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Abstract. The on-lattice ϕ4 model is a paradigmatic example of a continuous
real-variable model undergoing a continuous symmetry-breaking phase transition
(SBPT). Here, we study the Z2-symmetric mean-field case without the quadratic
term in the local potential. We show that the Z2-SBPT is not affected by the
quadratic term and that the potential energy landscape is greatly simplified
from a geometric–topological viewpoint. In particular, only three critical points
exist to confront, with a number growing as eN (N is the number of degrees of
freedom) of the model with a negative quadratic term. We focus on the properties
of the equipotential surfaces with the aim to deepen the link between SBPTs
and the essential properties of a potential that is capable of entailing them. The
results are interpreted in view of of some recent achievements regarding rigorous
necessary and sufficient conditions for a Z2-SBPT.
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1. Introduction

This study is part of a research line attempting to clarify the relationship between
phase transitions (PTs) and the potential energy landscapes of Hamiltonian systems
(for example, see [1–12]). Potential landscapes include critical points, geometric proper-
ties and the topology of suitable subsets of configuration space, for example, equipoten-
tial surfaces. This type of study often makes intensive use of models undergoing PTs,
including the ϕ4 model. This model has received increasing attention in recent years,
and is a paradigmatic example of a model undergoing a continuous PT (for example, see
[6, 13–22]). Here, we introduce a simplified version of the model that shows a reduced
number of critical points compared with the traditional version.

The ϕ4 model is a lattice version of a classical ϕ4 field model. This can be studied
in any spatial dimension, in scalar and vector versions by the Hamiltonian

H =
n∑

α=1

N∑
i=1

1
2
(πα

i )
2− µ

2
(ϕα

i )
2− J

∑
⟨i,j⟩

ϕα
i ϕ

α
j

+
λ

4

N∑
i=1

[
n∑

α=1

(ϕα
i )

2

]2
, (1)

where the index α runs from 1 to n for an O(n) symmetry group, the index i labels the
d -dimensional spatial lattice, (πi,ϕi) are the canonically conjugated variables, N is the
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number of degrees of freedom and ⟨i,j⟩ is the set of the nearest-neighbor lattice sites of
the ith site [23]. The set ⟨i,j⟩ can be defined in other ways, for example, the set of all
the variables within a certain range, or the whole lattice in mean-field interactions.

The model is known to undergo an O(n)-symmetry-breaking PT (SBPT). The exist-
ence of an SBPT can be proven by using renormalization group arguments [24]. For d =2
and n =2, and according to the Mermin–Wagner theorem, the model cannot have any
SBPT because of the combination of short-range interactions, continuous symmetry and
two spatial dimensions. In fact, it undergoes a Kosterlitz–Thouless PT without affecting
the order parameter, which remains vanishing, even below the critical temperature.

In [15], the topology of the equipotential surfaces interior of the mean-field ϕ4 model
of an O(1) symmetry (also called Z2) was solved using Morse theory. A large number
of critical points that exponentially increase with N were identified. In [6, 20], a similar
study was conducted using the nearest-neighbor 2D version. At sufficiently small values
of the coupling J, there is no difference in the number of critical points compared to
the mean-field version, but by increasing J and leaving fixed N, their number rapidly
drops to only three.

To simplify the following studies, we define the local potential V loc of the
Hamiltonian (1) as the additive part of the potential, which depends only on the degrees
of freedom of a single lattice site

Vloc =
n∑

α=1

(
λ

4

[
(ϕα)2

]2
− µ

2
(ϕα)2

)
. (2)

In this study, we found the negative quadratic term in the local potential of the
mean-field ϕ4 model with a Z2 symmetry to be responsible for the rapid growth of the
number of critical points while increasing N. Knowing this, we ask if the presence of the
quadratic term can be justified to entail the Z2-SBPT. Firstly, it is derived from classical
field theory, where it is the mass term of the associated classical field; for this reason,
it is often labeled as µ2 > 0. Another reason to justify the presence of the negative
quadratic term is the wish to simulate the classical spin of the Ising model. Indeed, for
n =1, the ϕ4 model can be seen as a continuous-variable version of the classical Ising
model, whose classical spins, Si’s, can take only two values: generically assumed as ±1.
In the ϕ4 model with a Z2 symmetry, the role of the two permitted values of the Si’s are
played by the two global minima of the double-well local potential Vloc(ϕ) = λϕ4−µϕ2

entailed by the negative quadratic term.
There is a remarkable difference between the Si’s and the ϕi ’s: the former do not find

any resistance at jumping between the two permitted values, whereas the latter find
such a resistance at jumping between the two global minima because of the presence of
the potential barrier. Hence, in our opinion, the double well introduces a complication
which is not present in the classical Ising model; furthermore, it is not even necessary
to entail the Z2-SBPT. For these reasons, in the following we allow µ to be vanishing
or, in some particular conditions, negative.

In section 2, we set µ to zero in the mean-field version of the ϕ4 model with a Z2

symmetry because it is the simplest case with both canonical thermodynamic and crit-
ical points of configuration space that are solvable in a semi-analytical way. In section 3,
we study the same model without an interacting potential, where no SBPT occurs in
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order to make a comparison. In section 4, we consider some short-range versions and
find all their critical points by using the numerical polynomial-homotopy-continuation
(NPHC) method up to N =9.

2. Mean-field Z2-symmetric ϕ4 model with a vanishing quadratic term in the local
potential

Here, we disregard the kinetic terms π2
i /2, i = 1, . . . ,N , in the Hamiltonian, equation (1),

because they yield a trivial contribution to the partition function, which can be factor-
ized. From a topological viewpoint, the level sets at constant kinetic energy in phase
space are trivially equivalent to N -spheres. Then, we set the parameters λ= 2/N , µ=0
and extend the interaction to all the pairs of coordinates (i.e. mean-field interaction)
giving rise to the potential

V =
N∑
i=1

1

4
ϕ4
i −

J

2N

(
N∑
i=1

ϕi

)2

. (3)

2.1. Canonical thermodynamic

In [15, 25], the thermodynamic of the model, equation (1), with λ= 2/N , µ=1 and
mean-field interactions

V =
N∑
i=1

(
1

4
ϕ4
i −

1

2
ϕ2
i

)
− J

2N

(
N∑
i=1

ϕi

)2

(4)

was solved using mean-field theory. In this section, we will follow the same pathway
for the model, equation (3). In figures 1 and 2, the results for these two models are
compared.

The configurational partition function is

Z =

ˆ
dNϕe

−β
[∑N

i=1Vloc(ϕi)− J
2N (

∑N
i=1ϕi)

2
]
, (5)

where Vloc(ϕ) = ϕ4/4 is the local potential of the potential, equation (3), defined in
equation (2), and β = 1/T . We introduce the magnetization

m=
1

N

N∑
i=1

ϕi, (6)

which, replaced in Z, gives

Z =

ˆ
dNϕe−β[

∑N
i=1Vloc(ϕi)− JN

2
m2]. (7)
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The fact that the mean-field interactions imply that the interacting potential is a
function of the magnetization, allows us to solve Z in a semi-analytic way using the
Hubbard–Stratonovich transformation [15, 25, 26] based on the Gaussian integral

eµm
2

=
1√
π

ˆ
dy e−y2+2

√
µmy, (8)

which, inserted into equation (7), yields

Z =
1√
π

ˆ
dy

[ˆ
dϕe−βVloc(ϕ)+

√
2βJ
N

mϕ

]N
e−y2. (9)

After introducing

φ(m,β) = ln

ˆ
dq e−β[Vloc(q)+Jmq], (10)

and the variable changing y =
√

NβJ
2 m, we get

Z =

√
NβJ

2π

ˆ
dme−Nβf(m,β), (11)

where

f =−J

2
m2+

1

β
φ (m,β) (12)

is the configurational Helmholtz free energy per degree of freedom.
Finally, to apply the saddle-point method to calculate Z, we minimize f with respect

to m at fixed T, obtaining the spontaneous magnetization ⟨m⟩(T ). From the latter, we
get the specific free energy, the specific average potential and the specific heat

f (T ) = − 1

Nβ
lnZ, (13)

⟨v⟩(T ) = − 1

N

∂

∂β
Z, (14)

cv (T ) =
d⟨v⟩
dT

, (15)

respectively. They are plotted in figure 1 in comparison with the results for the mean-
field ϕ4 model, equation (4). The picture is the well-known one of a second-order Z2-
SBPT with classical critical exponents.

We cannot see any difference in the thermodynamic of the two models, apart from
a quantitative viewpoint. We conclude that the negative quadratic term in the local
potential has no part in causing the Z2-SBPT. This is not surprising because in [7],
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Figure 1. (a)–(d) The specific free energy, average specific potential, specific heat
and spontaneous magnetization, respectively, as functions of the temperature. The
red lines represent the model in equation (3) and the blue lines represent the model
in equation(4), both with the coupling constant J =1.

Figure 2. (a) The critical average potential as a function of the coupling con-
stant of the model in equation (3) (red points) and of the model in equation (4)
(blue points). The continuous line is the parabola 0.114446J2 fitted to the data.
(b) As panel (a) for the critical temperature. The continuous line is the parabola
0.457786J2.

it was showed that, in a mean-field model, a double-well potential with a minimum
barrier between the wells proportional to N is a sufficient condition for entailing a
Z2-SBPT. Both models, equations (3) and (4), have this feature independently of the
presence of the quadratic term −ϕ2/2 in the local potential. Rather, as we will see in
the following, the latter yields complication and confusion about the real link between
the characteristics of the potential energy landscape and the Z2-SBPT.
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The occurrence of the double well of the potential is generated by the competition
between the confining part given by the local potential and the interacting part for J > 0.
The only essential condition to satisfy in order to make the total potential confining is
the following

lim
ϕ→+∞

Vloc (ϕ)

ϕ2
=+∞. (16)

For example, let us consider the local potential given by the square well

Vloc =

{
+∞ for |ϕ|⩾ 1
0 for |ϕ|< 1

, (17)

which is nothing but the limit of Vloc = ϕ2k for k →∞ with k natural. With this choice,
we get, in the thermodynamic limit, the configurational partition function of the mean-
field Ising model, whose free energy is given by

f (m,T ) =−J

2
m2+1+T lncosh

(
Jm

T

)
. (18)

From the latter, by setting the derivative to zero with respect to m, we get the well-
known spontaneous magnetization as the solutions of the following equation

−m+tanh

(
Jm

T

)
= 0. (19)

The critical temperature is Tc = J .
In [18], large deviation theory was applied to find the configurational microcanonical

entropy s(v,m) of the model in equation (4), and of the same model without interaction.
We recall the definition of configurational entropy

s(v,m) = lim
N→∞

1

N
lnω (v,m) , (20)

where ω(v,m) is the density of states at fixed v and m

ωN (v,m) =

ˆ
Σv,N∩Σm,N

dΣ

∥∇V ∧∇M∥
, (21)

where Σv,N is defined in equation (25), Σm,N is defined in a similar way for the magnet-
ization, V =Nv, M =Nm and ∥∇V ∧∇M∥ is the Gram determinant square root.

Large deviation theory can be applied to the model in equation (3) as well. We expect
no qualitative difference in the properties of s(v,m), which is analytic and non-concave.
The non-concavity is allowed by the long-range interactions and is strictly related to the
SBPT, whereas it is forbidden in the short-range case [19, 27–29]. In simple terms, an
equilibrium configuration of a short-range system in the broken symmetry phase can be
divided by a layer into two domains, each with magnetization oriented independently
of the other. This is made possible because the potential energy at the layer becomes
negligible compared with the total one in the thermodynamic limit. Here, we limit
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Figure 3. (a) The domain of the configurational entropy s, equation (20), of the
model, equation (3) (dark region) in the (m, v)-plane. The dashed line is the spon-
taneous magnetization, where s takes the maximum evaluated along straight lines
with constant v. (b) A 3D plot of s only in qualitative accordance with the real
graph of the model, equation (3). The domain is exact.

to give the domain of s(v,m), whose contour v(m) =m4/4− Jm2/2 is given by the
potential evaluated on the straight line in configuration space passing by the origin of
coordinates and orthogonal to the hyperplanes at constant m. The contour is plotted
in figure 3.

2.2. Critical points and topology of the equipotential surfaces

Here, ∇V = 0 for the potential, equation (3), takes the form

ϕ3
i −

J

N

N∑
i=1

ϕi = 0 i = 1, . . . ,N . (22)

The form of the system, equation (22), implies that the components of the solutions
are all equal, so that it reduces to ϕ3

i − Jϕi = 0, i = 1, . . . ,N . Trivially, the solutions are

ϕs
0 = (0, . . . ,0) and ϕs

± =±
√
J (1, . . . ,1).

The equipotential surfaces, or v -level sets, are often called Σv,N ’s in the literature,
and are defined as follows

Σv,N =

{
ϕ ∈ RN :

V (ϕ)

N
= v

}
. (23)

To apply Morse theory [30], it is useful to also define Mv,N as

Mv,N =

{
ϕ ∈ RN :

V (ϕ)

N
⩽ v

}
. (24)
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Trivially, the Σv,N ’s are the boundary of the Mv,N ’s

Σv,N = ∂Mv,N . (25)

The topology of the Σv,N ’s is strictly related to that of the Mv,N ’s.
According to Morse theory, the topology of the Mv,N ’s can be determined by starting

from a Morse function defined on configuration space. A Morse function is a function
whose critical points are non-degenerate, i.e. isolated. In this case, we use the potential
as a Morse function. Once the critical points have been found, the topology of the
Mv,N ’s is retrieved by attaching a k -handle HN ,k for each critical point, where N is the
configuration space dimension and k is the index of the critical point (0⩽ k ⩽N). Here,
HN ,k is the product of two disks, one k -dimensional and the other (N − k)-dimensional

HN ,k =Dk ×DN−k. (26)

The index of a critical point is defined as the number of negative eigenvalues of the
Hessian matrix H, which, for the potential, equation (3), takes the form

Hij =
∂2V

∂ϕi∂ϕj
= 3ϕ2

i δij −
J

N
. (27)

The fact that the critical points are non-degenerate are equivalent to requesting that
each critical point is non-singular or, basically, that the determinant of the Hessian
matrix is non-vanishing. For ϕs

±, Hij = 3Jδij − J/N . This entails that the index is 0
because all the eigenvalues are positive. For ϕs

0,Hij =−J/N . This entails that the saddle
is singular. Regardless, the saddle is isolated, and here we show that it corresponds to
a critical point with index 1. Consider an orthonormal coordinate system, such that an
axis is the line passing through the points ϕs

± and the remaining axes are orthogonal
to the latter. The second derivative of V along the aforementioned axis computed at
ϕs
0 is negative. The restriction of V on each of the other axes has a global minimum in

ϕs
0. From these two considerations, we can infer that ϕs

0 corresponds to a critical point
with index 1.

The critical points ϕs
± correspond to the global minimum of the potential vmin =

−J2/4 to which the first critical v -level set starting from the bottom corresponds. The
saddle ϕs

0 corresponds to the critical 0-level set, i.e. the second and last critical v -level
set from bottom to top. The topologies of the Mv,N ’s are retrieved by attaching two
0-handles HN ,0 at the first critical v -level set and a 1-handle HN ,1 at the second critical
v -level set. Therefore, the Mv,N ’s are homeomorphic to a couple of disjointed N -balls
for v ∈ (−J2/4,0), whereas for v ∈ (0,+∞), they are homeomorphic to a single N -ball.
Equivalently, the topology of the Σv,N ’s is that of two N -spheres for v ∈ (−J2/4,0) and
of an N -sphere for v ∈ (0,+∞) (see figure 4).

2.2.1. Interpretation of the results. In [15], the critical points of the model in
equation (4) were found by using the same semi-analytic method applied in section 2.1.
Figure 5 shows the number of critical points and their density with respect to the
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Figure 4. Some Σv,N ’s of the model, equation (3), (panel (a)) for N =2 with J =1
in comparison with some of the model in equation (4) (panel (b)). The proliferation
of the critical points in the model in equation (4) is already evident at N =2. In
(a), the bold Σv,N is the precursor of the Σv,N which, for any N, is the boundary
between the dumbbell-shaped ones and those which are not.

potential density. The total number is of the order of eN, at least for the J -values
investigated, always less or equal to 1. We cannot exclude that, by increasing J with
fixed N, a decrease in the number of critical points can occur, similarly to what was
detected in [6] for the short-range case. The critical points are comprised between a
minimum v -value, significantly greater than the global minimum, and v =0. In [15], it
was also shown via an analytic demonstration that there are no critical points above
v =0.

From a viewpoint of the Σv,N ’s topology, the interval of v -values containing the
critical points works as a transition interval between two N -spheres and a single N -
sphere (see figures 4 and 6). In the model, equation (3), this transition interval collapses
in a single critical v -level set with a single critical point. It is notable that, despite this
dramatic simplification of the potential landscape, the model in equation (3) does not
lose any properties from a PT viewpoint.

In [16, 31], it was shown that a Z2-SBPT can be entailed by dumbbell-shaped Σv,N ’s.
Roughly speaking, such a Σv,N is made up of two major lobes connected by a narrow
neck (see figures 4, 6 and 7). In more detail, a Σv,N is dumbbell-shaped when the
microcanonical volume of the section at constantm does not take the global maximum at
m =0. The critical potential corresponds to the transition between the dumbbell-shaped
Σv,N ’s and those that are not. This Z2-SBPT generating mechanism was discovered in
several models [7, 8, 14, 16, 31, 32] and it is also acting in the models in equations (3)
and (4). The picture is represented in figure 7. The method used in section 2.1 to solve
the canonical thermodynamic decomposes the N -dimensional integral of the partition
function in a one-dimensional integral with respect to m. In this way, the problem to
find the microcanonical volume of the sections of the Σv,N ’s at constant m was solved.

We remark that being dumbbell-shaped for a Σv,N can be independent at all on its
critical points and topology. Regardless, there is a special case that is worth mentioning,
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Figure 5. Model (4) for N =100 and J =1. (a) The number of critical points (ncp)
with respect to their potential density. (b) The logarithmic sum of critical points
starting from left versus potential density.

Figure 6. (a) Some Σv,N ’s of the model, equation (3), for N =3 and J =1. The
potential density increases from left to right. (b) The same as (a) for the model in
equation (4). In the latter case, the proliferation of the critical points is evident.

i.e. when the Σv,N is made up from two or more connected components which do not
intersect the hyperplane at m =0. In this case, the Σv,N is necessarily dumbbell-shaped
for obvious reasons. This is the case of the model in equation (3) for v comprised between
the global minimum and v =0 and of the model in equation (4) for v comprised between
the global minimum and the minimum v -value of the critical Σv,N ’s. In fact, the Σv,N ’s
are all homeomorphic to two N -spheres.

The fact that a dumbbell-shaped Σv,N implies the Z2-symmetry breaking has a
remarkable consequence on the critical potential ⟨v⟩c. In particular, ⟨v⟩c has to be
greater than zero for the model in equation (3) and greater than the minimum of the
v -values of the critical Σv,N ’s for the model in equation (4). Both the inferences are
compatible with the results obtained here and in [15].

The, ⟨v⟩c > 0 is a consequence of theorem 1 in [14], which states that if the Σv,N ’s
are made up of two, or more, disjointed connected components non-intersecting the
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Figure 7. Conceptual representation of the Z2-symmetry-breaking mechanism
based on dumbbell-shaped equipotential surfaces for the model in equation (3).
The dumbbell-shaped surfaces are below the thermodynamic critical potential ⟨v⟩c.
The bold line represents the separating surface with respect to the non-dumbbell-
shaped ones above ⟨v⟩c. The spontaneous magnetization as a function of potential
density is shown in red.

hyperplane at m =0 below a certain value v 0 of the potential density, then the Z2

symmetry is broken for any v < v0. In the model in equation (3), v 0=0. This condition
is a special case of the sufficient condition given in theorem 1 in [16] based on dumbbell-
shaped Σv,N ’s. This is because if the Σv,N ’s are made up as just described above, the
more likely they are also dumbbell-shaped.

3. Model (3) without interaction

To make a comparison with a model without SBPT, the interacting terms were removed
from the potential, equation (3)

V =
1

4

N∑
i=1

ϕ4
i . (28)

The solution of the canonical thermodynamic is trivial because the system is nothing but
a collection of N independent quartic oscillators. No PT can occur. The configurational
partition function is given by

Z =

(ˆ
dϕe−

1
4
βϕ4

)N

=

(
γ
(
1
4

)
√
2

T
1
4

)N

, (29)

from which we get the caloric curve ⟨v⟩(T ) = T/4.
The topology of configuration space is even more trivial. Indeed, ∇V = 0 takes the

simple form

ϕ3
i = 0 i = 1, . . . ,N , (30)

whose unique solution is (0, . . . ,0). The index cannot be computed as for a Morse func-
tion because the Hessian matrix vanishes at (0, . . . ,0). However, since (0, . . . ,0) is a
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Figure 8. Model (4) without interacting terms for N =100. (a) The number of
critical points (ncp) with respect to their potential density. (b) The logarithmic
sum of the number of critical points starting from left versus potential density.

Figure 9. (a) The domain of the configurational entropy s, equation (20), of the
model in equation (28) (dark region) in the (m, v)-plane. The dashed line is the
spontaneous magnetization, where s takes the maximum evaluated along straight
lines with constant v. (b) A 3D plot of s only in qualitative accordance with the
real graph of the model in equation (28). The domain is exact.

global minimum, it corresponds to a non-singular stationary point with index 0. From
a topological viewpoint, the topology of the Mv,N ’s, for v > 0, can be retrieved by
attaching a 0-handle H0,N at the 0-level set. Hence, the Mv,N ’s are homeomorphic to an
N -ball for v > 0. The model cannot undergo any SBPT, not even at T =0, because at
that temperature the representative point is frozen at (0, . . . ,0) to which a vanishing
spontaneous magnetization corresponds.

For comparison with the model in equation (28), in figure 8 we show the critical
points of the model in equation (4) without the interaction investigated in [15]. The total
number of critical points is 3N , which is entirely due to the presence of the negative
quadratic term in the local potential. Here, 3N comes from the combinatorial of the
three solutions of the third-degree equations inside the system ∇V = 0.

In figure 9, we report the graphic of the configurational microcanonical entropy,
which is strictly concave, as it is in a system without SBPT.
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4. Short-range case

Here, we conjecture that the models of the class in equation (1) without a quadratic in
the local potential still have a PT of the same type. We have no general demonstration
available, but we provide some evidence that makes this conjecture very reasonable.

In this section, we will investigate the nearest-neighbor-interaction version of the
mean-field simplified ϕ4 model in equation (3) introduced in section 2. The potential is
the following

V =
1

4

N∑
i=1

ϕ4
i − J

∑
⟨i,j⟩

ϕiϕj, (31)

where we assume toroidal boundary conditions and J > 0. The lattice can have any
dimension d.

4.1. Canonical thermodynamic

By analysis, we can compute only the value of the spontaneous magnetization and of
the specific potential at T =0. By inserting qi = q0, for i = 1, . . . ,N , in equation (31)
and dividing by N, we obtain

v =
1

4
q40 − dJq20, (32)

from which, by vanishing the derivative

∂v

∂q0
= q30 − 2dJq0 = 0, (33)

we get the solution of the spontaneous magnetization q0 = 0,±
√
2dJ and of the specific

potential vmin =−d2J2. Here, q0=0 has to be excluded for obvious reasons.
Some Monte Carlo simulations were carried out while varying d and J. For J =1, the

lattice dimensions are d= 1,2,3,4 with nearest-neighbors interaction, periodic boundary
conditions for d =1 and toroidal boundary conditions for the other d -values. For d =2,
the coupling constant is J = 0.5,1,1.5,2. The results are shown in figure 10. As expected,
the model shows a second-order PT, except for d =1, where the PT occurs at T =0. In
general, we conjecture that the model in equation (31) undergoes a Z2-SBPT for any d
and for any J > 0, and belongs to the universality class of the classical Ising model in d
dimension, even extending the range of the interaction not only at nearest neighbors.
Among the Z2-SBPTs, we also include the special case d =1 as a limiting case with the
critical temperature Tc = 0.

Despite the difficulty associated with the precise estimation of the critical temper-
ature Tc and the critical potential ⟨v⟩c as functions of d and J by those simulations, a
quadratic relationship seems very reasonable. The rise of the minimum barrier between
the two wells of the potential by increasing d and J explains the increase in Tc and ⟨v⟩c.
The simulations suggest ⟨v⟩c > 0 for any d and J > 0.
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Figure 10. (a) Monte Carlo simulations for the spontaneous magnetization as a
function of the temperature of the model in equation (31) for J =1. Disks are
for d =1 and N =100, squares are for d =2 and a 10× 10 lattice, rhombuses are
for d =3 and a 4× 4× 4 lattice, triangles are for d =4 and a 3× 3× 3× 3 lattice.
(b) The same as (a) for the specific potential. The continuous line T/4 is for the
model without interaction. (c) The same as (a) for d =2 and a 10× 10 lattice with
J = 0.5,1,1.5,2 for disks, squares, rhombuses and triangles, respectively. (d) The
same as (c) for the specific potential.

4.2. Critical points and topology of the equipotential surfaces

Here, ∇V = 0, for the potential in equation (31), takes the form

ϕ3
i − J

∑
⟨i,j⟩

ϕj = 0 i = 1, . . . ,N . (34)

A remarkable property, for any lattice dimension d, is the existence of a scaling law that
links the critical points evaluated at different values of the coupling J. The scaling is as
follows


J → J ′

ϕi → ϕ ′
i = kϕi i = 1, . . . ,N

m→m ′ = km

v → v ′ = k4v

, (35)
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where k =
√
J ′/J . To prove it, consider

k3

ϕ3
i − Jk−2

∑
⟨i,j ⟩

ϕj

= 0 i = 1, . . . ,N . (36)

It is immediate to verify that if the set of coordinated ϕi , i = 1, . . . ,N , is a critical point,
then the new set kϕi, i = 1, . . . ,N , is a solution of ∇V = 0 for J ′. The scaling also holds
for the mean-field case.

In [15], it was analytically proven that all the critical levels of the model in
equation (4) are below zero. Here, we extend the demonstration to the model in
equation (31). From equation (34), we deduce that if ϕs is a stationary point, then

(ϕs
i )

3 = J
∑
⟨i,j⟩

ϕs
j i = 1, . . . ,N . (37)

Rewriting the potential in equation (31) in the following form

V =
N∑
i=1

ϕi

1

4
ϕ3
i − J

∑
⟨i,j⟩

ϕj

 , (38)

and substituting equation (37), we get

V (ϕs) =−3

4

N∑
i=1

(ϕs
i )

4 ⩽ 0. (39)

To deepen a relationship with critical points and a thermodynamic, let us define the
minimum barrier Bmin,N between the two global minima of the potential at fixed N. To
do this, let p be a path, i.e. a continuous line in configuration space which links the two
global minima. For each point of p, the potential takes a value. Since the length of any
p is finite, then the set of the differences between the potential along p and the global
minimum of the potential at fixed Nvmin,N has a maximum that we will call Vp. Then,
we define Bmin,N as the infimum of the set of the Vp’s associated with all the possible
paths p’s. We also define the specific minimum barrier bmin,N =Bmin,N/N .

There is an interesting relation between bmin,N and the thermodynamic critical
potential ⟨v⟩c. Let us assume that limN→∞ bmin,N = bmin exists as finite. Then, ⟨v⟩c ⩾
bmin+ vmin holds. This inequality is a consequence of theorem 1 in [14]. Indeed, for
v ∈ (vmin,bmin+ vmin), the Σv,N ’s are topologically equivalent to the disjointed union
of two N -spheres, so that the hypotheses of theorem 1 are satisfied. The implication
is that the Z2 symmetry of the potential is broken for v ∈ [vmin,bmin+ vmin), whence
⟨v⟩c ⩾ bmin+ vmin.

What can we say about bmin as a function of d? Let us start with d =1. Suppose
the configuration of the system is that of a global minimum, for example, ϕi =

√
2J ,

for i = 1, . . . ,N . Flip a degree of freedom, for example, ϕ1 =−
√
2J to fix the ideas. The

potential of the new configuration has increased by the quantity 4J. Now, continue to flip
the nearest neighbors until only one takes the value

√
2J . In so doing, the potential does
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not change value. At this point, we flip the last degree of freedom and the potential
will return to its global minimum. We have thus described a path in configuration
space between the global minima of the potential for which Vp = 4J . Since for N →∞,
the above-defined path is that with the minimum Vp, then the minimum barrier is
Bmin,N = 4J .

For d =2, we can proceed in a similar way as follows. Consider a square lattice with
toroidal boundary conditions. Flip the degrees of freedom belonging to a row; then flip
the nearest neighbors until all the degrees of freedom are flipped. We have chosen a
row (or a column is the same) because it is a path in configuration space of minimum
length. Since the lattice is square, then the path length is N 1/2, so that Bmin,N ∝N 1/2.

For any d, via the same considerations, we can show that Bmin,N ∝N (d−1)/d. The
limiting case d=∞ corresponds to the mean-field case for which we already showed in
section 2.2 that Bmin,N ∝N .

What could the implications of the minimum barrier be on the critical points?
The Σv,N ’s are topologically equivalent to two disjointed N -spheres in the v -interval
comprised between vmin,N and the first critical v -level set. Assuming that bmin,N is the
value of the minimum barrier implies that the Σv,N corresponding to the potential
vmin,N + bmin,N is critical. If bmin,N → 0 in the thermodynamic limit, at least a critical
point exists whose critical v -value tends to vmin. This means that the interval (vmin,N ,0)
cannot be void of critical points, at least from a certain N -value. In section 4.2.1, we
see that the considerations above are compatible with the results obtained using the
NPHC method.

It is worth noticing that this is strictly related to the convexity properties of the
graphic of the configurational microcanonical entropy in the (m, v)-plane. The fact
that bmin,N → 0 in the thermodynamic limit makes it possible to divide the system
configuration into at least two domains with independently oriented magnetization. This
implies that all the spontaneous magnetization values comprised between the maximum
and the minimum are allowed for a fixed temperature. This reflects in a flat entropy as
a function of m at fixed v comprised between the maximum and the minimum of the
spontaneous magnetization. Basically, the graph is non-strictly concave [19, 27–29].

It is possible to analytically compute, via a computer algebra system, the index of
the saddle point (0, . . . ,0), which grows linearly with N at least for the values invest-
igated here (see figure 11). In the mean-field case, the index of the central saddle is
1 independently on N. This is consistent with the fact the limit for N →∞ of the
minimum barrier bmin is finite in the mean-field case and is vanishing for finite d.

4.2.1. Critical points by the NPHC method. We used the NPHC method [33] to solve
equation (34), at least for values of N up to 9 and d up to 3. We chose the following
cases to compute:

d = 1; N = 4,7,8,9
d = 2; N = 2× 2,3× 3
d = 3; N = 2× 2× 2

.

The boundary conditions are periodic for the cases with d =1 and are toroidal for
the other cases. The coupling J is set to 1 because the solutions of equation (34) for
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Figure 11. The index of the saddle point (0, . . . ,0) of the model in equation (31)
as a function of the number of degrees of freedom for dimension d= 1,2,3,4 (red
points, green squares, blue triangles, orange rhombuses, respectively).

Figure 12. The nearest-neighbors model, equation (31). (a) The number of critical
points found by using the NPHC method with respect to their potential density
for d =1 and N =9, (b) for d =2 and N = 3× 3, and (c) for d =3 and N = 2× 2×
2. (d) The difference between the lowest potential critical level above the global
minimum and the global minimum for J =1 versus N for d =1 (disks) and d =2
(squares).

any other J ′ can be obtained by using the scaling law, equation (35). The results are
reported in figure 12.

For d =1, we found an increasing total number of critical points while increasing N.
In particular, at least up to N =4, the total number is 3, which are the two global minima
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and the central saddle. For N = 7,8,9, the total number is 31,67,147, respectively. The
smallness of the computed N -values did not allow us to make a significant statistic, but
the data seems compatible with an exponential growth, as in the case of the model in
equation (4).

The most interesting feature is that the nearest critical v -level above the global
minimum slightly lowers while increasing N (see figure 12(d)). This is a necessary
condition if the minimum barrier Bmin,N for d =1 is independent of N, as was shown in
section 4.2 for a one-dimensional lattice. For a consequence, bmin,N decreases as 1/N .

For d =2, the total number of critical points is 3 in the lattice 2× 2 and some other
critical points appear in the lattice 3× 3 with total number 165. For d =3, some other
critical points, beside the central saddle and the global minima, appear just in the
lattice 2× 2× 2 with total number 27.

Unfortunately, the computational means at our disposal did not allow us to invest-
igate larger N -values. However, the data found confirm the hypothesis that the shape
of the potential cannot be reduced to that of a double well with three critical points,
as for the model in equation (3), except in the case mentioned above for very small
N -values and for d= 1,2.

4.2.2. On a necessity theorem for PTs. In [12], a theorem on a necessary condition for
a PT of Hamiltonian systems was shown. This theorem was already shown in an original
version [23], even though it was later falsified by a counterexample [20]. The original
theorem, under suitable conditions, established that if the Σv,N ’s are diffeomorphic for
any N in an interval of v -values [v0,v1], then the thermodynamic functions have to be
analytic at least up to the second order in the same interval. As a consequence, if a PT
of the first or second order occurs at ⟨v⟩c, then at least a critical Σv,N , with v → ⟨v⟩c
for N →∞, exists. Basically, a topological change has to occur as the Σv,N crosses
the critical potential. The corrected version of the theorem includes the hypothesis of
asymptotic diffeomorphicity beside that of diffeomorphicity of the Σv,N ’s in the interval
[v0,v1].

Here, we suggest future investigations to understand if the picture of PTs based
on the framework of dumbbell-shaped Σv,N ’s (picture 1, for simplicity) put forward in
[16], here applied to the simplified ϕ4 model, has some convergence with the picture
depicted by the aforementioned theorem (picture 2), in particular, with the concept
of asymptotic diffeomorphicity. In picture 1, a PT is meant as a Z2-SBPT, whereas in
picture 2, a PT is meant as a loss of analyticity of the thermodynamic functions. These
two phenomena are often associated, but some exceptions exist. In picture 1, a necessary
and sufficient condition for a Z2-SBPT was given, whereas in picture 2, the condition for
a PT is only necessary. The condition of picture 1 applies only to Z2-symmetric systems,
whereas the aforementioned theorem applies only to finite-range systems, regardless of
their symmetries.

To fix the ideas, consider the simplified ϕ4 model, equation (31), with short-range
interaction in two dimensions. The critical potential is always positive, so that the
Z2-SBPT is located in an interval of v -values void of critical points and no topological
change located at the critical potential occurs. Regardless, to some extent, a topological
change can be restored in the limit N →∞, as depicted in figure 3 in [16]. In the
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broken phase, the Σv,N ’s are dumbbell-shaped and diffeomorphic to an N -sphere. Since
as N →∞, the volume of the two lobes becomes bigger and bigger with respect to the
neck, in non-rigorous terms, we can say that the ‘limiting topology’ of a sequence of
dumbbell-shaped Σv,N ’s is not equivalent to that of the Σv,N ’s themselves for each N.
In particular, they become topologically equivalent to two N -spheres. In these terms,
we can say that a topological change is exactly located at the critical potential in the
limit N →∞. This could have something in common with the concept of asymptotic
diffeomorphicity, which contemplates that a topological change can occur in the limit
N →∞. We are aware that speaking of topology in the limit N →∞ is only a colloquial
abstraction because no configuration space survives in that limit.

5. Conclusions

In this paper, we show how a vanishing quadratic term of the local potential of the on-
lattice mean-field ϕ4 model with a Z2 (O(1)) symmetry entails a tragic simplification
of the structure of the potential energy landscape. In particular, the number of critical
points decreases to three. This has no influence on the Z2-SBPT properties, so that it
makes the general study of the link between the geometry and topology of the potential
landscape and the PT easier. The only two critical levels of the potential are located at
zero and at the global minimum.

The thermodynamic critical potential of the Z2-SBPT is located above zero for
any value of the coupling constant J. This clearly shows that the Z2-SBPT is not
directly related to the presence of critical points, but rather to a particular shape of
the equipotential surfaces Σv,N ’s, which can been defined as dumbbell-shaped which, in
turn, can be entailed by the presence of a double-well potential with a minimum barrier
that is proportional to the number of degrees of freedom N. The last property explains
the irreducible presence of three critical points because they are the minimum number
requested for the occurrence of a double well in an analytic potential.

The short-range case was also investigated. The number of critical points cannot
be reduced to three and no topology drastic simplification of the equipotential surfaces
Σv,N ’s can occur. For N -values up to 9 and up to d =3, the presence of critical points, in
addition to the two global minima and the central saddle point (0, . . . ,0), was detected
using the NPHC method. Incrementing J at fixed N cannot cause any reduction of
the number of critical points because a scaling law entails that their number does not
change while varying J. The presence of critical points in addition to the global minima
and the central saddle can be inferred using thermodynamic reasons. In particular,
the short-range interaction causes a minimum potential barrier between the two wells
decreasing as N−1/2, so that the v -interval between the global minimum and 0 cannot
be void of critical points. This means that the Σv,N ’s cannot be homeomorphic to two
disjointed N -spheres above the global minimum, except for a v -interval with v → 0 in
the thermodynamic limit.

A future plan is to extend this research to other symmetry groups.
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