

Nuclear Weak Processes and Astrophysical Applications

Toshio Suzuki^{1,2} and Michio Honma³

¹Department of Physics, College of Humanities and Sciences, Nihon University
Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan

²Center for Nuclear Study, University of Tokyo, Hiyoshi, Saitama 351-0198, Japan

³Center for Mathematical Sciences, University of Aizu
Aizu-Wakamatsu, Fukushima 965-8580, Japan

E-mail: suzuki@chs.nihon-u.ac.jp

Abstract. Nuclear weak processes are investigated based on new shell model Hamiltonians, which give successful description of spin responses in nuclei, and applied to astrophysical problems. Neutrino-induced reactions on ^{12}C and synthesis of light elements by supernova neutrinos, and effects of contamination of ^{13}C , whose natural isotopic abundance is 1.1%, on inclusive ν - ^{12}C reactions are discussed. Spin-dipole transitions and ν -induced reactions on ^{16}O are studied by using a new Hamiltonian with proper tensor components, and compared with conventional calculations and previous CRPA results. Gamow-Teller transition strength in ^{40}Ar and ν -induced reactions on ^{40}Ar by solar neutrinos are studied based on monopole-based-universal interaction (VMU). We finally discuss electron capture reactions on Ni isotopes in stellar environments.

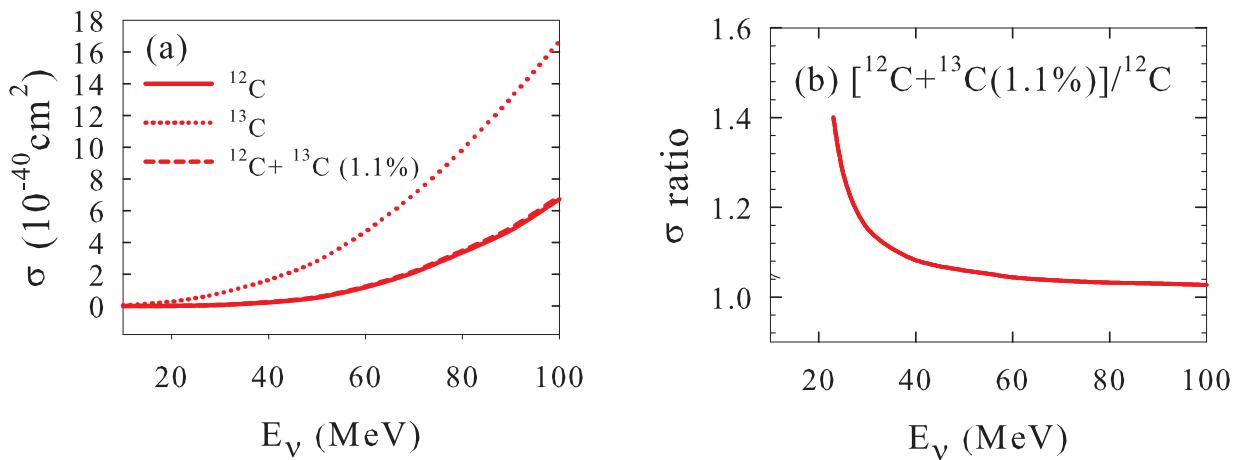
1. Introduction

Neutrino-nucleus reactions and electron capture reactions, which are dominantly induced by excitations of spin modes in nuclei, are investigated with the use of new shell model Hamiltonians, SFO[1] and SFO-tls [2] in p -shell and p - sd shell, GXPF1 [3] in fp -shell and monopole-based-universal interaction (VMU[4]) in sd - fp shell. The new Hamiltonians properly take into account important roles of the tensor interactions.

Neutrino nucleus reactions on ^{12}C , ^{13}C and ^{16}O are studied in Sect. 2. Neutrino-induced reactions on ^{40}Ar are studied in Sect. 3. Electron capture reactions on Ni isotopes in stellar environments are discussed in Sect. 4.

2. Neutrino-Nucleus Reactions in Carbon and Oxygen

2.1. Neutrino-induced Reaction on ^{12}C and Light Element Synthesis

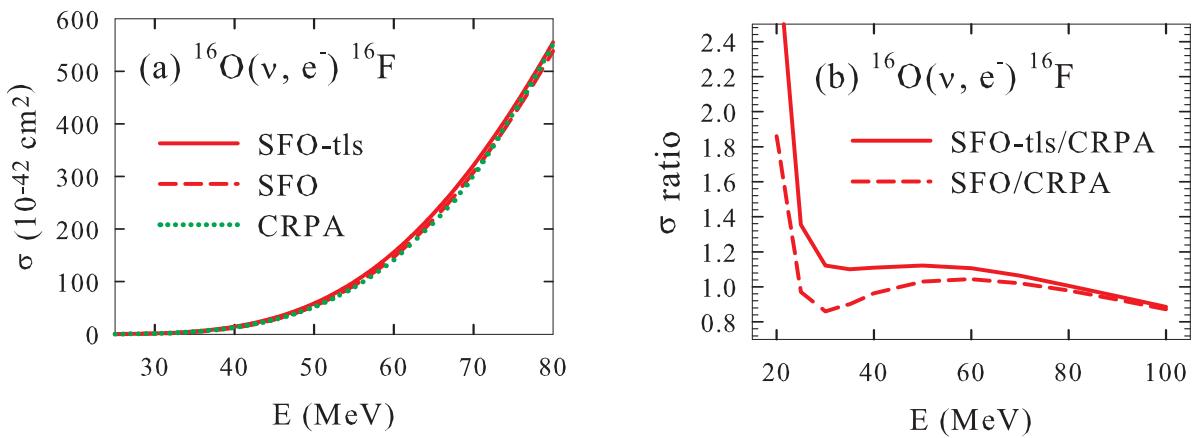

Neutrino-induced reactions in p -shell nuclei are investigated based on new shell model Hamiltonians[1], which take into account important roles of tensor interaction properly[9] and give good account of spin-dependent modes in p -shell nuclei. Magnetic moments of p -shell nuclei are systematically well described, and Gamow-Teller (GT) transition strengths in ^{12}C and ^{14}C are also well explained[1].

The GT strength in ^{12}C is enhanced for the new Hamiltonian, SFO[1], compared to conventional Hamiltonians, and the cross sections of ν -induced exclusive charge-exchange

reaction, $^{12}\text{C} (\nu, e^-) ^{12}\text{N}_{g.s.}$, are reproduced by SFO. The enhancement of the ν - ^{12}C reaction cross sections is found to lead to the enhancement of the production yields of light elements, ^{11}B and ^7Li , in supernova explosions[5, 6]. The element ^{11}B is produced by both $^{12}\text{C} (\nu, \nu'p) ^{11}\text{B}$ and $^7\text{Li} (\alpha, \gamma) ^{11}\text{B}$ reactions while ^7Li is produced through $^4\text{He} (\nu, \nu'p) ^3\text{H} (\alpha, \gamma) ^7\text{Li}$. Therefore, in addition to the enhancement of the reaction cross sections in ^{12}C , the enhancement of the ν - ^4He reaction cross sections with the use of recent Hamiltonians such as WBP[7] is also important to get the enhancement of the enhancement of the production yields of ^7Li and ^{11}B . The enhancement factor for the production yield is found to be about 20% and 30% for ^{11}B and ^7Li , respectively, for WBP+SFO Hamiltonians in a supernova explosion model[5]. Here, neutral current reactions induced by heavy-flavor neutrinos with higher energies play dominant roles, while in case of neutrino oscillations charge-exchange reactions induced by ν_e also become important[6].

2.2. Neutrino-induced Reactions on ^{13}C

Neutrino-induced reactions on ^{13}C are studied by shell model calculations with the use of SFO. The carbon target is one of a very few examples, on which neutrino induced reactions are measured. The target is usually assumed to be pure ^{12}C isotope while it has contamination of ^{13}C with 1.1% of the natural isotopic abundance. As the Q -values for the ν - ^{13}C reactions are low compared to ^{12}C case, the cross sections for ^{13}C are larger than those of ^{12}C and the small admixture of ^{13}C in the target can have non-negligible contributions to the inclusive ν -carbon cross sections at low neutrino energies.


Figure 1. (a) Inclusive reaction cross sections for $^{12}\text{C} (\nu, e^-) ^{12}$ and $^{13}\text{C} (\nu, e^-) ^{13}\text{N}$ obtained by shell model calculations with the use of SFO. The sum of ^{12}C and 1.1% of ^{13}C cross sections are also shown. (b) Ratio of the cross sections; $[^{12}\text{C} + ^{13}\text{C} (1.1\%)]/^{12}\text{C}$.

Calculated inclusive cross sections for carbon isotopes are shown in Fig. 1. The contributions from GT and spin-dipole transitions are included; multipoles up to $J^\pi = 4^\pm$ are taken into account. The effects of the mixing of ^{13}C on the ν - ^{12}C cross sections are about 20% ~4% at $E_\nu = 30\text{--}80$ MeV, and get larger at lower E_ν (see Figs.1(a) and 1(b)). The inclusive cross sections for supernova temperatures T_ν are affected by about 30% ~5% at $T_\nu = 4\text{--}10$ MeV. While the

effects are minor at high temperatures, they can be as large as (50%, 30%, 15%) for $T_\nu = (3.5, 4, 6)$ MeV, which correspond to a typical set of T_ν for $(\nu_e, \bar{\nu}_e, \nu_{\mu,\tau}$ and $\bar{\nu}_{\mu,\tau}$).

2.3. Neutrino-induced Reactions on ^{16}O

The ^{16}O nucleus plays an important role in producing ^{15}N by ^{16}O ($\nu, \nu'p$) ^{15}N reaction in supernova explosions. It is also contained in water, which is used as target for neutrino detections. Here, $\nu-^{16}O$ reactions are studied by using the modified SFO interaction, SFO-tls[2], where the tensor components of the $\pi + \rho$ -meson exchange potential are used for the p - sd cross shell two-body matrix elements. As the $\nu-^{16}O$ reactions are mainly induced by spin-dipole transitions, it is important to take full account of the tensor force properly in the p - sd cross shell part. Energies of the spin-dipole states are rather well reproduced. Calculated spin-dipole strength is more fragmented and shifted toward lower energy region for SFO-tls compared to SFO.

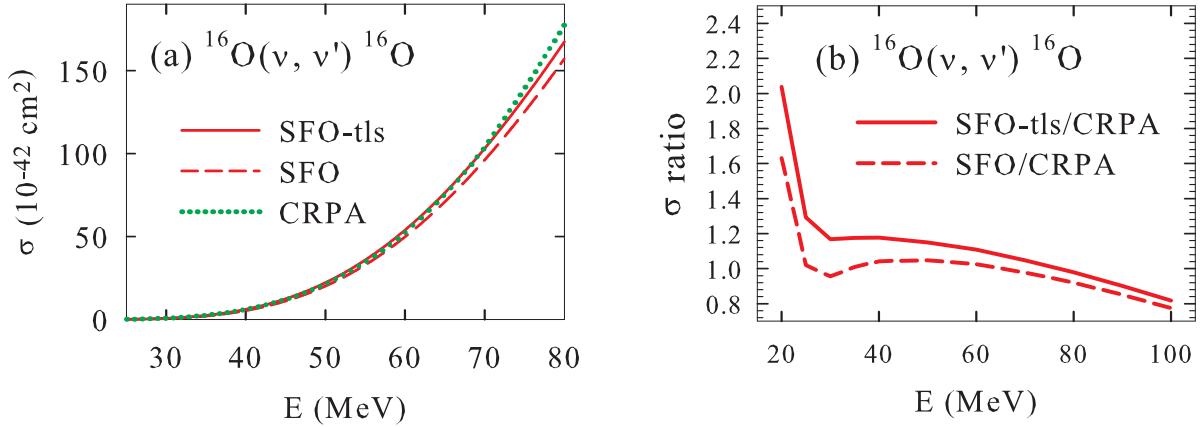


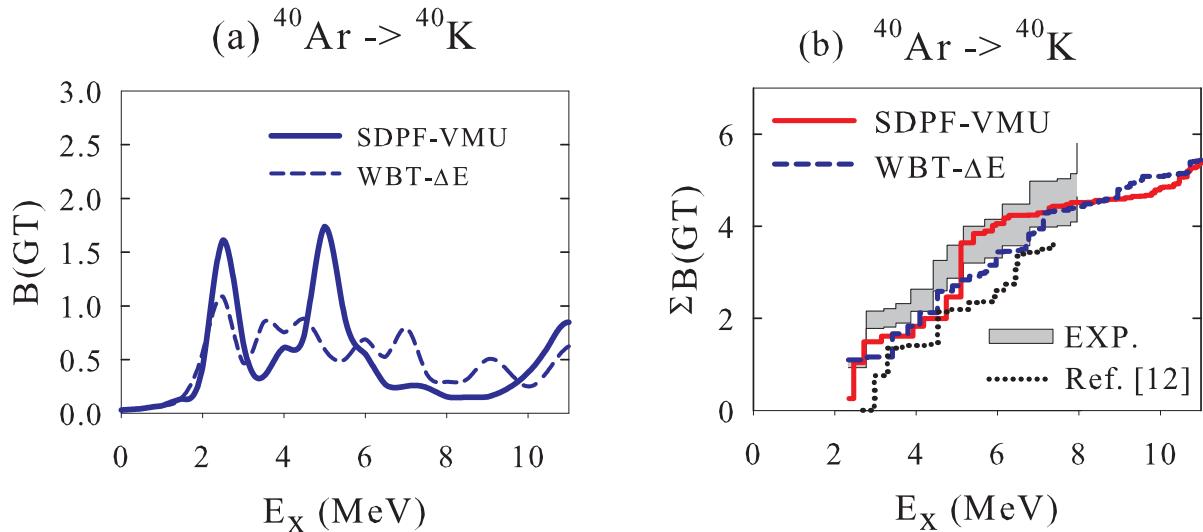
Figure 2. (a) Calculated reaction cross sections for $^{16}\text{O}(\nu, e^-)^{16}\text{F}$ obtained by shell model calculations with the use of SFO-tls and SFO, as well as CRPA calculations. (b) Ratios of the cross sections; SFO-tls vs CRPA, and SFO vs CRPA.

Calculated cross sections for charged-current and neutral-current reactions are shown in Figs. 2 and 3, respectively. The cross sections obtained by SFO-tls are compared with those of SFO and CRPA[8]. The charged-current (neutral-current) cross sections for SFO-tls are enhanced compared with those of SFO and CRPA by about 30% ~5% (20% ~10%) and 15%, respectively, at $E_\nu = 30\text{--}60$ MeV. It would be interesting to study effects of the enhancement of the cross sections for SFO-tls on nucleosynthesis and neutrino detections.

3. Neutrino-induced Reactions on ^{40}Ar

Liquid Ar is an important target to measure solar neutrinos. Neutrino-induced reactions on ^{40}Ar are studied by using the monopole-based-universal interaction (VMU) which has proper tensor components[4, 9]. The sdpf-m[10] and GXPF1J[11] interactions are used for sd -shell and fp -shell part, respectively, while the VMU is adopted for the $sd-fp$ cross shell part. This interaction will be referred as SDPF-VMU. Configurations are restricted within $2\hbar\omega$

Figure 3. The same as in Fig. 2 for neutral current reaction; $^{16}\text{O}(\nu, \nu')^{16}\text{O}$.


excitations, $(sd)^{-2}(fp)^2$, and the GT transition strengths are obtained for SDPF-VMU and WBT[7] interactions with the quenching factor of $f = 0.775$ [12]. For SDPF-VMU, the energy of the first 1^+ state of ^{40}K is well reproduced and the strength distribution is also rather well described. Calculated $B(GT_-)$ and the sum of $B(GT_-)$ up to the excitation energy of ^{40}K (E_x) are shown in Fig. 4 as well as experimental values obtained by recent (p, n) reaction[13]. In case of WBT, the GT strength distribution is shifted toward lower energy by 1.81 MeV so that the E_x for the first 1^+ state coincides with the experimental value; this case is referred as WBT- ΔE . The experimental GT strength is rather well described by SDPF-VMU as shown in Fig. 4(b). The sum of the GT strength in Ref. [12] is smaller than the observed strength[13].

Calculated cross section for $^{40}\text{Ar}(\nu, e^-)^{40}\text{K}$ is shown in Fig. 5 for SDPF-VMU. The GT transitions and the transition to the isobaric analog state (IAS) are included. The contributions from the transitions where the final electron energy is larger than 5 MeV, which is consistent with the experimental condition for ICARUS[14], are taken into account. The calculated cross section is consistent with that obtained from experimental GT strength from the (p, n) reaction[13].

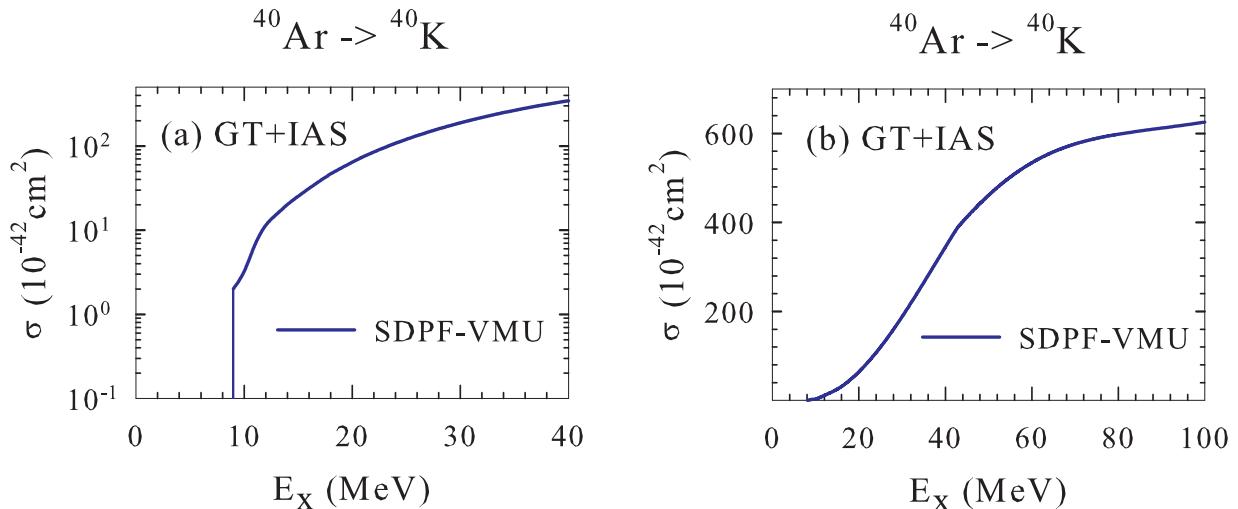
Cross sections folded over $^8\text{B} \nu$ spectrum[15] are shown in Table I. Here, the contributions from E_1^5 (axial electric dipole), $M1$ (magnetic dipole), C_1^5 (axial Coulomb) and L_1^5 (axial longitudinal) for GT and $C0$ (Coulomb) and $L0$ (longitudinal) for IAS are taken into account, except for the case of Ref. [12] where only the E_1^5 and $C0$ contributions are included. Note that $C0 + L0 = (\frac{q^2 - \omega^2}{q^2})^2 C0$ with q (ω) the momentum (energy) transfer. The GT contributions are found to be enhanced for SDPF-VMU and WBT- ΔE about by 40% compared with those of Ref. [12].

4. Electron Capture Reactions in Ni Isotopes

Electron capture reactions in Ni isotopes in stellar environments are studied by using the new shell model Hamiltonian, GXPF1J[11]. Spin properties of fp -shell nuclei are well described by GXPF1J with the universal quenching factors; $g_A^{eff}/g_A = 0.74$ and $g_s^{eff}/g_s = 0.75$. Experimental GT_+ strengths in the β^+ channel in ^{58}Ni [16] and ^{60}Ni [17] are well reproduced by GXPF1J [18]. Thus, the electron capture rates in ^{58}Ni and ^{60}Ni obtained from the experimental GT_+ strengths

Figure 4. (a) GT strengths for $^{40}\text{Ar} \rightarrow ^{40}\text{K}$ transition obtained by shell model calculations with the use of SDPF-VMU and WBT- ΔE interactions. (b) The sum of $B(GT)$ values up to excitation energy E_x of ^{40}K for SDPF-VMU and WBT- ΔE as well as the experimental data[13]. The values in Ref. [12] are also shown.

Table 1. Calculated cross sections for $^{40}\text{Ar} (\nu, e^-) ^{40}\text{K}$ reaction folded over the neutrino spectrum of ^8B [15]. Contributions from GT, IAS and GT+IAS transitions are shown in units of 10^{-43}cm^2 for SDPF-VMU, WBT- ΔE interactions and Ref. [12].


	GT	IAS	GT+IAS
SDPF-VMU	10.99	2.10	13.1
WBT- ΔE	10.78	2.10	12.9
Ref. [12]	7.7	3.8	11.5

are well reproduced by GXPF1J at high temperatures, $T = T_9 \times 10^9$ K with $T_9 = 1\sim 10$, and at high densities, $\rho Y_e = 10^7 \sim 10^{10}$ g/cm³ with Y_e the lepton-to-baryon ratio in stars[18]. The GXPF1J is also promising in neutron-rich Ni isotopes. The capture rates in ^{56}Ni for GXPF1J are found to be smaller compared to those for KB3G [19] due to larger fragmentation of the GT strength for GXPF1J. The extension of the present work to other isotopes such as Co and Mn is now under way[20].

The authors would like to thank B. Balantekin for raising the problem of ^{13}C contamination. The shell model calculations were carried out by the codes OXBASH[21] and MSHELL64[22]. This work has been supported in part by Grants-in-Aid for Scientific Research (C)22540290 of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- [1] Suzuki T, Fujimoto R and Otsuka T 2003 *Phys. Rev. C* **67** 044302
- [2] Suzuki T and Otsuka T 2008 *Phys. Rev.* **78** 061301(R)

Figure 5. Calculated reaction cross sections for ^{40}Ar (ν, e^-) ^{40}K reaction obtained by shell model calculations with the use of SDPF-VMU. The GT and IAS transitions are taken into account. Results are shown up to E_x = (a) 40 MeV (log scale) and (b) 100 MeV.

- [3] Honma M, Otsuka T, Brown B A and Mizusaki T 2002 *Phys. Rev. C* **65** 061301(R); 2004 *ibid.* **69** 034335
- [4] Otsuka T, Suzuki T, Honma M, Utsuno Y, Tsunoda N, Tsukiyama K and Hjorth-Jensen M 2010 *Phys. Rev. Lett.* **104** 012501
- [5] Suzuki T, Chiba S, Yoshida T, Kajino T and Otsuka T 2006 *Phys. Rev. C* **74** 034307
- [6] Yoshida T, Suzuki T, Chiba S, Kajino T, Yokomakura H, Kimura K, Takamura A and Hartmann D H 2008 *Astrophys. J.* **686** 448
- [7] Warburton E K and Brown B A 1992 *Phys. Rev. C* **46** 923
- [8] Kolbe E, Langanke K and Vogel P 2002 *Phys. Rev. D* **66** 013007
- [9] Otsuka T, Suzuki T, Fujimoto R, Grawe H and Akaishi Y 2005 *Phys. Rev. Lett.* **95**, 232502
- [10] Utsuno Y, Otsuka T, Mizusaki T and Honma M 1999 *Phys. Rev. C* **60** 054315
- [11] Honma M et al. 2005 *J. Phys. Conf. Ser.* **20** 7
- [12] Ormand W E, Pizzochero P M, Bortignon P F and Broglia R A 1995 *Phys. Lett. B* **345** 343
- [13] Bhattacharya M, Goodman C D and Garcia A 2009 *Phys. Rev. C* **80** 055501
- [14] Bachall J N, Baldo-Ceolin M, Cline C B and Rubbia C 1986 *Phys. Lett. B* **178** 324
- [15] Winter W T et al. 2003 *Phys. Rev. Lett.* **91** 252501
- [16] Hagemann M et al. 2004 *Phys. Lett. B* **579** 251
- [17] Anantaraman et al. 2008 *Phys. Rev. C* **78** 065803
- [18] Suzuki T, Honma M, Mao H, Otsuka T and Kajino T 2011 *Phys. Rev. C* **83** 044619
- [19] Caurier E et al. 2005 *Rev. Mod. Phys.* **77** 427
- [20] Suzuki T, Honma M, Yoshida T, Mao H, Kajino T and Otsuka T 2011 *Prog. Part. Nucl. Phys.* **66** 385
- [21] OXBASH, The Oxford, Buenos-Aires, Michigan State, Shell Model Program, Brown B A, Etchegoyen A and Rae W D M 1986 *MSU Cyclotron Laboratory Report* No. 524
- [22] Mizusaki T, Shimizu N, Utsuno Y and Honma M 2010, unpublished.