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In this talk we discuss some classical aspects of general polynomial higher-derivative
gravity. In particular, we describe the behaviour of the weak-field solutions associated
to a point-like mass at small distances and provide necessary and sufficient conditions
for the metric to be regular. We also consider the metric for a collapsing thick null shell,
and verify that it is regular if the aforementioned conditions are valid.
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1. Introduction

Higher-derivative theories of gravity possess interesting features from both quantum
and classical point of views. Indeed, the inclusion of higher-derivative terms in the
Lagrangian can make the theory perturbatively renormalizable,!? while they can
also smooth out classical singularities.®>% Owed to these good properties, higher
derivatives are often considered in the search for a fundamental theory of gravity.
One of the main difficulties of this approach to quantum gravity, nonetheless, is
the presence of ghost-like degrees of freedom, which classically generate instabilities
in the solutions and, in the quantum perspective, violate unitarity. For example,
consider the model defined by the action?

1

S=1- /d4:1c\/—_g (2R+ RF(OD)R + RWFz(D)R“”) , (1)

where F;(0) is a real polynomial of degree d; of the d’Alembert operator. The
propagator associated this model, in the Landau gauge, is given by

P(Q) P(O*S)
G,uu af3 (k) = pob - i ) (2)
' k2fo(—k2)  2k2fo(—k?)
where fo and fo are polynomial functions of degree dy = max{d;,02} + 1 and

ds = 05 + 1, respectively, defined as

fo(O)=1—-[F(0)+3FR((@)]0O, fO)=1+ %FQ(D) a. (3)
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Hence, if the polynomial fs(z) has Ny distinct real roots z = —m%s)l. with multiplic-

ity m(s)i, then the propagator has No + N2 massive poles. In Ref. 2 it was shown
that half of these excitations correspond to ghost modes.

Recently there have been some proposals for dealing with these ghosts still in
the framework of higher-derivative gravity (HDG). For example, in the Lee-Wick
HDG7"® the ghost-like poles of the propagator are associated to complex masses.
Such modes can then appear as virtual states only, yielding an unitary scattering
matrix.” Another approach to avoid ghosts is to make a non-local extension of the
polynomial HDG by using non-polynomial functions F}; such that the propagator
has no other degrees of freedom besides the graviton.? '3

In this talk we present some classical aspects of the general polynomial-derivative
gravity model (1), namely, we discuss the avoidance of Newtonian singularities.
We remark that, in the weak field approximation, the local model (1) is the most
general one with higher derivatives, and it contains the case of Lee-Wick gravity
as particular case. The original results presented here were published in Ref. 14.
Using similar arguments it is possible to extend considerations to some classes of
non-local gravity theories, as carried out in a more general manner in Ref. 15.

2. Singularities in the Newtonian limit

In order to evaluate the field generated by a point-like source in the static non-
relativistic weak-field approximation we consider metric fluctuations around the
Minkowski spacetime, g, = Muv + hu, sourced by the energy-momentum tensor
Ty, = M°(r) 45 6y. In this case the metric can be written in the isotropic form

2 2
ds? = — [1 + 5(2){2 + XO):| dt® + [1 — §<X2 — XO):| (dgc2 + dy? + dz2) (4)

and one can show that the (linearised) equations of motion for the potentials x
(s = 0,2) are equivalent to solving

[s(A)Axs = ks M§3(r) ) (5)

with kg = —K/2, ko = k. We remark that the decomposition of the usual Newtonian
potentials into ¢ = %(2)(2 + x0) and ¥ = %(xg — Xo) allows a great simplification
in the notation and considerations, as it splits the contribution of the scalar and
spin-2 modes, through yo and y2, respectively.

The solution of (5) can be obtained by the Laplace 416

or Fourier ' transform
technique and reads

N M(s)i j—2
o Ks QA(s)i,j r 2
Xs(r) = 47r 47r3/2 Z Z (2m(s)i) Kj_%<m(5)ir)’ (6)

i=1 j=1 (7 =1t

where K, is the modified Bessel function of the second kind. Also, z = —m%s)l. is

one of the N; distinct roots of the equation f;(—z) = 0 and ny); is its multiplicity.
Of course, if d; is the degree of f(z), then ), n(s); = ds. The coefficient a,); ; can
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be obtained by the Heaviside residue method, and follows from the partial fraction
decomposition of [z fs(—2z)] L.
The solution above can be expanded in power series around r = 0, which gives

K/SM HSM

4mr

Xs(r) = (1-80) + e+ i (s —s@)r+ 067, (1)
=1

where ¢, is a constant and

N, N, N,
0 1 2 2
SO =2 awin, S =3 migawia, ST =) awia ()
i=1 i=1 i=1

It is possible to show !4 that S'” = 1 for any d, > 1, which means that all the the-
ories which have at least four derivatives in the spin-s sector have a finite potential
Xs(r) at 7 = 0. Moreover, one can prove 415 that S = 8 ifand only if dy > 2 —
in other words, x%(0) = 0 in all theories with more than four derivatives in the spin-
s sector. It can be shown that, for these models, the condition x(,(0) = x4(0) =0
is necessary and sufficient to have regular curvature invariants. 16 Thus, it follows
that the metric (4) is regular in all theories which have at least six derivatives in
both spin-0 and spin-2 sectors. 415

3. Singularities in the ultrarelativistic limit

The static Newtonian solution presented in the previous section can be used to
construct the metric of a non-spinning gyraton (see, e.g., Refs. 17, 18). The general
idea is to apply a boost to the non-relativistic metric and then take the Penrose
limit. With this solution one can consider a homogeneous spherical shell distribu-
tion of gyratons with total mass M imploding towards its centre, and analyse the
occurrence of singularities and the formation of mini black holes. 16:17:19
In Ref. 14 it was shown that the Kretschmann scalar associated to the Z domain®
of the collapsing thick null shell in a general polynomial theory is
2072
R0 = 32?# 48%(In7)? + Ay + A+ (500 - 55”)2} +0(%), (9)
where 7 > 0 is the thickness of the shell, A = S’él) — 5’52) and ¢ and ¢’ are
constants which depend on the massive parameters of the theory. Inasmuch as
A = 0 for the theories with more than four derivatives in the spin-2 sector, the
collapse of the thick null shell does not generate a singularity. On the other hand,
the Kretschmann invariant diverges for models with less than six derivatives.

2The Z domain, defined by the locus of the spacetime points for which r+|¢t| < 7/2, is characterized
by the intersection of the in-coming and the out-coming fluxes of null fluid. In this domain the
shell assumes its highest density, favouring the mini black hole formation and the emergence of
singularities.
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The solution for the collapsing shell can also be used to verify the existence of
mass gap for the formation of mini black holes. This is related to the occurrence of
apparent horizons in the solution, i.e., regions such that g = (Vg)? = 0, where o is
the component ggg of the spherically symmetric metric. In fact, one can show that
the invariant g reads

N 2GM (S5 — 55y

= + O(r) (10)

g(r) =1

for the collapsing thick null shell in any polynomial gravity theory.* Since r < 7
on the domain Z, it follows that

26M|[SY” — S| 26M|SY” — SP|r
3T < 3 '

(11)

In other words, given any 7 it is possible to avoid the existence of an apparent
horizon on 7 provided that the total mass M of the shell is sufficiently small.
This result was obtained for the first time in Ref. 19 for the theory with only
four derivatives; in Refs. 17 and 16 it was extended for the ghost-free gravity and
polynomial gravity with only real and non-degenerate masses, while in Ref. 14
general polynomial theories were considered, including the case of Lee-Wick gravity.

4. Conclusions

The results presented here show that there is a significant difference of the HDG
theories with four and more derivatives. Even though the modified Newtonian
potential is finite in both cases (if there are at least four derivatives in the spin-
2 and spin-0 sectors), the former always contains curvature singularities in the
solution associated to a point-like mass. On the other hand, these singularities
are regularized in the models with more than four derivatives. The same situation
occurs for the collapsing thick null shell, for which curvature singularities are avoided
only in the models with six or more derivatives.

These results bring more motivations for further studies on the occurrence of sin-
gularities in the spherically symmetric static solutions in the full non-linear regime
of HDG models. For example, the numerical searches for solutions in theories with
6, 8 and 10 derivatives reported in Ref. 20 only found regular solutions. In what
concerns the fourth-derivative gravity, it is known that singularities are present in
both regimes. 32122 This subject certainly deserves more investigation.
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