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Some classical features of polynomial higher derivative gravities
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In this talk we discuss some classical aspects of general polynomial higher-derivative
gravity. In particular, we describe the behaviour of the weak-field solutions associated
to a point-like mass at small distances and provide necessary and sufficient conditions
for the metric to be regular. We also consider the metric for a collapsing thick null shell,
and verify that it is regular if the aforementioned conditions are valid.
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1. Introduction

Higher-derivative theories of gravity possess interesting features from both quantum

and classical point of views. Indeed, the inclusion of higher-derivative terms in the

Lagrangian can make the theory perturbatively renormalizable,1,2 while they can

also smooth out classical singularities.3–6 Owed to these good properties, higher

derivatives are often considered in the search for a fundamental theory of gravity.

One of the main difficulties of this approach to quantum gravity, nonetheless, is

the presence of ghost-like degrees of freedom, which classically generate instabilities

in the solutions and, in the quantum perspective, violate unitarity. For example,

consider the model defined by the action2

S =
1

4κ

∫
d4x
√−g

(
2R+RF1(�)R + RμνF2(�)Rμν

)
, (1)

where Fj(�) is a real polynomial of degree δj of the d’Alembert operator. The

propagator associated this model, in the Landau gauge, is given by

Gμν,αβ(k) =
P

(2)
μν,αβ

k2f2(−k2)
− P

(0−s)
μν,αβ

2k2f0(−k2)
, (2)

where f0 and f2 are polynomial functions of degree d0 = max{δ1, δ2} + 1 and

d2 = δ2 + 1, respectively, defined as

f0(�) = 1− [F2(�) + 3F1(�)]� , f2(�) = 1 +
1

2
F2(�)� . (3)
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Hence, if the polynomial fs(z) has Ns distinct real roots z = −m2
(s)i with multiplic-

ity n(s)i, then the propagator has N0 + N2 massive poles. In Ref. 2 it was shown

that half of these excitations correspond to ghost modes.

Recently there have been some proposals for dealing with these ghosts still in

the framework of higher-derivative gravity (HDG). For example, in the Lee-Wick

HDG7,8 the ghost-like poles of the propagator are associated to complex masses.

Such modes can then appear as virtual states only, yielding an unitary scattering

matrix.7 Another approach to avoid ghosts is to make a non-local extension of the

polynomial HDG by using non-polynomial functions Fj such that the propagator

has no other degrees of freedom besides the graviton.9–13

In this talk we present some classical aspects of the general polynomial-derivative

gravity model (1), namely, we discuss the avoidance of Newtonian singularities.

We remark that, in the weak field approximation, the local model (1) is the most

general one with higher derivatives, and it contains the case of Lee-Wick gravity

as particular case. The original results presented here were published in Ref. 14.

Using similar arguments it is possible to extend considerations to some classes of

non-local gravity theories, as carried out in a more general manner in Ref. 15.

2. Singularities in the Newtonian limit

In order to evaluate the field generated by a point-like source in the static non-

relativistic weak-field approximation we consider metric fluctuations around the

Minkowski spacetime, gμν = ημν + hμν , sourced by the energy-momentum tensor

Tμν = M δ3(r) δ0μ δ
0
ν . In this case the metric can be written in the isotropic form

ds2 = −
[
1 +

2

3
(2χ2 + χ0)

]
dt2 +

[
1− 2

3
(χ2 − χ0)

]
(dx2 + dy2 + dz2) (4)

and one can show that the (linearised) equations of motion for the potentials χs
(s = 0, 2) are equivalent to solving14

fs(Δ)Δχs = κsM δ3(r) , (5)

with κ0 = −κ/2, κ2 = κ. We remark that the decomposition of the usual Newtonian

potentials into ϕ = 1
3 (2χ2 + χ0) and ψ = 1

3 (χ2 − χ0) allows a great simplification

in the notation and considerations, as it splits the contribution of the scalar and

spin-2 modes, through χ0 and χ2, respectively.

The solution of (5) can be obtained by the Laplace14,16 or Fourier15 transform

technique and reads

χs(r) = −κsM
4πr

+
κsM

4π3/2

Ns∑
i=1

n(s)i∑
j=1

a(s)i,j

(j − 1)!

(
r

2m(s)i

)j− 3
2

Kj− 3
2
(m(s)ir) , (6)

where Kν is the modified Bessel function of the second kind. Also, z = −m2
(s)i is

one of the Ns distinct roots of the equation fs(−z) = 0 and n(s)i is its multiplicity.

Of course, if ds is the degree of fs(z), then
∑

i n(s)i = ds. The coefficient a(s)i,j can
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be obtained by the Heaviside residue method, and follows from the partial fraction

decomposition of [zfs(−z)]−1.

The solution above can be expanded in power series around r = 0, which gives

χs(r) = −κsM
4πr

(
1− S(0)

s

)
+ cs +

κsM

8π

Ns∑
i=1

(
S(1)
s − S(2)

s

)
r + O(r2) , (7)

where cs is a constant and

S(0)
s =

Ns∑
i=1

a(s)i,1 , S(1)
s =

Ns∑
i=1

m2
(s)ia(s)i,1 , S(2)

s =

Ns∑
i=1

a(s)i,2. (8)

It is possible to show5,14 that S
(0)
s = 1 for any ds � 1, which means that all the the-

ories which have at least four derivatives in the spin-s sector have a finite potential

χs(r) at r = 0. Moreover, one can prove14,15 that S
(1)
s = S

(2)
s if and only if ds � 2 —

in other words, χ′
s(0) = 0 in all theories with more than four derivatives in the spin-

s sector. It can be shown that, for these models, the condition χ′
0(0) = χ′

2(0) = 0

is necessary and sufficient to have regular curvature invariants.14,16 Thus, it follows

that the metric (4) is regular in all theories which have at least six derivatives in

both spin-0 and spin-2 sectors.14,15

3. Singularities in the ultrarelativistic limit

The static Newtonian solution presented in the previous section can be used to

construct the metric of a non-spinning gyraton (see, e.g., Refs. 17, 18). The general

idea is to apply a boost to the non-relativistic metric and then take the Penrose

limit. With this solution one can consider a homogeneous spherical shell distribu-

tion of gyratons with total mass M imploding towards its centre, and analyse the

occurrence of singularities and the formation of mini black holes.16,17,19

In Ref. 14 it was shown that the Kretschmann scalar associated to the I domaina

of the collapsing thick null shell in a general polynomial theory is

R2
μναβ =

32G2M2

3τ2

[
4Δ2( ln r)2 + c′Δ ln r + c′′Δ +

(
S
(0)
2 − S(1)

2

)2]
+O(r2) , (9)

where τ > 0 is the thickness of the shell, Δ ≡ S
(1)
2 − S

(2)
2 and c′ and c′′ are

constants which depend on the massive parameters of the theory. Inasmuch as

Δ = 0 for the theories with more than four derivatives in the spin-2 sector, the

collapse of the thick null shell does not generate a singularity. On the other hand,

the Kretschmann invariant diverges for models with less than six derivatives.

aThe I domain, defined by the locus of the spacetime points for which r+|t| < τ/2, is characterized
by the intersection of the in-coming and the out-coming fluxes of null fluid. In this domain the
shell assumes its highest density, favouring the mini black hole formation and the emergence of
singularities.
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The solution for the collapsing shell can also be used to verify the existence of

mass gap for the formation of mini black holes. This is related to the occurrence of

apparent horizons in the solution, i.e., regions such that g ≡ (∇
)2 = 0, where 
 is

the component gθθ of the spherically symmetric metric. In fact, one can show that

the invariant g reads

g(r) = 1 +
2GM(S

(0)
2 − S(2)

2 )r2

3τ
+ O(r4) (10)

for the collapsing thick null shell in any polynomial gravity theory.14 Since r < τ

on the domain I, it follows that

2GM |S(0)
2 − S(2)

2 |r2
3τ

<
2GM |S(0)

2 − S(2)
2 |τ

3
. (11)

In other words, given any τ it is possible to avoid the existence of an apparent

horizon on I provided that the total mass M of the shell is sufficiently small.

This result was obtained for the first time in Ref. 19 for the theory with only

four derivatives; in Refs. 17 and 16 it was extended for the ghost-free gravity and

polynomial gravity with only real and non-degenerate masses, while in Ref. 14

general polynomial theories were considered, including the case of Lee-Wick gravity.

4. Conclusions

The results presented here show that there is a significant difference of the HDG

theories with four and more derivatives. Even though the modified Newtonian

potential is finite in both cases (if there are at least four derivatives in the spin-

2 and spin-0 sectors), the former always contains curvature singularities in the

solution associated to a point-like mass. On the other hand, these singularities

are regularized in the models with more than four derivatives. The same situation

occurs for the collapsing thick null shell, for which curvature singularities are avoided

only in the models with six or more derivatives.

These results bring more motivations for further studies on the occurrence of sin-

gularities in the spherically symmetric static solutions in the full non-linear regime

of HDG models. For example, the numerical searches for solutions in theories with

6, 8 and 10 derivatives reported in Ref. 20 only found regular solutions. In what

concerns the fourth-derivative gravity, it is known that singularities are present in

both regimes.3,21,22 This subject certainly deserves more investigation.
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