couple directly to the constituent quarks). This means that our meson cloud

just consists of pions, which are supposed to provide the most important contribution to

the cloud. This kind of model is in the spirit of so-called “chiral constituent quark models”

[GR96], which assert that constituent quarks and (the lightest) pseudoscalar mesons are

the effective particles and Goldstone bosons emerging from the spontaneous breakdown

of chiral symmetry in QCD.

Within this constituent quark model, the nucleon consists of a three-quark core that is

surrounded by a pion cloud. This is a problem with a finite number of degrees-of-freedom

– as opposed to the full QCD bound-state problem – and can thus be treated within a

quantum mechanical framework. Since we are exclusively dealing with light (constituent)

quarks, it is mandatory to take relativity appropriately into account. We make use of

the point-form of relativistic quantum mechanics (cf. Sec. 2.4.2, [Dir49, KP91, Kli98a])

in connection with the Bakamjian–Thomas construction (Sec. 2.4.3, [BT53, KP91]) to

formulate electron–nucleon scattering in a Poincaré-invariant way. The same approach

has already been adopted for the description of the electroweak properties of light mesons

(π and ρ) [BSFK09, Bie11, GRS12] and for heavy–light mesons (D and B) [GRS12, GR13]

as well as for determining the weak B → D(∗) decay form factors [GRS12].

In the present thesis we will extend this point-form approach for the calculation of

electromagnetic form factors to the case of baryons that are, in particular, not only

three-quark bound states, but contain also a three-quark–pion component. It should

be mentioned that point-form calculations of electromagnetic form factors exist already

[MBC+07, MCPW05, WB+01], but the authors did not account for extra pions and use

an ansatz for the electromagnetic nucleon current on quark level (point-form spectator

model) that differs slightly from the current which we extract from the invariant electron–

nucleon scattering amplitude.

For the calculation of the pion-cloud contribution to the electromagnetic nucleon form

factors we also need the structure of the pion–nucleon vertex, i.e. the pion–nucleon

coupling and the pion–nucleon form factor. This will be obtained from considering the

pion-loop contribution to the renormalization of the nucleon mass on the quark level.

This means that our calculations will not only provide predictions for the electromagnetic

structure of the nucleon, but at the same time also on its structure as seen by the pion

via the strong interaction. Calculations of the strong pion–nucleon vertex form factor and

coupling were also carried out within the point-form spectator model [MCP09], giving
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again results that slightly differ from ours due to the same reason as in the electromagnetic

case.

Pasquini and Boffi [PB07] already pursued a similar approach to meson-cloud effects,

but they rather used the front-form of relativistic quantum mechanics and took a phe-

nomenological ansatz for the pion–nucleon vertex. For comparison, we will take their

three-quark wave function and use it to calculate both the strong and the electromagnetic

form factors of the (bare) nucleon in a consistent way.

1.2 Structure of this document

Chapter 2 introduces the basic tools and concepts that are needed for this work. This

includes relativistic kinematics, the Poincaré group, spin- 1
2 and spin-1 fields, relativistic

quantum mechanics and in particular its point-form realization, vertex operators, currents

and the relativistic multichannel formulation that we are going to use.

In chapter 3 the electromagnetic form factors of a “bare” nucleon (which consists only

of the 3-quark component) are determined. In Sec. 3.1 electron–nucleon scattering is

first considered on the hadronic level to introduce the relativistic multichannel formalism,

which we will use in the following. In this particular case only two channels are needed:

One containing the electron and the nucleon and the other one containing the electron,

the nucleon and the photon. Photon–electron and photon–nucleon vertex operators are

responsible for the transition between these channels. After applying a Feshbach reduction

to the mass-eigenvalue equation for this system to eliminate the channel containing the

photon, one obtains an optical (energy-dependent) potential that describes the one-photon

exchange between electron and nucleon. The one-photon-exchange amplitude – from

which the electromagnetic nucleon current can then be separated – is obtained by taking

matrix elements of this optical potential between states containing an electron and a

nucleon. If one allows for spatially extended nucleons, the nucleon current will contain

electromagnetic form factors. In order to find a microscopic expression for these form

factors, the whole procedure is repeated in Sec. 3.2 on the quark level by considering

electron scattering off a three-quark system that is confined by an instantaneous potential.

The two channels now consist of three quarks and an electron and of three quarks, an

electron and a photon, respectively. The photon channel is again eliminated to derive an

optical potential. Matrix elements of this optical potential between states consisting of an

electron and a three-quark bound state with nucleon quantum numbers finally yield the

one-photon-exchange amplitude. Equating this amplitude with the one on hadronic level

provides a microscopic expression for the electromagnetic nucleon current (Sec. 3.3), and

in the sequel, also for the nucleon form factors (Sec. 3.4). The numerical implementation

of the current- and form factor calculations is sketched in Sec. 3.5.

In chapter 4 an analogous procedure is applied to determine the strong πNN vertex

form factor. The physical process that is analyzed in order obtain the pseudoscalar (or

pseudovector) nucleon current is the mass eigenvalue problem for a nucleon that consists
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of a three-quark valence component and a three-quark-plus-pion non-valence component.

After eliminating the pionic channel, one ends up with an optical potential that describes

the pion-loop contribution to the nucleon mass. Again equating this optical potential,

as calculated on hadronic level, with the one obtained on constituent level, yields a mi-

croscopic expression for the pseudoscalar (or pseudovector) nucleon current and, in the

sequel, also for the πNN vertex form factor. The interesting point to observe here is,

that the optical potential on microscopic level can be reexpressed in terms of hadronic

degrees-of-freedom with the quark substructure entering only through vertex form factors

of “bare” baryons, i.e. eigenstates of the pure confinement problem.

This observation is used in chapter 5 to calculate the electromagnetic form factors

of a physical nucleon N , consisting of a “bare” nucleon N0 and an N0π component. In

Sec. 5.1, the setup of the Ne(γ) state as a two-channel compound of a bare N0e(γ) state

and an N0πe(γ) state is laid out. The nucleon-pion wave function is first introduced here

(Sec. 5.2). For this compound state, a coupled-channels eigenvalue equation for electron–

nucleon scattering, analogous to the one in Sec. 3.1, is then formulated in Sec. 5.3. Again

after a Feshbach reduction, a first expression for the optical potential for each in- and

outgoing configuration (N0 and N0π) is obtained. In Sec. 5.4, spectator conditions are

applied and the field theoretical vertex operators inserted. In Sec. 5.5, the expressions for

the optical potential for the various possible time-ordered diagrams are obtained. These

then add up to give a nice covariant expression for the overall optical one-photon-exchange

potential. Finally, in Sec. 5.6, this result is compared to the expression for the optical

potential we obtained on hadronic level in Sec. 3.1 to identify the nucleon current. After

insertion of the nucleon-pion wave function, using the same kinematics as in Sec. 3.4, we

then extract the overall form factor analogously. After having determined the microscopic

form of the (bare) electromagnetic nucleon form factors in chapter 3 and of the strong

πN0N0 form factor in chapter 4, determination of the electromagnetic form factor of the

physical nucleon is a purely hadronic problem. The numerical implementation of this

program is sketched in Sec. 5.7; numerical form factor results are presented and discussed

in Sec. 5.8.

Chapter 6 contains a short summary and an outlook.

In appendix A, the renormalization of the nucleon mass due to the pion loop is de-

rived in some detail. The essential quantities to come out of this are the pion emission

probability, the bare nucleon mass and the pion-nucleon wave function. Appendix B is

devoted to further calculational details.



Chapter 2

Basic Concepts

We start out by introducing some basic concepts and tools that will be needed for this

document. These can roughly be grouped into the fields of special relativity, quantum

field theory, relativistic quantum mechanics as well as properties of hadrons and their

interactions.

2.1 Relativistic kinematics

The metric signature we use is (+ − − −), i.e. the (flat) metric is

η = diag(1,−1,−1,−1) (2.1)

and the rest mass of a particle with relativistic energy ω and three-momentum ~p is

m =
√
ω2 − ~p2. (2.2)

Its four-momentum p is then

p =

(
ω

~p

)
. (2.3)

We are using physical units, i.e.

c = ~ = 1 . (2.4)

Whenever we are using three-velocities (denoted by ~v), they are defined as the three-

components of the corresponding four-velocities v, which in turn are defined as the four-

momentum divided by the rest mass, i.e.

v :=
p

m
=

(
v0

~v

)
and v0 =

√
1 + ~v2 . (2.5)

2.2 Dirac and photon fields

In quantum field theory fermions, i.e. spin- 1
2 particles like the quark or the nucleon,

are usually represented by the Dirac field ψ, which is a 4-spinor field fulfilling the Dirac

8
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equation:

(iγµ∂µ −m)ψ = 0 . (2.6)

We use the Dirac representation of the Dirac algebra with the Dirac matrices γµ taking

on the form [IZ80]

γ0 =

(
I2 0

0 −I2

)
, γi =

(
0 σi

−σi 0

)
. (2.7)

The Fourier decomposition of the Dirac field reads [IZ80]

ψ(x) =

∫
d3p

(2π)3

1

2ω

∑

α=± 1
2

(
cα(p)uα(p) e−ipx + d∗α(p) vα(p) eipx

)
. (2.8)

The index α runs over the two independent spin orientations of the Dirac particle. After

field quantization, the coefficients cα and d∗α become particle annihilation and creation

operators, and uα and vα are the corresponding basis spinors which, in the representation

(2.7), can be written as [IZ80]

u 1
2

(~p) =
pλγ

λ +m√
(m+ ω)




1

0

0

0


 , u− 1

2
(~p) =

pλγ
λ +m√

(m+ ω)




0

1

0

0


 , (2.9)

where the normalization is taken from [Bie11].

Similarly, the Fourier decomposition of the photon field reads [IZ80]

Aν(x) =

∫
d3p

2ω(2π)3

3∑

µγ=0

(
aµγ (p) ενµγ (p) e−ipx + a†µγ (p) ε∗ νµγ (p) eipx

)
, (2.10)

where the εµγ are four orthonormal polarization 4-vectors of the photon which, for fixed

momentum, form a complete basis of Minkowski space:

gνλ ε
ν
µγ (p) ε∗λµ′γ (p) = gµγµ′γ

3∑

µγ=0

gµγµγ ενµγ (p) ε∗λµγ (p) = gνλ
(2.11)

2.3 The Poincaré group and ISL(2,C)

The universal covering group of the restricted (i.e. proper orthochronous) Lorentz group

L
↑
+ is isomorphic to the Lie group SL(2,C) [Tha92, SU00, KP91]. This can be seen by

establishing an isomorphism between the space of hermitian 2×2 matrices and Minkowski

space: If σµ is the four-vector of Pauli matrices with σ0 := I2×2 , a general hermitian

2×2 matrix can be written as

X := S(x) = xµ σµ . (2.12)
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The corresponding vector in Minkowski space is recovered via

xµ =
1

2
tr(σµX) . (2.13)

The restricted Poincaré group (i.e. the component of the identity) is the group of all

restricted Lorentz transformations plus displacements in space-time, i.e. the group of all

ordered pairs (Λ, a) with Λ ∈ L
↑
+ and a a vector in Minkowski space. In the space of

hermitian 2×2 matrices, the effect of a Poincaré transformation (Λ, a) is

X ′ = S(Λ)XS(Λ)† + S(a) , (2.14)

where S(Λ) ∈ SL(2,C) (i.e. detS(Λ) = 1 ) and S(a) is a hermitian 2×2 matrix.

Poincaré transformations in Minkowski space are recovered via

Λµν =
1

2
tr(σµS(Λ)σνS(Λ)†) , aµ =

1

2
tr(σµS(a)) . (2.15)

Note that S(Λ) and −S(Λ) give the same Λ, rendering SL(2,C) a double covering of the

restricted Lorentz group.

2.4 Relativistic quantum mechanics

2.4.1 The Poincaré algebra

Having discussed ISL(2,C) as the universal covering group of the restricted Poincaré

group, we can now turn to the representation of its algebra, the Poincaré algebra. The

most general SL(2,C) matrix can be written as [KP91]

S(Λ) = exp

(
− i

2
(~θ + i ~ρ)~σ

)
, (2.16)

where the components of ~σ are the three Pauli matrices and ~θ, ~ρ are two sets of three

parameters each, which parameterize a Lorentz transformation. Via a simple Taylor

expansion, subsequent use of the multiplication relations of the Pauli matrices and finally,

the representation properties from Sec. 2.3, it is easily shown that ~θ encodes the angle

and axis orientation of a rotation and ~ρ the rapidity, |~ρ| = Arsinh |~v| , and the direction

of a rotationless boost as defined in Eq. (2.35). According to Eq. (2.12), the displacement

vector can be written as

S(a) = aµ σµ . (2.17)

With any nine of the ten parameters ~ρ, ~θ and aµ set to zero, the subgroup gener-

ated by the remaining parameter constitutes an Abelian subgroup of ISL(2,C). The

representation of a (proper) Poincaré transformation can thus be written as

S(Λ, a) = exp
(
−iPµaµ

)
exp
(
−i
(
~J · ~θ + ~K · ~ρ

))
, (2.18)

where Pµ are now the four generators of space-time translations, ~J the three generators

of spatial rotations, and ~K the three generators of rotationless Lorentz boosts.
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In order for the group representation property (not explicitly mentioned here) of

S(Λ, a) to hold, the following canonical commutation relations (written in covariant form)

have to be fulfilled [Dir49]:

[
Pµ , P ν

]
= 0 ,

[
Kµν , Pλ

]
= i
(
gνλPµ − gµλP ν

)
,

[
Kµν , Kλκ

]
= −i

(
gµλKνκ − gνλKµκ + gνκKµλ − gµκKνλ

)
,

(2.19)

where we have used

K0i := Ki , Kij := εijkJk , Kµν = −Kνµ . (2.20)

2.4.2 Three forms of relativistic dynamics

In physical terms, the generator(s) ~J can be identified with the total angular momentum of

the system which the Poincaré transformation is performed on. It is thus called the angular

momentum operator. Likewise, Pµ corresponds to the total four-momentum and will be

called the four-momentum operator. Its zero component P 0 ≡ H is usually referred to

as the Hamiltonian of the system. Total four-momentum and angular momentum are the

conserved Noether charges of the respective space-time transformations [PS95]. For a local

quantum-field theory they can be constructed from the energy-momentum tensor of the

system under consideration, which includes contributions from the individual particles

(the “free” part), as well as all interactions between the particles. For a set of Klein-

Gordon fields φi, for example, we have

Θµν =
∂L

∂ (∂µφi)
∂νφi − gµνL , (2.21)

with L = Lfree + Lint . Demanding that interactions depend only on the fields but not

on their derivatives, we have

Θµν
int = −gµν Lint . (2.22)

The four-momentum operator, for example, is then constructed via

Pµ =

∫

σ

dσνΘνµ(x) , (2.23)

where σ is an oriented, spacelike hypersurface of Minkowski space-time which has to be

specified. In classical relativistic dynamics the initial conditions of a given problem are

defined on this surface. In quantizing the theory it serves as quantization surface.

Since the commutation relations (2.19) have to be fulfilled to guarantee Poincaré in-

variance, inclusion of interactions in any one of the 10 Poincaré generators has to result in

other generators containing interactions accordingly. This happens automatically when

quantizing a local (interacting) field theory, but becomes a non-trivial problem if one

wants to stay within the framework of quantum mechanics and deal with only a finite

number of degrees-of-freedom. In his 1949 article [Dir49] Dirac identified three special
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forms of relativistic dynamics, which correspond to timelike foliations of space-time where

the resulting hypersurfaces possess a high degree of symmetry under Poincaré transforma-

tions. For a particular form of dynamics, those Poincaré transformations that leave the

corresponding hypersurfaces invariant are interaction-free. They are called “kinematic”,

while transformations that shift or deform the hypersurfaces do contain interactions; they

are called “dynamic”.

The instant form: In this most familiar picture, Minkowski space-time is foliated into

hyperplanes of equal coordinate time (an “instant”),

x0 = const. (2.24)

These surfaces are related to each other via translations in the x0 direction and are

deformed by boosts. Spatial translations and rotations leave these surfaces invariant. Ac-

cordingly, the generators P 0 ≡ H (the nonrelativistic Hamiltonian) and K0i are dynamic

while P i and Kij are kinematic.

The front form: A hyperplane tangent to the light cone is called a light front. In the

corresponding form of dynamics, Minkowski space-time is foliated into light fronts parallel

to each other. Their orientation is usually taken such that

x0 + x3 =: x+ = const. (2.25)

Let a new coordinate system be given by

{
A0, A1, A2, A3

}
7→
{
A+, A1, A2, A−

}
(2.26)

with A+ := A0 +A3, A− := A0 −A3 (2.27)

for any 4-vector Aµ. There are only three dynamic generators in this approach: Transla-

tions generated by P− that shift the light front in the x+ direction, and the generators

of the “front-form boosts”, K1+ and K2+. The kinematic generators are those of transla-

tions within the light front, P 1, P 2 and P+, of rotations around the propagation direction,

K12, and of the Lorentz transformations K+−, K1− and K2−.

The point form: The initial surface in this approach is the space-time hyperboloid of

equal proper time,

x2 = (x0)2 − ~x2 = τ2 = const. (2.28)

The four-momentum operator (2.23) is then

Pµ = 2

∫

R4

d4x δ
(
x2 − τ2

)
θ(x0)xν Θνµ(x) , (2.29)

and its interaction part, according to (2.22),

Pµint = −2

∫

R4

d4x δ
(
x2 − τ2

)
θ(x0)xµ Lint(x) . (2.30)
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All translations shift the hyperboloid (2.28), while boosts and rotations (i.e. all transfor-

mations leaving the point x = 0 invariant) leave the hyperboloid (with τ = 0 ) invariant.

Thus, interactions only affect the 4 generators Pµ, i.e. the 4-momentum operator, but the

full Lorentz group (6 independent generators Kµν) stays interaction-free. The greatest

benefit of this approach is that boosts can be performed without having to worry about

interactions, a feature that will be exploited heavily throughout this work.

2.4.3 Bakamjian–Thomas construction

The Bakamjian–Thomas construction [BT53] is a systematic procedure for adding inter-

actions to a system of (a finite number of) free particles such that Poincaré invariance is

preserved. In point form it leads to the factorization of the four-momentum operator,

Pµ = M V µfree (2.31)

into a free 4-velocity operator,

V µfree = M−1
free P

µ
free (2.32)

and a mass operator

M = Mfree + U (2.33)

which contains all the interactions. The interaction-potential operator U has to be a

Lorentz scalar that fulfills the commutation relations [V µfree , U ] = 0 . These conditions

satisfied, M commutes (like Mfree) with all the Poincaré generators and represents the

invariant mass of the system in the sense that

Pµ Pµ = M2 . (2.34)

2.4.4 Lorentz boosts and Wigner rotations

A Lorentz boost (more precisely, a canonical boost) is a rotationless Lorentz transforma-

tion. We always use active boosts that act on particle velocities rather than frames of

reference. In our notation (2.5) their action on a 4-vector is described by the matrix

B(~v) =




v0 ~v>

~v I3 +
v0 − 1

v2
~v ~v>


 . (2.35)

The inverse boost is defined by

B−1(~v) = B(−~v) . (2.36)

The result of a boost with velocity ~v, a general Lorentz transformation Λ and finally

an inverse boost with the velocity
−→
Λv is a pure rotation, called a “Wigner rotation” (or

Thomas precession in the relativity literature [SU00]):

RW (Λ, ~v) := B−1(
−→
Λv) ΛB(~v) . (2.37)
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It is important to note that

R−1
W (Λ, ~v) = B−1(~v) Λ−1B(

−→
Λv) = RW (Λ−1,

−→
Λv). (2.38)

We have already discussed the SL(2,C) representation of the Lorentz algebra in

Sec. 2.4.1. Via Eq. (2.16) and the following remarks, using the rapidity ρ = Arsinh |~v| ,
a canonical (rotationless) boost with velocity ~v can be represented as

S(B(~v)) = cosh (
ρ

2
)σ0 + sinh (

ρ

2
)nkσk with ~v = sinh ρ~n . (2.39)

In our notation (2.5) this can equally be written as [Bie11]

S(B(~v)) =

√
v0 + 1

2
σ0 +

~σ · ~v√
2 (v0 + 1)

. (2.40)

The spin-j representation of a rotation is accomplished by Wigner-D-functions. We

need, in particular, the spin- 1
2 representation of Wigner rotations,

D
1
2

µ′µ (RW (Λ, ~v)) =: Dµ′µ(Λ, ~v) , (2.41)

where µ, µ′ = ± 1
2 are the spin polarization indices.

Since the Wigner-D-functions are the elements of a unitary representation of the ro-

tation group, the following relations hold [Bie11]:

D
1
2 ∗
µµ′ (RW (Λ, ~v)) = D

1
2 †
µ′µ (RW (Λ, ~v)) = D

1
2

µ′µ

(
R−1
W (Λ, ~v)

)
,

∑

µ′′

D
1
2

µµ′′ (RW (Λ, ~v)) D
1
2

µ′′µ′ (RW (Λ′, ~v′)) = D
1
2

µµ′ (RW (Λ, ~v)RW (Λ′, ~v′)) ,

D
1
2

µµ′ (I) = δµµ′ ,

(2.42)

i.e. in our shorthand notation (2.41), via Eq. (2.38),

D∗µµ′(Λ, ~v) = D†µ′µ(Λ, ~v) = Dµ′µ(Λ−1,Λ~v) . (2.43)

2.4.5 Velocity states

The Bakamjian–Thomas construction in point form (2.31) is most easily carried out in a

velocity-state representation. Since all interactions are contained in the mass operator and

the free overall 4-velocity operator V µfree is factored out, it is most profitable to characterize

the state of an n-particle system by its overall velocity ~V , the constituents’ momenta kµi
and their spin projections µi in the overall rest frame [Kli98b].

By means of Eq. (2.32), the eigenvalue of the free 4-velocity operator of an n-particle

system is obtained from the particle masses mi and the particle momenta pi via

~V =
~Pfree

Mfree
=

∑
~pi√

(
∑
p0
i )

2 − (
∑

~pi)2
where p0

i =
√
~p2
i +m2

i . (2.44)
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A velocity state is just a usual momentum state in the overall rest system that is boosted

to the overall velocity ~V by means of a rotationless boost (cf. Eq. (2.35)):
∣∣~V , ~k1 µ1 . . .~kn µn

〉
:= UB(~V )

∣∣~k1 µ1 . . .~kn µn
〉

(2.45)

with
∑

i

~ki = 0 and thus Mfree =
∑

ωi where ωi := k0
i =

√
~k2
i +m2

i . (2.46)

The µi is the spin orientation of the i-th particle with respect to the canonical spin [KP91].

The physical momenta of the particles are

pi = B(~V ) ki . (2.47)

The behavior of a velocity state under a Lorentz transformation Λ is described as follows

[Kli98b]:

UΛ

∣∣∣~V ,
{
~ki, µi

}〉
=
∑

{µ′i}

∣∣∣−→ΛV ,
{
RW (Λ, ~V )~ki, µ

′
i

}〉∏

i

Dji
µ′i µi

(RW (Λ, ~V )) , (2.48)

(where ~vi :=
~ki
mi

), i.e. spins and momenta for each particle i always transform with

the same Wigner rotation (cf. Sec. 2.4.4) RW (Λ, ~V ), so that orbital and spin angular

momentum can be coupled as in the nonrelativistic case.

Orthogonality and completeness relations: The orthogonality relation for an n-

particle velocity state reads [Kra01]
〈
~V ′; {~k′i, µ′i, τ ′i}

∣∣∣~V ; {~ki, µi, τi}
〉

=(2π)3 V 0 δ3(~V − ~V ′)
2ωn(∑n
j=1 ωj

)3

n−1∏

j=1

(
(2π)3 2ωj δ

3(~kj − ~k′j)
) n∏

j=1

(
δµjµ′jδτjτ ′j

)
, (2.49)

where we have introduced (for later purposes) the isospin projection τi of the i-th particle.

Note that, since the n-th particle’s momentum is already determined by Eq. (2.46), there

is no Dirac delta in ~k
(′)
n ! We take the momentum of particle n to be the redundant one.

The Kronecker delta over µ
(′)
n , τ

(′)
n , however, remains. We introduce a shorthand notation

by which Eq. (2.49) reads

〈
~V ′; {~k′i, µ′i, τ ′i}

∣∣∣~V ; {~ki, µi, τi}
〉

= ∆V V ′
2ωn(∑n
j=1 ωj

)3

n−1∏

j=1

∆jj′ , (2.50)

with ∆jj′ containing also δµjµ′jδτjτ ′j and the factor δµnµ′nδτnτ ′n being absorbed in ∆V V ′ .

Accordingly, the completeness relation, which defines the unity operator in the

velocity-state representation, reads:

In =
∑

{µi,τi}

∫
d3V

(2π)3 V 0

n−1∏

j=1

(
d3kj

(2π)3 2ωj

) (∑n
j=1 ωj

)3

2ωn

∣∣∣~V ; {~ki, µi, τi}
〉〈
~V ; {~ki, µi, τi}

∣∣∣.

(2.51)
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Note that since the n-th particle’s momentum (the redundant one) is already determined

by Eq. (2.46), there is no integration over ~kn (however the sums over µn, τn remain)! We

again introduce a shorthand notation which reads

In =
∑∫

DV

n−1∏

j=1

(Dkj)

(∑n
j=1 ωj

)3

2ωn

∣∣∣~V ; {~ki, µi, τi}
〉〈
~V ; {~ki, µi, τi}

∣∣∣ (2.52)

with the sum running over µi, τi, i = 1, . . . , n . For each occurring photon, a δµγµ′γ in Eq.

(2.49) has to be replaced by the metric (−gµγµ′γ ) and the sum over photon polarizations

in (2.51) by
∑
µγ

(−gµγµγ ) [Kli03].

2.4.6 Coupled-channels approach and Feshbach reduction

One way to represent a multi-particle system with varying particle types and numbers

is via a coupled-channels approach [KP91]. The Hilbert space corresponding to a multi-

channel system is a (finite) direct sum of Hilbert spaces, each describing a particular

channel that is characterized by certain types and numbers of particles. The mass operator

of the whole system (the operator we are interested in) is then a matrix operator. On the

main diagonal we find the mass operators that act solely on the channel Hilbert spaces,

i.e., they keep the particle numbers fixed. Off-diagonal we find creation and annihilation

operators, which are responsible for transitions between the different channels. The mass-

eigenvalue equation for a system with particles A,B,C, . . . or combinations thereof, with

channel mass operators M... and overall eigenvalue
√
s would thus read, for example,




MA KB KC KBC · · ·
K†B MAB 0 KC · · ·
K†C 0 MAC KB · · ·
K†BC K†C K†B MABC · · ·

...
...

...
...

. . .







∣∣A
〉

∣∣AB
〉

∣∣AC
〉

∣∣ABC
〉

...




=
√
s




∣∣A
〉

∣∣AB
〉

∣∣AC
〉

∣∣ABC
〉

...




. (2.53)

The channel mass operators M... may contain, in addition to the relativistic energies of the

particles, also an instantaneous interaction term (like a confinement potential). Let us now

adopt the velocity-state representation and assume that particles in a particular channel

move freely. If they have masses mi, momenta ki with
∑~ki = 0 and relativistic energies

ωi =

√
~k2
i +m2

i , where i = A,B, . . . , the eigenvalue of the channel mass operatorMAB...

is

mAB... = ωA + ωB + . . . (2.54)

The eigenvalue
√
s in Eq. (2.53), i.e. the square root of Mandelstam s, is the invariant

mass of the complete, fully interacting multi-particle system, in which transitions between

different channels may take place (we avoid using the symbol m here). The corresponding

eigenstate is a superposition of states belonging to the different channels. Via straightfor-

ward manipulations, the system of equations (2.53) can be reduced to a single equation in

one channel, which is the starting point for drawing diagrams. This is called a Feshbach

reduction [Fes58, Fes62].
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2.5 Hadron properties and interactions

2.5.1 The constituent quark model of the nucleon

In elementary particle physics one wants to describe the properties of hadrons, such

as protons, neutrons and mesons, in terms of their elementary constituents, the quarks

and gluons. Within a quantum field theory approach, quarks are the quanta of fields,

which, in addition to the usual properties like mass, electric charge and spin (helicity),

carry a so-called color charge. Forces between quarks are mediated by gluons, which

are quanta of another field. Both quarks and gluons are dynamic degrees of freedom,

i.e. quarks and gluons can be generated or destroyed following a certain set of rules.

The quantum field theory that describes all this is called “quantum chromodynamics”

(QCD). Experimentally, a single isolated quark can never be observed as a free state, a

phenomenon called confinement. The rigorous proof of how this follows from the theory

is still missing as of today, however.

A more phenomenological approach to hadron properties is provided by constituent-

quark models. In the conventional constituent-quark models a hadron is considered a

fixed multi-particle state, namely three quarks in the case of a baryon and a quark and an

antiquark for a meson. The constituent quarks carry an effective mass which differs from

the quark mass in QCD and acts as a free parameter of the model. The electric charge is
2
3 (times the elementary charge |e|) for up (u), charm (c) and top (t) quarks, and − 1

3 for

down (d), strange (s) and bottom (b) quarks (like in QCD). Quarks are spin- 1
2 particles.

The quark content of the nucleon, which is the particle we will investigate, is uud for the

proton and udd for the neutron.

Since we only work with nucleons and thus the light quarks u and d, we assume that

these have the same mass. They are then assigned a further quantum number which is

called isospin. It behaves just as regular spin does, but it is invariant under space-time

transformations. Proton and neutron as well as up- and down-quark are considered an

isospin-doublet, the positive isospin orientation being assigned to proton and up-quark,

the negative to neutron and down-quark. If the masses of u and d quarks are neglected

in the QCD Lagrangian, it exhibits an additional symmetry, the so-called “chiral sym-

metry”. This symmetry, however, is broken spontaneously in the quantized theory by

the quark condensate. As a consequence, massless pions emerge as the Goldstone bosons

of chiral symmetry breaking and quarks acquire an effective mass, thus becoming con-

stituent quarks. However, since the constituent u and d quarks have slightly different

masses and the pion is not massless albeit rather light, we say that chiral symmetry is

only an approximate symmetry and call the pions the pseudo-Goldstone bosons of chiral

symmetry breaking [GR96].

In order to be able to correctly describe the nucleon structure, a fully relativistic treat-

ment is mandatory even at low momentum transfers and will also be employed here. The

confinement of the quarks within the hadron is assumed to be caused by an instanta-

neous interaction, which gives rise to a purely discrete spectrum. Rather than solving the
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bound-state problem for a particular confinement potential, we will use an appropriate

ansatz for the three-quark wave function of the nucleon. Therein, both spin and isospin

have to be taken into account when constructing a fully symmetric (fully antisymmetric

when color is included) wave function.

For a model closer to the reality of a dynamic quark number, as described by field

theory, one then introduces, in addition to the three-quark valence Fock component of the

nucleon, a three-quark-plus-pion component and allows the pions to couple directly to the

quarks. In this way one gets, in addition to the confinement potential, a hyperfine inter-

action. Such a model is in the spirit of the so-called “chiral constituent-quark model”, in

which the lightest pseudoscalar mesons and constituent quarks emerge as effective degrees

of freedom after spontaneous chiral symmetry breaking, with the pseudoscalar mesons rep-

resenting the corresponding Goldstone bosons [GR96]. The resulting physical picture of a

baryon is that of a quark core which is sourrounded by a “cloud” of pseudoscalar mesons,

which affects its mass eigenvalue as well as its electromagnetic structure. The only mesons

that we will consider are the three pions (spin zero, electric charge and isospin +1, 0 and

−1, quark content ud for the π+, ud for the π− and a combination of uu and dd for the

π0).

2.5.2 Electromagnetic current and form factors

For the electromagnetic interaction of the photon with the nucleon, quark, or pion we use

the standard field-theoretical vertices from quantum electrodynamics. The interaction

part of the QED Lagrangian reads [IZ80]

Lint = −
∑

i

Qi |e|ψi γµ ψiAµ =: −|e|
∑

i

Jµi Aµ , (2.55)

where Aµ is the electromagnetic 4-potential which arises from the photon field and Jµi
is the electromagnetic current of (spin- 1

2 ) particle i with electromagnetic charge Qi (in

units of |e|) and (matter) field ψi. Via (2.8) matrix elements of the current for a spin- 1
2

particle i with ingoing and outgoing spin polarizations µi, µ
′
i and momenta ki, k

′
i can be

written as

Jµµi,µ′i
(~ki,~k

′
i) = Qi uµ′i(

~k′i) γ
µ uµi(

~ki) . (2.56)

In order to take into account the spatial extension of a particle (let’s say the nucleon)

as well as extra loops (higher-order terms) at the vertex, the electromagnetic current is

expanded in terms of pertinent covariants as follows [GSS02, EW88, KM96, CDKM98]:

JµN = uµ′(~k
′
N )

(
F1(q2) γµ − F2(q2)

qν
4mN

[γµ, γν ]

)
uµ(~kN ), F1(0) = 1 , (2.57)

where uµ(~kN ) and uµ′(~k
′
N ) are the spinors (2.9) of ingoing and outgoing nucleon (with

momentum ~k
(′)
N and (canonical) spin projection µ(′)), respectively, qµ is the 4-momentum

transfer and F1(q2) and F2(q2) are the Dirac and Pauli form factors.
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Frequently, the electric and the magnetic Sachs form factors GE and GM are used

equivalently. They are more intuitive in the sense that for q2 = 0 , they assume the values

of the elementary charge and the magnetic moment µN (= 2.79 for the proton, −1.91 for

the neutron), respectively:

GE = F1 +
q2

4m2
N

F2, GE(0) = QN

GM = F1 + F2, GM (0) = µN .

(2.58)

2.5.3 The pion–quark/nucleon vertex

The interaction between pion and nucleon can be described by pseudoscalar or pseudovec-

tor coupling with the interaction Lagrangians [EW88]

L
ps
int = −i gN ψN γ5 ~τ ψN ~φπ (2.59)

and

L
pv
int = − fN

mπ
ψN γ

ν γ5 ~τ ψN ∂ν ~φπ , (2.60)

respectively, where ~τ is a vector consisting of the three Pauli matrices. Both ~τ and ~φπ

are vectors in isospin space. The strong π-N coupling constant has a value of gN ≈ 13.4

[EW88] or gN ≈ 13.1 [Bug04], depending on the literature one uses. Pseudoscalar and

pseudovector coupling are equivalent for free nucleons.

Analogously, the (pointlike) interaction between pion and quark reads [EW88]

L
ps
int = −i g ψq γ5 ~τ ψq ~φπ (2.61)

and

L
pv
int = − f

mπ
ψq γ

ν γ5 ~τ ψq ∂ν ~φπ , (2.62)

respectively, where the pseudoscalar coupling constant has its value in the range [Wag98]

g2

4π
= 0.67 . . . 1.19 (g = 2.90 . . . 3.87) . (2.63)

For free quarks (nucleons), pseudoscalar and pseudovector coupling constants are related

via [EW88]
f(N)

mπ
=

g(N)

2mN/q
. (2.64)

Taking matrix elements of (2.59) and (2.60) between a nucleon-pion and a nucleon

state, we end up with pseudoscalar and pseudovector currents

− i gN Gps(Q
2 = −q2)uµ′N (~k′N ) γ5 uµN (~kN )χ†τ ′N

(
~τ · ~φ∗π

)
χτN

≡ − i gN J5
N (~kN , µN ,~k

′
N , µ

′
N )F(τN , τ

′
N , τ

′
π) (2.65)

and

i
fN
mπ

Gpv(Q2 = −q2)uµ′N (~k′N ) γν γ5 uµN (~kN ) kπ ν χ
†
τ ′N

(
~τ · ~φ∗π

)
χτN

≡ i fN
mπ

J5 ν
N (~kN , µN ,~k

′
N , µ

′
N ) kπ ν F(τN , τ

′
N , τ

′
π) , (2.66)
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respectively. Here we have introduced vertex form factors Gps(Q
2) and Gpv(Q2) to ac-

count for the substructure of the nucleon (and potentially the pion). The quantities τN ,

τ ′N and τπ denote the isospin orientations of the nucleons and the pion, respectively. The

ingredients of the flavor function F are defined as follows:

• The nucleon/quark isospinors are

∣∣p
〉

=
∣∣u
〉

= χτ= 1
2

=

(
1

0

)
,

∣∣n
〉

=
∣∣d
〉

= χτ=− 1
2

=

(
0

1

)
. (2.67)

• The isospin wave functions of the pion are

~φπ+ =
1√
2




1

i

0


 , ~φπ− =

1√
2




1

−i
0


 , ~φπ0 =




0

0

1


 , (2.68)

where the isospin orientations are +1 for the π+, −1 for the π− and 0 for the π0.

• Finally, ~τ is a 3-vector of Pauli matrices.

The nonzero components of F are

F(
1

2
,

1

2
, 0) =

(
1 0

)
σ3

(
1

0

)
= 1 ,

F(−1

2
,−1

2
, 0) =

(
0 1

)
σ3

(
0

1

)
= −1 ,

F(
1

2
,−1

2
, 1) =

(
0 1

) 1√
2

(σ1 − i σ2)

(
1

0

)
=
√

2 ,

F(−1

2
,

1

2
,−1) =

(
1 0

) 1√
2

(σ1 + i σ2)

(
0

1

)
=
√

2 .

(2.69)



Chapter 3

Electromagnetic Form Factors

of the “Bare” Nucleon

In this chapter, we determine the electromagnetic properties of the nucleon without ex-

plicitly taking into account the (non-valence) three-quark-plus-pion component of the

nucleon. However, its influence is implicitly accounted for by the choice of the model

parameters, like the constituent-quark mass or the parameters of the three-quark bound-

state wave function. With a slight adaption of these parameters and the replacement of

the physical nucleon mass by a bare nucleon mass these results will later serve as input

for the electromagnetic form factors of the bare nucleon.

The relevant quantities (i.e. optical one-photon exchange potential and nucleon

current) are first derived in the hadronic picture, where the nucleon’s sub-structure is

parametrized by means of phenomenological form factors, and then again in the quark

picture, where the nucleon consists of three confined, pointlike quarks. By comparing

these two results, one then obtains a microscopic (i.e., quark picture) expression for the

nucleon current, from which one extracts the analytic expressions for the “bare” form

factors.

3.1 Hadronic level

3.1.1 Basic setup

In order to demonstrate how our approach works and for later comparison, we first cal-

culate the one-photon-exchange amplitude for elastic electron–nucleon scattering on the

hadronic level. The electromagnetic interaction is mediated by the dynamic exchange of

one single photon.

21
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Figure 3.1: Diagram representing the

one-photon-exchange amplitude M1γ for

electron–nucleon scattering. The blob at

the photon-nucleon vertex indicates the pos-

sible occurence of vertex form factors, which

account for the (spatial) extension of the nu-

cleon.

3.1.2 Eigenvalue equation and velocity states

We use a coupled-channels approach (cf. Sec. 2.4.6) with two channels: One contains the

nucleon (N) and the electron (e) only and the other contains the exchanged photon (γ)

in addition.

We work with velocity states (cf. Sec. 2.4.5)
∣∣V ;~kN , µN , τN ;~ke, µe

〉
and∣∣V ;~kN , µN , τN ;~ke, µe;~kγ , µγ

〉
(where

∑
i
~ki = 0 ) and use the shorthand notation

∣∣V Ne
〉

and
∣∣V Neγ

〉
, respectively. Since we employ the Bakamjian–Thomas construction

(cf. Sec. 2.4.3), the overall 4-velocity V , which one obtains from the physical particles’

momenta ( pi = ΛV ki ) is conserved, i.e.

~V =
~pN + ~pe√
(pN + pe)2

=
~pN + ~pe + ~pγ√
(pN + pe + pγ)2

. (3.1)

The eigenvalue equation for the invariant mass operator then reads
(
MNe Kγ

K†γ MNeγ

)( ∣∣V N e
〉

∣∣V N e γ
〉
)

=
√
s

( ∣∣V N e
〉

∣∣V N e γ
〉
)
, (3.2)

where the diagonal matrix elements MNe and MNeγ are the mass operators

for non-interacting nucleon–electron and nucleon–electron–photon systems, respec-

tively, with eigenvalues mNe = ωN + ωe and mNeγ = ωN + ωe + ωγ (see Eq. (2.46),

ωi =

√
~k2
i +m2

i ). The off-diagonal elements Kγ and K†γ , linking the two channels, are

the annihilation resp. creation operators of the photon.
√
s (s being the Mandelstam

variable) is the mass eigenvalue of the fully interacting two-channel system.

Via a Feshbach reduction, Eq. (3.2) can be reduced to the N − e channel:

(
√
s−MNe)

∣∣V N e
〉

=: P−1
Ne

∣∣V N e
〉

= Kγ PNeγ K
†
γ

∣∣V N e
〉

=: Vopt

∣∣V N e
〉
. (3.3)

PNe is the propagator for the nucleon–electron state and PNeγ := (
√
s−MNeγ)−1 the

propagator for the nucleon–electron–photon state. Vopt is called the optical potential.

When the right hand side of Eq. (3.3) is read from right to left we see that, starting from

the
∣∣V Ne

〉
state, a photon is created by K†γ , then a

∣∣V Neγ
〉

state propagates and finally,

the photon is destroyed again by Kγ . The optical potential thus describes the creation of

the photon by either electron or nucleon, the propagation of the nucleon–electron–photon

state, and the subsequent absorption of the photon by electron or nucleon.
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Figure 3.2: Time-ordered diagrams (contributing to M1γ) representing exchange of a

photon between electron and nucleon on the hadronic level. The blob indicates that the

nucleon-photon vertex is not point-like.

In this work, we restrict ourselves to the perturbative treatment of electron–nucleon

scattering in leading order, i.e. one-photon exchange. This means that

√
s −→ mNe = ωN + ωe (3.4)

and self-energy contributions due to photon emission and reabsorption (leading to loops)

can be neglected.

3.1.3 Splitting of vertex operators

Due to the structure of the interaction Lagrangian (2.55), the photon creation and anni-

hilation operators can each be split into a sum of photon–electron and photon–nucleon

vertex operators [Bie11]:

K†γ
∣∣V N e

〉
=
(
K†eγ +K†Nγ

)∣∣V N e
〉
,

Kγ

∣∣V N e γ
〉

=
(
Keγ +KNγ

)∣∣V N e γ
〉
.

(3.5)

Ignoring any photon loops (which only amount to radiative corrections to nucleon and

electron masses), Eq. (3.3) takes the form

P−1
Ne

∣∣V N e
〉

=
(
KeγPNeγK

†
Nγ︸ ︷︷ ︸

Vo1

+KNγPNeγK
†
eγ︸ ︷︷ ︸

Vo2

)∣∣V N e
〉

= Vopt

∣∣V N e
〉
. (3.6)

This can be interpreted as a photon being emitted by the nucleon and then absorbed

by the electron (left summand) or vice versa (right summand), represented by the two

diagrams in Fig. 3.2. In what follows, we will only treat the first summand in some detail.

The corresponding part of the optical potential we shall call Vo1.

3.1.4 Insertion of completeness relations

In order to calculate the invariant one-photon-exchange amplitude, we calculate matrix

elements of the optical potential between nucleon–electron velocity states (cf. Sec. 2.4.5),〈
V ′N ′ e′

∣∣Vopt

∣∣V N e
〉

. In order to end up with matrix elements of the vertex operators
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K(†)
... and the eigenvalue of the propagator (m−MNeγ)

−1
, we insert the appropriate

unity operators (cf. Sec. 2.4.5) expressed in terms of velocity states (see Eqs. (2.51) and

(2.52)):

〈
V ′N ′ e′

∣∣Vo1

∣∣V N e
〉

=
〈
V ′N ′ e′

∣∣Keγ (m−MNeγ)
−1 INeγ K†Nγ

∣∣V N e
〉
. (3.7)

Since the propagator is now acting on an eigenstate, it can be replaced by its eigenvalue

(
√
s−mNeγ)−1. Note that, via Eq. (2.46), the eigenvalue of the free mass operator of the

nucleon-electron-photon subsystem in the overall rest frame (velocity state) is just the

sum over the relativistic energies of the particles:

mNeγ = ωN + ωe + ωγ . (3.8)

The velocity-state unity element INeγ is obtained from Eq. (2.51) resp. Eq. (2.52). In

what follows, we will choose the momentum of the photon, ~kγ , as the redundant one:

INeγ =

∫
d3V

(2π)3 V 0

∫
d3kN

(2π)3 2ωN

∫
d3ke

(2π)3 2ωe

(ωN + ωe + ωγ)3

2ωγ

∑

µN ,µe,µγ ,τN

(−gµγµγ )

×
∣∣∣V ;~kN , µN , τN ;~ke, µe;~kγ , µγ

〉〈
V ;~kN , µN , τN ;~ke, µe;~kγ , µγ

∣∣∣

=:
∑

µγ

∑∫
DV DkN Dke

(ωN + ωe + ωγ)3

2ωγ
(−gµγµγ )

∣∣V N e γ
〉〈
V N e γ

∣∣ .

(3.9)

3.1.5 Currents and spectator conditions

Inserting Eq. (3.9) into the expression for the first summand of the optical potential,

Eq. (3.7), we obtain velocity state matrix elements of the vertex operators. A further

simplification arises when we demand that certain spectator conditions be met: They state

that only those particles that hit each other at the vertex change their momentum, while

the others remain unaffected. Furthermore, due to the Bakamjian–Thomas construction

2.4.3, the overall four-velocity V is conserved. The matrix elements of the vertex operators

read [Bie11]:

〈
V ′N ′e′γ′

∣∣K†Nγ
∣∣V Ne

〉
=
〈
V Ne

∣∣KNγ

∣∣V ′N ′e′γ′
〉∗

= (2π)3V 0δ3(~V − ~V ′)︸ ︷︷ ︸ (2π)3δµeµ′e2ωeδ
3(~ke − ~k′e)︸ ︷︷ ︸

−1√
m
′3
Neγm

3
Ne

〈
N ′γ′

∣∣∣∣K†Nγ
∣∣∣∣N
〉

=: ∆V V ′ ∆ee′
−1√

m
′3
Neγm

3
Ne

〈
N ′γ′

∣∣∣∣K†Nγ
∣∣∣∣N
〉

(3.10)

and 〈
V ′N ′e′γ′

∣∣K†eγ
∣∣V Ne

〉
=
〈
V Ne

∣∣Keγ

∣∣V ′N ′e′γ′
〉∗

= ∆V V ′∆NN ′
−1√

m
′3
Neγm

3
Ne

〈
e′γ′

∣∣∣∣K†eγ
∣∣∣∣e
〉
. (3.11)
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For the reduced vertex matrix elements
〈
. . .
∣∣∣∣K(†)

∣∣∣∣. . .
〉

we use the standard field-

theoretical expressions, given by the interaction Lagrangian (2.55). This gives rise to

the electromagnetic vector currents of the nucleon (JµN ) and the electron (Jµe ) [Bie11]:

〈
N ′γ′

∣∣∣∣K†Nγ
∣∣∣∣N
〉

= |e| JNν(~kN , µN , τN ;~k′N , µ
′
N , τN ) δτNτ ′N ε

ν ∗
µ′γ

(~k′γ) ,
〈
e′γ′

∣∣∣∣K†eγ
∣∣∣∣e
〉

= |e| Jeν(~ke, µe;~k
′
e, µ
′
e) ε

ν ∗
µ′γ

(~k′γ) = |e|Qe uµ′e(~k′e) γν uµe(~ke) εν ∗µ′γ (~k′γ) ,

(3.12)

where ενµγ (~kγ) is the polarization 4-vector of the photon from Eq. (2.10). Note that for

the electromagnetic interaction the isospin of the nucleon doesn’t change, i.e. τ ′N = τN .

Note also that the electron is a point particle, whence we have already inserted Eq. (2.56)

to express its current. The nucleon current, on the other hand, is left as it is, since we

are interested in the nucleon’s spatial charge distribution.

At least for the electron, we can now easily observe that

Jeν(~ke, µe;~k
′
e, µ
′
e) = Jeν(~k′e, µ

′
e;
~ke, µe)

∗ (3.13)

(use (γµ)
†

= γ0 γµ γ0 ). Since by Eq. (2.10) the photon polarization vector in Eq. (3.12)

has to be replaced by its complex conjugate if a photon is absorbed rather than emitted,

this also implies 〈
e′γ′

∣∣∣∣K†eγ
∣∣∣∣e
〉

=
〈
e
∣∣∣∣Keγ

∣∣∣∣e′γ′
〉∗
. (3.14)

as already stated in Eq. (3.11).

For better readability, we introduce the following shorthand notations:

Jν(N,N ′) := JνN (~kN , µN , τN ;~k′N , µ
′
N , τN ) ,

Jν(e, e′) := Jνe (~ke, µe;~k
′
e, µ
′
e) ,

εν(γ) := ενµγ (~kγ) .

(3.15)

3.1.6 Analytic calculation of optical potential

With these tools at hand we can continue our analytic calculation of the first term of the

optical potential, Eq. (3.7). We start by inserting the expression for the unity operator

(3.9) in the Neγ–space, which allows us to replace the propagator by its eigenvalue:

〈
V ′N ′e′

∣∣Vo1

∣∣V Ne
〉

=
〈
V ′N ′e′

∣∣KeγPNeγINeγK†Nγ
∣∣V Ne

〉

=
∑

µ′′γ

∑∫
DV ′′Dk′′N Dk

′′
e

m
′′3
Neγ

2ω′′γ

(
−gµ′′γµ′′γ

) 〈
V ′′N ′′e′′γ′′

∣∣K†eγ
∣∣V ′N ′e′

〉∗

×
(√
s−m′′Neγ

)−1 〈
V ′′N ′′e′′γ′′

∣∣K†Nγ
∣∣V Ne

〉
.

(3.16)
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We continue by inserting the spectator conditions for the nucleon-photon and the electron-

photon vertex, Eqs. (3.10) and (3.11):

〈
V ′N ′e′

∣∣Vo1

∣∣V Ne
〉

=
∑

µ′′γ

∑∫
DV ′′Dk′′N Dk

′′
e

m
′′3
Neγ

2ω′′γ

(
−gµ′′γµ′′γ

)

× ∆V ′V ′′∆N ′N ′′√
m
′′3
Neγm

′3
Ne

〈
e′′γ′′

∣∣∣∣K†eγ
∣∣∣∣e′
〉∗ (√

s−m′′Neγ
)−1 ∆V V ′′∆ee′′√

m
′′3
Neγm

3
Ne

〈
N ′′γ′′

∣∣∣∣K†Nγ
∣∣∣∣N
〉
.

(3.17)

After elimination of the Delta functions and insertion of the nucleon and electron currents

(3.12), keeping in mind (3.13), we get

〈
V ′N ′e′

∣∣Vo1

∣∣V Ne
〉

= |e|2 ∆V V ′

2ω′′γ m
3
Ne

∑

µ′′γ

(
−gµ′′γµ′′γ

)

× Jν(e, e′) ενµ′′γ (~k′′γ )
1√

s− ω′N − ωe − ω′′γ
Jλ(N,N ′) ελ ∗µ′′γ (~k′′γ )

∣∣∣∣
~k′′γ=~k′e−~ke

.

(3.18)

We now make use of the completeness relation (2.11) for photon polarization vectors to

obtain

〈
V ′N ′e′

∣∣Vo1

∣∣V Ne
〉

= − |e|2 ∆V V ′

2ω′′γ

gνλ
m3
Ne

Jν(N,N ′) Jλ(e, e′)√
s− ω′N − ωe − ω′′γ

∣∣∣∣
~k′′γ=~k′e−~ke

. (3.19)

Remaining diagram: In the completely analogous way, we obtain for the reverse time

ordering:

〈
V ′N ′e′

∣∣Vo2

∣∣V Ne
〉

= − |e|2 ∆V V ′

2ω′′γ

gνλ
m3
Ne

Jν(N,N ′) Jλ(e, e′)√
s− ωN − ω′e − ω′′γ

∣∣∣∣
~k′′γ=~ke−~k′e

. (3.20)

Combination of the two time orderings: Finally, we combine the two time orderings

as in Eq. (3.6) to obtain the matrix elements of Vopt = Vo1 + Vo2 . Since we are using

• elastic scattering (energy-momentum conservation) with

• a single exchange of a massless, i.e. light-like, photon in

• a perturbative treatment,

the following relations hold [Bie11]:

√
s −→ mNe = ωe + ωN = ω′e + ω′N

and

ω
′′2
γ = ~k

′′2
γ = Q2 := (~ke − ~k′e)2 = (~kN − ~k′N )2 .

(3.21)
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For the invariant one-photon-exchange amplitude M1γ , we finally end up with

(cf. App. B.3)

M1γ :=
〈
V ′N ′e′

∣∣Vopt

∣∣V Ne
〉

= |e|2 ∆V V ′

m3
Ne

Jν(N,N ′)
gνλ
Q2

Jλ(e, e′) , (3.22)

where Q2 = −q2 is the inverse of the four-momentum transfer squared, q2 = (ke − k′e)2 ,

i.e. with the metric (2.1), a positive quantity. We see that we have now indeed obtained

a covariant expression as has already been suggested in Fig. 3.1.

3.2 Constituent level

Having obtained a macroscopic expression (i.e., an expression on the hadronic level) for

the invariant one-photon-exchange electron–nucleon scattering amplitude, we now want

to derive a microscopic (i.e. quark level) expression. By equating the two we will then

obtain a microscopic description of the nucleon current JνN . We proceed in a completely

analogous way to Sec. 3.1.

3.2.1 Basic setup

e

N

γ

Ψ Ψq2

q3

q1

Figure 3.3: (One of three) quark-level dia-

gram(s) (contributing to M1γ) for the calcu-

lation of the electromagnetic form factors of

the “bare” nucleon. The electron exchanges

a photon with one of the three quarks. The

relation between the nucleon state (prop-

agators) and the three-quark state is de-

scribed by the wave function Ψ.

Instead of considering the nucleon as a quasi-elementary particle, we now model it

as a bound state of three light constituent quarks (cf. Sec. 2.5.1) with masses of approx.

0.26 GeV each, independent of flavor (u or d). These are confined by an instantaneous po-

tential, which enters the mass operator in Eq. (3.23). We will not specify the confinement

potential, since it is mainly the three-quark bound-state wave function that enters the

microscopic expression of the electromagnetic nucleon current. We will therefore rather

choose an appropriate parametrization of the wave function. For our purposes it will also

be important that confinement is instantaneous, since this implies that only hadrons (and

not free quarks) can propagate in intermediate states.

Momentum is now transferred between the electron and one of the three quarks, where

we use the symmetry properties of the three-quark wave function to make quark no. 1 the

struck one. This will be exploited when we discuss the spectator condition in Sec. 3.2.4.
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3.2.2 Eigenvalue equation and Feshbach reduction

The coupled-channels eigenvalue equation on quark level corresponding to Eq. (3.2) reads

(
M conf

3qe Kγ

K†γ M conf
3qeγ

)( ∣∣Ψ3qe

〉
∣∣Ψ3qeγ

〉
)

=
√
s

( ∣∣Ψ3qe

〉
∣∣Ψ3qeγ

〉
)
, (3.23)

where the diagonal mass operators M conf
3qe and M conf

3qeγ include, beyond the relativistic ener-

gies of the three quarks, the electron and possibly a photon, an instantaneous confinement

potential V conf:

M conf
3qe(γ) = M3qe(γ) + V conf . (3.24)

Later on, we will need a complete set of velocity eigenstates of these mass operators. For

M3qe(γ) these are just velocity states of free particles fulfilling the eigenvalue equation

M3qe(γ)

∣∣V 3qe(γ)
〉

= m3qe(γ)

∣∣V 3q e (γ)
〉

=

(
3∑

i=1

ωqi + ωe (+ωγ)

)
∣∣V 3q e (γ)

〉
. (3.25)

For M conf
3qe(γ) one rather has states consisting of a baryon, the electron and possibly the

photon,

M conf
3qe(γ)

∣∣V Be(γ)
〉

= mBe(γ)

∣∣V B e (γ)
〉

= (ωB + ωe (+ωγ))
∣∣V B e (γ)

〉
, (3.26)

where
∣∣B
〉

is an eigenstate of the confinement problem.

After a Feshbach reduction we get

(
√
s−M conf

3qe )
∣∣Ψ3qe

〉
=:
(
P conf

3qe

)−1 ∣∣Ψ3qe

〉
= Kγ P

conf
3qeγ K

†
γ︸ ︷︷ ︸

Vopt

∣∣Ψ3qe

〉
(3.27)

where the optical potential Vopt now contains all one-photon exchange contributions be-

tween the electron and the quarks. Since P conf
3qeγ =

(√
s−M conf

3qeγ

)−1
, we observe immedi-

ately that propagating intermediate states can only contain baryons, but not free quarks.

3.2.3 Vertex operators and completeness relations

In order to be able to compare the two expressions for the invariant one-photon-exchange

amplitude on hadronic and on quark level, we again need the velocity-state matrix ele-

ments of Vopt between electron–nucleon states. Since we now have a photon-quark vertex

instead of the photon-nucleon vertex, we need to sandwich the photon-quark vertex opera-

tor between free quark states. Furthermore, we have to insert a complete set of eigenstates

of M conf
3qeγ in front of the propagator P conf

3qeγ . Since we only have nucleons in the initial and

final state, it suffices to insert the completeness relation (3.9).

The photon creation and annihilation operators are split into a sum of quark–photon

and electron–photon vertex operators

K(†)
γ

∣∣3qe(γ)
〉

=
(
K(†)
q1γ +K(†)

q2γ +K(†)
q3γ +K(†)

eγ

)∣∣3qe(γ)
〉
. (3.28)
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We again neglect self-energy photon loops (4 diagrams) and, in addition, photon ex-

change between the quarks (6 diagrams), which would lead to electromagnetic self-energy

corrections of the electron and the nucleon masses. The matrix elements of the optical

potential on quark level thus correspond to the following sum of 6 time-ordered diagrams,

which describe the exchange of a photon between the electron and one of the three quarks

(corresponds to Eq. (3.6) on the hadronic level):

〈
V ′N ′e′

∣∣Vopt

∣∣V Ne
〉

=
〈
V ′N ′e′

∣∣KeγP
conf
Neγ INeγI3qeγK†q1γI3qe︸ ︷︷ ︸

Vo1

∣∣V Ne
〉

+
〈
V ′N ′e′

∣∣KeγP
conf
Neγ INeγI3qeγK†q2γI3qe

∣∣V Ne
〉

+
〈
V ′N ′e′

∣∣KeγP
conf
Neγ INeγI3qeγK†q3γI3qe

∣∣V Ne
〉

+
〈
V ′N ′e′

∣∣I3qeKq1γI3qeγINeγP conf
NeγK

†
eγ

∣∣V Ne
〉

+
〈
V ′N ′e′

∣∣I3qeKq2γI3qeγINeγP conf
NeγK

†
eγ

∣∣V Ne
〉

+
〈
V ′N ′e′

∣∣I3qeKq3γI3qeγINeγP conf
NeγK

†
eγ

∣∣V Ne
〉
.

(3.29)

Here we have already inserted pertinent completeness relations at the appropriate places.

In what follows, we will concentrate on the treatment of the first line of Eq. (3.29), i.e. on

the determination of the matrix elements
〈
V ′N ′e′

∣∣Vo1

∣∣V Ne
〉

. The explicit expressions

for the unity operators we need are (cf. Eq. (2.52)):

INeγ =
∑

µN ,τN

∑∫
DV DkeDkγ

m3
Neγ

2ωN
(−gµγµγ )

∣∣V Neγ
〉〈
V Neγ

∣∣ ,

I3qe =
∑

µq1 ,τq1

∑∫
DV DkeDkq2 Dkq3

m3
3qe

2ωq1

∣∣V 3qe
〉〈
V 3qe

∣∣ ,

I3qeγ =
∑

µq1 ,τq1

∑∫
DV DkeDkq2 Dkq3 Dkγ

m3
3qeγ

2ωq1
(−gµγµγ )

∣∣V 3qeγ
〉〈
V 3qeγ

∣∣ ,

(3.30)

where the invariant masses m... are defined via Eq. (2.46). Note that in INeγ , in contrast

to Eq. (3.9), we have now chosen the nucleon momentum to be the redundant one. For

quark-level quantities we always consider the momentum of quark 1 the redundant one.

Inserting these completeness relations into Eq. (3.29), we obtain velocity-state matrix

elements of the vertex operators on quark level and, on the other hand, brackets of

hadronic states with quark-level states, which will lead to three-quark wave functions.

These two quantities will be treated in the next two sections.
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3.2.4 Currents and spectator conditions

On quark level the spectator conditions for matrix elements of the vertex operators

(cf. Sec. 3.1.5 for further details) read

〈
V ′3q′e′γ′

∣∣K†q1γ
∣∣V 3qe

〉
= ∆V V ′ ∆ee′ ∆q2q′2

∆q3q′3

(−1)√
m
′3
3qeγm

3
3qe

〈
q′1γ
′∣∣∣∣K†q1γ

∣∣∣∣q1

〉
,

〈
V ′N ′e′γ′

∣∣K†eγ
∣∣V Ne

〉
= ∆V V ′ ∆NN ′

(−1)√
m
′3
Neγm

3
Ne

〈
e′γ′

∣∣∣∣K†eγ
∣∣∣∣e
〉
.

(3.31)

We treat both quarks and the electron as point particles, whence, according to Sec. 2.5.2,

their currents are
〈
q′1γ
′∣∣∣∣K†q1γ

∣∣∣∣q1

〉
= |e| Jν(q1, q

′
1) δτq1τ ′q1 ε

ν ∗(γ′)

= |e|Qq1
(
uµ′q1 (~k′q1) γν uµq1 (~kq1)

)
δτq1τ ′q1 ε

ν ∗
µ′γ

(~k′γ) ,

〈
e′γ′

∣∣∣∣K†eγ
∣∣∣∣e
〉

= |e| Jν(e, e′) εν ∗(γ′) = |e|Qe
(
uµ′e(

~k′e) γν uµe(
~ke)
)
εν ∗µ′γ (~k′γ) .

(3.32)

Note that the electromagnetic interaction does not change the isospin of the quark!

3.2.5 Wave functions

In addition to the matrix elements of quark-level vertex operators, insertion of the com-

pleteness relations for free quarks also leads (via products INeI3qe, INeγI3qeγ etc.) to scalar

products between nucleon states and quark states. These give rise to the three-quark

bound-state wave function
〈
3q
∣∣N
〉
, which relates quark momenta, spins and isospins to

the corresponding nucleon quantities and thus encodes quark confinement [Bie11]. We will

later on use a phenomenological wave function that is defined in the center-of-momentum

(c.o.m.) frame of the three quarks. We will have a closer look on it in Sec. 3.3.2. It arises

in Eq. (3.29) via
〈
V ′3q′e′

∣∣V Ne
〉

= N1 ∆V V ′∆ee′
〈
3q′
∣∣N
〉
,

〈
V ′3q′e′γ′

∣∣V Neγ
〉

= N2 ∆V V ′∆ee′∆γγ′
〈
3q′
∣∣N
〉
.

(3.33)

N1 and N2 are normalization factors which are determined as follows:

Normalization of wave functions: We use the following condition from [Sen06]:

∑

µ̃′′q1
µ̃′′q2

µ̃′′q3
τ ′′q1τ

′′
q2
τ ′′q3

∫
d3k̃′′q2d3k̃′′q3

〈
Ñ ′
∣∣3̃q′′

〉〈
3̃q
′′ ∣∣Ñ

〉
= δµ̃N µ̃′N δτNτ ′N . (3.34)

The quantities with a “tilde” are defined in the c.o.m. frame of the three quarks that

constitute the nucleon, not the overall c.o.m. frame of the electron-3-quark-system, i.e

[SU00], in our shorthand notation (2.41):

UB(~v3q)

∣∣k̃qi µ̃qi
〉

=
∑

µqi=±
1
2

∣∣kqi µqi
〉
Dµqi µ̃qi

(
B(~v3q),

~̃kqi
mq

)
(3.35)
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with
kqi = B(~v3q)k̃qi ,

~v3q =
~k3q

m3q
,

~k3q = ~kq1 + ~kq2 + ~kq3 ≡ ~kN ,

m3q = ω̃q1 + ω̃q2 + ω̃q3 =
√

(ωq1 + ωq2 + ωq3)2 − ~k2
3q .

(3.36)

By B(~v) we mean a (canonical, i.e. rotationless) Lorentz boost with velocity ~v. For the

definition of the Wigner rotation RW and its associated Wigner-D-function in Eq. (3.35),

see Sec. 2.4.4. Note that ~v3q and m3q depend on the actual momenta of the three quarks

and not on the velocity and mass of the nucleon!

The Jacobian of the coordinate transformation between velocity states is derived in

analogy to the quark–antiquark case [Fuc07] and runs along the lines of the derivation

of the velocity-state integration measure given in [Kra01]. For details see App. B.1. The

result is

d3V . . . d3kq2 d3kq3 = d3V . . . d3k̃q2 d3k̃q3
ωq1
ω̃q1

ωq2
ω̃q2

ωq3
ω̃q3

ω̃q1 + ω̃q2 + ω̃q3
ωq1 + ωq2 + ωq3

. (3.37)

The normalization factors are derived in analogy to the quark–antiquark case [Bie11]

as detailed in App. B.2. The result is

N1 = 4(2π)3

√
ωN ω̃′q1 ω̃

′
q2 ω̃
′
q3

(∑
ω′qi
)

√(∑
ω̃′qi
)

(ωN + ωe)
3 (∑

ω′qi + ωe
)3 ,

N2 = 4(2π)3

√
ωN ω̃′q1 ω̃

′
q2 ω̃
′
q3

(∑
ω′qi
)

√(∑
ω̃′qi
)

(ωN + ωe + ωγ)
3 (∑

ω′qi + ωe + ωγ
)3 .

(3.38)

3.2.6 Analytic calculation of optical potential

We now continue the analytic calculations of the first term of the quark-level optical

potential, i.e. Vo1, in Eq. (3.29). Letting the propagator act on its eigenfunction and after
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some rearranging we obtain, via Eqs. (3.30),

〈
V ′N ′e′

∣∣Vo1

∣∣V Ne
〉

=
〈
V ′N ′e′

∣∣KeγPNeγINeγI3qeγK†q1γI3qe
∣∣V Ne

〉

=
∑

µ
(4)
N ,τ

(4)
N

∑∫
DV (4)Dk(4)

e Dk(4)
γ

(
m

(4)
Neγ

)3

2ω
(4)
N

(
−gµ(4)

γ µ(4)
γ

)

×
∑

µ
(3)
q1
,τ

(3)
q1

∑∫
DV (3)Dk(3)

q2 Dk
(3)
q3 Dk

(3)
e Dk(3)

γ

(
m

(3)
3qeγ

)3

2ω
(3)
q1

(
−gµ(3)

γ µ(3)
γ

)

×
∑

µ′′q1
,τ ′′q1

∑∫
DV ′′Dk′′q2Dk

′′
q3Dk

′′
e

(
m′′3qe

)3

2ω′′q1

1
√
s−m(4)

Neγ

×
〈
V ′N ′e′

∣∣Keγ

∣∣V (4)N (4)e(4)γ(4)
〉 〈
V (4)N (4)e(4)γ(4)

∣∣V (3)3q(3)e(3)γ(3)
〉

×
〈
V (3)3q(3)e(3)γ(3)

∣∣K†q1γ
∣∣V ′′3q′′e′′

〉 〈
V ′′3q′′e′′

∣∣V Ne
〉
,

(3.39)

where x(3), x(4) etc. is equivalent to x′′′, x′′′′ etc. The invariant masses m... are defined

in Eq. (2.46).

After insertion of the spectator conditions (3.31) and the hadron wave functions (3.33)

(with normalization factors (3.38)), the last two lines of (3.39) read

∆
′(4)
V ∆

′(4)
N

(−1)√
(m′Ne)

3
(
m

(4)
Neγ

)3

〈
e(4)γ(4)

∣∣∣∣K†eγ
∣∣∣∣e′
〉∗

× 4 (2π)3

√
ω

(4)
N ω̃

(3)
q1 ω̃

(3)
q2 ω̃

(3)
q3

(∑
ω

(3)
qi

)

√(∑
ω̃

(3)
qi

)(
m

(4)
Neγ

)3 (
m

(3)
3qeγ

)3
∆

(3)(4)
V ∆(3)(4)

e ∆(3)(4)
γ

〈
N (4)

∣∣3q(3)
〉

×∆
′′(3)
V ∆

′′(3)
e ∆

′′(3)
q2 ∆

′′(3)
q3 δ

τ ′′q1
τ
(3)
q1

(−1)√(
m

(3)
3qeγ

)3 (
m′′3qe

)3
〈
q

(3)
1 γ(3)

∣∣∣∣K†q1γ
∣∣∣∣q′′1

〉

× 4 (2π)3

√
ωN ω̃′′q1 ω̃

′′
q2 ω̃
′′
q3

(∑
ω′′qi
)

√(∑
ω̃′′qi
)

(mNe)
3 (
m′′3qe

)3 ∆
(0)′′

V ∆(0)′′

e

〈
3q′′

∣∣N
〉
,

(3.40)

where ∆
(i)(j)
x is shorthand for ∆x(i)x(j) . We now exploit the delta functions to perform

most of the integrations in Eq. (3.39) and then cancel the resulting fractions as far as
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possible. Insertion of the quark and electron currents (3.32) then yields

〈
V ′N ′e′

∣∣Vo1

∣∣V Ne
〉

=2 (2π)6 ∆V V ′

∑

µ′′q1
,µ

(3)
q1
τ ′′q1

∑∫
Dk′′q2Dk

′′
q3 Dk

(3)
γ gµ

(3)
γ µ(3)

γ

× 1

ω′N

1

ω
(3)
q1

1

ω′′q1

√
ωN√

(ωN + ωe)
3

√
ω′N√

(ω′N + ω′e)
3

1

(
√
s− ω′N − ωe − ω

(3)
γ )

×∆
′(4)
N J†ν(e′, e(3)) ε∗ ν

µ
(3)
γ

(~k(3)
γ )

√
ω̃

(3)
q1 ω̃

(3)
q2 ω̃

(3)
q3

(∑
ω

(3)
qi

)

√(∑
ω̃

(3)
qi

)
〈
N ′
∣∣q(3)

1 q′′2 q
′′
3

〉

× Jλ(q′′1 , q
(3)
1 ) ελ

µ
(3)
γ

(~k(3)
γ )

√
ω̃′′q1 ω̃

′′
q2 ω̃
′′
q3

(∑
ω′′qi
)

√(∑
ω̃′′qi
)

〈
3q′′

∣∣N
〉
,

(3.41)

where we have kept ω
(3)
q2,3 for readability. Next, we use the velocity-state conditions

∑
~k′N + ~k′e = 0 ,

∑
~k

(4)
N + ~ke + ~k(3)

γ = 0 ,
(3.42)

whence

1

2 (2π)3 ω′N
∆
′(4)
N = δ

µ′Nµ
(4)
N

δ
τ ′Nτ

(4)
N

δ3
(
~k′N − ~k(4)

N

)
= δ

µ′Nµ
(4)
N

δ
τ ′Nτ

(4)
N

δ3
(
~ke + ~k(3)

γ − ~k′e
)
,

(3.43)

where we have kept ω
(3)
γ for readability. We also employ the completeness relation (2.11)

for the photon polarization vectors ε. We then denote all ingoing states with no prime

and outgoing states with a single prime, and after some rearranging we obtain

〈
V ′N ′e′

∣∣Vo1

∣∣V Ne
〉

=
1

2
∆V V ′

∑

µq1µ
′
q1
µq2µq3

τq2τq3

d3kq2
ωq2

d3kq3
ωq3

1

ωγ ω′q1 ωq1

1

(
√
s− ω′N − ωe − ωγ)

×
√
ω′NωN√

(ω′N + ω′e)
3

(ωN + ωe)
3

√
ω̃′q1 ω̃

′
q2 ω̃
′
q3

(∑
ω′qi
)

√(∑
ω̃′qi
)

√
ω̃q1 ω̃q2 ω̃q3

(∑
ωqi
)

√(∑
ω̃qi
)

×
〈
N ′
∣∣q′1 q2 q3

〉 〈
q1 q2 q3

∣∣N
〉
Jν(e, e′) |e|Qq1(τq1)

(
uµ′q1 (~k′q1) γν uµq1 (~kq1)

)
,

(3.44)

with
∑
i
~k

(′)
qi + ~k

(′)
e = 0 , ~kγ = ~k′e − ~ke and

∑
i τ

(′)
qi = τ

(′)
N . At this point we have already

inserted the full expression for the quark current (3.32) and finally abandoned our short-

hand notation for the quark momenta.
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Remaining diagrams: Derivation of Vo2 resp. Vo3 is completely analogous, with

q1 replaced by q2 or q3, respectively. The reverse time ordering, Vo4 − Vo6 is de-

rived in a completely analogous way (see also Sec. 3.1.6), the net effect being that

(
√
s− ωN − ω′e − ωγ)−1 is replaced by (

√
s− ω′N − ωe − ωγ)−1 . Also the combination

of the two time orderings is done as in App. B.3 by use of (3.21). The final result for the

invariant one-photon-exchange amplitude on constituent level is

M1γ =
〈
V ′N ′e′

∣∣Vopt

∣∣V Ne
〉

= ∆V V ′

√
ω′N ωN

m3
NeQ

2

3∑

i=1

∑

µq1 ,µq2 ,µq3
µ′qi

,τq2 ,τq3

∫ (∏ d3kqj 6=i
ωqj 6=i

)

× 1

ω′qi ωqi

√
ω̃′q1 ω̃

′
q2 ω̃
′
q3

(∑
ω′qk
)

√(∑
ω̃′qk
)

√
ω̃q1 ω̃q2 ω̃q3

(∑
ωqk
)

√(∑
ω̃qk
)

〈
N ′
∣∣q′1 q′2 q′3

〉 〈
q1 q2 q3

∣∣N
〉

× Jν(e, e′) |e|Qqi(τqi)
(
uµ′qi

(~k′qi) γν uµqi (
~kqi)

)
.

(3.45)

Due to the symmetry properties of the three-quark wave function, it can be assumed that

the photon couples only to quark 1, implying an overall factor of 3 instead of the sum

over i.

3.3 Calculation of nucleon currents

3.3.1 Derivation

Equating the expressions (3.22) and (3.45) for the invariant one-photon-exchange ampli-

tude on hadronic and on quark level, respectively, we obtain a microscopic expression for

the nucleon current:

JνN (~kN , µN ;~k′N , µ
′
N ; τN )

=3
√
ω′N ωN

∑

µ1,µ2,µ3

µ′1,τ2,τ3

∫
d3k2

ω2

d3k3

ω3

1

ω′1 ω1

√
ω̃′1ω̃

′
2ω̃
′
3

(∑
ω′k
)

√(∑
ω̃′k
)

√
ω̃1ω̃2ω̃3

(∑
ωk
)

√(∑
ω̃k
)

×
〈
N ′
∣∣q′1 q′2 q′3

〉 〈
q1 q2 q3

∣∣N
〉 (
|e|Q1(τ1)uµ′1(~k′1) γν uµ1

(~k1)
)
,

(3.46)

where we have replaced the quark indices qi simply by i and where the isospin of the

nucleon is τN = +1/2 for the proton and −1/2 for the neutron.

3.3.2 Three-quark wave function

Nucleon rest frame: Since the nucleon is a fermion, its three-quark wave function

Φ :=
〈
q̃1 q̃2 q̃3

∣∣Ñ
〉

(the “tilde” signifying that we are in the nucleon rest frame) has to

be fully antisymmeric under exchange of any two quarks. It is a product of the space (or
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momentum-) part ΦX, a spin-flavor part ΦFS and a color part ΦC:

Φ = ΦX · ΦFS · ΦC . (3.47)

We assume the space part to be a pure s-wave. This means that ΦX is completely sym-

metric. Since ΦC is fully antisymmetric by construction (QCD), the spin-flavor part

ΦFS should also be completely symmetric, so that the full wave function Φ is completely

antisymmetric.

But let us start with the flavor (isospin) part. It can be either a mixed symmetric or

a mixed antisymmetric state (in quarks 2 and 3) [Sen06, Wag98]:

Φp,maF =
1√
2

(uud− udu) (proton, mixed antisymm.) ,

Φp,msF = − 1√
6

(uud+ udu− 2duu) (proton, mixed symm.) ,

Φn,maF =
1√
2

(dud− ddu) (neutron, mixed antisymm.) ,

Φn,msF =
1√
6

(dud+ ddu− 2udd) (neutron, mixed symm.) .

(3.48)

This can also be expressed using Clebsch-Gordan coefficients for adding the isospins

τi = ± 1
2 of the quarks. We first couple the isospins of quarks 2 and 3 to an intermediate

isospin s ∈ {0, 1} with projection τs and then couple it with the isospin of quark 1:

ΦF =
∑

τ1,τ2,τ3,τs

Csτs1
2 τ2

1
2 τ3

C
1
2 τN

sτs
1
2 τ1

, (3.49)

where s = 0 for the mixed antisymmetric state and s = 1 for the mixed symmetric state,

and τN = + 1
2 for the proton and − 1

2 for the neutron.

Analogously, we have for the spin part:

Φ↑,maS =
1√
2

(↑↑↓ − ↑↓↑) (µN =
1

2
, mixed antisymm.) ,

Φ↑,msS = − 1√
6

(↑↑↓ + ↑↓↑ −2 ↓↑↑) (µN =
1

2
, mixed symm.) ,

Φ↓,maS =
1√
2

(↓↑↓ − ↓↓↑) (µN = −1

2
, mixed antisymm.) ,

Φ↓,msS =
1√
6

(↓↑↓ + ↓↓↑ −2 ↑↓↓) (µN = −1

2
, mixed symm.) ,

(3.50)

which, in the nucleon rest frame referred to by a “tilde”, corresponds to

ΦsS =
∑

µ̃1,µ̃2,µ̃3,µ̃s

Csµ̃s1
2 µ̃2

1
2 µ̃3

C
1
2 µ̃N

sµ̃s
1
2 µ̃1

. (3.51)

To obtain the fully symmetric spin-flavor part, we combine the product of mixed-

symmeric states, ΦN,msF · ΦµN ,msS , with the product of mixed-antisymmetric states,

ΦN,maF · ΦµN ,maS , which in terms of Clebsch-Gordan coefficients reads

ΦFS =
1√
2

∑

s

∑

µ̃1,µ̃2,µ̃3,µ̃s
τ1,τ2,τ3,τs

Csµ̃s1
2 µ̃2

1
2 µ̃3

Csτs1
2 τ2

1
2 τ3

C
1
2 µ̃N

sµ̃s
1
2 µ̃1

C
1
2 τN

sτs
1
2 τ1

. (3.52)
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Note that one has the same s in all four coefficients! It is then irrelevant which two

of the three quarks are coupled first. Since necessarily, µ̃s = µ̃2 + µ̃3 , τs = τ2 + τ3 ,∑
µ̃i = µ̃N and

∑
τi = τN , Eq. (3.52) can equally be written in the form

ΦFS =
1√
2

∑

s

∑

µ̃2,µ̃3
τ2,τ3

C
s(µ̃2+µ̃3)
1
2 µ̃2

1
2 µ̃3

C
s(τ2+τ3)
1
2 τ2

1
2 τ3

C
1
2 µ̃N

s(µ̃2+µ̃3) 1
2 µ̃1

C
1
2 τN

s(τ2+τ3) 1
2 τ1

, (3.53)

where we have kept µ̃1 and τ1 for better readability.

For the spatial (momentum-) part of the wave function, we take the model proposed by

Schlumpf [Schl94, parameter set 3]. It was refitted by Pasquini and Boffi to accommodate

a meson cloud in their front-form study of the electromagnetic nucleon form factors [PB07].

Accordingly, we will use the Schlumpf parametrization for calculating the electromagnetic

nucleon form factors without the pion cloud and the Pasquini-Boffi parametrization for

the “bare” electromagnetic nucleon form factors, which are needed for the calculation that

includes pion-cloud effects. The momentum part of the Schlumpf wave function reads

ΦX =
N(

(
∑
ω̃k)

2
+ β2

)γ . (3.54)

The values of the parameters (m is the constituent quark mass) are given in table 3.1. The

parametrization m β γ

Schlumpf 0.263 0.607 3.5

Pa.-Bo. 0.264 0.489 3.21

Table 3.1: Parameters for the Schlumpf wave function as given in [Schl94, parameter set

3] (first line) and as reparametrized by Pasquini and Boffi [PB07] (second line).

normalization constant N is determined numerically to be N =
√

459 for the Schlumpf

parametrization and N =
√

200 for Pasquini-Boffi parametrization, respectively.

Electron–nucleon rest frame: In order to use the spin-flavor wave function (3.52) for

arbitrary velocity states of the electron–nucleon–photon system, we have to boost it from

the nucleon rest frame to the overall rest frame of the 3-quark–electron–photon system

using the Lorentz-transformation properties, Eq. (3.35). Each spin projection entering

the Clebsch-Gordan coefficients thus has to be multiplied with a Wigner-D-function (cf.

Sec. 2.4.4) corresponding to the Lorentz boost (3.35) and subsequently summed over all

spin orientations (in the tilde frame). According to [Bie11] and taking into account that,

via Eq. (2.43),

Dµ̃NµN

(
B−1(~v3q),

~kN
mN

)
= D∗µN µ̃N

(
B(~v3q),

~̃kN
mN

)
(3.55)



Chapter 3. Electromagnetic Form Factors of the “Bare” Nucleon 37

and

RW
(
B(~v3q),

~̃kN
mN

)
= RW

(
B(~v3q), ~0

)
= B−1

(−−−−−→
B(~v3q) 0

)
B(~v3q)B

(
~0
)

3×3

= B−1(~v3q)B(~v3q)3×3 = I3×3

⇒ D∗µN µ̃N

(
. . .
)

= δµN µ̃N ,

(3.56)

we obtain (shorthand notation)

〈
q1q2q3

∣∣N
〉

=
∑

{µ̃qi}

∏

i

D∗µ̃qiµqi

(
B−1(~v3q),

~kqi
mq︸︷︷︸

=: ~vqi

) 〈
q̃1q̃2q̃3

∣∣Ñ
〉

(2.43)
=

∑

{µ̃qi}

∏

i

Dµqi µ̃qi

(
B(~v3q), ~̃vqi

) 〈
q̃1q̃2q̃3

∣∣Ñ
〉
,

〈
N ′
∣∣q′1q′2q′3

〉
=
∑

{µ̃′qi}

∏

i

D∗µ′qi µ̃
′
qi

(
B(~v′3q), ~̃v

′
qi

) 〈
Ñ ′
∣∣q̃′1q̃′2q̃′3

〉
.

(3.57)

We have thus succeeded in constructing ΦX ·ΦFS such that it is fully symmetric under

interchange of any two quarks. Multiplication by the color part ΦC will then ensure full

antisymmetry as required for a fermionic wave function. However, we don’t have to care

about ΦC since the electromagnetic interaction does not change color and hence, the color

matrix element just gives 1.

3.3.3 Analytic Result

Finally inserting Eqs. (3.52), (3.54) and (3.57) into (3.46) and performing the integrations

in the rest frame of the three-quark subsystem using Eq. (3.37), we end up with

JνN (~kN , µN ;~k′N , µ
′
N ; τN )

=
3

2

√
ω′N ωN

∑
Q1(τ1) |e|

∫
d3k̃2 d

3k̃3
1

ω′1

√
ω̃′1 ω̃

′
2 ω̃
′
3

ω̃1 ω̃2 ω̃3

√∑
ω̃k∑
ω̃′k

√∑
ω′k∑
ωk

×D∗µ′1µ̃′1
(
B(~v′3q), ~̃v

′
1

)
D∗µ′2µ̃′2

(
B(~v′3q), ~̃v

′
2

)
D∗µ′3µ̃′3

(
B(~v′3q), ~̃v

′
3

)

× Cs
′µ̃′s

1
2 µ̃
′
2

1
2 µ̃
′
3
Cs
′τs

1
2 τ2

1
2 τ3

C
1
2 µ
′
N

s′µ̃′s
1
2 µ̃
′
1
C

1
2 τN

s′τs
1
2 τ1

×Dµ1µ̃1

(
B(~v3q), ~̃v1

)
Dµ2µ̃2

(
B(~v3q), ~̃v2

)
Dµ3µ̃3

(
B(~v3q), ~̃v3

)

× Csµ̃s1
2 µ̃2

1
2 µ̃3

Csτs1
2 τ2

1
2 τ3

C
1
2 µN

sµ̃s
1
2 µ̃1

C
1
2 τN

sτs
1
2 τ1

× N(
(
∑
ω̃′k)

2
+ β2

)γ
N(

(
∑
ω̃k)

2
+ β2

)γ uµ′1(~k′1) γν uµ1(~k1) ,

(3.58)

where the spectator conditions (3.31) as well as isospin invariance have fully been taken

into account and hence, the sum runs over spins and isospins µ1, µ′1, µ2, µ3, µ̃2, µ̃3, µ̃′2,
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µ̃′3, τ2, τ3 (= ± 1
2 ), s, s′ (= 0, 1), µs, µ

′
s and τs (= −s(′) . . . s(′)), while

µ
(′)
N = µ̃

(′)
1 + µ̃

(′)
2 + µ̃

(′)
3 ,

τN = τ1 + τ2 + τ3
(3.59)

always has to be satisfied. Recall that spins can be coupled the usual way only in the rest

frame of the three-quark subsystem (“tilde”-frame) and via (3.56), µ̃
(′)
N ≡ µ

(′)
N !

3.4 Extraction of form factors

We now want to finally extract the electromagnetic form factors as defined in Sec. 2.5.2

from the microscopic expression we obtained for the nucleon current in Eq. (3.58). Since

we have worked with velocity states ( ~k
(′)
N + ~k

(′)
e = 0 ) so far, our microscopic current (3.58)

still does not transform like a 4-vector; it is rather Wigner rotated when undergoing a

Lorentz boost [Bie11]. If, however, the current is reexpressed in terms of physical momenta

( p
(′)
N = B(V ) k

(′)
N ) and corresponding spin projections σ

(′)
N , the resulting current

JµN (~pN , σN , ~p
′
N , σ

′
N )

=B(V )µν
∑

µN ,µ′N

JνN (~kN , µN ,~k
′
N , µ

′
N )D∗µ′Nσ′N

(B−1(V ),
~p′N
mN

)DµNσN (B−1(V ),
~pN
mN

)

(3.60)

does indeed transform like a 4-vector. We can thus perform a decomposition into linearly

independent 4-vectors, which can be built with the help of the nucleon spinors, γ-matrices

and the particle momenta that occur in our electron–nucleon scattering process. Since

we will later on extract our form factors in the rest frame of the electron–nucleon system

where ~V = 0 (and consequently, p
(′)
N = k

(′)
N ), we will write down the general covariant

decomposition of the microscopic current (3.58) already for this case [Bie11, CDKM98]:

JλN (~kN , µN ,~k
′
N , µ

′
N ) = uµ′N (~k′N ) Γλ uµN (~kN ) , (3.61)

where

Γµ = F ′1 γ
µ +

iF ′2
2mN

σµνqν +B′1

(
ωργ

ρ

ωρk
ρ
N

− I
(1 + η)mN

)
(kN + k′N )µ

+B′2
mN

ωρk
ρ
N

ωµ +B′3
(mN )2

(ωρk
ρ
N )2

(ωργ
ρ)ωµ , (3.62)

σµν =
i

2
[γµ , γν ] , η =

Q2

4m2
N

and (3.63)

ωµ = kµe + k
′µ
e . (3.64)

The coefficients F ′1 and F ′2 are the physical form factors of the nucleon we are looking for.

The covariants they are multiplied with depend only on the nucleon momenta, whereas

B′1 . . . B
′
3, are coefficients of covariants that contain also the electron momenta. These are

called the unphysical, or spurious, form factors.
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Actually, with the 4 components of the current and the 4 possibilities for incoming and

outgoing orientations of the nucleon spin, one would get altogether 16 spin matrix elements

(and accordingly, 16 possible covariants). But due to parity and time-reversal symmetry

combined (8 conditions) and rotation invariance (4 conditions which are guaranteed by

our approach, 2 of which are independent), not all of these are independent. With cur-

rent conservation as an eleventh independent condition, we end up with 5 independent

covariants and thus Eqs. (3.61) and (3.62) for the most general covariant decomposition

of the microscopic current (3.58).

Even though the current is conserved, it can not be precluded that the unphysical part

vanishes. The reason for this is that the Bakamjian–Thomas construction, on which our

approach is based on, leads to wrong cluster properties (i.e., the violation of macroscopic

causality). One consequence of this is that the form factors in front of the covariants

may, in addition to the dependence on the 4-momentum transfer Q2 = −(kN − k′N )2 ,

also exhibit a dependence on the invariant mass squared (i.e., Mandelstam s) of the

electron–nucleon system. This dependence is still in accordance with relativistic invari-

ance of the one-photon-exchange amplitude, but corresponds to a non-locality of the

photon-nucleon vertex. Our studies reveal indeed that the microscopic current (3.58)

contains an unphysical contribution and also the form factors exhibit an unwanted s-

dependence. But as experience with electromagnetic meson form factors has shown

[Bie11, BSFK09, GRS12, BS14], this s-dependence vanishes rather fast with increasing s.

It is thus tempting to take s→∞ , which has the advantage that (most of) the unphys-

ical contributions vanish and one obtains manageable analytical expressions for the form

factors. The s-dependence of the form factors may be interpreted as a dependence of the

frame in which the γ∗N → N subprocess is considered. The s→∞ limit would then

correspond to the infinite-momentum frame of the nucleon. It has the further advantage

that we can easily compare our results with corresponding front-form calculations. In

the cases of the pion [BSFK09], the ρ meson [BS14] and of heavy–light mesons [GRS12],

this comparison has revealed the equivalence of the point-form results with corresponding

front-form calculations.

We will proceed in the same way here: We first fix the electron–nucleon scattering

kinematics, then let s→∞ (or equivalently,
∣∣~k(′)
N

∣∣→∞ ) and look what happens in this
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limit with the covariant decomposition (3.61) and (3.62). We use the following kinematics:

kN =




√
k2 +m2

N

−Q2
0√

k2 − Q2

4




k→∞−−−−→




k

−Q2
0

k


 ,

k′N =kN + q =




√
k2 +m2

N
Q
2

0√
k2 − Q2

4




k→∞−−−−→




k
Q
2

0

k


 , where

q =(k′N − kN ) = (ke − k′e) =




0

Q

0

0




(3.65)

is the transfer of four-momentum . It is then easily seen that contributions from B′2 and

B′3 in (3.62) are of order k−1 resp. k−2 so that they can be safely neglected when k →∞ .

Via a simple calculation performed in Mathematica R©, we now obtain from Eqs. (3.61)

and (3.62) a system of 16 equations, one for each of the four spacetime components of Jµ

and the 4 spin orientations µN , µ
′
N = ± 1

2 . From these equations we want to determine

the three form factors F ′1, F
′
2, B

′
1. Neglecting contributions of o(k0) and using the 13

constraints (from parity, time-reversal, rotation invariance and current conservation)

J1
− 1

2−
1
2

= J1
1
2

1
2

= J1
− 1

2
1
2

= J1
1
2−

1
2

= J2
− 1

2
1
2

= J2
1
2−

1
2

= 0 ,

J0
− 1

2−
1
2

= J0
1
2

1
2

= J3
− 1

2−
1
2

= J3
1
2

1
2
,

J0
− 1

2
1
2

= −J0
1
2−

1
2

= J3
− 1

2
1
2

= −J3
1
2−

1
2
,

J2
− 1

2−
1
2

= −J2
1
2

1
2
,

(3.66)

(where Jνµµ′ is shorthand for JνN (~kN , µN ,~k
′
N , µ

′
N )), the system reduces to the three equa-

tions (
4B′1Q

2

4m2
N +Q2

+ 2F ′1

)
k = J0

1
2

1
2
,

(
F ′2Q

mN
+

8B′1mNQ

4m2
N +Q2

)
k = J0

1
2−

1
2
,

i(F ′1Q+ F ′2Q) = J2
1
2

1
2
.

(3.67)

As one can see (assuming real form factors independent of k), J0
1
2

1
2

and J0
− 1

2
1
2

have to be

real and of order k1, while J2
1
2

1
2

has to be purely imaginary and of order k0.
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Solving for the form factors (again by use of Mathematica R©), we obtain:

F ′1 =
2m2

N

k (4m2
N +Q2)

J0
1
2

1
2
− mNQ

k (4m2
N +Q2)

J0
1
2−

1
2
− iQ

4m2
N +Q2

J2
1
2

1
2
,

F ′2 = − 2m2
N

k (4m2
N +Q2)

J0
1
2

1
2

+
mNQ

k (4m2
N +Q2)

J0
1
2−

1
2

+
iQ

4m2
N +Q2

J2
1
2

1
2
− i

Q
J2

1
2

1
2
,

B′1 =
1

4k
J0

1
2

1
2

+
mN

2kQ
J0

1
2−

1
2

+
i

2Q
J2

1
2

1
2
.

(3.68)

If we, however, demand agreement of our microscopic current (3.58) with the covariant

decomposition (3.61) and (3.62) only in leading order O(k1), only the first two equations

of (3.67) remain and there is no way to separate B′1. We thus have to redefine our physical

form factors:

F ′1 −→ F1 := F ′1 +
2B′1Q

2

4m2
N +Q2

,

F ′2 −→ F2 := F ′2 +
8B′1m

2
N

4m2
N +Q2

,

(3.69)

so that

F1 =
1

2 k
J0

1
2

1
2
,

F2 =
mN

k Q
J0

1
2 −

1
2

(3.70)

which is the result we would have obtained with the covariant expansion (2.57) right away.

This means that all the unphysical contributions in the microscopic current (3.58) vanish

in leading order if the limit k →∞ is taken. The Sachs form factors are then obtained

via Eq. (2.58).

3.5 Numerical implementation

The starting point of our numerical analysis is Eq. (3.58). It is integrated using the

Monte Carlo Miser integration routine of the GNU Scientific Library (GSL) under C++.

For matrix and vector calculations we use the Eigen library, which defines the classes

Vector4d, Vector2cd, Matrix4d, Matrix2cd for 4-dimensional real and 2-dimensional

complex vectors and matrices (component type double), respectively. Components are

in round brackets ().

3.5.1 Class structure

Functions for Pauli and Dirac (2.7) matrices of index i, Matrix2cd pauli (int i) and

Matrix4cd dirac (int i), are defined as global functions.

Any quantities that depend on the momenta k̃qi of the quarks are calculated in a class

called Mompart. It is initialized again and again for each point of the Monte Carlo integra-

tion with the 6 independent momentum compontens of the quarks, double karray [6]

(spherical coordinates) and a pointer to some other parameters, InputParams * params,
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where InputParams is a structure containing parameters like the forward momentum of

the nucleon double k, the momentum transfer double Q, double spin and isospin pro-

jections int muNpr, tauN, the desired number of Monte Carlo integration points size t

inpoints etc.

The public functions of the Mompart class are: The 6 Wigner rotations Matrix2cd

wigrotfactor1 () . . . Matrix2cd wigrotfactor3pr (), the momentum parts of the 3-

quark wave functions (3.54), double spacepart () and double spacepartpr (), the

electromagnetic current of quark 1, Matrix2cd quark1current (), as well as any other

kinematic quantities explicitly appearing in Eq. (3.58), double prefactor ().

The private functions are the Lorentz boost with 4-velocity u and its inverse in stan-

dard (2.35), (2.36) and SL(2,C) (2.40) representation, Matrix4d [inv]boost (Vector4d

u) and Matrix2cd [inv]spinboost (Vector4d u).

In what follows, the class initialization and the more important or less obvious func-

tions are discussed in detail.

3.5.2 Kinematic quantities

The initialization for the local variables reads

Mompart::Mompart (double karray[6] , InputParams * params):

k2 (karray[0]), theta2 (karray[1]), phi2 (karray[2]),

k3 (karray[3]), theta3 (karray[4]), phi3 (karray[5]),

k (params->k), Q (params->Q)

We then (in curly brackets) start out by initializing the 4-momenta of the quarks in the

“tilde” frame in spherical coordinates. Since
∑ ~̃kqi = 0 and all particles are on their mass

shells, we have

Vector4d ktilde [4]; // in class declaration

ktilde [2] << sqrt(pow(k2,2) + pow(m,2)),

k2*sin(theta2)*cos(phi2),

k2*sin(theta2)*sin(phi2),

k2*cos(theta2);

// (analogously for ktilde[3])

Vector3d k1tilde3d = -ktilde[2].segment<3>(1)-ktilde[3].segment<3>(1);

ktilde[1](0) = sqrt(pow(m,2)+k1tilde3d.dot(k1tilde3d));

ktilde[1].segment<3>(1) = k1tilde3d;

where m is the quark mass (globally defined) and k2, phi2, theta2 the three integration

variables for quark 2. We then introduce the invariant mass of the three quarks and the

velocity according to Eq. (3.36) using the kinematics (3.65),
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double mcl = ktilde[1](0)+ktilde[2](0)+ktilde[3](0);

Vector4d vcl; // in class declaration

vcl << k/mcl , -Q/(2*mcl) , 0 , k/mcl;

where k is the modulus of the nucleon three-momentum that serves as an input parameter.

The quark momenta in the electron–3-quark rest frame are obtained via a canonical boost

as defined in (2.35) with velocity vcl:

Vector4d knaked [4]; // in class declaration

for (i=1; i<=3; i++){ knaked [i] = boost(vcl)*ktilde[i]; }

where boost(vcl) is the 4x4 boost matrix of boost velocity vcl, defined exactly as in

Eq. (2.35).

In the boosted frame, the 3-momentum transfer to quark 1 is the same as to the nucleon

in (3.65), while via the spectator conditions (3.31), quarks 2 and 3 remain unaffected:

Vector4d knakedpr [4]; // in class declaration

for (i=1; i<=3; i++){ knakedpr[i] = knaked[i]; }

knakedpr[1](1) = knaked[1](1) + Q;

knakedpr[1](0) =

sqrt(pow(m,2) + pow(knakedpr[1](1),2) + pow(knakedpr[1](2),2) + ... );

We then get the invariant mass and the velocity (3.36) for the outgoing (primed) 3-quark

system via

double mclpr =

sqrt(pow((knakedpr[1]+knakedpr[2]+knakedpr[3])(0),2) - pow(k,2));

Vector4d vclpr; // in class declaration

vclpr << k/mclpr , Q/(2*mclpr) , 0 , k/mclpr;

Finally, the primed quark momenta in the rest frame of the 3-quark system are obtained

via an inverse boost (2.36) with the primed 3-quark velocity:

for (i=1; i<=3; i++){ ktildepr[i] = invboost(vclpr)*knakedpr[i]; }

This completes the initialization of the class Mompart.
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3.5.3 Spin algebraics

The Clebsch-Gordan coefficients in (3.58) are generated via the relations [NIST]

Cj−mj1m1 j2m2
= (−1)j1−j2−m

√
2j + 1

(
j1 j2 j

m1m2m

)
,

(
j1 j2 j

m1m2m

)
= (−1)j1−j2−m∆(j1 j2 j)

×
∑

s

(−1)s
√

(j1+m1)!(j1−m1)!(j2+m2)!(j2−m2)!(j+m)!(j−m)!

s!(j1+j2−j−s)!(j1−m1−s)!(j2+m2−s)!(j−j2+m1+s)!(j−j1−m2+s)!
,

∆(j1 j2 j) =

(
(j1 + j2 − j)!(j1 − j2 + j)!(−j1 + j2 + j)!

(j1 + j2 + j + 1)!

) 1
2

,

z! := Γ(z + 1), Γ(
1

2
) =
√
π, Γ(z + 1) = z Γ(z) ,

(3.71)

and are implemented as a 6-dimensional array of doubles. For simplicity, we have dou-

bled all spin variables mu1, mu1tilde, mu1pr, mu2tildepr, ... that serve as function

arguments, so they become integers. They are defined in a separate class Clebschgordan

in a separate file.

The Wigner-D-functions are realized within the Mompart class as a sequence of boosts

(2.37) in their spin representation (2.40), i.e.

Matrix2cd Mompart::wigrotfactor1 () { return

invspinbst(knaked[1]/m)*spinbst(vcl)*spinbst(ktilde[1]/m); }

Matrix2cd Mompart::wigrotfactor1pr () { return

invspinbst(ktildepr[1]/m)*invspinbst(vclpr)*spinbst(knakedpr[1]/m); }

// etc.

where we have used relations (2.43). With the call Mompart mp; the components of

the Wigner-D-functions are then mp.wigrotfactor1 () ((1-mu1)/2,(1-mu1tilde)/2),

mp.wigrotfactor1pr () ((1-mu1tildepr)/2,(1-mu1pr)/2) etc.

3.5.4 Quark current

Similarly, the current of quark 1, Matrix2cd Mompart::quark1current (), is realized

as a complex 2×2 matrix within Mompart as well. The index number of the Lorentz

component, nu, is an input parameter (only 0 is needed). Its construction is a little bit

more complicated: First, the complex 4×4 “middle matrix” is built from Dirac matrices

via the definitions of the current (3.32) and the basis spinors (2.9). Here the multiplication
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with the rest-frame basis spinors, (1, 0, 0, 0)> (which we call u0plus) and (0, 1, 0, 0)>

(u0minus), is not yet performed:

Matrix4cd middlematrix =

(dirac(0)*(knakedpr[1])(0) - dirac(1)*(knakedpr[1])(1) -

dirac(2)*(knakedpr[1])(2) - dirac(3)*(knakedpr[1])(3) +

Matrix4cd::Identity()*m).adjoint() / sqrt(m+(knakedpr[1])(0))

* dirac(0) * dirac(nu) *

(dirac(0)*(knaked[1])(0) - dirac(1)*(knaked[1])(1) -

dirac(2)*(knaked[1])(2) - dirac(3)*(knaked[1])(3) +

Matrix4cd::Identity()*m) / sqrt(m+(knaked[1])(0));

Only then, a complex 2×2 matrix q1c in the spin polarizations of quark 1, i.e. with the

components q1c((1-mu1pr)/2,(1-mu1)/2) is constructed by sandwiching it between the

rest-frame basis spinors:

Matrix2cd q1c;

q1c << (u0plus.dot(middlematrix*u0plus) ,

(u0plus.dot(middlematrix*u0minus) ,

(u0minus.dot(middlematrix*u0plus) ,

(u0minus.dot(middlematrix*u0minus);

return q1c;

3.5.5 Integrand function

The integrand is defined in a function complex<double> integrand (double karray

[6] , InputParams * params). The first part is a prefactor (double prefactor) made

up of the Jacobian of the spherical integration and the prefactor from the Mompart class.

The second part is a factor that is made up of all the Clebsch-Gordan coefficients (initial-

ized by external call Clebschgordan cg):

double cgfactor =

1/sqrt(2)*

cg.coeff(1,mu2tildepr,1,mu3tildepr,spr,muspr) *

cg.coeff(spr,muspr,1,mu1tildepr,Spr,params->muNpr) *

cg.coeff(1,tau2,1,tau3,spr,taus) *

cg.coeff(spr,taus,1,tau1,1,params->tauN) *

1/sqrt(2)*

cg.coeff(1,mu2tilde,1,mu3tilde,s,mus) *

cg.coeff(s,mus,1,mu1tilde,S,muN) *

cg.coeff(1,tau2,1,tau3,s,taus) *

cg.coeff(s,taus,1,tau1,1,params->tauN);
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The full integrand finally reads

intgr +=

prefactor *

(tau1==-1 ? -0.33333 : tau1==1 ? 0.6666667 : 0) *

cgfactor *

wigrotfactor1pr ((1-mu1tildepr)/2,(1-mu1pr)/2) *

wigrotfactor1 ((1-mu1)/2,(1-mu1tilde)/2) *

wigrotfactor2pr ((1-mu2tildepr)/2,(1-mu2)/2) *

wigrotfactor2 ((1-mu2)/2,(1-mu2tilde)/2) *

wigrotfactor3pr ((1-mu3tildepr)/2,(1-mu3)/2) *

wigrotfactor3 ((1-mu3)/2,(1-mu3tilde)/2) *

spacepartpr *

spacepart *

quark1current ((1-mu1pr)/2,(1-mu1)/2);

where there is a sum (implemented by a lot of for loops, hence the += in the first line) over

spins and isospins int mu1, mu1pr, mu2, mu3, mu2tilde, mu3tilde, mu2tildepr,

mu3tildepr, tau2, tau3 (= ±1), int s, spr (= 0, 2) and int mus, muspr, taus

(= −s[pr] . . . s[pr]). The dependent variables int mu1tilde, mu1tildepr, tau1 are

set accordingly (see Sec. 3.3.3) including a check whether they are in the range ±1.

The Mompart class is initialized by Mompart mp, and then we set Matrix2cd

wigrotfactor1 = mp.wigrotfactor1 etc. before the summation, so the initialization

does not occur for every single summand, which would be very time-consuming. Note

that the electric charge of quark 1 enters in the third line. After running all the for

loops, the result of complex<double> intgr is returned. Note that since the form fac-

tors are real, only the real part of the integrand is needed via Eq. (3.70).

3.5.6 Integration

The function that is finally passed to the GSL Monte Carlo routine is constructed via

double intfunction (double karray[], size_t dim, void * p){

InputParams * fp = (InputParams *)p;

return real(integrand(karray, fp)); }

Integration is performed in the function
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double integration (InputParams intpar) {

double result, error; // variables where result is saved

double kmin[] = {0,0,0,0,0,0}; // integration limits

double kmax[] = {4.0,3.1416,6.2832,4,3.1416,6.2832};

// This assigns the function for 6-dim. MC integration:

gsl_monte_function INT = {&intfunction, 6, &intpar};

const gsl_rng_type *T; // set up random number generator

gsl_rng *r; T = gsl_rng_default; r = gsl_rng_alloc (T);

// Now we allocate space for and perform the integration:

gsl_monte_miser_state *s = gsl_monte_miser_alloc (6) ;

gsl_monte_miser_integrate

(&INT, kmin, kmax, 6, intpar.intpoints, r, s, &result, &error);

return result; }

The integration was performed in parallel threads for various parameters using Pthreads,

but this shall not be treated in detail here. A simple main function writing the results for

various values of the momentum transfer Q and both outgoing nucleon spin polarizations

muNpr to an ASCII output file (CSV table) out.csv could look like this:

int main(){

InputParams inpar;

inpar.k = 1000000; // forward momentum of nucleon

inpar.intpoints = 10000; // number of MC integration points

inpar.tauN = 1 // for proton, -1 for neutron

ofstream outfile; outfile.open("out.csv");

outfile << "Q^2;;samespin;spinflip" << endl << endl;

for (inpar.Q=0.0001; inpar.Q<2.0002; inpar.Q+=0.1){

outfile << pow(inpar.Q,2) << ";;" ;

for (inpar.muNpr=1; inpar.muNpr>=-1; inpar.muNpr-=2){

outfile << integration(inpar) << ";"; }

outfile << endl; }

outfile.close(); return (0); }
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The result yields the nucleon current (3.58); the form factors are then obtained via

Eq. (3.70) using a tool of choice.

3.6 Results

For later purposes, we parametrize our numerical results in an appropriate way: The

results we obtain for the electric and magnetic Sachs form factors of the proton and

the magnetic Sachs form factor of the neutron are well described by a parametrization

also used by Kelly [Kel04] to fit the available experimental data: With τ :=
Q2

4m2
N

,

where Q2 = −q2 is the negative four-momentum transfer squared, a reasonably good

parametrization of the electric proton and the magnetic proton and neutron Sachs form

factors is achieved with

G
p/n
E/M (Q2) = [µN · ]

1 + a1 τ

1 + b1 τ + b2τ2 + b3τ3
. (3.72)

µN is the magnetic moment of the respective nucleon. Our results are well approximated

with the parameters given in Tab. 3.2. For comparison, the experimental values for the

magnetic moments are µp = 2.79 and µn = −1.91 [PDG].
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Figure 3.4: Electromagnetic Sachs form factors as functions of Q2 = −q2 : GpE : electric

form factor of the proton, GpM : magnetic form factor of the proton, GnM : magnetic form

factor for neutron. Shaded areas: fit of experimental data (including errors) by Puckett

et al. [Puc10] (proton) and Kelly [Kel04] (neutron).
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GpE GpM GnM
a1 −0.60 −0.215 −0.31

b1 10.3 10.6 11.0

b2 15.6 14.1 15.1

b3 3.24 −3.03 −5.51

µN 2.79 −1.69

Table 3.2: Parametrization of our form factor results according to Eq. (3.72).

For the electric neutron form factor a modified Galster fit [GKM+71] is used:

GnE(Q2) =
Aτ +B τ2

1 + C τ +D τ2
·GD(Q2) (3.73)

with the dipole form factor [DCC+66]

GD(Q2) =
1

(
1 +

Q2

0.71

)2 . (3.74)

Our numerical data are well represented with the fit parameters A = 0.39 , B = 1.54 ,

C = 1.7 and D = 0.42 .

In Fig. 3.4, our results for the electic and the magnetic proton and magnetic neutron

form factors are shown in comparison with parametrizations of a comprehensive set of

experimental data by Puckett et al. [Puc10] (including recent JLab data) for the proton

and Kelly [Kel04] for the neutron (shaded areas). Fig. 3.5 shows the electric neutron form

factor as compared with the Kelly parametrization.

In Figs. 3.6, 3.7 and 3.8 we show the same comparison, however in these graphs, the

form factors are divided by the dipole form factor GD so that deviations and experimental

errors become better visible. Also note the logarithmic scale on the abscissa. The results

for both proton form factors are in reasonable agreement with the parametrization of

the experimental data. Also, the neutron magnetic form factor is well reproduced with

the absolute size of the neutron magnetic moment being a little bit too small. Only the

reproduction of the neutron electic form factor seems to be less satisfactory. But here

one has to keep in mind that it is a rather small quantity and that we have restricted

our three-quark wave function to an s-wave, thus limiting our possibilities to treat such

subtleties. Since we use the wave-function parameters of Schlumpf [Schl94], it is not

surprising that our results strongly resemble those of Ref. [Schl94]. It is just a further

indication for the equivalence of our point-form approach with corresponding front-form

calculations in the q+ = 0 frame, which has already been asserted in Ref. [BSFK09] and

shown analytically for the electric pion form factor.
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Figure 3.5: Electric neutron form factor GnE as function of Q2 = −q2 .

Shaded area: Fit of experimental data (including errors) by Kelly [Kel04].
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Figure 3.6: Electric proton form factor GpE/GD as function of Q2 = −q2 .

Shaded area: Fit of experimental data (including errors) by Puckett et al. [Puc10].
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Figure 3.7: Magnetic proton form factor GpM/GD as function of Q2 = −q2 .

Shaded area: Fit of experimental data (including errors) by Puckett et al. [Puc10].
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Figure 3.8: Magnetic neutron form factor GnM/GD as function of Q2 = −q2 .

Shaded area: Fit of experimental data (including errors) by Kelly [Kel04].



Chapter 4

Strong Form Factor

In this chapter we investigate the structure of the pion–nucleon vertex. The quantities

we will obtain are the pion-nucleon coupling strength and the strong form factor, which

encodes the nucleon structure as probed by the pion. To a large part, the derivation runs

along the same lines as the one for the electromagnetic nucleon form factors in Chap. 3.

Again, the nucleon is taken to be a confined 3-quark state. We start out by deriving the

optical potential for pion emission and reabsorption by the nucleon on the hadronic level.

4.1 Hadronic level

4.1.1 Basic setup

We investigate a nucleon (N) that emits a pion (π) and absorbs it again. At the vertex,

due to the nature of the strong interaction, total isospin is conserved, while due to the

pseudoscalar nature of the pion, the spin of the emitting particle has to flip. In the

intermediate state (N ′′) we restrict our investigation to nucleons, although a ∆ baryon

(spin and isospin 3
2 ) or mass excitations of the nucleon could be created as well (but less

likely).

Figure 4.1: Self-energy contribution to the

nucleon mass due to a pion loop. A pion

is emitted and then absorbed again by the

nucleon. A possible vertex form factor, ac-

counting for a non-point-like vertex, is sym-

bolized by the blob.

52
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4.1.2 Eigenvalue equation and Feshbach reduction

We again use the coupled-channels approach (cf. Sec. 2.4.6). The Hilbert space for the

problem at hand comprises two channels, one containing the nucleon (N) only, the other

one containing, in addition, the pion (π). As mentioned before, transition of the nucleon

to a ∆ baryon is neglected.

We also use velocity states (cf. Sec. 2.4.5),
∣∣V N

〉
and

∣∣V Nπ
〉
. Allowing for a pionic

contribution to the nucleon, a physical nucleon state
∣∣V N

〉
is now composed of a “bare”

nucleon component
∣∣V Ñ

〉
and a “bare” nucleon + pion component

∣∣V Ñπ
〉
. In our multi-

channel formulation, we write it in the form

∣∣V N
〉

=

( ∣∣V Ñ
〉

∣∣V Ñπ
〉
)
. (4.1)

The mass-eigenvalue equation for a physical nucleon is then:
(
MN0 Kπ

K†π MN0π

)( ∣∣V Ñ
〉

∣∣V Ñπ
〉
)

= m

( ∣∣V Ñ
〉

∣∣V Ñπ
〉
)
. (4.2)

The diagonal elements of the matrix mass operator, MN0
and MN0π, are the free

mass operators of the respective channels with eigenvalues mN0
and mN0π = ωN0

+ ωπ

( ωi =

√
~k2
i +m2

i ), where mN0
is the mass of the “bare” nucleon. The off-diagonal ele-

ments, K†π and Kπ, are the (πN0N0)-vertex operators. The (lowest) mass eigenvalue of

Eq. (4.2) is the mass of the physical nucleon, m = mN .

After a Feshbach reduction (cf. Sec. 3.1.2), Eq. (4.2) becomes

P−1
N0

∣∣V Ñ
〉

:= (m−MN0)
∣∣V Ñ

〉
= KπPN0πK

†
π

∣∣V Ñ
〉

=: Vopt

∣∣V Ñ
〉

(4.3)

with the propagator PN0π := (m−MN0π)−1 .

In App. A we show in some detail how the eigenvalue problem (4.2) is solved. In what

follows, however, we are rather interested in the (πN0N0)-vertex of the free pion–nucleon

system.

4.1.3 Insertion of completeness relations

As in Sec. 3.1.4 we now want to calculate velocity-state matrix elements of the optical

potential. To this end, we insert the completeness relations for free nucleon–pion states

in front of the propagator to obtain its eigenvalue and the vertex matrix elements:

〈
V ′N ′0

∣∣Vopt

∣∣V N0

〉
=
〈
V ′N ′0

∣∣Kπ (m−MN0π)
−1 IN0πK

†
π

∣∣V N0

〉
. (4.4)

We again take the velocity-state completeness relations from Sec. 2.4.5 and use the short-

hand notation (2.52) right away:

IN0π =
∑∫

DVDkN0

m3
N0π

2ωπ

∣∣V N0π
〉〈
V N0π

∣∣ , (4.5)

where we have rendered the pion momentum redundant (whence a sum over pion isospins

is implied).
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4.1.4 The vertex operators

Upon insertion of expression (4.5) into equation (4.4) we obtain velocity-state matrix

elements of the vertex operators. Since, due to the Bakamjian–Thomas construction in

Sec. 2.4.3, the overall four-velocity V is conserved at the vertices, they read

〈
V ′N0

′π′
∣∣K†π

∣∣V N0

〉
=
〈
V N0

∣∣Kπ

∣∣V ′N0
′π′
〉∗

= ∆V V ′
1√

m
′3
N0π

m3
N0

〈
N0
′π′
∣∣∣∣K†π

∣∣∣∣N0

〉
.

(4.6)

The reduced vertex matrix element in Eq. (4.6) agrees with the pseudoscalar current of

the nucleon:

〈
N0
′π′
∣∣∣∣K†π

∣∣∣∣N0

〉
= −i gN0

J5
N0

(~kN0
, µN0

;~k′N0
, µ′N0

) · F(τN0
, τ ′N0

, τ ′π) (4.7)

for the pseudoscalar coupling and with

〈
N0
′π′
∣∣∣∣K†π

∣∣∣∣N0

〉
= +i

fN0

mπ
J5 ν
N0

(~kN0
, µN0

;~k′N0
, µ′N0

) kπ ν · F(τN0
, τ ′N0

, τ ′π) (4.8)

for the pseudovector coupling, where F is the flavor function as treated in Sec. 2.5.3.

4.1.5 Analytic calculation of the optical potential

With the above ingredients, the matrix elements of the optical potential, Eq. (4.4), become

〈
V ′N0

′∣∣Vopt

∣∣V N0

〉

=
∑∫

DV ′′Dk′′N0

(m′′N0π
)3

2ω′′π

〈
V ′N0

′∣∣Kπ

∣∣V ′′N0
′′π′′

〉 (
mN −m′′N0π

)−1 〈
V ′′N0

′′π′′
∣∣K†π

∣∣V N0

〉
.

(4.9)

Upon insertion of expression (4.6) for the vertices, we obtain

〈
V ′N0

′∣∣Vopt

∣∣V N0

〉

=
∑∫

DV ′′Dk′′N0

(m′′N0π
)3

2ω′′π
∆V ′V ′′

1√
m
′′ 3
N0π

m
′ 3
N0

〈
N0
′′π′′

∣∣∣∣K†π
∣∣∣∣N0

′〉∗

×
(
mN −m′′N0π

)−1
∆V V ′′

1√
m
′′ 3
N0π

m3
N0

〈
N0
′′π′′

∣∣∣∣K†π
∣∣∣∣N0

〉
,

(4.10)

and after elimination of the Delta functions we get the final result

〈
V ′N0

′∣∣Vopt

∣∣V N0

〉

=
∆V V ′

m3
N0

∑∫ Dk′′N0

2ω′′π

〈
N0
′′π′′

∣∣∣∣K†π
∣∣∣∣N0

′〉∗ (mN −m′′N0π

)−1 〈
N0
′′π′′

∣∣∣∣K†π
∣∣∣∣N0

〉

(4.11)

where we have used mN0
= m′N0

and m −→ mN and the vertex matrix elements are

determined by Eq. (4.7) or Eq. (4.8).
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4.2 Constituent level

We now proceed analogously to Sec. 3.2 when calculating (hadronic) matrix elements of

the optical potential on the constituent level. By equating the result to (4.11) we will then

obtain a microscopic expression for the nucleon pseudoscalar (or pseudovector) current

from which we will derive a microscopic expression for the strong form factor.

4.2.1 Basic setup

We model the nucleon the same way as we did in Chap. 3, i.e. we use a constituent quark

model with u and d quarks of masses of approx. 0.26 GeV each. Confinement is enforced

by an instantaneous interaction. Analogously to Sec. 4.1, a pion is now emitted by one

quark and then absorbed by the same quark or another. In the rest frame of the incoming

or outgoing nucleon (velocity states), the three-momentum that is transferred by the pion

is the same on the nucleon level and on the quark level. Again we restrict ourselves to a

nucleon (quark content uud or udd) in the intermediate state, even though propagation of

a ∆ baryon (quark content uuu, uud, udd or ddd for ∆++, ∆+, ∆0 and ∆− respectively)

or other nucleonic (mass) excitations are also thinkable (but less likely).

Figure 4.2: (One of nine) quark level diagram(s) for the calculation of the strong form

factor of the “bare” nucleon. A pion is emitted by one of the three quarks, then a confined

baryon state propagates, then the pion is absorbed again by a quark. The relation between

the nucleon state and the three-quark state is described by the wave function Ψ.

4.2.2 Eigenvalue equation and Feshbach reduction

On quark level the coupled-channels eigenvalue equation reads

(
M conf

3q Kπ

K†π M conf
3qπ

)( ∣∣ψ3q

〉
∣∣ψ3qπ

〉
)

= m

( ∣∣ψ3q

〉
∣∣ψ3qπ

〉
)
, (4.12)

where the diagonal elements M conf
3q and M conf

3qπ include, beyond the relativistic energies of

the three quarks and possibly the pion, also an instantaneous confinement potential

M conf
3q(π) = M3q(π) + V conf . (4.13)
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Later on, we will need a complete set of velocity eigenstates of these mass operators. For

M3q(π), these are just velocity states of free particles fulfilling the eigenvalue equation

M3q(π)

∣∣V 3q(π)
〉

= m3q(π)

∣∣V 3q(π)
〉

=

(
3∑

i=1

ωqi(+ωπ)

)
∣∣V 3q(π)

〉
. (4.14)

For M conf
3q(π) one rather has states consisting of a (bare) baryon B0 and possibly the pion:

M conf
3q(π)

∣∣V B0(π)
〉

= mB0(π)

∣∣V B0(π)
〉

= (ωB0
(+ωπ))

∣∣V B0(π)
〉
, (4.15)

where
∣∣B0

〉
is an eigenstate of the pure confinement problem.

Reducing the problem to the 3-quark channel via a Feshbach reduction, we get

P conf−1
3q

∣∣ψ3q

〉
:=
(
mN −M conf

3q

) ∣∣ψ3q

〉
= Kπ P

conf
3qπ K†π

∣∣ψ3q

〉
=: Vopt

∣∣ψ3q

〉
, (4.16)

where the optical potential Vopt now contains all the possibilities to exchange one pion

between the quarks, even reabsorption by the same quark. Since we are mainly interested

in the nucleon, we have already replaced the mass-eigenvalue m by the (physical) nucleon

mass mN . Here it should be emphasized that, due to the instantaneous confinement, the

latter process does not renormalize the quark mass (since quarks do not propagate freely

in our model). It is rather a contribution to the baryon-mass renormalization!

4.2.3 Vertex operators and completeness relations

We again need to calculate hadronic velocity-state matrix elements and use the hadronic

propagator while keeping the quark-level vertex operators, as detailed in Sec. 3.2.3. In-

serting the appropriate completeness relations and splitting the pion creation- and anni-

hilation operators into sums of quark-pion vertex operators as

K(†)
π

∣∣V 3q(π)
〉

=
(
K(†)
q1π +K(†)

q2π +K(†)
q3π

)∣∣V 3q(π)
〉
, (4.17)
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the velocity-state matrix element of the optical potential between bare nucleons then

corresponds to the following expression for 9 pion-loop diagrams:
〈
V ′N0

′∣∣Vopt

∣∣V N0

〉
=
〈
V ′N0

′∣∣ I3qKq1πI3qπPN0πIN0πI3qπK†q1πI3q︸ ︷︷ ︸
Vo1

∣∣V N0

〉

+
〈
V ′N0

′∣∣I3qKq2πI3qπPN0πIN0πI3qπK†q1πI3q
∣∣V N0

〉

+
〈
V ′N0

′∣∣I3qKq3πI3qπPN0πIN0πI3qπK†q1πI3q
∣∣V N0

〉

+
〈
V ′N0

′∣∣I3qKq1πI3qπPN0πIN0πI3qπK†q2πI3q
∣∣V N0

〉

+
〈
V ′N0

′∣∣I3qKq2πI3qπPN0πIN0πI3qπK†q2πI3q
∣∣V N0

〉

+
〈
V ′N0

′∣∣I3qKq3πI3qπPN0πIN0πI3qπK†q2πI3q
∣∣V N0

〉

+
〈
V ′N0

′∣∣I3qKq1πI3qπPN0πIN0πI3qπK†q3πI3q
∣∣V N0

〉

+
〈
V ′N0

′∣∣I3qKq2πI3qπPN0πIN0πI3qπK†q3πI3q
∣∣V N0

〉

+
〈
V ′N0

′∣∣I3qKq3πI3qπPN0πIN0πI3qπK†q3πI3q
∣∣V N0

〉

=

3∑

i,j=1

〈
V ′N0

′∣∣I3qKqiπI3qπPN0πIN0πI3qπK†qjπI3q
∣∣V N0

〉
.

(4.18)

Note that the propagator is a purely hadronic propagator. Due to instantaneous confin-

ment, only hadrons are allowed to propagate in intermediate states.

The completeness relations again follow from Eq. (2.52) and read

IN0π =
∑

τπ

∑∫
DVDkN0

m3
N0π

2ωπ

∣∣V N0π
〉〈
V N0π

∣∣ ,

I3q =
∑

µq1 ,τq1

∑∫
DVDkq2Dkq3

m3
3q

2ωq1

∣∣V 3q
〉〈
V 3q

∣∣ ,

I3qπ =
∑

µq1 ,τq1

∑∫
DVDkq2Dkq3Dkπ

m3
3qπ

2ωq1

∣∣V 3qπ
〉〈
V 3qπ

∣∣ ,

(4.19)

where the eigenvalues m... of the free mass operators are defined via Eq. (2.46).

Inserting these expressions into Eq. (4.18), we obtain velocity-state matrix elements of

the vertex operators on quark level on the one hand and, on the other hand, brackets of

hadronic states with quark-level states which will lead to the three-quark wave function of

the bare nucleon. These two entities will be treated in the next two sections in respective

order.

4.2.4 Currents and spectator condition

We again concentrate on the calculation of the first line of Eq. (4.18), i.e. of〈
V ′N ′0

∣∣Vo1

∣∣V N0 e
〉
. The corresponding quark-level spectator condition reads

〈
V ′3q′π′

∣∣K†q1π
∣∣V 3q

〉
= ∆V V ′∆q2q′2

∆q3q′3

1√
m
′3
3qπm

3
3q

〈
q′1π
′∣∣∣∣K†q1π

∣∣∣∣q1

〉
. (4.20)
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There are now two possible choices for the quark–pion vertex
〈
q′1π
′
∣∣K†q1π

∣∣q1

〉

(cf. Sec. 2.5.3): We can use either pseudoscalar or pseudovector pion–quark coupling.

The corresponding expressions are

〈
q′1π
′∣∣∣∣K†q1π

∣∣∣∣q1

〉
ps

= −i g uµ′q1 (~k′q1) γ5 uµq1 (~kq1) · F(τq1 , τ
′
q1 , τπ)

and

〈
q′1π
′∣∣∣∣K†q1π

∣∣∣∣q1

〉
pv

= +i
f

mπ
uµ′q1

(~k′q1) γν γ
5 uµq1 (~kq1) kνπ · F(τq1 , τ

′
q1 , τπ) ,

(4.21)

respectively, where g is the strong pseudoscalar pion–quark coupling constant, f the

corresponding pseudovector coupling constant, and F is the flavor function as treated in

Sec. 2.5.3.

4.2.5 Wave functions

The 3-quark wave functions that arise from expressions of the form IN I3q, INπI3qπ, etc.

are derived in the same way as in Sec. 3.2.5. The result is

〈
V ′3q′

∣∣V N0

〉
= N1 ∆V V ′

〈
3q′
∣∣N0

〉
,

〈
V ′3q′π′

∣∣V N0π
〉

= N2 ∆V V ′∆ππ′
〈
3q′
∣∣N0

〉
.

(4.22)

From the normalization condition

∑

µ̃′′q1
µ̃′′q2 µ̃

′′
q3

τ ′′q1τ
′′
q2
τ ′′q3

∫
d3k̃′′q2d3k̃′′q3

〈
N ′
∣∣3q′′

〉〈
3q′′

∣∣N
〉

= δµNµ′N δτNτ ′N (4.23)

(momenta with a “tilde” defined as in Sec. 3.2.5) we obtain the normalization factors

N1 = 4 · (2π)3

√
mN0

ω′q1ω
′
q2ω
′
q3√

m3
N0

(∑
ω′qk
)3 ,

N2 = 4 · (2π)3

√
ωN0

ω̃′q1 ω̃
′
q2 ω̃
′
q3

(∑
ω′qk
)

√(∑
ω̃′qk
)

(ωN0 + ωπ)
3 (∑

ω′qk + ωπ
)3 .

(4.24)

The derivation is quite analogous to the one in App. B.2.

4.2.6 Analytic calculation of the optical potential

We now continue our analytic calculations with the first term of the quark-level optical

potential, Vo1 in Eq. (4.18). In what follows, sums over spins and isospins of particles

with redundant momenta are implied. After inserting the eigenvalue of the propagator

and some rearranging we obtain, via Eqs. (4.19),
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〈
V ′N0

′∣∣Vo1

∣∣V N0

〉

=
〈
V ′N0

′∣∣I3qKq1πI3qπPN0πIN0πI3qπK†q1πI3q
∣∣V N0

〉

=
∑∫

DV (6)Dk(6)
q2 Dk

(6)
q3

(
m

(6)
3q

)3

2ω
(6)
q1

∑∫
DV (5)Dk(5)

q2 Dk
(5)
q3 Dk

(5)
π

(
m

(5)
3qπ

)3

2ω
(5)
q1

×
∑∫

DV (4)Dk
(4)
N0

(
m

(4)
N0π

)3

2ω
(4)
π

(
mN −m(4)

N0π

)−1

×
∑∫

DV ′′′Dk′′′q2Dk
′′′
q3Dk

′′′
π

(
m′′′3qπ

)3

2ω′′′q1

∑∫
DV ′′Dk′′q2Dk

′′
q3

(
m′′3q

)3

2ω′′q1

×
〈
V ′N0

′ ∣∣V (6)3q(6)
〉〈
V (6)3q(6)

∣∣Kq1π

∣∣V (5)3q(5)π(5)
〉〈
V (5)3q(5)π(5)

∣∣V (4)N0
(4)π(4)

〉

×
〈
V (4)N0

(4)π(4)
∣∣V ′′′3q′′′π′′′

〉〈
V ′′′3q′′′π′′′

∣∣K†q1π
∣∣V ′′3q′′

〉〈
V ′′3q′′

∣∣V N0

〉
,

(4.25)

where V (4) again stands for V ′′′′ etc. and with the invariant masses m... defined in

Eq. (2.46).

Via the spectator condition (4.20) and the wave functions (4.22) (with the normaliza-

tion factors (4.24)), the last two lines of (4.25) read

4 · (2π)3

√
mN0

ω̃
(6)
q1 ω̃

(6)
q2 ω̃

(6)
q3√

m3
N0

(
m

(6)
3q

)3
∆V ′V (6)

〈
N0
′ ∣∣3q(6)

〉

×∆V (6)V (5)∆
q
(6)
2 q

(5)
2

∆
q
(6)
3 q

(5)
3

1√(
m

(5)
3qπ

)3 (
m

(6)
3q

)3

〈
q

(5)
1 π(5)

∣∣∣∣K†q1π
∣∣∣∣q(6)

1

〉∗

× 4 · (2π)3

√
ω

(4)
N0
ω̃

(5)
q1 ω̃

(5)
q2 ω̃

(5)
q3

(∑
ω

(5)
qk

)

√(∑
ω̃

(5)
qk

)(
m

(4)
N0π

)3 (
m

(5)
3qπ

)3
∆V (4)V (5)∆π(4)π(5)

〈
3q(5)

∣∣N0
(4)
〉

× 4 · (2π)3

√
ω

(4)
N0
ω̃′′′q1 ω̃

′′′
q2 ω̃
′′′
q3

(∑
ω′′′qk
)

√(∑
ω̃′′′qk
) (
m

(4)
N0π

)3 (
m′′′3qπ

)3
∆V (4)V ′′′∆π(4)π′′′

〈
N0

(4)
∣∣3q′′′

〉

×∆V ′′′V ′′ ∆q′′′2 q′′2
∆q′′′3 q′′3

1√(
m′′′3qπ

)3 (
m′′3q

)3
〈
q′′′1 π

′′′∣∣∣∣K†q1π
∣∣∣∣q′′1

〉

× 4 · (2π)3

√
mN0

ω̃′′q1 ω̃
′′
q2 ω̃
′′
q3√

m3
N0

(
m′′3q

)3 ∆V V ′′
〈
3q′′

∣∣N0

〉
.

(4.26)

After cancelling the fractions and exploiting the Delta functions as well as the fact

that in states without a pion,
∑
ω

(6)
qk =

∑
ω̃

(6)
qk = m

(6)
3q resp.

∑
ω′′qk =

∑
ω̃′′qk = m′′3q , we
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get 〈
V ′N0

′∣∣Vo1

∣∣V N0

〉

=16 · (2π)12 ∆V V ′

∑∫ Dk
(5)
q2 Dk

(5)
q3

ω
(6)
q1 ω

(5)
q1

Dk′′q2Dk
′′
q3

ω′′′q1ω
′′
q1

Dk
(4)
N0

2ω
(4)
π

×

√
mN0

ω̃
(6)
q1 ω̃

(6)
q2 ω̃

(6)
q3√

m3
N0

〈
N0
′ ∣∣3q(6)

〉 〈
q

(5)
1 π(4)

∣∣∣∣K†q1π
∣∣∣∣q(6)

1

〉∗

×

√
ω

(4)
N0
ω̃

(5)
q1 ω̃

(5)
q2 ω̃

(5)
q3

(∑
ω

(5)
qk

)

√(∑
ω̃

(5)
qk

)
〈
3q(5)

∣∣N0
(4)
〉 (
mN −m(4)

N0π

)−1

×

√
ω

(4)
N0
ω̃′′′q1 ω̃

′′′
q2 ω̃
′′′
q3

(∑
ω′′′qk
)

√(∑
ω̃′′′qk
)

〈
N0

(4)
∣∣3q′′′

〉 〈
q′′′1 π

(4)
∣∣∣∣K†q1π

∣∣∣∣q′′1
〉

×
√
mN0 ω̃

′′
q1 ω̃
′′
q2 ω̃
′′
q3√

m3
N0

〈
3q′′

∣∣N0

〉
.

(4.27)

Here we have kept the intermediate velocity-state momenta of quark 1, k′′′q1 and k
(6)
q1 ,

as well as all 3 quark momenta in the “tilde” frame, k̃′′′i and k̃
(6)
i (and all dependent

quantitites), for readability. The non-tilde three-momenta are obtained via the definition

of the velocity state (2.46) in combination with the spectator conditions (4.20), whence
~k′′′q1 + ~k′′q2 + ~k′′q3 + ~k

(4)
π = 0 , i.e. ~k′′′q1 = ~k′′q1 − ~k

(4)
π (and vice versa for states with 5 and 6

primes). To obtain the momenta in the “tilde” frame, we use equation (3.35); note that

the velocity (3.36) of the 3-quark subsystem depends on all three quark momenta!

Finally, after the index replacements ′′ −→ () for the incoming quark state, (6) −→ ′
for the outgoing one, ′′′ −→ ′′ and (5) −→ ′′ for intermediate quark states and

(4) −→ ′′ for the intermediate hadronic nucleon state, we can rewrite this into an ex-
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pression compatible with Eq. (4.11):

〈
V ′N0

′∣∣Vo1

∣∣V N0

〉
=

∆V V ′

m3
N0

∑∫ Dk′′N0

2ω′′π

×


4 · (2π)6

∑∫ Dk′q2 Dk
′
q3

ω′′q1 ω
′
q1

√
ω′′N0

ω̃′′q1 ω̃
′′
q2 ω̃
′′
q3

(∑
ω′′qk
)

√(∑
ω̃′′qk
)

〈
N0
′′ ∣∣3q′′

〉

×
〈
q′′1π

′′∣∣∣∣K†q1π
∣∣∣∣q′1
〉 √

mN0
ω̃′q1 ω̃

′
q2 ω̃
′
q3

〈
3q′
∣∣N0
′〉)∗

×
(
mN −m′′N0π

)−1

×


4 · (2π)6

∑∫ Dkq2 Dkq3
ω′′q1 ωq1

√
ω′′N0

ω̃′′q1 ω̃
′′
q2 ω̃
′′
q3

(∑
ω′′qk
)

√(∑
ω̃′′qk
)

〈
N0
′′ ∣∣3q′′

〉

×
〈
q′′1π

′′∣∣∣∣K†q1π
∣∣∣∣q1

〉 √
mN0

ω̃q1 ω̃q2 ω̃q3
〈
3q
∣∣N0

〉)
,

(4.28)

where for the vertex matrix elements we will use Eqs. (4.21).

For symmetry reasons (we will use the same 3-quark wave function as in Sec. 3.3.2),

Vopt = 9Vo1 (cf Eq. (4.18)).

4.3 The microscopic expression for the

pion–nucleon vertex

From comparing Eqs. (4.11) and (4.28) we get for the pion–nucleon vertex

〈
N0
′′π′′

∣∣∣∣K†N0π

∣∣∣∣N0
(′)〉

=12 · (2π)6
∑

µ′′q1
,τ ′′q1

µ(′)
q1
,τ(′)
q1

∑∫ Dk
(′)
q2 Dk

(′)
q3

ω′′q1 ω
(′)
q1

√
mN0 ω̃

(′)
q1 ω̃

(′)
q2 ω̃

(′)
q3

√
ω′′N0

ω̃′′q1 ω̃
′′
q2 ω̃
′′
q3

(∑
ω′′qk
)

√(∑
ω̃′′qk
)

×
〈
N0
′′ ∣∣3q′′

〉〈
q′′1π

′′∣∣∣∣K†q1π
∣∣∣∣q(′)

1

〉 〈
3q(′) ∣∣N0

(′)〉

(4.29)

from which we can immediately derive the nucleon pseudoscalar and pseudovector currents

by comparing with Eqs. (4.7) and (4.8), respectively.

As already mentioned, we will use either pseudoscalar or pseudovector coupling for

the quark–pion vertex, cf Eqs. (4.21). Also, we use the same 3-quark wave function as we

already did in Sec. 3.3.2: 〈
q̃1 q̃2 q̃3

∣∣Ñ
〉

= ΦX ΦFS ΦC (4.30)

with the momentum part

ΦX =
N(

(
∑
ω̃k)

2
+ β2

)γ (4.31)
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and the spin-flavor part

ΦFS =
1√
2

∑

s

∑

µ̃1,µ̃2,µ̃3,µ̃s
τ1,τ2,τ3,τs

Csµ̃s1
2 µ̃2

1
2 µ̃3

Csτs1
2 τ2

1
2 τ3

C
1
2 µ̃N

sµ̃s
1
2 µ̃1

C
1
2 τN

sτs
1
2 τ1

. (4.32)

Both parts of the wave function are again defined in the “tilde” frame, i.e. in the rest

frame of the nucleon.

We use Wigner-D-functions to transform the wave function to the overall rest frame

(of the 3qπ system) in the same manner as in Eqs. (3.57). However, we make use of the

fact that for the incoming and outgoing states
∣∣V N (′)〉 resp.

∣∣V 3q(′)〉, the coordinates

with and without a tilde are identical. For symmetry reasons it can be assumed that the

pion couples to quark 1, which implies an overall factor of 3 which has already been taken

into account in equation (4.29). For the first vertex (the one between incoming nucleon

state and intermediate nucleon–pion state), we thus end up with

gN0 J
5 []]
N0

(~kN0
, µN0

; ~k′′N0
, µ′′N0

) F(τN0
, τ ′′N0

, τ ′′π )

=
3

2

√
ωN0 ω

′′
N0

∑∫
d3k̃2 d

3k̃3
1

ω′′1

√
ω̃′′1 ω̃

′′
2 ω̃
′′
3

ω̃1 ω̃2 ω̃3

√∑
ω′′k∑
ω̃′′k

×D∗µ′′1 µ̃′′1
(
B(~v′′3q), ~̃v

′′
1

)
D∗µ′′2 µ̃′′2

(
B(~v′′3q), ~̃v

′′
2

)
D∗µ′′3 µ̃′′3

(
B(~v′′3q), ~̃v

′′
3

)

× Cs
′′µ̃′′s

1
2 µ̃
′′
2

1
2 µ̃
′′
3
Cs
′′τs

1
2 τ2

1
2 τ3

C
1
2 µ̃
′′
N0

s′′µ̃′′s
1
2 µ̃
′′
1
C

1
2 τ
′′
N0

s′′τs
1
2 τ
′′
1

N(
(
∑
ω̃′′k )

2
+ β2

)γ

× Csµs1
2 µ2

1
2 µ3

Csτs1
2 τ2

1
2 τ3

C
1
2 µN0

sµs
1
2 µ1

C
1
2 τN0

sτs
1
2 τ1

N(
(
∑
ω̃k)

2
+ β2

)γ

× uµ′′1 (~k′′1 )

(
g

[
− f

mπ g
γν k′′π ν

]
γ5

)
uµ1

(~k1) F(τ1, τ
′′
1 , τ

′′
π ) ,

(4.33)

where we have defined for the pseudovector coupling

J5 ](N0, N0
′′) := − fN0

mπ gN0

J5
ν (N0, N0

′′) kνπ (4.34)

to treat the pseudoscalar (without square brackets) and pseudovector (with square brack-

ets) case at the same time. Additionally, we have again replaced the quark indices qi by

i and used the shorthand notation (2.41). The spectator conditions (4.20) (valid in the

non-“tilde” frame!) have already been taken into account. Keeping in mind as well the

relations
∑
µi = µN ,

∑
µ̃′′i = µ′′N (spins can be coupled as usual only in the “tilde”

frame) and
∑
τi = τN ,

∑
τ ′′i = τ ′′N , the sum is over quark spins and isospins µ2, µ3,

τ2, τ3, µ′′1 , µ̃′′2 and µ̃′′3 (= ± 1
2 ) as well as over intermediate (iso)spins s, s′′ (= {0, 1}) and

their polarizations µs, µ̃
′′
s and τs (= −s(′′) . . . s(′′)). Eq. (4.33) relates also the pseudoscalar

(pseudovector) pion–quark coupling g (f) with the corresponding coupling gN0
(fN0

) on

hadron level.
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It is easily checked that
∑

{τk},s,τs,
τ ′′1 , s

′′, τ ′′s

C
s′′τ ′′s
1
2 τ2

1
2 τ3

C
1
2 τ
′′
N

s′′τ ′′s
1
2 τ
′′
1
Csτs1

2 τ2
1
2 τ3

C
1
2 τN

sτs
1
2 τ1

F(τ1, τ
′′
1 , τ

′′
π ) = F(τN , τ

′′
N , τ

′′
π ) ; (4.35)

however, this expression cannot be isolated from the above equation. The reason is that

s and s′′ also occur in the spin sum.

4.4 Extraction of the form factor

4.4.1 Kinematics

In order to extract the strong form factor and the πN0N0 coupling, we use the following

kinematics: The frame of reference is the rest frame of the incoming (and outgoing)

nucleon. The pion is emitted in the x1-direction with momentum k; the nucleon picks up

the reverse 3-momentum:

kN0 =




mN0

0

0

0


 , kπ =




√
k2 +m2

π

k

0

0


 ,

~k′′N0
= ~kN0 − ~kπ ⇒ k′′N0

=




√
k2 +m2

N0

−k
0

0




,

~k′N0
= ~k′′N0

+ ~kπ ⇒ k′N0
=




mN0

0

0

0


 = kN0

.

(4.36)

The negative 4-momentum transfer to the nucleon is then

Q2 = −q2 = −
(
kN0
− k′′N0

)2
= −




mN0 −
√
k2 +m2

N0

k

0

0




2

= −2m2
N0

+ 2mN0

√
k2 +m2

N0
.

(4.37)

4.4.2 Pseudoscalar coupling

To extract the strong form factor for pseudoscalar πN0N0 coupling, we do the following:

According to Eq. (2.65),

gN0 J
5
N0

(~kN0 , µN0 ; ~k′′N0
, µ′′N0

) = gN0 Gps(Q
2)uµ′′N0

(~k′′N0
) γ5 uµN0

(~kN0) . (4.38)
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We evaluate this expression using Mathematica R©. In our kinematics, Eq. (4.36), this

reads

J5
N0

(−1

2
,−1

2
) = J5

N0
(
1

2
,

1

2
) = 0 ,

J5
N0

(
1

2
,−1

2
) = J5

N0
(−1

2
,

1

2
) = Q ·Gps(Q

2) ,

(4.39)

where we observe that

J5 ∗
N0

= J5
N0

. (4.40)

We thus obtain the strong nucleon form factor via

Gps(Q
2) =

1

Q
J5
N0

(
1

2
,−1

2
) . (4.41)

4.4.3 Pseudovector coupling

With J5 ](N0, N0
′) defined as in Eqs. (4.34) and (2.66), the pseudovector analog reads

gN0 J
5 ]
N0

(~kN0 , µN0 ; ~k′′N0
, µ′′N0

) = −fN0

mπ
Gpv(Q2)uµ′′N0

(~k′′N0
) γν γ5 uµN0

(~kN0) kπ ν , (4.42)

which gives

J5 ]
N0

(−1

2
,−1

2
) = J5 ]

N0
(
1

2
,

1

2
) = 0 ,

J5 ]
N0

(
1

2
,−1

2
) = J5 ]

N0
(−1

2
,

1

2
)

= +
fN0

gN0 mπ
Gpv(Q2)

k
√

2mN0

(
mN0

+
√
k2 +m2

N0
+
√
k2 +m2

π

)

(√
k2 +m2

N0
+mN0

) ,

and thus

Gpv(Q2) = +

(√
k2 +m2

N0
+mN0

)

k
√

2mN0

(
mN0

+
√
k2 +m2

N0
+
√
k2 +m2

π

) gN0

mπ

fN0

J5 ]
N0

(
1

2
,−1

2
)

(4.43)

We fix gN0
and fN0

such that Gps(0) = Gpv(0) = 1 .

4.5 Numerical implementation

For the major part, the numerical evaluation of the nucleon pseudoscalar current, Eq.

(4.33), runs along the same lines as that of the electromagnetic current in Sec. 3.5. The

differences are as follows:

4.5.1 Kinematic quantities

The initialization of the quark momenta in the incoming state reads
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knaked [2] << sqrt(pow(k2,2) + pow(m,2)),

k2*sin(theta2)*cos(phi2),

k2*sin(theta2)*sin(phi2),

k2*cos(theta2);

// (knaked [3] analogously)

Vector3d k1naked3d = -knaked[2].segment<3>(1)-knaked[3].segment<3>(1);

knaked[1](0) = sqrt(pow(m,2)+k1naked3d.dot(k1naked3d));

knaked[1].segment<3>(1) = k1naked3d;

where m is the quark mass (globally defined) and k2, phi2, theta2 the three integration

variables for quark 2.

The 3-momentum transfer (now “k”) to quark 1 is the same as to the nucleon in (4.36),

while via the spectator conditions (4.20), quarks 2 and 3 remain unaffected:

Vector4d knakedpr [4]; // in class declaration

for (i=1; i<=3; i++){ knakedpr[i] = knaked[i]; }

knakedpr[1](1) = knaked[1](1) - k;

knakedpr[1](0) =

sqrt(pow(m,2) + pow(knakedpr[1](1),2) + pow(knakedpr[1](2),2) + ... );

We then get the double-primed invariant mass of the 3-quark subsystem and the velocity

(3.36) via

double mclpr =

sqrt(pow(knakedpr[1](0)+knakedpr[2](0)+knakedpr[3](0),2)-pow(k,2));

Vector4d vclpr; // in class declaration

vclpr << (sqrt(pow(k,2) + pow(mclpr,2))/mclpr) , -k/mclpr , 0 , 0;

The double-primed quark momenta in the original (“tilde”) frame are obtained via an

inverse boost (2.36) with the double-primed velocity of the 3-quark subsystem:

for (i=1; i<=3; i++){ ktildepr [i] = invboost(vclpr)*knakedpr[i]; }

4.5.2 Quark current and flavor function

Naturally, in the function for the current of quark 1, Matrix2cd

Mompart::quark1current (), we now need γ5 for pseudoscalar and kνπ γν γ
5 for
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pseudovector coupling, i.e. instead of dirac(nu) in the middle line of Matrix4cd

middlematrix we have dirac(5) and

-1/(2*m) * (dirac(0)*sqrt(pow(k,2)+pow(mpi,2))-dirac(1)*k) * dirac(5)

respectively, where mpi is the pion mass.

In addition to the spin-momentum part of the quark current, we also need the flavor

function F from Sec. 2.5.3. It reads

double flavorfunction(int tau, int taupr){

double ff;

if (tau == 1 && taupr == 1) ff = 1;

else if (tau == 1 && taupr == -1) ff = sqrt(2);

else if (tau == -1 && taupr == 1) ff = sqrt(2);

else if (tau == -1 && taupr == -1) ff = -1;

return ff; }

4.5.3 Integrand function

The factor which is made up of all the Clebsch-Gordan coefficients (initialized by external

call Clebschgordan cg) reads

double cgfactor =

1/sqrt(2) *

cg.coeff(1,mu2tildepr,1,mu3tildepr,spr,mustildepr) *

cg.coeff(1,tau2,1,tau3,spr,taus) *

cg.coeff(spr,mustildepr,1,mu1tildepr,1,params->muNpr) *

cg.coeff(spr,taus,1,tau1pr,1,params->tauNpr) *

1/sqrt(2) *

cg.coeff(1,mu2,1,mu3,s,mus) *

cg.coeff(1,tau2,1,tau3,s,taus) *

cg.coeff(s,mus,1,mu1,1,params->muN)*

cg.coeff(s,taus,1,tau1,1,params->tauN);

The full integrand reads
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intgr +=

prefactor *

cgfactor *

wigrotfactor1pr ((1-mu1tildepr)/2,(1-mu1pr)/2) *

wigrotfactor2pr ((1-mu2tildepr)/2,(1-mu2)/2) *

wigrotfactor3pr ((1-mu3tildepr)/2,(1-mu3)/2) *

spacepartpr *

spacepart *

quark1current ((1-mu1pr)/2,(1-mu1)/2) *

flavorfunction(tau1,tau1pr);

with a sum over spins and isospins mu2, mu3, tau2, tau3, mu1pr, mu2tildepr,

mu3tildepr ( = ±1), s, spr ( = 0, 2) and mus, mustildepr, taus ( = −s[pr] . . . s[pr]).

The dependent variables int mu1, mu1tildepr, tau1, tau1pr are set accordingly (see

comment after Eq. (4.33)) including a check whether they are in the range ±1. Note that

the strong quark coupling constant g has yet to be determined and has thus been set to 1.

After continuing with the rest of the procedure as outlined in Sec. 3.5, we obtain a

result for the pseudoscalar current, R(Q2), which equals the nucleon pseudoscalar current

divided by the strong quark coupling constant, g ·R(Q2) = gN0
J5
N0

(Q2) . Since the r.h.s.

at Q2 = 0 equals the nucleon strong coupling constant, gN0
, we obtain the quark coupling

constant via

gN0 = g ·R(0) , (4.44)

i.e. the pseudoscalar current of the bare nucleon reads

gN0
J5
N0

(Q2) =
gN0

R(0)
·R(Q2) . (4.45)

4.6 Results

The normalized form factor GN0
(Q2) is well described by a fit of the form [MCP09]

G(Q2) =
1

1 +
(
k

Λ1

)2

+
(
k

Λ2

)4 , (4.46)

where k is the three-momentum of the pion (related to Q2 via Eq. (4.37)). For compar-

ison with predictions from other approaches we will neglect the pionic component of the

nucleon as well as the renormalization of the nucleon mass due to pion loops. As a con-

sequence, the physical nucleon N can be identified with the bare nucleon N0 (which is a

pure 3-quark bound state). Possible pionic effects are then hidden in the parametrization

of the 3-quark bound-state wave function and the constituent quark masses. For these

quantities we will use the same values as for the calculation of the electromagnetic form
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Figure 4.3: Strong πNN form factor: Comparison of our results (pseudoscalar and

pseudovector coupling) with findings by Melde et al. [MCP09], Polinder and Rijken

[PR05a, PR05b], and lattice results by Liu et al. [LDDW95] as well as Erkol et al.

[EOT09].

factors in Chap. 3. A comparison of our results for pseudoscalar and pseudovector cou-

pling with another constituent-quark-model calculation [MCP09] (pseudovector), with a

hadronic pion-cloud model [PR05a, PR05b] (pseudovector) and with lattice predictions

[LDDW95, EOT09] (pseudoscalar) is shown in Fig. 4.3. The normalized results, which

are shown there, do not depend strongly on the choice of the coupling (pseudoscalar or

pseudovector). Instead, there is a significant difference in the outcome for the strong

quark–pion coupling constant.

For pseudoscalar coupling our results are well described by the fitting parameters

Λ1 = 0.637 and Λ2 = 1.46 . Taking the phenomenologically determined value for the

πNN coupling constant gN = 13.1 [Bug04], we obtain the quark pseudoscalar coupling

constant g = 3.55 ( g2/4π = 1.00 ) by means of Eq. (4.44).

For pseudovector coupling we obtain Λ1 = 0.607 , Λ2 = 1.68 and

gpv :=
2mq
mπ

f = 2.85 ( g2
pv/4π = 0.65 ). This coupling constant compares well with

the one used in the Goldstone-Boson exchange relativistic constituent quark model by

Glozman et al. ( g2
pv/4π = 0.67 ) [GPP+98].



Chapter 5

Overall Electromagnetic

Form Factor

Having calculated the electromagnetic and the strong form factors of the bare nucleon,

we now want to obtain the electromagnetic form factors of the nucleon including the

pion-cloud effect. We restrict ourselves to a single pion that is emitted and reabsorbed

by the nucleon. We will therefore treat the physical nucleon as a state consisting of a

“bare” nucleon and a bare nucleon + pion component. This formalisms calls for the

mass of the “bare” nucleon, which differs from the physical one. Note that from now on,

all calculations can and will be performed on the hadronic level, since the three-quark

structure of the bare nucleon just enters the electromagnetic and strong couplings and

vertex form factors, which have already been determined in the preceding sections. The

formalism is treated in detail in what follows.

5.1 Basic setup

The starting point for our treatment of the electromagnetic nucleon form factors including

the pion cloud is essentially the same as in Sec. 3.1. In order to properly describe the

physical nucleon state, we consider it as a superposition of a bare nucleon state and a bare

nucleon–pion state. The velocity states of Eq. (3.2) then become two-component state

vectors ∣∣V Ne(γ)
〉

:=
∣∣V Ñe(γ)

〉
+
∣∣V Ñπe(γ)

〉
. (5.1)

The two components can be obtained by solving the eigenvalue problem for the matrix

mass operator (cf. App. A):

MNe(γ) :=

(
MN0e(γ) Kπ

K†π MN0πe(γ)

)
. (5.2)

The operators MNe(γ) contain all interactions except photon exchange, that is, in our

case, just the pion exchange. The diagonal elements of the matrices (5.2), in turn, are the

69
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˜Nπ
Ψ

N0

π

N
= +

√
αΨ

˜N N0√
1− α

Figure 5.1: Physical nucleon N as a superposition of a bare nucleon component Ñ and

a bare nucleon + pion component Ñπ. The Ñ state consists of a single free nucleon N0

with probability (1− α). The Ñπ state is a distribution of free nucleon–pion states N0π

which is described by the wave function Ψ and occurs with overall probability α.

free mass operators of the respective subsystems, that is, they only contain relativistic

energies, whereas interactions with the pion are accounted for by the vertex operators

K
(†)
π . Note that, since we have mN0e = ωN0

+ ωe 6= mNe = ωN + ωe for the eigenvalues,

also the masses of the physical and the bare nucleon are not equal (as long as K
(†)
π does

not vanish):

mN 6= mN0
! (5.3)

We again work with velocity states also for the channels
∣∣V Ñe(γ)

〉
and

∣∣V Ñπe(γ)
〉
.

They are superpositions of corresponding free (i.e. orthogonal) states
∣∣V N0e(γ)

〉
and∣∣V N0πe(γ)

〉
, respectively, with the wave functions ΨN/N0(π) acting as coefficients. The lat-

ter are determined by solving the eigenvalue equation for the physical nucleon (cf. App. A).

The normalization of the free states reads (cf. Eq. (2.50)):

〈
V N0(π)e(γ)

∣∣V ′N ′0(π′)e′(γ′)
〉

=
2ωN0

m3
N0(π)e(γ)

∆V V ′ (∆ππ′) ∆ee′ (∆γγ′) (5.4)

and the corresponding completeness relation (cf. Eq. (2.52)):

IN0(π)e(γ) =
∑∫

DV (Dkπ)Dke (Dkγ)
m3
N0(π)e(γ)

2ωN0

∣∣V N0(π)e(γ)
〉〈
V N0(π)e(γ)

∣∣ , (5.5)

where a sum over µN0
and τN0

is implied and the m... are – as usual – the eigenvalues of

the corresponding free mass operators, i.e. they contain no interactions.

5.2 The nucleon–pion wave function

In the following, we introduce the wave functions ΨN/N0
and ΨN/N0π in order to properly

describe the bare nucleon and the bare nucleon + pion components in the physical nucleon,

respectively. These are just appropriate projections onto free states, i.e.:
〈
V ′N ′0e

′(γ′)
∣∣V Ñe(γ)

〉
=
√

1− αN1 ΨN/N ′0
∆V ′V ∆e′e (∆γ′γ) ,

〈
V ′N ′0π

′e′(γ′)
∣∣V Ñπe(γ)

〉
=
√
αN2 ΨN/N ′0π

′ ∆V ′V ∆e′e (∆γ′γ) .
(5.6)

The Ni are normalization factors yet to be determined. The role of the coefficients
√

1− α
and
√
α will become clearer in a moment.



Chapter 5. Overall Electromagnetic Form Factor 71

Using the relations above, the expansions of the nucleonic components in terms of free

states then read

∣∣V Ñe(γ)
〉

= IN0e(γ)

∣∣V Ñe(γ)
〉

=
∑∫

DV ′Dk′e(Dk
′
γ)

(m′N0e(γ))
3

2ω′N0

∣∣V ′N ′0 e′(γ′)
〉〈
V ′N ′0 e

′(γ′)
∣∣V Ñe(γ)

〉

=
√

1− α
(m′N0e(γ))

3

2ω′N0

N1 ΨN/N ′0

∣∣V N ′0 e (γ)
〉

(5.7)

and

∣∣V Ñπe(γ)
〉

= IN0πe(γ)

∣∣Ñπe(γ)
〉

=
∑∫

DV ′Dk′πDk
′
e(Dk

′
γ)

(m′N0πe(γ))
3

2ω′N0

∣∣V ′N ′0 π′e′(γ′)
〉 〈
V ′N ′0 π

′e′(γ′)
∣∣V Ñπe(γ)

〉

=
√
α
∑∫

Dk′π
(m′N0πe(γ))

3

2ω′N0

N2 ΨN/N ′0π
′
∣∣V N ′0 π′e (γ)

〉
, (5.8)

with a sum over µ′N0
and τ ′N0

implied. Since a single bare nucleon necessarily has the

same quantum numbers as the physical nucleon it relates to, the bare-nucleon-in-physical-

nucleon wave function is simply a product of Kronecker deltas over spins and isospins:

ΨN/N ′0
= δµNµ′N0

δτNτ ′N0
. (5.9)

Furthermore in the velocity-state representation, the three-momentum of both bare and

physical nucleon is determined by the one of the electron:

~kN0 = ~kN = −~ke . (5.10)

However, since mN 6= mN0 , this is not true for the four-momenta: kN 6= kN0 !

The normalization condition for the nucleon–pion wave function reads

∑

µ′′N0
τ ′′N0

τ ′′π

∫
d3k̃′′π Ψ∗N/N ′′0 π′′ ΨN ′/N ′′0 π

′′ = δµNµ′N δτNτ ′N , (5.11)

or, in our shorthand notation,

∑

µ′′N0
τ ′′N0

∑∫
Dk̃′′π ω̃

′′
π Ψ∗N/N ′′0 π′′ ΨN ′/N ′′0 π

′′ =
δµNµ′N δτNτ ′N

2 (2π)3
. (5.12)

The quantities with a “tilde” are defined in the center-of-momentum (c.o.m.) frame of

the N0π subsystem which constitutes the physical nucleon, not the overall c.o.m. frame

as usual (cf. Sec. 2.4.5), i.e.

k̃N0
= B−1(~vN0π) kN0

, k̃π = B−1(~vN0π) kπ ,

UB(~vN0π
)

∣∣k̃N0 µ̃N0

〉
=

∑

µN0
=± 1

2

∣∣kN0µN0

〉
DµN0

µ̃N0

(
B(~vN0π),

~̃kN0

mN0

)
,

(5.13)
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with

~vN0π =
~kN0π

mN0π
,

~kN0π = ~kN0
+ ~kπ = −~ke = ~kN ,

mN0π = ω̃N0 + ω̃π =
√

(ωN0 + ωπ)2 − ~k2
N0π

.

(5.14)

By B(~v) we mean a (canonical, i.e. rotationless) Lorentz boost with velocity ~v. For the

definition of the Wigner rotation RW and its associated Wigner-D-function in Eq. (5.13),

see Sec. 2.4.4. Note that the boost velocity ~vN0π is calculated from ~kN not by dividing

by the physical nucleon mass mN , but rather by the invariant mass mN0π! Applying the

coordinate transformation from App. B.1,

Dkπ = Dk̃π
ωN0

ω̃N0

ω̃N0 + ω̃π
ωN0

+ ωπ
, (5.15)

we can also write

∑

µ′′N0
τ ′′N0

∑∫
Dk′′π

ω̃′′N0

ω′′N0

ω′′N0
+ ω′′π

ω̃′′N0
+ ω̃′′π

ω̃′′π Ψ∗N/N ′′0 π′′ ΨN ′/N ′′0 π
′′ =

δµNµ′N δτNτ ′N
2 (2π)3

. (5.16)

Via Eq. (2.50) the normalization of the physical state and consequently, via Eq. (5.1), the

substates should read
〈
V Ne(γ)

∣∣V ′N ′e′(γ′)
〉

=
〈
V Ñe(γ)

∣∣V ′Ñ ′e′(γ′)
〉

+
〈
V Ñπe(γ)

∣∣V ′Ñ ′π′e′(γ′)
〉

=
2ωN
m3
Ne(γ)

∆V V ′ ∆ee′ (∆γγ′) δµ′NµN δτ ′NτN
(5.17)

with the normalizations

〈
V Ñe(γ)

∣∣V ′Ñ ′e′(γ′)
〉

= (1− α)
2ωN
m3
Ne(γ)

∆V V ′ ∆ee′ (∆γγ′) δµ′NµN δτ ′NτN ,

〈
V Ñπe(γ)

∣∣V ′Ñ ′π′e′(γ′)
〉

= α
2ωN
m3
Ne(γ)

∆V V ′ ∆ee′ (∆γγ′) δµ′NµN δτ ′NτN

(5.18)

for each component. This means that α is the probability for finding the nucleon–pion

component in the physical nucleon. Likewise, the completeness relation for the physical

nucleon state decomposes into

INe(γ) =
∑

µNτN

∑∫
DVDke(Dkγ (−gµγµγ ))

m3
Ne(γ)

2ωN

∣∣V Ne(γ)
〉〈
V Ne(γ)

∣∣

(5.1)
=

∑

µNτN

∑∫
DVDke(Dkγ (−gµγµγ ))

m3
Ne(γ)

2ωN

×
(∣∣V Ñe(γ)

〉〈
V Ñe(γ)

∣∣+
∣∣V Ñπe(γ)

〉〈
V Ñe(γ)

∣∣

+
∣∣V Ñe(γ)

〉〈
V Ñπe(γ)

∣∣+
∣∣V Ñπe(γ)

〉〈
V Ñπe(γ)

∣∣
)
.

(5.19)

The normalization factors Ni in (5.7) and (5.8) are then obtained as follows:
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N1: Starting out from Eq. (5.7), we have
〈
V Ñe(γ)

∣∣V ′Ñ ′e′(γ′)
〉

= (1− α) N1 N
′
1

(mN0e(γ))
3

2ωN0

(m′N0e(γ))
3

2ω′N0

〈
V N0 e (γ)

∣∣V ′N ′0 e′ (γ′)
〉

(5.4)
= (1− α)N 2

1

(mN0e(γ))
3

2ωN0

∆V V ′ ∆ee′ (∆γγ′) .

(5.20)

Equating this to (5.18), we see that

N 2
1 =

2ωN0

(mN0e(γ))3

2ωN
m3
Ne(γ)

. (5.21)

N2: Starting out from Eq. (5.8), we have

〈
V Ñπe(γ)

∣∣V ′Ñ ′π′e′(γ′)
〉

=α
∑∫

Dk′′πDk
′′′
π

(m′′N0πe(γ))
3

2ω′′N0

(m′′′N0πe(γ))
3

2ω′′′N0

N2 N
′
2 Ψ∗N/N ′′0 π′′ ΨN ′/N ′′′0 π′′′

×
〈
V N ′′0 π

′′e(γ)
∣∣V ′N ′′′0 π′′′e′(γ′)

〉

(5.4)
= α

∑∫
Dk′′π N2 N

′
2

(m′′N0πe(γ))
3

2ω′′N0

Ψ∗N/N ′′0 π′′ ΨN ′/N ′′0 π
′′ ∆V V ′ ∆ee′ (∆γγ′) ,

(5.22)

with sums over µ′′N0
and τ ′′N0

implied. Equating this to expression (5.18) we see that,

under consideration of Eq. (5.16),

N 2
2 = 2 (2π)3 2ωN

m3
Ne(γ)

2ω′′N0

(m′′N0πe(γ))
3

ω̃′′N0

ω′′N0

ω̃′′π
ω′′N0

+ ω′′π
ω̃′′N0

+ ω̃′′π
. (5.23)

Thus, the expansion of the bare nucleon and bare nucleon + pion components in terms

of free velocity states finally reads

∣∣V Ñe(γ)
〉

=
√

1− α
√

(mN0e(γ))3

ωN0

√
ωN

m3
Ne(γ)

∣∣V N0e(γ)
〉

∣∣V Ñπe(γ)
〉

=
√
α
√

2 (2π)3
∑

µ′N0
τ ′N0

∑∫
Dk′π

×
√

(m′N0πe(γ))
3

ω′N0

√
ωN

m3
Ne(γ)

√
ω̃′N0

ω′N0

√
ω̃′π

√
ω′N0

+ ω′π
ω̃′N0

+ ω̃′π
ΨN/N ′0π

′
∣∣V N ′0 π′e (γ)

〉
.

(5.24)

5.3 Eigenvalue equation and Feshbach reduction

We start with a coupled-channels approach exactly as in Sec. 3.1, Eq. (3.2):
(
MNe Kγ

K†γ MNeγ

)( ∣∣V Ne
〉

∣∣V Neγ
〉
)

=
√
s

( ∣∣V Ne
〉

∣∣V Neγ
〉
)
, (5.25)
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where the diagonal elements MNe and MNeγ are the mass operators for nucleon–electron

and nucleon–electron–photon channels (without electromagnetic interactions), respec-

tively, and the off-diagonal elements Kγ and K†γ , linking the two channels, are the annihi-

lation resp. creation operators of the photon. s is the Mandelstam variable for electron–

nucleon scattering (i.e. the invariant mass squared of the whole system). A Feshbach

reduction completely analogous to Sec. 3.1.2 yields

(
√
s−MNe)

∣∣V Ne
〉

=: P−1
Ne

∣∣V Ne
〉

= Kγ PNeγ K
†
γ︸ ︷︷ ︸

Vopt

∣∣V Ne
〉
. (5.26)

Via Eq. (5.1), the matrix elements of the optical potential Vopt can then be decomposed

in terms of the nucleonic components:
〈
V ′N ′e′

∣∣Vopt

∣∣V Ne
〉

=
〈
V ′Ñ ′e′

∣∣Kγ PNeγ INeγ K†γ
∣∣V Ñe

〉

+
〈
V ′Ñ ′e′

∣∣Kγ PNeγ INeγ K†γ
∣∣V Ñπe

〉

+
〈
V ′Ñ ′π′e′

∣∣Kγ PNeγ INeγ K†γ
∣∣V Ñe

〉

+
〈
V ′Ñ ′π′e′

∣∣Kγ PNeγ INeγ K†γ
∣∣V Ñπe

〉
,

(5.27)

where we have already inserted the unity operator, which is necessary so that the propa-

gator can assume its eigenvalue.

Using the decomposition (5.19) for INeγ and replacing the propagator by its eigenvalue,

we get the following 4 expressions for the single matrix elements (between orthogonal

states, i.e. the first line in Eq. (5.27) corresponds to
〈
V ′Ñ ′e

∣∣Vopt

∣∣V Ñe
〉

etc.):

〈
V Ñ(π)e

∣∣′Vopt

∣∣V Ñ [π]e
〉

=
∑

µ′′Nτ
′′
N

∑∫
DV ′′Dk′′eDk

′′
γ

(
−gµ′′γµ′′γ

)

×
〈
V Ñ(π)e

∣∣′Kγ

∣∣V Ñ(π)eγ
〉′′ (m′′Neγ)3

2ω′′N

1√
s−m′′Neγ

〈
V Ñ [π]eγ

∣∣′′K†γ
∣∣V Ñ [π]e

〉
(5.28)

where either all the π’s in round brackets or all those in square brackets (or both)

are included or omitted. Here and from now on, we will use the shorthand notation∣∣V Ne
〉′

:=
∣∣V ′N ′e′

〉
etc. for primed states, wherever it seems necessary. Note that

〈
V Ñe

∣∣′Vopt

∣∣V Ñπe
〉

=
〈
V Ñπe

∣∣V †opt

∣∣V Ñe
〉′ ∗

. (5.29)

Using Eqs. (5.24), we obtain

〈
V Ñe

∣∣′Vopt

∣∣V Ñe
〉

=
1

2
(1− α)2

∑

µ′′Nτ
′′
N

∑∫
DV ′′Dk′′eDk

′′
γ

(
−gµ′′γµ′′γ

)

×
√

(m′N0e
)3

ω′N0

√
ω′N

(m′Ne)
3

〈
V N0e

∣∣′Kγ

∣∣V N0eγ
〉′′

×
(m′′N0eγ

)3

ω′′N0

1√
s−m′′Neγ

〈
V N0eγ

∣∣′′K†γ
∣∣V N0e

〉
√

(mN0e)
3

ωN0

√
ωN
m3
Ne

,

(5.30)
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〈
V Ñe

∣∣′Vopt

∣∣V Ñπe
〉

= (2π)3 α (1− α)
∑

µ′′Nτ
′′
N

∑∫
DV ′′Dk′′eDk

′′
γ

(
−gµ′′γµ′′γ

)

×
√

(m′N0e
)3

ω′N0

√
ω′N

(m′Ne)
3

〈
V N0e

∣∣′Kγ

∣∣V N0eγ
〉′′
√

(m′′N0eγ
)3

ω′′N0

1√
s−m′′Neγ

×
∑

µ′′′N0
τ ′′′N0

∑∫
Dk′′′π

√
(m′′′N0πeγ

)3

ω′′′N0

ω̃′′′N0
ω̃′′′π

ω′′′N0

√
ω′′′N0

+ ω′′′π
ω̃′′′N0

+ ω̃′′′π
Ψ∗N ′′/N ′′′0 π′′′

〈
V N0πeγ

∣∣′′′K†γ

×
∑

µ
(4)
N0
τ
(4)
N0

∑∫
Dk(4)

π

∣∣V N0πe
〉(4)

√√√√ (m
(4)
N0πeγ

)3 ωN

ω
(4)
N0
m3
Neγ

ω̃
(4)
N0
ω̃

(4)
π

ω
(4)
N0

√√√√ω
(4)
N0

+ ω
(4)
π

ω̃
(4)
N0

+ ω̃
(4)
π

Ψ
N/N

(4)
0 π(4)

(5.31)

and

〈
V Ñπe

∣∣′Vopt

∣∣V Ñπe
〉

= 2 (2π)6 α2
∑

µ′′Nτ
′′
N

∑∫
DV ′′Dk′′eDk

′′
γ

(
−gµ′′γµ′′γ

)

×
∑

µ′′′N0
τ ′′′N0

∑∫
Dk′′′π

√
(m′′′N0πe

)3 ω′N
ω′′′N0

(m′Ne)
3

ω̃′′′N0
ω̃′′′π

ω′′′N0

√
ω′′′N0

+ ω′′′π
ω̃′′′N0

+ ω̃′′′π
Ψ∗N ′/N ′′′0 π′′′

〈
V N0πe

∣∣′′′Kγ

×
∑

µ
(4)
N0
τ
(4)
N0

∑∫
Dk(4)

π

∣∣V N0πeγ
〉(4)

√√√√ (m
(4)
N0πeγ

)3

ω
(4)
N0

ω̃
(4)
N0
ω̃

(4)
π

ω
(4)
N0

√√√√ω
(4)
N0

+ ω
(4)
π

ω̃
(4)
N0

+ ω̃
(4)
π

Ψ
N ′′/N

(4)
0 π(4)

× 1√
s−m′′Neγ

×
∑

µ
(5)
N0
τ
(5)
N0

∑∫
Dk(5)

π

√√√√ (m
(5)
N0πeγ

)3

ω
(5)
N0

ω̃
(5)
N0
ω̃

(5)
π

ω
(5)
N0

√√√√ω
(5)
N0

+ ω
(5)
π

ω̃
(5)
N0

+ ω̃
(5)
π

Ψ∗
N ′′/N

(5)
0 π(5)

〈
V N0πeγ

∣∣(5)
K†γ

×
∑

µ
(6)
N0
τ
(6)
N0

∑∫
Dk(6)

π

∣∣V N0πe
〉(6)

√√√√ (m
(6)
N0πe

)3 ωN

ω
(6)
N0

(mNe)3

ω̃
(6)
N0
ω̃

(6)
π

ω
(6)
N0

√√√√ω
(6)
N0

+ ω
(6)
π

ω̃
(6)
N0

+ ω̃
(6)
π

Ψ
N/N

(6)
0 π(6) .

(5.32)

5.4 Spectator conditions

Due to the structure of the interaction Lagrangian (2.55) we can now split the photon

creation- and annihilation operators into sums of vertex operators as we already did in
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Sec. 3.1.3:

K†γ
∣∣N0e

〉
=
(
K†eγ +K†Nγ

) ∣∣N0e
〉
,

K†γ
∣∣N0πe

〉
=
(
K†eγ +K†Nγ +K†πγ

) ∣∣N0πe
〉 (5.33)

and vice versa for the annihilation operators.

Having done this, we can employ the following spectator conditions:

〈
V ′N0

′e′γ′
∣∣K†N0γ

∣∣V N0e
〉

= ∆V V ′∆ee′
(−1)√

m
′3
N0eγ

m3
N0e

〈
N0
′γ′
∣∣∣∣K†N0γ

∣∣∣∣N0

〉
,

〈
V ′N0

′e′γ′
∣∣K†eγ

∣∣V N0e
〉

= ∆V V ′∆N0N0
′

(−1)√
m
′3
N0eγ

m3
N0e

〈
e′γ′

∣∣∣∣K†eγ
∣∣∣∣e
〉
,

〈
V ′N0

′π′e′γ′
∣∣K†N0γ

∣∣V N0πe
〉

= ∆V V ′∆ππ′∆ee′
(−1)√

m
′3
N0πeγ

m3
N0πe

〈
N0
′γ′
∣∣∣∣K†N0γ

∣∣∣∣N0

〉
,

〈
V ′N0

′π′e′γ′
∣∣K†eγ

∣∣V N0πe
〉

= ∆V V ′∆N0N0
′∆ππ′

(−1)√
m
′3
N0πeγ

m3
N0πe

〈
e′γ′

∣∣∣∣K†eγ
∣∣∣∣e
〉
,

〈
V ′N0

′π′e′γ′
∣∣K†πγ

∣∣V N0πe
〉

= ∆V V ′∆N0N0
′∆ee′

(−1)√
m
′3
N0πeγ

m3
N0πe

〈
π′γ′

∣∣∣∣K†πγ
∣∣∣∣π
〉

(5.34)

and vice versa for the annihilation operators. In addition, the electromagnetic interaction

leaves the isospin of the nucleon or pion invariant, whence the vertex operator matrix

elements read
〈
N ′0γ

′∣∣∣∣K†N0γ

∣∣∣∣N0

〉
=
〈
N0

∣∣∣∣KN0γ

∣∣∣∣N ′0γ′
〉∗

= |e| Jν(N0, N
′
0) εν(γ′)∗ δτN0

τ ′N0
,

〈
e′γ′

∣∣∣∣K†eγ
∣∣∣∣e
〉

=
〈
e
∣∣∣∣Keγ

∣∣∣∣e′γ′
〉∗

= |e| Jν(e, e′) εν(γ′)∗ ,
〈
π′γ′

∣∣∣∣K†πγ
∣∣∣∣π
〉

=
〈
π
∣∣∣∣Kπγ

∣∣∣∣π′γ′
〉∗

= |e| Jν(π, π′) εν(γ′)∗ δτπτ ′π

(5.35)

where we again use the shorthand notation (3.15), i.e. the Jν(. . .) are the currents of the

respective particles and εν(γ′) is the photon polarization vector. Furthermore, we will use

Jν(X,X ′)∗ = Jν(X ′, X) . (5.36)

(For a more detailed explanation we refer to Sec. 3.1.5, for details on the currents being

inserted to Sec. 5.6.)

5.5 Diagrams

Using the splitting of the photon creation- and annihilation operators from Eq. (5.33), we

are now ready to write down the time-ordered diagrams which correspond to the matrix

elements of the optical potential, Eqs. (5.30) − (5.32). Furthermore, we will employ the

spectator conditions (5.34). In the final step, we will obtain the three covariant diagrams

pertaining to the problem at hand.
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5.5.1 Time-ordered diagrams

Neglecting self-energy photon loops and photon exchange between pion and nucleon, we

obtain the following expressions for time-ordered diagrams. Note that via Eqs. (5.9) and

(5.10), we have ~k′′N = ~k′′N0
, µ′′N = µ′′N0

and τ ′′N = τ ′′N0
!

Nucleon component incoming and outgoing: For the following calculation it is

more convenient to render the photon momentum instead of the nucleon momentum in

Eq. (5.30) redundant, whence, via Eq. (2.52), we have to replace

∑

µ′′Nτ
′′
N

∑∫ Dk′′γ
ω′′N0

−→
∑

µ′′γ

∑∫ Dk′′N0

ω′′γ
, (5.37)

so that for Eq. (5.30) we can write

〈
V ′Ñ ′e′

∣∣Vopt

∣∣V Ñe
〉

=
(
1− α

)2
∆V V ′

√
ω′N

(m′Ne)
3

1√
ω′N0

×
∑

µ′′γ

∑∫
Dk′′e Dk

′′
N0

(
−gµ′′γµ′′γ

) 1

2ω′′γ

1√
s−m′′Neγ

1√
ωN0

√
ωN
m3
Ne

×
(

∆e′e′′
〈
N ′0
∣∣∣∣KN0γ

∣∣∣∣N ′′0 γ′′
〉

∆N0N ′′0

〈
e′′γ′′

∣∣∣∣K†eγ
∣∣∣∣e
〉

+ ∆N ′0N
′′
0

〈
e′
∣∣∣∣Keγ

∣∣∣∣e′′γ′′
〉

∆ee′′
〈
N ′′0 γ

′′∣∣∣∣K†N0γ

∣∣∣∣N0

〉)
.

(5.38)

γ
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˜N N ′
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e
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√
1− α

√
1− α
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1− α

γ

e′

˜N N ′
0

e

N0

√
1− α

√
1− α

˜N ′
1− α

Figure 5.2: Time-ordered diagrams for bare nucleon component incoming and outgoing.

Note that, in addition to the normalization factors
√

1− α for incoming and outgoing

wave functions, one has an additional factor (1 − α), which comes from insertion of the

completeness relation (5.19).
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Evaluating the Deltas and inserting the current expressions (5.35) for the vertex matrix

elements, we obtain

〈
V ′Ñ ′e′

∣∣Vopt

∣∣V Ñe
〉

=
(
1− α

)2 |e|2 ∆V V ′

2m3
Ne

∑

µγ

(−gµγµγ )

√
ω′N
ω′N0

√
ωN
ωN0

× 1

ωγ

(
ελ(γ) εν(γ)√

s− ωN − ω′e − ωγ

∣∣∣∣
~kγ=~ke−~k′e

+
ελ(γ) εν(γ)√

s− ω′N − ωe − ωγ

∣∣∣∣
~kγ=~k′e−~ke

)

× Jλ(N0, N
′
0) Jν(e, e′) ,

(5.39)

where we have performed the index replacement γ′′ → γ and kept kγ outside the brackets

for readability. Inserting the completeness relation for photons, Eq. (2.11), we obtain

〈
V ′Ñ ′e′

∣∣Vopt

∣∣V Ñe
〉

= −
(
1− α

)2 |e|2 ∆V V ′

2m3
Ne

√
ω′N
ω′N0

√
ωN

ωN0

× 1

ωγ

(
1√

s− ωN − ω′e − ωγ

∣∣∣∣
~kγ=~ke−~k′e

+
1√

s− ω′N − ωe − ωγ

∣∣∣∣
~kγ=~k′e−~ke

)

× Jν(N0, N
′
0) Jν(e, e′) .

(5.40)

Nucleon+pion component incoming, nucleon component outgoing: For the

following calculation we start out from Eq. (5.31) and again perform the splitting of the

vertex operators (5.33). In order to exploit the spectator conditions (5.34), we will have

to render the double-primed photon momentum instead of the double-primed nucleon

momentum redundant in two terms (the ones involving the ∆N ′0N
′′
0

). Via Eq. (2.52) we

π′′

e′

π′′′

N ′′
0

γ

e

√
αΨ

˜Nπ

γ

e′

˜Nπ N ′
0

e

N0

α
√
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˜N ′

√
αΨ∗

√
1− α

˜N ′
1− α

˜N ′
1− α

√
αΨ∗

π′′

N ′′′
0

γ

e′e

N ′′
0

√
αΨ

˜Nπ

Figure 5.3: Time-ordered diagrams for bare nucleon+pion incoming and bare nucleon

outgoing.
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replace
∑

µ′′Nτ
′′
N

∑∫ Dk′′γ
ω′′N0

−→
∑

µ′′γ

∑∫ Dk′′N0

ω′′γ
, (5.41)

so that for Eq. (5.31) we can write

〈
V ′Ñ ′e′

∣∣Vopt

∣∣V Ñπe
〉

= α
(
1− α

)
(2π)3 ∆V V ′

√
ω′N

(m′Ne)
3

1√
ω′N0

∑

µ′′Nτ
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∑∫
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√
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∑∫
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√
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√
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√
ω

(4)
N0

+ ω
(4)
π

√
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∑∫
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√
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√
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√
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√
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√
ω̃

(4)
N0

+ ω̃
(4)
π

Ψ
N/N

(4)
0 π(4)

×
(
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(5.42)

For the first term we then make use of the relations

~k
(4)
N0

+ ~k(4)
π + ~ke = 0 ,

~k′′′N0
+ ~k′′′π + ~k′′e + ~k′′γ = 0 ,

⇒ δ3
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∆
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(5.43)

For the third term we change the momentum to be integrated over (making the other the

redundant one):
∑

µ
(4)
N0
τ
(4)
N0

∑∫ Dk
(4)
π

ω
(4)
N0

. . . =
∑

τ
(4)
π

∑∫ Dk
(4)
N0

ω
(4)
π

. . . (5.44)
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Evaluating the Deltas and inserting the current expressions (5.35) for the vertex matrix

elements together with the nucleon–pion wave-function normalization (5.16), the com-

pleteness relations for photon polarization vectors, Eq. (2.11) and the index identifications

γ′′ → γ and (N0/π)(4) → (N0/π)′′ we then obtain

〈
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√
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(5.45)
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Nucleon component incoming, Nucleon+pion component outgoing: Via

Eq. (5.29) we have, analogously,
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(5.46)
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Figure 5.4: Time-ordered diagrams for bare nucleon incoming and bare nucleon+pion

outgoing.



82 5.5. Diagrams

Nucleon+pion component incoming and outgoing: Upon inserting the splitting

of the vertex operators and the spectator conditions from Sec. 5.4, Eq. (5.32) becomes
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(5.47)

To proceed, we make use of the following relations:

• For terms one and two (left side of Fig. 5.5),

~k
(5)
N0
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π + ~k′′e + ~k′′γ = 0 ,
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(5.48)

along with the index identifications γ′′ → γ and (N0/π)(4) → (N0/π)′′ .

• For term two, in addition,
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. . . =
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. . . (5.49)



Chapter 5. Overall Electromagnetic Form Factor 83

• For terms three and four (right side of Fig. 5.5),

~k
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(5.50)

along with the index identifications γ′′ → γ , (N0/π)(5) → (N0/π)′′′ and

(N0/π)(6) → (N0/π)′′ .

• For term four, in addition,

∑∫ Dk
(6)
π

ω
(5)
N0

. . . =
∑∫ Dk

(6)
N0

ω
(6)
π

. . . (5.51)

Furthermore, employing the nucleon–pion wave-function normalization (5.16) and in-

serting the vertex matrix elements (5.35) along with the completeness relation for photons,
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Figure 5.5: Time-ordered diagrams for bare nucleon+pion incoming and bare nu-

cleon+pion outgoing.
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Eq. (2.11), the result reads
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(5.52)

where we have kept ωγ ( ~kγ = ~ke − ~k′e in the first two terms and ~kγ = ~k′e − ~ke in

the second two terms) and ωN ′′′0 /π′′′ ( ~k′′′N0/π
= ~k′′N0/π

+ ~kγ in the first two terms and

~k′′′N0/π
= ~k′′N0/π

− ~kγ in the second two terms) for readability.

5.5.2 Covariant diagrams

We observe that, except for the pion probability factor α resp. (1 − α), the following

expressions are equal:

• Term 1 in (5.40) and term 1 in (5.45)

• Term 2 in (5.40) and term 1 in (5.46)

• Term 2 in (5.45) and term 3 in (5.52)

• Term 3 in (5.45) and term 4 in (5.52)

• Term 2 in (5.46) and term 1 in (5.52)

• Term 3 in (5.46) and term 2 in (5.52)
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so that via Eq. (5.27), the result for the overall optical potential reads
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(5.53)

where in terms 1 (first line, left), 3 and 4 (third and fourth line) we have ~kγ = ~ke − ~k′e
and ~k′′′N0/π

= ~k′′N0/π
+ ~kγ and in terms 2 (first line, right), 5 and 6 (fifth and sixth line)

we have ~kγ = ~k′e − ~ke and ~k′′′N0/π
= ~k′′N0/π

− ~kγ . Since in all terms, we have

~k′′′N0/π
= ~k′′N0/π

+ ~ke − ~k′e (5.54)

and the only ~kγ-dependent quantity, ωγ , is independent of its sign, we see that except for

the propagators 1√
s−... , terms 3 and 5 as well as terms 4 and 6 are each equal. Using

App. B.3 for combination of the two time orderings, exactly as we did in Sec. 3.1.6, we
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finally end up with
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(5.55)

where Q2 = −q2 is the negative of the photon four-momentum transfer squared. Note

that the three terms above correspond to a photon exchange of an electron with each of

the three legs in Fig. 5.1: The first term (first line) corresponds to exchange of a photon

with a “bare” nucleon (compare with Eq. (3.22) at the end of Sec. 3.1.6), the second term

(second to last line) corresponds to photon exchange with the (bare) nucleon inside the

pion loop, and the third term (last line) to photon exchange with the pion. The two

possible time orderings have now been merged into a covariant photon propagator; the

result being pictured in Fig. 5.6.

5.6 Calculation of nucleon current

In order to obtain an overall expression for the electromagnetic nucleon currrent including

pion loop effects, we equate the result in Eq. (5.55) to the general expression for the

invariant one-photon exchange amplitude on hadron level, Eq. (3.22). Furthermore, we

transform the integration over the pion momenta from the velocity state (overall c.o.m.

frame) to the c.o.m. frame of the nucleon–pion subsystem (coordinates with a “tilde”) in

accordance with App. B.1: The transformation prescription reads

d3k′′π =
ω′′N0

ω̃′′N0

ω′′π
ω̃′′π

ω̃′′N0
+ ω̃′′π

ω′′N0
+ ω′′π

d3k̃′′π . (5.56)
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Figure 5.6: Covariant one-photon-exchange amplitude for electron scattering off a nucleon

that consists of a bare nucleon and a bare nucleon+pion component. The black blob

represents the overall photon-nucleon vertex, which consists of the three contributions

shown in the second line. Open circles represent electromagnetic and strong form factors

of a bare nucleon.

We then obtain the following expression for the overall nucleon current:

Jν(N,N ′)

=
(
1− α

)
√
ω′N
ω′N0

√
ωN
ωN0

Jν(N0, N
′
0)

+ α
√
ω′N ωN

∑

µ′′N0
τ ′′N0

τ ′′π

∫
d3k̃′′π√
ω̃′′N0

ω̃′′π

√
ω̃′′N0

+ ω̃′′π
ω′′N0

+ ω′′π
ΨN/N ′′0 π

′′

×


∑

µ′′′N0

√
ω̃′′′N0

ω̃′′π

√
ω′′′N0

+ ω′′π
ω̃′′′N0

+ ω̃′′π
Ψ∗N ′/N ′′′0 π′′

1

ω′′′N0

Jν(N ′′0 , N
′′′
0 )

+
√
ω̃′′N0

ω̃′′′π

√
ω′′N0

+ ω′′′π
ω̃′′N0

+ ω̃′′′π
Ψ∗N ′/N ′′0 π′′′

1

ω′′′π
Jν(π′′, π′′′)

)
.

(5.57)

The nucleon–pion wave function becomes (in its own rest frame, cf. Eq. (A.12)), after

insertion of the pseudoscalar N0π-vertex (4.7),

Ψ̃N/N ′′0 π
′′ =
−i gN0

G(Q̃2
π)uµ̃′′N0

(~̃k′′N0
) γ5 uµ̃N0

(~̃kN0
)F(τN0

, τ ′′N0
, τ ′′π )

2
√

2 (2π)3
√
mN0

ω̃′′N0
ω̃′′π
(
mN − ω̃′′N0

− ω̃′′π
)

√
1− α√
α

, (5.58)

(analogously for triple-primed expressions), where G(Q̃2
π) is the strong nucleon form factor

in dependence of the squared four-momentum transferred to the nucleon by the pion.
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Since, due to the nature of the electromagnetic interaction, τN0
= τ ′N0

and

τ ′′N0/π
= τ ′′′N0/π

, the product of flavor functions in Eq. (5.57) becomes

F2(τ ′′π ) := F(τN0
, τ ′′N0

, τ ′′π )F(τN0
, τ ′′N0

, τ ′′π ) (5.59)

and thus, via Eq. (2.69), takes on the values

F2(0) = δτN0
τ ′′N0

and F2(±1) = 2
(

1− δτN0
τ ′′N0

)
. (5.60)

Due to the nature of its derivation, the wave function (5.58) is defined in the rest frame

of the nucleon–pion subsystem (coordinates with a “tilde”). In order to obtain the wave

function in the boosted system (overall rest frame), we proceed analogously to Sec. 3.3.2

using Eq. (5.13), whence

uµ̃′′N0
(k̃′′N0

) γ5 uµ̃N0
(k̃N0

)

−→
∑

µ̃N0
,µ̃′′N0

Dµ′′N0
µ̃′′N0

(
B(v′′N0π),

~̃k
′′

N0

mN0

)
uµ̃′′N0

(k̃′′N0
) γ5 uµ̃N0

(k̃N0
) D∗µN0

µ̃N0

(
B(vN0

),
~̃kN0

mN0

)

(5.61)

(and likewise for triple-primed states), where v′′N0π
is the relativistic velocity of the

nucleon–pion subsystem with invariant mass mN0π, cf. Eqs. (5.13) and (5.14). Since

in the incoming and outgoing states, where there is no pion present, we have a boost with

vN0
=

kN0

mN0
and also, ṽN0

= 0 , we see that via Eq. (2.43), the second Wigner-D-function

in Eq. (5.61) reduces to a Kronecker delta (compare to Eq. (3.56)!). The overall Wigner

factor which then enters equation (5.57) is

Dµ′′N0
µ̃′′N0

(
B(v′′N0π),

~̃k
′′

N0

mN0

)
D∗µ′′′N0

µ̃′′′N0

(
B(v′′′N0π),

~̃k
′′′

N0

mN0

)
(5.62)

for the first part (nucleon struck) and

Dµ′′N0
µ̃′′N0

(
B(v′′N0π),

~̃k
′′

N0

mN0

)
D∗µ′′N0

µ̃′′′N0

(
B(v′′′N0π),

~̃k
′′′

N0

mN0

)
(5.63)

for the second part (pion struck; note that due to the spectator conditions, µ′′′N0
= µ′′N0

!),

with a sum over each spin polarization with a “tilde” implied.
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The final result for the electromagnetic nucleon current reads

Jν(N,N ′)

=
(
1− α

)
√
ω′N
ω′N0

√
ωN
ωN0

Jν(N0, N
′
0)

+
(
1− α

)√
ω′N ωN

∑

µ′′N0
τ ′′N0

τ ′′π µ̃
′′
N0

F2(τ ′′π )

∫
d3k̃′′π√
ω̃′′N0

ω̃′′π

√
ω̃′′N0

+ ω̃′′π
ω′′N0

+ ω′′π

×

(
gN0

G(Q̃2
π)
)2

8 (2π)3

uµ̃′′N0
(k̃′′N0

) γ5 uµ̃N0
(k̃N0

)Dµ′′N0
µ̃′′N0

(
B(v′′N0π

),
~̃k
′′
N0

mN0

)
√
mN0

ω̃′′N0
ω̃′′π
(
mN − ω̃′′N0

− ω̃′′π
)

×
∑

µ̃′′′N0

√
ω̃′′′N0

ω̃′′′π
uµ̃′N0

(k̃′N0
) γ5 uµ̃′′′N0

(k̃′′′N0
)

√
mN0 ω̃

′′′
N0
ω̃′′′π

(
mN − ω̃′′′N0

− ω̃′′′π
)

×


∑

µ′′′N0

√
ω′′′N0

+ ω′′π
ω̃′′′N0

+ ω̃′′′π

1

ω′′′N0

Jν(N ′′0 , N
′′′
0 )D∗µ′′′N0

µ̃′′′N0

(
B(v′′′N0π),

~̃k
′′′
N0

mN0

)

+

√
ω′′N0

+ ω′′′π
ω̃′′′N0

+ ω̃′′′π

1

ω′′′π
Jν(π′′, π′′′)D∗µ′′N0

µ̃′′′N0

(
B(v′′′N0π),

~̃k
′′′
N0

mN0

)
)

(5.64)

where α is the pion loop probability, mN0 the bare nucleon mass, gN0 the bare strong

nucleon–pion coupling constant, G(Q̃2
π) the strong form factor of the bare nucleon,

Jν(N ′′0 , N
′′′
0 ) the electromagnetic current of the bare nucleon in the intermediate state

and Jν(π′′, π′′′) the corresponding electromagnetic pion current. The evaluation of these

quantities using the results in App. A and Secs. 3.6 and 4.6 as well as in [Bie11] is explained

in Sec. 5.7.

5.6.1 Kinematics

For the system containing the electron and the physical nucleon, we choose the same

kinematics as in Sec. 3.4:

kN =




√
k2 +m2

N

−Q2
0√

k2 − Q2

4




k→∞−−−−→




k

−Q2
0

k


 , q =




0

Q

0

0


 ,

k′N = kN + q =




√
k2 +m2

N
Q
2

0√
k2 − Q2

4




k→∞−−−−→




k
Q
2

0

k


 .

(5.65)
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For the pion momentum we make no assumptions. Since we will use spherical integra-

tion in the “tilde” frame, which is the rest frame of the physical nucleon, we use the

parametrization

k̃N0 =




mN0

0

0

0


 , k̃′′π =




√
κ̃2 +m2

π

κ̃ sin θ̃ cos φ̃

κ̃ sin θ̃ sin φ̃

κ̃ cos θ̃




,

~̃k
′′

N0
= ~̃kN0

− ~̃k
′′

π ⇒ k̃′′N0
=




√
κ̃2 +m2

N0

−κ̃ sin θ̃ cos φ̃

−κ̃ sin θ̃ sin φ̃

−κ̃ cos θ̃




,

(5.66)

with the integration measure

d3k̃′′π = κ̃2 sin θ̃ dκ̃dθ̃ dφ̃ . (5.67)

The 4-momentum transfer for pion emission/absorption in the “tilde” frame thus reads

Q̃2
π = −q̃2

π = −
(
k̃N0
− k̃′′N0

)2

= −




mN0 −
√
κ̃2 +m2

N0

κ̃ sin θ̃ cos φ̃

κ̃ sin θ̃ sin φ̃

κ̃ cos θ̃




2

= −2m2
N0

+ 2mN0

√
κ̃2 +m2

N0
.

(5.68)

5.7 Numerical implementation

For the numerical treatment of the result (5.64) we use a similar procedure as in Secs. 3.5

and 4.5. However, we first have to clarify some points on the “bare” quantities we will

use.

5.7.1 Form-factor input

Pion electromagnetic form factor: The electromagnetic current for a charged pion

reads [EW88]

Jν(π±, π± ′) = ±G em.
π (Q2) (kνπ + k′ νπ ) , (5.69)

where Gπ(Q2) is the electromagnetic pion form factor in dependence of four-momentum

transfer squared. We take the result from [Bie11] and parametrize it, like the strong

πN0N0 form factor (cf. Eq. 4.46), in the form

G em.
π (Q2) =

1

1 + Q2

Λ2
1

+
(
Q2

Λ2
2

)2 (5.70)

with Λ2
1 = 0.67 and Λ2

2 = 1.59 .
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Bare electromagnetic nucleon form factors: The electromagnetic current

Jν(N ′′0 , N
′′′
0 ) in (5.64) is “bare”, i.e. it relates to a nucleon with bare mass mN0

. We

thus have to readjust the results of Chap. 3, which we obtained for the electromagnetic

nucleon form factors leaving out the pion cloud.

Recall that these have been extracted from a microscopic expression for the physical

nucleon current Jν(N,N ′), Eq. (3.58), which uses the three-quark wave function obtained

by Schlumpf [Schl92]. This wave function has been refitted by Pasquini and Boffi [PB07]

to yield the best possible results for a problem (bare nucleon plus meson cloud) similar

to the one we are dealing with here. We thus repeat the same procedure as described in

Chap. 3, this time using the Pasquini–Boffi wave function, and use a parametrization of

the result as described in Sec. 3.6 as input.

Note that in the main analytic result of Chap. 3, Eq. (3.58), the only dependence of

the nucleon current on the nucleon mass is via the
√
ω′N ωN factor (equals k2 + m2

N in

the kinematics (3.65)) in the first line. Since we use the infinite momentum frame with

k → ∞, it is irrelevant which nucleon mass is used in the currents. The (normalized)

current of the bare nucleon and the three-quark-contribution to the physical nucleon

current differ by just a factor (1 − α). Taking the physical nucleon mass in Eqs. (2.58)

and (3.70) thus already gives the three-quark-contribution to the electromagnetic (Sachs)

form factors of the physical nucleon. We finally use Eq. (2.57) in combination with (2.9)

with bare nucleon masses mN0
instead of physical ones, i.e. the replacement

F2 =
mN

k Q
J0

1
2 ,−

1
2
−→ mN0

mN
F2 =

mN0

k Q
J0

1
2 ,−

1
2

(5.71)

to obtain the bare nucleon current Jν(N ′′0 , N
′′′
0 ).

Bare nucleon–pion strong form factor: In what follows, we will restrict ourselves

to pseudoscalar coupling. Since we start with a given 3-quark wave function of the bare

nucleon instead of solving the pure confinement problem, we have to determine the bare

nucleon mass m0. This cannot be done directly by solving the equation for nucleon-mass

renormalization due to pion loops, since m0 enters also the πN0N0 coupling constant

and the strong form factor, which are again needed to calculate the pion-loop kernel for

the mass-renormalization equation. We thus employ a self-consistent iteration procedure

which is sketched in Fig. 5.7:

First note that we can determine the quantitites mN0
and subsequently α from

Eqs. (A.15) and (A.13). However, for this we need the bare nucleon–pion vertex,〈
N ′0π

′
∣∣∣∣K†π

∣∣∣∣N0

〉
= gN0

J5(N0, N
′
0) . In principle, this vertex can be obtained from the

result for the strong pseudoscalar current in Eq. (4.33). However, we know neither the

bare nucleon mass mN0 nor the bare nucleon–pion coupling constant gN0 . We therefore

do the following: First, we evaluate Eq. (4.33) for the physical nucleon mass, as has al-

ready been done in Chap. 4, this time with the already obtained quark coupling constant

g = 3.55 (which we keep constant). We then obtain a new (“bare”) nucleon–pion coupl-

ing constant gN0
and new parametrizations Λ1, Λ2 of the strong form factor which we
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feed back into equation (A.15) to obtain a new nucleon mass m′N0
which is fed back into

Eqs. (4.33) (replacing mN wherever needed), and so on. After 4 iterations the values of

m′N0
and g′N0

converge with sufficient precision to give the desired values mN0
and gN0

for the bare nucleon. As a side product, we also obtain the pion loop probability α via

Eq. (A.13). The results are shown in Tab. 5.1.

mN , g //
determination of

πN0N0 coupling g′N0
and strong

form factor (parametrization)

Λ1 , Λ2 , g
′
N0

��

// gN0

mN
//

determination of
bare nucleon mass m′N0

and

pion loop probability α

m′N0

FF

// mN0
, α

Figure 5.7: Flow chart for self-consistent calculation of πN0N0 coupling, vertex form

factor, bare nucleon mass and pion-loop probability α given the 3q wave function of the

bare nucleon.

Run g′N0
Λ1 Λ2 m′N0

α

1 13.00 0.648 1.65 1.08 0.12

2 14.87 0.634 1.51 1.10 0.13

3 15.16 0.631 1.51 1.11 0.14

4 15.30 0.631 1.48 1.11 0.14

Table 5.1: Iterations for the determination of the bare nucleon mass mN0
, the bare

nucleon–pion coupling constant gN0
and the pion loop probability α.



Chapter 5. Overall Electromagnetic Form Factor 93

5.7.2 Class structure in C++

Functions for Pauli and Dirac matrices, Matrix2cd pauli (int i) and Matrix4cd

dirac (int i), are defined globally. So are the fits for the pion electromagnetic

form factor (5.70), double pielmagff (double qsquared) the proton and neutron

electric and magnetic Sachs form factors (Eq. (3.72) and following table as well as

Eq. (3.73)), double pelff (double qsquared), double pmagff (double qsquared),

double nelff (double qsquared) and double nmagff (double qsquared), as well as

the strong nucleon–pion form factor (4.46):

double strongff (Vector4d kin,Vector4d kout){

double l1 = 0.554; double l2 = 0.823;

// fit parameters

double Q2 = - pow((kin(0)-kout(0)),2) + pow((kin(1)-kout(1)),2)

+ pow((kin(2)-kout(2)),2) + pow((kin(3)-kout(3)),2);

// momentum transfer squared

return 1/(1 + Q2/l1 + pow(Q2/l2,2)); }

Any quantities which depend on the momenta k̃′′N0
, k̃′′π of the nucleon and the pion in

the intermediate state are again calculated in a class called Mompart which has a structure

very similar to the one we used in Sec. 3.5.1. It is initialized again and again for each

point of the Monte Carlo integration with the 3 independent momentum components

of the pion, double karray [3] (spherical coordinates) and a pointer to parameters,

InputParams * params, where the struct InputParams now contains parameters like

the forward momentum of the nucleon (double k), the momentum transfer by the photon

(double Q), the double value of the nucleon isospin and outgoing spin projections (int

tauN, muNpr), double nucleon and pion isospins in the intermediate state (int tauN02pr,

taupi2pr), which hadron in the intermediate state is to be struck by the photon (char

struckhadron), the number of MC integration points (size t intpoints) as well as the

bare nucleon mass and the pion loop probability (double mN0, alpha).

The public functions of the Mompart class are: The Wigner rotations Matrix2cd

wigrotfactor2pr() and Matrix2cd wigrotfactor3prstar(), the nucleon–pion wave

functions Matrix2cd N0piwavefunction() and Matrix2cd N0piwavefunctionprst(),

the electromagnetic currents of the nucleon and the pion in the intermediate state,

Matrix2cd nucleoncurrent() and double pioncurrent(), as well as a prefactor

double prefactor(). Note that all but the last two of these functions are complex

2×2 matrices in their spin polarization components.

The private functions are once again the Lorentz boost with 4-velocity u

and its inverse in standard (2.35), (2.36) and SL(2,C) (2.40) representations,

Matrix4d [inv]boost (Vector4d u) and Matrix2cd [inv]spinboost (Vector4d u).

Also, the generic currents uµ′(~k
′)γνuµ(~k) and uµ′(~k

′)
[
γν , γλ

]
uµ(~k) which are

needed for constructing the electromagnetic nucleon current from the form fac-

tors, cf. Eq. (2.57): Matrix2cd currentmatrix (Vector4d kin, Vector4d kout, int
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mu) and Matrix2cd currentmatrix (Vector4d kin, Vector4d kout, int mu, int

nu) (overloaded function), as matrices in the spin polarizations; for details see Sec. 3.5.4.

Note, however, that these are currents for the “bare” nucleon, i.e. in these definitions,

the bare nucleon mass mN0 is used.

In what follows, the class initialization and the more important or less obvious func-

tions are discussed in detail.

5.7.3 Kinematic quantities

The initialization for the local variables reads

Mompart::Mompart (double karray[3] , InputParams * params):

kappatilde (karray[0]), thetatilde (karray[1]),

phitilde (karray[2]), k (params->k), Q (params->Q),

struckhadron (params->struckhadron),

alpha(params->alpha), mN0(params->mN0),

tauN02pr (params->tauN02pr), taupi2pr (params->taupi2pr),

muNpr (params->muNpr), tauN (params->tauN)

We then (in the part written in curly brackets in the code) start out by initializing the

4-momenta of the nucleon and the pion in the “tilde” frame in spherical coordinates,

Eq. (5.66):

Vector4d kN0tilde, kN0tilde2pr, kpitilde2pr; //in class declaration

kN0tilde << mN0 , 0 , 0 , 0;

kpitilde2pr << sqrt(pow(kappatilde,2) + pow(mpi,2)),

kappatilde*sin(thetatilde)*cos(phitilde),

kappatilde*sin(thetatilde)*sin(phitilde),

kappatilde*cos(thetatilde);

kN0tilde2pr << sqrt(pow(kappatilde,2) + pow(mN0,2)),

- kappatilde*sin(thetatilde)*cos(phitilde),

- kappatilde*sin(thetatilde)*sin(phitilde),

- kappatilde*cos(thetatilde);

Following this, we introduce the invariant mass of the N0π subsystem and its velocity by

means of Eq. (5.14) using the kinematics (5.65),
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double mcl2pr; Vector4d vcl2pr; //in class declaration

mcl2pr = kN0tilde2pr(0)+kpitilde2pr(0);

vcl2pr << sqrt(pow(k,2)+pow(mcl2pr,2))/mcl2pr,

-Q/(2*mcl2pr),

0,

sqrt(pow(k,2)-pow(Q,2)/4)/mcl2pr;

Intermediate nucleon and pion momenta in the overall c.o.m. frame are obtained via a

boost as defined in (2.35) with velocity vcl2pr:

Vector4d kN02pr, kpi2pr; //in class declaration

kN02pr = boost(vcl2pr)*kN0tilde2pr;

kpi2pr = boost(vcl2pr)*kpitilde2pr;

In the boosted frame the momentum transfer to the bare nucleon or the pion in the

intermediate state (depending on the diagram) is the same as the one to the physical

nucleon as a whole in (5.65). Via the spectator conditions (5.34) the other particle remains

unaffected:

Vector4d kN03pr, kpi3pr; //in class declaration

if (struckhadron == ’N’){

kN03pr(1) = kN02pr(1) + Q;

kN03pr(2) = kN02pr(2);

kN03pr(3) = kN02pr(3);

kN03pr(0) = sqrt(pow(mN0,2)+pow(kN03pr(1),2)+pow(kN03pr(2),2)+...);

kpi3pr = kpi2pr;}

else if (struckhadron == ’pi’){

kpi3pr(1) = kpi2pr(1) + Q;

kpi3pr(2) = kpi2pr(2);

kpi3pr(3) = kpi2pr(3);

kpi3pr(0) = sqrt(pow(mpi,2)+pow(kpi3pr(1),2)+pow(kpi3pr(2),2)+...);

kN03pr = kN02pr;}

We then get the triple-primed invariant mass and velocity (5.14) fo the N0π subsystem

(in the kinematics (5.65)) via
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double mcl3pr; Vector4d vcl3pr; //in class declaration

mcl3pr = sqrt(pow((kN03pr(0) + kpi3pr(0)),2) - pow(k,2));

vcl3pr << (sqrt(pow(k,2) + pow(mcl3pr,2))/mcl3pr) ,

Q/(2*mcl3pr) ,

0 ,

(sqrt(pow(k,2) - pow(Q,2)/4)/mcl3pr);

and the triple-primed nucleon and pion momenta in the “tilde” frame via an inverse boost

(2.36):

Vector4d kN0tilde3pr, kpitilde3pr; //in class declaration

kN0tilde3pr = invboost(vcl3pr)*kN03pr;

kpitilde3pr = invboost(vcl3pr)*kpi3pr;

This ends the initialization of the class Mompart. In what follows, we discuss its public

functions.

5.7.4 Currents and wave functions from form factors

The following public function of the Mompart class yields the 0-component of the elec-

tromagnetic current of the intermediate, bare nucleon (double- and triple-primed states,

momenta kN02pr and kN03pr) as a complex 2×2 matrix in spin polarization components

int muN02pr, muN03pr = -1,1. First the local variables for the electric and magnetic

Sachs form factors, GE and GM, for the kind of particle determined by tauN02pr, are set to

the values given in Sec. 3.6, double n/p/el/magff(pow(Q,2)) (see above). Since these

fits describe form factors determined for a physical rather than bare nucleon, we then use

the physical nucleon mass mN to determine the corresponding Dirac and Pauli form factors

double F1 and double F2 via Eqs. (2.58) and additionally, double F2 gets multiplied by

a factor mN0/mN as explained in the second paragraph of Sec. 5.7.1. The zero component of

the nucleon current is then obtained via Eq. (2.57) with bare nucleon masses mN0 instead

of physical ones.
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Matrix2cd Mompart::nucleoncurrent (){

double GE, GM; // Sachs form factors

if (tauN02pr == -1){ //neutron

GE = nelff(pow(Q,2)); GM = nmagff(pow(Q,2));}

else if (tauN02pr == 1){ //proton

GE = pelff(pow(Q,2)); GM = pmagff(pow(Q,2));}

double F1 = (GE + pow(Q,2)/(4*pow(mN,2)) * GM)/

( 1 + pow(Q,2)/(4*pow(mN,2)) );

double F2 = mN0/mN * (GM-GE)/(1+pow(Q,2)/(4*pow(mN,2)));

Matrix2cd nuclcurrent = F1*currentmatrix(kN02pr,kN03pr,0);

for (int nu =1; nu<=3; nu++){

nuclcurrent += F2 * (kN03pr-kN02pr)(nu)/(4*mN0) *

currentmatrix(kN02pr,kN03pr,0,nu); }

return nuclcurrent; }

The pion current (5.69) depends on the isospin of the pion. Its zero component (which is

the only one we need) reads

double Mompart::pioncurrent (){ int e;

if (taupi2pr==-2) e=-1; else if (taupi2pr==0) e=0; else e=1;

return e * pielmagff(Qpi23squared) * (kpi2pr+kpi3pr)(0); }

Note that we use both kN03pr and kpi3pr even though one of them (depending on the

parameter struckhadron) is always equal to kN02pr resp. kpi2pr. The nucleon–pion

wave functions (5.58) (again implemented as complex 2×2 matrices in spin polarization

components muN0tilde, muN0tilde2pr) read

Matrix2cd Mompart::N0piwavefunction () { return

sqrt((1-alpha)/alpha)*gN0*strongff(kN0tilde,kN0tilde2pr) *

currentmatrix(kN0tilde,kN0tilde2pr,5) /

(2*sqrt(2*pow(2*pi,3)) *

sqrt(mN0*kN0tilde2pr(0)*kpitilde2pr(0)) *

(mN-kN0tilde2pr(0)-kpitilde2pr(0))); }

and
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Matrix2cd Mompart::N0piwavefunctionprst () { return

sqrt((1-alpha)/alpha)*gN0*strongff(kN0tilde,kN0tilde3pr) *

currentmatrix(kN0tilde3pr,kN0tilde,5) /

(2*sqrt(2*pow(2*pi,3)) *

sqrt(mN0*kN0tilde3pr(0)*kpitilde3pr(0)) *

(mN-kN0tilde3pr(0)-kpitilde3pr(0))); }

where Matrix2cd currentmatrix is defined analogously to Sec. 3.5.4 and the isospin

dependence F2(τ ′′π ) has been left out for now.

5.7.5 Wigner rotations

The Wigner rotations (5.62) (and (5.63), but this case is included by construction) are

implemented as follows:

Matrix2cd Mompart::wigrotfactor2pr () { return

invspinboost(kN02pr/mN0) *

spinboost(vcl2pr) *

spinboost(kN0tilde2pr/mN0); }

and

Matrix2cd Mompart::wigrotfactor3prstar () { return

invspinboost(kN0tilde3pr/mN0) *

invspinboost(vcl3pr) *

spinboost(kN03pr/mN0); }

The final public function of the Mompart class is the remaining prefactor double

Mompart::prefactor () which is trivial. This ends the description of the Mompart class.

5.7.6 Bare part

The ν = 0 component of the bare nucleon current (first line) in Eq. (5.64) is obtained

as a 2×2 matrix in spin polarizations µ′N and µN (muNpr and muN) as follows: First, the

extraction of Dirac and Pauli form factors F1 and F2 from Sec. 3.6 works exactly as in

Sec. 5.7.4. Then, in the kinematics (5.65), we first calculate the forward momentum of

the bare nucleon, ~k0 :=
mN0

mN

~k , then the prefactor, and finally, via Eq. (3.70) (replace

physical by bare quantities), the bare nucleon current:
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Matrix2d barepart (InputParams inp){

Matrix2d nuclcurrent;

double k0 = inp.mN0/mN * inp.k;

double prefactor = (1-inp.alpha) * sqrt(pow(inp.k,2)+pow(mN,2)) /

sqrt(pow(k0,2)+pow(inp.mN0,2));

nuclcurrent (0,0) = 2*k0*F1;

nuclcurrent (1,0) = (k0*inp.Q/inp.mN0) * F2;

nuclcurrent (0,1) = -(k0*inp.Q/inp.mN0) * F2;

nuclcurrent (1,1) = 2*k0*F1;

return prefactor * nuclcurrent; }
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5.7.7 Integration

The integrand in (5.64) reads

complex<double> integrand (double karray[3], InputParams*params){

Mompart mp (karray, params);

Matrix2cd intgrmatrix;

if (params->struckhadron==’N’){

intgrmatrix = mp.prefactor () *

(params->taupi2pr == 0 ? 1 : 2)*

mp.N0piwavefunctionprst () *

mp.wigrotfactor3prstar () *

mp.nucleoncurrent ()*

mp.wigrotfactor2pr () *

mp.N0piwavefunction ();

}

else if (params->struckhadron==’p’){

intgrmatrix = mp.prefactor () *

(params->taupi2pr == 0 ? 1 : 2)*

mp.N0piwavefunctionprst () *

mp.wigrotfactor3prstar () *

mp.pioncurrent () *

mp.wigrotfactor2pr () *

mp.N0piwavefunction ();

} else intgrmatrix << 0,0,0,0;

return intgrmatrix((1-params->muNpr)/2,(1-muN)/2); }

where instead of the sums over µ̃′′N0
, µ′′N0

, µ′′′N0
and µ̃′′′N0

in the first part resp. µ̃′′N0
, µ′′N0

and µ̃′′′N0
in the second part we use simple matrix multiplication. Summation over τ ′′N0

resp. τ ′′π is achieved at a higher level (via params->taupi2pr).

Integration is then performed exactly as in Sec. 3.5.6, except only in three dimen-

sions, with double kmax[] = {10,3.1416,6.2832}. A simple main function writing the

results for various values of the momentum transfer Q and both outgoing nucleon spin

polarizations muNpr to an ASCII output file (CSV table) out.csv could look like this:
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int main(){

InputParams inpar;

inpar.k = 1000000; // forward momentum of nucleon

inpar.intpoints = 10000; // number of MC integration points

inpar.tauN = 1 // for proton, -1 for neutron

inpar.alpha = 0.10; inpar.mN0 = 1.00; // from iteration

char part = ’b’ // for bare part, ’N’ for nucleon, ’p’ for pion struck

ofstream outfile; outfile.open("out.csv");

outfile << "Q^2;;samespin;spinflip" << endl << endl;

for (inpar.Q=0.0001; inpar.Q<2.0002; inpar.Q+=0.1){

outfile << pow(inpar.Q,2) << ";;" ;

for (inpar.muNpr=1; inpar.muNpr>=-1; inpar.muNpr-=2){

double result = 0;

if (part == ’b’){

result = barepart(inpar)((1-inpar.muNpr)/2,(1-muN)/2); }

else {inpar.struckhadron = part;

if (part == ’p’) {

inpar.tauN02pr = -inpar.tauN; //pi^0 loops give no contrib.

inpar.taupi2pr = inpar.tauN - inpar.tauN02pr;

result = integration(inpar);

}

else if (part == ’N’) {

for (inpar.tauN02pr=-1; inpar.tauN02pr<=1; inpar.tauN02pr+=2){

inpar.taupi2pr = inpar.tauN - inpar.tauN02pr;

result += integration(inpar); }

} else return (0); } // end if-else

outfile << result << ";"; } // end for (inpar.muNpr)

outfile << endl; } // end for (inpar.Q)

outfile.close(); return (0); }

Depending on the setting for char part, the result yields either the bare part (first

term) of the nucleon current (5.64), or the pion loop contribution for the struck nucleon

(second term) or the struck pion (third term); the form factors are then obtained via

Eq. (3.70) (using physical nucleon masses!) using a tool of choice.
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5.8 Results

5.8.1 Summary of results

The main results of our calculations as well as a comparison with results by Pasquini

and Boffi [PB07] and experimental values [PDG] are shown in Tab. 5.2 and in figures

referenced therein. For results concerning the mean quadratic charge radius, which (in

the relativistic case) is defined as

〈
r2
EN

〉
:= −6

dGNE (Q2)

dQ2

∣∣∣∣
Q2=0

, (5.72)

see Tab. 5.3.

loop N loop π loop bare sum f.f. Fig.

Qp 0.05 0.09 0.14 0.86 1.0 GpE 5.8

µp 0.04 0.14 0.19 2.39 2.58 GpM 5.9

Qn . . . . 0.0 GnE 5.10

µn 0.01 −0.14 − 0.13 −1.45 −1.58 GnM 5.11

Qp [PB07] . . 0.09 0.91 1.0 GpE
µp [PB07] 0.18 . 0.35 2.52 2.87 GpM
Qn [PB07] . . . . 0.0 GnE
µn [PB07] − 0.12 . − 0.29 −1.51 −1.80 GnM
Qp (Ch. 3) . . . . 1.0 GpE 3.6

µp (Ch. 3) . . . . 2.79 GpM 3.7

Qn (Ch. 3) . . . . 0.0 GnE 3.5

µn (Ch. 3) . . . . −1.69 GnM 3.8

Qp [PDG] . . . . 1.0

µp [PDG] . . . . 2.79

Qn [PDG] . . . . 0.0

µn [PDG] . . . . −1.91

Table 5.2: Overview of results for the nucleon including the pion loop (this chapter),

the front-form calculations by Pasquini and Boffi [PB07], the nucleon without pionic

contribution (Chap. 3), as well as current (CODATA) experimental values [PDG]. For

each category we list the contribution to the overall proton charge Qp (in units of |e|), to

the magnetic moment of the proton µp, the overall neutron charge Qn (for completeness),

as well as the contribution to the magnetic moment of the neutron µn.

Left to right: Contribution of the loop nucleon, of the loop pion, overall loop contribution,

contribution of the bare nucleon, sum of all contributions, corresponding Sachs form factor

with reference to figure where form factor is plotted.



Chapter 5. Overall Electromagnetic Form Factor 103

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01  0.1  1

G
E
p
/G

D

Q2 [GeV2]

bare part

overall ff

Puckett 2010

Figure 5.8: Our predictions for the electric proton form factor GpE normalized to the

dipole form factor GD, as a function of Q2 = −q2 on a logarithmic scale. Total result

and contribution of the bare nucleon and the pion loops correspond to solid, dotted and

dashed lines, respectively. Shaded area: fit of experimental data (including uncertainties)

by Puckett [Puc10].
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Figure 5.9: Our predictions for the magnetic proton form factor GpM normalized to the

dipole form factor GD, as a function of Q2 = −q2 on a logarithmic scale. Total result

and contribution of the bare nucleon and the pion loops correspond to solid, dotted and

dashed lines, respectively. Shaded area: fit of experimental data (including uncertainties)

by Puckett [Puc10].
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Figure 5.10: Our predictions for the electric neutron form factor GnE as a function of

Q2 = −q2. Total result and contribution of the bare nucleon and the pion loops correspond

to solid, dotted and dashed lines, respectively. Shaded area: fit of experimental data by

Kelly [Kel04].
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Figure 5.11: Our predictions for the magnetic neutron form factor GnM normalized to the

dipole form factor GD, as a function of Q2 = −q2 on a logarithmic scale. Total result

and contribution of the bare nucleon and the pion loops correspond to solid, dotted and

dashed lines, respectively. Shaded area: Fit of experimental data by Kelly [Kel04].



Chapter 5. Overall Electromagnetic Form Factor 105

rE,p (fm) r2
E,n (fm2)

bare part 0.77 -0.023

incl. π-loop 0.82 -0.050

bare nucleon (Ch. 3) 0.86 -0.026

bare part [PB07] 0.80 -0.010

incl. meson loop [PB07] 0.88 -0.063

exp. [PDG] ([ANS+13]) 0.88 (0.84) -0.115

Table 5.3: Charge radii of the nucleon including the pion loop (contribution of the bare

part and overall result) as well as of the bare nucleon, compared with results by Pasquini

and Boffi ([PB07] using an SU(6)-symmetric wave function with the momentum part

(3.33)), and experimental values [PDG]. For the proton, the current value of measure-

ments involving muonic hydrogen, giving rise to the so-called “proton radius puzzle”, is

included in brackets [ANS+13].

5.8.2 Discussion of results

We start the discussion of our results with the static properties of the nucleon. These are

mainly the magnetic moment of the nucleon and its mean quadratic charge radius (5.72).

In Tab. 5.2 our predictions for the nucleon magnetic moments are decomposed into the

various contributions and compared with experimental results as well as the results of the

front-form calculations of Ref. [PB07], from which we have taken our parametrisation of

the three-quark wave function of the bare nucleon. What we observe already is that the

relative size of the loop contribution is 7% of the total proton magnetic moment and 8.5%

of the total neutron magnetic moment, the major part coming from the photon coupling

to the pion. Our total result is smaller than the experimental one. It deviates by about 7%

for the proton and 17% for the neutron. At this point, however, we want to emphasize that

our main goal was not to reproduce the experimental data as good as possible by adapting

the 3q-wave-function parameters and the πq-coupling. We rather aimed at an extension

of the point-form approach so that pion-cloud effects can be appropriately described and

we wanted to give a first estimate for the size of such effects.

When comparing our results with those of Ref. [PB07], one has to keep a few points in

mind: Unlike the authors of [PB07], who took a phenomenological πN0N0 form factor (of

Gaussian form), we have calculated both electromagnetic form factors of the bare nucleon

and the strong πN0N0 vertex form factor with the same microscopic input, namely the 3q-

bound-state wave function given in Eq. (3.54). With our value of the πq-coupling and this

wave function, our valence-Fock-state probability becomes (1− α) = 86% (cf. Tab. 5.1),

while Pasquini and Boffi obtained 91%. For the coupling of the pion to the physical

nucleon we get
1

4π
g2
πNN = (1− α)2 1

4π
g2
πN0N0

= 13.78,

a value similar to the one used in Ref. [PB07] (namely 13.6). A further difference is that
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the authors of Ref. [PB07], in addition to πN , took into account also Nρ, Nω, ∆π and

∆ρ intermediate states, with ∆π being the most important one. For all the intermediate

states they, however, took the physical masses of the hadrons. To be consistent within our

simple model we, on the other hand, use bare nucleon states with the corresponding bare

masses within the pion loop. Taking into account the different probabilities for finding the

bare nucleon in the physical nucleon, our results for the bare contribution to the magnetic

moments appear to be consistent with those of Ref. [PB07].

The second interesting static quantity is the mean quadratic charge radius,

cf. Eq. (5.72). In Tab. 5.3 we again compare our results with those of Ref. [PB07] as

well as experiment. We find that in our results for the proton, the pion loop accounts for

approx. 6% of the (linear) charge radius, while if we ignore the pion loop contribution,

the proton appears about 5% larger. Also, our bare part of the proton radius is approx.

4% smaller than that found by Pasquini and Boffi, while our overall proton radius is

about 7% smaller than theirs. Comparing with experiment, we see that our result for the

nucleon ignoring the pion loop (0.86 fm) get very close to the CODATA value of 0.88 fm,

while the result including the pion loop (0.82 fm) is closer to newer measurements using

myonic hydrogen that yield a proton radius of 0.84 fm [ANS+13]. This huge and as of

today unexplained discrepancy in measurements is known as the proton radius puzzle.

For the neutron quadratic charge radius we obtain similar results as Pasquini and

Boffi; however, the difference between the bare contribution (which in our case is almost

the same as the result if we ignore any meson loops) and the overall result is much less

pronounced in our case and also, we don’t even reach 50% of the experimental value of

−0.115 fm2. Pasquini and Boffi managed to reproduce this value approximately only by

including an s′-compontent in their wave function, however for comparability, we only

included their results for a pure s-wave with SU(6)-symmetry.

Our results for the nucleon electromagnetic form factors as functions of the (nega-

tive) four-momentum transfer squared are shown in Figs. 5.8−5.11 and compared with

parametrizations of the experimental data. The form factors are normalized to the dipole

form to make discrepancies with experiment and the experimental uncertainties more

visible (except Fig. 5.10) and a logarithmic scale has been chosen for the abscissa to

emphasize the region below 1 GeV.

We achieve reasonable agreement with experiment for the proton electric and magnetic

form factor and the neutron magnetic form factor. The reproduction of the neutron

electric form factor is less satisfactory, but as we have remarked already in Sec. 3.6, the

absolute magnitude of this quantity is small and the actual size of the experimental error

bars is larger than indicated by the shaded band. Also Pasquini and Boffi encountered the

same problem; in order to better reproduce experimental results for the neutron electric

form factor, they included an s′-component in their wave function, which we have not.

The size of the pionic contribution to all the nucleon form factors is comparable to the one

found in Refs. [PB07, CM12]. A significant effect of the non-valence 3q + π component

on the form factors is only observed for momentum transfers Q2 . 0.5GeV2 .



Chapter 6

Summary and Outlook

Scattering experiments with electrons are an important method to determine the spatial

distribution of electric charge and magnetic moment within a nucleon, i.e. proton or

neutron. Relativistic constituent quark models are one of the most important means to

provide a theoretical explanation of these distributions in terms of subnuclear degrees of

freedom. They describe the nucleon as consisting of three valence (constituent) quarks.

Such models are usually based on one of the three forms of relativistic dynamics found by

Dirac. In this work we have taken the least utilized one, namely the point form, to treat

electron–nucleon scattering in a relativistically invariant way. The main objective of this

thesis was, however, not to redo such form factor calculations in point form, but rather

to study the influence of non-valence contributions, which are modeled as pions that

are emitted and reabsorbed by the constituent quarks, on the electromagnetic nucleon

structure. To this end, we had to extend the relativistic multichannel formulation, which

has already been applied successfully to calculating electroweak meson form factors within

constituent quark models, to the case of baryons. A further necessary generalization of the

formalism was the inclusion of pions as dynamical degrees of freedom, in addition to the

constituent quarks, the electron, and the photon. Under the assumption of instantaneous

confinement of the constituent quarks it turns out that the calculation of the pionic

contributions can be reformulated as a purely hadronic problem in which the nucleon

emits and reabsorbs the pion. The nucleonic substructure is then hidden in the strong

coupling of the pion to a “bare” nucleon, i.e. an eigenstate of the pure confinement

problem, and a corresponding vertex form factor, which can be calculated on quark level

using the same kind of formalism as for the electromagnetic nucleon form factors within

the pure constituent-quark model. The basic ingredients for calculating pion-loop effects

are thus the electromagnetic and strong form factors of a bare nucleon.

In a first step, we have therefore calculated the electromagnetic nucleon form factors

within the pure constituent-quark model assuming an instantaneous confinement potential

between the quarks. This has been done by deriving the invariant one-photon-exchange

amplitude within our relativistic multichannel approach, extracting the electromagnetic

107
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nucleon current and analyzing its covariant structure. What enters the form factors es-

sentially is the three-quark nucleon wave function. Instead of solving the three-quark

mass eigenvalue equation with some confinement potential, we have rather taken an ap-

propriate parametrization of this wave function. We have adopted an SU(6) spin–flavor

symmetric form with the momentum part chosen from Schlumpf [Schl94]. The relation of

the boosted nucleon wave function to the wave function for the nucleon at rest is uniquely

determined within our point-form approach. Thereby the Wigner rotations of the quarks’

spin orientations play an important role. Already within this pure constituent-quark

model, we were able to reproduce experimental results [Kel04, Puc10] as well as existing

front-form calculations [Schl94, PB07] reasonably well. Only the – experimentally less

precisely determined – electric Sachs form factor of the neutron obtained by us misses

the peak value by about 50% (due to the restriction to a pure s-wave) and the peak is

slightly shifted as compared to experiment, but the momentum-transfer dependence is

roughly reproduced. The electric proton form factor fits experimental results very well

for values of Q2 up to about 3 GeV2. The magnetic form factors of proton and neutron

fit quite well, especially below Q2 ≈ 2 GeV2. However, the absolute value of the neutron

magnetic moment is underestimated by about 12%. Even over a larger range of Q2 the

momentum-transfer dependence of the form factors is reasonably well reproduced.

For the same wave-function model, using the same methods as above, we have then

determined the strong coupling constants and form factors for the πNN -vertex for pseu-

doscalar as well as pseudovector coupling (Chap. 4). The normalized results for each form

factor hardly differ from each other, and both compare well with results for a hadronic

pion-cloud model [PR05a, PR05b], lattice results by Liu et al. [LDDW95], and another

constituent-quark-model calculation by Melde et al. [MCP09]. For pseudovector coupling,

the quark-pion coupling constant we determine from the phenomenologically known πNN

coupling differs from the one used in the Goldstone-boson-exchange relativistic constituent

quark model [GPP+98] by only 1.5%.

In order to determine the electromagnetic form factors of a physical nucleon, i.e. a

bare nucleon that is surrounded by a pion cloud, we have finally treated the physical

nucleon as a superposition of a bare nucleon component and a bare-nucleon-plus-pion

component (Chap. 5). Using our results for the strong form factor, we have determined

the probabilities of these components, the mass of the bare nucleon, and the nucleon-

pion wave function. Together with our results for the electromagnetic and strong form

factors of the bare nucleon, these quantities were then used to calculate the invariant

one-photon-exchange amplitude for electron scattering off a physical nucleon. At this

stage this becomes a purely hadronic problem with the quark substructure encoded in the

strong and electromagnetic form factors of the bare nucleon. The final results resemble

those of the pure constituent-quark model (Chap. 3). To compare with a similar front-

form calculation we have only slighty readjusted the wave function parameters to the

values chosen by Pasquini and Boffi [PB07]. One also has to take into account that

the probability of finding the three-quark component in the physical nucleon is now less
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than one, so that there is room left for the three-quark–pion component. Our results

are comparable to experiment [Kel04, Puc10] as well as equivalent front-form calculations

[PB07]. What has been achieved by including the pion cloud is:

• a slight improvement of the electric neutron form factor,

• a slight improvement of the electric proton form factor above momentum transfers

squared of about 0.4-0.5 GeV2, however slightly too high values between 0.04 GeV2

and 0.4 GeV2,

• an overall shift of the magnetic proton form factor, leading to a magnetic moment

of the proton that is approx. 7.5% too low (as compared to experiment), and

• an overall shift of the magnetic neutron form factor, leading to a magnetic moment

of the neutron about 17% smaller than the experimental value.

We obtain good results for the proton charge radius, about 2% below the CODATA

value within the pure constituent-quark model and approx. 7% below for the proton

including the pion cloud. However, the neutron charge radius squared is not even half

the CODATA value due to the restriction of the three-quark wave function to an s-wave

ground state, as already mentioned. Studying the contributions to the magnetic moments

in detail we see that Pasquini and Boffi [PB07], who used a phenomenological ansatz for

the π–baryon vertices, obtained a much smaller probability for finding mesons in the

nucleon (9% instead of 14%), yet a much larger contribution of the meson loop (loop

baryon + loop meson) to the magnetic moment, which renders their results much closer

to experiment. The reason for this is probably that, while we restricted ourselves to

studying just the pion loop with nucleon intermediate state, they in addition considered

ρ and ω loops as well as an intermediate Delta. However, we want to point out that the

aim of this work was mainly to establish the formalism and to estimate the role of pionic

contributions to the electromagnetic nucleon structure.

In our simple model there is still room left for a better quantitative reproduction of the

electromagnetic nucleon form factors. Altogether there are 4 parameters in the model: the

constituent-quark mass, the πq coupling, and two parameters in the wave function. We

believe that an appropriate readjustment of the parameters as well as the addition of an

s′- component to the wave function, as has been done by Pasquini and Boffi [PB07], could

already provide a considerable improvement of our form-factor predictions. Introducing

an even more realistic wave function could further ameliorate our results. A physically

more complete description of the nucleon structure may even require to introduce, in

addition to the pion, other mesons in the cloud and, in particular, also ∆ baryons within

the meson loops. The same approach can then, of course, also be applied to describe the

electromagnetic ∆ and N∆-transition form factors. In these cases the pionic contributions

are expected to be much more important, since the ∆ is a πN resonance.



Appendix A

The nucleon with pion cloud

In this appendix we summarize how a physical nucleon, consisting of a bare nucleon

component and a bare nucleon+pion component, is described within our multichannel

approach. We start by writing the physical nucleon state as a two-component vector, the

components representing the contributions of the bare nucleon and the bare nucleon+pion

states, respectively:
∣∣V N

〉
:=

( ∣∣V Ñ
〉

∣∣V Ñπ
〉
)

(A.1)

with

∣∣V Ñ
〉

=
√

1− α mN0

mN

∣∣V N0

〉
,

∣∣V Ñπ
〉

=
√
α
√

2 (2π)3
∑∫

Dk′π

√
(m′N0π

)3

ω′N0

√
ω′π

mN
ΨN/N ′0π

′
∣∣V N ′0 π′

〉 (A.2)

and the matrix mass operator

M̂N :=

(
MN0 Kπ

K†π MN0π

)
. (A.3)

The kinematical factors in (A.2) are chosen such that α is the probability to find the

bare nucleon+pion component in the physical nucleon. Correspondingly, (1 − α) is the

probability to find the bare nucleon component in the physical nucleon. ΨN/N ′0π
′ is the

wave function of the bare nucleon+pion component. The normalization of the free states

is

〈
V N0

∣∣V ′N ′0
〉

=
2

m2
N0

∆V V ′ ,

〈
V N0π

∣∣V ′N ′0π′
〉

=
2ωN0

m3
N0π

∆V V ′ ∆ππ′ .

(A.4)
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The nucleon-pion vertex matrix element is, according to Eq. (4.6),

〈
V ′N0

′π′
∣∣K†π

∣∣V N0

〉
=
〈
V N0

∣∣Kπ

∣∣V ′N0
′π′
〉∗

= ∆V V ′
1√

m
′3
N0π

m3
N0

〈
N0
′π′
∣∣∣∣K†π

∣∣∣∣N0

〉
.

(A.5)

The normalization condition for the nucleon-pion wave function reads

∑∫
Dk′′π ω

′′
π Ψ∗N/N ′′0 π′′ ΨN ′/N ′′0 π

′′ =
δNN ′

2 (2π)3
. (A.6)

In order to extract the three unknown quantities, i.e. the probability α of the Ñπ com-

ponent, the nucleon–pion two-body wave function ΨN/N0π and the bare nucleon mass

mN0
from this picture, we need a system of three independent equations involving these

quantities. These equations are the following:

First equation: We calculate matrix elements of the mass operator M̂N (that describes

the physical nucleon) between a free (“bare”) nucleon state and a physical nucleon state

(A.1). We take the matrix form (A.3) of M̂N and equate the result with the corresponding

matrix element of the mass operator’s eigenvalue mN :

〈
V ′N ′0

∣∣M̂N

∣∣V N
〉

:=

(〈
V ′N ′0

∣∣
0

)ᵀ
(
MN0

Kπ

K†π MN0π

)( ∣∣V Ñ
〉

∣∣V Ñπ
〉
)

(A.2)
=
√

1− α mN0

mN

〈
V ′N ′0

∣∣MN0

∣∣V N0

〉
+

+
√
α
√

2 (2π)3
∑∫

Dk′′π

√
(m′′N0π

)3

√
ω′′N0

√
ω′′π

mN
ΨN/N ′′0 π

′′
〈
V ′N ′0

∣∣Kπ

∣∣V N0
′′π′′

〉

(A.4)
=

(A.5)

2

mN

√
1− α∆V V ′

+

√
2 (2π)3

mN

√
m3
N0

√
α
∑∫

Dk′′π

√
ω′′π
ω′′N0

ΨN/N ′′0 π
′′
〈
N ′0
∣∣∣∣Kπ

∣∣∣∣N0
′′π′′

〉
∆V V ′ .

(A.7)

(Recall that in the rest frame of the (bare) nucleon, ωN(0)
≡ mN(0)

!)

On the other hand, we have

〈
V ′N ′0

∣∣M̂N

∣∣V N
〉 (A.2)

= mN
mN0

mN

√
1− α

〈
V ′N ′0

∣∣V N0

〉 (A.4)
=

2

mN0

√
1− α∆V V ′ . (A.8)

Equating Eqs. (A.7) and (A.8), we obtain the result

(mN −mN0
)

√
1− α√
α

=

√
(2π)3

2mN0

∑∫
Dk′′π

√
ω′′π
ω′′N0

ΨN/N ′′0 π
′′
〈
N ′0
∣∣∣∣Kπ

∣∣∣∣N0
′′π′′

〉
. (A.9)
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Second equation: Analogously, we can calculate for a pion of given momentum k′π

〈
V ′N ′0π

′∣∣M̂N

∣∣V N
〉

:=

(
0〈

V ′N ′0π
′
∣∣
)ᵀ
(
MN0

Kπ

K†π MN0π

)

( ∣∣V Ñ
〉

∣∣V Ñπ
〉
)

(A.2)
=

mN0

mN

√
1− α

〈
V ′N ′0π

′∣∣K†π
∣∣V N0

〉

+
√

2 (2π)3
√
α
∑∫

Dk′′π

√
(m′′N0π

)3

√
ω′′N0

√
ω′′π

mN
ΨN/N ′′0 π

′′
〈
V ′N ′0π

′∣∣MN0π

∣∣V N0
′′π′′

〉

(A.4)
=

(A.5)

√
1− α 1

mN

1√
mN0

(m′N0π
)3

〈
N ′0π

′∣∣∣∣K†π
∣∣∣∣N0

〉
∆V V ′

+
√

2 (2π)3
√
α

2

mN

√
ω′N0

ω′π
√
m′N0π

ΨN/N ′0π
′ ∆V V ′ .

(A.10)

On the other hand, we have

〈
V ′N ′0π

′∣∣M̂N

∣∣V N
〉

(A.2)
= mN

√
2 (2π)3

∑∫
Dk′′π

√
(m′′N0π

)3 ω′′π

ωN
√
ω′′N0

√
αΨN/N ′′0 π

′′
〈
V ′N ′0π

′ ∣∣V N0
′′π′′

〉

(A.4)
=
√

2 (2π)3
2
√
ω′N0

ω′π
√

(m′N0π
)3

√
αΨN/N ′0π

′ ∆V V ′

(A.11)

and equating (A.10) and (A.11), we obtain

2
√

2 (2π)3 ΨN/N ′0π
′ =

1√
mN0

ω′N0
ω′π

〈
N ′0π

′
∣∣∣∣K†π

∣∣∣∣N0

〉

mN − ω′N0
− ω′π

√
1− α√
α

. (A.12)

Determination of α: Applying the normalization condition (A.6) to Eq. (A.12), we

get

α

1− α =
1

4

∫
Dk′′π

1

mN0
ω′′N0

∣∣〈N ′′0 π′′
∣∣∣∣K†π

∣∣∣∣N0

〉∣∣2
(
mN − ω′′N0

− ω′′π
)2 (A.13)

so we have obtained an explicit equation for α.
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Eigenvalue equation for mN0
: On the other hand, upon inserting (A.12) into (A.9)

and using Eqs. (4.7) and (2.69), we obtain, for pseudoscalar coupling:

mN0
(mN −mN0

) δµN0
µ′N0

δτN0
τ ′N0

= g2
N0

∑

µ′′N0
τ ′′N0

∑∫
Dk′′π

J5 ∗(N ′′0 , N
′
0)F(τ ′N0

, τ ′′N0
, τ ′′π ) J5(N0, N

′′
0 )F(τN0

, τ ′′N0
, τ ′′π )

4
(
mN − ω′′N0

− ω′′π
)
ω′′N0

,
(A.14)

i.e.

mN −mN0
=

3

4

∑

µ′′N0

∫
Dk′′π

g2
N0

mN0
ω′′N0

∣∣∣J5(~kN0
, 1

2 ,
~k′′N0

, µ′′N0
)
∣∣∣
2

mN − ω′′N0
− ω′′π

. (A.15)

This is the (non-linear) algebraic equation we use to determine the bare nucleon mass

mN0
, given the physical nucleon mass mN by its experimental value. The final form

of the mass-eigenvalue equation (A.15) is then obtained by using rotational invariance

(also of
∑
µ′′N0

∣∣J5(~kN0 ,
1
2 ,
~k′′N0

, µ′′N0
)
∣∣ ) to perform the angular integration (in spherical

coordinates). This allows us to use the expression (4.39) for the pseudoscalar current J5
N

(or (4.43) for the pseudovector current J5 ]
N ). We then get:

mN −mN0 =
3

2

∫
dk

(2π)2

× k4 g2
N0
Gps(k)2

√
k2 +m2

π

(
mN −

√
k2 +m2

N0
−
√
k2 +m2

π

) (
k2 +m2

N0
+mN0

√
k2 +m2

N0

)

(A.16)

for pseudoscalar πN0N0 coupling or

mN −mN0 =
3

2

∫
dk

(2π)2
k4 f2

N0
Gpv(k)2

×

(
mN0

+
√
k2 +m2

N0
+
√
k2 +m2

π

)2

m2
π

√
k2 +m2

π

(
mN −

√
k2 +m2

N0
−
√
k2 +m2

π

) (
k2 +m2

N0
+mN0

√
k2 +m2

N0

)

(A.17)

for pseudovector πN0N0 coupling, respectively, and likewise (middle bracket in the de-

nominator gets squared) for Eq. (A.13).

It now remains to solve Eq. (A.15) numerically and use the result(s) in Eq. (A.13)

and, consequently, in Eq. (A.12) to determine α and Ψ, respectively.
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Calculational details

B.1 Transformation of integration measures

We start out with the integration measure of a general n-particle velocity state containing

three quarks,

∫ n∏

i=1

d3pi
2 p0

i

=

∫
d3V

V 0

n−1∏

i=1

(
d3ki
2ωi

)
(
∑n
i=1 ωi)

3

2ωn
(B.1)

≡
∫

d3V

V 0

n∏

i=1

(
d3ki
2ωi

)( n∑

i=1

ωi

)3

δ3
( n∑

i=1

~ki

)
(B.2)

≡
∫

d3V

V 0

n−3∏

i=1

(
d3ki
2ωi

)
d3kq2
2ωq2

d3kq3
2ωq3

(
∑n
i=1 ωi)

3

2ωq1
, (B.3)

assuming that the quarks are the last three particles and making the 3-momentum of quark

no. 1 the redundant one. Starting out with expression (B.2), we insert an integration and

a delta function over the overall four-momentum k3q of the three quarks. Due to Lorentz

invariance of the delta function and with

dk0
3q =

∂k0
3q

∂m3q
dm3q =

m3q

ω3q
dm3q, (B.4)

the element being inserted reads

∫
d4k3q δ

4
(
k3q −

3∑

i=1

kqi

)
=

∫
dm3q d3k3q

m3q

ω3q
δ4
((m3q

~0

)
−

3∑

i=1

(ω̃qi
~̃kqi

))
(B.5)

=

∫
d3k3q

∑3
i=1 ω̃qi∑3
i=1 ωqi

δ3
( 3∑

i=1

~̃kqi

)
. (B.6)

We thus obtain
∫ n∏

i=1

d3pi
2 p0

i

=

∫
d3V

V 0

n∏

i=1

(
d3ki
2ωi

)( n∑

i=1

ωi

)3

δ3
( n∑

i=1

~ki

)
d3k3q

∑3
i=1 ω̃qi∑3
i=1 ωqi

δ3
( 3∑

i=1

~̃kqi

)
.

(B.7)
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Assuming that the quarks are the last three particles and using Lorentz invariance of the

single-particle integration measures (
d3kqj
2ωqj

=
d3k̃qj
2ωqj

) and by use of (3.36), expression (B.7)

becomes

∫
d3V

V 0

n−3∏

i=1

(
d3ki
2ωi

) 3∏

j=1

(
d3k̃qj
2 ω̃qj

)( n∑

i=1

ωi

)3

δ3
(n−3∑

i=1

~ki + ~k3q

)
d3k3q

∑3
i=1 ω̃qi∑3
i=1 ωqi

δ3
( 3∑

i=1

~̃kqi

)
.

(B.8)

Eliminating the delta functions (making the 3-momentum of quark no. 1 the redundant

one), we get

∫
d3V

V 0

n−3∏

i=1

(
d3ki
2ωi

)
d3k̃q2
2 ω̃q2

d3k̃q3
2 ω̃q3

(
∑n
i=1 ωi)

3

2 ω̃q1

∑3
i=1 ω̃qi∑3
i=1 ωqi

. (B.9)

Comparing this with expression (B.3), the result is

d3V . . . d3kq2 d3kq3 = d3V . . . d3k̃q2 d3k̃q3
ωq1
ω̃q1

ωq2
ω̃q2

ωq3
ω̃q3

ω̃q1 + ω̃q2 + ω̃q3
ωq1 + ωq2 + ωq3

(B.10)

or, in our notation,

DV . . .Dkq2 Dkq3 = DV . . .Dk̃q2 Dk̃q3
ωq1
ω̃q1

ω̃q1 + ω̃q2 + ω̃q3
ωq1 + ωq2 + ωq3

. (B.11)

B.2 Normalization of the three-quark wave function

In order to find the normalization factors for the three-quark wave functions (3.33), we

use the orthogonality relation (2.50) for hadronic velocity states and insert the quark-level

completeness relations (3.30).

Nucleon–electron state: For the N0e-state (with redundant nucleon 3-momentum),

relation (2.50) reads

〈
V ′N ′0e

′ ∣∣V N0e
〉

=
∆V V ′ ∆ee′ 2ωN0

(ωN0 + ωe)3
δµN0

µ′N0
δτN0

τ ′N0
, (B.12)

where we have now explicitly included the Kronecker deltas for the (iso-)spins of the

particle with redundant momentum – the bare nucleon. Insertion of the quark-level unity

element (3.30) yields

〈
V ′N ′0e

′∣∣I3qe
∣∣V N0e

〉

=
∑∫

DV ′′Dk′′eDk
′′
q2Dk

′′
q3

m
′′ 3
3qe

2ω′′q1

〈
V ′N ′0e

′ ∣∣V ′′3q′′e′′
〉〈
V ′′3q′′e′′

∣∣V N0e
〉
,

(B.13)

with a sum over µ′′q1 and τ ′′q1 implied. After inserting our expression (3.33) for the three-

quark wave function of the electron–nucleon system (now using more concise expressions
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for the normalization factors representing the correct number of primes), we get

〈
V ′N ′0e

′∣∣I3qe
∣∣V N0e

〉
=
∑∫

DV ′′Dk′′eDk
′′
q2Dk

′′
q3

m
′′ 3
3qe

2ω′′q1

×NN ′0e′3q′′ ∆V ′V ′′ ∆e′e′′
〈
N ′0
∣∣3q′′

〉
NN0e3q′′ ∆V V ′′ ∆ee′′

〈
3q′′

∣∣N0

〉
,

(B.14)

and after evaluating the Delta functions:

〈
V ′N ′0e

′∣∣I3qe
∣∣V N0e

〉

=
∑∫

Dk′′q2Dk
′′
q3

m
′′ 3
3qe

2ω′′q1
NN ′0e′3q′′ NN0e3q′′ ∆V V ′ ∆ee′

〈
N ′0
∣∣3q′′

〉 〈
3q′′

∣∣N0

〉
, (B.15)

and with (B.11):

〈
V ′N ′0e

′∣∣I3qe
∣∣V N0e

〉

=
∑∫

Dk̃′′q2 Dk̃
′′
q3

ω̃′′q1 + ω̃′′q2 + ω̃′′q3
ω′′q1 + ω′′q2 + ω′′q3

m
′′ 3
3qe

2 ω̃′′q1
NN ′0e′3q′′ NN0e3q′′ ∆V V ′∆ee′

〈
N ′0
∣∣3q′′

〉 〈
3q′′

∣∣N0

〉
.

(B.16)

We demand that
〈
V ′N ′0e

′
∣∣I3qe

∣∣V N0e
〉

=
〈
V ′N ′0e

′
∣∣V N0e

〉
and thus equality of expres-

sions (B.12) and (B.16). Applying the normalization condition (3.34), which in our short-

hand notation can be written

4 · (2π)6
∑∫

Dk̃′′q2Dk̃
′′
q3 ω̃

′′
q2 ω̃

′′
q3

〈
N0
′ ∣∣3q′′

〉〈
3q′′

∣∣N0

〉
= δµN0

µ′N0
δτN0

τ ′N0
, (B.17)

we see that a sufficient condition for the equality of Eqs. (B.12) and (B.16) is

NN0e3q′ = 4 · (2π)3

√
ωN0

ω̃′q1 ω̃
′
q2 ω̃
′
q3

(∑
ω′qi
)

√(∑
ω̃′qi
)

(ωN0 + ωe)
3 (∑

ω′qi + ωe
)3 . (B.18)

Nucleon–electron–photon state: Analogously, when a photon is present, we have

the orthogonality relation

〈
V ′N ′0e

′γ′
∣∣V N0eγ

〉
=

∆V V ′ ∆ee′ ∆γγ′ 2ωN0

m3
N0eγ

. (B.19)

Insertion of the quark-level completeness relation (3.30) yields

〈
V ′N ′0e

′γ′
∣∣I3qeγ

∣∣V N0eγ
〉

=
∑∫

DV ′′Dk′′eDk
′′
γDk

′′
q2Dk

′′
q3

× m
′′ 3
3qeγ

2ω′′q1

(
−gµ′′γµ′′γ

) 〈
V ′N ′0e

′γ′
∣∣V ′′3q′′e′′γ′′

〉〈
V ′′3q′′e′′γ′′

∣∣V N0eγ
〉
. (B.20)

After inserting expression (3.33), we get

〈
V ′N ′0e

′γ′
∣∣I3qeγ

∣∣V N0eγ
〉

=
∑∫

DV ′′Dk′′eDk
′′
γDk

′′
q2Dk

′′
q3

m
′′ 3
3qeγ

2ω′′q1

(
−gµ′′γµ′′γ

)

×NN ′0e′γ′3q′′ ∆V ′V ′′ ∆e′e′′ ∆γ′γ′′
〈
N ′0
∣∣3q′′

〉
NN0eγ3q′′ ∆V V ′′ ∆ee′′ ∆γγ′′

〈
3q′′

∣∣N0

〉
(B.21)



Appendix B. Calculational details 117

and after evaluating the Delta functions:

〈
V ′N ′0e

′γ′
∣∣I3qeγ

∣∣V N0eγ
〉

=
∑∫

Dk′′q2Dk
′′
q3

m
′′ 3
3qeγ

2ω′′q1
NN ′0e′γ′3q′′ NN0eγ3q′′ ∆V V ′ ∆ee′ ∆γγ′

〈
N ′0
∣∣3q′′

〉 〈
3q′′

∣∣N0

〉
(B.22)

and with (B.11):

〈
V ′N ′0e

′γ′
∣∣I3qeγ

∣∣V N0eγ
〉

=
∑∫

Dk̃′′q2 Dk̃
′′
q3

ω̃′′q1 + ω̃′′q2 + ω̃′′q3
ω′′q1 + ω′′q2 + ω′′q3

m
′′ 3
3qeγ

2 ω̃′′q1
N2
N0eγ3q′′ ∆V V ′∆ee′ ∆γγ′

〈
N ′0
∣∣3q′′

〉 〈
3q′′

∣∣N0

〉
.

(B.23)

Demanding (B.19) = (B.23) and the norm (3.34), the result is

NN0eγ3q′ = 4(2π)3

√
ωN0 ω̃

′
q1 ω̃
′
q2 ω̃
′
q3

(∑
ω′qi
)

√(∑
ω̃′qi
)

(ωN0
+ ωe + ωγ)

3 (∑
ω′qi + ωe + ωγ

)3 (B.24)

B.3 Combination of time orderings

This section treats the combination of the two time-orderings of the Neγ-propagator in

Secs. 3.1.6 and 3.2.6.

We proceed as in [Bie11] and use energy and momentum conservation in

the one-photon exchange amplitude, which implies
√
s = mNe = ω

(′)
N + ω

(′)
e (hence

ω′N − ωN = ωe − ω′e ) and ωγ = |~kγ | = |~ke − ~k′e| , to obtain

ΠNeγ :=
1√

s− ω′N − ωe − ωγ
+

1√
s− ωN − ω′e − ωγ

=
1

ωN − ω′N − |~kγ |
+

1

ωe − ω′e − |~kγ |

=
1

ω′e − ωe − |~ke − ~k′e|
+

1

ωe − ω′e − |~ke − ~k′e|
.

(B.25)

Reducing this to the common denominator, we obtain

ΠNeγ =
−2|~ke − ~k′e|

− (ωe − ω′e)2
+
(
~ke − ~k′e

)2 =
−2ωγ
Q2

, (B.26)

where we have introduced the photon four-momentum transfer

q :=

(
ω′N − ωN
~k′N − ~kN

)
≡
(
ωe − ω′e
~ke − ~k′e

)
and Q2 := −q2 . (B.27)
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[GR13] M. Gómez Rocha. Electroweak hadron structure within a relativistic point-form

approach. PhD thesis, Univ. Graz, 2013. (arXiv:hep-ph 1306.1248).
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